Learn by doing: less theory, more results

Game Programming
Using Qt

A complete guide to designing and building fun games with
Qt and Qt Quick 2 using their associated toolsets

Beginner's Guide

Witold Wysota

open source
Lorenz Haas

PUBLISHING

.alitebooks.col

http://www.allitebooks.org

A complete guide to designing and building fun games
with Qt and Qt Quick 2 using their associated toolsets

Witold Wysota

Lorenz Haas

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016
Production Reference: 1210116

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-887-4

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Authors Project Coordinator
Witold Wysota Sanjeet Rao

Lorenz Haas

Proofreader
Reviewers Safis Editing
Simone Angeloni
Rahul De Indexer

Monica Ajmera Mehta
Pooya Eimandar)

Shaveen Kumar
Graphics

M. Cihan Ozer Disha Haria

Jason Monterio
Acquisition Editor

Vinay Argekar
Production Coordinator

Conidon Miranda
Content Development Editor

Pooja Mhapsekar
Cover Work

Conidon Miranda
Technical Editor

Mrunmayee Patil

Copy Editor
Neha Vyas

[vww allitebooks.cond

http://www.allitebooks.org

Witold Wysota is a software architect and developer living in Poland. He started his
adventure with Qt in 2004 when he joined QtForum.org and started answering questions
about programming with Qt. Shortly afterwards, he became part of the moderator group of
the forum. In 2006, together with the moderator team, he established QtCentre.org, which
quickly became the largest community-driven support site devoted to Qt. For a number of
years, he conducted commercial, academic, and public trainings and workshops and has
been giving lectures on Qt, Qt Quick, and related technologies. He is a certified Qt developer
and was a member of Qt Education Advisory Board with Nokia, where he helped prepare
materials in order to use Qt in educational activities.

Witold was also a technical reviewer for Foundations of Qt Development, Johan Thelin,
Apress Publishing, a book about Qt 4, and an author of a couple of articles on programming
with Qt.

In real life, he is a passionate adept of Seven Star Praying Mantis, a traditional style of
Chinese martial arts.

I would like to thank all the people who have worked on Qt's development
over the years for creating such a great programming framework, which
was the main force that helped me to shape my programming career.

| would also like to thank Lorenz for helping me with the book as well as
the team at Packt Publishing for having a magnitude of patience for me
during the process of the creation of this book.

[vww allitebooks.cond

http://www.allitebooks.org

Lorenz Haas is a passionate programmer who started his Qt career with Qt 3. Thrilled
by Qt's great community, especially the one at QtCentre.org, he immersed himself in this
framework, became one of the first certified Qt developers and specialists, and turned his
love for Qt into his profession.

Lorenz is now working at a medium-sized IT company based in Erlangen, Germany, as a lead
software architect. He mainly develops machine controls and their user interfaces as well
as general solutions for the industry sector. Additionally, he runs his own small consultancy
and programming business called Histomatics (http://www.histomatics.de).

A few years ago, he started contributing to Qt Creator. He added a couple of refactoring
options that you probably rely on a regular basis if you use Qt Creator. He is also the author
of the Beautifier plugin.

| would like to thank Witold who guided me through my first steps into the
Qt world back in the days and who still assists me with any problems that
arise. | am also very grateful to him for taking me on board for this book
writing project. He's an excellent teacher and tutor!

Secondly, | would like to thank the team at Packt Publishing, who helped
and guided us through the entire process of writing this book.

[vww allitebooks.cond

http://www.histomatics.de
http://www.allitebooks.org

Simone Angeloni is a software developer and consultant with over a decade of experience
in C++ and scripting languages. He is a passionate gamer, but an even more passionate
modder and game designer.

He is currently working for Crytek GmbH and developing the Ul of the free-to-play, award-
winning video game Warface. Before this, he was realizing configuration systems for railway
signaling and creating standalone applications with Qt. Later, he worked with universities
and the National Institute of Nuclear Physics to realize fast data acquisition for particle
accelerators.

Recently, he founded Clockwise Interactive, a game company that is currently working on the
production of its first title.

Rahul De is a 23-year-old systems and server-side engineer from Kolkata, India. He recently
graduated from the Vellore Institute of Technology with a bachelor of technology degree

in computer science and now works with ThoughtWorks. Being a tech and open source
enthusiast and a proper "geeks geek", Rahul took up programming at a very young age and
quickly matured from developing small-time native applications for desktops to maintaining
servers, writing compilers, building IDEs, and enhancing Qt. His latest pet projects involve
Medusa—a JIT compiler for Python using Qt, which aims to provide up to a 1500 percent
boost for Python projects.

Being an avid gamer, he has already dabbled quite a bit with various engines such as Unreal
and Cry. He likes to play and develop games in his spare time.

[vww allitebooks.cond

http://www.allitebooks.org

Pooya Eimandar was born on 7th January 1986. He graduated in computer science and
has a hardware engineering degree from Shomal University. He is also the author of DirectX
11.1 Game Programming, Packt Publishing.

He began his career working on various 3D simulation applications. In 2010, he founded
BaziPardaz Game Studio, and since then, he has been leading an open source game engine
(https://persianengine.codeplex.com/) at Bazipardaz.

He is currently working on a playout and CG editor tool for Alalam News Network. You can
find more information about him at http: //PooyaEimandar. com/.

Shaveen Kumar is a computer scientist and engineer. He graduated from Carnegie Mellon
University in 2013 with a master's degree in entertainment technology and is working at
Google. He works there as a graphics engineer and technical artist. His main interests are in
GPU programming, parallel computing, game engine development, robotics, and computer
vision.

More information about his work can be found at http://www.shaveenk.com.

M. Cihan Ozer s a game developer and researcher in computer graphics. He started his
career in game development and worked for several mobile and game companies.

He got his bachelor's degree from Ankara University, Turkey, and he is currently an MS
student at Université de Montréal, Canada. Cihan's work focuses on realistic rendering and
interactive techniques.

| would like to thank the authors of this book. It will help a lot of people
who want to learn Qt and work with it. Also, | would like to thank the great
people at Packt Publishing for giving me the opportunity to review this
book.

[vww allitebooks.cond

https://persianengine.codeplex.com/
http://PooyaEimandar.com/
http://www.shaveenk.com
http://www.allitebooks.org

For support files and downloads related to your book, please visit www . PacktPub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www. Packt Pub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscrihe?
¢ Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content

¢ Ondemand and accessible via a web browser

If you have an account with Packt at www . PacktPub. com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
service@packtpub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Tahle of Contents

Preface Xi
Chapter 1: Introduction to Qt 1
The cross-platform programming 1
Qt Platform Abstraction 2
Supported platforms 3

A journey through time 3
New in Qt5 5
Restructured codebase 5

Qt Essentials 6

Qt Add-ons 7

Qt Quick 2.0 7
Meta-objects 8
C++11 support 8
Choosing the right license 8
An open source license 8

A commercial license 9
Summary 9
Chapter 2: Installation 11
Installing the Qt SDK 11
Time for action - installing Qt using an online installer 12
Setting up Qt Creator 15
Time for action — loading an example project 16
Time for action — running the Affine Transformations project 17
Building Qt from sources 20
Time for action — setting up Qt sources using Git 20
Time for action — configuring and building Qt 21
Summary 22

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 3: Qt GUI Programming 23
Windows and dialogs 23
Creating a Qt project 23
Time for action — creating a Qt Desktop project 24
Adding child widgets to a window 27
Managing widget content 28
Time for action — implementing a tic-tac-toe game board 30
Qt meta-objects 33
Signals and slots 34
Time for action — functionality of a tic-tac-toe board 38
Properties 41
Declaring a property 41
Using a property 42
Time for action — adding properties to the board class 42
Designing GUIs 43
Time for action — designing the game configuration dialog 46
Time for action — polishing the dialog 48
Accelerators and label buddies 48
The tab order 49
Signals and slots 50
Using designer forms 53
Direct approach 53

The multiple-inheritance approach 54

The single inheritance approach 54
Time for action — the logic of the dialog 55
An application's main window 57
The Qt resource system 58
Time for action — the main window of the application 58
Time for action — adding a pull-down menu 61
Time for action — creating a toolbar 62
Time for action —filling in the central widget 62
Time for action — putting it all together 64
Summary 67
Chapter 4: Qt Core Essentials 69
Text handling 69
Manipulating strings 70
Encoding and decoding text 70
Basic string operations 71

The string search and lookup 72
Dissecting strings 73
Converting between numbers and strings 74
Using arguments in strings 75
Regular expressions 75

Table of Contents

Time for action — a simple quiz game 76
Extracting information out of a string 78
Finding all pattern occurrences 80

Data storage 81
Files and devices 81

Traversing directories 81
Getting access to the basic file 83
Devices 84

Time for action — implementing a device to encrypt data 85
Text streams 88
Data serialization 90

Binary streams 91
Time for action — serialization of a custom structure 91
XML streams 92
Time for action — implementing an XML parser for player data 93
JSON files 99
Time for action — the player data JSON serializer 100
Time for action — implementing a JSON parser 102
QSettings 104
Summary 106
Chapter 5: Graphics with Qt 107

Raster painting 107
Painter attributes 108
Widget painting 114

Time for action — custom-painted widgets 115

Time for action — transforming the viewport 117

Time for action — drawing an oscillogram 118

Input events 120

Time for action — making oscillograms selectable 120

Working with images 123
Loading 124
Modifying 125
Painting 126

Painting text 126
Static text 127
Rich text 128

Optimized drawing 129

Time for action — optimizing oscillogram drawing 129

Time for action — developing the game architecture 131

Time for action — implementing the game board class 135

Time for action — understanding the ChessView class 139

Time for action — rendering the pieces 145

Time for action — making the chess game interactive 148

Table of Contents

Time for action — connecting the game algorithm 156
OpenGL 163
Introduction to OpenGL with Qt 164
Time for action — drawing a triangle using Qt and OpenGL 165
Time for action — scene-based rendering 167
Time for action — drawing a textured cube 168
Modern OpenGL with Qt 173
Shaders 173
Time for action — shaded objects 175
GL buffers 181
Off-screen rendering 183
Summary 183
Chapter 6: Graphics View 185
Graphics View architecture 185
ltems 187
Parent child relationship 187
Appearance 189
Time for action — creating a black, rectangular item 189
Time for action — reacting to an item's selection state 191
Time for action — making the item's size definable 192
Standard items 193
Coordinate system of the items 195
Time for action — creating items with different origins 196
Time for action — rotating an item 197
Scenes 198
Adding items to the scene 198
Time for action — adding an item to a scene 199
Interacting with items on the scene 200
Rendering 203
Time for action — rendering the scene's content to an image 203
Coordinate system of the scene 204
Time for action — transforming parent items and child items 206
View 208
Time for action — putting it all together! 209
Showing specific areas of the scene 211
Transforming the scene 213
Time for action — creating an item where transformations can easily be seen 213
Time for action — implementing the ability to scale the scene 214
Time for action — implementing the ability to move the scene 215
Time for action — taking the zoom level into account 217
Questions you should keep in mind 218

Table of Contents

The jumping elephant or how to animate the scene 218
The game play 218
The player item 219

Time for action — creating an item for Benjamin 219
The playing field 221
The scene 222

Time for action — making Benjamin move 222
Parallax scrolling 227

Time for action — moving the background 228
QObject and items 229

Time for action — using properties, signals, and slots with items 229
Property animations 230

Time for action — using animations to move items smoothly 230

Time for action — keeping multiple animations in sync 232
Item collision detection 233

Time for action — making the coins explode 233
Setting up the playing field 235
A third way of animation 236

Widgets inside Graphics View 236

Optimization 238
A binary space partition tree 238
Caching the item's paint function 239
Optimizing the view 239

Summary 241

Chapter 7: Networking 243

QNetworkAccessManager 243
Downloading files over HTTP 244

Time for action — downloading a file 245
Error handling 247

Time for action — displaying a proper error message 248
Downloading files over FTP 250
Downloading files in parallel 250

The finished signal 251
Time for action — writing the OOP conform code using QSignalMapper 252
The error signal 253
The readyRead signal 253
The downloadProgress method 254

Time for action — showing the download progress 254

Using a proxy 255

Table of Contents

Connecting to Google, Facebook, Twitter, and co. 256
Time for action — using Google's Distance Matrix API 256
Time for action — constructing the query 257
Time for action — parsing the server's reply 259
Controlling the connectivity state 264
QNetworkConfigurationManager 264
QNetworkConfiguration 266
QNetworkSession 266
QNetworklInterface 268
Communicating between games 268
Time for action — realizing a simple chat program 268
The server — QTcpServer 269
Time for action — setting up the server 269
Time for action — reacting on a new pending connection 270
Time for action — forwarding a new message 271
Time for action — detecting a disconnect 273
The client 274
Time for action — setting up the client 274
Time for action — receiving text messages 275
Time for action — sending text messages 276
Improvements 277
Using UDP 278
Time for action — sending a text via UDP 278
Summary 280
Chapter 8: Scripting 281
Why script? 281
The basics of Qt Script 282
Evaluating JavaScript expressions 282
Time for action — creating a Qt Script editor 284
Time for action — sandboxed script evaluation 289
Integrating Qt and Qt Script 290
Exposing objects 290
Time for action — employing scripting for npc Al 291
Exposing functions 297
Exposing C++ functions to scripts 297
Exposing script functions to C++ 300
Time for action — storing the script 300
Time for action — providing an initialization function 302
Time for action — implementing the heartbeat event 303
Using signals and slots in scripts 304

Table of Contents

Creating Qt objects in scripts 306
Error recovery and debugging 307
Extensions 309
The other Qt JavaScript environment 310
Alternatives to JavaScript 310
Python 310
Time for action — writing a Qt wrapper for embedding Python 311
Time for action — converting data between C++ and Python 313
Time for action — calling functions and returning values 317
Summary 321
Chapter 9: Qt Quick Basics 323
Fluid user interfaces 323
Declarative Ul programming 324
Element properties 325
Group properties 327
Object hierarchies 328
Time for action — creating a button component 332
Time for action — adding button content 334
Time for action — sizing the button properly 335
Time for action — making the button a reusable component 335
Event handlers 337
Mouse input 337
Time for action — making the button clickable 337
Time for action — visualizing button states 339
Time for action — notifying the environment about button states 340
Touch input 342
Time for action — dragging an item around 342
Time for action — rotating and scaling a picture by pinching 343
Keyboard input 345
Using components in Qt Quick 350
Time for action — a simple analog clock application 350
Time for action — adding needles to the clock 354
Time for action — making the clock functional 356
Dynamic objects 357
Using components in detail 357
Creating objects on request 358
Delaying item creation 360
Accessing your item's component functionality 361
Imperative painting 363

Time for action — preparing Canvas for heartbeat visualization 363

Table of Contents

Time for action — drawing a heartbeat 364
Time for action — making the diagram more colorful 367
Qt Quick and C++ 369
Creating QML objects from C++ 369
Pulling QML objects to C++ 372
Pushing C++ objects to QML 375
Time for action — self-updating car dashboard 380
Time for action — grouping engine properties 389
Extending QML 390
Registering classes as QML elements 390
Time for action — making Carinfo instantiable from QML 391
Custom Qt Quick items 394
OpenGL items 394
Time for action — creating a regular polygon item 395
Painted items 402
Time for action — creating an item for drawing outlined text 402
Summary 407
Chapter 10: Qt Quick 409
Bringing life into static user interfaces 409
Animating elements 410
Generic animations 410
Time for action — scene for an action game 411
Time for action — animating the sun's horizontal movement 412
Composing animations 414
Time for action — making the sun rise and set 416
Non-linear animations 417
Time for action — improving the path of the sun 418
Property value sources 420
Time for action — adjusting the sun's color 420
Time for action — furnishing sun animation 421
Behaviors 424
Time for action — animating the car dashboard 426
States and transitions 427
More animation types 430
Quick game programming 431
Game loops 432
Time for action — character navigation 433
Time for action — another approach to character navigation 434
Time for action — generating coins 436
Sprite animation 437
Time for action — implementing simple character animation 438

Table of Contents

Time for action — animating characters using sprites 441
Time for action — adding jumping with sprite transitions 443
Parallax scrolling 445
Time for action — revisiting parallax scrolling 446
Collision detection 448
Time for action — collecting coins 449
Notes on collision detection 452

Eye candy 452
Auto-scaling user interfaces 453
Graphical effects 455
Particle systems 459
Tuning the emitter 460
Rendering particles 463
Making particles move 464
Time for action — vanishing coins spawning particles 470
Summary 471
Appendix: Pop Quiz Answers 473
Chapter 3, Qt GUI Programming 473
Chapter 4, Qt Core Essentials 474
Chapter 6, Graphics View 474
Chapter 7, Networking 475
Chapter 8, Scripting 475
Chapter 11, Miscellaneous and Advanced Concepts 476

Index

477

As a leading cross-platform toolkit for all significant desktop, mobile, and embedded
platforms, Qt is becoming more popular by the day. This book will help you learn the
nitty-gritty of Qt and will equip you with the necessary toolsets to build apps and games.
This book is designed as a beginner's guide to take programmers that are new to Qt from
the basics, such as objects, core classes, widgets, and so on, and new features in version 5.4,
to a level where they can create a custom application with best practices when it comes to
programming with Qt.

With a brief introduction on how to create an application and prepare a working
environment for both desktop and mobile platforms, we will dive deeper into the basics of
creating graphical interfaces and Qt's core concepts of data processing and display before
you try to create a game. As you progress through the chapters, you'll learn to enrich your
games by implementing network connectivity and employing scripting. Delve into Qt Quick,
OpenGL, and various other tools to add game logic, design animation, add game physics, and
build astonishing Uls for games. Toward the end of this book, you'll learn to exploit mobile
device features, such as accelerators and sensors, to build engaging user experiences.

Chapter 1, Introduction to Qt, will familiarize you with the standard behavior that is required
when creating cross-platform applications as well as show you a bit of history of Qt and how
it evolved over time with an emphasis on the most recent architectural changes in Qt.

Chapter 2, Installation, will guide you through the process of installing a Qt binary release for
desktop platforms, setting up the bundled IDE, and looking at various configuration options
related to cross-platform programming.

Chapter 3, Qt GUI Programming, will show you how to create classic user interfaces with the
Qt Widgets module. It will also familiarize you with the process of compiling applications
using Qt.

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Chapter 4, Qt Core Essentials, will familiarize you with the concepts related to data
processing and display in Qt—file handling in different formats, Unicode text handling and
displaying user-visible strings in different languages, and regular expression matching.

Chapter 5, Graphics with Qt, describes the whole mechanism related to creating and using
graphics in Qt in 2D and 3D. It also presents multimedia capabilities for audio and video
(capturing, processing, and output)

Chapter 6, Graphics View, will familiarize you with 2D-object-oriented graphics in Qt. You will
learn how to use built-in items to compose the final results as well as create your own items
supplementing what is already available and possibly animate them.

Chapter 7, Networking, will demonstrate the IP networking technologies that are available
in Qt. It will teach you how to connect to TCP servers, implement a reliable server using TCP,
and implement an unreliable server using UDP.

Chapter 8, Scripting, shows you the benefits of scripting in applications. It will teach you
how to employ a scripting engine for a game by using JavaScript. It will also suggest some
alternatives to JavaScript for scripting that can be easily integrated with Qt.

Chapter 9, Qt Quick Basics, will teach you to program resolution-independent fluid user
interfaces using a QML declarative engine and Qt Quick 2 scene graph environment. In
addition, you will learn how to implement new graphical items in your scenes.

Chapter 10, Qt Quick, will show you how to bring dynamics to various aspects of a Ul. You
will see how to create fancy graphics and animations in Qt Quick by using the particle engine,
GLSL shaders and built-in animation, and state machine capabilities, and you will learn how
to use these techniques in games.

Chapter 11, Miscellaneous and Advanced Concepts, covers the important aspects of Qt
programming that didn't make it into the other chapters but may be important for game
programming. This chapter is available online at the link https: //www.packtpub.com/
sites/default/files/downloads/Advanced Concepts.pdf.

All you need for this book is a Windows machine with the latest version of Qt installed. The
examples presented in this book are based on Qt 5.4.

Qt can be downloaded from http://www.gt.io/download-open-source/.

[xii]

https://www.packtpub.com/sites/default/files/downloads/Advanced_Concepts.pdf
https://www.packtpub.com/sites/default/files/downloads/Advanced_Concepts.pdf
http://www.qt.io/download-open-source/

Preface

The expected readers of this book will be application and Ul developers/programmers who
have basic/intermediate functional knowledge of C++. The target audience also includes
C++ programmers. No previous experience with Qt is required for you to read this book.
Developers with up to a year of Qt experience will also benefit from the topics covered in
this book.

In this book, you will find several headings that appear frequently (Time for action,
What just happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections
as follows:

Time for action - heading

1. Actionl
2. Action?2
3. Action3

Instructions often need some extra explanation to ensure they make sense, so they are
followed with these sections:

What just happened?

This section explains the working of the tasks or instructions that you have just completed.

You will also find some other learning aids in the book, for example:

These are short multiple-choice questions intended to help you test your own
understanding.

These are practical challenges that give you ideas to experiment with what you have learned.

[xiii]

Preface

You will also find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This API
is centered on QNetworkAccessManager, Which handles the complete communication
between your game and the Internet."

A block of code is set as follows:

ONetworkRequest request;
request.setUrl (QUrl ("http://localhost/version.txt")) ;

request . setHeader (QNetworkRequest : :UserAgentHeader, "MyGame") ;
m_nam->get (request) ;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

void FileDownload::downloadFinished (QNetworkReply *reply) {
const QByteArray content = reply->readAll();
m_edit->setPlainText (content) ;
reply->deletelater() ;

}
Any command-line input or output is written as follows:
git clone git://code.qt.io/gt/qt5.git
cd gt5
perl init-repository
New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

[xiv]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

You can download the example code files from your account at http: //www.packtpub.
com for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this hook

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/GameProgrammingUsingQt ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we

would be grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

[xv]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/GameProgrammingUsingQt_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/GameProgrammingUsingQt_ColoredImages.pdf
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub. com, and we will do our best to address the problem.

[xvi]

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

In this chapter, you will learn what Qt is and how it evolved. We will pay special
attention to the differences between Qt's major versions 4 and 5. Finally, you
will learn to decide on which of the available Qt licensing schemes to choose for
our projects.

The cross-platform programming

Qt is an application programming framework that is used to develop cross-platform
applications. What this means is that software written for one platform can be ported

and executed on another platform with little or no effort. This is obtained by limiting

the application source code to a set of calls to routines and libraries available to all the
supported platforms, and by delegating all tasks that may differ between platforms (such as
drawing on the screen and accessing system data or hardware) to Qt. This effectively creates
a layered environment (as shown in the following figure), where Qt hides all platform-
dependent aspects from the application code:

APPLICATION

Qt
OPERATING SYSTEM
HARDWARE

1l

Introduction to Qt

Of course, at times we need to use some functionality that Qt doesn't provide. In such
situations, it is important to use conditional compilation like the one used in the following
code:

#ifdef Q OS WIN32
// Windows specific code

#elif defined(Q OS _LINUX) || defined(Q OS_MAC)
// Mac and Linux specific code
#endif

Downloading the example code

packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visithttp: //www.packtpub.
com/support and register there to have the files e-mailed directly to you.

élQ You can download the example code files from your account at http: //www.

What just happened?

Before the code is compiled, it is first fed to a preprocessor that may change the final text
that is going to be sent to a compiler. When it encounters a #ifdef directive, it checks for
the existence of a label that will follow (such as 0_0s_WIN32), and only includes a block of
code in compilation if the label is defined. Qt makes sure to provide proper definitions for
each system and compiler so that we can use them in such situations.

s . . .
‘Q You can find a list of all such macros in the Qt reference manual under the

term "QtGlobal".

Ot Platform Ahstraction

Qt itself is separated into two layers. One is the core Qt functionality that is implemented

in a standard C++ language, which is essentially platform-independent. The other is a set of
small plugins that implement a so-called Qt Platform Abstraction (QPA) that contains all the
platform-specific code related to creating windows, drawing on surfaces, using fonts, and

so on. Therefore, porting Qt to a new platform in practice boils down to implementing the
QPA plugin for it, provided the platform uses one of the supported standard C++ compilers.
Because of this, providing basic support for a new platform is work that can possibly be done
in a matter of hours.

21

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

Supported platforms

The framework is available for a number of platforms, ranging from classical desktop

environments through embedded systems to mobile phones. The following table lists down
all the platforms and compiler families that Qt supports at the time of writing. It is possible
that when you are reading this, a couple more rows could have been added to this table:

Platform QPA plugins Supported compilers
Linux XCB (X11) and GCC, LLVM (clang), and ICC
Wayland
Windows XP, Vista, 7, 8, and 10 Windows MinGW, MSVC, and ICC
Mac 0S X Cocoa LLVM (clang) and GCC
Linux Embedded DirectFB, EGLFS, KMS, | GCC
and Wayland
Windows Embedded Windows MSVC
Android Android GCC
i0S i0S LLVM (clang) and GCC
Unix XCB (X11) GCC
RTOS (QNX, VxWorks, and INTEGRITY) | gnx gcc, dcc, and GCC
BlackBerry 10 gnx gcc
Windows 8 (WinRT) winrt MSVC
Maemo, MeeGo, and Sailfish OS XCB (X11) GCC
Google Native Client (unsupported) pepper GCC

The development of Qt was started in 1991 by two Norwegians—Eirik Chambe-Eng and

Haavard Nord, who were looking to create a cross-platform GUI programming toolkit.
The first commercial client of Trolltech (the company that created the Qt toolkit) was

the European Space Agency. The commercial use of Qt helped Trolltech sustain further
development. At that time, Qt was available for two platforms—Unix/X11 and Windows;
however, developing with Qt for Windows required buying a proprietary license, which was a
significant drawback in porting the existing Unix/Qt applications.

Introduction to Qt

A major step forward was the release of Qt Version 3.0 in 2001, which saw the initial support
for Mac as well as an option to use Qt for Unix and Mac under a liberal GPL license. Still,

Qt for Windows was only available under a paid license. Nevertheless, at that time, Qt had
support for all the important players in the market—Windows, Mac, and Unix desktops, with
Trolltech's mainstream product and Qt for embedded Linux.

In 2005, Qt 4.0 was released, which was a real breakthrough for a number of reasons.

First, the Qt APl was completely redesigned, which made it cleaner and more coherent.
Unfortunately, at the same time, it made the existing Qt-based code incompatible with 4.0,
and many applications needed to be rewritten from scratch or required much effort to be
adapted to the new API. It was a difficult decision, but from the time perspective, we can see
it was worth it. Difficulties caused by changes in the APl were well countered by the fact that
Qt for Windows was finally released under GPL. Many optimizations were introduced that
made Qt significantly faster. Lastly, Qt, which was a single library until now, was divided into
a number of modules:

Qt Declarative

Qt : Qt Xml
WebK
OpenGL Qt WebKit Patterns
Qt GUI Net%:/[ork ot soL || ot Script ||t xml

Qt Core

This allowed programmers to only link to the functionality that they used in their
applications, reducing the memory footprint and dependencies of their software.

In 2008, Trolltech was sold to Nokia, which at that time was looking for a software framework
to help it expand and replace its Symbian platform in the future. The Qt community became
divided, some people were thrilled, others worried after seeing Qt's development get
transferred to Nokia. Either way, new funds were pumped into Qt, speeding up its progress
and opening it for mobile platforms—Symbian and then Maemo and MeeGo.

(a1

Chapter 1

For Nokia, Qt was not considered a product of its own, but rather a tool. Therefore, they
decided to introduce Qt to more developers by adding a very liberal LGPL license that
allowed the usage of the framework for both open and closed source development.

Bringing Qt to new platforms and less powerful hardware required a new approach to create
user interfaces and to make them more lightweight, fluid, and eye candy. Nokia engineers
working on Qt came up with a new declarative language to develop such interfaces—the Qt
Modeling Language (QML) and a Qt runtime for it called Qt Quick.

The latter became the primary focus of the further development of Qt, practically stalling
all nonmobile-related work, channeling all efforts to make Qt Quick faster, easier, and more
widespread. Qt 4 was already in the market for 7 years and it became obvious that another
major version of Qt had to be released. It was decided to bring more engineers to Qt by
allowing anyone to contribute to the project.

Nokia did not manage to finish working on Qt 5.0. As a result of an unexpected turn over

of Nokia toward different technology in 2011, the Qt division was sold in mid-2012 to the
Finnish company Digia that managed to complete the effort and release Qt 5.0 in December
of the same year.

The APl of Qt 5 does not differ much from that of Qt 4. Therefore, Qt 5 is almost completely
source compatible with its predecessor, which means that we only need a minimal effort

to port the existing applications to Qt 5. This section gives a brief introduction to the major
changes between versions 4 and 5 of Qt. If you are already familiar with Qt 4, this can serve
as a small compendium of what you need to pay attention to if you want to use the features
of Qt 5 to their fullest extent.

Restructured codehase

The biggest change compared to the previous major release of Qt and the one that is
immediately visible when we try to build an older application against Qt 5 is that the whole
framework was refactored into a different set of modules. Because it expanded over time
and became harder to maintain and update for the growing number of platforms that

it supported, a decision was made to split the framework into much smaller modules
contained in two module groups—Qt Essentials and Qt Add-ons. A major decision relating to
the split was that each module could now have its own independent release schedule.

[vww allitebooks.cond

http://www.allitebooks.org

Introduction to Qt

Ot Essentials

The Essentials group contains modules that are mandatory to implement for every
supported platform. This implies that if you are implementing your system using modules
from this group only, you can be sure that it can be easily ported to any other platform that
Qt supports. Some of the modules are explained as follows:

*

The QtCore module contains the most basic Qt functionality that all other modules
rely on. It provides support for event processing, meta-objects, data 1/0, text
processing, and threading. It also brings a number of frameworks such as the
animation framework, the State Machine framework, and the plugin framework.

The Qt GUI module provides basic cross-platform support to build user interfaces.

It is much smaller compared with the same module from Qt 4, as the support for
widgets and printing has been moved to separate modules. Qt GUI contains classes
that are used to manipulate windows that can be rendered using either the raster
engine (by specifying QSurface: :RasterSurface as the surface type) or OpenGL
(osurface: :OpenGLSurface). Qt supports desktop OpenGL as well as OpenGL ES
1.1and 2.0.

The Qt Network module brings support for IPv4 and IPv6 networking using TCP and
UDP as well as by controlling the device connectivity state. Compared to Qt 4, this
module improves IPv6 support, adds support for opaque SSL keys (such as hardware
key devices) and UDP multicast, and assembles MIME multipart messages to be sent
over HTTP. It also extends support for DNS lookups.

Qt Multimedia allows programmers to access audio and video hardware (including
cameras and FM radio) to record and play multimedia content.

Qt SQL brings a framework that is used to manipulate SQL databases in an abstract
way.

Qt WebKit is a port of the WebKit 2 web browser engine to Qt. It provides classes to
display and manipulate web content and integrates with your desktop application.

Qt Widgets extends the GUI module with the ability to create a user interface

using widgets, such as buttons, edit boxes, labels, data views, dialog boxes, menus,
and toolbars that are arranged using a special layout engine. It also contains the
implementation of an object-oriented 2D graphics canvas called Graphics View.
When porting Qt 4 applications to Qt 5, it is a good idea to start by enabling support
of the widgets module (by adding QT += widgets to the project file) and then work
your way down from here.

Qt Quick is an extension of Qt GUI, which provides means to create lightweight fluid
user interfaces using QML. It is described in more detail later in this chapter as well
as in Chapter 9, Qt Quick Basics.

Chapter 1

M There are also other modules in this group, but we will not focus on them in
Q this book. If you want to learn more about them, you can look them up in the
Qt reference manual.

This group contains modules that are optional for any platform. This means that if a
particular functionality is not available on some platform or there is nobody willing to spend
time working on this functionality for a platform, it will not prevent Qt from supporting this
platform.

Some of the most important modules are QtConcurrent for parallel processing, Qt Script
that allows us to use JavaScript in C++ applications, Qt3D that provides high-level OpenGL
building blocks, and Qt XML Patterns that helps us to access XML data. Many others are also
available, but we will not cover them here.

0t Quick 2.0

The largest upgrade to Qt functionality-wise is Qt Quick 2.0. In Qt 4, the framework was
implemented on top of Graphics View. This proved to be too slow when used with low-end
hardware even with OpenGL ES acceleration enabled. This is because of the way Graphics
View renders its content—it iterates all the items in sequence, calculates and sets its
transformation matrix, paints the item, recalculates and resets the matrix for the next item,
paints it, and so on. Since an item can contain any generic content drawn in an arbitrary
order, it requires frequent changes to the GL pipeline, causing major slowdown:s.

The new version of Qt Quick instead uses a scene-graph approach. It describes the whole
scene as a graph of attributes and well-known operations. To paint the scene, information
about the current state of the graph is gathered and the scene is rendered in a more optimal
way. For example, it can first draw triangle strips from all items, then render fonts from all
items, and so on. Furthermore, since the state of each item is represented by a subgraph,
changes to each item can be tracked and it can be decided whether the visual representation
of a particular item needs to be updated or not.

The old QDeclarativeItem class was replaced by QQuickItem, which has no ties to the
Graphics View architecture. There is no routine available where you can directly paint the
item, but there is a QQuickPaintedItem class available that aids in porting old code by
rendering content based on Qpainter to a texture and then rendering that texture using
a scene-graph. Such items are, however, significantly slower than those directly using the
graph approach, so if performance is important, they should be avoided.

Qt Quick plays an important role in Qt 5 and it is very useful to create games. We will cover
this technology in detail in Chapters 9, Qt Quick Basics and Chapter 10, Qt Quick.

71

Introduction to Qt

Meta-ohjects

In Qt 4, adding signals and slots to a class required the presence of a meta-object (that is, an
instance of a class that describes another class) for that class. This was done by subclassing
QObject, adding the 9 OBJECT macro to it, and declaring signals and slots in special scopes
of the class. In Qt 5, this is still possible and advised in many situations, but we now have
new interesting possibilities.

It is now acceptable to connect a signal to any compatible member function of a class or any
callable entity, such as a standalone function or function object (functor). A side-effect is a
compile-time compatibility check of the signal and the slot (as opposed to the runtime check
of the "old" syntax).

C++11support

In August 2011, ISO approved a new standard for C++, commonly referred to as C++11. It
provides a number of optimizations and makes it easier for programmers to create effective
code. While you could use C++11 together with Qt 4, it didn't provide any dedicated support
for it. This has changed with Qt 5, which is now aware of C++11 and supports many of the
constructs introduced by the new version of the language. In this book, we will sometimes
use C++11 features in our code. Some compilers have C++11 support enabled by default, in
others, you need to enable it. Don't worry if your compiler doesn't support C++11. Each time
we use such features, | will make you aware of it.

Qt is available under two different licensing schemes—you can choose between a
commercial license and an open source one. We will discuss both here to make it easier
for you to choose. If you have any doubts regarding whether a particular licensing scheme
applies to your use case, better consult a professional lawyer.

The advantage of open source licenses is that we don't have to pay anyone to use Qt;
however, the downside is that there are some limitations imposed on how it can be used.

When choosing the open source edition, we have to decide between GPL 3.0 and LGPL 2.1 or
3. Since LGPL is more liberal, in this chapter we will focus on it. Choosing LGPL allows you to
use Qt to implement systems that are either open source or closed source—you don't have
to reveal the sources of your application to anyone if you don't want to.

Chapter 1

However, there are a number of restrictions you need to be aware of:

¢ Any modifications that you make to Qt itself need to be made public, for example,
by distributing source code patches alongside your application binary.

¢ LGPLrequires that users of your application must be able to replace Qt libraries that
you provide them with other libraries with the same functionality (for example, a
different version of Qt). This usually means that you have to dynamically link your
application against Qt so that the user can simply replace Qt libraries with his own.
You should be aware that such substitutions can decrease the security of your
system, thus, if you need it to be very secure, open source might not be the option
for you.

