
[ 1 ]

www.allitebooks.com

http://www.allitebooks.org


Game Programming Using Qt

A complete guide to designing and building fun games  
with Qt and Qt Quick 2 using their associated toolsets

Witold Wysota

Lorenz Haas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Game Programming Using Qt

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. However, 
Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production Reference: 1210116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-887-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Authors

Witold Wysota

Lorenz Haas

Reviewers

Simone Angeloni

Rahul De

Pooya Eimandar

Shaveen Kumar

M. Cihan Özer

Acquisition Editor

Vinay Argekar

Content Development Editor

Pooja Mhapsekar

Technical Editor

Mrunmayee Patil

Copy Editor

Neha Vyas

Project Coordinator

Sanjeet Rao

Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta

Graphics

Disha Haria

Jason Monterio

Production Coordinator

Conidon Miranda

Cover Work

Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org


About the Authors

Witold Wysota is a software architect and developer living in Poland. He started his 
adventure with Qt in 2004 when he joined QtForum.org and started answering questions 
about programming with Qt. Shortly afterwards, he became part of the moderator group of 
the forum. In 2006, together with the moderator team, he established QtCentre.org, which 
quickly became the largest community-driven support site devoted to Qt. For a number of 
years, he conducted commercial, academic, and public trainings and workshops and has 
been giving lectures on Qt, Qt Quick, and related technologies. He is a certified Qt developer 
and was a member of Qt Education Advisory Board with Nokia, where he helped prepare 
materials in order to use Qt in educational activities.

Witold was also a technical reviewer for Foundations of Qt Development, Johan Thelin, 
Apress Publishing, a book about Qt 4, and an author of a couple of articles on programming 
with Qt.

In real life, he is a passionate adept of Seven Star Praying Mantis, a traditional style of 
Chinese martial arts.

I would like to thank all the people who have worked on Qt's development 
over the years for creating such a great programming framework, which 
was the main force that helped me to shape my programming career.

I would also like to thank Lorenz for helping me with the book as well as 
the team at Packt Publishing for having a magnitude of patience for me 
during the process of the creation of this book.

www.allitebooks.com

http://www.allitebooks.org


Lorenz Haas is a passionate programmer who started his Qt career with Qt 3. Thrilled 
by Qt's great community, especially the one at QtCentre.org, he immersed himself in this 
framework, became one of the first certified Qt developers and specialists, and turned his 
love for Qt into his profession.

Lorenz is now working at a medium-sized IT company based in Erlangen, Germany, as a lead 
software architect. He mainly develops machine controls and their user interfaces as well  
as general solutions for the industry sector. Additionally, he runs his own small consultancy 
and programming business called Histomatics (http://www.histomatics.de).

A few years ago, he started contributing to Qt Creator. He added a couple of refactoring 
options that you probably rely on a regular basis if you use Qt Creator. He is also the author 
of the Beautifier plugin.

I would like to thank Witold who guided me through my first steps into the 
Qt world back in the days and who still assists me with any problems that 
arise. I am also very grateful to him for taking me on board for this book 
writing project. He's an excellent teacher and tutor!

Secondly, I would like to thank the team at Packt Publishing, who helped 
and guided us through the entire process of writing this book.

www.allitebooks.com

http://www.histomatics.de
http://www.allitebooks.org


About the Reviewers

Simone Angeloni is a software developer and consultant with over a decade of experience 
in C++ and scripting languages. He is a passionate gamer, but an even more passionate 
modder and game designer.

He is currently working for Crytek GmbH and developing the UI of the free-to-play, award-
winning video game Warface. Before this, he was realizing configuration systems for railway 
signaling and creating standalone applications with Qt. Later, he worked with universities 
and the National Institute of Nuclear Physics to realize fast data acquisition for particle 
accelerators.

Recently, he founded Clockwise Interactive, a game company that is currently working on the 
production of its first title.

Rahul De is a 23-year-old systems and server-side engineer from Kolkata, India. He recently 
graduated from the Vellore Institute of Technology with a bachelor of technology degree 
in computer science and now works with ThoughtWorks. Being a tech and open source 
enthusiast and a proper "geeks geek", Rahul took up programming at a very young age and 
quickly matured from developing small-time native applications for desktops to maintaining 
servers, writing compilers, building IDEs, and enhancing Qt. His latest pet projects involve 
Medusa—a JIT compiler for Python using Qt, which aims to provide up to a 1500 percent 
boost for Python projects.

Being an avid gamer, he has already dabbled quite a bit with various engines such as Unreal 
and Cry. He likes to play and develop games in his spare time.

www.allitebooks.com

http://www.allitebooks.org


Pooya Eimandar was born on 7th January 1986. He graduated in computer science and 
has a hardware engineering degree from Shomal University. He is also the author of DirectX 
11.1 Game Programming, Packt Publishing.

He began his career working on various 3D simulation applications. In 2010, he founded 
BaziPardaz Game Studio, and since then, he has been leading an open source game engine 
(https://persianengine.codeplex.com/) at Bazipardaz.

He is currently working on a playout and CG editor tool for Alalam News Network. You can 
find more information about him at http://PooyaEimandar.com/.

Shaveen Kumar is a computer scientist and engineer. He graduated from Carnegie Mellon 
University in 2013 with a master's degree in entertainment technology and is working at 
Google. He works there as a graphics engineer and technical artist. His main interests are in 
GPU programming, parallel computing, game engine development, robotics, and computer 
vision.

More information about his work can be found at http://www.shaveenk.com.

M. Cihan Özer is a game developer and researcher in computer graphics. He started his 
career in game development and worked for several mobile and game companies.

He got his bachelor's degree from Ankara University, Turkey, and he is currently an MS 
student at Université de Montréal, Canada. Cihan's work focuses on realistic rendering and 
interactive techniques.

I would like to thank the authors of this book. It will help a lot of people 
who want to learn Qt and work with it. Also, I would like to thank the great 
people at Packt Publishing for giving me the opportunity to review this 
book.

www.allitebooks.com

https://persianengine.codeplex.com/
http://PooyaEimandar.com/
http://www.shaveenk.com
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for 
a range of free newsletters and receive exclusive discounts and offers on Packt books and 
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print, and bookmark content

�� On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
service@packtpub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org


[ i ]

Table of Contents
Preface	 xi

Chapter 1: Introduction to Qt	 1
The cross-platform programming	 1

Qt Platform Abstraction	 2
Supported platforms	 3

A journey through time	 3
New in Qt 5	 5

Restructured codebase	 5
Qt Essentials	 6
Qt Add-ons	 7

Qt Quick 2.0	 7
Meta-objects	 8
C++11 support	 8

Choosing the right license	 8
An open source license	 8
A commercial license	 9

Summary	 9

Chapter 2: Installation	 11
Installing the Qt SDK	 11
Time for action – installing Qt using an online installer	 12
Setting up Qt Creator	 15
Time for action – loading an example project	 16
Time for action – running the Affine Transformations project	 17
Building Qt from sources	 20
Time for action – setting up Qt sources using Git	 20
Time for action – configuring and building Qt	 21
Summary	 22

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Chapter 3: Qt GUI Programming	 23
Windows and dialogs	 23

Creating a Qt project	 23
Time for action – creating a Qt Desktop project	 24

Adding child widgets to a window	 27
Managing widget content	 28

Time for action – implementing a tic-tac-toe game board	 30
Qt meta-objects	 33

Signals and slots	 34
Time for action – functionality of a tic-tac-toe board	 38

Properties	 41
Declaring a property	 41
Using a property	 42

Time for action – adding properties to the board class	 42
Designing GUIs	 43
Time for action – designing the game configuration dialog	 46
Time for action – polishing the dialog	 48

Accelerators and label buddies	 48
The tab order	 49
Signals and slots	 50
Using designer forms	 53

Direct approach	 53
The multiple-inheritance approach	 54
The single inheritance approach	 54

Time for action – the logic of the dialog	 55
An application's main window	 57

The Qt resource system	 58

Time for action – the main window of the application	 58
Time for action – adding a pull-down menu	 61
Time for action – creating a toolbar	 62
Time for action – filling in the central widget	 62
Time for action – putting it all together	 64
Summary	 67

Chapter 4: Qt Core Essentials	 69
Text handling	 69

Manipulating strings	 70
Encoding and decoding text	 70
Basic string operations	 71
The string search and lookup	 72
Dissecting strings	 73
Converting between numbers and strings	 74
Using arguments in strings	 75

Regular expressions	 75



Table of Contents

[ iii ]

Time for action – a simple quiz game	 76
Extracting information out of a string	 78
Finding all pattern occurrences	 80

Data storage	 81
Files and devices	 81

Traversing directories	 81
Getting access to the basic file	 83
Devices	 84

Time for action – implementing a device to encrypt data	 85
Text streams	 88
Data serialization	 90

Binary streams	 91

Time for action – serialization of a custom structure	 91
XML streams	 92

Time for action – implementing an XML parser for player data	 93
JSON files	 99

Time for action – the player data JSON serializer	 100
Time for action – implementing a JSON parser	 102

QSettings	 104

Summary	 106

Chapter 5: Graphics with Qt	 107
Raster painting	 107

Painter attributes	 108
Widget painting	 114

Time for action – custom-painted widgets	 115
Time for action – transforming the viewport	 117
Time for action – drawing an oscillogram	 118

Input events	 120

Time for action – making oscillograms selectable	 120
Working with images	 123

Loading	 124
Modifying	 125
Painting	 126

Painting text	 126
Static text	 127
Rich text	 128

Optimized drawing	 129
Time for action – optimizing oscillogram drawing	 129
Time for action – developing the game architecture	 131
Time for action – implementing the game board class	 135
Time for action – understanding the ChessView class	 139
Time for action – rendering the pieces	 145
Time for action – making the chess game interactive	 148



Table of Contents

[ iv ]

Time for action – connecting the game algorithm	 156
OpenGL	 163

Introduction to OpenGL with Qt	 164
Time for action – drawing a triangle using Qt and OpenGL	 165
Time for action – scene-based rendering	 167
Time for action – drawing a textured cube	 168

Modern OpenGL with Qt	 173
Shaders	 173

Time for action – shaded objects	 175
GL buffers	 181
Off-screen rendering	 183

Summary	 183

Chapter 6: Graphics View	 185
Graphics View architecture	 185

Items	 187
Parent child relationship	 187
Appearance	 189

Time for action – creating a black, rectangular item	 189
Time for action – reacting to an item's selection state	 191
Time for action – making the item's size definable	 192

Standard items	 193
Coordinate system of the items	 195

Time for action – creating items with different origins	 196
Time for action – rotating an item	 197

Scenes	 198
Adding items to the scene	 198

Time for action – adding an item to a scene	 199
Interacting with items on the scene	 200
Rendering	 203

Time for action – rendering the scene's content to an image	 203
Coordinate system of the scene	 204

Time for action – transforming parent items and child items	 206
View	 208

Time for action – putting it all together!	 209
Showing specific areas of the scene	 211
Transforming the scene	 213

Time for action – creating an item where transformations can easily be seen	 213
Time for action – implementing the ability to scale the scene	 214
Time for action – implementing the ability to move the scene	 215
Time for action – taking the zoom level into account	 217

Questions you should keep in mind	 218



Table of Contents

[ v ]

The jumping elephant or how to animate the scene	 218
The game play	 218
The player item	 219

Time for action – creating an item for Benjamin	 219
The playing field	 221
The scene	 222

Time for action – making Benjamin move	 222
Parallax scrolling	 227

Time for action – moving the background	 228
QObject and items	 229

Time for action – using properties, signals, and slots with items	 229
Property animations	 230

Time for action – using animations to move items smoothly	 230
Time for action – keeping multiple animations in sync	 232

Item collision detection	 233
Time for action – making the coins explode	 233

Setting up the playing field	 235
A third way of animation	 236

Widgets inside Graphics View	 236
Optimization	 238

A binary space partition tree	 238
Caching the item's paint function	 239
Optimizing the view	 239

Summary	 241

Chapter 7: Networking	 243
QNetworkAccessManager	 243

Downloading files over HTTP	 244
Time for action – downloading a file	 245

Error handling	 247
Time for action – displaying a proper error message	 248

Downloading files over FTP	 250
Downloading files in parallel	 250

The finished signal	 251

Time for action – writing the OOP conform code using QSignalMapper	 252
The error signal	 253
The readyRead signal	 253
The downloadProgress method	 254

Time for action – showing the download progress	 254
Using a proxy	 255



Table of Contents

[ vi ]

Connecting to Google, Facebook, Twitter, and co.	 256
Time for action – using Google's Distance Matrix API	 256
Time for action – constructing the query	 257
Time for action – parsing the server's reply	 259
Controlling the connectivity state	 264

QNetworkConfigurationManager	 264
QNetworkConfiguration	 266
QNetworkSession	 266
QNetworkInterface	 268

Communicating between games	 268
Time for action – realizing a simple chat program	 268
The server – QTcpServer	 269
Time for action – setting up the server	 269
Time for action – reacting on a new pending connection	 270
Time for action – forwarding a new message	 271
Time for action – detecting a disconnect	 273
The client	 274
Time for action – setting up the client	 274
Time for action – receiving text messages	 275
Time for action – sending text messages	 276
Improvements	 277
Using UDP	 278
Time for action – sending a text via UDP	 278
Summary	 280

Chapter 8: Scripting	 281
Why script?	 281
The basics of Qt Script	 282

Evaluating JavaScript expressions	 282
Time for action – creating a Qt Script editor	 284
Time for action – sandboxed script evaluation	 289
Integrating Qt and Qt Script	 290

Exposing objects	 290
Time for action – employing scripting for npc AI	 291

Exposing functions	 297
Exposing C++ functions to scripts	 297
Exposing script functions to C++	 300

Time for action – storing the script	 300
Time for action – providing an initialization function	 302
Time for action – implementing the heartbeat event	 303

Using signals and slots in scripts	 304



Table of Contents

[ vii ]

Creating Qt objects in scripts	 306
Error recovery and debugging	 307
Extensions	 309
The other Qt JavaScript environment	 310

Alternatives to JavaScript	 310
Python	 310

Time for action – writing a Qt wrapper for embedding Python	 311
Time for action – converting data between C++ and Python	 313
Time for action – calling functions and returning values	 317
Summary	 321

Chapter 9: Qt Quick Basics	 323
Fluid user interfaces	 323
Declarative UI programming	 324

Element properties	 325
Group properties	 327
Object hierarchies	 328

Time for action – creating a button component	 332
Time for action – adding button content	 334
Time for action – sizing the button properly	 335
Time for action – making the button a reusable component	 335
Event handlers	 337

Mouse input	 337
Time for action – making the button clickable	 337
Time for action – visualizing button states	 339
Time for action – notifying the environment about button states	 340

Touch input	 342
Time for action – dragging an item around	 342
Time for action – rotating and scaling a picture by pinching	 343

Keyboard input	 345
Using components in Qt Quick	 350
Time for action – a simple analog clock application	 350
Time for action – adding needles to the clock	 354
Time for action – making the clock functional	 356

Dynamic objects	 357
Using components in detail	 357
Creating objects on request	 358
Delaying item creation	 360
Accessing your item's component functionality	 361
Imperative painting	 363

Time for action – preparing Canvas for heartbeat visualization	 363



Table of Contents

[ viii ]

Time for action – drawing a heartbeat	 364
Time for action – making the diagram more colorful	 367
Qt Quick and C++	 369

Creating QML objects from C++	 369
Pulling QML objects to C++	 372
Pushing C++ objects to QML	 375

Time for action – self-updating car dashboard	 380
Time for action – grouping engine properties	 389
Extending QML	 390

Registering classes as QML elements	 390
Time for action – making CarInfo instantiable from QML	 391

Custom Qt Quick items	 394
OpenGL items	 394

Time for action – creating a regular polygon item	 395
Painted items	 402

Time for action – creating an item for drawing outlined text	 402
Summary	 407

Chapter 10: Qt Quick	 409
Bringing life into static user interfaces	 409

Animating elements	 410
Generic animations	 410

Time for action – scene for an action game	 411
Time for action – animating the sun's horizontal movement	 412

Composing animations	 414

Time for action – making the sun rise and set	 416
Non-linear animations	 417

Time for action – improving the path of the sun	 418
Property value sources	 420

Time for action – adjusting the sun's color	 420
Time for action – furnishing sun animation	 421

Behaviors	 424

Time for action – animating the car dashboard	 426
States and transitions	 427

More animation types	 430

Quick game programming	 431
Game loops	 432

Time for action – character navigation	 433
Time for action – another approach to character navigation	 434
Time for action – generating coins	 436

Sprite animation	 437
Time for action – implementing simple character animation	 438



Table of Contents

[ ix ]

Time for action – animating characters using sprites	 441
Time for action – adding jumping with sprite transitions	 443

Parallax scrolling	 445
Time for action – revisiting parallax scrolling	 446

Collision detection	 448
Time for action – collecting coins	 449

Notes on collision detection	 452

Eye candy	 452
Auto-scaling user interfaces	 453
Graphical effects	 455
Particle systems	 459
Tuning the emitter	 460
Rendering particles	 463
Making particles move	 464

Time for action – vanishing coins spawning particles	 470
Summary	 471

Appendix: Pop Quiz Answers	 473
Chapter 3, Qt GUI Programming	 473
Chapter 4, Qt Core Essentials	 474
Chapter 6, Graphics View	 474
Chapter 7, Networking	 475
Chapter 8, Scripting	 475
Chapter 11, Miscellaneous and Advanced Concepts	 476

Index	 477





Preface
As a leading cross-platform toolkit for all significant desktop, mobile, and embedded 
platforms, Qt is becoming more popular by the day. This book will help you learn the  
nitty-gritty of Qt and will equip you with the necessary toolsets to build apps and games. 
This book is designed as a beginner's guide to take programmers that are new to Qt from 
the basics, such as objects, core classes, widgets, and so on, and new features in version 5.4, 
to a level where they can create a custom application with best practices when it comes to 
programming with Qt.

With a brief introduction on how to create an application and prepare a working 
environment for both desktop and mobile platforms, we will dive deeper into the basics of 
creating graphical interfaces and Qt's core concepts of data processing and display before 
you try to create a game. As you progress through the chapters, you'll learn to enrich your 
games by implementing network connectivity and employing scripting. Delve into Qt Quick, 
OpenGL, and various other tools to add game logic, design animation, add game physics, and 
build astonishing UIs for games. Toward the end of this book, you'll learn to exploit mobile 
device features, such as accelerators and sensors, to build engaging user experiences.

What this book covers
Chapter 1, Introduction to Qt, will familiarize you with the standard behavior that is required 
when creating cross-platform applications as well as show you a bit of history of Qt and how 
it evolved over time with an emphasis on the most recent architectural changes in Qt.

Chapter 2, Installation, will guide you through the process of installing a Qt binary release for 
desktop platforms, setting up the bundled IDE, and looking at various configuration options 
related to cross-platform programming.

Chapter 3, Qt GUI Programming, will show you how to create classic user interfaces with the 
Qt Widgets module. It will also familiarize you with the process of compiling applications 
using Qt.

www.allitebooks.com

http://www.allitebooks.org


Preface

[ xii ]

Chapter 4, Qt Core Essentials, will familiarize you with the concepts related to data 
processing and display in Qt—file handling in different formats, Unicode text handling and 
displaying user-visible strings in different languages, and regular expression matching.

Chapter 5, Graphics with Qt, describes the whole mechanism related to creating and using 
graphics in Qt in 2D and 3D. It also presents multimedia capabilities for audio and video 
(capturing, processing, and output)

Chapter 6, Graphics View, will familiarize you with 2D-object-oriented graphics in Qt. You will 
learn how to use built-in items to compose the final results as well as create your own items 
supplementing what is already available and possibly animate them.

Chapter 7, Networking, will demonstrate the IP networking technologies that are available 
in Qt. It will teach you how to connect to TCP servers, implement a reliable server using TCP, 
and implement an unreliable server using UDP.

Chapter 8, Scripting, shows you the benefits of scripting in applications. It will teach you 
how to employ a scripting engine for a game by using JavaScript. It will also suggest some 
alternatives to JavaScript for scripting that can be easily integrated with Qt.

Chapter 9, Qt Quick Basics, will teach you to program resolution-independent fluid user 
interfaces using a QML declarative engine and Qt Quick 2 scene graph environment. In 
addition, you will learn how to implement new graphical items in your scenes.

Chapter 10, Qt Quick, will show you how to bring dynamics to various aspects of a UI. You 
will see how to create fancy graphics and animations in Qt Quick by using the particle engine, 
GLSL shaders and built-in animation, and state machine capabilities, and you will learn how 
to use these techniques in games.

Chapter 11, Miscellaneous and Advanced Concepts, covers the important aspects of Qt 
programming that didn't make it into the other chapters but may be important for game 
programming. This chapter is available online at the link https://www.packtpub.com/
sites/default/files/downloads/Advanced_Concepts.pdf.

What you need for this book
All you need for this book is a Windows machine with the latest version of Qt installed. The 
examples presented in this book are based on Qt 5.4.

Qt can be downloaded from http://www.qt.io/download-open-source/.

https://www.packtpub.com/sites/default/files/downloads/Advanced_Concepts.pdf
https://www.packtpub.com/sites/default/files/downloads/Advanced_Concepts.pdf
http://www.qt.io/download-open-source/


Preface

[ xiii ]

Who this book is for
The expected readers of this book will be application and UI developers/programmers who 
have basic/intermediate functional knowledge of C++. The target audience also includes 
C++ programmers. No previous experience with Qt is required for you to read this book. 
Developers with up to a year of Qt experience will also benefit from the topics covered in 
this book.

Sections
In this book, you will find several headings that appear frequently (Time for action,  
What just happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections  
as follows:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation to ensure they make sense, so they are 
followed with these sections:

What just happened?
This section explains the working of the tasks or instructions that you have just completed.

You will also find some other learning aids in the book, for example:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own 
understanding.

Have a go hero – heading
These are practical challenges that give you ideas to experiment with what you have learned.



Preface

[ xiv ]

Conventions
You will also find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This API 
is centered on QNetworkAccessManager, which handles the complete communication 
between your game and the Internet."

A block of code is set as follows:

QNetworkRequest request;
request.setUrl(QUrl("http://localhost/version.txt"));
request.setHeader(QNetworkRequest::UserAgentHeader, "MyGame");
m_nam->get(request);

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

void FileDownload::downloadFinished(QNetworkReply *reply) {
  const QByteArray content = reply->readAll();
  m_edit->setPlainText(content);
  reply->deleteLater();
}

Any command-line input or output is written as follows:

git clone git://code.qt.io/qt/qt5.git

cd qt5

perl init-repository

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "On the Select Destination 
Location screen, click on Next to accept the default destination."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ xv ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us  
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention  
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help  
you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.
com for all the Packt Publishing books you have purchased. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have  
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used 
in this book. The color images will help you better understand the changes in the output. 
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/GameProgrammingUsingQt_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we 
would be grateful if you could report this to us. By doing so, you can save other readers from 
frustration and help us improve subsequent versions of this book. If you find any errata, please 
report them by visiting http://www.packtpub.com/submit-errata, selecting your book, 
clicking on the Errata Submission Form link, and entering the details of your errata. Once your 
errata are verified, your submission will be accepted and the errata will be uploaded to our 
website or added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/GameProgrammingUsingQt_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/GameProgrammingUsingQt_ColoredImages.pdf
http://www.packtpub.com/submit-errata


Preface

[ xvi ]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.  
At Packt, we take the protection of our copyright and licenses very seriously. If you come 
across any illegal copies of our works in any form on the Internet, please provide us with  
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you valuable 
content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


[ 1 ]

Introduction to Qt

In this chapter, you will learn what Qt is and how it evolved. We will pay special 
attention to the differences between Qt's major versions 4 and 5. Finally, you 
will learn to decide on which of the available Qt licensing schemes to choose for 
our projects.

The cross-platform programming
Qt is an application programming framework that is used to develop cross-platform 
applications. What this means is that software written for one platform can be ported 
and executed on another platform with little or no effort. This is obtained by limiting 
the application source code to a set of calls to routines and libraries available to all the 
supported platforms, and by delegating all tasks that may differ between platforms (such as 
drawing on the screen and accessing system data or hardware) to Qt. This effectively creates 
a layered environment (as shown in the following figure), where Qt hides all platform-
dependent aspects from the application code:

APPLICATION

Qt

OPERATING SYSTEM

HARDWARE

1



Introduction to Qt

[ 2 ]

Of course, at times we need to use some functionality that Qt doesn't provide. In such 
situations, it is important to use conditional compilation like the one used in the following 
code:

#ifdef Q_OS_WIN32
// Windows specific code
#elif defined(Q_OS_LINUX) || defined(Q_OS_MAC)
// Mac and Linux specific code
#endif

Downloading the example code

You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register there to have the files e-mailed directly to you.

What just happened?
Before the code is compiled, it is first fed to a preprocessor that may change the final text 
that is going to be sent to a compiler. When it encounters a #ifdef directive, it checks for 
the existence of a label that will follow (such as Q_OS_WIN32), and only includes a block of 
code in compilation if the label is defined. Qt makes sure to provide proper definitions for 
each system and compiler so that we can use them in such situations.

You can find a list of all such macros in the Qt reference manual under the 
term "QtGlobal".

Qt Platform Abstraction
Qt itself is separated into two layers. One is the core Qt functionality that is implemented 
in a standard C++ language, which is essentially platform-independent. The other is a set of 
small plugins that implement a so-called Qt Platform Abstraction (QPA) that contains all the 
platform-specific code related to creating windows, drawing on surfaces, using fonts, and 
so on. Therefore, porting Qt to a new platform in practice boils down to implementing the 
QPA plugin for it, provided the platform uses one of the supported standard C++ compilers. 
Because of this, providing basic support for a new platform is work that can possibly be done 
in a matter of hours.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Chapter 1

[ 3 ]

Supported platforms
The framework is available for a number of platforms, ranging from classical desktop 
environments through embedded systems to mobile phones. The following table lists down 
all the platforms and compiler families that Qt supports at the time of writing. It is possible 
that when you are reading this, a couple more rows could have been added to this table:

Platform QPA plugins Supported compilers

Linux XCB (X11) and 
Wayland

GCC, LLVM (clang), and ICC

Windows XP, Vista, 7, 8, and 10 Windows MinGW, MSVC, and ICC

Mac OS X Cocoa LLVM (clang) and GCC

Linux Embedded DirectFB, EGLFS, KMS, 
and Wayland

GCC

Windows Embedded Windows MSVC

Android Android GCC

iOS iOS LLVM (clang) and GCC

Unix XCB (X11) GCC

RTOS (QNX, VxWorks, and INTEGRITY) qnx qcc, dcc, and GCC

BlackBerry 10 qnx qcc

Windows 8 (WinRT) winrt MSVC

Maemo, MeeGo, and Sailfish OS XCB (X11) GCC

Google Native Client (unsupported) pepper GCC

A journey through time
The development of Qt was started in 1991 by two Norwegians—Eirik Chambe-Eng and 
Haavard Nord, who were looking to create a cross-platform GUI programming toolkit. 
The first commercial client of Trolltech (the company that created the Qt toolkit) was 
the European Space Agency. The commercial use of Qt helped Trolltech sustain further 
development. At that time, Qt was available for two platforms—Unix/X11 and Windows; 
however, developing with Qt for Windows required buying a proprietary license, which was a 
significant drawback in porting the existing Unix/Qt applications.



Introduction to Qt

[ 4 ]

A major step forward was the release of Qt Version 3.0 in 2001, which saw the initial support 
for Mac as well as an option to use Qt for Unix and Mac under a liberal GPL license. Still, 
Qt for Windows was only available under a paid license. Nevertheless, at that time, Qt had 
support for all the important players in the market—Windows, Mac, and Unix desktops, with 
Trolltech's mainstream product and Qt for embedded Linux.

In 2005, Qt 4.0 was released, which was a real breakthrough for a number of reasons. 
First, the Qt API was completely redesigned, which made it cleaner and more coherent. 
Unfortunately, at the same time, it made the existing Qt-based code incompatible with 4.0, 
and many applications needed to be rewritten from scratch or required much effort to be 
adapted to the new API. It was a difficult decision, but from the time perspective, we can see 
it was worth it. Difficulties caused by changes in the API were well countered by the fact that 
Qt for Windows was finally released under GPL. Many optimizations were introduced that 
made Qt significantly faster. Lastly, Qt, which was a single library until now, was divided into 
a number of modules:

Qt Declarative

Qt
OpenGL

Qt GUI

Qt Core

Qt
Network

Qt SQL Qt Script Qt Xml ...

Qt WebKit Qt Xml
Patterns

This allowed programmers to only link to the functionality that they used in their 
applications, reducing the memory footprint and dependencies of their software.

In 2008, Trolltech was sold to Nokia, which at that time was looking for a software framework 
to help it expand and replace its Symbian platform in the future. The Qt community became 
divided, some people were thrilled, others worried after seeing Qt's development get 
transferred to Nokia. Either way, new funds were pumped into Qt, speeding up its progress 
and opening it for mobile platforms—Symbian and then Maemo and MeeGo.



Chapter 1

[ 5 ]

For Nokia, Qt was not considered a product of its own, but rather a tool. Therefore, they 
decided to introduce Qt to more developers by adding a very liberal LGPL license that 
allowed the usage of the framework for both open and closed source development.

Bringing Qt to new platforms and less powerful hardware required a new approach to create 
user interfaces and to make them more lightweight, fluid, and eye candy. Nokia engineers 
working on Qt came up with a new declarative language to develop such interfaces—the Qt 
Modeling Language (QML) and a Qt runtime for it called Qt Quick.

The latter became the primary focus of the further development of Qt, practically stalling 
all nonmobile-related work, channeling all efforts to make Qt Quick faster, easier, and more 
widespread. Qt 4 was already in the market for 7 years and it became obvious that another 
major version of Qt had to be released. It was decided to bring more engineers to Qt by 
allowing anyone to contribute to the project.

Nokia did not manage to finish working on Qt 5.0. As a result of an unexpected turn over 
of Nokia toward different technology in 2011, the Qt division was sold in mid-2012 to the 
Finnish company Digia that managed to complete the effort and release Qt 5.0 in December 
of the same year.

New in Qt 5
The API of Qt 5 does not differ much from that of Qt 4. Therefore, Qt 5 is almost completely 
source compatible with its predecessor, which means that we only need a minimal effort 
to port the existing applications to Qt 5. This section gives a brief introduction to the major 
changes between versions 4 and 5 of Qt. If you are already familiar with Qt 4, this can serve 
as a small compendium of what you need to pay attention to if you want to use the features 
of Qt 5 to their fullest extent.

Restructured codebase
The biggest change compared to the previous major release of Qt and the one that is 
immediately visible when we try to build an older application against Qt 5 is that the whole 
framework was refactored into a different set of modules. Because it expanded over time 
and became harder to maintain and update for the growing number of platforms that 
it supported, a decision was made to split the framework into much smaller modules 
contained in two module groups—Qt Essentials and Qt Add-ons. A major decision relating to 
the split was that each module could now have its own independent release schedule.

www.allitebooks.com

http://www.allitebooks.org


Introduction to Qt

[ 6 ]

Qt Essentials
The Essentials group contains modules that are mandatory to implement for every 
supported platform. This implies that if you are implementing your system using modules 
from this group only, you can be sure that it can be easily ported to any other platform that 
Qt supports. Some of the modules are explained as follows:

�� The QtCore module contains the most basic Qt functionality that all other modules 
rely on. It provides support for event processing, meta-objects, data I/O, text 
processing, and threading. It also brings a number of frameworks such as the 
animation framework, the State Machine framework, and the plugin framework.

�� The Qt GUI module provides basic cross-platform support to build user interfaces. 
It is much smaller compared with the same module from Qt 4, as the support for 
widgets and printing has been moved to separate modules. Qt GUI contains classes 
that are used to manipulate windows that can be rendered using either the raster 
engine (by specifying QSurface::RasterSurface as the surface type) or OpenGL 
(QSurface::OpenGLSurface). Qt supports desktop OpenGL as well as OpenGL ES 
1.1 and 2.0.

�� The Qt Network module brings support for IPv4 and IPv6 networking using TCP and 
UDP as well as by controlling the device connectivity state. Compared to Qt 4, this 
module improves IPv6 support, adds support for opaque SSL keys (such as hardware 
key devices) and UDP multicast, and assembles MIME multipart messages to be sent 
over HTTP. It also extends support for DNS lookups.

�� Qt Multimedia allows programmers to access audio and video hardware (including 
cameras and FM radio) to record and play multimedia content.

�� Qt SQL brings a framework that is used to manipulate SQL databases in an abstract 
way.

�� Qt WebKit is a port of the WebKit 2 web browser engine to Qt. It provides classes to 
display and manipulate web content and integrates with your desktop application.

�� Qt Widgets extends the GUI module with the ability to create a user interface 
using widgets, such as buttons, edit boxes, labels, data views, dialog boxes, menus, 
and toolbars that are arranged using a special layout engine. It also contains the 
implementation of an object-oriented 2D graphics canvas called Graphics View. 
When porting Qt 4 applications to Qt 5, it is a good idea to start by enabling support 
of the widgets module (by adding QT += widgets to the project file) and then work 
your way down from here.

�� Qt Quick is an extension of Qt GUI, which provides means to create lightweight fluid 
user interfaces using QML. It is described in more detail later in this chapter as well 
as in Chapter 9, Qt Quick Basics.



Chapter 1

[ 7 ]

There are also other modules in this group, but we will not focus on them in 
this book. If you want to learn more about them, you can look them up in the 
Qt reference manual.

Qt Add-ons
This group contains modules that are optional for any platform. This means that if a 
particular functionality is not available on some platform or there is nobody willing to spend 
time working on this functionality for a platform, it will not prevent Qt from supporting this 
platform.

Some of the most important modules are QtConcurrent for parallel processing, Qt Script 
that allows us to use JavaScript in C++ applications, Qt3D that provides high-level OpenGL 
building blocks, and Qt XML Patterns that helps us to access XML data. Many others are also 
available, but we will not cover them here.

Qt Quick 2.0
The largest upgrade to Qt functionality-wise is Qt Quick 2.0. In Qt 4, the framework was 
implemented on top of Graphics View. This proved to be too slow when used with low-end 
hardware even with OpenGL ES acceleration enabled. This is because of the way Graphics 
View renders its content—it iterates all the items in sequence, calculates and sets its 
transformation matrix, paints the item, recalculates and resets the matrix for the next item, 
paints it, and so on. Since an item can contain any generic content drawn in an arbitrary 
order, it requires frequent changes to the GL pipeline, causing major slowdowns.

The new version of Qt Quick instead uses a scene-graph approach. It describes the whole 
scene as a graph of attributes and well-known operations. To paint the scene, information 
about the current state of the graph is gathered and the scene is rendered in a more optimal 
way. For example, it can first draw triangle strips from all items, then render fonts from all 
items, and so on. Furthermore, since the state of each item is represented by a subgraph, 
changes to each item can be tracked and it can be decided whether the visual representation 
of a particular item needs to be updated or not.

The old QDeclarativeItem class was replaced by QQuickItem, which has no ties to the 
Graphics View architecture. There is no routine available where you can directly paint the 
item, but there is a QQuickPaintedItem class available that aids in porting old code by 
rendering content based on QPainter to a texture and then rendering that texture using 
a scene-graph. Such items are, however, significantly slower than those directly using the 
graph approach, so if performance is important, they should be avoided.

Qt Quick plays an important role in Qt 5 and it is very useful to create games. We will cover 
this technology in detail in Chapters 9, Qt Quick Basics and Chapter 10, Qt Quick.



Introduction to Qt

[ 8 ]

Meta-objects
In Qt 4, adding signals and slots to a class required the presence of a meta-object (that is, an 
instance of a class that describes another class) for that class. This was done by subclassing 
QObject, adding the Q_OBJECT macro to it, and declaring signals and slots in special scopes 
of the class. In Qt 5, this is still possible and advised in many situations, but we now have 
new interesting possibilities.

It is now acceptable to connect a signal to any compatible member function of a class or any 
callable entity, such as a standalone function or function object (functor). A side-effect is a 
compile-time compatibility check of the signal and the slot (as opposed to the runtime check 
of the "old" syntax).

C++11 support
In August 2011, ISO approved a new standard for C++, commonly referred to as C++11. It 
provides a number of optimizations and makes it easier for programmers to create effective 
code. While you could use C++11 together with Qt 4, it didn't provide any dedicated support 
for it. This has changed with Qt 5, which is now aware of C++11 and supports many of the 
constructs introduced by the new version of the language. In this book, we will sometimes 
use C++11 features in our code. Some compilers have C++11 support enabled by default, in 
others, you need to enable it. Don't worry if your compiler doesn't support C++11. Each time 
we use such features, I will make you aware of it.

Choosing the right license
Qt is available under two different licensing schemes—you can choose between a 
commercial license and an open source one. We will discuss both here to make it easier 
for you to choose. If you have any doubts regarding whether a particular licensing scheme 
applies to your use case, better consult a professional lawyer.

An open source license
The advantage of open source licenses is that we don't have to pay anyone to use Qt; 
however, the downside is that there are some limitations imposed on how it can be used.

When choosing the open source edition, we have to decide between GPL 3.0 and LGPL 2.1 or 
3. Since LGPL is more liberal, in this chapter we will focus on it. Choosing LGPL allows you to 
use Qt to implement systems that are either open source or closed source—you don't have 
to reveal the sources of your application to anyone if you don't want to.



Chapter 1

[ 9 ]

However, there are a number of restrictions you need to be aware of:

�� Any modifications that you make to Qt itself need to be made public, for example, 
by distributing source code patches alongside your application binary.

�� LGPL requires that users of your application must be able to replace Qt libraries that 
you provide them with other libraries with the same functionality (for example, a 
different version of Qt). This usually means that you have to dynamically link your 
application against Qt so that the user can simply replace Qt libraries with his own. 
You should be aware that such substitutions can decrease the security of your 
system, thus, if you need it to be very secure, open source might not be the option 
for you.

�� LGPL is incompatible with a number of licenses, especially proprietary ones, so it is 
possible that you won't be able to use Qt with some commercial components.

The open source edition of Qt can be downloaded directly from http://www.qt.io.

A commercial license
All these restrictions are lifted if you decide to buy a commercial license for Qt. This allows 
you to keep the entire source code a secret, including any changes you may want to 
incorporate in Qt. You can freely link your application statically against Qt, which means 
fewer dependencies, a smaller deployment bundle size, and a faster startup. It also increases  
the security of your application, as end users cannot inject their own code into the 
application by replacing a dynamically loaded library with their own.

To buy a commercial license, go to http://
qt.io/buy.

Summary
In this chapter, you learned about the architecture of Qt. We saw how it evolved over time 
and we had a brief overview of what it looks like now. Qt is a complex framework and we  
will not manage to cover it all, as some parts of its functionality are more important for game 
programming than others that you can learn on your own in case you ever need them. Now 
that you know what Qt is, we can proceed with the next chapter where you will learn how to 
install Qt on your development machine.

http://www.qt.io




[ 11 ]

Installation

In this chapter, you will learn how to install Qt on your development machine, 
including Qt Creator, an IDE tailored to use with Qt. You will see how to configure 
the IDE for your needs and learn the basic skills to use that environment. In 
addition to this, the chapter will describe the process of building Qt from the 
source code, which can be useful for customizing your Qt installation as well as 
getting a working Qt installation for embedded platforms. By the end of this 
chapter, you will be able to prepare your working environment for both desktop 
and embedded platforms using tools included in the Qt release.

Installing the Qt SDK
Before you can start using Qt on your machine, it needs to be downloaded and installed. 
Qt can be installed using dedicated installers that come in two flavors—the online installer, 
which downloads all the needed components on the fly, and a much larger offline installer, 
which already contains all the required components. Using an online installer is easier for 
regular desktop installs, so we will prefer this approach.

2



Installation

[ 12 ]

Time for action – installing Qt using an online installer
First, go to http://qt.io and click on Download. This should bring you to a page 
containing a list of options for different licensing schemes. To use the open source version, 
choose the Open Source edition licensed under GPL and LGPL. Then, you can click on the 
Download Now button to retrieve the online installer for the platform that you are currently 
running on or you can click on any of the header sections to reach a more comprehensive 
list of options. The links to online installers are at the beginning of the list, as shown in the 
following screenshot. Click and download the one suited to your host machine:

When the download completes, run the installer, as shown:

http://qt.io


Chapter 2

[ 13 ]

Click on Next and after a while of waiting as the downloader checks remote repositories, 
you'll be asked for the installation path. Be sure to choose a path where you have write 
access (it's best to put Qt into your personal directory unless you ran the installer as 
the system administrator user). Clicking on Next again will present you with choices of 
components that you wish to install, as shown in the following screenshot. You will be given 
different choices depending on your platform.



Installation

[ 14 ]

Choose whichever platforms you need, for example, to build native and Android applications 
on Linux, choose both gcc-based installation and one for the desired Android platform. When 
on Windows, you have to make additional choices. When using Microsoft compilers, you can 
choose whether to use native OpenGL drivers (the versions with the OpenGL suffix) or to 
emulate OpenGL ES using DirectX calls. If you don't have a Microsoft compiler or you simply 
don't want to use it, choose the version of Qt for the MinGW compiler. If you don't have a 
MinGW installation, don't worry—the installer will also install it for you.

After choosing the needed components and clicking on Next again, you will have to accept 
the licensing terms for Qt by marking an appropriate choice, as shown in the following 
screenshot. After clicking on Install, the installer will begin downloading and installing the 
required packages. Once this is done, your Qt installation will be ready. At the end of the 
process, you will be given an option to launch Qt Creator.

What just happened?
The process we went through results in the whole Qt infrastructure appearing on your disk. 
You can examine the directory you pointed to the installer to see that it created a number 
of subdirectories in this directory—one for each version of Qt chosen with the installer and 
another one called Tools that contains Qt Creator. You can see that if you ever decide to 
install another version of Qt, it will not conflict with your existing installation. Furthermore, 
for each version, you can have a number of platform subdirectories that contain the actual 
Qt installations for particular platforms.



Chapter 2

[ 15 ]

Setting up Qt Creator
After Qt Creator starts, you should be presented with the following screen:

The program should already be configured properly for you to use the version of Qt and 
compiler that were just installed, but let's verify that anyway. From the Tools menu, 
choose Options. Once a dialog box pops up, choose Build & Run from the side list. This 
is the place where we can configure the way Qt Creator builds our project. A complete 
build configuration is called a kit. It consists of a Qt installation and a compiler that will be 
executed to perform the build. You can see tabs for all the three entities in the Build & Run 
section of the Options dialog box.

Let's start with the Compilers tab. If your compiler was not autodetected properly and is not 
in the list, click on the Add button, choose your compiler type from the list, and fill the name 
and path to the compiler. If the settings were entered correctly, Creator will autofill all the 
other details. Then, you can click on Apply to save the changes.



Installation

[ 16 ]

Next, you can switch to the Qt Versions tab. Again, if your Qt installation was not detected 
automatically, you can click on Add. This will open a file dialog box where you will need to 
find your Qt installation's directory wherein all the binary executables are stored (usually in 
the bin directory) and select a binary called qmake. Qt Creator will warn you if you choose 
a wrong file. Otherwise, your Qt installation and version should be detected properly. If you 
want, you can adjust the version name in the appropriate box.

The last tab to look at is the Kits tab. It allows you to pair a compiler with the Qt version to 
be used for compilation. In addition to this, for embedded and mobile platforms, you can 
specify a device to deploy to and a sysroot directory containing all the files needed to build 
the software for the specified embedded platform.

Time for action – loading an example project
Qt comes with a lot of examples. Let's try building one to check whether the installation and 
configuration were done correctly. In Qt Creator, click on the Welcome button on the top-
left corner of the window to go the initial screen of the IDE. On the right-hand side of the 
page that appears (refer to the previous screenshot) there are a couple of tabs among which 
one of them happens to be called Examples. Clicking on that tab will open a list of examples 
with a search box. Make sure that the version of Qt you just installed is chosen in the list 
next to the search box. In the box, enter aff to filter the list of examples and click on Affine 
Transformations to open the project. If you are asked whether you want to copy the project 
to a new folder, agree. Qt Creator will then present you with the following window:



Chapter 2

[ 17 ]

What just happened?
Qt Creator loaded the project and set a view that will help us to learn from example projects. 
The view is divided into four parts. Let's enumerate them starting from the left side. First 
there is Qt Creator's working mode selector that contains an action bar, which allows us to 
toggle between different modes of the IDE. Then, there is the project view that contains a 
list of files for the project. Next comes the source code editor, displaying the main part of the 
project's source code. Finally, far to the right, you can see the online help window displaying 
the documentation for the opened example.

Time for action – running the Affine Transformations project
Let's try building and running the project to check whether the building environment is 
configured properly. First, click on the icon in the action bar directly over the green triangle 
icon to open the build configuration popup, as shown in the following screenshot:



Installation

[ 18 ]

The exact content that you get may vary depending on your installation, but in general, on 
the left-hand side you will see the list of kits configured for the project and on the right-
hand side you will see the list of build configurations defined for that kit. Choose a kit for 
your desktop installation and any of the configurations defined for that kit. You can adjust 
configurations by switching Qt Creator to the project management mode by clicking on the 
Projects button in the working mode selector bar. There, you can add and remove kits from 
the project and manage build configurations for each of the kits, as shown in the following 
screenshot:

You can adjust, build, and clean steps, and toggle shadow building (that is, building your 
project outside the source code directory tree).



Chapter 2

[ 19 ]

To build the project, click on the hammer icon at the bottom of the action bar. You can also 
click on the green triangle icon to build and run the project. If everything works, after some 
time, the application should be launched, as shown in the next screenshot:

What just happened?
How exactly was the project built? If you open the Projects mode and look at Build Settings 
for a kit assigned to the project (as seen in one of the previous screenshots), you will notice 
that a number of build steps were defined. The first step for Qt projects is usually the qmake 
step, which runs a special tool that generates a Makefile for the project that is fed in 
the second step to a classic make tool. You can expand each of the steps by clicking on the 
respective Details button to see configuration options for each of the steps.

While make is considered as a standard tool for building software projects, qmake is a 
custom tool provided with Qt. If you go back to the Edit mode and see which files are listed 
in the project contents, you will notice a file with a pro extension. This is the main project 
file that contains a list of source and headers files in the project, definitions of Qt modules 
active for the project, and optionally, external libraries that the project needs to link against. 
If you want to learn the details of how such project files are managed, you can switch to 
the Help mode, choose Index from the drop-down list on the top of the window, and type 
qmake Manual to find the manual for the tool. Otherwise, just let Qt Creator manage your 
project for you. For self-contained Qt projects, you don't need to be a qmake expert.



Installation

[ 20 ]

Building Qt from sources
In most cases for desktop and mobile platforms, the binary release of Qt you download  
from the webpage is sufficient for all your needs. However, for embedded systems,  
especially for those ARM-based systems, there is no binary release available or it is too  
heavy resource-wise for such a lightweight system. In such cases, a custom Qt build needs  
to be performed. There are two ways to do such a build. One is to download the sources  
as a compressed archive just like the binary package. The other is to download the code 
directly from a Git repository. Since the first way is pretty much self-explanatory, we'll focus 
on the second approach.

Time for action – setting up Qt sources using Git
First, you need to install Git on your system if you don't already have it. How to do that 
depends on your operating system. For Windows, simply download an installer from 
https://git-for-windows.github.io. For Mac, the installer is available at  
http://code.google.com/p/git-osx-installer. For Linux, the simplest way  
is to use your system's package manager. For instance, on Debian-based distributions,  
just issue the sudo apt-get install git command on a terminal and wait until  
the installation gets completed.

Afterwards, you need to clone Qt's Git repository. Since Git is a command-line tool,  
we'll be using the command line from now on. To clone Qt's repository to a directory  
where you want to keep the sources, issue the following command:

git clone git://code.qt.io/qt/qt5.git

If all goes well, Git will download a lot of source code from the network and create a qt5 
directory, containing all the files that were downloaded. Then, change the current working 
directory to the one containing the freshly downloaded code:

cd qt5

Then you need to run a Perl script that will set up all the additional repositories for you. If 
you don't have Perl installed, you should do that now (you can get Perl for Windows from 
http://www.activestate.com/activeperl/downloads). Then, issue the following 
command:

perl init-repository

The script will start downloading all the modules required for Qt and should complete 
successfully after a period dependent on your network link speed.

https://git-for-windows.github.io
http://code.google.com/p/git-osx-installer
http://www.activestate.com/activeperl/downloads


Chapter 2

[ 21 ]

What just happened?
At this point in the qt5 directory, you have a number of subdirectories for different Qt 
modules (some of them were mentioned in Chapter 1, Introduction to Qt) each with a local 
Git repository containing the source code for the respective Qt modules and tools. Each of 
the modules can be updated separately if required.

Time for action – configuring and building Qt
Having the sources in place, we can start building the framework. To do that, in addition 
to a supported compiler, you will need Perl and Python (Version 2.7 or later) installed. For 
Windows, you will also need Ruby. If you are missing any of the tools, it's a good time to 
install them. Afterwards, open the command line and change the current working directory 
to the one containing the Qt source code. Then, issue the following command:

configure -opensource -nomake tests

This will launch a tool that detects whether all the requirements are met and will report any 
inconsistencies. It will also report the exact configuration of the build. You can customize the 
build (for example, if you need to enable or disable some features or cross-compile Qt for an 
embedded platform) by passing additional options to configure. You can see the available 
options by running configure with the -help switch.

If configure reports problems, you will have to fix them and restart the tool. Otherwise, 
start the build process by invoking make (or an equivalent like mingw32-make if using 
MinGW or nmake if using MSVC).

Instead of nmake, you can use a tool called jom that is bundled with Qt. It will 
reduce the compilation time on multicore machines, which is what the default 
nmake tool can't do. For make and mingw32-make, you can pass the -j N 
parameter, where N stands for the number of cores in your machine.

What just happened?
After some time (usually less than an hour), if all goes well, the build should be complete and 
you will be ready to add the compiled framework to the list of kits available in Qt Creator.

In Unix systems after the build gets completed, you can invoke a make install 
command with super-user privileges (obtained for example, with sudo) to 
copy the framework to a more appropriate place.



Installation

[ 22 ]

Summary
By now, you should be able to install Qt on your development machine. You can now use Qt 
Creator to browse the existing examples and learn from them or to read the Qt reference 
manual to gain additional knowledge. You can also just start a new C++ project and start 
writing code for it, build, and execute it. Once you become an experienced Qt developer, you 
will also be able to make your own custom build of Qt. In the next chapter, we will finally 
start using the framework and you will learn how to create graphical user interfaces by 
implementing our very first simple game.



[ 23 ]

Qt GUI Programming

This chapter will help you learn how to use Qt to develop applications with a 
graphical user interface using the Qt Creator IDE. We will get familiar with the 
core Qt functionality, property system, and the signals and slots mechanism 
that we will later use to create complex systems such as games. We will also 
cover the various actions and resource system of Qt. By the end of this chapter, 
you will be able to write your own programs that communicate with the user 
through windows and widgets.

Windows and dialogs
The most basic skill that you need to learn is creating windows, showing them on a screen, 
and managing their content.

Creating a Qt project
The first step to develop an application with Qt Creator is to create a project using one of the 
templates provided by the editor.

3



Qt GUI Programming

[ 24 ]

Time for action – creating a Qt Desktop project
When you first start Qt Creator, you will see a welcome screen. From the File menu, choose 
New File or Project. There are a number of project types to choose from. follow the given 
steps for creating a Qt Desktop project:

1.	 For a widget-based application, choose the Applications group and the Qt Gui 
Application template:

2.	 The next step is to choose a name and location for your new project:



Chapter 3

[ 25 ]

3.	 We are going to create a simple tic-tac-toe game, so we will name our project 
tictactoe and provide a nice location for it.

If you have a common directory where you put all your projects, you 
can tick the Use as default project location checkbox for Creator to 
remember the location and suggest it the next time when you start a 
new project.

4.	 When you click on Next, you will be presented with a window that lets you choose 
one or more of the defined compilation kits for the project. Proceed to the next step 
without changing anything. You will be presented with the option of creating the 
first widget for your project. Fill in the data as shown in the following screenshot:

5.	 Then, click on Next and Finish.

www.allitebooks.com

http://www.allitebooks.org


Qt GUI Programming

[ 26 ]

What just happened?
Creator created a new subdirectory in the directory that you previously chose for 
the location of the project and where you put a number of files. Two of these files 
(tictactoewidget.h and tictactoewidget.cpp) implement the TicTacToeWidget 
class as the subclass of QWidget. The third file called main.cpp contains code for the entry 
point of the application:

#include "tictactoewidget.h"
#include <QApplication>

int main(int argc, char *argv[]) {
  QApplication a(argc, argv);
  TicTacToeWidget w;
  w.show();
  return a.exec();
}

This file creates an instance of the QApplication class and feeds it with standard 
arguments to the main() function. Then, it instantiates our TicTacToeWidget class, calls 
its show method, and finally returns a value returned by the exec method of the application 
object.

QApplication is a singleton class that manages the whole application. In particular, it is 
responsible for processing events that come from within the application or from external 
sources. For events to be processed, an event loop needs to be running. The loop waits for 
incoming events and dispatches them to proper routines. Most things in Qt are done through 
events—input handling, redrawing, receiving data over the network, triggering timers, and 
so on. This is the reason we say that Qt is an event-oriented framework. Without an active 
event loop, nothing would function properly. The exec call in QApplication (or to be more 
specific, in its base class—QCoreApplication) is responsible for entering the main event 
loop of the application. The function does not return until your application requests the 
event loop to be terminated. When this eventually happens, the main function returns and 
your application ends.

The final file that was generated is called tictactoe.pro and is the project configuration 
file. It contains all the information that is required to build your project using the tools Qt 
provides. Let's analyze this file:

QT += core gui
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets
TARGET = tictactoe
TEMPLATE = app
SOURCES += main.cpp tictactoewidget.cpp
HEADERS += tictactoewidget.h



Chapter 3

[ 27 ]

The first two lines enable Qt's core, gui, and widgets modules. The next two lines specify 
that your project file describes an application (as opposed to, for example, a library) and 
declares the name of the target that is executable to be tictactoe. The last two lines add 
files that Creator generated for us to build the process.

What we have now is a complete minimal Qt GUI project. To build and run it, simply choose 
the Run entry from the Build drop-down menu or click on the green triangle icon on the left-
hand side of the Qt Creator window. After a while, you should see a window pop up. Since 
we didn't add anything to the window, it is blank.

Adding child widgets to a window
After we managed to get a blank window on screen, the next step is to add some content 
to it. To do this, you need to create widgets and tell Qt to position them in the window. The 
basic way to do this is to provide a parent to a widget.

In Qt, we group objects (such as widgets) into parent-child relationships. This scheme is 
defined in the superclass of QWidget—QObject, which is the most important class in Qt, 
and we will cover it in more detail later in this chapter. What is important now is that each 
object can have a parent object and an arbitrary number of children. In the case of widgets, 
there is a rule that a child occupies a subarea of its parent. If it doesn't have a parent, then 
it becomes a top-level window that can usually be dragged around, resized, and closed. 
We can set a parent for an object in two ways. One way is to call the setParent method 
defined in QObject that accepts a QObject pointer. Because of the rule mentioned earlier, 
QWidget wants to have other widgets as parents, so the method is overloaded in QWidget 
to accept a QWidget pointer. The other way is to pass a pointer to the parent object to 
the QWidget constructor of the child object. If you look at the code of the widget that was 
generated by Creator, you will notice that the constructor also accepts a pointer to a widget 
as its last (optional) argument:

TicTacToeWidget::TicTacToeWidget(QWidget *parent)
    : QWidget(parent)
{
}

It then passes that pointer to the constructor of its base class. Therefore, it is important that 
you always remember to create a constructor for your widgets that accepts a pointer to a 
QWidget instance and passes it up the inheritance tree. All standard Qt widgets also behave 
this way.



Qt GUI Programming

[ 28 ]

Managing widget content
Making a widget display as part of its parent is not enough to make a good user interface. 
You also need to set its position and size and react to the changes that happen to its content 
and to the content of its parent widget. In Qt, we do this using a mechanism called layouts.

Layouts allow us to arrange the content of a widget, making sure that its space is used 
efficiently. When we set a layout on a widget, we can start adding widgets and even other 
layouts, and the mechanism will resize and reposition them according to the rules that we 
specify. When something happens in the user interface that influences how widgets should 
be displayed (for example, the button text is replaced with longer text, which makes the 
button require more space to show its content; if not, one of the widgets gets hidden), the 
layout is triggered again, which recalculates all positions and sizes and updates widgets  
as necessary.

Qt comes with a predefined set of layouts that are derived from the QLayout class, but you 
can also create your own. Those that we already have at our disposal are QHBoxLayout 
and QVBoxLayout, which position items horizontally and vertically; QGridLayout, which 
arranges items in a grid so that an item can span across columns or rows; and QFormLayout, 
which creates two columns of items with item descriptions in one column and item content 
in the other. There is also QStackedLayout, which is rarely used directly and which makes 
one of the items assigned to it possess all the available space. You can see the most common 
layouts in action in the following figure:

To use a layout, we need to create an instance of it and pass a pointer to a widget that we 
want it to manage. Then, we can start adding widgets to the layout:

QHBoxLayout *layout = new QHBoxLayout(parentWidget);
QPushButton *button1 = new QPushButton;
QPushButton *button2 = new QPushButton;
layout->addWidget(button1);
layout->addWidget(button2);



Chapter 3

[ 29 ]

We can even move widgets further from each other by setting spacing on the layout and 
setting custom margins on the layout:

layout->setSpacing(10);
layout->setMargins(10, 5, 10, 5); // left, top, right, bottom

After building and running this code, you see two buttons that are evenly distributed in their 
parent space. Note that, even though we didn't explicitly pass the parent widget pointer, 
adding a widget to a layout makes it reparent the newly added widget to the widget that the 
layout manages. Resizing the parent horizontally would also cause buttons to resize again, 
covering all the space available. However, if you resize parentWidget vertically, buttons will 
change their position but not their height.

This is because each widget has an attribute called a size policy, which decides how a widget 
is to be resized by a layout. You can set separate size policies for horizontal and vertical 
directions. A button has a vertical size policy of Fixed, which means that the height of 
the widget will not change from the default height regardless of how much space there is 
available. The following are the available size policies:

�� Ignore: In this, the default size of the widget is ignored and the widget can freely 
grow and shrink

�� Fixed: In this, the default size is the only allowed size of the widget

�� Preferred: In this, the default size is the desired size, but both smaller and bigger 
sizes are acceptable

�� Minimum: In this, the default size is the smallest acceptable size for the widget, but 
the widget can be made larger without hurting its functionality

�� Maximum: In this, the default size is the largest size of the widget and the widget can 
be shrunk (even to nothing) without hurting its functionality

�� Expanding: In this, the default size is the desired size; a smaller size (even zero) is 
acceptable but the widget is able to increase its usefulness when more and more 
space is assigned to it

�� MinimumExpanding: This is a combination of Minimum and Expanding—the 
widget is greedy in terms of space and it cannot be made smaller than its default 
size

How do we determine the default size? The answer is by the size returned by the sizeHint 
virtual method. For layouts, the size is calculated based on the sizes and size policies of 
their child widgets and nested layouts. For basic widgets, the value returned by sizeHint 
depends on the content of the widget. In the case of a button, if it holds a line of text and an 
icon, sizeHint will return the size that is required to fully encompass the text, icon, some 
space between them, the button frame, and the padding between the frame and  
content itself.



Qt GUI Programming

[ 30 ]

Time for action – implementing a tic-tac-toe game board
We will now create a widget that implements a game board for tic-tac-toe using buttons.

Open the tictactoewidget.h file in Creator and update it by adding the highlighted code:

#ifndef TICTACTOEWIDGET_H
#define TICTACTOEWIDGET_H
#include <QWidget>
class QPushButton;

class TicTacToeWidget : public QWidget
{
  Q_OBJECT
  
public:
  TicTacToeWidget(QWidget *parent = 0);
  ~TicTacToeWidget();
private:
  QList<QPushButton*> board;
};
#endif // TICTACTOEWIDGET_H

Our additions create a list that can hold pointers to instances of the QPushButton class, 
which is the most commonly used button class in Qt. It will represent our game board. We 
have to teach the compiler to understand the classes that we use; thus, we add a forward 
declaration of the QPushButton class.

The next step is to create a method that will help us create all the buttons and use a layout 
to manage their geometries. Go to the header file again and add a void setupBoard(); 
declaration in the private section of the class. To quickly implement a freshly declared 
method, we can ask Qt Creator to create the skeleton code for us by positioning the text 
cursor just before after the method declaration (before the semicolon), pressing Alt + Enter 
on the keyboard, and choosing Add definition in tictactoewidget.cpp from the pop-up.

It also works the other way around. You can write the method body first and 
then position the cursor on the method signature, press Alt + Enter, and choose 
Add public declaration from the quick fix menu. There are also various other 
context-dependent fixes that are available in Creator.



Chapter 3

[ 31 ]

Because in the header file we only forward-declared QPushButton, we now need to provide 
a full class definition for it by including an appropriate header file. In Qt, all classes are 
declared in the header files that are called exactly the same as the classes themselves. Thus, 
to include a header file for QPushButton, we need to add a #include <QPushButton> 
line to the implementation file. We are also going to use the QGridLayout class to manage 
the space in our widget, so we need #include <QGridLayout> as well.

From now on, this book will not remind you about adding the include 
directives to your source code—you will have to take care of this by yourself. 
This is really easy, just remember that to use a Qt class, you need to include a 
file named after that class.

Now, let's add the code to the body of the setupBoard method. First, let's create a layout 
that will hold our buttons:

QGridLayout *gridLayout = new QGridLayout;

Then, we can start adding buttons to the layout:

for(int row = 0; row < 3; ++row) {
  for(int column = 0; column < 3; ++column) {
    QPushButton *button = new QPushButton;
    button->setSizePolicy(QSizePolicy::Minimum,  
      QSizePolicy::Minimum);
    button->setText(" ");
    gridLayout->addWidget(button, row, column);
    board.append(button);
  }
}

The code creates a loop over rows and columns of the board. In each iteration, it creates an 
instance of the QPushButton class and sets the button's size policy to Minimum/Minimum 
so that when we resize the widget, buttons also get resized. A button is assigned a single 
space as its content so that it gets the correct initial size. Then, we add the button to the 
layout in row and column. At the end, we store the pointer to the button in the list that was 
declared earlier. This lets us reference any of the buttons later on. They are stored in the list 
in such an order that the first three buttons of the first row are stored first, then the buttons 
from the second row, and finally those from the last row.

The last thing to do is to tell our widget that gridLayout is going to manage its size:

setLayout(gridLayout);

Alternatively, we might have passed this as a parameter to the layout's constructor.



Qt GUI Programming

[ 32 ]

Now that we have code that will prepare our board, we need to have it invoked somewhere. 
A good place to do this is the class constructor:

TicTacToeWidget::TicTacToeWidget(QWidget *parent)
        : QWidget(parent)
{
  setupBoard();
}

Now, build and run the program.

What just happened?
You should get a window containing nine buttons positioned in a grid-like fashion. If you start 
resizing the window, the buttons are going to be resized as well. This is because we set a grid 
layout with three columns and three rows that evenly distributes widgets in the managed 
area, as shown in the following figure:

While we're here, add another public method to the class and name it initNewGame. We 
will use this method to clear the board when a new game is started. The body of the method 
should look as follows:

void TicTacToeWidget::initNewGame() {
  for(int i=0; i<9; ++i) board.at(i)->setText(" ");
}



Chapter 3

[ 33 ]

You might have noticed that although we created a number of objects in 
setupBoard using the new operator, we didn't destroy those objects 
anywhere (for example, in the destructor). This is because of the way 
the memory is managed by Qt. Qt doesn't do any garbage collecting (as 
Java does), but it has this nice feature related to QObject parent-child 
hierarchies. The rule is that whenever a QObject instance is destroyed, it 
also deletes all its children. Since both the layout object and the buttons are 
the children of the TicTacToeWidget instance, they will all be deleted 
when the main widget is destroyed. This is another reason to set parents 
to the objects that we create—if we do this, we don't have to care about 
explicitly freeing any memory.

Qt meta-objects
Most of the special functionality that Qt offers revolves around the QObject class and the 
meta-object paradigm that we will take a closer look at now. The paradigm says that with 
every QObject subclass, there is a special object associated that contains information about 
that class. It allows us to make runtime queries to learn useful things about the class—the 
class name, superclass, constructors, methods, fields, enumerations, and so on. The meta-
object is generated for the class at compile time when three conditions are met:

�� The class is a descendant of QObject

�� It contains a special Q_OBJECT macro in a private section of its definition

�� Code of the class is preprocessed by a special Meta-Object Compiler (moc) tool

We can comply to the first two conditions ourselves by writing proper code for the class just 
like Qt Creator does when we create a class derived from QObject. The last condition is met 
automatically when you use a tool chain that comes with Qt (and Qt Creator) to build your 
project. Then, it is enough to make sure that the file containing the class definition is added 
to the HEADERS variable of the project file and Qt will take care of the rest. What really 
happens is that moc generates some code for us that is later compiled in the main program.

All features discussed in this section of the chapter require a meta-object for the class. 
Therefore, it is essential to make sure that the three conditions I mentioned are met if you 
want a class to use any of those features.



Qt GUI Programming

[ 34 ]

Signals and slots
To trigger functionality as a response to something that happens in an application, Qt uses 
a mechanism of signals and slots. This is based on connecting a notification (which we call a 
signal) about a change of state in some object with a function or method (called a slot) that 
is executed when such a notification arises.

Signals and slots can be used with all classes that inherit QObject. A signal can be connected 
to a slot, member function, or functor (which includes a regular global function). When an 
object emits a signal, any of these entities that are connected to that signal will be called. 
A signal can also be connected to another signal in which case, emitting the first signal will 
make the other signal be emitted as well. You can connect any number of slots to a single 
signal and any number of signals to a single slot.

A signal slot connection is defined by the following four attributes:

�� An object that changes its state (sender)

�� A signal in the sender object

�� An object that contains the function to be called (receiver)

�� A slot in the receiver

To declare a signal, we put its declaration, that is, a regular member function declaration in 
a special class scope called signals. However, we don't implement such a function—this will 
be done automatically by moc. To declare a slot, we put the declaration in the class scope 
of either public slots, protected slots, or private slots. Slots are regular methods and can be 
called directly in code just like any other method. Contrary to signals, we need to provide 
bodies for slot methods.

A sample class implementing some signals and slots looks like as shown in the following 
code:

class ObjectWithSignalsAndSlots : public QObject {
  Q_OBJECT
public:
  ObjectWithSignalsAndSlots(QObject *parent = 0) : QObject(parent) {
  }
public slots:
  void setValue(int v) { … }
  void setColor(QColor c) { … }
private slots:
  void doSomethingPrivate();
signals:



Chapter 3

[ 35 ]

  void valueChanged(int);
  void colorChanged(QColor);
};

void ObjectWithSignalsAndSlots::doSomethingPrivate() {
  // …
}

Signals and slots can be connected and disconnected dynamically using the connect() and 
disconnect() statements.

The classic connect statement looks as follows:

connect(spinBox, SIGNAL(valueChanged(int)), dial,  
  SLOT(setValue(int)));

This statement establishes a connection between SIGNAL of the spinBox object called 
valueChanged that carries an int parameter and a setValue slot in the dial object 
that accepts an int parameter. It is forbidden to put variable names or values in a connect 
statement. You can only make a connection between a signal and slot that have matching 
signatures, which means that they accept the same types of arguments (any type casts are 
not allowed, and type names have to match exactly) with the exception that the slot can 
omit an arbitrary number of last arguments. Therefore, the following connect statement is 
valid:

connect(spinBox, SIGNAL(valueChanged(int)), lineEdit,  
  SLOT(clear()));

This is because the parameter of the valueChanged signal can be discarded before clear 
is called. However, the following statement is invalid:

connect(button, SIGNAL(clicked()), lineEdit,  
  SLOT(setText(QString)));

There is nowhere to get the value that is to be passed to setText, so such a connection  
will fail.

It is important that you wrap signal and slot signatures into the SIGNAL and 
SLOT macros and that when you specify signatures, you only pass argument 
types and not values or variable names. Otherwise, the connection will fail.

Since Qt 5, there are a couple of different connect syntax available that don't require a meta-
object for the class implementing the slot. The QObject legacy is still a requirement though, 
and the meta-object is still required for the class that emits the signal.



Qt GUI Programming

[ 36 ]

The first additional syntax that we can use is the one where we pass a pointer to the signal 
method and a pointer to the slot method instead of wrapping signatures in the SIGNAL and 
SLOT macros:

connect(button, &QPushButton::clicked, lineEdit,  
  &QLineEdit::clear);

In this situation, the slot can be any member function of any QObject subclass that has 
argument types that match the signal or such that can be converted to match the signal. This 
means that you can, for example, connect a signal carrying a double value with a slot taking 
an int parameter:

class MyClass : public QObject {
  Q_OBJECT
public:
  MyClass(QObject *parent = 0) : QObject(parent) {
    connect(this, &MyClass::somethingHappened, this,  
      &MyClass::setValue);
  }
  void setValue(int v) { … }
signals:
  void somethingHappened(double);
};

An important aspect is that you cannot freely mix meta-object-based and 
function-pointer-based approaches. If you decide to use pointers to member 
methods in a particular connection, you have to do that for both the signal 
and the slot.

We can even go a step further and have a signal connected to a standalone function:

connect(button, &QPushButton::clicked, &someFunction);

If you use C++11, the function can also be a lambda expression in which case, it is possible to 
write the body of the slot directly in the connect statement:

connect(pushButton, SIGNAL(clicked()), []()  
  { std::cout << "clicked!" << std::endl; });

It is especially useful if you want to invoke a slot with a fixed argument value that can't be 
carried by a signal because it has less arguments. A solution is to invoke the slot from a 
lambda function (or a standalone function):

connect(pushButton, SIGNAL(clicked()), [label]()  
  { label->setText("button was clicked"); });



Chapter 3

[ 37 ]

A function can even be replaced with a function object (functor). To do this, we create a class 
for which we overload the call operator that is compatible with the signal that we wish to 
connect to, as shown in the following snippet:

class Functor {
public:
  Functor(Object *object, const QString &str) :  
    m_object(object), m_str(str) {}
  void operator()(int x, int y) const {
    m_object->set(x, y, m_str);
  }
private:
  Object *m_object;
  QString m_str;
};

connect(obj1, SIGNAL(coordChanged(int, int)),  
        Functor("Some Text"));

This is often a nice way to execute a slot with an additional parameter that is not carried by 
the signal, as this is much cleaner than using a lambda expression.

There are some aspects of signals and slots that we have not covered here. We will come 
back to them later when we deal with multithreading.

Pop quiz – making signal-slot connections
Q1. For which of the following do you have to provide your own implementation?

1.	 A signal

2.	 A slot

3.	 Both

Q2. Which of the following statements are valid?

1.	 connect(sender, SIGNAL(textEdited(QString)), receiver, 
SLOT(setText("foo")))

2.	 connect(sender, SIGNAL(toggled(bool)), receiver, 
SLOT(clear()));

3.	 connect(sender, SIGNAL(valueChanged(7)), receiver, 
SLOT(setValue(int)));

4.	 connect(sender, &QPushButton::clicked, receiver, 
&QLineEdit::clear);



Qt GUI Programming

[ 38 ]

Time for action – functionality of a tic-tac-toe board
We need to implement a function that will be called upon by clicking on any of the nine 
buttons on the board. It has to change the text of the button that was clicked on—either X or 
O—based on which player made the move; then, it has to check whether the move resulted 
in winning the game by the player (or a draw if no more moves are possible), and if the game 
ended, it should emit an appropriate signal, informing the environment about the event.

When the user clicks on a button, the clicked() signal is emitted. Connecting this signal 
to a custom slot lets us implement the mentioned functionality, but since the signal doesn't 
carry any parameters, how do we tell which button caused the slot to be triggered? We 
could connect each button to a separate slot but that's an ugly solution. Fortunately, there 
are two ways of working around this problem. When a slot is invoked, a pointer to the object 
that caused the signal to be sent is accessible through a special method in QObject called 
sender(). We can use that pointer to find out which of the nine buttons stored in the board 
list is the one that caused the signal to fire:

void TicTacToeWidget::someSlot() {
  QObject *btn = sender();
  int idx = board.indexOf(btn);
  QPushButton *button = board.at(idx);
  // ...
}

While sender() is a useful call, we should try to avoid it in our own code as it breaks some 
principles of object-oriented programming. Moreover, there are situations where calling this 
function is not safe. A better way is to use a dedicated class called QSignalMapper, which 
lets us achieve a similar result without using sender() directly. Modify the setupBoard() 
method in TicTacToeWidget as follows:

QGridLayout *gridLayout = new QGridLayout;
QSignalMapper *mapper = new QSignalMapper(this);
for(int row = 0; row < 3; ++row) {
  for(int column = 0; column < 3; ++column) {
    QPushButton *button = new QPushButton;
    button->setSizePolicy(QSizePolicy::Minimum,  
                          QSizePolicy::Minimum);
    button->setText(" ");
    gridLayout->addWidget(button, row, column);
    board.append(button);
    mapper->setMapping(button, board.count()-1);
    connect(button, SIGNAL(clicked()), mapper, SLOT(map()));
  }
}



Chapter 3

[ 39 ]

connect(mapper, SIGNAL(mapped(int)), this,  
  SLOT(handleButtonClick(int)));
setLayout(gridLayout);

Here, we first created an instance of QSignalMapper and passed a pointer to the board 
widget as its parent so that the mapper is deleted when the widget is deleted. Then, when 
we create buttons, we "teach" the mapper that each of the buttons has a number associated 
with it—the first button will have the number 0, the second one will be bound to the 
number 1, and so on. By connecting the clicked() signal from the button to mapper's 
map() slot, we tell the mapper to do its magic upon receiving that signal. What the mapper 
will do is that it will then find the mapping of the sender of the signal and emit another 
signal—mapped()—with the mapped number as its parameter. This allows us to connect 
to that signal with a slot (handleButtonClick) that takes the index of the button in the 
board list.

Now it is time to implement the slot itself (remember to declare it in the header file!). 
However, before we do that, let's add a useful enum and a few helper methods to the class:

enum Player {
  Invalid, Player1, Player2, Draw
};

This enum lets us specify information about players in the game. We can use it immediately 
to mark whose move it is now. To do so, add a private field to the class:

Player m_currentPlayer;

Then, add the two public methods to manipulate the value of this field:

Player currentPlayer() const { return m_currentPlayer; }
void setCurrentPlayer(Player p) {
  if(m_currentPlayer == p) return;
  m_currentPlayer = p;
  emit currentPlayerChanged(p);
}

The last method emits a signal, so we have to add the signal declaration to the class 
definition along with another signal that we are going to use:

signals:
  void currentPlayerChanged(Player);
  void gameOver(TicTacToeWidget::Player);



Qt GUI Programming

[ 40 ]

Note that we only emit the currentPlayerChanged signal when the 
current player really changes. You always have to pay attention that you don't 
emit a "changed" signal when you set a value to a field to the same value that 
it had before the function was called. Users of your classes expect that if a 
signal is called changed, it is emitted when the value really changes. Otherwise, 
this can lead to an infinite loop in signal emissions if you have two objects that 
connect their value setters to the other object's changed signal.

Now let's declare the handleButtonClick slot:

public slots:
    void handleButtonClick(int);

And then implement it in the .cpp file:

void TicTacToeWidget::handleButtonClick(int index) {
  if(index < 0 || index >= board.size()) return;  
    // out of bounds check
  QPushButton *button = board.at(index);
  if(button->text() != " ") return;  
    // invalid move
  button->setText(currentPlayer() == Player1 ? "X" : "O");
  Player winner = checkWinCondition(index / 3, index % 3);
  if(winner == Invalid) {
    setCurrentPlayer(currentPlayer() == Player1 ? Player2 : Player1);
    return;
  } else {
    emit gameOver(winner);
  }
}

Here, we first retrieve a pointer to the button based on its index. Then, we check whether 
the button contains any text—if so, then this means that it doesn't participate in the game 
anymore, so we return from the method so that the player can pick another field in the 
board. Next, we set the current player's mark on the button. Then, we check whether 
the player has won the game, passing it the row (index / 3) and column (index % 3) 
index of the current move. If the game didn't end, we switch the current player and return. 
Otherwise, we emit a gameOver() signal, telling our environment who won the game. The 
checkWinCondition() method returns Player1, Player2, or Draw if the game has 
ended and Invalid otherwise. We will not show the implementation of this method here 
as it is quite complex. Try implementing it on your own and if you encounter problems, you 
can see the solution in the code bundle that accompanies this book.



Chapter 3

[ 41 ]

Properties
Apart from signals and slots, Qt meta-objects also give programmers an ability to use the 
so-called properties that are essentially named attributes that can be assigned values of a 
particular type. They are useful to express important features of an object—like text of a 
button, size of a widget, player names in games, and so on.

Declaring a property
To create a property, we first need to declare it in a private section of a class that inherits 
QObject using a special Q_PROPERTY macro, which lets Qt know how to use the property. 
A minimal declaration contains the type of the property, its name, and information about 
a method name that is used to retrieve a value of the property. For example, the following 
code declares a property of the type double that is called height and uses a method called 
height to read the property value:

Q_PROPERTY(double height READ height)

The getter method has to be declared and implemented as usual. Its prototype has to 
comply with these rules: it has to be a public method that returns a value or constant 
reference of a type of the property, and it can't take any input parameters and the method 
itself has to be constant. Typically, a property will manipulate a private member variable of 
the class:

class Tower : public QObject {
  Q_OBJECT // enable meta-object generation
  Q_PROPERTY(double height READ height)  
    // declare the property
  public:
    Tower(QObject *parent = 0) : QObject(parent)  
      { m_height = 6.28; }
    double height() const { return m_height; }  
    // return property value
  private:
    double m_height;  
    // internal member variable holding the property value
};

Such a property is practically useless because there is no way to change its value. Luckily, 
we can extend the declaration to include the information about how to write a value to the 
property:

Q_PROPERTY(double height READ height WRITE setHeight)



Qt GUI Programming

[ 42 ]

Again, we have to declare and implement setHeight so that it behaves as the setter 
method for the property—it needs to be a public method that takes a value or constant 
reference of the type of the property and returns void:

void setHeight(double newHeight) { m_height = newHeight; }

Property setters are good candidates for public slots so that you can easily 
manipulate property values using signals and slots.

We will learn about some of the other extensions to Q_PROPERTY declarations in the later 
chapters of this book.

Using a property
There are two ways in which you can access properties. One is of course, to use getter 
and setter methods that we declared with READ and WRITE keywords in the Q_PROPERTY 
macro—this will naturally work since they are regular C++ methods.

The other way is to use facilities offered by QObject and the meta-object system. They allow 
to us access properties by name using two methods that accept property names as strings. 
A generic property getter (which returns the property value) is a method called property. 
Its setter counterpart (that takes the value and returns void) is setProperty. Since we can 
have properties with different data types, what is the data structure that is used by those 
two methods that hold values for different kinds of properties? Qt has a special class for 
this called QVariant, which behaves a lot like a C union in the way that it can store values 
of different types. There are a couple of advantages to using a union though—the three 
most important are that you can ask the object what type of data it currently holds, you can 
convert some of the types to other types (for example, a string to an integer), and you can 
teach it to operate on your own custom types.

Time for action – adding properties to the board class
In this exercise, we will be adding a useful property to the board class. The property is going 
to hold information about the player who should make the next move. The type of the 
property is going to be the TicTacToeWidget::Player enumeration that we created 
earlier. For the getter and the setter methods, we are going to use the two functions that we 
created earlier: currentPlayer() and setCurrentPlayer().



Chapter 3

[ 43 ]

Open the header file for our class and modify the class definition as shown in the following 
code:

class TicTacToeWidget : public QWidget {
  Q_OBJECT
  Q_ENUMS(Player)
  Q_PROPERTY(Player currentPlayer READ currentPlayer
  WRITE setCurrentPlayer
  NOTIFY currentPlayerChanged)
public:
  enum Player { Invalid, Player1, Player2, Draw };

What just happened?
Since we want to use an enumeration as a type of a property, we have to inform Qt's meta-
object system about the enum. This is done with the Q_ENUMS macro. Then, we declare a 
property called currentPlayer and mark our two existing methods as getter and setter 
for the property. We also use the NOTIFY keyword to mark currentPlayerChanged as a 
signal that is sent to inform about a change in the value of the property. We won't be using 
this extra information in our small game, and we don't require currentPlayer to be a 
property at all, but it is always a good idea to try and find good candidates for properties and 
expose them because some day, someone might want to use our class in a way we hadn't 
predicted and a particular property might become useful.

Designing GUIs
So far, we have coded all the user interfaces manually by writing C++ code that instantiates 
widgets, arranges them in layouts, and connects signals to slots. It is not that hard for 
simple widgets, but becomes tedious and time-consuming when the UI becomes more and 
more complex. Fortunately, Qt provides tools to do all this in a more pleasant way. Instead 
of writing C++ code, we can create forms using a graphical tool by dragging and dropping 
widgets on a canvas, applying layouts to them, and even establishing signal-slot connections 
using the point-and-click technique. Later during the compilation, such forms will get 
converted into C++ code for us and will be ready for applying onto a widget.

The tool is called Qt Designer and is integrated with Qt Creator. To use it, select New File or 
Project from the File menu and choose the Qt Designer Form Class template available after 
selecting Qt in the Files and Classes section of the dialog box. You get to choose a template 
for the form and configure details such as the names of the files to create. In the end, three 
files will get created—two of them implement a C++ class derived from QWidget or one of 
its subclasses and the last one contains data for the form itself.



Qt GUI Programming

[ 44 ]

After closing the wizard, we are taken to Qt Creator's Design mode that looks as shown in 
the following screenshot:

The Design mode consists of four major parts that are marked on the preceding figure with 
numbers.

The area marked as 1 is the main worksheet. It contains a graphical representation of the 
form being designed where you can move widgets around, compose them into layouts, and 
see how they react. It also allows further manipulation of the form using the point-and-click 
method that we will learn later.

The second area 2 is the widget box. It contains a list of available types of widget that are 
arranged into groups containing items with a related or similar functionality. Over the list, 
you can see a box that lets you filter widgets that are displayed in the list to only show those 
that match the entered expression. In the beginning of the list, there are also items that are 
not really widgets—one group contains layouts and the other one contains so-called spacers, 
which are a way to push other items away from each other.



Chapter 3

[ 45 ]

The main purpose of the widget box is to add widgets to the form in the worksheet. You 
can do that by grabbing a widget from the list with the mouse, dragging it to the canvas, 
and releasing the mouse button. The widget will appear in the form and can be further 
manipulated with further tools in Creator's Design mode.

The next area 3, which we are going to talk about, is situated on the right-hand side of the 
window and consists of two parts. At the top of the figure, you can see Object Inspector. 
It presents the parent-child relationship of all widgets that are currently present in the 
edited form. Each line contains the name of the object and the name of its class as seen by 
the meta-object system. If you click on an entry, a corresponding widget in the form gets 
selected (and vice versa).

The lower part of the figure shows the property editor. You can use it to change the values of 
all the properties that each object has. Properties are grouped by their classes that they have 
been declared in, starting from QObject (the base class implementing properties), which 
declares only one but an important property—objectName. Following QObject, there are 
properties declared in QWidget, which is a direct descendant of QObject. They are mainly 
related to the geometry and layout policies of the widget. Lower in the list, you can find 
properties that come from further derivations of QWidget. If you prefer a pure alphabetical 
order where properties are not grouped by their class, you can switch the view using a pop-
up menu that becomes available after you click on the wrench icon positioned over the 
property list; however, once you get familiar with the hierarchy of Qt classes, it will be much 
easier to navigate the list when it is sorted by a class.

Having a closer look at the property editor, you can see that some of them have arrows 
beneath them that reveal new rows when clicked. These are composed properties where 
the complete property value is determined from more than one subproperty values; for 
example, if there is a property called geometry that defines a rectangle, it can be expanded 
to show four subproperties: x, y, width, and height. Another thing that you should quickly 
notice is that some property names are displayed in bold. This means that the property value 
was modified and is different from the default value for this property. This lets you quickly 
find those properties that you have modified.

The last group of functionality 4 that we will explain now is the one positioned in the lower 
part of the window. By default, you will see two tabs—Action Editor and Signal/Slot Editor. 
They allow us to create helper entities such as actions for the menus and toolbars or signal-
slot connections between widgets using a clean tabular interface.

What was described here is the basic tool layout. If you don't like it, you can invoke the 
context menu from the main worksheet, uncheck the Locked entry, and rearrange all the 
windows to your liking or even close the ones you currently don't need.



Qt GUI Programming

[ 46 ]

Time for action – designing the game configuration dialog
Now, we will use Qt Designer forms to build a simple game configuration dialog that will let 
us choose names for our players.

First, invoke the new file dialog from the menu and choose to create a new Qt Designer 
Form Class as shown in the following screenshot:

In the window that appears, choose Dialog with Buttons Bottom:



Chapter 3

[ 47 ]

Adjust the class name to ConfigurationDialog, leave the rest of the settings at their 
default values, and complete the wizard.

Drag and drop two labels and two line edits on the form, position them roughly in a grid, 
double-click on each of the labels, and adjust their captions to receive a result similar to the 
following figure:

Select the first line to edit and look at the property editor. Find a property called 
objectName and change it to player1Name. Do the same for the other line and call it 
player2Name. Then, click on some empty space in the form and choose the Layout in a grid 
entry in the upper toolbar. You should see the widgets snap into place—that's because you 
have just applied a layout to the form. When you're done, open the Tools menu, go to the 
Form Editor submenu, and choose the Preview entry.

What just happened?
You can see a new window open that looks exactly like the form we just designed. You 
can resize the window and interact with the objects inside to monitor the behavior of the 
layouts and widgets. What really happened here is that Qt Creator built a real window for 
us based on the description that we provided in all the areas of the design mode. Without 
any compilation, in a blink of an eye we received a fully working window with all the layouts 
working and all the properties adjusted to our liking. This is a very important tool so make 
sure to use it often to verify that your layouts are controlling all the widgets as you intended 
them to—it is much faster than compiling and running the whole application just to check 
whether the widgets stretch or squeeze properly. It's all possible thanks to Qt's meta-object 
system.



Qt GUI Programming

[ 48 ]

Time for action – polishing the dialog
Now that the GUI itself works as we intended it to, we can focus on giving the dialog some 
more polish.

Accelerators and label buddies
The first thing we are going to do is add accelerators to our widgets. These are keyboard 
shortcuts that, when activated, cause particular widgets to gain keyboard focus or perform 
a predetermined action (for example, toggle a checkbox or push a button). Accelerators are 
usually marked by underlining them, as shown in the following figure:

We will set accelerators to our line edits so that when the user activates an accelerator for 
the first field, it will gain focus. Through this we can enter the name of the first player, and 
similarly, when the accelerator for the second line edit is triggered, we can start typing in the 
name for the second player.

Start by selecting the label on the left-hand side of the first line edit. Press F2 or double-
click on the label (alternatively, find the text property of the label in the property editor and 
activate its value field). This enables us to change the text of the label. Navigate using cursor 
keys so that the text cursor is placed before the character 1 and type the & character. This 
character marks the character directly after it as an accelerator for the widget. For widgets 
that are composed of both text and the actual functionality (for example, a button), this 
is enough to make accelerators work. However, since QLineEdit does not have any text 
associated with it, we have to use a separate widget for that. This is why we have set the 
accelerator on the label. Now, we need to associate the label with the line edit so that the 
activation of the label's accelerator will forward it to the widget of our choice. This is done by 
setting a so-called buddy for the label. You can do this in code using the setBuddy method 
of the QLabel class or using Creator's form designer. Since we're already in the Design 
mode, we'll use the latter approach. For that, we need to activate a dedicated mode in the 
form designer.



Chapter 3

[ 49 ]

Look at the upper part of Creator's window; directly above the form, you will find a toolbar 
containing a couple of icons. Click on the one labeled Edit buddies or just press F5 on your 
keyboard. Now, move the mouse cursor over the label, press the mouse button, and drag 
from the label towards the line edit. When you drag the label over the line edit, you'll see a 
graphical visualization of a connection being set between the label and the line edit. If you 
release the button now, the association will be made permanent. You should notice that 
when such an association is made, the ampersand character (&) vanishes from the label and 
the character behind it gets an underscore. Repeat this for the other label and corresponding 
line edit. Now, you can preview the form again and check whether accelerators work as 
expected.

The tab order
While you're previewing the form, you can check another aspect of the UI design. Start by 
pressing the Tab key and see how the focus moves from widget to widget. There is a good 
chance that the focus will start jumping back and forth between buttons and line edits 
instead of a linear progress from top to bottom (which is an intuitive order for this particular 
dialog). To check and modify the order of focus, leave the preview and switch to the tab 
order editing mode by clicking on the icon called Edit Tab Order in the toolbar.