¢ LGPLis incompatible with a number of licenses, especially proprietary ones, so it is
possible that you won't be able to use Qt with some commercial components.

The open source edition of Qt can be downloaded directly from http://www.gt . io.

A commercial license

All these restrictions are lifted if you decide to buy a commercial license for Qt. This allows
you to keep the entire source code a secret, including any changes you may want to
incorporate in Qt. You can freely link your application statically against Qt, which means
fewer dependencies, a smaller deployment bundle size, and a faster startup. It also increases
the security of your application, as end users cannot inject their own code into the
application by replacing a dynamically loaded library with their own.

To buy a commercial license, goto http://
s gt .io/buy.

sSummary

In this chapter, you learned about the architecture of Qt. We saw how it evolved over time
and we had a brief overview of what it looks like now. Qt is a complex framework and we

will not manage to cover it all, as some parts of its functionality are more important for game
programming than others that you can learn on your own in case you ever need them. Now
that you know what Qt is, we can proceed with the next chapter where you will learn how to
install Qt on your development machine.

http://www.qt.io

In this chapter, you will learn how to install Qt on your development machine,
including Qt Creator, an IDE tailored to use with Qt. You will see how to configure
the IDE for your needs and learn the basic skills to use that environment. In
addition to this, the chapter will describe the process of building Qt from the
source code, which can be useful for customizing your Qt installation as well as
getting a working Qt installation for embedded platforms. By the end of this
chapter, you will be able to prepare your working environment for both desktop
and embedded platforms using tools included in the Qt release.

Installing the Qt SDK

Before you can start using Qt on your machine, it needs to be downloaded and installed.
Qt can be installed using dedicated installers that come in two flavors—the online installer,
which downloads all the needed components on the fly, and a much larger offline installer,
which already contains all the required components. Using an online installer is easier for
regular desktop installs, so we will prefer this approach.

nl

Installation

Time for action - installing Qt using an online installer

First, go to http://gt.io and click on Download. This should bring you to a page
containing a list of options for different licensing schemes. To use the open source version,
choose the Open Source edition licensed under GPL and LGPL. Then, you can click on the
Download Now button to retrieve the online installer for the platform that you are currently
running on or you can click on any of the header sections to reach a more comprehensive
list of options. The links to online installers are at the beginning of the list, as shown in the
following screenshot. Click and download the one suited to your host machine:

Recommended

rating s m as: Linux
I: Qt Online Installer for Linux

Before you begin your download, please make sure you:

learn about the obligations of the LGPL.

read the FAQ about developing with the LGPL.

“internet

and latest

When the download completes, run the installer, as shown:

121

http://qt.io

Chapter 2

[i QL Setup

Setup - Qt

—

Code less.
Create more.
Deploy everywhere.

Settings

Welcome to the Qt Setup Wizard.

| Next> |[qut |

Click on Next and after a while of waiting as the downloader checks remote repositories,
you'll be asked for the installation path. Be sure to choose a path where you have write
access (it's best to put Qt into your personal directory unless you ran the installer as

the system administrator user). Clicking on Next again will present you with choices of
components that you wish to install, as shown in the following screenshot. You will be given

different choices depending on your platform.

[= QF Setup

Select Components

7 Qt5.1.1

=1 [
+ Android =86
#-] Android armv?
+- |« gcc 64-bit
+ Source Components
+ QEs51.0
+ Qt5.0.2
+- ¥ Tools
Default H Select All HQesetectAll]

Please select the components vou want to install.

N

This component will occupy
approximately 788.08 MIiB on
wour hard disk drive.

[< Back H MNext > H Cancel

1131

Installation

Choose whichever platforms you need, for example, to build native and Android applications
on Linux, choose both gcc-based installation and one for the desired Android platform. When
on Windows, you have to make additional choices. When using Microsoft compilers, you can
choose whether to use native OpenGL drivers (the versions with the OpenGL suffix) or to
emulate OpenGL ES using DirectX calls. If you don't have a Microsoft compiler or you simply
don't want to use it, choose the version of Qt for the MinGW compiler. If you don't have a
MinGW installation, don't worry—the installer will also install it for you.

After choosing the needed components and clicking on Next again, you will have to accept
the licensing terms for Qt by marking an appropriate choice, as shown in the following
screenshot. After clicking on Install, the installer will begin downloading and installing the
required packages. Once this is done, your Qt installation will be ready. At the end of the
process, you will be given an option to launch Qt Creator.

[Cl® Qt Setup D @ Qt Setup DNONSNES
License Agreement v Installing Qt v
Please read the following license agreements. You must accept the terms Q]l (]l
contained in these agreements before continuing with the installation
Qt Installer LGPL Agreement GMU LESSER GENERAL PUBLIC - 10%
Qt Installer FOL Agreement LICENSE
Qt Installer GPL Agreement Downloading archive for compenent: Qt Creator
Qt Installer LGPL Exception Agreement | The gt Toolkit is Copvright (C) 2013 2454 of 53.72 MiB (5.45 MiB/sec) - 5 seconds remaining
Digia Plc and/or its subsidiarv(-ies). "
Contact: htkp:/fwww.qt- Show Details

project.org/legal

You may use, distribute and copy the
Qb GUI Toolkit under the terms of
GMU Lesser General Public License
version 2.1, which is displaved below

Ihave read and agree to the Follawing terms conkained in the license agreements accompanying the GE installer and
@ additional ivems. 1agres i is govemed inthese
license agreements.

1do not accept the terms and canditions of the above listed license agreements Please note by checking the box, you
must cancel the installation or downloading the QF and must dest oy all capies, o7 partions thereaf, ofthe Qrin your
possessions.

<ack |[Mext-][cancel Back Install

What just happened?

The process we went through results in the whole Qt infrastructure appearing on your disk.
You can examine the directory you pointed to the installer to see that it created a number
of subdirectories in this directory—one for each version of Qt chosen with the installer and
another one called Tools that contains Qt Creator. You can see that if you ever decide to
install another version of Qt, it will not conflict with your existing installation. Furthermore,
for each version, you can have a number of platform subdirectories that contain the actual
Qt installations for particular platforms.

(1]

Chapter 2

After Qt Creator starts, you should be presented with the following screen:

B Qk Creator &

File Edit Build Debug Analyze Tools Window Help

m- | Qt Creator
&

S Getting Started Develop Examples Tutorials
v
n
@
Debug CREATE -
- o, Tutarials 2
v IR
Ly ‘;;_ e
. [Qf.) S)) EEEE
|:| 2 & - [| [|
Analyze w) A . . D D
(7)) —
Help IDE Overview User Interface Building and Running an Start Developing

Example Application

> Q -
- []) i . ‘
- A Jser Guide Online Community Elogs

| Nl £~ Tvpe to locate (CErl+K) Search . ADDlica . CumDile... QML/JS . To-Do E... !

The program should already be configured properly for you to use the version of Qt and
compiler that were just installed, but let's verify that anyway. From the Tools menu,
choose Options. Once a dialog box pops up, choose Build & Run from the side list. This

is the place where we can configure the way Qt Creator builds our project. A complete
build configuration is called a kit. It consists of a Qt installation and a compiler that will be
executed to perform the build. You can see tabs for all the three entities in the Build & Run

section of the Options dialog box.

Let's start with the Compilers tab. If your compiler was not autodetected properly and is not
in the list, click on the Add button, choose your compiler type from the list, and fill the name
and path to the compiler. If the settings were entered correctly, Creator will autofill all the
other details. Then, you can click on Apply to save the changes.

151

Installation

Next, you can switch to the Qt Versions tab. Again, if your Qt installation was not detected
automatically, you can click on Add. This will open a file dialog box where you will need to
find your Qt installation's directory wherein all the binary executables are stored (usually in
the bin directory) and select a binary called gmake. Qt Creator will warn you if you choose
a wrong file. Otherwise, your Qt installation and version should be detected properly. If you
want, you can adjust the version name in the appropriate box.

The last tab to look at is the Kits tab. It allows you to pair a compiler with the Qt version to
be used for compilation. In addition to this, for embedded and mobile platforms, you can
specify a device to deploy to and a sysroot directory containing all the files needed to build
the software for the specified embedded platform.

Time for action - loading an example project

Qt comes with a lot of examples. Let's try building one to check whether the installation and
configuration were done correctly. In Qt Creator, click on the Welcome button on the top-
left corner of the window to go the initial screen of the IDE. On the right-hand side of the
page that appears (refer to the previous screenshot) there are a couple of tabs among which
one of them happens to be called Examples. Clicking on that tab will open a list of examples
with a search box. Make sure that the version of Qt you just installed is chosen in the list
next to the search box. In the box, enter af £ to filter the list of examples and click on Affine
Transformations to open the project. If you are asked whether you want to copy the project
to a new folder, agree. Qt Creator will then present you with the following window:

E main.cpp - affine - GF Creator 2 e

filo Edn Buld Debug Anabze ool Window Help
e a’B N Y % d mancep +" <8olect Symbal>

£'Line: 5, Coli 14

B ® GotoHelpMode & # b

Affine Transformations

o+ sform.cpp
» BB Resources

| Prsicets

| Analyze

®

Halp

1161

Chapter 2

What just happened?

Qt Creator loaded the project and set a view that will help us to learn from example projects.
The view is divided into four parts. Let's enumerate them starting from the left side. First
there is Qt Creator's working mode selector that contains an action bar, which allows us to
toggle between different modes of the IDE. Then, there is the project view that contains a
list of files for the project. Next comes the source code editor, displaying the main part of the
project's source code. Finally, far to the right, you can see the online help window displaying
the documentation for the opened example.

Time for action - running the Affine Transformations project

Let's try building and running the project to check whether the building environment is
configured properly. First, click on the icon in the action bar directly over the green triangle
icon to open the build configuration popup, as shown in the following screenshot:

Project: affine
Deploy: Deploy locally
Run: affine

affine Kit | Build

!El v | Desktop ; Debug ;

p Qt 5.1.1 GCC B4hit

P- Type to locate (Ctrl4K)

[l

Installation

The exact content that you get may vary depending on your installation, but in general, on
the left-hand side you will see the list of kits configured for the project and on the right-
hand side you will see the list of build configurations defined for that kit. Choose a kit for
your desktop installation and any of the configurations defined for that kit. You can adjust
configurations by switching Qt Creator to the project management mode by clicking on the
Projects button in the working mode selector bar. There, you can add and remove kits from
the project and manage build configurations for each of the kits, as shown in the following
screenshot:

B main.cpp - affine - Qt Creator AR Ve

File Edit Build Debug Analyze Tools Window Help

Ql EERAELS | Editor | Code Style | Dependencies |
Welcome
Add Kit
Desktop Desktop Ot 5.1.1 GCC 6...
E |Manage Kits.‘.‘ Build | Run Build Run
Edit
4 }v Build Settings
+*
an Edit build configuration: | Debug ~ Add ~|| Remowe Rename...
‘9 General
Debug
Shadew build: v
E Build directery: |.1.1/gcc_64jexamplesfwidgetsfpainting/build-affine-Desktop_Qt_5_1 1 GCC_&4bit-Debug|| Browse...
Analyze
@ Build Steps
Hel
3 qgmake: gmake affine.pro -r -spec linux-g++ COMFIG+=debug CONFIG+=declarative_debug Details «
Make: make in fhomefwysota/Qt/5.1.1/gec_B4fexampleswidgets/painting/build-affine-Desktop Details +

|add Build step -

Clean Steps
affine
!EI Make: make clean in fhomejwysota/Qt/s.1.1/gcc_64/examples/widgets/painting/build-affine-Desktop_ Details «
3 ———
Debug |Add Clean Step "
~ Build Environment
> Use System Environment Details
S

| A ©- Type to locate (Ctrl+k) \ssuesSearch R‘..Apphcati‘.‘ 1L} compile ‘..QMLJJS c...li& o-Do En..‘!

You can adjust, build, and clean steps, and toggle shadow building (that is, building your
project outside the source code directory tree).

[181

Chapter 2

To build the project, click on the hammer icon at the bottom of the action bar. You can also
click on the green triangle icon to build and run the project. If everything works, after some
time, the application should be launched, as shown in the next screenshot:

Ao Affine TransFormation

B Affine Transformations. o

P . FOLoLE . pa

TTTREEETTTTT
@ ‘ector Image
@ Pixmap
Q Text

rmation Example

What just happened?

How exactly was the project built? If you open the Projects mode and look at Build Settings
for a kit assigned to the project (as seen in one of the previous screenshots), you will notice
that a number of build steps were defined. The first step for Qt projects is usually the gmake
step, which runs a special tool that generates a Makefile for the project that is fed in

the second step to a classic make tool. You can expand each of the steps by clicking on the
respective Details button to see configuration options for each of the steps.

While make is considered as a standard tool for building software projects, qgmake is a
custom tool provided with Qt. If you go back to the Edit mode and see which files are listed
in the project contents, you will notice a file with a pro extension. This is the main project
file that contains a list of source and headers files in the project, definitions of Qt modules
active for the project, and optionally, external libraries that the project needs to link against.
If you want to learn the details of how such project files are managed, you can switch to

the Help mode, choose Index from the drop-down list on the top of the window, and type
gmake Manual to find the manual for the tool. Otherwise, just let Qt Creator manage your
project for you. For self-contained Qt projects, you don't need to be a gmake expert.

1191

Installation

Building Qt from sources

In most cases for desktop and mobile platforms, the binary release of Qt you download
from the webpage is sufficient for all your needs. However, for embedded systems,
especially for those ARM-based systems, there is no binary release available or it is too
heavy resource-wise for such a lightweight system. In such cases, a custom Qt build needs
to be performed. There are two ways to do such a build. One is to download the sources

as a compressed archive just like the binary package. The other is to download the code
directly from a Git repository. Since the first way is pretty much self-explanatory, we'll focus
on the second approach.

Time for action - setting up Qt sources using Git

First, you need to install Git on your system if you don't already have it. How to do that
depends on your operating system. For Windows, simply download an installer from
https://git-for-windows.github. io. For Mac, the installer is available at
http://code.google.com/p/git-osx-installer. For Linux, the simplest way
is to use your system's package manager. For instance, on Debian-based distributions,
just issue the sudo apt-get install git command on a terminal and wait until
the installation gets completed.

Afterwards, you need to clone Qt's Git repository. Since Git is a command-line tool,
we'll be using the command line from now on. To clone Qt's repository to a directory
where you want to keep the sources, issue the following command:

git clone git://code.qt.io/gt/qt5.git

If all goes well, Git will download a lot of source code from the network and create a gt5
directory, containing all the files that were downloaded. Then, change the current working
directory to the one containing the freshly downloaded code:

cd gt5s

Then you need to run a Perl script that will set up all the additional repositories for you. If
you don't have Perl installed, you should do that now (you can get Perl for Windows from

http://www.activestate.com/activeperl/downloads). Then, issue the following
command:

perl init-repository

The script will start downloading all the modules required for Qt and should complete
successfully after a period dependent on your network link speed.

[201

https://git-for-windows.github.io
http://code.google.com/p/git-osx-installer
http://www.activestate.com/activeperl/downloads

Chapter 2

What just happened?

At this point in the gt 5 directory, you have a number of subdirectories for different Qt
modules (some of them were mentioned in Chapter 1, Introduction to Qt) each with a local
Git repository containing the source code for the respective Qt modules and tools. Each of
the modules can be updated separately if required.

Time for action - configuring and huilding Qt

Having the sources in place, we can start building the framework. To do that, in addition

to a supported compiler, you will need Perl and Python (Version 2.7 or later) installed. For
Windows, you will also need Ruby. If you are missing any of the tools, it's a good time to
install them. Afterwards, open the command line and change the current working directory
to the one containing the Qt source code. Then, issue the following command:

configure -opensource -nomake tests

This will launch a tool that detects whether all the requirements are met and will report any
inconsistencies. It will also report the exact configuration of the build. You can customize the
build (for example, if you need to enable or disable some features or cross-compile Qt for an
embedded platform) by passing additional options to configure. You can see the available
options by running configure with the -help switch.

If configure reports problems, you will have to fix them and restart the tool. Otherwise,
start the build process by invoking make (or an equivalent like mingw32-make if using
MinGW or nmake if using MSVC).

\ Instead of nmake, you can use a tool called jom that is bundled with Qt. It will

~ reduce the compilation time on multicore machines, which is what the default

Q nmake tool can't do. For make and mingw32-make, you can pass the -j N
parameter, where N stands for the number of cores in your machine.

What just happened?

After some time (usually less than an hour), if all goes well, the build should be complete and
you will be ready to add the compiled framework to the list of kits available in Qt Creator.

M In Unix systems after the build gets completed, you can invoke a make install
Q command with super-user privileges (obtained for example, with sudo) to
copy the framework to a more appropriate place.

21

Installation

By now, you should be able to install Qt on your development machine. You can now use Qt
Creator to browse the existing examples and learn from them or to read the Qt reference
manual to gain additional knowledge. You can also just start a new C++ project and start
writing code for it, build, and execute it. Once you become an experienced Qt developer, you
will also be able to make your own custom build of Qt. In the next chapter, we will finally
start using the framework and you will learn how to create graphical user interfaces by
implementing our very first simple game.

[22]

This chapter will help you learn how to use Qt to develop applications with a
graphical user interface using the Qt Creator IDE. We will get familiar with the
core Qt functionality, property system, and the signals and slots mechanism
that we will later use to create complex systems such as games. We will also
cover the various actions and resource system of Qt. By the end of this chapter,
you will be able to write your own programs that communicate with the user
through windows and widgets.

The most basic skill that you need to learn is creating windows, showing them on a screen,
and managing their content.

The first step to develop an application with Qt Creator is to create a project using one of the
templates provided by the editor.

[231

Qt GUI Programming

Time for action - creating a Qt Desktop project

When you first start Qt Creator, you will see a welcome screen. From the File menu, choose
New File or Project. There are a number of project types to choose from. follow the given
steps for creating a Qt Desktop project:

1. For a widget-based application, choose the Applications group and the Qt Gui
Application template:

D we New ¥ & X
Choose a template: All Templates v
P t t Gui Application o

el Mb'l licati Creates a Qt application For the desktop.
@ Mobi E.Q PP 'c? \o.n o Includes a Qt Designer-based main
Libeari Qt Quick 1 Application (Built-in Elements) | indow.
ibraries
| Qt Quick 2 Application (Built-in Elements)
Other P (4 ildi
er Projec! 1 Qt Quick 1 Application For MeeGo Harmatt Presl_elegts a_rdeskliongt for building the
Non-Qt Project)) o o application if available.
<7 QtQuick 1 Application (from Existing QML
Import Preject . Qt Console Application Supported Platforms: Desktop
Files and Classes E HTMLS Application
C+] QtQuick1UI
Qt <] QrQuick2zul
GLSL
General
4 »
Choose... Cancel

2. The next step is to choose a name and location for your new project:

[WESRE) Qt Gui Application & & 2

Introduction and Project Location

= Location
This wizard generates a Qt GUI applicatien project. The
application derives by default from QApplication and includes
an empkty widget.

Name: |tictactoe

Create in: | /opt/projects Browse...

Use as default project location

Next = Cancel

[24]

Chapter 3

3. We are going to create a simple tic-tac-toe game, so we will name our project
tictactoe and provide a nice location for it.

\ If you have a common directory where you put all your projects, you
~ can tick the Use as default project location checkbox for Creator to
Q remember the location and suggest it the next time when you start a
new project.

4. When you click on Next, you will be presented with a window that lets you choose
one or more of the defined compilation kits for the project. Proceed to the next step
without changing anything. You will be presented with the option of creating the
first widget for your project. Fill in the data as shown in the following screenshot:

B & Qt Gui Application w2 LS

Class Information

Location

Kits Specify basic information about the classes For which you want

) to generate skeleton source code Files.
g Details
Class name: | TicTacToeWidget
Base class: Qwidget b
Header file: tictactoewidget.h
Source file: tictactoewidget.cpp
Generate form:
Form file:
< Back Mext = Cancel

5. Then, click on Next and Finish.

1251

vww allitebooks.conl

http://www.allitebooks.org

Qt GUI Programming

What just happened?

Creator created a new subdirectory in the directory that you previously chose for

the location of the project and where you put a number of files. Two of these files
(tictactoewidget.h and tictactoewidget .cpp)implement the TicTacToeWidget
class as the subclass of gWwidget. The third file called main. cpp contains code for the entry
point of the application:

#include "tictactoewidget.h"
#include <QApplications>

int main(int argc, char *argvl[]) {
QApplication a(argc, argv) ;
TicTacToeWidget w;
w.show () ;
return a.exec() ;

}

This file creates an instance of the QApplication class and feeds it with standard
arguments to the main () function. Then, it instantiates our TicTacToeWidget class, calls
its show method, and finally returns a value returned by the exec method of the application
object.

QApplication is a singleton class that manages the whole application. In particular, it is
responsible for processing events that come from within the application or from external
sources. For events to be processed, an event loop needs to be running. The loop waits for
incoming events and dispatches them to proper routines. Most things in Qt are done through
events—input handling, redrawing, receiving data over the network, triggering timers, and
so on. This is the reason we say that Qt is an event-oriented framework. Without an active
event loop, nothing would function properly. The exec call in QApplication (or to be more
specific, in its base class—QCoreApplication) is responsible for entering the main event
loop of the application. The function does not return until your application requests the
event loop to be terminated. When this eventually happens, the main function returns and
your application ends.

The final file that was generated is called tictactoe.pro and is the project configuration
file. It contains all the information that is required to build your project using the tools Qt
provides. Let's analyze this file:

QT += core gui

greaterThan (QT MAJOR VERSION, 4): QT += widgets
TARGET = tictactoe

TEMPLATE = app

SOURCES += main.cpp tictactoewidget.cpp

HEADERS += tictactoewidget.h

1261

Chapter 3

The first two lines enable Qt's core, gui, and widgets modules. The next two lines specify
that your project file describes an application (as opposed to, for example, a library) and
declares the name of the target that is executable to be tictactoe. The last two lines add
files that Creator generated for us to build the process.

What we have now is a complete minimal Qt GUI project. To build and run it, simply choose
the Run entry from the Build drop-down menu or click on the green triangle icon on the left-
hand side of the Qt Creator window. After a while, you should see a window pop up. Since
we didn't add anything to the window, it is blank.

Adding child widgets to a window

After we managed to get a blank window on screen, the next step is to add some content
to it. To do this, you need to create widgets and tell Qt to position them in the window. The
basic way to do this is to provide a parent to a widget.

In Qt, we group objects (such as widgets) into parent-child relationships. This scheme is
defined in the superclass of QWidget —QObject, which is the most important class in Qt,
and we will cover it in more detail later in this chapter. What is important now is that each
object can have a parent object and an arbitrary number of children. In the case of widgets,
there is a rule that a child occupies a subarea of its parent. If it doesn't have a parent, then
it becomes a top-level window that can usually be dragged around, resized, and closed.

We can set a parent for an object in two ways. One way is to call the setParent method
defined in QObject that accepts a Q0bject pointer. Because of the rule mentioned earlier,
QWidget wants to have other widgets as parents, so the method is overloaded in QWwidget
to accept a QWwidget pointer. The other way is to pass a pointer to the parent object to

the Qwidget constructor of the child object. If you look at the code of the widget that was
generated by Creator, you will notice that the constructor also accepts a pointer to a widget
as its last (optional) argument:

TicTacToeWidget: :TicTacToeWidget (QWidget *parent)
: QWidget (parent)

{

}

It then passes that pointer to the constructor of its base class. Therefore, it is important that
you always remember to create a constructor for your widgets that accepts a pointer to a
Qwidget instance and passes it up the inheritance tree. All standard Qt widgets also behave
this way.

[21]

Qt GUI Programming

Managing widget content

Making a widget display as part of its parent is not enough to make a good user interface.
You also need to set its position and size and react to the changes that happen to its content
and to the content of its parent widget. In Qt, we do this using a mechanism called layouts.

Layouts allow us to arrange the content of a widget, making sure that its space is used
efficiently. When we set a layout on a widget, we can start adding widgets and even other
layouts, and the mechanism will resize and reposition them according to the rules that we
specify. When something happens in the user interface that influences how widgets should
be displayed (for example, the button text is replaced with longer text, which makes the
button require more space to show its content; if not, one of the widgets gets hidden), the
layout is triggered again, which recalculates all positions and sizes and updates widgets

as necessary.

Qt comes with a predefined set of layouts that are derived from the QLayout class, but you
can also create your own. Those that we already have at our disposal are QHBoxLayout

and QVBoxLayout, which position items horizontally and vertically; QGridLayout, which
arranges items in a grid so that an item can span across columns or rows; and QFormLayout,
which creates two columns of items with item descriptions in one column and item content
in the other. There is also QStackedLayout, which is rarely used directly and which makes
one of the items assigned to it possess all the available space. You can see the most common
layouts in action in the following figure:

Mame:

Address:

Phone ne.:

OHBoxLayout QVBoxLayout OGridLayout OFormLayout

To use a layout, we need to create an instance of it and pass a pointer to a widget that we
want it to manage. Then, we can start adding widgets to the layout:

QHBoxLayout *layout = new QHBoxLayout (parentWidget) ;
QPushButton *buttonl = new QPushButton;

QPushButton *button2 = new QPushButton;
layout->addWidget (buttonl) ;

layout->addWidget (button2) ;

1281

Chapter 3

We can even move widgets further from each other by setting spacing on the layout and
setting custom margins on the layout:

layout->setSpacing(10) ;
layout->setMargins (10, 5, 10, 5); // left, top, right, bottom

After building and running this code, you see two buttons that are evenly distributed in their
parent space. Note that, even though we didn't explicitly pass the parent widget pointer,
adding a widget to a layout makes it reparent the newly added widget to the widget that the
layout manages. Resizing the parent horizontally would also cause buttons to resize again,
covering all the space available. However, if you resize parentwWidget vertically, buttons will
change their position but not their height.

This is because each widget has an attribute called a size policy, which decides how a widget
is to be resized by a layout. You can set separate size policies for horizontal and vertical
directions. A button has a vertical size policy of Fixed, which means that the height of

the widget will not change from the default height regardless of how much space there is
available. The following are the available size policies:

¢ Ignore: In this, the default size of the widget is ighored and the widget can freely
grow and shrink

Fixed: In this, the default size is the only allowed size of the widget

Preferred: In this, the default size is the desired size, but both smaller and bigger
sizes are acceptable

¢ Minimum: In this, the default size is the smallest acceptable size for the widget, but
the widget can be made larger without hurting its functionality

¢ Maximum: In this, the default size is the largest size of the widget and the widget can
be shrunk (even to nothing) without hurting its functionality

¢ Expanding: In this, the default size is the desired size; a smaller size (even zero) is
acceptable but the widget is able to increase its usefulness when more and more
space is assigned to it

¢ MinimumExpanding: This is a combination of Minimum and Expanding—the
widget is greedy in terms of space and it cannot be made smaller than its default
size

How do we determine the default size? The answer is by the size returned by the sizeHint
virtual method. For layouts, the size is calculated based on the sizes and size policies of
their child widgets and nested layouts. For basic widgets, the value returned by sizeHint
depends on the content of the widget. In the case of a button, if it holds a line of text and an
icon, sizeHint will return the size that is required to fully encompass the text, icon, some
space between them, the button frame, and the padding between the frame and

content itself.

1291

Qt GUI Programming

Time for action - implementing a tic-tac-toe game hoard

We will now create a widget that implements a game board for tic-tac-toe using buttons.

Open the tictactoewidget .h file in Creator and update it by adding the highlighted code:

#ifndef TICTACTOEWIDGET H
#define TICTACTOEWIDGET H
#include <QWidget>
class QPushButton;

class TicTacToeWidget : public QWidget

{

Q OBJECT

public:
TicTacToeWidget (QWidget *parent = 0) ;
~TicTacToeWidget () ;

private:
QList<QPushButton*> board;

Vi

#endif // TICTACTOEWIDGET H

Our additions create a list that can hold pointers to instances of the QpushButton class,
which is the most commonly used button class in Qt. It will represent our game board. We
have to teach the compiler to understand the classes that we use; thus, we add a forward
declaration of the QpushButton class.

The next step is to create a method that will help us create all the buttons and use a layout
to manage their geometries. Go to the header file again and add a void setupBoard () ;
declaration in the private section of the class. To quickly implement a freshly declared
method, we can ask Qt Creator to create the skeleton code for us by positioning the text
cursor just before after the method declaration (before the semicolon), pressing Alt + Enter
on the keyboard, and choosing Add definition in tictactoewidget.cpp from the pop-up.

\ It also works the other way around. You can write the method body first and

~ then position the cursor on the method signature, press Alt + Enter, and choose
Add public declaration from the quick fix menu. There are also various other
context-dependent fixes that are available in Creator.

Chapter 3

Because in the header file we only forward-declared QPushButton, we now need to provide
a full class definition for it by including an appropriate header file. In Qt, all classes are
declared in the header files that are called exactly the same as the classes themselves. Thus,
to include a header file for QPushButton, we need to add a #include <QPushButtons
line to the implementation file. We are also going to use the QGridLayout class to manage
the space in our widget, so we need #include <QGridLayouts> aswell.

\ From now on, this book will not remind you about adding the include
~ directives to your source code—you will have to take care of this by yourself.
Q This is really easy, just remember that to use a Qt class, you need to include a
file named after that class.

Now, let's add the code to the body of the setupBoard method. First, let's create a layout
that will hold our buttons:

QGridLayout *gridLayout = new QGridLayout;
Then, we can start adding buttons to the layout:

for(int row = 0; row < 3; ++row)
for(int column = 0; column < 3; ++column) {
QPushButton *button = new QPushButton;
button->setSizePolicy (QSizePolicy: :Minimum,
QSizePolicy: :Minimum) ;
button->setText (" ") ;
gridLayout->addWidget (button, row, column) ;
board.append (button) ;
}
}

The code creates a loop over rows and columns of the board. In each iteration, it creates an
instance of the QPushButton class and sets the button's size policy to Minimum/Minimum
so that when we resize the widget, buttons also get resized. A button is assigned a single
space as its content so that it gets the correct initial size. Then, we add the button to the
layout in row and column. At the end, we store the pointer to the button in the list that was
declared earlier. This lets us reference any of the buttons later on. They are stored in the list
in such an order that the first three buttons of the first row are stored first, then the buttons
from the second row, and finally those from the last row.

The last thing to do is to tell our widget that gridLayout is going to manage its size:
setLayout (gridLayout) ;

Alternatively, we might have passed this as a parameter to the layout's constructor.

[311

Qt GUI Programming

Now that we have code that will prepare our board, we need to have it invoked somewhere.
A good place to do this is the class constructor:

TicTacToeWidget: :TicTacToeWidget (QWidget *parent)
: QWidget (parent)

{

setupBoard () ;

}

Now, build and run the program.

What just happened?

You should get a window containing nine buttons positioned in a grid-like fashion. If you start
resizing the window, the buttons are going to be resized as well. This is because we set a grid
layout with three columns and three rows that evenly distributes widgets in the managed
area, as shown in the following figure:

2 bictactoe ot O ot L 22

While we're here, add another public method to the class and name it initNewGame. We
will use this method to clear the board when a new game is started. The body of the method
should look as follows:

void TicTacToeWidget::initNewGame () {
for(int i=0; i<9; ++1) board.at (i) ->setText (" ");

}

[321

Chapter 3

You might have noticed that although we created a number of objects in
setupBoard using the new operator, we didn't destroy those objects
anywhere (for example, in the destructor). This is because of the way
the memory is managed by Qt. Qt doesn't do any garbage collecting (as
\\l Java does), but it has this nice feature related to QObject parent-child
hierarchies. The rule is that whenever a QObject instance is destroyed, it
also deletes all its children. Since both the layout object and the buttons are
the children of the TicTacToeWidget instance, they will all be deleted
when the main widget is destroyed. This is another reason to set parents
to the objects that we create—if we do this, we don't have to care about
explicitly freeing any memory.

Most of the special functionality that Qt offers revolves around the QObject class and the
meta-object paradigm that we will take a closer look at now. The paradigm says that with
every QObject subclass, there is a special object associated that contains information about
that class. It allows us to make runtime queries to learn useful things about the class—the
class name, superclass, constructors, methods, fields, enumerations, and so on. The meta-
object is generated for the class at compile time when three conditions are met:

¢ Theclassis a descendant of Q0bject
¢ It contains a special Q OBJECT macro in a private section of its definition

¢ Code of the class is preprocessed by a special Meta-Object Compiler (moc) tool

We can comply to the first two conditions ourselves by writing proper code for the class just
like Qt Creator does when we create a class derived from QObject. The last condition is met
automatically when you use a tool chain that comes with Qt (and Qt Creator) to build your
project. Then, it is enough to make sure that the file containing the class definition is added
to the HEADERS variable of the project file and Qt will take care of the rest. What really
happens is that moc generates some code for us that is later compiled in the main program.

All features discussed in this section of the chapter require a meta-object for the class.
Therefore, it is essential to make sure that the three conditions | mentioned are met if you
want a class to use any of those features.

Qt GUI Programming

Signals and slots

To trigger functionality as a response to something that happens in an application, Qt uses
a mechanism of signals and slots. This is based on connecting a notification (which we call a
signal) about a change of state in some object with a function or method (called a slot) that
is executed when such a notification arises.

Signals and slots can be used with all classes that inherit Q0bject. A signal can be connected
to a slot, member function, or functor (which includes a regular global function). When an
object emits a signal, any of these entities that are connected to that signal will be called.

A signal can also be connected to another signal in which case, emitting the first signal will
make the other signal be emitted as well. You can connect any number of slots to a single
signal and any number of signals to a single slot.

A signal slot connection is defined by the following four attributes:

An object that changes its state (sender)
A signal in the sender object

An object that contains the function to be called (receiver)

* 6 o o

A slot in the receiver

To declare a signal, we put its declaration, that is, a regular member function declaration in
a special class scope called signals. However, we don't implement such a function—this will
be done automatically by moc. To declare a slot, we put the declaration in the class scope
of either public slots, protected slots, or private slots. Slots are regular methods and can be
called directly in code just like any other method. Contrary to signals, we need to provide
bodies for slot methods.

A sample class implementing some signals and slots looks like as shown in the following
code:

class ObjectWithSignalsAndSlots : public QObject
Q OBJECT

public:
ObjectWithSignalsAndSlots (QObject *parent = 0) : QObject (parent) {
}

public slots:
void setvalue(int v) { .. }
void setColor (QColor c¢) { .. }

private slots:
void doSomethingPrivate() ;

signals:

[3a1

Chapter 3

void valueChanged (int) ;
void colorChanged (QColor) ;

}i

void ObjectWithSignalsAndSlots::doSomethingPrivate()
/]
}

Signals and slots can be connected and disconnected dynamically using the connect () and
disconnect () statements.

The classic connect statement looks as follows:

connect (spinBox, SIGNAL(valueChanged(int)), dial,
SLOT (setValue (int))) ;

This statement establishes a connection between SIGNAL of the spinBox object called
valueChanged that carries an int parameter and a setValue slot in the dial object
that accepts an int parameter. It is forbidden to put variable names or values in a connect
statement. You can only make a connection between a signal and slot that have matching
signatures, which means that they accept the same types of arguments (any type casts are
not allowed, and type names have to match exactly) with the exception that the slot can
omit an arbitrary number of last arguments. Therefore, the following connect statement is
valid:

connect (spinBox, SIGNAL (valueChanged(int)), lineEdit,
SLOT (clear())) ;

This is because the parameter of the valueChanged signal can be discarded before clear
is called. However, the following statement is invalid:

connect (button, SIGNAL(clicked()), lineEdit,
SLOT (setText (QString))) ;

There is nowhere to get the value that is to be passed to setText, so such a connection
will fail.

M It is important that you wrap signal and slot signatures into the SIGNAL and
Q SLOT macros and that when you specify signatures, you only pass argument
types and not values or variable names. Otherwise, the connection will fail.

Since Qt 5, there are a couple of different connect syntax available that don't require a meta-
object for the class implementing the slot. The Q0bject legacy is still a requirement though,
and the meta-object is still required for the class that emits the signal.