This mode associates a box with a number to each focusable widget. By clicking on the 
rectangle in the order you wish the widgets to gain focus, you can reorder values, thus 
reordering focus. Now, make it so that the order is as shown in the following figure:

Enter the preview again and check whether the focus changes according to what you've set.



Qt GUI Programming

[ 50 ]

When deciding about the tab order, it is good to consider which fields in 
the dialog are mandatory and which are optional. It is a good habit to allow 
the user to tab through all the mandatory fields first, then to the dialog 
confirmation button (for example, one that says OK or Accept), and then 
cycle through all the optional fields. Thanks to this, the user will be able to 
quickly fill all the mandatory fields and accept the dialog without the need 
to cycle through all the optional fields that the user wants to leave at their 
default values.

Signals and slots
The last thing we are going to do right now is make sure that the signal-slot connections are 
set up properly. To do this, switch to the signal-slot editor mode by pressing F4 or choosing 
Edit Signals/Slots from the toolbar. The Dialog with Buttons Bottom widget template 
predefines two connections for us, which should now become visible in the main canvas 
area:

The QDialog class that implements dialogs in Qt has two useful slots—accept() and 
reject()—which inform the caller whether the action represented by the dialog was 
accepted or not. For our convenience, these slots should already be connected to the 
respective accepted() and rejected() signals from the group of buttons (which is an 
instance of the QDialogButtonBox class) that by default, contain the OK and Cancel 
buttons. If you click on any of them signal accepted() or respectively, rejected() will be 
emitted by the box.



Chapter 3

[ 51 ]

At this point, we can add some more connections to make our dialog more functional. 
Let's make it such that the button to accept the dialog is only enabled when neither of the 
two line edits is empty (that is, when both the fields contain player names). While we will 
implement the logic itself later, we can now make connections to a slot that will perform  
the task.

Since no such slot exists by default, we need to inform the form editor that such a slot will 
exist at the time when the application is compiled. To do this, we need to switch back to the 
default mode of the form editor by pressing F3 or choosing Edit Widgets from the toolbar. 
Then, you can invoke the form's context menu and choose Change signals/slots. A window 
will pop up such as the one shown in the following figure that lists the available signals and 
slots:



Qt GUI Programming

[ 52 ]

Click on the + button in the Slots group and create a slot called updateOKButtonState():

Then, accept the dialog and go back to the Signals/Slots mode. Create a new connection 
by grabbing one of the line edits with your mouse. When you move the cursor outside the 
widget, you will notice a red line following your pointer. If the line encounters a valid target, 
the line will change to an arrow and the target object will be highlighted. The form itself can 
also be a target (or a source); in this case, the line will end with a ground mark (two short 
horizontal lines).

When you release the mouse button, a window will pop up, listing all the signals of the 
source object and all the slots of the target object. Choose the textChanged(QString) 
signal. Note that when you do this, some of the available slots will disappear. This is because 
the tool only allows us to choose from slots that are compatible with the highlighted signal. 
Select our newly created slot and accept the dialog. Repeat the same for the other line edit.

What we have done here is that we've created two connections that will trigger when the 
text of either of the two line edits is changed. They will execute a slot that doesn't exist yet—
by "creating" the slot, we only declared our intention to implement it in a QDialog subclass 
that was also created for us. You can now go ahead and save the form.



Chapter 3

[ 53 ]

What just happened?
We performed a number of tasks that make our form follow standard behaviors known from 
many applications—this makes form navigation easy and shows the user which actions can 
be undertaken and which are currently not available.

Using designer forms
If you open the form in a text editor (for example, by switching to the Creator's Edit pane), 
you will notice that it is really an XML file. So how do we use this file?

As part of the build process, Qt calls a special tool called User Interface Compiler (uic) that 
reads the file and generates a C++ class that contains a setupUi() method. This method 
accepts a pointer to a widget and contains code, which instantiates all the widgets, sets 
their properties, and establishes signal-slot connections, and it is our responsibility to call it 
to prepare the GUI. The class itself, which is named after your form (that is after the value 
of the objectName property of the form object) with a Ui namespace prepended to it (for 
example, Ui::MyForm) is not derived from a widget class but is rather meant to be used 
with one. There are basically three ways of doing this.

Direct approach
The most basic way to use a Qt Designer form is to instantiate a widget and the form object 
and to call setupUi on the widget, like this:

QWidget *widget = new QWidget
Ui_form ui * = new Ui_form;
ui->setupUi(widget);

This approach has a number of flaws. First of all, it creates a potential memory leak of the 
ui object (remember, it is not QObject, so you can't set a parent to it so that it's deleted 
when the parent is deleted). Second, since all the widgets of the form are variables of the ui 
object that is not tied to the widget object, it breaks encapsulation, which is one of the most 
important paradigms of object-oriented programming. However, there is a situation when 
such a construct is acceptable. This is when you create a simple short-lived modal dialog. 
You surely need to remember that to show regular widgets, we have been using the show() 
method. This is fine for non-modal widgets, but for modal dialogs you should instead call the 
exec()method that is defined in the QDialog class. This is a blocking method that doesn't 
return until the dialog is closed. This allows us to modify the code so that it becomes:

QDialog dialog;
Ui_form ui;
ui.setupUi(&dialog);
dialog.exec();



Qt GUI Programming

[ 54 ]

Since we're creating objects on the stack, the compiler will take care of deleting them when 
the local scope ends.

The multiple-inheritance approach
The second way of using Designer forms is to create a class derived from both QWidget 
(or one of its subclasses) and the form class itself. We can then call setupUi from the 
constructor:

class Widget : public QWidget, private Ui::MyForm {
public:
  Widget(QWidget *parent = 0) : QWidget(parent) {
    setupUi(this);
  }
};

This way, we keep the encapsulation as our class inherits fields and methods from the Ui 
class, and we can call any of them directly from within the class code while restricting access 
from the outside world by using private inheritance. The drawback of this approach is that 
we pollute the class namespace, for example, if we had a name object in Ui::MyForm, we 
wouldn't be able to create a name method in Widget.

The single inheritance approach
Fortunately, we can work around this using the composition instead of inheritance. We can 
derive our widget class only from QWidget and instead of also subclassing Ui::MyForm, we 
can make an instance of it a private member of the new class:

class Widget : public QWidget {
public:
  Widget(QWidget *parent = 0) : QWidget(parent) {
    ui = new Ui::MyForm;
    ui->setupUi(this);
  }
  ~Widget() { delete ui; }
private:
  Ui::MyForm *ui;
};

At the cost of having to manually create and destroy the instance of Ui::MyForm, we can 
have the additional benefit of containing all variables and code of the form in a dedicated 
object, which prevents the aforementioned namespace pollution.

This is the recommended way of using Designer forms, and it's also the default mode of 
operation when you tell Qt Creator to generate a Designer form class for you.



Chapter 3

[ 55 ]

Time for action – the logic of the dialog
Now, it is time to make our game settings dialog work. Earlier, we declared a signal-slot 
connection but now the slot itself needs to be implemented.

Open the form class generated by Creator. If you're still in the Design mode, you can quickly 
jump to the respective form class file using the Shift + F4 keyboard shortcut. Create a public 
slots section of the class and declare a void updateOKButtonState() slot. Open the 
refactorization menu (Alt + Enter) and ask Creator to create the skeleton implementation of 
the slot for you. Fill the function body with the following code:

void ConfigurationDialog::updateOKButtonState() {
    bool pl1NameEmpty = ui->player1Name->text().isEmpty();
    bool pl2NameEmpty = ui->player2Name->text().isEmpty();
    QPushButton *okButton = ui->buttonBox 
      ->button(QDialogButtonBox::Ok);
    okButton->setDisabled(pl1NameEmpty || pl2NameEmpty);
}

This code retrieves player names and checks whether either of them is empty. Then, it asks 
the button box that currently contains the OK and Cancel buttons to give a pointer to the 
button that accepts the dialog. Then, we set the button's disabled state based on whether 
both player names contain valid values or not. The button state also needs to be updated 
when we first create the dialog, so add invocation of updateOKButtonState() to the 
constructor of the dialog:

ConfigurationDialog::ConfigurationDialog(QWidget *parent) :
  QDialog(parent), ui(new Ui::ConfigurationDialog)
{
  ui->setupUi(this);
  updateOKButtonState();
}

The next thing to do is to allow to store and read player names from outside the dialog—
since the ui component is private, there is no access to it from outside the class code. This 
is a common situation and one that Qt is also compliant with. Each data field in almost 
every Qt class is private and may contain accessors (a getter and optionally a setter), which 
are public methods that allow to read and store values for data fields. Our dialog has two 
such fields—the names for the two players. At this point, we should note that they are good 
candidates for properties so at the end, we'll declare them as such. But first, let's start by 
implementing the accessors.



Qt GUI Programming

[ 56 ]

Setter methods in Qt are usually named using the lowercase pattern, for example, set 
followed by the name of the property with the first letter converted to uppercase. In our 
situation, the two setters will be called setPlayer1Name and setPlayer2Name and they 
will both accept QString and return void. Declare them in the class header as shown in the 
following code snippet:

void setPlayer1Name(const QString &p1name);
void setPlayer2Name(const QString &p2name);

Implement their bodies in the .cpp file:

void ConfiguratiosDialog::setPlayer1Name(const QString &p1name) {
  ui->player1Name->setText(p1name);
}
void ConfigurationDialog::setPlayer2Name(const QString &p2name) {
 ui->player2Name->setText(p2name);
}

Getter methods in Qt are usually called the same as the property that they are related  
to—player1Name and player2Name. Put the following code in the header file:

QString player1Name() const;
QString player2Name() const;

Put the following code in the implementation file:

QString ConfigurationDialog::player1Name() const  
  { return ui->player1Name->text(); }
QString ConfigurationDialog::player2Name() const  
  { return ui->player2Name->text(); }

The only thing left to do now is to declare the properties. Add the highlighted lines to the 
class declaration:

class ConfigurationDialog : public QDialog {
  Q_OBJECT
  Q_PROPERTY(QString player1Name READ  
    player1Name WRITE setPlayer1Name)
  Q_PROPERTY(QString player2Name READ  
    player2Name WRITE setPlayer2Name)
public:
  ConfigurationDialog(QWidget *parent = 0);

Our dialog is now ready. You can test it by creating an instance of it in main() and calling 
show() or exec().



Chapter 3

[ 57 ]

An application's main window
We already have two major components in our game—the game board and configuration 
dialog. Now, we will need to bind them together. To do this, we will use another important 
component—the QMainWindow class. A "main window" represents the control center of 
an application. It can contain menus, toolbars, docking widgets, a status bar, and the actual 
widget content called a "central widget", as presented in the following diagram:

Menu Bar

Toolbars

Dock Widgets

Central Widget

Status Bar

The central widget part doesn't need any extra explanation—it is a regular widget like 
any other. We will also not focus on dock widgets or the status bar here. They are useful 
components but they are so easy to master that you can learn about them yourself. Instead, 
we will spend some time mastering menus and toolbars. You have surely seen and used 
toolbars and menus in many applications and you know how important they are for good 
user experience.



Qt GUI Programming

[ 58 ]

The main hero shared by both these concepts is a class called QAction, which represents 
a functionality that can be invoked by a user. A single action can have more than one 
incarnation—it can be an entry in a menu (the QMenu instances), a toolbar (QToolBar), 
button, or keyboard shortcut (QShortcut). Manipulating the action (for example, changing 
its text) causes all its incarnations to update. For example, if you have a Save entry in the 
menu (with a keyboard shortcut bound to it), a Save icon in the toolbar, and maybe also 
a Save button somewhere else in your user interface and you want to disallow saving the 
document (for example, a map in your dungeons and dragons game level editor) because 
its contents haven't changed since the document was last loaded. In this case, if, the menu 
entry, toolbar icon, and button are all linked to the same QAction instance then, once you 
set the enabled property of the action to false, all the three entities will become disabled 
as well. This is an easy way to keep different parts of your application in sync—if you disable 
an action object, you can be sure that all entries that trigger the functionality represented by 
the action are also disabled. Actions can be instantiated in code or created graphically using 
Action Editor in Qt Creator. An action can have different pieces of data associated with it—a 
text, tooltip, status bar tip, icons, and others that are less often used. All these are used by 
incarnations of your actions.

The Qt resource system
While speaking of icons, there is an important feature in Qt that you should learn. A natural 
way of creating icons is by loading images from the filesystem. The problem with this is that 
you have to install a bunch of files together with your application and you need to always 
know where they are located to be able to provide paths to access them. This is difficult but 
fortunately, Qt has a solution to this—it allows you to embed arbitrary files (such as images 
for icons) directly in the application that is executable. This is done by preparing resource 
files that are later compiled in the binary. Fortunately, Qt Creator provides a graphical tool 
for this as well.

Time for action – the main window of the application
Create a new Qt Designer Form Class application. As a template, choose Main Window. 
Accept the default values for the rest of the wizard.

Create an action using the action editor and enter the following values in the dialog:



Chapter 3

[ 59 ]

Now, create another action and fill it with the values shown in the following screenshot:



Qt GUI Programming

[ 60 ]

We want our game to look nice, so we will provide icons for the actions and we will embed 
images for them in our application using the resource system. Create a new file and make it 
Qt Resource File. Call it resources.qrc. Click on the Add button and choose Add Prefix. 
Change the value for the prefix to /. Then, click on the Add button again and choose Add 
Files. Find appropriate images for your actions and add them to the resource file. A dialog 
will appear asking whether you want to copy the files to the project directory. Agree by 
choosing Copy.

Now, edit the actions again in the Action Editor and choose icons for them.

What just happened?
We added a resource file to our project. In that resource file, we created entries for a 
number of images. Each of the images is put under a / prefix, which stands for the root 
node of the artificial filesystem that we create. Each entry in a resource file can be accessed 
directly from the manually written code as a file with a special name. This name is assembled 
from three components. First comes a colon character (:), which identifies the resource 
filesystem. This is followed by a prefix (for example, /) and a full path of the entry in the 
resource (for example, exit.png). This makes an image called exit.png accessible 
through the :/exit.png path. When we build the project, the file will be transformed into 
a C data array code and integrated with the application binary. Having prepared the resource 
file, we used images embedded there as icons for our actions.

The next step is to add these actions to a menu and toolbar.



Chapter 3

[ 61 ]

Time for action – adding a pull-down menu
To create a menu for the window, double-click on the Type Here text on the top of the form 
and replace the text with &File. Then, drag the New Game action from the action editor 
over the newly created menu but do not drop it there yet. The menu should open now and 
you can drag the action so that a red bar appears in the submenu in the position where you 
want the menu entry to appear—now you can release the mouse button to create the entry. 
Afterwards, open the menu again by clicking on File and choose Add Separator. Then, repeat 
the drag-and-drop operation for the Quit action to insert a menu entry for it just below the 
separator in the File menu, as shown in the following figure:

What just happened?
Using graphical tools, we created a menu for our program and added a number of actions 
(that were automatically transformed into menu items) to that menu. Each menu entry 
received some text and an icon specified by the action that was dropped in the menu.

To create submenus, first create a menu entry by clicking on the Type Here line 
and entering the submenu name. Then, drag and hover an action over such a 
submenu. After a short time, a submenu will pop up and you will be able to 
drop your action there to create an entry in the second-level menu.



Qt GUI Programming

[ 62 ]

Time for action – creating a toolbar
To create a toolbar, invoke the context menu on the form and choose Add Tool Bar. Then, 
drag the New Game action over the toolbar and drop it there. Open a context menu for the 
toolbar and choose Append Separator. Then, drag the Quit action from the Action Editor 
and drop it in the toolbar behind the separator. The following figure presents the final layout 
that you should have now:

What just happened?
Creating toolbars is very similar to creating menus. You first create the container (the 
toolbar) and then drag-and-drop actions from the action editor. You can even drag an action 
from the menu bar and drop it on the toolbar and vice versa!

Time for action – filling in the central widget
Add two labels in the main window area—one at the top for the first player name and one 
at the bottom of the form for the second player name—and then change their objectName 
property to player1 and player2, respectively. Clear their text property so that they don't 
display anything. Then, drag Widget from the widget box, drop it between the two labels' 
and set its object name to gameBoard. Invoke the context menu on the widget that you 
just dropped and choose Promote to. This allows us to substitute a widget in the form with 
another class; in our case, we will want to replace the empty widget with our game board. 
Fill the dialog that has just appeared with the values shown in the following figure:



Chapter 3

[ 63 ]

Then, click on the button labeled Add and then Promote to close the dialog and confirm the 
promotion. You will not notice any changes in the form because the replacement only takes 
place during compilation. Now, apply a vertical layout on the form so that the labels and the 
empty widget snap into place.

What just happened?
Not all widget types are directly available in the form designer. Sometimes, we need to use 
widget classes that will only be created in the project that is being built. The simplest way to 
be able to put custom widgets on a form is to ask the designer to replace class names with 
some of the objects when C++ code for the form is to be generated. By promoting an object 
to a different class, we saved a lot of work trying to otherwise fit our game board into the 
user interface.



Qt GUI Programming

[ 64 ]

Time for action – putting it all together
The visual part of the game is ready and what remains is to complete the logic of the 
main window and put all the pieces together. Add a public slot to the class and call it 
startNewGame. In the class constructor, connect the New Game action's triggered signal to 
this slot and connect the application's quit slot to the other action:

connect(ui->actionNewGame, SIGNAL(triggered()),  
        this, SLOT(startNewGame()));
connect(ui->actionQuit, SIGNAL(triggered()),  
        qApp, SLOT(quit()));

The qApp special macro represents a pointer to the application object instance, so the 
preceding code will call the quit() slot on the QApplication object created in main(), 
which in turn will eventually cause the application to end.

Let's implement the startNewGame slot as follows:

void MainWindow::startNewGame() {
  ConfigurationDialog dlg(this);
  if(dlg.exec() == QDialog::Rejected) {
    return; // do nothing if dialog rejected
  }
  ui->player1->setText(dlg.player1Name());
  ui->player2->setText(dlg.player2Name());
  ui->gameBoard->initNewGame();
  ui->gameBoard->setEnabled(true);
}

In this slot, we create the settings dialog and show it to the user, forcing him to enter player 
names. If the dialog was canceled, we abandon the creation of a new game. Otherwise, we 
ask the dialog for player names and set them on appropriate labels. Finally, we initialize the 
board and enable it so that users can interact with it.

While writing a turn-based board game, it is a good idea to always clearly mark whose turn it 
is now to make a move. We will do this by marking the moving player's name in bold. There 
is already a signal in the board class that tells us that a valid move was made, which we can 
react to in order to update the labels. Let's add an appropriate code into the constructor of 
the main window class:

connect(ui->gameBoard, SIGNAL(currentPlayerChanged(Player)),  
        this, SLOT(updateNameLabels()));



Chapter 3

[ 65 ]

Now for the slot itself; let add a private slot's section to the class and declare the slot there:

private slots:
  void updateNameLabels();

Now, we can implement it:

void MainWindow::updateNameLabels() {
  QFont f = ui->player1->font();
  f.setBold(ui->gameBoard->currentPlayer() ==  
    TicTacToeWidget::Player1);
  ui->player1->setFont(f);
  f.setBold(ui->gameBoard->currentPlayer() ==  
    TicTacToeWidget::Player2);
  ui->player2->setFont(f);
}

In addition to the slot being called after a signal is emitted, we can also use it to set the initial 
data for the labels when the game is starting. Since all the slots are also regular methods, 
we can simply call updateNameLabels() from startNewGame()—go ahead and invoke 
updateNameLabels() at the end of startNewGame().

The last thing that needs to be done is to handle the situation when the game ends. Connect 
the gameOver() signal from the board to a new slot in the main window class. Implement 
the slot as follows:

void MainWindow::handleGameOver(TicTacToeWidget::Player winner) {
  ui->gameBoard->setEnabled(false);
  QString message;
  if(winner == TicTacToeWidget::Draw) {
    message = "Game ended with a draw.";
  } else {
    message = QString("%1 wins").arg(winner ==  
      TicTacToeWidget::Player1
    ? ui->player1->text() : ui->player2->text());
  }
  QMessageBox::information(this, "Info", message);
}

www.allitebooks.com

http://www.allitebooks.org


Qt GUI Programming

[ 66 ]

What just happened?
Our code does two things. First, it disables the board so that players can no longer 
interact with it. Second, it checks who won the game, assembles the message (we will 
learn more about QString in the next chapter), and shows it using a static method 
QMessageBox::information() that shows a modal dialog containing the message and a 
button that allows us to close the dialog. The last thing that remains is to update the main() 
function in order to create an instance of our MainWindow class:

#include "mainwindow.h"
#include <QApplication>
int main(int argc, char *argv[])
{
  QApplication a(argc, argv);
  MainWindow w;
  w.show();
  return a.exec();
}

Now, you can run your first Qt game.

Have a go hero – extending the game
As an additional exercise, you can try to modify the code we have written in this chapter to 
allow playing the game on boards bigger than 3 x 3. Let the user decide about the size of the 
board (you can modify the game options dialog for that and use QSlider and QSpinBox to 
allow the user to choose the size of the board) and you can then instruct TicTacToeWidget 
to build the board based on the size it gets. Remember to adjust the game winning logic! If 
at any point you run into a dead end and do not know which classes and functions to use, 
consult the reference manual.

To quickly find the documentation for a class (or any other page in the docs), 
switch to the Help pane, choose Index from the drop-down list on top of 
the sidebar, and type in the search term, such as QAction. Also, the F1 key 
is very helpful for browsing the manual. Position the mouse pointer or text 
cursor in the code editor over the name of a class, function, or object and 
press F1 on your keyboard. By doing this, Qt Creator will happily show you 
the available help information on the chosen subject.



Chapter 3

[ 67 ]

Pop quiz – using widgets
Q1. A method that returns the preferred size of a widget is called:

1.	 preferredSize

2.	 sizeHint

3.	 defaultSize

Q2. What is the name of a Qt class that can carry values for any property?

1.	 QVariant

2.	 QUnion

3.	 QPropertyValue

Q3. What is the purpose of the QAction object?

1.	 It represents a functionality that a user can invoke in the program.

2.	 It holds a key sequence to move the focus on a widget.

3.	 It is a base class for all forms generated using Qt Designer.

Summary
In this chapter, you learned how to create simple graphical user interfaces with Qt. We went 
through two approaches—creating user interface classes by writing all the code directly 
and designing the user interface with a graphical tool that generates most of the code for 
us. There is no telling which of the two approaches is better; each of them is better in some 
areas and worse in others. In general, you should prefer using Qt Designer forms to write 
code directly because it's faster and less prone to errors as most of the code is generated. 
However, if you want to retain more control over the code or your GUI is highly dynamic, 
writing all the code yourself will be easier, especially when you gain enough experience with 
Qt to avoid common pitfalls and learn to use advanced programming constructs.

We also learned how the heart of Qt—the meta-object system—works. You should now be 
able to create simple user interfaces and fill them with logic by connecting signals to slots—
predefined ones as well as custom ones that you now know how to define and fill with code.

Qt contains many widget types but I didn't introduce them to you one by one. There is a 
really nice explanation of many widget types in the Qt manual called Qt Widget Gallery, 
which shows most of them in action.



Qt GUI Programming

[ 68 ]

If you have any doubts about using any of those widgets, you can check the example code 
and also look up the appropriate class in the Qt reference manual to learn more about them.

Using Qt is much more than just dragging-and-dropping widgets on forms and providing 
some code to glue the pieces together. In the next chapter, you will learn about some of the 
most useful functionalities that Qt has to offer; they do not relate to showing graphics on 
screen, but rather let you manipulate various kind of data. This is essential for any game that 
is more complicated than a simple tic-tac-toe.



[ 69 ]

Qt Core Essentials

This chapter will help you master Qt ways of basic data processing and storage. 
First of all, you will learn how to handle textual data and how to match text 
against regular expressions. Then, you will see how to store and fetch data from 
files and how to use different storage formats for text and binary data. By the 
end of this chapter, you will be able to implement non-trivial logic and data 
processing in your games efficiently. You will also know how to load external 
data in your games and how to save your own data in permanent storage for 
future use.

Text handling
Applications with a graphical user interface (and games surely fall into this category) are 
able to interact with users by displaying text and by expecting textual input from the user. 
We have already scratched the surface of this topic in the previous chapter by using the 
QString class. Now, we will go into more details.

4



Qt Core Essentials

[ 70 ]

Manipulating strings
Text in Qt is internally encoded using Unicode, which allows to represent characters in 
almost all languages spoken in the world and is de facto standard for native encoding of 
text in most modern operating systems. You have to be aware though that contrary to 
the QString class, the C++ language does not use Unicode by default. Thus, each string 
literal (that is, each bare text you wrap in quotation marks) that you enter in your code 
needs to be converted to Unicode first before it can be stored in any of Qt's string handling 
classes. By default, this is done implicitly assuming that the string literal is UTF-8 encoded, 
but QString provides a number of static methods to convert from other encodings such 
as QString::fromLatin1() or QString::fromUtf16(). This conversion is done at 
runtime, which adds an overhead to the program execution time, especially if you tend to do 
a lot of such conversions in your programs. Luckily, there is a solution for this:

QString str = QStringLiteral("I'm writing my games using Qt");

You can wrap your string literal in a call to QStringLiteral, as shown in the preceding 
code, which if your compiler supports, will perform the conversion at compile time. It's a 
good habit to wrap all your string literals into QStringLiteral but it is not required, so 
don't worry if you forget to do that.

We will not go into great detail here when describing the QString class, as in many aspects 
it is similar to std::string, which is part of the standard C++. Instead, we will focus on the 
differences between the two classes.

Encoding and decoding text
The first difference has already been mentioned—QString keeps the data encoded as 
Unicode. This has the advantage of being able to express text in virtually any language at the 
cost of having to convert from other encodings. Most popular encodings—UTF-8, UTF-16, 
and Latin1—have convenience methods in QString for converting from and to the internal 
representation. But, Qt knows how to handle many other encodings as well. This is done 
using the QTextCodec class.

You can list the codecs supported on your installation by using the 
QTextCodec::availableCodecs()static method. In most installations, 
Qt can handle almost 1,000 different text codecs.



Chapter 4

[ 71 ]

Most Qt entities that handle text can access instances of this class to transparently perform 
the conversion. If you want to perform such conversion manually, you can ask Qt for an 
instance of a codec by its name and make use of the fromUnicode() and toUnicode() 
methods:

QByteArray big5Encoded = "你好";
QTextCodec *big5Codec = QTextCodec::codecForName("Big5");
QString text = big5Codec->toUnicode(big5Encoded);
QTextCodec *utf8Codec = QTextCodec::codecForMib(106); // UTF-8
QByteArray utf8Encoded = utf8Codec->fromUnicode(text);

Basic string operations
The most basic tasks that involve text strings are those where you add or remove characters 
from the string, concatenate strings, and access the string's content. In this regard, QString 
offers an interface that is compatible with std::string, but it also goes beyond that, 
exposing many more useful methods.

Adding data at the beginning or at the end of the string can be done using the prepend() 
and append() methods, which have a couple of overloads that accept different objects that 
can hold textual data, including the classic const char* array. Inserting data in the middle 
of a string can be done with the insert() method that takes the position of the character 
where we need to start inserting as its first argument and the actual text as its second 
argument. The insert method has exactly the same overloads as prepend and append, 
excluding const char*. Removing characters from a string is similar. The basic way to do 
this is to use the remove() method that accepts the position at which we need to delete 
characters and the number of characters to delete is as shown:

QString str = QStringLiteral("abcdefghij");
str.remove(2, 4); // str = "abghij"

There is also a remove overload that accepts another string. When called, all its occurrences 
are removed from the original string. This overload has an optional argument that states 
whether comparison should be done in the default case-sensitive (Qt::CaseSensitive) or 
case-insensitive (Qt::CaseInsensitive) way:

QString str = QStringLiteral("Abracadabra");
str.remove(QStringLiteral("ab"), Qt::CaseInsensitive);  
// str = "racadra"



Qt Core Essentials

[ 72 ]

To concatenate strings, you can either simply add two strings together or you can append 
one string to the other:

QString str1 = QStringLiteral("abc");
QString str2 = QStringLiteral("def");
QString str1_2 = str1+str2;
QString str2_1 = str2;
str2_1.append(str1);

Accessing strings can be divided into two use cases. The first is when you wish to extract a 
part of the string. For this, you can use one of these three methods: left(), right(), and 
mid() that return the given number of characters from the beginning or end of the string or 
extract a substring of a specified length, starting from a given position in the string:

QString original = QStringLiteral("abcdefghij");
QString l = original.left(3); // "abc"
QString r = original.right(2); // "ij"
QString m = original.mid(2, 5); // "cdefg"

The second use case is when you wish to access a single character of the string. The use of 
the index operator works with QString in a similar fashion as with std::string, returning 
a copy or non-const reference to a given character that is represented by the QChar class, as 
shown in the following code:

QString str = "foo";
QChar f = str[0]; // const
str[0] = 'g'; // non-const

In addition to this, Qt offers a dedicated method—at()—that returns a copy of the 
character:

QChar f = str.at(0);

You should prefer to use at() instead of the index operator for operations 
that do not modify the character, as this explicitly sets the operation.

The string search and lookup
The second group of functionality is related to searching for the string. You can use methods 
such as startsWith(), endsWith(), and contains() to search for substrings in the 
beginning or end or in an arbitrary place in the string. The number of occurrences of a 
substring in the string can be retrieved by using the count() method.



Chapter 4

[ 73 ]

Be careful, there is also a count() method that doesn't take any parameters 
and returns the number of characters in the string.

If you need to know the exact position of the match, you can use indexOf() or 
lastIndexOf() to receive the position in the string where the match occurs. The first call 
works by searching forward and the other one searches backwards. Each of these calls takes 
two optional parameters—the second one determines whether the search is case-sensitive 
(similar to how remove works). The first one is the position in the string where the search 
begins. It lets you find all the occurrences of a given substring:

#include <QtDebug>
// ...
int pos = -1;
QString str = QStringLiteral("Orangutans like bananas.");
do {
  pos = str.indexOf("an", pos+1);
  qDebug() << "'an' found starts at position" << pos;
} while(pos!=-1);

Dissecting strings
There is one more group of useful string functionalities that makes QString different from 
std::string. That is, cutting strings into smaller parts and building larger strings from 
smaller pieces.

Very often, a string contains substrings that are glued together by a repeating separator. A 
common case is the Comma-separated Values (CSV) format where a data record is encoded 
in a single string where fields in the record are separated by commas. While you could 
extract each field from the record using functions that you already know (for example, 
indexOf), an easier way exists. QString contains a split() method that takes the 
separator string as its parameter and returns a list of strings that are represented in Qt by 
the QStringList class. Then, dissecting the record into separate fields is as easy as calling 
the following code:

QString record = "1,4,8,15,16,24,42";
QStringList fields = record.split(",");
for(int i=0; i< fields.count(); ++i){
  qDebug() << fields.at(i);
}



Qt Core Essentials

[ 74 ]

The inverse of this method is the join() method present in the QStringList class, which 
returns all the items in the list as a single string merged together with a given separator:

QStringList fields = { "1", "4", "8", "15", "16", "24", "42" };  
  // C++11 syntax!
QString record = fields.join(",");

Converting between numbers and strings
QString also provides some methods for convenient conversion between textual and 
numerical values. Methods such as toInt(), toDouble(), or toLongLong() make it easy 
to extract numerical values from strings. Apart from toDouble(), they all take two optional 
parameters—the first one is a pointer to a bool variable that is set to true or false 
depending on whether the conversion was successful or not. The second parameter specifies 
the numerical base (for example, binary, octal, decimal, or hexadecimal) of the value. The 
toDouble() method only takes a bool pointer to mark the success or failure as shown in 
the following code:

bool ok;
int v1 = QString("42").toInt(&ok, 10);  
  // v1 = 42, ok = true
long long v2 = QString("0xFFFFFF").toInt(&ok, 16);  
  // v2 = 16777215, ok = true
double v3 = QString("not really a number").toDouble(&ok);  
  //v3 = 0.0, ok = false

A static method called number() performs the conversion in the other direction—it takes a 
numerical value and number base and returns the textual representation of the value:

QString txt = QString::number(255, 16); // txt = "0xFF"

If you have to combine both QString and std::string in one program, QString offers 
you the toStdString() and fromStdString() methods to perform an adequate 
conversion.

Some of the other classes that represent values also provide conversions to 
and from QString. An example of such a class is QDate, which represents 
a date and provides the fromString() and toString() methods.



Chapter 4

[ 75 ]

Using arguments in strings
A common task is to have a string that needs to be dynamic in such a way that its content 
depends on the value of some external variable—for instance, you would like to inform the 
user about the number of files being copied, showing "copying file 1 of 2" or "copying file 2 
of 5" depending on the value of counters that denote the current file and total number of 
files. It might be tempting to do this by assembling all the pieces together using one of the 
available approaches:

QString str = "Copying file " + QString::number(current)  
  + " of "+QString::number(total);

There are a number of drawbacks to such an approach; the biggest of them is the problem of 
translating the string into other languages (this will be discussed later in this chapter) where 
in different languages their grammar might require the two arguments to be positioned 
differently than in English.

Instead, Qt allows us to specify positional parameters in strings and then replace them with 
real values. Positions in the string are marked with the % sign (for example, %1, %2, and so 
on) and they are replaced by making a call to arg() and passing it the value that is used to 
replace the next lowest marker in the string. Our file copy message construction code then 
becomes:

QString str = QStringLiteral("Copying file %1 of %2")
                                             .arg(current).arg(total);

The arg method can accept single characters, strings, integers, and real numbers and its 
syntax is similar to that of QString::number().

Regular expressions
Let's briefly talk about regular expressions—usually shortened as regex or regexp. You will 
need these regular expressions whenever you have to check whether a string or parts of it 
matches a given pattern or when you want to find specific parts inside the text and possibly 
want to extract them. Both the validity check and the finding/extraction are based on the so-
called pattern of the regular expression, which describes the format a string must have to be 
valid, to be found, or to be extracted. Since this book is focused on Qt, there is unfortunately 
no time to cover regular expressions in depth. This is not a huge problem, however, since 
you can find plenty of good websites that provide introductions to regular expressions on the 
Internet. A short introduction can be found in Qt's documentation of QRegExp as well.

Even though there are many flavors of the regular expression's syntax, the one that Perl uses 
has become the de facto standard. According to QRegularExpression, Qt offers Perl-
compatible regular expressions.



Qt Core Essentials

[ 76 ]

QRegularExpression was first introduced with Qt 5. In the previous 
versions, you'll find the older QRegExp class. Since QRegularExpression 
is closer to the Perl standard and since its execution speed is much faster 
compared to QRegExp, we advise you to use QRegularExpression 
whenever possible. Nevertheless, you can read the QRegExp documentation 
about the general introduction of regular expressions.

Time for action – a simple quiz game
To introduce you to the main usage of QRegularExpression, let's imagine this game: a 
photo, showing an object, is shown to multiple players and each of them has to estimate 
the object's weight. The player whose estimate is closest to the actual weight wins. The 
estimates will be submitted via QLineEdit. Since you can write anything in a line edit,  
we have to make sure that the content is valid.

So what does valid mean? In this example, we define that a value between 1 g and 999 kg 
is valid. Knowing this specification, we can construct a regular expression that will verify the 
format. The first part of the text is a number, which can be between 1 and 999. Thus, the 
corresponding pattern looks like [1-9][0-9]{0,2}, where [1-9] allows—and demands—
exactly one digit, except zero, which is optionally followed by up to two digits including 
zero. This is expressed through [0-9]{0,2}. The last part of the input is the weight's 
unit. With a pattern such as (mg|g|kg), we allow the weight to be input in milligrams 
(mg), grams (g), or kilograms (kg). With [ ]?, we finally allow an optional space between 
the number and unit. Combined together, the pattern and construction of the related 
QRegularExpression object looks like this:

QRegularExpression regex("[1-9][0-9]{0,2}[ ]? (mg|g|kg)");
regex.setPatternOptions(QRegularExpression:: CaseInsensitiveOption);

What just happened?
In the first line, we constructed the aforementioned QRegularExpression object while 
passing the regular expression's pattern as a parameter to the constructor. We also could 
have called setPattern() to set the pattern:

QRegularExpression regex;
regex.setPattern("[1-9][0-9]{0,2}[ ]?(mg|g|kg)");



Chapter 4

[ 77 ]

Both the approaches are equivalent. If you have a closer look at the unit, you can see 
that right now, the unit is only allowed to be entered in lowercase. We want, however, 
to also allow it to be in uppercase or mixed case. To achieve this, we can of course write 
(mg|mG|Mg|MG|g|G|kg|kG|Kg|KG). Not only is this a hell of a work when you have more 
units, this is also very error-prone, and so we opt for a cleaner and more readable solution. 
On the second line of the initial code example, you see the answer: a pattern option. We used 
setPatternOptions() to set the QRegularExpression::CaseInsensitiveOption 
option, which does not respect the case of the characters used. Of course, there are a few 
more options that you can read about in Qt's documentation on QRegularExpression::P
atternOption. Instead of calling setPatternOptions(), we could have also passed the 
option as a second parameter to the constructor of QRegularExpression:

QRegularExpression regex("[1-9][0-9]{0,2}[ ]?(mg|g|kg)",
           QRegularExpression::CaseInsensitiveOption);

Now, let's see how to use this expression to verify the validity of a string. For the sake of 
simplicity and better illustration, we simply declared a string called input:

QString input = "23kg";
QRegularExpressionMatch match = regex.match(input);
bool isValid = match.hasMatch();

All we have to do is call match(), passing the string we would like to check against it.  
In return, we get an object of the QRegularExpressionMatch type that contains  
all the information that is further needed—and not only to check the validity. With  
QRegularExpressionMatch::hasMatch(), we then can determine whether the  
input matches our criteria, as it returns true if the pattern could be found. Otherwise,  
of course, false is returned.

Attentive readers surely will have noticed that our pattern is not quite finished. The 
hasMatch() method would also return true if we matched it against "foo 142g bar".  
So, we have to define that the pattern is checked from the beginning to the end of the 
matched string. This is done by the \A and \z anchors. The former marks the start of a  
string and the latter the end of a string. Don't forget to escape the slashes when you use 
such anchors. The correct pattern would then look as follows:

QRegularExpression regex("\\A[1-9][0-9]{0,2}[ ]?(mg|g|kg)\\z",
           QRegularExpression::CaseInsensitiveOption);



Qt Core Essentials

[ 78 ]

Extracting information out of a string
After we have checked that the sent guess is well formed, we have to extract the actual 
weight from the string. In order to be able to easily compare the different guesses, we 
further need to transform all values to a common reference unit. In this case, it should be a 
milligram, the lowest unit. So, let's see what QRegularExpressionMatch can offer us for 
this task.

With capturedTexts(), we get a string list of the pattern's captured groups. In our 
example, this list would contain "23kg" and "kg". The first element is always the string 
that was fully matched by the pattern followed by all the sub strings captured by the used 
brackets. Since we are missing the actual number, we have to alter the pattern's beginning to 
([1-9][0-9]{0,2}). Now, the list's second element is the number and the third element 
is the unit. Thus, we can write the following:

int getWeight(const QString &input) {
  QRegularExpression regex("\\A([1-9][0-9]{0,2}) [ ]?(mg|g|kg)\\z");
  regex.setPatternOptions(QRegularExpression:: CaseInsensitiveOption);
  QRegularExpressionMatch match = regex.match(input);
  if(match.hasMatch()) {
    const QString number = match.captured(1);
    int weight = number.toInt();
    const QString unit = match.captured(2).toLower();
    if (unit == "g") {
      weight *= 1000;
    } else if (unit == "kg") {
      weight *= 1000000 ;
    }
    return weight;
  } else {
    return -1;
  }
}

In the function's first two lines, we set up the pattern and its option. Then, we match it 
against the passed argument. If QRegularExpressionMatch::hasMatch() returns 
true, the input is valid and we extract the number and unit. Instead of fetching the entire 
list of captured text with capturedTexts(), we query specific elements directly by calling 
QRegularExpressionMatch::captured(). The passed integer argument signifies the 
element's position inside the list. So, calling captured(1) returns the matched digits as a 
QString.



Chapter 4

[ 79 ]

QRegularExpressionMatch::captured() also takes QString as 
the argument's type. This is useful if you have used named groups inside the 
pattern, for example, if you have written (?<number>[1-9][0-9]{0,2}), 
then you can get the digits by calling match.captured("number"). 
Named groups pay off if you have long patterns or when there is a high 
probability that further brackets will be added in future. Be aware that adding 
a group at a later time will shift the indices of all the following groups by 1 and 
you will have to adjust your code!

To be able to calculate using the extracted number, we need to convert QString into 
an integer. This is done by calling QString::toInt(). The result of this conversion is 
then stored in the weight variable. Next, we fetch the unit and transform it to lowercase 
characters on-the-fly. This way, we can, for example, easily determine whether the user's 
guess is expressed in grams by checking the unit against the lowercase "g". We do not need 
to take care of the capital "G" or the variants "KG", "Kg", and the unusual "kG" for kilogram.

To get the standardized weight in milligrams, we multiply weight by 1,000 or 1,000,000, 
depending on whether this was expressed in g or kg. Lastly, we return this standardized 
weight. If the string wasn't well formed, we return -1 to indicate that the given guess was 
invalid. It is then the caller's duty to determinate which player's guess was the best.

Pay attention to whether your chosen integer type can handle the weight's 
value. For our example, 100,000,000 is the biggest possible value that can be 
held by a signed integer on a 32-bit system. If you are not sure whether your 
code will be compiled on a 32-bit system, use qint32, which is guaranteed 
to be a 32-bit integer on every system that Qt supports, allowing decimal 
notations.

As an exercise, try to extend the example by allowing decimal numbers so that 23.5g is a 
valid guess. To achieve this, you have to alter the pattern in order to enter decimal numbers 
and you also have to deal with double instead of int for the standardized weight.



Qt Core Essentials

[ 80 ]

Finding all pattern occurrences
Lastly, let's have a final look at how to find, for example, all numbers inside a string, even 
those leading with zeros:

QString input = "123 foo 09 1a 3";
QRegularExpression regex("\\b[0-9]+\\b");
QRegularExpressionMatchIterator i = regex.globalMatch(input);
while (i.hasNext()) {
  QRegularExpressionMatch match = i.next();
  qWarning() << match.capturedTexts();
}

The input QString instance contains an exemplary text in which we would like to find 
all numbers. The "foo" as well as "1a" variables should not be found by the pattern since 
these are not valid numbers. Therefore, we set up the pattern defining that we require at 
least one digit, [0-9]+, and that this digit—or these digits—should be wrapped by word 
boundaries, \b. Note that you have to escape the slash. With this pattern, we initiate the 
QRegularExpression object and call globalMatch() on it. Inside the passed argument, 
the pattern will be searched. This time, we do not get QRegularExpressionMatch 
back but, instead, an iterator of the QRegularExpressionMatchIterator type. Since 
QRegularExpressionMatchIterator behaves like a Java iterator, with hasNext(), 
we check whether there is a further match and if so we bring up the next match by calling 
next(). The type of the returned match is then QRegularExpressionMatch, which you 
already know.

If you need to know about the next match inside the while loop, you can use 
QRegularExpressionMatchIterator::peekNext() to receive it. 
The upside of this function is that it does not move the iterator.

This way, you can iterate all pattern occurrences in the string. This is helpful if you, for 
example, want to highlight a search string in text.

Our example would give the output: ("123"), ("09") and ("3").

Taking into account that this was just a brief introduction to regular expressions, 
we would like to encourage you to read the Detailed Description section in the 
documentation to QRegularExpression, QRegularExpressionMatch, and 
QRegularExpressionMatchIterator. Regular expressions are very powerful and useful, 
so, in your daily programming life, you can benefit from the profound knowledge of regular 
expressions!



Chapter 4

[ 81 ]

Data storage
When implementing games, you will often have to work with persistent data—you will need 
to store the saved game data, load maps, and so on. For that, you have to learn about the 
mechanisms that let you use the data stored on digital media.

Files and devices
The most basic and low-level mechanism that is used to access data is to save and load it 
from the files. While you can use the classic file access approaches provided by C and C++, 
such as stdio or iostream, Qt provides its own wrapper over the file abstraction that 
hides platform-dependent details and provides a clean API that works across all platforms in 
a uniform manner.

The two basic classes that you will work with when using files are QDir and QFile. The 
former represents the contents of a directory, lets you traverse filesystems, creates and 
remove directories, and finally, access all files in a particular directory.

Traversing directories
Traversing directories with QDir is really easy. The first thing to do is to have an instance of 
QDir in the first place. The easiest way to do this is to pass the directory path to the QDir 
constructor.

Qt handles file paths in a platform-independent way. Even though the regular 
directory separator on Windows is a backwards slash character (\) and on other 
platforms it is the forward slash (/), Qt accepts forward slash as a directory 
separator on Windows platforms as well. Therefore, you can always use / to 
separate directories when you pass paths to Qt functions.

You can learn the native directory separator for the current platform is by calling 
the QDir::separator()static function. You can transform between native 
and non-native separators with the QDir::toNativeSeparators() and 
QDir::fromNativeSeparators()functions.

Qt provides a number of static methods to access some special directories. The following 
table lists these special directories and functions that access them:

Access function Directory

QDir::current() The current working directory

QDir::home() The home directory of the current user

QDir::root() The root directory—usually / for Unix and C:\ for Windows

QDir::temp() The system temporary directory



Qt Core Essentials

[ 82 ]

When you already have a valid QDir object, you can start moving between directories. 
To do that, you can use the cd() and cdUp() methods. The former moves to the named 
subdirectory, while the latter moves to the parent directory.

To list files and subdirectories in a particular directory, you can use the entryList() 
method, which returns a list of entries in the directory that match the criteria passed to 
entryList(). This method has two overloads. The basic version takes a list of flags that 
correspond to the different attributes that an entry needs to have to be included in the result 
and a set of flags that determine the order in which entries are included in the set. The other 
overload also accepts a list of file name patterns in the form of QStringList as its first 
parameter. The most commonly used filter and sort flags are listed as follows:

Filter flags

QDir::Dirs, QDir::Files, 
QDir::Drives, QDir::AllEntries

List directories, files, drives (or all) that match 
the filters

QDir::AllDirs List all subdirectories regardless of whether they 
match the filter or not

QDir::Readable, QDir::Writable, 
QDir::Executable

List entries that can be read, written, or executed

QDir::Hidden, QDir::System List hidden files and system files

Sort flags

QDir::Unsorted The order of entries is undefined

QDir::Name, QDir::Time, 
QDir::Size, QDir::Type

Sort by appropriate entry attributes

QDir::DirsFirst, QDir::DirsLast Determines whether directories should be listed 
before or after files

Here is an example call that returns all JPEG files in the user's home directory sorted by size:

QDir dir = QDir::home();
QStringList nameFilters;
nameFilters << QStringLiteral("*.jpg") << QStringLiteral("*.jpeg");
QStringList entries = dir.entryList(nameFilters,
                      QDir::Files|QDir::Readable, QDir::Size);

The << operator is a nice and fast way to append entries to 
QStringList.



Chapter 4

[ 83 ]

Getting access to the basic file
Once you know the path to a file (either by using QDir::entryList(), from some external 
source, or even by hardcoding the file path in code), you can pass it to QFile to receive 
an object that acts as a handle to the file. Before the file contents can be accessed, the file 
needs to be opened using the open() method. The basic variant of this method takes a 
mode in which we need to open the file. The following table explains the modes that are 
available:

Mode Description

ReadOnly This file can be read from

WriteOnly This file can be written to

ReadWrite This file can be read from and written to

Append All data writes will be written at the end of the file

Truncate If the file is present, its content is deleted before we open it

Text Native line endings are transformed to \n and back

Unbuffered The flag prevents the file from being buffered by the system

The open() method returns true or false depending on whether the file was opened or 
not. The current status of the file can be checked by calling isOpen() on the file object. 
Once the file is open, it can be read from or written to depending on the options that are 
passed when the file is opened. Reading and writing is done using the read() and write() 
methods. These methods have a number of overloads, but I suggest that you focus on using 
those variants that accept or return a QByteArray object, which is essentially a series of 
bytes—it can hold both textual and nontextual data. If you are working with plain text, then 
a useful overload for write is the one that accepts the text directly as input. Just remember 
that the text has to be null or terminated. When reading from a file, Qt offers a number 
of other methods that might come in handy in some situations. One of these methods is 
readLine(), which tries to read from the file until it encounters a new line character. If you 
use it together with the atEnd() method that tells you whether you have reached the end 
of the file, you can realize the line-by-line reading of a text file:

QStringList lines;
while(!file.atEnd()) {
  QByteArray line = file.readLine();
  lines.append(QString::fromUtf8(line));
}

Another useful method is readAll(), which simply returns the file content, starting from 
the current position of the file pointer until the end of the file.



Qt Core Essentials

[ 84 ]

You have to remember though that when using these helper methods, you should be really 
careful if you don't know how much data the file contains. It might happen that when 
reading line by line or trying to read the whole file into memory in one step, you exhaust the 
amount of memory that is available for your process (you can check the size of the file by 
calling size() on the QFile instance). Instead, you should process the file's data in steps, 
reading only as much as you require at a time. This makes the code more complex but allows 
us to better manage the available resources. If you require constant access to some part of 
the file, you can use the map() and unmap() calls that add and remove mappings of the 
parts of a file to a memory address that you can then use like a regular array of bytes:

QFile f("myfile");
if(!f.open(QFile::ReadWrite)) return;
uchar *addr = f.map(0, f.size());
if(!addr) return;
f.close();
doSomeComplexOperationOn(addr);
f.unmap(addr);

Devices
QFile is really a descendant class of QIODevice, which is a Qt interface that is used to 
abstract entities related to reading and writing. There are two types of devices: sequential 
and random access devices. QFile belongs to the latter group—it has the concepts of start, 
end, size, and current position that can be changed by the user with the seek() method. 
Sequential devices, such as sockets and pipes, represent streams of data—there is no way to 
rewind the stream or check its size; you can only keep reading the data sequentially—piece 
by piece, and you can check how far away you currently are from the end of data.

All I/O devices can be opened and closed. They all implement open(), read(), and 
write() interfaces. Writing to the device queues the data for writing; when the data is 
actually written, the bytesWritten() signal is emitted that carries the amount of data that 
was written to the device. If more data becomes available in the sequential device, it emits 
the readyRead() signal, which informs you that if you call read now, you can expect to 
receive some data from the device.



Chapter 4

[ 85 ]

Time for action – implementing a device to encrypt data
Let's implement a really simple device that encrypts or decrypts the data that is streamed 
through it using a very simple algorithm—the Caesar cipher. What it does is that when 
encrypting, it shifts each character in the plaintext by a number of characters defined by the 
key and does the reverse when decrypting. Thus, if the key is 2 and the plaintext character is 
a, the ciphertext becomes c. Decrypting z with the key 4 will yield the value v.

We will start by creating a new empty project and adding a class derived from QIODevice. 
The basic interface of the class is going to accept an integer key and set an underlying device 
that serves as the source or destination of data. This is all simple coding that you should 
already understand, so it shouldn't need any extra explanation, as shown:

class CaesarCipherDevice : public QIODevice
{
    Q_OBJECT
    Q_PROPERTY(int key READ key WRITE setKey)
public:
    explicit CaesarCipherDevice(QObject *parent = 0)  
    : QIODevice(parent) {
      m_key = 0;
      m_device = 0;
    }
    void setBaseDevice(QIODevice *dev) { m_device = dev; }
    QIODevice *baseDevice() const { return m_device; }
    void setKey(int k) { m_key = k; }
    inline int key() const { return m_key; }
private:
    int m_key;
    QIODevice *m_device;
};

The next thing is to make sure that the device cannot be used if there is no device to 
operate on (that is, when m_device == 0). For this, we have to reimplement the 
QIODevice::open() method and return false when we want to prevent operating on 
our device:

bool open(OpenMode mode) {
  if(!baseDevice())
    return false;
  if(baseDevice()->openMode() != mode)
    return false;
  return QIODevice::open(mode);
}



Qt Core Essentials

[ 86 ]

The method accepts the mode that the user wants to open the device with. We perform an 
additional check to verify that the base device was opened in the same mode before calling 
the base class implementation that will mark the device as open.

To have a fully functional device, we still need to implement the two protected pure virtual 
methods, which do the actual reading and writing. These methods are called by Qt from 
other methods of the class when needed. Let's start with writeData(), which accepts a 
pointer to a buffer containing the data and size of that a buffer:

qint64 CaesarCipherDevice::writeData(const char *data, qint64 len) {
    QByteArray ba(data, len);
    for(int i=0;i<len;++i)
      ba.data()[i] += m_key;
    int written = m_device->write(ba);
    emit bytesWritten(written);
    return written;
}

First, we copy the data into a local byte array. Then, we iterate the array, adding to each byte 
the value of the key (which effectively performs the encryption). Finally, we try to write the 
byte array to the underlying device. Before informing the caller about the amount of data 
that was really written, we emit a signal that carries the same information.

The last method that we need to implement is the one that performs decryption by 
reading from the base device and adding the key to each cell of the data. This is done by 
implementing readData(), which accepts a pointer to the buffer that the method needs to 
write to and the size of the buffer. The code is quite similar to that of writeData() except 
that we are subtracting the key value instead of adding it:

qint64 CaesarCipherDevice::readData(char *data, qint64 maxlen) {
  QByteArray baseData = m_device->read(maxlen);
  const int s = baseData.size();
  for(int i=0;i<s;++i)
    data[i] = baseData[i]-m_key;
  return s;
}

First, we read from the underlying device as much as we can fit into the buffer and store the 
data in a byte array. Then, we iterate the array and set subsequent bytes of data buffer to the 
decrypted value. Finally, we return the amount of data that was really read.



Chapter 4

[ 87 ]

A simple main() function that can test the class looks as follows:

int main(int argc, char **argv) {
  QByteArray ba = "plaintext";
  QBuffer buf;
  buf.open(QIODevice::WriteOnly);
  CaesarCipherDevice encrypt;
  encrypt.setKey(3);
  encrypt.setBaseDevice(&buf);
  encrypt.open(buf.openMode());
  encrypt.write(ba);
  qDebug() << buf.data();

  CaesarCipherDevice decrypt;
  decrypt.setKey(3);
  decrypt.setBaseDevice(&buf);
  buf.open(QIODevice::ReadOnly);
  decrypt.open(buf.openMode());
  qDebug() << decrypt.readAll();
  return 0;
}

We use the QBuffer class that implements the QIODevice API and acts as an adapter for 
QByteArray or QString.

What just happened?
We created an encryption object and set its key to 3. We also told it to use a QBuffer 
instance to store the processed content. After opening it for writing, we sent some data to 
it that gets encrypted and written to the base device. Then, we created a similar device, 
passing the same buffer again as the base device, but now, we open the device for reading. 
This means that the base device contains ciphertext. After this, we read all data from the 
device, which results in reading data from the buffer, decrypting it, and returning the data so 
that it can be written to the debug console.



Qt Core Essentials

[ 88 ]

Have a go hero – a GUI for the Caesar cipher
You can combine what you already know by implementing a full-blown GUI application that 
is able to encrypt or decrypt files using the Caesar cipher QIODevice class that we just 
implemented. Remember that QFile is also QIODevice, so you can pass its pointer directly 
to setBaseDevice().

This is just a starting point for you. The QIODevice API is quite rich and contains numerous 
methods that are virtual, so you can reimplement them in subclasses.

Text streams
Much of the data produced by computers nowadays is based on text. You can create such 
files using a mechanism that you already know—opening QFile to write, converting all 
data into strings using QString::arg(), optionally encoding strings using QTextCodec, 
and dumping the resulting bytes to the file by calling write. However, Qt provides a nice 
mechanism that does most of this automatically for you in a way similar to how the standard 
C++ iostream classes work. The QTextStream class operates on any QIODevice API in a 
stream-oriented way. You can send tokens to the stream using the << operator, where they 
get converted into strings, separated by spaces, encoded using a codec of your choice, and 
written to the underlying device. It also works the other way round; using the >> operator, 
you can stream data from a text file, transparently converting it from strings to appropriate 
variable types. If the conversion fails, you can discover it by inspecting the result of the 
status() method—if you get ReadPastEnd or ReadCorruptData, then this means that 
the read has failed.

While QIODevice is the main class that QTextStream operates on, it can 
also manipulate QString or QByteArray, which makes it useful for us to 
compose or parse strings.

Using QTextStream is simple—you just have to pass it the device that you want it to 
operate on and you're good to go. The stream accepts strings and numerical values:

QFile file("output.txt");
file.open(QFile::WriteOnly|QFile::Text);
QTextStream stream(&file);
stream << "Today is " << QDate::currentDate().toString() << endl;
QTime t = QTime::currentTime();
stream << "Current time is " << t.hour() << " h and " << t.minute()  
       << "m." << endl;



Chapter 4

[ 89 ]

Apart from directing content into the stream, the stream can accept a number of 
manipulators, such as endl, which have a direct or indirect influence on how the stream 
behaves. For instance, you can tell the stream to display a number as decimal and another as 
hexadecimal with uppercase digits using the following code (highlighted in the code are all 
manipulators):

for(int i=0;i<10;++i) {
  int num = qrand() % 100000;  // random number between 0 and 99999
  stream << dec << num << showbase << hex << uppercasedigits << num  
         << endl;
}

This is not the end of the capabilities of QTextStream. It also allows us to display data in a 
tabular manner by defining column widths and alignments. Suppose that you have a set of 
records for game players that is defined by the following structure:

struct Player {
  QString name;
  qint64 experience;
  QPoint position;
  char direction;
};
QList<Player> players;

Let's dump such info into a file in a tabular manner:

QFile file("players.txt");
file.open(QFile::WriteOnly|QFile::Text);
QTextStream stream(&file);
stream << center;
stream << qSetFieldWidth(16) << "Player" << qSetFieldWidth(0) << " ";
stream << qSetFieldWidth(10) << "Experience"  
       << qSetFieldWidth(0) << " ";
stream << qSetFieldWidth(13) << "Position"  
       << qSetFieldWidth(0) << " ";
stream << "Direction" << endl;
for(int i=0;i<players.size();++i) {
  const Player &p = players.at(i);
  stream << left << qSetFieldWidth(16) << p.name  
         << qSetFieldWidth(0) << " ";
  stream << right << qSetFieldWidth(10) << p.experience  
         << qSetFieldWidth(0) << " ";
  stream << right << qSetFieldWidth(6) << p.position.x()  
         << qSetFieldWidth(0) << " " << qSetFieldWidth(6)  
         << p.position.y() << qSetFieldWidth(0) << " ";



Qt Core Essentials

[ 90 ]

  stream << center << qSetFieldWidth(10);
  switch(p.direction) {
    case 'n' : stream << "north"; break;
    case 's' : stream << "south"; break;
    case 'e' : stream << "east"; break;
    case 'w' : stream << "west"; break;
    default: stream << "unknown"; break;
  }
  stream << qSetFieldWidth(0) << endl;
}

After running the program, you should get a result similar to the one shown in the following 
screenshot:

One last thing about QTextStream is that it can operate on standard C file structures, which 
makes it possible for us to use QTextStream to, for example, write to stdout or read from 
stdin, as shown in the following code:

QTextStream qout(stdout);
qout << "This text goes to process standard output." << endl;

Data serialization
More than often, we have to store object data in a device-independent way so that it can 
be restored later, possibly on a different machine with a different data layout and so on. In 
computer science, this is called serialization. Qt provides several serialization mechanisms 
and now we will have a brief look at some of them.



Chapter 4

[ 91 ]

Binary streams
If you look at QTextStream from a distance, you will notice that what it really does is 
serialize and deserialize data to a text format. Its close cousin is the QDataStream class that 
handles serialization and deserialization of arbitrary data to a binary format. It uses a custom 
data format to store and retrieve data from QIODevice in a platform-independent way. It 
stores enough data so that a stream written on one platform can be successfully read on a 
different platform.

QDataStream is used in a similar fashion as QTextStream—the operators << and >> 
are used to redirect data into or out of the stream. The class supports most of the built-in 
Qt types so that you can operate on classes such as QColor, QPoint, or QStringList 
directly:

QFile file("outfile.dat");
file.open(QFile::WriteOnly|QFile::Truncate);
QDataStream stream(&file);
double dbl = 3.14159265359;
QColor color = Qt::red;
QPoint point(10, -4);
QStringList stringList = QStringList() << "foo" << "bar";
stream << dbl << color << point << stringList;

If you want to serialize custom data types, you can teach QDataStream to do that by 
implementing proper redirection operators.

Time for action – serialization of a custom structure
Let's perform another small exercise by implementing functions that are required to use 
QDataStream to serialize the same simple structure that contains the player information 
that we used for text streaming:

struct Player {
  QString name;
  qint64 experience;
  QPoint position;
  char direction;
};



Qt Core Essentials

[ 92 ]

For this, two functions need to be implemented, both returning a QDataStream reference 
that was taken earlier as an argument to the call. Apart from the stream itself, the serialization 
operator accepts a constant reference to the class that is being saved. The most simple 
implementation just streams each member into the stream and returns the stream afterwards:

QDataStream& operator<<(QDataStream &stream, const Player &p) {
  stream << p.name;
  stream << p.experience;
  stream << p.position;
  stream << p.direction;
  return stream;
}

Complementary to this, deserializing is done by implementing a redirection operator that 
accepts a mutable reference to the structure that is filled by data that is read from the stream:

QDataStream& operator>>(QDataStream &stream, Player &p) {
   stream >> p.name;
   stream >> p.experience;
   stream >> p.position;
   stream >> p.direction;
   return stream;
}

Again, at the end, the stream itself is returned.

What just happened?
We provided two standalone functions that define redirection operators for the Player 
class to and from a QDataStream instance. This lets your class be serialized and deserialized 
using mechanisms offered and used by Qt.

XML streams
XML has become one of the most popular standards that is used to store hierarchical data. 
Despite its verbosity and difficulty to read by human eye, it is used in virtually any domain 
where data persistency is required, as it is very easy to read by machines. Qt provides 
support for reading and writing XML documents in two modules. First, the QtXml module 
provides access using the Document Object Model (DOM) standard with classes such as 
QDomDocument, QDomElement, and others. We will not discuss this approach here, as now 
the recommended approach is to use streaming classes from the QtCore module. One of 
the downsides of QDomDocument is that it requires us to load the whole XML tree into the 
memory before parsing it. In some situations, this is compensated for by the ease of use of 
the DOM approach as compared to a streamed approach, so you can consider using it if you 
feel you have found the right task for it.



Chapter 4

[ 93 ]

If you want to use the DOM access to XML in Qt, remember to enable 
the QtXml module in your applications by adding a QT += xml line in 
the project configuration files.

As already said, we will focus on the stream approach implemented by the 
QXmlStreamReader and QXmlStreamWriter classes.

Time for action – implementing an XML parser for player data
In this exercise, we are going to create a parser to fill data that represents players and their 
inventory in an RPG game:

struct InventoryItem {
  enum Type { Weapon, Armor, Gem, Book, Other } type;
  QString subType;
  int durability;
};

struct Player {
  QString name;
  QString password;
  int experience;
  int hitPoints;
  QList<Item> inventory;
  QString location;
  QPoint position;
};

struct PlayerInfo {
  QList<Player> players;
};

Save the following document somewhere. We will use it to test whether the parser can  
read it:

<PlayerInfo>
    <Player hp="40" exp="23456">
        <Name>Gandalf</Name>
        <Password>mithrandir</Password>
        <Inventory>
            <InvItem type="weapon" durability="3">
                <SubType>Long sword</SubType>
            </InvItem>
            <InvItem type="armor" durability="10">
                <SubType>Chain mail</SubType>



Qt Core Essentials

[ 94 ]

            </InvItem>
        </Inventory>
        <Location name="room1">
            <Position x="1" y="0"/>
        </Location>
    </Player>
</PlayerInfo>

Let's create a class called PlayerInfoReader that will wrap QXmlStreamReader and 
expose a parser interface for the PlayerInfo instances. The class will contain two private 
members—the reader itself and a PlayerInfo instance that acts as a container for the data 
that is currently being read. We'll provide a result() method that returns this object once 
the parsing is complete, as shown in the following code:

class PlayerInfoReader {
public:
  PlayerInfoReader(QIODevice *);
  inline const PlayerInfo& result() const { return m_pinfo; }
private:
  QXmlStreamReader reader;
  PlayerInfo m_pinfo;
};

The class constructor accepts a QIODevice pointer that the reader is going to use to retrieve 
data as it needs it. The constructor is trivial, as it simply passes the device to the reader 
object:

PlayerInfoReader(QIODevice *device) {
    reader.setDevice(device);
}

Before we go into parsing, let's prepare some code to help us with the process. First, let's 
add an enumeration type to the class that will list all the possible tokens—tag names that we 
want to handle in the parser:

enum Token {
  T_Invalid = -1,
  T_PlayerInfo,                                 /* root tag */
  T_Player,                                     /* in PlayerInfo */
  T_Name, T_Password, T_Inventory, T_Location,  /* in Player */
  T_Position,                                   /* in Location */
  T_InvItem                                     /* in Inventory */
};



Chapter 4

[ 95 ]

To use these tags, we'll add a static method to the class that returns the token type based on 
its textual representation:

static Token PlayerInfoReader::tokenByName(const QStringRef &r) {
  static QStringList tokenList = QStringList()  
    << "PlayerInfo" << "Player"
    << "Name" << "Password"
    << "Inventory" << "Location"
    << "Position" << "InvItem";
  int idx = tokenList.indexOf(r.toString());
  return (Token)idx;
}

You can notice that we are using a class called QStringRef. It represents a string 
reference—a substring in an existing string—and is implemented in a way that avoids 
expensive string construction; therefore, it is very fast. We're using this class here because 
that's how QXmlStreamReader reports tag names. Inside this static method, we are 
converting the string reference to a real string and trying to match it against a list of known 
tags. If the matching fails, -1 is returned, which corresponds to our T_Invalid token.

Now, let's add an entry point to start the parsing process. Add a public read method that 
initializes the data structure and performs initial checks on the input stream:

bool PlayerInfoReader::read() {
  m_pinfo = PlayerInfo();
  if(reader.readNextStartElement() &&  
    tokenByName(reader.name()) == T_PlayerInfo) {
      return readPlayerInfo();
  } else {
    return false;
  }
}

After clearing the data structure, we call readNextStartElement() on the reader to make 
it find the starting tag of the first element, and if it is found, we check whether the root tag 
of the document is what we expect it to be. If so, we call the readPlayerInfo() method 
and return its result, denoting whether the parsing was successful. Otherwise, we bail out, 
reporting an error.

The QXmlStreamReader subclasses usually follow the same pattern. Each parsing method 
first checks whether it operates on a tag that it expects to find. Then, it iterates all the 
starting elements, handling those it knows and ignoring all others. Such an approach lets us 
maintain forward compatibility, since all tags introduced in newer versions of the document 
are silently skipped by an older parser.



Qt Core Essentials

[ 96 ]

Now, let's implement the readPlayerInfo method:

bool readPlayerInfo() {
  if(tokenByName(reader.name()) != T_PlayerInfo)
    return false;
  while(reader.readNextStartElement()) {
    if(tokenByName(reader.name()) == T_Player) {
      Player p = readPlayer();
      m_pinfo.players.append(p);
    } else
      reader.skipCurrentElement();
  }
  return true;
}

After verifying that we are working on a PlayerInfo tag, we iterate all the starting 
subelements of the current tag. For each of them, we check whether it is a Player tag and 
call readPlayer() to descend into the level of parsing data for a single player. Otherwise, 
we call skipCurrentElement(), which fast-forwards the stream until a matching ending 
element is encountered.

The structure of readPlayer() is similar; however, it is more complicated as we also want 
to read data from attributes of the Player tag itself. Let's take a look at the function piece 
by piece:

Player readPlayer() {
  if(tokenByName(reader.name()) != T_Player) return Player();
  Player p;
  const QXmlStreamAttributes& playerAttrs = reader.attributes();
  p.hitPoints = playerAttrs.value("hp").toString().toInt();
  p.experience = playerAttrs.value("exp").toString().toInt();

After checking for the right tag, we get the list of attributes associated with the opening 
tag and ask for values of the two attributes that we are interested in. After this, we loop all 
child tags and fill the Player structure based on the tag names. By converting tag names 
to tokens, we can use a switch statement to neatly structure the code in order to extract 
information from different tag types, as shown in the following code:

while(reader.readNextStartElement()) {
  Token t = tokenByName(reader.name());
  switch(t) {
  case Name:      p.name = reader.readElementText(); break;
  case Password:  p.password = reader.readElementText(); break;
  case Inventory: p.inventory = readInventory(); break;



Chapter 4

[ 97 ]

If we are interested in the textual content of the tag, we can use readElementText() 
to extract it. This method reads until it encounters the closing tag and returns the text 
contained within it. For the Inventory tag, we call the dedicated readInventory() 
method.

For the Location tag, the code is more complex than before as we again descend into 
reading child tags, extracting the required information and skipping all unknown tags:

        case T_Location: {
            p.location = reader.attributes(). 
              value("name").toString();
            while(reader.readNextStartElement()) {
                if(tokenByName(reader.name()) == T_Position) {
                    const QXmlStreamAttributes& attrs  
                      = reader.attributes();
                    p.position.setX(attrs.value("x") 
                     .toString().toInt());
                    p.position.setY(attrs.value("y"). 
                      toString().toInt());
                    reader.skipCurrentElement();
                } else
                    reader.skipCurrentElement();
            }
        }; break;
        default:
            reader.skipCurrentElement();
        }
    }
    return p;
}

The last method is similar in structure to the previous one—iterate all the tags, skip 
everything that we don't want to handle (everything that is not an inventory item), fill the 
inventory item data structure, and append the item to the list of already parsed items, as 
shown in the following code:

QList<InventoryItem> readInventory() {
  QList<InventoryItem> inventory;
  while(reader.readNextStartElement()) {
    if(tokenByName(reader.name()) != T_InvItem) {
      reader.skipCurrentElement();
      continue;
    }
    InventoryItem item;
    const QXmlStreamAttributes& attrs = reader.attributes();



Qt Core Essentials

[ 98 ]

      item.durability = attrs.value("durability"). 
      toString().toInt();
    QStringRef typeRef = attrs.value("type");
    if(typeRef == "weapon") {
      item.type = InventoryItem::Weapon;
    } else if(typeRef == "armor") {
      item.type = InventoryItem::Armor;
    } else if(typeRef == "gem") {
      item.type = InventoryItem::Gem;
    } else if(typeRef == "book") {
      item.type = InventoryItem::Book;
    } else item.type = InventoryItem::Other;
    while(reader.readNextStartElement()) {
      if(reader.name() == "SubType")
      item.subType = reader.readElementText();
      else
        reader.skipCurrentElement();
    }
    inventory << item;
  }
  return inventory;
}

In main() of your project, write some code that will check whether the parser works 
correctly. You can use the qDebug() statements to output the sizes of lists and contents of 
variables. Take a look at the following code for an example:

qDebug() << "Count:" << playerInfo.players.count();
qDebug() << "Size of inventory:"  
         << playerInfo.players.first().inventory.size();
qDebug() << "Room: " << playerInfo.players.first().location  
         << playerInfo.players.first().position;

What just happened?
The code you just wrote implements a full top-down parser of the XML data. First, the data 
goes through a tokenizer, which returns identifiers that are much easier to handle than 
strings. Then, each method can easily check whether the token it receives is an acceptable 
input for the current parsing stage. Based on the child token, the next parsing function is 
determined and the parser descends to a lower level until there is nowhere to descend 
to. Then, the flow goes back up one level and processes the next child. If at any point an 
unknown tag is found, it gets ignored. This approach supports a situation when a new 
version of software introduces new tags to the file format specification, but an old version of 
software can still read the file by skipping all the tags that it doesn't understand.



Chapter 4

[ 99 ]

Have a go hero – an XML serializer for player data
Now that you know how to parse XML data, you can create the complementary 
part—a module that will serialize PlayerInfo structures into XML documents 
using QXmlStreamWriter. Use methods such as writeStartDocument(), 
writeStartElement(), writeCharacters(), and writeEndElement() for this. 
Verify that the documents saved with your code can be parsed with what we implemented 
together.

JSON files
JSON stands for JavaScript Object Notation, which is a popular lightweight textual format 
that is used to store object-oriented data in a human-readable form. It comes from JavaScript 
where it is the native format used to store object information; however, it is commonly used 
across many programming languages and a popular format for web data exchange. A simple 
JSON-formatted definition looks as follows:

{
    "name": "Joe",
    "age": 14,
    "inventory: [
        { "type": "gold; "amount": "144000" },
        { "type": "short_sword"; "material": "iron" }
    ]
}

JSON can express two kinds of entities: objects (enclosed in braces) and arrays (enclosed in 
square brackets) where an object is defined as a set of key-value pairs, where a value can 
be a simple string, an object, or array. In the previous example, we had an object containing 
three properties—name, age, and inventory. The first two properties are simple values and 
the last property is an array that contains two objects with two properties each.

Qt can create and read JSON descriptions using the QJsonDocument class. A document 
can be created from the UTF-8-encoded text using the QJsonDocument::fromJson() 
static method and can later be stored in a textual form again using toJson(). Since the 
structure of JSON closely resembles that of QVariant (which can also hold key-value pairs 
using QVariantMap and arrays using QVariantList), conversion methods to this class 
also exist using a set of fromVariant() and toVariant() calls. Once a JSON document 
is created, you can check whether it represents an object or an array using one of the 
isArray and isObject calls. Then, the document can be transformed into QJsonArray or 
QJsonObject using the toArray and toObject methods.



Qt Core Essentials

[ 100 ]

QJsonObject is an iterable type that can be queried for a list of keys (using keys()) or 
asked for a value of a specific key (with a value() method). Values are represented using 
the QJsonValue class, which can store simple values, an array, or object. New properties 
can be added to the object using the insert() method that takes a key as a string, a value 
can be added as QJsonValue, and the existing properties can be removed using remove().

QJsonArray is also an iterable type that contains a classic list API—it contains methods 
such as append(), insert(), removeAt(), at(), and size() to manipulate entries in 
the array, again working on QJsonValue as the item type.

Time for action – the player data JSON serializer
Our next exercise is to create a serializer of the same PlayerInfo structure as we used for 
the XML exercise, but this time the destination data format is going to be JSON.

Start by creating a PlayerInfoJSON class and give it an interface similar to the one shown 
in the following code:

class PlayerInfoJSON {
public:
  PlayerInfoJSON(){}
  QByteArray writePlayerInfo(const PlayerInfo &pinfo) const;
};

All that is really required is to implement the writePlayerInfo method. This method will 
use QJsonDocument::fromVariant() to perform the serialization; thus, what we really 
have to do is convert our player data to a variant. Let's add a protected method to do that:

QVariant PlayerInfoJSON::toVariant(const PlayerInfo &pinfo) const {
  QVariantList players;
  foreach(const Player &p, pinfo.players) players << toVariant(p);
  return players;
}

Since the structure is really a list of players, we can iterate the list of players, serialize each 
player to a variant, and append the result to QVariantList. Having this function ready, 
we can descend a level and implement an overload for toVariant() that takes a Player 
object:

QVariant PlayerInfoJSON::toVariant(const Player &player) const {
  QVariantMap map;
  map["name"]       = player.name;
  map["password"]   = player.password;
  map["experience"] = player.experience;
  map["hitpoints"]  = player.hitPoints;



Chapter 4

[ 101 ]

  map["location"]   = player.location;
  map["position"]   = QVariantMap({ {"x", player.position.x()},
                                    {"y", player.position.y()} });
  map["inventory"]  = toVariant(player.inventory);
  return map;
}

Qt's foreach macro takes two parameters—a declaration of a variable and a 
container to iterate. At each iteration, the macro assigns subsequent elements 
to the declared variable and executes the statement located directly after the 
macro. A C++11 equivalent of foreach is a range that is based for construct:

for(const Player &p: pinfo.players)  
  players << toVariant(p);

This time, we are using QVariantMap as our base type, since we want to associate values 
with keys. For each key, we use the index operator to add entries to the map. The position 
key holds a QPoint value, which is supported natively by QVariant; however, such a variant 
can't be automatically encoded in JSON, so we convert the point to a variant map using the 
C++11 initializer list. The situation is different with the inventory—again, we have to write an 
overload for toVariant that will perform the conversion:

QVariant PlayerInfoJSON::toVariant(const QList<InventoryItem> &items) 
const {
  QVariantList list;
  foreach(const InventoryItem &item, items) list << toVariant(item);
  return list;
}

The code is almost identical to the one handling PlayerInfo objects, so let's focus on the 
last overload of toVariant—the one that accepts Item instances:

QVariant PlayerInfoJSON::toVariant(const InventoryItem &item) const {
  QVariantMap map;
  map["type"] = (int)item.type;
  map["subtype"] = item.subType;
  map["durability"] = item.durability;
  return map;
}

There is not much to comment here—we add all keys to the map, treating the item type as 
an integer for simplicity (this is not the best approach in a general case, as if we serialize our 
data and then change the order of values in the original enumeration, we will not get the 
proper item types after deserialization).



Qt Core Essentials

[ 102 ]

What remains is to use the code we have just written in the writePlayerInfo method:

QByteArray PlayerInfoJSON::writePlayerInfo(const PlayerInfo &pinfo) 
const {
  QJsonDocument doc = QJsonDocument::fromVariant(toVariant(pinfo));
  return doc.toJson();
}

Time for action – implementing a JSON parser
Let's extend the PlayerInfoJSON class and equip it with a reverse conversion:

PlayerInfo PlayerInfoJSON::readPlayerInfo(const QByteArray &ba) const 
{
  QJsonDocument doc = QJsonDocument::fromJson(ba);
  if(doc.isEmpty() || !doc.isArray()) return PlayerInfo();
  return readPlayerInfo(doc.array());
}

First, we read the document and check whether it is valid and holds the expected array. 
Upon failure, an empty structure is returned; otherwise, readPlayerInfo is called and is 
given QJsonArray to work with:

PlayerInfo PlayerInfoJSON::readPlayerInfo(const QJsonArray &array) 
const {
  PlayerInfo pinfo;
  foreach(QJsonValue value, array)
    pinfo.players << readPlayer(value.toObject());
  return pinfo;
}

Since the array is iterable, we can again use foreach to iterate it and use another method—
readPlayer—to extract all the needed data:

Player PlayerInfoJSON::readPlayer(const QJsonObject &object) const {
  Player player;
  player.name = object.value("name").toString();
  player.password = object.value("password").toString();
  player.experience = object.value("experience").toDouble();
  player.hitPoints = object.value("hitpoints").toDouble();
  player.location = object.value("location").toString();



Chapter 4

[ 103 ]

  QVariantMap positionMap = object.value("position") 
                            .toVariant().toMap();
  player.position = QPoint(positionMap["x"].toInt(),  
                    positionMap["y"].toInt());
  player.inventory = readInventory( 
                     object.value("inventory").toArray());
  return player;
}

In this function, we used QJsonObject::value() to extract data from the object and 
then we used different functions to convert the data to the desired type. Note that in order 
to convert to QPoint, we first converted it to QVariantMap and then extracted the values 
before using them to build QPoint. In each case, if the conversion fails, we get a default 
value for that type (for example, an empty string). To read the inventory, we employ a 
custom method:

QList<InventoryItem> PlayerInfoJSON::readInventory(const QJsonArray 
&array) const {
  QList<InventoryItem> inventory;
  foreach(QJsonValue value, array)  
    inventory << readItem(value.toObject());
  return inventory;
}

What remains is to implement readItem():

InventoryItem PlayerInfoJSON::readItem(const QJsonObject &object) 
const {
  Item item;
  item.type = (InventoryItem::Type)object.value("type").toDouble();
  item.subType = object.value("subtype").toString();
  item.durability = object.value("durability").toDouble();
  return item;
}

What just happened?
The class that was implemented can be used for bidirectional conversion between Item 
instances and a QByteArray object, which contains the object data in the JSON format. We 
didn't do any error checking here; instead, we relied on automatic type conversion handling 
in QJsonObject and QVariant.



Qt Core Essentials

[ 104 ]

QSettings
While not strictly a serialization issue, the aspect of storing application settings is closely 
related to the described subject. A Qt solution for this is the QSettings class. By default, 
it uses different backends on different platforms, such as system registry on Windows or INI 
files on Linux. The basic use of QSettings is very easy—you just need to create the object 
and use setValue() and value() to store and load data from it:

QSettings settings;
settings.setValue("windowWidth", 80);
settings.setValue("windowTitle", "MySuperbGame");
// …
int windowHeight = settings.value("windowHeight").toInt();

The only thing you need to remember is that it operates on QVariant, so the return value 
needs to be converted to the proper type if needed as shown in the last line of the preceding 
code. A call to value() can take an additional argument that contains the value to be 
returned if the requested key is not present in the map. This allows you to handle default 
values, for example, in a situation when the application is first started and the settings are 
not saved yet:

int windowHeight = settings.value("windowHeight", 800);

The simplest scenario assumes that settings are "flat" in the way that all keys are defined 
on the same level. However, this does not have to be the case—correlated settings can 
be put into named groups. To operate on a group, you can use the beginGroup() and 
endGroup() calls:

settings.beginGroup("Server");
QString srvIP = settings.value("host").toString();
int port = settings.value("port").toInt();
settings.endGroup();

When using this syntax, you have to remember to end the group after you are done with it. 
An alternative to using the two mentioned methods is to pass the group name directly to 
invocation of value():

QString srvIP = settings.value("Server/host").toString();
int port = settings.value("Server/port").toInt();

As was mentioned earlier, QSettings can use different backends on different platforms; 
however, we can have some influence on which is chosen and which options are passed to 
it by passing appropriate options to the constructor of the settings object. By default, 
the place where the settings for an application are stored is determined by two values—the 
organization and the application name. Both are textual values and both can be passed 
as arguments to the QSettings constructor or defined a priori using appropriate static 
methods in QCoreApplication:



Chapter 4

[ 105 ]

QCoreApplication::setOrganizationName("Packt");
QCoreApplication::setApplicationName("Game Programming using Qt");
QSettings settings;

This code is equivalent to:

QSettings settings("Packt", "Game Programming using Qt");

All of the preceding code use the default backend for the system. However, it is often 
desirable to use a different backend. This can be done using the Format argument, where 
we can pass one of the two options—NativeFormat or IniFormat. The former chooses 
the default backend, while the latter forces the INI-file backend. When choosing the 
backend, you can also decide whether settings should be saved in a system-wide location 
or in the user's settings storage by passing one more argument—the scope of which can be 
either UserScope or SystemScope. This can extend our final construction call to:

QSettings settings(QSettings::IniFormat, QSettings::UserScope,
                "Packt", "Game Programming using Qt");

There is one more option available for total control of where the settings data resides—tell 
the constructor directly where the data should be located:

QSettings settings(
  QStandardPaths::writableLocation(
    QStandardPaths::ConfigLocation
  ) +"/myapp.conf", QSettings::IniFormat
);

The QStandardPaths class provides methods to determine standard 
locations for files depending on the task at hand.

QSettings also allows you to register your own formats so that you can control the way 
your settings are stored—for example, by storing them using XML or by adding on-the-fly 
encryption. This is done using QSettings::registerFormat(), where you need to pass 
the file extension and two pointers to functions that perform reading and writing of the 
settings, respectively, as follows:

bool readCCFile(QIODevice &device, QSettings::SettingsMap &map) {
  CeasarCipherDevice ccDevice;
  ccDevice.setBaseDevice(&device);
  // ...
  return true;
}
bool writeCCFile(QIODevice &device, const QSettings::SettingsMap &map) 
{ ... }
const QSettings::Format CCFormat = QSettings::registerFormat 
  ("ccph", readCCFile, writeCCFile);



Qt Core Essentials

[ 106 ]

Pop quiz – Qt core essentials
Q1. What is the closest equivalent std::string in Qt?

1.	 QString

2.	 QByteArray

3.	 QStringLiteral

Q2. Which regular expression can be used to validate an IPv4 address, which is an address 
composed of four dot-separated decimal numbers with values ranging from 0 to 255?

Q3. Which do you think is the best serialization mechanism to use if you expect the data 
structure to evolve (gain new information) in future versions of the software?

1.	 JSON

2.	 XML

3.	 QDataStream

Summary
In this chapter, you learned a number of core Qt technologies ranging from text 
manipulation, to accessing devices that can be used to transfer or store data using a number 
of popular technologies such as XML or JSON. You should be aware that we have barely 
scratched the surface of what Qt offers and there are many other interesting classes you 
should familiarize yourself with but this minimum amount of information should give you a 
head start and show you the direction to follow with your future research.

In the next chapter, we will switch from describing data manipulation, which can be 
visualized using text or only in your imagination, to a more appealing media. We will start 
talking about graphics and how to transfer what you can see in your imagination to the 
screen of your computer.



[ 107 ]

Graphics with Qt
When it comes to graphics, we have so far been using only ready-made widgets for the user 
interface, which resulted in the crude approach of using buttons for a tic-tac-toe game. 
In this chapter, you will learn about much of what Qt has to offer with regard to custom 
graphics. This will let you not only create your own widgets, incorporating content that is 
entirely customized, but also integrate multimedia in your programs. You will also learn 
about employing your OpenGL skills to display fast 3D graphics. If you are not familiar with 
OpenGL, this chapter should give you a kick-start for further research in this topic. By the end 
of the chapter, you will be able to create 2D and 3D graphics for your games using classes 
offered by Qt and integrate them with the rest of the user interface.

When it comes to graphics, Qt splits this domain into two separate parts. One of them 
is raster graphics (used by widgets, for example). This part focuses on using high-level 
operations (such as drawing lines or filling rectangles) to manipulate colors of a grid of points 
that can be visualized on different devices, such as images or the display of your computer 
device. The other is vector graphics, which involves manipulating vertices, triangles, and 
textures. This is tailored for maximum speed of processing and display using hardware 
acceleration provided by modern graphics cards. Qt abstracts graphics by using the concept 
of a surface that it draws on. The surface (represented by the QSurface class) can be of one 
of two types—RasterSurface or OpenGLSurface. The surface can be further customized 
using the QSurfaceFormat class, but we will talk about that later as it is not important right 
now.

Raster painting
When we talk about GUI frameworks, raster painting is usually associated with drawing on 
widgets. However, since Qt is something more than a GUI toolkit, the scope of raster painting 
that it offers is much broader.

5



Graphics with Qt

[ 108 ]

In general, Qt's drawing architecture consists of three parts. The most important part 
is the device the drawing takes place on, represented by the QPaintDevice class. Qt 
provides a number of paint device subclasses such as QWidget or QImage and QPrinter 
or QPdfWriter. You can see that the approach for drawing on a widget and printing 
on a printer will be quite the same. The difference is in the second component of the 
architecture—the paint engine (QPaintEngine). The engine is responsible for performing 
the actual paint operations on a particular paint device. Different paint engines are used to 
draw on images and to print on printers. This is completely hidden from you as a developer, 
so you really don't need to worry about it.

For you, the most important piece is the third component—QPainter—which is an 
adapter for the whole painting framework. It contains a set of high-level operations that 
can be invoked on the paint device. Behind the scenes, the whole work is delegated to an 
appropriate paint engine. While talking about painting, we will be focusing solely on the 
painter object as any painting code can be invoked on any of the target devices only by using 
a painter initialized on a different paint device. This effectively makes painting in Qt device 
agnostic, like in the following example:

void doSomePainting(QPainter *painter) {
  painter->drawLine(QPoint(0,0), QPoint(100, 40));
}

The same code can be executed on a painter working on any possible QPaintDevice class, 
be it a widget, an image, or an OpenGL context (through the use of QOpenGLPaintDevice).

Painter attributes
The QPainter class has a rich API that can basically be divided into three groups of 
methods. The first group contains setters and getters for attributes of the painter. The 
second group consists of methods, with names starting with draw and fill that perform 
drawing operations on the device. The last group has other methods, mostly ones that allow 
manipulating the coordinate system of the painter.

Let's start with the attributes. The three most important ones are the font, pen, and brush. 
The first is an instance of the QFont class. It contains a large number of methods for 
controlling such font parameters as font family, style (italic or oblique), font weight, and font 
size (either in points or device-dependent pixels). All the parameters are self-explanatory, 
so we will not discuss them here in detail. It is important to note that QFont can use any 
font installed on the system. In case more control over fonts is required or a font that is not 
installed in the system needs to be used, one can take advantage of the QFontDatabase 
class. It provides information about available fonts (such as whether a particular font is 
scalable or bitmap or what writing systems it supports) and allows adding new fonts into the 
registry by loading their definitions directly from files.



Chapter 5

[ 109 ]

An important class, when it comes to fonts, is the QFontMetrics class. It allows calculating 
how much space is needed to paint particular text using a font or calculates text eliding. The 
most common use case is to check how much space to allocate for a particular user-visible 
string, for example:

QFontMetrics fm = painter.fontMetrics();
QRect rect = fm.boundingRect("Game Programming using Qt");

This is especially useful when trying to determine sizeHint for a widget.