Qt GUI Programming

The first additional syntax that we can use is the one where we pass a pointer to the signal
method and a pointer to the slot method instead of wrapping signatures in the SIGNAL and
SLOT macros:

connect (button, &QPushButton::clicked, lineEdit,
&QLineEdit: :clear) ;

In this situation, the slot can be any member function of any QObject subclass that has
argument types that match the signal or such that can be converted to match the signal. This
means that you can, for example, connect a signal carrying a double value with a slot taking
an int parameter:

class MyClass : public QObject ({
Q OBJECT
public:
MyClass (QObject *parent = 0) : QObject (parent) {
connect (this, &MyClass::somethingHappened, this,
&MyClass: :setValue) ;

}

void setValue(int v) { .. }
signals:

void somethingHappened (double) ;

An important aspect is that you cannot freely mix meta-object-based and

~ function-pointer-based approaches. If you decide to use pointers to member
Q methods in a particular connection, you have to do that for both the signal

and the slot.

We can even go a step further and have a signal connected to a standalone function:

connect (button, &QPushButton::clicked, &someFunction) ;

If you use C++11, the function can also be a lambda expression in which case, it is possible to
write the body of the slot directly in the connect statement:

connect (pushButton, SIGNAL(clicked()), []()
{ std::cout << "clicked!" << std::endl; });

It is especially useful if you want to invoke a slot with a fixed argument value that can't be
carried by a signal because it has less arguments. A solution is to invoke the slot from a
lambda function (or a standalone function):

connect (pushButton, SIGNAL(clicked()), [label] ()
{ label->setText ("button was clicked"); });

Chapter 3

A function can even be replaced with a function object (functor). To do this, we create a class
for which we overload the call operator that is compatible with the signal that we wish to
connect to, as shown in the following snippet:

class Functor ({
public:
Functor (Object *object, const QString &str)
m_object (object), m_str(str) {}
void operator() (int x, int y) const {
m_object->set(x, y, m_str);
}
private:
Object *m object;
QString m_str;

bi

connect (objl, SIGNAL (coordChanged (int, int)),
Functor ("Some Text")) ;

This is often a nice way to execute a slot with an additional parameter that is not carried by
the signal, as this is much cleaner than using a lambda expression.

There are some aspects of signals and slots that we have not covered here. We will come
back to them later when we deal with multithreading.

Pop quiz - making signal-siot connections

Q1. For which of the following do you have to provide your own implementation?

1. Asignal
2. Aslot
3. Both

Q2. Which of the following statements are valid?
1. connect (sender, SIGNAL (textEdited(QString)), receiver,
SLOT (setText ("foo")))

2. connect (sender, SIGNAL (toggled(bool)), receiver,
SLOT (clear())) ;

3. connect (sender, SIGNAL (valueChanged(7)), receiver,
SLOT (setValue (int))) ;

4. connect (sender, &QPushButton::clicked, receiver,
&QLineEdit: :clear) ;

[311

Qt GUI Programming

Time for action - functionality of a tic-tac-toe hoard

We need to implement a function that will be called upon by clicking on any of the nine
buttons on the board. It has to change the text of the button that was clicked on—either X or
0—based on which player made the move; then, it has to check whether the move resulted
in winning the game by the player (or a draw if no more moves are possible), and if the game
ended, it should emit an appropriate signal, informing the environment about the event.

When the user clicks on a button, the c1icked () signal is emitted. Connecting this signal

to a custom slot lets us implement the mentioned functionality, but since the signal doesn't
carry any parameters, how do we tell which button caused the slot to be triggered? We
could connect each button to a separate slot but that's an ugly solution. Fortunately, there
are two ways of working around this problem. When a slot is invoked, a pointer to the object
that caused the signal to be sent is accessible through a special method in Q0object called
sender (). We can use that pointer to find out which of the nine buttons stored in the board
list is the one that caused the signal to fire:

void TicTacToeWidget: :someSlot ()
QObject *btn = sender();
int idx = board.indexOf (btn) ;
QPushButton *button = board.at (idx) ;
//

}

While sender () is a useful call, we should try to avoid it in our own code as it breaks some
principles of object-oriented programming. Moreover, there are situations where calling this
function is not safe. A better way is to use a dedicated class called QSignalMapper, which
lets us achieve a similar result without using sender () directly. Modify the setupBoard ()
method in TicTacToeWidget as follows:

QGridLayout *gridLayout = new QGridLayout;
QSignalMapper *mapper = new QSignalMapper (this) ;
for (int row = 0; row < 3; ++row) {
for (int column = 0; column < 3; ++column) {
QPushButton *button = new QPushButton;
button->setSizePolicy (QSizePolicy: :Minimum,
QSizePolicy: :Minimum) ;
button->setText (" ") ;
gridLayout->addWidget (button, row, column) ;
board.append (button) ;
mapper->setMapping (button, board.count()-1);
connect (button, SIGNAL(clicked()), mapper, SLOT (map())):;

Chapter 3

connect (mapper, SIGNAL (mapped(int)), this,
SLOT (handleButtonClick (int))) ;

setLayout (gridLayout) ;

Here, we first created an instance of QSignalMapper and passed a pointer to the board
widget as its parent so that the mapper is deleted when the widget is deleted. Then, when
we create buttons, we "teach" the mapper that each of the buttons has a number associated
with it—the first button will have the number 0, the second one will be bound to the
number 1, and so on. By connecting the clicked () signal from the button to mapper's
map () slot, we tell the mapper to do its magic upon receiving that signal. What the mapper
will do is that it will then find the mapping of the sender of the signal and emit another
signal—mapped () —with the mapped number as its parameter. This allows us to connect

to that signal with a slot (handleButtonClick) that takes the index of the button in the
board list.

Now it is time to implement the slot itself (remember to declare it in the header file!).
However, before we do that, let's add a useful enum and a few helper methods to the class:

enum Player
Invalid, Playerl, Player2, Draw

}i

This enum lets us specify information about players in the game. We can use it immediately
to mark whose move it is now. To do so, add a private field to the class:

Player m_currentPlayer;
Then, add the two public methods to manipulate the value of this field:

Player currentPlayer() const { return m currentPlayer; }
void setCurrentPlayer (Player p) {

if (m_currentPlayer == p) return;

m_currentPlayer = p;

emit currentPlayerChanged(p) ;

}

The last method emits a signal, so we have to add the signal declaration to the class
definition along with another signal that we are going to use:

signals:
void currentPlayerChanged (Player) ;
void gameOver (TicTacToeWidget: :Player) ;

Qt GUI Programming

Note that we only emit the current PlayerChanged signal when the
current player really changes. You always have to pay attention that you don't
M emit a "changed" signal when you set a value to a field to the same value that
Q it had before the function was called. Users of your classes expect that if a
signal is called changed, it is emitted when the value really changes. Otherwise,
this can lead to an infinite loop in signal emissions if you have two objects that
connect their value setters to the other object's changed signal.

Now let's declare the handleButtonClick slot:

public slots:
void handleButtonClick (int) ;

And then implement it in the . cpp file:

void TicTacToeWidget::handleButtonClick (int index) {
if (index < 0 || index >= board.size()) return;
// out of bounds check
QPushButton *button = board.at (index) ;
if (button->text () != " ") return;
// invalid move
button->setText (currentPlayer () == Playerl ? "X" : "O");
Player winner = checkWinCondition (index / 3, index % 3);
if (winner == Invalid) {
setCurrentPlayer (currentPlayer () == Playerl ? Player2 : Playerl);
return;
} else {
emit gameOver (winner) ;

}

Here, we first retrieve a pointer to the button based on its index. Then, we check whether
the button contains any text—if so, then this means that it doesn't participate in the game
anymore, so we return from the method so that the player can pick another field in the
board. Next, we set the current player's mark on the button. Then, we check whether

the player has won the game, passing it the row (index / 3)and column (index % 3)
index of the current move. If the game didn't end, we switch the current player and return.
Otherwise, we emit a gameOver () signal, telling our environment who won the game. The
checkWinCondition () method returns Playeril, Player2, or Draw if the game has
ended and Invalid otherwise. We will not show the implementation of this method here
as it is quite complex. Try implementing it on your own and if you encounter problems, you
can see the solution in the code bundle that accompanies this book.

[401

Chapter 3

Apart from signals and slots, Qt meta-objects also give programmers an ability to use the
so-called properties that are essentially named attributes that can be assigned values of a
particular type. They are useful to express important features of an object—like text of a
button, size of a widget, player names in games, and so on.

Declaring a property

To create a property, we first need to declare it in a private section of a class that inherits
QObject using a special 0 PROPERTY macro, which lets Qt know how to use the property.
A minimal declaration contains the type of the property, its name, and information about

a method name that is used to retrieve a value of the property. For example, the following
code declares a property of the type double that is called height and uses a method called
height to read the property value:

Q PROPERTY (double height READ height)

The getter method has to be declared and implemented as usual. Its prototype has to
comply with these rules: it has to be a public method that returns a value or constant
reference of a type of the property, and it can't take any input parameters and the method
itself has to be constant. Typically, a property will manipulate a private member variable of
the class:

class Tower : public QObject {
Q OBJECT // enable meta-object generation

Q PROPERTY (double height READ height)
// declare the property
public:
Tower (QObject *parent = 0) : QObject (parent)
{ m_height = 6.28; }
double height () const { return m height; }
// return property value
private:
double m_height;
// internal member variable holding the property value

Vi

Such a property is practically useless because there is no way to change its value. Luckily,
we can extend the declaration to include the information about how to write a value to the
property:

Q PROPERTY (double height READ height WRITE setHeight)

[al]

Qt GUI Programming

Again, we have to declare and implement setHeight so that it behaves as the setter
method for the property—it needs to be a public method that takes a value or constant
reference of the type of the property and returns void:

void setHeight (double newHeight) { m_height = newHeight; }

! . . .
~ Property setters are good candidates for public slots so that you can easily
manipulate property values using signals and slots.

We will learn about some of the other extensions to 0 PROPERTY declarations in the later
chapters of this book.

Using a property

There are two ways in which you can access properties. One is of course, to use getter
and setter methods that we declared with READ and WRITE keywords in the 9 PROPERTY
macro—this will naturally work since they are regular C++ methods.

The other way is to use facilities offered by Q0bject and the meta-object system. They allow
to us access properties by name using two methods that accept property names as strings.
A generic property getter (which returns the property value) is a method called property.
Its setter counterpart (that takes the value and returns void) is set Property. Since we can
have properties with different data types, what is the data structure that is used by those
two methods that hold values for different kinds of properties? Qt has a special class for
this called Qvariant, which behaves a lot like a C union in the way that it can store values
of different types. There are a couple of advantages to using a union though—the three
most important are that you can ask the object what type of data it currently holds, you can
convert some of the types to other types (for example, a string to an integer), and you can
teach it to operate on your own custom types.

Time for action - adding properties to the hoard class

In this exercise, we will be adding a useful property to the board class. The property is going
to hold information about the player who should make the next move. The type of the
property is going to be the TicTacToeWidget : : Player enumeration that we created
earlier. For the getter and the setter methods, we are going to use the two functions that we
created earlier: currentPlayer () and setCurrentPlayer ().

[42]

Chapter 3

Open the header file for our class and modify the class definition as shown in the following
code:

class TicTacToeWidget : public QWidget ({
Q OBJECT
Q ENUMS (Player)
Q PROPERTY (Player currentPlayer READ currentPlayer
WRITE setCurrentPlayer
NOTIFY currentPlayerChanged)
public:
enum Player { Invalid, Playerl, Player2, Draw };

What just happened?

Since we want to use an enumeration as a type of a property, we have to inform Qt's meta-
object system about the enum. This is done with the 9 ENUMS macro. Then, we declare a
property called currentPlayer and mark our two existing methods as getter and setter
for the property. We also use the NOTIFY keyword to mark currentPlayerChanged as a
signal that is sent to inform about a change in the value of the property. We won't be using
this extra information in our small game, and we don't require currentPlayer to be a
property at all, but it is always a good idea to try and find good candidates for properties and
expose them because some day, someone might want to use our class in a way we hadn't
predicted and a particular property might become useful.

So far, we have coded all the user interfaces manually by writing C++ code that instantiates
widgets, arranges them in layouts, and connects signals to slots. It is not that hard for
simple widgets, but becomes tedious and time-consuming when the Ul becomes more and
more complex. Fortunately, Qt provides tools to do all this in a more pleasant way. Instead
of writing C++ code, we can create forms using a graphical tool by dragging and dropping
widgets on a canvas, applying layouts to them, and even establishing signal-slot connections
using the point-and-click technique. Later during the compilation, such forms will get
converted into C++ code for us and will be ready for applying onto a widget.

The tool is called Qt Designer and is integrated with Qt Creator. To use it, select New File or
Project from the File menu and choose the Qt Designer Form Class template available after
selecting Qt in the Files and Classes section of the dialog box. You get to choose a template
for the form and configure details such as the names of the files to create. In the end, three
files will get created—two of them implement a C++ class derived from QWidget or one of
its subclasses and the last one contains data for the form itself.

[431

Qt GUI Programming

After closing the wizard, we are taken to Qt Creator's Design mode that looks as shown in
the following screenshot:

Dwa dialog.vi- Qt Creator W L8
File Edit ©uic Debug Analyze Tools Window Help

dialog.ui s R ER M= M I i B3

qt

Welcome |=

Dialog ; QDialog
QObject
QWidget i
windowModality NonModal
enabled.
b ge ¥ [(0, 0), 400 ..
~ sizePolicy [Preferred, Pr.
Horizontal P... Preferred
Vertical Policy Preferred
Herizontal St....

| R O~ Type to locate (Cirl+k)

The Design mode consists of four major parts that are marked on the preceding figure with
numbers.

The area marked as 1 is the main worksheet. It contains a graphical representation of the
form being designed where you can move widgets around, compose them into layouts, and
see how they react. It also allows further manipulation of the form using the point-and-click
method that we will learn later.

The second area 2 is the widget box. It contains a list of available types of widget that are
arranged into groups containing items with a related or similar functionality. Over the list,
you can see a box that lets you filter widgets that are displayed in the list to only show those
that match the entered expression. In the beginning of the list, there are also items that are
not really widgets—one group contains layouts and the other one contains so-called spacers,
which are a way to push other items away from each other.

Chapter 3

The main purpose of the widget box is to add widgets to the form in the worksheet. You
can do that by grabbing a widget from the list with the mouse, dragging it to the canvas,
and releasing the mouse button. The widget will appear in the form and can be further
manipulated with further tools in Creator's Design mode.

The next area 3, which we are going to talk about, is situated on the right-hand side of the
window and consists of two parts. At the top of the figure, you can see Object Inspector.

It presents the parent-child relationship of all widgets that are currently present in the
edited form. Each line contains the name of the object and the name of its class as seen by
the meta-object system. If you click on an entry, a corresponding widget in the form gets
selected (and vice versa).

The lower part of the figure shows the property editor. You can use it to change the values of
all the properties that each object has. Properties are grouped by their classes that they have
been declared in, starting from QObject (the base class implementing properties), which
declares only one but an important property—objectName. Following Q0bject, there are
properties declared in QWidget, which is a direct descendant of QObject. They are mainly
related to the geometry and layout policies of the widget. Lower in the list, you can find
properties that come from further derivations of Qwidget. If you prefer a pure alphabetical
order where properties are not grouped by their class, you can switch the view using a pop-
up menu that becomes available after you click on the wrench icon positioned over the
property list; however, once you get familiar with the hierarchy of Qt classes, it will be much
easier to navigate the list when it is sorted by a class.

Having a closer look at the property editor, you can see that some of them have arrows
beneath them that reveal new rows when clicked. These are composed properties where

the complete property value is determined from more than one subproperty values; for
example, if there is a property called geometry that defines a rectangle, it can be expanded
to show four subproperties: %, y, width, and height. Another thing that you should quickly
notice is that some property names are displayed in bold. This means that the property value
was modified and is different from the default value for this property. This lets you quickly
find those properties that you have modified.

The last group of functionality 4 that we will explain now is the one positioned in the lower
part of the window. By default, you will see two tabs—Action Editor and Signal/Slot Editor.
They allow us to create helper entities such as actions for the menus and toolbars or signal-
slot connections between widgets using a clean tabular interface.

What was described here is the basic tool layout. If you don't like it, you can invoke the
context menu from the main worksheet, uncheck the Locked entry, and rearrange all the
windows to your liking or even close the ones you currently don't need.

451

Qt GUI Programming

Time for action - designing the game configuration dialoy

Now, we will use Qt Designer forms to build a simple game configuration dialog that will let
us choose names for our players.

First, invoke the new file dialog from the menu and choose to create a new Qt Designer
Form Class as shown in the following screenshot:

[(S New Y o) &
Choose a template: All Templates -
Project ; ;

prlfises D Creates a Qt Designer Form along with a
Applications __,J Qt Designer Form matching class (C++ header and source File)
] Forimplementation purposes. You can add

: : Qt Resource File ==)
Libraries J)) the Form and class to an existing Qt Widget
Other Project | QmLFile (Qt Quick1) Project.

X QML File (Qt Quick 2)

Man-QE P 4 "J

on-Qt Projec _J J5File Supported PlatForms: Desktop

Import Projeck
Files and Classes
C++
GLSL

General

| Choose... Cancel
In the window that appears, choose Dialog with Buttons Bottom:
[Qt Designer Form Class EIRCINCIRtS
Choose a Form Template
E» Form Template
- templates/Forms
Dialog with Buttons Right
Dialog without Buttons
Main Window
Widget
» Widgets
Embedded Design
Device; None
Screen Size: | Default size -
< Back Mexk > Cancel

1461

Chapter 3

Adjust the class name to ConfigurationDialog, leave the rest of the settings at their
default values, and complete the wizard.

Drag and drop two labels and two line edits on the form, position them roughly in a grid,
double-click on each of the labels, and adjust their captions to receive a result similar to the
following figure:

Player 1 Mame:

Player 2 Mame:
[[

QK Cancel

Select the first line to edit and look at the property editor. Find a property called
objectName and change it to player1Name. Do the same for the other line and call it
player2Name. Then, click on some empty space in the form and choose the Layout in a grid
entry in the upper toolbar. You should see the widgets snap into place—that's because you
have just applied a layout to the form. When you're done, open the Tools menu, go to the
Form Editor submenu, and choose the Preview entry.

What just happened?

You can see a new window open that looks exactly like the form we just designed. You

can resize the window and interact with the objects inside to monitor the behavior of the
layouts and widgets. What really happened here is that Qt Creator built a real window for
us based on the description that we provided in all the areas of the design mode. Without
any compilation, in a blink of an eye we received a fully working window with all the layouts
working and all the properties adjusted to our liking. This is a very important tool so make
sure to use it often to verify that your layouts are controlling all the widgets as you intended
them to—it is much faster than compiling and running the whole application just to check
whether the widgets stretch or squeeze properly. It's all possible thanks to Qt's meta-object
system.

(411

Qt GUI Programming

Time for action - polishing the dialoy

Now that the GUI itself works as we intended it to, we can focus on giving the dialog some
more polish.

The first thing we are going to do is add accelerators to our widgets. These are keyboard
shortcuts that, when activated, cause particular widgets to gain keyboard focus or perform
a predetermined action (for example, toggle a checkbox or push a button). Accelerators are
usually marked by underlining them, as shown in the following figure:

Mame: ||

We will set accelerators to our line edits so that when the user activates an accelerator for
the first field, it will gain focus. Through this we can enter the name of the first player, and
similarly, when the accelerator for the second line edit is triggered, we can start typing in the
name for the second player.

Start by selecting the label on the left-hand side of the first line edit. Press F2 or double-
click on the label (alternatively, find the text property of the label in the property editor and
activate its value field). This enables us to change the text of the label. Navigate using cursor
keys so that the text cursor is placed before the character 1 and type the & character. This
character marks the character directly after it as an accelerator for the widget. For widgets
that are composed of both text and the actual functionality (for example, a button), this

is enough to make accelerators work. However, since QLineEdit does not have any text
associated with it, we have to use a separate widget for that. This is why we have set the
accelerator on the label. Now, we need to associate the label with the line edit so that the
activation of the label's accelerator will forward it to the widget of our choice. This is done by
setting a so-called buddy for the label. You can do this in code using the setBuddy method
of the QLabel class or using Creator's form designer. Since we're already in the Design
mode, we'll use the latter approach. For that, we need to activate a dedicated mode in the
form designer.

[481

Chapter 3

Look at the upper part of Creator's window; directly above the form, you will find a toolbar
containing a couple of icons. Click on the one labeled Edit buddies or just press F5 on your
keyboard. Now, move the mouse cursor over the label, press the mouse button, and drag
from the label towards the line edit. When you drag the label over the line edit, you'll see a
graphical visualization of a connection being set between the label and the line edit. If you
release the button now, the association will be made permanent. You should notice that
when such an association is made, the ampersand character (&) vanishes from the label and
the character behind it gets an underscore. Repeat this for the other label and corresponding
line edit. Now, you can preview the form again and check whether accelerators work as
expected.

The tah order

While you're previewing the form, you can check another aspect of the Ul design. Start by
pressing the Tab key and see how the focus moves from widget to widget. There is a good
chance that the focus will start jumping back and forth between buttons and line edits
instead of a linear progress from top to bottom (which is an intuitive order for this particular
dialog). To check and modify the order of focus, leave the preview and switch to the tab
order editing mode by clicking on the icon called Edit Tab Order in the toolbar.

This mode associates a box with a number to each focusable widget. By clicking on the
rectangle in the order you wish the widgets to gain focus, you can reorder values, thus
reordering focus. Now, make it so that the order is as shown in the following figure:

Player 1 Nami‘_‘
m Player 2 NamD u

| oK | Cancel

Enter the preview again and check whether the focus changes according to what you've set.

1491

Qt GUI Programming

When deciding about the tab order, it is good to consider which fields in
the dialog are mandatory and which are optional. It is a good habit to allow
N the user to tab through all the mandatory fields first, then to the dialog
~ confirmation button (for example, one that says OK or Accept), and then
Q cycle through all the optional fields. Thanks to this, the user will be able to
quickly fill all the mandatory fields and accept the dialog without the need

to cycle through all the optional fields that the user wants to leave at their
default values.

The last thing we are going to do right now is make sure that the signal-slot connections are
set up properly. To do this, switch to the signal-slot editor mode by pressing F4 or choosing
Edit Signals/Slots from the toolbar. The Dialog with Buttons Bottom widget template

predefines two connections for us, which should now become visible in the main canvas
area:

|] -
Playgrttigaccept() | [reject()
B Playkr 2 Name: ’ n

u% I (o].4 I Cance
S

The ghialog class that implements dialogs in Qt has two useful slots—accept () and
reject () —which inform the caller whether the action represented by the dialog was
accepted or not. For our convenience, these slots should already be connected to the
respective accepted () and rejected () signals from the group of buttons (which is an
instance of the QDialogButtonBox class) that by default, contain the OK and Cancel

buttons. If you click on any of them signal accepted () or respectively, rejected () will be
emitted by the box.

| |
ted()
]

Chapter 3

At this point, we can add some more connections to make our dialog more functional.
Let's make it such that the button to accept the dialog is only enabled when neither of the
two line edits is empty (that is, when both the fields contain player names). While we will
implement the logic itself later, we can now make connections to a slot that will perform
the task.

Since no such slot exists by default, we need to inform the form editor that such a slot will
exist at the time when the application is compiled. To do this, we need to switch back to the
default mode of the form editor by pressing F3 or choosing Edit Widgets from the toolbar.
Then, you can invoke the form's context menu and choose Change signals/slots. A window
will pop up such as the one shown in the following figure that lists the available signals and
slots:

B G Signals/Slots of Dialog B g e 2

Slots

.

w
r
Signals
=

0K Cancel

[51]

Qt GUI Programming

Click on the + button in the Slots group and create a slot called updateOKButtonState () :

Signals/Slots of QWidget B X
Slots
ower(-
open(
exec
done(int
accept(
reject B
showExtension{bco "
updateOKButtonState() i
B
Signals
-
1 =
i
| ,
| oK | ‘ Cancel |

Then, accept the dialog and go back to the Signals/Slots mode. Create a new connection

by grabbing one of the line edits with your mouse. When you move the cursor outside the
widget, you will notice a red line following your pointer. If the line encounters a valid target,
the line will change to an arrow and the target object will be highlighted. The form itself can
also be a target (or a source); in this case, the line will end with a ground mark (two short
horizontal lines).

When you release the mouse button, a window will pop up, listing all the signals of the
source object and all the slots of the target object. Choose the textChanged (QString)
signal. Note that when you do this, some of the available slots will disappear. This is because
the tool only allows us to choose from slots that are compatible with the highlighted signal.
Select our newly created slot and accept the dialog. Repeat the same for the other line edit.

What we have done here is that we've created two connections that will trigger when the
text of either of the two line edits is changed. They will execute a slot that doesn't exist yet—
by "creating" the slot, we only declared our intention to implement it in a QDialog subclass
that was also created for us. You can now go ahead and save the form.

521

Chapter 3

What just happened?

We performed a number of tasks that make our form follow standard behaviors known from
many applications—this makes form navigation easy and shows the user which actions can
be undertaken and which are currently not available.

If you open the form in a text editor (for example, by switching to the Creator's Edit pane),
you will notice that it is really an XML file. So how do we use this file?

As part of the build process, Qt calls a special tool called User Interface Compiler (uic) that
reads the file and generates a C++ class that contains a setupUi () method. This method
accepts a pointer to a widget and contains code, which instantiates all the widgets, sets
their properties, and establishes signal-slot connections, and it is our responsibility to call it
to prepare the GUL. The class itself, which is named after your form (that is after the value
of the objectName property of the form object) with a Ui namespace prepended to it (for
example, Ui: :MyForm) is not derived from a widget class but is rather meant to be used
with one. There are basically three ways of doing this.

The most basic way to use a Qt Designer form is to instantiate a widget and the form object
and to call setupUi on the widget, like this:

QWidget *widget = new QWidget
Ui form ui * = new Ui form;
ui->setupUi (widget) ;

This approach has a number of flaws. First of all, it creates a potential memory leak of the
ui object (remember, it is not QObject, so you can't set a parent to it so that it's deleted
when the parent is deleted). Second, since all the widgets of the form are variables of the ui
object that is not tied to the widget object, it breaks encapsulation, which is one of the most
important paradigms of object-oriented programming. However, there is a situation when
such a construct is acceptable. This is when you create a simple short-lived modal dialog.
You surely need to remember that to show regular widgets, we have been using the show ()
method. This is fine for non-modal widgets, but for modal dialogs you should instead call the
exec () method that is defined in the gDialog class. This is a blocking method that doesn't
return until the dialog is closed. This allows us to modify the code so that it becomes:

QDialog dialog;

Ui form ui;
ui.setupUi (&dialog) ;
dialog.exec () ;

531

Qt GUI Programming

Since we're creating objects on the stack, the compiler will take care of deleting them when
the local scope ends.

The multiple-inheritance approach

The second way of using Designer forms is to create a class derived from both Qwidget
(or one of its subclasses) and the form class itself. We can then call setupUi from the
constructor:

class Widget : public QWidget, private Ui::MyForm {
public:
Widget (QWidget *parent = 0) : QWidget (parent) {
setupUi (this) ;
}
bi

This way, we keep the encapsulation as our class inherits fields and methods from the Ui
class, and we can call any of them directly from within the class code while restricting access
from the outside world by using private inheritance. The drawback of this approach is that
we pollute the class namespace, for example, if we had a name object in Ui : :MyForm, we
wouldn't be able to create a name method in Widget.

The single inheritance approach

Fortunately, we can work around this using the composition instead of inheritance. We can
derive our widget class only from gWwidget and instead of also subclassing Ui : :MyForm, we
can make an instance of it a private member of the new class:

class Widget : public QWidget {
public:
Widget (QWidget *parent = 0) : QWidget (parent) {
ui = new Ui::MyForm;
ui->setupUi (this) ;
}
~Widget () { delete ui; }
private:
Ui::MyForm *ui;

bi

At the cost of having to manually create and destroy the instance of Ui : :MyForm, we can
have the additional benefit of containing all variables and code of the form in a dedicated
object, which prevents the aforementioned namespace pollution.

This is the recommended way of using Designer forms, and it's also the default mode of
operation when you tell Qt Creator to generate a Designer form class for you.

[541

Chapter 3

Time for action - the logic of the dialog

Now, it is time to make our game settings dialog work. Earlier, we declared a signal-slot
connection but now the slot itself needs to be implemented.

Open the form class generated by Creator. If you're still in the Design mode, you can quickly
jump to the respective form class file using the Shift + F4 keyboard shortcut. Create a public
slots section of the class and declare a void updateOKButtonState () slot. Open the
refactorization menu (Alt + Enter) and ask Creator to create the skeleton implementation of
the slot for you. Fill the function body with the following code:

void ConfigurationDialog::updateOKButtonState() {
bool pllNameEmpty = ui->playerlName->text () .isEmpty () ;
bool pl2NameEmpty = ui->player2Name->text () .isEmpty () ;
QPushButton *okButton = uil->buttonBox
->button (QDialogButtonBox: :0k) ;

okButton->setDisabled (pllNameEmpty || pl2NameEmpty) ;

}

This code retrieves player names and checks whether either of them is empty. Then, it asks
the button box that currently contains the OK and Cancel buttons to give a pointer to the
button that accepts the dialog. Then, we set the button's disabled state based on whether
both player names contain valid values or not. The button state also needs to be updated
when we first create the dialog, so add invocation of updateOKButtonState () to the
constructor of the dialog:

ConfigurationDialog: :ConfigurationDialog (QWidget *parent)
QDialog (parent), ui(new Ui::ConfigurationDialog)

{

ui->setupUi (this) ;
updateOKButtonState () ;

}

The next thing to do is to allow to store and read player names from outside the dialog—
since the ui component is private, there is no access to it from outside the class code. This
is a common situation and one that Qt is also compliant with. Each data field in almost
every Qt class is private and may contain accessors (a getter and optionally a setter), which
are public methods that allow to read and store values for data fields. Our dialog has two
such fields—the names for the two players. At this point, we should note that they are good
candidates for properties so at the end, we'll declare them as such. But first, let's start by
implementing the accessors.

[551

Qt GUI Programming

Setter methods in Qt are usually named using the lowercase pattern, for example, set
followed by the name of the property with the first letter converted to uppercase. In our
situation, the two setters will be called setPlayeriName and setPlayer2Name and they
will both accept QString and return void. Declare them in the class header as shown in the

following code snippet:

void setPlayerlName (const QString &plname) ;
void setPlayer2Name (const QString &p2name) ;

Implement their bodies in the . cpp file:

void ConfiguratiosDialog::setPlayerlName (const QString &plname) {
ui->playerlName->setText (plname) ;

}

void ConfigurationDialog::setPlayer2Name (const QString &p2name) {
ui->player2Name->setText (p2name) ;

}

Getter methods in Qt are usually called the same as the property that they are related
to—playeriName and player2Name. Put the following code in the header file:

QString playerlName () const;
QString player2Name () const;

Put the following code in the implementation file:

QString ConfigurationDialog: :playerlName () const

{ return ui-splayeriName->text (); }
QString ConfigurationDialog: :player2Name () const
{ return ui-splayer2Name->text (); }

The only thing left to do now is to declare the properties. Add the highlighted lines to the
class declaration:

class ConfigurationDialog : public QDialog {
Q OBJECT

Q PROPERTY (QString playerlName READ
playerlName WRITE setPlayerlName)

Q PROPERTY (QString player2Name READ
player2Name WRITE setPlayer2Name)

public:
ConfigurationDialog (QWidget *parent = 0);

Our dialog is now ready. You can test it by creating an instance of itin main () and calling

show () or exec ().

Chapter 3

We already have two major components in our game—the game board and configuration
dialog. Now, we will need to bind them together. To do this, we will use another important
component—the QMainWindow class. A "main window" represents the control center of
an application. It can contain menus, toolbars, docking widgets, a status bar, and the actual
widget content called a "central widget", as presented in the following diagram:

Dock Widgets

Central Widget

The central widget part doesn't need any extra explanation—it is a regular widget like

any other. We will also not focus on dock widgets or the status bar here. They are useful
components but they are so easy to master that you can learn about them yourself. Instead,
we will spend some time mastering menus and toolbars. You have surely seen and used

toolbars and menus in many applications and you know how important they are for good
user experience.

[511

Qt GUI Programming

The main hero shared by both these concepts is a class called Qaction, which represents

a functionality that can be invoked by a user. A single action can have more than one
incarnation—it can be an entry in a menu (the QMenu instances), a toolbar (QToolBar),
button, or keyboard shortcut (0Shortcut). Manipulating the action (for example, changing
its text) causes all its incarnations to update. For example, if you have a Save entry in the
menu (with a keyboard shortcut bound to it), a Save icon in the toolbar, and maybe also

a Save button somewhere else in your user interface and you want to disallow saving the
document (for example, a map in your dungeons and dragons game level editor) because

its contents haven't changed since the document was last loaded. In this case, if, the menu
entry, toolbar icon, and button are all linked to the same Qaction instance then, once you
set the enabled property of the action to false, all the three entities will become disabled
as well. This is an easy way to keep different parts of your application in sync—if you disable
an action object, you can be sure that all entries that trigger the functionality represented by
the action are also disabled. Actions can be instantiated in code or created graphically using
Action Editor in Qt Creator. An action can have different pieces of data associated with it—a
text, tooltip, status bar tip, icons, and others that are less often used. All these are used by
incarnations of your actions.

The Qt resource system

While speaking of icons, there is an important feature in Qt that you should learn. A natural
way of creating icons is by loading images from the filesystem. The problem with this is that
you have to install a bunch of files together with your application and you need to always
know where they are located to be able to provide paths to access them. This is difficult but
fortunately, Qt has a solution to this—it allows you to embed arbitrary files (such as images
for icons) directly in the application that is executable. This is done by preparing resource
files that are later compiled in the binary. Fortunately, Qt Creator provides a graphical tool
for this as well.

Time for action — the main window of the application

Create a new Qt Designer Form Class application. As a template, choose Main Window.
Accept the default values for the rest of the wizard.

Create an action using the action editor and enter the following values in the dialog:

Chapter 3

Mew ackion & o &

Text: Mew Game

Object name: ackionMewGame

ToolTip: Skart new game

lcan theme: +

lcon: Mormal FF = | .. ™

Checkable:

shortecuk: | |]
oK Cancel

Now, create another action and fill it with the values shown in the following screenshot:

['.‘J ki Mew ackion .

Text: Quit

Objeckt name: ackionQuit

ToolTip: Exit the program

lcon Eheme: +
lcon: Mormal OFF = || .. ™

Checkable:

Shortecut: | | +

oK Cancel

Qt GUI Programming

We want our game to look nice, so we will provide icons for the actions and we will embed
images for them in our application using the resource system. Create a new file and make it
Qt Resource File. Call it resources.grc. Click on the Add button and choose Add Prefix.
Change the value for the prefix to /. Then, click on the Add button again and choose Add
Files. Find appropriate images for your actions and add them to the resource file. A dialog
will appear asking whether you want to copy the files to the project directory. Agree by
choosing Copy.

@ . Invalid File locaktion b S

The File fusrfshareficons/oxygen/32x32/actions/application-exit.png is
nokt in a subdireckory of the resource File. You now have the option ko
= copy this File to avalid location.

| Copy | Abort

Now, edit the actions again in the Action Editor and choose icons for them.

What just happened?

We added a resource file to our project. In that resource file, we created entries for a
number of images. Each of the images is put under a / prefix, which stands for the root

node of the artificial filesystem that we create. Each entry in a resource file can be accessed
directly from the manually written code as a file with a special name. This name is assembled
from three components. First comes a colon character (:), which identifies the resource
filesystem. This is followed by a prefix (for example, /) and a full path of the entry in the
resource (for example, exit .png). This makes an image called exit .png accessible
through the : /exit.png path. When we build the project, the file will be transformed into
a C data array code and integrated with the application binary. Having prepared the resource
file, we used images embedded there as icons for our actions.

The next step is to add these actions to a menu and toolbar.

Chapter 3

Time for action - adding a pull-down menu

To create a menu for the window, double-click on the Type Here text on the top of the form
and replace the text with &File. Then, drag the New Game action from the action editor
over the newly created menu but do not drop it there yet. The menu should open now and
you can drag the action so that a red bar appears in the submenu in the position where you
want the menu entry to appear—now you can release the mouse button to create the entry.
Afterwards, open the menu again by clicking on File and choose Add Separator. Then, repeat
the drag-and-drop operation for the Quit action to insert a menu entry for it just below the
separator in the File menu, as shown in the following figure:

A Mew Game Ly
k4 Quit 3]
Type Here
Add Separator

What just happened?

Using graphical tools, we created a menu for our program and added a number of actions
(that were automatically transformed into menu items) to that menu. Each menu entry
received some text and an icon specified by the action that was dropped in the menu.

\ To create submenus, first create a menu entry by clicking on the Type Here line
~ and entering the submenu name. Then, drag and hover an action over such a
Q submenu. After a short time, a submenu will pop up and you will be able to
drop your action there to create an entry in the second-level menu.

611

Qt GUI Programming

Time for action - creating a toolhar

To create a toolbar, invoke the context menu on the form and choose Add Tool Bar. Then,
drag the New Game action over the toolbar and drop it there. Open a context menu for the
toolbar and choose Append Separator. Then, drag the Quit action from the Action Editor
and drop it in the toolbar behind the separator. The following figure presents the final layout
that you should have now:

File Type Here

\ B3

What just happened?

Creating toolbars is very similar to creating menus. You first create the container (the
toolbar) and then drag-and-drop actions from the action editor. You can even drag an action
from the menu bar and drop it on the toolbar and vice versa!

Time for action - filling in the central widget

Add two labels in the main window area—one at the top for the first player name and one
at the bottom of the form for the second player name—and then change their cbjectName
property to playerl and player2, respectively. Clear their text property so that they don't
display anything. Then, drag Widget from the widget box, drop it between the two labels'
and set its object name to gameBoard. Invoke the context menu on the widget that you
just dropped and choose Promote to. This allows us to substitute a widget in the form with
another class; in our case, we will want to replace the empty widget with our game board.
Fill the dialog that has just appeared with the values shown in the following figure:

[621

Chapter 3

['3 Promoted Widgets)) K
Promoted Classes

Mame Header File Globalinclude Usage

Mew Promoked Class

Base class name: Qwidget - | Add
Promoted class name: |TicTacToeWidget | Reset
Header File: tictactoewidget.h

Globalinclude

Promote Close

Then, click on the button labeled Add and then Promote to close the dialog and confirm the
promotion. You will not notice any changes in the form because the replacement only takes
place during compilation. Now, apply a vertical layout on the form so that the labels and the
empty widget snap into place.

What just happened?

Not all widget types are directly available in the form designer. Sometimes, we need to use
widget classes that will only be created in the project that is being built. The simplest way to
be able to put custom widgets on a form is to ask the designer to replace class names with
some of the objects when C++ code for the form is to be generated. By promoting an object
to a different class, we saved a lot of work trying to otherwise fit our game board into the
user interface.

Qt GUI Programming

Time for action — putting it all together

The visual part of the game is ready and what remains is to complete the logic of the

main window and put all the pieces together. Add a public slot to the class and call it
startNewGame. In the class constructor, connect the New Game action's triggered signal to
this slot and connect the application's quit slot to the other action:

connect (ui->actionNewGame, SIGNAL (triggered()),
this, SLOT(startNewGame())) ;

connect (ui->actionQuit, SIGNAL (triggered()),
gApp, SLOT (quit()));

The g2pp special macro represents a pointer to the application object instance, so the
preceding code will call the quit () slot on the QApplication object created inmain (),
which in turn will eventually cause the application to end.

Let's implement the startNewGame slot as follows:

void MainWindow: :startNewGame () {
ConfigurationDialog dlg(this) ;
if (dlg.exec() == QDialog::Rejected) ({

return; // do nothing if dialog rejected

}
ui->playerl->setText (dlg.playerlName ()) ;
ui->player2->setText (dlg.player2Name ()) ;
ui->gameBoard->initNewGame () ;
ui->gameBoard->setEnabled (true) ;

}

In this slot, we create the settings dialog and show it to the user, forcing him to enter player
names. If the dialog was canceled, we abandon the creation of a new game. Otherwise, we
ask the dialog for player names and set them on appropriate labels. Finally, we initialize the
board and enable it so that users can interact with it.

While writing a turn-based board game, it is a good idea to always clearly mark whose turn it
is now to make a move. We will do this by marking the moving player's name in bold. There
is already a signal in the board class that tells us that a valid move was made, which we can
react to in order to update the labels. Let's add an appropriate code into the constructor of
the main window class:

connect (ui->gameBoard, SIGNAL (currentPlayerChanged (Player)),
this, SLOT (updateNameLabels())) ;

1641

Chapter 3

Now for the slot itself; let add a private slot's section to the class and declare the slot there:

private slots:
void updateNameLabels () ;

Now, we can implement it:

void MainWindow: :updateNameLabels () {
QFont f = ui-s>playerl->font();

f.setBold (ui->gameBoard->currentPlayer ()
TicTacToeWidget: :Playerl) ;
ui->playerl->setFont (f) ;

f.setBold (ui->gameBoard->currentPlayer ()
TicTacToeWidget: :Player2) ;
ui->player2->setFont (f) ;

}

In addition to the slot being called after a signal is emitted, we can also use it to set the initial
data for the labels when the game is starting. Since all the slots are also regular methods,

we can simply call updateNameLabels () from startNewGame () —go ahead and invoke
updateNameLabels () at the end of startNewGame ().

The last thing that needs to be done is to handle the situation when the game ends. Connect
the gameOver () signal from the board to a new slot in the main window class. Implement
the slot as follows:

void MainWindow: :handleGameOver (TicTacToeWidget: :Player winner) {
ui->gameBoard->setEnabled (false) ;
QString message;

if (winner == TicTacToeWidget: :Draw) {

message = "Game ended with a draw.";
} else {

message = QString ("%l wins") .arg(winner ==

TicTacToeWidget: :Playerl

? ul-s>playerl->text() : ui-splayer2->text());
}
QMessageBox: :information (this, "Info", message);

}
1651

vww allitebooks.conl

http://www.allitebooks.org

Qt GUI Programming

What just happened?

Our code does two things. First, it disables the board so that players can no longer

interact with it. Second, it checks who won the game, assembles the message (we will

learn more about QString in the next chapter), and shows it using a static method
QMessageBox: : information () that shows a modal dialog containing the message and a
button that allows us to close the dialog. The last thing that remains is to update the main ()
function in order to create an instance of our MainWindow class:

#include "mainwindow.h"
#include <QApplication>
int main(int argc, char *argvl(])
{
QApplication a(argc, argv) ;
MainWindow w;
w.show () ;
return a.exec();

}

Now, you can run your first Qt game.

As an additional exercise, you can try to modify the code we have written in this chapter to
allow playing the game on boards bigger than 3 x 3. Let the user decide about the size of the
board (you can modify the game options dialog for that and use QSlider and QSpinBox to
allow the user to choose the size of the board) and you can then instruct TicTacToeWidget
to build the board based on the size it gets. Remember to adjust the game winning logic! If
at any point you run into a dead end and do not know which classes and functions to use,
consult the reference manual.

To quickly find the documentation for a class (or any other page in the docs),
switch to the Help pane, choose Index from the drop-down list on top of
.\l the sidebar, and type in the search term, such as QAction. Also, the F1 key
Q is very helpful for browsing the manual. Position the mouse pointer or text
cursor in the code editor over the name of a class, function, or object and
press F1 on your keyboard. By doing this, Qt Creator will happily show you
the available help information on the chosen subject.

Chapter 3

Q1. A method that returns the preferred size of a widget is called:

1. preferredSize
2. sizeHint

3. defaultSize
Q2. What is the name of a Qt class that can carry values for any property?

1. Qvariant
2. QUnion

3. QPropertyValue
Q3. What is the purpose of the Qaction object?

1. It represents a functionality that a user can invoke in the program.
2. It holds a key sequence to move the focus on a widget.

3. ltis a base class for all forms generated using Qt Designer.

In this chapter, you learned how to create simple graphical user interfaces with Qt. We went
through two approaches—creating user interface classes by writing all the code directly

and designing the user interface with a graphical tool that generates most of the code for
us. There is no telling which of the two approaches is better; each of them is better in some
areas and worse in others. In general, you should prefer using Qt Designer forms to write
code directly because it's faster and less prone to errors as most of the code is generated.
However, if you want to retain more control over the code or your GUI is highly dynamic,
writing all the code yourself will be easier, especially when you gain enough experience with
Qt to avoid common pitfalls and learn to use advanced programming constructs.

We also learned how the heart of Qt—the meta-object system—works. You should now be
able to create simple user interfaces and fill them with logic by connecting signals to slots—
predefined ones as well as custom ones that you now know how to define and fill with code.

Qt contains many widget types but | didn't introduce them to you one by one. There is a
really nice explanation of many widget types in the Qt manual called Qt Widget Gallery,
which shows most of them in action.

611

Qt GUI Programming

If you have any doubts about using any of those widgets, you can check the example code
and also look up the appropriate class in the Qt reference manual to learn more about them.

Using Qt is much more than just dragging-and-dropping widgets on forms and providing
some code to glue the pieces together. In the next chapter, you will learn about some of the
most useful functionalities that Qt has to offer; they do not relate to showing graphics on
screen, but rather let you manipulate various kind of data. This is essential for any game that
is more complicated than a simple tic-tac-toe.

This chapter will help you master Qt ways of basic data processing and storage.
First of all, you will learn how to handle textual data and how to match text
against regular expressions. Then, you will see how to store and fetch data from
files and how to use different storage formats for text and binary data. By the
end of this chapter, you will be able to implement non-trivial logic and data
processing in your games efficiently. You will also know how to load external
data in your games and how to save your own data in permanent storage for
future use.

Text handling

Applications with a graphical user interface (and games surely fall into this category) are
able to interact with users by displaying text and by expecting textual input from the user.
We have already scratched the surface of this topic in the previous chapter by using the
QString class. Now, we will go into more details.

Qt Core Essentials

Manipulating strings

Text in Qt is internally encoded using Unicode, which allows to represent characters in
almost all languages spoken in the world and is de facto standard for native encoding of
text in most modern operating systems. You have to be aware though that contrary to

the QString class, the C++ language does not use Unicode by default. Thus, each string
literal (that is, each bare text you wrap in quotation marks) that you enter in your code
needs to be converted to Unicode first before it can be stored in any of Qt's string handling
classes. By default, this is done implicitly assuming that the string literal is UTF-8 encoded,
but 9string provides a number of static methods to convert from other encodings such
as QString: :fromLatinl () or QString: : fromUt£f16 (). This conversion is done at
runtime, which adds an overhead to the program execution time, especially if you tend to do
a lot of such conversions in your programs. Luckily, there is a solution for this:

QString str = QStringlLiteral("I'm writing my games using Qt");

You can wrap your string literal in a call to QStringLiteral, as shown in the preceding
code, which if your compiler supports, will perform the conversion at compile time. It's a
good habit to wrap all your string literals into QStringLiteral but it is not required, so
don't worry if you forget to do that.

We will not go into great detail here when describing the QString class, as in many aspects
it is similar to std: : string, which is part of the standard C++. Instead, we will focus on the
differences between the two classes.

The first difference has already been mentioned—Qstring keeps the data encoded as
Unicode. This has the advantage of being able to express text in virtually any language at the
cost of having to convert from other encodings. Most popular encodings—UTF-8, UTF-16,
and Latinl—have convenience methods in QString for converting from and to the internal
representation. But, Qt knows how to handle many other encodings as well. This is done
using the QTextCodec class.

M You can list the codecs supported on your installation by using the
Q QTextCodec: :availableCodecs () static method. In most installations,
Qt can handle almost 1,000 different text codecs.

701

Chapter 4

Most Qt entities that handle text can access instances of this class to transparently perform
the conversion. If you want to perform such conversion manually, you can ask Qt for an
instance of a codec by its name and make use of the fromUnicode () and toUnicode ()
methods:

QOByteArray big5Encoded = "{R4f";

QTextCodec *big5Codec = QTextCodec::codecForName ("Big5") ;
QString text = big5Codec->toUnicode (big5Encoded) ;

QTextCodec *utf8Codec = QTextCodec::codecForMib(106); // UTF-8
QByteArray utf8Encoded = utf8Codec->fromUnicode (text) ;

The most basic tasks that involve text strings are those where you add or remove characters
from the string, concatenate strings, and access the string's content. In this regard, QString
offers an interface that is compatible with std: : string, but it also goes beyond that,
exposing many more useful methods.

Adding data at the beginning or at the end of the string can be done using the prepend ()
and append () methods, which have a couple of overloads that accept different objects that
can hold textual data, including the classic const char* array. Inserting data in the middle
of a string can be done with the insert () method that takes the position of the character
where we need to start inserting as its first argument and the actual text as its second
argument. The insert method has exactly the same overloads as prepend and append,
excluding const char*. Removing characters from a string is similar. The basic way to do
this is to use the remove () method that accepts the position at which we need to delete
characters and the number of characters to delete is as shown:

QString str = QStringLiteral ("abcdefghij") ;
str.remove (2, 4); // str = "abghij"

There is also a remove overload that accepts another string. When called, all its occurrences
are removed from the original string. This overload has an optional argument that states
whether comparison should be done in the default case-sensitive (Qt : : CaseSensitive) or
case-insensitive (Qt : : CaseInsensitive) way:

QString str = QStringLiteral ("Abracadabra") ;
str.remove (QStringLiteral ("ab"), Qt::Caselnsensitive);
// str = "racadra"

ni

Qt Core Essentials

To concatenate strings, you can either simply add two strings together or you can append
one string to the other:

QString strl = QStringLiteral ("abc");
QString str2 = QStringLiteral ("def");
QString strl 2 strl+str2;

QString str2_1 = str2;

str2 1.append(strl);

Accessing strings can be divided into two use cases. The first is when you wish to extract a
part of the string. For this, you can use one of these three methods: 1eft (), right (), and
mid () that return the given number of characters from the beginning or end of the string or
extract a substring of a specified length, starting from a given position in the string:

QString original = QStringLiteral ("abcdefghij") ;
QString 1 = original.left(3); // "abc"

QString r = original.right(2); // "ij"

QString m = original.mid (2, 5); // "cdefg"

The second use case is when you wish to access a single character of the string. The use of
the index operator works with QString in a similar fashion as with std: : string, returning
a copy or non-const reference to a given character that is represented by the QChar class, as
shown in the following code:

QString str = "foo";
QChar f = str[0]; // const
str[0] = 'g'; // non-const

In addition to this, Qt offers a dedicated method—at () —that returns a copy of the
character:

QChar f = str.at(0);

1
‘Q You should prefer to use at () instead of the index operator for operations

that do not modify the character, as this explicitly sets the operation.

The string search and lookup

The second group of functionality is related to searching for the string. You can use methods
such as startsWith(), endsWith (), and contains () to search for substrings in the
beginning or end or in an arbitrary place in the string. The number of occurrences of a
substring in the string can be retrieved by using the count () method.

121

Chapter 4

Y .
‘Q Be careful, there is also a count () method that doesn't take any parameters

and returns the number of characters in the string.

If you need to know the exact position of the match, you can use index0Of () or
lastIndexOf () to receive the position in the string where the match occurs. The first call
works by searching forward and the other one searches backwards. Each of these calls takes
two optional parameters—the second one determines whether the search is case-sensitive
(similar to how remove works). The first one is the position in the string where the search
begins. It lets you find all the occurrences of a given substring:

#include <QtDebugs>

//
int pos = -1;
QString str = QStringLiteral ("Orangutans like bananas.");
do {
pos = str.indexOf ("an", pos+1l);
gDebug () << "'an' found starts at position" << pos;

} while(pos!=-1);

Dissecting strings

There is one more group of useful string functionalities that makes QString different from
std: :string. That s, cutting strings into smaller parts and building larger strings from
smaller pieces.

Very often, a string contains substrings that are glued together by a repeating separator. A
common case is the Comma-separated Values (CSV) format where a data record is encoded
in a single string where fields in the record are separated by commas. While you could
extract each field from the record using functions that you already know (for example,
indexOf), an easier way exists. QString contains a split () method that takes the
separator string as its parameter and returns a list of strings that are represented in Qt by
the QstringList class. Then, dissecting the record into separate fields is as easy as calling
the following code:

QString record = "1,4,8,15,16,24,42";

QStringList fields = record.split(",");

for(int i=0; i< fields.count(); ++i){
gDebug () << fields.at (i) ;

}

131

Qt Core Essentials

The inverse of this method is the join () method present in the QstringList class, which
returns all the items in the list as a single string merged together with a given separator:

QStringList fields = { nin, mgmw, "8", nisn, "16", ||24n’ ngon };
// C++11 syntax!
QString record = fields.join(",");

QString also provides some methods for convenient conversion between textual and
numerical values. Methods such as toInt (), toDouble (), or toLongLong () make it easy
to extract numerical values from strings. Apart from toDouble (), they all take two optional
parameters—the first one is a pointer to a bool variable that is set to true or false
depending on whether the conversion was successful or not. The second parameter specifies
the numerical base (for example, binary, octal, decimal, or hexadecimal) of the value. The
toDouble () method only takes a bool pointer to mark the success or failure as shown in
the following code:

bool ok;

int vl = QString("42") .toInt (&ok, 10);
// vl = 42, ok = true

long long v2 = QString("OxFFFFFF") .toInt (&ok, 16);
// v2 = 16777215, ok = true

double v3 = QString("not really a number") .toDouble (&ok) ;
//v3 = 0.0, ok = false

A static method called number () performs the conversion in the other direction—it takes a
numerical value and number base and returns the textual representation of the value:

QString txt = QString::number (255, 16); // txt = "OxFF"

If you have to combine both Qstring and std: : string in one program, QString offers
you the tostdstring () and fromStdString () methods to perform an adequate
conversion.

M Some of the other classes that represent values also provide conversions to
Q and from QString. An example of such a class is QDate, which represents
a date and provides the fromString () and toString () methods.

nl

Chapter 4

A common task is to have a string that needs to be dynamic in such a way that its content
depends on the value of some external variable—for instance, you would like to inform the
user about the number of files being copied, showing "copying file 1 of 2" or "copying file 2
of 5" depending on the value of counters that denote the current file and total number of
files. It might be tempting to do this by assembling all the pieces together using one of the
available approaches:

QString str = "Copying file " + QString::number (current)
+ " of "+QString::number (total) ;

There are a number of drawbacks to such an approach; the biggest of them is the problem of
translating the string into other languages (this will be discussed later in this chapter) where
in different languages their grammar might require the two arguments to be positioned
differently than in English.

Instead, Qt allows us to specify positional parameters in strings and then replace them with
real values. Positions in the string are marked with the % sign (for example, %1, %2, and so
on) and they are replaced by making a call to arg () and passing it the value that is used to
replace the next lowest marker in the string. Our file copy message construction code then
becomes:

QString str = QStringLiteral ("Copying file %1 of %2")
.arg(current) .arg(total) ;

The arg method can accept single characters, strings, integers, and real numbers and its
syntax is similar to that of QString: :number ().

Let's briefly talk about regular expressions—usually shortened as regex or regexp. You will
need these regular expressions whenever you have to check whether a string or parts of it
matches a given pattern or when you want to find specific parts inside the text and possibly
want to extract them. Both the validity check and the finding/extraction are based on the so-
called pattern of the regular expression, which describes the format a string must have to be
valid, to be found, or to be extracted. Since this book is focused on Qt, there is unfortunately
no time to cover regular expressions in depth. This is not a huge problem, however, since
you can find plenty of good websites that provide introductions to regular expressions on the
Internet. A short introduction can be found in Qt's documentation of QrRegExp as well.

Even though there are many flavors of the regular expression's syntax, the one that Perl uses
has become the de facto standard. According to QRegularExpression, Qt offers Perl-
compatible regular expressions.

1751

Qt Core Essentials

QRegularExpression was first introduced with Qt 5. In the previous
_versions, you'll find the older QRegExp class. Since QRegularExpression
% is closer to the Perl standard and since its execution speed is much faster
s compared to QRegExp, we advise you to use QRegularExpression
whenever possible. Nevertheless, you can read the QRegExp documentation
about the general introduction of regular expressions.

Time for action - a simple quiz game

To introduce you to the main usage of QRegularExpression, let's imagine this game: a
photo, showing an object, is shown to multiple players and each of them has to estimate
the object's weight. The player whose estimate is closest to the actual weight wins. The
estimates will be submitted via QL.ineEdit. Since you can write anything in a line edit,
we have to make sure that the content is valid.

So what does valid mean? In this example, we define that a value between 1 g and 999 kg

is valid. Knowing this specification, we can construct a regular expression that will verify the
format. The first part of the text is a number, which can be between 1 and 999. Thus, the
corresponding pattern looks like [1-9] [0-9] {0, 2}, where [1-9] allows—and demands—
exactly one digit, except zero, which is optionally followed by up to two digits including

zero. This is expressed through [0-9] {0, 2}. The last part of the input is the weight's

unit. With a pattern such as (mg|g|kg), we allow the weight to be input in milligrams
(mg), grams (g), or kilograms (kg). With [1?2, we finally allow an optional space between
the number and unit. Combined together, the pattern and construction of the related
QRegularExpression object looks like this:

QRegularExpression regex ("[1-9]1[0-9]1{0,2}[1? (mg|g|kg)");
regex.setPatternOptions (QRegularExpression:: CaselInsensitiveOption) ;

What just happened?

In the first line, we constructed the aforementioned QRegularExpression object while
passing the regular expression's pattern as a parameter to the constructor. We also could
have called setPattern () to set the pattern:

QRegularExpression regex;
regex.setPattern (" [1-9] [0-9]1{0,2}[1?2 (mg|glkg)");

1761

Chapter 4

Both the approaches are equivalent. If you have a closer look at the unit, you can see

that right now, the unit is only allowed to be entered in lowercase. We want, however,

to also allow it to be in uppercase or mixed case. To achieve this, we can of course write

(mg | mG|Mg|MG|g|G|kg|kG|Kg|KG). Not only is this a hell of a work when you have more
units, this is also very error-prone, and so we opt for a cleaner and more readable solution.
On the second line of the initial code example, you see the answer: a pattern option. We used
setPatternOptions () to setthe QReqularExpression: :CaselnsensitiveOption
option, which does not respect the case of the characters used. Of course, there are a few
more options that you can read about in Qt's documentation on QRegularExpression: : P
atternOption. Instead of calling setPatternOptions (), we could have also passed the
option as a second parameter to the constructor of QRegularExpression:

QRegularExpression regex ("[1-9][0-9]1{0,2}[1?(mg|g|kg)™",
QRegularExpression: :CaseInsensitiveOption) ;

Now, let's see how to use this expression to verify the validity of a string. For the sake of
simplicity and better illustration, we simply declared a string called input:

QString input = "23kg";
QRegularExpressionMatch match = regex.match (input) ;
bool isValid = match.hasMatch() ;

All we have to do is call match (), passing the string we would like to check against it.
In return, we get an object of the QRegularExpressionMatch type that contains

all the information that is further needed—and not only to check the validity. With
QRegularExpressionMatch: :hasMatch (), we then can determine whether the
input matches our criteria, as it returns true if the pattern could be found. Otherwise,
of course, false is returned.

Attentive readers surely will have noticed that our pattern is not quite finished. The
hasMatch () method would also return true if we matched it against "foo 142g bar".
So, we have to define that the pattern is checked from the beginning to the end of the
matched string. This is done by the \A and \ z anchors. The former marks the start of a
string and the latter the end of a string. Don't forget to escape the slashes when you use
such anchors. The correct pattern would then look as follows:

QRegularExpression regex ("\\A[1-9][0-91{0,2}[1?(mg|g|kg)\\z",
QRegularExpression: :CaseInsensitiveOption) ;

¥1]]

Qt Core Essentials

Extracting information out of a string

After we have checked that the sent guess is well formed, we have to extract the actual
weight from the string. In order to be able to easily compare the different guesses, we
further need to transform all values to a common reference unit. In this case, it should be a
milligram, the lowest unit. So, let's see what QRegularExpressionMatch can offer us for
this task.

With capturedTexts (), we get a string list of the pattern's captured groups. In our
example, this list would contain "23kg" and "kg". The first element is always the string

that was fully matched by the pattern followed by all the sub strings captured by the used
brackets. Since we are missing the actual number, we have to alter the pattern's beginning to
([1-91[0-91{0,2}).Now, the list's second element is the number and the third element
is the unit. Thus, we can write the following:

int getWeight (const QString &input) {
QRegularExpression regex ("\\A([1-9][0-9]1{0,2}) [12 (mg|g|kg)\\z");
regex.setPatternOptions (QRegularExpression:: CaselInsensitiveOption) ;
QRegularExpressionMatch match = regex.match (input) ;
if (match.hasMatch()) {
const QString number = match.captured(l) ;
int weight = number.toInt () ;
const QString unit = match.captured(2) .toLower() ;

if (unit == "g") {
weight *= 1000;
} else if (unit == "kg") {

weight *= 1000000 ;
}
return weight;
} else {
return -1;
}
}

In the function's first two lines, we set up the pattern and its option. Then, we match it
against the passed argument. If QRegularExpressionMatch: :hasMatch () returns
true, the input is valid and we extract the number and unit. Instead of fetching the entire
list of captured text with capturedTexts (), we query specific elements directly by calling
QRegularExpressionMatch: :captured (). The passed integer argument signifies the
element's position inside the list. So, calling captured (1) returns the matched digits as a
QString.

7181

Chapter 4

QRegularExpressionMatch: :captured () alsotakes QString as
the argument's type. This is useful if you have used named groups inside the

N pattern, for example, if you have written (? <number>[1-9] [0-9]1{0,2}),

= then you can get the digits by calling match. captured ("number").

Q Named groups pay off if you have long patterns or when there is a high
probability that further brackets will be added in future. Be aware that adding
a group at a later time will shift the indices of all the following groups by 1 and
you will have to adjust your code!

To be able to calculate using the extracted number, we need to convert QString into

an integer. This is done by calling 9String: : toInt (). The result of this conversion is
then stored in the weight variable. Next, we fetch the unit and transform it to lowercase
characters on-the-fly. This way, we can, for example, easily determine whether the user's

guess is expressed in grams by checking the unit against the lowercase "g". We do not need
to take care of the capital "G" or the variants "KG", "Kg", and the unusual "kG" for kilogram.

To get the standardized weight in milligrams, we multiply weight by 1,000 or 1,000,000,
depending on whether this was expressed in g or kg. Lastly, we return this standardized
weight. If the string wasn't well formed, we return -1 to indicate that the given guess was
invalid. It is then the caller's duty to determinate which player's guess was the best.

Pay attention to whether your chosen integer type can handle the weight's
. value. For our example, 100,000,000 is the biggest possible value that can be
% held by a signed integer on a 32-bit system. If you are not sure whether your
s code will be compiled on a 32-bit system, use gint32, which is guaranteed
to be a 32-bit integer on every system that Qt supports, allowing decimal
notations.

As an exercise, try to extend the example by allowing decimal numbers so that 23.5g is a
valid guess. To achieve this, you have to alter the pattern in order to enter decimal numbers
and you also have to deal with double instead of int for the standardized weight.

17191

Qt Core Essentials

Finding all pattern occurrences

Lastly, let's have a final look at how to find, for example, all numbers inside a string, even
those leading with zeros:

QString input = "123 foo 09 la 3";

QRegularExpression regex ("\\b[0-9]+\\b") ;
QRegularExpressionMatchIterator i = regex.globalMatch (input) ;
while (i.hasNext()) {

QORegularExpressionMatch match = i.next();
gWarning () << match.capturedTexts() ;

}

The input QString instance contains an exemplary text in which we would like to find

all numbers. The "foo" as well as "1a" variables should not be found by the pattern since
these are not valid numbers. Therefore, we set up the pattern defining that we require at
least one digit, [0-9] +, and that this digit—or these digits—should be wrapped by word
boundaries, \b. Note that you have to escape the slash. With this pattern, we initiate the
QRegularExpression object and call globalMatch () onit. Inside the passed argument,
the pattern will be searched. This time, we do not get QRegularExpressionMatch

back but, instead, an iterator of the QRegularExpressionMatchIterator type. Since
QRegularExpressionMatchIterator behaves like a Java iterator, with hasNext (),
we check whether there is a further match and if so we bring up the next match by calling
next (). The type of the returned match is then QRegularExpressionMatch, which you
already know.

M If you need to know about the next match inside the while loop, you can use
Q QRegularExpressionMatchIterator: :peekNext () to receive it.
The upside of this function is that it does not move the iterator.

This way, you can iterate all pattern occurrences in the string. This is helpful if you, for
example, want to highlight a search string in text.

Our example would give the output: ("123"), ("09") and ("3").

Taking into account that this was just a brief introduction to regular expressions,

we would like to encourage you to read the Detailed Description section in the
documentation to QRegularExpression, QRegularExpressionMatch, and
QRegularExpressionMatchIterator. Regular expressions are very powerful and useful,
so, in your daily programming life, you can benefit from the profound knowledge of regular
expressions!

Chapter 4

When implementing games, you will often have to work with persistent data—you will need
to store the saved game data, load maps, and so on. For that, you have to learn about the
mechanisms that let you use the data stored on digital media.

Files and devices

The most basic and low-level mechanism that is used to access data is to save and load it
from the files. While you can use the classic file access approaches provided by C and C++,
such as stdio or iostream, Qt provides its own wrapper over the file abstraction that
hides platform-dependent details and provides a clean API that works across all platforms in
a uniform manner.

The two basic classes that you will work with when using files are QDir and Qrile. The
former represents the contents of a directory, lets you traverse filesystems, creates and
remove directories, and finally, access all files in a particular directory.

Traversing directories

Traversing directories with QDir is really easy. The first thing to do is to have an instance of
oDir in the first place. The easiest way to do this is to pass the directory path to the QDir
constructor.

Qt handles file paths in a platform-independent way. Even though the regular
directory separator on Windows is a backwards slash character (\) and on other
platforms it is the forward slash (/), Qt accepts forward slash as a directory
M separator on Windows platforms as well. Therefore, you can always use / to
Q separate directories when you pass paths to Qt functions.

You can learn the native directory separator for the current platform is by calling
the QDir: : separator () static function. You can transform between native
and non-native separators with the QDir: : toNativeSeparators () and
QDir: :fromNativeSeparators () functions.

Qt provides a number of static methods to access some special directories. The following
table lists these special directories and functions that access them:

Access function Directory

QDir::current () The current working directory

QDir: :home () The home directory of the current user

QDir: :root () The root directory—usually / for Unix and C: \ for Windows
QDir::temp () The system temporary directory

811

Qt Core Essentials

When you already have a valid QDir object, you can start moving between directories.
To do that, you can use the cd () and cdup () methods. The former moves to the named
subdirectory, while the latter moves to the parent directory.

To list files and subdirectories in a particular directory, you can use the entryList ()
method, which returns a list of entries in the directory that match the criteria passed to
entryList (). This method has two overloads. The basic version takes a list of flags that
correspond to the different attributes that an entry needs to have to be included in the result
and a set of flags that determine the order in which entries are included in the set. The other
overload also accepts a list of file name patterns in the form of QstringList as its first
parameter. The most commonly used filter and sort flags are listed as follows:

Filter flags

QDir::Dirs, QDir::Files, List directories, files, drives (or all) that match

QDir::Drives, QDir::AllEntries the filters

QDir::AllDirs List all subdirectories regardless of whether they
match the filter or not

QDir::Readable, QDir::Writable, List entries that can be read, written, or executed

QDir: :Executable

QDir::Hidden, QDir::System List hidden files and system files

Sort flags

QDir: :Unsorted The order of entries is undefined

QDir::Name, QDir::Time, Sort by appropriate entry attributes

QDir::Size, QDir::Type

QDir::DirsFirst, QDir::DirsLast Determines whether directories should be listed
before or after files

Here is an example call that returns all JPEG files in the user's home directory sorted by size:

QDir dir = QDir::home() ;

QStringList nameFilters;

nameFilters << QStringLiteral ("*.jpg") << QStringLiteral ("*.jpeg");

QStringlList entries = dir.entrylList (nameFilters,
QDir::Files|QDir::Readable, QDir::Size);

sl . . .
‘Q The << operator is a nice and fast way to append entries to

QStringList.

1821

Chapter 4

Once you know the path to a file (either by using QDir: :entryList (), from some external
source, or even by hardcoding the file path in code), you can pass it to QFile to receive

an object that acts as a handle to the file. Before the file contents can be accessed, the file
needs to be opened using the open () method. The basic variant of this method takes a
mode in which we need to open the file. The following table explains the modes that are
available:

Mode Description

ReadOnly This file can be read from

WriteOnly This file can be written to

ReadWrite This file can be read from and written to

Append All data writes will be written at the end of the file
Truncate If the file is present, its content is deleted before we open it
Text Native line endings are transformed to \n and back
Unbuffered The flag prevents the file from being buffered by the system

The open () method returns true or false depending on whether the file was opened or
not. The current status of the file can be checked by calling 1sOpen () on the file object.
Once the file is open, it can be read from or written to depending on the options that are
passed when the file is opened. Reading and writing is done using the read () and write ()
methods. These methods have a number of overloads, but | suggest that you focus on using
those variants that accept or return a QByteArray object, which is essentially a series of
bytes—it can hold both textual and nontextual data. If you are working with plain text, then
a useful overload for write is the one that accepts the text directly as input. Just remember
that the text has to be null or terminated. When reading from a file, Qt offers a number

of other methods that might come in handy in some situations. One of these methods is
readLine (), which tries to read from the file until it encounters a new line character. If you
use it together with the atEnd () method that tells you whether you have reached the end
of the file, you can realize the line-by-line reading of a text file:

QStringList lines;

while(!file.atEnd()) {
OByteArray line = file.readLine() ;
lines.append (QString: :fromUtf8 (line)) ;

}

Another useful method is readall (), which simply returns the file content, starting from
the current position of the file pointer until the end of the file.

Qt Core Essentials

You have to remember though that when using these helper methods, you should be really
careful if you don't know how much data the file contains. It might happen that when
reading line by line or trying to read the whole file into memory in one step, you exhaust the
amount of memory that is available for your process (you can check the size of the file by
calling size () onthe QFile instance). Instead, you should process the file's data in steps,
reading only as much as you require at a time. This makes the code more complex but allows
us to better manage the available resources. If you require constant access to some part of
the file, you can use the map () and unmap () calls that add and remove mappings of the
parts of a file to a memory address that you can then use like a regular array of bytes:

QFile f ("myfile");

if (!f.open(QFile: :ReadWrite)) return;
uchar *addr = f.map(0, f.size());

if (!laddr) return;

f.close() ;
doSomeComplexOperationOn (addr) ;
f.unmap (addr) ;

Devices

QFile is really a descendant class of QTODevice, which is a Qt interface that is used to
abstract entities related to reading and writing. There are two types of devices: sequential
and random access devices. QFile belongs to the latter group—it has the concepts of start,
end, size, and current position that can be changed by the user with the seek () method.
Sequential devices, such as sockets and pipes, represent streams of data—there is no way to
rewind the stream or check its size; you can only keep reading the data sequentially—piece
by piece, and you can check how far away you currently are from the end of data.

All'1/0O devices can be opened and closed. They all implement open (), read (), and

write () interfaces. Writing to the device queues the data for writing; when the data is
actually written, the bytesWritten () signal is emitted that carries the amount of data that
was written to the device. If more data becomes available in the sequential device, it emits
the readyRead () signal, which informs you that if you call read now, you can expect to
receive some data from the device.