The pen and brush are two attributes that define how different drawing operations are 
performed. The pen defines the outline, and the brush fills the shapes drawn using the 
painter. The former is represented by the QPen class and the latter by QBrush. Each of them 
is really a set of parameters. The most simple one is the color defined either as a predefined 
global color enumeration value (such as Qt::red or Qt::transparent) or an instance of 
the QColor class. The effective color is made up of four attributes—three color components 
(red, green, and blue) and an optional alpha channel value that determines transparency of 
the color (the larger the value, the more opaque the color). By default, all components are 
expressed as 8-bit values (0 to 255) but can also be expressed as real values representing 
a percentage of the maximum saturation of the component; for example, 0.6 corresponds 
to 153 (0.6*255). For convenience, one of the QColor constructors accepts hexadecimal 
color codes used in HTML (with #0000FF being an opaque blue color) or even bare color 
names (for example, blue) from a predefined list of colors returned by a static function 
QColor::colorNames(). Once a color object is defined using RGB components, it can be 
queried using different color spaces (for example, CMYK or HSV). Also, a set of static methods 
are available that act as constructors for colors expressed in different color spaces. For 
example, to construct a clear magenta color, any of the following expressions can be used:

�� QColor("magenta")

�� QColor("#FF00FF")

�� QColor(255, 0, 255)

�� QColor::fromRgbF(1, 0, 1)

�� QColor::fromHsv(300, 255, 255)

�� QColor::fromCmyk(0, 255, 0, 0)

�� Qt::magenta



Graphics with Qt

[ 110 ]

Apart from the color, QBrush has two additional ways of expressing the fill of a shape. 
You can use QBrush::setTexture() to set a pixmap that will be used as a stamp or 
QBrush::setGradient() to make the brush use a gradient to do the filling. For example, 
to use a gradient that goes diagonally and starts yellow in the top-left corner of the shape, 
becomes red in the middle of the shape, and ends magenta at the bottom-right corner of the 
shape, the following code can be used:

QLinearGradient gradient(0, 0, width, height);
gradient.setColorAt(0,   Qt::yellow);
gradient.setColorAt(0.5, Qt::red);
gradient.setColorAt(1.0, Qt::magenta);
QBrush brush = gradient;

When used with drawing a rectangle, this code will give the following output:

Qt can handle linear (QLinearGradient), radial (QRadialGradient), and conical 
(QConicalGradient) gradients. It comes with a sample (shown in the following 
screenshot) where you can see different gradients in action. This sample is located in 
examples/widgets/painting/gradients.



Chapter 5

[ 111 ]

As for the pen, its main attribute is its width (expressed in pixels), which determines the 
thickness of the shape outline. A special width setting is 0, which constitutes a so-called 
cosmetic pen that is always drawn as a 1 pixel-wide line no matter what transformations 
are applied to the painter (we'll cover this later). A pen can of course have a color set but, in 
addition to that, you can use any brush as a pen. The result of such an operation is that you 
can draw thick outlines of shapes using gradients or textures.

There are three more important properties for a pen. The first of them is the pen style, set 
using QPen::setStyle(). It determines whether lines drawn by the pen are continuous or 
somehow divided (dashes, dots, and so on). You can see available line styles together with 
their corresponding constants in the following diagram:



Graphics with Qt

[ 112 ]

The second attribute is the cap style, which can be flat, square, or round. The 
third attribute—the join style—is important for polyline outlines and dictates how 
different segments of the polyline are connected. You can make the joins sharp (with 
Qt::MiterJoin), round (Qt::RoundJoin), or a hybrid of the two (Qt::BevelJoin). You 
can see the different pen attribute configurations (including different join and cap styles) in 
action by launching the pathstroke example shown in the following screenshot:

The next important aspect of the painter is its coordinate system. The painter in fact has two 
coordinate systems. One is its own logical coordinate system that operates on real numbers, 
and the other is the physical coordinate system of the device the painter operates on. Each 
operation on the logical coordinate system is mapped to physical coordinates in the device 
and applied there. Let's start with explaining the logical coordinate system first, and then 
we'll see how this relates to physical coordinates.

The painter represents an infinite Cartesian canvas with the horizontal axis pointing right and 
the vertical axis pointing down by default. The system can be modified by applying affine 
transformations to it—translating, rotating, scaling, and shearing. This way, you can draw 
an analog clock face that marks each hour with a line by executing a loop that rotates the 
coordinate system by 30 degrees for each hour and draws a line that is vertical in the newly 
obtained coordinate system. Another example is when you wish to draw a simple plot with x 
axis going right and y axis going up. To obtain the proper coordinate system, you would scale 
the coordinate system by -1 in the vertical direction, effectively reversing the direction of 
the vertical axis.



Chapter 5

[ 113 ]

What we described here modifies the world transformation matrix for the painter 
represented by an instance of the QTransform class. You can always query the current 
state of the matrix by calling transform() on the painter and you can set a new matrix 
by calling setTransform(). QTransform has methods such as scale(), rotate(), 
and translate() that modify the matrix, but QPainter has equivalent methods for 
manipulating the world matrix directly. In most cases, using these would be preferable.

Each painting operation is expressed in logical coordinates, goes through the world 
transformation matrix, and reaches the second stage of coordinate manipulation, which is 
the view matrix. The painter has the concept of viewport() and window() rectangles. 
The viewport rectangle represents the physical coordinates of an arbitrary rectangle while 
the window rectangle expresses the same rectangle but in logical coordinates. Mapping 
one to another gives a transformation that needs to be applied to each drawn primitive to 
calculate the area of the physical device that is to be painted. By default, the two rectangles 
are identical to the rectangle of the underlying device (thus no window-viewport mapping 
is done). Such transformation is useful if you wish to perform painting operations using 
measurement units other than the pixels of the target device. For example, if you want to 
express coordinates using percentages of the width and height of the target device, you 
would set the window width and height both to 100. Then, to draw a line starting at 20% of 
the width and 10% of the height and ending at 70% of the width and 30% of the height, you 
would tell the painter to draw the line between (20, 10) and (70, 30). If you wanted those 
percentages to apply not to the whole area of an image but rather to its left half, you set the 
viewport rectangle only to the left half of the image.

Setting the window and viewport rectangles only defines coordinate 
mapping; it does not prevent drawing operations from painting outside 
the viewport rectangle. If you want such behavior, you have to set a 
clipping rectangle on the painter.

Once you have the painter properly set, you can start issuing painting operations. QPainter 
has a rich set of operations for drawing different kinds of primitives. All of these operations 
have the prefix draw in their names, followed by the name of the primitive that is to be 
drawn. Thus, such operations as drawLine, drawRoundedRect, and drawText are 
available with a number of overloads that usually allow us to express coordinates using 
different data types. These may be pure values (either integer or real), Qt's classes, such 
as QPoint and QRect, or their floating point equivalents—QPointF and QRectF. Each 
operation is performed using current painter settings (font, pen, and brush).



Graphics with Qt

[ 114 ]

To see the list of all drawing operations available, switch to the Help pane in Qt 
Creator. From the drop-down list on top of the window, choose Index and then 
type in qpainter. After confirming the search, you should see the reference 
manual for the QPainter class with all the drawing operations listed.

Before you start drawing, you have to tell the painter what device you wish to draw on. 
This is done using the begin() and end() methods. The former accepts a pointer to a 
QPaintDevice instance and initializes the drawing infrastructure, and the latter marks 
the drawing as complete. Usually, we don't have to use these methods directly as the 
constructor of QPainter calls begin() for us and the destructor invokes end(). Thus, the 
typical workflow is to instantiate a painter object, passing it the device, then do the drawing 
by calling set and draw methods, and finally let the painter be destroyed by going out of 
scope, as follows:

{
  QPainter painter(this); // paint on the current object
  QPen pen = Qt::red;
  pen.setWidth(2);
  painter.setPen(pen);
  painter.setBrush(Qt::yellow);
  painter.drawRect(0, 0, 100, 50);
}

We will cover more methods from the draw family in the following sections of this chapter.

Widget painting
It is time to actually get something onto the screen by painting on a widget. A widget is 
repainted as a result of receiving an event called QEvent::Paint, which is handled by 
reimplementing the virtual method paintEvent(). This method accepts a pointer to the 
event object of type QPaintEvent that contains various bits of information about the 
repaint request. Remember that you can only paint on the widget from within that widget's 
paintEvent() call.



Chapter 5

[ 115 ]

Time for action – custom-painted widgets
Let's immediately use our new skills in practice!

Start by creating a new Qt Widgets Application in Qt Creator, choosing QWidget as the base 
class, and making sure the Generate Form box is unchecked.

Switch to the header file for the newly created class, add a protected section to the class  
and type void paintEvent for the section. Then press Ctrl + spacebar on your keyboard  
and Creator will suggest the parameters for the method. You should end up with the 
following code:

protected:
    void paintEvent(QPaintEvent *);

Creator will leave the cursor positioned right before the semicolon. Pressing Alt + Enter will 
open the refactoring menu, letting you add the definition in the implementation file. The 
standard code for a paint event is one that instantiates a painter on the widget, as shown:

void Widget::paintEvent(QPaintEvent *)
{
  QPainter painter(this);
}

If you run this code, the widget will remain blank. Now we can start adding the actual 
painting code there:

void Widget::paintEvent(QPaintEvent *)
{
  QPainter painter(this);
  QPen pen(Qt::black);
  pen.setWidth(4);
  painter.setPen(pen);
  QRect r = rect().adjusted(10, 10, -10, -10);
  painter.drawRoundedRect(r, 20, 10);
}

Build and run the code, and you'll obtain the following output:



Graphics with Qt

[ 116 ]

What just happened?
First we set a 2 pixel-wide black pen for the painter. Then we called rect() to retrieve the 
geometry rectangle of the widget. By calling adjusted(), we received a new rectangle 
with its coordinates (in left, top, right, and bottom order) modified by the given arguments, 
effectively giving us a rectangle with a 10 pixel margin on each side.

Qt usually offers two methods that allow us to work with modified data. 
Calling adjusted() returns a new object with its attributes modified, 
while if we had called adjust(), the modification would have been done 
in place. Pay special attention to which method you use to avoid unexpected 
results. It's best to always check the return value for a method—whether it 
returns a copy or void.

Finally we call drawRoundedRect(), which paints a rectangle with its corners rounded 
by the number of pixels (in x, y order) given as the second and third argument. If you look 
closely, you will notice that the rectangle has nasty jagged rounded parts. This is caused by 
the effect of aliasing, where a logical line is approximated using the limited resolution of the 
screen; due to this, a pixel is either fully drawn or not drawn at all. Qt offers a mechanism 
called antialiasing to counter this effect by using intermediate pixel colors where appropriate. 
You can enable this mechanism by setting a proper render hint on the painter before you 
draw the rounded rectangle, as shown:

void Widget::paintEvent(QPaintEvent *)
{
  QPainter painter(this);
  painter.setRenderHint(QPainter::Antialiasing, true);
  // …
}

Now you'll get the following output:

Of course, this has a negative impact on performance, so use antialiasing only where the 
aliasing effect is noticeable.



Chapter 5

[ 117 ]

Time for action – transforming the viewport
Let's extend our code so that all future operations focus only on drawing within the border 
boundaries after the border is drawn. Use the window and viewport transformation as 
follows:

void Widget::paintEvent(QPaintEvent *) {
  QPainter painter(this);
  painter.setRenderHint(QPainter::Antialiasing, true);
  QPen pen(Qt::black);
  pen.setWidth(4);
  painter.setPen(pen);
  QRect r = rect().adjusted(10, 10, -10, -10);
  painter.drawRoundedRect(r, 20, 10);
  painter.save();
  r.adjust(2, 2, -2, -2);
  painter.setViewport(r);
  r.moveTo(0, -r.height()/2);
  painter.setWindow(r);
  drawChart(&painter, r);
  painter.restore();
}

Also create a protected method called drawChart():

void Widget::drawChart(QPainter *painter, const QRect &rect) {
  painter->setPen(Qt::red);
  painter->drawLine(0, 0, rect.width(), 0);
}

Let's take a look at our output:



Graphics with Qt

[ 118 ]

What just happened?
The first thing we did in the newly added code is call painter.save(). This call stores all 
parameters of the painter in an internal stack. We can then modify the painter state (by 
changing its attributes, applying transformations, and so on) and then, if at any point we 
want to go back to the saved state, it is enough to call painter.restore() to undo all the 
modifications in one go.

The save() and restore() methods can be called as many times as 
needed. Just remember to always pair a call to save() with a similar call 
to restore(), or the internal painter state will get corrupted. Each call to 
restore() will revert the painter to the last saved state.

After the state is saved, we modify the rectangle again by adjusting for the width of the 
border. Then, we set the new rectangle as the viewport, informing the painter about the 
physical range of coordinates to operate on. Then we move the rectangle by half its height 
and set that as the painter window. This effectively puts the origin of the painter at half the 
height of the widget. Then, the drawChart() method is called whereby a red line is drawn 
on the x axis of the new coordinate system.

Time for action – drawing an oscillogram
Let's further extend our widget to become a simple oscillogram renderer. For that we have to 
make the widget remember a set of values and draw them as a series of lines.

Let's start by adding a QList<quint16> member variable that holds a list of unsigned 16-
bit integer values. We will also add slots for adding values to the list and for clearing the list, 
as shown:

class Widget : public QWidget
{
  // ...
public slots:
  void addPoint(unsigned yVal) { m_points << qMax(0u, yVal); update(); }
  void clear() { m_points.clear(); update(); }
protected:
  // ...
  QList<quint16> m_points;
};

Note that each modification of the list invokes a method called update(). This schedules a 
paint event so that our widget can be redrawn with the new values.



Chapter 5

[ 119 ]

Drawing code is also easy; we just iterate over the list and draw symmetric blue lines based 
on the values from the list. Since the lines are vertical, they don't suffer from aliasing and so 
we can disable this render hint, as shown:

void Widget::drawChart(QPainter *painter, const QRect &rect) {
  painter->setPen(Qt::red);
  painter->drawLine(0, 0, rect.width(), 0);
  painter->save();
  painter->setRenderHint(QPainter::Antialiasing, false);
  painter->setPen(Qt::blue);
  for(int i=0;i < m_points.size(); ++i) {
    painter->drawLine(i, -m_points.at(i), i, m_points.at(i));
  }
  painter->restore();
}

To see the result add a loop to main as follows. This fills the widget with data:

for(int i=0;i<450;++i) w.addPoint(qrand() % 120);

This loop takes a random number between 0 and 119 and adds it as a point to the widget. A 
sample result from running such code can be seen in the following screenshot:

If you scale down the window, you will notice that the oscillogram extends 
past the boundaries of the rounded rectangle. Remember about clipping? 
You can use it now to constrain drawing by adding a simple painter.
setClipRect(r) call just before you call drawChart().



Graphics with Qt

[ 120 ]

Input events
So far, the custom widget was not interactive at all. Although the widget content could be 
manipulated from within the source code (say by adding new points to the plot), the widget 
was deaf to any user actions (apart from resizing the widget, which caused a repaint). In Qt, 
any interaction between the user and the widget is done by delivering events to the widget. 
Such a family of events is generally called input events and contains events such as keyboard 
events and different forms of pointing-device events—mouse, tablet, and touch events.

In a typical mouse event flow, a widget first receives a mouse press event, then a number 
of mouse move events (when the user moves the mouse around while the mouse button is 
kept pressed), and finally, a mouse release event. The widget can also receive an additional 
mouse double-click event in addition to these events. It is important to remember that, by 
default, mouse move events are only delivered if a mouse button is pressed when the mouse 
is moved. To receive mouse move events when no button is pressed, a widget needs to 
activate a feature called mouse tracking.

Time for action – making oscillograms selectable
It's time to make our oscillogram widget interactive. We will teach it to add a couple of lines 
of code to it that let the user select part of the plot. Let's start with storage for the selection. 
We'll need two integer variables that can be accessed via read-only properties; therefore, 
add the following two properties to the class (you can initialize them both to -1) and 
implement their getters:

Q_PROPERTY(int selectionStart READ selectionStart  
                              NOTIFY selectionChanged)
Q_PROPERTY(int selectionEnd READ selectionEnd  
                            NOTIFY selectionChanged)

The user can change the selection by dragging the mouse cursor over the plot. When the 
user presses the mouse button over some place in the plot, we'll mark that place as the start 
of the selection. Dragging the mouse will determine the end of the selection. The scheme 
for naming events is similar to the paint event; therefore, we need to declare and implement 
the following two protected methods:

void Widget::mousePressEvent(QMouseEvent *mouseEvent) {
  m_selectionStart = m_selectionEnd = mouseEvent->pos().x() - 12;
  emit selectionChanged();
  update();
}
void Widget::mouseMoveEvent(QMouseEvent *mouseEvent) {
  m_selectionEnd = mouseEvent->pos().x() - 12;
  emit selectionChanged();
  update();
}



Chapter 5

[ 121 ]

The structure of both event handlers is similar. We update the needed values, taking into 
consideration the left padding (12 pixels) of the plot, similar to what we do while drawing. 
Then, a signal is emitted and update() is called to schedule a repaint of the widget.

What remains is to introduce changes to the drawing code. I suggest you add a 
drawSelection() method similar to drawChart() but that is called from the paint event 
handler immediately before drawChart(), as shown:

void Widget::drawSelection(QPainter *painter, const QRect &rect) {
  if(m_selectionStart < 0 ) return;
  painter->save();
  painter->setPen(Qt::NoPen);
  painter->setBrush(palette().highlight());
  QRect selectionRect = rect;
  selectionRect.setLeft(m_selectionStart);
  selectionRect.setRight(m_selectionEnd);
  painter->drawRect(selectionRect);
  painter->restore();
}

First we check if there is any selection to be drawn at all. Then, we save the painter state 
and adjust the pen and brush of the painter. The pen is set to Qt::NoPen, which means 
the painter should not draw any outline. To determine the brush, we use palette(); this 
returns an object of type QPalette holding basic colors for a widget. One of the colors 
held in the object is the color of the highlight often used for marking selections. If you use 
an entry from the palette instead of manually specifying a color, you gain an advantage that 
when the user of the class modifies the palette, this modification is taken into account by our 
widget code. 

You can use other colors from the palette in the widget for other things we 
draw in the widget. You can even define your own QPalette object in the 
constructor of the widget to provide default colors for it.

Finally, we adjust the rectangle to be drawn and issue the drawing call.

When you run this program, you will notice that the selection color doesn't contrast very 
well with the plot itself. To overcome this, a common approach is to draw the "selected" 
content with a different (often inverted) color. This can easily be applied in this situation by 
modifying the drawChart() code slightly:

for(int i=0; i < m_points.size(); ++i) {
  if(m_selectionStart <= i && m_selectionEnd >=i) {
    painter->setPen(Qt::white);



Graphics with Qt

[ 122 ]

  } else
    painter->setPen(Qt::blue);
  painter->drawLine(i, -m_points.at(i), i, m_points.at(i));
}

Now you see the following output:

Have a go hero – reacting only to the left mouse button
As an exercise, you can modify the event handling code so that it only changes the selection 
if the mouse event was triggered by the left mouse button. To see which button triggered 
the mouse press event, you can use the QMouseEvent::button() method, which returns 
Qt::LeftButton for the left button, Qt::RightButton for the right, and so on.

Handling touch events is different. For any such event, you receive a call to the 
touchEvent() virtual method. The parameter of such a call is an object that can retrieve  
a list of points currently touched by the user with additional information regarding the 
history of user interaction (whether the touch was just initiated or the point was pressed 
earlier and moved) and what force is applied to the point by the user. Note that this is a  
low-level framework that allows you to precisely follow the history of touch interaction. If 
you are more interested in higher-level gesture recognition (pan, pinch, and swipe), there  
is a separate family of events available for it.

Handling gestures is a two-step procedure. First you need to activate gesture recognition 
on your widget by calling grabGesture() and passing in the type of gesture you want to 
handle. A good place for such code is the widget constructor.



Chapter 5

[ 123 ]

Then your widget will start receiving gesture events. There are no dedicated handlers for 
gesture events but, fortunately, all events for an object flow through its event() method, 
which we can reimplement. Here is some example code that handles pan gestures:

bool Widget::event(QEvent *e) {
  if(e->type() == QEvent::Gesture) {
    QGestureEvent *gestureEvent = static_cast<QGestureEvent*>(e);
    QGesture *pan  = gestureEvent->gesture(Qt::PanGesture);
    if(pan) {
      handlePanGesture(static_cast<QPanGesture*>(pan));
    }
  }
  return QWidget::event(e);
}

First, a check for the event type is made; if it matches the expected value, the event object 
is cast to QGestureEvent. Then, the event is asked if Qt::PanGesture was recognized. 
Finally, a handlePanGesture method is called. You can implement such a method to 
handle your pan gestures.

Working with images
Qt has two classes for handling images. The first one is QImage, more tailored towards 
direct pixel manipulation. You can check the size of the image or check and modify the color 
of each pixel. You can convert the image into a different internal representation (say from 
8-bit color map to full 32-bit color with a premultiplied alpha channel). This type, however, is 
not that fit for rendering. For that, we have a different class called QPixmap. The difference 
between the two classes is that QImage is always kept in the application memory, while 
QPixmap can only be a handle to a resource that may reside in the graphics card memory or 
on a remote X server. Its main advantage over QImage is that it can be rendered very quickly 
at the cost of the inability to access pixel data. You can freely convert between the two types 
but bear in mind that, on some platforms, this might be an expensive operation. Always 
consider which class serves your particular situation better. If you intend to crop the image, 
tint it with some color, or paint over it, QImage is a better choice. But if you just want to 
render a bunch of icons, it's best to keep them as QPixmap instances.



Graphics with Qt

[ 124 ]

Loading
Loading images is very easy. Both QPixmap and QImage have constructors that simply 
accept a path to a file containing the image. Qt accesses image data through plugins that 
implement reading and writing operations for different image formats. Without going into 
the details of plugins, it is enough to say that the default Qt installation supports reading the 
following image types:

Type Description

BMP Windows bitmap

GIF Graphics Interchange Format

ICO Windows icon

JPEG Joint Photography Experts Group

MNG Multiple-image Network Graphics

PNG Portable Network Graphics

PPM/PBM/PGM Portable anymap

SVG Scalable Vector Graphics

TIFF Tagged Image File Format

XBM X Bitmap

XPM X Pixmap

As you can see, most popular image formats are available. The list can be further extended 
by installing additional plugins.

You can ask Qt for a list of supported image types by calling a static method, 
QImageReader::supportedImageFormats(), which returns a list of 
formats that can be read by Qt. For a list of writable formats, call QImageWr
iter::supportedFileFormats().

An image can also be loaded directly from an existing memory buffer. This can be done in 
two ways. The first one is to use the loadFromData() method (it exists in both QPixmap 
and QImage), which behaves the same as when loading an image from a file—you pass it a 
data buffer and the size of the buffer and based on that, the loader determines the image 
type by inspecting the header data and loads the picture into QImage or QPixmap. The 
second situation is when you don't have images stored in a "filetype" such as JPEG or PNG 
but rather you have raw pixel data itself. In such a situation, QImage offers a constructor that 
takes a pointer to a block of data together with the size of the image and format of the data. 
The format is not a file format such as the ones listed earlier but rather a memory layout for 
data representing a single pixel.



Chapter 5

[ 125 ]

The most popular format is QImage::Format_ARGB32, which means that each pixel is 
represented by 32-bits (4 bytes) of data divided equally between alpha, red, green, and 
blue channels—8-bits per channel. Another popular format is QImage::Format_ARGB32_
Premultiplied, where values for the red, green, and blue channels are stored after being 
multiplied by the value of the alpha channel, which often results in faster rendering. You can 
change the internal data representation using a call to convertToFormat(). For example, 
the following code converts a true-color image to 256 colors, where color for each pixel is 
represented by an index in a color table:

QImage trueColor(image.png);
QImage indexed = trueColor.convertToFormat(QImage::Format_Indexed8);

The color table itself is a vector of color definitions that can be fetched using colorTable() 
and replaced using setColorTable(). The simplest way to convert an indexed image to 
grayscale is to adjust its color table as follows:

QImage indexed = …;
QVector<QRgb> ct = indexed.colorTable();
for(int i=0;i<ct.size();++i) ct[i] = qGray(ct[i]);
indexed.setColorTable(ct);

Modifying
There are two ways to modify image pixel data. The first one works only for QImage and 
involves direct manipulation of pixels using the setPixel() call, which takes the pixel 
coordinates and color to be set for that pixel. The second one works for both QImage 
and QPixmap and makes use of the fact that both these classes are subclasses of 
QPaintDevice. Therefore, you can open QPainter on such objects and use its drawing 
API. Here is an example of obtaining a pixmap with a blue rectangle and red circle painted 
over it:

QPixmap px(256, 256);
px.fill(Qt::transparent);
QPainter painter(&px);
painter.setPen(Qt::NoPen);
painter.setBrush(Qt::blue);
QRect r = px.rect().adjusted(10, 10, -10, -10);
painter.drawRect(r);
painter.setBrush(Qt::red);
painter.drawEllipse(r);

First we create a 256 x 256 pixmap and fill it with transparent color. Then we open a painter 
on it and invoke a series of calls that draws a blue rectangle and red circle.

www.allitebooks.com

http://www.allitebooks.org


Graphics with Qt

[ 126 ]

QImage also offers a number of methods for transforming the image, including scaled(), 
mirrored(), transformed(), and copy(). Their API is intuitive so we won't discuss them 
here.

Painting
Painting images in its basic form is as simple as calling drawImage() or drawPixmap() 
from the QPainter API. There are different variants of the two methods, but basically all 
of them allow one to specify which portion of a given image or pixmap is to be drawn and 
where. It is worth noting that painting pixmaps is preferred to painting images as an image 
has to first be converted into a pixmap before it can be drawn.

If you have a lot of pixmaps to draw, a class called QPixmapCache may come in handy. 
It provides an application-wide cache for pixmaps. By using it, you can speed up pixmap 
loading while introducing a cap on memory usage.

Painting text
Drawing text using QPainter deserves a separate explanation, not because it is complicated 
but rather because Qt offers much flexibility in this regard. In general, painting text takes 
place by calling QPainter::drawText() or QPainter::drawStaticText(). Let's focus 
on the former first, which allows the drawing of generic text.

The most basic call to paint some text is a variant of this method, which takes x and y 
coordinates and the text to draw:

painter.drawText(10, 20, "Drawing some text at (10, 20)");

The preceding call draws the given text at position 10 horizontally and places the baseline 
of the text at position 20 vertically. The text is drawn using the painter's current font and 
pen. The coordinates can alternatively be passed as QPoint instances instead of being given 
x and y values separately. The problem with this method is that it allows little control over 
how the text is drawn. A much more flexible variant is one that lets us give a set of flags 
and expresses the position of the text as a rectangle instead of a point. The flags can specify 
alignment of the text within the given rectangle or instruct the rendering engine about 
wrapping and clipping the text. You can see the result of giving a different combination of 
flags to the call in the following image:



Chapter 5

[ 127 ]

In order to obtain each of the preceding results, run code similar to the following:

painter.drawText(rect, Qt::AlignLeft|Qt::TextShowMnemonic, "&ABC");

You can see that, unless you set the Qt::TextDontClip flag, the text is clipped to the given 
rectangle; setting Qt::TextWordWrap enables line wrapping and Qt::TextSingleLine 
makes the engine ignore any newline characters encountered.

Static text
Qt has to perform a number of calculations when laying out the text, and this has to be done 
each time the text is rendered. This will be a waste of time if the text and its attributes have 
not changed since the last time. To avoid the need to recalculate the layout, the concept of 
static text was introduced.

To use it, instantiate QStaticText and initialize it with text you want to render along 
with any options you might want it to have (kept as the QTextOption instance). Then, 
store the object somewhere and, whenever you want the text to be rendered, just call 
QPainter::drawStaticText(), passing the static text object to it. If the layout of the 
text has not changed since the previous time the text was drawn, it will not be recalculated, 
resulting in improved performance. Here is an example of a custom widget that simply draws 
text using the static text approach:

class TextWidget : public QWidget {
public:
  TextWidget(QWidget *parent = 0) : QWidget(parent) {}
  void setText(const QString &txt) {
    m_staticText.setText(txt);
    update();
  }



Graphics with Qt

[ 128 ]

protected:
  void paintEvent(QPaintEvent *) {
    QPainter painter(this);
    paitner.drawStaticText(0, 0, m_staticText);
  }
private:
  QStaticText m_staticText;
};

Rich text
So far, we have seen how to draw text where all the glyphs were rendered using the same 
attributes (font, color, and style) and laid out as a contiguous flow of characters. While 
useful, this doesn't handle situations where we want to mark out portions of the text using 
a different color or align it differently. To make it work, we would have to execute a series of 
drawText calls with modified painter attributes and with manually calculated text positions. 
Fortunately, there are better solutions.

Qt supports complex document formatting using its QTextDocument class. With this we 
can manipulate the text in a fashion similar to that of a text processor, applying formatting 
to paragraphs of text or individual characters. Then we can lay out and render the resulting 
document according to our needs.

While useful and powerful, building QTextDocument is too complicated if all we want is 
to draw a small amount of text with simple customizations applied. The authors of Qt have 
thought about that as well and have implemented a rich text mode for rendering text. After 
enabling this mode, you can specify the formatted text to drawText directly using a subset 
of HTML tags to obtain formatting effects such as changing the color of the text, underlining 
it, or making it superscript. Drawing a centered underlined caption followed by a fully 
justified description in a given rectangle is as easy as issuing the following call:

painter.drawText(rect,
  "<div align='center'><b>Disclaimer</b></div>"
  "<div align='justify'>You are using <i>this software</i> "
  "at your own risk. The authors of the software do not give "
  "any warranties that using this software will not ruin your "
  "business.</div>");



Chapter 5

[ 129 ]

Qt's rich text engine does not implement the full HTML specification; it will not 
handle cascading style sheets, hyperlinks, tables, or JavaScript. The Supported 
HTML Subset page in the Qt reference manual describes what parts of the HTML 
4 standard are supported. If you require full HTML support, you will have to use 
Qt's web page and web browser classes contained in the webkitwidgets 
(classes QWebPage and QWebView) or webenginewidgets (classes 
QWebEnginePage and QWebEngineView) modules.

Optimized drawing
During game programming, performance is often a bottleneck. Qt tries its best to be as 
efficient as possible, but sometimes the code needs additional tweaking to work even faster. 
Using static text instead of regular text is one such tweak; use it whenever possible.

Another important trick is to avoid re-rendering the whole widget unless really required. One 
thing is that the QPaintEvent object passed to paintEvent() contains information about 
the region of the widget that needs to be redrawn. If the logic of your widget allows it, you 
can optimize the process by rendering only the required part.

Time for action – optimizing oscillogram drawing
As an exercise, we will modify our oscillogram widget so that it only re-renders the part of 
its data that is required. The first step is to modify the paint event handling code to fetch 
information about the region that needs updating and pass it to the method drawing the 
chart. The changed parts of the code have been highlighted here:

void Widget::paintEvent(QPaintEvent *pe)
{
  QRect exposedRect = pe->rect();
  ...
  drawSelection(&painter, r, exposedRect);
  drawChart(&painter, r, exposedRect);
  painter.restore();
}



Graphics with Qt

[ 130 ]

The next step is to modify drawSelection() to only draw the part of the selection that 
intersects with the exposed rectangle. Luckily, QRect offers a method to calculate the 
intersection for us:

void Widget::drawSelection(QPainter *painter, const QRect &rect,  
const QRect &exposedRect)
{
    // ...
    QRect selectionRect = rect;
    selectionRect.setLeft(m_pressX);
    selectionRect.setRight(m_releaseX);
    painter->drawRect(selectionRect.intersected(exposedRect));
    painter->restore();
}

Finally, drawChart needs to be adjusted to omit the values outside the exposed rectangle:

void Widget::drawChart(QPainter *painter, const QRect &rect,  
const QRect &exposedRect)
{
  painter->setPen(Qt::red);
  painter->drawLine(exposedRect.left(), 0, exposedRect.width(), 0);
  painter->save();
  painter->setRenderHint(QPainter::Antialiasing, false);
  const int lastPoint = qMin(m_points.size(),  
    exposedRect.right()+1);
  for(int i=exposedRect.left(); i < lastPoint; ++i) {
    if(m_selectionStart <= i && m_selectionEnd >=i) {
      painter->setPen(Qt::white);
    } else
    painter->setPen(Qt::blue);
    painter->drawLine(i, -m_points.at(i), i, m_points.at(i));
  }
    painter->restore();
}

What just happened?
By implementing these changes, we have effectively reduced the painted area to the 
rectangle received with the event. In this particular situation, we will not save much time as 
drawing the plot is not that time-consuming; in many situations, however, you will be able to 
save a lot of time using this approach. For example, if we were to plot a very detailed aerial 
map of a game world, it would be very expensive to replot the whole map if only a small part 
of it were modified. We can easily reduce the number of calculations and drawing calls by 
taking advantage of the information about the exposed area.



Chapter 5

[ 131 ]

Making use of the exposed rectangle is already a good step towards efficiency, but we can go 
a step further. The current approach requires that we redraw each and every line of the plot 
within the exposed rectangle, which still takes some time. Instead, we can paint those lines 
only once into a pixmap, and then, whenever the widget needs repainting, tell Qt to render 
part of the pixmap to the widget. This approach is usually called "double-buffering" (the 
second buffer being the pixmap acting as a cache).

Have a go hero – implementing a double-buffered oscillogram
It should be very easy for you now to implement this approach for our example widget. 
The main difference is that each change to the plot contents should not result in a call to 
update() but rather in a call that will re-render the pixmap and then call update(). The 
paintEvent method then becomes simply this:

void Widget::paintEvent(QPaintEvent *pe)
{
  QRect exposedRect = pe->rect();
  QPainter painter(this);
  painter.drawPixmap(exposedRect, pixmap(), exposedRect);
}

You'll also need to re-render the pixmap when the widget is resized. This can be done from 
within the void resizeEvent(QResizeEvent*) method.

At this point, you are ready to employ your newly gained skills in rendering graphics with Qt 
to create a game that uses widgets with custom graphics. The hero of today is going to be 
chess and other chess-like games.

Time for action – developing the game architecture
Create a new Qt Widgets Application project. After the project infrastructure is ready, 
choose New File or Project from the File menu and choose to create a C++ Class. Call the 
new class ChessBoard and set QObject as its base class. Repeat the process to create a 
GameAlgorithm class derived from QObject and another one called ChessView but, this 
time, choose QWidget as the base class. You should end up with a file named main.cpp and 
four classes—MainWindow, ChessView, ChessBoard, and ChessAlgorithm.

Now navigate to the header file for ChessAlgorithm and add the following methods to the 
class:

public:
  ChessBoard* board() const;



Graphics with Qt

[ 132 ]

public slots:
  virtual void newGame();
signals:
  void boardChanged(ChessBoard*);
protected:
  virtual void setupBoard();
  void setBoard(ChessBoard *board);

Also, add a private m_board field of type ChessBoard*. Remember to either include 
chessboard.h or forward-declare the ChessBoard class. Implement board() as a simple 
getter method for m_board. The setBoard() method is going to be a protected setter for 
m_board:

void ChessAlgorithm::setBoard(ChessBoard *board)
{
    if(board == m_board) return;
    if(m_board) delete m_board;
    m_board = board;
    emit boardChanged(m_board);
}

Next, let's provide a base implementation for setupBoard() to create a default chess 
board with eight ranks and eight columns:

void ChessAlgorithm::setupBoard()
{
    setBoard(new ChessBoard(8,8, this));
}

The natural place to prepare the board is in a function executed when a new game is started:

void ChessAlgorithm::newGame()
{
    setupBoard();
}

The last addition to this class for now is to extend the provided constructor to initialize m_
board to a null pointer.

In the last method shown, we instantiated a ChessBoard object so let's focus on that class 
now. First extend the constructor to accept two additional integer parameters besides the 
regular parent argument. Store their values in private m_ranks and m_columns fields 
(remember to declare the fields themselves in the class header file).



Chapter 5

[ 133 ]

In the header file, just under the Q_OBJECT macro, add the following two lines as property 
definitions:

  Q_PROPERTY(int ranks READ ranks NOTIFY ranksChanged)
  Q_PROPERTY(int columns READ columns NOTIFY columnsChanged)

Declare signals and implement getter methods to cooperate with those definitions. Also add 
two protected methods:

protected:
    void setRanks(int newRanks);
    void setColumns(int newColumns);

These will be setters for ranks and columns properties, but we don't want to expose them to 
the outside world so we will give them protected access scope.

Put the following code into the setRanks() method body:

void ChessBoard::setRanks(int newRanks)
{
    if(ranks() == newRanks) return;
    m_ranks = newRanks;
    emit ranksChanged(m_ranks);
}

Next, in a similar way, you can implement setColumns().

The last class we will deal with now is our custom widget, ChessView. For now, we will 
provide only a rudimentary implementation for one method, but we will expand it later as 
our implementation grows. Add a public setBoard(ChessBoard *) method with the 
following body:

void ChessView::setBoard(ChessBoard *board)
{
    if(m_board == board) return;

    if(m_board) {
    // disconnect all signal-slot connections between m_board and this
        m_board->disconnect(this);
    }
    m_board = board;
    // connect signals (to be done later)
    updateGeometry();
}



Graphics with Qt

[ 134 ]

Now let's declare the m_board member. Because we are not the owners of the board object 
(the algorithm class is responsible for managing it) we will use the QPointer class, which 
tracks the lifetime of QObject and sets itself to null once the object is destroyed:

private:
  QPointer<ChessBoard> m_board;

QPointer initializes its value to null, so we don't have to do it ourselves in the constructor. 
For completeness, let's provide a getter method for the board:

ChessBoard *ChessView::board() const { return m_board; }

What just happened?
In the last exercise, we defined the base architecture for our solution. We can see that there 
are three classes involved: ChessView acting as the user interface, ChessAlgorithm for 
driving the actual game, and ChessBoard as a data structure shared between the view 
and the engine. The algorithm is going to be responsible for setting up the board (through 
setupBoard()), making moves, checking win conditions, and so on. The view will be 
rendering the current state of the board and will signal user interaction to the underlying logic.

Chest View Chest Algorithm

ChessBoard

Most of the code is self-explanatory. You can see in the ChessView::setBoard() method 
that we are disconnecting all signals from an old board object, attaching the new one (we 
will come back to connecting the signals later when we have already defined them), and 
finally telling the widget to update its size and redraw itself with the new board.



Chapter 5

[ 135 ]

Time for action – implementing the game board class
Now we will focus on our data structure. Add a new private member to ChessBoard, a 
vector of characters that will contain information about pieces on the board:

QVector<char> m_boardData;

Consider the following table that shows the piece type and the letters used for it:

Piece type White Black

  

King K k

    

Queen Q q

        

Rook R r

      

Bishop B b

      

Knight N n

         

Pawn P P

You can see that white pieces use upper-case letters and black pieces use lower-case variants 
of the same letters. In addition to that, we will use a space character (0x20 ASCII value) to 
denote that a field is empty. We will add a protected method for setting up an empty board 
based on the number of ranks and columns on the board and a boardReset() signal to 
inform that the position on the board has changed:

void ChessBoard::initBoard()
{
  m_boardData.fill(' ', ranks()*columns());
  emit boardReset();
}



Graphics with Qt

[ 136 ]

We can update our methods for setting rank and column counts to make use of that method:

void ChessBoard::setRanks(int newRanks)
{
  if(ranks() == newRanks) return;
  m_ranks = newRanks;
  initBoard();
  emit ranksChanged(m_ranks);
}

void ChessBoard::setColumns(int newColumns)
{
  if(columns() == newColumns) return;
  m_columns = newColumns;
  initBoard();
  emit columnsChanged(m_columns);
}

The initBoard() method should also be called from within the constructor, so place the 
call there as well.

Next, we need a method to read which piece is positioned in the particular field of the board.

char ChessBoard::data(int column, int rank) const
{ 
  return m_boardData.at((rank-1)*columns()+(column-1)); 
}

Ranks and columns have indexes starting from 1, but the data structure is indexed starting 
from 0; therefore, we have to subtract 1 from both the rank and column index. It is also 
required to have a method to modify the data for the board. Implement the following public 
method:

void ChessBoard::setData(int column, int rank, char value)
{
  if(setDataInternal(column, rank, value))
    emit dataChanged(column, rank);
}

The method makes use of another one that does the actual job. However, this method 
should be declared with protected access scope. Again we adjust for index differences.

bool ChessBoard::setDataInternal(int column, int rank, char value)
{
  int index = (rank-1)*columns()+(column-1);



Chapter 5

[ 137 ]

  if(m_boardData.at(index) == value) return false;
  m_boardData[index] = value;
  return true;
}

Since setData() makes use of a signal, we have to declare it as well:

signals:
  void ranksChanged(int);
  void columnsChanged(int);
  void dataChanged(int c, int r);
  void boardReset();

The signal will be emitted every time there is a successful change to the situation on the 
board. We delegate the actual work to the protected method to be able to modify the board 
without emitting the signal.

Having defined setData(), we can add another method for our convenience:

void ChessBoard::movePiece(int fromColumn, int fromRank, int toColumn, 
int toRank)
{
  setData(toColumn, toRank, data(fromColumn, fromRank));
  setData(fromColumn, fromRank, ' ');
}

Can you guess what it does? That's right! It moves a piece from one field to another one 
leaving an empty space behind.

There is still one more method worth implementing. A regular chess game contains 32 
pieces, and there are variants of the game where starting positions for the pieces might be 
different. Setting the position of each piece through a separate call to setData() would be 
very cumbersome. Fortunately, there is a neat chess notation called the Forsyth-Edwards 
Notation (FEN), with which the complete state of the game can be stored as a single line 
of text. If you want the complete definition of the notation, you can look it up yourself. In 
short, we can say that the textual string lists piece placement rank by rank, starting from 
the last rank where each position is described by a single character interpreted as in our 
internal data structure (K for white king, q for black queen, and so on). Each rank description 
is separated by a / character. If there are empty fields on the board, they are not stored as 
spaces but rather as a digit specifying the number of consecutive empty fields. Therefore, 
the starting position for a standard game can be written as follows:

"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR"



Graphics with Qt

[ 138 ]

This can be interpreted visually as follows:

Let's write a method called setFen() to set up the board based on an FEN string:

void ChessBoard::setFen(const QString &fen)
{
  int index = 0;
  int skip = 0;
  const int columnCount = columns();
  QChar ch;
  for(int rank = ranks(); rank >0; --rank) {
    for(int column = 1; column <= columnCount; ++column) {
      if(skip > 0) {
        ch = ' ';
        skip--;
      } else {
        ch = fen.at(index++);
        if(ch.isDigit()) {
          skip = ch.toLatin1()-'0';
          ch = ' ';
          skip--;
        }
      }
      setDataInternal(column, rank, ch.toLatin1());
    }



Chapter 5

[ 139 ]

    QChar next = fen.at(index++);
    if(next != '/' && next != ' ') {
      initBoard();
      return; // fail on error
    }
  }
  emit boardReset();
}

The method iterates over all fields on the board and determines whether it is currently in the 
middle of inserting empty fields on the board or should rather read the next character from 
the string. If a digit is encountered, it is converted into an integer by subtracting the ASCII 
value of the 0 character (that is, 7-0 = 7). After setting each rank, we require that a slash or a 
space be read from the string. Otherwise, we reset the board to an empty one and bail out 
of the method.

What just happened?
We taught the ChessBoard class to store simple information about chess pieces using a 
one-dimensional array of characters. We also equipped it with methods that allow querying 
and modifying game data. We implemented a fast way of setting the current state of 
the game by adopting the FEN standard. The game data itself is not tied to classic chess. 
Although we comply with a standard notation for describing pieces, it is possible to use other 
letters and characters outside the well-defined set for chess pieces. This creates a versatile 
solution for storing information about chess-like games, such as checkers, and possibly 
any other custom game played on a two-dimensional board of any size with ranks and 
columns. The data structure we came up with is not a stupid one—it communicates with its 
environment by emitting signals when the state of the game is modified.

Time for action – understanding the ChessView class
This is a chapter about doing graphics, so it is high time to focus on displaying our chess 
game. Our widget currently displays nothing, and our first task is going to be to show a chess 
board with rank and column symbols and fields colored appropriately.

By default, the widget does not have any proper size defined and we will have to fix that by 
implementing sizeHint(). However, to be able to calculate the size, we have to decide 
how big a single field on the board is going to be. Therefore, in ChessView, you should 
declare a property containing the size of the field, as shown:

Q_PROPERTY(QSize fieldSize 
           READ fieldSize WRITE setFieldSize 
           NOTIFY fieldSizeChanged)



Graphics with Qt

[ 140 ]

To speed up coding, you can position the cursor over the property declaration, hit the Alt + 
Enter combination, and choose the Generate missing Q_PROPERTY members fixup from the 
pop-up menu. Creator will provide minor implementations for the getter and setter for you. 
You can move the generated code to the implementation file by positioning the cursor over 
each method, hitting Alt + Enter, and choosing the Move definition to chessview.cpp file 
fixup. While the generated getter method is fine, the setter needs some adjusting. Modify it 
by adding the following highlighted code:

void ChessView::setFieldSize(QSize arg)
{
    if (m_fieldSize == arg)
        return;

    m_fieldSize = arg;
    emit fieldSizeChanged(arg);
    updateGeometry();
}

This tells our widget to recalculate its size whenever the size of the field is modified. Now we 
can implement sizeHint():

QSize ChessView::sizeHint() const
{
    if(!m_board) return QSize(100,100);
    QSize boardSize = QSize(fieldSize().width()  
      * m_board->columns() +1,
    m_fieldSize.height() * m_board->ranks()   +1);
    int rankSize = fontMetrics().width('M')+4;
    int columnSize = fontMetrics().height()+4;
    return boardSize+QSize(rankSize, columnSize);
}

First we check if we have a valid board definition and if not, return a sane size of 100 x 100 
pixels. Otherwise, the method calculates the size of all the fields by multiplying the size of 
each of the fields by the number of columns or ranks. We add one pixel to each dimension to 
accommodate the right and bottom border. A chess board not only consists of not only the 
fields themselves but also displays rank symbols on the left edge of the board and column 
numbers on the bottom edge of the board. Since we use letters to enumerate ranks, we 
check the width of the widest letter in the alphabet using the QFontMetrics class. We use 
the same class to check how much space is required to render a line of text using the current 
font so that we have enough space to put column numbers. In both cases, we add 4 to the 
result to make a 2 pixel margin between the text and the edge of the board and another 2 
pixel margin between the text and the edge of the widget.



Chapter 5

[ 141 ]

It is very useful to define a helper method for returning a rectangle that contains a particular 
field, as shown:

QRect ChessView::fieldRect(int column, int rank) const
{
  if(!m_board) return QRect();
  const QSize fs = fieldSize();
  QRect fRect = QRect(QPoint((column-1)*fs.width(),  
    (m_board->ranks()-rank)*fs.height()), fs);
  // offset rect by rank symbols
  int offset = fontMetrics().width('M');  
    // 'M' is the widest letter
  return fRect.translated(offset+4, 0);
}

Since rank numbers decrease from the top towards the bottom of the board, we subtract the 
desired rank from the maximum rank there is while calculating fRect. Then, we calculate 
the horizontal offset for rank symbols just like we did in sizeHint() and translate the 
rectangle by that offset before returning the result.

Finally, we can move on to implementing the event handler for the paint event. Declare the 
paintEvent() method (the fixup menu available under the Alt + Enter keyboard shortcut 
will let you generate a stub implementation of the method) and fill it with the following 
code:

void ChessView::paintEvent(QPaintEvent *event)
{
  if(!m_board) return;
  QPainter painter(this);
  for(int r = m_board->ranks(); r>0; --r) {
    painter.save();
    drawRank(&painter, r);
    painter.restore();
  }
  for(int c = 1; c<=m_board->columns();++c) {
    painter.save();
    drawColumn(&painter, c);
    painter.restore();
  }
  for(int r = 1; r<=m_board->ranks();++r) {
    for(int c = 1; c<=m_board->columns();++c) {
      painter.save();
      drawField(&painter, c, r);
      painter.restore();
    }
  }
}



Graphics with Qt

[ 142 ]

The handler is quite simple. First we instantiate the QPainter object that operates on 
the widget. Then we have three loops—the first one iterates over ranks, the second over 
columns, and the third over all fields. The body of each loop is very similar: there is a call 
to a custom draw method that accepts a pointer to the painter and index of the rank, 
column, or both of them, respectively. Each of the calls is surrounded by executing save() 
and restore()on our QPainter instance. What are the calls for here? The three draw 
methods—drawRank(), drawColumn(), and drawField()—are going to be virtual 
methods responsible for rendering the rank symbol, the column number, and the field 
background. It will be possible to subclass ChessView and provide custom implementations 
for those renderers so that it is possible to provide a different look of the chess board. 
Since each of these methods takes the painter instance as its parameter, overrides of these 
methods could alter attribute values of the painter behind our back. Calling save() before 
handing the painter over to such override stores its state on an internal stack, and calling 
restore() after returning from the override resets the painter to what was stored with 
save(). This effectively gives us a failsafe to avoid breaking the painter in case the override 
does not clean up after itself if it modifies the painter.

Calling save() and restore() very often introduces a performance hit, so 
you should avoid saving and restoring painter states too often in time-critical 
situations. As our painting is very simple, we don't have to worry about that 
when painting our chess board.

Having introduced our three methods, we can start implementing them. Let's start with 
drawRank and drawColumn. Remember to declare them as virtual and put them in 
protected access scope (that's usually where Qt classes put such methods), as shown:

void ChessView::drawRank(QPainter *painter, int rank)
{
  QRect r = fieldRect(1, rank);
  QRect rankRect = QRect(0, r.top(), r.left(),  
    r.height()).adjusted(2, 0, -2, 0);
  QString rankText = QString::number(rank);
  painter->drawText(rankRect,  
    Qt::AlignVCenter|Qt ::AlignRight, rankText);
}

void ChessView::drawColumn(QPainter *painter, int column)
{
  QRect r = fieldRect(column, 1);
  QRect columnRect = QRect(r.left(), r.bottom(), 
    r.width(), height()-r.bottom()).adjusted(0, 2, 0, -2);
  painter->drawText(columnRect,  
    Qt:: AlignHCenter|Qt::AlignTop, QChar('a'+column-1));
}



Chapter 5

[ 143 ]

Both methods are very similar. We use fieldRect() to query for the left-most column and 
bottom-most rank and based on that, we calculate where rank symbols and column numbers 
should be placed. The call to QRect::adjusted() is to accommodate the 2 pixel margin 
around the text to be drawn. Finally, we use drawText() to render appropriate text. For 
the rank, we ask the painter to align the text to the right edge of the rectangle and center 
the text vertically. In a similar way, when drawing the column we align to the top edge and 
center the text horizontally.

Now we can implement the third draw method. It should also be declared protected and 
virtual. Place the following code in the method body:

void ChessView::drawField(QPainter *painter, int column, int rank)
{
  QRect rect = fieldRect(column, rank);
  QColor fillColor = (column+rank) % 2 ? palette().
    color(QPalette::Light) : palette().color(QPalette::Mid);
  painter->setPen(palette().color(QPalette::Dark));
  painter->setBrush(fillColor);
  painter->drawRect(rect);
}

In this method, we use the QPalette object coupled with each widget to query for Light 
(usually white) and Mid (darkish) color depending on whether the field we are drawing on 
the chess board is considered white or black. We do that instead of hardcoding the colors 
to make it possible to modify colors of the tiles without subclassing simply by adjusting the 
palette object. Then we use the palette again to ask for the Dark color and use that as a pen 
for our painter. When we draw a rectangle with such settings, the pen will stroke the border 
of the rectangle to give it a more elegant look. Note how we modify attributes of the painter 
in this method and we do not set them back afterwards. We can get away with it because of 
the save() and restore() calls surrounding the drawField() execution.

We are ready now to see the results of our work. Let's switch to the MainWindow class and 
equip it with the following two private variables:

ChessView *m_view;
ChessAlgorithm *m_algorithm;

Then modify the constructor by adding the following highlighted code to set up the view and 
the game engine:

MainWindow::MainWindow(QWidget *parent) :
  QMainWindow(parent),
  ui(new Ui::MainWindow)
{



Graphics with Qt

[ 144 ]

  ui->setupUi(this);
  m_view = new ChessView;
  m_algorithm = new ChessAlgorithm(this);
  m_algorithm->newGame();
  m_view->setBoard(m_algorithm->board());
  setCentralWidget(m_view);
  m_view->setSizePolicy(QSizePolicy::Fixed, QSizePolicy::Fixed);
  m_view->setFieldSize(QSize(50,50));
  layout()->setSizeConstraint(QLayout::SetFixedSize);
}

Afterwards, you should be able to build the project. When you run it, you should see a result 
similar to the one in the following screenshot:

What just happened?
In this exercise, we did two things. First we provided a number of methods for calculating 
the geometry of important parts of the chess board and the size of the widget. Second, we 
defined three virtual methods for rendering visual primitives of a chess board. By making the 
methods virtual, we provided an infrastructure to let the look be customized by subclassing 
and overriding base implementations. Furthermore, by reading color from QPalette, we 
allowed customizing the colors of the primitives even without subclassing.

The last line of the main window constructor tells the layout of the window to force a fixed 
size of the window equal to what the size hint of the widget inside it reports.



Chapter 5

[ 145 ]

Time for action – rendering the pieces
Now that we can see the board, it is time to put the pieces on it. We are going to use images 
for that purpose. In my case, we found a number of SVG files with chess pieces and decided 
to use them. SVG is a vector graphics format where all curves are defined not as a fixed set 
of points but rather as mathematic curves. Their main benefit is that they scale very well 
without causing an aliasing effect.

Let's equip our view with a registry of images to be used for "stamping" a particular piece 
type. Since each piece type is identified with char, we can use it to generate keys for a map of 
images. Let's put the following API into ChessView:

public:
  void setPiece(char type, const QIcon &icon);
  QIcon piece(char type) const;
private:
  QMap<char,QIcon> m_pieces;

For the image type, we do not use QImage or QPixmap but rather QIcon. This is because 
QIcon can store many pixmaps of different sizes and use the most appropriate one when we 
request an icon of a given size to be painted. This doesn't matter if we use vector images, but 
it does matter if you choose to use PNG or other types of image. In such cases, you can use 
addFile() to add many images to a single icon.

Going back to our registry, the implementation is very simple. We just store the icon in a map 
and ask the widget to repaint itself:

void ChessView::setPiece(char type, const QIcon &icon)
{
  m_pieces.insert(type, icon);
  update();
}

QIcon ChessView::piece(char type) const
{
  return m_pieces.value(type, QIcon());
}



Graphics with Qt

[ 146 ]

Now we can fill the registry with actual images right after we create the view inside the 
MainWindow constructor. Note that we stored all the images in a resource file, as shown:

m_view->setPiece('P', QIcon(":/pieces/Chess_plt45.svg")); // pawn
m_view->setPiece('K', QIcon(":/pieces/Chess_klt45.svg")); // king
m_view->setPiece('Q', QIcon(":/pieces/Chess_qlt45.svg")); // queen
m_view->setPiece('R', QIcon(":/pieces/Chess_rlt45.svg")); // rook
m_view->setPiece('N', QIcon(":/pieces/Chess_nlt45.svg")); // knight
m_view->setPiece('B', QIcon(":/pieces/Chess_blt45.svg")); // bishop

m_view->setPiece('p', QIcon(":/pieces/Chess_pdt45.svg")); // pawn
m_view->setPiece('k', QIcon(":/pieces/Chess_kdt45.svg")); // king
m_view->setPiece('q', QIcon(":/pieces/Chess_qdt45.svg")); // queen
m_view->setPiece('r', QIcon(":/pieces/Chess_rdt45.svg")); // rook
m_view->setPiece('n', QIcon(":/pieces/Chess_ndt45.svg")); // knight
m_view->setPiece('b', QIcon(":/pieces/Chess_bdt45.svg")); // bishop

The next thing to do is to extend the paintEvent() method of the view to actually 
render our pieces. For that, we will introduce another protected virtual method called 
drawPiece(). We'll call it when iterating over all the ranks and columns of the board, as 
shown:

void ChessView::paintEvent(QPaintEvent *event) 
{
  // ...
  for(int r = m_board->ranks(); r>0; --r) {
    for(int c = 1; c<=m_board->columns();++c) {
      drawPiece(&painter, c, r);
    }
  }
}

It is not a coincidence that we start drawing from the highest (top) rank to the lowest 
(bottom) one. By doing that, we allow a pseudo-3D effect: if a piece drawn extends past the 
area of the field, it will intersect the field from the next rank (which is possibly occupied by 
another piece). By drawing higher rank pieces first, we cause them to be partially covered by 
pieces from the lower rank, which imitates the effect of depth. By thinking ahead, we allow 
reimplementations of drawPiece() to have more freedom in what they can do.



Chapter 5

[ 147 ]

The final step is to provide a base implementation for this method, as follows:

void ChessView::drawPiece(QPainter *painter, int column, int rank)
{
  QRect rect = fieldRect(column, rank);
  char value = m_board->data(column, rank);
  if(value != ' ') {
    QIcon icon = piece(value);
    if(!icon.isNull()) {
      icon.paint(painter, rect, Qt::AlignCenter);
    }
  }
}

The method is very simple, it queries for the rectangle of a given column and rank, then asks 
the ChessBoard instance about the piece occupying the given field. If there is a piece there, 
we ask the registry for the proper icon; if we get a valid one, we call its paint() routine to 
draw the piece centered in the field's rect. The image drawn will be scaled to the size of the 
rectangle. It is important that you only use images with a transparent background (such as 
PNG or SVG files and not JPEG files) so that the color of the field can be seen through the 
piece.

What just happened?
To test the implementation, you can modify the algorithm to fill the board with the default 
piece set up by introducing the following change to the ChessAlgorithm class:

void ChessAlgorithm::newGame()
{
  setupBoard();
  board()->setFen(
    "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"
  );
}



Graphics with Qt

[ 148 ]

Running the program should show the following result:

The modification we did in this step was very simple. First we provided a way to tell the 
board what each piece type looks like. This includes not only standard chess pieces but 
anything that fits into char and can be set inside the ChessBoard class's internal data array. 
Second, we made an abstraction for drawing the pieces with the simplest possible base 
implementation: taking an icon from the registry and rendering it to the field. By making use 
of QIcon, we can add several pixmaps of different sizes to be used with different sizes of a 
single field. Alternatively, the icon can contain a single vector image that scales very well all 
by itself.

Time for action – making the chess game interactive
We have managed to display the chess board but to actually play a game, we have to tell the 
program what moves we want to play. We could do that by adding the QLineEdit widget 
where we would input the move in algebraic form (for example, Nf3 to move a knight to f3), 
but a more natural way is to click a piece with the mouse cursor (or tap it with a finger) and 
then click again on the destination field. To obtain such functionality, the first thing to do is 
to teach ChessView to detect mouse clicks. Therefore, add the following method:

QPoint ChessView::fieldAt(const QPoint &pt) const
{
  if(!m_board) return QPoint();
  const QSize fs = fieldSize();



Chapter 5

[ 149 ]

    int offset = fontMetrics().width('M')+4;  
      // 'M' is the widest letter
    if(pt.x() < offset) return QPoint();
    int c = (pt.x()-offset) / fs.width();
    int r = pt.y()/fs.height();
    if(c < 0 || c >= m_board->columns() || r<0 ||  
      r >= m_board->ranks()) 
        return QPoint();
    return QPoint(c+1, m_board->ranks() - r);  
      // max rank - r
}

The code looks very similar to the implementation of fieldRect(). This is because 
fieldAt() implements its reverse operation—it transforms a point in the widget 
coordinate space to the column and rank index of a field the point is contained in. The index 
is calculated by dividing point coordinates by the size of the field. You surely remember that, 
in the case of columns, the fields are offset by the size of the widest letter and a margin of 
4 and we have to consider that in our calculations here as well. We do two checks: first we 
check the horizontal point coordinate against the offset to detect if the user clicked on the 
part of the widget where column symbols are displayed, and then we check if the rank and 
column calculated fit the range represented in the board. Finally, we return the result as a 
QPoint value since this is the easiest way in Qt to represent a two-dimensional value.

Now we need to find a way to make the widget notify its environment that a particular 
field was clicked. We can do this through the signal-slot mechanism. Switch to the header 
file of ChessView (if you currently have chessview.cpp opened in Qt Creator, you can 
simply push the F4 key to be transferred to the corresponding header file) and declare a 
clicked(const QPoint &) signal:

signals:
  void clicked(const QPoint &);

To detect mouse input, we have to override one of the mouse event handlers a widget has, 
either mousePressEvent or mouseReleaseEvent. It seems obvious we should choose 
the former event; this would work, but it is not the best decision. Just think about the 
semantics of a mouse click: it is a complex event composed of pushing and releasing the 
mouse button. The actual "click" takes place after the mouse is released. Therefore let's use 
mouseReleaseEvent as our event handler:

void ChessView::mouseReleaseEvent(QMouseEvent *event)
{
  QPoint pt = fieldAt(event->pos());
  if(pt.isNull()) return;
  emit clicked(pt);
}



Graphics with Qt

[ 150 ]

The code is simple; we use the method we just implemented and pass it the position read 
from the QMouseEvent object. If the returned point is invalid, we quietly return from the 
method. Otherwise, clicked() is emitted with the obtained column and rank values.

We can make use of the signal now. Go to the constructor of MainWindow and add the 
following line to connect the widget's clicked signal to a custom slot:

connect(m_view, SIGNAL(clicked(QPoint)),  
  this, SLOT(viewClicked(QPoint)));

Declare the slot and implement it as follows:

void MainWindow::viewClicked(const QPoint &field)
{
  if(m_clickPoint.isNull()) {
    m_clickPoint = field;
  } else {
  if(field != m_clickPoint) {
    m_view->board()->movePiece(
      m_clickPoint.x(), m_clickPoint.y(), 
      field.x(), field.y()
    );
    }
    m_clickPoint = QPoint();
  }
}

The function uses a class member variable m_clickPoint to store the clicked field. The 
variable value is made invalid after a move is made. Thus we can detect whether the click 
we are currently handling has "select" or "move" semantics. In the first case, we store the 
selection in m_clickPoint; in the other case, we ask the board to make a move using the 
helper method we implemented some time ago. Remember to declare m_clickPoint as a 
private member variable of MasinWindow.

All should be working now. However, if you build the application, run it, and start clicking 
around on the chess board, you will see that nothing happens. This is because we forgot 
to tell the view to refresh itself when the game position on the board is changed. We 
have to connect the signals the board emits to the update() slot of the view. Open the 
setBoard() method of the widget class and fix it as follows:

void ChessView::setBoard(ChessBoard *board)
{
  // ...
  m_board = board;
  // connect signals
  if(board){
    connect(board, SIGNAL(dataChanged(int,int)),  
      this, SLOT(update()));



Chapter 5

[ 151 ]

    connect(board, SIGNAL(boardReset()), this, SLOT(update()));
  }
  updateGeometry();
}

If you run the program now, moves you make will be reflected in the widget, as shown:

At this point, we might consider the visual part of the game as finished, but there is still 
one problem you might have spotted while testing our latest additions. When you click on 
the board, there is no visual hint that any piece was actually selected. Let's fix that now by 
introducing the ability to highlight any field on the board. 

To do that, we will develop a generic system for different highlights. Begin by adding a 
Highlight class as an internal class to ChessView:

class ChessView : public QWidget
    // ...
public:
    class Highlight {
    public:
        Highlight() {}
        virtual ~Highlight() {}
        virtual int type() const { return 0; }
    };
// ...
};



Graphics with Qt

[ 152 ]

It is a minimalistic interface for highlights and only exposes a method returning the type of 
the highlight using a virtual method. In our exercise, we will focus on just a basic type that 
marks a single field with a given color. Such a situation is going to be represented by the 
FieldHighlight class:

class FieldHighlight : public Highlight {
public:
  enum { Type = 1 };
  FieldHighlight(int column, int rank, QColor color)
    : m_field(column, rank), m_color(color) {}
  inline int column() const { return m_field.x(); }
  inline int rank() const { return m_field.y(); }
  inline QColor color() const { return m_color; }
  int type() const { return Type; }
private:
  QPoint m_field;
  QColor m_color;
};

You can see we provided a constructor that takes the column and rank indices and a color 
for the highlight and stores them in private member variables. Also, type() is redefined to 
return FieldHighlight::Type, which we can use to easily identify the type of highlight. 
The next step is to extend ChessView with abilities to add and remove highlights. As the 
container declares a private QList<Highlight*> m_highlights member variable, add 
method declarations:

public:
  void addHighlight(Highlight *hl);
  void removeHighlight(Highlight *hl);
  inline Highlight *highlight(int index)  
    const {return m_highlights.at(index); }
  inline int highlightCount() const { return m_highlights.size(); }

Next provide implementations for non-inline methods:

void ChessView::addHighlight(ChessView::Highlight *hl) 
{ m_highlights.append(hl); update(); }

void ChessView::removeHighlight(ChessView::Highlight *hl) 
{ m_highlights.removeOne(hl); update(); }



Chapter 5

[ 153 ]

Drawing the highlights is really easy: we will use yet another virtual draw method. Place the 
following call in the paintEvent() implementation right before the loop that is responsible 
for rendering pieces:

drawHighlights(&painter);

The implementation simply iterates over all the highlights and renders those it understands.

void ChessView::drawHighlights(QPainter *painter)
{
  for(int idx=0; idx < highlightCount(); ++idx) {
    Highlight *hl = highlight(idx);
    if(hl->type() == FieldHighlight::Type) {
      FieldHighlight *fhl = static_cast<FieldHighlight*>(hl);
      QRect rect = fieldRect(fhl->column(), fhl->rank());
      painter->fillRect(rect, fhl->color());
    }
  }
}

By checking the type of the highlight, we know which class to cast the generic pointer to. 
Then we can query the object for the needed data. Finally, we use QPainter::fillRect() 
to fill the field with the given color. As drawHighlights() is called before the piece 
painting loop and after the field painting loop, the highlight will cover the background but 
not the piece.

That's the basic highlighting system. Let's make our viewClicked() slot use it:

void MainWindow::viewClicked(const QPoint &field)
{
  if(m_clickPoint.isNull()) {
    if(m_view->board()->data(field.x(), field.y()) != ' ') {
      m_clickPoint = field;
      m_selectedField = new ChessView::FieldHighlight(
        field.x(), field.y(), QColor(255, 0, 0, 50)
      );
      m_view->addHighlight(m_selectedField);
    }
  } else {
    if(field != m_clickPoint) {
      m_view->board()->movePiece(
        m_clickPoint.x(), m_clickPoint.y(), field.x(), field.y()



Graphics with Qt

[ 154 ]

      );
    };
    m_clickPoint = QPoint();
    m_view->removeHighlight(m_selectedField);
    delete m_selectedField;
    m_selectedField = 0;
  }
}

Notice how we check that a field can only be selected if it is not empty (that is, there is an 
existing piece occupying that field)?

You should also add a ChessView::FieldHighlight *m_selectedField private 
member variable and initialize it with a null pointer in the constructor. You can now build the 
game, execute it, and start moving pieces around.



Chapter 5

[ 155 ]

What just happened?
By adding a few lines of code, we managed to make the board clickable. We connected a 
custom slot that reads which field was clicked and can highlight it with a semi-transparent 
red color. Clicking on another field will move the highlighted piece there. The highlighting 
system we developed is very generic. We use it to highlight a single field with a solid color, 
but you can mark as many fields as you want with a number of different colors, for example, 
to show valid moves after selecting a piece. The system can easily be extended with new 
types of highlights; for example, you can draw arrows on the board using QPainterPath to 
have a complex hinting system (say showing the player the suggested move).



Graphics with Qt

[ 156 ]

Time for action – connecting the game algorithm
It would take us too long to implement a full chess game algorithm here, so we will instead 
settle for a much simpler game called Fox and Hounds. One of the players has four pawns 
(hounds) which can only move over black fields and the pawn can only move in a forward 
fashion (toward higher ranks). The other player has just a single pawn (fox) which starts from 
the opposite side of the board. 

It can also move only over black fields; however it can move both forwards (toward higher 
ranks) as well as backwards (toward lower ranks). Players move in turns by moving their 
pawn by to a neighboring black field. The goal of the fox is to reach the opposite end of the 
board; the goal of the hounds is to trap the fox so that it can't make a move.



Chapter 5

[ 157 ]

Time to get to work! First we will extend the ChessAlgorithm class with the required 
interface:

class ChessAlgorithm : public QObject
{
  Q_OBJECT
  Q_ENUMS(Result Player)
  Q_PROPERTY(Result result READ result)
  Q_PROPERTY(Player currentPlayer 
             READ currentPlayer 
             NOTIFY currentPlayerChanged)
public:
  enum Result { NoResult, Player1Wins, Draw, Player2Wins };
  enum Player { NoPlayer, Player1, Player2 };

  explicit ChessAlgorithm(QObject *parent = 0);
  ChessBoard* board() const;
  inline Result result() const { return m_result; }
  inline Player currentPlayer() const { return m_currentPlayer; }

signals:
  void boardChanged(ChessBoard*);
  void gameOver(Result);
  void currentPlayerChanged(Player);

public slots:
  virtual void newGame();
  virtual bool move(int colFrom, int rankFrom, int colTo, int rankTo);
  bool move(const QPoint &from, const QPoint &to);

protected:
  virtual void setupBoard();
  void setBoard(ChessBoard *board);
  void setResult(Result);
  void setCurrentPlayer(Player);
private:
  ChessBoard *m_board;
  Result m_result;
  Player m_currentPlayer;
};



Graphics with Qt

[ 158 ]

There are two sets of members here. First we have a number of enums, variables, signals, 
and methods that are related to the state of the game: which player should make his move 
now and what is currently the result of the game. The Q_ENUMS macro is used to register 
enumerations in Qt's meta-type system so that they can be used as values for properties 
or arguments in signals. Property declarations and getters for them don't need any extra 
explanation. We have also declared protected methods for setting the variables from within 
subclasses. Here is their suggested implementation:

void ChessAlgorithm::setResult(Result value)
{
  if(result() == value) return;
  if(result() == NoResult) {
     m_result = value;
     emit gameOver(m_result);
  } else { m_result = value; }
}

void ChessAlgorithm::setCurrentPlayer(Player value)
{
  if(currentPlayer() == value) return;
  m_currentPlayer = value;
  emit currentPlayerChanged(m_currentPlayer);
}

Remember about initializing m_currentPlayer and m_result to NoPlayer and 
NoResult in the constructor of the ChessAlgorithm class.

The second group of functions is methods that modify the state of the game—the two 
variants of move(). The virtual variant is meant to be reimplemented by the real algorithm 
to check whether a given move is valid in the current game state and if that is the case, to 
perform the actual modification of the game board. In the base class, we can simply reject all 
possible moves:

bool ChessAlgorithm::move(int colFrom, int rankFrom,  
  int colTo, int rankTo)
{
  Q_UNUSED(colFrom)
  Q_UNUSED(rankFrom)
  Q_UNUSED(colTo)
  Q_UNUSED(rankTo)
  return false;
}



Chapter 5

[ 159 ]

Q_UNUSED is a macro to prevent the compiler from issuing warnings during 
compilation if the enclosed local variable is never used in the scope.

The overload is simply a convenience method that accepts two QPoint objects instead of 
four integers.

bool ChessAlgorithm::move(const QPoint &from, const QPoint &to)
{
  return move(from.x(), from.y(), to.x(), to.y());
}

The interface for the algorithm is ready now and we can implement it for the Fox and 
Hounds game. Subclass ChessAlgorithm to create a FoxAndHounds class:

class FoxAndHounds : public ChessAlgorithm
{
public:
  FoxAndHounds(QObject *parent = 0);
  void newGame();
  bool move(int colFrom, int rankFrom, int colTo, int rankTo);
};

The implementation of newGame() is pretty simple: we set up the board, place pieces on it, 
and signal that it is time for the first player to make their move.

void FoxAndHounds::newGame()
{
  setupBoard();
  board()->setFen("3p4/8/8/8/8/8/8/P1P1P1P1 w");  
  // 'w' - white to move
  m_fox = QPoint(5,8);
  setResult(NoResult);
  setCurrentPlayer(Player1);
}

The algorithm for the game is quite simple. Implement move() as follows:

bool FoxAndHounds::move(int colFrom, int rankFrom,  
  int colTo, int rankTo)
{
  if(currentPlayer() == NoPlayer) return false;



Graphics with Qt

[ 160 ]

  // is there a piece of the right color?
  char source = board()->data(colFrom, rankFrom);
  if(currentPlayer() == Player1 && source != 'P') return false;
  if(currentPlayer() == Player2 && source != 'p') return false;

  // both can only move one column right or left
  if(colTo != colFrom+1 && colTo != colFrom-1) return false;

  // do we move within the board?
  if(colTo < 1 || colTo > board()->columns()) return false;
  if(rankTo < 1 || rankTo > board()->ranks()) return false;

  // is the destination field black?
  if((colTo + rankTo) % 2) return false;

  // is the destination field empty?
  char destination = board()->data(colTo, rankTo);
  if(destination != ' ') return false;

  // is white advancing?
  if(currentPlayer() == Player1 && rankTo <= rankFrom) return false;

  board()->movePiece(colFrom, rankFrom, colTo, rankTo);   
  // make the move
  if(currentPlayer() == Player2) {
    m_fox = QPoint(colTo, rankTo);      // cache fox position
  }
  // check win condition
  if(currentPlayer() == Player2 && rankTo == 1){
    setResult(Player2Wins);              // fox has escaped
  } else if(currentPlayer() == Player1 && !foxCanMove()) {
    setResult(Player1Wins);        // fox can't move
  } else {
    // the other player makes the move now
    setCurrentPlayer(currentPlayer() == Player1 ? Player2 : Player1);
  }
  return true;
}



Chapter 5

[ 161 ]

Declare a protected foxCanMove() method and implement it using the following code:

bool FoxAndHounds::foxCanMove() const
{
  if(emptyByOffset(-1, -1) || emptyByOffset(-1, 1) 
  || emptyByOffset( 1, -1) || emptyByOffset( 1, 1)) return true;
  return false;
}

Then do the same with emptyByOffset():

bool FoxAndHounds::emptyByOffset(int x, int y) const
{
  const int destCol = m_fox.x()+x;
  const int destRank = m_fox.y()+y;
  if(destCol < 1 || destRank < 1 
  || destCol > board()->columns()  
  || destRank > board()->ranks()) return false;
    return (board()->data(destCol, destRank) == ' ');
}

Lastly declare a private QPoint m_fox member variable.

The simplest way to test the game is to make two changes to the code. First, 
in the constructor of the main window class, replace m_algorithm = new 
ChessAlgorithm(this) with m_algorithm = new FoxAndHounds(this). Second, 
modify the viewClicked() slot as follows:

void MainWindow::viewClicked(const QPoint &field)
{
  if(m_clickPoint.isNull()) {
    // ...
  } else {
    if(field != m_clickPoint) {
      m_algorithm->move(m_clickPoint, field);
    }
    // ...
  }
}

You can also connect signals from the algorithm class to custom slots of the view or window 
to notify about the end of the game and provide a visual hint as to which player should make 
his move now.



Graphics with Qt

[ 162 ]

What just happened?
We created a very simplistic API for implementing chess-like games by introducing the 
newGame() and move() virtual methods to the algorithm class. The former method simply 
sets everything up. The latter uses simple checks to determine whether a particular move is 
valid and if the game has ended. We use the m_fox member variable to track the current 
position of the fox to be able to quickly determine if it has any valid moves. When the game 
ends, the gameOver() signal is emitted and the result of the game can be obtained from the 
algorithm. You can use the exact same framework for implementing all chess rules.

Have a go hero – implementing the UI around the chess board
During the exercise, we focused on developing the game board view and necessary classes 
to make the game actually run. But we completely neglected the regular user interface the 
game might possess, such as toolbars and menus. You can try designing a set of menus and 
toolbars for the game. Make it possible to start a new game, save a game in progress (say 
by implementing a FEN serializer), load a saved game (say by leveraging the existing FEN 
string parser), or choose different game types that will spawn different ChessAlgorithm 
subclasses. You can also provide a settings dialog for adjusting the look of the game board. If 
you feel like it, you can add chess clocks or implement a simple tutorial system that will guide 
the player through the basics of chess using text and visual hints via the highlight system we 
implemented.

Have a go hero – connecting a UCI-compliant chess engine
If you really want to test your skills, you can implement a ChessAlgorithm subclass that 
will connect to a Universal Chess Interface (UCI) chess engine such as StockFish (http://
stockfishchess.org) and provide a challenging artificial intelligence opponent for a 
human player. UCI is the de facto standard for communication between a chess engine and a 
chess frontend. Its specification is freely available, so you can study it on your own. To talk to 
a UCI-compliant engine you can use QProcess, which will spawn the engine as an external 
process and attach itself to its standard input and standard output. Then you can send 
commands to the engine by writing to its standard input and read messages from the engine 
by reading its standard output. To get you started, here is a short snippet of code that starts 
the engine and attaches to its communication channels:

class UciEngine : public QObject {
  Q_OBJECT

http://stockfishchess.org
http://stockfishchess.org


Chapter 5

[ 163 ]

public:
  UciEngine(QObject *parent = 0) : QObject(parent) { 
    m_uciEngine = new QProcess(this);
    m_uciEngine->setReadChannel(QProcess:StandardOutput);
    connect(m_uciEngine, SIGNAL(readyRead()), SLOT(readFromEngine()));
  }
public slots:
  void startEngine(const QString &enginePath) {
    m_uciEngine->start(enginePath);
  }
  void sendCommand(const QString &command) {
    m_uciEngine->write(command.toLatin1());
  }
private slots:
  void readFromEngine() {
    while(m_uciEngine->canReadLine()) {
      QString line = QString::fromLatin1(m_uciEngine->readLine());
      emit messageReceived(line);
    }
  }
signals:
  void messageReceived(QString);
private:
  QProcess *m_uciEngine;
};

OpenGL
We are not experts on OpenGL, so in this part of the chapter we will not teach you to do 
any fancy stuff with OpenGL and Qt but rather will show you how to enable the use of your 
OpenGL skills in Qt applications. There are a lot of tutorials and courses on OpenGL out there 
so if you're not that skilled with OpenGL, you can still benefit from what is described here by 
employing the knowledge gained here to more easily learn fancy stuff. You can use external 
materials and a high-level API offered by Qt, which is going to speed up many of the tasks 
described in the tutorials.



Graphics with Qt

[ 164 ]

Introduction to OpenGL with Qt
There are basically two ways you can use OpenGL in Qt. The first approach is to use 
QOpenGLWidget. This is mostly useful if your application heavily depends on other widgets 
(for example. the 3D view is only one of the views in your application and is controlled 
using a bunch of other widgets surrounding the main view). The other way is to use 
QOpenGLWindow; this is most useful when the GL window is the dominant or even the only 
part of the program. Both APIs are very similar; they use instances of the QOpenGLContext 
class to access the GL context. The difference is practically only in how they render the 
scene to the window. QOpenGLWindow renders directly to the given window, while 
QOpenGLWidget first renders to an offscreen buffer that is then rendered to the widget. The 
advantage of the latter approach is that QOpenGLWidget can be part of a more complex 
widget layout while QOpenGLWindow is usually used as the sole, often fullscreen, window. 
In this chapter we will be using the more direct approach (QOpenGLWindow); however, bear 
in mind that you can do everything described here using the widget too. Just replace the 
window classes with their widget equivalents and you should be good to go. 

We said that the whole API revolves around the QOpenGLContext class. It represents the 
overall state of the GL pipeline, which guides the process of data processing and rendering to 
a particular device. 

A related concept that needs explanation is the idea of a GL context being "current" in 
a thread. The way OpenGL calls work is that they do not use any handle to any object 
containing information on where and how to execute the series of low-level GL calls. Instead, 
it is assumed that they are executed in the context of the current machine state. The state 
may dictate whether to render a scene to a screen or to a frame buffer object, which 
mechanisms are enabled, or the properties of the surface OpenGL is rendering on. Making 
a context "current" means that all further OpenGL operations issued by a particular thread 
will be applied to this context. To add to that, a context can be "current" only in one thread 
at the same time; therefore, it is important to make the context current before making 
any OpenGL calls and then marking it as available after you are done accessing OpenGL 
resources. 

QOpenGLWindow has a very simple API that hides most of the unnecessary details from 
the developer. Apart from constructors and a destructor, it provides a small number of 
very useful methods. First there are auxiliary methods for managing the OpenGL context: 
context(), which returns the context, and makeCurrent() as well as doneCurrent() 
for acquiring and releasing the context. The remaining methods of the class are a number of 
virtual methods we can reimplement to display OpenGL graphics.

The first method is called initializeGL(), and it is invoked by the framework once before 
any painting is actually done so that you can prepare any resources or initialize the context in 
any way you require.



Chapter 5

[ 165 ]

Then there are two most important methods: resizeGL() and paintGL(). The first is a 
callback invoked every time the window is resized. It accepts the width and height of the 
window as parameters. You can make use of that method by reimplementing it so that 
you can prepare yourself for the fact that the next call to the other method, paintGL(), 
renders to a viewport of a different size. Speaking of paintGL(), this is the equivalent of 
paintEvent() for the widget classes; it gets executed whenever the window needs to be 
repainted. This is the function where you should put your OpenGL rendering code.

Time for action – drawing a triangle using Qt and OpenGL
For the first exercise, we will create a subclass of QOpenGLWindow that renders a triangle 
using simple OpenGL calls. Create a new project starting with Empty qmake Project from the 
Other Projects group as the template. In the project file, put the following content:

QT = core gui
TARGET = triangle
TEMPLATE = app

Having the basic project setup ready, let's define a SimpleGLWindow class as a subclass of 
QOpenGLWindow and override the initializeGL() method to set white as the clear color 
of our scene. We do this by calling an OpenGL function called glClearColor. Qt provides 
a convenience class called QOpenGLFunctions that takes care of resolving most commonly 
used OpenGL functions in a platform-independent way. This is the recommended approach 
to access OpenGLES functions in a platform-independent manner. Our window is going to 
inherit not only QOpenGLWindow but also QOpenGLFunctions. However, since we don't 
want to allow external access to those functions, we use protected inheritance.

class SimpleGLWindow : public QOpenGLWindow,  
protected QOpenGLFunctions {
public:
  SimpleGLWindow(QWindow *parent = 0) :  
    QOpenGLWindow(NoPartialUpdate, parent) { }
protected:
  void initializeGL() {
    initializeOpenGLFunctions();
    glClearColor(1,1,1,0);
  }

In initializeGL(), we first call initializeOpenGLFunctions(), which is a method 
of the QOpenGLFunctions class, one of the base classes of our window class. The method 
takes care of setting up all the functions according to the parameters of the current GL 
context (thus it is important to first make the context current, which luckily is done for us 
behind the scenes before initializeGL() is invoked). Then we set the clear color of the 
scene to white.



Graphics with Qt

[ 166 ]

The next step is to reimplement paintGL() and put the actual drawing code there:

  void paintGL() {
    glClear(GL_COLOR_BUFFER_BIT);
    glViewport(0, 0, width(), height());
    glBegin(GL_TRIANGLES);
      glColor3f(1, 0, 0);
      glVertex3f( 0.0f, 1.0f, 0.0f);
      glColor3f(0, 1, 0);
      glVertex3f( 1.0f,-1.0f, 0.0f);
      glColor3f(0, 0, 1);
      glVertex3f(-1.0f,-1.0f, 0.0f);
    glEnd();
  }
};

This function first clears the color buffer and sets the GL viewport of the context to be 
the size of the window. Then we tell OpenGL to start drawing using triangles with the 
glBegin() call and passing GL_TRIANGLES as the drawing mode. Then we pass three 
vertices along with their colors to form a triangle. Finally, we inform the pipeline by invoking 
glEnd() that we are done drawing using the current mode.

What is left is a trivial main() function that sets up the window and starts the event loop. 
Add a new C++ Source File, call it main.cpp, and implement main() as follows:

int main(int argc, char **argv) {
  QGuiApplication app(argc, argv);
  SimpleGLWindow window;
  window.resize(600,400);
  window.show();
  return app.exec();
}



Chapter 5

[ 167 ]

You can see the triangle has jagged edges. That's because of the aliasing effect. 
You can counter it by enabling multisampling for the window, which will make 
OpenGL render the contents multiple times and then average the result, which 
acts as antialiasing. To do that, add the following code to the constructor of the 
window:

        QSurfaceFormat fmt = format();
        fmt.setSamples(16); // multisampling set to 16
        setFormat(fmt);

Drawing colored triangles is fun, but drawing textured cubes is even more fun so let's see 
how we can use OpenGL textures with Qt.

Time for action – scene-based rendering
Let's take our rendering code to a higher level. Putting OpenGL code directly into the  
window class requires subclassing the window class and makes the window class more  
and more complex. Let's follow good programming practice and separate rendering code 
from window code.

Create a new class and call it AbstractGLScene. It is going to be the base class for 
definitions of OpenGL scenes. You can derive the class (with protected scope) from 
QOpenGLFunctions to make accessing different GL functions easier. Make the scene class 
accept a pointer to QOpenGLWindow, either in the constructor or through a dedicated setter 
method. Make sure the pointer is stored in the class for easier access as we are going to rely 
on that pointer for accessing physical properties of the window. Add methods for querying 
the window's OpenGL context. You should end up with code similar to the following:

class AbstractGLScene : protected QOpenGLFunctions {
public:
  AbstractGLScene(QOpenGLWindow *wnd = 0) { m_window = wnd; }
  QOpenGLWindow* window() const { return m_window; }
  QOpenGLContext* context() {  
    return window() ? window()->context() : 0;
  }
  const QOpenGLContext* context() const { 
      return window() ? window()->context() : 0; 
  }
private:
  QOpenGLWindow *m_window = nullptr; // C++11 required for assignment
};



Graphics with Qt

[ 168 ]

Now the essential part begins. Add two pure virtual methods called paint() and 
initialize(). Also remember about adding a virtual destructor.

Instead of making initialize() a pure virtual function, you can implement 
its body in such a way that it will call initializeOpenGLFunctions() 
to fulfill the requirements of the QOpenGFunctions class. Then, subclasses 
of AbstractGLScene can make sure the functions are initialized properly by 
calling the base class implementation of initialize().

Next, create a subclass of QOpenGLWindow and call it SceneGLWindow. Equip it with setter 
and getter methods to allow the object to operate on an AbstractGLScene instance.

Then reimplement the initializeGL() and paintGL() methods and make them call 
appropriate equivalents in the scene:

void SceneGLWindow::initializeGL() { if(scene())  
  scene()->initialize(); }
void SceneGLWindow::paintGL() { if(scene()) scene()->paint(); }

What just happened?
We have just set up a class chain that separates the window code from the actual OpenGL 
scene. The window forwards all calls related to scene contents to the scene object so that 
when the window is requested to repaint itself, it delegates the task to the scene object. 
Note that prior to doing that, the window will make the GL context current; therefore, all 
OpenGL calls the scene makes will be related to that context. You can store the code created 
in this exercise for later reuse in further exercises and your own projects.

Time for action – drawing a textured cube
Subclass AbstractGLScene and implement the constructor to match the one from 
AbstractGLScene. Add a method to store a QImage object in the scene that will contain 
texture data for the cube. Add a QOpenGLTexture pointer member as well, which will 
contain the texture, initialize it to 0 in the constructor, and delete it in the destructor. 
Let's call the image object m_tex and the texture m_texture. Now add a protected 
initializeTexture() method and fill it with the following code:

void initializeTexture() {
  m_texture = new QOpenGLTexture(m_tex.mirrored());
  m_texture->setMinificationFilter(QOpenGLTexture::LinearMipMapLinear);
  m_texture->setMagnificationFilter(QOpenGLTexture::Linear);
}



Chapter 5

[ 169 ]

The function first mirrors the image vertically. This is because OpenGL expects the texture to 
be "upside down". Then we create a QOpenGLTexture object, passing it our image. Then 
we set minification and magnification filters so that the texture looks better when it is scaled.

We are now ready to implement the initialize() method that will take care of setting up 
the texture and the scene itself.

void initialize() {
  AbstractGLScene::initialize();
  m_initialized = true;
  if(!m_tex.isNull()) initializeTexture();
  glClearColor(1,1,1,0);
  glShadeModel(GL_SMOOTH);
}

We make use of a flag called m_initialized. This flag is needed to prevent the texture 
from being set up too early (when no GL context is available yet). Then we check if the 
texture image is set (using the QImage::isNull() method); if so, we initialize the texture. 
Then we set some additional properties of the GL context.

In the setter for m_tex, add code that checks if m_initialized is set to 
true and if so, calls initializeTexture(). This is to make certain that 
the texture is properly set regardless of the order in which the setter and 
initialize() are called. Also remember to set m_initialized to 
false in the constructor.