[8a1

Chapter 4

Time for action - implementing a device to encrypt data

Let's implement a really simple device that encrypts or decrypts the data that is streamed
through it using a very simple algorithm—the Caesar cipher. What it does is that when
encrypting, it shifts each character in the plaintext by a number of characters defined by the
key and does the reverse when decrypting. Thus, if the key is 2 and the plaintext character is
a, the ciphertext becomes c. Decrypting z with the key 4 will yield the value v.

We will start by creating a new empty project and adding a class derived from QIODevice.
The basic interface of the class is going to accept an integer key and set an underlying device
that serves as the source or destination of data. This is all simple coding that you should
already understand, so it shouldn't need any extra explanation, as shown:

class CaesarCipherDevice : public QIODevice

{

Q OBJECT
Q PROPERTY (int key READ key WRITE setKey)
public:
explicit CaesarCipherDevice (QObject *parent = 0)
QIODevice (parent)
m key = 0;
m device = 0;

}

void setBaseDevice (QIODevice *dev) { m_device = dev; }
QIODevice *baseDevice() const { return m device; }
void setKey(int k) { m_key = k; }
inline int key() const { return m key; }

private:
int m_key;
QIODevice *m device;

}i

The next thing is to make sure that the device cannot be used if there is no device to
operate on (that is, whenm_device == 0). For this, we have to reimplement the
QIODevice: :open () method and return false when we want to prevent operating on
our device:

bool open (OpenMode mode)
if (!baseDevice())
return false;
if (baseDevice () ->openMode () != mode)
return false;
return QIODevice: :open (mode) ;

}

1851

Qt Core Essentials

The method accepts the mode that the user wants to open the device with. We perform an
additional check to verify that the base device was opened in the same mode before calling
the base class implementation that will mark the device as open.

To have a fully functional device, we still need to implement the two protected pure virtual
methods, which do the actual reading and writing. These methods are called by Qt from
other methods of the class when needed. Let's start with writeData (), which accepts a
pointer to a buffer containing the data and size of that a buffer:

gint64 CaesarCipherDevice::writeData (const char *data, ginté4 len) {
QOByteArray ba(data, 1len);
for(int i=0;i<len;++1)
ba.data() [i] += m_key;
int written = m device->write (ba);
emit bytesWritten (written) ;
return written;

}

First, we copy the data into a local byte array. Then, we iterate the array, adding to each byte
the value of the key (which effectively performs the encryption). Finally, we try to write the
byte array to the underlying device. Before informing the caller about the amount of data
that was really written, we emit a signal that carries the same information.

The last method that we need to implement is the one that performs decryption by

reading from the base device and adding the key to each cell of the data. This is done by
implementing readData (), which accepts a pointer to the buffer that the method needs to
write to and the size of the buffer. The code is quite similar to that of writeData () except
that we are subtracting the key value instead of adding it:

gint64 CaesarCipherDevice::readData (char *data, ginté64 maxlen) {
QByteArray baseData = m device->read(maxlen) ;
const int s = baseData.size() ;
for(int i=0;i<s;++1)
data[i] = baseDatal[i]-m key;

return s;

}

First, we read from the underlying device as much as we can fit into the buffer and store the
data in a byte array. Then, we iterate the array and set subsequent bytes of data buffer to the
decrypted value. Finally, we return the amount of data that was really read.

Chapter 4

A simple main () function that can test the class looks as follows:

int main(int argc, char **argv) {
QOByteArray ba = "plaintext";
QBuffer buf;
buf .open (QIODevice: :WriteOnly) ;
CaesarCipherDevice encrypt;
encrypt.setKey (3) ;
encrypt.setBaseDevice (&buf) ;
encrypt.open (buf.openMode ()) ;
encrypt.write (ba) ;
gDebug () << buf.data() ;

CaesarCipherDevice decrypt;
decrypt.setKey (3) ;
decrypt.setBaseDevice (&buf) ;
buf .open (QIODevice: :ReadOnly) ;
decrypt.open (buf.openMode ()) ;
gDebug () << decrypt.readAll () ;
return 0O;

}

We use the gBuf fer class that implements the QI0Device API and acts as an adapter for
QOByteArray Or QString.

What just happened?

We created an encryption object and set its key to 3. We also told it to use a QBuffer
instance to store the processed content. After opening it for writing, we sent some data to

it that gets encrypted and written to the base device. Then, we created a similar device,
passing the same buffer again as the base device, but now, we open the device for reading.
This means that the base device contains ciphertext. After this, we read all data from the
device, which results in reading data from the buffer, decrypting it, and returning the data so
that it can be written to the debug console.

1811

Qt Core Essentials

You can combine what you already know by implementing a full-blown GUI application that
is able to encrypt or decrypt files using the Caesar cipher QI0Device class that we just
implemented. Remember that QFile is also QIODevice, so you can pass its pointer directly
to setBaseDevice ().

This is just a starting point for you. The QI0ODevice APl is quite rich and contains numerous
methods that are virtual, so you can reimplement them in subclasses.

Text streams

Much of the data produced by computers nowadays is based on text. You can create such
files using a mechanism that you already know—opening QFile to write, converting all
data into strings using QString: :arg (), optionally encoding strings using QTextCodec,
and dumping the resulting bytes to the file by calling write. However, Qt provides a nice
mechanism that does most of this automatically for you in a way similar to how the standard
C++ iostream classes work. The QTextStream class operates on any QIODevice APlin a
stream-oriented way. You can send tokens to the stream using the << operator, where they
get converted into strings, separated by spaces, encoded using a codec of your choice, and
written to the underlying device. It also works the other way round; using the >> operator,
you can stream data from a text file, transparently converting it from strings to appropriate
variable types. If the conversion fails, you can discover it by inspecting the result of the
status () method—if you get ReadPastEnd or ReadCorruptData, then this means that
the read has failed.

M While QIODevice is the main class that QText St ream operates on, it can
Q also manipulate QString or QByteArray, which makes it useful for us to
compose or parse strings.

Using QTextStream is simple—you just have to pass it the device that you want it to
operate on and you're good to go. The stream accepts strings and numerical values:

QFile file("output.txt");
file.open(QFile: :WriteOnly|QFile: :Text) ;
QTextStream stream(&file) ;

stream << "Today is " << QDate::currentDate() .toString() << endl;
QTime t = QTime::currentTime () ;
stream << "Current time is " << t.hour() << " h and " << t.minute()

<< "m." << endl;

Chapter 4

Apart from directing content into the stream, the stream can accept a number of
manipulators, such as end1, which have a direct or indirect influence on how the stream
behaves. For instance, you can tell the stream to display a number as decimal and another as
hexadecimal with uppercase digits using the following code (highlighted in the code are all
manipulators):

for(int i=0;i<10;++1i)
int num = grand() % 100000; // random number between 0 and 99999
stream << dec << num << showbase << hex << uppercasedigits << num

<< endl;

}

This is not the end of the capabilities of QTextStream. It also allows us to display data in a
tabular manner by defining column widths and alignments. Suppose that you have a set of
records for game players that is defined by the following structure:

struct Player ({
QString name;
gint64 experience;
QPoint position;
char direction;

Vi

QList<Player> players;
Let's dump such info into a file in a tabular manner:

QFile file("players.txt");
file.open(QFile: :WriteOnly|QFile: :Text) ;
QTextStream stream(&file) ;

stream << center;

stream << gSetFieldWidth
stream << gSetFieldWidth

(16) << "Player" << gSetFieldWidth(0) << " ";
(
<< gSetFieldwidth/(
(
(

16
10) << "Experience"
0) << " ";
stream << gSetFieldWidth(13) << "Position"
<< gSetFieldwidth(0) << " ";
stream << "Direction" << endl;
for(int i=0;i<players.size();++i)
const Player &p = players.at(i);
stream << left << gSetFieldWidth(16) << p.name
<< gSetFieldwidth(0) << " ";
stream << right << gSetFieldWidth(10) << p.experience
<< gSetFieldwidth(0) << " ";
stream << right << gSetFieldWidth(6) << p.position.x()
<< gSetFieldwWidth(0) << " " << gSetFieldwidth (6)
<< p.position.y() << gSetFieldWidth(0) << " ";

Qt Core Essentials

stream << center << gSetFieldWidth(10) ;
switch(p.direction) {

case 'n' : stream << "north"; break;
case 's' : stream << "south"; break;
case 'e' : stream << "east"; break;
case 'w' : stream << "west"; break;

default: stream << "unknown"; break;

}

stream << gSetFieldWidth(0) << endl;

}

After running the program, you should get a result similar to the one shown in the following
screenshot:

i players.kxt - KWrite & & %
File Edit View Bookmarks Tools Settings Help

Flayer Experience Position Direction
Gondael 45783 10 -5 north
Olrael 123648 -5 103 east
MNazaal 99372641 48 634 south

One last thing about QTextStream is that it can operate on standard C file structures, which
makes it possible for us to use QTextStream to, for example, write to stdout or read from
stdin, as shown in the following code:

QTextStream gout (stdout) ;
gout << "This text goes to process standard output." << endl;

More than often, we have to store object data in a device-independent way so that it can
be restored later, possibly on a different machine with a different data layout and so on. In
computer science, this is called serialization. Qt provides several serialization mechanisms
and now we will have a brief look at some of them.

Chapter 4

Binary streams

If you look at QTextStream from a distance, you will notice that what it really does is
serialize and deserialize data to a text format. Its close cousin is the QDataStream class that
handles serialization and deserialization of arbitrary data to a binary format. It uses a custom
data format to store and retrieve data from QIODevice in a platform-independent way. It
stores enough data so that a stream written on one platform can be successfully read on a
different platform.

QDataStream is used in a similar fashion as QText St ream—the operators << and >>
are used to redirect data into or out of the stream. The class supports most of the built-in
Qt types so that you can operate on classes such as QColor, QPoint, or QStringList
directly:

QFile file("outfile.dat");

file.open(QFile: :WriteOnly|QFile: :Truncate) ;

QDataStream stream(&file) ;

double dbl = 3.14159265359;

QColor color = Qt::red;

QPoint point (10, -4);

QStringList stringlList = QStringList() << "foo" << "bar";
stream << dbl << color << point << stringList;

If you want to serialize custom data types, you can teach QDataStream to do that by
implementing proper redirection operators.

Time for action - serialization of a custom structure

Let's perform another small exercise by implementing functions that are required to use
QDataStream to serialize the same simple structure that contains the player information
that we used for text streaming:

struct Player ({
QString name;
gint64 experience;
QPoint position;
char direction;

911

Qt Core Essentials

For this, two functions need to be implemented, both returning a QDataStream reference
that was taken earlier as an argument to the call. Apart from the stream itself, the serialization
operator accepts a constant reference to the class that is being saved. The most simple
implementation just streams each member into the stream and returns the stream afterwards:

QDataStream& operator<< (QDataStream &stream, const Player &p) {
stream << p.name;
stream << p.experience;
stream << p.position;
stream << p.direction;

return stream;

}

Complementary to this, deserializing is done by implementing a redirection operator that
accepts a mutable reference to the structure that is filled by data that is read from the stream:

QDataStream& operators>>(QDataStream &stream, Player &p)
stream >> p.name;
stream >> p.experience;
stream >> p.position;
stream >> p.direction;

return stream;

}

Again, at the end, the stream itself is returned.

What just happened?

We provided two standalone functions that define redirection operators for the Player
class to and from a QDataStream instance. This lets your class be serialized and deserialized
using mechanisms offered and used by Qt.

KML streams

XML has become one of the most popular standards that is used to store hierarchical data.
Despite its verbosity and difficulty to read by human eye, it is used in virtually any domain
where data persistency is required, as it is very easy to read by machines. Qt provides
support for reading and writing XML documents in two modules. First, the QtXm1 module
provides access using the Document Object Model (DOM) standard with classes such as
QDomDocument, QDomElement, and others. We will not discuss this approach here, as now
the recommended approach is to use streaming classes from the QtCore module. One of
the downsides of QDomDocument is that it requires us to load the whole XML tree into the
memory before parsing it. In some situations, this is compensated for by the ease of use of
the DOM approach as compared to a streamed approach, so you can consider using it if you
feel you have found the right task for it.

1921

Chapter 4

M If you want to use the DOM access to XML in Qt, remember to enable
Q the QtXm1l module in your applications by addinga QT += xml linein
the project configuration files.

As already said, we will focus on the stream approach implemented by the
OXmlStreamReader and QXmlStreamWriter classes.

Time for action - implementing an XML parser for player data

In this exercise, we are going to create a parser to fill data that represents players and their
inventory in an RPG game:

struct InventoryItem {
enum Type { Weapon, Armor, Gem, Book, Other } type;
QString subType;
int durability;

bi

struct Player ({
QString name;
QString password;
int experience;
int hitPoints;
QList<Item> inventory;
QString location;
QPoint position;

bi

struct PlayerInfo {
QList<Player> players;
bi

Save the following document somewhere. We will use it to test whether the parser can
read it:

<PlayerInfos>
<Player hp="40" exp="23456">
<Name>Gandalf</Name>
<Passwords>mithrandir</Passwords>
<Inventory>
<Invitem type="weapon" durability="3">
<SubType>Long sword</SubType>
</InvIitem>
<Invitem type="armor" durability="10">
<SubType>Chain mail</SubType>

Qt Core Essentials

</InvIitem>
</Inventory>
<Location name="rooml">
<Position x="1" y="0"/>
</Location>
</Player>
</PlayerInfo>

Let's create a class called PlayerInfoReader that will wrap QXxmlStreamReader and
expose a parser interface for the PlayerInfo instances. The class will contain two private
members—the reader itself and a PlayerInfo instance that acts as a container for the data
that is currently being read. We'll provide a result () method that returns this object once
the parsing is complete, as shown in the following code:

class PlayerInfoReader ({
public:

PlayerInfoReader (QIODevice *);

inline const PlayerInfo& result() const { return m pinfo; }
private:

QXmlStreamReader reader;

PlayerInfo m pinfo;

Vi

The class constructor accepts a QI0Device pointer that the reader is going to use to retrieve
data as it needs it. The constructor is trivial, as it simply passes the device to the reader
object:

PlayerInfoReader (QIODevice *device) {
reader.setDevice (device) ;

}

Before we go into parsing, let's prepare some code to help us with the process. First, let's
add an enumeration type to the class that will list all the possible tokens—tag names that we
want to handle in the parser:

enum Token ({

T Invalid = -1,

T PlayerInfo, /* root tag */

T Player, /* in PlayerInfo */
T Name, T Password, T Inventory, T Location, /* in Player */

T Position, /* in Location */

T InvItem /* in Inventory */

[9a1

Chapter 4

To use these tags, we'll add a static method to the class that returns the token type based on
its textual representation:

static Token PlayerInfoReader::tokenByName (const QStringRef &r) {
static QStringList tokenList = QStringList ()
<< "PlayerInfo" << "Player"

<< "Name" << "Password"

<< "Inventory" << "Location"

<< "Pogition" << "InvItem";
int idx = tokenList.indexOf (r.toString()) ;
return (Token)idx;

}

You can notice that we are using a class called QstringRef. It represents a string
reference—a substring in an existing string—and is implemented in a way that avoids
expensive string construction; therefore, it is very fast. We're using this class here because
that's how QxmlStreamReader reports tag names. Inside this static method, we are
converting the string reference to a real string and trying to match it against a list of known
tags. If the matching fails, -1 is returned, which corresponds to our T Invalid token.

Now, let's add an entry point to start the parsing process. Add a public read method that
initializes the data structure and performs initial checks on the input stream:

bool PlayerInfoReader::read()
m pinfo = PlayerInfo();
if (reader.readNextStartElement () &&
tokenByName (reader.name ()) == T PlayerInfo) {
return readPlayerInfo() ;
} else {
return false;
}
}

After clearing the data structure, we call readNextStartElement () on the reader to make
it find the starting tag of the first element, and if it is found, we check whether the root tag
of the document is what we expect it to be. If so, we call the readPlayerInfo () method
and return its result, denoting whether the parsing was successful. Otherwise, we bail out,
reporting an error.

The gXmlStreamReader subclasses usually follow the same pattern. Each parsing method
first checks whether it operates on a tag that it expects to find. Then, it iterates all the
starting elements, handling those it knows and ignoring all others. Such an approach lets us
maintain forward compatibility, since all tags introduced in newer versions of the document
are silently skipped by an older parser.

Qt Core Essentials

Now, let's implement the readPlayerInfo method:

bool readPlayerInfo() {
if (tokenByName (reader.name()) != T PlayerInfo)
return false;
while (reader.readNextStartElement ()) {
if (tokenByName (reader.name()) == T Player) {
Player p = readPlayer();
m pinfo.players.append(p) ;
} else
reader.skipCurrentElement () ;

}

return true;

}

After verifying that we are working on a PlayerInfo tag, we iterate all the starting
subelements of the current tag. For each of them, we check whether it is a P1ayer tag and
call readPlayer () to descend into the level of parsing data for a single player. Otherwise,
we call skipCurrentElement (), which fast-forwards the stream until a matching ending
element is encountered.

The structure of readpPlayer () is similar; however, it is more complicated as we also want
to read data from attributes of the Player tag itself. Let's take a look at the function piece
by piece:

Player readPlayer() {
if (tokenByName (reader.name()) != T Player) return Player();
Player p;
const QXmlStreamAttributes& playerAttrs = reader.attributes() ;
p.-hitPoints = playerAttrs.value("hp") .toString() .toInt () ;
p.experience = playerAttrs.value ("exp") .toString() .toInt() ;

After checking for the right tag, we get the list of attributes associated with the opening
tag and ask for values of the two attributes that we are interested in. After this, we loop all
child tags and fill the P1ayer structure based on the tag names. By converting tag names
to tokens, we can use a switch statement to neatly structure the code in order to extract
information from different tag types, as shown in the following code:

while (reader.readNextStartElement ()) {

Token t = tokenByName (reader.name()) ;
switch (t) {
case Name: p.name = reader.readElementText (); break;

case Password: p.password = reader.readElementText (); break;
case Inventory: p.inventory = readInventory(); break;

Chapter 4

If we are interested in the textual content of the tag, we can use readElementText ()
to extract it. This method reads until it encounters the closing tag and returns the text

contained within it. For the Inventory tag, we call the dedicated readInventory ()

method.

For the Location tag, the code is more complex than before as we again descend into
reading child tags, extracting the required information and skipping all unknown tags:

case T Location: ({
p.location = reader.attributes() .
value ("name") .toString() ;
while (reader.readNextStartElement ()) {
if (tokenByName (reader.name()) == T Position) ({
const QXmlStreamAttributes& attrs
= reader.attributes() ;
p.position.setX (attrs.value ("x")
.toString() .toInt());
p.position.setY (attrs.value("y").
toString () .toInt ());
reader.skipCurrentElement () ;
} else
reader.skipCurrentElement () ;
}
}: break;
default:
reader.skipCurrentElement () ;

}

return p;

}

The last method is similar in structure to the previous one—iterate all the tags, skip
everything that we don't want to handle (everything that is not an inventory item), fill the
inventory item data structure, and append the item to the list of already parsed items, as
shown in the following code:

QList<InventoryItem> readInventory () {
QList<InventoryItem> inventory;
while (reader.readNextStartElement ()) {
if (tokenByName (reader.name()) != T InvItem) {

reader.skipCurrentElement () ;
continue;
InventoryItem item;
const QXmlStreamAttributes& attrs = reader.attributes() ;

1971

Qt Core Essentials

item.

durability = attrs.value("durability").

toString() .toInt () ;
QStringRef typeRef = attrs.value("type");

if (typeRef == "weapon") {
item.type = InventoryItem::Weapon;
} else if (typeRef == "armor") ({
item.type = InventoryItem: :Armor;
} else if (typeRef == "gem") {
item.type = InventoryItem: :Gem;
} else if (typeRef == "book") ({
item.type = InventoryItem: :Book;

} else

item.type = InventoryItem: :0Other;

while (reader.readNextStartElement ()) {

if (reader.name() == "SubType")

item.
else

subType = reader.readElementText () ;

reader.skipCurrentElement () ;

}

inventory << item;

}

return inventory;

}

Inmain () of your project, write some code that will check whether the parser works
correctly. You can use the gbDebug () statements to output the sizes of lists and contents of
variables. Take a look at the following code for an example:

gDebug () <<
gDebug () <<
<<
gDebug () <<
<<

"Count:" << playerInfo.players.count () ;

"Size of inventory:"
playerInfo.players.first () .inventory.size() ;
"Room: " << playerInfo.players.first().location
playerInfo.players.first () .position;

What just happened?

The code you just wrote implements a full top-down parser of the XML data. First, the data
goes through a tokenizer, which returns identifiers that are much easier to handle than
strings. Then, each method can easily check whether the token it receives is an acceptable
input for the current parsing stage. Based on the child token, the next parsing function is
determined and the parser descends to a lower level until there is nowhere to descend

to. Then, the flow

goes back up one level and processes the next child. If at any point an

unknown tag is found, it gets ignored. This approach supports a situation when a new
version of software introduces new tags to the file format specification, but an old version of
software can still read the file by skipping all the tags that it doesn't understand.

Chapter 4

Have a go hero — an KML serializer for player data

Now that you know how to parse XML data, you can create the complementary

part—a module that will serialize P1layerInfo structures into XML documents

using QxmlStreamWriter. Use methods such as writeStartDocument (),
writeStartElement (), writeCharacters (), and writeEndElement () for this
Verify that the documents saved with your code can be parsed with what we implemented
together.

1SON files

JSON stands for JavaScript Object Notation, which is a popular lightweight textual format
that is used to store object-oriented data in a human-readable form. It comes from JavaScript
where it is the native format used to store object information; however, it is commonly used
across many programming languages and a popular format for web data exchange. A simple
JSON-formatted definition looks as follows:

{ "name": "Joe",
"age": 14,
"inventory: [
{ "type": "gold; "amount": "144000" },
{ "type": "short sword"; "material": "iron" }

}

JSON can express two kinds of entities: objects (enclosed in braces) and arrays (enclosed in
square brackets) where an object is defined as a set of key-value pairs, where a value can
be a simple string, an object, or array. In the previous example, we had an object containing
three properties—name, age, and inventory. The first two properties are simple values and
the last property is an array that contains two objects with two properties each.

Qt can create and read JSON descriptions using the QdsonDocument class. A document

can be created from the UTF-8-encoded text using the QdsonDocument : : fromJson ()
static method and can later be stored in a textual form again using toJdson (). Since the
structure of JSON closely resembles that of Qvariant (which can also hold key-value pairs
using QVariantMap and arrays using QVariantList), conversion methods to this class
also exist using a set of fromvariant () and tovariant () calls. Once a JSON document

is created, you can check whether it represents an object or an array using one of the
isArray and isObject calls. Then, the document can be transformed into QJsonArray or
QJsonObject using the toArray and toObject methods.

Qt Core Essentials

QJsonObject is an iterable type that can be queried for a list of keys (using keys ()) or
asked for a value of a specific key (with a value () method). Values are represented using
the Qusonvalue class, which can store simple values, an array, or object. New properties
can be added to the object using the insert () method that takes a key as a string, a value
can be added as QusonVvalue, and the existing properties can be removed using remove ().

QJsonArray is also an iterable type that contains a classic list API—it contains methods
such as append (), insert (), removeAt (), at (), and size () to manipulate entries in
the array, again working on QJsonValue as the item type.

Time for action - the player data ISON serializer

Our next exercise is to create a serializer of the same PlayerInfo structure as we used for
the XML exercise, but this time the destination data format is going to be JSON.

Start by creating a PlayerInfoJSON class and give it an interface similar to the one shown
in the following code:

class PlayerInfoJSON {
public:
PlayerInfoJdSON () {}
QByteArray writePlayerInfo(const PlayerInfo &pinfo) const;

Vi

All that is really required is to implement the writePlayerInfo method. This method will
use QJsonDocument : : fromVariant () to perform the serialization; thus, what we really
have to do is convert our player data to a variant. Let's add a protected method to do that:

QVariant PlayerInfoJSON::toVariant (const PlayerInfo &pinfo) const
QVariantList players;
foreach(const Player &p, pinfo.players) players << toVariant (p) ;
return players;

}

Since the structure is really a list of players, we can iterate the list of players, serialize each
player to a variant, and append the result to QvariantList. Having this function ready,
we can descend a level and implement an overload for tovariant () that takes a Player
object:

QVariant PlayerInfoJSON::toVariant (const Player &player) const {
QVariantMap map;

map ["name"] = player.name;

map ["password"] = player.password;
map ["experience"] = player.experience;
map ["hitpoints"] = player.hitPoints;

[100]

Chapter 4

map ["location"]

player.location;

QVariantMap ({ {"x", player.position.x()},
{"y", player.position.y()} });

map ["inventory"] = toVariant (player.inventory) ;

return map;

map ["position"]

Qt's foreach macro takes two parameters—a declaration of a variable and a
container to iterate. At each iteration, the macro assigns subsequent elements
to the declared variable and executes the statement located directly after the

macro. A C++11 equivalent of foreach is a range that is based for construct:

for (const Player &p: pinfo.players)
players << toVariant (p);

This time, we are using QVariantMap as our base type, since we want to associate values
with keys. For each key, we use the index operator to add entries to the map. The position
key holds a Qpoint value, which is supported natively by Qvariant; however, such a variant
can't be automatically encoded in JSON, so we convert the point to a variant map using the
C++11 initializer list. The situation is different with the inventory—again, we have to write an
overload for tovariant that will perform the conversion:

QVariant PlayerInfoJSON::toVariant (const QList<InventoryItem> &items)
const {

}

QVariantList list;

foreach(const InventoryItem &item, items) list << toVariant (item) ;
return list;

The code is almost identical to the one handling P1layerInfo objects, so let's focus on the
last overload of tovariant —the one that accepts Item instances:

QVariant PlayerInfoJSON::toVariant (const Inventoryltem &item) const

}

QVariantMap map;

map["type"] = (int)item.type;

map ["subtype"] = item.subType;

map ["durability"] = item.durability;
return map;

There is not much to comment here—we add all keys to the map, treating the item type as
an integer for simplicity (this is not the best approach in a general case, as if we serialize our
data and then change the order of values in the original enumeration, we will not get the
proper item types after deserialization).

1011

Qt Core Essentials

What remains is to use the code we have just written in the writePlayerInfo method:

QOByteArray PlayerInfoJSON::writePlayerInfo (const PlayerInfo &pinfo)
const {

QJsonDocument doc = QJsonDocument::fromVariant (toVariant (pinfo)) ;
return doc.todson() ;

Time for action - implementing a JSON parser

Let's extend the PlayerInfoJSON class and equip it with a reverse conversion:

PlayerInfo PlayerInfodSON::readPlayerInfo (const QByteArray &ba) const

{

QJsonDocument doc = QJsonDocument::fromJson (ba) ;
if (doc.isEmpty () || !doc.isArray()) return PlayerInfo();
return readPlayerInfo(doc.array()) ;

}

First, we read the document and check whether it is valid and holds the expected array.
Upon failure, an empty structure is returned; otherwise, readPlayerInfois called and is
given QdsonArray to work with:

PlayerInfo PlayerInfodSON::readPlayerInfo (const QJsonArray &array)
const {

PlayerInfo pinfo;
foreach (QJdsonvalue value, array)

pinfo.players << readPlayer (value.toObject()) ;
return pinfo;

}

Since the array is iterable, we can again use foreach to iterate it and use another method—
readPlayer—to extract all the needed data:

Player PlayerInfoJSON::readPlayer (const QJsonObject &object) const {
Player player;
player.name = object.value("name") .toString() ;
player.password = object.value ("password") .toString() ;
player.experience = object.value ("experience") .toDouble() ;
player.hitPoints = object.value("hitpoints") .toDouble () ;
player.location = object.value("location") .toString() ;

11021

Chapter 4

QVariantMap positionMap = object.value("position")
.tovVariant () .toMap () ;
player.position = QPoint (positionMap["x"].toInt (),
positionMap ["y"].toInt());

player.inventory = readInventory (
object.value ("inventory") .toArray()) ;

return player;

}

In this function, we used QJsonObject: :value () to extract data from the object and
then we used different functions to convert the data to the desired type. Note that in order
to convert to QPoint, we first converted it to QvariantMap and then extracted the values
before using them to build QPoint. In each case, if the conversion fails, we get a default
value for that type (for example, an empty string). To read the inventory, we employ a
custom method:

QList<InventoryItem> PlayerInfoJSON: :readInventory (const QJsonArray
&array) const {
QList<InventoryItems> inventory;

foreach(QJdsonvalue value, array)
inventory << readItem(value.toObject()) ;

return inventory;

}
What remains is to implement readItem():

InventoryItem PlayerInfoJSON::readItem(const QJsonObject &object)
const {
Item item;
item.type = (InventoryItem::Type)object.value("type") .toDouble() ;
item.subType = object.value ("subtype") .toString() ;
item.durability = object.value ("durability") .toDouble () ;
return item;

What just happened?

The class that was implemented can be used for bidirectional conversion between Item
instances and a QByteArray object, which contains the object data in the JSON format. We
didn't do any error checking here; instead, we relied on automatic type conversion handling
in QJsonObject and QVariant.

[1031

Qt Core Essentials

QSettings

While not strictly a serialization issue, the aspect of storing application settings is closely
related to the described subject. A Qt solution for this is the QSet tings class. By default,
it uses different backends on different platforms, such as system registry on Windows or INI
files on Linux. The basic use of QSettings is very easy—you just need to create the object
and use setValue () and value () to store and load data from it:

QSettings settings;

settings.setValue ("windowWidth", 80) ;
settings.setValue ("windowTitle", "MySuperbGame") ;
/]

int windowHeight = settings.value ("windowHeight") .toInt () ;

The only thing you need to remember is that it operates on Qvariant, so the return value
needs to be converted to the proper type if needed as shown in the last line of the preceding
code. A call to value () can take an additional argument that contains the value to be
returned if the requested key is not present in the map. This allows you to handle default
values, for example, in a situation when the application is first started and the settings are
not saved yet:

int windowHeight = settings.value ("windowHeight", 800) ;

The simplest scenario assumes that settings are "flat" in the way that all keys are defined
on the same level. However, this does not have to be the case—correlated settings can
be put into named groups. To operate on a group, you can use the beginGroup () and
endGroup () calls:

settings.beginGroup ("Server") ;

QString srvIP = settings.value("host") .toString() ;
int port = settings.value("port").toInt();
settings.endGroup () ;

When using this syntax, you have to remember to end the group after you are done with it.
An alternative to using the two mentioned methods is to pass the group name directly to
invocation of value ():

QString srvIP = settings.value ("Server/host").toString() ;
int port = settings.value("Server/port") .toInt();

As was mentioned earlier, QSettings can use different backends on different platforms;
however, we can have some influence on which is chosen and which options are passed to
it by passing appropriate options to the constructor of the settings object. By default,
the place where the settings for an application are stored is determined by two values—the
organization and the application name. Both are textual values and both can be passed

as arguments to the QSettings constructor or defined a priori using appropriate static
methods in QCoreApplication:

(1041

Chapter 4

QCoreApplication: :setOrganizationName ("Packt") ;
QCoreApplication: :setApplicationName ("Game Programming using QOt") ;
QSettings settings;

This code is equivalent to:

QSettings settings ("Packt", "Game Programming using Qt");

All of the preceding code use the default backend for the system. However, it is often
desirable to use a different backend. This can be done using the Format argument, where
we can pass one of the two options—NativeFormat or IniFormat. The former chooses
the default backend, while the latter forces the INI-file backend. When choosing the
backend, you can also decide whether settings should be saved in a system-wide location
or in the user's settings storage by passing one more argument—the scope of which can be
either UserScope or SystemScope. This can extend our final construction call to:

QSettings settings (QSettings::IniFormat, QSettings::UserScope,
"Packt", "Game Programming using Qt");

There is one more option available for total control of where the settings data resides—tell
the constructor directly where the data should be located:

QSettings settings(
QStandardPaths: :writableLocation (
QStandardPaths: :ConfigLocation
) +"/myapp.conf", QSettings::IniFormat
)i

sl . .
‘Q The QStandardPaths class provides methods to determine standard

locations for files depending on the task at hand.

QSettings also allows you to register your own formats so that you can control the way
your settings are stored—for example, by storing them using XML or by adding on-the-fly
encryption. This is done using QSettings: :registerFormat (), where you need to pass
the file extension and two pointers to functions that perform reading and writing of the
settings, respectively, as follows:

bool readCCFile (QIODevice &device, QSettings::SettingsMap &map) {
CeasarCipherDevice ccDevice;
ccDevice.setBaseDevice (&device) ;
//

return true;

}

bool writeCCFile (QIODevice &device, const QSettings::SettingsMap &map)
const QSettings::Format CCFormat = QSettings::registerFormat
("ccph", readCCFile, writeCCFile) ;

[1051

Qt Core Essentials

Pop quiz - Ot core essentials

Ql. What is the closest equivalent std: : stringin Qt?

1. QString
2. QByteArray
3. QStringLiteral

Q2. Which regular expression can be used to validate an IPv4 address, which is an address
composed of four dot-separated decimal numbers with values ranging from 0 to 255?

Q3. Which do you think is the best serialization mechanism to use if you expect the data
structure to evolve (gain new information) in future versions of the software?

1. JSON
2. XML
3. QDataStream

sSummary

In this chapter, you learned a number of core Qt technologies ranging from text
manipulation, to accessing devices that can be used to transfer or store data using a number
of popular technologies such as XML or JSON. You should be aware that we have barely
scratched the surface of what Qt offers and there are many other interesting classes you
should familiarize yourself with but this minimum amount of information should give you a
head start and show you the direction to follow with your future research.

In the next chapter, we will switch from describing data manipulation, which can be
visualized using text or only in your imagination, to a more appealing media. We will start
talking about graphics and how to transfer what you can see in your imagination to the
screen of your computer.

[1061]

When it comes to graphics, we have so far been using only ready-made widgets for the user
interface, which resulted in the crude approach of using buttons for a tic-tac-toe game.

In this chapter, you will learn about much of what Qt has to offer with regard to custom
graphics. This will let you not only create your own widgets, incorporating content that is
entirely customized, but also integrate multimedia in your programs. You will also learn
about employing your OpenGL skills to display fast 3D graphics. If you are not familiar with
OpenGL, this chapter should give you a kick-start for further research in this topic. By the end
of the chapter, you will be able to create 2D and 3D graphics for your games using classes
offered by Qt and integrate them with the rest of the user interface.

When it comes to graphics, Qt splits this domain into two separate parts. One of them

is raster graphics (used by widgets, for example). This part focuses on using high-level
operations (such as drawing lines or filling rectangles) to manipulate colors of a grid of points
that can be visualized on different devices, such as images or the display of your computer
device. The other is vector graphics, which involves manipulating vertices, triangles, and
textures. This is tailored for maximum speed of processing and display using hardware
acceleration provided by modern graphics cards. Qt abstracts graphics by using the concept
of a surface that it draws on. The surface (represented by the QSurface class) can be of one
of two types—RasterSurface or OpenGLSurface. The surface can be further customized
using the QSurfaceFormat class, but we will talk about that later as it is not important right
now.

When we talk about GUI frameworks, raster painting is usually associated with drawing on
widgets. However, since Qt is something more than a GUI toolkit, the scope of raster painting
that it offers is much broader.

11071

Graphics with Qt

In general, Qt's drawing architecture consists of three parts. The most important part

is the device the drawing takes place on, represented by the QpaintDevice class. Qt
provides a number of paint device subclasses such as QWidget or QImage and QPrinter
or QpdfWriter. You can see that the approach for drawing on a widget and printing

on a printer will be quite the same. The difference is in the second component of the
architecture—the paint engine (QPaintEngine). The engine is responsible for performing
the actual paint operations on a particular paint device. Different paint engines are used to
draw on images and to print on printers. This is completely hidden from you as a developer,
so you really don't need to worry about it.

For you, the most important piece is the third component—QpPainter—which is an

adapter for the whole painting framework. It contains a set of high-level operations that

can be invoked on the paint device. Behind the scenes, the whole work is delegated to an
appropriate paint engine. While talking about painting, we will be focusing solely on the
painter object as any painting code can be invoked on any of the target devices only by using
a painter initialized on a different paint device. This effectively makes painting in Qt device
agnostic, like in the following example:

void doSomePainting(QPainter *painter)
painter->drawLine (QPoint (0,0), QPoint (100, 40));

}

The same code can be executed on a painter working on any possible QpaintDevice class,
be it a widget, an image, or an OpenGL context (through the use of QOpenGLPaintDevice).

The QPainter class has a rich API that can basically be divided into three groups of
methods. The first group contains setters and getters for attributes of the painter. The
second group consists of methods, with names starting with draw and £111 that perform
drawing operations on the device. The last group has other methods, mostly ones that allow
manipulating the coordinate system of the painter.

Let's start with the attributes. The three most important ones are the font, pen, and brush.
The first is an instance of the QFont class. It contains a large number of methods for
controlling such font parameters as font family, style (italic or oblique), font weight, and font
size (either in points or device-dependent pixels). All the parameters are self-explanatory,

so we will not discuss them here in detail. It is important to note that QFont can use any
font installed on the system. In case more control over fonts is required or a font that is not
installed in the system needs to be used, one can take advantage of the QFontDatabase
class. It provides information about available fonts (such as whether a particular font is
scalable or bitmap or what writing systems it supports) and allows adding new fonts into the
registry by loading their definitions directly from files.

[108]

Chapter 5

An important class, when it comes to fonts, is the QFontMetrics class. It allows calculating
how much space is needed to paint particular text using a font or calculates text eliding. The
most common use case is to check how much space to allocate for a particular user-visible
string, for example:

QFontMetrics fm = painter.fontMetrics();
QRect rect = fm.boundingRect ("Game Programming using Qt") ;

This is especially useful when trying to determine sizeHint for a widget.

The pen and brush are two attributes that define how different drawing operations are
performed. The pen defines the outline, and the brush fills the shapes drawn using the
painter. The former is represented by the QPen class and the latter by 0Brush. Each of them
is really a set of parameters. The most simple one is the color defined either as a predefined
global color enumeration value (such as Qt : : red or Qt : : transparent) or an instance of
the QColor class. The effective color is made up of four attributes—three color components
(red, green, and blue) and an optional alpha channel value that determines transparency of
the color (the larger the value, the more opaque the color). By default, all components are
expressed as 8-bit values (0 to 255) but can also be expressed as real values representing

a percentage of the maximum saturation of the component; for example, 0.6 corresponds
to 153 (0.6*255). For convenience, one of the QColor constructors accepts hexadecimal
color codes used in HTML (with #0000FF being an opaque blue color) or even bare color
names (for example, blue) from a predefined list of colors returned by a static function
QColor: :colorNames (). Once a color object is defined using RGB components, it can be
queried using different color spaces (for example, CMYK or HSV). Also, a set of static methods
are available that act as constructors for colors expressed in different color spaces. For
example, to construct a clear magenta color, any of the following expressions can be used:

QColor ("magenta")

QColor ("#FFOOFF")

QColor (255, 0, 255)

QColor: :fromRgbF (1, 0, 1)
QColor: :fromHsv (300, 255, 255)
QColor: : fromCmyk (0, 255, 0, O0)

* & & 6 0 o o

Qt: :magenta

(1091

Graphics with Qt

Apart from the color, 9Brush has two additional ways of expressing the fill of a shape.

You can use QBrush: : setTexture () to set a pixmap that will be used as a stamp or
QBrush: :setGradient () to make the brush use a gradient to do the filling. For example,
to use a gradient that goes diagonally and starts yellow in the top-left corner of the shape,
becomes red in the middle of the shape, and ends magenta at the bottom-right corner of the
shape, the following code can be used:

QLinearGradient gradient (0, 0, width, height);
gradient.setColorAt (0, Qt::yellow) ;
gradient.setColorAt (0.5, Qt::red);
gradient.setColorAt (1.0, Qt::magenta);

OBrush brush = gradient;

When used with drawing a rectangle, this code will give the following output:

Qt can handle linear (QLinearGradient), radial (QRadialGradient), and conical
(oConicalGradient) gradients. It comes with a sample (shown in the following
screenshot) where you can see different gradients in action. This sample is located in
examples/widgets/painting/gradients.

(1101

Chapter 5

K) Gradients 2R

@ Linear Gradien
@ Radial Gradien
@ cConical Gradie

Spread Method
© Pad Spread
@ Repeat Spreac
@ Reflect Spread

Use OpenGL

\

As for the pen, its main attribute is its width (expressed in pixels), which determines the
thickness of the shape outline. A special width setting is 0, which constitutes a so-called
cosmetic pen that is always drawn as a 1 pixel-wide line no matter what transformations
are applied to the painter (we'll cover this later). A pen can of course have a color set but, in
addition to that, you can use any brush as a pen. The result of such an operation is that you
can draw thick outlines of shapes using gradients or textures.

There are three more important properties for a pen. The first of them is the pen style, set
using QPen: :setStyle (). It determines whether lines drawn by the pen are continuous or
somehow divided (dashes, dots, and so on). You can see available line styles together with
their corresponding constants in the following diagram:

e,

Qt:NoPen Qt::SolidLine Qt:DashLine Qt::Dotline Qt::DashDotLine Qt:DashDotDotLine

[l

Graphics with Qt

The second attribute is the cap style, which can be flat, square, or round. The

third attribute—the join style—is important for polyline outlines and dictates how

different segments of the polyline are connected. You can make the joins sharp (with

Qt: :MiterJoin), round (Qt : : RoundJoin), or a hybrid of the two (Qt : : BevelJoin). You
can see the different pen attribute configurations (including different join and cap styles) in
action by launching the pathstroke example shown in the following screenshot:

A Path Rroking S

@ Flat
& Square

“ @ round
= L) — S
e ||[gom
/ @ Round
' -f:éfdfx‘;iéi'l;':—

& .
f— = == - & — SRR

& Curves
& Lines

Uge OpenGl

Whats Thi?

The next important aspect of the painter is its coordinate system. The painter in fact has two
coordinate systems. One is its own logical coordinate system that operates on real numbers,
and the other is the physical coordinate system of the device the painter operates on. Each
operation on the logical coordinate system is mapped to physical coordinates in the device
and applied there. Let's start with explaining the logical coordinate system first, and then
we'll see how this relates to physical coordinates.

The painter represents an infinite Cartesian canvas with the horizontal axis pointing right and
the vertical axis pointing down by default. The system can be modified by applying affine
transformations to it—translating, rotating, scaling, and shearing. This way, you can draw

an analog clock face that marks each hour with a line by executing a loop that rotates the
coordinate system by 30 degrees for each hour and draws a line that is vertical in the newly
obtained coordinate system. Another example is when you wish to draw a simple plot with x
axis going right and y axis going up. To obtain the proper coordinate system, you would scale
the coordinate system by -1 in the vertical direction, effectively reversing the direction of
the vertical axis.

[n2]

Chapter 5

What we described here modifies the world transformation matrix for the painter
represented by an instance of the QTransform class. You can always query the current
state of the matrix by calling transform () on the painter and you can set a new matrix
by calling setTransform (). QTransform has methods such as scale (), rotate (),
and translate () that modify the matrix, but QPainter has equivalent methods for
manipulating the world matrix directly. In most cases, using these would be preferable.

Each painting operation is expressed in logical coordinates, goes through the world
transformation matrix, and reaches the second stage of coordinate manipulation, which is
the view matrix. The painter has the concept of viewport () and window () rectangles.
The viewport rectangle represents the physical coordinates of an arbitrary rectangle while
the window rectangle expresses the same rectangle but in logical coordinates. Mapping
one to another gives a transformation that needs to be applied to each drawn primitive to
calculate the area of the physical device that is to be painted. By default, the two rectangles
are identical to the rectangle of the underlying device (thus no window-viewport mapping
is done). Such transformation is useful if you wish to perform painting operations using
measurement units other than the pixels of the target device. For example, if you want to
express coordinates using percentages of the width and height of the target device, you
would set the window width and height both to 100. Then, to draw a line starting at 20% of
the width and 10% of the height and ending at 70% of the width and 30% of the height, you
would tell the painter to draw the line between (20, 10) and (70, 30). If you wanted those
percentages to apply not to the whole area of an image but rather to its left half, you set the
viewport rectangle only to the left half of the image.

\ Setting the window and viewport rectangles only defines coordinate
~ mapping; it does not prevent drawing operations from painting outside
Q the viewport rectangle. If you want such behavior, you have to set a
clipping rectangle on the painter.

Once you have the painter properly set, you can start issuing painting operations. Qpainter
has a rich set of operations for drawing different kinds of primitives. All of these operations
have the prefix draw in their names, followed by the name of the primitive that is to be
drawn. Thus, such operations as drawLine, drawRoundedRect, and drawText are
available with a number of overloads that usually allow us to express coordinates using
different data types. These may be pure values (either integer or real), Qt's classes, such

as QPoint and QRect, or their floating point equivalents—QPointF and QrRectF. Each
operation is performed using current painter settings (font, pen, and brush).

131

Graphics with Qt

U . .
‘Q Creator. From the drop-down list on top of the window, choose Index and then

To see the list of all drawing operations available, switch to the Help pane in Qt

type in gpainter. After confirming the search, you should see the reference
manual for the QPainter class with all the drawing operations listed.

Before you start drawing, you have to tell the painter what device you wish to draw on.

This is done using the begin () and end () methods. The former accepts a pointer to a
QPaintDevice instance and initializes the drawing infrastructure, and the latter marks

the drawing as complete. Usually, we don't have to use these methods directly as the
constructor of QPainter calls begin () for us and the destructor invokes end () . Thus, the
typical workflow is to instantiate a painter object, passing it the device, then do the drawing
by calling set and draw methods, and finally let the painter be destroyed by going out of
scope, as follows:

{

}

QPainter painter(this); // paint on the current object
QPen pen = Qt::red;

pen.setWidth(2) ;

painter.setPen (pen) ;

painter.setBrush (Qt::yellow) ;

painter.drawRect (0, 0, 100, 50);

We will cover more methods from the draw family in the following sections of this chapter.

It is time to actually get something onto the screen by painting on a widget. A widget is
repainted as a result of receiving an event called QEvent : : Paint, which is handled by
reimplementing the virtual method paintEvent (). This method accepts a pointer to the
event object of type QpaintEvent that contains various bits of information about the
repaint request. Remember that you can only paint on the widget from within that widget's
paintEvent () call.

[1al

Chapter 5

Time for action — custom-painted widgets

Let's immediately use our new skills in practice!

Start by creating a new Qt Widgets Application in Qt Creator, choosing QWidget as the base
class, and making sure the Generate Form box is unchecked.

Switch to the header file for the newly created class, add a protected section to the class
and type void paintEvent for the section. Then press Ctrl + spacebar on your keyboard
and Creator will suggest the parameters for the method. You should end up with the
following code:

protected:
void paintEvent (QPaintEvent ¥*);

Creator will leave the cursor positioned right before the semicolon. Pressing Alt + Enter will
open the refactoring menu, letting you add the definition in the implementation file. The
standard code for a paint event is one that instantiates a painter on the widget, as shown:

void Widget::paintEvent (QPaintEvent *)

{

QPainter painter (this) ;

}

If you run this code, the widget will remain blank. Now we can start adding the actual
painting code there:

void Widget::paintEvent (QPaintEvent *)
{
QPainter painter (this) ;
QPen pen(Qt::black);
pen.setWidth (4) ;
painter.setPen (pen) ;
QRect r = rect() .adjusted (10, 10, -10, -10);
painter.drawRoundedRect (r, 20, 10);

}

Build and run the code, and you'll obtain the following output:

(1151

Graphics with Qt

What just happened?

First we set a 2 pixel-wide black pen for the painter. Then we called rect () to retrieve the
geometry rectangle of the widget. By calling adjusted (), we received a new rectangle
with its coordinates (in left, top, right, and bottom order) modified by the given arguments,
effectively giving us a rectangle with a 10 pixel margin on each side.

Qt usually offers two methods that allow us to work with modified data.
W\ Calling adjusted () returns a new object with its attributes modified,
~ while if we had called adjust (), the modification would have been done
Q in place. Pay special attention to which method you use to avoid unexpected
results. It's best to always check the return value for a method—whether it
returns a copy or void.

Finally we call drawRoundedRect (), which paints a rectangle with its corners rounded

by the number of pixels (in x, y order) given as the second and third argument. If you look
closely, you will notice that the rectangle has nasty jagged rounded parts. This is caused by
the effect of aliasing, where a logical line is approximated using the limited resolution of the
screen; due to this, a pixel is either fully drawn or not drawn at all. Qt offers a mechanism
called antialiasing to counter this effect by using intermediate pixel colors where appropriate.
You can enable this mechanism by setting a proper render hint on the painter before you
draw the rounded rectangle, as shown:

void Widget::paintEvent (QPaintEvent *)

QPainter painter (this);
painter.setRenderHint (QPainter::Antialiasing, true);

/]
}

Now you'll get the following output:

Of course, this has a negative impact on performance, so use antialiasing only where the
aliasing effect is noticeable.

(1161

Chapter 5

Time for action - transforming the viewport

Let's extend our code so that all future operations focus only on drawing within the border
boundaries after the border is drawn. Use the window and viewport transformation as
follows:

void Widget::paintEvent (QPaintEvent *)
QPainter painter(this);
painter.setRenderHint (QPainter: :Antialiasing, true);
QPen pen(Qt::black) ;
pen.setWidth (4) ;
painter.setPen (pen) ;
QRect r = rect().adjusted(10, 10, -10, -10);
painter.drawRoundedRect (r, 20, 10);
painter.save() ;
r.adjust (2, 2, -2, -2);
painter.setViewport (r) ;
r.moveTo (0, -r.height()/2);
painter.setWindow(r) ;
drawChart (&painter, r);
painter.restore();

}
Also create a protected method called drawChart () :

void Widget::drawChart (QPainter *painter, const QRect &rect) {
painter->setPen (Qt: :red) ;
painter->drawLine (0, 0, rect.width(), 0);

}

Let's take a look at our output:

1111

Graphics with Qt

What just happened?

The first thing we did in the newly added code is call painter.save (). This call stores all
parameters of the painter in an internal stack. We can then modify the painter state (by
changing its attributes, applying transformations, and so on) and then, if at any point we
want to go back to the saved state, it is enough to call painter.restore () to undo all the
modifications in one go.

u The save () and restore () methods can be called as many times as
~ needed. Just remember to always pair a call to save () with a similar call
Q to restore (), or the internal painter state will get corrupted. Each call to
restore () will revert the painter to the last saved state.

After the state is saved, we modify the rectangle again by adjusting for the width of the
border. Then, we set the new rectangle as the viewport, informing the painter about the
physical range of coordinates to operate on. Then we move the rectangle by half its height
and set that as the painter window. This effectively puts the origin of the painter at half the
height of the widget. Then, the drawChart () method is called whereby a red line is drawn
on the x axis of the new coordinate system.

Time for action - drawing an oscillogram

Let's further extend our widget to become a simple oscillogram renderer. For that we have to
make the widget remember a set of values and draw them as a series of lines.

Let's start by adding a QL.ist<quint16> member variable that holds a list of unsigned 16-
bit integer values. We will also add slots for adding values to the list and for clearing the list,
as shown:

class Widget : public QWidget
{
!/
public slots:
void addPoint (unsigned yVal) { m points << gMax(Ou, yVal); update(); }
void clear() { m points.clear(); update(); }
protected:
//

QList<quintl6é> m points;

}i

Note that each modification of the list invokes a method called update (). This schedules a
paint event so that our widget can be redrawn with the new values.

(1181

Chapter 5

Drawing code is also easy; we just iterate over the list and draw symmetric blue lines based
on the values from the list. Since the lines are vertical, they don't suffer from aliasing and so
we can disable this render hint, as shown:

void Widget::drawChart (QPainter *painter, const QRect &rect) {

painter-s>setPen (Qt: :red) ;

painter->drawLine (0, 0, rect.width(), 0);

painter->save() ;
painter->setRenderHint (QPainter::Antialiasing, false);

painter->setPen(Qt::blue);

for(int i=0;i < m points.size(); ++i) {

painter->drawLine(i, -m points.at(i), i, m points.at(i));

}

painter->restore() ;

}

To see the result add a loop to main as follows. This fills the widget with data:

for(int i=0;1<450;++1) w.addPoint (grand() % 120);

This loop takes a random number between 0 and 119 and adds it as a point to the widget. A
sample result from running such code can be seen in the following screenshot:

If you scale down the window, you will notice that the oscillogram extends
past the boundaries of the rounded rectangle. Remember about clipping?
You can use it now to constrain drawing by adding a simple painter.
setClipRect (r) call just before you call drawChart ().

(19l

Graphics with Qt

So far, the custom widget was not interactive at all. Although the widget content could be
manipulated from within the source code (say by adding new points to the plot), the widget
was deaf to any user actions (apart from resizing the widget, which caused a repaint). In Qt,
any interaction between the user and the widget is done by delivering events to the widget.
Such a family of events is generally called input events and contains events such as keyboard
events and different forms of pointing-device events—mouse, tablet, and touch events.

In a typical mouse event flow, a widget first receives a mouse press event, then a number

of mouse move events (when the user moves the mouse around while the mouse button is
kept pressed), and finally, a mouse release event. The widget can also receive an additional
mouse double-click event in addition to these events. It is important to remember that, by
default, mouse move events are only delivered if a mouse button is pressed when the mouse
is moved. To receive mouse move events when no button is pressed, a widget needs to
activate a feature called mouse tracking.

Time for action - making oscillograms selectable

It's time to make our oscillogram widget interactive. We will teach it to add a couple of lines
of code to it that let the user select part of the plot. Let's start with storage for the selection.
We'll need two integer variables that can be accessed via read-only properties; therefore,
add the following two properties to the class (you can initialize them both to -1) and
implement their getters:

Q PROPERTY (int selectionStart READ selectionStart
NOTIFY selectionChanged)

Q PROPERTY (int selectionEnd READ selectionEnd
NOTIFY selectionChanged)

The user can change the selection by dragging the mouse cursor over the plot. When the
user presses the mouse button over some place in the plot, we'll mark that place as the start
of the selection. Dragging the mouse will determine the end of the selection. The scheme
for naming events is similar to the paint event; therefore, we need to declare and implement
the following two protected methods:

void Widget: :mousePressEvent (QMouseEvent *mouseEvent) {

m_selectionStart = m selectionEnd = mouseEvent-s>pos().x() - 12;
emit selectionChanged() ;
update () ;

}

void Widget: :mouseMoveEvent (QMouseEvent *mouseEvent) {

m_selectionEnd = mouseEvent-spos().x() - 12;
emit selectionChanged() ;
update () ;

}

1201

Chapter 5

The structure of both event handlers is similar. We update the needed values, taking into
consideration the left padding (12 pixels) of the plot, similar to what we do while drawing.
Then, a signal is emitted and update () is called to schedule a repaint of the widget.

What remains is to introduce changes to the drawing code. | suggest you add a
drawSelection () method similar to drawChart () but that is called from the paint event
handler immediately before drawChart (), as shown:

void Widget::drawSelection (QPainter *painter, const QRect &rect) {
if (m_selectionStart < 0) return;
painter-s>save () ;
painter->setPen (Qt: :NoPen) ;
painter->setBrush(palette () .highlight()) ;
QRect selectionRect = rect;
selectionRect.setLeft (m_selectionStart) ;
selectionRect.setRight (m_selectionEnd) ;
painter->drawRect (selectionRect) ;
painter-s>restore() ;

}

First we check if there is any selection to be drawn at all. Then, we save the painter state

and adjust the pen and brush of the painter. The pen is set to Qt : : NoPen, which means

the painter should not draw any outline. To determine the brush, we use palette (); this
returns an object of type QPalette holding basic colors for a widget. One of the colors

held in the object is the color of the highlight often used for marking selections. If you use

an entry from the palette instead of manually specifying a color, you gain an advantage that
when the user of the class modifies the palette, this modification is taken into account by our
widget code.

M You can use other colors from the palette in the widget for other things we
Q draw in the widget. You can even define your own QPalette object in the
constructor of the widget to provide default colors for it.

Finally, we adjust the rectangle to be drawn and issue the drawing call.

When you run this program, you will notice that the selection color doesn't contrast very
well with the plot itself. To overcome this, a common approach is to draw the "selected"
content with a different (often inverted) color. This can easily be applied in this situation by
modifying the drawChart () code slightly:

for(int i=0; i < m points.size(); ++1) {
if (m_selectionStart <= i && m selectionEnd >=i) {
painter->setPen (Qt::white) ;

[1211

Graphics with Qt

} else
painter->setPen(Qt::blue);

painter->drawLine (i, -m points.at (i), i, m points.at(i));

}

Now you see the following output:

m
il

Have a go hero - reacting only to the left mouse button

As an exercise, you can modify the event handling code so that it only changes the selection
if the mouse event was triggered by the left mouse button. To see which button triggered
the mouse press event, you can use the QMouseEvent : :button () method, which returns
Qt: :LeftButton for the left button, ot : :RightButton for the right, and so on.

Handling touch events is different. For any such event, you receive a call to the
touchEvent () virtual method. The parameter of such a call is an object that can retrieve
a list of points currently touched by the user with additional information regarding the
history of user interaction (whether the touch was just initiated or the point was pressed
earlier and moved) and what force is applied to the point by the user. Note that this is a
low-level framework that allows you to precisely follow the history of touch interaction. If
you are more interested in higher-level gesture recognition (pan, pinch, and swipe), there
is a separate family of events available for it.

Handling gestures is a two-step procedure. First you need to activate gesture recognition
on your widget by calling grabGesture () and passing in the type of gesture you want to
handle. A good place for such code is the widget constructor.

11221

Chapter 5

Then your widget will start receiving gesture events. There are no dedicated handlers for
gesture events but, fortunately, all events for an object flow through its event () method,
which we can reimplement. Here is some example code that handles pan gestures:

bool Widget::event (QEvent *e)

if (e->type() == QEvent::Gesture) ({
QGestureEvent *gestureEvent = static cast<QGestureEvent*s (e) ;
QGesture *pan = gestureEvent-s>gesture (Qt::PanGesture) ;
if (pan)

handlePanGesture (static_ cast<QPanGesture*>(pan)) ;

}
}

return QWidget: :event (e) ;

}

First, a check for the event type is made; if it matches the expected value, the event object
is cast to QGestureEvent. Then, the event is asked if Qt : : PanGesture was recognized.
Finally, a handlePanGesture method is called. You can implement such a method to
handle your pan gestures.

Qt has two classes for handling images. The first one is QImage, more tailored towards
direct pixel manipulation. You can check the size of the image or check and modify the color
of each pixel. You can convert the image into a different internal representation (say from
8-bit color map to full 32-bit color with a premultiplied alpha channel). This type, however, is
not that fit for rendering. For that, we have a different class called QPixmap. The difference
between the two classes is that QImage is always kept in the application memory, while
QPixmap can only be a handle to a resource that may reside in the graphics card memory or
on a remote X server. Its main advantage over QImage is that it can be rendered very quickly
at the cost of the inability to access pixel data. You can freely convert between the two types
but bear in mind that, on some platforms, this might be an expensive operation. Always
consider which class serves your particular situation better. If you intend to crop the image,
tint it with some color, or paint over it, QImage is a better choice. But if you just want to
render a bunch of icons, it's best to keep them as QPixmap instances.

11231

Graphics with Qt

Loading

Loading images is very easy. Both QPixmap and QImage have constructors that simply
accept a path to a file containing the image. Qt accesses image data through plugins that
implement reading and writing operations for different image formats. Without going into
the details of plugins, it is enough to say that the default Qt installation supports reading the
following image types:

Type Description

BMP Windows bitmap

GIF Graphics Interchange Format
ICO Windows icon

JPEG Joint Photography Experts Group
MNG Multiple-image Network Graphics
PNG Portable Network Graphics
PPM/PBM/PGM Portable anymap

SVG Scalable Vector Graphics

TIFF Tagged Image File Format

XBM X Bitmap

XPM X Pixmap

As you can see, most popular image formats are available. The list can be further extended
by installing additional plugins.

\ You can ask Qt for a list of supported image types by calling a static method,
Ny QImageReader: : supportedImageFormats (), which returns a list of
Q formats that can be read by Qt. For a list of writable formats, call QImageWr
iter: :supportedFileFormats ().

An image can also be loaded directly from an existing memory buffer. This can be done in
two ways. The first one is to use the 1loadFrombData () method (it exists in both QPixmap
and QImage), which behaves the same as when loading an image from a file—you pass it a
data buffer and the size of the buffer and based on that, the loader determines the image
type by inspecting the header data and loads the picture into QImage or QPixmap. The
second situation is when you don't have images stored in a "filetype" such as JPEG or PNG
but rather you have raw pixel data itself. In such a situation, QImage offers a constructor that
takes a pointer to a block of data together with the size of the image and format of the data.
The format is not a file format such as the ones listed earlier but rather a memory layout for
data representing a single pixel.

[124]

Chapter 5

The most popular format is QImage: : Format ARGB32, which means that each pixel is
represented by 32-bits (4 bytes) of data divided equally between alpha, red, green, and

blue channels—8-bits per channel. Another popular format is QImage: : Format ARGB32
Premultiplied, where values for the red, green, and blue channels are stored after being
multiplied by the value of the alpha channel, which often results in faster rendering. You can
change the internal data representation using a call to convertToFormat (). For example,
the following code converts a true-color image to 256 colors, where color for each pixel is
represented by an index in a color table:

QImage trueColor (image.png) ;
QImage indexed = trueColor.convertToFormat (QImage::Format Indexed8) ;

The color table itself is a vector of color definitions that can be fetched using colorTable ()
and replaced using setColorTable (). The simplest way to convert an indexed image to
grayscale is to adjust its color table as follows:

QImage indexed = ..;

QVector<QRgb> ct = indexed.colorTable() ;

for(int i=0;i<ct.size();++1i) ct[i] = gGray(ctl[i]);
indexed.setColorTable (ct) ;

Modifying

There are two ways to modify image pixel data. The first one works only for gImage and
involves direct manipulation of pixels using the setPixel () call, which takes the pixel
coordinates and color to be set for that pixel. The second one works for both QImage

and Qpixmap and makes use of the fact that both these classes are subclasses of
QPaintDevice. Therefore, you can open QPainter on such objects and use its drawing
API. Here is an example of obtaining a pixmap with a blue rectangle and red circle painted
over it:

QPixmap px (256, 256);

px.f£ill (Qt: :transparent) ;

QPainter painter (&px) ;
painter.setPen (Qt: :NoPen) ;
painter.setBrush(Qt: :blue) ;

QRect r = px.rect().adjusted(10, 10, -10, -10);
painter.drawRect (r) ;

painter.setBrush(Qt::red) ;
painter.drawEllipse (r) ;

First we create a 256 x 256 pixmap and fill it with transparent color. Then we open a painter
on it and invoke a series of calls that draws a blue rectangle and red circle.

11251

[vww allitebooks.cond

http://www.allitebooks.org

Graphics with Qt

QImage also offers a number of methods for transforming the image, including scaled (),
mirrored (), transformed (), and copy (). Their APl is intuitive so we won't discuss them
here.

Painting images in its basic form is as simple as calling drawImage () or drawPixmap ()
from the Qpainter API. There are different variants of the two methods, but basically all
of them allow one to specify which portion of a given image or pixmap is to be drawn and
where. It is worth noting that painting pixmaps is preferred to painting images as an image
has to first be converted into a pixmap before it can be drawn.

If you have a lot of pixmaps to draw, a class called QPixmapCache may come in handy.
It provides an application-wide cache for pixmaps. By using it, you can speed up pixmap
loading while introducing a cap on memory usage.

Drawing text using QPainter deserves a separate explanation, not because it is complicated
but rather because Qt offers much flexibility in this regard. In general, painting text takes
place by calling Qpainter: :drawText () or QPainter: :drawStaticText (). Let's focus
on the former first, which allows the drawing of generic text.

The most basic call to paint some text is a variant of this method, which takes x and y
coordinates and the text to draw:

painter.drawText (10, 20, "Drawing some text at (10, 20)");

The preceding call draws the given text at position 10 horizontally and places the baseline
of the text at position 20 vertically. The text is drawn using the painter's current font and
pen. The coordinates can alternatively be passed as QPoint instances instead of being given
x and y values separately. The problem with this method is that it allows little control over
how the text is drawn. A much more flexible variant is one that lets us give a set of flags

and expresses the position of the text as a rectangle instead of a point. The flags can specify
alignment of the text within the given rectangle or instruct the rendering engine about
wrapping and clipping the text. You can see the result of giving a different combination of
flags to the call in the following image:

11261

Chapter 5

&ABC| qtualignRight Wery long text | QtualignHCenter
Qt::AIignTog wrapping QtualignvCenter
nAlgniop multiple lines | Qt:TextWordwrap

ery long text Qtualignjustify

rapping "
multiple lines QtiTextWordwrap

QtualignHCenter

&ABC QtualignvCenter

IBEC . | text
= Qtualignleft f;}[;p?:g &
Gt TextShowMnemonic nultiple lines qt

Toat T

QtuTextDontClip
TextWordwrap

ultiline text as))
kingle line with QtuTextSingleline
ord-wrapping QtuTextWordwrap

QtualignHCenter

pxt wrapping m QtualignvCenter

In order to obtain each of the preceding results, run code similar to the following:

painter.drawText (rect, Qt::AlignLeft|Qt::TextShoanemonic, "§&ABC") ;

You can see that, unless you set the Qt : : TextDontClip flag, the text is clipped to the given
rectangle; setting Ot : : TextWordWrap enables line wrapping and Qt : : TextSingleLine
makes the engine ignore any newline characters encountered.

Static text

Qt has to perform a number of calculations when laying out the text, and this has to be done
each time the text is rendered. This will be a waste of time if the text and its attributes have
not changed since the last time. To avoid the need to recalculate the layout, the concept of
static text was introduced.

To use it, instantiate QStaticText and initialize it with text you want to render along

with any options you might want it to have (kept as the QTextOption instance). Then,

store the object somewhere and, whenever you want the text to be rendered, just call
QPainter: :drawStaticText (), passing the static text object to it. If the layout of the
text has not changed since the previous time the text was drawn, it will not be recalculated,
resulting in improved performance. Here is an example of a custom widget that simply draws
text using the static text approach:

class TextWidget : public QWidget {
public:
TextWidget (QWidget *parent = 0) : QWidget (parent) {}
void setText (const QString &txt) {
m_staticText.setText (txt) ;
update () ;

}

1211

Graphics with Qt

protected:
void paintEvent (QPaintEvent ¥*) {
QPainter painter (this);
paitner.drawStaticText (0, 0, m staticText);
}
private:
QStaticText m staticText;

}i

So far, we have seen how to draw text where all the glyphs were rendered using the same
attributes (font, color, and style) and laid out as a contiguous flow of characters. While
useful, this doesn't handle situations where we want to mark out portions of the text using

a different color or align it differently. To make it work, we would have to execute a series of
drawText calls with modified painter attributes and with manually calculated text positions.
Fortunately, there are better solutions.

Qt supports complex document formatting using its QTextDocument class. With this we
can manipulate the text in a fashion similar to that of a text processor, applying formatting
to paragraphs of text or individual characters. Then we can lay out and render the resulting
document according to our needs.

While useful and powerful, building QTextDocument is too complicated if all we want is

to draw a small amount of text with simple customizations applied. The authors of Qt have
thought about that as well and have implemented a rich text mode for rendering text. After
enabling this mode, you can specify the formatted text to drawText directly using a subset
of HTML tags to obtain formatting effects such as changing the color of the text, underlining
it, or making it superscript. Drawing a centered underlined caption followed by a fully
justified description in a given rectangle is as easy as issuing the following call:

painter.drawText (rect,
"<div align='center's>Disclaimer</div>"
"<div align='justify'>You are using <i>this software</i> "
"at your own risk. The authors of the software do not give "
"any warranties that using this software will not ruin your "
"business.</div>") ;

11281

Chapter 5

Qt's rich text engine does not implement the full HTML specification; it will not
handle cascading style sheets, hyperlinks, tables, or JavaScript. The Supported
KY HTML Subset page in the Qt reference manual describes what parts of the HTML
Q 4 standard are supported. If you require full HTML support, you will have to use
Qt's web page and web browser classes contained in the webkitwidgets
(classes QWebPage and QWebView) or webenginewidgets (classes
QWebEnginePage and QWebEngineView) modules.

During game programming, performance is often a bottleneck. Qt tries its best to be as
efficient as possible, but sometimes the code needs additional tweaking to work even faster.
Using static text instead of regular text is one such tweak; use it whenever possible.

Another important trick is to avoid re-rendering the whole widget unless really required. One
thing is that the QPaintEvent object passed to paintEvent () contains information about
the region of the widget that needs to be redrawn. If the logic of your widget allows it, you
can optimize the process by rendering only the required part.

Time for action - optimizing oscillogram drawing

As an exercise, we will modify our oscillogram widget so that it only re-renders the part of
its data that is required. The first step is to modify the paint event handling code to fetch
information about the region that needs updating and pass it to the method drawing the
chart. The changed parts of the code have been highlighted here:

void Widget::paintEvent (QPaintEvent *pe)

{

QRect exposedRect = pe->rect();
drawSelection (&painter, r, exposedRect) ;

drawChart (&painter, r, exposedRect);
painter.restore() ;

11291

Graphics with Qt

The next step is to modify drawSelection () to only draw the part of the selection that
intersects with the exposed rectangle. Luckily, Qrect offers a method to calculate the
intersection for us:

void Widget::drawSelection (QPainter *painter, const QRect &rect,
const QRect &exposedRect)
//

QRect selectionRect = rect;
selectionRect.setLeft (m pressX) ;

selectionRect.setRight (m_releaseX) ;

painter->drawRect (selectionRect.intersected (exposedRect)) ;

painter->restore() ;

}
Finally, drawChart needs to be adjusted to omit the values outside the exposed rectangle:

void Widget::drawChart (QPainter *painter, const QRect &rect,
const QRect &exposedRect)
{
painter->setPen(Qt: :red) ;
painter->drawLine (exposedRect.left(), 0, exposedRect.width(), 0);
painter-s>save () ;
painter->setRenderHint (QPainter::Antialiasing, false);
const int lastPoint = gMin(m points.size(),
exposedRect.right () +1) ;
for (int i=exposedRect.left(); i < lastPoint; ++i) (
if (m_selectionStart <= i && m_selectionEnd >=i)
painter->setPen (Qt::white) ;
} else
painter->setPen(Qt: :blue) ;
painter->drawLine (i, -m points.at(i), i, m points.at(i));

}

painter->restore() ;

What just happened?

By implementing these changes, we have effectively reduced the painted area to the
rectangle received with the event. In this particular situation, we will not save much time as
drawing the plot is not that time-consuming; in many situations, however, you will be able to
save a lot of time using this approach. For example, if we were to plot a very detailed aerial
map of a game world, it would be very expensive to replot the whole map if only a small part
of it were modified. We can easily reduce the number of calculations and drawing calls by
taking advantage of the information about the exposed area.

[130]

Chapter 5

Making use of the exposed rectangle is already a good step towards efficiency, but we can go
a step further. The current approach requires that we redraw each and every line of the plot
within the exposed rectangle, which still takes some time. Instead, we can paint those lines
only once into a pixmap, and then, whenever the widget needs repainting, tell Qt to render
part of the pixmap to the widget. This approach is usually called "double-buffering" (the
second buffer being the pixmap acting as a cache).

It should be very easy for you now to implement this approach for our example widget.
The main difference is that each change to the plot contents should not result in a call to
update () but rather in a call that will re-render the pixmap and then call update (). The
paintEvent method then becomes simply this:

void Widget::paintEvent (QPaintEvent *pe)
{
QRect exposedRect = pe->rect();
QPainter painter (this) ;
painter.drawPixmap (exposedRect, pixmap (), exposedRect) ;

}

You'll also need to re-render the pixmap when the widget is resized. This can be done from
within the void resizeEvent (QResizeEvent*) method.

At this point, you are ready to employ your newly gained skills in rendering graphics with Qt
to create a game that uses widgets with custom graphics. The hero of today is going to be
chess and other chess-like games.