The next step is to prepare the cube data. We will define a special data structure for the cube 
that groups vertex coordinates and texture data in a single object. To store coordinates, we 
are going to use classes tailored to that purpose—QVector3D and QVector2D.

struct TexturedPoint {
  QVector3D coord;
  QVector2D uv;
  TexturedPoint(const QVector3D& pcoord, const QVector2D& puv) {  
  coord = pcoord; uv = puv; }
};

QVector<TexturedPoint> will hold information for the whole cube. The vector is 
initialized with data using the following code:

void CubeGLScene::initializeCubeData() {
  m_data = {
    // FRONT FACE
    {{-0.5, -0.5,  0.5}, {0, 0}}, {{ 0.5, -0.5,  0.5}, {1, 0}},



Graphics with Qt

[ 170 ]

    {{ 0.5,  0.5,  0.5}, {1, 1}}, {{-0.5,  0.5,  0.5}, {0, 1}},

    // TOP FACE
    {{-0.5,  0.5,  0.5}, {0, 0}}, {{ 0.5,  0.5,  0.5}, {1, 0}},
    {{ 0.5,  0.5, -0.5}, {1, 1}}, {{-0.5,  0.5, -0.5}, {0, 1}},

    // BACK FACE
    {{-0.5,  0.5, -0.5}, {0, 0}}, {{ 0.5,  0.5, -0.5}, {1, 0}},
    {{ 0.5, -0.5, -0.5}, {1, 1}}, {{-0.5, -0.5, -0.5}, {0, 1}},

    // BOTTOM FACE
    {{-0.5, -0.5, -0.5}, {0, 0}}, {{ 0.5, -0.5, -0.5}, {1, 0}},
    {{ 0.5, -0.5,  0.5}, {1, 1}}, {{-0.5, -0.5,  0.5}, {0, 1}},

    // LEFT FACE
    {{-0.5, -0.5, -0.5}, {0, 0}}, {{-0.5, -0.5,  0.5}, {1, 0}},
    {{-0.5,  0.5,  0.5}, {1, 1}}, {{-0.5,  0.5, -0.5}, {0, 1}},

    // RIGHT FACE
    {{ 0.5, -0.5,  0.5}, {0, 0}}, {{ 0.5, -0.5, -0.5}, {1, 0}},
    {{ 0.5,  0.5, -0.5}, {1, 1}}, {{ 0.5,  0.5,  0.5}, {0, 1}},
  };
}

The code uses C++11 syntax to operate on the vector. If you have an older compiler, you will 
have to use QVector::append() instead.

m_data.append(TexturedPoint(QVector3D(...), QVector2D(...)));

The cube consists of six faces and is centered on the origin of the coordinate system. 
The following image presents the same data in graphical form. Purple figures are texture 
coordinates in UV coordinate space.



Chapter 5

[ 171 ]

initializeCubeData() should be called from the scene constructor or from the 
initialize() method. What remains is the painting code.

  void CubeGLScene::paint() {
    glClear(GL_COLOR_BUFFER_BIT| GL_DEPTH_BUFFER_BIT);
    glViewport(0, 0, window()->width(), window()->height());
    glLoadIdentity();

    glRotatef( 45, 1.0, 0.0, 0.0 );
    glRotatef( 45, 0.0, 1.0, 0.0 );

    glEnable(GL_DEPTH_TEST);
    glEnable(GL_CULL_FACE);
    glCullFace(GL_BACK);
    paintCube();
  }

First we set up the viewport and then we rotate the view. Before calling paintCube(), 
which is going to render the cube itself, we enable depth testing and face culling so that only 
visible faces are drawn. The paintCube() routine looks as follows:

void CubeGLScene::paintCube() {
  if(m_texture)
    m_texture->bind();
  glEnable(GL_TEXTURE_2D);
  glBegin(GL_QUADS);



Graphics with Qt

[ 172 ]

  for(int i=0;i<m_data.size();++i) {
    const TexturedPoint &pt = m_data.at(i);
    glTexCoord2d(pt.uv.x(), pt.uv.y());
    glVertex3f(pt.coord.x(), pt.coord.y(), pt.coord.z());
  }
  glEnd();
  glDisable(GL_TEXTURE_2D);
}

First the texture is bound and texturing is enabled. Then we enter the quad drawing mode 
and stream in data from our data structure. Finally, we disable texturing again.

For completeness, here is a main() function that executes the scene:

int main(int argc, char **argv) {
  QGuiApplication app(argc, argv);
  SceneGLWindow window;
  QSurfaceFormat fmt;
  fmt.setSamples(16);
  window.setFormat(fmt);
  CubeGLScene scene(&window);
  window.setScene(&scene);
  scene.setTexture(QImage(":/texture.jpg"));
  window.resize(600,600);
  window.show();
  return app.exec();
}

Please note the use of QSurfaceFormat to enable multisample antialiasing for the scene. 
We have also put the texture image into a resource file to avoid problems with the relative 
path to the file.

Have a go hero – animating a cube
Try modifying the code to make the cube animated. To do that, have the scene inherit 
QObject, add an angle property of type float to it (remember about the Q_OBJECT 
macro). Then modify one of the glRotatef() lines to use the angle value instead of a 
constant value. Put the following code in main() right before calling app.exec():

QPropertyAnimation anim(&scene, "angle");
anim.setStartValue(0);
anim.setEndValue(359);
anim.setDuration(5000);
anim.setLoopCount(-1);
anim.start();



Chapter 5

[ 173 ]

Remember to put a call to window()->update() in the setter for the angle property so 
that the scene is redrawn.

Modern OpenGL with Qt
OpenGL code shown in the previous section uses a very old technique of streaming vertices 
one by one into a fixed OpenGL pipeline. Nowadays, modern hardware is much more feature 
rich and not only does it allow faster processing of vertex data but it also offers the ability 
to adjust different processing stages with the use of reprogrammable units called shaders. 
In this section, we will take a look at what Qt has to offer in the domain of a "modern" 
approach to using OpenGL.

Shaders
Qt can make use of shaders through a set of classes based around 
QOpenGLShaderProgram. This class allows compiling, linking, and executing shader 
programs written in GLSL. You can check if your OpenGL implementation supports shaders 
by inspecting the result of a static QOpenGLShaderProgram::hasOpenGLShaderPro
grams() call that accepts a pointer to a GL context. All modern hardware and all decent 
graphics drivers should have some support for shaders. A single shader is represented by 
an instance of the QOpenGLShader class. Using it, you can decide on the type of shader, 
associate, and shader source code. The latter is done by calling QOpenGLShader::compile
SourceCode(), which has a number of overloads for handling different input formats.

Qt supports all kinds of shaders, with the most common being vertex and fragment shaders. 
These are both part of the classic OpenGL pipeline. You can see an illustration of the pipeline 
on the following diagram:



Graphics with Qt

[ 174 ]

When you have a set of shaders defined, you can assemble a complete program by using 
QOpenGLShaderProgram::addShader(). After all shaders are added, you can link() 
the program and bind() it to the current GL context. The program class has a number of 
methods for setting values of different input parameters—uniforms and attributes both in 
singular and array versions. Qt provides mappings between its own types (such as QSize or 
QColor) to GLSL counterparts (for example, vec2 and vec4) to make the programmer's life 
even easier.

A typical code flow for using shaders for rendering is as follows (first a vertex shader is 
created and compiled):

QOpenGLShader vertexShader(QOpenGLShader::Vertex);
QByteArray code = "uniform vec4 color;\n"
    "uniform highp mat4 matrix;\n"
    "void main(void) { gl_Position = gl_Vertex*matrix; }";
vertexShader.compileSourceCode(code);

The process is repeated for a fragment shader:

QOpenGLShader fragmentShader(QOpenGLShader::Fragment);
code = "uniform vec4 color;\n"
    "void main(void) { gl_FragColor = color; }";
fragmentShader.compileSourceCode(code);

Then shaders are linked into a single program in a given GL context:

QOpenGLShaderProgram program(context);
program.addShader(vertexShader);
program.addShader(fragmentShader);
program.link();

Whenever the program is used, it should be bound to the current GL context and filled with 
required data:

program.bind();
QMatrix4x4 m = …;
QColor color = Qt::red;
program.setUniformValue("matrix", m);
program.setUniformValue("color", color);

After that, calls activating the render pipeline are going to use the bound program:

glBegin(GL_TRIANGLE_STRIP);
…
glEnd();



Chapter 5

[ 175 ]

Time for action – shaded objects
Let's convert our last program so that it uses shaders. To make the cube better, we will 
implement a smooth lighting model using the Phong algorithm. At the same time, we will 
learn to use some helper classes that Qt offers for use with OpenGL.

The basic goals for this mini-project are as follows:

�� Use vertex and fragment shaders for rendering a complex object

�� Handle model, view, and projection matrices

�� Use attribute arrays for faster drawing

Start by creating a new subclass of AbstractGLScene. Let's give it the following interface:

class ShaderGLScene : public QObject, public AbstractGLScene {
  Q_OBJECT
public:
  ShaderGLScene(SceneGLWindow *wnd);
  void initialize();
  void paint();
protected:
  void initializeObjectData();
private:
  struct ScenePoint {
    QVector3D coords;
    QVector3D normal;
    ScenePoint(const QVector3D &c, const QVector3D &n);
  };
  QOpenGLShaderProgram m_shader;
  QMatrix4x4 m_modelMatrix;
  QMatrix4x4 m_viewMatrix;
  QMatrix4x4 m_projectionMatrix;
  QVector<ScenePoint> m_data;
};

Significant changes to the class interface in comparison with the previous project have been 
highlighted. We're not using textures in this project so TexturedPoint was simplified to 
ScenePoint with UV texture coordinates removed.

We can start implementing the interface with the initializeObjectData() function. 
We're not going to go line by line explaining what the body of the method does. You can 
implement it as you want; it is important that the method fill the m_data member with 
information about vertices and their normals.



Graphics with Qt

[ 176 ]

In the sample code that comes with this book, you can find code that loads 
data from a file in PLY format generated with the Blender 3D program. To 
export a model from Blender, make sure it consists of just triangles (for that, 
select the model, go into the Edit mode by pressing Tab, open the Faces menu 
with Ctrl + F, and choose Triangulate Faces). Then click on File and Export; 
choose Stanford (.ply). You will end up with a text file containing vertex and 
normal data as well as face definitions for the vertices.

You can always reuse the cube object from the previous project. Just be aware that its 
normals are not calculated properly for smooth shading; thus, you will have to correct them.

Before we can set up the shader program, we have to be aware of what the actual shaders 
look like. Shader code is going to be loaded from external files, so the first step is to add a 
new file to the project. In Creator, click on File and choose New File or Project; from the 
bottom pane, choose GLSL, and from the list of available templates choose Vertex Shader 
(Desktop OpenGL). Call the new file phong.vert and input the following code:

uniform highp mat4 modelViewMatrix;
uniform highp mat3 normalMatrix;
uniform highp mat4 projectionMatrix;
uniform highp mat4 mvpMatrix;

attribute highp vec4 Vertex;
attribute mediump vec3 Normal;

varying mediump vec3 N;
varying highp vec3 v;

void main(void) {
  N = normalize(normalMatrix * Normal);
  v = vec3(modelViewMatrix * Vertex);
  gl_Position = mvpMatrix*Vertex;
}

The code is very simple. We declare four matrices representing different stages of coordinate 
mapping for the scene. We also define two input attributes—Vertex and Normal—which 
contain the vertex data. The shader is going to output two pieces of data—a normalized 
vertex normal and a transformed vertex coordinate as seen by the camera. Of course, apart 
from that we set gl_Position to be the final vertex coordinate. In each case, we want to 
be compliant with the OpenGL/ES specification so we prefix each variable declaration with a 
precision specifier.



Chapter 5

[ 177 ]

Next, add another file, call it phong.frag, and make it a Fragment Shader (Desktop 
OpenGL). The content of the file is a typical ambient, diffuse, and specular calculation:

struct Material {
  lowp vec3 ka;
  lowp vec3 kd;
  lowp vec3 ks;
  lowp float shininess;
};

struct Light {
  lowp vec4 position;
  lowp vec3 intensity;
};

uniform Material mat;
uniform Light light;
varying mediump vec3 N;
varying highp vec3 v;

void main(void) {
  mediump vec3 n = normalize(N);
  highp vec3 L = normalize(light.position.xyz - v);
  highp vec3 E = normalize(-v);
  mediump vec3 R = normalize(reflect(-L, n));

  lowp float LdotN = dot(L, n);
  lowp float diffuse = max(LdotN, 0.0);
  lowp vec3 spec = vec3(0,0,0);

  if(LdotN > 0.0) {
    float RdotE = max(dot(R, E), 0.0);
    spec = light.intensity*pow(RdotE, mat.shininess);
  }
  vec3 color = light.intensity  
               * (mat.ka + mat.kd*diffuse + mat.ks*spec);
  gl_FragColor = vec4(color, 1.0);
}

Apart from using the two varying variables to obtain the interpolated normal (N) and 
fragment (v) position, the shader declares two structures for keeping light and material 
information. Without going into the details about how the shader itself works, it calculates 
three components—ambient light, diffused light, and specular reflection—adds them 
together, and sets that as the fragment color. Since all the per vertex input data is 
interpolated for each fragment, the final color is calculated individually for each pixel.



Graphics with Qt

[ 178 ]

Once we know what the shaders expect, we can set up the shader program object. Let's go 
through the initialize() method:

void initialize() {
  AbstractGLScene::initialize();
  glClearColor(0,0,0,0);

First we call the base class implementation and set the background color of the scene to 
black, as shown in the following code:

  m_shader.addShaderFromSourceCode 
    (QOpenGLShader::Vertex, fileContent("phong.vert"));
  m_shader.addShaderFromSourceCode 
    (QOpenGLShader::Fragment, fileContent("phong.frag"));
  m_shader.link();

Then we add two shaders to the program reading their source code from external files with 
the use of a custom helper function called fileContent(). This function essentially opens 
a file and returns its content. Then we link the shader program. The link() function returns 
a Boolean value but for simplicity we skip the error check here. The next step is to prepare all 
the input data for the shader, as shown:

  m_shader.bind();
  m_shader.setAttributeArray("Vertex",  
    GL_FLOAT, m_data.constData(), 3, sizeof(ScenePoint));
  m_shader.enableAttributeArray("Vertex");
  m_shader.setAttributeArray("Normal",  
    GL_FLOAT, &m_data[0].normal, 3, sizeof(ScenePoint)); 
  m_shader.enableAttributeArray("Normal");
  m_shader.setUniformValue("material.ka", QVector3D(0.1, 0, 0.0));
  m_shader.setUniformValue("material.kd",  
    QVector3D(0.7, 0.0, 0.0));
  m_shader.setUniformValue("material.ks",  
    QVector3D(1.0, 1.0, 1.0));
  m_shader.setUniformValue("material.shininess", 128.0f);
  m_shader.setUniformValue("light.position", QVector3D(2, 1, 1));
  m_shader.setUniformValue("light.intensity", QVector3D(1,1,1));



Chapter 5

[ 179 ]

First the shader program is bound to the current context so that we can operate on it. Then 
we enable the setup of two attribute arrays—one for vertex coordinates and the other for 
their normals. We inform the program that an attribute called Vertex consists of three 
values of type GL_FLOAT. The first value is located at m_data.constData(), and data for 
the next vertex is located sizeof(ScenePoint) bytes later than data for the current point. 
Then we have a similar declaration for the Normal attribute, with the only exception that 
the first piece of data is placed at &m_data[0].normal. By informing the program about 
layout of the data, we allow it to quickly read all the vertex information when needed.

After attribute arrays are set, we pass values for uniform variables to the shader program, 
which concludes the shader program setup. You will notice that we didn't set values for 
uniforms representing the various matrices; we will do that separately for each repaint. The 
paint() method takes care of setting up all the matrices:

void ObjectGLScene::paint() {
  m_projectionMatrix.setToIdentity();
  qreal ratio = qreal(window()->width()) 
                / qreal(window()->height());
  m_projectionMatrix.perspective(90, ratio,  
    0.5, 40); // angle, ratio, near plane, far plane
  m_viewMatrix.setToIdentity();
  QVector3D eye = QVector3D(0,0,2);
  QVector3D center = QVector3D(0,0,0);
  QVector3D up = QVector3D(0, 1, 0);
  m_viewMatrix.lookAt(eye, center, up);

In this method, we make heavy use of the QMatrix4x4 class that represents a 4 x 4 matrix 
in so-called row-major order, which is suited to use with OpenGL. At the beginning, we 
reset the projection matrix and use the perspective() method to give it a perspective 
transformation based on current window size. Afterwards, the view matrix is also reset 
and the lookAt() method is used to prepare the transformation for the camera; center 
value indicates the center of the view eye is looking at. The up vector dictates the vertical 
orientation of the camera (with respect to the eye position).

The next couple of lines are similar to what we had in the previous project:

  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  glViewport(0, 0, window()->width(), window()->height());
  glEnable(GL_DEPTH_TEST);
  glEnable(GL_CULL_FACE);
  glCullFace(GL_BACK);



Graphics with Qt

[ 180 ]

After that, we do the actual painting of the object:

  m_modelMatrix.setToIdentity();
  m_modelMatrix.rotate(45, 0, 1, 0);
  QMatrix4x4 modelViewMatrix = m_viewMatrix*m_modelMatrix;
  paintObject(modelViewMatrix);
}

We start by setting the model matrix, which dictates where the rendered object is positioned 
relative to the center of the world (in this case, we say it is rotated 45 degrees around the y 
axis). Then we assemble the model-view matrix (denoting the position of the object relative 
to the camera) and pass it to the paintObject() method, as shown:

void paintCube(const QMatrix4x4& mvMatrix) {
  m_shader.bind();
  m_shader.setUniformValue("projectionMatrix",  
    m_projectionMatrix);
  m_shader.setUniformValue("modelViewMatrix",  
    mvMatrix);
  m_shader.setUniformValue("mvpMatrix",  
    m_projectionMatrix*mvMatrix);
  m_shader.setUniformValue("normalMatrix",  
    mvMatrix.normalMatrix());
  const int pointCount = m_data.size();
  glDrawArrays(GL_TRIANGLES, 0, pointCount);
}

This method is very easy since most of the work was done when setting up the shader 
program. First the shader program is activated. Then all required matrices are set as uniforms 
for the shader. Included is the normal matrix calculated from the model-view matrix. Finally, 
a call to glDrawArrays() is issued telling it to render with the GL_TRIANGLES mode 
using active arrays, starting from the beginning of the array (offset 0) and reading in the 
pointCount entities from the array.



Chapter 5

[ 181 ]

After you run the project, you should get a result similar to the following one, which happens 
to contain the Blender monkey, Suzanne:

GL buffers
Using attribute arrays can speed up programming, but for rendering, all data still requires to 
be copied to the graphics card on each use. This can be avoided with OpenGL buffer objects. 
Qt provides a neat interface for such objects with its QOpenGLBuffer class. Currently 
supported buffer types are vertex buffers (where the buffer contains vertex information), 
index buffers (where the content of the buffer is a set of indexes to other buffers that can 
be used with glDrawElements()), and also less commonly used pixel pack buffers and 
pixel unpack buffers. The buffer is essentially a block of memory that can be uploaded to the 
graphics card and stored there for faster access. There are different usage patterns available 
that dictate how and when the buffer is transferred between the host memory and GPU 
memory. The most common pattern is a one-time upload of vertex information to the GPU 
that can later be referred to during rendering as many times as needed. Changing an existing 
application that uses an attribute array to use vertex buffers is very easy. First a buffer needs 
to be instantiated:

QOpenGLBuffer vbo(QOpenGLBuffer::VertexBuffer);



Graphics with Qt

[ 182 ]

Then its usage pattern needs to be set. In case of a one-time upload, the most appropriate 
type is StaticDraw, as shown:

vbo.setUsagePattern(QOpenGLBuffer::StaticDraw);

Then the buffer itself has to be created for the current context:

context->makeCurrent(this);
vbo.create();

The next step is to actually allocate some memory for the buffer:

vbo.allocate(vertexCount*sizeof(ScenePoint));

To write data to the buffer, there are two options. First you can attach the buffer to the 
application's memory space using a call to map() and then fill the data using a returned 
pointer:

ScenePoint *buffer =  
  static_cast<ScenePoint*>(vbo.map(QOpenGLBuffer::WriteOnly));
assert(buffer!=0);
for(int i=0;i<vbo.size();++i) { buffer[i] = m_data[i]; }
vbo.unmap();

An alternative approach is to write to the buffer directly using write():

const int spSize = sizeof(ScenePoint);
for(int i=0;i<vbo.size();++i) {  
  vbo.write (i*spSize, &m_data[i], spSize); }

Finally, the buffer can be used in the shader program in a way similar to an attribute array:

vbo.bind();
m_shader.setAttributeBuffer("Vertex"", GL_FLOAT, 0, 3,  
  sizeof(ScenePoint));
m_shader.setAttributeBuffer("Normal"", GL_FLOAT,  
  sizeof(QVector3D), 3, sizeof(ScenePoint));

The result is that all the data is uploaded to the GPU once and then used as needed by the 
current shader program or other OpenGL call supporting buffer objects.



Chapter 5

[ 183 ]

Off-screen rendering
Sometimes, it is useful to render a GL scene not to the screen but rather to some image 
that can be later processed externally or used as a texture in some other part of rendering. 
For that, the concept of Framebuffer Objects (FBO) was created. An FBO is a rendering 
surface that behaves like the regular device frame buffer, with the only exception that the 
resulting pixels do not land on the screen. An FBO target can be bound as a texture in an 
existing scene or dumped as an image to regular computer memory. In Qt, such an entity is 
represented by a QOpenGLFramebufferObject class.

Once you have a current OpenGL context, you can create an instance of 
QOpenGLFramebufferObject using one of the available constructors. A mandatory 
parameter to pass is the size of the canvas (either as a QSize object or as a pair of 
integers describing the width and height of the frame). Different constructors accept 
other parameters such as the type of texture the FBO is to generate or a set of parameters 
encapsulated in QOpenGLFramebufferObjectFormat.

When the object is created, you can issue a bind() call on it, which switches the OpenGL 
pipeline to render to the FBO instead of the default target. A complementary method 
is release(), which restores the default rendering target. Afterwards, the FBO can be 
queried to return the ID of the OpenGL texture (using the texture() method) or to convert 
the texture to QImage (by invoking toImage()).

Summary
In this chapter, we learned about using graphics with Qt. You should be aware we have only 
scratched the surface of Qt capabilities in this regard. What was presented in this chapter 
will let you implement custom widgets, do some basic painting on images, and render 
OpenGL scenes. There are many more functionalities that we didn't go through, such as 
composition modes, paths, SVG handling, and many others. We will come back to some  
of these features in subsequent chapters, but we will leave most for you to discover on  
your own.

In the next chapter, we will learn a more object-oriented approach to do graphics, called 
Graphics View.





[ 185 ]

Graphics View

Widgets are great for designing graphical user interfaces. However, you will 
run into problems if you wish to animate multiple widgets at the same time by 
constantly moving them around in the application. For these situations, or in 
general for frequently transforming 2D graphics, Qt offers you Graphics View. 
In this chapter, you will learn the basics of the Graphics View architecture and 
its items. You also will learn how to combine widgets with Graphics View items. 
Once you have acquired a basic understanding, we are next going to develop a 
simple jump-and-run game illustrating how to animate the items. Finally, we'll 
look into some possibilities for optimizing Graphics View's performance.

Graphics View architecture
Three components form the core of Graphics View: an instance of QGraphicsView, which 
is referred to as view; an instance of QGraphicsScene, which is referred to as scene; and 
usually multiple instances of QGraphicsItem, which are referred to as items. The usual 
workflow is to first create a couple of items, then add them to a scene, and finally set that 
scene on a view.

6



Graphics View

[ 186 ]

In the following section, we will be discussing all three parts of the Graphics View 
architecture one after the other, beginning with the items, followed by the scene, and 
concluding with the view.

An illustration of Graphics View components

However, because it is not possible to deal with one component as entirely separate from 
the others, you need to get the big picture up front. This will help you to better understand 
the description of the three single parts. And do not worry if you do not understand all the 
details on their first occurrence. Be patient, work through the three parts, and all issues will 
hopefully become clear in the end.

Think of the items as Post-it notes. You take a note and write a message on it, paint an 
image on it, both write and paint on it or, quite possibly, just leave it blank. This is equivalent 
to creating an item with a defined paint function, whether it is a default one or you have 
customized it. Since the items do not have a predetermined size, you define a bounding 
rectangle inside which all the painting of the item is done. As with a note, which does not 
care where it is positioned or from which angle it is being looked at, the item always draws 
its content as if it were in an untransformed state, where a length unit corresponds to 1 pixel. 
The item exists in its own coordinate system. Although you can apply various transformations 
to the item, such as rotating and scaling, it's not the job of the item's paint function to take 
that into account; that's the scene's job.

What is the scene, then? Well, think of it as a larger sheet of paper onto which you attach 
your smaller Post-its, that is, the notes. On the scene, you can freely move the items around 
while applying funny transformations to them. It is the scene's responsibility to correctly 
display the items' position and any transformations applied to them. The scene further 
informs the items about any events that affect them and it has—as with the items—a 
bounding rectangle within which the items can be positioned.



Chapter 6

[ 187 ]

Last but not least, let's turn our attention to the view. Think of the view as an inspection 
window or a person who holds the paper with the notes in their hands. You can watch the 
paper as a whole or you can only look at specific parts. And as a person can rotate and shear 
the paper with their hands, so the view can rotate and shear the scene and do a lot more 
transformations with it.

You may look at the preceding diagram and be worried about all the items 
being outside the view. Aren't they wasting GPU render time? Don't you need 
to take care of them by adding a so-called "view frustum culling" mechanism (to 
detect which item not to draw/render because it is not visible)? Well, the short 
answer is "no" because Qt is already taking care of this.

Items
So, let's look at the items. The most fundamental characteristic of items in Graphics View is 
their object-oriented approach. All items in the scene must inherit QGraphicsItem, which 
is an abstract class with—amongst numerous other public functions—two pure virtual 
functions called boundingRect() and paint(). Because of this simple and clear fact, 
there are principles which apply to each item.

Parent child relationship
The constructor of QGraphicsItem takes a pointer to another item that is set as the item's 
parent. If the pointer is 0, the item has no parent. This gives you the opportunity to organize 
items in a tree structure similar to the QObject object even though the QGraphicsItem 
element does not inherit from the QObject object. You can change the relationship 
of items at any given time by calling the setParentItem() function. It takes the new 
parent as an argument. If you want to remove a child item from its parent, simply call the 
setParentItem(0) function on the child. The following code illustrates both possibilities 
for creating a relationship between items. (Please note that this code will not compile since 
QGraphicsItem is an abstract class. Here, it is just for the purpose of illustration, but it will 
work with a real item class.)

QGraphicsItem *parentItem = new QGraphicsItem();
QGraphicsItem *firstChildItem = new QGraphicsItem(parentItem);
QGraphicsItem *secondChildItem = new QGraphicsItem();
secondChildItem->setParentItem(parentItem);
delete parentItem;



Graphics View

[ 188 ]

First we create an item called parentItem, and since we do not use the constructor's 
argument, the item has no parent or child. Next, we create another item called 
firstChildItem and pass a pointer to the parentItem item as an argument. Thus, 
it has the parentItem item as its parent, and the parentItem item now has the 
firstChildItem item as its child. Next we create a third item called secondChildItem, 
but since we do not pass anything to its constructor, it has no parent at this point. In the next 
line, however, we change that by calling the setParentItem() function. Now it is also a 
child of the parentItem item.

You can always check whether an item has a parent using the parentItem() 
function and check the returned QGraphicsItem pointer against 0, which 
means that the item does not have a parent. To figure out if there are any 
children, call the childItems() function on the item. A QList method 
with the QGraphicsItem pointers to all child items is returned.

The parent-child relationship

The benefit of this parent-child relationship is that specific actions performed on a parent 
item also affect associated child items. For example, when you delete a parent item, all child 
items will also be deleted. For that reason, it is sufficient to delete the parentItem item in 
the preceding code. The destructors of the firstChildItem and secondChildItem items 
are called implicitly. The same applies when you add or remove a parent item from a scene. 
All child items will then get added or removed as well. The same applies when you hide a 
parent item or when you move a parent item. In both cases, the child items will behave the 
same way the parent does. Think of the earlier example of Post-it notes; they would behave 
the same. If you have a note with other notes attached to it, they will also move when you 
move the parent note.



Chapter 6

[ 189 ]

If you are not sure whether a function call on the parent item is propagated to 
its child items, you can always have a look at the sources. You will find them in 
your Qt installation if you checked the option to also install the sources at the 
time of installation. You can also find them online at https://github.com/
qtproject/qtbase.

Even if there isn't a meaningful comment, you can spot the relevant code easily. 
Just look for a children variable addressed through the d-pointer. Inside the 
destructor of the QGraphicsItem item, the relevant code fragment is as follows:

if (!d_ptr->children.isEmpty()) {
  while (!d_ptr->children.isEmpty())
    delete d_ptr->children.first();
  Q_ASSERT(d_ptr->children.isEmpty());
}

Appearance
You are probably wondering what a QGraphicsItem item looks like. Well, since it is an 
abstract class (and unfortunately the paint function is a pure virtual one), it does not look 
like anything. You will have to do all the painting yourself. Luckily, since the paint function of 
the QGraphicsItem item offers you a technique you already know, the QPainter pointer, 
this is not very difficult.

Don't panic! You don't have to draw all items yourself though. Qt offers a lot of standard 
shaped items you can use just out-of-the-box. You'll find them discussed in an upcoming 
section titled Standard items. However, since we need to draw a custom item once in a 
while, we go through this process.

Time for action – creating a black, rectangular item
As a first approach, let's create an item that paints a black rectangle:

class BlackRectangle : public QGraphicsItem {
public:
  explicit BlackRectangle(QGraphicsItem *parent = 0)
    : QGraphicsItem(parent) {}
  virtual ~BlackRectangle() {}

  QRectF boundingRect() const {
    return QRectF(0, 0, 75, 25);
  }

https://github.com/qtproject/qtbase
https://github.com/qtproject/qtbase


Graphics View

[ 190 ]

  void paint(QPainter *painter, const QStyleOptionGraphicsItem  
             *option, QWidget *widget) {
    Q_UNUSED(option)
    Q_UNUSED(widget)
    painter->fillRect(boundingRect(), Qt::black);
  }
};

What just happened?
First, we subclass QGraphicItem and call the new class BlackRectangle. The class' 
constructor accepts a pointer to a QGraphicItem item. This pointer is then passed to the 
constructor of the QGraphicItem item. We do not have to worry about it; QGraphicItem 
will take care of it and establish the parent-child relationship for our item, among other 
things. Next, the virtual destructor makes sure that it gets called even if the class is getting 
deleted through a base class pointer. This is a crucial point, as you will learn later when we 
talk about the scene.

Next, we define the boundingRect() function of our item, where we return a rectangle 75 
pixels wide and 25 pixels high. This returned rectangle is the canvas for the paint method 
and simultaneously the promise to the scene that the item will only paint in this area. The 
scene relies on the correctness of that information, so you should strictly obey that promise. 
Otherwise, the scene will become cluttered up with relics of your drawing!

Lastly, we do the actual painting from QPainter in conjunction with a QWidget item. There 
is nothing different here except that the painter is already initialized with the appropriate 
values given to us through the first argument. Even if it is not needed, I would suggest that 
the painter be kept in the same state at the end of the function as it was in the beginning. 
If you follow that advice, and if you only use custom items in the scene, you can later 
optimize the render speed enormously. This especially applies to scenes with many items. 
But let us go back to what we were actually doing. We have taken the painter and called 
the fillRect() function, which does not touch the painter's internal state. As arguments, 
we used the boundingRect() function, which defines the area to fill, and the Qt::black 
parameter, which defines the fill color. Thus, by only filling the bounding rectangle of the 
item, we obeyed the bounding rectangle promise.

In our example, we have not used the two other arguments of the paint function. To 
suppress the compiler warnings about unused variables, we used Qt's Q_UNUSED macro.



Chapter 6

[ 191 ]

Time for action – reacting to an item's selection state
The assigned pointer to a QStyleOptionGraphicsItem item might become handy if you 
want to alter the appearance of the item related to its state. For example, say you want to fill 
the rectangle with red when it gets selected. To do so, you only have to type this:

void paint(QPainter *painter, const QStyleOptionGraphicsItem *option,  
           QWidget *widget) {
  Q_UNUSED(widget)
  if (option->state & QStyle::State_Selected)
    painter->fillRect(boundingRect(), Qt::red);
  else
    painter->fillRect(boundingRect(), Qt::black);
}

What just happened?
The state variable is a bitmask holding the possible states of the item. You can check its 
value against the values of the QStyle::StateFlag parameter by using bitwise operators. 
In the preceding case, the state variable is checked against the State_Selected 
parameter. If this flag is set, the rectangle is painted red.

The type of state is QFlags<StateFlag>. So, instead of using the 
bitwise operator to test if a flag is set, you can use the convenient function 
testFlag(). Used with the preceding example it would be as follows:

if (option->state.testFlag(QStyle::State_Selected))

The most important states you can use with items are described in the following table:

State Description

State_Enabled Indicates that the item is enabled. If the item is disabled, you may 
want to draw it as grayed out.

State_HasFocus Indicates that the item has the input focus. To receive this state, the 
item needs to have the ItemIsFocusable flag set.

State_MouseOver Indicates that the cursor is currently hovering over the 
item. To receive this state the item needs to have the 
acceptHoverEvents variable set to true.

State_Selected Indicates that the item is selected. To receive this state, the item 
needs to have the ItemIsSelectable flag set. The normal 
behavior would be to draw a dashed line around the item as a 
selection marker.



Graphics View

[ 192 ]

Besides the state, QStyleOptionGraphicsItem offers much more information about the 
currently used style, such as the palette and the font used, accessible through the QStyle
OptionGraphicsItem::palette and QStyleOptionGraphicsItem::fontMetrics 
parameters, respectively. If you aim for style-aware items, have a deeper look at this class in 
the documentation.

Time for action – making the item's size definable
Let's push the example of the black rectangle a step further. So far, BlackRectangle draws 
a fixed rectangle of size 75 x 25 pixels. It would be nice if one could define this size, so let 
us add the ability to define the size of the rectangle. Remember, only painting the rectangle 
larger does not help here because then you would break the promise regarding the bounding 
rectangle. So we need also to change the bounding rectangle as follows:

class BlackRectangle : public QGraphicsItem {
public:
  BlackRectangle(QGraphicsItem *parent = 0)
    : QGraphicsItem(parent), m_rect(0, 0, 75, 25) {}
//...
  QRectF boundingRect() const {
    return m_rect;
  }
//...
  QRectF rect() const {
    return m_rect;
  }
  void setRect(const QRectF& rect) {
    if (rect == m_rect)
      return;
    prepareGeometryChange();
    m_rect = rect;
}
private:
  QRectF m_rect;
};



Chapter 6

[ 193 ]

What just happened?
Since the destructor and the paint function are unchanged, they are omitted. What 
exactly have we done here? First, we introduced a private member called m_rect to save 
the current rectangle's value. In the initialization list, we set m_rect to a default value of 
QRectF(0, 0, 75, 25) like we hard-coded it in the first example. Since the bounding 
rectangle should be the same as m_rect, we altered boundingRect() to return m_rect. 
The same value is returned by the getter function rect(). For now it seems redundant to 
have two functions returning the same value, but as soon as you draw a border around the 
rectangle, you need to return a different bounding rectangle. It needs to be increased by 
the used pen's width. Therefore, we leave this redundancy in place in order to make further 
improvements easier. The last new part is the setter function, which is pretty standard. 
We check if the value has changed, and if not we exit the function. Otherwise, we set a 
new value, but this has to happen after the prepareGeometryChange() call. This call is 
important to inform the scene about the coming geometry change. Then, the scene will ask 
the item to redraw itself. We do not need to handle that part.

Have a go hero – customizing the item
As an exercise, you can try to add an option to change the background color. You can also 
create a new item that allows you to set an image. If doing so, keep in mind that you have to 
change the item's bounding rectangle according to the size of the image.

Standard items
As you have seen, creating your own item involves some work, but overall it is not that 
difficult. A big advantage is that you can use QPainter to draw the item, the same 
technique you use to paint widgets. So there is nothing new you need to learn. Indeed, 
even if it is easy to draw filled rectangles or any other shape, it is a lot of work to subclass 
QGraphicsItem each time you need to create an item that does such basic tasks. And 
that's the reason why Qt comes with the following standard items that make your life as a 
developer much easier:

Standard item Description

QGraphicsLineItem Draws a simple line. You can define the line with 
setLine(const QLineF&).

QGraphicsRectItem Draws a rectangle. You can define the rectangle's geometry with 
setRect(const QRectF&).



Graphics View

[ 194 ]

Standard item Description

QGraphicsEllipseItem Draws an ellipse. You can define the rectangle within which the 
ellipse is being drawn with setRect(const QRectF&). 
Additionally, you can define whether only a segment of the 
ellipse should be drawn by calling setStartAngle(int) 
and setSpanAngle(int). The arguments of both functions 
are in 16ths of a degree.

QGraphicsPolygonItem Draws a polygon. You can define the polygon with 
setPolygon(const QPolygonF&).

QGraphicsPathItem Draws a path. You can define the path with setPath(const 
QPainterPath&).

QGraphicsSimpleTextItem Draws a simple text path. You can define the text with 
setText(const QString&) and the font with 
setFont(const QFont&). This item is only for drawing 
plain text without any modification.

QGraphicsTextItem Draws text. Unlike QGraphicsSimpleTextItem, this item 
can display HTML or render a QTextDocument element. 
You can set HTML with setHtml(const QString&) and 
the document with setDocument(QTextDocument*). 
QGraphicsTextItem can even interact with the displayed 
text so that text editing or URL opening is possible.

QGraphicsPixmapItem Draws a pixmap. You can define the pixmap with 
setPixmap(const QPixmap&).

Since the drawing of these items is done by a QPainter pointer you can also define which 
pen and which brush should be used. The pen is set with setPen(const QPen&) and 
the brush with setBrush(const QBrush&). These two functions, however, do not exist 
for QGraphicsTextItem and QGraphicsPixmapItem. To define the appearance of a 
QGraphicsTextItem item you have to use setDefaultTextColor() or HTML tags 
supported by Qt. Note that pixmaps usually do not have a pen or a brush.

Use QGraphicsSimpleTextItem wherever possible and try to avoid 
QGraphicsTextItem if it is not absolutely necessary. The reason is that 
QGraphicsTextItem lugs a QTextDocument object around and it is, 
besides being a subclass of QGraphicsItem, also a subclass of QObject. 
This is definitely too much overhead and has too high a performance cost for 
displaying simple text.



Chapter 6

[ 195 ]

A word on how you set up items. Instead of writing two expressions, one for the 
initialization of the item and one for setting up its key information such as the rectangle 
for a QGraphicsRextItem item or the pixmap for a QGraphicsPixmapItem, almost all 
standard items offer you the option to pass that key information as a first argument to their 
constructors—besides the optional last argument for setting the item's parent. Say you 
would have written the following code:

QGraphicsRectItem *item = new QGraphicsRectItem();
item->setRect(QRectF(0, 0, 25, 25));

You can now simply write this:

QGraphicsRectItem *item = new QGraphicsRectItem(QRectF(0, 0, 25, 25));

You can even just write this:

QGraphicsRectItem *item = new QGraphicsRectItem(0, 0, 25, 25);

This is very convenient, but keep in mind that compact code may be harder to maintain than 
code that sets all variables through setter methods.

Coordinate system of the items
A last but very important note on the used coordinate system. Altogether, Graphics View 
deals with three different but connected coordinate systems. There is the item's coordinate 
system, the scene's coordinate system, and the view's coordinate system. All three 
coordinate systems differ from the Cartesian coordinate systems regarding the y axis: in 
Graphics View, like in QPainter pointer's coordinate system, the y axis is orientated and 
measured from the origin to the bottom. This means that a point below the origin has a 
positive y value. For now, we only care about the item's coordinate system. Since Graphics 
View is for 2D graphics, we have an x coordinate and a y coordinate with the origin at (0, 0). 
All points, lines, rectangles, and so on are specified in the item's own coordinate system. This 
applies to almost all occasions where you deal with values representing coordinates within 
the QGraphicsItem class or its derived classes. If you define, for example, the rectangle of 
a QGraphicsRectItem item, you use item coordinates. If an item receives a mouse press 
event, QGraphicsSceneMouseEvent::pos() is expressed in item coordinates. But there 
are some easy-to-identify exceptions to this statement. The return value of scenePos() 
and sceneBoundingRect() is expressed in scene coordinates. Pretty obvious, isn't it? The 
one thing that is a little bit tricky to identify is the returned QPointF pointer of pos(). The 
coordinates of this point are expressed in the item's parent coordinate system. This can be 
either the parent item's coordinate system or, more likely, the scene's coordinate system 
when the item does not have a parent item.



Graphics View

[ 196 ]

For a better understanding of pos() and the involved coordinate systems, think of Post-it 
notes again. If you put a note on a larger sheet of paper and then had to determine its exact 
position, how would you do it? Probably somewhat like this: "The note's upper left corner 
is positioned 3 cm to the right and 5 cm to the bottom from the paper's top left edge". In 
the Graphics View world, this would correspond to a parentless item whose pos() function 
returns a position in scene coordinates since the item's origin is directly pinned to the scene. 
On the other hand, say you put a note A on top of a (larger) note B, which is already pinned 
on a paper, and you have to determine A's position; how would you describe it this time? 
Probably by saying that note A is placed on top of note B or "2 cm to the right and 1 cm to 
the bottom from the top-left edge of note B". You most likely wouldn't use the underlying 
paper as a reference since it is not the next point of reference. This is because, if you move 
note B, A's position regarding the paper will change whereas A's relative position to B still 
remains unchanged. To switch back to Graphics View, the equivalent situation is an item 
that has a parent item. In this case, the pos() function's returned value is expressed in the 
coordinate system of its parent. So setPos() and pos() specify the position of the item's 
origin in relation to the next (higher) point of reference. This could be the scene or the item's 
parent item.

Keep in mind, however, that changing an item's position does not affect the item's internal 
coordinate system.

Time for action – creating items with different origins
Let's have a closer look at these three items defined by the following code snippet:

QGraphicsRectItem *itemA = QGraphicsRectItem(-10, -10, 20, 20);
QGraphicsRectItem *itemB = QGraphicsRectItem(0, 0, 20, 20);
QGraphicsRectItem *itemC = QGraphicsRectItem(10, 10, 20, 20);

What just happened?
All three items are rectangles with a side length of 20 pixels. The difference between them 
is the position of their coordinate origin points. itemA has its origin in the center of the 
rectangle, itemB has its origin in the top-left corner of the rectangle, and itemC has its 
origin outside the drawn rectangle. In the following diagram, you see the origin points 
marked as red dots.



Chapter 6

[ 197 ]

So what's the deal with these origin points? On the one hand, the origin point is used to create 
a relation between the item's coordinate system and the scene's coordinate system. As you 
will see later in more detail, if you set the position of the item on the scene, the position on 
the scene is the origin of the item. You can say scene (x, y) = item(0, 0). On the other hand, the 
origin point is used as a center point for all transformations you can use with items, such as 
scaling, rotating, or adding a freely definable transformation matrix of QTransform type. As 
an additional feature, you always have the option to combine a new transformation with the 
already applied ones or to replace the old transformation(s) with a new one.

Time for action – rotating an item
As an example, let's rotate itemB and itemC by 45 degrees counter-clockwise. For itemB, 
the function call would look like this:

itemB->setRotation(-45);

The setRotation() function accepts qreal as the argument value, so you can set very 
precise values. The function interprets the number as degrees for a clockwise rotation 
around the z coordinate. If you set a negative value, a counter-clockwise rotation is 
performed. Even if it does not make much sense, you can rotate an item by 450 degrees, 
which would result in a rotation of 90 degrees. Here is what the two items would look like 
after the rotation by 45 degrees counter-clockwise:

What just happened?
As you can see, the rotation has its center in the item's origin point. Now you could run into 
the problem that you want to rotate the rectangle of itemC around its center point. In such 
a situation, you can use setTransformOriginPoint(). For the described problem, the 
relevant code would look like this:

QGraphicsRectItem *itemC = QGraphicsRectItem(10, 10, 20, 20);
itemC->setTransformOriginPoint(20, 20);
itemC->rotate(-45);



Graphics View

[ 198 ]

Let us take this opportunity to recapitulate the item's coordinate system. The item's origin 
point is in (0, 0). In the constructor of QGraphicsRectItem, you define that the rectangle 
should have its top-left corner at (10, 10). And since you gave the rectangle a width and a 
height of 20 pixels, its bottom-right corner is at (30, 30). This makes (20, 20) the center of 
the rectangle. After setting the transformation's origin point to (20, 20), you rotate the item 
around that point 45 degrees counter-clockwise. You will see the result in the following 
image, where the transformation's origin point is marked with a cross.

Even if you "change" the item's origin point by such a transformation, this does not affect the 
item's position on the scene. First, the scene positions the untransformed item with respect 
to its origin point and only then are all transformations applied to the item.

Have a go hero – applying multiple transformations
To understand the concept of transformations and their origin point, go ahead and try it 
yourself. Apply rotate() and scale() sequentially to an item. Also, change the point of 
origin and see how the item will react. As a second step, use QTransform in conjunction 
with setTransform() to add a custom transformation to an item.

Scenes
Let us take a look at how we can improvise the scene.

Adding items to the scene
At this point, you should have a basic understanding of items. The next question is what 
to do with them. As described earlier, you put the items on a QGraphicsScene method. 
This is done by calling addItem(QGraphicsItem *item). Did you notice the type 
of the argument? It's a pointer to a QGraphicsItem method. Since all items on the 
scene must inherit QGraphicsItem, you can use this function with any item, be it a 
QGraphicsRectItem item or any custom item. If you have a look at the documentation of 
QGraphicsScene, you will notice that all functions returning items or dealing with them 
expect pointers to a QGraphicsItem item. This universal usability is a huge advantage of 
the object-orientated approach in Graphics View.



Chapter 6

[ 199 ]

If you have a pointer of the type QGraphicsItem pointing to an 
instance of a QGraphicsRectItem and you want to use a function of 
QGraphicsRectItem, use qgraphicsitem_cast<>() to cast the 
pointer. This is because it is safer and faster than using static_cast<>() or 
dynamic_cast<>().

QGraphicsItem *item = new QGraphicsRectItem(0, 0, 5, 5);
QGraphicsRectItem *rectItem =  
qgraphicsitem_cast<QGraphicsRectItem*>(item);
if (rectItem)
  rectItem->setRect(0, 0, 10, 15);

Please note that if you want to use qgraphicsitem_cast<>() with your 
own custom item, you have to make sure that QGraphicsItem::type() is 
reimplemented and that it returns a unique type for a particular item. To ensure a 
unique type, use QGraphicsItem::UserType + x as a return value where 
you count up x for every custom item you create.

Time for action – adding an item to a scene
Let's have a first try and add an item to the scene:

QGraphicsScene scene;
QGraphicsRectItem *rectItem = new QGraphicsRectItem(0,0,50,50);
scene.addItem(rectItem);

What just happened?
Nothing complicated here. You create a scene, create an item of type QGraphicsRectItem, 
define the geometry of the item's rectangle, and then set the item to the scene by calling 
addItem(). Pretty straightforward. But what you do not see here is what this implies for 
the scene. The scene is now responsible for the added item! First of all, the ownership of the 
item is transferred to the scene. For you, this means that you do not have to worry about 
freeing the item's memory because deleting the scene also deletes all items associated with 
the scene. Now remember what we said about the destructor of a custom item: it must be 
virtual! QGraphicsScene operates with pointers to QGraphicsItem. Thus, when it deletes 
the assigned items, it does that by calling delete on the base class pointer. If you have not 
declared the destructor of the derived class virtual, it will not be executed, which may cause 
memory leaks. Therefore, form habit of declaring the destructor virtual.



Graphics View

[ 200 ]

Transferring the ownership of the item to the scene also means that an item can only be 
added to one single scene. If the item was previously already added to another scene, it 
gets removed from there before it will be added to the new scene. The following code will 
demonstrate that:

QGraphicsScene firstScene;
QGraphicsScene secondScene;
QGraphicsRectItem *item = new QGraphicsRectItem;
firstScene.addItem(item);
qDebug() << firstScene.items().count(); // 1
secondScene.addItem(item);
qDebug() << firstScene.items().count(); // 0

After creating two scenes and one item, we add the item item to the scene firstScene. 
Then, with the debug message, we print out the number of associated items with that 
firstScene scene. For this, we call items() on the scene, which returns a QList list 
with pointers to all items of the scene. Calling count() on that list tells us the size of the 
list, which is equivalent to the number of added items. As you can see after adding the 
item on secondScene, the firstScene item count returns 0. Before item was added to 
secondScene, it was first removed from firstScene.

If you want to remove an item from a scene without setting it directly to 
another scene or without deleting it, you can call removeItem(), which 
takes a pointer for the item that should be removed. Be aware, however, that 
now it is your responsibility to delete the item in order to free the allocated 
memory!

Interacting with items on the scene
When it takes ownership of an item, the scene also has to take care of a lot of other stuff. 
The scene has to make sure that events get delivered to the right items. If you click on a 
scene (to be precise, you click on a view that propagates the event to the scene), the scene 
receives the mouse press event and it then becomes the scene's responsibility to determine 
which item was meant by the click. In order to be able to do that, the scene always needs to 
know where all the items are. Therefore, the scene keeps track of the items in a Binary Space 
Partitioning tree.



Chapter 6

[ 201 ]

You can benefit from this knowledge too! If you want to know which item is shown at a 
certain position, call itemAt() with QPointF as an argument. You will receive the topmost 
item at that position. If you want all items that are located at this position, say in cases 
where multiple items are on top of each other, call an overloaded function of items() 
(which takes a QPointF pointer as an argument). It will return a list of all items that the 
bounding rectangle contains that point. The items() function also accepts QRectF, 
QPolygonF, and QPainterPath as arguments if you need all visible items of an area. 
With the second argument of the type Qt::ItemSelectionMode, you can alter the mode 
for how the items in the area will be determined. The following table shows the different 
modes:

Mode Meaning

Qt::ContainsItemShape The item's shape must be completely inside the 
selection area.

Qt::IntersectsItemShape Similar to Qt::ContainsItemShape but also 
returns items whose shapes intersect with the 
selection area.

Qt::ContainsItemBoundingRect The item's bounding rectangle must be 
completely inside the selection area.

Qt::IntersectsItemBoundingRect Similar to 
Qt::ContainsItemBoundingRect but 
also returns items whose bounding rectangles 
intersect with the selection area.

The scene's responsibility for delivering events does not only apply to mouse events; it also 
applies to key events and all other sorts of events. The events that are passed to the items 
are subclasses of QGraphicsSceneEvent. Thus, an item does not get a QMouseEvent 
event like widgets; it gets a QGraphicsSceneMouseEvent event. In general, these scene 
events behave like normal events, but instead of say a globalPos() function you have 
scenePos().

The scene also handles the selection of items. To be selectable, an item must have the 
QGraphicsItem::ItemIsSelectable flag turned on. You can do that by calling 
QGraphicsItem::setFlag() with the flag and true as arguments. Besides that, there 
are different ways to select items. There is the item's QGraphicsItem::setSelected() 
function, which takes a bool value to toggle the selection state on or off, or you can call QG
raphicsScene::setSelectionArea() on the scene, which takes a QPainterPath 
parameter as argument, in which case all items get selected. With the mouse, you can click 
on an item to select or deselect it or—if the view's rubber-band selection mode is enabled—
you can select multiple items with that rubber band.



Graphics View

[ 202 ]

For activating the rubber band selection for the view, call setDragMode 
(QGraphicsView::RubberBandDrag) on the view. Then you can press 
the left mouse button and, while holding it down, move the mouse to define 
the selection area. The selection rectangle is then defined by the point of the 
first mouse press and the current mouse position.

With the scene's QGraphicsScene::selectedItems() function, you can query the 
actual selected items. The function returns a QList list holding QGraphicsItem pointers 
to selected items. For example, calling QList::count() on that list would give you the 
number of selected items. To clear the selection, call QGraphicsScene::clearSelect
ion(). To query the selection state of an item, use QGraphicsItem::isSelected(), 
which returns true if the item is selected and false otherwise. If you write a customized 
paint function, do not forget to alter the item's appearance to indicate that it is selected. 
Otherwise, the user cannot know this. The determination inside the paint function is done 
by QStyle::State_Selected, as shown earlier.

The standard items show a dashed rectangle around a selected item.

The item's handling of focus is done in a similar way. To be focusable an item must have the 
QGraphicsItem::ItemIsFocusable flag enabled. Then, the item can be focused by a 
mouse click, through the item's QGraphicsItem::setFocus() function, or through the 
scene's QGraphicsScene::setFocusItem() function, which expects a pointer to the 
item you like to focus as a parameter. To determine if an item has focus, you again have two 
possibilities. One is that you can call QGraphicsItem::hasFocus() on an item, which 
returns true if the item has focus or false otherwise. Alternatively, you can get the actual 
focused item by calling the scene's QGraphicsScene::focusItem() method. On the 
other hand, if you call the item's QGraphicsItem::focusItem() function, the focused 
item is returned if the item itself or any descendant item has focus; otherwise, 0 is returned. 
To remove focus, call clearFocus() on the focused item or click somewhere in the scene's 
background or on an item that cannot get focus.



Chapter 6

[ 203 ]

If you want a click on the scene's background not to cause the focused item to 
lose its focus, set the scene's stickyFocus property to true.

Rendering
It is also the scene's responsibility to render itself with all the assigned items.

Time for action – rendering the scene's content to an image
Let's try to render a scene to an image. In order to do that, we take the following code 
snippet from our first example where we tried to put items on a scene:

QGraphicsScene scene;
QGraphicsRectItem *rectItem = new QGraphicsRectItem();
rectItem->setRect(0,0,50,50);
rectItem->setBrush(Qt::green);
rectItem->setPen(QColor(255,0,0));
scene.addItem(rectItem);

The only change we make here is that we set a brush resulting in a green-filled rectangle with 
a red border, which was defined through setBrush() and setPen(). You can also define 
the thickness of the stroke by passing a QPen object with the corresponding arguments. To 
render the scene, you only need to call render(), which takes a pointer to a QPainter 
pointer. This way, the scene can render its contents to any paint device the painter is pointing 
to. For us, a simple PNG file will do the job.

QRect rect = scene.sceneRect().toAlignedRect();
QImage image(rect.size(), QImage::Format_ARGB32);
image.fill(Qt::transparent);
QPainter painter(&image);
scene.render(&painter);
image.save("scene.png", "PNG");

Result of the rendering



Graphics View

[ 204 ]

What just happened?
First you determined the rectangle of the scene with sceneRect(). Since this returns 
a QRectF parameter and QImage can only handle QRect, you transformed it on-the-
fly by calling toAlignedRect(). The difference between the toRect() function and 
toAlignedRect() is that the former rounds to the nearest integer, which may result in a 
smaller rectangle whereas the latter expands to the smallest possible rectangle containing 
the original QRectF parameter. Then, you created a QImage file with the size of the aligned 
scene's rectangle. Because the image is created with uninitialized data, you need to call 
fill() with Qt::transparent to receive a transparent image. You can assign any color 
you like as an argument both a value of Qt::GlobalColor enumeration and an ordinary 
QColor object; QColor(0, 0, 255) would result in a blue background. Next, you create 
a QPainter object which points to the image. This painter object is now used in the scene's 
render() function to draw the scene. After that, all you have to do is to save the image to a 
place of your choice. The file name (which can also contain an absolute path such as /path/
to/image.png) is given by the first argument whereas the second argument determines 
the format of the image. Here, we set the file name to scene.png and choose the PNG 
format. Since we haven't specified a path, the image will be saved in the application's current 
directory.

Have a go hero – rendering only specific parts of a scene
This example draws the whole scene. Of course, you can also render only specific parts of 
the scene by using the other arguments of render(). We will not go into this here but you 
may want to try it as an exercise.

Coordinate system of the scene
What is left is a look at the coordinate system of the scene. Like the items, the scene lives 
in its own coordinate system with the origin at (0, 0). Now when you add an item via 
addItem(), the item is positioned at the scene's (0, 0) coordinate. If you want to move the 
item to another position on the scene, call setPos() on the item.

QGraphicsScene scene;
QGraphicsRectItem *item = QGraphicsRectItem(0, 0, 10, 10);
scene.addItem(item);
item.setPos(50,50);



Chapter 6

[ 205 ]

After creating the scene and the item, you add the item to the scene by calling addItem(). 
At this stage, the scene's origin and the item's origin are stacked on top of each other at (0, 
0). By calling setPos(), you move the item 50 pixels right and down. Now the item's origin 
is at (50, 50) in scene coordinates. If you need to know the position of the bottom-right 
corner of the item's rectangle in scene coordinates, you have to do a quick calculation. In 
the item's coordinate system, the bottom right corner is at (10, 10). The item's origin point is 
(0, 0) in the item's coordinate system, which corresponds to the point (50, 50) in the scene's 
coordinate system. So you just have to take (50, 50) and add (10,10) to get (60, 60) as the 
scene's coordinates for the bottom-right corner of the item. This is an easy calculation, but it 
quickly gets complicated when you rotate, scale, and/or shear the item. Because of this, you 
should use one of the convenience functions provided by QGraphicsItem:

Function Description

mapToScene(const QPoint &point) Maps the point point that is in the item's 
coordinate system to the corresponding point in 
the scene's coordinate system.

mapFromScene(const QPoint &point) Maps the point point that is in the scene's 
coordinate system to the corresponding point in 
the item's coordinate system. This function is the 
reverse function to mapToScene().

mapToParent(const QPoint &point) Maps the point point that is in the item's 
coordinate system to the corresponding 
point in the coordinate system of the item's 
parent. If the item does not have a parent, this 
function behaves like mapToScene(); thus, it 
returns the corresponding point in the scene's 
coordinate system.

mapFromParent(const QPoint 
&point)

Maps the point point that is in the coordinate 
system of the item's parent to the corresponding 
point in the item's own coordinate system. 
This function is the reverse function to 
mapToParent().

mapToItem(const QGraphicsItem 
*item, const QPointF &point)

Maps the point point that is in the item's own 
coordinate system to the corresponding point in 
the coordinate system of the item item.

mapFromItem(const QGraphicsItem 
*item, const QPointF &point)

Maps the point point which is in the 
coordinate system of the item item to the 
corresponding point in the item's own coordinate 
system. This function is the reverse function to 
mapToItem().



Graphics View

[ 206 ]

What is great about these functions is that they are not only available for QPointF. The 
same functions are also available for QRectF, QPolygonF, and QPainterPath. Not to 
mention that these are of course convenience functions: If you call these functions with two 
numbers of the type qreal, the numbers get interpreted as the x and y coordinates of a 
QPointF pointer; if you call the functions with four numbers, the numbers get interpreted 
as the x and y coordinates and the width and the height of a QRectF parameter.

Since the positioning of the items is done by the items themselves, it is possible that an 
item independently moves around. Do not worry; the scene will get notified about any item 
position change. And not only the scene! Remember the parent-child relationship of items 
and that parents delete their child items when they get destroyed themselves? It's the same 
with setPos(). If you move a parent, all child items get moved as well. This can be very 
useful if you have a bunch of items that should stay together. Instead of moving all items 
by themselves, you only have to move one item. Since transformations that you apply on 
a parent also affect the children, this might not be the best solution for grouping together 
equal items that should be independently transformable but also transformable altogether. 
The solution for such a case is QGraphicsItemGroup. It behaves like a parent in a parent-
child relationship. The QGraphicsItemGroup is an invisible parent item so that you can 
alter the child items separately through their transformation functions or all together by 
invoking the transformation functions of QGraphicsItemGroup.

Time for action – transforming parent items and child items
Have a look at the following code:

QGraphicsScene scene;
QGraphicsRectItem *rectA = new QGraphicsRectItem(0,0,45,45);
QGraphicsRectItem *rectB = new QGraphicsRectItem(0,0,45,45);
QGraphicsRectItem *rectC = new QGraphicsRectItem(0,0,45,45);
QGraphicsRectItem *rectD = new QGraphicsRectItem(0,0,45,45);
rectB->moveBy(50,0);
rectC->moveBy(0,50);
rectD->moveBy(50,50);
QGraphicsItemGroup *group = new QGraphicsItemGroup;
group->addToGroup(rectA);
group->addToGroup(rectB);
group->addToGroup(rectC);
rectD->setGroup(group);
group->setRotation(70);
rectA->setRotation(-25);
rectB->setRotation(-25);
rectC->setRotation(-25);
rectD->setRotation(-25);
scene.addItem(group);



Chapter 6

[ 207 ]

What just happened?
After creating a scene, we create four rectangle items that are arranged in a 2 x 2 matrix. 
This is done with the calls of the moveBy() function, which interprets the first argument 
as a shift to the right or left when negative and the second argument as a shift to the 
bottom or top when negative. Then we create a new QGraphicsItemGroup item which, 
since it subclasses QGraphicsItem, is a regular item and can be used as such. By calling 
addToGroup(), we add the items that we want to position inside that group. If you'd 
like to remove an item from the group later on, simply call removeFromGroup() and 
pass the respective item. The rectD parameter is added to the group in a different way. 
By calling setGroup() on rectD, it gets assigned to group; this behavior is comparable 
to setParent(). If you want to check whether an item is assigned to a group, just call 
group() on it. It will return a pointer to the group or 0 if the item is not in a group. After 
adding the group to the scene, and thus also the items, we rotate the whole group by 70 
degrees clockwise. Afterward, all items are separately rotated 25 degrees counter-clockwise 
around their top left corner. This will result in the following appearance:

Here you see the initial state after moving the items, then after rotating the group by 70 degrees, and then after rotating 
each item by -25 degrees

If we were to rotate the items more, they would overlap each other. But which item would 
overlap which? This is defined by the item's z value; you can define the value by using 
QGraphicsItem::setZValue() otherwise it is 0. Based on that, the items get stacked. 
Items with a higher z value are displayed on top of items with lower z values. If items have 
the same z value, the order of insertion decides the placement: items added later overlap 
those added earlier. Also, negative values are possible.

Have a go hero – playing with the z value
Take the item group from the example as a starting point and apply various transformations 
to it as well as different z values for the item. You will be astonished at what crazy 
geometrical figures you can create with these four items. Coding really is fun!



Graphics View

[ 208 ]

For the sake of completeness, a word on the scene's bounding rectangle is required (set 
through setSceneRect()). Just as the offset of an item's bounding rectangle affects its 
position on the scene, the offset of the scene's bounding rectangle affects the scene's 
position on the view. More importantly, however, the bounding rectangle is used for various 
internal computations, such as the calculation of the view's scroll bar value and position. 
Even if you do not have to set the scene's bounding rectangle, it is recommended that you 
do. This applies especially when your scene holds a lot of items. If you do not set a bounding 
rectangle, the scene calculates this itself by going through all the items, retrieving their 
positions and their bounding rectangles as well as their transformations to figure out the 
maximum occupied space. This calculation is done by the function itemsBoundingRect(). 
As you may imagine, this becomes increasingly resource-intensive the more items a scene 
has. Furthermore, if you do not set the scene's rectangle, the scene checks on each item's 
update if the item is still in the scene's rectangle. Otherwise, it enlarges the rectangle to 
hold the item inside the bounding rectangle. The downside to is that it will never adjust by 
shirking; it will only enlarge. Thus, when you move an item to the outside and then to the 
inside again, you will mess up the scroll bars.

If you do not want to calculate the size of your scene yourself, you 
can add all items to the scene and then call setSceneRect() with 
itemsBoundingRect() as an argument. With this, you stop the scene from 
checking and updating the maximum bounding rectangle on item updates.

View
With QGraphicsView, we are back in the world of widgets. Since QGraphicsView inherits 
QWidget, you can use the view like any other widget and place it into layouts for creating 
neat graphical user interfaces. For the Graphics View architecture, QGraphicsView provides 
an inspection window on a scene. With the view, you can display the whole scene or only 
part of it, and by using a transformation matrix you can manipulate the scene's coordinate 
system. Internally, the view uses QGraphicsScene::render() to visualize the scene. 
By default, the view uses a QWidget element as a painting device. Since QGraphicsView 
inherits QAbstractScrollArea, the widget is set as its viewport. Therefore, when the 
rendered scene exceeds the view's geometry, scroll bars are automatically shown.

Instead of using the default QWidget element as the viewport widget, you can 
set your own widget by calling setViewport() with the custom one as an 
argument. The view will then take ownership of the assigned widget, which is 
accessible by viewport(). This also gives you the opportunity to use OpenGL 
for rendering. Simply call setViewport(new QGLWidget).



Chapter 6

[ 209 ]

Time for action – putting it all together!
Before we go on, however, and after talking a lot about items and scenes, let's see how the 
view, the scene, and the items all work together:

#include <QApplication>
#include <QGraphicsView>
#include <QGraphicsRectItem>
int main(int argc, char *argv[]) {
  QApplication app(argc, argv);
  QGraphicsScene scene;
  scene.addEllipse(QRectF(0, 0, 100, 100), QColor(0, 0, 0));
  scene.addLine(0, 50, 100, 50, QColor(0, 0, 255));
  QGraphicsRectItem *item = scene.addRect(0, 0, 25, 25, Qt::NoPen, 
                                          Qt::red);
  item->setPos(scene.sceneRect().center() - item->rect().center());
  QGraphicsView view;
  view.setScene(&scene);
  view.show();
  return app.exec();
}

Build and run this example and you will see following image in the middle of the view:

What just happened?
What have we done here? On top, we included the needed headers and then wrote a normal 
main function and created a QApplication elment. Its event loop is started in the return 
statement on the bottom. In between, we created a scene and added the first item to it by 
calling addEllipse(). This function is one of the many convenience functions of Qt and is, 
in our case, equivalent to the following code:

QGraphicsEllipseItem *item = new QGraphicsEllipseItem;
item->setRect(0, 0, 100, 100);



Graphics View

[ 210 ]

item->setPen(QColor(0, 0, 0));
scene.addItem(item);

We thus have put a circle with a radius of 50 pixels in the scene. The origins of the circle and 
of the scene are stacked on top of each other. Next, by calling addLine(), we add a blue 
line that goes through the center point of the circle, parallel to the scene's bottom line. The 
first two arguments are the x and y coordinates of the line's starting point and the second 
two arguments the x and y coordinates of the end point. With addRect(), we add a square 
with a 25-pixel side at the top-left corner of the scene. This time, however, we fetch the 
pointer, which is then returned by these functions. This is because we want to move the 
rectangle to the center of the scene. In order to do that, we use setPos() and need to 
do some arithmetic. Why? Because of the relationship between the scene's and the item's 
coordinate systems. By simply calling item->setPos(scene.sceneRect().center()), 
the origin of the item (which is (0, 0) in the item's coordinates and thus the rectangle's 
top left corner) would be in the middle of the scene, not the red square itself. Thus we 
need to shift the rectangle back by half of its width and height. This is done by subtracting 
its center point from the scene's center point. As you probably have already guessed, 
QRectF::center() returns the center point of a rectangle as a QPointF pointer. Lastly, 
we create a view and declare that it should display the scene by calling setScene() with 
the scene as an argument. Then we show the view. That's all you need to do to show a scene 
with items.

Two things you will probably notice if you have a look at the result are that the drawing looks 
pixelated and that it stays in the center of the view when you resize the view. The solution 
for the first problem you should already know from what you learned in the previous 
chapter. You have to turn on antialiasing. For the view, you do that with this line of code 

view.setRenderHint(QPainter::Antialiasing);

With setRenderHint(), you can set all hints you know from QPainter to the view. Before 
the view renders the scene on its viewport widget, it initializes the internally used QPainter 
element with these hints. With the antialiasing flag turned on, the painting is done much 
more smoothly. Unfortunately, the line is also painted antialiased (even though we do not 
want this since now the line looks washy). To prevent the line from getting drawn antialiased, 
you have to override the paint() function of the item and explicitly turn off antialiasing. 
However, you might want to have a line with aliasing somewhere, so there is another 
small and easy solution for that problem without the need for reimplementing the paint 
function. All you have to do is to shift the position by half of the pen's width. For that, write 
the following code:

QGraphicsLineItem *line = scene.addLine(0, 50, 100, 50,  
                                              QColor (0, 0, 255));
const qreal shift = line->pen().widthF() / 2.0;
line->moveBy(-shift, -shift);



Chapter 6

[ 211 ]

By calling pen(), you get the pen that is used to draw the line. Then you determine its width 
by calling widthF() and dividing it by 2. Then just move the line whereby the moveBy() 
function behaves as if we had called the following:

line->setPosition(item.pos() - QPointF(shift, shift))

To be pixel-perfect, you might need to alter the length of the line.

The second "problem" was that the scene is always visualized in the center of the 
view, which is the default behavior of the view. You can change this setting with 
setAlignment(), which accepts Qt::Alignment flags as arguments. So, calling view.
setAlignment(Qt::AlignBottom | Qt::AlignRight); would result in the scene 
staying in the lower-right corner of the view.

Showing specific areas of the scene
As soon as the scene's bounding rectangle exceeds the viewport's size, the view will show 
scroll bars. Besides using them with the mouse to navigate to a specific item or point on the 
scene, you can also access them by code. Since the view inherits QAbstractScrollArea, 
you can use all its functions for accessing the scroll bars. horizontalScrollBar() and 
verticalScrollBar() return a pointer to QScrollBar, and thus you can query their 
range with minimum() and maximum(). By invoking value() and setValue(), you get 
and can set the current value, which results in scrolling the scene.

But normally, you do not need to control free scrolling inside the view from your source 
code. The normal task would be to scroll to a specific item. In order to do that, you do not 
need to do any calculations yourself; the view offers a pretty simple way to do that for you: 
centerOn(). With centerOn(), the view ensures that the item, which you have passed 
as an argument, is centered on the view unless it is too close to the scene's border or even 
outside. Then, the view tries to move it as far as possible on the center. The centerOn() 
function does not only take a QGraphicsItem item as argument; you can also center on a 
QPointF pointer or as a convenience on an x and y coordinate.

If you do not care where an item is shown, you can simply call ensureVisible() with 
the item as an argument. Then the view scrolls the scene as little as possible so that the 
item's center remains or becomes visible. As a second and third argument, you can define 
a horizontal and vertical margin, which are both the minimum space between the item's 
bounding rectangle and the view's border. Both values have 50 pixels as their default value. 
Beside a QGraphicsItem item, you can also ensure the visibility of a QRectF element (of 
course, there is also the convenience function taking four qreal elements).



Graphics View

[ 212 ]

If you like to ensure the entire visibility of an item (since 
ensureVisible(item) only takes the item's center into account) use 
ensureVisible(item->boundingRect()). Alternatively, you can use 
ensureVisible(item), but then you have to set the margins at least to 
the item's half width or half height respectively.

centerOn() and ensureVisible() only scroll the scene but do not change its 
transformation state. If you absolutely want to ensure the visibility of an item or a rectangle 
that exceeds the size of the view, you have to transform the scene as well. With this task, 
again the view will help you. By calling fitInView() with QGraphicsItem or a QRectF 
element as argument, the view will scroll and scale the scene so that it fits in the viewport 
size. As a second argument, you can control how the scaling is done. You have the following 
options:

Value Description

Qt::IgnoreAspectRatio The scaling is done absolutely freely regardless of 
the item's or rectangle's aspect ratio.

Qt::KeepAspectRatio The item's or rectangle's aspect ratio is taken into 
account while trying to expand as far as possible 
while respecting the viewport's size.

Qt::KeepAspectRatioByExpanding The item's or rectangle's aspect ratio is taken 
into account, but the view tries to fill the whole 
viewport's size with the smallest overlap.

The fitInView() function does not only scale larger items down to fit the viewport, it 
also enlarges items to fill the whole viewport. The following picture illustrates the different 
scaling options for an item that is enlarged:

The circle on the left is the original item. Then, from left to right it is Qt::IgnoreAspectRatio, 
Qt::KeepAspectRatio, and Qt::KeepAspectRatioByExpanding.



Chapter 6

[ 213 ]

Transforming the scene
In the view, you can transform the scene as you like. Besides the normal convenience 
functions, such as rotate(), scale(), shear(), and translate(), you can also apply a 
free definable QTransform parameter via setTransform(), where you also can decide if 
the transformation should be combined with existing ones or if it should replace them. As an 
example of probably the most used transformation on a view, let us have a look how you can 
scale and move the scene inside the view.

Time for action – creating an item where transformations can 
easily be seen

First we set up a playground. To do this, we subclass a QGraphicsRectItem item and 
customize its paint function as follows:

void ScaleItem::paint(QPainter *painter, const  
QStyleOptionGraphicsItem *option, QWidget *widget) {
  Q_UNUSED(option)
  Q_UNUSED(widget)
  const QPen oldPen = painter->pen();

  const QRectF r = rect();
  const QColor fillColor = Qt::red;
  const qreal square = r.width() / 10.0;
  painter->fillRect(QRectF(0, 0, square, square), fillColor);
  painter->fillRect(QRectF(r.width() - square, 0, square, square), 
                     fillColor);
  painter->fillRect(QRectF(0,r.height() - square, square, square), 
                     fillColor);
  painter->fillRect(QRectF(r.width() - square, r.height() - square, 
                     square, square), fillColor);

  painter->setPen(Qt::black);
  painter->drawRect(r);
  painter->drawLine(r.topLeft(), r.bottomRight());
  painter->drawLine(r.topRight(), r.bottomLeft());
  const qreal padding = r.width() / 4;
  painter->drawRect(r.adjusted(padding, padding, -padding, 
                      - padding));

  painter->setPen(oldPen);
}



Graphics View

[ 214 ]

What just happened?
By using the Q_UNUSED macro, we simply suppress compiler warnings about unused 
variables. The macro expands to (void)x;, which does nothing. Then we cache the current 
pen for putting it back at the end of the function. This gives painter back unchanged. Of 
course, we could have called save() and restore() on the painter, but these functions 
save a lot of other properties we do not want to change, so simply saving and restoring 
the pen is much faster. Next, we draw four red rectangles at the corners of the bounding 
rectangle (r) by calling fillRect(), which does not change the painter state. Then we set 
a 1-pixel thick and solid black pen—because this changes the pen's state, we have saved the 
old pen—and draw the bounding rectangle, the diagonals, and a centered rectangle, which 
is a quarter of the size of the bounding rectangle. This will give us the following item, which 
shows the transformations better than with a black-filled rectangle:

Time for action – implementing the ability to scale the scene
Let's do the scaling first. We add the item to a scene and put that scene on a custom 
view we have subclassed from QGraphicsView. In our customized view, we only need 
to reimplement wheelEvent() as we want to scale the view by using the mouse's scroll 
wheel.

void MyView::wheelEvent(QWheelEvent *event) {
  const qreal factor = 1.1;
  if (event->angleDelta().y() > 0)
    scale(factor, factor);
  else
    scale(1/factor, 1/factor);
}



Chapter 6

[ 215 ]

What just happened?
The factor parameter for the zooming can be freely defined. You can also create a getter 
and setter method for it. For us, 1.1 will do the work. With event->angleDelta(), 
you get the distance of the mouse's wheel rotation as a QPoint pointer. Since we only 
care about vertical scrolling, just the y axis is relevant for us. In our example, we also do 
not care about how far the wheel was turned because, normally, every step is delivered 
separately to wheelEvent(). But if you should need it, it's in eighths of a degree, and since 
a mouse works in general steps of 15 degrees, the value should be 120 or -120, depending 
on whether you move the wheel forward or backward. On a forward wheel move, if y() 
is greater than zero, we zoom in by using the built-in scale() function. It takes the scale 
factor for the x and the y coordinates. Otherwise, if the wheel was moved backwards, 
we zoom out. That's all there is to it. When you try this example, you will notice that, 
while zooming, the view zooms in and out on the center of the view, which is the default 
behavior for the view. You can change this behavior with setTransformationAnchor(). 
QGraphicsView::AnchorViewCenter is, as described, the default behavior. With 
QGraphicsView::NoAnchor, the zoom center is in the top-left corner of the view, and 
the value you probably want to use is QGraphicsView::AnchorUnderMouse. With that 
option, the point under the mouse builds the center of the zooming and thus stays at the 
same position inside the view.

Time for action – implementing the ability to move the scene
Next it would be good to move the scene around without the need of using the scroll bars. 
Let us add the functionality for pressing and holding the left mouse button. First, we add 
two private members to the view: the m_pressed parameter of type bool and the m_
lastMousePos element of type QPoint. Then, we reimplement the mousePressEvent() 
and mouseReleaseEvent() functions as follows:

void MyView::mousePressEvent(QMouseEvent *event) {
  if (Qt::LeftButton == event->button()) {
    m_pressed = true;
    m_lastMousePos = event->pos();
  }
  QGraphicsView::mousePressEvent(event);
}

void MyView::mouseReleaseEvent(QMouseEvent *event) {
  if (Qt::LeftButton == event->button())
    m_pressed = false;
  QGraphicsView::mouseReleaseEvent(event);
}



Graphics View

[ 216 ]

What just happened?
Within mousePressEvent(), we check whether the left mouse button was pressed. 
If it was true, we then set m_pressed to true and save the current mouse position 
in m_lastMousePos. Then we pass the event to the base class event handler. Within 
mouseReleaseEvent(), we set m_pressed to false if it was the left button; then we 
pass the event to the base class implementation. We do not need to alter m_pressPoint 
here. With mouseMoveEvent(), we can then react on the value of those two variables:

void MyView::mouseMoveEvent(QMouseEvent *event) {
  if (!m_pressed)
    return QGraphicsView::mouseMoveEvent(event);

  QPoint diff = m_lastMousePos - event->pos();
  if (QScrollBar *hbar = horizontalScrollBar())
    hbar->setValue(hbar->value() + diff.x());
  if (QScrollBar *vbar = verticalScrollBar())
    vbar->setValue(vbar->value() + diff.y());
  m_lastMousePos = event->pos();
  return QGraphicsView::mouseMoveEvent(event);
}

If m_pressed is false—this means the left button wasn't pressed and held—we will be 
exiting the function while passing the event to the base class implementation. This is, by the 
way, important for getting unhandled events propagated to the scene correctly. If the button 
has been pressed, we first calculate the difference (diff) between the point where the 
mouse was pressed and the current position. Thus we know how far the mouse was moved. 
Now we simply move the scroll bars by that value. For the horizontal scroll bar, the pointer 
to it is received by calling horizontalScrollBar(). The encapsulation in an if clause 
is just a paranoid safety check to ensure that the pointer is not null. Normally, this should 
never happen. Through that pointer, we set a new value by adding the old value, received 
by value(), to the moved distance, diff.x(). We then do the same for the vertical scroll 
bar. Last, we save the current mouse position to m_lastMousePos. That's all. Now you can 
move the scene around while holding the left mouse button down. The downside of this 
method is that the left mouse click does not reach the scene and, therefore, features such 
as item selection do not work. If you need that or a similar functionality on the scene, check 
for a keyboard modifier too. For example, if the Shift key must also be pressed to move the 
scene, additionally check the events modifiers() for whether Qt::ShiftModifier is set 
to activate the mouse-moving functionality:

void MyView::mousePressEvent(QMouseEvent *event) {
  if (Qt::LeftButton == event->button()
    && (event->modifiers() & Qt::ShiftModifier)) {
    m_pressed = true;
      //...



Chapter 6

[ 217 ]

Time for action – taking the zoom level into account
As a last detail, I would like to mention that you can draw an item differently 
depending on its scale. To do that, the level of detail can be used. You use the passed 
pointer to QStyleOptionGraphicsItem of the item's paint function and call 
levelOfDetailFromTransform() with the painter's world transformation. We change 
the paint function of the ScaleItem item to the following:

const qreal detail = option->levelOfDetailFromTransform( 
  painter->worldTransform());
const QColor fillColor = (detail >= 5) ? Qt::yellow : Qt::red;

What just happened?
The detail parameter now contains the maximum width of unity square, which was 
mapped to the painter coordinate system via the painter's world transformation matrix. 
Based on that value, we set the fill color of the border rectangles to yellow or red. The 
expression detail >= 5 will become true if the rectangle is displayed at least five times 
as large as in a normal state. The level of detail is helpful when you want to draw more detail 
on an item only if it is visible. By using the level of detail, you can control when a possibly 
resource-intensive drawing should be performed. It makes sense, for example, to make 
difficult drawings only when you can see them.

When you zoom into the scene, the diagonal lines as well as the rectangle lines get zoomed. 
But you may want to leave the stroke the same regardless of the zoom level. Here Qt also has 
an easy approach to offer. In the paint function of the item we used earlier for exemplifying 
the zoom functionality, locate the following line of code:

painter->setPen(Qt::black);

Replace it with the following lines:

QPen p(Qt::black);
p.setCosmetic(true);
painter->setPen(p);

The important part is to make the painter cosmetic. Now, regardless of the zoom or any 
other transformation, the pen's width stays the same. This can be very helpful for drawing 
outlined shapes.



Graphics View

[ 218 ]

Questions you should keep in mind
Whenever you are going to use the Graphics View architecture, ask yourself these questions: 
Which standard items are suited for my specific needs? Am I reinventing the wheel over 
and over again? Do I need QGraphicsTextItem or is QGraphicsSimpleTextItem 
good enough? Do I need the items to inherit QObject or will plain items not suffice? 
(We will cover this topic in the next section.) Could I group items together for the sake of 
cleaner and leaner code? Is the parent-child relationship sufficient or do I need to use a 
QGraphicsItemGroup element?

Now you really know most of the functions of the Graphics View framework. With this 
knowledge, you can already do a lot of cool stuff. But for a game, it is still too static. We will 
change that next!

The jumping elephant or how to animate the scene
By now, you should have a good understanding about the items, the scene, and the view. 
With your knowledge of how to create items, standard and custom ones, of how to position 
them on the scene, and of how to set up the view to show the scene, you can make pretty 
awesome things. You even can zoom and move the scene with the mouse. That's surely 
good, but for a game, one crucial point is still missing: you have to animate the items. Instead 
of going through all possibilities for how to animate a scene, let us develop a simple jump-
and-run game where we recap parts of the previous topics and learn how to animate items 
on a screen. So let's meet Benjamin, the elephant:

The game play
The goal of the game is for Benjamin to collect the coins that are placed all over the game 
field. Besides walking right and left, Benjamin can, of course, also jump. In the following 
screenshot, you see what this minimalistic game should look like in the end:



Chapter 6

[ 219 ]

The player item
Let's now look at how we can mobilize Benjamin.

Time for action – creating an item for Benjamin
First we need a custom item class for Benjamin. We call the class Player and choose 
QGraphicsPixmapItem as the base class because Benjamin is a PNG image. In the item's 
Player class, we further create a property of integer type and call it m_direction. Its 
value signifies in which direction Benjamin walks—left or right—or if he stands still. Of 
course, we use a getter and setter function for this property. Since the header file is simple, 
let's have a look at the implementation right away (you will find the whole source code at 
the end of this book):

Player::Player(QGraphicsItem *parent)
  : QGraphicsPixmapItem(parent), m_direction(0) {
    setPixmap(QPixmap(":/elephant"));
    setTransformOriginPoint(boundingRect().center());
}



Graphics View

[ 220 ]

In the constructor, we set m_direction to 0, which means that Benjamin isn't moving at 
all. If m_direction is 1, Benjamin moves right, and if the value is -1, he moves left. In the 
body of the constructor, we set the image for the item by calling setPixmap(). The image 
of Benjamin is stored in the Qt Resource System; thus, we access it through QPixmap(":/
elephant") with elephant as the given alias for the actual image of Benjamin. Last, we 
set the point of origin for all transformations we are going to apply to the center of the item. 
This equals the center of the image.

int Player::direction() const {
  return m_direction;
}

The direction() function is a standard getter function for m_direction returning its 
value. The next function of this class is much more important:

void Player::addDirection(int direction) {
  direction = qBound(-1, direction, 1);
  m_direction += direction;
  if (0 == m_direction)
    return;

  if (-1 == m_direction)
    setTransform(QTransform(-1, 0, 0, 1, boundingRect().width(), 0));
  else
    setTransform(QTransform());
}

What just happened?
With addDirection(), one "sets" the direction of Benjamin's movement. "Set" is put in 
quotes because you do not set m_direction to the passed value; instead, you add the 
passed value to m_direction. This is done in the second line after we have ensured the 
correctness of m_direction. For that, we use qBound(), which returns a value that is 
bound by the first and last argument. The argument in the middle is the actual value that we 
want to get bound. So the possible values for m_direction are restricted to -1, 0, and 1. If 
the property direction is 0, the player item does not move and the function exits.



Chapter 6

[ 221 ]

If you haven't already done so earlier, you might wonder by now why not simply set the 
value? Why that addition? Well, it is because of how we will use this function: Benjamin 
is moved by the left and right arrow key. If the right key is pressed, 1 is added; if it gets 
released, -1 is added. Think of it as an impulse to the right (1) and to the left (-1). The first 
accelerates the player and the second slows him down. The same applies for the left key, but 
only the other way around. As we do not allow multiple acceleration, we limit the value of 
m_direction to 1 and -1. The addition of the value rather than setting it is now necessary 
because of the following situation: A user presses and holds the right key, and the value of 
m_direction is therefore 1. Now, without releasing the right key, he also presses and holds 
the left key. Therefore, the value of m_direction is getting decreased by one; the value is 
now 0 and Benjamin stops. But remember, both keys are still being pressed. What happens 
when the left key is released? How would you know in this situation in which direction 
Benjamin should move? To achieve that, you would have to find out an additional bit of 
information: whether the right key is still pressed down or not. That seems too much trouble 
and overhead. In our implementation, when the left key is released, 1 is added and the value 
of m_direction becomes 1, making Benjamin move right. Voilà! All without any concern 
about what the state of the other button might be.

Lastly, we check in which direction Benjamin is moving. If he is moving left, we need to flip 
his image so that Benjamin looks to the left, the direction in which he is moving. Therefore, 
we apply a QTransform matrix, which flips the image vertically. If he is moving towards the 
right, we restore the normal state by assigning an empty QTransform object, which is an 
identity matrix.

So we now have our item of class Player for the game's character, which shows the 
image of Benjamin. The item also stores the current moving direction, and based on that 
information, the image is flipped vertically if needed.

The playing field
To understand the following code, it might be good to know the composition of the 
environment in which our elephant will be walking and jumping. Overall, we have a view 
fixed in size holding a scene which is exactly as big as the view. We do not take size changes 
into account since they would complicate the example too much, and when you develop a 
game for a mobile device, you know the available size up front.



Graphics View

[ 222 ]

All animations inside the playing field are done by moving the items, not the scene. So we 
have to distinguish between the view's, or rather the scene's width and the width of the 
elephant's virtual "world" in which he can move. The width of this virtual world is defined 
by m_fieldWidth and has no (direct) correlation with the scene. Within the range of 
m_fieldWidth, which is 500 pixels in the example, Benjamin or the graphics item can be 
moved from the minimum x coordinate, defined by m_minX, to the maximum x coordinate, 
defined by m_maxX. We keep track of his actual x position with the variable m_realPos. 
Next, the minimum y coordinate the item is allowed to have is defined by m_groundLevel. 
For m_maxX and m_groundLevel, we have to take into account that the position of the 
item is determined by its top-left corner. Lastly, what is left is the view, which has a fixed size 
defined by the scene's bounding rectangle size, which is not as wide as m_fieldWidth. So 
the scene (and the view) follows the elephant while he walks through his virtual world of 
the length m_fieldWidth. Have a look at the picture to see the variables in their graphical 
representation:

The scene
Since we will have to do some work on the scene, we subclass QGraphicsScene and name 
the new class MyScene. There we implement one part of the game logic. This is convenient 
since QGraphicsScene inherits QObject and thus we can use Qt's signal and slot 
mechanism. Also, for the next code of the scene, we only go through the implementation of 
the functions. For more information on the header, have a look at the sources bundled with 
this book.

Time for action – making Benjamin move
The first thing we want to do is to make our elephant movable. In order to achieve that, we 
use a QTimer parameter called m_timer, which is a private member of MyScene. In the 
constructor we set up the timer with the following code:

m_timer.setInterval(30);
connect(&m_timer, &QTimer::timeout, this, &MyScene::movePlayer);



Chapter 6

[ 223 ]

First we define that the timer emits a timeout signal every 30 milliseconds. Then we connect 
that signal to the scene's slot called movePlayer(), but we do not start the timer yet. 
This is done by the arrow keys in a way we have already discussed when the m_direction 
variable of the class Player was introduced. Here is the implementation of what was 
described there:

void MyScene::keyPressEvent(QKeyEvent *event) {
  if (event->isAutoRepeat())
    return;

  switch (event->key()) {
    case Qt::Key_Right:
      m_player->addDirection(1);
      checkTimer();
      break;
    case Qt::Key_Left:
      m_player->addDirection(-1);
      checkTimer();
      break;
    //...
    default:
      break;
  }
}

As a small side note, whenever code snippets in the following code passages 
are irrelevant for the actual detail, I am going to skip the code but will indicate 
missing code with //... so that you know it is not the entire code. We will 
cover the skipped parts later when it is more appropriate.

What just happened?
In the key press event handler, we first check if the key event was triggered because of an 
auto repeat. If this is the case, we exit the function because we only want to react on the 
first real key press event. We also do not call the base class implementation of that event 
handler since no item on the scene needs to get a key press event. If you do have items that 
could and should receive events, do not forget to forward them while reimplementing event 
handlers at the scene.