Time for action - developing the game architecture

Create a new Qt Widgets Application project. After the project infrastructure is ready,
choose New File or Project from the File menu and choose to create a C++ Class. Call the
new class ChessBoard and set Q0bject as its base class. Repeat the process to create a
GameAlgorithm class derived from Q0bject and another one called Chessview but, this
time, choose QWidget as the base class. You should end up with a file named main. cpp and
four classes—MainWindow, ChessView, ChessBoard, and ChessAlgorithm.

Now navigate to the header file for ChessAlgorithm and add the following methods to the
class:

public:
ChessBoard* board() const;

11311

Graphics with Qt

public slots:

virtual void newGame () ;
signals:

void boardChanged (ChessBoard¥) ;
protected:

virtual void setupBoard() ;

void setBoard (ChessBoard *board) ;

Also, add a private m_board field of type ChessBoard*. Remember to either include
chessboard.h or forward-declare the ChessBoard class. Implement board () as a simple
getter method for m_board. The setBoard () method is going to be a protected setter for
m board:

void ChessAlgorithm: :setBoard (ChessBoard *board)

{
if (board == m board) return;
if (m board) delete m board;
m_board = board;
emit boardChanged(m board) ;

}

Next, let's provide a base implementation for setupBoard () to create a default chess
board with eight ranks and eight columns:

void ChessAlgorithm: :setupBoard ()

{

setBoard (new ChessBoard(8,8, this));

}
The natural place to prepare the board is in a function executed when a new game is started:

void ChessAlgorithm: :newGame ()

{
}

The last addition to this class for now is to extend the provided constructor to initialize m
board to a null pointer.

setupBoard () ;

In the last method shown, we instantiated a ChessBoard object so let's focus on that class
now. First extend the constructor to accept two additional integer parameters besides the
regular parent argument. Store their values in private m_ranks and m_columns fields
(remember to declare the fields themselves in the class header file).

11321

Chapter 5

In the header file, just under the Q_OBJECT macro, add the following two lines as property
definitions:

Q PROPERTY (int ranks READ ranks NOTIFY ranksChanged)

Q_ PROPERTY (int columns READ columns NOTIFY columnsChanged)

Declare signals and implement getter methods to cooperate with those definitions. Also add
two protected methods:

protected:
void setRanks (int newRanks) ;
void setColumns (int newColumns) ;

These will be setters for ranks and columns properties, but we don't want to expose them to
the outside world so we will give them protected access scope.

Put the following code into the setRanks () method body:

void ChessBoard: :setRanks (int newRanks)

{

if (ranks () == newRanks) return;
m_ranks = newRanks;
emit ranksChanged(m_ ranks) ;

}

Next, in a similar way, you can implement setColumns ().

The last class we will deal with now is our custom widget, Chessview. For now, we will
provide only a rudimentary implementation for one method, but we will expand it later as
our implementation grows. Add a public setBoard (ChessBoard *) method with the
following body:

void ChessView: :setBoard (ChessBoard *board)

{

if (m _board == board) return;

if (m_board) {

// disconnect all signal-slot connections between m_board and this
m_board->disconnect (this) ;

}

m_board = board;

// connect signals (to be done later)

updateGeometry () ;

[1331

Graphics with Qt

Now let's declare the m_board member. Because we are not the owners of the board object
(the algorithm class is responsible for managing it) we will use the QPointer class, which
tracks the lifetime of Q0bject and sets itself to null once the object is destroyed:

private:
QPointer<ChessBoard> m_board;

QPointer initializes its value to null, so we don't have to do it ourselves in the constructor.
For completeness, let's provide a getter method for the board:

ChessBoard *ChessView: :board() const { return m_board; }

What just happened?

In the last exercise, we defined the base architecture for our solution. We can see that there
are three classes involved: ChessView acting as the user interface, ChessAlgorithm for
driving the actual game, and ChessBoard as a data structure shared between the view

and the engine. The algorithm is going to be responsible for setting up the board (through
setupBoard ()), making moves, checking win conditions, and so on. The view will be
rendering the current state of the board and will signal user interaction to the underlying logic.

Chest Algorithm

ChessBoard

Most of the code is self-explanatory. You can see in the ChessView: : setBoard () method
that we are disconnecting all signals from an old board object, attaching the new one (we
will come back to connecting the signals later when we have already defined them), and
finally telling the widget to update its size and redraw itself with the new board.

(1341

Chapter 5

Time for action - implementing the yame bhoard class

Now we will focus on our data structure. Add a new private member to ChessBoard, a
vector of characters that will contain information about pieces on the board:

QVector<char> m_boardData;

Consider the following table that shows the piece type and the letters used for it:

Piece type White | Black
{f(%-%? King K k
)
kA7 silfr | Queen Q q
W
% Rook R r
E X
N " Bishop B b
i Knight N n
) Al
£ Pawn P p
PN

You can see that white pieces use upper-case letters and black pieces use lower-case variants
of the same letters. In addition to that, we will use a space character (0x20 ASCII value) to
denote that a field is empty. We will add a protected method for setting up an empty board
based on the number of ranks and columns on the board and a boardReset () signal to
inform that the position on the board has changed:

void ChessBoard::initBoard()

{

m_boardData.fill(' ', ranks()*columns()) ;
emit boardReset () ;

[1351]

Graphics with Qt

We can update our methods for setting rank and column counts to make use of that method:

void ChessBoard: :setRanks (int newRanks)

{

if (ranks () == newRanks) return;
m_ranks = newRanks;
initBoard() ;

emit ranksChanged(m_ ranks) ;

void ChessBoard: :setColumns (int newColumns)

{

if (columns () == newColumns) return;
m_columns = newColumns;
initBoard() ;

emit columnsChanged(m_columns) ;

}

The initBoard () method should also be called from within the constructor, so place the
call there as well.

Next, we need a method to read which piece is positioned in the particular field of the board.

char ChessBoard::data(int column, int rank) const

{

return m boardData.at ((rank-1) *columns () + (column-1)) ;

}

Ranks and columns have indexes starting from 1, but the data structure is indexed starting
from 0; therefore, we have to subtract 1 from both the rank and column index. It is also
required to have a method to modify the data for the board. Implement the following public
method:

void ChessBoard: :setData(int column, int rank, char value)

{

if (setDataInternal (column, rank, wvalue))
emit dataChanged(column, rank) ;

}

The method makes use of another one that does the actual job. However, this method
should be declared with protected access scope. Again we adjust for index differences.

bool ChessBoard: :setDatalInternal (int column, int rank, char value)

{

int index = (rank-1)*columns()+ (column-1) ;

[1361

Chapter 5

if (m_boardData.at (index) == value) return false;
m_boardData[index] = value;
return true;

}
Since setData () makes use of a signal, we have to declare it as well:

signals:
void ranksChanged(int) ;
void columnsChanged (int) ;
void dataChanged(int c, int r);
void boardReset () ;

The signal will be emitted every time there is a successful change to the situation on the
board. We delegate the actual work to the protected method to be able to modify the board
without emitting the signal.

Having defined setData (), we can add another method for our convenience:

void ChessBoard: :movePiece (int fromColumn, int fromRank, int toColumn,
int toRank)

setData (toColumn, toRank, data (fromColumn, fromRank)) ;
setData (fromColumn, fromRank, ' ');

}

Can you guess what it does? That's right! It moves a piece from one field to another one
leaving an empty space behind.

There is still one more method worth implementing. A regular chess game contains 32
pieces, and there are variants of the game where starting positions for the pieces might be
different. Setting the position of each piece through a separate call to setData () would be
very cumbersome. Fortunately, there is a neat chess notation called the Forsyth-Edwards
Notation (FEN), with which the complete state of the game can be stored as a single line

of text. If you want the complete definition of the notation, you can look it up yourself. In
short, we can say that the textual string lists piece placement rank by rank, starting from
the last rank where each position is described by a single character interpreted as in our
internal data structure (K for white king, g for black queen, and so on). Each rank description
is separated by a / character. If there are empty fields on the board, they are not stored as
spaces but rather as a digit specifying the number of consecutive empty fields. Therefore,
the starting position for a standard game can be written as follows:

"rnbgkbnr/ppppprprpr/8/8/8/8/PPPPPPPP/RNBQKBNR"

11311

Graphics with Qt

This can be interpreted visually as follows:

Let's write a method called setFen () to set up the board based on an FEN string:

void ChessBoard: :setFen(const QString &fen)

int index = 0;
int skip = 0;

const int columnCount = columns () ;
QChar ch;
for(int rank = ranks(); rank >0; --rank) {

for(int column = 1; column <= columnCount; ++column) {
if (skip > 0) {
ch ="' "';
skip--;
} else {
ch = fen.at (index++) ;
if (ch.isDigit ()) {
skip = ch.tolLatinl()-'0"';
ch ="' "';

skip--;

}

setDataInternal (column, rank, ch.toLatinl()) ;

[1381]

Chapter 5

QChar next = fen.at (index++) ;
if (next != '/' && next != ' ') {
initBoard() ;

return; // fail on error

}
}

emit boardReset () ;

}

The method iterates over all fields on the board and determines whether it is currently in the
middle of inserting empty fields on the board or should rather read the next character from
the string. If a digit is encountered, it is converted into an integer by subtracting the ASCII
value of the 0 character (that is, 7-0 = 7). After setting each rank, we require that a slash or a
space be read from the string. Otherwise, we reset the board to an empty one and bail out
of the method.

What just happened?

We taught the ChessBoard class to store simple information about chess pieces using a
one-dimensional array of characters. We also equipped it with methods that allow querying
and modifying game data. We implemented a fast way of setting the current state of

the game by adopting the FEN standard. The game data itself is not tied to classic chess.
Although we comply with a standard notation for describing pieces, it is possible to use other
letters and characters outside the well-defined set for chess pieces. This creates a versatile
solution for storing information about chess-like games, such as checkers, and possibly

any other custom game played on a two-dimensional board of any size with ranks and
columns. The data structure we came up with is not a stupid one—it communicates with its
environment by emitting signals when the state of the game is modified.

Time for action — understanding the ChessView class

This is a chapter about doing graphics, so it is high time to focus on displaying our chess
game. Our widget currently displays nothing, and our first task is going to be to show a chess
board with rank and column symbols and fields colored appropriately.

By default, the widget does not have any proper size defined and we will have to fix that by
implementing sizeHint (). However, to be able to calculate the size, we have to decide
how big a single field on the board is going to be. Therefore, in ChessVview, you should
declare a property containing the size of the field, as shown:

Q PROPERTY (QSize fieldSize
READ fieldSize WRITE setFieldSize
NOTIFY fieldSizeChanged)

[1391

Graphics with Qt

To speed up coding, you can position the cursor over the property declaration, hit the Alt +
Enter combination, and choose the Generate missing Q_PROPERTY members fixup from the
pop-up menu. Creator will provide minor implementations for the getter and setter for you.
You can move the generated code to the implementation file by positioning the cursor over
each method, hitting Alt + Enter, and choosing the Move definition to chessview.cpp file
fixup. While the generated getter method is fine, the setter needs some adjusting. Modify it
by adding the following highlighted code:

void ChessView: :setFieldSize (QSize arg)

{
if (m_fieldSize == arg)
return;

m _fieldSize = arg;
emit fieldSizeChanged(arg) ;
updateGeometry () ;

}

This tells our widget to recalculate its size whenever the size of the field is modified. Now we
can implement sizeHint ():

QSize ChessView::sizeHint () const

{

if (Im _board) return QSize(100,100);
QSize boardSize = QSize(fieldSize () .width()

* m_board->columns () +1,
m _fieldSize.height() * m board-s>ranks/() +1) ;
int rankSize = fontMetrics().width('M')+4;
int columnSize = fontMetrics () .height()+4;

return boardSize+QSize (rankSize, columnSize) ;

}

First we check if we have a valid board definition and if not, return a sane size of 100 x 100
pixels. Otherwise, the method calculates the size of all the fields by multiplying the size of
each of the fields by the number of columns or ranks. We add one pixel to each dimension to
accommodate the right and bottom border. A chess board not only consists of not only the
fields themselves but also displays rank symbols on the left edge of the board and column
numbers on the bottom edge of the board. Since we use letters to enumerate ranks, we
check the width of the widest letter in the alphabet using the QFontMetrics class. We use
the same class to check how much space is required to render a line of text using the current
font so that we have enough space to put column numbers. In both cases, we add 4 to the
result to make a 2 pixel margin between the text and the edge of the board and another 2
pixel margin between the text and the edge of the widget.

(1101

Chapter 5

It is very useful to define a helper method for returning a rectangle that contains a particular
field, as shown:

QRect ChessView::fieldRect (int column, int rank) const

{

}

if (Im _board) return QRect();

const QSize fs = fieldSize();

QRect fRect = QRect (QPoint ((column-1)*fs.width(),
(m_board->ranks () -rank) *fs.height ()), £fs);

// offset rect by rank symbols

int offset = fontMetrics () .width('M');
// 'M' is the widest letter

return fRect.translated(offset+4, 0);

Since rank numbers decrease from the top towards the bottom of the board, we subtract the
desired rank from the maximum rank there is while calculating fRect. Then, we calculate
the horizontal offset for rank symbols just like we did in sizeHint () and translate the
rectangle by that offset before returning the result.

Finally, we can move on to implementing the event handler for the paint event. Declare the
paintEvent () method (the fixup menu available under the Alt + Enter keyboard shortcut
will let you generate a stub implementation of the method) and fill it with the following

code:

void ChessView: :paintEvent (QPaintEvent *event)

{

}

if (Im _board) return;
QPainter painter (this);
for(int r = m board->ranks(); r>0; --r)
painter.save() ;
drawRank (&painter, r);
painter.restore() ;
!
for(int ¢ = 1; c<=m board->columns () ;++c) {
painter.save() ;
drawColumn (&painter, c);
painter.restore() ;
!
for(int r = 1; r<=m board-sranks() ;++r)
for(int ¢ = 1; c<=m board->columns () ;++c) {
painter.save() ;
drawField (&painter, c, r);
painter.restore() ;

}
}

(a1l

Graphics with Qt

The handler is quite simple. First we instantiate the QPainter object that operates on

the widget. Then we have three loops—the first one iterates over ranks, the second over
columns, and the third over all fields. The body of each loop is very similar: there is a call

to a custom draw method that accepts a pointer to the painter and index of the rank,
column, or both of them, respectively. Each of the calls is surrounded by executing save ()
and restore () on our QPainter instance. What are the calls for here? The three draw
methods—drawRank (), drawColumn (), and drawField () —are going to be virtual
methods responsible for rendering the rank symbol, the column number, and the field
background. It will be possible to subclass Chessview and provide custom implementations
for those renderers so that it is possible to provide a different look of the chess board.
Since each of these methods takes the painter instance as its parameter, overrides of these
methods could alter attribute values of the painter behind our back. Calling save () before
handing the painter over to such override stores its state on an internal stack, and calling
restore () after returning from the override resets the painter to what was stored with
save (). This effectively gives us a failsafe to avoid breaking the painter in case the override
does not clean up after itself if it modifies the painter.

\ Calling save () and restore () very often introduces a performance hit, so
~ you should avoid saving and restoring painter states too often in time-critical
Q situations. As our painting is very simple, we don't have to worry about that
when painting our chess board.

Having introduced our three methods, we can start implementing them. Let's start with
drawRank and drawColumn. Remember to declare them as virtual and put them in
protected access scope (that's usually where Qt classes put such methods), as shown:

void ChessView: :drawRank (QPainter *painter, int rank)
{
QRect r = fieldRect (1, rank);
QRect rankRect = QRect (0, r.top(), r.left(),
r.height ()) .adjusted (2, 0, -2, 0);
QString rankText = QString::number (rank) ;
painter->drawText (rankRect,
Qt::AlignVCenter|Qt ::AlignRight, rankText) ;

void ChessView: :drawColumn (QPainter *painter, int column)
{
QRect r = fieldRect (column, 1);
QRect columnRect = QRect(r.left (), r.bottom(),
r.width(), height()-r.bottom()) .adjusted(0, 2, 0, -2);
painter->drawText (columnRect,
Qt:: AlignHCenter|Qt::AlignTop, QChar('a'+column-1));

[142]

Chapter 5

Both methods are very similar. We use fieldRect () to query for the left-most column and
bottom-most rank and based on that, we calculate where rank symbols and column numbers
should be placed. The call to QrRect : :adjusted () is to accommodate the 2 pixel margin
around the text to be drawn. Finally, we use drawText () to render appropriate text. For
the rank, we ask the painter to align the text to the right edge of the rectangle and center
the text vertically. In a similar way, when drawing the column we align to the top edge and
center the text horizontally.

Now we can implement the third draw method. It should also be declared protected and
virtual. Place the following code in the method body:

void ChessView: :drawField (QPainter *painter, int column, int rank)

{

QRect rect = fieldRect (column, rank) ;
QColor fillColor = (column+rank) % 2 ? palette().
color (QPalette: :Light) : palette() .color (QPalette::Mid) ;

painter->setPen(palette() .color (QPalette: :Dark)) ;
painter->setBrush(fillColor) ;
painter->drawRect (rect) ;

}

In this method, we use the QPalette object coupled with each widget to query for Light
(usually white) and Mid (darkish) color depending on whether the field we are drawing on
the chess board is considered white or black. We do that instead of hardcoding the colors

to make it possible to modify colors of the tiles without subclassing simply by adjusting the
palette object. Then we use the palette again to ask for the Dark color and use that as a pen
for our painter. When we draw a rectangle with such settings, the pen will stroke the border
of the rectangle to give it a more elegant look. Note how we modify attributes of the painter
in this method and we do not set them back afterwards. We can get away with it because of
the save () and restore () calls surrounding the drawField () execution.

We are ready now to see the results of our work. Let's switch to the MainWindow class and
equip it with the following two private variables:

ChessView *m view;
ChessAlgorithm *m_algorithm;

Then modify the constructor by adding the following highlighted code to set up the view and
the game engine:

MainWindow: :MainWindow (QWidget *parent)
OMainWindow (parent) ,

uil (new Ui::MainWindow)

(1431

Graphics with Qt

ui->setupUi (this) ;

m view = new ChessView;

m algorithm = new ChessAlgorithm(this);

m algorithm->newGame () ;

m view->setBoard(m algorithm->board()):;
setCentralWidget (m view) ;

m view->setSizePolicy (QSizePolicy::Fixed, QSizePolicy::Fixed);
m view->setFieldSize(QSize(50,50));

layout () ->setSizeConstraint (QLayout: : SetFixedSize) ;

}

Afterwards, you should be able to build the project. When you run it, you should see a result
similar to the one in the following screenshot:

What just happened?

In this exercise, we did two things. First we provided a number of methods for calculating
the geometry of important parts of the chess board and the size of the widget. Second, we
defined three virtual methods for rendering visual primitives of a chess board. By making the
methods virtual, we provided an infrastructure to let the look be customized by subclassing
and overriding base implementations. Furthermore, by reading color from Qralette, we
allowed customizing the colors of the primitives even without subclassing.

The last line of the main window constructor tells the layout of the window to force a fixed
size of the window equal to what the size hint of the widget inside it reports.

[114]

Chapter 5

Time for action - rendering the pieces

Now that we can see the board, it is time to put the pieces on it. We are going to use images
for that purpose. In my case, we found a number of SVG files with chess pieces and decided
to use them. SVG is a vector graphics format where all curves are defined not as a fixed set
of points but rather as mathematic curves. Their main benefit is that they scale very well
without causing an aliasing effect.

Let's equip our view with a registry of images to be used for "stamping" a particular piece
type. Since each piece type is identified with char, we can use it to generate keys for a map of
images. Let's put the following APl into ChessView:

public:
void setPiece(char type, const QIcon &icon) ;
QIcon piece(char type) const;

private:
OMap<char,QIcon> m pieces;

For the image type, we do not use QImage or QPixmap but rather QIcon. This is because
QIcon can store many pixmaps of different sizes and use the most appropriate one when we
request an icon of a given size to be painted. This doesn't matter if we use vector images, but
it does matter if you choose to use PNG or other types of image. In such cases, you can use
addFile () to add many images to a single icon.

Going back to our registry, the implementation is very simple. We just store the icon in a map
and ask the widget to repaint itself:

void ChessView: :setPiece (char type, const QIcon &icon)

m pieces.insert (type, icon);

update () ;

}

QIcon ChessView: :piece(char type) const

{

return m pieces.value(type, QIcon());

}

(1451

Graphics with Qt

Now we can fill the registry with actual images right after we create the view inside the
MainWindow constructor. Note that we stored all the images in a resource file, as shown:

m view->setPiece('P', QIcon(":/pieces/Chess plt45.svg")); // pawn
m view->setPiece('K', QIcon(":/pieces/Chess klt45.svg")); // king
m view->setPiece('Q', QIcon(":/pieces/Chess glt45.svg")); // queen
m view->setPiece('R', QIcon(":/pieces/Chess rlt45.svg")); // rook
m view->setPiece('N', QIcon(":/pieces/Chess nlt45.svg")); // knight
m view->setPiece('B', QIcon(":/pieces/Chess blt45.svg")); // bishop
m view->setPiece('p', QIcon(":/pieces/Chess pdt45.svg")); // pawn
m view->setPiece('k', QIcon(":/pieces/Chess kdt45.svg")); // king
m view->setPiece('q', QIcon(":/pieces/Chess gdt45.svg")); // queen
m view->setPiece('r', QIcon(":/pieces/Chess rdt45.svg")); // rook
m view->setPiece('n', QIcon(":/pieces/Chess ndt45.svg")); // knight
m view->setPiece('b', QIcon(":/pieces/Chess bdt45.svg")); // bishop

The next thing to do is to extend the paintEvent () method of the view to actually
render our pieces. For that, we will introduce another protected virtual method called
drawPiece (). We'll call it when iterating over all the ranks and columns of the board, as
shown:

void ChessView: :paintEvent (QPaintEvent *event)

{

//
for(int r = m board-s>ranks(); r>0; --r) {
for(int ¢ = 1; c<=m board->columns () ;++c) {
drawPiece (&painter, c, r);
}
}

}

It is not a coincidence that we start drawing from the highest (top) rank to the lowest
(bottom) one. By doing that, we allow a pseudo-3D effect: if a piece drawn extends past the
area of the field, it will intersect the field from the next rank (which is possibly occupied by
another piece). By drawing higher rank pieces first, we cause them to be partially covered by
pieces from the lower rank, which imitates the effect of depth. By thinking ahead, we allow
reimplementations of drawPiece () to have more freedom in what they can do.

(1461

Chapter 5

The final step is to provide a base implementation for this method, as follows:

void ChessView: :drawPiece (QPainter *painter, int column, int rank)

{

QRect rect = fieldRect (column, rank) ;
char value = m _board->data(column, rank);
if (value = ' ') {

QIcon icon = piece(value);
if (licon.isNull()) {
icon.paint (painter, rect, Qt::AlignCenter);
}
}
}

The method is very simple, it queries for the rectangle of a given column and rank, then asks
the ChessBoard instance about the piece occupying the given field. If there is a piece there,
we ask the registry for the proper icon; if we get a valid one, we call its paint () routine to
draw the piece centered in the field's rect. The image drawn will be scaled to the size of the
rectangle. It is important that you only use images with a transparent background (such as
PNG or SVG files and not JPEG files) so that the color of the field can be seen through the
piece.

What just happened?

To test the implementation, you can modify the algorithm to fill the board with the default
piece set up by introducing the following change to the ChessAlgorithm class:

void ChessAlgorithm: :newGame ()

{
setupBoard () ;
board () ->setFen (

"rnbgkbnr/pppprpprp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkg - 0 1"
)i

(1411

Graphics with Qt

Running the program should show the following result:

EQ oW)=
Yy Y W

6

=

3

ANARARAR
Houdad

The modification we did in this step was very simple. First we provided a way to tell the
board what each piece type looks like. This includes not only standard chess pieces but
anything that fits into char and can be set inside the ChessBoard class's internal data array.
Second, we made an abstraction for drawing the pieces with the simplest possible base
implementation: taking an icon from the registry and rendering it to the field. By making use
of QIcon, we can add several pixmaps of different sizes to be used with different sizes of a
single field. Alternatively, the icon can contain a single vector image that scales very well all
by itself.

Time for action — making the chess game interactive

We have managed to display the chess board but to actually play a game, we have to tell the
program what moves we want to play. We could do that by adding the QLineEdit widget
where we would input the move in algebraic form (for example, N3 to move a knight to £3),
but a more natural way is to click a piece with the mouse cursor (or tap it with a finger) and
then click again on the destination field. To obtain such functionality, the first thing to do is
to teach ChessVview to detect mouse clicks. Therefore, add the following method:

QPoint ChessView::fieldAt (const QPoint &pt) const

{
if (Im _board) return QPoint () ;
const QSize fs = fieldSize();

(181

Chapter 5

int offset = fontMetrics () .width('M')+4;
// 'M' is the widest letter

if (pt.x() < offset) return QPoint () ;

int ¢ = (pt.x()-offset) / fs.width();
int r = pt.y()/fs.height () ;
if(c < 0 || ¢ »= m board->columns() || r<0 ||

r >= m board->ranks())
return QPoint () ;
return QPoint (c+1, m board-s>ranks() - r);
// max rank - r

}

The code looks very similar to the implementation of fieldRect (). This is because
fieldat () implements its reverse operation—it transforms a point in the widget
coordinate space to the column and rank index of a field the point is contained in. The index
is calculated by dividing point coordinates by the size of the field. You surely remember that,
in the case of columns, the fields are offset by the size of the widest letter and a margin of

4 and we have to consider that in our calculations here as well. We do two checks: first we
check the horizontal point coordinate against the offset to detect if the user clicked on the
part of the widget where column symbols are displayed, and then we check if the rank and
column calculated fit the range represented in the board. Finally, we return the result as a
QPoint value since this is the easiest way in Qt to represent a two-dimensional value.

Now we need to find a way to make the widget notify its environment that a particular
field was clicked. We can do this through the signal-slot mechanism. Switch to the header
file of ChessView (if you currently have chessview.cpp opened in Qt Creator, you can
simply push the F4 key to be transferred to the corresponding header file) and declare a
clicked (const QPoint &) signal:

signals:
void clicked(const QPoint &) ;

To detect mouse input, we have to override one of the mouse event handlers a widget has,
either mousePressEvent or mouseReleaseEvent. It seems obvious we should choose
the former event; this would work, but it is not the best decision. Just think about the
semantics of a mouse click: it is a complex event composed of pushing and releasing the
mouse button. The actual "click" takes place after the mouse is released. Therefore let's use
mouseReleaseEvent as our event handler:

void ChessView: :mouseReleaseEvent (QMouseEvent *event)

{
QPoint pt = fieldAt (event->pos());
if (pt.isNull()) return;
emit clicked(pt) ;

}

(1491

Graphics with Qt

The code is simple; we use the method we just implemented and pass it the position read
from the QMouseEvent object. If the returned point is invalid, we quietly return from the
method. Otherwise, clicked () is emitted with the obtained column and rank values.

We can make use of the signal now. Go to the constructor of MainWindow and add the
following line to connect the widget's clicked signal to a custom slot:

connect (m_view, SIGNAL (clicked(QPoint)),
this, SLOT (viewClicked (QPoint))) ;

Declare the slot and implement it as follows:

void MainWindow: :viewClicked (const QPoint &field)

{

if (m_clickPoint.isNull()) {
m_clickPoint = field;
} else {
if (field != m_clickPoint)
m_view->board () ->movePiece (
m _clickPoint.x(), m _clickPoint.y (),
field.x (), field.y()
)i
}
m_clickPoint = QPoint () ;
}
}

The function uses a class member variable m_clickPoint to store the clicked field. The
variable value is made invalid after a move is made. Thus we can detect whether the click
we are currently handling has "select" or "move" semantics. In the first case, we store the
selectioninm_clickPoint; in the other case, we ask the board to make a move using the
helper method we implemented some time ago. Remember to declarem_clickPoint asa
private member variable of MasinWindow.

All should be working now. However, if you build the application, run it, and start clicking
around on the chess board, you will see that nothing happens. This is because we forgot
to tell the view to refresh itself when the game position on the board is changed. We
have to connect the signals the board emits to the update () slot of the view. Open the
setBoard () method of the widget class and fix it as follows:

void ChessView: :setBoard (ChessBoard *board)

{
//
m_board = board;
// connect signals
if (board) {
connect (board, SIGNAL (dataChanged (int,int)),
this, SLOT (update())):;

[1501

Chapter 5

connect (board, SIGNAL(boardReset()), this, SLOT (update())):;

}

updateGeometry () ;

}

If you run the program now, moves you make will be reflected in the widget, as shown:

At this point, we might consider the visual part of the game as finished, but there is still
one problem you might have spotted while testing our latest additions. When you click on
the board, there is no visual hint that any piece was actually selected. Let's fix that now by
introducing the ability to highlight any field on the board.

To do that, we will develop a generic system for different highlights. Begin by adding a
Highlight class as an internal class to ChessView:

class ChessView : public QWidget
//
public:
class Highlight {
public:
Highlight () {}
virtual ~Highlight() {}
virtual int type() const { return 0; }

[1511

Graphics with Qt

It is a minimalistic interface for highlights and only exposes a method returning the type of
the highlight using a virtual method. In our exercise, we will focus on just a basic type that
marks a single field with a given color. Such a situation is going to be represented by the
FieldHighlight class:

class FieldHighlight : public Highlight {
public:
enum { Type = 1 };
FieldHighlight (int column, int rank, QColor color)
m field(column, rank), m _color(color) {}
inline int column() const { return m field.x(); }
inline int rank() const { return m field.y(); }
inline QColor color() const { return m color; }
int type() const { return Type; }
private:
QPoint m_field;
QColor m_color;

Vi

You can see we provided a constructor that takes the column and rank indices and a color
for the highlight and stores them in private member variables. Also, type () is redefined to
return FieldHighlight: : Type, which we can use to easily identify the type of highlight.
The next step is to extend ChessView with abilities to add and remove highlights. As the
container declares a private QList<Highlight*> m_highlights member variable, add
method declarations:

public:
void addHighlight (Highlight *hl);
void removeHighlight (Highlight *hl) ;
inline Highlight *highlight (int index)
const {return m highlights.at (index); }
inline int highlightCount () const { return m highlights.size(); }

Next provide implementations for non-inline methods:

void ChessView: :addHighlight (ChessView: :Highlight *hl)
{ m_highlights.append(hl); update(); }

void ChessView: :removeHighlight (ChessView: :Highlight *hl)
{ m_highlights.removeOne (hl); update(); }

[1521

Chapter 5

Drawing the highlights is really easy: we will use yet another virtual draw method. Place the
following call in the paintEvent () implementation right before the loop that is responsible

for rendering pieces:
drawHighlights (&painter) ;
The implementation simply iterates over all the highlights and renders those it understands.

void ChessView::drawHighlights (QPainter *painter)
{
for (int idx=0; idx < highlightCount (); ++idx) {
Highlight *hl = highlight (idx) ;
if (hl->type() == FieldHighlight::Type) ({
FieldHighlight *fhl = static_cast<FieldHighlight*>(hl) ;
QRect rect = fieldRect (fhl->column (), fhl->rank());
painter->fillRect (rect, fhl->color());

}

}

By checking the type of the highlight, we know which class to cast the generic pointer to.
Then we can query the object for the needed data. Finally, we use QPainter: :fillRect ()
to fill the field with the given color. As drawHighlights () is called before the piece
painting loop and after the field painting loop, the highlight will cover the background but

not the piece.
That's the basic highlighting system. Let's make our viewClicked () slot use it:

void MainWindow: :viewClicked (const QPoint &field)
{
if (m_clickPoint.isNull()) {
if (m _view->board() ->data(field.x(), field.y()) t!= ' ') {
m_clickPoint = field;
m selectedField = new ChessView::FieldHighlight (
field.x(), field.y(), QColor (255, 0, 0, 50)
)i
m view->addHighlight (m selectedField) ;
}
} else {
if (field != m_clickPoint)
m_view->board () ->movePiece (
m _clickPoint.x(), m clickPoint.y (), field.x(), field.y()

[1531

Graphics with Qt

)i
}i
m_clickPoint = QPoint () ;
m view->removeHighlight (m selectedField) ;
delete m selectedField;
m selectedField = 0;
}
}

Notice how we check that a field can only be selected if it is not empty (that is, there is an
existing piece occupying that field)?

You should also add a ChessView: :FieldHighlight *m_selectedField private
member variable and initialize it with a null pointer in the constructor. You can now build the
game, execute it, and start moving pieces around.

(1541

Chapter 5

What just happened?

By adding a few lines of code, we managed to make the board clickable. We connected a
custom slot that reads which field was clicked and can highlight it with a semi-transparent
red color. Clicking on another field will move the highlighted piece there. The highlighting
system we developed is very generic. We use it to highlight a single field with a solid color,
but you can mark as many fields as you want with a number of different colors, for example,
to show valid moves after selecting a piece. The system can easily be extended with new
types of highlights; for example, you can draw arrows on the board using QpainterPath to
have a complex hinting system (say showing the player the suggested move).

[1551]

Graphics with Qt

Time for action - connecting the game algorithm

It would take us too long to implement a full chess game algorithm here, so we will instead
settle for a much simpler game called Fox and Hounds. One of the players has four pawns
(hounds) which can only move over black fields and the pawn can only move in a forward
fashion (toward higher ranks). The other player has just a single pawn (fox) which starts from
the opposite side of the board.

It can also move only over black fields; however it can move both forwards (toward higher
ranks) as well as backwards (toward lower ranks). Players move in turns by moving their
pawn by to a neighboring black field. The goal of the fox is to reach the opposite end of the
board; the goal of the hounds is to trap the fox so that it can't make a move.

Fox loses Fox wins

Chapter 5

Time to get to work! First we will extend the ChessAlgorithm class with the required
interface:

class ChessAlgorithm : public QObject

{

Q OBJECT
Q ENUMS (Result Player)
Q PROPERTY (Result result READ result)
Q PROPERTY (Player currentPlayer
READ currentPlayer
NOTIFY currentPlayerChanged)

public:

enum Result { NoResult, PlayerlWins, Draw, Player2Wins };
enum Player { NoPlayer, Playerl, Player2 };

explicit ChessAlgorithm(QObject *parent = 0);
ChessBoard* board() const;
inline Result result() const { return m result; }

inline Player currentPlayer() const { return m currentPlayer; }

signals:

void boardChanged (ChessBoard¥*) ;
void gameOver (Result) ;
void currentPlayerChanged (Player) ;

public slots:

virtual void newGame () ;

virtual bool move(int colFrom, int rankFrom, int colTo, int rankTo);

bool move (const QPoint &from, const QPoint &to);

protected:

virtual void setupBoard() ;

void setBoard(ChessBoard *board) ;
void setResult (Result) ;

void setCurrentPlayer (Player) ;

private:

Vi

ChessBoard *m_board;
Result m result;
Player m currentPlayer;

1571

Graphics with Qt

There are two sets of members here. First we have a number of enums, variables, signals,
and methods that are related to the state of the game: which player should make his move
now and what is currently the result of the game. The 9 ENUMS macro is used to register
enumerations in Qt's meta-type system so that they can be used as values for properties

or arguments in signals. Property declarations and getters for them don't need any extra
explanation. We have also declared protected methods for setting the variables from within
subclasses. Here is their suggested implementation:

void ChessAlgorithm::setResult (Result value)
{
if (result () == value) return;
if (result () == NoResult) ({
m_result = value;
emit gameOver (m_result) ;
} else { m_result = value; }

}

void ChessAlgorithm::setCurrentPlayer (Player value)
{
if (currentPlayer () == value) return;
m_currentPlayer = value;
emit currentPlayerChanged(m currentPlayer) ;

}

Remember about initializing m_currentPlayer and m result to NoPlayer and
NoResult in the constructor of the ChessAlgorithm class.