Graphics View

[ 224 ]

If you press and hold a key down, Qt will continuously deliver the key press 
event. To determine if it was the first real key press or an auto-generated event, 
use QKeyEvent::isAutoRepeat(). It returns true if the event was 
automatically generated. There is no easy way to turn off the auto repeat since 
it is platform-dependent and you have to use the platform API for that.

As soon as we know that the event was not delivered by an auto repeat, we react to the 
different key presses. If the left key was pressed, we decrease the direction property of 
the player item by one; if the right key was pressed, we increase it by one. The m_player 
element is our instance of the player item. After calling addDirection(), we call 
checkTimer() in both cases:

void MyScene::checkTimer() {
  if (0 == m_player->direction())
    m_timer.stop();
  else if (!m_timer.isActive())
    m_timer.start();
}

This function first checks whether the player moves. If not, the timer is stopped because 
nothing has to be updated when our elephant stands still. Otherwise, the timer gets started, 
but only if it isn't already running. This we check by calling isActive() on the timer.

When the user presses the right key, for example at the beginning of the game, 
checkTimer() will start m_timer. Since its time out signal was connected to 
movePlayer(), the slot will be called every 30 milliseconds till the key is released. Since the 
move() function is a bit longer, let's go through it step-by-step:

void MyScene::movePlayer() {
  const int direction = m_player->direction();
  if (0 == direction)
    return;

First, we cache the player's current direction in a local variable to avoid multiple calls of 
direction(). Then we check whether the player is moving at all. If they aren't, we exit the 
function because there is nothing to animate.

  const int dx = direction * m_velocity;
  qreal newPos = m_realPos + dx;
  newPos = qBound(m_minX, newPos, m_maxX);
  if (newPos == m_realPos)
    return;
  m_realPos = newPos;



Chapter 6

[ 225 ]

Next we calculate the shift the player item should get and store it in dx. The distance the 
player should move every 30 milliseconds is defined by the member variable m_velocity, 
expressed in pixels. You can create setter and getter functions for that variable if you like. 
For us, the default value of 4 pixels will do the job. Multiplied by the direction (which could 
only be 1 or -1 at this point), we get a shift of the player by 4 pixels to the right or to the left. 
Based on this shift, we calculate the new x position of the player and store it in newPos. 
Next, we check whether that new position is inside the range of m_minX and m_maxX, two 
member variables that are already calculated and set up properly at this point. Next, if the 
new position is not equal to the actual position, which is stored in m_realPos, we proceed 
by assigning the new position as the current one. Otherwise, we exit the function since there 
is nothing to move.

  const int leftBorder = 150;
  const int rightBorder = 350 - m_player->boundingRect().width();

The next question to tackle is whether the view should always move when the elephant is 
moving, which means that the elephant would always stay say in the middle of the view. No, 
he shouldn't stay at a specific point inside the view. Rather, the view should be fixed when 
the elephant is moving. Only if he reaches the borders should the view follow. The "non-
movable" center is defined by leftBorder and rightBorder, which are related to the 
item's position; thus we must subtract the item's width from the rightBorder element. If 
we don't take the item's width into account, the right side of a player with a width of more 
than 150 pixels will disappear before the scrolling takes place. Please note that the values for 
leftBorder and rightBorder are randomly chosen. You can alter them as you like. Here 
we decided to set the border at 150 pixels. Of course, you can create a setter and getter for 
these parameters too:

  if (direction > 0) {
    if (m_realPos > m_fieldWidth - (width() - rightBorder)) {
      m_player->moveBy(dx, 0);
    } else {
      if (m_realPos - m_skippedMoving < rightBorder) {
        m_player->moveBy(dx, 0);
      } else {
        m_skippedMoving += dx;
      }
    }
  } else {
    if (m_realPos < leftBorder && m_realPos >= m_minX) {
      m_player->moveBy(dx, 0);
    } else {
      if (m_realPos - m_skippedMoving > leftBorder) {
        m_player->moveBy(dx, 0);
      } else {



Graphics View

[ 226 ]

        m_skippedMoving = qMax(0, m_skippedMoving + dx);
      }
    }
  }
  //...
}

Ok, so what have we done here? Here we have calculated whether only the elephant moves 
or the view as well so that the elephant does not walk out of the screen. The if clause 
applies when the elephant is moving towards the right. For a better understanding, let's 
begin at the end of this scope. There is a situation where we do not move the elephant but 
simply add the shift dx to a variable named m_skippedMoving. What does that mean? It 
means that the virtual "world" is moving but the elephant inside the view is not. This is the 
case when the elephant moves too far to the borders. In other words, you move the view 
with the elephant above the virtual world by dx to the left. Let's take a look at the following 
figure:

The m_skippedMoving element is the difference between the view's x coordinate and 
the virtual world's x coordinate. So the if clause m_realPos - m_skippedMoving < 
rightBorder reads: If the position of the elephant in "view coordinates", calculated by  
m_realPos – m_skippedMoving, is smaller than rightBorder, then move the elephant 
by calling moveBy() since he is allowed to walk till rightBorder. m_realPos -  
m_skippedMoving is the same as m_player->pos().x() + dx.

Lastly, let's turn to the first clause: m_realPos > m_fieldWidth - (width() - 
rightBorder). This returns true when the actual position is behind the rightBorder 
element but the fictional world is moved to its maximum left. Then we also have to move 
the elephant so that he can reach m_maxX. The expression width() - rightBorder 
calculates the width between rightBorder and the scene's right border.

The same considerations and calculations apply for moving to the left, the other branch.



Chapter 6

[ 227 ]

So far, we have accomplished two things. First, with a QTimer object, we trigger a slot 
that moves an item; thus, we have animated the scene. Second, we have determined the 
elephant's position in the virtual world. You might wonder why we have done this. To be able 
to do parallax scrolling!

Parallax scrolling
Parallax scrolling is a trick to add an illusion of depth to the background of the game. This 
illusion occurs when the background has different layers which move at different speeds. The 
nearest background must move faster than the ones farther away. In our case, we have these 
four backgrounds ordered from the most distant to the nearest:

The sky

The trees

The grass

The ground



Graphics View

[ 228 ]

Time for action – moving the background
Now the question is how to move them at different speeds. The solution is quite simple: 
the slowest one, the sky, is the smallest image. The fastest background, the ground and the 
grass, are the largest images. Now when we have a look at the end of the movePlayer() 
function's slot we see this:

qreal ff = qMin(1.0, m_skippedMoving/(m_fieldWidth - width()));
m_sky->setPos(-(m_sky->boundingRect().width() - width()) * ff, 0);
m_grass->setPos(-(m_grass->boundingRect().width() - width()) *  
  ff, m_grass->y());
m_trees->setPos(-(m_trees->boundingRect().width() - width()) *  
  ff, m_trees->y());
m_ground->setPos(-(m_ground->boundingRect().width() - width()) *  
  ff, m_ground->y());

What just happened?
What are we doing here? At the beginning, the sky's left border is the same as the view's left 
border, both at point (0, 0). At the end, when Benjamin has walked to the maximum right, 
the sky's right border should be the same as the view's right border. So the distance we have 
to move the sky over time is the sky's width (m_sky->boundingRect().width()) minus 
the width of the view (width()). The shift of the sky depends on the position of the player: 
If he is far to the left, the sky isn't shifted, if the player is far to the right, the sky is maximally 
shifted. We thus have to multiply the sky's maximum shift value with a factor based on the 
current position of the player. The relation to the player's position is the reason why this is 
handled in the movePlayer() function. The factor we have to calculate has to be between 
0 and 1. So we get the minimum shift (0 * shift, which equals 0) and the maximum shift (1 * 
shift, which equals shift). This factor we name ff. The calculation reads: If we subtract the 
width of the view (width()) from the virtual field's width m_fieldWidth, we have the area 
where the player isn't moved by (m_player->moveBy()) because in that range only the 
background should move.

How often the moving of the player was skipped is saved in m_skippedMoving. So by 
dividing m_skippedMoving through m_fieldWidth – width(), we get the needed 
factor. It is 0 when the player is to the far left and 1 if they are to the far right. Then we 
simply have to multiply ff with the maximum shift of the sky. To avoid the backgrounds from 
being moved too far, we ensure through qMin() that the factor is always lesser than, or 
equal to, 1.0.

The same calculation is used for the other background items. The calculation also explains 
why a smaller image is moving slower. It's because the overlap of the smaller image is less 
than that of the larger one. And since the backgrounds are moved in the same time period, 
the larger has to move faster.



Chapter 6

[ 229 ]

Have a go hero – adding new background layers
Try to add additional background layers to the game following the preceding example. As an 
idea, you can add a barn behind the trees or let an airplane fly through the sky.

QObject and items
The QGraphicsItem item and all standard items introduced so far don't inherit QObject 
and thus can't have slots or emit signals; they also don't benefit from the QObject property 
system. But we can make them use QObject!

Time for action – using properties, signals, and slots with items
So let's alter the Player class to use QObject:

class Player : public QObject, public QGraphicsPixmapItem {
  Q_OBJECT

All you have to do is to add QObject as a base class and add the Q_OBJECT macro. Now you 
can use signals and slots with items too. Be aware that QObject must be the first base class 
of an item.

If you want an item that inherits from QObject and QGraphicsItem, you 
can directly inherit QGraphicsObject. Moreover, this class defines and 
emits some useful signals such as xChanged() when the x coordinate of the 
item has changed or scaleChanged() when the item is scaled.

A word of warning: Only use QObject with items if you really need its 
capabilities. QObject adds a lot of overhead to the item, which will have a 
noticeable impact on performance when you have many items. So use it wisely 
and not only because you can.

Let us go back to our player item. After adding QObject, we define a property called  
m_jumpFactor with a getter, a setter, and a change signal. We need that property to  
make Benjamin jump, as we will see later on. In the header file, we define the property  
as follows:

Q_PROPERTY(qreal jumpFactor READ jumpFactor WRITE setjumpFactor  
                            NOTIFY jumpFactorChanged)



Graphics View

[ 230 ]

The getter function jumpFactor() simply returns the private member m_jumpFactor, 
which is used to store the actual position. The implementation of the setter looks like this:

void Player::setjumpFactor(const qreal pos) {
  if (pos == m_jumpFactor)
    return;
  m_jumpFactor = pos;
  emit jumpFactorChanged(m_jumpFactor);
}

It is important to check if pos would change the current value of m_jumpFactor. If this is 
not the case, exit the function because, otherwise, a change signal will be emitted even if 
nothing has changed. Otherwise, we set m_jumpFactor to pos and emit the signal that 
informs about the chance.

Property animations
The new jumpFactor property we use immediately with a QPropertyAnimation 
element, a second way to animate items.

Time for action – using animations to move items smoothly
In order to use it, we add a new private member called m_animation of type 
QPropertyAnimation and initialize it in the constructor of Player:

m_animation = new QPropertyAnimation(this);
m_animation->setTargetObject(this);
m_animation->setPropertyName("jumpFactor");
m_animation->setStartValue(0);
m_animation->setKeyValueAt(0.5, 1);
m_animation->setEndValue(0);
m_animation->setDuration(800);
m_animation->setEasingCurve(QEasingCurve::OutInQuad);



Chapter 6

[ 231 ]

What just happened?
For the instance of QPropertyAnimation created here, we define the item as parent; thus, 
the animation will get deleted when the scene deletes the item and we don't have to worry 
about freeing the used memory. Then we define the target of the animation—our Player 
class—and the property that should be animated—jumpFactor, in this case. Then we 
define the start and the end value of that property, and in addition to that we also define a 
value in between by setting setKeyValueAt(). The first argument of type qreal defines 
time inside the animation, where 0 is the beginning and 1 the end, and the second argument 
defines the value that the animation should have at this time. So your jumpFactor 
element will get animated from 0 to 1 and back to 0 in 800 milliseconds. This was defined 
by setDuration(). Finally, we define how the interpolation between the start and end 
value should be done and call setEasingCurve() with QEasingCurve::OutInQuad as 
an argument. Qt defines up to 41 different easing curves for linear, quadratic, cubic, quartic, 
quintic, sinusoidal, exponential, circular, elastic, back easing, and bounce functions. These 
are too many to describe here. Instead, have a look at the documentation. Simply search for 
QEasingCurve::Type. In our case, QEasingCurve::OutInQuad makes sure that the 
jump speed of Benjamin looks like an actual jump: fast in the beginning, slow at the top, and 
fast at the end again. We start this animation with the jump function:

void Player::jump() {
  if (QAbstractAnimation::Stopped == m_animation->state())
    m_animation->start();
}

We only start the animation by calling start() when the animation isn't running. 
Therefore, we check the animation's state to see if it is stopped. Other states could be 
Paused or Running. We want this jump action to be activated whenever the player presses 
the Space key on their keyboard. Therefore, we expand the switch statement inside the key 
press event handler by using this code:

case Qt::Key_Space:
  m_player->jump();
  break;



Graphics View

[ 232 ]

Now the property gets animated but Benjamin will still not jump yet. Therefore, we connect 
the jumpFactorChange() signal to a slot of the scene that handles the jump:

void MyScene::jumpPlayer(qreal factor) {
  const qreal y = (m_groundLevel - m_player->boundingRect().height())  
    - factor * m_jumpHeight;
  m_player->setPos(m_player->pos().x(), y);
  //...
}

Inside that function, we calculate the y coordinate of the player item to respect the ground 
level defined by m_groundLevel. This is done by subtracting the item's height from the 
ground level's value since the item's origin point is the top-left corner. Then we subtract the 
maximum jump height, defined by m_jumpHeight, which is multiplied by the actual jump 
factor. Since the factor is in range from 0 to 1, the new y coordinate stays inside the allowed 
jump height. Then we alter the player item's y position by calling setPos(), leaving the x 
coordinate the same. Et voilà, Benjamin is jumping!

Have a go hero – letting the scene handle Benjamin's jump
Of course, we could have done the property animation inside the scene's class without the 
need to extend Player by QObject. But this should be an example of how to do it. So try to 
put the logic of making Benjamin jump to the scene's class. This is, however, more consistent 
as we already move Benjamin left and right there. Or, also consistent, do it the other way 
around; move Benjamin's movement to the left and right also to the Player class.

Time for action – keeping multiple animations in sync
If you have a look at how the coins (their class being called Coin) are created, you see 
similar structures. They inherit from QObject and QGraphicsEllipseItem and define 
two properties: opacity of type qreal and rect of type QRect. This is done only by the 
following code:

Q_PROPERTY(qreal opacity READ opacity WRITE setOpacity)
Q_PROPERTY(QRectF rect READ rect WRITE setRect)

No function or slot was added because we simply used built-in functions of QGraphicsItem 
and "redeclared" them as properties. Then, these two properties are animated by 
two QPropertyAnimation objects. One fades the coin out, while the other scales 
the coin in. To ensure that both animations get started at the same time, we use 
QParallelAnimationGroup as follows:

QPropertyAnimation *fadeAnimation = /* set up */
QPropertyAnimation *scaleAnimation = /* set up */



Chapter 6

[ 233 ]

QParallelAnimationGroup *group = new QParallelAnimationGroup(this);
group->addAnimation(fadeAnimation);
group->addAnimation(scaleAnimation);
group->start();

What just happened?
After setting up each property animation, we add them to the group animation by calling 
addAnimation() on the group while passing a pointer to the animation we would like 
to add. Then, when we start the group, QParallelAnimationGroup makes sure that all 
assigned animations start at the same time.

The animations are set up for when the coin explodes. You may want to have a look at the 
explode() function of Coin in the sources. A coin should explode when Benjamin touches 
the coin.

If you want to play animations one after the other you can use 
QSequentialAnimationGroup.

Item collision detection
Whether the player item collides with a coin is checked by the scene's checkColliding() 
function, which is called after the player item has moved (movePlayer()) or after Benjamin 
jumped (jumpPlayer()).

Time for action – making the coins explode
The implementation of checkColliding() looks like this:

QList<QGraphicsItem*> items =  collidingItems(m_player);
for (int i = 0, total = items.count(); i < total; ++i) {
  if (Coin *c = qgraphicsitem_cast<Coin*>(items.at(i)))
    c->explode();
}



Graphics View

[ 234 ]

What just happened?
First we call the scene's QGraphicsScene::collidingItems() function, which takes 
the item for which colliding items should be detected as a first argument. With the second, 
optional argument, you could define how the collision should be detected. The type of that 
argument is Qt::ItemSelectionMode, which was explained earlier. In our case, a list of 
all the items that collide with m_player will be returned. So we loop through that list and 
check whether the current item is a Coin object. This is done by trying to cast the pointer to 
Coin. If it is successful, we explode the coin by calling explode(). Calling the explode() 
function multiple times is no problem since it will not allow more than one explosion. This 
is important since checkColliding() will be called after each movement of the player. 
So the first time the player hits a coin, the coin will explode, but this takes time. During this 
explosion, the player will most likely be moved again and thus collides with the coin once 
more. In such a case, explode() may be called for a second, third, xth time.

The collidingItems() function will always return the background items as well since 
the player item is above all of them most of the time. To avoid the continuous check if they 
actually are coins, we use a trick. In the used BackgroundItem class for the background 
items, implement the QGraphicsItem item's virtual shape() function as follows:

QPainterPath BackgroundItem::shape() const {
  return QPainterPath();
}

Since the collision detection is done with the item's shape, the background items can't 
collide with any other item since their shape is permanently empty. QPainterPath itself is 
a class holding information about graphical shapes. For more information—since we do not 
need anything special for our game—have a look at the documentation. The class is pretty 
straightforward.

Had we done the jumping logic inside Player, we could have implemented the  
item collision detection from within the item itself. QGraphicsItem also offers  
a collidingItems() function that checks against colliding items with itself. So  
scene->collidingItems(item) is equivalent to item->collidingItems().

If you are only interested in whether a item collides with another item, you can call 
collidesWithItem() on the item passing the other item as an argument.



Chapter 6

[ 235 ]

Setting up the playing field
The last function we have to discuss is the scene's initPlayField() function where all 
is set up. Here we initialize the sky, trees, ground, and player item. Since there is nothing 
special, we skip that and look directly at how the coins get initialized:

const int xrange = (m_maxX - m_minX) * 0.94;
m_coins = new QGraphicsRectItem(0,0,m_fieldWidth, m_jumpHeight);
m_coins->setPen(Qt::NoPen);
for (int i = 0; i < 25; ++i) {
  Coin *c = new Coin(m_coins);
  c->setPos(m_minX + qrand()%xrange, qrand()%m_jumpHeight);
}
addItem(m_coins);
m_coins->setPos(0, m_groundLevel - m_jumpHeight);

In total, we are adding 25 coins. First we calculate the width between m_minX and m_maxX. 
That is the space where Benjamin can move. To make it a little bit smaller, we only take 94 
percent of that width. Then we set up an invisible item with the size of the virtual world 
called m_coins. This item should be the parent to all coins. Then, in the for loop we create 
a coin and randomly set its x and y position, ensuring that Benjamin can reach them by 
calculating the modulo of the available width and of the maximal jump height. After all 25 
coins are added, we place the parent item holding all coins on the scene. Since most coins 
are outside the actual view's rectangle, we also need to move the coins while Benjamin is 
moving. Therefore, m_coins must behave like any other background. For this, we simply add 
the following code:

m_coins->setPos(-(m_coins->boundingRect().width() - width()) * ff, 
                  m_coins->y());

We add the preceding code to the movePlayer() function where we also move the sky by 
the same pattern.

Have a go hero – extending the game
That is it. This is our little game. Of course, there is much room to improve and extend it. For 
example, you can add some barricades Benjamin has to jump over. Then, you would have to 
check if the player item collides with such a barricade item when moving forward, and if so, 
refuse movement. You have learned all the necessary techniques you need for that task, so 
try to implement some additional features to deepen your knowledge.



Graphics View

[ 236 ]

A third way of animation
Besides QTimer and QPropertyAnimation, there is a third way to animate the scene. 
The scene provides a slot called advance(). If you call that slot, the scene will forward that 
call to all items it holds by calling advance() on each one. The scene does that twice. First, 
all item advance() functions are called with 0 as an argument. This means that the items 
are about to advance. Then in the second round, all items are called passing 1 to the item's 
advance() function. In that phase each item should advance, whatever that means; maybe 
moving, maybe a color change, and so on. The scene's slot advance is typically called by a 
QTimeLine element; with this, you can define how many times during a specific period of 
time the timeline should be triggered.

QTimeLine *timeLine = new QTimeLine(5000, this);
timeLine->setFrameRange(0, 10);

This timeline will emit the signal frameChanged() every 5 seconds for 10 times. All you 
have to do is to connect that signal to the scene's advance() slot and the scene will 
advance 10 times during 50 seconds. However, since all items receive two calls for each 
advance, this may not be the best animation solution for scenes with a lot of items where 
only a few should advance.

Widgets inside Graphics View
In order to show a neat feature of Graphics View, have a look at the following code snippet, 
which adds a widget to the scene:

QSpinBox *box = new QSpinBox;
QGraphicsProxyWidget *proxyItem = new QGraphicsProxyWidget;
proxyItem->setWidget(box);
QGraphicsScene scene;
scene.addItem(proxyItem);
proxyItem->setScale(2);
proxyItem->setRotation(45);

First we create a QSpinBox and a QGraphicsProxyWidget element, which act as 
containers for widgets and indirectly inherit QGraphicsItem. Then we add the spin 
box to the the proxy widget by calling addWidget(). The ownership of the spin box isn't 
transferred, but when QGraphicsProxyWidget gets deleted, it calls delete on all 
assigned widgets. We thus do not have to worry about that ourselves. The widget you add 
should be parentless and must not be shown elsewhere. After setting the widget to the 
proxy, you can treat the proxy widget like any other item. Next, we add it to the scene and 
apply a transformation for demonstration. As a result we get this:



Chapter 6

[ 237 ]

A rotated and scaled spin box on a scene

Since it is a regular item, you can even animate it, for example, with a property animation. 
Nevertheless, be aware that, originally, Graphics View wasn't designed for holding widgets. 
So when you add a lot of widgets to the scene, you will quickly notice performance issues, 
but in most situations it should be fast enough.

If you want to arrange some widgets in a layout, you can use QGraphicsAnchorLayout, 
QGraphicsGridLayout, or QGraphicsLinearLayout. Create all widgets, create a layout 
of your choice, add the widgets to that layout, and set the layout to a QGraphicsWidget 
element, which is the base class for all widgets and is easily spoken the QWidget equivalent 
for Graphics View by calling setLayout():

QGraphicsScene scene;
QGraphicsProxyWidget *edit = scene.addWidget(
  new QLineEdit("Some Text"));
QGraphicsProxyWidget *button = scene.addWidget(
  new QPushButton("Click me!"));
QGraphicsLinearLayout *layout = new QGraphicsLinearLayout;
layout->addItem(edit);
layout->addItem(button);
QGraphicsWidget *graphicsWidget = new QGraphicsWidget;
graphicsWidget->setLayout(layout);
scene.addItem(graphicsWidget);

The scene's addWidget() function is a convenience function and behaves in the first usage 
for QLineEdit, as shown in the following code snippet:

QGraphicsProxyWidget *proxy = new QGraphicsProxyWidget(0);
proxy->setWidget(new QLineEdit("Some Text"));
scene.addItem(proxy);



Graphics View

[ 238 ]

The item with the layout will look like this:

Optimization
Let us now take a look at some of the optimizations we can perform to speed up the scene.

A binary space partition tree
The scene constantly keeps record of the position of the item in its internal binary space 
partition tree. Thus, on every move of an item, the scene has to update the tree, an 
operation that can become quite time-and memory-consuming. This is especially true of 
scenes with a large number of animated items. On the other hand, the tree enables you 
to find an item (for example, with items() or itemAt()) incredibly fast even if you have 
thousands of items.

So when you do not need any positional information about the items—this also includes 
collision detection—you can disable the index function by calling setItemIndexMethod(
QGraphicsScene::NoIndex). Be aware, however, that a call to items() or itemAt() 
results in a loop through all items in order to do the collision detection, which can cause 
performance problems for scenes with many items. If you cannot relinquish the tree in 
total, you still can adjust the depth of the tree with setBspTreeDepth(), taking the depth 
as an argument. By default, the scene will guess a reasonable value after it takes several 
parameters, such as the size and the number of items, into account.



Chapter 6

[ 239 ]

Caching the item's paint function
If you have items with a time-consuming paint function, you can change the item's cache 
mode. By default, no rendering is cached. With setCacheMode(), you can set the mode 
to either ItemCoordinateCache or to DeviceCoordinateCache. The former renders 
the the item in a cache of a given QSize element. The size of that cache can be controlled 
with the second argument of setCacheMode(). So the quality depends on how much 
space you assign. The cache is then used for every subsequent paint call. The cache is 
even used for applying transformations. If the quality deteriorates too much, just adjust 
the resolution by calling setCacheMode() again, but with a larger QSize element. 
DeviceCoordinateCache, on the other hand, does not cache the item on an item base 
but rather on a device level. This is therefore optimal for items that do not get transformed 
all the time, because every new transformation will cause a new caching. Moving the item, 
however, does not end in a new cache. If you use this cache mode, you do not have to 
define a resolution with the second argument. The caching is always performed at maximum 
quality.

Optimizing the view
Since we are talking about the item's paint function, let's touch on something related. At 
the beginning, when we discussed the item's appearance and made a black rectangle item, 
I told you to return the painter as you get. If you have followed this advice, you can call set
OptimizationFlag(DontSavePainterState, true) on the view. By default, the view 
ensures that the painter state is saved before calling the item's paint function and that the 
state gets restored afterward. This will end up saving and restoring the painter state say 50 
times if you have a scene with 50 items. If you prevent automatic saving and restoring, keep 
in mind that now the standard items will alter the painter state. So if you use both standard 
and custom items, either stay with the default behavior or set DontSavePainterState, 
but then set up the pen and brush with a default value in each item's paint function.

Another flag that can be used with setOptimizationFlag()  
is DontAdjustForAntialiasing. By default, the view adjusts the painting  
area of each item by 2 pixels in all directions. This is useful because when one paints 
antialiased, one easily draws outside the bounding rectangle. Enable that optimization  
if you do not paint antialiased or if you are sure your painting will stay inside the bounding 
rectangle. If you enable this flag and spot painting artifacts on the view, you haven't 
respected the item's bounding rectangle!



Graphics View

[ 240 ]

As a further optimization, you can define how the view should update its viewport when 
the scene changes. You can set the different modes with setViewportUpdateMode(). 
By default (QGraphicsView::MinimalViewportUpdate), the view tries to determinate 
only those areas which need an update and repaints only these. However, sometimes it is 
more time-consuming to find all the areas that need a redraw than to just paint the entire 
viewport. This applies if you have many small updates. Then, QGraphicsView::FullVi
ewportUpdate is the better choice since it simply repaints the whole viewport. A kind of 
combination of the last two modes is QGraphicsView::BoundingRectViewportUpdate. 
In this mode, Qt detects all areas that need a redraw and then it redraws a rectangle of the 
viewport that covers all areas affected by the change. If the optimal update mode changes 
over time, you can tell Qt to determine the best mode by using QGraphicsView::SmartVi
ewportUpdate. The view then tries to find the best update mode.

As a last optimization, you can take advantage of OpenGL. Instead of using the default 
viewport based on QWidget, advise Graphics View to use an OpenGL widget. This way, you 
can use all the power that comes with OpenGL.

GraphicsView view;
view.setViewport(new QGLWidget(&view));

Unfortunately, you have to do a little more than just putting in this line, but that goes beyond 
the topic and scope of this chapter. You can, however, find more information about OpenGL 
and Graphics View in Qt's documentation example under "Boxes" as well as in Rødal's Qt 
Quarterly article–issue 26–which can be found online at http://doc.qt.digia.com/qq/
qq26-openglcanvas.html.

A general note on optimization: Unfortunately I can't say that you have to do 
this or that to optimize Graphics View as it highly depends on your system and 
view/scene. What I can tell you, however, is how to proceed. Once you have 
finished your game based on Graphics View, measure the performance of your 
game using a profiler. Make an optimization you think may pay or simply guess 
and then profile your game again. If the results are better, keep the change; 
otherwise, reject it. This sounds simple and is the only way optimization can be 
done. There are no hidden tricks or deeper knowledge. With time, however, 
your forecasting will get better.

http://doc.qt.digia.com/qq/qq26-openglcanvas.html
http://doc.qt.digia.com/qq/qq26-openglcanvas.html


Chapter 6

[ 241 ]

Pop quiz – mastering Graphics View
After studying this chapter, you should be able to answer these questions as they are 
important when it comes to designing the components of a game based on Graphics View:

Q1. What standard items does Qt offer?

Q2. How is the coordinate system of an item related to the coordinate system of the scene? 
Next, how is the coordinate system of the scene related to the coordinate system of the 
view?

Q3. How can one extend items to use properties as well as signals and slots?

Q4. How can one create realistic movements with the help of animations?

Q5. How can Graphics View's performance be improved?

Summary
In the first part of this chapter, you have learned how the Graphics View architecture works. 
First, we had a look at the items. There you learned how to create your own items by using 
QPainter and which kinds of standard item Qt has to offer. Later on, we also discussed how 
to transform these items and what the point of origin for that transformation has to do with 
it. Next we went through the coordinate system of the items, the scene, and the view. We 
also saw how these three parts work together, for example. how to put items on a scene. 
Lastly, we learned how to scale and move the scene inside the view. At the same time, you 
read about advanced topics, such as taking the zoom level into account when painting an 
item.

In the second part you, deepened your knowledge about items, about the scene, and about 
the view. While developing the game, you became familiar with different approaches on how 
to animate items, and you were taught how to detect collisions. As an advanced topic, you 
were introduced to parallax scrolling.

After having completed the entire chapter, you should now know almost everything about 
Graphics View. You are able to create complete custom items, you can alter or extend 
standard items, and with the information about the level of detail you even have the power 
to alter an item's appearance, depending on its zoom level. You can transform items and the 
scene, and you can animate items and, thus, the entire scene.



Graphics View

[ 242 ]

Furthermore, as you have seen while developing the game, your skills are good enough 
to develop a jump-and-run game with parallax scrolling as it is used in highly professional 
games. To keep your game fluid and highly responsive, finally we saw some tricks on how to 
get the most out of Graphics View.

In order to build a bridge to the world of widgets, you also learned how to incorporate 
items based on QWidget into Graphics View. With that knowledge, you can create modern, 
widget-based user interfaces.



[ 243 ]

Networking

In this chapter, you will be taught how to communicate with the 
Internet servers and with sockets in general. First, we will have a look at 
QNetworkAccessManager, which makes sending network requests and 
receiving replies really easy. Building on this basic knowledge, we are then 
going to use Google's Distance API to get information about the distance 
between two locations and how long it would take to get from one to the 
other. This technique and the respective knowledge can also be used to include 
Facebook or Twitter in your application via their respective APIs. Then, we 
will have a look at Qt's Bearer API, which provides information on a device's 
connectivity state. In the last section, you will learn how to use sockets to create 
your own server and clients using TCP or UDP as the network protocol.

QNetworkAccessManager
The easiest way to access files on the Internet is to use Qt's Network Access API. This API 
is centered on QNetworkAccessManager, which handles the complete communication 
between your game and the Internet.

7



Networking

[ 244 ]

When we now develop and test a network-enabled application, it is recommended that you 
use a private, local network if feasible. This way, it is possible to debug both ends of the 
connection and errors will not expose sensitive data. If you are not familiar with setting up 
a web server locally on your machine, there are luckily a number of all-in-one installers that 
are freely available. These will automatically configure Apache2, MySQL (or MariaDB), PHP, 
and many more on your system. On Windows, for example, you could use XAMPP (http://
www.apachefriends.org) or the Uniform Server (http://www.uniformserver.com); 
on Apple computers, there is MAMP (http://www.mamp.info); and on Linux you normally 
don't have to do anything since there is already a localhost. If not, open your preferred 
package manager, search for a package called Apache2 or a similar one, and install it. 
Alternatively, have a look at your distribution's documentation.

Before you install Apache on your machine, think about using a virtual machine such as 
VirtualBox (http://www.virtualbox.org) for this task. This way, you keep your machine 
clean and you can easily try different settings for your test server. With multiple virtual 
machines, you can even test the interaction between different instances of your game. If you 
are on Unix, Docker (http://www.docker.com) might be worth having a look at.

Downloading files over HTTP
For this, first try to set up a local server and create a file called version.txt in the root 
directory of the installed server. This file should contain a small piece of text such as "I am a 
file on localhost" or something similar. To test whether the server and the file are correctly 
setup, start a web browser and open http://localhost/version.txt. You should 
then see the file's content. Of course, if you have access to a domain, you can also use that. 
Just alter the URL used in the example correspondingly. If this fails, it may be the case that 
your server does not allow you to display text files. Instead of getting lost in the server's 
configuration, just rename the file to version.html. This should do the trick!

Result of requesting http://localhost/version.txt on a browser

http://www.apachefriends.org
http://www.apachefriends.org
http://www.uniformserver.com
http://www.mamp.info
http://www.virtualbox.org
http://www.docker.com


Chapter 7

[ 245 ]

As you might have guessed, because of the file name a real-life scenario could be to check 
whether there is an updated version of your game or application on the server. To get the 
content of a file, only five lines of code are needed.

Time for action – downloading a file
First, create an instance of QNetworkAccessManager:

QNetworkAccessManager *m_nam = new QNetworkAccessManager(this);

Since QNetworkAccessManager inherits QObject, it takes a pointer to QObject, which 
is used as a parent. Thus, you do not have to take care of deleting the manager later on. 
Furthermore, one single instance of QNetworkAccessManager is enough for an entire 
application. So, either pass a pointer to the network access manager in your game or, for 
ease of use, create a singleton pattern and access the manager through that.

A singleton pattern ensures that a class is instantiated only once. The pattern 
is useful for accessing application-wide configurations or—as in our case—an 
instance of QNetworkAccessManager. On the wiki pages for http://
www.qtcentre.org and http://www.qt-project.org, you will find 
examples for different singleton patterns. A simple template-based approach 
would look like this (as a header file):

template <class T>
class Singleton
{
public:
  static T& Instance()
  {
    static T _instance;
    return _instance;
  }
private:
  Singleton();
  ~Singleton();
  Singleton(const Singleton &);
  Singleton& operator=(const Singleton &);
};

In the source code, you will include that header file and acquire a singleton of a 
class called MyClass with:

MyClass *singleton = &Singleton<MyClass>::Instance();

If you are using Qt Quick—it will be explained in Chapter 9, Qt Quick 
Basics—with QQuickView, you can directly use the view's instance of 
QNetworkAccessManager:

QQuickView *view = new QQuickView;

QNetworkAccessManager *m_nam 
  = view->engine()->networkAccessManager();

http://www.qtcentre.org
http://www.qtcentre.org
http://www.qt-project.org


Networking

[ 246 ]

Secondly, we connect the manager's finished() signal to a slot of our choice; for example, 
in our class, we have a slot called downloadFinished():

connect(m_nam, SIGNAL(finished(QNetworkReply*)), this, 
  SLOT(downloadFinished(QNetworkReply*)));

Thirdly, we actually request the version.txt file from localhost:

m_nam->get(QNetworkRequest(QUrl("http://localhost/version.txt")));

With get(), a request to get the contents of the file, specified by the URL, is posted. The 
function expects QNetworkRequest, which defines all the information needed to send 
a request over the network. The main information for such a request is naturally the URL 
of the file. This is the reason why QNetworkRequest takes QUrl as an argument in its 
constructor. You can also set the URL with setUrl() to a request. If you wish to define some 
additional headers, you can either use setHeader() for the most common header or use 
setRawHeader() to be fully flexible. If you want to set, for example, a custom user agent to 
the request, the call will look like:

QNetworkRequest request;
request.setUrl(QUrl("http://localhost/version.txt"));
request.setHeader(QNetworkRequest::UserAgentHeader, "MyGame");
m_nam->get(request);

The setHeader() function takes two arguments, the first is a value of the 
QNetworkRequest::KnownHeaders enumeration, which holds the most common—self-
explanatory—headers such as LastModifiedHeader or ContentTypeHeader, and the 
second is the actual value. You could also write the header using setRawHeader():

request.setRawHeader("User-Agent", "MyGame");

When you use setRawHeader(), you have to write the header field names yourself. Besides 
this, it behaves like setHeader(). A list of all the available headers for the HTTP protocol 
Version 1.1 can be found in section 14 of RFC 2616 (http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html#sec14).

Back to our example: with the get() function, we requested the version.txt file from 
the localhost. All we have to do from now on is to wait for the server to reply. As soon as the 
server's reply is finished, the downloadFinished() slot will be called that was defined by 
the preceding connection statement. As an argument, a reply of the QNetworkReply type is 
transferred to the slot, and we can read the reply's data and set it to m_edit, an instance of 
QPlainTextEdit, with:

void FileDownload::downloadFinished(QNetworkReply *reply) {
  const QByteArray content = reply->readAll();
  m_edit->setPlainText(content);
  reply->deleteLater();
}

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14


Chapter 7

[ 247 ]

Since QNetworkReply inherits QIODevice, there are also other possibilities to read the 
contents of the reply including QDataStream or QTextStream to either read and interpret 
binary data or textual data. Here, as the fourth command, QIODevice::readAll() is 
used to get the full content of the requested file in QByteArray. The responsibility for the 
transferred pointer to the corresponding QNetworkReply lies with us, so we need to delete 
it at the end of the slot. This would be the fifth line of code that is needed to download a 
file with Qt. However, be careful and do not call delete on the reply directly. Always use 
deleteLater(), as the documentation suggests!

The full source code can be found in the FileDownload example bundled with this book. If 
you start the small demo application and click on the Load File button you should see:

Have a go hero – extending the basic file downloader
If you haven't set up a localhost, just alter the URL in the source code to download another 
file. Of course, having to alter the source code in order to download another file is far from 
an ideal approach. So, try to extend the dialog by adding a line edit in which you can specify 
the URL you want to download. Also, you can offer a file dialog to choose the location to 
where the downloaded file will be saved.

Error handling
If you do not see the content of the file, something went wrong. Just as in real life, this can 
often happen. So, we need to make sure that there is a good error handling mechanism in 
such cases to inform the user about what is going on.



Networking

[ 248 ]

Time for action – displaying a proper error message
Fortunately, QNetworkReply offers several possibilities to do this. In the slot called 
downloadFinished(), we first want to check whether an error occurred:

if (reply->error() != QNetworkReply::NoError) {/* error occurred */}

The QNetworkReply::error() function returns the error that occurred while handling 
the request. The error is encoded as a value of the QNetworkReply::NetworkError type. 
The two most common errors are probably these:

Error code Meaning

ContentNotFoundError This error indicates that the URL of the request could not be 
found. It is similar to the HTTP error code 404.

ContentAccessDenied This error indicates that you do not have the permission to access 
the requested file. It is similar to the HTTP error code 401.

You can look up the other 23 error codes in the documentation. But normally, you do not 
need to know exactly what went wrong. You only need to know whether everything worked 
out—QNetworkReply::NoError would be the return value in this case—or if something 
went wrong.

Since QNetworkReply::NoError has the value 0, you can shorten 
the test phrase to check whether an error occurred to be:

if (reply->error()) {
  // an error occurred
}

To provide the user with a meaningful error description, you can use 
QIODevice::errorString(). The text is already set up with the corresponding error 
message and we only have to display it:

if (reply->error()) {
  const QString error = reply->errorString();
  m_edit->setPlainText(error);
  return;
}



Chapter 7

[ 249 ]

In our example, assuming we made an error in the URL and wrote versions.txt by 
mistake, the application would look like this:

If the request was an HTTP request and the status code is of interest, it could be retrieved by 
QNetworkReply::attribute():

reply->attribute(QNetworkRequest::HttpStatusCodeAttribute)

Since it returns QVariant, you can either use QVariant::toInt() to get the code as an 
integer or QVariant::toString() to get the number as QString. Beside the HTTP status 
code, you can query a lot of other information through attribute(). Have a look at the 
description of the QNetworkRequest::Attribute enumeration in the documentation. 
There, you will also find QNetworkRequest::HttpReasonPhraseAttribute, which 
holds a human-readable reason phrase for the HTTP status code. For example, "Not Found" 
if an HTTP error 404 has occurred. The value of this attribute is used to set the error text 
for QIODevice::errorString(). So, you can either use the default error description 
provided by errorString() or compose your own by interpreting the reply's attributes.

If a download failed and you want to resume it or if you only want to 
download a specific part of a file, you can use the Range header:

QNetworkRequest req(QUrl("..."));
req.setRawHeader("Range", "bytes=300-500");
QNetworkReply *reply = m_nam->get(req);

In this example, only the bytes from 300 to 500 would be downloaded. 
However, the server must support this.



Networking

[ 250 ]

Downloading files over FTP
Downloading a file over FTP is as simple as downloading files over HTTP. If it is an anonymous 
FTP server for which you do not need an authentication, just use the URL like we did before. 
Assuming that there is again a file called version.txt on the FTP server on the localhost, 
type:

m_nam->get(QNetworkRequest(QUrl("ftp://localhost/version.txt")));

That is all, everything else stays the same. If the FTP server requires an authentication, you'll 
get an error, for example:

Setting the username and password to access an FTP server is likewise easy: either write it in 
the URL, or use the setUserName() and setPassword() functions of QUrl. If the server 
does not use a standard port, you can set the port explicitly with QUrl::setPort().

To upload a file to an FTP server, use QNetworkAccessManager::put(), 
which takes QNetworkRequest as its first argument, calling a URL that 
defines the name of the new file on the server, and the actual data as its 
second argument, which should be uploaded. For small uploads, you can pass 
the content as QByteArray. For larger content, it's better to use a pointer to 
QIODevice. Make sure that the device is open and stays available until the 
upload is done.

Downloading files in parallel
A very important note on QNetworkAccessManager: it works asynchronously. This means 
that you can post a network request without blocking the main event loop, and this is what 
keeps the GUI responsive. If you post more than one request, they are put on the manager's 
queue. Depending on the protocol used, they get processed in parallel. If you are sending 
HTTP requests, normally up to six requests will be handled at a time. This will not block the 
application. Therefore, there is really no need to encapsulate QNetworkAccessManager in 
a thread; however, unfortunately, this unnecessary approach is frequently recommended all 
over the Internet. QNetworkAccessManager already threads internally. Really, don't move 
QNetworkAccessManager to a thread unless you know exactly what you are doing.



Chapter 7

[ 251 ]

If you send multiple requests, the slot connected to the manager's finished() signal is 
called in an arbitrary order depending on how quickly a request gets a reply from the server. 
This is why you need to know to which request a reply belongs. This is one reason why 
every QNetworkReply carries its related QNetworkRequest. It can be accessed through 
QNetworkReply::request().

Even if the determination of the replies and their purpose may work for a small application 
in a single slot, it will quickly get large and confusing if you send a lot of requests. This 
problem is aggravated by the fact that all replies are delivered to only one slot. Since most 
probably there are different types of replies that need different treatments, it would be 
better to bundle them in specific slots that are specialized for a given task. Fortunately, 
this can be achieved very easily. QNetworkAccessManager::get() returns a pointer to 
QNetworkReply, which will get all information about the request that you post with get(). 
By using this pointer, you can then connect specific slots to the reply's signals.

For example, if you have several URLs and you want to save all linked images from these sites 
to your hard drive, then you request all web pages via QNetworkAccessManager::get() 
and connect their replies to a slot specialized for parsing the received HTML. If links to the 
images are found, this slot will request them again with get(). However, this time the 
replies to these requests will be connected to a second slot, which is designed for saving the 
images to the disk. Thus, you can separate the two tasks: parsing HTML and saving data to a 
local drive.

The most important signals of QNetworkReply are discussed next.

The finished signal
The finished() signal is an equivalent of the QNetworkAccessManager::finished() 
signal that we used earlier. It is triggered as soon as a reply is returned—successfully or not. 
After this signal is emitted, neither the reply's data nor its metadata will be altered anymore. 
With this signal, you are now able to connect a reply to a specific slot. This way, you can 
realize the scenario the scenario on saving images that was outlined in the previous section.

However, one problem remains: if you post simultaneous requests, you  
do not know which one has finished and thus called the connected slot. Unlike  
QNetworkAccessManager::finished(), QNetworkReply::finished() does  
not pass a pointer to QNetworkReply; this would actually be a pointer to itself in this 
case. A quick solution to solve this problem is to use sender(). It returns a pointer to the 
QObject instance that has called the slot. Since we know that it was QNetworkReply, we 
can write:

QNetworkReply *reply = qobject_cast<QNetworkReply*> 
  (sender());
if (!reply)
  return;



Networking

[ 252 ]

This was done by casting sender() to a pointer of the QNetworkReply type.

Whenever you're casting classes that inherit QObject, use qobject_cast. 
Unlike dynamic_cast, it does not use RTTI and works across the dynamic 
library boundaries.

Although we can be pretty confident that the cast will work, do not forget to check whether 
the pointer is valid. If it is a null pointer, exit the slot.

Time for action – writing the OOP conform code using 
QSignalMapper

A more elegant way that does not rely on sender() would be to use QSignalMapper and 
a local hash, in which all replies that are connected to that slot are stored. So, whenever you 
call QNetworkAccessManager::get(), store the returned pointer in a member variable 
of the QHash<int, QNetworkReply*> type and set up the mapper. Let's assume that we 
have the following member variables and that they are set up properly:

QNetworkAccessManager *m_nam;
QSignalMapper *m_mapper;
QHash<int, QNetworkReply*> m_replies;

Then, you connect the finished() signal of a reply this way:

QNetworkReply *reply = m_nam->get(QNetworkRequest(QUrl(/*...*/)));
connect(reply, SIGNAL(finished()), m_mapper, SLOT(map()));
int id = /* unique id, not already used in m_replies*/;
m_replies.insert(id, reply);
m_mapper->setMapping(reply, id);

What just happened?
First, we posted the request and fetched the pointer to QNetworkReply with reply. Then, 
we connected the reply's finished signal to the mapper's slot map(). Next, we found a 
unique ID, which must not already be in use in the m_replies variable. You can use random 
numbers generated with qrand() and fetch numbers as long as they are not unique. To 
determine whether a key is already in use, call QHash::contains(). It takes the key as 
an argument against which it should be checked. Or even simpler, count up another private 
member variable. Once we have a unique ID, we insert the pointer to QNetworkReply in 
the hash using the ID as a key. Last, with setMapping(), we set up the mapper's mapping: 
the ID's value corresponds to the actual reply.



Chapter 7

[ 253 ]

In a prominent place, most likely the constructor of the class, we already have connected the 
mappers map() signal to a custom slot. For example:

connect(m_mapper, SIGNAL(mapped(int)), this,  
  SLOT(downloadFinished(int)));

When the downloadFinished() slot is called, we can get the corresponding reply with:

void SomeClass::downloadFinished(int id) {
  QNetworkReply *reply = m_replies.take(id);
  // do some stuff with reply here
  reply->deleteLater();
}

QSignalMapper also allows you to map with QString as an identifier 
instead of an integer as used in the preceding code. So, you could rewrite the 
example and use the URL to identify the corresponding QNetworkReply, at 
least as long as the URLs are unique.

The error signal
If you download files sequentially, you can swap the error handling out. Instead of dealing 
with errors in the slot connected to the finished() signal, you can use the reply's 
error() signal, which passes the error of the QNetworkReply::NetworkError type to 
the slot. After the error() signal has been emitted, the finished() signal will most likely 
also be emitted shortly.

The readyRead signal
Until now, we have used the slot connected to the finished() signal to get the reply's 
content. This works perfectly if you deal with small files. However, this approach is unsuitable 
when dealing with large files, as they would unnecessarily bind too many resources. For 
larger files, it is better to read and save the transferred data as soon as it is available. We are 
informed by QIODevice::readyRead() whenever new data is available to be read. So, for 
large files you should use the following code:

connect(reply, SIGNAL(readyRead()), this, SLOT(readContent()));
file.open(QIODevice::WriteOnly);

This will help you connect the reply's readyRead() signal to a slot, set up QFile, and open 
it. In the connected slot, type in the following snippet:

const QByteArray ba = reply->readAll();
file.write(ba);
file.flush();



Networking

[ 254 ]

Now, you can fetch the content, which has been transferred so far, and save it to the (already 
opened) file. This way, the resources needed are minimized. Don't forget to close the file 
after the finished() signal is emitted.

In this context, it would be helpful if you knew upfront the size of the file you want to 
download. Therefore, we can use QNetworkAccessManager::head(). It behaves like 
the get() function, but does not transfer the content of the file. Only the headers are 
transferred. And if we are lucky, the server sends the "Content-Length" header, which holds 
the file size in bytes. To get that information, we type:

reply->head(QNetworkRequest::ContentLengthHeader).toInt();

With this information, we can also check upfront whether there is enough space left on the 
disk.

The downloadProgress method
Especially when a big file is downloaded, the user usually wants to know how much data has 
already been downloaded and approximately how long it will take for the download to finish.

Time for action – showing the download progress
In order to achieve this, we can use the reply's downloadProgress() signal. As the first 
argument, it passes the information on how many bytes have already been received and 
as the second argument, how many bytes there are in total. This gives us the possibility to 
indicate the progress of the download with QProgressBar. As the passed arguments are 
of the qint64 type, we can't use them directly with QProgressBar, as it only accepts int. 
So, in the connected slot, we first calculate the percentage of the download progress:

void SomeClass::downloadProgress(qint64 bytesReceived,  
  qint64 bytesTotal) {
  qreal progress = (bytesTotal < 1) ? 1.0 
                   : bytesReceived * 100.0 / bytesTotal;
  progressBar->setValue(progress * progressBar->maximum());
}

What just happened?
With the percentage, we set the new value for the progress bar where progressBar is 
the pointer to this bar. However, what value will progressBar->maximum() have and 
where do we set the range for the progress bar? What is nice is that you do not have to set 
it for every new download. It is only done once, for example, in the constructor of the class 
containing the bar. As range values, I would recommend:

progressBar->setRange(0, 2048);



Chapter 7

[ 255 ]

The reason is that if you take, for example, a range of 0 to 100 and the progress bar is 500 
pixels wide, the bar would jump 5 pixels forward for every value change. This will look ugly. 
To get a smooth progression where the bar expands by 1 pixel at a time, a range of 0 to 
99.999.999 would surely work, but would be highly inefficient. This is because the current 
value of the bar would change a lot without any graphical depiction. So, the best value for 
the range would be 0 to the actual bar's width in pixels. Unfortunately, the width of the bar 
can change depending on the actual widget width, and frequently querying the actual size of 
the bar every time the value changes is also not a good solution. Why 2048, then? The idea 
behind this value is the resolution of the screen. Full HD monitors normally have a width of 
1920 pixels, thus taking 2^11 (2048) ensures that the progress bar runs smoothly, even if it is 
fully expanded. So, 2048 isn't the perfect number but is a fairly good compromise. If you are 
targeting smaller devices, choose a smaller, more appropriate number.

To be able to calculate the remaining time for the download to finish, you have 
to start a timer. In this case, use QElapsedTimer. After posting the request with 
QNetworkAccessManager::get(), start the timer by calling QElapsedTimer::start(). 
Assuming that the timer is called m_timer, the calculation will be:

qint64 total = m_timer.elapsed() / progress;
qint64 remaining = (total – m_timer.elapsed()) / 1000;

QElapsedTimer::elapsed() returns the milliseconds that are counted from the moment 
when the timer is started. This value divided by the progress equals the estimated total 
download time. If you subtract the elapsed time and divide the result by 1,000, you'll get the 
remaining time in seconds.

Using a proxy
If you like to use a proxy, you first have to set up QNetworkProxy. You have to define 
the type of the proxy with setType(). As arguments, you will most likely want to pass 
QNetworkProxy::Socks5Proxy or QNetworkProxy::HttpProxy. Then, set up the 
hostname with setHostName(), the username with setUserName(), and the password 
with setPassword(). The last two properties are, of course, only needed if the proxy 
requires an authentication. Once the proxy is set up, you can set it to the access manager via 
QNetworkAccessManager::setProxy(). Now, all new requests will use this proxy.



Networking

[ 256 ]

Connecting to Google, Facebook, Twitter, and co.
Since we discussed QNetworkAccessManager, you now have the knowledge you need 
to integrate Facebook, Twitter, or similar sites into your application. They all use the HTTP 
protocol and simple requests in order to retrieve data from them. For Facebook, you have 
to use the so-called Graph API. It describes which interfaces are available and what options 
they offer. If you want to search for users who are called "Helena", you have to request 
https://graph.facebook.com/search?q=helena&type=user. Of course, you can do 
this with QNetworkManager. You will find more information about the possible requests to 
Facebook at http://developers.facebook.com/docs/graph-api.

If you wish to display tweets in your game, you have to use Twitter's REST or Search API. 
Assuming that you know the ID of a tweet you would like to display, then you can get 
it through https://api.twitter.com/1.1/statuses/show.json?id=12345, 
where 12345 is the actual ID for the tweet. If you would like to find tweets mentioning 
#Helena, you would write https://api.twitter.com/1.1/search/tweets.
json?q=%23Helena. You can find more information about the parameters and the other 
possibilities of Twitter's API at https://dev.twitter.com/docs/api.

Since both Facebook and Twitter need an authentication to use their APIs, we will have a 
look at Google instead. Let's use Google's Distance Matrix API in order to get information 
about how long it would take for us to get from one city to another. The technical 
documentation for the API we are going to use can be found at https://developers.
google.com/maps/documentation/distancematrix.

Time for action – using Google's Distance Matrix API
The GUI for this example is kept simple—the source code is attached with the book. It 
consists of two line edits (ui->from and ui->to) that allow you to enter the origin and 
destination of the journey. It also provides you with a combo box (ui->vehicle) that allows 
you to choose a mode of transportation—whether you want to drive a car, ride a bicycle, or 
walk—a push button (ui->search) to start the request, and a text edit or (ui->result) to 
show the results. The result will look like this:

http://developers.facebook.com/docs/graph-api
https://dev.twitter.com/docs/api
https://developers.google.com/maps/documentation/distancematrix
https://developers.google.com/maps/documentation/distancematrix


Chapter 7

[ 257 ]

MainWindow—a subclass of QMainWindow—is the application's main class that holds two 
private members: m_nam, which is a pointer to QNetworkAccessManager, and m_reply, 
which is a pointer to QNetworkReply.

Time for action – constructing the query
Whenever the button is pressed, the sendRequest() slot is called:

void MainWindow::sendRequest()
{
  if (m_reply != 0 && m_reply->isRunning())
    m_reply->abort();
  ui->result->clear();

In this slot, we first check whether there is an old request, which was stored in m_reply, 
and if it is still running. If that is true, we abort the old request as we are about to 
schedule a new one. Then, we also wipe out the result of the last request by calling 
QPlainTextEdit::clear() on the text edit.

Next, we will construct the URL for the request. We can do this by composing the string by 
hand where we add the query parameters to the base URL similar to:

url = baseUrl + "?origin=" + ui->from->text() + "&...";



Networking

[ 258 ]

Besides the problem that this quickly becomes hard to read when we include multiple 
parameters, it is also rather error-prone. The values of the line edits have to be 
encoded to fit the criteria for a valid URL. For every user value, we therefore have to call 
QUrl::toPercentEncoding() explicitly. A much better approach, which is easier to read 
and less error-prone, is to use QUrlQuery. It circumvents the problem that may result from 
you forgetting to encode the data. So, we do this:

QUrlQuery query;
query.addQueryItem("sensor", "false");
query.addQueryItem("language", "en");
query.addQueryItem("units", "metric");
query.addQueryItem("origins", ui->from->text());
query.addQueryItem("destinations", ui->to->text());
query.addQueryItem("mode", ui->vehicle->currentText());

The usage is pretty clear: we create an instance and then add the query parameters with 
addQueryItem(). The first argument is taken as the key and the second as the value 
resulting in a string such as "key=value". The value will be automatically encoded when we 
use QUrlQuery in conjunction with QUrl. Other benefits of using QUrlQuery are that we 
can check whether we have already set a key with hasQueryItem(), taking the key as an 
argument, or removed a previous set key by calling removeQueryItem().

In a real situation, we would, of course, wrap all the preceding literals in QStringLiteral, 
but this is omitted here in favor of a better reading. So, let's review which parameters we 
have set. The sensor key is set to false as we are not using a GPS device to locate our 
position. The language key is set to English, and for units, we favor metric over imperial. 
Then, the search-related parameters are set. The origins key holds the places we want to 
start from. As its value, the text of the ui->from line edit is chosen. If you want to query 
multiple starting positions, you just have to combine them using |. Equivalent to the origins, 
we set up the value for destinations. Last, we pass the value of the combo box to mode, 
which defines whether we want to go by a car, bicycle, or whether we want to walk, as 
shown in the following code:

  QUrl url
    = ("http://maps.googleapis.com/maps/api/distancematrix/json");
  url.setQuery(query);
  m_reply = m_nam->get(QNetworkRequest(url));
}

Next, we create QUrl that contains the address to which the query should be posted. By 
including "json" at the end, we define that the server should transfer its reply using the 
JSON format. Google also provides the option for us to get the result as XML. To achieve this, 
simply replace "json" with "xml". However, since the APIs of Facebook and Twitter return 
JSON, we will use this format.



Chapter 7

[ 259 ]

Then, we set the previous constructed query to the URL by calling QUrl::setQuery(). 
This automatically encodes the values so we do not have to worry about that. Last, we post 
the request by calling the get() function and store the returned QNetworkReply in  
m_reply.

Time for action – parsing the server's reply
In the constructor, we have connected the manager's finish() signal to the finished() 
slot of the MainWindow class. It will thus be called after the request has been posted:

void MainWindow::finished(QNetworkReply *reply)
{
  if (m_reply != reply) {
    reply->deleteLater();
    return;
  }

First, we check whether the reply that was passed is the one that we have requested through 
m_nam. If this is not the case, we delete reply and exit the function. This can happen if a 
reply was aborted by the sendRequest() slot:

m_reply = 0;
if (reply->error()) {
  ui->result->setPlainText(reply->errorString());
  reply->deleteLater();
  return;
}

Since we are now sure that it is our request, we set m_reply to null because we have 
handled it and do not need this information anymore. Next we check whether an error 
occurred, and if it did, we put the reply's error string in the text edit, delete reply, and exit 
the function:

const QByteArray content = reply->readAll();
QJsonDocument doc = QJsonDocument::fromJson(content);
if (doc.isNull() || !doc.isObject()) {
  ui->result->setPlainText("Error while reading the JSON file.");
  reply->deleteLater();
  return;
}



Networking

[ 260 ]

With readAll(), we get the content of the server's reply. Since the transferred data is 
not large, we do not need to use partial reading with readyRead(). The content is then 
converted to QJsonDocument using the QJsonDocument::fromJson() static function, 
which takes QByteArray as an argument and parses its data. If the document is null, the 
server's reply wasn't valid, and then, we show an error message on the text edit, delete the 
reply, and exit the function. We do the same if the document does not contain an object, as 
the API call should respond with a single object, as shown:

QJsonObject obj = doc.object();
QVariantList origins = obj.value("origin_addresses")
                       .toArray().toVariantList();
QVariantList destinations = obj.value("destination_addresses")
                            .toArray().toVariantList();

Since we now made sure that there is an object, we store it in obj. Furthermore, due to 
the API, we also know that the object holds the origin_addresses and destination_
addresses keys. Both values are arrays that hold the requested origins and destinations. 
From this point on, we will skip any tests if the values exist and are valid since we trust the 
API. The object also holds a key called status, whose' value can be used to check whether 
the query may have failed and if yes, why? The last two lines of the source code store the 
origins and destinations in two variant lists. With obj.value("origin_addresses"), we 
get QJsonValue that holds the value of the pair specified by the origin_addresses key. 
QJsonValue::toArray() converts this value to QJsonArray, which then is converted 
to QVariantList using QJsonArray::toVariantList(). The returned JSON file for a 
search requesting the distance from Warsaw or Erlangen to Birmingham will look like:

{
  "destination_addresses" : [ "Birmingham, West Midlands, UK" ],
  "origin_addresses" : [ "Warsaw, Poland", "Erlangen, Germany" ],
  "rows" : [ ... ],
  "status" : "OK"
}

The rows key holds the actual results as an array. The first object in this array belongs to 
the first origin, the second object to the second origin, and so on. Each object holds a key 
named elements, whose' value is also an array of objects that belong to the corresponding 
destinations:

"rows" : [
    {
      "elements" : [{...}, {...}]
    },
    {
      "elements" : [{...}, {...}]
    }
  ],



Chapter 7

[ 261 ]

Each JSON object for an origin-destination pair ({...} in the preceding example) consists of 
two pairs with the distance and duration keys. Both the values of these keys are arrays that 
hold the text and value keys, where text is a human-readable phrase for value. The 
object for the Warsaw-Birmingham search looks as shown in the following snippet:

{
  "distance" : {
    "text" : "1,835 km",
    "value" : 1834751
  },
  "duration" : {
    "text" : "16 hours 37 mins",
    "value" : 59848
  },
  "status" : "OK"
}

As you can see, the value of value for distance is the distance expressed in meters—since 
we have used units=metric in the request—and the value of text is value transformed 
into kilometers with the post fix "km". The same applies to duration. Here, value is expressed 
in seconds and text is value converted into hours and minutes.

Now that we know how the returned JSON is structured, we display the value of each origin-
destination pair in the text edit. Therefore, we loop through each possible pairing using 
QVariantLists:

for (int i = 0; i < origins.count(); ++i) {
  for (int j = 0; j < destinations.count(); ++j) {

This scope will be reached for each combination. Think of the transferred result as a table 
where the origins are rows and the destinations are columns:

QString output;
output += QString("From:").leftJustified(10, ' ') 
          + origins.at(i).toString() + "\n";
output += QString("To:").leftJustified(10, ' ') 
          + destinations.at(j).toString() + "\n";

We cache the constructed text in a local variable called output. First, we add the string 
"From:" and the current origin to output. To make it look at least a little bit nicer, we call 
leftJustified(). It causes "From:" to be filled with spaces until the size of the entire 
string is 10. The output will then be aligned. The value of the current origin is normally 
accessed through QList::at(), and since it is QVariantList, we need to convert the 
returned QVariant to QString. Thus, we call toString(). The same is done for the 
destination, which results in the following as the value for output:



Networking

[ 262 ]

From:     Warsaw, Poland
To:       Birmingham, West Midlands, UK

Next, we will read duration and distance from the corresponding QJsonObject from where 
we call data:

QJsonObject data = obj.value("rows").toArray().at(i).toObject()
                  .value("elements").toArray().at(j).toObject();

Starting at the reply's root object, we fetch the value of rows and convert it to an array 
(obj.value("rows").toArray()). Then, we fetch the value of the current row 
(.at(i)), convert it to a JSON object, and fetch its elements key (.toObject().
value("elements")). Since this value is also an array—the columns of the row—we 
convert it to an array, fetch the current column (.toArray().at(j)), and convert it to an 
object. This is the object that contains the distance and duration for an origin-destination 
pair in the cell (i;j). Beside these two keys, the object also holds a key called status. Its 
value indicates whether the search was successful (OK), whether the origin or destination 
could not be found (NOT_FOUND), or whether the search could not find a route between the 
origin and destination (ZERO_RESULTS):

QString status = data.value("status").toString();

We store the value of status in a local variable that is also named status:

if (status == "OK") {
  output += QString("Distance:").leftJustified(10, ' ') + 
    data.value("distance").toObject().value("text").toString() 
    + "\n";
  output += QString("Duration:").leftJustified(10, ' ') + 
    data.value("duration").toObject().value("text").toString() 
    + "\n";
}

If all goes well, we then add distance and duration to the output and also align 
the labels as we did before using leftJustified(). For distance, we want to show 
the phrased result. Therefore, we first get the JSON value of the distance key (data.
value("distance")), convert it to an object, and request the value for the text key 
(.toObject().value("text")). Lastly, we convert QJsonValue to QString using 
toString(). The same applies for duration:

else if (status == "NOT_FOUND") {
  output += "Origin and/or destination of this  
    pairing could not be geocoded.\n";
} else if (status == "ZERO_RESULTS") {
  output += "No route could be found.\n";
} else {



Chapter 7

[ 263 ]

  output += "Unknown error.\n";
}

If the API returns errors, we set an appropriate error text as output:

      output += QString("\n").fill('=', 35) + "\n\n";
      ui->result->moveCursor(QTextCursor::End);
      ui->result->insertPlainText(output);
    }
  }
  reply->deleteLater();
}

Finally, we add a line consisting of 35 equals signs (fill('=', 35)) to separate the result in 
one cell from the other cells. The output is then placed at the end of the text edit. This is done 
by moving the cursor to the end of the edit, by calling moveCursor(QTextCursor::End), 
and inserting output into the edit with insertPlainText(output).

When the loops finish, we must not forget to delete the reply. The actual result then looks  
as follows:



Networking

[ 264 ]

Have a go hero – choosing XML as the reply's format
To hone your XML skills, you can use http://maps.googleapis.com/maps/api/
distancematrix/xml as a URL to which you send the requests. Then, you can parse the 
XML file as we did with JSON and display the retrieved data likewise.

Controlling the connectivity state
As a matter of fact, you can only use QNetworkAccessManager if you have an active 
connection to the Internet. Since you cannot theoretically know the connectivity state, you 
have to check this at the runtime of the application. With the help of the Bearer API, you can 
check whether the computer, mobile device, or tablet is online and you can even start a new 
connection—if the operating system supports it.

The Bearer API mainly consists of four classes. QNetworkConfigurationManager is 
the base and starting point. It holds all network configurations available on the system. 
Furthermore, it provides information about the network capabilities, for example, 
whether you can start and stop interfaces. The network configurations found by it are 
stored as QNetworkConfiguration classes. QNetworkConfiguration holds all 
information about an access point but not about a network interface, as an interface 
can provide multiple access points. This class also provides only the information 
about network configurations. You can't configure an access point or a network 
interface through QNetworkConfiguration. The network configuration is up to the 
operating system, and therefore, QNetworkConfiguration is a read-only class. With 
QNetworkConfiguration, however, you can determine whether the type of connection 
is an Ethernet, WLAN, or 2G connection. This may influence what kind of data and, more 
importantly, what size of data you are going to download. With QNetworkSession, you 
can then start or stop system network interfaces, which are defined by the configurations. 
This way, you gain control over an access point. QNetworkSession also provides session 
management that is useful when a system's access point is used by more than one 
application. The session ensures that the underlying interface only gets terminated after the 
last session has been closed. Lastly, QNetworkInterface provides classic information such 
as the hardware address or interface name.

QNetworkConfigurationManager
QNetworkConfigurationManager manages all network configurations that are available 
on a system. You can access these configurations by calling allConfigurations(). Of 
course, you have to create an instance of the manager first:

QNetworkConfigurationManager manager;
QList<QNetworkConfiguration> cfgs = manager.allConfigurations();

http://maps.googleapis.com/maps/api/distancematrix/xml
http://maps.googleapis.com/maps/api/distancematrix/xml


Chapter 7

[ 265 ]

The configurations are returned as a list. The default behavior of allConfigurations() 
is to return all possible configurations. However, you can also retrieve a filtered list. If 
you pass QNetworkConfiguration::Active as an argument, the list only contains 
configurations that have at least one active session. If you create a new session based 
on such a configuration, it will be active and connected. By passing QNetworkConfigu
ration::Discovered as an argument, you will get a list with configurations that can 
be used to immediately start a session. Note, however, that at this point, you cannot be 
sure whether the underlying interface can be started. The last important argument is 
QNetworkConfiguration::Defined. With this argument, allConfigurations() 
returns a list of configurations that are known to the system but are not usable right now. 
This may be a previously used WLAN hotspot, which is currently out of range.

You will be notified whenever the configurations change. If a new configuration becomes 
available, the manager emits the configurationAdded() signal. This may happen, for 
example, if mobile data transmission becomes available or if the user turns his/her device's 
WLAN adapter on. If a configuration is removed, for example, if the WLAN adapter is turned 
off, configurationRemoved() is emitted. Lastly, when a configuration gets changed, 
you will be notified by the configurationChanged() signal. All three signals pass a 
constant reference to the configuration about what was added, removed, or changed. The 
configuration passed by the configurationRemoved() signal is, of course, invalid. It still 
contains, the name and identifier of the removed configuration.

To find out whether any network interface of the system is active, call isOnline(). If you 
want to be notified about a mode change, track the onlineStateChanged() signal.

Since a WLAN scan takes a certain amount of time, allConfigurations() 
may not return all the available configurations. To ensure that configurations 
are completely populated, call updateConfigurations() first. Due 
to the long time it may take to gather all of the information about the 
system's network configurations, this call is asynchronous. Wait for the 
updateCompleted() signal and only then, call allConfigurations().

QNetworkConfigurationManager also informs you about the Bearer API's capabilities. 
The capabilities() function returns a flag of the QNetworkConfigurationManager:
:Capabilities type and describes the available possibilities that are platform-specific. The 
values you may be most interested in are as follows:



Networking

[ 266 ]

Value Meaning

CanStartAndStopInterfaces This means that you can start and stop access points.

ApplicationLevelRoaming This indicates that the system will inform you if a more 
suitable access point is available, and that you can 
actively change the access point if you think there is a 
better one available.

DataStatistics With this capability, QNetworkSession contains 
information about the transmitted and received data.

QNetworkConfiguration
QNetworkConfiguration holds, as mentioned earlier, information about an access point. 
With name(), you get the user-visible name for a configuration, and with identifier()
you get a unique, system-specific identifier. If you develop games for mobile devices, it 
may be of advantage to you to know which type of connection is being used. This might 
influence the data that you request; for example, the quality and thus, the size of a 
video. With bearerType(), the type of bearer used by a configuration is returned. The 
returned enumeration values are rather self-explanatory: BearerEthernet, BearerWLAN, 
Bearer2G, BearerCDMA2000, BearerWCDMA, BearerHSPA, BearerBluetooth, 
BearerWiMAX, and so on. You can look up the full-value list in the documentation for QNetw
orkConfiguration::BearerType.

With purpose(), you get the purpose of the configuration, for example, whether it is 
suitable to access a private network (QNetworkConfiguration::PrivatePurpose) or to 
access a public network (QNetworkConfiguration::PublicPurpose). The state of the 
configuration, if it is defined, discovered or active, as previously described, can be accessed 
through state().

QNetworkSession
To start a network interface or to tell the system to keep an interface connected for as long 
as you need it, you have to start a session:

QNetworkConfigurationManager manager;
QNetworkConfiguration cfg = manager.defaultConfiguration();
QNetworkSession *session = new QNetworkSession(cfg, this);
session->open();



Chapter 7

[ 267 ]

A session is based on a configuration. When there is more than one session and you are 
not sure which one to use, use QNetworkConfigurationManager::defaultConfi
guration(). It returns the system's default configuration. Based on this, you can create 
an instance of QNetworkSession. The first argument, the configuration, is required. 
The second is optional but is recommended since it sets a parent and we do not have to 
take care of the deletion. You may want to check whether the configuration is valid (QN
etworkConfiguration::isValid()) first. Calling open() will start the session and 
connect the interface if needed and supported. Since open() can take some time, the 
call is asynchronous. So, either listen to the opened() signal, which is emitted as soon 
as the session is open, or to the error() signal if an error happened. The error is of the 
QNetworkSession::SessionError type. Alternatively, instead of checking the opened() 
signal, you can also watch the stateChanged() signal. The possible states for a session 
can be: Invalid, NotAvailable, Connecting, Connected, Closing, Disconnected, 
and Roaming. If you want to make open() synchronous, call waitForOpened() right after 
calling open(). It will block the event loop till the session is open. This function will return 
true on success and false otherwise. To limit the waiting time, you can define a time-out. 
Just pass the milliseconds that you are willing to wait as an argument to waitForOpened(). 
To check whether a session is open, use isOpen().

To close the session, call close(). If no session is left on the interface, it will be shot down. 
To force an interface to disconnect, call stop(). This call will invalidate all the sessions that 
are based on that interface.

You may receive the preferredConfigurationChanged() signal, which indicates that 
the preferred configuration, that is, for example, the preferred access point, has changed. 
This may be the case if a WLAN network is now in range and you do not have to use 2G 
anymore. The new configuration is passed as the first argument and the second one 
indicates whether changing the new access point will also alter the IP address. Besides 
checking for the signal, you can also inquire whether roaming is available for a configuration 
by calling QNetworkConfiguration::isRoamingAvailable(). If roaming is available, 
you have to decide to either reject the offer by calling ignore() or to accept it by calling 
migrate(). If you accept roaming, it will emit newConfigurationActivated() when 
the session is roamed. After you have checked the new connection, you can either accept 
the new access point or reject it. The latter means that you will return to the previous access 
point. If you accept the new access point, the previous one will be terminated.



Networking

[ 268 ]

QNetworkInterface
To get the interface that is used by a session, call QNetworkSession::interface(). 
It will return the QNetworkInterface object, which describes the interface. With 
hardwareAddress(), you get the low-level hardware address of the interface that is 
normally the MAC address. The name of the interface can be obtained by name(), which 
is a string such as "eth0" or "wlan0". A list of IP addresses as well as their netmasks and 
broadcast addresses registered with the interface is returned by addressEntries(). 
Furthermore, information about whether the interface is a loopback or whether it supports 
multicasting can be queried with flags(). The returned bitmask is a combination of 
these values: IsUp, IsRunning, CanBroadcast, IsLoopBack, IsPointToPoint, and 
CanMulticast.

Communicating between games
After having discussed Qt's high-level network classes such as QNetworkAccessManager 
and QNetworkConfigurationManager, we will now have a look at a lower-level network 
classes and see how Qt supports you when it comes to implementing TCP or UDP servers and 
clients. This becomes relevant when you plan to extend your game by including a multiplayer 
mode. For such a task, Qt offers QTcpSocket, QUdpSocket, and QTcpServer.

Time for action – realizing a simple chat program
To get familiar with QTcpServer and QTcpSocket, let's develop a simple chat program. 
This example will teach you the basic knowledge of network handling in Qt so that you can 
use this skill later to connect two or more copies of a game. At the end of this exercise, we 
want to see something like this:



Chapter 7

[ 269 ]

On both the left-hand side and the right-hand side of the preceding figure, you can see a 
client, whereas the server is in the middle. We'll start by taking a closer look at the server.

The server – QTcpServer
As a protocol for communication, we will use Transmission Control Protocol (TCP). You may 
know this network protocol from the two most popular Internet protocols: HTTP and FTP. 
Both use TCP for their communication and so do the globally used protocols for e-mail traffic: 
SMTP, POP3, and IMAP. The main advantage of TCP, however, is its reliability and connection-
based architecture. Data transferred by TCP is guaranteed to be complete, ordered, and 
without any duplicates. The protocol is furthermore stream orientated, which allows us to 
use QDataStream or QTextStream. A downside to TCP is its speed. This is because the 
missing data has to be retransmitted until the receiver fully receives it. By default, this causes 
a retransmission of all the data that was transmitted after the missing part. So, you should 
only choose TCP as a protocol if speed is not your top priority, but rather the completeness 
and correctness of the transmitted data. This applies if you send unique nonrepetitive data.

Time for action – setting up the server
A look at the server's GUI shows us that it principally consists of QPlainTextEdit  
(ui->log) that is used to display system messages and a button (ui->disconnectClients), 
which allows us to disconnect all the current connected clients. On top, next to the button, 
the server's address and port are displayed (ui->address and ui->port). After setting up 
the user interface in the constructor of the server's class TcpServer, we initiate the internally 
used QTcpServer, which is stored in the m_server private member variable:

if (!m_server->listen(QHostAddress::LocalHost, 52693)) {
  ui->log->setPlainText("Failure while starting server: "
                        + m_server->errorString());
  return;
}
connect(m_server, SIGNAL(newConnection()),
        this, SLOT(newConnection()));

What just happened?
With QTcpServer::listen(), we defined that the server should listen to the 
localhost and the 52693 port for new incoming connections. The value used here, 
QHostAddress::LocalHost of the QHostAddress::SpecialAddress enumeration, 
will resolve to 127.0.0.1. If you instead pass QHostAddress::Any, the server will listen 
to all IPv4 interfaces as well as to IPv6 interfaces. If you only want to listen to a specific 
address, just pass this address as QHostAddress:

m_server->listen(QHostAddress("127.0.0.1"), 0);



Networking

[ 270 ]

This will behave like the one in the preceding code only in that the server will now listen to 
a port that will be chosen automatically. On success, listen() will return as true. So, if 
something goes wrong in the example it will show an error message on the text edit and exit 
the function. To compose the error message, we are using QTcpServer::errorString(), 
which holds a human-readable error phrase.

To handle the error in your game's code, the error string is not suitable. In any case where 
you need to know the exact error, use QTcpServer::serverError(), which returns 
the enumeration value of QAbstractSocket::SocketError. Based on this, you know 
exactly what went wrong, for example, QAbstractSocket::HostNotFoundError. If 
listen() was successful, we connect the server's newConnection() signal to the class's 
newConnection() slot. The signal will be emitted every time a new connection is available:

ui->address->setText(m_server->serverAddress().toString());
ui->port->setText(QString::number(m_server->serverPort()));

Lastly, we show the server's address a port number that can be accessed through 
serverAddress() and serverPort(). This information is needed by the clients so that 
they are able to connect to the server.

Time for action – reacting on a new pending connection
As soon as a client tries to connect to the server, the newConnection() slot will be called:

void TcpServer::newConnection() {
  while (m_server->hasPendingConnections()) {
    QTcpSocket *con = m_server->nextPendingConnection();
    m_clients << con;
    ui->disconnectClients->setEnabled(true);
    connect(con, SIGNAL(disconnected()), this,  
      SLOT(removeConnection()));
    connect(con, SIGNAL(readyRead()), this, SLOT(newMessage()));
    ui->log->insertPlainText(
      QString("* New connection: %1, port %2\n")
      .arg(con->peerAddress().toString())
      .arg(QString::number(con->peerPort())));
  }
}



Chapter 7

[ 271 ]

What just happened?
Since more than one connection may be pending, we use hasPendingConnections() to 
determine whether there is at least one more pending connection. Each one is then handled 
inside the while loop. To get a pending connection of the QTcpSocket type, we call 
nextPendingConnection() and add this connection to a private list called m_clients, 
which holds all active connections. In the next line, as there is now at least one connection, 
we enable the button that allows all connections to be closed. Therefore, the slot connected 
to the button's click() signal will call QTcpSocket::close() on each single connection. 
When a connection is closed, its socket emits a disconnected() signal. We connect this 
signal to our removeConnection() slot. With the last connection, we react to the socket's 
readyRead() signal, which indicates that new data is available. In such a situation, our 
newMessage() slot is called. Lastly, we print a system message that a new connection has 
been established. The address and port of the connecting client and peer can be retrieved by 
the socket's peerAddress() and peerPort() functions.

If a new connection can't be accepted, the acceptError() signal is 
emitted instead of newConnection(). It passes the reason for the failure 
of the QAbstractSocket::SocketError type as an argument. If you 
want to temporarily decline new connections, call pauseAccepting() 
on QTcpServer. To resume accepting new connections, call 
resumeAccepting().

Time for action – forwarding a new message
When a connected client sends a new chat message, the underlying socket—since it inherits 
QIODevice—emits readyRead(), and thus, our newMessage() slot will be called.

Before we have a look at this slot, there is something important that you need to keep in 
mind. Even though TCP is ordered and without any duplicates, this does not mean that all 
the data is delivered in one big chunk. So, before processing the received data, we need 
to make sure that we get the entire message. Unfortunately, there is neither an easy way 
to detect whether all data was transmitted nor a globally usable method for such a task. 
Therefore, it is up to you to solve this problem, as it depends on the use case. Two common 
solutions, however, are to either send magic tokens to indicate the start and the end of a 
message, for example, single characters or XML tags, or you can send the size of the message 
upfront. The second solution is shown in the Qt documentation where the length is put in a 
quint16 in front of the message. We, on the other hand, will look at an approach that uses 
a simple magic token to handle the messages correctly. As a delimiter, we use the "End of 
Transmission Block" character–ASCII code 23–to indicate the end of a message.



Networking

[ 272 ]

Since the processing of received data is quite complex, we will go through the code step by 
step this time:

void TcpServer::newMessage()
{
  if (QTcpSocket *con = qobject_cast<QTcpSocket*>(sender())) {
    m_receivedData[con].append(con->readAll());

To determine which socket called the slot, we use sender(). If the cast to QTcpSocket 
is successful, we enter the if scope and read the transferred—potentially fragmentary—
message with readAll().

Please note that sender() is used for simplicity. If you write real-life code, 
it is better to use QSignalMapper.

The read data is then concatenated with the previously received data that is stored in the 
QHash private member called m_receivedData, where the socket is used as a key:

    if (!m_receivedData[con].contains(QChar(23)))
      return;

Here we check whether the received data contains our special token, the "End of 
Transmission Block". Otherwise, we exit and wait for the further data to arrive, which then 
gets appended to the string. As soon as we have at least one special token, we proceed by 
splitting the data into single messages:

    QStringList messages = m_receivedData[con].split(QChar(23));
    m_receivedData[con] = messages.takeLast();

The received data contains exactly one single message for which the "End of Transmission Block" 
token is the last character, and thus, the messages list has two elements: the first one with the 
actual message and the last one without any content. This way, m_receivedData[con] is 
reset. What if QChar(23) is not the last character of the received text? Then, the last element 
is the beginning of the next, which is not yet complete, message. So, we store that message in 
m_receivedData[con]. This guarantees that no data will be lost:

    foreach (QString message, messages) {
      ui->log->insertPlainText("Sending message: " + message + "\n");

Since we do not know how many messages we will get with the last read from the socket, we 
need to go through the list of messages. For every message, we display a short notice on the 
server's log and then send it to the other clients:

      message.append(QChar(23));
      foreach (QTcpSocket *socket, m_clients) {



Chapter 7

[ 273 ]

        if (socket == con)
          continue;
        if (socket->state() == QAbstractSocket::ConnectedState)
          socket->write(message.toLocal8Bit());
      }
    }
  }
}

Before sending the message, we append QChar(23) to indicate the end of the message, of 
course, and then send it to all the connected clients, except the one who sent it in the first 
place, by simply calling write on the socket. Since the socket inherits QIODevice, you can 
use most of the functions that you know from QFile.

Have a go hero – using QSignalMapper
As discussed earlier, using sender() is a convenient, but not an object-orientated, 
approach. Thus, try to use QSignalMapper instead to determine which socket called the 
slot. To achieve this, you have to connect the socket's readyRead() signal to a mapper and 
the slot directly. All the signal-mapper-related code will go into the newConnection() slot.

The same applies to the connection to the removeConnection() slot. Let's have a look at 
it next.

Time for action – detecting a disconnect
When a client terminates the connection, we have to delete the socket from the local m_
clients list. Therefore, we have to connected the socket's disconnected() signal to:

void TcpServer::removeConnection()
{
  if (QTcpSocket *con = qobject_cast<QTcpSocket*>(sender())) {
    ui->log->insertPlainText(
      QString("* Connection removed: %1, port %2\n")
      .arg(con->peerAddress().toString())
      .arg(QString::number(con->peerPort())));
    m_clients.removeOne(con);
    con->deleteLater();
    ui->disconnectClients->setEnabled(!m_clients.isEmpty());
  }
}



Networking

[ 274 ]

What just happened?
After getting the socket that emitted the call through sender(), we post the information 
that a socket is being removed. Then, we remove the socket from m_clients and call 
deleteLater() on it. Do not use delete. Lastly, if no client is left, the disconnect button is 
disabled.

This is the first part. Now let's have a look at the client.

The client
The graphical user interface of the client (TcpClient) is pretty simple. It has three input 
fields to define the server's address (ui->address), the server's port (ui->port), and a 
username (ui->user). Of course, there is also a button to connect to (ui->connect) and 
disconnect from (ui->disconnect) the server. Finally, the GUI has a text edit that holds the 
received messages (ui->chat) and a line edit (ui->text) to send messages.

Time for action – setting up the client
When the user has provided the server's address and port and has chosen a username, he/
she can connect to the server:

void TcpClient::on_connect_clicked()
{
  //...
  if (m_socket->state() != QAbstractSocket::ConnectedState) {
    m_socket->connectToHost(ui->address->text(), ui->port->value());
    ui->chat->insertPlainText("== Connecting...\n");
  }
  //...
}



Chapter 7

[ 275 ]

What just happened?
The private member variable m_socket holds an instance of QTcpSocket. If this socket 
is already connected, nothing happens. Otherwise, the socket is connected to the given 
address and port by calling connectToHost(). Besides the obligatory server address and 
port number, you can pass a third argument to define the mode in which the socket will be 
opened. For possible values, you can use OpenMode just like we did for QIODevice. Since 
this call is asynchronous, we print a notification to the chat, so that the user is informed 
that the application is currently trying to connect to the server. When the connection is 
established, the socket sends the connected() signal that prints "Connected to server" on 
the chat to indicate that we have connected to a slot. Besides the messages in the chat, we 
also updated the GUI by, for example, disabling the connect button, but this is all basic stuff. 
You won't have any trouble understanding this if you have had a look at the sources. So, 
these details are left out here.

Of course, something could go wrong when trying to connect to a server, but luckily, we are 
informed about a failure as well through the error() signal passing a description of error 
in the form of QAbstractSocket::SocketError. The most frequent errors will probably 
be QAbstractSocket::ConnectionRefusedError if the peer refused the connection 
or QAbstractSocket::HostNotFoundError if the host address could not be found. If 
the connection, however, was successfully established, it should be closed later on. You can 
either call abort() to immediately close the socket, whereas disconnectFromHost() will 
wait until all pending data has been written.

Time for action – receiving text messages
In the constructor, we have connected the socket's readyRead() signal to a local slot. So, 
whenever the server sends a message through QTcpSocket::write(), we read the data 
and display it in the chat window:

m_receivedData.append(m_socket->readAll());
if (!m_receivedData.contains(QChar(23)))
  return;

QStringList messages = m_receivedData.split(QChar(23));
m_receivedData = messages.takeLast();
foreach (const QString &message, messages) {
  ui->chat->insertPlainText(message + "\n");
}



Networking

[ 276 ]

As you already know, QTcpSocket inherits QIODevice, so we use 
QIODevice::readAll() to get the entire text that was sent. Next, we store the received 
data and determine whether the message was transmitted completely. This approach is the 
same as we used previously for the server. Lastly, in the for loop, we add the messages to 
the chat window.

Time for action – sending text messages
What is left is now is to describe how to send a chat massage. On hitting return inside the 
line edit, a local slot will be called that checks whether there is actual text to send and 
whether m_socket is still connected:

QString message = m_user + ": " + ui->text->text();
m_socket->write(message.toLocal8Bit());
ui->text->clear();

If so, a message is composed that contains the self-given username, a colon, and the 
text of the line edit. To send this string to the peer, the QTcpSocket::write() 
server is called. Since write() only accepts const char* or QByteArray, we use 
QString::toLocal8Bit() to get QByteArray that we can send over the socket.

That's all. It's like writing and reading from a file. For the complete example, have a look at 
the sources bundled with this book and run the server and several clients.

Have a go hero – extending the chat with a user list
This example has shown us how to send a simple text. If you now go on and define a 
schema for how the communication should work, you can use it as a base for more complex 
communication. For instance, if you want to enable the client to receive a list of all other 
clients (and their usernames), you need to define that the server will return such a list if 
it gets a message such as rq:allClients from a client. Therefore, you have to parse all 
messages received by the server before forwarding them to all the connected clients. Go 
ahead and try to implement such a requirement yourself. By now, it is possible that multiple 
users have chosen the same username. With the new functionality of getting a user list, you 
can prevent this from happening. Therefore, you have to send the username to the server 
that keeps track of them.



Chapter 7

[ 277 ]

Improvements
The example we explained uses a nonblocking, asynchronous approach. For example, after 
asynchronous calls such as connectToHost(), we do not block the thread until we get a 
result, but instead, we connect to the socket's signals to proceed. On the Internet as well 
as Qt's documentation, on the other hand, you will find dozens of examples explaining 
the blocking and the synchronous approaches. You will easily spot them by their use of 
waitFor...() functions. These functions block the current thread until a function such 
as connectToHost() has a result—the time connected() or error() will be emitted. 
The corresponding blocking function to connectToHost() is waitForConnected(). The 
other blocking functions that can be used are waitForReadyRead(), which waits until new 
data is available on a socket for reading; waitForBytesWritten(), which waits until the 
data has been written to the socket; and waitForDisconnected(), which waits until the 
connection has been closed.

Look out; even if Qt offers these waitFor...() functions, do not use them! The 
synchronous approach is not the smartest one since it will freeze your game's GUI. A frozen 
GUI is the worst thing that can happen in your game and it will annoy every user. So, when 
working inside the GUI thread, you are better to react to the QIODevice::readyRead(), 
QIODevice::bytesWritten(), QAbstractSocket::connected(), and 
QAbstractSocket::disconnected() corresponding signals.

QAbstractSocket is the base class of QTcpSocket as 
well as of QUdpSocket.