The second group of functions is methods that modify the state of the game—the two
variants of move () . The virtual variant is meant to be reimplemented by the real algorithm
to check whether a given move is valid in the current game state and if that is the case, to
perform the actual modification of the game board. In the base class, we can simply reject all
possible moves:

bool ChessAlgorithm::move (int colFrom, int rankFrom,
int colTo, int rankTo)
{
Q_ UNUSED (colFrom)
Q_UNUSED (rankFrom)
Q UNUSED (colTo)
Q_UNUSED (rankTo)
return false;

[158]

Chapter 5

sl . . L . .
‘Q Q_UNUSED is a macro to prevent the compiler from issuing warnings during

compilation if the enclosed local variable is never used in the scope.

The overload is simply a convenience method that accepts two QPoint objects instead of
four integers.

bool ChessAlgorithm::move (const QPoint &from, const QPoint &to)

{

return move (from.x (), from.y(), to.x(), to.y());

}

The interface for the algorithm is ready now and we can implement it for the Fox and
Hounds game. Subclass ChessAlgorithm to create a FoxAndHounds class:

class FoxAndHounds : public ChessAlgorithm

{

public:
FoxAndHounds (QObject *parent = 0);
void newGame () ;

bool move (int colFrom, int rankFrom, int colTo, int rankTo) ;

bi

The implementation of newGame () is pretty simple: we set up the board, place pieces on it,
and signal that it is time for the first player to make their move.

void FoxAndHounds: :newGame ()

{

setupBoard () ;
board () ->setFen("3p4/8/8/8/8/8/8/P1P1P1P1 w") ;
// 'w' - white to move

m_fox = QPoint(5,8) ;
setResult (NoResult) ;
setCurrentPlayer (Playerl) ;

}

The algorithm for the game is quite simple. Implement move () as follows:

bool FoxAndHounds::move (int colFrom, int rankFrom,
int colTo, int rankTo)

if (currentPlayer () == NoPlayer) return false;

[1591]

Graphics with Qt

// is there a piece of the right color?

char source = board()->data(colFrom, rankFrom) ;
if (currentPlayer () == Playerl && source != 'P') return false;
if (currentPlayer () == Player2 && source != 'p') return false;

// both can only move one column right or left
if (colTo != colFrom+l && colTo != colFrom-1) return false;

// do we move within the board?
if(colTo < 1 || colTo > board()->columns()) return false;
if (rankTo < 1 || rankTo > board()->ranks()) return false;

// 1s the destination field black?
if ((colTo + rankTo) % 2) return false;

// i1s the destination field empty?
char destination = board()->data(colTo, rankTo) ;

if (destination != ' ') return false;

// is white advancing?

if (currentPlayer () == Playerl && rankTo <= rankFrom) return false;
board () ->movePiece (colFrom, rankFrom, colTo, rankTo) ;
// make the move
if (currentPlayer () == Player2) ({
m_fox = QPoint (colTo, rankTo) ; // cache fox position

}

// check win condition

if (currentPlayer () == Player2 && rankTo == 1)
setResult (Player2Wins) ; // fox has escaped
} else if (currentPlayer() == Playerl && !foxCanMove()) ({
setResult (PlayerlWins) ; // fox can't move
} else {

// the other player makes the move now
setCurrentPlayer (currentPlayer () == Playerl ? Player2 : Playerl);

}

return true;

[160]

Chapter 5

Declare a protected foxCanMove () method and implement it using the following code:

bool FoxAndHounds: :foxCanMove () const
{
if (emptyByOffset (-1, -1)
| | emptyByOffset(1
return false;

emptyByOffset (-1, 1)
1

N
, -1) || emptyByOffset(1, 1)) return true;

}
Then do the same with emptyByOffset ():

bool FoxAndHounds: :emptyByOffset (int x, int y) const
{

const int destCol = m_fox.x()+x;

const int destRank = m _fox.y()+y;

if (destCol < 1 || destRank < 1

|| destCol > board()->columns ()
| | destRank > board()->ranks()) return false;

return (board()->data(destCol, destRank) == "' ');

}
Lastly declare a private QPoint m_fox member variable.

The simplest way to test the game is to make two changes to the code. First,
in the constructor of the main window class, replacem_algorithm = new

ChessAlgorithm(this) withm algorithm = new FoxAndHounds (this).Second,
modify the viewClicked () slot as follows:

void MainWindow: :viewClicked (const QPoint &field)
{

if (m_clickPoint.isNull()) {
//
} else {

if (field != m_clickPoint) {
m algorithm->move (m clickPoint, field);

//

}

You can also connect signals from the algorithm class to custom slots of the view or window

to notify about the end of the game and provide a visual hint as to which player should make
his move now.

11611

Graphics with Qt

What just happened?

We created a very simplistic API for implementing chess-like games by introducing the
newGame () and move () virtual methods to the algorithm class. The former method simply
sets everything up. The latter uses simple checks to determine whether a particular move is
valid and if the game has ended. We use the m_fox member variable to track the current
position of the fox to be able to quickly determine if it has any valid moves. When the game
ends, the gameOver () signal is emitted and the result of the game can be obtained from the
algorithm. You can use the exact same framework for implementing all chess rules.

Have a go hero - implementing the Ul around the chess hoard

During the exercise, we focused on developing the game board view and necessary classes
to make the game actually run. But we completely neglected the regular user interface the
game might possess, such as toolbars and menus. You can try designing a set of menus and
toolbars for the game. Make it possible to start a new game, save a game in progress (say

by implementing a FEN serializer), load a saved game (say by leveraging the existing FEN
string parser), or choose different game types that will spawn different ChessAlgorithm
subclasses. You can also provide a settings dialog for adjusting the look of the game board. If
you feel like it, you can add chess clocks or implement a simple tutorial system that will guide
the player through the basics of chess using text and visual hints via the highlight system we
implemented.

Have a go hero - connecting a UCI-compliant chess engine

If you really want to test your skills, you can implement a ChessAlgorithm subclass that
will connect to a Universal Chess Interface (UCI) chess engine such as StockFish (http://
stockfishchess.org) and provide a challenging artificial intelligence opponent for a
human player. UCl is the de facto standard for communication between a chess engine and a
chess frontend. Its specification is freely available, so you can study it on your own. To talk to
a UCl-compliant engine you can use QProcess, which will spawn the engine as an external
process and attach itself to its standard input and standard output. Then you can send
commands to the engine by writing to its standard input and read messages from the engine
by reading its standard output. To get you started, here is a short snippet of code that starts
the engine and attaches to its communication channels:

class UciEngine : public QObject ({
Q OBJECT

11621

http://stockfishchess.org
http://stockfishchess.org

Chapter 5

public:
UciEngine (QObject *parent = 0) : QObject (parent) {
m_uciEngine = new QProcess (this);
m_uciEngine->setReadChannel (QProcess:StandardOutput) ;
connect (m_uciEngine, SIGNAL (readyRead()), SLOT (readFromEngine())) ;
}
public slots:
void startEngine (const QString &enginePath) {
m_uciEngine->start (enginePath) ;
}
void sendCommand (const QString &command) {
m_uciEngine->write (command.toLatinl());
}
private slots:
void readFromEngine () {
while (m_uciEngine->canReadLine()) {
QString line = QString::fromLatinl (m uciEngine-s>readLine()) ;
emit messageReceived(line) ;

}

signals:

void messageReceived (QString) ;
private:

QProcess *m_uciEngine;

}i

OpenGL

We are not experts on OpenGlL, so in this part of the chapter we will not teach you to do

any fancy stuff with OpenGL and Qt but rather will show you how to enable the use of your
OpenGL skills in Qt applications. There are a lot of tutorials and courses on OpenGL out there
so if you're not that skilled with OpenGL, you can still benefit from what is described here by
employing the knowledge gained here to more easily learn fancy stuff. You can use external
materials and a high-level API offered by Qt, which is going to speed up many of the tasks
described in the tutorials.

11631

Graphics with Qt

Introduction to OpenGL with Ot

There are basically two ways you can use OpenGL in Qt. The first approach is to use
QOpenGLWidget. This is mostly useful if your application heavily depends on other widgets
(for example. the 3D view is only one of the views in your application and is controlled

using a bunch of other widgets surrounding the main view). The other way is to use
QOpenGLWindow; this is most useful when the GL window is the dominant or even the only
part of the program. Both APIs are very similar; they use instances of the QOpenGLContext
class to access the GL context. The difference is practically only in how they render the
scene to the window. QOpenGLWindow renders directly to the given window, while
QOpenGLWidget first renders to an offscreen buffer that is then rendered to the widget. The
advantage of the latter approach is that Q0penGLWidget can be part of a more complex
widget layout while Q0penGLWindow is usually used as the sole, often fullscreen, window.
In this chapter we will be using the more direct approach (Q0penGLWindow); however, bear
in mind that you can do everything described here using the widget too. Just replace the
window classes with their widget equivalents and you should be good to go.

We said that the whole API revolves around the QOpenGLContext class. It represents the
overall state of the GL pipeline, which guides the process of data processing and rendering to
a particular device.

A related concept that needs explanation is the idea of a GL context being "current" in

a thread. The way OpenGL calls work is that they do not use any handle to any object
containing information on where and how to execute the series of low-level GL calls. Instead,
it is assumed that they are executed in the context of the current machine state. The state
may dictate whether to render a scene to a screen or to a frame buffer object, which
mechanisms are enabled, or the properties of the surface OpenGL is rendering on. Making
a context "current" means that all further OpenGL operations issued by a particular thread
will be applied to this context. To add to that, a context can be "current" only in one thread
at the same time; therefore, it is important to make the context current before making

any OpenGL calls and then marking it as available after you are done accessing OpenGL
resources.

QOpenGLWindow has a very simple APl that hides most of the unnecessary details from

the developer. Apart from constructors and a destructor, it provides a small number of

very useful methods. First there are auxiliary methods for managing the OpenGL context:
context (), which returns the context, and makeCurrent () as well as doneCurrent ()
for acquiring and releasing the context. The remaining methods of the class are a number of
virtual methods we can reimplement to display OpenGL graphics.

The first method is called initializeGL (), and it is invoked by the framework once before
any painting is actually done so that you can prepare any resources or initialize the context in
any way you require.

11641

Chapter 5

Then there are two most important methods: resizeGL () and paintGL (). The firstis a
callback invoked every time the window is resized. It accepts the width and height of the
window as parameters. You can make use of that method by reimplementing it so that
you can prepare yourself for the fact that the next call to the other method, paintGL (),
renders to a viewport of a different size. Speaking of paintGL (), this is the equivalent of
paintEvent () for the widget classes; it gets executed whenever the window needs to be
repainted. This is the function where you should put your OpenGL rendering code.

Time for action - drawing a triangle using Qt and OpenGl

For the first exercise, we will create a subclass of Q0penGLWindow that renders a triangle
using simple OpenGL calls. Create a new project starting with Empty gmake Project from the
Other Projects group as the template. In the project file, put the following content:

QT = core gui
TARGET = triangle
TEMPLATE = app

Having the basic project setup ready, let's define a SimpleGLWindow class as a subclass of
QOpenGLWindow and override the initializeGL () method to set white as the clear color
of our scene. We do this by calling an OpenGL function called glClearColor. Qt provides

a convenience class called QOpenGLFunctions that takes care of resolving most commonly
used OpenGL functions in a platform-independent way. This is the recommended approach
to access OpenGLES functions in a platform-independent manner. Our window is going to
inherit not only QOpenGLWindow but also Q0penGLFunctions. However, since we don't
want to allow external access to those functions, we use protected inheritance.

class SimpleGLWindow : public QOpenGLWindow,
protected QOpenGLFunctions
public:
SimpleGLWindow (QWindow *parent = 0)
QOpenGLWindow (NoPartialUpdate, parent) { }
protected:
void initializeGL() {
initializeOpenGLFunctions () ;
glClearColor(1,1,1,0);

}

IninitializeGL (), we first call initializeOpenGLFunctions (), which is a method
of the QOpenGLFunctions class, one of the base classes of our window class. The method
takes care of setting up all the functions according to the parameters of the current GL
context (thus it is important to first make the context current, which luckily is done for us
behind the scenes before initializeGL () is invoked). Then we set the clear color of the
scene to white.

11651

Graphics with Qt

The next step is to reimplement paintGL () and put the actual drawing code there:

void paintGL() {
glClear (GL_COLOR_BUFFER BIT) ;
glvViewport (0, 0, width(), height()) ;
glBegin (GL_TRIANGLES) ;
glColor3f (1, 0, 0);
glvertex3f(0.0f, 1.0f, 0.0f);
glColor3f (0, 1, 0);
glvertex3f(1.0f,-1.0f, 0.0f);
glColor3f (0, 0, 1);
glvertex3f(-1.0f,-1.0f, 0.0f);
glEnd () ;
}
i

This function first clears the color buffer and sets the GL viewport of the context to be
the size of the window. Then we tell OpenGL to start drawing using triangles with the
glBegin () call and passing GL_TRIANGLES as the drawing mode. Then we pass three

vertices along with their colors to form a triangle. Finally, we inform the pipeline by invoking
glEnd () that we are done drawing using the current mode.

What is left is a trivial main () function that sets up the window and starts the event loop.
Add a new C++ Source File, call it main.cpp, and implement main () as follows:

int main(int argc, char **argv)
QGuiApplication app(argc, argv) ;
SimpleGLWindow window;
window.resize (600,400) ;
window.show () ;

return app.exec();

(1661

Chapter 5

You can see the triangle has jagged edges. That's because of the aliasing effect.
You can counter it by enabling multisampling for the window, which will make
OpenGL render the contents multiple times and then average the result, which
~ acts as antialiasing. To do that, add the following code to the constructor of the
Q window:
QSurfaceFormat fmt = format () ;
fmt.setSamples (16); // multisampling set to 16
setFormat (fmt) ;

Drawing colored triangles is fun, but drawing textured cubes is even more fun so let's see
how we can use OpenGL textures with Qt.

Time for action - scene-hased rendering

Let's take our rendering code to a higher level. Putting OpenGL code directly into the
window class requires subclassing the window class and makes the window class more
and more complex. Let's follow good programming practice and separate rendering code
from window code.

Create a new class and call it AbstractGLScene. It is going to be the base class for
definitions of OpenGL scenes. You can derive the class (with protected scope) from
QOpenGLFunctions to make accessing different GL functions easier. Make the scene class
accept a pointer to Q0penGLWindow, either in the constructor or through a dedicated setter
method. Make sure the pointer is stored in the class for easier access as we are going to rely
on that pointer for accessing physical properties of the window. Add methods for querying
the window's OpenGL context. You should end up with code similar to the following:

class AbstractGLScene : protected QOpenGLFunctions {

public:
AbstractGLScene (QOpenGLWindow *wnd = 0) { m _window = wnd; }
QOpenGLWindow* window () const { return m window; }
QOpenGLContext* context ()

return window () ? window () ->context() : 0;
const QOpenGLContext* context () const {
return window () ? window () ->context() : 0;
private:

QOpenGLWindow *m_window = nullptr; // C++11l required for assignment

bi

11671

Graphics with Qt

Now the essential part begins. Add two pure virtual methods called paint () and
initialize (). Also remember about adding a virtual destructor.

Instead of making initialize () a pure virtual function, you can implement
M its body in such a way that it will call initializeOpenGLFunctions ()
Q to fulfill the requirements of the QOpenGFunctions class. Then, subclasses
of AbstractGLScene can make sure the functions are initialized properly by
calling the base class implementation of initialize ().

Next, create a subclass of Q0penGLWindow and call it SceneGLWindow. Equip it with setter
and getter methods to allow the object to operate on an AbstractGLScene instance.

Then reimplement the initializeGL () and paintGL () methods and make them call
appropriate equivalents in the scene:

void SceneGLWindow::initializeGL() { if (scene())
scene () ->initialize(); }
void SceneGLWindow: :paintGL() { if (scene()) scene()->paint(); }
What just happened?

We have just set up a class chain that separates the window code from the actual OpenGL
scene. The window forwards all calls related to scene contents to the scene object so that
when the window is requested to repaint itself, it delegates the task to the scene object.
Note that prior to doing that, the window will make the GL context current; therefore, all
OpenGL calls the scene makes will be related to that context. You can store the code created
in this exercise for later reuse in further exercises and your own projects.

Time for action - drawing a textured cube

Subclass AbstractGLScene and implement the constructor to match the one from
AbstractGLScene. Add a method to store a QImage object in the scene that will contain
texture data for the cube. Add a QOpenGLTexture pointer member as well, which will
contain the texture, initialize it to 0 in the constructor, and delete it in the destructor.

Let's call the image object m_tex and the texture m_texture. Now add a protected
initializeTexture () method and fill it with the following code:

void initializeTexture()
m_texture = new QOpenGLTexture (m tex.mirrored()) ;
m_texture->setMinificationFilter (QOpenGLTexture: :LinearMipMapLinear) ;
m_texture->setMagnificationFilter (QOpenGLTexture: :Linear) ;

}

[168]

Chapter 5

The function first mirrors the image vertically. This is because OpenGL expects the texture to
be "upside down". Then we create a QOpenGLTexture object, passing it our image. Then
we set minification and magnification filters so that the texture looks better when it is scaled.

We are now ready to implement the initialize () method that will take care of setting up
the texture and the scene itself.

void initialize() {
AbstractGLScene: :initialize () ;
m_initialized = true;
if (Im _tex.isNull()) initializeTexture();
glClearColor(1,1,1,0);
glShadeModel (GL_SMOOTH) ;

}

We make use of a flag called m_initialized. This flagis needed to prevent the texture
from being set up too early (when no GL context is available yet). Then we check if the
texture image is set (using the QImage: : isNull () method); if so, we initialize the texture.
Then we set some additional properties of the GL context.

In the setter form_tex, add code that checksif m_initializedissetto
Ry true andif so, calls initializeTexture (). This is to make certain that
Q the texture is properly set regardless of the order in which the setter and
initialize () are called. Also remembertosetm initializedto
false in the constructor.

The next step is to prepare the cube data. We will define a special data structure for the cube
that groups vertex coordinates and texture data in a single object. To store coordinates, we
are going to use classes tailored to that purpose—Qvector3D and QVector2D.

struct TexturedPoint {
QVector3D coord;
QVector2D uv;

TexturedPoint (const QVector3D& pcoord, const QVector2D& puv) {
coord = pcoord; uv = puv; }

Vi

QVector<TexturedPoint > will hold information for the whole cube. The vector is
initialized with data using the following code:

void CubeGLScene::initializeCubeData()
m_data = {
// FRONT FACE
{{-0.5, -0.5, ©0.5}, {0, o}}, {{ 0.5, -0.5, 0.5}, {1, 0}},

Graphics with Qt

{{ 0.5, 0.5, 0.5}, {1, 1}}, {{-0.5, 0.5, ©0.5}, {0, 1}},

// TOP FACE

{{-0.5, 0.5, 0.5}, {0, o}}, {{ 0.5, o0.5, 5}, {1, o}},
{{ 0.5, 0.5, -0.5}, {1, 1}}, {{-0.5, 0.5, -0.5}, {0, 1}},
// BACK FACE

{{-0.5, 0.5, -0.5}, {0, o}}, {{ 0.5, 0.5, -0.5}, {1, 0}},
{{ 0.5, -0.5, -0.5}, {1, 1}}, {{-0.5, -0.5, -0.5}, {0, 1}},
// BOTTOM FACE

{{-0.5, -0.5, -0.5}, {0, o}}, {{ 0.5, -0.5, -0.5}, {1, 0}},
{{ 0.5, -0.5, 0.5}, {1, 1}}, {{-0.5, -0.5, ©0.5}, {0, 1}},
// LEFT FACE

{{-0.5, -0.5, -0.5}, {0, o}}, {{-0.5, -0.5, 5}, {1, o}},
{{-0.5, 0.5, 0.5}, {1, 1}}, {{-0.5, 5, -0.5}, {0, 1}},
// RIGHT FACE

{{ 0.5, -0.5, 0.5}, {0, o}}, {{ 0.5, -0.5, -0.5}, {1, 0}},
{{ 0.5, 0.5, -0.5}, {1, 1}}, {{ o.5, 5, 5}, {0, 1}},

}i
}

The code uses C++11 syntax to operate on the vector. If you have an older compiler, you will
have to use Qvector: :append () instead.

m_data.append (TexturedPoint (QVector3D(...), QVector2D(...)));

The cube consists of six faces and is centered on the origin of the coordinate system.
The following image presents the same data in graphical form. Purple figures are texture
coordinates in UV coordinate space.

(1701

Chapter 5

050505 050505

0.505-05

0505 -05

050505 - © 05-0505

-0.5-05-05 0.5-0.5-0.5

initializeCubeData () should be called from the scene constructor or from the
initialize () method. What remains is the painting code.

void CubeGLScene: :paint () {

}

glClear (GL_COLOR_BUFFER BIT| GL DEPTH BUFFER BIT) ;
glvViewport (0, 0, window () ->width (), window()->height()) ;
glLoadIdentity () ;

glRotatef(45, 1.0, 0.0,
glRotatef (45, 0.0, 1.0,

glEnable (GL_DEPTH TEST) ;
glEnable (GL_CULL_FACE) ;
glCullFace (GL_BACK) ;
paintCube () ;

First we set up the viewport and then we rotate the view. Before calling paintCube (),
which is going to render the cube itself, we enable depth testing and face culling so that only
visible faces are drawn. The paintCube () routine looks as follows:

void CubeGLScene: :paintCube () {

if (m_texture)

m_texture->bind() ;

glEnable (GL_TEXTURE_2D) ;
glBegin (GL_QUADS) ;

1l

Graphics with Qt

for(int i=0;i<m data.size() ;++i) {

const TexturedPoint &pt = m data.at(i);

glTexCoord2d (pt.uv.x(), pt.uv.y());

glvVertex3f (pt.coord.x (), pt.coord.y(), pt.coord.z());
}
glEnd () ;

glDisable (GL_TEXTURE 2D) ;

}

First the texture is bound and texturing is enabled. Then we enter the quad drawing mode
and stream in data from our data structure. Finally, we disable texturing again.

For completeness, here is amain () function that executes the scene:

int main(int argc, char **argv) {
QGuiApplication app(argc, argv) ;
SceneGLWindow window;
QSurfaceFormat fmt;
fmt.setSamples (16) ;
window.setFormat (fmt) ;
CubeGLScene scene (&window) ;
window. setScene (&scene) ;
scene.setTexture (QImage (":/texture.jpg")) ;
window.resize (600,600) ;
window. show () ;
return app.exec() ;

}

Please note the use of QSurfaceFormat to enable multisample antialiasing for the scene.
We have also put the texture image into a resource file to avoid problems with the relative
path to the file.

Have a go hero - animating a cubhe

Try modifying the code to make the cube animated. To do that, have the scene inherit
QObject, add an angle property of type £1loat to it (remember about the 9 OBJECT
macro). Then modify one of the glRotatef () lines to use the angle value instead of a
constant value. Put the following code in main () right before calling app . exec ():

QPropertyAnimation anim(&scene, "angle");
anim.setStartValue (0) ;
anim.setEndValue (359) ;
anim.setDuration (5000) ;
anim.setLoopCount (-1) ;

anim.start () ;

[1721

Chapter 5

Remember to put a call to window () ->update () in the setter for the angle property so
that the scene is redrawn.

Modern OpenGL with Ot

OpenGL code shown in the previous section uses a very old technique of streaming vertices
one by one into a fixed OpenGL pipeline. Nowadays, modern hardware is much more feature
rich and not only does it allow faster processing of vertex data but it also offers the ability

to adjust different processing stages with the use of reprogrammable units called shaders.

In this section, we will take a look at what Qt has to offer in the domain of a "modern"
approach to using OpenGL.

Qt can make use of shaders through a set of classes based around
QOpenGLShaderProgram. This class allows compiling, linking, and executing shader
programs written in GLSL. You can check if your OpenGL implementation supports shaders
by inspecting the result of a static QOpenGLShaderProgram: : hasOpenGLShaderPro
grams () call that accepts a pointer to a GL context. All modern hardware and all decent
graphics drivers should have some support for shaders. A single shader is represented by

an instance of the Q0penGLShader class. Using it, you can decide on the type of shader,
associate, and shader source code. The latter is done by calling Q0penGLShader: : compile
SourceCode (), which has a number of overloads for handling different input formats.

Qt supports all kinds of shaders, with the most common being vertex and fragment shaders.
These are both part of the classic OpenGL pipeline. You can see an illustration of the pipeline
on the following diagram:

—){ Primitive Processing Vertex Shader Primitive Assembly ‘
Framebuffer] Fragment Shader

(1131

Graphics with Qt

When you have a set of shaders defined, you can assemble a complete program by using
QOpenCGLShaderProgram: : addShader (). After all shaders are added, you can 1ink ()
the program and bind () it to the current GL context. The program class has a number of
methods for setting values of different input parameters—uniforms and attributes both in
singular and array versions. Qt provides mappings between its own types (such as QSize or
QColor) to GLSL counterparts (for example, vec2 and vec4) to make the programmer's life
even easier.

A typical code flow for using shaders for rendering is as follows (first a vertex shader is
created and compiled):

QOpenGLShader vertexShader (QOpenGLShader: :Vertex) ;
QByteArray code = "uniform vec4 color;\n"

"uniform highp mat4 matrix;\n"

"void main(void) { gl Position = gl Vertex*matrix; }";
vertexShader.compileSourceCode (code) ;

The process is repeated for a fragment shader:

QOpenGLShader fragmentShader (QOpenGLShader: :Fragment) ;
code = "uniform vec4 color;\n"

"void main(void) { gl_FragColor = color; }";
fragmentShader.compileSourceCode (code) ;

Then shaders are linked into a single program in a given GL context:

QOpenGLShaderProgram program(context) ;
program.addShader (vertexShader) ;
program.addShader (fragmentShader) ;
program.link () ;

Whenever the program is used, it should be bound to the current GL context and filled with
required data:

program.bind() ;

QOMatrix4x4 m = ..;

QColor color = Qt::red;
program.setUniformvValue ("matrix", m) ;
program.setUniformvValue ("color", color);

After that, calls activating the render pipeline are going to use the bound program:

glBegin (GL_TRIANGLE STRIP) ;

glEnd () ;

1l

Chapter 5

Time for action - shaded ohjects

Let's convert our last program so that it uses shaders. To make the cube better, we will
implement a smooth lighting model using the Phong algorithm. At the same time, we will
learn to use some helper classes that Qt offers for use with OpenGL.

The basic goals for this mini-project are as follows:

¢ Use vertex and fragment shaders for rendering a complex object
¢ Handle model, view, and projection matrices

¢ Use attribute arrays for faster drawing

Start by creating a new subclass of AbstractGLScene. Let's give it the following interface:

class ShaderGLScene : public QObject, public AbstractGLScene {
Q OBJECT
public:
ShaderGLScene (SceneGLWindow *wnd) ;
void initialize() ;
void paint () ;
protected:
void initializeObjectDatal() ;
private:
struct ScenePoint
QVector3D coords;
QVector3D normal;
ScenePoint (const QVector3D &c, const QVector3D &n) ;
Vi
QOpenGLShaderProgram m shader;
QMatrix4x4 m modelMatrix;
QMatrix4x4 m viewMatrix;
QMatrix4x4 m projectionMatrix;
QVector<ScenePoint> m data;

Vi

Significant changes to the class interface in comparison with the previous project have been
highlighted. We're not using textures in this project so TexturedPoint was simplified to
ScenePoint with UV texture coordinates removed.

We can start implementing the interface with the initializeObjectData () function.
We're not going to go line by line explaining what the body of the method does. You can
implement it as you want; it is important that the method fill the m_data member with
information about vertices and their normals.

(1151

Graphics with Qt

In the sample code that comes with this book, you can find code that loads
data from a file in PLY format generated with the Blender 3D program. To
M export a model from Blender, make sure it consists of just triangles (for that,
Q select the model, go into the Edit mode by pressing Tab, open the Faces menu
with Ctrl + F, and choose Triangulate Faces). Then click on File and Export;
choose Stanford (.ply). You will end up with a text file containing vertex and
normal data as well as face definitions for the vertices.

You can always reuse the cube object from the previous project. Just be aware that its
normals are not calculated properly for smooth shading; thus, you will have to correct them.

Before we can set up the shader program, we have to be aware of what the actual shaders
look like. Shader code is going to be loaded from external files, so the first step is to add a
new file to the project. In Creator, click on File and choose New File or Project; from the
bottom pane, choose GLSL, and from the list of available templates choose Vertex Shader
(Desktop OpenGL). Call the new file phong.vert and input the following code:

uniform highp mat4 modelViewMatrix;
uniform highp mat3 normalMatrix;
uniform highp mat4 projectionMatrix;
uniform highp mat4 mvpMatrix;

attribute highp vec4 Vertex;
attribute mediump vec3 Normal;

varying mediump vec3 N;
varying highp vec3 v;

void main(void) {
N
v = vec3 (modelViewMatrix * Vertex) ;

normalize (normalMatrix * Normal) ;

gl Position = mvpMatrix*Vertex;

}

The code is very simple. We declare four matrices representing different stages of coordinate
mapping for the scene. We also define two input attributes—vertex and Normal—which
contain the vertex data. The shader is going to output two pieces of data—a normalized
vertex normal and a transformed vertex coordinate as seen by the camera. Of course, apart
from that we set g1_Position to be the final vertex coordinate. In each case, we want to
be compliant with the OpenGL/ES specification so we prefix each variable declaration with a
precision specifier.

(1761

Chapter 5

Next, add another file, call it phong . frag, and make it a Fragment Shader (Desktop
OpenGL). The content of the file is a typical ambient, diffuse, and specular calculation:

struct Material ({
lowp vec3 ka;
lowp vec3 kd;
lowp vec3 ks;
lowp float shininess;

Vi

struct Light ({
lowp vec4 position;
lowp vec3 intensity;

Vi

uniform Material mat;
uniform Light light;
varying mediump vec3 N;
varying highp vec3 v;

void main(void) {
mediump vec3 n = normalize (N) ;
highp vec3 L = normalize(light.position.xyz - v);
highp vec3 E = normalize(-v);
mediump vec3 R = normalize (reflect (-L, n));

lowp float LdotN = dot (L, n);
lowp float diffuse = max(LdotN, 0.0);
lowp vec3 spec = vec3(0,0,0);

if (LdotN > 0.0) {
float RdotE = max(dot(R, E), 0.0);
spec = light.intensity*pow(RdotE, mat.shininess) ;

}

vec3 color = light.intensity
* (mat.ka + mat.kd*diffuse + mat.ks*spec);
gl FragColor = vec4(color, 1.0);

}

Apart from using the two varying variables to obtain the interpolated normal (N) and
fragment (v) position, the shader declares two structures for keeping light and material
information. Without going into the details about how the shader itself works, it calculates
three components—ambient light, diffused light, and specular reflection—adds them
together, and sets that as the fragment color. Since all the per vertex input data is
interpolated for each fragment, the final color is calculated individually for each pixel.

[l

Graphics with Qt

Once we know what the shaders expect, we can set up the shader program object. Let's go
through the initialize () method:

void initialize()
AbstractGLScene: :initialize () ;
glClearColor(0,0,0,0);

First we call the base class implementation and set the background color of the scene to
black, as shown in the following code:

m shader.addShaderFromSourceCode
_(QOpenGLShader::Vertex, fileContent ("phong.vert")) ;
m shader.addShaderFromSourceCode
_(QOpenGLShader::Fragment, fileContent ("phong.frag")) ;
m_shader.link() ;

Then we add two shaders to the program reading their source code from external files with
the use of a custom helper function called fileContent (). This function essentially opens
a file and returns its content. Then we link the shader program. The 1ink () function returns
a Boolean value but for simplicity we skip the error check here. The next step is to prepare all
the input data for the shader, as shown:

m_shader.bind() ;

m_shader.setAttributeArray ("Vertex",
GL_FLOAT, m _data.constData(), 3, sizeof (ScenePoint)) ;

m_shader.enableAttributeArray ("Vertex") ;

m_shader.setAttributeArray ("Normal",
GL_FLOAT, &m_datal[0] .normal, 3, sizeof (ScenePoint));

m_shader.enableAttributeArray ("Normal") ;
m_shader.setUniformValue ("material.ka", QVector3D(0.1, 0, 0.0));

m_shader.setUniformvValue ("material.kd",
QVector3D(0.7, 0.0, 0.0));

m_shader.setUniformvValue ("material.ks",
QVector3D(1.0, 1.0, 1.0));

m_shader.setUniformValue ("material.shininess", 128.0f);
"light.position", QVector3D(2, 1, 1));
"light.intensity", QVector3D(1,1,1));

m_shader.setUniformvalue (
(

m_shader.setUniformvalue

(1181

Chapter 5

First the shader program is bound to the current context so that we can operate on it. Then
we enable the setup of two attribute arrays—one for vertex coordinates and the other for
their normals. We inform the program that an attribute called vertex consists of three
values of type GL._FLOAT. The first value is located at m_data.constData (), and data for
the next vertex is located sizeof (ScenePoint) bytes later than data for the current point.
Then we have a similar declaration for the Normal attribute, with the only exception that
the first piece of data is placed at &m_data [0] .normal. By informing the program about
layout of the data, we allow it to quickly read all the vertex information when needed.

After attribute arrays are set, we pass values for uniform variables to the shader program,
which concludes the shader program setup. You will notice that we didn't set values for
uniforms representing the various matrices; we will do that separately for each repaint. The
paint () method takes care of setting up all the matrices:

void ObjectGLScene: :paint () {
m projectionMatrix.setToIdentity () ;
greal ratio = greal (window () ->width())
/ greal (window () ->height ()) ;
m_projectionMatrix.perspective (90, ratio,
0.5, 40); // angle, ratio, near plane, far plane
m_viewMatrix.setToIdentity();
QVector3D eye = QVector3D(0,0,2);
QVector3D center = QVector3D(0,0,0);
QVector3D up = QVector3D(0, 1, 0);
m viewMatrix.lookAt (eye, center, up);

In this method, we make heavy use of the QMatrix4x4 class that represents a 4 x 4 matrix
in so-called row-major order, which is suited to use with OpenGL. At the beginning, we
reset the projection matrix and use the perspective () method to give it a perspective
transformation based on current window size. Afterwards, the view matrix is also reset
and the 1ookAt () method is used to prepare the transformation for the camera; center
value indicates the center of the view eye is looking at. The up vector dictates the vertical
orientation of the camera (with respect to the eye position).

The next couple of lines are similar to what we had in the previous project:

glClear (GL COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glvViewport (0, 0, window () ->width(), window()->height()) ;
glEnable (GL_DEPTH TEST) ;

glEnable (GL_CULL_ FACE) ;

glCullFace (GL_BACK) ;

(191

Graphics with Qt

After that, we do the actual painting of the object:

m_modelMatrix.setToIdentity () ;

m_modelMatrix.rotate (45, 0, 1, 0);

OMatrix4x4 modelViewMatrix = m viewMatrix*m modelMatrix;
paintObject (modelViewMatrix) ;

}

We start by setting the model matrix, which dictates where the rendered object is positioned
relative to the center of the world (in this case, we say it is rotated 45 degrees around the y
axis). Then we assemble the model-view matrix (denoting the position of the object relative
to the camera) and pass it to the paintObject () method, as shown:

void paintCube (const QMatrix4x4& mvMatrix) {
m_shader.bind() ;
m_shader.setUniformvValue ("projectionMatrix",
m_projectionMatrix) ;
m_shader.setUniformValue ("modelViewMatrix",
mvMatrix) ;

m_shader.setUniformvValue ("mvpMatrix",
m_projectionMatrix*mvMatrix) ;

m_shader.setUniformvValue ("normalMatrix",
mvMatrix.normalMatrix()) ;

const int pointCount = m data.size();
glDrawArrays (GL_TRIANGLES, 0, pointCount) ;

}

This method is very easy since most of the work was done when setting up the shader
program. First the shader program is activated. Then all required matrices are set as uniforms
for the shader. Included is the normal matrix calculated from the model-view matrix. Finally,
a call to glDrawArrays () is issued telling it to render with the GL,_ TRIANGLES mode

using active arrays, starting from the beginning of the array (offset 0) and readi