Following the asynchronous approach shown, the application will only become unresponsive 
while both reading and writing to the socket as well as during determining whether a 
message is complete. The optimum, however, would be to move the entire socket handling 
to an extra thread. Then, the GUI thread would only get signals, passing the new messages, 
and to send, it would simply pass QString to the worker thread. This way, you will get a 
super fluent velvet GUI.



Networking

[ 278 ]

Using UDP
In contrast to TCP, UDP is unreliable and connectionless. Neither the order of packets, 
nor their delivery is guaranteed. UDP, however, is very fast. So, if you have frequent data, 
which does not necessarily need to be received by the peer, use UDP. This data could, 
for example, be real-time positions of a player that get updated frequently or live video/
audio streaming. Since QUdpSocket is mostly the same as QTcpSocket—both inherit 
QAbstractSocket—there is not much to explain. The main difference between them is 
that TCP is stream-orientated, whereas UDP is datagram-orientated. This means that the 
data is sent in small packages, containing among the actual content, the sender's as well 
as the receiver's IP address and port number. Due to the lack of QUdpServer, you have to 
use QAbstractSocket::bind() instead of QTcpServer::listen(). Like listen(), 
bind() takes the addresses and ports that are allowed to send datagrams as arguments. 
Whenever a new package arrives, the QIODevice::readyRead() signal is emitted. To 
read the data, use the readDatagram() function, which takes four parameters. The first 
one of the char* type is used to write the data in, the second specifies the amount of bytes 
to be written, and the last two parameters of the QHostAddress* and quint16* types 
are used to store the sender's IP address and port number. Sending data works likewise: 
writeDatagram() sends the first argument's data of the char* type to the host, which 
is defined by the third (address) and fourth (port number) argument. With the second 
parameter, you can limit the amount of data to be sent.

Time for action – sending a text via UDP
As an example, let's assume that we have two sockets of the QUpSocket type. We will call 
the first one socketA and the other socketB. Both are bound to the localhost, socketA to 
the 52000 port and socketB to the 52001 port. So, if we want to send the string "Hello!" 
from socketA to socketB, we have to write in the application that is holding socketA:

socketA->writeDatagram(QByteArray("Hello!"),  
  QHostAddress("127.0.0.1"), 52001);

Here, we have used the convenient function of writeDatagram(), which takes 
QByteArray instead of const char* and qint64. The class that holds socketB must have 
the socket's readyRead() signal connected to a slot. This slot will then be called because of 
our writeDatagram() call, assuming that the datagram is not lost! In the slots, we read the 
datagram and the sender's address and port number with:

while (socketB->hasPendingDatagrams()) {
  QByteArray datagram;
  datagram.resize(socketB->pendingDatagramSize())
  QHostAddress sender;
  quint16 senderPort;



Chapter 7

[ 279 ]

  socketB->readDatagram(datagram.data(), datagram.size(),
                       &sender, &senderPort);
  // do something with datagram, sender and port.
}

As long as there are pending datagrams—this is checked by hasPendingDatagrams(), 
which returns true as long as there are pending datagrams—we read them. This is done 
by creating QByteArray, which is used to store the transferred datagram. To be able to 
hold the entire transmitted data, it is resized to the length of the pending datagram. This 
information is retrieved by pendingDatagramSize(). Next we create QHostAddress 
and quint16 so that readDatagram() can store the sender's address and port number in 
these variables. Now, all is set up to call readDatagram() so that we get the datagram.

Have a go hero – connecting players of the Benjamin game
With this introductory knowledge, you can go ahead and try some stuff by yourself. For 
example, you can take the game Benjamin the elephant and send Benjamin's current 
position from one client to another. This way, you can either clone the screen from one client 
to the other or both clients can play the game and additionally can see where the elephant 
of the other player currently is. For such a task, you would use UDP, as it is important that 
the position is updated very fast while it isn't a disaster when one position gets lost.

Pop quiz – test your knowledge
Q1. Which three (main) classes do you need to download a file?

Q2. How can you download only the first 100 bytes of a file?

Q3. If you need to extend a URL by parameters with special characters, you need to escape 
them with QUrl::toPercentEncoding(). Which other, more convenient, option does Qt 
offer?

Q4. How do you delete QNetworkReply received from QNetworkAccessManager?

Q5. What is the type hierarchy of QTcpSocket and QUdpSocket and what's the big 
advantage of this hierarchy?

Q6. The readDatagram() function belongs to QTcpSocket or QUdpSocket?



Networking

[ 280 ]

Summary
In the first part of this chapter, you familiarized yourself with QNetworkAccessManager. 
This class is at the heart of your code whenever you want to download or upload files to the 
Internet. After having gone through the different signals that you can use to fetch errors, to 
get notified about new data or to show the progress, you should now know everything you 
need on that topic.

The example about the Distance Matrix API depended your knowledge of 
QNetworkAccessManager, and it shows you a real-life application case for it. Dealing with 
JSON as the server's reply format was a recapitulation of Chapter 4, Qt Core Essentials, but 
was highly needed since Facebook or Twitter only use JSON to format their network replies.

In the last section, you learned how to set up your own TCP server and clients. This enables 
you to connect different instances of a game to provide the multiplayer functionality. 
Alternatively, you were taught how to use UDP.

Please keep in mind that we only scratched the surface of this topic due to its complexity. 
Covering it fully would have exceeded this beginner's guide. For a real game, which uses a 
network, you should learn more about Qt's possibilities for establishing a secure connection 
via SSL or some other mechanism.

In the next chapter, you'll learn how to extend your game with a scripting engine. This 
allows you to, for example, easily change various aspects of your game without the need for 
recompiling it.



[ 281 ]

Scripting

In this chapter, you will learn how to bring scripting facilities to your programs. 
You will gain knowledge of how to use a language based on JavaScript to 
implement the logic and details of your game without having to rebuild the 
main game engine. Although the environment we are going to focus on 
blends best with Qt applications, if you don't like JavaScript you will be given 
suggestions about other languages that you can use to make your games 
scriptable.

Why script?
You might ask yourself, why should I use any scripting language if I can implement everything 
I need in C++? There are a number of benefits to providing a scripting environment to your 
games. Most modern games really consist of two parts. One of them is the main game engine 
that implements the core of the game (data structures, processing algorithms, and the 
rendering layer) and exposes an API to the other component, which provides details, behavior 
patterns, and action flows for the game. This other component is usually written in a scripting 
language. The main benefit of this is that story designers can work independently from the 
engine developers and they don't have to rebuild the whole game just to modify some of its 
parameters or check whether the new quest fits well into the existing story. This makes the 
development much quicker compared to the monolithic approach. Another benefit is that this 
development opens the game to modding—skilled end users can extend or modify the game 
to provide some added value to the game. It's also a way to make additional money on the 
game by implementing extensions on it on top of the existing scripting API without having to 
redeploy the complete game binary to every player or to expose new scripting endpoints to 
boost the creativity of the modders even more. Finally, you can reuse the same game driver 
for other games and just replace the scripts to obtain a totally different product.

8



Scripting

[ 282 ]

Qt provides two implementations of a JavaScript-based scripting environment. In this 
chapter, we will be focusing on Qt Script. In the docs, you can see that the module is marked 
as "deprecated"; however, it currently provides a richer API (albeit with slower execution) 
than the other implementation. After we describe Qt Script, we will have a brief look at the 
other implementation as well. We will not discuss the details of the JavaScript language 
itself, as there are many good books and websites available out there where you can learn 
JavaScript. Besides, the JavaScript syntax is very similar to that of C, and you shouldn't have 
any problems understanding the scripts that we use in this chapter even if you haven't seen 
any JavaScript code before.

The basics of Qt Script
To use Qt Script in your programs, you have to enable the script module for your projects by 
adding the QT += script line to the project file.

Evaluating JavaScript expressions
C++ compilers do not understand JavaScript. Therefore, to execute any script, you need to 
have a running interpreter that will parse the script and evaluate it. In Qt, this is done with 
the QScriptEngine class. This is a Qt Script runtime that handles the execution of script 
code and manages all the resources related to scripts. It provides the evaluate() method, 
which can be used to execute JavaScript expressions. Let's look at a "Hello World" program  
in Qt Script:

#include <QCoreApplication>
#include <QScriptEngine>

int main(int argc, char **argv) {
  QCoreApplication app(argc, argv);
  QScriptEngine engine;
  engine.evaluate("print('Hello World!')");
  return 0;
}

This program is very simple. First, it creates an application object that is required for the 
script environment to function properly, and then it just instantiates QScriptEngine and 
invokes evaluate to execute the script source given to it as a parameter. After building and 
running the program, you will see a well-known Hello World! printed to the console.



Chapter 8

[ 283 ]

If you don't get any output, then this probably means that the script didn't get executed 
properly, possibly because of an error in the script's source code. To verify that, we can 
extend our simple program to check whether there were any problems with the execution of 
the script. For this, we can query the engine state with hasUncaughtExceptions():

#include <QCoreApplication>
#include <QScriptEngine>
#include <QtDebug>

int main(int argc, char **argv) {
  QCoreApplication app(argc, argv);
  QScriptEngine engine;
  engine.evaluate("print('Hello World!')");
  if(engine.hasUncaughtException()) {
    QScriptValue exception = engine.uncaughtException();
    qDebug() << exception.toString();
  }
  return 0;
}

The highlighted code checks whether there is an exception and if yes, it fetches the 
exception object. You can see that its type is QScriptValue. This is a special type that is 
used to exchange data between the script engine and the C++ world. It is somewhat similar 
to QVariant in the way that it is really a facade for a number of primitive types that the 
script engine uses internally. One of the types is the type holding errors. We can check 
whether a script value object is an error using its isError() method, but in this case, we 
don't do that since uncaughtException() is meant to return error objects. Instead, we 
immediately convert the error to a string representation and dump it to the console using 
qDebug(). For example, if you omit the closing single quote in the script source text and run 
the program, the following message will be displayed:

"SyntaxError: Parse error"

QScriptEngine::evaluate() also returns QScriptValue. This object represents the 
result of the evaluated script. You can make a script calculate some value for you that you 
can later use in your C++ code. For example, the script can calculate the amount of damage 
done to a creature when it is hit with a particular weapon. Modifying our code to use 
the result of the script is very simple. All that is required is to store the value returned by 
evaluate() and then it can be used elsewhere in the code:

QScriptValue result = engine.evaluate("(7+8)/2");
if(engine.hasUncaughtException()) {
  // ...
} else {
  qDebug() << result.toString();
}



Scripting

[ 284 ]

Time for action – creating a Qt Script editor
Let's do a simple exercise and create a graphical editor to write and execute scripts. Start by 
creating a new GUI project and implement a main window composed of two plain text edit 
widgets (ui->codeEditor and ui->logWindow) that are separated using a vertical splitter. 
One of the edit boxes will be used as an editor to input code and the other will be used as 
a console to display script results. Then, add a menu and toolbar to the window and create 
actions to open (ui->actionOpen) and save (ui->actionSave) the document, create a 
new document (ui->actionNew), execute the script (ui->actionExecute), and to quit 
the application (ui->actionQuit). Remember to add them to the menu and toolbar. As a 
result, you should receive a window similar to the one shown in the following screenshot:

Connect the quit action to the QApplication::quit() slot. Then, create an 
openDocument() slot and connect it to the appropriate action. In the slot, use 
QFileDialog::getOpenFileName() to ask the user for a document path as follows:

void MainWindow::openDocument() {
  QString filePath = QFileDialog::getOpenFileName 
    (this, "Open Document", QDir::homePath(),  
    "JavaScript Documents (*.js)");
  if(filePath.isEmpty()) return;
  open(filePath);
}



Chapter 8

[ 285 ]

In a similar fashion, implement the Save and Save As action handlers. Lastly, create the 
open(const QString &filePath) slot, make it read the document, and put its contents 
into the code editor:

void MainWindow::open(const QString &filePath) {
  QFile file(filePath);
  if(!file.open(QFile::ReadOnly|QFile::Text)) {
      QMessageBox::critical(this, "Error", "Can't open file.");
      return;
  }
  setWindowFilePath(filePath);
  ui->codeEditor->setPlainText(QTextStream(&file).readAll());
  ui->logWindow->clear();
}

The windowFilePath property of QWidget can be used to 
associate a file with a window. You can then use it in actions related 
to using the file—when saving a document, you can check whether 
this property is empty and ask the user to provide a filename. Then, 
you can reset this property when creating a new document or when 
the user provides a new path for the document.

At this point, you should be able to run the program and use it to create scripts and save and 
reload them in the editor.

Now, to execute the scripts, add a QScriptEngine m_engine member variable to the 
window class. Create a new slot, call it run, and connect it to the execute action. Put the 
following code in the body of the slot:

void Main Window::run() {
   ui->logWindow->clear();
   QScriptValue result
     = m_engine.evaluate(scriptSourceCode, windowFilePath());
   if(m_engine.hasUncaughtException()) {
     QScriptValue exception = m_engine.uncaughtException();
     QTextCursor cursor = ui->logWindow->textCursor();
     QTextCharFormat errFormat;
     errFormat.setForeground(Qt::red);
     cursor.insertText(
       QString("Exception at line %1:")
       .arg(m_engine.uncaughtExceptionLineNumber()),
       errFormat
     );
     cursor.insertText(exception.toString(), errFormat);



Scripting

[ 286 ]

     QStringList trace = m_engine.uncaughtExceptionBacktrace();
     errFormat.setForeground(Qt::darkRed);
     for(int i = 0; i < trace.size(); ++i) {
       const QString & traceFrame = trace.at(i);
       cursor.insertBlock();
       cursor.insertText(QString("#%1: %2")
         .arg(i).arg(traceFrame), errFormat);
     }
   } else {
     QTextCursor cursor = ui->logWindow->textCursor();
     QTextCharFormat resultFormat;
     resultFormat.setForeground(Qt::blue);
     cursor.insertText(result.toString(), resultFormat);
   }
}

Build and run the program. To do so, enter the following script in the editor:

function factorial(n) {
  if( n < 0 ) return undefined
  if( n == 0 ) return 1
  return n*factorial(n-1)
}

factorial(7)

Save the script in a file called factorial.js and then run it. You should get an output as 
shown in the following screenshot:



Chapter 8

[ 287 ]

Next, replace the script with the following one:

function factorial(n) {
  return N
}

factorial(7)

Running the script should yield the following result:

What just happened?
The run() method clears the log window and evaluates the script using the method that 
we learned earlier in this chapter. If the evaluation is successful, it prints the result in the log 
window, which is what we see in the first screenshot shown in the previous section.

In the second attempt, we made an error in the script using a nonexistent variable. 
Evaluating such code results in an exception. In addition to reporting the actual error, we 
also use uncaughtExceptionLineNumber() to report the line that caused the problem. 
Next, we call the engine's uncaughtExceptionBacktrace() method, which returns a list 
of strings containing the backtrace (a stack of function calls) of the problem, which we also 
print on the console.

Let's try another script. The following code defines the local variable fun, which is assigned 
an anonymous function that returns a number:

var fun = function() { return 42 }



Scripting

[ 288 ]

You can then call fun() like a regular function as follows:

Now, let's look at what happens if we delete the definition of fun from the script, but still 
keep the invocation:

We still get the same result even though we didn't define what fun means! This is because 
the QScriptEngine object keeps its state across evaluate() invocations. If you define a 
variable in a script, it is kept in the current context of the engine. The next time evaluate() 
is called, it executes the script in the same context as before; therefore, all variables defined 
earlier are still valid. Sometimes, this is a desired behavior; however, a malicious script 
can wreck the context, which can cause trouble for subsequent evaluations in the engine. 
Therefore, it is usually better to make sure that the engine is left in a clean state after a script 
is done with the execution.



Chapter 8

[ 289 ]

Time for action – sandboxed script evaluation
The next task for us is to modify our script editor so that it cleans up after the execution of 
each script. As was said, each script is executed in the current context of the engine, so the 
task of solving the problem boils down to making sure that each script executes in a separate 
context. Incorporate the following code in the run() method:

void MainWindow::run() {
    ui->logWindow->clear();
    QString scriptSourceCode = ui->codeEditor->toPlainText();
    m_engine.pushContext();
 QScriptValue result = m_engine.evaluate
  (scriptSourceCode, windowFilePath());
    if(m_engine.hasUncaughtException()) {
        // …
    }
    m_engine.popContext();
}

Run the program and repeat the last test to see that fun no longer persists across 
executions.

What just happened?
When a function is called, a new execution context is pushed to the top of the stack. When 
the engine tries to resolve an object, it first looks for the object in the topmost context 
(which is the context of the function call). If it is not found, the engine looks into the next 
context on the stack and then the next until it finds the object or reaches the bottom of the 
stack. When the function returns, the context is popped from the stack and all variables 
defined there are destroyed. You can see how this works using the following script:

var foo = 7
function bar() { return foo }
bar()

When bar is called, a new context is added to the stack. The script requests for the foo 
object, which is not present in the current context, so the engine looks into the surrounding 
context and finds a definition of foo. In our code, we follow this behavior by explicitly 
creating a new context using pushContext() and then removing it with popContext().

You can retrieve the current context object with currentContext().



Scripting

[ 290 ]

The context has two important objects associated with it: the activation object and the 
this object. The former defines an object where all local variables are stored as the object's 
properties. If you set any properties on the object before invoking a script, they will be 
directly available to the script:

QScriptContext *context = engine.pushContext();
QScriptValue activationObject = context->activationObject();
activationObject.setProperty("foo", "bar");
engine.evaluate("print(foo)");

The this object works in a similar fashion—it determines the object to be used when the 
script refers to an object called this. Any properties defined in C++ are accessible from the 
script and the other way round:

QScriptContext *context = engine.pushContext();
QScriptValue thisObject = context->thisObject();
thisObject.setProperty("foo", "bar");
engine.evaluate("print(this.foo)");

Integrating Qt and Qt Script
So far, we were only evaluating some standalone scripts that could make use of the features 
built in JavaScript. Now, it is time to learn to use data from your programs in the scripts.

This is done by exposing different kinds of entities to and from scripts.

Exposing objects
The simplest way to expose data to Qt Script is to take advantage of Qt's meta-object system. 
Qt Script is able to inspect QObject instances and detect their properties and methods. To 
use them in scripts, the object has to be visible to the script execution context. The easiest way 
to make this happen is to add it to the engine's global object or to some context's activation 
object. As you remember, all data between the script engine and C++ is exchanged using the 
QScriptValue class, so first we have to obtain a script value handle for the C++ object:

QScriptEngine engine;
QPushButton *button = new QPushButton("Button");
// …
QScriptValue scriptButton = engine.newQObject(button);
engine.globalObject().setProperty("pushButton", scriptButton);



Chapter 8

[ 291 ]

QScriptEngine::newQObject() creates a script wrapper for an existing QObject 
instance. We then set the wrapper as a property of the global object called pushButton. 
This makes the button available in the global context of the engine as a JavaScript object. All 
the properties defined with Q_PROPERTY are available as properties of the object and every 
slot is accessible as a method of that object. Using this approach, you can share an existing 
object between the C++ and JavaScript worlds:

int main(int argc, char **argv) {
  QApplication app(argc, argv);
  QScriptEngine engine;
  QPushButton button;
  engine.globalObject().setProperty
  ("pushButton", engine.newQObject(&button));
  QString script = "pushButton.text = 'My Scripted Button'\n"+
                   "pushButton.checkable = true\n" +
                   "pushButton.setChecked(true)"
  engine.evaluate(script);
  return app.exec();
}

There are cases when you want to provide a rich interface for a class to manipulate it from 
within C++ easily, but to have a strict control over what can be done using scripting, you 
want to prevent scripters from using some of the properties or methods of the class.

For methods, this is quite easy—just don't make them slots. Remember that you can  
still use them as slots if you use the connect() variant, which takes a function pointer  
as an argument.

For properties, you can mark a property as accessible or inaccessible from scripts using 
the SCRIPTABLE keyword in the Q_PROPERTY declaration. By default, all properties are 
scriptable, but you can forbid their exposure to scripts by setting SCRIPTABLE to false as 
shown in the following example:

Q_PROPERTY(QString internalName READ internalName SCRIPTABLE false)

Time for action – employing scripting for npc AI
Let's implement a script serving as artificial intelligence (AI) for a nonplayer character in a 
simple Dungeons & Dragons game. The engine will periodically execute the script, exposing 
two objects to it—the creature and the player. The script will be able to query the properties 
of the player and invoke functions on the creature.



Scripting

[ 292 ]

Let's create a new project. We'll start by implementing the C++ class for creatures in our 
game world. Since both the NPC and player are living entities, we can have a common base 
class for them. In Chapter 4, Qt Core Essentials, we already had a data structure for players, 
so let's use that as a base by equipping our entities with similar attributes. Implement 
LivingEntity as a subclass of QObject with the following properties:

Q_PROPERTY(QString name     READ name        NOTIFY nameChanged)
Q_PROPERTY(char direction   READ direction   NOTIFY directionChanged)
Q_PROPERTY(QPoint position  READ position    NOTIFY positionChanged)
Q_PROPERTY(int hp           READ hp          NOTIFY hpChanged)
Q_PROPERTY(int maxHp        READ maxHp       NOTIFY maxHpChanged)
Q_PROPERTY(int dex          READ dex         NOTIFY dexChanged)
Q_PROPERTY(int baseAttack   READ baseAttack  NOTIFY baseAttackChanged)
Q_PROPERTY(int armor        READ armor       NOTIFY armorChanged)

You can see that this interface is read only—you cannot modify any of the properties using 
the LivingEntity class. Of course, we still need methods to change those values; so, 
implement them in the public interface of the class:

public:
  void setName(const QString &newName);
  void setDirection(char newDirection);
  void setPosition(const QPoint &newPosition);
  void setHp(int newHp);
  void setMaxHp(int newMaxHp);
  void setBaseAttack(int newBaseAttack);
  void setArmor(int newArmor);
  void setDex(int newDex);

When you implement these methods, be sure to emit proper signals when you modify 
property values. Let's add more methods that correspond to the actions that a creature  
can take:

public:
  void attack(LivingEntity *enemy);
  void dodge();
  void wait();
  bool moveForward();
  bool moveBackward();
  void turnLeft();
  void turnRight();

The last four methods are simple to implement; for the first three methods, use the 
following code:

void LivingEntity::wait() {  if(hp() < maxHp()) setHp(hp()+1); }



Chapter 8

[ 293 ]

void LivingEntity::dodge() {
    m_armorBonus += dex(); 
    emit armorChanged(armor()); // m_baseArmor + m_armorBonus
}
void LivingEntity::attack(LivingEntity *enemy) {
  if (baseAttack() <=0) return;
  int damage = qrand() % baseAttack();
  int enemyArmor = enemy->armor();
  int inflictedDamage = qMax(0, damage-enemyArmor);
  enemy->setHp(qMax(0, enemy->hp() - inflictedDamage));
}

Essentially, if the creature chooses to wait, it regains one hit point. If it dodges, this increases 
its chances to avoid damage when attacked. If it attacks another creature, this inflicts 
damage based on its own attack and the opponent's defensive score.

The next step is to implement the subclasses of LivingEntity so that we can manipulate 
the objects from Qt Script. To do this, implement the NPC class as follows:

class NPC : public LivingEntity {
  Q_OBJECT
public:
  NPC(QObject *parent = 0) : LivingEntity(parent) {}
public slots:
  void attack(LivingEntity *enemy) { LivingEntity::attack(enemy); }
  void dodge() { LivingEntity::dodge(); }
  void wait() { LivingEntity::wait(); }
  bool moveForward() { return LivingEntity::moveForward(); }
  bool moveBackward() { return LivingEntity::moveBackward(); }
  void turnLeft() { LivingEntity::turnLeft(); }
  void turnRight() { LivingEntity::turnRight(); }
};

What remains is to create a simple game engine to test our work. To do this, start by adding 
a reset() method to LivingEntity that will reset the armor bonus before every turn. 
Then, implement the GameEngine class:

class GameEngine : public QScriptEngine {
public:
  GameEngine(QObject *parent = 0) : QScriptEngine(parent) {
    m_timerId = 0;
    m_player = new LivingCreature(this);
    m_creature = new NPC(this);
    QScriptValue go = globalObject();
    go.setProperty("player", newQObject(m_player));
    go.setProperty("self", newQObject(m_creature));
  }



Scripting

[ 294 ]

  LivingCreature *player() const {return m_player; }
  LivingCreature *npc() const { return m_creature; }
  void start(const QString &fileName) {
    if(m_timerId) killTimer(m_timerId);
    m_npcProgram = readScriptFromFile(fileName);
    m_timerId = startTimer(1000);
  }
protected:
  QScriptProgram readScriptFromFile(const QString &fileName) const {
    QFile file(fileName);
    if(!file.open(QFile::ReadOnly|QFile::Text))  
      return QScriptProgram();
    return QScriptProgram(file.readAll(), fileName);
  }
  void timerEvent(QTimerEvent *te) {
    if(te->timerId() != m_timerId) return;
    m_creature->reset();
    m_player->reset();
    evaluate(m_npcProgram);
  }
private:
  LivingEntity *m_player;
  NPC *m_creature;
  QScriptProgram m_npcProgram;
  int m_timerId;
};

Finally, write the main function:

int main(int argc, char **argv) {
  QCoreApplication app(argc, argv);
  GameEngine engine;
  
  engine.player()->setMaxHp(50);
  engine.player()->setHp(50);
  engine.player()->setDex(10);
  engine.player()->setBaseAttack(12);
  engine.player()->setArmor(3);

  engine.npc()->setMaxHp(100);
  engine.npc()->setHp(100);
  engine.npc()->setDex(4);
  engine.npc()->setBaseAttack(2);
  engine.npc()->setArmor(1);

  engine.start(argv[1]);
  return app.exec();
}



Chapter 8

[ 295 ]

You can test the application using the following script:

print("Player HP:", player.hp)
print("Creature HP:", self.hp)
var val = Math.random() * 100
if(val < 50) {
  print("Attack!")
  self.attack(player) 
} else {
  print("Dodge!");
  self.dodge();
}

What just happened?
We created two classes of objects: LivingCreature, which is the basic API to read data 
about a creature, and NPC, which provides a richer API. We obtained this effect by redeclaring 
the existing functions as slots. This is possible even when the methods are not virtual, as 
when slots are executed using Qt's meta-object system, they are always treated as if they 
were virtual methods—a declaration in the derived class always shadows the declaration 
in the parent class. Having the two classes, we exposed their instances to the scripting 
environment, and we use a timer to call a user-defined script every second. Of course, this 
is a very simple approach to scripting, which can easily be abused if the user calls multiple 
action functions in the script, for example, by calling attack() many times in one script, 
the creature can perform multiple strikes on the opponent. Speaking of attack(), note 
that it takes a LivingCreature pointer as its parameter. In the script, we fed it with the 
player object that corresponds to the needed type in C++. The conversion is done by Qt Script 
automatically. Therefore, you can define methods by taking QObject pointers and using 
them with QObject instances that are exposed to scripts. In a similar fashion, you can define 
functions by taking QVariant or QScriptValue and passing any value to them in the script. 
If the script engine is able to convert the given value to the requested type, it will do so.



Scripting

[ 296 ]

Have a go hero – extending the Dungeons & Dragons game
Here is a number of ideas that can be used to extend our small game. The first is to add a 
script execution for the player as well so that it tries to defend against the creature. For that, 
you'll need to expose the creature's data using the LivingCreature API so that it is read 
only and exposes the player using a read-write interface. There are many ways to obtain it; 
the easiest is to provide two public QObject interfaces that operate on a shared pointer as 
shown in the following diagram:

signals/slots
signals/slots

shared pointer

LivingCreatureData

LivingCreatureRW

+attack()

+moveForward()

+moveBackward()

+turnLeft()

+turnRight()

LivingCreatureRO

The API already contains methods to move creatures. You can extend the fighting rules to 
take into consideration the distance between opponents and their relative orientation (for 
example, striking from behind usually yields more damage than when standing face-to-face 
with the enemy). You can even introduce ranged combat. Extend the LivingCreature 
interface with the properties and methods that manipulate the creature's inventory. Allow 
the creature to change its active weapon.

The final modification that you can apply is to prevent cheating, using the mechanism 
described earlier. Instead of executing an action immediately, mark which action the script 
has chosen (along with its parameters) and only execute that action after the script finishes 
executing, for example, like this:

void timerEvent(QTimerEvent *te) {
  if(te->timerId() != m_timerId) return;
  m_creature.reset();
  m_player.reset();
  evaluate(m_npcProgram);
  evaluate(m_playerProgram);
  m_creature.executeAction();
  m_player.executeAction();
}



Chapter 8

[ 297 ]

Another approach to this would be to assign action points to each creature's every turn and 
allow the creature to spend them on different actions. If there are not enough points left to 
execute an action, the script is notified about this and the action fails.

Exposing functions
Until now, we have been exporting objects to scripts and calling their properties and 
methods. However, there is also a way to call standalone C++ functions from scripts as well 
as call functions written in JavaScript from within C++ code. Let's have a look at how this 
works.

Exposing C++ functions to scripts
You can expose a standalone function to Qt Script with the help of the 
QScriptEngine::newFunction() call. It returns QScriptValue as any function in 
JavaScript, is also an object, and can be represented by QScriptValue. In C++, if a function 
accepts three parameters, you have to pass exactly three parameters when calling it. In 
JavaScript, this is different—you can always pass any number of parameters to a function, 
and it is the function's responsibility to do a proper argument validation. Therefore, the 
actual function that is exported should be wrapped in another function that will do what 
JavaScript expects from it before calling the actual function. The wrapper function needs to 
have an interface that is compatible with what newFunction() expects. It should take two 
parameters: the script context and the script engine, and it should return QScriptValue. 
The context contains all the information regarding the parameters of the function, including 
their count. Let's try wrapping a function that takes two integers and returns their sum:

int sum(int a, int b) { return a+b; }

QScriptValue sum_wrapper(QScriptContext *context,  
  QScriptEngine *engine) {
  if(context->argumentCount() != 2) return engine->undefinedValue();
  QScriptValue arg0 = context->argument(0);
  QScriptValue arg1 = context->argument(1);
  if(!arg0.isNumber() || !arg1.isNumber())
  return engine->undefinedValue();
  return sum(arg0.toNumber()+arg1.toNumber());
}

Now that we have the wrapper, we can create a function object for it and export it to the 
scripting environment in exactly the same way as we export regular objects—by making it a 
property of the script's global object:

QScriptValue sumFunction = engine.newFunction(sum_wrapper, 2);
engine.globalObject().setProperty("sum", sumFunction);



Scripting

[ 298 ]

The second argument to newFunction() defines how many arguments the function 
expects and is retrievable with the function object's length property. This is just for your 
information, as the caller can pass as many arguments as he/she wants. Try evaluating the 
following script after exporting the sum function:

print("Arguments expected:", sum.length)
print(sum(1,2,3) // sum returns Undefined

We can make use of such behavior and extend the functionality of our sum function by 
making it return a sum of all the parameters passed to it:

QScriptValue sum_wrapper(QScriptContext *context, 
  QScriptEngine *engine) {
  int result = 0;
  for(int i=0; i<context->argumentCount();++i) {
    QScriptValue arg = context->argument(i);
    result = sum(result, arg.toNumber());
  }
  return result;
}

Now, you can call the sum with any number of arguments:

print(sum());
print(sum(1,2));
print(sum(1,2,3));

This brings us to an interesting question: can the function have different functionality 
depending on how many parameters you pass to it? The answer is positive; you can 
implement the function in any way you want, with the whole power of C++ at hand. There 
is a specific case for JavaScript when such behavior makes particular sense. This is when the 
function is supposed to work as a getter and setter for a property. Getters and setters are 
functions that are called when the script wants to retrieve or set the value of a property in 
some object. By attaching getters and setters to objects, you can control where the value is 
stored (if at all) and how it is retrieved. This opens the possibility of adding properties to the 
exported Qt objects that have not been declared with the Q_PROPERTY macro:

class CustomObject : public QObject {
  Q_OBJECT
public:
  CustomObject(QObject *parent = 0) : QObject(parent)  
    { m_value = 0; }
  int value() const { return m_value; }
  void setValue(int v) { m_value = v; }
private:
  int m_value;



Chapter 8

[ 299 ]

};

QScriptValue getSetValue(QScriptContext *, QScriptEngine*);  
  // function prototype

int main(int argc, char **argv) {
  QCoreApplication app(argc, argv);
  QScriptEngine engine;
  CustomObject object;
  QScriptValue object_value = engine.newQObject(&object);
  QScriptValue getSetValue_fun = engine.newFunction(getSetValue);
  object_value.setProperty("value", getSetValue_fun,
    QScriptValue::PropertyGetter|QScriptValue::PropertySetter);
  engine.globalObject().setProperty("customObject", object_value);
  engine.evaluate("customObject.value = 42");
  qDebug() << object.value();
  return 0;
}

Let's analyze this code; here, we expose an instance of CustomObject to the script engine 
in a standard way. We also set the object's value property to a function, passing an additional 
value to setProperty(), which contains a set of flags that tell the scripting environment 
how it should treat the property. In this case, we tell it that the passed value should be used 
as a getter and setter for the property. Let's see how the function itself is implemented:

QScriptValue getSetValue(QScriptContext *context,  
  QScriptEngine *engine) {
  QScriptValue object = context->thisObject();
  CustomObject *customObject =  
    qobject_cast<CustomObject*>(object.toQObject());
  if(!customObject) return engine->undefinedValue();
  if(context->argumentCount() == 1) {
    // property setter
    customObject->setValue(context->argument(0).toNumber());
    return engine->undefinedValue();
  } else {
    // property getter
    return customObject->value();
  }
}



Scripting

[ 300 ]

First, we ask the function the context for the value representing the object that the function 
is called on. Then, we extract a CustomObject pointer from it using qobject_cast. Next, 
we check the number of arguments to the function call. In the case of a setter, the function is 
passed one parameter—the value to be set to the property. In such a situation, we use a C++ 
method of the object to apply that value to the object. Otherwise, (no arguments are passed) 
the function is used as a getter and we return the value after fetching it with the C++ method.

Exposing script functions to C++
In the same way as C++ functions are exported to Qt Script with the use of QScriptValue, 
JavaScript functions can be imported to C++. You can ask for a script value representing a 
function like any other property. The following code asks the engine for the Math.pow() 
function, which performs the power operation on its arguments:

QScriptValue powFunction =  
  engine.globalObject().property("Math").property("pow");

Having QScriptValue represent a function, you can invoke it using the value's call() 
method and pass any parameters as a list of script values:

QScriptValueList arguments = { QScriptValue(2), QScriptValue(10) };
QScriptValue result = powFunction.call(QScriptValue(), arguments);
qDebug() << result.toNumber(); // yields 1024

The first parameter to call() is the value that is to be used as the this object of  
the function. In this particular case, we pass an empty object since the function is 
standalone—it does not make any use of its environment. There are situations, however, 
when you will want to set an existing object here, for example, to allow a function to directly 
access the existing properties or define new properties of an object.

Let's use the newly learned functionality to improve our Dungeons & Dragons game in 
order to use a richer set of scripting functionality that is based on JavaScript functions and 
properties. The script used will contain a set of functions written in JavaScript that are going 
to be stored in the program and called in various situations. We'll be focusing here only on 
the scripting part. You will surely be able to fill in the C++ gaps yourself.

Time for action – storing the script
The first task is to read the script, extract the needed functions from it, and store them in a 
safe place. Then, load the project for the game and add a new class with the following code:

class AIScript {
public:
  QScriptProgram read(const QString &fileName);
  bool evaluate(const QScriptProgram &program,  
    QScriptEngine *engine);



Chapter 8

[ 301 ]

  QScriptValue initFunction;
  QScriptValue heartbeatFunction;
  QScriptValue defendFunction;
};

The reading method can have the same content as the original readScriptFromFile 
method. The evaluate method looks as follows:

bool AIScript::evaluate(const QScriptProgram &program,  
  QScriptEngine *engine) {
  QScriptContext *context = engine->pushContext();
  QScriptValue activationObject;
  QScriptValue result = engine->evaluate(program);
  activationObject = context->activationObject();
  if(!result.isError()) {
    initFunction = activationObject.property("init");
    heartbeatFunction = activationObject.property("heartbeat");
    defendFunction = activationObject.property("defend");
  }
  engine->popContext();
  return !result.isError();
}

Modify the GameEngine class to make use of the new code (remember to add the m_ai 
class member):

  void start(const QString &fileName) {
    m_ai = AIScript();
    QScriptProgram program = m_ai.read(fileName);
    m_ai.evaluate(program, this);
    qDebug() << m_ai.initFunction.toString();
    qDebug() << m_ai.heartbeatFunction.toString();
    qDebug() << m_ai.defendFunction.toString();
  }

Run the program by feeding it the following script:

function init() {
  print("This is init function")
}

function heartbeat() {
  print("This is heartbeat function")
}

function defend() {
  print("This is defend function")
}



Scripting

[ 302 ]

What just happened?
The AIScript object contains information about the AI for a single entity. The start() 
method now loads a script from the file and evaluates it. The script is expected to define 
a number of functions that are then retrieved from the activation object and stored in the 
AIScript object.

Time for action – providing an initialization function
The task for this exercise is to make it possible for the AI to initialize itself by invoking the 
init() function. Let's get right down to business. Extend the AIScript structure with yet 
another field:

QScriptValue m_thisObject;

This object will represent the AI itself. The script will be able to store data or define functions 
in it. Add the following code to the class as well:

void AIScript::initialize(QScriptEngine *engine) {
  m_thisObject = engine->newObject();
  engine->pushContext();
  initFunction.call(m_thisObject);
  engine->popContext();
}

Add a call to initialize() at the end of start():

  void start(const QString &fileName) {
    m_ai = AIScript();
    QScriptProgram program = m_ai.read(fileName);
    evaluate(program, this);
    m_ai.initialize(this);
  }

Now, run the program using the following init() function:

function init() {
  print("This is init function")
  this.distance = function(p1, p2) {
    // Manhattan distance
    return Math.abs(p1.x-p2.x)+Math.abs(p1.y-p2.y)
  }
  this.actionHistory = []
}



Chapter 8

[ 303 ]

What just happened?
In initialize, we prepare the script object with an empty JavaScript object and we call the 
function stored in initFunction, passing the script object as this. The function prints a 
debug statement and defines two properties in this object—one is a function to calculate the 
Manhattan distance and the other is an empty array where we will store a history of actions 
that the AI has taken.

Manhattan distance is a metric to calculate the distance between objects; 
this is much faster to calculate than the real Euclidean distance. It is 
based on the assumption that when traversing a large city with a grid of 
buildings, one can only follow streets that go along those buildings and 
take 90 degree turns. The Manhattan distance between positions is then 
the number of crossings one has to walk through to get from the source 
to the destination. In C++ and Qt, you can compute this distance easily 
using the manhattanLength() method in the QPoint class.

Time for action – implementing the heartbeat event
The heart of AI is the heartbeat function that is executed at equal intervals of time to allow 
the AI to decide about the actions of the object. The script that is executed will have access 
to the creature that it operates on as well as its environment. It can also use anything that it 
defines in the this object. Now, add a heartbeat function to AIScript:

void AIScript::heartbeat(QScriptEngine *engine, QObject *personObject,  
  QObject *otherObject) {
  QScriptValueList params;
  params << engine->newQObject(personObject);
  m_thisObject.setProperty("enemy", engine->newQObject(otherObject));
  heartbeatFunction.call(m_thisObject, params);
  m_thisObject.setProperty("enemy", QScriptValue::UndefinedValue);
}

Bring the timer back, set it to start(), and also enable the running heartbeat functionality 
from within the timer event:

void timerEvent(QTimerEvent *te) {
    if(te->timerId() != m_timerId) return;
    m_creature->reset();
    m_player->reset();
    m_ai.heartbeat(this, m_creature, m_player);
}



Scripting

[ 304 ]

Run the program, giving it the following heartbeat function:

function heartbeat(person) {
  person.attack(this.enemy)
  this.actionHistory.push("ATTACK")
}

What just happened?
In heartbeat, we proceed in similar way as with init, but here, we pass the creature that 
the AI works on as a parameter of the function and we set the other entity as the enemy 
property of the this object, which makes it accessible to the function. After the call we 
remove the enemy property from the this object. The function itself performs an attack on 
the enemy and pushes an entry to the script object history. Unlike a direct invocation of 
evaluate when making a function call we don't have to push and pop an execution context as 
it is done for us automatically during QScriptValue::call.

Have a go hero – defending against attacks
You may have noticed that we left out the defend script. Try extending the game by calling  
a script whenever the subject is attacked by the opponent. In the script, allow the creature 
to take different defensive stances, such as evading, blocking, or parrying attacks. Make  
each action have a different influence on the outcome of the strike. Also, apply all the 
modifications that you made to the original game. Try expanding on the code that was 
already written by providing additional hooks where scripts are run and adding new actions 
and objects. How about adding more enemies to the game? What about organizing a contest 
for the best AI algorithm?

Using signals and slots in scripts
Qt Script also offers the capability to use signals and slots. The slot can be either a C++ 
method or a JavaScript function. The connection can be made either in C++ or in the script.

First, let's see how to establish a connection within a script. When a QObject instance is 
exposed to a script, the object's signals become the properties of the wrapping object. These 
properties have a connect method that accepts a function object that is to be called when 
the signal is emitted. The receiver can be a regular slot or a JavaScript function. To connect 
the clicked() signal of an object called button to a clear() slot of another object called 
lineEdit, you can use the following statement:

button.clicked.connect(lineEdit.clear)

If the receiver is a standalone function called clearLineEdit, the call becomes:

button.clicked.connect(clearLineEdit)



Chapter 8

[ 305 ]

You can also connect a signal to an anonymous function that was defined directly in the 
connection statement:

button.clicked.connect(function() { lineEdit.clear() })

There is additional syntax available where you can define the this object for the function:

var obj = { "name": "FooBar" }
button.clicked.connect(obj, function() { print(this.name) })

If you need to disconnect a signal from within a script, just replace connect with 
disconnect:

button.clicked.disconnect(clearLineEdit)

Emitting signals from within the script is also easy—just call the signal as a function and pass 
to it any necessary parameters:

spinBox.valueChanged(7)

To create a signal-slot connection on the C++ side where the receiver is a script function, 
instead of a regular connect() statement, use qScriptConnect(). Its first two 
parameters are identical with the regular call and the two other parameters correspond to a 
script value that represents an object that is to act as the this object and a script value that 
represents a function to be called:

QScriptValue function = engine.evaluate("(function() { })");
qScriptConnect(button, SIGNAL(clicked()), QScriptValue(), function);

In this particular example, we pass an invalid object as the third parameter. In such a case, 
the this object will point to the engine's global object.

As for disconnecting signals, of course, there is qScriptDisconnect() available.

Have a go hero – triggering defense using signals and slots
As a task for yourself, try modifying the Dungeons & Dragons game so that the defend script 
function is not called manually by the script engine, but instead is invoked using a signal-slot 
connection. Have a creature emit the attacked() signal when it is attacked, and let the 
script connect a handler to that signal. Use a variant of connect that defines the this object 
for the connection.



Scripting

[ 306 ]

Creating Qt objects in scripts
Using existing objects from scripts sometimes is not enough to get a rich scripting 
experience. It is also useful to be able to create new Qt objects from within scripts and 
even return them to C++ so that they can be used by the game engine. There are two ways 
to approach this problem. Before we describe them, it is important to understand how 
JavaScript instantiates objects.

JavaScript has no notion of classes. It constructs objects using prototypes—a prototype is 
an object whose properties are cloned into the new object. The object is constructed by 
invoking a constructor, which can be any function. When you invoke a function using the 
keyword new, the engine creates a new empty object, sets its constructor property to the 
function serving as the constructor, sets the object prototype to the function's prototype, 
and finally, invokes the function in the context of the new object, making that function act 
as a factory function for objects with a particular set of properties. Therefore, to construct 
objects of the type QLineEdit, there needs to be a function that can be called as a 
constructor for objects that behave like Qt's widget to enter a single line of text.

We already know that functions can be stored in QScriptValue objects. There are 
two ways to obtain a function that can act as a constructor for Qt objects. First, we can 
implement it ourselves:

QScriptValue pushbutton_ctor(QScriptContext *context,  
  QScriptEngine *engine) {
    QScriptValue parentValue = context->argument(0);
    QWidget *parent = qscriptvalue_cast<QWidget*>(parentValue);
    QPushButton *button = new QPushButton(parent);
    QScriptValue buttonValue = engine->newQObject(button,  
      QScriptEngine::AutoOwnership);
    return buttonValue;
}
QScriptValue buttonConstructor = engine.newFunction(pushbutton_ctor);
engine.globalObject().setProperty("QPushButton", buttonConstructor);

We did three things here. First, we defined a function that instantiates QPushButton with 
a parent passed as the first argument to the function, wraps the object in QScriptValue 
(with an extra parameter noting that the environment responsible for deleting the object 
should be determined by the parent object), and that returns QScriptValue to the caller. 
Secondly, we wrapped the function itself into QScriptValue as we already did earlier with 
other functions. Finally, we set the function as a property of the global object of the engine 
so that it is always accessible.

The second way to obtain a constructor function is to make use of Qt's meta-object system. 
You can use the following macro to define a constructor function very similar to what we 
have written manually:

Q_SCRIPT_DECLARE_QMETAOBJECT(QPushButton, QWidget*)



Chapter 8

[ 307 ]

Next, you can use the QScriptEngine::scriptValueFromQMetaObject() template 
method to get a script value wrapping that function:

QScriptValue pushButtonClass =  
  engine.scriptValueFromQMetaObject<QPushButton>();

Lastly, you can set the obtained script value as a constructor in the script engine just like 
before. Here is a complete code to make push buttons creatable from within the scripts:

#include <QtWidgets>
#include <QScriptEngine>

Q_SCRIPT_DECLARE_QMETAOBJECT(QPushButton, QWidget*)

int main(int argc, char **argv) {
  QApplication app(argc, argv);
  QScriptEngine engine;
  QScriptValue pushButtonClass 
  = engine.scriptValueFromQMetaObject<QPushButton>();
  engine.globalObject().setProperty("QPushButton",  
    pushButtonClass);
  QString script = "pushButton = new QPushButton\n"
                   "pushButton.text = 'Script Button'\n"
                   "pushButton.show()";
  engine.evaluate(script);
  return app.exec();
}

Error recovery and debugging
The only error recovery we've talked about so far is checking whether a script has ended 
up with an error and executing a script in a dedicated context to prevent polluting the 
namespace with local variables that are not used anymore. This is already a lot; however, 
we can do more. First, we can take care of preventing pollution of the global namespace. 
Pushing and popping the execution context does not prevent a script from modifying the 
engine's global object, and we should prevent situations when a script, for example, replaces 
the Math object or the print function. The solution is to provide your own global object in 
place of the original one. There are two easy ways to do this. First, you can use the class called 
QScriptValueIterator to copy all the properties of the global object to a new object:

QScriptValue globalObject = engine.globalObject();
QScriptValue newGO = engine.newObject();
QScriptValueIterator iter(globalObject);
while(iter.hasNext()) {
  iter.next(); newGO.setProperty(iter.key(), iter.value());
}



Scripting

[ 308 ]

Alternatively, you can set the original global object as an internal prototype of the  
new object:

QScriptValue globalObject = engine.globalObject();
QScriptValue newGO = engine.newObject();
newGO.setPrototype(globalObject);

Either way, you will then need to replace the original global object with the temporary one:

engine.setGlobalObject(newGO);

The other big thing to do when talking about error recovery is to provide debugging 
capabilities for scripts. Luckily, Qt contains a built-in component to debug scripts. If 
you build your project with the QT+=scripttools option, you will gain access to the 
QScriptEngineDebugger class. To start using the debugger with a script engine, you need 
to attach and bind them:

QScriptEngine engine;
QScriptEngineDebugger debugger;
debugger.attachTo(&engine);

Whenever an uncaught exception occurs, the debugger will kick in and show its window:



Chapter 8

[ 309 ]

You can then set breakpoints in the script, inspect variables or the call stack, and continue or 
break the execution. A good idea is to incorporate the debugger in your game so that script 
designers can use it when developing scripts. Of course, the debugger should not be running 
with the release version of the game.

Extensions
QScriptEngine has the ability to import extensions that provide additional functionality 
to the scripting environment (for example, a library of utility functions that can be used 
in different parts of the game without having to redefine them here and there) using 
the importExtension() method. The extension can be implemented in JavaScript by 
providing a set of files that contain scripts, making the extension or in C++ by subclassing 
QScriptExtensionPlugin. Now, we will focus on the second approach. Here is how a 
simple C++ extension looks:

class SimpleExtension : public QScriptExtensionPlugin {
  Q_OBJECT
  Q_PLUGIN_METADATA(IID "org.qt- project.Qt.QScriptExtensionInterface")
public:
  SimpleExtension(QObject *parent = 0) :  
    QScriptExtensionPlugin(parent) {}
  QStringList keys() const Q_DECL_OVERRIDE  
    { return QStringList() << "simple"; }
  void initialize(const QString &key, QScriptEngine *engine) {
    QScriptValue simple = engine->newObject();
    simple.setProperty("name", "This is text from Simple extension");
    engine->globalObject().setProperty("Simple", simple);
  }
};

The extension defined here is simple—it only attaches one property to the engine's global 
object, which has a name property returning as a text string. You should put the resulting 
library in a subdirectory called Simple in a script subdirectory of a directory where your 
application looks for plugins (for example, the application where your application binary is 
placed). Then, you can import the plugin using importExtension():

QScriptEngine engine;
engine.importExtension("Simple");
engine.evaluate("print(Simple.name)")

Refer to the Deploying Plugins section of the Qt reference manual for 
more information about where you can put plugins and how you can 
tell Qt where to look for them.



Scripting

[ 310 ]

The other Qt JavaScript environment
As mentioned at the beginning of this chapter, Qt provides two environments to use 
JavaScript. We already talked about Qt Script; now it is time for us to tell you about its 
counterpart: QJSEngine. The newer JavaScript engine in Qt, which is also used for QML, 
about which you will learn in the next chapter. It has a different internal architecture than Qt 
Script, but most of what we have taught you also applies to QJSEngine. The main difference 
is that the root classes are named differently. Have a look at the following table, which shows 
equivalent classes for the two engines:

QtScript QJSEngine

QScriptEngine QJSEngine

QScriptValue QJSValue

QScriptContext –

The QJSEngine class is the equivalent of QScriptEngine. It also has an evaluate() 
method that is used to evaluate scripts. This method can create objects, wrap QObject 
instances, and use QJSValue (the equivalent of QScriptValue) to store values used in scripts 
in a way that they can be accessed from C++. You can also see that there is no equivalent to 
QScriptContext and thus its functionality is not available in the implementation based on 
QJSEngine. Another missing component is the integrated engine debugger. Also, at the time 
of writing, there is no easy way to export your own classes to the QJSEngine-based JavaScript 
environment to allow the creation of instances of those classes.

Alternatives to JavaScript
Qt Script is an environment that is designed to be part of the Qt world. Since not everyone 
knows or likes JavaScript, we will present another language that can easily be used to 
provide scripting environments for games that are created with Qt. Just be aware that this is 
not going to be an in-depth description of the environment—we will just show you the basics 
that can provide foundations for your own research.

Python
A popular language used for scripting is Python. There are two variants of Qt bindings that 
are available for Python: PySide and PyQt. PySide is the official binding that is available under 
LGPL, but currently, it only work with Qt 4. PyQt is a third-party library that is available under 
GPL v3 and commercial licenses that have variants for Qt 4 as well as Qt 5. Note that PyQt 
is not available under LGPL, so for commercial closed-source products you need to obtain a 
commercial license from Riverbank Computing!



Chapter 8

[ 311 ]

These bindings allow you to use the Qt API from within Python—you can write a complete 
Qt application using just Python. However, to call Python code from within C++, you will 
need a regular Python interpreter. Luckily, it is very easy to embed such an interpreter in a 
C++ application.

First, you will need Python installed along with its development package. For example, for 
Debian-based systems, it is easiest to simply install the libpythonX.Y-dev (or a newer) 
package, where X and Y stand for the version of Python:

sudo apt-get install libpython3.3-dev

Then, you need to tell your program to link it against the library:

LIBS += -lpython3.3m
INCLUDEPATH += /usr/include/python3.3m/

To call Python code from within a Qt app, the simplest way is to use the following code:

#include <Python.h>
#include <QtCore>

int main(int argc, char **argv) {
  QApplication app(argc, argv);
  Py_SetProgramName(argv[0]);
  Py_Initialize();
  const char *script = "print(\"Hello from Python\")"
  PyRun_SimpleString(script);
  Py_Finalize();
  return app.exec();
}

This code initializes a Python interpreter, then invokes a script by passing it directly as a 
string, and finally, it shuts down the interpreter before invoking Qt's event loop. Such code 
makes sense only for simple scripting. In real life, you'd want to pass some data to the script 
or fetch the result. For that, we have to write some more code. As the library exposes the C 
API only, let's write a nice Qt wrapper for it.

Time for action – writing a Qt wrapper for embedding Python
As the first task, we will implement the last program using an object-oriented API. Create a 
new console project and add the following class to it:

#include <Python.h>
#include <QObject>
#include <QString>



Scripting

[ 312 ]

class QtPython : public QObject {
  Q_OBJECT
public:
  QtPython(const char *progName, QObject *parent = 0) : 
QObject(parent) { 
    if(progName != 0) {
        wchar_t buf[strlen(progName+1)];
        mbstowcs(buf, progName, strlen(progName));
        Py_SetProgramName(buf);
    }
    Py_InitializeEx(0);
  }
  ~QtPython() { Py_Finalize(); }
  void run(const QString &program) {
    PyRun_SimpleString(qPrintable(program));
  }
};

Then, add a main() function as shown in the following snippet:

#include "qtpython.h"

int main(int argc, char **argv) {
  QtPython python(argv[0]);
  python.run("print('Hello from Python')");
  return 0;
}

Finally open the .pro file and tell Qt to link with the Python library. In case of Linux you can 
use pkg-config by adding two lines to the file:

CONFIG += link_pkgconfig
PKGCONFIG += python-3.3m # adjust the version number to suit your 
needs

You might need to install Python library using a call equivalent to apt-get install 
libpython3.4-dev. For Windows you need to manually pass information to the compiler:

INCLUDEPATH += C:\Python33\include
LIBS += -LC:\Python33\include -lpython33



Chapter 8

[ 313 ]

What just happened?
We created a class called QtPython that wraps the Python C API for us.

Never use a Q prefix to call your custom classes, as this prefix is reserved 
for official Qt classes. This is to make sure that your code will never have 
a name clash with future code added to Qt. The Qt prefix on the other 
hand is meant to be used with classes that are extensions to Qt. You 
probably still shouldn't use it, but the probability of a name clash is much 
smaller and yields a lesser impact than clashes with an official class. It is 
best to come up with your own prefix (such as Qxy, where x and y are 
your initials).

The class constructor creates a Python interpreter and the class destructor destroys it. We 
use Py_InitializeEx(0), which has the same functionality as Py_Initialize(), but it 
does not apply C signal handlers, as this is not something we would want when embedding 
Python. Prior to this, we use Py_SetProgramName() to inform the interpreter of our 
context. We also defined a run() method, taking QString and returning void. It uses 
qPrintable(), which is a convenience function that extracts a C string pointer from a 
QString object, which is then fed into PyRun_SimpleString().

Never store the output of qPrintable() as it returns an internal 
pointer to a temporary byte array (this is equivalent to calling 
toLocal8Bit().constData() on a string). It is safe to use 
directly, but the byte array is destroyed immediately afterwards; 
thus, if you store the pointer in a variable, the data may not be valid 
later when you try using that pointer.

The hardest work when using embedded interpreters is to convert values between C++ and 
the types that the interpreter expects. With Qt Script, the QScriptValue type was used for 
this. We can implement something similar for our Python scripting environment.

Time for action – converting data between C++ and Python
Create a new class and call it QtPythonValue. Then, add the following code to it:

#include <Python.h>

class QtPythonValue {
public:
  QtPythonValue() { incRef(Py_None);}



Scripting

[ 314 ]

  QtPythonValue(const QtPythonValue &other) { incRef(other.m_value); }
  QtPythonValue& operator=(const QtPythonValue &other) {
    if(m_value == other.m_value) return *this;
    decRef();
    incRef(other.m_value);
    return *this;
  }

  QtPythonValue(int val) {  m_value = PyLong_FromLong(val); }
  QtPythonValue(const QString &str) {
    m_value = PyUnicode_FromString(qPrintable(str));
  }
  ~QtPythonValue() { decRef(); }
  int toInt() const { return PyLong_Check(m_value) ? PyLong_AsLong 
                                         (m_value) : 0; }
  QString toString() const {
    return PyUnicode_Check(m_value) ? QString::fromUtf8(PyUnicode_ 
    AsUTF8(m_value)) : QString(); 
  }
  bool isNone() const { return m_value == Py_None; }

private:
  QtPythonValue(PyObject *ptr) { m_value = ptr; }
  void incRef() { if(m_value) Py_INCREF(m_value); }
  void incRef(PyObject *val) { m_value = val; incRef(); }
  void decRef() { if(m_value) Py_DECREF(m_value); }
  PyObject *m_value;
  friend class QtPython;
};

Next, let's modify the main() function to test our new code:

#include "qtpython.h"
#include "qtpythonvalue.h"
#include <QtDebug>

int main(int argc, char *argv[]) {
    QtPython python(argv[0]);
    QtPythonValue integer = 7, string = QStringLiteral("foobar"),  
      none;
    qDebug() << integer.toInt() << string.toString() << none.isNone();
    return 0;
}

When you run the program, you will see that the conversion between C++ and Python works 
correctly in both directions.



Chapter 8

[ 315 ]

What just happened?
The QtPythonValue class wraps a PyObject pointer (through the m_value member), 
providing a nice interface to convert between what the interpreter expects and our Qt types. 
Let's see how this is done. First, take a look at the three private methods: two versions of 
incRef() and one decRef(). PyObject contains an internal reference counter that counts 
the number of handles on the contained value. When that counter drops to 0, the object can 
be destroyed. Our three methods use adequate Python C API calls to increase or decrease the 
counter in order to prevent memory leaks and keep Python's garbage collector happy.

The second important aspect is that the class defines a private constructor that takes a 
PyObject pointer, effectively creating a wrapper over the given value. The constructor 
is private; however, the QtPython class is declared as a friend of QtPythonValue, 
which means that only QtPython and QtPythonValue can instantiate values by passing 
PyObject pointers to it. Now, let's have a look at public constructors.

The default constructor creates an object pointing to a None value, which is Python's 
equivalent to the C++ null. The copy constructor and assignment operator are pretty 
standard, taking care of bookkeeping of the reference counter. Then, we have two 
constructors—one taking int and the other taking a QString value. They use appropriate 
Python C API calls to obtain a PyObject representation of the value. Note that these calls 
already increase the reference count for us, so we don't have to do it ourselves.

The code ends with a destructor that decreases the reference counter and three methods 
that provide safe conversions from QtPythonValue to appropriate Qt/C++ types.

Have a go hero – implementing the remaining conversions
Now, you should be able to implement other constructors and conversions for 
QtPythonValue that operates on the float, bool, or even on QDate and QTime types. Try 
implementing them yourself. If needed, have a look at https://docs.python.org/3/ to 
find appropriate calls that you should use. We'll give you a head start by providing a skeleton 
implementation of how to convert QVariant to QtPythonValue. This is especially important 
because Python makes use of two types whose equivalents are not available in C++, namely, 
tuples and dictionaries. We will need them later, so having a proper implementation is crucial. 
Here is the code:

QtPythonValue::QtPythonValue(const QVariant &variant)
{
  switch(variant.type()) {
    case QVariant::Invalid: incRef(Py_None);
    return;
    case QVariant::String: m_value 

https://docs.python.org/3/


Scripting

[ 316 ]

      = PyUnicode_FromString(qPrintable(variant.toString()));
    return;
    case QVariant::Int: m_value = PyLong_FromLong(variant.toInt());
    return;
    case QVariant::LongLong: m_value 
      = PyLong_FromLongLong(variant.toLongLong());
    return;
    case QVariant::List: {
      QVariantList list = variant.toList();
      const int listSize = list.size();
      PyObject *tuple = PyTuple_New(listSize);
      for(int i=0;i<listSize;++i) {
        PyTuple_SetItem(tuple, i, QtPythonValue(list.at(i)).m_value);
      }
      m_value = tuple;
      return;
    }
    case QVariant::Map: {
      QVariantMap map = variant.toMap();
      PyObject *dict = PyDict_New();
      for(QVariantMap::const_iterator iter = map.begin();
      iter != map.end(); ++iter) {
        PyDict_SetItemString(dict, 
            qPrintable(iter.key()), 
            QtPythonValue(iter.value()).m_value
        );
    }
    m_value = dict;
    return;
  }
  default: incRef(Py_None); return;
  }
}

The highlighted code shows how to create a tuple (which is a list of arbitrary elements) 
from QVariantList and how to create a dictionary (which is an associative array) from 
QVariantMap. Try adding constructors by taking QStringList, QVariantList, and 
QVariantMap directly and returning tuples or a dictionary, respectively.

We have written quite a lot of code now, but so far there is no way of binding any data from 
our programs with Python scripting. Let's change that.



Chapter 8

[ 317 ]

Time for action – calling functions and returning values
The next task is to provide ways to invoke Python functions and return values from scripts. 
Let's start by providing a richer run() API. Implement the following method in the 
QtPython class:

QtPythonValue QtPython::run(const QString &program,  
  const QtPythonValue &globals, const QtPythonValue &locals)
{
  PyObject *retVal = PyRun_String(qPrintable(program), 
    Py_file_input, globals.m_value, locals.m_value);
  return QtPythonValue(retVal);
}

We'll also need a functionality to import Python modules. Add the following methods  
to the class:

QtPythonValue QtPython::import(const QString &name) const {
  return QtPythonValue(PyImport_ImportModule(qPrintable(name)));
}

QtPythonValue QtPython::addModule(const QString &name) const {
  PyObject *retVal = PyImport_AddModule(qPrintable(name));
  Py_INCREF(retVal);
  return QtPythonValue(retVal);
}

QtPythonValue QtPython::dictionary(const QtPythonValue &module) const 
{
  PyObject *retVal = PyModule_GetDict(module.m_value);
  Py_INCREF(retVal);
  return QtPythonValue(retVal);
}

The last piece of the code is to extend QtPythonValue with this code:

bool QtPythonValue::isCallable() const {
  return PyCallable_Check(m_value);
}

QtPythonValue QtPythonValue::attribute(const QString &name) const {
  return QtPythonValue(PyObject_GetAttrString(m_value,  
  qPrintable(name)));
}



Scripting

[ 318 ]

bool QtPythonValue::setAttribute(const QString &name, const 
QtPythonValue &value) {
  int retVal = PyObject_SetAttrString(m_value, qPrintable(name),  
    value.m_value);
  return retVal != -1;
}

QtPythonValue QtPythonValue::call(const QVariantList &arguments) const 
{
  return QtPythonValue(PyObject_CallObject 
    (m_value, QtPythonValue(arguments).m_value));
}

QtPythonValue QtPythonValue::call(const QStringList &arguments) const 
{
  return QtPythonValue(PyObject_CallObject 
    (m_value, QtPythonValue(arguments).m_value));
}

Finally, you can modify main() to test the new functionality:

int main(int argc, char *argv[]) {
  QtPython python(argv[0]);

  QtPythonValue mainModule = python.addModule("__main__");
  QtPythonValue dict = python.dictionary(mainModule);
  python.run("foo = (1, 2, 3)", dict, dict);
  python.run("print(foo)", dict, dict);

  QtPythonValue module = python.import("os");
  QtPythonValue chdir = module.attribute("chdir");
  chdir.call(QStringList() << "/home");
  QtPythonValue func = module.attribute("getcwd");
  qDebug() << func.call(QVariantList()).toString();

  return 0;
}

You can replace /home with a directory of your choice. Then, you can run the program.



Chapter 8

[ 319 ]

What just happened?
We did two tests in the last program. First, we used the new run() method, passing to it the 
code that is to be executed and two dictionaries that define the current execution context—
the first dictionary contains global symbols and the second contains local symbols. The 
dictionaries come from Python's __main__ module (which among other things, defines the 
print function). The run() method may modify the contents of the two dictionaries—the 
first call defines the tuple called foo and the second call prints it to the standard output.

The second test calls a function from an imported module; in this case, we call two functions 
from the os module—the first function, chdir, changes the current working directory and 
the other called getcwd returns the current working directory. The convention is that we 
should pass a tuple to call(), where we pass the needed parameters. The first function 
takes a string as a parameter, therefore, we pass a QStringList object, assuming that 
there is a QtPythonValue constructor that converts QStringList to a tuple (you need 
to implement it if you haven't done it already). Since the second function does not take any 
parameters, we pass an empty tuple to the call. In the same way, you can provide your own 
modules and call functions from them, query the results, inspect dictionaries, and so on. 
This is a pretty good start for an embedded Python interpreter. Remember that a proper 
component should have some error checking code to avoid crashing the whole application.

You can extend the functionality of the interpreter in many ways. You can even use PyQt5 to 
use Qt bindings in scripts, combining Qt/C++ code with Qt/Python code.

Have a go hero – wrapping Qt objects into Python objects
At this point, you should be experienced enough to try and implement a wrapper for the 
QObject instances to expose signals and slots to Python scripting. If you decide to pursue 
the goal, https://docs.python.org/3/ will be your best friend, especially the section 
about extending Python with C++. Remember that QMetaObject provides information 
about the properties and methods of Qt objects and QMetaObject::invokeMethod() 
allows you to execute a method by its name. This is not an easy task, so don't be hard on 
yourself if you are not able to complete it. You can always return to it once you gain more 
experience in using Qt and Python.

Before you head on to the next chapter, try testing your knowledge about scripting in Qt.

https://docs.python.org/3/


Scripting

[ 320 ]

Pop quiz – scripting
Q1. Which is the method that you can use to execute JavaScript statements?

1.	 QScriptEngine::run()

2.	 QScriptEngine::evaluate()

3.	 QScriptProgram::execute()

Q2. What is the name of the class that serves as a bridge to exchange data between Qt Script 
and C++?

1.	 QScriptContext

2.	 QScriptValue

3.	 QVariant

Q3. What is the name of the class that serves as a bridge that is used to exchange data 
between Python and C++?

1.	 PyValue

2.	 PyObject

3.	 QVariant

Q4. How do execution contexts work?

1.	 They mark some variables as "executable" to prevent rogue code from being 
executed.

2.	 They allow executing scripts in parallel, improving their speed.

3.	 They contain all the variables defined within a function invocation so that a set of 
variables visible from within a script can be modified without affecting the global 
environment (called sandboxing).



Chapter 8

[ 321 ]

Summary
In this chapter, you learned that providing a scripting environment to your games opens up 
new possibilities. Implementing a functionality using scripting languages is usually faster 
than doing the full write-compile-test cycle with C++ and you can even use the skills and 
creativity of your users who have no understanding of the internals of your game engine to 
make your games better and more feature-rich. You were shown how to use Qt Script, which 
blends the C++ and JavaScript worlds together by exposing Qt objects to JavaScript and 
making cross-language signal-slot connections. If you're not a JavaScript fan, you learned the 
basics of scripting with Python. There are other scripting languages available (for example 
Lua) and many of them can be used together with Qt. Using the experience gained in this 
chapter, you should even be able to bring other scripting environments to your programs, as 
most embeddable interpreters offer similar approaches to that of Python.

In the next chapter, you will be introduced to an environment very much like Qt Script  
in the way that it is heavily based on JavaScript. However, the purpose of using it is 
completely different—we will be using it to bleed edge-fancy graphics. Welcome to the  
world of Qt Quick.





[ 323 ]

Qt Quick Basics

In this chapter, you are going to be introduced to a technology called Qt Quick 
that allows us to implement resolution-independent user interfaces with lots of 
eye-candy, animations, and effects that can be combined with regular Qt code 
that implements the logic of the application. You will learn the basics of the 
QML declarative language that forms the foundation of Qt Quick. Using this 
language, you can define fancy graphics and animations, make use of particle 
engines, and structure your code using finite state machines. Pure QML code 
can be complemented with JavaScript or C++ logic in a manner similar to what 
you have learned in the previous chapter. By the end of this chapter, you should 
have enough knowledge to quickly implement fantastic 2D games with custom 
graphics, moving elements, and lots of visual special effects.

Fluid user interfaces
So far, we have been looking at graphical user interfaces as a set of panels embedded one into 
another. This is well-reflected in the world of desktop utility programs composed of windows 
and subwindows containing mostly static content scattered throughout a large desktop 
area where the user can use a mouse pointer to move windows around or adjust their size. 
However, this design doesn't correspond well with modern user interfaces that often try to 
minimize the area they occupy (because of either a small display size like with embedded and 
mobile devices or to avoid obscuring the main display panel like in games), at the same time 
providing rich content with a lot of moving or dynamically resizing items. Such user interfaces 
are often called "fluid" to signify that they are not formed as a number of separate different 
screens, but rather contain dynamic content and layout where one screen fluently transforms 
into another. Part of Qt 5 is the Qt Quick (Qt User Interface Creation Kit) module, which 
provides a runtime to create rich applications with fluid user interfaces. It builds upon a two-
dimensional hardware accelerated canvas that contains a hierarchy of interconnected items.

9



Qt Quick Basics

[ 324 ]

Declarative UI programming
Although it is technically possible to use Qt Quick by writing C++ code, the module is 
accompanied by a dedicated programming language called QML (Qt Modeling Language). 
QML is an easy to read and understand declarative language that describes the world as a 
hierarchy of components that interact and relate to one another. It uses a JSON-like syntax 
and allows us to use imperative JavaScript expressions as well as dynamic property bindings. 
So, what is a declarative language, anyway?

Declarative programming is one of the programming paradigms that dictates that the 
program describes the logic of the computation without specifying how this result should 
be obtained. In contrast to imperative programming, where the logic is expressed as a list of 
explicit steps forming an algorithm that directly modifies the intermediate program state, a 
declarative approach focuses on what the ultimate result of the operation should be.

We use QML by creating one or more QML documents where we define hierarchies of 
objects. Each document is composed of two sections.

You can follow every example we explain in Qt Creator by creating a new Qt Quick UI project 
and placing the presented code in the QML file created for you. The details about using this 
project type will be described in a later section of this chapter.

If you can't see a Qt Quick UI project in the Creator's wizard, you have to 
enable a plugin called QmlProjectManager by choosing the About 
Plugins entry from the Creator's Help menu, then scrolling down to 
the QtQuick section, and making sure the QmlProjectManager entry is 
checked. If it is not, check it and restart Creator:



Chapter 9

[ 325 ]

The first section contains a series of import statements that define the range of 
components that can be used in a particular document. In its simplest form, each statement 
consists of the import keyword followed by the module URI (name) and the module version 
to import. The following statement imports the QtQuick module in version 2.1:

import QtQuick 2.1

The second section contains a definition of a hierarchy of objects. Each object declaration 
consists of two parts. First, you have to specify the type of the object and then follow it with 
the detailed definition enclosed in braces. Since the detailed definition can be empty, the 
simplest object declaration is similar to the following:

Item { }

This declares an instance of the Item element, which is the most basic Qt Quick element and 
represents an abstract item of the user interface without any visual appearance.

Element properties
Each element type in QML defines a number of properties. Values for these properties can 
be set as part of the detailed definition of an object. The Item type brings a number of 
properties for specifying the geometry of an item:

Item {
  x: 10
  y: 20
  width: 400
  height: 300
}

Item is a very interesting and useful element, but since it is totally transparent, we will now 
focus on its descendant type that draws a filled rectangle. This type is called Rectangle. It 
has a number of additional properties, among them, the color property for specifying the 
fill color of the rectangle. To define a red square, we could write the following code:

Rectangle {
  color: "red"
  width: 400
  height: 400
}

The problem with this code is that if we ever decide to change the size of the square, we will 
have to update values for the two properties separately. However, we can use the power of the 
declarative approach and specify one of the properties as a relation to the other properties:

Rectangle {
  color: "red"



Qt Quick Basics

[ 326 ]

  width: 400
  height: width
}

This is called property binding. It differs from a regular value assignment and binds the value 
of height to the value of width. Whenever width changes, height will reflect that change in 
its own value.

Note that the order of statements in the definition does not matter as you declare relations 
between properties. The following declaration is semantically identical to the previous one:

Rectangle {
  height: width
  color: "red"
  width: 400
}

You can bind a property not only to a value of another property, but also to any JavaScript 
statement that returns a value. For example, we can declare rectangle color to be dependent 
on the proportions between the width and the height of the element by using a ternary 
conditional expression operator:

Rectangle {
  width: 600
  height: 400
  color: width > height ? "red" : "blue"
}

Whenever width or height of the object changes, the statement bound to the color 
property will be re-evaluated and if width of the rectangle is larger than its height, the 
rectangle will become red; otherwise, it will be blue.

Property binding statements can also contain function calls. We can extend the color 
declaration to use a different color if the rectangle is a square by using a custom function:

Rectangle {
  width: 600
  height: 400
  color: colorFromSize()

  function colorFromSize() {
    if(width == height) return "green"
    if(width > height) return "red"
    return "blue"
  }
}



Chapter 9

[ 327 ]

QML does its best to determine when the function value may change, but it is not 
omnipotent. For our last function, it can easily determine that the function result depends 
on the values of the width and height properties, so it will re-evaluate the binding if either 
of the two values change. However, in some cases, it can't know that a function might return 
a different value next time it is called, and in such situations, the statement will not be re-
evaluated. Consider the following function:

function colorByTime() {
  var d = new Date()
  var minutes = d.getMinutes()
  if(minutes < 15) return "red"
  if(minutes < 30) return "green"
  if(minutes < 45) return "blue"
  return "purple"
}

Binding the color property to the result of that function will not work properly. QML will 
only call this function once when the object is initialized, and it will never call it again. This 
is because it has no way of knowing that the value of this function depends on the current 
time. Later, we will see how to overcome this with a bit of imperative code and a timer.

Group properties
The Rectangle element allows us to define not only the fill color but also the outline size 
and color. This is done by using the border.width and border.color properties. You 
can see they have a common prefix followed by a dot. This means these properties are 
subproperties of a property group border. There are two ways to bind values to these 
properties. The first approach is to use the dot notation:

Rectangle {
  color: "red"
  width: 400
  height: 300
  border.width: 4
  border.color: "black"
}

An alternative approach, which is especially useful if you want to set a large number of 
subproperties in a single group, is to use brackets to enclose definitions in a group:

Rectangle {
  color: "red"
  width: 400
  height: 300
  border {



Qt Quick Basics

[ 328 ]

    width: 4
    color: "black"
  }
}

Object hierarchies
We said that QML is about defining object hierarchies. You do this in the simplest way 
possible–by putting one object declaration into another object's declaration. To create 
a button-like object containing a rounded frame with some text inside, we'll combine a 
Rectangle item with a Text item:

Rectangle {
  border { width: 2; color: "black" }
  radius: 5
  color: "transparent"
  width: 50; height: 30

  Text {
    text: "Button Text"
  }
}

You can use a semicolon instead of newlines to separate statements 
in QML in order to have a more compact object definition at the cost 
of decreased readability.

Running this code produces a result similar to the following diagram:

As we can see, it does not look good–the frame is not big enough to hold the text and so it 
flows outside the frame. Moreover, the text is positioned incorrectly.

Unlike widgets where a child widget is clipped to its parent's geometry, Qt Quick items can 
be positioned outside their parents.

Since we didn't specify the x and y coordinates of the text, they are set to their default value, 
which is 0. As a result, the text is pinned to the top-left corner of the frame and flows outside 
the right edge of the frame.



Chapter 9

[ 329 ]

To correct this behavior, we can bind the width of the frame to the width of the text. To 
do this in the property binding for the rectangle width, we have to specify that we want to 
use the width of the text object. QML provides a pseudo-property called id to allow the 
programmer to name objects. Let's provide an ID for the Text element and bind the width 
of the outside object to the width of the text, and also do the same for the height. At the 
same time, let's reposition the text a little to provide padding for the four pixels between the 
frame and the text itself:

Rectangle {
  border { width: 2; color: "black" }
  radius: 5
  color: "transparent"
  width: buttonText.width+8; height: buttonText.height+8

  Text {
    id: buttonText
    text: "Button Text"
    x:4; y: 4
  }
}

As you can see in the following image, such code works, but it is still problematic:

If you set empty text to the internal element, the rectangle width and height will drop to 8, 
which does not look good. It will also look bad if the text is very long:

Let's complicate matters even more and add an icon to the button by adding another child 
element to the rectangle. Qt Quick provides an Image type to display images, so let's use it 
to position our icon on the left side of the text:

Rectangle {
  id: button
  border { width: 2; color: "black" }
  radius: 5
  color: "transparent"
  width: 4 + buttonIcon.width + 4 + buttonText.width + 4
  height: Math.max(buttonIcon.height, buttonText.height) + 8



Qt Quick Basics

[ 330 ]

  Image {
    id: buttonIcon
    source: "edit-undo.png"
    x: 4; y: button.height/2-height/2
  }
  Text { 
    id: buttonText
    text: "Button Text"
    x: 4+buttonIcon.width+4
    y: button.height/2-height/2
  }
}

In this code, we used the Math.max function available in JavaScript to calculate the height 
of the button, and we modified definitions of the y properties of the internal objects to 
center them vertically in the button. The source property of Image contains the URL of a file 
containing the image to be shown in the item.

The URL can point not only to a local file, but also to a remote HTTP 
resource. In such an event, if the remote machine is reachable, the 
file will be fetched from the remote server automatically.

The result of the code can be seen in the following image:

Calculating the positions of each internal element as well as the size of the button frame is 
becoming complicated. Fortunately, we don't have to do it since Qt Quick provides a much 
better way of managing item geometry by attaching certain points of some objects to points 
of another object. These points are called anchor lines. The following anchor lines are 
available to each Qt Quick item:



Chapter 9

[ 331 ]

You can establish bindings between anchor lines to manage relative positioning of items. 
Each anchor line is represented by two properties–one that can be bound to something and 
another to bind from. Anchors to bind to are regular properties of the object. They can serve 
as binding arguments for properties defined in an anchors property group. Therefore, to bind 
the "left" anchor of the current object to the "right" anchor of the object otherObject, one 
would write:

anchors.left: otherObject.right

In addition to specifying an arbitrary number of anchor bindings, we can also set margins for 
each of the anchors (or for all of them at once) to offset the two bound anchor lines. Using 
anchors, we can simplify the previous button definition:

Rectangle {
  border { width: 2; color: "black" }
  radius: 5
  color: "transparent"
  width: 4 + buttonIcon.width + 4 + buttonText.width + 4
  height: Math.max(buttonIcon.height, buttonText.height) + 8

  Image {
    id: buttonIcon
    source: "edit-undo.png"
    anchors {
      left: parent.left;
      leftMargin: 4;
      verticalCenter: parent.verticalCenter
    }
  }
  Text {
    id: butonText
    text: "Button Text"
    anchors {
      left: buttonIcon.right;
      leftMargin: 4;
      verticalCenter: parent.verticalCenter
    }
  }
}

You can see the button ID is not used anymore. Instead, we use parent, which is a property 
that always points to the item's parent.



Qt Quick Basics

[ 332 ]

Time for action – creating a button component
As an exercise, let's try to use what you've learned so far to create a more complete and 
better working button component. The button is to have a rounded shape with a nice 
background and should hold definable text and an icon. The button should look good for 
different texts and icons.

Start by creating a new project in Qt Creator. Choose Qt Quick UI as the project type. When 
asked for the component set, choose the lowest available version of Qt Quick:

At this point, you should end up with a project containing two files–one with a QML project 
extension, which is your project management file, and the other with the QML extension, 
which is your main user interface file. You can see that both files contain QML definitions. 
That is because Qt Creator manages Qt Quick projects using QML itself (you'll notice it 
imports the QmlProject module).

The QML document that was created for us contains a "Hello World" example code, which 
we can use as a starting point in our Qt Quick experiments. If you go to the Projects pane 
and look at the Run Configuration for the project, you will notice that it uses something 
called QML Scene to run your project. This configuration invokes an external application 
called qmlscene that is able to load and display an arbitrary QML document. If you run the 
example code, you should see a white window with some text centered in it. If you click 
anywhere in the window, the application will close.



Chapter 9

[ 333 ]

Let's start by creating the button frame. Replace the Text item with a Rectangle item. You 
can see that the text is centered in the window by using a centerIn anchor binding that we 
didn't mention before. This is one of two special anchors that are provided for convenience 
to avoid having to write too much code. Using centerIn is equivalent to setting both 
horizontalCenter and verticalCenter. The other convenience binding is fill, which 
makes one item occupy the whole area of another item (similar to setting the left, right, top, 
and bottom anchors to their respective anchor lines in the destination item).

Let's give a basic look and feel to the button panel by setting some of its basic properties. 
This time, instead of setting a solid color for the button, we will declare the background to be 
a linear gradient. Replace the Text definition with the following code:

Rectangle {
  id: button
  anchors.centerIn: parent
  border { width: 1; color: "black" }
  radius: 5
  width: 100; height: 30
  gradient: Gradient {
    GradientStop { position: 0; color: "#eeeeee" }
    GradientStop { position: 1; color: "#777777" }
  }
}

After running the project, you should see a result similar to the following image:

What just happened?
We bound a Gradient element to the gradient property and defined two GradientStop 
elements as its children, where we specified two colors to blend between. Gradient does 
not inherit from Item and thus is not a visual Qt Quick element. Instead, it is just an object 
that serves as a data holder for the gradient definition.

The Item type has a property called children that contains a list of visual children  
(Item instances) of an item and another property called resources, which contains  
a list of non-visual objects (such as Gradient or GradientStop) for an item. Normally, you 
don't need to use these properties when adding visual or non-visual objects to an item as 
the item will automatically assign child objects to appropriate properties. Note that in our 
code, the Gradient object is not a child object of the Rectangle; it is just assigned to its 
gradient property.



Qt Quick Basics

[ 334 ]

Time for action – adding button content
The next step is to add text and an icon to the button. We will do this by using another item 
type called Row, as shown:

Rectangle {
  id: button
  // …
  gradient: Gradient {
    GradientStop { position: 0; color: "#eeeeee" }
    GradientStop { position: 1; color: "#777777" }
  }
  width: buttonContent.width+8
  height: buttonContent.height+8

  Row {
    id: buttonContent
    anchors.centerIn: parent
    spacing: 4

    Image {
        id: buttonIcon
        source: "edit-undo.png"
    }
    Text {
        id: buttonText
        text: "ButtonText"
    }
  }
}

You'll get the following output:

What just happened?
Row is one out of four positioner types (the others being Column, Grid, and Flow) that 
spreads its children in a horizontal row. It makes it possible to position a series of items 
without using anchors. Row has a spacing property that dictates how much space to leave 
between items.



Chapter 9

[ 335 ]

Time for action – sizing the button properly
Our current panel definition still doesn't behave well when it comes to sizing the button. If 
the button content is very small (for example, the icon doesn't exist or the text is very short), 
the button will not look good. Typically, push buttons enforce a minimum size–if the content 
is smaller than a specified size, the button will be expanded to the minimum size allowed. 
Another problem is that the user might want to override the width or height of the item. 
In such cases, the content of the button should not overflow past the border of the button. 
Let's fix these two issues by replacing the width and height property bindings with the 
following code:

clip: true
implicitWidth: Math.max(buttonContent.implicitWidth+8, 80)
implicitHeight: buttonContent.implicitHeight+8

What just happened?
The implicitWidth and implicitHeight properties can contain the desired size the 
item wants to have. It's a direct equivalent of sizeHint() from the widget world. By using 
these two properties instead of width and height (which are bound to implicitWidth 
and implicitHeight by default), we allow the user of our component to override those 
implicit values. When this happens and the user does not set the width or height big 
enough to contain the icon and text of the button, we prevent the content from crossing the 
boundaries of the parent item by setting the clip property to true.

Time for action – making the button a reusable component
So far, we have been working on a single button. Adding another button by copying the code, 
changing the identifiers of all components, and setting different bindings to properties are 
very tedious tasks. Instead, we can make our button item a real component, that is, a new 
QML type that can be instantiated on demand as many times as required.



Qt Quick Basics

[ 336 ]

First, position the text cursor right before the bracket opening of the definition of the  
button and press Alt + Enter on the keyboard to open the refactoring menu, like in the 
following screenshot:

From the menu, choose Move Component into Separate File. In the popup, type in a name for 
the new type (for example, Button) and accept the dialog by clicking on the OK button:



Chapter 9

[ 337 ]

What just happened?
You can see that we have a new file called Button.qml in the project, which contains 
everything the button item used to have. The main file was simplified to something similar the 
following:

import QtQuick 2.0

Rectangle {
  width: 360
  height: 360
  Button {
    id: button
  }
}

Button has become a component–a definition of a new type of element that can be used 
the same way as element types imported into QML. Remember that QML component names 
as well as names of files representing them need to begin with a capital letter! If you name 
a file "button.qml" instead of "Button.qml", then you will not be able to use "Button" as a 
component name, and trying to use "button" instead will result in an error message. This 
works both ways–every QML file starting with a capital letter can be treated as a component 
definition. We will talk more about components later.

Event handlers
Qt Quick is meant to be used for creating user interfaces that are highly interactive. It offers 
a number of elements for taking input events from the user.

Mouse input
The simplest of all of them is MouseArea. It defines a transparent rectangle that exposes  
a number of properties and signals related to mouse input. Commonly used signals include 
clicked, pressed, and released. Let's do a couple of exercises to see how the element can  
be used.

Time for action – making the button clickable
Thus far, our component only looks like a button. The next task is to make it respond to 
mouse input. As you may have guessed, this is done by using the MouseArea item.

Add a MouseArea child item to the button and use anchors to make it fill the whole area of the 
button. Call the element buttonMouseArea. Put the following code in the body of the item:

Rectangle {
  id: button



Qt Quick Basics

[ 338 ]

  // ... 
  Row { ... }
  MouseArea {
    id: buttonMouseArea

    anchors.fill:parent
    onClicked: button.clicked()
  }
}

In addition to this, set the following declaration in the button object just after its ID  
is declared:

Rectangle {
  id: button

  signal clicked()
  // ...
}

To test the modification, add the following code at the end of the button object definition, 
just before the closing bracket:

onClicked: console.log("Clicked!")

Then, run the program and click on the button. You'll see your message printed to the 
Creator's console. Congratulations!

What just happened?
With a signal clicked() statement, we declared that the button object emits a signal 
called clicked. With the MouseArea item, we defined a rectangular area (covering the whole 
button) that reacts to mouse events. Then, we defined onClicked, which is a signal handler. 
For every signal an object has, a script can be bound to a handler named like the signal and 
prefixed with "on"; hence, for the clicked signal, the handler is called onClicked and for 
valueChanged it is called onValueChanged. In this particular case, we have two handlers 
defined–one for the button where we write a simple statement to the console, and the other 
for the MouseArea element where we call the button's signal function effectively emitting 
that signal.

MouseArea has even more features, so now let's try putting them to the right use to make 
our button more feature-rich.



Chapter 9

[ 339 ]

Time for action – visualizing button states
Currently, there is no visual reaction to clicking on the button. In the real world, the button 
has some depth and when you push it and look at it from above, its contents seems to 
shift a little toward the right and downward. Let's mimic this behavior by making use of the 
pressed property MouseArea has, which denotes whether the mouse button is currently 
being pressed (note that the pressed property is different from the pressed signal that was 
mentioned earlier). The content of the button is represented by the Row element, so add the 
following statements inside its definition:

Row {
  id: buttonContent
  // …
  anchors.verticalCenterOffset: buttonMouseArea.pressed ? 1 : 0
  anchors.horizontalCenterOffset: buttonMouseArea.pressed ? 1 : 0
  // …
}

We can also make the text change color when the mouse cursor hovers over the button. For 
this, we have to do two things. First, let's enable receiving hover events on the MouseArea 
by settings its hoverEnabled property:

hoverEnabled: true

When this property is set, MouseArea will be setting its containsMouse property to  
true whenever it detects the mouse cursor over its own area. We can use this value to set 
the text color:

Text {
  id: buttonText
  text: "ButtonText"
  color: buttonMouseArea.containsMouse ? "white" : "black"
}

What just happened?
In the last exercise, we learned to use some properties and signals from MouseArea to make 
the button component more interactive. However, the element is much richer in features. In 
particular, if hover events are enabled, you can get the current mouse position in the item's 
local coordinate system through the mouseX and mouseY properties that return values. The 
cursor position can also be reported by handling the positionChanged signal. Speaking 
of signals, most MouseArea signals carry a MouseEvent object as their argument. This 
argument is called mouse and contains useful information about the current state of the 
mouse, including its position and buttons currently pressed:

MouseArea {
  anchors.fill: parent



Qt Quick Basics

[ 340 ]

  hoverEnabled: true
  
  onClicked: {
    switch(mouse.button) {
      case Qt.LeftButton:   console.log("Left button clicked");  
        break;
      case Qt.MiddleButton: console.log("Middle button clicked");  
        break;
      case Qt.RightButton:  console.log("Right button clicked");  
        break;
    }
  }
  onPositionChanged: {
    console.log("Position: ["+mouse.x+"; "+mouse.y+"]")
  }
}

Time for action – notifying the environment about button states
We have added some code to make the button look more natural by changing its visual 
aspects. Now, let's extend the button programming interface so that developers can use 
more features of the button.

The first thing we can do is make button colors definable by introducing some new 
properties for the button. Let's put the highlighted code at the beginning of the button 
component definition:

Rectangle {
  id: button
  property color topColor: "#eeeeee"
  property color bottomColor: "#777777"
  property color textColor: "black"
  property color textPressedColor: "white"
  signal clicked()

Then, we'll use the new definitions for the background gradient:

gradient: Gradient {
  GradientStop { position: 0; color: button.topColor }
  GradientStop { position: 1; color: button.bottomColor }
}

Now for the text color:

Text {
  id: buttonText



Chapter 9

[ 341 ]

  text: "ButtonText"
  color: buttonMouseArea.containsMouse ?
    button.textPressedColor : button.textColor
}

Also, please notice that we used the pressed property of MouseArea to detect whether  
a mouse button is currently being pressed on the area. We can equip our button with a 
similar property. Add the following code to the Button component:

property alias pressed: buttonMouseArea.pressed

What just happened?
The first set of changes introduced four new properties defining four colors that we later 
used in statements defining gradient and text colors for the button. In QML, you can define 
new properties for objects with the property keyword. The keyword should be followed 
by the property type and property name. QML understands many property types, the most 
common being int, real, string, font, and color. Property definitions can contain an optional 
default value for the property preceded with a colon. The situation is different with the 
pressed property definition. You can see that for the property type, the definition contains 
the word alias. It is not a property type, but rather an indicator that the property is really 
an alias to another property–each time the pressed property of the button is accessed, 
the value of the buttonMouseArea.pressed property is returned, and every time the 
property is changed, it is the mouse area's property that really gets changed. With a regular 
property declaration, you can provide any valid expression as the default value because 
the expression is bound to the property. With a property alias, it is different–the value is 
mandatory and has to be pointing to an existing property of the same or an other object. You 
can treat property aliases in a similar way as references in C++.

Consider the following two definitions:

property int foo: someobject.prop
property alias bar: someobject.prop

At first glance, they are similar as they point to the same property and therefore, the values 
returned for the properties are the same. However, the properties are really very different, 
which becomes apparent if you try to modify their values:

  foo = 7
  bar = 7

The first property actually has an expression bound to it, so assigning 7 to foo simply 
releases the binding and assigns the value 7 to the foo property, leaving someobject.prop 
with its original value. The second statement, however, acts like a C++ reference; therefore, 
assigning a new value applies the modification to the someobject.prop property the alias is 
really pointing to.



Qt Quick Basics

[ 342 ]

Speaking of properties, there is an easy way to react when a property value is modified. For 
each existing property, there is a handler available that is executed whenever the property 
value is modified. The handler name is on followed by the property name, then followed by the 
word Changed, all in camel case–thus, for a foo property, it becomes onFooChanged and for 
topColor, it becomes onTopColorChanged. To log the current press state of the button to 
the console, all we need to do is implement the property change handler for this property:

Button {
  // …

  onPressedChanged: {
  console.log("The button is currently "
  +(pressed ? "" : "not ")+"pressed")
}

Touch input
As mentioned earlier, MouseArea is the simplest of input event elements. Nowadays, more 
and more devices have touch capabilities and Qt Quick can handle them, as well. Currently, 
we have three ways of handling touch input.

First of all, we can keep using MouseArea as simple touch events are also reported as mouse 
events; therefore, tapping and sliding a finger on the screen is supported out-of-the-box. The 
following exercise works on touch-capable devices, as well, when using mouse as input.

Time for action – dragging an item around
Create a new Qt Quick UI project. Modify the default code by discarding the existing child 
items and adding a circle instead:

Rectangle {
  id: circle
  width: 60; height: width
  radius: width/2
  color: "red"
}

Next, use the drag property of MouseArea to enable moving the circle by touch (or mouse):

MouseArea {
  anchors.fill: parent
  drag.target: circle
}

Then, you can start the application and begin moving the circle around.



Chapter 9

[ 343 ]

What just happened?
A circle was created by defining a rectangle with its height equal to width, making it a 
square and rounding the borders to half the side length. The drag property can be used to 
tell MouseArea to manage a given item's position using input events flowing into the area 
element. We denote the item to be dragged by using the target subproperty. You can use 
other subproperties to control the axis the item is allowed to move along or constrain the 
move to a given area. An important thing to remember is that the item being dragged cannot 
be anchored for the axis on which the drag is requested; otherwise, the item will respect 
the anchor and not the drag. We didn't anchor our circle item at all since we want it to be 
draggable along both axes.

The second approach to handling touch input in Qt Quick applications is to use PinchArea, 
which is an item similar to MouseArea, but rather than dragging an item around, it allows 
you to rotate or scale it using two fingers (with a so called "pinch" gesture), as shown. Be 
aware that PinchArea reacts only to touch input, so to test the example you will need a real 
touch capable device.

Time for action – rotating and scaling a picture by pinching
Start a new Qt Quick UI project. In the QML file, delete everything but the external item. 
Then, add an image to the UI and make it centered in its parent:

Image {
  id: image
  anchors.centerIn: parent
  source: "wilanow.jpg"
}



Qt Quick Basics

[ 344 ]

Now, we will add a PinchArea element. This kind of item can be used in two ways–either 
by manually implementing signal handlers onPinchStarted, onPinchUpdated, and 
onPinchFinished to have total control over the functionality of the gesture or by using a 
simplified interface similar to the drag property of MouseArea. Since the simplified interface 
does exactly what we want, there is no need to handle pinch events manually. Let's add the 
following declaration to the file:

PinchArea {
  anchors.fill: parent
  pinch {
    target: image
    minimumScale: 0.2; maximumScale: 2.0
    minimumRotation: -90; maximumRotation: 90
  }
}

You'll get an output similar to the following screenshot:

What just happened?
Our simple application loads an image and centers it in the view. Then, there is a PinchArea 
item filling the view area that is told to operate on the image object. We define the range of 
the scaling and rotating of the item. The rest is left to the PinchArea item itself. If you start 
interacting with the application, you will see the item rotate and scale. What really happens 
behind the scenes is that PinchArea modifies the values of the two properties each Qt 
Quick item has–rotation and scale.



Chapter 9

[ 345 ]

PinchArea can also control the dragging of the item with 
pinch.dragAxis, just like MouseArea does with drag, 
but for simplicity, we didn't use this part of the API. Feel free to 
experiment with it in your own code.

Have a go hero – rotating and scaling with a mouse
Of course, you don't have to use PinchArea to rotate or scale an item. Properties controlling 
those aspects are regular properties that you can read and write at any time. Try replacing 
PinchArea with MouseArea to obtain a result similar to what we just did by modifying 
the scale and rotation properties as a result of receiving mouse events–when the user drags 
the mouse while pressing the left button, the image is scaled and when the user does the 
same while pressing the right button, the image is rotated. You can control which buttons 
trigger mouse events by manipulating the acceptedButtons property (setting it to 
Qt.LeftButton|Qt.RightButton will cause both buttons to trigger events). The button that 
triggers the event is reported in the event object (which is called mouse) through its button 
property, and the list of all buttons currently pressed is available in the button property:

MouseArea {
  acceptedButtons: Qt.LeftButton|Qt.RightButton
  onPositionChanged: console.log(mouse.button)
}

If you manage to do the task, try replacing MouseArea with PinchArea again, but then 
instead of using the pinch property, handle events manually to obtain the same effect (the 
event object is called pinch and has a number of properties you can play with).

A third approach to handling touch input is by using the MultiPointTouchArea item. It 
provides a low-level interface to gestures by reporting each touch point separately. It can be 
used to create custom high-level gesture handlers similar to PinchArea.

Keyboard input
So far, we've been dealing with pointer input, but user input is not just that–we can also 
handle keyboard input. This is quite simple and basically boils down to two easy steps.

First, you have to enable receiving keyboard events by stating that a particular item has 
keyboard focus:

focus: true



Qt Quick Basics

[ 346 ]

Then, you can start handling events by writing handlers in a similar fashion as for mouse 
events. However, Item doesn't provide its own handler for manipulating keys that is a 
counterpart for keyPressEvent and keyReleaseEvent of QWidget. Instead, adequate 
handlers are provided by the Keys attached property.

Attached properties are provided by elements that are not used as stand-alone elements 
but instead provide properties to other objects by getting attached to them. This is a way 
of adding support for new properties without modifying the API of the original element 
(it doesn't add new properties through an is-a relation, but rather through a has-a one). 
Each object that references an attached property gets its own copy of the attaching object 
that then handles the extra properties. We will come back to attached properties later in 
this chapter. For now, you just need to remember that in certain situations, an element can 
obtain additional properties that are not part of its API.

Let's go back to implementing event handlers for keyboard input. As we said earlier, each 
Item has a Keys attached property that allows us to install our own keyboard handlers. The 
basic two signals Keys adds to Item are pressed and released; therefore, we can implement 
the onPressed and onReleased handlers that have a KeyEvent argument providing 
similar information as QKeyEvent in the widget world. As an example, we can see an item 
that detects when a spacebar was pressed:

Rectangle {
  focus: true
  Keys.onPressed:  { if(event.key == Qt.Key_Space) color = "red"  }
  Keys.onReleased: { if(event.key == Qt.Key_Space) color = "blue" }
}

It might become problematic if you want to handle many different keys in the same item as the 
onPressed handler would likely contain a giant switch section with branches for every possible 
key. Fortunately, Keys offers more properties. Most of the commonly used keys (but not letters) 
have their own handlers that are called when the particular key is pressed. Thus, we can easily 
implement an item that takes a different color depending on which key was pressed last:

Rectangle {
  focus: true
  Keys.onSpacePressed:      color = "purple"
  Keys.onReturnPressed:     color = "navy"
  Keys.onVolumeUpPressed:   color = "blue"
  Keys.onRightPressed:      color = "green"
  Keys.onEscapePressed:     color = "yellow"
  Keys.onTabPressed:        color = "orange"
  Keys.onDigit0Pressed:     color = "red"
}

Please note that there is still a single released signal even if a key has its own pressed signal.



Chapter 9

[ 347 ]

Now, consider another example:

import QtQuick 2.1
Item {
  property int number: 0
  width: 200; height: width
  focus: true
  Keys.onSpacePressed: number++

  Text { text: number; anchors.centerIn: parent }
}

We would expect that when we press and hold the spacebar, we will see the text change 
from 0 to 1 and stay on that value until we release the key. If you run the example, you will 
see that instead, the number keeps incrementing as long as you hold down the key. This is 
because by default, the keys auto-repeat–when you hold the key, the operating system keeps 
sending a sequence of press-release events for the key (you can verify that by adding the 
console.log() statements to the Keys.onPressed and Keys.onReleased handlers). 
To counter this effect, you can either disable key repeats in your system (which will, of 
course, not work if someone installs your program on his or her own computer) or you can 
differentiate between auto-repeat and regular events. In Qt Quick, you can do this easily as 
each key event carries the appropriate information. Simply replace the handler from the last 
example with the following one:

Keys.onSpacePressed: if(!event.isAutoRepeat) number++

The event variable we use here is the name of the parameter of the spacePressed signal. 
As we cannot declare our own names for the parameters like we can do in C++, for each signal 
handler you will have to look up the name of the argument in the documentation, as shown:

In standard C++ applications, we usually use the Tab key to navigate through focusable items. 
With games (and fluid user interfaces in general), it is more common to use arrow keys for 
item navigation. Of course, we can handle this situation by using the Keys attached property 
and adding Keys.onRightPressed, Keys.onTabPressed, and other signal handlers 
to each of our items where we want to modify the focus property of the desired item, but 
it would quickly clutter our code. Qt Quick comes to our help once again by providing a 
KeyNavigation attached property, which is meant to handle this specific situation and 
allows us to greatly simplify the needed code. Now, we can just specify which item should 
get into focus when a specific key is triggered:

Row {
  spacing: 5
  



Qt Quick Basics

[ 348 ]

  Rectangle {
    id: first
    width: 50; height: width
    color: focus ? "blue" : "lightgray"
    focus: true

    KeyNavigation.right: second
  }
  Rectangle {
    id: second
    width: 50; height: width
    color: focus ? "blue" : "lightgray"

    KeyNavigation.right: third
    KeyNavigation.left: first
  }
  Rectangle {
    id: third
    width: 50; height: width
    color: focus ? "blue" : "lightgray"

    KeyNavigation.left: second
  }
}

Notice that we made the first item get into focus in the beginning by explicitly setting the 
focus property.

Both the Keys and KeyNavigation attached properties have a way to define the order in 
which each of the mechanisms receive the events. This is handled by the priority property, 
which can be set to either BeforeItem or AfterItem. By default, Keys will get the 
event first (BeforeItem), then the internal event handling can take place and finally, 
KeyNavigation will have a chance of handling the event (AfterItem). Note that if the key 
is handled by one of the mechanisms, the event is accepted and the remaining mechanisms 
will not be able to handle that event.

Have a go hero – practicing key-event propagation
As an exercise, you can expand our last example by building a larger array of items (you can 
use the Grid element to position them) and defining a navigation system that makes use of 
the KeyNavigation attached property. Have some of the items handle events themselves 
using the Keys attached property. See what happens when the same key is handled by both 
mechanisms. Try influencing the behavior using the priority property.



Chapter 9

[ 349 ]

Apart from the attached properties we described, Qt Quick provides built-in elements for 
handling keyboard input. The two most basic types are TextInput and TextEdit, which 
are QML equivalents of QLineEdit and QTextEdit. The former are used for single-line text 
input, while the latter serve as its multi-line counterpart. They both offer cursor handling, 
undo-redo functionality, and text selections. You can validate text typed into TextInput by 
assigning a validator to the validator property. For example, to obtain an item where the 
user can input a dot-separated IP address, we could use the following declaration:

TextInput {
  id: ipAddress
  width: 100
  validator: RegExpValidator {
    regExp: /\d+\.\d+\.\d+\.\d+/ 
    /* four numbers separated by dots*/
  }
  focus: true
}

The regular expression only verifies the format of the address. The user can still insert bogus 
numbers. You should either do a proper check before using the address or provide a more 
complex regular expression that will constrain the range of numbers the user can enter.

One thing to remember is that neither TextInput nor TextEdit has any visual appearance 
(apart from the text and cursor they contain), so if you want to give the user some visual hint 
as to where the item is positioned, the easiest solution is to wrap it in a styled rectangle:

Rectangle {
  id: textInputFrame
  width: 200
  height: 40
  border { color: "black"; width: 2 }
  radius: 10
  antialiasing: true
  color: "darkGray"
}
TextInput {
  id: textInput
  anchors.fill: textInputFrame
  anchors.margins: 5
  font.pixelSize: height-2
  verticalAlignment: TextInput.AlignVCenter
  clip: true
}



Qt Quick Basics

[ 350 ]

Notice the highlighted code–the clip property of textInput–is enabled such that by 
default, if the text entered in the box doesn't fit in the item, it will overflow it and remain 
visible outside the actual item. By enabling clipping, we explicitly say that anything that 
doesn't fit the item should not be drawn.

Using components in Qt Quick
By now, you should be familiar with the very basics of QML and Qt Quick. Now, we can start 
combining what you know and fill the gaps with more information to build a functional Qt 
Quick application. Our target is going to be to display an analog clock.

Time for action – a simple analog clock application
Create a new Qt Quick UI project. To create a clock, we will implement a component 
representing the clock needle and we will use instances of that component in the actual 
clock element. In addition to this, we will make the clock a reusable component; therefore, 
we will create it in a separate file and instantiate it from within main.qml:

import QtQuick 2.0

Clock {
  id: clock
  width:  400
  height: 400
}

Then, add the new QML file to the project and call it Clock.qml. Let's start by declaring a 
circular clock plate:

import QtQuick 2.0

Item {
  id: clock

  property color color: "lightgray"

  Rectangle {
    id: plate



Chapter 9

[ 351 ]

    anchors.centerIn: parent
    width: Math.min(clock.width, clock.height)
    height: width
    radius: width/2
    color: clock.color
    border.color: Qt.darker(color)
    border.width: 2
  }
}

If you run the program now, you'll see a plain gray circle hardly resembling a clock plate:

The next step is to add marks dividing the plate into 12 sections. We can do this by putting 
the following declaration inside the plate object:

Repeater {
  model: 12
  
  Item {
    id: hourContainer

    property int hour: index
    height: plate.height/2
    transformOrigin: Item.Bottom
    rotation: index * 30
    x: plate.width/2
    y: 0

    Rectangle {
      width: 2



Qt Quick Basics

[ 352 ]

      height: (hour % 3 == 0) ? plate.height*0.1 
                              : plate.height*0.05
      color: plate.border.color
      antialiasing: true
      anchors.horizontalCenter: parent.horizontalCenter
      anchors.top: parent.top
      anchors.topMargin: 4
    }
  }
}

Running the program should now give the following result, looking much more like  
a clock plate:

What just happened?
The code we just created introduces a couple of new features. Let's go through them one  
by one.

First of all, we used a new element called Repeater. It does exactly what its name says–it 
repeats items declared within it using a given model. For each entry in the model, it creates an 
instance of a component assigned to a property called delegate (the property name means 
that it contains an entity to which the caller delegates some responsibility, such as describing 
a component to be used as a stencil by the caller). Item declared in Repeater describes 
the delegate even though we cannot see it explicitly assigned to a property. This is because 
delegate is a default property of the Repeater type, which means anything unassigned to 
any property explicitly gets implicitly assigned to the default property of the type.



Chapter 9

[ 353 ]

The Item type also has a default property called data. It holds a list of elements that gets 
automatically split into two "sublists"–the list of the item's children (which creates the 
hierarchy of Item instances in Qt Quick) and another list called resources, which contains all 
"child" elements that do not inherit from Item. You have direct access to all three lists which 
means calling children[2] will return the third Item element declared in the item, and 
data[5] will return the sixth element declared in the Item regardless of whether the given 
element is a visual item (that inherits Item) or not.

The model can be a number of things but in our case, it is simply a number denoting 
how many times the delegate should be repeated. The component to be repeated is a 
transparent item containing a rectangle. The item has a property declared called hour that 
has something called index bound to it. The latter is a property assigned by Repeater to 
each instance of the delegate component. The value it contains is the index of the instance 
in the Repeater object–since we have a model containing twelve elements, index will hold 
values within a range of 0 to 11. The item can make use of the index property to customize 
instances created by Repeater. In this particular case, we use index to provide values for a 
rotation property and by multiplying the index by 30, we get values starting from 0 for the 
first instance and ending at 330 for the last one.

The rotation property brings us to the second most important subject–item 
transformations. Each item can be transformed in a number of ways, including rotating 
the item and scaling it in two-dimensional space as we already mentioned earlier. Another 
property called transformOrigin denotes the origin point around which scale and 
rotation are applied. By default, it points to Item.Center, which makes the item scale and 
rotate around its center, but we can change it to eight other values such as Item.TopLeft 
for the top-left corner or Item.Right for the middle of the right edge of the item. In 
the code we crafted, we rotate each item clockwise around its bottom edge. Each item is 
positioned horizontally in the middle of the plate using the plate.width/2 expression and 
vertically at the top of the plate with the default width of 0 and the height of half the plate's 
height; thus, each item is a thin vertical line spanning from within the top to the center of 
the plate. Then, each item is rotated around the center of the plate (each item's bottom 
edge) by 30 degrees more than a previous item effectively laying items evenly on the plate.

Finally, each item has a gray Rectangle attached to the top edge (offset by 4) and horizontally 
centered in the transparent parent. Transformations applied to an item influence the item's 
children similarly to what we have seen in Graphics View; thus, the effective rotation of the 
rectangle follows that of its parent. The height of the rectangle depends on the value of hour, 
which maps to the index of the item in Repeater. Here, you cannot use index directly as it 
is only visible within the top-most item of the delegate. That's why we create a real property 
called hour that can be referenced from within the whole delegate item hierarchy.



Qt Quick Basics

[ 354 ]

If you want more control over item transformations, then we are happy 
to inform you that apart from rotation and scale properties, each item 
can be assigned an array of elements such as Rotation, Scale, 
and Translate to a property called transform, which are applied 
in order, one at a time. These types have properties for fine-grained 
control over the transformation. For instance, using Rotation you 
can implement rotation over any of the three axes and around a custom 
origin point (instead of being limited to nine predefined origin points as 
when using the rotation property of Item).

Time for action – adding needles to the clock
The next step is to add the hour, minute, and second needles to the clock. Let's start by 
creating a new component called Needle in a file called Needle.qml (remember that 
component names and files representing them need to start with a capital letter):

import QtQuick 2.0

Rectangle {
  id: root

  property int value: 0
  property int granularity: 60
  property alias length: root.height
  width: 2
  height: parent.height/2
  radius: width/2
  antialiasing: true
  anchors.bottom: parent.verticalCenter
  anchors.horizontalCenter: parent.horizontalCenter
  transformOrigin: Item.Bottom
  rotation: 360/granularity * (value % granularity)
}

Needle is basically a rectangle anchored to the center of its parent by its bottom edge, 
which is also the item's pivot. It also has value and granularity properties driving the 
rotation of the item, where value is the current value the needle shows and granularity 
is the number of different values it can display. Also, anti-aliasing for the needle is enabled 
as we want the tip of the needle nicely rounded. Having such a definition, we can use the 
component to declare the three needles inside the clock plate object:

Needle {
  length: plate.height*0.3
  color: "blue"



Chapter 9

[ 355 ]

  value: clock.hours; granularity: 12
}
Needle {
  length: plate.height*0.4
  color: "darkgreen"
  value: clock.minutes; granularity: 60
}
Needle {
  width: 1
  length: plate.height*0.45
  color: "red"
  value: clock.seconds; granularity: 60
}

The three needles make use the of hours, minutes, and seconds properties of clock, so 
these need to be declared, as well:

property int hours: 0
property int minutes: 0
property int seconds: 0

By assigning different values to the properties of Clock in main.qml, you can make the 
clock show a different time:

import QtQuick 2.0

Clock {
  id: clock
  width:  400
  hours: 7
  minutes: 42
  seconds: 17
}

You'll get an output as shown:



Qt Quick Basics

[ 356 ]

What just happened?
Most Needle functionality is declared in the component itself, including geometry and 
transformations. Then, whenever we want to use the component, we declare an instance of 
Needle and optionally customize the length and color properties, as well as set its value 
and granularity to obtain the exact functionality we need.

Time for action – making the clock functional
The final step in creating a clock is to make it actually show the current time. In JavaScript, 
we can query the current time using the Date object:

var currentDate = new Date()
var hours   = currentDate.getHours()
var minutes = currentDate.getMinutes()
var seconds = currentDate.getSeconds()

Therefore, the first thing that comes to mind is to use the preceding code to show the 
current time on the clock:

Item {
  id: clock
  property int hours:   currentDate.getHours()
  property int minutes: currentDate.getMinutes()
  property int seconds: currentDate.getSeconds()
  property var currentDate: new Date()
  // ...
}

This will indeed show the current time once you start the application, but the clock will 
not be updating itself as the time passes. This is because new Date() returns an object 
representing one particular moment in time (the date and time at the moment when the 
object was instantiated). What we need instead is to have the currentDate property 
updated with a new object created as the current time changes. To obtain this effect, we can 
use a Timer element that is an equivalent of QTimer in C++ and lets us periodically execute 
some code. Let's modify the code to use a timer:

Item {
  id: clock
  property int hours: currentDate.getHours()
  property int minutes: currentDate.getMinutes()
  property int seconds: currentDate.getSeconds()
  readonly property var currentDate: new Date()



Chapter 9

[ 357 ]

  property alias running: timer.running
  Timer {
    id: timer
    repeat: true
    interval: 500
    running: true
    onTriggered: clock.currentDate = new Date()
  }
}

What just happened?
Based on the interval property, we can determine that the timer emits a triggered signal 
every 500 ms, causing currentDate to be updated with a new Date object representing 
the current time. The clock is also given a running property (pointing to its equivalent in 
the timer) that can control whether updates should be enabled. The timer is set to repeat; 
otherwise, it would trigger just once.

Dynamic objects
To briefly sum up what you have learned so far, we can say that you know how to create 
hierarchies of objects by declaring their instances and you also know how to program new 
types in separate files, making definitions available as components to be instantiated in 
other QML files. You can even use the Repeater element to declare a series of objects 
based on a common stencil.

Using components in detail
We promised to give you more information about components and now is the time to do so. 
You already know the basics of creating components in separate files. Every QML file beginning 
with a capital letter is treated as a component definition. This definition can be used directly 
by other QML files residing in the same directory as the component definition. If you need 
to access a component definition from a file residing elsewhere, you will have to first import 
the module containing the component in the file where you want to use it. The definition of a 
module is very simple–it is just a relative path to the directory containing QML files. The path 
is constructed using dots as the separator. This means that if you have a file named Baz.qml 
in a directory called Base/Foo/Bar and you want to use the Baz component from within the 
Base/Foo/Ham.qml file, you will have to put the following import statement in Ham.qml:

import "Bar"



Qt Quick Basics

[ 358 ]

If you want to use the same component from within the Base/Spam.qml file, you will have 
to replace the import statement with:

import "Foo.Bar"

Importing a module makes all its components available for use. You can then declare objects 
of types imported from a certain module.

Creating objects on request
The problem with pre-declaring objects directly in a QML file is that you need to know 
up front how many objects you are going to need. More often than not, you will want to 
dynamically add and remove objects to your scene, for example, in an alien invasion game 
where as the player progresses, new alien saucers will be entering the game screen and other 
saucers will be getting shot down and destroyed. Also, the player's ship will be "producing" 
new bullets streaking in front of the ship, eventually running out of fuel or otherwise 
disappearing from the game scene. By putting a good amount of effort into the problem, you 
would be able to use Repeater to obtain this effect, but there is a better tool at hand.

QML offers us another element type called Component, which is another way to teach the 
engine about a new element type by declaring its contents in QML. There are basically two 
approaches to doing this.

The first approach is to declare a Component element instance in the QML file and inline the 
definition of the new type directly inside the element:

Component {
  id: circleComponent
  Item {
    property int diameter: 20
    property alias color: rect.color
    property alias border: rect.border

    implicitWidth: diameter
    implicitHeight: diameter

    Rectangle {
      id: rect  
      width: radius; height: radius; radius: diameter/2
      anchors.centerIn: parent
    }
  }
}



Chapter 9

[ 359 ]

Such code declares a component called circleComponent that defines a circle and exposes 
its diameter, color, and border properties.

The other approach is to load the component definition from an existing QML file. QML 
exposes a special global object called Qt, which provides a set of interesting methods.  
One of the methods allows the caller to create a component passing the URL of an existing  
QML document:

var circleComponent = Qt.createComponent("circle.qml")

An interesting note is that createComponent can not only accept a local file path but also a 
remote URL, and if it understands the network scheme (for example, http), it will download 
the document automatically. In this case, you have to remember that it takes time to do 
that, so the component may not be ready immediately after calling createComponent. 
Since the current loading status is kept in the status property, you can connect to the 
statusChanged signal to be notified when this happens. A typical code path looks similar 
to the following:

var circleComponent = Qt.createComponent 
  ("http://example.com/circle.qml")
if(circleComponent.status === Component.Ready) {
  // use the component
} else {
  circleComponent.statusChanged.connect(function() {
    if(circleComponent.status === Component.Ready) {
       // use the component
    }
  })
}

If the component definition is incorrect or the document cannot be retrieved, the status of 
the object will change to Error. In that case, you can make use of the errorString() 
method to see what the actual problem is:

if(circleComponent.status === Component.Error) {
  console.warn(circleComponent.errorString())
}

Once you are sure the component is ready, you can finally start creating objects from it. 
For this, the component exposes a method called createObject. In its simplest form, it 
accepts an object that is to become the parent of the newly born instance (similar to widget 
constructors accepting a pointer to a parent widget) and returns the new object itself so that 
you can assign it to some variable:

var circle = circleComponent.createObject(someItem)



Qt Quick Basics

[ 360 ]

Then, you can start setting the object's properties:

circle.diameter = 20
circle.color = 'red'

A more complex invocation lets us do both these operations (create the object and set its 
properties) in a single call by passing a second parameter to createObject:

var circle = circleComponent.createObject(someItem,  
  {diameter: 20, color: 'red'})

The second parameter is an object (created here using JSON syntax) whose properties are to 
be applied to the object being created. The advantage of the latter syntax is that all property 
values are applied to the object as one atomic operation (just like usual when the item is 
declared in a QML document) instead of a series of separate operations, each of which sets 
the value for a single property, possibly causing an avalanche of change handler invocations 
in the object.

After creation, the object becomes a first-class citizen of the scene, acting in the same way as 
items declared directly in the QML document. The only difference is that a dynamically created 
object can also be dynamically destructed by calling its destroy() method, which is an 
equivalent of calling delete on C++ objects. When speaking of destroying dynamic items, we 
have to point out that when you assign a result of createObject to a variable (like circle, 
in our example) and that variable goes out of scope, the item will not be released and garbage 
collected as its parent still holds a reference to it, preventing it from being recycled.

We didn't mention this explicitly before, but we have already used inline component 
definitions earlier in this chapter when we introduced the Repeater element. The repeated 
item defined within the repeater is in fact not a real item, but a component definition that is 
instantiated as many times as needed by the repeater.

Delaying item creation
Another recurring scenario is that you do know how many elements you are going to need, 
but the problem is that you cannot determine up front what type of elements they are going 
to be. At some point during the lifetime of your application, you will learn that information 
and will be able to instantiate an object. Until you gain the knowledge about the given 
component, you will need some kind of item placeholder where you will later put the real 
item. You can, of course, write some code to use the createObject() functionality of 
the component, but this is cumbersome. Fortunately, Qt Quick offers a nicer solution in the 
form of a Loader item. This item type is exactly what we described it to be–a temporary 
placeholder for a real item that will be loaded on demand from an existing component. You 
can put Loader in place of another item and when you need to create this item, one way is 
to set the URL of a component to the source property:



Chapter 9

[ 361 ]

Loader {
  id: ldr
}
ldr.source = "MightySword.qml"You could also directly attach  
  a real component to sourceComponent of a Loader:
Component {
  id: swordComponent
  // ...
}
Loader {
  id: ldr
  sourceComponent: shouldBeLoaded ? swordComponent : undefined
}

Immediately afterwards, the magic begins and an instance of the component appears in the 
loader. If the Loader object has its size set explicitly (for example, by anchoring or setting 
the width and height), then the item will be resized to the size of the loader. If an explicit size 
is not set, then Loader will instead be resized to the size of the loaded element once the 
component is instantiated:

Loader {
  anchors {
    left: parent.left; leftMargin: 0.2*parent.width
    right: parent.right;
    verticalCenter: parent.verticalCenter
  }
  height: 250
  
  source: "Armor.qml"
}

In the preceding situation, the loader has its size set explicitly so when its item is created, it 
will respect the anchors and sizes declared here.

Accessing your item's component functionality
Each item in Qt Quick is an instantiation of some kind of component. Each object has a 
Component attached property that offers two signals informing about important moments 
of the object's life cycle. The first signal–completed()—is triggered after the object 
has been instantiated. If you provide a handler for the signal, you can perform some late 
initialization of the object after it has been fully instantiated. There are many use cases for 
this signal, starting with logging a message to the console:

Rectangle {
  Component.onCompleted: console.log("Rectangle created")
}



Qt Quick Basics

[ 362 ]

A more advanced use of this signal is to optimize performance by delaying expensive 
operations until the component is fully constructed:

Item {
  id: root

  QtObject {
    id: priv
    property bool complete: false

    function layoutItems() {
      if(!complete) return
      // ...
    }
  }
  onChildrenChanged: priv.layoutItems()
  Component.onCompleted: { priv.complete = true;  
    priv.layoutItems(); }
}

When items are created, they are added to their parent's children property. Thus, as 
items get created and destroyed, the value of that property is modified, triggering the 
childrenChanged signal. As this happens, we would like to reposition the item's children 
according to some algorithm. For that, we have an internal QtObject instance (representing 
a QObject) called priv where we can declare functions and properties that will not be 
visible outside the component definition. In there, we have a layoutItems() function that 
is called whenever the list of children is updated. This is fine if items are created or destroyed 
dynamically (for example, using the Component.createObject() function). However, as 
the root object is being constructed, it may have a number of child items declared directly in 
the document. There is no point in repositioning them over and over again as declarations 
are instantiated. Only when the list of objects is complete does it make sense to position 
the items. Therefore, we declare a Boolean property in the private object denoting whether 
the root item is fully constructed. Until it is, every time layoutItems() is called, it will exit 
immediately without doing any computations. When Component.onCompleted is called, 
we raise the flag and call layoutItems(), which computes the geometry of all child items 
declared statically in the document.

The other signal in the attached Component property is destruction. It is triggered 
right after the destruction process for the object starts when the component is still fully 
constructed. By handling that signal, you can perform actions such as saving the state of the 
object in persistent storage or otherwise cleaning the object up.



Chapter 9

[ 363 ]

Imperative painting
Declaring graphical items is nice and easy but as programmers, we're more used to writing 
imperative code, and some things are easier expressed as an algorithm rather than as a 
description of the final result to be achieved. It is easy to use QML to encode a definition 
of a primitive shape such as a rectangle in a compact way–all we need is to mark the origin 
point of the rectangle, its width, height, and optionally, a color. Writing down a declarative 
definition of a complex shape consisting of many control points positioned in given absolute 
coordinates, possibly with an outline in some parts of it, maybe accompanied by an image 
or two, is still possible in language such as QML; however, this will result in a much more 
verbose and much less readable definition. This is a case where using an imperative approach 
might prove more effective. HTML (being a declarative language) already exposes a proven 
imperative interface for drawing different primitives called a Canvas that has been used in 
numerous Web applications. Fortunately, Qt Quick provides us with its own implementation 
of a Canvas interface similar to the one from the Web by letting us instantiate Canvas items. 
Such items can be used to draw straight and curved lines, simple and complex shapes, and 
graphs and graphic images. It can also add text, colors, shadows, gradients, and patterns. It 
can even perform low-level pixel operations. Finally, the output may be saved as an image 
file or serialized to a URL usable as source for an Image item. There are many tutorials and 
papers available out there on using an HTML canvas and they can usually be easily applied to 
a Qt Quick canvas, as well (the reference manual even includes a list of aspects you need to 
pay attention to when porting HTML canvas applications to a Qt Quick canvas), so here we will 
just give you the very basics of imperative drawing in Qt Quick.

Consider a game where the player's health is measured by the condition of his heart–the 
slower the beat, the more healthy the player is. We will use this kind of visualization as our 
exercise in practicing painting using the Canvas element.

Time for action – preparing Canvas for heartbeat visualization
Let's start with simple things by creating a Quick UI project based on the latest version of Qt 
Quick. Rename the QML file Creator made for us to HeartBeat.qml. Open the qmlproject 
file that was created with the project and change the mainFile property of the Project 
object to HeartBeat.qml. Then, you can close the qmlproject document and return to 
HeartBeat.qml. There, you can replace the original content with the following:

import QtQuick 2.2

Canvas {
  id: canvas

  implicitWidth: 600
  implicitHeight: 300



Qt Quick Basics

[ 364 ]

  onPaint: {
    var ctx = canvas.getContext("2d")
    ctx.clearRect(0, 0, canvas.width, canvas.height)
  }
}

When you run the project, you will see... a blank window.

What just happened?
In the preceding code, we created a basic boilerplate code for using a canvas. First, we 
renamed the existing file to what we want our component to be called, and then we 
informed Creator that this document is to be executed when we run the project using 
qmlscene.

Then, we created a Canvas instance with an implicit width and height set. There, we created 
a handler for the paint signal that is emitted whenever the canvas needs to be redrawn. 
The code placed there retrieves a context for the canvas, which can be thought of as an 
equivalent to the QPainter instance we used when drawing on Qt widgets. We inform the 
canvas that we want its 2D context, which gives us a way to draw in two dimensions. A 2D 
context is the only context currently present for the Canvas element, but you still have to 
identify it explicitly–similar to in HTML. Having the context ready, we tell it to clear the whole 
area of the canvas. This is different to the widget world in which when the paintEvent 
handler was called, the widget was already cleared for us and everything had to be 
redrawn from scratch. With Canvas, it is different; the previous content is kept by default 
so that you can draw over it if you want. Since we want to start with a clean sheet, we call 
clearRect() on the context.

Time for action – drawing a heartbeat
We will extend our component now and implement its main functionality–drawing a 
heartbeat-like diagram.

Add the following property declarations to canvas:

property int lineWidth: 2
property var points: []
property real arg: -Math.PI



Chapter 9

[ 365 ]

Below, add a declaration for a timer that will drive the whole component:

Timer {
  interval: 10
  repeat: true
  running: true
  onTriggered: {
    arg += Math.PI/180
    while(arg >= Math.PI) arg -= 2*Math.PI
  }
}

Then, define the handler for when the value of arg is modified:

onArgChanged: {
  points.push(func(arg))
  points = points.slice(-canvas.width)
  canvas.requestPaint()
}

Then, implement func:

function func(argument) {
  var a=(2*Math.PI/10); var b=4*Math.PI/5
  return Math.sin(20*argument) * (
      Math.exp(-Math.pow(argument/a, 2)) +
      Math.exp(-Math.pow((argument-b)/a,2)) +
      Math.exp(-Math.pow((argument+b)/a,2))
  )
}

Finally, modify onPaint:

onPaint: {
  var ctx = canvas.getContext("2d")
  ctx.reset()
  ctx.clearRect(0, 0, canvas.width, canvas.height)
  var pointsToDraw = points.slice(-canvas.width)
  ctx.translate(0, canvas.height/2)
  ctx.beginPath()
  ctx.moveTo(0, -pointsToDraw[0]*canvas.height/2)
  for(var i=1; i<pointsToDraw.length; i++)
    ctx.lineTo(i, -pointsToDraw[i]*canvas.height/2)
  ctx.lineWidth = canvas.lineWidth
  ctx.stroke()
}



Qt Quick Basics

[ 366 ]

Then, you can run the code and see a heart beat-like diagram appear on the canvas:

What just happened?
We added two kinds of properties to the element. By introducing lineWidth, we can 
manipulate the width of the line that visualizes the heartbeat. The points and arg 
variables are two helper variables that store an array of points already calculated and the 
function argument that was last evaluated. The function we are going to use is a periodic 
function that extends from -Π to +Π; thus, we initialize arg to -Math.PI and we store an 
empty array in points.

Then, we added a timer that ticks in regular intervals, incrementing arg by 1° until it reaches 
+Π, in which case it is reset to the initial value.

Changes to arg are intercepted in the handler we implemented next. In there, we push a 
new item to the array of points. The value is calculated by the function func, which is quite 
complicated, but it is sufficient to say that it returns a value from within a range of -1 to 
+1. The array of points is then compacted using Array.slice() so that at most, the last 
canvas.width items remain in the array. This is so we can plot one point for each pixel of the 
width of the canvas and we don't have to store any more data than required. At the end of 
the function, we invoke requestPaint(), which is an equivalent of QWidget::update() 
and schedules a call to paint.



Chapter 9

[ 367 ]

That, in turn, calls our onPaint. There, after retrieving the context, we reset the canvas 
to its initial state and then calculate an array of points that is to be drawn again by using 
slice(). Then, we prepare the canvas by translating and scaling it in the vertical axis so that 
the origin is moved to half of the height of the canvas (that's the reason for calling reset() 
at the beginning of the procedure–to revert this transformation). After that, beginPath() 
is called to inform the context that we are starting to build a new path. Then, the path is built 
segment by segment by appending lines. Each value is multiplied by canvas.height/2 so 
that values from the point array are scaled to the size of the item. The value is negated as the 
vertical axis of the canvas grows to the bottom and we want positive values to be above the 
origin line. After that, we set the width of the pen and draw the path by calling stroke().

Time for action – making the diagram more colorful
The diagram serves its purpose, but it looks a bit dull. Add some shine to it by defining three 
new color properties in the canvas object–color, topColor, bottomColor–and setting 
their default values to black, red, and blue, respectively.

Since points and arg should not really be public properties that anyone can change 
behind our backs, we'll correct it now. Declare a child element of the canvas of QtObject 
and set its ID to priv. Move declarations of points and arg inside that object. Move the 
onArgChanged handler there, as well:

QtObject {
  id: priv
  property var points: []
  property real arg: -Math.PI

  onArgChanged: {
    points.push(func(arg))
    points = points.slice(-canvas.width)
    canvas.requestPaint()
  }
}

Then, search through the whole code and prefix all occurrences of arg and points  
outside the newly declared object with priv, so that each of their invocations lead  
to the priv object.

Then, let's make use of the three colors we defined by extending onPaint:

onPaint: {
    ...
    // fill:
    ctx.beginPath()
    ctx.moveTo(0, 0)



Qt Quick Basics

[ 368 ]

    var i
    for(i=0; i<pointsToDraw.length; i++)
        ctx.lineTo(i, -pointsToDraw[i]*canvas.height/2)
    ctx.lineTo(i, 0)
    var gradient = ctx.createLinearGradient(0,  
      -canvas.height/2, 0, canvas.height/2)
    gradient.addColorStop(0.1, canvas.topColor)
    gradient.addColorStop(0.5, Qt.rgba(1, 1, 1, 0))
    gradient.addColorStop(0.9, canvas.bottomColor)
    ctx.fillStyle = gradient
    ctx.fill()

    // stroke:
    ctx.beginPath()
    ctx.moveTo(0, -pointsToDraw[0]*canvas.height/2)
    for(var i=1; i<pointsToDraw.length; i++)
        ctx.lineTo(i, -pointsToDraw[i]*canvas.height/2)
    ctx.lineWidth = canvas.lineWidth
    ctx.strokeStyle = canvas.color
    ctx.stroke()
}

Upon running the preceding code snippet, you get the following output:

What just happened?
By moving the two properties inside the priv object, we have effectively hidden them from 
the external world as child objects of an object (such as priv being a child of canvas) are 
not accessible from outside the QML document that defines the object. This ensures that 
neither points nor arg can be modified from outside the HeartBeat.qml document.



Chapter 9

[ 369 ]

The modifications to onPaint that we implemented are creating another path and using 
that path to fill an area using a gradient. The path is very similar to the original one, but it 
contains two additional points that are the first and last point drawn projected onto the 
horizontal axis. This makes sure the gradient fills the area properly. Please note that the 
canvas uses imperative code for drawing; therefore, the order of drawing the fill and the 
stroke matters–the fill has to be drawn first so that it doesn't obscure the stroke.

Qt Quick and C++
Thus far, we have been using standard Qt Quick items or creating new ones by compositing 
existing element types in QML. But there is a lot more you can do if you interface QML and 
C++ using the technologies Qt has to offer. Essentially, QML runtime does not differ much 
in its design from Qt Script, which you read about in the previous chapter of this book. In 
the following paragraphs, you will learn how to gain access to objects living in one of the 
environments from within the other one, as well as how to extend QML with new modules 
and elements.

Until now, all the example projects we did in this chapter were written with just QML and 
because of that, the project type we were choosing was Qt Quick UI, which let us quickly 
see the Qt Quick scene we modeled by interpreting it with the qmlscene tool. Now, we will 
want to add C++ to the equation and since C++ is a compiled language, we will need to do 
some proper compilation to get things working. Therefore, we will be using the Qt Quick 
Application template.

Creating QML objects from C++
When you start a new project of such a type in Qt Creator, after you answer the question 
about the component set you would like to use (choose any of the Qt Quick 2.x options for 
a regular Qt Quick application), you will receive some boilerplate code–a main.cpp file 
containing the C++ part and main.qml, which contains the scene definition. Let's have a 
look at the latter first:

import QtQuick 2.3
import QtQuick.Window 2.2

Window {
  visible: true
  width: 360
  height: 360
  
  MouseArea {
    anchors.fill: parent
    onClicked: {
      Qt.quit();



Qt Quick Basics

[ 370 ]

    }
  }

  Text {
    text: qsTr("Hello World")
    anchors.centerIn: parent
  }
}

The code is a little bit different than before; just look at the highlighted parts. Instead of 
an Item root object, we now have a Window together with an import statement for a 
QtQuick.Window module. To understand why this is the case, we will have to understand 
the C++ code which invokes this QML document:

#include <QGuiApplication>
#include <QQmlApplicationEngine>

int main(int argc, char *argv[])
{
  QGuiApplication app(argc, argv);

  QQmlApplicationEngine engine;
  engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

  return app.exec();
}

The source code is pretty simple. First, we instantiate an application object, just like for 
any other type of application. As we are not using Qt widgets, QGuiApplication is 
used instead of QApplication. The last line of the main function is also obvious–the 
application's event loop is started. Between those two lines, we can see an instance of 
QQmlApplicationEngine being created and fed with the URL of our QML document.

QML is driven by an engine implemented in QQmlEngine that is somewhat similar to 
QScriptEngine. QQmlApplicationEngine is a subclass of QQmlEngine, which provides 
a simple way of loading an application from a single QML file. This class does not create 
a root window to display our Qt Quick scene (QML applications don't have to necessarily 
be Qt Quick applications; they don't have to deal with the user interface at all), so it is the 
responsibility of the application to create a window if it wants to show a Qt Quick scene in it.

An alternative fit for loading Qt Quick-based user interfaces would be to use QQuickView 
or its less convenient superclass–QQuickWindow, which inherit QWindow and are able to 
render Qt Quick scenes.



Chapter 9

[ 371 ]

You could then replace the main.cpp contents with the following code:

#include <QGuiApplication>
#include <QQuickView>

int main(int argc, char *argv[])
{
  QGuiApplication app(argc, argv);

  QQuickView view;
  view.setSource(QUrl::fromLocalFile(QStringLiteral("main.qml")));
  view.show();

  return app.exec();
}

Since QQuickView inherits QWindow, we can see that a window will be created to 
encompass the Qt Quick scene defined in main.qml. In such an event, you could replace the 
Window declaration with an Item similar to what we have seen in the earlier examples.

If you want to combine a Qt Quick scene with a Qt widgets-based 
user interface, you can use QQuickWidget present in the 
QtQuickWidgets module (add QT += quickwidgets 
to the project file to activate the module), which is similar to 
QQuickView and has a similar API, but instead of rendering the 
scene to a separate window, it renders it to a widget you can then 
put alongside other widgets.

The last way of creating QML objects is to use QQmlComponent. Contrary to the previous 
approaches, which had a QQmlEngine instance embedded in the object creating the QML 
object, we have to use a separate engine with the component method.

QQmlComponent is a wrapper around a QML component definition similar to the 
Component element on the QML side. It can create instances of that component with the 
create() method using a given QQmlEngine instance:

QQmlEngine *engine = new QQmlEngine;
QQmlComponent component(engine,  
  QUrl::fromLocalFile(QStringLiteral("main.qml")));
QObject *object = component.create();



Qt Quick Basics

[ 372 ]

The object created is QObject, since that is the base class for all objects in QML. If the 
object represents a Qt Quick user interface, you can cast it to QQuickItem and use its 
methods to access Item's functionality:

QQuickItem *item = qobject_cast<QQuickItem*>(object);
Q_CHECK_PTR(item);  
  // assert to check if qobject_cast returned a valid pointer
item->setOpacity(0.5);

QQmlComponent is the most "classic" way of instantiating QML objects. You can even use it 
to create additional objects in existing views:

QQuickView *view;
// …
QQmlComponent component(view->engine(),  
  QUrl::fromLocalFile("foobar.qml"));
component.create();

A variation on using QQmlComponent is to create an object in the QML engine 
asynchronously using the QQmlIncubator object. When creating complex objects, it takes 
time for them to instantiate and at times, it is desired to not block the control flow for too 
long by waiting for the operation to complete. In such cases, an incubator object can be used 
to schedule instantiation and continue the flow of the program. We can query the state of 
the incubator and when the object is constructed, we will be able to access it. The following 
code demonstrates how to use the incubator to instantiate an object and process pending 
events while waiting for the operation to complete:

QQmlComponent component(engine,  
  QUrl::fromLocalFile("ComplexObject.qml"));
QQmlIncubator incubator;
component.create(incubator);
while(!incubator.isError() && !incubator.isReady())
  QCoreApplication::processEvents();
QObject *object = incubator.isReady() ? incubator.object() : 0;

Pulling QML objects to C++
In our terminology, pulling QML objects to C++ means that by using C++ code, we would like 
to gain access to objects living in the QML engine (for example, those declared in some QML 
file). Before we do that, it is important that we stress that in general, it is bad practice to try 
and pull objects from the QML engine. There are a few reasons for that, but we would like to 
stress just two of them.



Chapter 9

[ 373 ]

First, if we assume the most common case, which is that the QML part of our application 
deals with a user interface in Qt Quick for the logic written in C++, then accessing QtQuick 
objects from C++ breaks the separation between logic and the presentation layer, which is 
one of the major principles in GUI programming. The second reason is that QML documents 
(and Qt Quick ones in particular) are often made by different people (designers) than those 
who implement the application logic (programmers). The user interface is prone to dynamic 
changes, relayouting up to a complete revamp. Heavy modifications of QML documents, 
such as adding or removing items from the design, would then have to be followed by 
adjusting the application logic to cope with those changes. This in turn needs recompilation 
of the whole application, which is cumbersome. In addition, if we allow a single application 
to have multiple user interfaces (skins), it might happen that because they are so different, 
it is impossible to decide upon a single set of common entities with hardcoded names 
that could be fetched from C++ and manipulated. Even if you managed to do that, such an 
application could crash easily if the rules were not strictly followed by designers.

That said, we have to admit that there are cases when it does make sense to pull objects 
from QML to C++, and that is why we decided to familiarize you with the way to do it. One of 
the situations where such an approach is desired is when QML serves us as a way to quickly 
define a hierarchy of objects with properties of different objects linked through more or less 
complex expressions, allowing them to answer to changes taking place in the hierarchy.

For example, if you create a Qt Quick UI project, among the files generated, you will find a 
qmlproject file containing the project definition expressed in QML itself, such as this one:

import QmlProject 1.1

Project {
  mainFile: "main.qml"

  importPaths: [ "plugins" ]

  QmlFiles {
    files: [ "Clock.qml", "Needle.qml" ]
  }
  JavaScriptFiles {
    directory: "."
  }
  ImageFiles {
    directory: "."
  	 }
}



Qt Quick Basics

[ 374 ]

It contains project contents specified as a set of file selectors and additional properties such 
as the main project file or a list of directories of where to look for QML modules. It is very 
easy to specify such a project description in QML and after doing so and by getting a handle 
on the Project instance from C++, one can read the required information directly from the 
object and its properties as needed.

Project is considered a root object of this document. There are five ways to get access to a 
root object, based on how the document was actually loaded into the engine:

�� QQmlApplicationEngine::rootObjects() if using QQmlApplicationEngine

�� QQuickView::rootObject() if using QQuickView

�� QQuickWidget::rootObject() if using QQuickWidget

�� QQmlComponent::create() if using QQmlComponent

�� QQmlIncubator::object() if using QQmlComponent with QQmlIncubator

As we noted earlier, after retrieving an object, you can downcast it to a proper type using 
qobject_cast. Alternatively, you can start using the object through the generic QObject 
interface–accessing properties with property() and setProperty(), running functions 
through QMetaObject::invokeMethod(), and connecting to signals as usual.

The use case provided is a valid and fair situation when you want to pull a view root object or 
a manually created object from the QML world into C++. Now, we are going to show you how 
to do the same for an object from an arbitrary depth of the object tree.

QML documents define object trees. We can ask Qt to traverse a QObject tree and return 
a single object or a list of objects in the tree matching specified criteria. The same approach 
can be implemented for QML object trees. There are two criteria that can be used when 
searching. First, we can search for objects inheriting from a given class. Then, we can search 
for objects matching a given value of the objectName property defined in QObject. To 
search the tree for objects, one uses a findChild template method.

Consider a Qt Quick document defining a number of items:

import QtQuick 2.0

Item {
  width: 400; height: 400
  Rectangle {
    id: rect
    objectName: "redRectangle"
    color: "red"
    anchors.centerIn: parent
    width: height; height: parent.height*2/3
  }



Chapter 9

[ 375 ]

  Rectangle {
    id: circle
    objectName: "blueCircle"
    color: "blue"
    anchors.centerIn: parent
    radius: width/2; width: height; height: parent.height*1/3
  }
}

After gaining access to the root object using one of the methods described earlier, we can 
query the object tree for any of the colored shape items using the objectName values:

QObject *root = view->rootObject();
QObject *rect = root->findChild<QObject*>("redRectangle");
QObject *circle = root->findChild<QObject*>("blueCircle");
if(circle && rect)
    circle->setProperty("width", rect->property("width").toInt());

The findChild() method requires us to pass a class pointer as the template argument. 
Without knowing what class actually implements a given type, it is safest to simply pass 
QObject* as, once again, we know all QML objects inherit this. It is more important what 
gets passed as the function argument value–it is the name of the object we want returned. 
Notice it is not id of the object, but the value of the objectName property. When the 
results get assigned to the variables, we verify whether items have been successfully found 
and if that is the case, the generic QObject API is used to set the width of the circle to that 
of the rectangle.

Let us stress this again: if you have to use this approach, limit it to the minimum. And always 
verify whether the returned item exists (is a non-null pointer); the QML document might 
change between subsequent compilations of the program, and items and their names 
existing in one version of the document might cease to exist in the next version.

Pushing C++ objects to QML
A much better approach is to cross the boundary in the other direction–by exporting objects 
from C++ to QML. This allows C++ developers to decide what API is available for the script. 
The choice of which API to use is left to QML developers. Separation between the application 
logic and the user interface is maintained.

In the previous chapter, you learned to use Qt Script. We told you how to expose existing 
QObject instances to scripting through the use of the script engine's global object. We also 
discussed execution contexts, which provide layers of object visibility while calling functions. 
As already mentioned, QML has many similarities to that framework and in QML, a very 
similar approach is used to expose objects to the engine.



Qt Quick Basics

[ 376 ]

QML engines also use contexts to provide data scopes for the language. You can set 
properties on a context to make certain names resolve to given objects:

QQmlContext *context = new QQmlContext(engine);
QObject *object = new MyObject(...);
context->setContextProperty("foo", object);

From this moment, object is visible within context under the name foo.

Contexts can form hierarchies. On the top of the hierarchy resides a root context of the engine. 
Context properties are resolved from the bottom up, meaning that redefining a name in a child 
context shadows the name defined in the parent context. Let's see an example:

QQmlContext *parentContext = new QQmlContext(engine);
QQmlContext *childContext1 = new QQmlContext(parentContext);
QQmlContext *childContext2 = new QQmlContext(parentContext);
QQmlContext *childContext3 = new QQmlContext(parentContext);
QObject *objectA = new A, *objectB = new B, *object C = new C;
parentContext->setContextProperty("foo", objectA);
childContext1->setContextProperty("foo", objectB);
childContext2->setContextProperty("foo", objectC);

We created instances of classes A, B, and C and assigned them to a foo property of different 
contexts forming a hierarchy of five contexts. Why five? When passing a QQmlEngine to 
a constructor of QQmlContext, the context created becomes a child of the engine's root 
context. Therefore, we have four contexts we created ourselves and an additional context 
that always exists in the engine:

childContext1
foo=B childContext3

rootContext

parentContext
foo=A

childContext2
foo=C

Now, if we call foo from within childContext1, we will access object B, and when we call 
foo from childContext2, we will access C. If we call it from childContext3, then, since 
foo is not defined there, the call will propagate to parentContext and hence A will be 
accessed. In rootContext, the context foo will not be available at all.



Chapter 9

[ 377 ]

In most cases, we will not be creating contexts ourselves and thus, the most common 
situation is when we will have control over just the root context since it always exists and is 
easily accessible. Therefore, this context will usually be used to register C++ objects. As the 
root engine context is an ancestor of all other contexts, an object registered there will be 
visible from any QML document.

So what can we do with an exported object using QML? The object itself is accessible using 
the identifier given to it with the setContextProperty(). The identifier can be treated 
as the ID pseudo-property declared on objects in QML documents. Features that can be 
accessed from QML depend on the kind of object exported.

You can export two kinds of object. First, you can export a QVariant value that is then 
converted to an equivalent QML entity. The following table lists the most commonly used 
basic types:

Qt type QML basic type

bool bool

unsigned int, int int

double double

float, qreal real

QString string

QUrl url

QColor color

QFont font

QDate date

QPoint, QPointF point

QSize, QSizeF size

QRect, QRectF rect

It allows us to export a wide range of objects:

int temperature = 17;
double humidity = 0.648;
QDate today = QDate::currentDate();
engine->rootContext()->setContextProperty("temperature",  
  temperature);
engine->rootContext()->setContextProperty("humidity", humidity);
engine->rootContext()->setContextProperty("today",  
  Qt.formatDate(today, ""));



Qt Quick Basics

[ 378 ]

And use them easily in QtQuick:

import QtQuick 2.0

Rectangle {
  id: root
  width: 400; height: width; radius: width/10
  color: "navy"
  border { width: 2; color: Qt.darker(root.color) }

  Grid {
    id: grid
    anchors.centerIn: parent
    columns: 2; spacing: 5
    Text { color: "white"; font.pixelSize: 20; text: "Temperature:" }
    Text { color: "white"; font.pixelSize: 20; text: temperature+"°C"}
    Text { color: "white"; font.pixelSize: 20; text: "Humidity:" }
    Text { color: "white"; font.pixelSize: 20; text: humidity*100+"%"}
  }
  Text {
    anchors {
      horizontalCenter: grid.horizontalCenter;
      bottom: grid.top; bottomMargin: 5
    }
    font.pixelSize: 24; color: "white"
    text: "Weather for "+Qt.formatDate(today)
  }
}

This will give us the following output:



Chapter 9

[ 379 ]

In addition to the basic types, the QML engine provides automatic type conversions between 
special QVariant cases and JavaScript types–QVariantList is converted to JavaScript 
array and QVariantMap to a JavaScript object. This allows for an even more versatile 
approach. We can group all the weather information within a single JavaScript object by 
taking advantage of the QVariantMap conversion:

QVariantMap weather;
weather["temperature"] = 17;
weather["humidity"] = 0.648;
weather["today"] = QDate::currentDate();
engine->rootContext()->setContextProperty("weather", weather);

As a result, we get better encapsulation on the QML side:

Grid {
  // ...
  Text { color: "white"; font.pixelSize: 20; text: "Temperature:" }
  Text { color: "white"; font.pixelSize: 20; text:  
    weather.temperature+"°C" }
  Text { color: "white"; font.pixelSize: 20; text: "Humidity:" }
  Text { color: "white"; font.pixelSize: 20; text:  
    weather.humidity*100+"%"}
}
Text {
  // ...
  text: "Weather for "+Qt.formatDate(weather.today)
}

That's all fine and dandy in a world where weather conditions never change. In real life, 
however, one needs a way to handle situations where the data changes. We could, of course, 
re-export the map every time any of the values changed, but that would be very tedious.

Fortunately, the second kind of object that can be exported to QML comes to our rescue. 
Apart from QVariant, the engine can accept QObject instances as context property values. 
When exporting such an instance to QML, all the object's properties are exposed and all its 
slots become callable functions in the declarative environment. Handlers are made available 
for all the object's signals.



Qt Quick Basics

[ 380 ]

Time for action – self-updating car dashboard
In the next exercise, we will implement a car dashboard that can be used in a racing game 
and will show a number of parameters such as current speed and motor revolutions per 
minute. The final result will look similar to the following image:

We will start with the C++ part. Set up a new Qt Quick Application. Choose the most recent 
Qt Quick version for the Qt Quick component set. This will generate a main function for you 
that instantiates QGuiApplication and QQmlApplicationEngine and sets them up to 
load a QML document.

Use the File menu to create New file or Project and create a new C++ class. Call it CarInfo 
and choose QWidget as its base class. Why not QObject, you may ask? This is because our 
class will also be a widget, which will be used for modifying values of different parameters 
so that we may observe how they influence what the Qt Quick scene displays. In the class 
header, declare the following properties:

  Q_PROPERTY(int rpm READ rpm NOTIFY rpmChanged)
  Q_PROPERTY(int gear READ gear NOTIFY gearChanged)
  Q_PROPERTY(int speed READ speed NOTIFY speedChanged)
  Q_PROPERTY(QDate today READ today NOTIFY todayChanged)
  Q_PROPERTY(double distance READ distance NOTIFY distanceChanged)



Chapter 9

[ 381 ]

The properties are read-only and the NOTIFY clause defines signals emitted when respective 
property values change. Go ahead and implement the appropriate functions for each 
property. Apart from the getter, also implement a setter as a public slot. Here is an example 
for a property controlling the speed of the car:

int CarInfo::speed() const { return m_speed; }
void CarInfo::setSpeed(int newSpeed) {
  if(m_speed == newSpeed) return;
  m_speed = newSpeed;
  emit speedChanged(m_speed);
}

You should be able to follow the example for the remaining properties on your own.

Since we want to use the widget to tweak property values, design the user interface for it 
using a Qt Designer Form. It can something look like this:

Make appropriate signal-slot connections in the widget so that modifying any of the widgets 
for a given parameter or using the setter slot directly updates all the widgets for that 
parameter.



Qt Quick Basics

[ 382 ]

Instead of adding member variables to the CarInfo class for properties 
such as speed, rpm, distance, or gear you can operate directly on 
the widgets placed on the ui form so that, for example, a getter for the 
distance property will look like:

qreal CarInfo::distance() const  
{ return ui->distanceBox->value(); }

The setter would then be modified to:

void CarInfo::setDistance(qreal newDistance) 
{ ui->distanceBox->setValue(newDistance); }

You will then need to add connect() statements to the constructor to be 
sure that signals are propagated from the ui form:

connect(ui->distanceBox, 
SIGNAL(valueChanged(double)), this, SIGNAL(distanceC
hanged(double)));

Next, you can test your work by running the widget. To do this, you have to alter the main 
function to look as follows:

int main(int argc, char **argv) {
  QApplication app(argc, argv);
  CarInfo cinfo;
  cinfo.show();
  return app.exec();
};

Since we are using widgets, we have to replace QGuiApplication with QApplication 
and enable the widgets module by placing QT += widgets in the project file (remember 
to run qmake from the project's context menu afterwards). Make sure everything works as 
expected (that is, that moving sliders and changing spinbox values reflect the changes to 
widget properties) before moving on to the next step.

We are now going to add QtQuick to the equation, so let's start by updating our main 
function to display our scene. Introduce the highlighted changes to the code:

int main(int argc, char **argv) {
  QApplication app(argc, argv);
  CarInfo cinfo;
  QQuickView view;
  view.engine()->rootContext()->setContextProperty 
    ("carData", &cinfo);
  view.setSource("qrc:/main.qml");
  view.show();
  cinfo.show();
  return app.exec();
};



Chapter 9

[ 383 ]

The modifications create a view for our scene, export the CarInfo instance to the global 
context of the QML engine, and load and display the scene from a file located in a resource.

It is important to first export all the objects and only then load the scene. This is because we 
want all the names to be already resolvable when the scene is being initialized so that they 
can be used right away. If we reversed the order of calls, we would get a number of warnings 
on the console about the identities being undefined.

Finally, we can focus on the QML part. Look at the picture of the result we want to be shown 
at the beginning of the exercise. For the black background, we used a bitmap image created 
in a graphical editor (you can find the file in the materials for this book), but you can obtain 
a similar effect by composing three black rounded rectangles directly in QtQuick–the two 
outer parts are perfect circles and the inner module is a horizontally stretched ellipse.

If you decide to use our background file (or make your own prettier image), you can put the 
following code into main.qml:

import QtQuick 2.3

Image {
  source: "dashboard.png"
  Item {
    id: leftContainer
    anchors.centerIn: parent
    anchors.horizontalCenterOffset: -550
    width: 400; height: width
  }
  Item {
    id: middleContainer
    anchors.centerIn: parent
    width: 700; height: width
  }
  Item {
    id: rightContainer
    anchors.centerIn: parent
    anchors.horizontalCenterOffset: 525
    width: 400; height: width
  }
}



Qt Quick Basics

[ 384 ]

What we do here is make the image our root item and create three items to serve as 
containers for different elements of the dashboard. The containers are all centered in the 
parent and we use a horizontalCenterOffset property to move the two outer items 
sideways. The values of the offset, as well as the widths, are calculated by trial and error to 
look good (note that all three containers are perfect squares). If instead of using our file, you 
settle for creating the three parts yourself using Qt Quick items, the containers will simply be 
anchored to the centers of the three black items.

The dials look complicated, but in reality, they are very easy to implement and you have 
already learned everything you need to design them.

Let's start with the needle. Create a new QML document and call it Needle.qml. Open the 
file and place the following content:

import QtQuick 2.0

Item {
  id: root
  property int length: parent.width*0.4
  property color color: "white"
  property color middleColor: "red"
  property int size: 2

  Rectangle {    // needle
    width: root.size
    height: length+20
    color: root.color
    anchors.horizontalCenter: parent.horizontalCenter
    anchors.bottom: parent.bottom
    anchors.bottomMargin: -20
    antialiasing: true
  }
  Rectangle {    // fixing
    anchors.centerIn: parent
    width: 8+root.size; height: width; radius: width/2
    color: root.color
    Rectangle {  // middle dot
      anchors { fill: parent; margins: parent.width*0.25 }
      color: root.middleColor
    }
  }
}



Chapter 9

[ 385 ]

The document defines an item with four attributes–the length of the needle (defaults to 
80% of the dial's radius), the color of the needle, middleColor, which stands for the color 
of the needle's fixing, and the size, which defines how wide the needle is. The code is self-
explanatory. The item itself does not have any dimensions and onlys acts as an anchor for 
visual elements–the needle itself is a thin rectangle oriented vertically with a fixing 20 units 
from the end. The fixing is a circle of the same color as the needle with a smaller circle in 
the middle that uses a different fill color. The smaller radius of the inner circle is obtained by 
filling the outer circle with a 25% margin from each side.

As for the dials, we will put their code inline in the main file since we just have two of them 
and they differ a bit, so the overhead of creating a separate component with a well-designed 
set of properties would outweigh the benefits of having nicely encapsulated objects.

If you think about what needs to be done to have the dial displayed and working, it seems 
the hardest thing is to layout the numbers nicely on the circle, so let's start with that. Here 
is an implementation of a function for calculating the position along a circle circumference, 
based on the radius of the circle and angle (in degrees) where an item should be positioned:

function calculatePosition(angle, radius) {
  if( radius === undefined) radius = width/2*0.8
  var a = angle * Math.PI/180 // convert degrees to radians
  var px = width/2 + radius * Math.cos(a)
  var py = width/2 + radius * Math.sin(a)
  return Qt.point(px, py)
}

The function converts degrees to radians and returns the desired point. The function expects 
a width property to be available that helps to calculate the center of the circle and in case a 
radius was not given, serves as a means to calculate a feasible value for it.

With such a function available, we can use the already familiar Repeater element to 
position items where we want them. Let's put the function in middleContainer and 
declare the dial for car speed:

Item {
  id: middleContainer
  // ...
  function calculatePosition(angle, radius) { /* ... */ }
  Repeater {
    model: 24/2
    Item {
      property point pt:
      middleContainer.calculatePosition(120+index*12*2)



Qt Quick Basics

[ 386 ]

      x: pt.x; y: pt.y
      Label {
        anchors.centerIn: parent
        text: index*20
      }
    }
  }
  Needle {
    anchors.centerIn: parent
    length: parent.width*0.35
    size: 4
    rotation: 210+(carData.speed*12/10)
    color: "yellow"
  }
}

You might have noticed we used an element called Label. We created it to avoid having to 
set the same property values for all the texts we use in the user interface:

import QtQuick 2.0

Text {
  color: "white"
  font.pixelSize: 24
}

The dial consists of a repeater that will create 12 elements. Each element is an item 
positioned using the earlier described function. The item has a label anchored to it that 
displays the given speed. We use 120+index*12*2 as the angle expression as we want "0" 
to be positioned at 120 degrees and each following item positioned 24 degrees further.

The needle is given rotation based on the value read from the carData object. Since the 
angular distance between consecutive 20 kph labels is 24 degrees, the distance for one kph 
is 1.2 and thus we multiply carData.speed by that factor. Item rotation is calculated with 
0 degrees "pointing right"; therefore, we add 90 to the initial 120 degree offset of the first 
label to obtain starting coordinates matching those of the label system.

As you can see in the image, the speed dial contains small lines every 2 kph, with those 
divisible by 10 kph longer than others. We can use another Repeater to declare such ticks:

Repeater {
  model: 120-4



Chapter 9

[ 387 ]

  Item {
    property point pt: middleContainer.calculatePosition(
      120+index*1.2*2, middleContainer.width*0.35
    )
    x: pt.x; y: pt.y
    Rectangle {
      width: 2
      height: index % 5 ? 5 : 10
        color: "white"
        rotation: 210+index*1.2*2
        anchors.centerIn: parent
        antialiasing: true
    }
  }
}

Finally, we can put a label for the dial:

Text {
    anchors.centerIn: parent
    anchors.verticalCenterOffset: 40
    text: "SPEED\n[kph]"
    horizontalAlignment: Text.AlignHCenter
    color: "#aaa"
    font.pixelSize: 16
}

Make sure the label is declared before the dial needle, or give the needle a higher z value so 
that the label doesn't overpaint the needle.

Next, repeat the process on your own for the left container by creating an RPM dial reading 
values from carData.rpm. The dial also displays the current gear of the car's engine. Place 
the following code inside the leftContainer object definition:

Item {
  id: gearContainer
  anchors.centerIn: parent
  anchors.horizontalCenterOffset: 10
  anchors.verticalCenterOffset: -10

  Text {
    id: gear
    property int value: carData.gear
    property var gears: [
      "R", "N",



Qt Quick Basics

[ 388 ]

      "1<sup>st</sup>", "2<sup>nd</sup>", "3<sup>rd</sup>",
      "4<sup>th</sup>", "5<sup>th</sup>"
    ]
    text: gears[value+1]
    anchors.left: parent.left
    anchors.bottom: parent.bottom
    color: "yellow"
    font.pixelSize: 32
    textFormat: Text.RichText
  }
}

The only part needing explanation is highlighted. It defines an array of gear labels starting 
with reverse, going through neutral, and then through five forward gears. The array is then 
indexed with the current gear and the text for that value is applied to the label. Notice that 
the value is incremented by 1, which means the 0th index of the array will be used when 
carData.gear is set to 1.

We will not show how to implement the right container. You can do that easily yourself 
now with the use of the Grid positioner to lay out the labels and their values. To display 
the series of controls on the bottom of the right container (with texts ABS, ESP, BRK, and 
CHECK), you can use Row of Label instances.

Now, start the program and begin moving the sliders on the widget. See how the Qt Quick 
scene follows the changes.

What just happened?
We have created a very simple QObject instance and exposed it as our "data model" to 
QML. The object has a number of properties that can receive different values. Changing a 
value results in emitting a signal, which in turn notifies the QML engine and causes bindings 
containing those properties to be reevaluated? As a result, our user interface gets updated.

The data interface between the QML and C++ worlds that we created is very simple and 
has a small number of properties. But as the amount of data we want to expose grows, the 
object can become cluttered. Of course, we can counter that effect by dividing it into multiple 
smaller objects each having separate responsibilities and then exporting all those objects 
to QML, but that is not always desirable. In our case, we can see that rpm and gear are 
properties of the engine sub-system so we could move them to a separate object; however, 
in reality, their values are tightly coupled with the speed of the car and to calculate the speed, 
we will need to know the values of those two parameters. But the speed also depends on 
other factors such as the slope of the road, so putting the speed into the engine sub-system 
object just doesn't seem right. Fortunately, there is a nice solution for that problem.



Chapter 9

[ 389 ]

Time for action – grouping engine properties
QML has a concept called grouped properties. These are properties of an object that contain 
a group of "sub-properties." You already know a number of them–the border property of the 
Rectangle element or the anchors property of the Item element, for example. Let's see 
how to define such properties for our exposed object.

Create a new QObject-derived class and call it CarInfoEngine. Move the property 
definitions of rpm and gear to that new class.Add the following property declaration to 
CarInfo:

Q_PROPERTY(Object* engine READ engine NOTIFY engineChanged)

Implement the getter and the private field:

    QObject* engine() const { return m_engine; }
private:
    CarInfoEngine *m_engine;

We are not going to use the signal right now; however, we had to declare it otherwise  
QML would complain we were binding expressions that depend on properties that are  
non-notifiable:

signals:
    void engineChanged();

Initialize m_engine in the constructor of CarInfo:

m_engine = new CarInfoEngine(this);

Next, update the code of CarInfo to modify properties of m_engine whenever respective 
sliders on the widget are moved. Provide a link the other way, as well–if the property value is 
changed, update the user interface accordingly.

Update the QML document and replace carData.gear with carData.engine.gear. Do 
the same for carData.rpm and carData.engine.rpm. You should end up with something 
along the lines of:

Item {
  id: leftContainer
  // ...

  Item {
    id: gearContainer
    Text {
      id: gear



Qt Quick Basics

[ 390 ]

      property int value: carData.engine.gear
      // ...
    }
  }
  Needle {
    anchors.centerIn: parent
    length: parent.width*0.35
    rotation: 210+(carInfo.engine.rpm*35)
  }
}

What just happened?
Essentially, what we did is expose a property in CarInfo that is itself an object that exposes 
a set of properties. This object of the type CarInfoEngine is bound to the CarInfo 
instance it refers to.

Extending QML
Thus far, what we did was exposing to QML single objects created and initialized in C++. But 
we can do much more–the framework allows us to define new QML types. These can either 
be generic QObject derived QML elements or items specialized for Qt Quick. In this section, 
you will learn to do both.

Registering classes as QML elements
We will start with something simple–exposing the CarInfo type to QML so that instead of 
instantiating it in C++ and then exposing it in QML, we can directly declare the element in 
QML and still allow the changes made to the widget to be reflected in the scene.

To make a certain class (derived from QObject) instantiable in QML, all that is required is 
to register that class with the declarative engine using the qmlRegisterType template 
function. This function takes the class as its template parameter along a number of function 
arguments: the module uri, the major and minor version numbers, and the name of the 
QML type we are registering. The following call would register the class FooClass as the 
QML type Foo, available after importing foo.bar.baz in Version 1.0:

qmlRegisterType<FooClass>("foo.bar.baz", 1, 0, "Foo");

You can place this invocation anywhere in your C++ code; just make sure this is before you 
try to load a QML document that might contain declarations of Foo objects. A typical place 
to put the function call is in the program's main function:



Chapter 9

[ 391 ]

#include <QGuiApplication>
#include <QQuickView>
#include <QtQml>

int main(int argc, char **argv) {
  QGuiApplication app(argc, argv);
  QQuickView view;
  qmlRegisterType<FooClass>("foo.bar.baz", 1, 0, "Foo");
  view.setSource(QUrl("main.qml"));
  view.show();
  return app.exec();
}

Afterwards, you can start declaring objects of the type Foo in your documents. Just 
remember you have to import the respective module first:

import QtQuick 2.0
import foo.bar.baz 1.0

Item {
  Foo {
    id: foo
  }
}

Time for action – making CarInfo instantiable from QML
First, we will update the QML document to create an instance of CarInfo present in the 
CarInfo 1.0 module:

import QtQuick 2.0
import CarInfo 1.0

Image {
  source: "dashboard.png"
  
  CarInfo {
    id: carData
    visible: true // make the widget visible
  }
  // ...
}



Qt Quick Basics

[ 392 ]

As for registering CarInfo, it might be tempting to simply call qmlRegisterType on 
CarInfo and congratulate ourselves for a job well done:

int main(int argc, char **argv) {
  QGuiApplication app(argc, argv);
  QQuickView view;
  qmlRegisterType<CarInfo>("CarInfo", 1, 0, "CarInfo");
  view.setSource(QUrl("qrc://main.qml"));
  view.show();
  return app.exec();
}

In general this would work (yes, it is as simple as that). However, at the time of writing, 
trying to instantiate any widget in a QML document as the child of some QtQuick item will 
lead to a crash (maybe at the time you are reading this text the issue will have already been 
resolved). To avoid this, we need to make sure that what we instantiate is not a widget. For 
that, we will use a proxy object that will forward our calls to the actual widget. Therefore, 
create a new class called CarInfoProxy derived from QObject and make it have the same 
properties as CarInfo, for example:

class CarInfoProxy : public QObject {
  Q_OBJECT
  Q_PROPERTY(QObject *engine READ engine NOTIFY engineChanged)
  Q_PROPERTY(int speed READ speed WRITE setSpeed NOTIFY speedChanged)
  // ...

Declare one more property that will let us show and hide the widget on demand:

  Q_PROPERTY(bool visible READ visible WRITE  
    setVisible NOTIFY visibleChanged)

Then, we can place the widget as a member variable of the proxy so that it is created and 
destroyed alongside its proxy:

private:
  CarInfo m_car;

Next, implement the missing interface. For simplicity, we are showing you code for some of 
the properties. The others are similar so you can fill in the gaps on your own:

public:
  CarInfoProxy(QObject *parent = 0) : QObject(parent) {
    connect(&m_car, SIGNAL(engineChanged()), this,  
      SIGNAL(engineChanged()));
    connect(&m_car, SIGNAL(speedChanged(int)), this,  
      SIGNAL(speedChanged(int)));



Chapter 9

[ 393 ]

  }
  QObject *engine() const { return m_car.engine(); }
  bool visible() const { return m_car.isVisible(); }
  void setVisible(bool v) {
    if(v == visible()) return;
    m_car.setVisible(v);
    emit visibleChanged(v);
  }
  int speed() const { return m_car.speed(); }
  void setSpeed(int v) { m_car.setSpeed(v); }
signals:
  void engineChanged();
  void visibleChanged(bool);
  void speedChanged(int);
};

You can see that we reuse the CarInfoEngine instance from the widget instead of 
duplicating it in the proxy class. Finally, we can register CarInfoProxy as CarInfo:

  qmlRegisterType<CarInfoProxy>("CarInfo", 1, 0, "CarInfo");

If you run the code now, you will see it works–CarInfo has become a regular QML element. 
Because of this, its properties can be set and modified directly in the document, right? If 
you try setting the speed or the distance, it will work just fine. However, as soon as you 
try setting any of the properties grouped in the engine property, QML runtime will start 
complaining with a message similar to the following one:

Cannot assign to non-existent property "gear"
             engine.gear: 3
                    ^

This is because the runtime does not understand the engine property–we declared it as 
QObject and yet we are using a property this class doesn't have. To avoid this issue, we have 
to teach the runtime about CarInfoEngine.

First, let's update the property declaration macro to use CarInfoEngine instead  
of QObject:

Q_PROPERTY(CarInfoEngine* engine READ engine NOTIFY engineChanged)

And the getter function itself, as well:

CarInfoEngine* engine() const { return m_engine; }



Qt Quick Basics

[ 394 ]

Then, we should teach the runtime about the type:

QString msg = QStringLiteral("Objects of  
  type CarInfoEngine cannot be created");
qmlRegisterUncreatableType<CarInfoEngine> 
  ("CarInfo", 1, 0, "CarInfoEngine", msg);

What just happened?
In this exercise, we let the QML runtime know about two new elements. One of them is 
CarInfo, which is a proxy to our widget class. We told the engine this is a full-featured class 
that is instantiable from QML. The other class, CarInfoEngine, also became known to 
QML; however, the difference is that every attempt to declare an object of this type in QML 
fails with a given warning message. There are other functions available for registering types 
in QML but they are rarely used, so we will not be describing them here. If you are curious 
about them, type in qmlRegister in the Index tab of Creator's Help pane.

Custom Qt Quick items
It is nice to be able to create new QML element types that can be used to provide dynamic 
data engines or some other type of non-visual objects; however, this chapter is about Qt 
Quick so it is time now to learn how to provide new types of items to Qt Quick.

The first question you should ask yourself is whether you really need a new type of item. 
Maybe you can achieve the same goal with already existing elements? Very often you can 
use vector or bitmap images to use custom shapes in your applications, or you can use 
Canvas to quickly draw the graphics you need directly in QML.

If you decide that you do require custom items, you will be doing that by implementing 
subclasses of QQuickItem, which is the base class for all items in Qt Quick. After creating 
the new type, you will always have to register it with QML using qmlRegisterType.

OpenGL items
To provide very fast rendering of its scene, Qt Quick uses a mechanism called scene-graph. 
The graph consists of a number of nodes of well-known types, each describing a primitive 
shape to be drawn. The framework makes use of knowledge of each of the primitives 
allowed and their parameters to find the most performance-wise optimal order in which 
items can be rendered. Rendering itself is done using OpenGL, and all the shapes are defined 
in terms of OpenGL calls.



Chapter 9

[ 395 ]

Providing new items for Qt Quick boils down to delivering a set of nodes that define the 
shape using terminology the graph understands. This is done by subclassing QQuickItem 
and implementing the pure virtual updatePaintNode() method, which is supposed to 
return a node that will tell the scene-graph how to render the item. The node will most likely 
be a describing a geometry (shape) with a material (color, texture) applied.

Time for action – creating a regular polygon item
Let's learn about the scene-graph by delivering an item class for rendering convex regular 
polygons. We will draw the polygon using the OpenGL drawing mode called "triangle fan."  
It draws a set of triangles that all have a common vertex. Subsequent triangles are defined  
by the shared vertex, the vertex from the previous triangle, and the next vertex specified. 
Have a look at the diagram to see how to draw a hexagon as a triangle fan using 8 vertices  
as control points:

The same method applies for any regular polygon. The first vertex defined is always the 
shared vertex occupying the center of the shape. The remaining points are positioned on the 
circumference of a bounding circle of the shape at equal angular distances. The angle is easily 
calculated by dividing the full angle by the number of sides. For a hexagon, this yields 60 degrees.

Let's get down to business and the subclass QQuickItem. We will give it a very  
simple interface:

class RegularPolygon : public QQuickItem {
  Q_OBJECT
  Q_PROPERTY(int sides READ sides WRITE  
    setSides NOTIFY sidesChanged)
  Q_PROPERTY(QColor color READ color WRITE  
    setColor NOTIFY colorChanged)
public:



Qt Quick Basics

[ 396 ]

  RegularPolygon(QQuickItem *parent = 0);

  int sides() const { return m_sideCount; }
  void setSides (int s);

  QColor color() const { return m_color; }
  void setColor(const QColor &c);

  QSGNode *updatePaintNode(QSGNode *,  
    UpdatePaintNodeData *);

signals:
  void sidesChanged(int);
  void colorChanged(QColor);
private:
  int m_sideCount;
  QColor m_color;
};

Our polygon is defined by the number of sides and fill color. We also get everything we 
inherited from QQuickItem, including the width and height of the item. Besides the obvious 
getters and setters for the properties, we define just one method–updatePaintNode(), 
which is responsible for building the scene-graph.

Before we deal with updating graph nodes, let's deal with the easy parts first. Implement the 
constructor as follows:

RegularPolygon::RegularPolygon(QQuickItem *parent) :  
  QQuickItem(parent) {
  setFlag(ItemHasContents, true);
  m_sideCount = 6;
}

We make our polygon a hexagon by default. We also set a flag, ItemHasContents, which tells 
the scene-graph that the item is not fully transparent and should ask us how the item should 
be painted by calling updatePaintNode(). This is an early optimization to avoid having to 
prepare the whole infrastructure if the item would not be painting anything anyway.

The setters are also quite easy to grasp:

void RegularPolygon::setSides(int s) {
  s = qMax(3, s);
  if(s == sides()) return;
  m_sideCount = v;
  emit sidesChanged(v);



Chapter 9

[ 397 ]

  update();
}

void RegularPolygon::setColor(const QColor &c) {
  if(color() == c) return;
  m_color = c;
  emit colorChanged(c);
  update();
}

A polygon has to have at least three sides; thus, we enforce this as a minimum, sanitizing the 
input value with qMax. After we change any of the properties that might influence the look 
of the item, we call update() to let Qt Quick know that the item needs to be rerendered. 
Let's tackle updatePaintNode() now. We'll disassemble it into smaller pieces so that it is 
easier for you to understand how the function works:

QSGNode *RegularPolygon::updatePaintNode(QSGNode *oldNode, 
                         QQuickItem::UpdatePaintNodeData *) {

When the function is called, it might receive a node it returned during a previous call. Be 
aware the graph is free to delete all the nodes when it feels like it, so you should never rely 
on the node being there even if you returned a valid node during the previous run of  
the function:

  QSGGeometryNode *node = 0;
  QSGGeometry *geometry = 0;
  QSGFlatColorMaterial *material = 0;

The node we are going to return is a geometry node that contains information about the 
geometry and the material of the shape being drawn. We will be filling those variables as we 
go through the method:

  if (!oldNode) {
    node = new QSGGeometryNode;
    geometry = new QSGGeometry(QSGGeometry:: 
      defaultAttributes_Point2D(), m_sideCount+2);
    geometry->setDrawingMode(GL_TRIANGLE_FAN);
    node->setGeometry(geometry);
    node->setFlag(QSGNode::OwnsGeometry);

As we already mentioned, the function is called with the previously returned node as the 
argument but we should be prepared for the node not being there and we should create it. 
Thus, if that is the case, we create a new QSGGeometryNode and a new QSGGeometry for 
it. The geometry constructor takes a so-called attribute set as its parameter, which defines a 
layout for data in the geometry. Most common layouts have been predefined:



Qt Quick Basics

[ 398 ]

Attribute set Usage First attribute Second attribute

Point2D Solid colored shape float x, y -

ColoredPoint2D Per-vertex color float x, y uchar red, 
green, blue, 
alpha

TexturedPoint2D Per-vertex texture 
coordinate

float x, y float tx, float 
ty

We will be defining the geometry in terms of 2D points without any additional information 
attached to each point; therefore, we pass QSGGeometry::defaultAttributes_
Point2D() to construct the layout we need. As you can see in the preceding table for that 
layout, each attribute consists of two floating point values denoting the x and y coordinates 
of a point.

The second argument of the QSGGeometry constructor informs us about the number of 
vertices we will be using. The constructor will allocate as much memory as is needed to 
store the required number of vertices using the given attribute layout. After the geometry 
container is ready, we pass its ownership to the geometry node so that when the geometry 
node is destroyed, the memory for the geometry is freed as well. At this moment, we also 
mark that we are going to be rendering in the GL_TRIANGLE_FAN mode:

        material = new QSGFlatColorMaterial;
        material->setColor(m_color);
        node->setMaterial(material);
        node->setFlag(QSGNode::OwnsMaterial);

The process is repeated for the material. We use QSGFlatColorMaterial as the whole 
shape is going to have one color that is set from m_color. Qt provides a number of 
predefined material types. For example, if we wanted to give each vertex a separate color, 
we would have used QSGVertexColorMaterial together with the ColoredPoint2D 
attribute layout:

    } else {
      node = static_cast<QSGGeometryNode *>(oldNode);
      geometry = node->geometry();
      geometry->allocate(m_sideCount+2);

This piece of code deals with a situation in which oldNode did contain a valid pointer to a 
node that was already initialized. In this case, we only need to make sure the geometry can 
hold as many vertices as we need in case the number of sides changed since the last time 
the function was executed:

material = static_cast<QSGFlatColorMaterial*>(node->material());
if(material->color() != m_color) {



Chapter 9

[ 399 ]

  material->setColor(m_color);
  node->markDirty(QSGNode::DirtyMaterial);
}
}

This is repeated for the material. If the color differs, we reset it and tell the geometry node 
that the material needs to be updated by marking the DirtyMaterial flag:

  QRectF bounds = boundingRect();
  QSGGeometry::Point2D *vertices = geometry->vertexDataAsPoint2D();

  // first vertex is the shared one (middle)
  QPointF center = bounds.center();

  vertices[0].set(center.x(), center.y());

  // vertices are distributed along circumference of a circle

  const qreal angleStep = 360.0/m_sideCount;
  const qreal radius = qMin(width(), height())/2;

  for (int i = 0; i < m_sideCount; ++i) {
    qreal rads = angleStep*i*M_PI/180;
    qreal x = center.x()+radius*std::cos(rads);
    qreal y = center.y()+radius*std::sin(rads);
    vertices[1+i].set(x, y);
  }
  vertices[1+m_sideCount] = vertices[1];

Finally, we can set vertex data. First, we ask the geometry object to prepare a mapping for 
us from the allocated memory to a QSGGeometry::Point2D structure, which can be used 
to conveniently set data for each vertex. Then, actual calculations are performed using the 
equation for calculating points on a circle. The radius of the circle is taken as the smaller part 
of the width and height of the item so that the shape is centered in the item. As you can 
see on the diagram at the beginning of the exercise, the last point in the array has the same 
coordinates as the second point in the array to close the fan into a regular polygon:

  node->markDirty(QSGNode::DirtyGeometry);
  return node;
}

At the very end, we mark the geometry as changed and return the node to the caller.



Qt Quick Basics

[ 400 ]

What just happened?
Rendering in Qt Quick can happen in a thread different than the main thread. By 
implementing updatePaintNode(), we performed synchronization between the GUI 
thread and the rendering thread. The function executing the main thread is blocked. Due to 
this reason, it is crucial that it executes as quickly as possible and doesn't do any unnecessary 
calculations as this directly influences performance. This is also the only place in your code 
where you can safely call functions from your item (such as reading properties) as well as 
interact with the scene-graph (creating and updating the nodes). Try not emitting any signals 
nor creating any objects from within this method as they will have affinity to the rendering 
thread rather than the GUI thread.

Having said that, you can now register your class with QML and test it with the following 
QML document:

RegularPolygon {
  id: poly
  vertices: 5
  color: "blue"
}

This should give you a nice blue pentagon. If the shape looks aliased, you can enforce anti-
aliasing on the window:

int main(int argc, char **argv) {
  QGuiApplication app(argc, argv);
  QQuickView view;
  QSurfaceFormat format = view.format();
  format.setSamples(16); // enable multisampling
  view.setFormat(format);
  qmlRegisterType<RegularPolygon>("RegularPolygon", 1, 0, 
                              "RegularPolygon");
  view.setSource(QUrl("qrc://main.qml"));
  view.setResizeMode(QQuickView::SizeRootObjectToView);
  view.show();
  return app.exec();
}



Chapter 9

[ 401 ]

Have a go hero – creating a supporting border for RegularPolygon
What is returned by updatePaintNode() might not just be a single QSGGeometryNode 
but also a larger tree of QSGNode items. Each node can have any number of child nodes. 
By returning a node that has two geometry nodes as children, you can draw two separate 
shapes in the item:

QSGNode

QSGGeometryNodeQSGGeometryNode

QSGGeometry QSGFlatColorMaterial QSGGeometry QSGFlatColorMaterial

As a challenge, extend RegularPolygon to draw not only the internal filled part of the polygon 
but also an edge that can be of a different color. You can draw the edge using the GL_QUAD_
STRIP drawing mode. Coordinates of the points are easy to calculate–the points closer to the 
middle of the shape are the same points that form the shape itself. The remaining points also 
lie on a circumference of a circle that is slightly larger (by the width of the border). Therefore, 
you can use the same equations to calculate them. The GL_QUAD_STRIP mode renders 
quadrilaterals with every two vertices specified after the first four, composing a connected 
quadrilateral. The following diagram should give you a clear idea of what we are after:



Qt Quick Basics

[ 402 ]

Painted items
Implementing items in OpenGL is quite difficult–you need to come up with an algorithm of 
using OpenGL primitives to draw the shape you want, and then you also need to be skilled 
enough with OpenGL to build a proper scene graph node tree for your item. But there is 
another way–you can create items by painting them with QPainter. This comes at a cost of 
performance as behind the scenes, the painter draws on an indirect surface (a frame buffer 
object or an image) that is then converted to OpenGL texture and rendered on a quad by 
the scene-graph. Even considering that performance hit, it is often much simpler to draw the 
item using a rich and convenient drawing API than to spend hours doing the equivalent in 
OpenGL or by using Canvas.

To use that approach, we will not be subclassing QQuickItem directly but rather 
QQuickPaintedItem, which gives us the infrastructure needed to use the painter for 
drawing items.

Basically, all we have to do, then, is implement the pure virtual paint() method that 
renders the item using the received painter. Let's see this put into practice and combine it 
with the skills we gained earlier.

Time for action – creating an item for drawing outlined text
The goal of the current exercise is to be able to make the following QML code work:

import QtQuick 2.3
import OutlineTextItem 1.0

Rectangle {
  width: 800; height: 400
  OutlineTextItem {
    anchors.centerIn: parent
    text: "This is outlined text"
    fontFamily: "Arial"
    fontPixelSize: 64
    color: "#33ff0000"
    antialiasing: true
    border {
      color: "blue"
      width: 2
      style: Qt.DotLine
    }
  }
}



Chapter 9

[ 403 ]

And produce the following result:

Start with an empty Qt project with the core, gui, and quick modules activated. Create a 
new class and call it OutlineTextItemBorder. Delete the implementation file as we are 
going to put all code into the header file. Place the following code into the class definition:

class OutlineTextItemBorder : public QObject {
  Q_OBJECT
  Q_PROPERTY(int width MEMBER m_width NOTIFY widthChanged)
  Q_PROPERTY(QColor color MEMBER m_color NOTIFY colorChanged)
  Q_PROPERTY(int style MEMBER m_style NOTIFY styleChanged)
public:
  OutlineTextItemBorder(QObject *parent) : QObject(parent),
    m_width(0), m_color(Qt::transparent),  
    m_style(Qt::SolidLine) {}

  int width() const { return m_width; }
  QColor color() const { return m_color; }
  Qt::PenStyle style() const { return (Qt::PenStyle)m_style; }
  QPen pen() const {
   QPen p;
   p.setColor(m_color);
   p.setWidth(m_width);
   p.setStyle((Qt::PenStyle)m_style);
   return p;
  }
signals:
  void widthChanged(int);
  void colorChanged(QColor);
  void styleChanged(int);
private:
  int m_width;
  QColor m_color;
  int m_style;
};



Qt Quick Basics

[ 404 ]

You can see that Q_PROPERTY macros don't have the READ and WRITE keywords we've 
been using thus far. This is because we are taking a shortcut right now and we let moc 
produce code that will operate on the property by directly accessing the given class member. 
Normally, we would recommend against such an approach as without getters, the only way 
to access the properties is through the generic property() and setProperty() calls. 
However, in this case, we are not going to be exposing this class to the public in C++ so we 
won't need the setters, and we implement the getters ourselves, anyway. The nice thing 
about the MEMBER keyword is that if we also provide the NOTIFY signal, the generated code 
will emit that signal when the value of the property changes, which will make property 
bindings in QML work as expected. The rest of the class is pretty simple–we are, in fact, 
providing a class for defining a pen that is going to be used for stroking text, so implementing 
a method that returns the actual pen seems like a good idea.

The class will provide a grouped property for our main item class. Create a class called 
OutlineTextItem and derive it from QQuickPaintedItem, as follows:

class OutlineTextItem : public QQuickPaintedItem {
  Q_OBJECT
  Q_PROPERTY(OutlineTextItemBorder* border READ  
    border NOTIFY borderChanged)
  Q_PROPERTY(QString text MEMBER m_text NOTIFY textChanged)
  Q_PROPERTY(QColor color MEMBER m_color NOTIFY colorChanged)
  Q_PROPERTY(QString fontFamily MEMBER m_ffamily  
    NOTIFY fontFamilyChanged)
  Q_PROPERTY(int fontPixelSize MEMBER m_fsize NOTIFY  
    fontPixelSizeChanged)
public:
  OutlineTextItem(QQuickItem *parent = 0);
  void paint(QPainter *painter);
  OutlineTextItemBorder* border() const { return m_border; }
  QPainterPath shape(const QPainterPath &path) const;
private slots:
  void updateItem();
signals:
  void textChanged(QString);
  void colorChanged(QColor);
  void borderChanged();
  void fontFamilyChanged(QString);
  void fontPixelSizeChanged(int);
private:
  OutlineTextItemBorder* m_border;
  QPainterPath m_path;
  QRectF m_br;
  QString m_text;



Chapter 9

[ 405 ]

  QColor m_color;
  QString m_ffamily;
  int m_fsize;
};

The interface defines properties for the text to be drawn, in addition to its color, font, 
and the grouped property for the outline data. Again, we use MEMBER to avoid having to 
manually implement getters and setters. Unfortunately, this makes our constructor code 
more complicated as we still need a way to run some code when any of the properties are 
modified. Implement the constructor using the following code:

OutlineTextItem::OutlineTextItem(QQuickItem *parent) :  
  QQuickPaintedItem(parent) {
    m_border = new OutlineTextItemBorder(this);
    connect(this, SIGNAL(textChanged(QString)), SLOT(updateItem()));
connect(this, SIGNAL(colorChanged(QColor)), SLOT(updateItem()));
connect(this, SIGNAL(fontFamilyChanged(QString)), SLOT(updateItem()));
connect(this, SIGNAL(fontPixelSizeChanged(int)), SLOT(updateItem()));
connect(m_border, SIGNAL(widthChanged(int)), SLOT(updateItem()));
connect(m_border, SIGNAL(colorChanged(QColor)), SLOT(updateItem()));
connect(m_border, SIGNAL(styleChanged(int)), SLOT(updateItem()));
updateItem();
}

We basically connect all the property change signals from both the object and its grouped 
property object to the same slot that is going to update the data for the item if any of its 
components are modified. We also call the same slot directly to prepare the initial state of 
the item. The slot can be implemented like this:

void OutlineTextItem::updateItem() {
  QFont font(m_ffamily, m_fsize);
  m_path = QPainterPath();
  m_path.addText(0, 0 , font, m_text);
  m_br = shape(m_path).controlPointRect();
  setImplicitWidth(m_br.width());
  setImplicitHeight(m_br.height());
  update();
}



Qt Quick Basics

[ 406 ]

At the beginning, the function resets a painter path object that serves as a backend for 
drawing outlined text and initializes it with the text drawn using the font set. Then, the slot 
calculates the bounding rect for the path using a function shape() that we will shortly see. 
Finally, it sets the calculated size as the size hint for the item and asks the item to repaint 
itself with the update() call:

QPainterPath OutlineTextItem::shape(const QPainterPath &path) const
{
  QPainterPathStroker ps;
  if(m_border->width() > 0 && m_border->style() != Qt::NoPen) {
    ps.setWidth(m_border->width());
  } else {
    ps.setWidth(0.0000001); // workaround a bug in Qt
  }
  QPainterPath p = ps.createStroke(path);
  p.addPath(path);
  return p;
}

The shape() function returns a new painter path that includes both the original path and 
its outline created with the QPainterPathStroker object. This is so that the width of 
the stroke is correctly taken into account when calculating the bounding rectangle. We 
use controlPointRect() to calculate the bounding rectangle as it is much faster than 
boundingRect() and returns an area greater or equal to the one boundingRect() 
would, which is okay for us.

What remains is to implement the paint() routine itself:

void OutlineTextItem::paint(QPainter *painter) {
  if(m_text.isEmpty()) return;
  painter->setPen(m_border->pen());
  painter->setBrush(m_color);
  painter->setRenderHint(QPainter::Antialiasing, true);
  painter->translate(-m_br.topLeft());
  painter->drawPath(m_path);
}

The code is really simple–we bail out early if there is nothing to draw. Otherwise, we set up 
the painter using the pen and color obtained from the item's properties. We enable anti-
aliasing and calibrate the painter coordinates with that of the bounding rectangle of the 
item. Finally, we draw the path on the painter.



Chapter 9

[ 407 ]

What just happened?
During this exercise, we made use of the powerful API of Qt's graphical engine to 
complement an existing set of Qt Quick items with a simple functionality. This is otherwise 
very hard to achieve using predefined Qt Quick elements and even harder to implement 
using OpenGL. We agreed to take a small performance hit in exchange for having to write 
just about a hundred lines of code to have a fully working solution. Remember to register the 
class with QML if you want to use it in your code:

qmlRegisterUncreatableType<OutlineTextItemBorder>(
  "OutlineTextItem", 1, 0, "OutlineTextItemBorder", 
  "Can't create items of OutlineTetItemBorder type"
);
qmlRegisterType<OutlineTextItem>(
  "OutlineTextItem", 1, 0, "OutlineTextItem"
);

Summary
In this chapter, you have been familiarized with a declarative language called QML. The 
language is used to drive Qt Quick–a framework for highly dynamic and interactive 
content. You learned the basics of Qt Quick–how to create documents with a number of 
element types and how to create your own in QML or in C++. You also learned how to bind 
expressions to properties to automatically re-evaluate them. But so far, despite us talking 
about "fluid" and "dynamic" interfaces, you haven't seen much of that. Do not worry; in the 
next chapter, we will focus on animations in Qt Quick, as well as fancy graphics and applying 
what you learned in this chapter for creating nice looking and interesting games. So, read on!





[ 409 ]

10
Qt Quick

In the previous chapter, we introduced you to the basics of Qt Quick and QML. 
By now, you should be fluent enough with the syntax and understand the basic 
concepts of how Qt Quick works. In this chapter, we will show you how to 
make your games stand out from the crowd by introducing different kinds of 
animations that make your applications feel more like the real world. You will 
also learn to treat Qt Quick objects as separate entities programmable using 
state machines. A large section of this chapter is devoted to making your games 
prettier by using OpenGL effects and particle systems. Another significant part 
of this chapter will introduce how to implement a number of important gaming 
concepts using Qt Quick. All this is going to be shown with the building of a 
simple 2D action game using the presented concepts.

Bringing life into static user interfaces
What we have described so far can be called anything but "fluid." Let's change that now 
by learning how to add some dynamics into the user interfaces we create. Thus far, books 
cannot contain moving pictures, so most things we describe here you will have to test 
yourself by running the provided Qt Quick code.



Qt Quick

[ 410 ]

Animating elements
Qt Quick provides a very extensive framework for creating animations. By that, we don't 
mean only moving items around. We define an animation as changing an arbitrary value 
over time. So, what can we animate? Of course, we can animate item geometry. But we can 
also animate rotation, scale, other numeric values, and even colors. But let's not stop here. 
Qt Quick also lets you animate the parent-child hierarchy of items or anchor assignments. 
Almost anything that can be represented by an item property can be animated.

Moreover, the changes are rarely linear—if you kick a ball in the air, it first gains height 
quickly because its initial speed was large. However, the ball is a physical object being 
pulled down by the Earth's gravity, which slows the climb down until the ball stops and then 
starts falling down, accelerating until it hits the ground. Depending on the properties of 
both the ground and ball, the object can bounce off the surface into the air again with less 
momentum, repeating the spring-like motion until eventually it fades away, leaving the ball 
on the ground. Qt Quick lets you model all that using easing curves that can be assigned to 
animations.

Generic animations
Qt Quick provides a number of animation types derived from a generic Animation element 
that you will never use directly. The type exists only to provide an API common to different 
animation types.

Let's take a closer look at the animation framework by looking at a family of animation types 
derived from the most common animation type—PropertyAnimation. As the name 
implies, they provide the means to animate values of object properties. Despite the fact that 
you can use the PropertyAnimation element directly, it is usually more convenient to use 
one of its subclasses that are specialized in dealing with peculiarities of different data types.

The most basic property animation type is NumberAnimation, which lets you animate all 
kinds of numeric values of both integral and real numbers. The simplest way of using it is to 
declare an animation, tell it to animate a specific property in a specific object, and then set 
the length of the animation and the starting and ending value for the property:

import QtQuick 2.0

Item {
  id: root
  width: 600; height: width
  Rectangle {
    id: rect
    color: "red"; width: 50; height: width
  }



Chapter 10

[ 411 ]

  NumberAnimation {
    target: rect
    property: "x"
    from: 0; to: 550
    duration: 3000
    running: true
  }
}

Time for action – scene for an action game
Create a new Qt Quick UI project. In the project directory, make a subdirectory called 
images and from the game project that we have created using Graphics View copy grass.
png, sky.png, and trees.png. Then, put the following code into the QML document:

import QtQuick 2.1

Image {
  id: root
  property int dayLength: 60000 // 1 minute
  source: "images/sky.png"

  Item {
    id: sun
    x: 140
    y: root.height-170
    Rectangle {
      id: sunVisual
      width: 40
      height: width
      radius: width/2
      color: "yellow"
      anchors.centerIn: parent
    }
  }
  Image {
    source: "images/trees.png"
    x: -200
    anchors.bottom: parent.bottom
  }
  Image {
    source: "images/grass.png"
    anchors.bottom: parent.bottom
  }
}



Qt Quick

[ 412 ]

When you run the project now, you will see a screen similar to this one:

What just happened?
We set up a very simple scene consisting of three images stacked up to form a landscape. 
Between the background layer (the sky) and the foreground (trees), we placed a yellow 
circle representing the sun. Since we are going to be moving the sun around in a moment, 
we anchored the center of the object to an empty item without physical dimensions so 
that we can set the sun's position relative to its center. We also equipped the scene with 
a dayLength property, which is going to hold information about the length of one day of 
game time. By default, we set it to 60 seconds so that things happen really fast and we can 
see the animation's progress without waiting. After all things are set correctly, the length of 
the day can be balanced to fit our needs.

The graphical design lets us easily manipulate the sun while keeping it behind the tree  
line. Notice how the stacking order is implicitly determined by the order of elements  
in the document.

Time for action – animating the sun's horizontal movement
The everyday cruise of the sun in the sky starts in the east and continues west to hide 
beneath the horizon in the evening. Let's try to replicate this horizontal movement by adding 
animation to our sun object.



Chapter 10

[ 413 ]

Open the QML document of our last project. Inside the root item add the following 
declaration:

NumberAnimation {
  target: sun
  property: "x"
  from: 0
  to: root.width
  duration: dayLength
  running: true
}

Running the program with such modifications will produce a run with a horizontal movement 
of the sun. The following image is a composition of a number of frames of the run:

What just happened?
We introduced a NumberAnimation element that is set to animate the x property of 
the sun object. The animation starts at 0 and lasts until x reaches the root item's width 
(which is the right edge of the scene). The movement lasts for dayLength miliseconds. The 
running property of the animation is set to true to enable the animation. Since we didn't 
specify otherwise, the motion is linear.

You might be thinking that the animation runs in the wrong direction—"west" is on the left 
and "east" is on the right, yes? That's true, however, only if the observer faces north. If that 
were the case for our scene, we wouldn't be seeing the sun at all—at noon, it crosses the 
south direction.



Qt Quick

[ 414 ]

Composing animations
The animation we made in the last section looks okay but is not very realistic. The sun  
should rise in the morning, reach its peak sometime before noon, and then sometime  
later start setting toward the evening, when it should cross the horizon and hide beneath  
the landscape.

To achieve such an effect, we could add two more animations for the y property of the sun. 
The first animation would start right at the beginning and decrease the vertical position of 
the sun (remember that the vertical geometry axis points down, so decreasing the vertical 
position means the object goes up). The animation would be complete at one third of 
the day length. We would then need a way to wait for some time and then start a second 
animation that would pull the object down toward the ground. Starting and stopping the 
animation is easy—we can either call the start() and stop() functions on the animation 
item or directly alter the value of the running property. Each Animation object emits 
started() and stopped() signals. The delay can be implemented by using a timer. We 
could provide a signal handler for the stopped signal of the first animation to trigger a timer 
to start the other one like this:

NumberAnimation {
  id: sunGoesUpAnim
  // …
  onStopped: sunGoesDownAnimTimer.start()
}
Timer {
  id: sunGoesDownAnimTimer
  interval: dayLength/3
  onTriggered: sunGoesDownAnim.start()
}

Even ignoring any side problems this would bring (for example, how to stop the animation 
without starting the second one), such an approach couldn't be called "declarative," could it?

Fortunately, similar to what we had in C++, Qt Quick lets us form animation groups that run 
either parallel to each other or in sequence. There are the SequentialAnimation and 
ParallelAnimation types where you can declare any number of child animation elements 
forming the group. To run two animations in parallel, we could declare the following 
hierarchy of elements:

ParallelAnimation {
  id: parallelAnimationGroup

  NumberAnimation {
    target: obj1; property: "prop1"
    from: 0; to: 100



Chapter 10

[ 415 ]

    duration: 1500
  }
  NumberAnimation {
    target: obj2; property: "prop2"
    from: 150; to: 0
    duration: 1500
  }
  running: true
}

The same technique can be used to synchronize a larger group of animations, even if each 
component has a different duration:

SequentialAnimation {
  id: sequentialAnimationGroup

  ParallelAnimation {
    id: parallelAnimationGroup

    NumberAnimation {
      id: A1
      target: obj2; property: "prop2"
      from: 150; to: 0
      duration: 1000
    }
    NumberAnimation {
      id: A2
      target: obj1; property: "prop1"
      from: 0; to: 100
      duration: 2000
    }
  }
  PropertyAnimation {
    id: A3
    target: obj1; property: "prop1"
    from: 100; to: 300
    duration: 1500
  }
  running: true
}



Qt Quick

[ 416 ]

The group presented in the snippet consists of three animations. The first two animations 
are executed together as they form a parallel subgroup. One member of the group runs 
twice as long as the other. Only after the whole subgroup completes is the third animation 
started. This can be visualized using a UML activity diagram where the size of each activity is 
proportional to the duration of that activity:

Time for action – making the sun rise and set
Let's add vertical movement (animation of the y property) to our sun by adding a sequence 
of animations to the QML document. As our new animations are going to be running in 
parallel to the horizontal animation, we could enclose animations for both directions 
within a single ParallelAnimation group. It would work, but in our opinion this would 
unnecessarily clutter the document. Another way of specifying parallel animations is to 
declare them as separate hierarchies of elements, making each animation independent of 
the other, and that is what we are going to do here.

Open our document from the last exercise and right under the previous animation, place the 
following code:

SequentialAnimation {
  NumberAnimation {
    target: sun
    property: "y"
    from: root.height+sunVisual.height
    to: root.height-270
    duration: dayLength/3
  }
  PauseAnimation { duration: dayLength/3 }
  NumberAnimation {
    target: sun
    property: "y"
    from: root.height-270
    to: root.height+sunVisual.height
    duration: dayLength/3
  }
running: true
}



Chapter 10

[ 417 ]

Running the program will result in the light source rising in the morning and setting in the 
evening. However, the trajectory of the move seems somewhat awkward.

What just happened?
We declared a sequential animation group consisting of three animations, each taking 1/3 
of the day length. The first member of the group makes the sun go up. The second member, 
which is an instance of a new element type—PauseAnimation—introduces a delay equal 
to its duration. This in turn lets the third component start its work in the afternoon to pull 
the sun down toward the horizon.

The problem with such a declaration is that the sun moves in a horribly angular way, as can 
be seen in the image.

Non-linear animations
The reason for the described problem is that our animations are linear. As we noted in the 
beginning of this chapter, linear animations rarely occur in nature, which usually makes their 
use yield a very unrealistic result.



Qt Quick

[ 418 ]

We also said earlier that Qt Quick allows us to use easing curves to perform animations  
along non-linear paths. There are a large number of curves offered. Here is a diagram  
listing available non-linear easing curves:

You can use any of the curves on an element of the type PropertyAnimation or one 
derived from it (for example, NumberAnimation). This is done by using the easing 
property group, where you can set the type of the curve. Different curve types may further 
be tweaked by setting a number of properties in the easing property group, such as 
amplitude (for bounce and elastic curves), overshoot (for back curves), or period (for 
elastic curves).

Declaring an animation along an InOutBounce path is very easy:

NumberAnimation {
  target: obj; property: prop;
  from: startValue; to: endValue;
  easing.type: Easing.InOutBounce
}

Time for action – improving the path of the sun
The task at hand is going to be to improve the animation of the sun so that it behaves in a 
more realistic way. We will do this by adjusting the animations so that the object moves over 
a curved path.

In our QML document, replace the previous vertical animation with the following one:

SequentialAnimation {
  NumberAnimation {



Chapter 10

[ 419 ]

    target: sun
    property: "y"
    from: root.height+sunVisual.height
    to: root.height-270
    duration: dayLength/2
    easing.type: Easing.OutCubic
  }
  NumberAnimation {
    target: sun
    property: "y"
    to: root.height+sunVisual.height
    duration: dayLength/2
    easing.type: Easing.InCubic
  }

  running: true
}



Qt Quick

[ 420 ]

What just happened?
The sequence of three animations (two linear ones and a pause) was replaced by another 
sequence of two animations that follow a path determined by a cubic function. This makes 
our sun rise pretty fast and then slow down to an amount almost unnoticeable near the 
moment when the sun approaches noon. When the first animation is finished, the second 
one reverses the motion, making the sun descend very slowly and then increase its velocity 
as dusk approaches. As a result, the further the sun is away from the ground, the slower it 
seems to move. At the same time, the horizontal animation remains linear as the speed of 
Earth in its motion around the Sun is practically constant. When we combine the horizontal 
and vertical animations, we get a path that looks very similar to what we can observe in the 
real world.

Property value sources
From a QML perspective, animation and element types derived from it are something called 
property value source. This means they can be attached to a property and generate values 
for it. What is important is that it allows us to use animations using a much simpler syntax. 
Instead of explicitly declaring the target and property of an animation, one can attach the 
animation to a named property of the parent object.

To do this, instead of specifying target and property for Animation, use the on keyword 
followed by the name of a property name for which the animation is to be a value source. 
For example, to animate the rotation property of an object with a NumberAnimation 
object, the following code can be used:

NumberAnimation on rotation {
  from: 0
  to: 360
  duration: 500
}

It is valid to specify more than one property value source for the same property of an object.

Time for action – adjusting the sun's color
If you look at the sun at dusk or dawn, you will see that it is not yellow, but rather becomes 
red the closer it is to the horizon. Let's teach our object representing the sun to do the same 
by providing a property value source for it.

Open the QML document, find the declaration for the sunVisual object, and extend it with 
the highlighted part:



Chapter 10

[ 421 ]

Rectangle {
  id: sunVisual
  // ...
  SequentialAnimation on color {
    ColorAnimation {
      from: "red"
      to: "yellow"
      duration: 0.2*dayLength/2
    }
    PauseAnimation { duration: 2*0.8*dayLength/2 }
    ColorAnimation {
      to: "red"
      duration: 0.2*dayLength/2
    }
    running: true
  }
}

What just happened?
An animation was attached to the color property of our rectangle modeling the visual 
aspects of the sun. The animation consists of three parts. First, we perform a transition from 
red to yellow using the ColorAnimation object. This is an Animation subtype dedicated 
to modifying colors. Since the rectangle color is not a number, using the NumberAnimation 
object would not have worked as the type cannot interpolate color values. Therefore, we 
either have to use the PropertyAnimation or ColorAnimation object. The duration for 
the animation is set to 20 percent of half the day length so that the yellow color is obtained 
very quickly. The second component is a PauseAnimation object to provide a delay before 
the third component is executed, which gradually changes the color back to red. For the last 
component, we do not provide a value for the from property. This causes the animation 
to be initiated with the value of the property current to the time when the animation is 
executed (in this case, the sun should be yellow).

Notice that we only had to specify the property name for the top-level animation. This 
particular element is what serves as the property value source, and all descendant animation 
objects "inherit" the target property from that property value source.

Time for action – furnishing sun animation
The animation of the sun looks almost perfect right now. We can still improve it, though. If 
you look into the sky in the early morning and then again at noon, you will notice that the 
sun appears much bigger during sunrise or sunset compared to its size in zenith. We can 
simulate that effect by scaling the object.



Qt Quick

[ 422 ]

In our scene document, add another sequential animation that operates on the scale 
property of the sun:

SequentialAnimation on scale {
  NumberAnimation {
    from: 1.6; to: 0.8
    duration: dayLength/2
    easing.type: Easing.OutCubic
  }
  NumberAnimation {
    from: 0.8; to: 1.6
    duration: dayLength/2
    easing.type: Easing.InCubic
  }
}

What just happened?
In this section, we just followed the path set for an earlier declaration—the vertical 
movement of the stellar body influences its perceived size; therefore, it seems like a good 
decision to bind the two animations together. Notice that instead of specifying a new 
property value source for the scale, we might have modified the original animation and 
made the scale animation parallel to that operate on the y property:

SequentialAnimation {
  ParallelAnimation {
    NumberAnimation {
      target: sun
      property: "y"
      from: root.height+sunVisual.height
      to: root.height-270
      duration: dayLength/2



Chapter 10

[ 423 ]

      easing.type: Easing.OutCubic
    }
    NumberAnimation {
      target: sun
      property: "scale"
      from: 1.6; to: 0.8
      duration: dayLength/2
      easing.type: Easing.OutCubic
    }
  // …

Have a go hero – animating the sun's rays
By now, you should be an animation expert. If you want to try your skills, here is a task for 
you. The following code can be applied to the sun object and will display very simple red 
rays emitted from the sun:

Item {
  id: sunRays
  property int count: 10
  width: sunVisual.width
  height: width
  anchors.centerIn: parent
  z: -1
  Repeater {
    model: sunRays.count
    Rectangle {
      color: "red"
      rotation: index*360/sunRays.count
      anchors.fill: parent
    }
  }
}



Qt Quick

[ 424 ]

The goal is to animate the rays so that the overall effect looks good and fits the tune like 
style of the scene. Try different animations—rotations, size changes, and colors. Apply them 
to different elements—all rays at once (for example, using the sunRays identifier) or only 
particular rectangles generated by the repeater.

Behaviors
In the previous chapter, we implemented a dashboard for a racing game where we had 
a number of clocks with needles. We could set values for each clock (for example, car 
speed) and a respective needle would immediately set itself to the given value. But such 
an approach is unrealistic—in the real world, changes of a value happen over time. In our 
example, the car accelerates from 10 mph to 50 mph by going through 11 mph, 12 mph 
and so on, until after some time it reaches the desired value. We call this the behavior of 
a value—it is essentially a model that tells how the parameter reaches its destined value. 
Defining such models is a perfect use case for declarative programming. Fortunately, QML 
exposes a Behavior element that lets us model behaviors of property changes in Qt Quick.

The Behavior elements let us associate an animation with a given property so that, every 
time the property value is to be changed, it is done by running the given animation instead 
of by making an immediate change to the property value:

import QtQuick 2.0

Item {
  width: 600; height: width
  Item {
    id: empty
    x: parent.width/2; y: parent.height/2
    Rectangle {
      id: rect
      width: 100; height: width; color: "red"
      anchors.centerIn: parent
    }
  }
  MouseArea {
    anchors.fill: parent
    onClicked: { empty.x = mouse.x; empty.y = mouse.y }
  }
}



Chapter 10

[ 425 ]

The preceding code implements a simple scene with a red rectangle anchored to an empty 
item. Whenever the user clicks somewhere within the scene, the empty item is moved there, 
dragging along the rectangle. Let's see how to use the Behavior element to smoothly 
change the position of the empty item. The Behavior element is a property value source 
just like the Animation element itself; thus, it is easiest to use on the on-property syntax:

Item {
  id: rect
  x: parent.width/2; y: parent.height/2
  Rectangle {
    width: 100; height: width; color: "red"
    anchors.centerIn: parent
  }
  Behavior on x { NumberAnimation { } }
  Behavior on y { NumberAnimation { } }
}

By adding the two marked declarations, we define behaviors for properties x and y that 
follow animations defined by NumberAnimation. We do not include start or end values for 
the animation as these will depend on the initial and final value for the property. We also 
don't set the property name in the animation because by default, the property for which 
the behavior is defined will be used. As a result, we get a linear animation of a numerical 
property from the original value to the destined value over the default duration.

Using linear animations for real world objects rarely looks good. Usually, 
you will get much better results if you set an easing curve for the 
animation so that it starts slowly and then gains speed and decelerates 
just before it is finished.

Animations that you set on behaviors can be as complex as you want:

Behavior on x {
  SequentialAnimation {
    PropertyAction {
  target: rect; property: "color"; value: "yellow"
}
ParallelAnimation {
  NumberAnimation { easing.type: Easing.InOutQuad; duration: 1000
}

      SequentialAnimation {
        NumberAnimation {
          target: rect; property: "scale"
          from: 1.0; to: 1.5; duration: 500
        }



Qt Quick

[ 426 ]

        NumberAnimation {
          target: rect; property: "scale"
          from: 1.5; to: 1.0; duration: 500
        }
      }
    }
    PropertyAction { target: rect; property: "color"; value: "red" }
  }
}

The behavioral model declared in the last piece of code performs a sequential animation. 
It first changes the color of the rectangle to yellow using the PropertyAction element, 
which performs an immediate update of a property value (we will talk about this more a bit 
later). The color will be set back to red after, as the last step of the model. In the meantime, 
a parallel animation is performed. One of its components is a NumberAnimation class that 
executes the actual animation of the x property of empty (since the target and property of 
the animation are not explicitly set). The second component is a sequential animation of the 
scale property of the rectangle, which first scales the item up by 50 percent during the first 
half of the animation and then scales it back down in the second half of the animation.

Time for action – animating the car dashboard
Let's employ the knowledge we just learned to improve our car dashboard so that it shows 
some realism in the way the clocks update their values.

Open the dashboard project and navigate to the dashboard.qml file. Find the declaration 
of the Needle object, which is responsible for visualizing the speed of the vehicle. Add the 
following declaration to the object:

Behavior on rotation {
  SmoothedAnimation { velocity: 50 }
}

Repeat the process for the left clock. Set the velocity of the animation to 100. Build and 
run the project. See how the needles behave when you modify the parameter values in 
spinboxes. Adjust the velocity of each animation until you get a realistic result.



Chapter 10

[ 427 ]

What just happened?
We have set the property value sources on needle rotations that are triggered whenever a 
new value for the property is requested. Instead of immediately accepting the new value, 
the Behavior element intercepts the request and starts the SmoothedAnimation class 
to gradually reach the requested value. The SmoothedAnimation class is an animation 
type that animates numeric properties. The speed of the animation is not determined by its 
duration, but instead a velocity property is set. This property dictates how fast a value is 
to be changed. However, the animation is using a non-linear path—it first starts slowly, then 
accelerates to the given velocity and near the end of the animation, decelerates in a smooth 
fashion. This yields an animation that is attractive and realistic and at the same time, is of 
shorter or longer duration, depending on the distance between the starting and ending values.

You can implement custom property value sources by subclassing 
QQmlPropertyValueSource and registering the class in the QML engine.

States and transitions
When you look at real world objects, it is often very easy to define their behavior by 
extracting a number of states the object may take and describing each of the states 
separately. A lamp can be turned either on or off. When it is "on" it is emitting light of a given 
color, but it is not doing that when in the "off" state. Dynamics of the object can be defined 
by describing what happens if the object leaves one of the states and enters another one. 
Considering our lamp example, if you turn the lamp on, it doesn't momentarily start emitting 
light with its full power, but rather the brightness of the light gradually increases to reach its 
final power after a very short period.

Qt Quick supports state-driven development by letting us declare states and transitions 
between them for items. The model fits the declarative nature of Qt Quick very well.

By default, each item has a single anonymous state and all properties you define take values 
of the expressions you bind or assign to them imperatively based on different conditions. 
Instead of this, a set of states can be defined for the object and for each of the state 
properties of the object itself; in addition, the objects defined within it can be programmed 
with different values or expressions. Our example lamp definition could be similar to:

Item {
  id: lamp
  property bool lampOn: false
  Rectangle {
    id: lightsource
    anchors.fill: parent
    color: transparent
  }
}



Qt Quick

[ 428 ]

We could, of course, bind the color property of lightsource to lamp.lampOn ? 
"yellow" : "transparent", but instead we can define an "on" state for the lamp and 
use a PropertyChanges element to modify the rectangle color:

Item {
  id: lamp
  property bool lampOn: false
  // …
  states: State {
    name: "on"
    PropertyChanges {
      target: lightsource
      color: "yellow"
    }
  }
}

Each item has a state property that you can read to get the current state, but you can also 
write to it to trigger transition to a given state. By default, the state property is set to an 
empty string that represents the anonymous state. Note that with the preceding definition, 
the item has two states—the "on" state and the anonymous state (which in this case is used 
when the lamp is off). Remember that state names have to be unique as the name parameter 
is what identifies a state in Qt Quick.

To enter a state, we can, of course, use an event handler fired when the value of the lampOn 
parameter is modified:

onLampOnChanged: state = lampOn ? "on" : ""

Such imperative code works, but it can be replaced with a declarative definition in the  
state itself:

State {
  name: "on"
  when: lamp.lampOn
  PropertyChanges {
    target: lightsource
    color: "yellow"
  }
}

Whenever the expression bound to the when property evaluates to true, the state becomes 
active. If the expression becomes false, the object will return to the default state or will 
enter a state for which its own when property evaluates to true.



Chapter 10

[ 429 ]

To define more than one custom state, it is enough to assign a list of state definitions to the 
states property:

states: [
  State {
    name: "on"
    when: lamp.lampOn
  },
  State {
    name: "off"
    when: !lamp.lampOn
  }
]

The PropertyChanges element is the most often used change in a state definition, but it 
is not the only one. In exactly the same way that the ParentChange element can assign a 
different parent to an item and the AnchorChange element can update anchor definitions, 
it is also possible to run a script when a state is entered using the StateChangeScript 
element. All these element types are used by declaring their instances as children in a  
State object.

The second part of the state machine framework is defining how an object transits from one 
state to another. Similar to the states property, all items have a transitions property, 
which takes a list of definitions represented by the Transition objects and provides 
information about animations that should be played when a particular transition takes place.

A transition is identified by three attributes—the source state, the destination state, and 
a set of animations. Both the source state name (set to the from property) and the target 
state name (set to the to property) can be empty, in which case they should be interpreted 
as "any". If a Transition exists that matches the current state change, its animations will 
be executed. A more concrete transition definition (which is one where from and/or to are 
explicitly set) has precedence over a more generic one.

Suppose that we want to animate the opacity of the lamp rectangle from 0 to 1 when the 
lamp is switched on. We can do it as an alternative to manipulating the color. Let's update 
the lamp definition:

Item {
  id: lamp
  property bool lampOn: false
  Rectangle {
    id: lightsource
    anchors.fill: parent
    color: "yellow"
    opacity: 0



Qt Quick

[ 430 ]

  }
  states: State {
    name: "on"
    when: lamp.lampOn
    PropertyChanges {
      target: lightsource
      opacity: 1
    }
  }
  transitions: Transition {
    NumberAnimation { duration: 100 }
  }
}

The transition is triggered for any source and any target state—it will be active when the 
lamp goes from the anonymous to the "on" state, as well as in the opposite direction. It 
defines a single NumberAnimation element that lasts for 100 miliseconds. The animation 
does not define the target object nor the property it works on; thus, it will be executed for 
any property and any object that needs updating as part of the transition—in the case of the 
lamp, it will only be the opacity property of the lightsource object.

If more than one animation is defined in a transition, all animations will run in parallel. If you 
need a sequential animation, you need to explicitly use a SequentialAnimation element:

Transition {
  SequentialAnimation {
    NumberAnimation { target: lightsource; property: "opacity";  
    duration: 200 }
    ScriptAction { script: console.log("Transition has ended") }
  }
}

States are a feature of all Item types as well as its descendent types. It 
is, however, possible to use states with elements not derived from the 
Item object by using a StateGroup element, which is a self-contained 
functionality of states and transitions with exactly the same interface as 
what is described here regarding Item objects.

More animation types
The animation types we discussed earlier are used for modifying values of types that  
can be described using physical metrics (position, sizes, colors, angles). But there are  
more types available.



Chapter 10

[ 431 ]

The first group of special animations consists of the AnchorAnimation and 
ParentAnimation elements.

The AnchorAnimation element is useful if a state change should cause a change to defined 
anchors for an item. Without it, the item would immediately snap into its place. By using the 
AnchorAnimation element, we trigger all anchor changes to be gradually animated.

The ParentAnimation element, on the other hand, makes it possible to define animations 
that should be present when an item receives a new parent. This usually causes an item to 
be moved to a different position in the scene. By using the ParentAnimation element in 
a state transition, we can define how the item gets into its target position. The element can 
contain any number of child animation elements that are going to be run in parallel during a 
ParentChange element.

The second special group of animations is action animations—PropertyAction and 
ScriptAction. These animation types are not stretched in time, but rather perform a given 
one-time action.

The PropertyAction element is a special kind of animation that performs an immediate 
update of a property to a given value. It is usually used as part of a more complex animation 
to modify a property that is not animated. It makes sense to use it if a property needs to 
have a certain value during an animation.

The ScriptAction is an element that allows the execution of an imperative piece of code 
during an animation (usually at its beginning or end).

Quick game programming
Here, we will go through the process of creating a platform game using Qt Quick. It will be 
a game similar to Benjamin the Elephant from Chapter 6, Graphics View. The player will 
control a character that will be walking through the landscape and collecting coins. The coins 
will randomly be appearing in the world. The character can access highly placed coins by 
jumping. The more the character jumps, the more tired he gets and the slower he begins 
to move and has to rest to regain speed. To make the game more difficult, at times moving 
obstacles will be generated. When the character bumps into any of them, he gets more and 
more tired. When the fatigue exceeds a certain level, the character dies and the game ends.

Throughout this chapter as well as the previous one, we prepared a number of pieces we 
will be reusing for this game. The layered scene that was arranged when you learned about 
animations will serve as our game scene. The animated sun is going to represent the passing 
of time. When the sun sets, the time runs out and the game ends. The heartbeat diagram 
will be used to represent the character's level of fatigue—the more tired the character gets, 
the faster his heart beats.



Qt Quick

[ 432 ]

There are many ways this game can be implemented and we want to give you a level of 
freedom, so this is not going to be a step-by-step guide on how to implement a complete 
game. At some points, we will be telling you to employ some skills you have already learned 
to perform some task without telling you how to do it. At others, we will provide broad 
descriptions and complete solutions.

Game loops
Most games revolve around some kind of game loop. It is usually some kind of function that 
is repeatedly called at constant intervals and its task is to progress the game—process input 
events, move objects around, calculate and execute actions, check win conditions, and so 
on. Such an approach is very imperative and usually results in a very complex function that 
needs to know everything about everybody (This kind of anti-pattern is sometimes called 
a god object pattern). In QML (which powers the Qt Quick framework), we aim to separate 
responsibilities and declare well-defined behaviors for particular objects. Therefore, although 
it is possible to set up a timer which will periodically call a game loop function, this is not the 
best possible approach in a declarative world.

Instead, we suggest using a natural time-flow mechanism already present in Qt Quick—one 
that controls the consistency of animations. Remember how we defined the sun's travel 
across the sky at the beginning of this chapter? Instead of setting up a timer and moving 
the object by a calculated number of pixels, we created an animation, defined a total 
running time for it, and let Qt take care of updating the object. This has the great benefit 
of neglecting delays in function execution. If you used a timer and some external event 
introduced a significant delay before the timeout function was run, the animation would 
start lagging behind. When Qt Quick animations are used, the framework compensates for 
such delays, skipping some of the frame updates to ensure that the requested animation 
duration is respected. Thanks to that, you will not have to take care of it all by yourself.

To overcome the second difficult aspect of a game loop—the god anti-pattern—we suggest 
encapsulating the logic of each item directly in the item itself the using states and transitions 
framework we introduced earlier. If you define an object using a natural time flow describing 
all states it can enter during its lifetime and actions causing transitions between states, you 
will be able to just plop the object with its included behavior wherever it is needed and thus 
easily reuse such definitions in different games, reducing the amount of work necessary to 
make the object fit into the game.

As for input event processing, a usual approach in games is to read input events and call 
functions responsible for actions associated with particular events:

void Scene::keyEvent(QKeyEvent *ke) {
  switch(ke->key()) {
  case Qt::Key_Right: player->goRight(); break;
  case Qt::Key_Left:  player->goLeft();  break;



Chapter 10

[ 433 ]

  case Qt::Key_Space: player->jump();    break;
  // ...
  }
}

This, however, has its drawbacks, one of which is the need to check events at even periods of 
time. This might be hard and certainly is not a declarative approach.

We already know that Qt Quick handles keyboard input via the Keys attached property. It 
is possible to craft QML code similar to the one just presented, but the problem with such 
an approach is that the faster the player taps keys on the keyboard, the more frequently the 
character will move, jump, or shoot. It isn't hard if it is done properly, though.

Time for action – character navigation
Create a new QML document and call it Player.qml. In the document, place the following 
declarations:

Item {
  id: player
  y: parent.height
  focus: true
  
  Keys.onRightPressed: x = Math.min(x+20, parent.width)
  Keys.onLeftPressed: x = Math.max(0, x-20)
  Keys.onUpPressed: jump()

  function jump() { jumpAnim.start() }

  Image {
    source: "elephant.png"
    anchors.bottom: parent.bottom
    anchors.horizontalCenter: parent.horizontalCenter
  }
  Behavior on x { NumberAnimation { duration: 100 } }
  SequentialAnimation on y {
    id: jumpAnim
    running: false
    NumberAnimation { to: player.parent.height-50; easing.type:  
      Easing.OutQuad }
    NumberAnimation { to: player.parent.height; easing.type:  
      Easing.InQuad }
  }
}



Qt Quick

[ 434 ]

Next, open the document containing the main scene definition and declare the player 
character near the end of the document after all the background layers are declared:

Player {
  id: player
  x:40
}

What just happened?
The player itself is an empty item with a keyboard focus that handles presses of the right, 
left, and up arrow keys, causing them to manipulate the x and y coordinates of the player. 
The x property has a Behavior element set so that the player moves smoothly within the 
scene. Finally, anchored to the player item is the actual visualization of the player—our 
elephant friend.

When the right or left arrow keys are pressed, a new position for the character will be 
calculated and applied. Thanks to the Behavior element, the item will travel gradually 
(during one second) to the new position. Keeping the key pressed will trigger auto-repeat 
and the handler will be called again. In a similar fashion, when the spacebar is pressed, it will 
activate a prepared sequential animation that will lift the character up by 50 pixels and then 
move it down again to the initial position.

This approach works but we can do better. Let's try something different.

Time for action – another approach to character navigation
Replace the previous key handlers with the following code:

QtObject {
  id: flags
  readonly property int speed: 20
  property int horizontal: 0 
}
Keys.onRightPressed: { recalculateDurations(); flags.horizontal = 1 }
Keys.onLeftPressed: {
  if(flags.horizontal != 0) return 
  recalculateDurations()
  flags.horizontal = -1 
}
Keys.onUpPressed: jump()
Keys.onReleased: {
  if(event.key == Qt.Key_Right) flags.horizontal = 0



Chapter 10

[ 435 ]

  if(event.key == Qt.Key_Left && flags.horizontal < 0)  
  flags.horizontal = 0
}

function recalculateDurations() {
  xAnimRight.duration = (xAnimRight.to-x)*1000/flags.speed
  xAnimLeft.duration  = (x-xAnimLeft.to)*1000/flags.speed
}
NumberAnimation on x {
  id: xAnimRight
  running: flags.horizontal > 0
  to: parent.width
}
NumberAnimation on x {
  id: xAnimLeft
  running: flags.horizontal < 0
  to: 0
}

What just happened?
Instead of performing actions immediately, upon pressing a key, we are now setting flags 
(in a private object) for which direction the character should be moving in. In our situation, 
the right direction has priority over the left direction. Setting a flag triggers an animation 
that tries to move the character toward an edge of the scene. Releasing the button will 
clear the flag and stop the animation. Before the animation is started, we are calling the 
recalculateDurations() function, which checks how long the animation should last  
for the character to move at the desired speed.

If you want to replace keyboard-based input with something else, for 
example, accelerometer or custom buttons, the same principle can be 
applied. When using an accelerometer, you can even control the speed of 
the player by measuring how much the device is tilted. You can addtionally 
store the tilt in the flags.horizontal parameter and make use of that 
variable in the recalculateDurations() function.

Have a go hero – polishing the animation
What we have done is sufficient for many applications. However, you can try controlling the 
movement even more. As a challenge, try modifying the system in such a way that during a 
jump, inertia keeps the current horizontal direction and speed of movement of the character 
until the end of the jump. If the player releases the right or left keys during a jump, the 
character will stop only after the jump is complete.



Qt Quick

[ 436 ]

Despite trying to do everything in a declarative fashion, some actions will still require 
imperative code. If some action is to be executed periodically, you can use the Timer 
parameter to execute a function on demand. Let's go through the process of implementing 
such patterns together.

Time for action – generating coins
The goal of the game we are trying to implement is to collect coins. We will spawn coins now 
and then in random locations of the scene.

Create a new QML Document and call it Coin.qml. In the editor, enter the following code:

Item {
  id: coin

  Rectangle {
    id: coinVisual
    color: "yellow"
    border.color: Qt.darker(color)
    border.width: 2
    width: 30; height: width
    radius: width/2
    anchors.centerIn: parent

    transform: Rotation {
      axis.y: 1

      NumberAnimation on angle {
        from: 0; to: 360
        loops: Animation.Infinite
        running: true
      }
    }
    Text {
      color: coinVisual.border.color
      anchors.centerIn: parent
      text: "1"
    }
  }
}



Chapter 10

[ 437 ]

Next, open the document where the scene is defined and enter the following code 
somewhere in the scene definition:

Component {
  id: coinGenerator
  Coin {}
}

Timer {
  id: coinTimer
  interval: 1000
  repeat: true

  onTriggered: {
    var cx = Math.floor(Math.random() * scene.width)
    var cy = Math.floor(Math.random() * scene.height/3) 
             + scene.height/2
    coinGenerator.createObject(scene, { x: cx, y: cy});
  }
}

What just happened?
First, we defined a new element type, Coin, consisting of a yellow circle with a number 
centered over an empty item. The rectangle has an animation applied that rotates the item 
around a vertical axis, resulting in a pseudo three-dimensional effect.

Next, a component able to create instances of a Coin element is placed in the scene. Then, 
a Timer element is declared that fires every second and spawns a new coin at a random 
location of the scene.

Sprite animation
The player character, as well as any other component of the game, should be animated. If the 
component is implemented using simple Qt Quick shapes, it is quite easy to do by changing 
the item's properties fluently, by way of using property animations (like we did with the Coin 
object). Things get more difficult if a component is complex enough that it is easier to draw it 
in a graphics program and use an image in the game instead of trying to recreate the object 
using Qt Quick items. Then, one needs a number of images—one for every frame of animation. 
Images would have to keep replacing one another to make a convincing animation.



Qt Quick

[ 438 ]

Time for action – implementing simple character animation
Let's try to make the player character animated in a simple way. In materials that come with 
this book, you will find a number of images with different walking phases for Benjamin the 
Elephant. You can use them or you can draw or download some other images to be used in 
place of those provided by us.

Put all images in one directory (for example, images) and rename them so that they follow 
a pattern that contains the base animation name followed by a frame number, for example, 
walking_01, walking_02, walking_03, and so on.

Next, open the Player.qml document and replace the image element showing 
"elephant.png" with the following code:

Image {
  property int currentFrame: 1
  property int frameCount: 10
  source: "images/walking_"+currentFrame+".png"
  mirror: player.facingLeft

  anchors.bottom: parent.bottom
  anchors.horizontalCenter: parent.horizontalCenter
  Animation on currentFrame {
    from: 1
    to: frameCount
    loops: Animation.Infinite
    duration: frameCount*40
    running: player.walking
  }
}

In the root element of Player.qml, add the following properties:

property bool walking: flags.horizontal != 0
property bool facingLeft: flags.horizontal < 0

Start the program and use the arrow keys to see Benjamin move.



Chapter 10

[ 439 ]

What just happened?
A number of images were prepared following a common naming pattern containing a 
number. All the images have the same size. This allows us to replace one image with another 
just by changing the value of the source property to point to a different image. To make 
it easier, we introduced a property called the currentFrame element that contains the 
index of the image to be displayed. We used the currentFrame element in a string forming 
an expression bound to the source element of the image. To make substituting frames 
easy, a NumberAnimation element was declared to modify values of the currentFrame 
element in a loop from 1 to the number of animation frames available (represented by the 
frameCount property), so that each frame is shown for 40 miliseconds. The animation 
is playing if the walking property evaluates to true (based on the value of the flags.
horizontal element in the player object). Finally, we use the mirror property of the 
Image parameter to flip the image if the character is walking left.

The preceding approach works, but is not perfect. The complexity of the declaration 
following this pattern grows much faster than required when we want to make movement 
animation more complex (for example, if we want to introduce jumping). This is not the only 
problem, though. Loading images does not happen instantly. The first time a particular image 
is to be used, the animation can stall for a moment while the graphics get loaded, which 
might ruin the user experience. Lastly, it is simply messy to have a bunch of pictures here and 
there for every image animation.

A solution to this is to use sprites—geometrical animated objects consisting of small images 
combined into one larger image for better performance. Qt Quick supports sprites through 
its sprite engine that handles loading sequences of images from a sprite field, animating 
them and transitioning between different sprites.



Qt Quick

[ 440 ]

In Qt Quick, a sprite is an image of any type supported by Qt that contains an image strip 
with all frames of the animation. Subsequent frames should form a contiguous line flowing 
from left to right and from top to bottom of the image. However, they do not have to start 
in the top-left corner of the containing image, nor do they have to end in its bottom-right 
corner—a single file can contain many sprites. A sprite is defined by providing the size of a 
single frame in pixels and a frame count. Optionally, one can specify an offset from the top-
left corner where the first frame of the sprite is to be read from. The following diagram can 
be helpful in visualizing the scheme:

QML offers a Sprite element type with a source property pointing to the URL of the 
container image, a frameWidth and frameHeight element determining the size of each 
frame, and a frameCount element defining the number of frames in the sprite. Offsetting 
the image can be achieved by setting values of the frameX and frameY properties. In 
addition to this, some additional properties are present; the most important three are 
frameRate, frameDuration, and duration. All these serve to determine the pace of the 
animation. If the frameRate element is defined, it is interpreted as a number of frames to 
cycle through per second. If this property is not defined, then the frameDuration element 
kicks in and is treated as a period of time in which to display a single frame (thus, it is directly 
an inverse of the frameRate element). If this property is not defined, as well, the duration 
element is used, which carries the duration of the whole animation. You can set any of the 
three properties, and precedence rules (frameRate, frameDuration, duration) will 
determine which of them are going to be applied.



Chapter 10

[ 441 ]

Time for action – animating characters using sprites
Let's wait no further. The task at hand is to replace the manual animation from the previous 
exercise with a sprite-based animation.

Open the Player.qml document, remove the whole image element responsible for 
displaying the player character: 

AnimatedSprite {
  id: sprite
  source: "images/walking.png"
  frameX: 560
  frameY: 0
  frameWidth: 80
  frameHeight: 52
  frameCount: 7
  frameRate: 10
  interpolate: true
  width: frameWidth
  height: frameHeight

  running: player.walking
  anchors.bottom: parent.bottom
  anchors.horizontalCenter: parent.horizontalCenter

  transform: Scale {
    origin.x: sprite.width/2
    xScale: player.facingLeft ? -1 : 1
  }
}



Qt Quick

[ 442 ]

What just happened?
We have replaced the previous static image with an ever-changing source with a different 
item. As the Sprite parameter is not an Item element but rather a data definition 
of a sprite, we cannot use it in place of the Image element. Instead, we will use the 
AnimatedSprite element, which is an item that can display a single animated sprite 
defined inline. It even has the same set of properties as the Sprite parameter. We defined 
a sprite embedded in images/walking.png with a width of 80 and a height of 52 pixels. 
The sprite consists of seven frames that should be displayed at a rate of 10 frames per 
second. The running property is set up similar to the original Animation element. As the 
AnimatedSprite element does not have a mirror property, we emulate it by applying a 
scale transformation that flips the item horizontally if the player.facingLeft element 
evaluates to true. Additionally, we set the interpolate property to true, which makes 
the sprite engine calculate smoother transitions between frames.

The result we are left with is similar to an earlier attempt, so if these two are similar then 
why bother using sprites? In many situations, you want more complex animation than just 
a single frame sequence. What if we want to animate the way Benjamin jumps in addition 
to him walking? Embedding more manual animations, although possible, would explode 
the number of internal variables required to keep the state of the object. Fortunately, 
the Qt Quick sprite engine can deal with that. The AnimatedSprite element we used 
provides just a subset of features of the whole framework. By substituting the item with 
the SpriteSequence element we gain access to the full power of sprites. In talking about 
Sprite, we didn't tell you about one additional property of the object, a property called 
to that contains a map of probabilities of transitioning from the current sprite to another 
one. By stating which sprites the current one migrates to, we create a state machine with 
weighted transitions to other sprites, as well as cycling back to the current state.

Transitioning to another sprite is triggered by setting the goalSprite property on the 
SpriteSequence object. This will cause the sprite engine to traverse the graph until it 
reaches the requested state. It is a great way to fluently switch from one animation to 
another by going through a number of intermediate states.

Instead of asking the sprite machine to gracefully transit to a given state, one can ask it to 
force an immediate change by calling the SpriteSequence class's jumpTo() method and 
feeding it with the name of the sprite that should start playing.

The last thing that needs to be clarified is how to actually attach the sprite state machine to 
the SpriteSequence class. It is very easy; just assign an array of the Sprite objects to the 
sprites property.



Chapter 10

[ 443 ]

Time for action – adding jumping with sprite transitions
Let's replace the AnimatedSprite class with the SpriteSequence class in the Bejamin 
the Elephant animation, adding a sprite to be played during the jumping phase.

Open the Player.qml file and replace the AnimatedSprite object with the following code:

SpriteSequence {
  id: sprite
  width: 80
  height: 52
  anchors.bottom: parent.bottom
  anchors.horizontalCenter: parent.horizontalCenter
  currentSprite: "still"
  running: true

  Sprite {
    name: "still"
    source: "images/walking.png"
    frameCount: 1
    frameWidth: 80
    frameHeight: 52
    frameDuration: 100
    to: {"still": 1, "walking": 0, "jumping": 0}
  }
  Sprite {
    name: "walking"
    source: "images/walking.png"
    frameCount: 7
    frameWidth: 80
    frameHeight: 52
    frameRate: 10
    to: {"walking": 1, "still": 0, "jumping": 0}
  }
  Sprite {
    name: "jumping"
    source: "images/jumping.png"
    frameCount: 11
    frameWidth: 80
    frameHeight: 70
    frameRate: 4



Qt Quick

[ 444 ]

    to: { "still" : 1 }
  }

  transform: Scale {
    origin.x: sprite.width/2
    xScale: player.facingLeft ? -1 : 1
  }
}

Next, extend the jumpAnim object by adding the highlighted changes:

SequentialAnimation {
  id: jumpAnim
  running: false
  ScriptAction { script: sprite.goalSprite = "jumping" }
  NumberAnimation {
    target: player; property: "y"
    to: player.parent.height-50; easing.type: Easing.OutQuad 
  }
  NumberAnimation {
    target: player; property: "y"
    to: player.parent.height; easing.type: Easing.InQuad 
  }
  ScriptAction {
    script: { sprite.goalSprite = ""; sprite.jumpTo("still"); } 
  }
}

What just happened?
The SpriteSequence element we have introduced has its Item elements-related 
properties set up in the same way as when the AnimatedSprite element was used. Apart 
from that, a sprite called "still" was explicitly set as the current one. We defined a number of 
Sprite objects as children of the SpriteSequence element. This is equivalent to assigning 
those sprites to the sprites property of the object. The complete state machine that was 
declared is presented in the following diagram:



Chapter 10

[ 445 ]

A sprite called "still" has just a single frame representing a situation when Benjamin doesn't 
move. The sprite keeps spinning in the same state due to the weighted transition back to 
the "still" state. The two remaining transitions from that state have their weights set to 0, 
which means they will never trigger spontaneously, but they can be invoked by setting the 
goalSprite property to a sprite that can be reached by activating one of those transitions.

The sequential animation was extended to trigger sprite changes when the elephant lifts into 
the air.

Have a go hero – making Benjamin wiggle his tail in anticipation
To practice sprite transitions, your goal is to extend the state machine of Benjamin's 
SpriteSequence element to make him wiggle his tail when the elephant is standing still. 
You can find the appropriate sprite in the materials that come included with this book. The 
sprite field is called wiggling.png. Implement the functionality by making it probable that 
Benjamin spontaneously goes from the "still" state to "wiggling". Pay attention to ensure the 
animal stops wiggling and starts walking the moment the player activates the right or left 
arrow keys.

Parallax scrolling
We already discussed the useful technique of parallax scrolling in Chapter 6, Graphics View. 
Just to recapitulate, it gives the impression of depth for 2D games by moving multiple layers 
of background at a different speed depending on the assumed distance of the layer from the 
viewer. We will now see how easy it is to apply the same technique in Qt Quick.



Qt Quick

[ 446 ]

Time for action – revisiting parallax scrolling
We will implement parallax scrolling with a set of layers that move in the direction opposite 
to the one the player is moving in. Therefore, we will need a definition of the scene and a 
moving layer.

Create a new QML Document (Qt Quick 2). Call it ParallaxScene.qml. The scene will 
encompass the whole game "level" and will expose the position of the player to the moving 
layers. Put the following code in the file:

import QtQuick 2.2

Item {
  id: root
  property int currentPos
  x: -currentPos*(root.width-root.parent.width)/width
}

Then, create another QML Document (Qt Quick 2) and call it ParallaxLayer.qml. Make it 
contain the following definition:

import QtQuick 2.2

Item {
  property real factor: 0
  x: factor > 0 ? -parent.currentPos/factor - parent.x : 0
}

Now, let's use the two new element types in the main QML document. We'll take elements 
from the earlier scene definition and make them into different parallax layers—the sky, the 
trees, and the grass:

Rectangle {
  id: view
  
  width: 600
  height: 380

  ParallaxScene {
    id: scene
    width: 1500; height: 380
    anchors.bottom: parent.bottom
    currentPos: player.x

    ParallaxLayer {



Chapter 10

[ 447 ]

      factor: 7.5
      width: sky.width; height: sky.height
      anchors.bottom: parent.bottom
      Image { id: sky; source: "sky.png" }
    }
    ParallaxLayer {
      factor: 2.5
      width: trees.width; height: trees.height
      anchors.bottom: parent.bottom
      Image { id: trees; source: "trees.png" }
    }
    ParallaxLayer {
      factor: 0
      width: grass.width; height: grass.height
      anchors.bottom: parent.bottom
      Image { id: grass; source: "grass.png" }
    }

    Item {
      id: player
      // ...
    }
  }
}



Qt Quick

[ 448 ]

What just happened?
The ParallaxScene element we implemented is a moving plane. Its horizontal offset 
depends on the character's current position and the size of the view. The range of scroll of the 
scene is determined by the difference between the scene size and the view size—it says how 
much scrolling we have to do when the character moves from the left edge to the right edge of 
the scene so that it is in view all the time. If we multiply that by the distance of the character 
from the left edge of the scene expressed as a fraction of the scene width, we will get the 
needed scene offset in the view (or otherwise speaking, a projection offset of the scene).

The second type—ParallaxLayer is also a moving plane. It defines a distance factor that 
represents the relative distance (depth) of the layer behind the foreground, which influences 
how fast the plane should be scrolled compared to the foreground (scene). The value of 
0 means that the layer should be moving with exactly the same speed as the foreground 
layer. The larger the value, the slower the layer moves compared to the character. The offset 
value is calculated by dividing the character's position in the scene by the factor. Since the 
foreground layer is also moving, we have to take it into consideration when calculating the 
offset for each parallax layer. Thus, we subtract the horizontal position of the scene to get 
the actual layer offset.

Having the layers logically defined, we can add them to the scene. Each layer has a physical 
representation, in our case, static images containing textures of the sky, trees, and grass. 
Each layer is defined separately and can live its own life, containing static and animated 
elements that have no influence on remaining layers. If we wanted to render a sun moving 
from east to west, we would put it on the sky layer and animate it from one edge of the layer 
to the other with a long duration.

Have a go hero – vertical parallax sliding
As an additional exercise, you might want to implement vertical parallax sliding in addition to 
a horizontal one. Just make your scene bigger and have it expose the vertical scroll position 
in addition to the horizontal one reported by the currentPos element. Then, just repeat 
all the calculations for the y property of each layer and you should be done in no time. 
Remember that distance factors for x and y might be different.

Collision detection
There is no built-in support for collision detection in Qt Quick, but there are three ways of 
providing such support. First, you can use a ready collision system available in a number of 
2D physics engines such as Box2D. Secondly, you can implement a simple collision system 
yourself in C++. Lastly, you can do collision checking directly in JavaScript by comparing 
object coordinates and bounding boxes.



Chapter 10

[ 449 ]

Our game is very simple; therefore, we will use the last approach. If we had a larger number 
of moving objects involved in our game, then we would probably choose the second 
approach. The first approach is best if you have an object of non-rectangular shapes that can 
rotate and bounce off other objects. In this case, having a physics engine at hand becomes 
really useful.

Time for action – collecting coins
From Qt Creator's menu, access File | New File or Project. From Qt Files And Classes, 
choose the JS File template. Call the file "collisions.js". Put the following content into 
the document:

pragma library

function boundingBox(object1) {
  var cR = object1.childrenRect
  var mapped = object1.mapToItem(object1.parent, cR.x, cR.y,  
    cR.width, cR.height)
  return Qt.rect(mapped.x, mapped.y, mapped.width, mapped.height)
}

function intersect(object1, object2) {
  var r1 = boundingBox(object1)
  var r2 = boundingBox(object2)
  return (r1.x <= r2.x+r2.width  && // r1.left <= r2.right
  r2.x <= r1.x+r1.width  && // r2.left <= r1.right
  r1.y <= r2.y+r2.height && // r1.top <= r2.bottom
  r2.y <= r1.y+r1.height)   // r2.top <= r1.bottom
}

Create another JS File and call it "coins.js". Enter the following:

import "collisions.js"

var coins = []

coins.collisionsWith = function(player) {
  var collisions = []
  for(var index = 0; index < length; ++index) {
    var obj = this[index]
    if(intersect(player, obj)) collisions.push(obj)
  }
  return collisions
}



Qt Quick

[ 450 ]

coins.remove = function(obj) {
  var arr = isArray(obj) ? obj : [ obj ]
  var L = arr.length
  var idx, needle
  while(L && this.length) {
    var needle = arr[--L]
    idx = this.indexOf(needle)
    if(idx != -1) { this.splice(idx, 1) }
  }
  return this
}

Finally, open the main document and add the following import statement:

import "coins.js"

In the player object, define the checkCollisions() function:

function checkCollisions() {
  var result = coins.collisionsWith(player)
  if(result.length == 0) return
  result.forEach(function(coin) { coin.hit() })
  coins.remove(result) // prevent the coin from being hit again
}

Lastly, in the same player object, trigger collision detection by handling the position changes 
of the player:

onXChanged: { checkCollisions() }
onYChanged: { checkCollisions() }

In the Coin.qml file, define an animation and a hit() function:

SequentialAnimation {
  id: hitAnim
  running: false
  NumberAnimation {
    target: coin
    property: "opacity"
    from: 1; to: 0
    duration: 250
  }
  ScriptAction {



Chapter 10

[ 451 ]

    script: coin.destroy()  
  }
}

function hit() {
  hitAnim.start()
}

What just happened?
The file collisions.js contains functions used to do collision checking. The first line of 
the file is a pragma statement noting that this document only contains functions and does 
not contain any mutable object. This is so that we can add a .pragma library statement, 
which marks the document as a library that can be shared between documents that import 
it. This aids in reduced memory consumption and improved speed as the engine doesn't 
have to reparse and execute the document each time it is imported.

The functions defined in the library are really simple. The first one returns a bounding 
rectangle of an object based on its coordinates and the size of its children. It assumes 
that the top-level item is empty and contains children that represent the visual aspect of 
the object. Children coordinates are mapped using the mapToItem element so that the 
rectangle returned is expressed in the parent item coordinates. The second function does a 
trivial checking of intersection between two bounding rectangles and returns true if they 
intersect and false otherwise.

The second document keeps a definition of an array of coins. It adds two methods to the 
array object. The first one—collisionsWith—performs a collision check between any 
of the items in the array and the given object using functions defined in collisions.js. 
That's why we import the library at the start of the document. The method returns another 
array that contains objects intersecting the player argument. The other method, called 
remove, takes an object or an array of objects and removes them from coins.

The document is not a library; therefore, each document that imports coins.js would get 
its own separate copy of the object. Thus, we need to ensure that coins.js is imported 
only once in the game so that all references to the objects defined in that document relate to 
the same instance of the object in our program memory.



Qt Quick

[ 452 ]

Our main document imports coins.js, which creates the array for storing coin objects and 
makes its auxiliary functions available. This allows the defined checkCollisions() function 
to retrieve the list of coins colliding with the player. For each coin that collides with the player, 
we execute a hit() method; as a last step, all colliding coins are removed from the array. Since 
coins are stationary, collision can only occur when the player character enters an area occupied 
by a coin. Therefore, it is enough to trigger collision detection when the position of the player 
character changes—we use the onXChanged and onYChanged handlers.

As hitting a coin results in removing it from the array, we lose a reference to the object. 
The hit() method has to initiate removal of the object from the scene. A minimalistic 
implementation of this function would be to just call the destroy() function on the object, 
but we do more—the removal can be made smoother by running a fade-out animation on 
the coin. As a last step, the animation can destroy the object.

Notes on collision detection
The number of objects we track on the scene is really small, and we simplify the shape of 
each object to a rectangle. This lets us get away with checking collisions in JavaScript. For a 
larger amount of moving objects, custom shapes, and handling rotations, it is much better to 
have a collision system based on C++. The level of complexity of such a system depends on 
your needs.

Eye candy
A game should not just be based upon an interesting idea; it should not only work fluently 
on a range of devices and give entertainment to those people playing it. It should also look 
nice and behave nicely. Whether one is choosing from a number of similar implementations 
of the same game or wants to spend money on another similarly priced and entertaining 
game, there is a good chance the game she or he chooses will be the one that looks the 
best—having a lot of animations, graphics, and flashy content. We already learned a number 
of techniques to make a game more pleasing to the eye, such as using animations or GLSL 
shaders. Here, we will show you a number of other techniques that can make your Qt Quick 
applications more attractive.



Chapter 10

[ 453 ]

Auto-scaling user interfaces
The first extension you might implement is making your game auto-adjust to the device 
resolution it is running on. There are basically two ways to accomplish this. The first is to 
center the user interface in the window (or screen) and if it doesn't fit, enable scrolling. 
The other approach is to scale the interface to always fit the window (or screen). Which to 
choose depends on a number of factors, the most important of which is whether your UI 
is good enough when upscaled. If the interface consists of text and non-image primitives 
(basically rectangles) or if it includes images but only vector ones or those with very high 
resolution, then it is probably fine to try and scale the user interface. Otherwise, if you use 
a lot of low resolution bitmap images, you will have to choose one particular size for the UI 
(optionally allowing it to downscale since the quality degradation should be less significant in 
this direction if you enable anti-aliasing).

Whether you choose to scale or to center and scroll, the basic approach is the same—
you put your UI item in another item so that you have fine control over the UI geometry 
regardless of what happens to the top-level window. Taking the centered approach is quite 
easy—just anchor the UI to the center of the parent. To enable scrolling, wrap the UI in the 
Flickable item and constrain its size if the size of the window is not big enough to fit the 
whole user interface:

Item {
  id: window

  Flickable {
    id: uiFlickable
    anchors.centerIn: parent
    contentWidth: ui.width; contentHeight: ui.height

    width: parent.width >= contentWidth ? contentWidth : parent.width
    height: parent.height >= contentHeight ? contentHeight :  
      parent.height

    UI { id: ui }
  }
}

You should probably decorate the top-level item with a nice background if the UI item does 
not occupy the full area of its parent.



Qt Quick

[ 454 ]

Scaling seems more complicated, but with Qt Quick it is really easy. Again, you have two 
choices—either stretch or scale. Stretching is as easy as executing the anchors.fill: 
parent command, which effectively forces the UI to recalculate the geometry of all its items 
but possibly allows us to use the space more efficiently. It is, in general, very time-consuming 
for the developer to provide expressions for calculating the geometry of each and every 
element in the user interface as the size of the view changes. This is usually not worth the 
effort. A simpler approach is to just scale the UI item to fit the window, which will implicitly 
scale the contained items. In such an event, their size can be calculated relative to the base 
size of the main view of the user interface. For this to work, you need to calculate the scale 
that is to be applied to the user interface to make it fill the whole space available. The item 
has a scale of 1 when its effective width equals its implicit width and its effective height 
equals its implicit height. If the window is larger, we want to scale the item up until it reaches 
the size of the window. Therefore, the window's width divided by the item's implicit width 
will be the item's scale in the horizontal direction. This is shown in the following diagram:

The same can be applied to the vertical direction, but if the UI has a different aspect ratio 
than the window, its horizontal and vertical scale factors will be different. For the UI to look 
nice, we have to take the lower of the two values—to only scale up as much as the direction 
with less space allows, leaving a gap in the other direction:

Item {
  id: window

  UI {
    id: ui

    anchors.centerIn: parent
    scale: Math.min(parent.width/width, parent.height/height)
  }
}



Chapter 10

[ 455 ]

Again, it might be a good idea to put some background on the window item to fill in the gaps.

What if you want to save some margin between the user interface and the window? You 
could, of course, take that into consideration when calculating the scale ((window.width-
2*margin)/width, and so on) but there is an easier way—simply put an additional item 
inside the window, leaving an appropriate margin, and put the user interface item in that 
additional item and scale it up to the additional item's size:

Item {
  id: window
  Item {
    anchors { fill: parent; margins: 10 }
    UI {
      id: ui

      anchors.centerIn: parent
      scale: Math.min(parent.width/width, parent.height/height)
    }
  }
}

When you scale elements a lot, you should consider enabling anti-aliasing for items that 
can lose quality when rendered in a size different than their native size (for example, 
images). This is done very easily in Qt Quick as each Item instance has a property called 
antialiasing which, when enabled, will cause the rendering backend to try to reduce 
distortions caused by the aliasing effect. Remember that this comes at the cost of increased 
rendering complexity, so try to find a balance between quality and efficiency, especially on 
low-end hardware. You might provide an option to the user to globally enable or disable anti-
aliasing for all game objects or to gradually adjust quality settings for different object types.

Graphical effects
The basic two predefined items in Qt Quick are rectangle and image. One can use them in 
a variety of creative ways and make them more pleasant-looking by applying GLSL shaders. 
However, implementing a shader program from scratch is cumbersome and requires in-
depth knowledge of the shader language. Luckily, a number of common effects are already 
implemented and ready to use in the form of the QtGraphicalEffects module.



Qt Quick

[ 456 ]

To add a subtle black shadow to our canvas-based heartbeat element defined in the 
HeartBeat.qml file, use a code similar to the following that makes use of the DropShadow 
effect:

import QtQuick 2.0
import QtGraphicalEffects 1.0

Item {
  width: 1000; height: 600
  HeartBeat { id: hb; anchors.centerIn: parent; visible: false }
  DropShadow {
    source: hb
    anchors.fill: hb
    horizontalOffset: 3
    verticalOffset: 3
    radius: 8
    samples: 16
    color: "black"
  }
}

To apply a shadow effect, you need an existing item as the source of the effect. In our case, 
we are using an instance of the HeartBeat class centered in a top-level item. Then, the 
shadow effect is defined and its geometry follows that of its source by using the anchors.
fill element. Just as the DropShadow class renders the original item as well as the 
shadow, the original item can be hidden by setting its visible property to false.

Most of the DropShadow class's properties are self-explanatory, but two  
properties—radius and samples—require some additional explanation. The shadow  
is drawn as a blurred monochromatic copy of the original item offset by a given position.  
The two mentioned properties control the amount of blur and its quality—the more  
samples used for blurring, the better the effect, but also the more demanding the 
computation that needs to be performed.



Chapter 10

[ 457 ]

Speaking of blur, the plain blurring effect is also available in the graphics effects module 
through the GaussianBlur element type. To apply a blur instead of a shadow to the last 
example, simply replace the occurrence of the DropShadow class with the following code:

GaussianBlur {
  source: hb
  anchors.fill: hb
  radius: 12
  samples: 20
  transparentBorder: true
}

Here, you can see two earlier mentioned properties as well as a vaguely named 
transparentBorder one. Enabling this property fixes some artifacts on the edges of the 
blur and in general, you'll want to keep it that way.

Have a go hero – the blur parallax scrolled game view
The blur property is a very nice effect that can be used in many situations. For example, you 
could try to implement a feature within our elephant game whereby, when the user pauses 
the game (for example, by pressing the P key on the keyboard), the view gets blurred. Make 
the effect smooth by applying an animation to the effect's radius property.

Another interesting effect is Glow. It renders a colored and blurred copy of the source 
element. An example use case for games is highlighting some parts of the user interface—
you can direct the user's attention to the element (for example, button or badge) by making 
the element flash periodically:

Badge {
  id: importantBadge
}
Glow {
  source: importantBadge
  anchors.fill: source
  samples: 16



Qt Quick

[ 458 ]

  color: "red"

  SequentialAnimation on radius {
    loops: Animation.Infinite
    running: true

    NumberAnimation { from: 0; to: 10; duration: 2000 }
    PauseAnimation  { duration: 1000 }
    NumberAnimation { from: 10; to: 0; duration: 2000 }
    PauseAnimation  { duration: 1000 }
  }
}

The complete module contains 20 different effects. We cannot describe each effect in detail 
here. Nevertheless, you can learn about it yourself. If you clone the module's source git 
repository (found under git://code.qt.io/qt/qtgraphicaleffects.git) in the 
tests/manual/testbed subdirectory of the cloned repository, you will find a nice application 
for testing existing effects. To run the tool, open the testBed.qml file with qmlscene.

You can also access a complete list of effects and their short 
descriptions by navigating to the GraphicalEffects help page 
in the documentation.

git://code.qt.io/qt/qtgraphicaleffects.git


Chapter 10

[ 459 ]

Particle systems
A commonly used visual effect in systems such as games is generating a large number of 
small, usually short-lived, often fast-moving, fuzzy objects such as stars, sparks, fumes, dust, 
snow, splinters, falling leaves, or the like. Placing these as regular items within a scene would 
greatly degrade performance. Instead, a special engine is used which keeps a registry of 
such objects and tracks (simulates) their logical attributes without having physical entities 
in the scene. Such objects, called particles, are rendered upon request in the scene using 
very efficient algorithms. This allows us to use a large number of particles without having a 
negative impact on the rest of the scene.

Qt Quick provides a particle system in the QtQuick.Particles import. The 
ParticleSystem element provides the core for the simulation, which uses the Emitter 
elements to spawn particles. They are then rendered according to definitions in a 
ParticlePainter element. Simulated entities can be manipulated using the Affector 
objects, which can modify the trajectory or life span of particles.

Let's start with a simple example. The following code snippet declares the simplest possible 
particle system:

import QtQuick 2.0
import QtQuick.Particles 2.0

ParticleSystem {
  id: particleSystem
  width: 360; height: 360

  Emitter { anchors.fill: parent }
  ImageParticle { source: "star.png" }
}

The result can be observed in the following image:



Qt Quick

[ 460 ]

Let's analyze the code. After importing QtQuick.Particles 2.0, a ParticleSystem 
item is instantiated that defines the domain of the particle system. We define two objects 
within that system. The first object is the Emitter and defines an area where particles will 
be spawned. The area is set to encompass the whole domain. The second object is an object 
of the ImageParticle type, which is a ParticlePainter subclass. It determines that 
particles should be rendered as instances of a given image. By default, the Emitter object 
spawns 10 particles per second, each of which lives for one second and then dies and is 
removed from the scene. In the code presented, the Emitter and ImageParticle objects 
are direct children of the ParticleSystem class; however, this doesn't have to be the case. 
The particle system can be explicitly specified by setting the system property.

Tuning the emitter
You can control the amount of particles being emitted by setting the emitRate property 
of the emitter. Another property called the lifeSpan determines how many milliseconds 
it takes before a particle dies. To introduce some random behavior, you can use the 
lifeSpanVariation property to set a maximum amount of time (in milliseconds) the life 
span can be altered by the system (in both directions). Increasing the emission rate and life 
span of particles can lead to a situation in which a very large number of particles have to be 
managed (and possibly rendered). This can degrade performance; thus, an upper limit of 
particles that can concurrently be alive can be set through the maximumEmitted property:

ParticleSystem {
  id: particleSystem
  width: 360; height: 360

  Emitter {
    anchors.fill: parent
    emitRate: 350
    lifeSpan: 1500
    lifeSpanVariation: 400 // effective: 1100-1900 ms
  }
  ImageParticle { source: "star.png" }
}



Chapter 10

[ 461 ]

Tweaking the life span of particles makes the system more diverse. To strengthen the effect, 
you can also manipulate the size of each particle through the size and sizeVariation 
properties:

ParticleSystem {
  id: particleSystem
  width: 360; height: 360

  Emitter {
    anchors.fill: parent
    emitRate: 50
    size: 12
    sizeVariation: 6
    endSize: 2
  }
  ImageParticle { source: "star.png" }
}



Qt Quick

[ 462 ]

The range of functionality presented thus far should be enough to create many nice-
looking and useful particle systems. The limitation so far has been that particles are 
emitted from the whole area of the emitter, which is a regular QQuickItem and thus is 
rectangular. This doesn't have to be the case, though. The Emitter element contains a 
shape property, which is a way to declare the area that is to be giving birth to particles. The 
QtQuick.Particles parameter defines three types of custom shape that can be used— 
EllipseShape, LineShape, and MaskShape. The first two are very simple, defining either 
an empty or filled ellipse inscribed in the item or a line crossing one of the two diagonals of 
the item. The MaskShape element is more interesting as it makes it possible to use an image 
as a shape for the Emitter element.

ParticleSystem {
  id: particleSystem
  width: 360; height: 360

  Emitter {
    anchors.fill: parent
    emitRate: 1600
    shape: MaskShape { source: "star.png" }
  }
  ImageParticle { source: "star.png" }
}



Chapter 10

[ 463 ]

Rendering particles
Thus far, we have used a bare ImageParticle element to render particles. It is only 
one of three ParticlePainters available, with the others being ItemParticle and 
CustomParticle. But before we move on to other renderers, let's focus on tweaking the 
ImageParticle element to obtain some interesting effects.

The ImageParticle element renders each logical particle as an image. The image can be 
manipulated separately for each particle by changing its color and rotation, deforming its 
shape, or using it as a sprite animation.

To influence the color of particles, you can use any of the large number of dedicated 
properties—alpha, color, alphaVariation, colorVariation, redVariation, 
greenVariation, and blueVariation. The first two properties define the base value 
for respective attributes and the remaining properties set the maximum deviation of a 
respective parameter from the base value. In the case of opacity, there is only one type of 
variation you can use but when defining the color, you can either set different values for each 
of the red, green, and blue channels or you can use the global colorVariation property, 
which is similar to setting the same value for all three channels. Allowed values are any 
between the range of 0 (no deviation allowed) to 1.0 (100% in either direction).



Qt Quick

[ 464 ]

The properties mentioned are stationary—the particle obeys the constant value during its 
whole life. The ImageParticle element also exposes two properties, letting you control 
the color of particles relative to their age. First of all, there is a property called entryEffect 
that defines what happens with the particle at its birth and death. The default value is 
Fade, which makes particles fade in from 0 opacity at the start of their life and fades them 
back to 0 just before they die. You have already experienced this effect in all earlier particle 
animations we demonstrated. Other values for the property are None and Scale. The first 
one is obvious—there is no entry effect associated with particles. The second one scales 
particles from 0 at their birth and scales them back to 0 at the end of their life.

The other time-related property is colorTable. You can feed it with a URL of an image to 
be used as a one-dimensional texture determining the color of each particle over its life. 
At the beginning, the particle gets color-defined by the left edge of the image and then 
progresses right in a linear fashion. It is most common to set an image here containing a 
color gradient to achieve smooth transitions between colors.

The second parameter that can be altered is the rotation of a particle. Here, we can 
also either use properties that define constant values for rotation (rotation and 
rotationVariation) specified in degrees or modify the rotation of particles in time with 
rotationVelocity and rotationVelocityVariation. The velocity defines the pace or 
rotation in degrees per second.

Particles can also be deformed. The properties xVector and yVector allow binding 
vectors, which define distortions in horizontal and vertical axes. We will describe how to 
set the vectors in the next section. Last but not least, using the sprites property you can 
define a list of sprites that will be used to render particles. This works in a similar fashion to 
SpriteAnimation, described in an earlier section of this chapter.

Making particles move
Apart from fading and rotating, the particle systems we have seen so far were very static. 
While this is useful for making star fields, it is not useful at all for explosions, sparks, or even 
falling snow. This is because particles are mostly about movement. Here, we will show you 
two aspects of making your particles fly.

The first aspect is modeling how the particles are born. By that, we mean the physical 
conditions of the object creating the particles. During an explosion, matter is pushed away 
from the epicenter with a very large force that causes air and small objects to rush outwards 
at an extremely high speed. Fumes from a rocket engine are ejected with high velocities in 
the direction opposite to that of the propelled craft. A moving comet draws along a braid of 
dust and gases put into motion by the inertia.



Chapter 10

[ 465 ]

All these conditions can be modeled by setting the velocity or acceleration of the particles. 
These two metrics are described by vectors determining the direction and amount 
(magnitude or length) of the given quantity. In Qt Quick, such vectors are represented by an 
element type called StochasticDirection, where the tail of the vector is attached to the 
object and the position of the head is calculated by the StochasticDirection instance. 
Since we have no means of setting attributes on particles because we have no objects 
representing them, those two attributes—velocity and acceleration—are applied to 
emitters spawning the particles. Because you can have many emitters in a single particle 
system, you can set different velocities and accelerations for particles of different origins.

There are four types of direction elements representing different sources of information 
about the direction. First, there is CumulativeDirection, which acts as a container for 
other direction types and works like a sum of directions contained within.

Then, there is PointDirection, where you can specify x and y coordinates of a point 
where the head of the vector should be attached. To avoid the unrealistic effect of all 
particles heading in the same direction, you can specify xVariation and yVariation to 
introduce allowed deviation from a given point.



Qt Quick

[ 466 ]

The third type is the most popular stochastic direction type—AngleDirection, which directly 
specifies the angle (in degrees clockwise from straight right) and magnitude (in pixels per 
second) of the vector. The angle can vary from the base by angleVariation and similarly, 
magnitudeVariation can be used to introduce variation to the length of the vector:

The last type is similar to the previous one. The TargetDirection vector can be 
used to point the vector toward the center of a given Qt Quick item (set with the 
targetItem property). The length of the vector is calculated by giving the magnitude 
and magnitudeVariation, and both can be interpreted as pixels per second or 
multiples of distance between the source and target points (depending on the value of the 
proportionalMagnitude property):



Chapter 10

[ 467 ]

Let's get back to setting particle velocity. We can use the AngleDirection vector to specify 
that particles should be moving left, spreading at a maximum of 45 degrees:

Emitter {
  anchors.centerIn: parent
  width: 50; height: 50
  emitRate: 50

  velocity: AngleDirection {
    angleVariation: 45
    angle: 180
    magnitude: 200
  }
}

Setting acceleration works the same way. You can even set both the initial velocity and 
the acceleration each particle should have. It is very easy to shoot the particles in the left 
direction and start pulling them down:

Emitter {
  anchors.right: parent.right
  anchors.verticalCenter: parent.verticalCenter
  emitRate: 15
  lifeSpan: 5000

  velocity: AngleDirection {
    angle: 180
    magnitude: 200



Qt Quick

[ 468 ]

  }
  acceleration: AngleDirection {
    angle: 90 // local left = global down
    magnitude: 100
  }
}

The Emitter element has one more nice property that is useful in the context of moving 
particles. Setting the velocityFromMovement parameter to a value different than 0 
makes any movement of the Emitter element apply to the velocity of the particles. 
The direction of the additional vector matches the direction of the emitter's movement, 
and the magnitude is set to the speed of the emitter multiplied by the value set to 
velocityFromMovement. It is a great way to generate fumes ejected from a rocket engine:

Item {
  Image {
    id: image
    source: "rocket.png"
  }
  Emitter {
    anchors.right: image.right
    anchors.verticalCenter: image.verticalCenter
    emitRate: 500
    lifeSpan: 3000
    lifeSpanVariation: 1000
    velocityFromMovement: -20

    velocity: AngleDirection {



Chapter 10

[ 469 ]

      magnitude: 100
      angleVariation: 40
    }
  }
  NumberAnimation on x {
    ...
  }
}

The second way of addressing the behavior of particles is to influence their attributes after 
they are born—in any particular moment of their life. This can be done using affectors. 
These are items inheriting affector, which can modify some attributes of particles currently 
traveling though the area of the affector. One of the simplest affectors is Age. It can advance 
particles to a point in their lifetime where they only have lifeLeft milliseconds of their  
life left.

Age {
  once: true
  lifeLeft: 500
  shape: EllipseShape { fill: true }
  anchors.fill: parent
}

Setting once to true makes each affector influence a given particle only once. Otherwise, 
each particle can have its attributes modified many times.



Qt Quick

[ 470 ]

Another affector type is Gravity, which can accelerate particles in a given angle. Friction can 
slow particles down, and attractor will affect the particle's position, velocity, or acceleration 
so that it starts traveling toward a given point. Wander is great for simulating snowflakes or 
butterflies flying in pseudo-random directions.

There are also other affector types available, but we will not go into their details here. 
We would like to warn you, however, against using affectors too often—they can severely 
degrade performance.

Time for action – vanishing coins spawning particles
It is time now to practice our freshly acquired skills. The task is to add a particle effect to the 
game when the player collects coins. The coin will explode into a sprinkle of colorful stars 
when collected.

Start by declaring a particle system as filling the game scene, along with the particle  
painter definition:

ParticleSystem {
  id: coinParticles
  anchors.fill: parent // scene is the parent

  ImageParticle {
    source: "particle.png"
    colorVariation: 1
    rotationVariation: 180
    rotationVelocityVariation: 10
  }
}

Next, modify the definition of Coin to include an emitter:

Emitter {
  id: emitter
  system: coinParticles
  emitRate: 0
  lifeSpan: 500
  lifeSpanVariation: 100
  velocity: AngleDirection { angleVariation: 180; magnitude: 10 }
  acceleration: AngleDirection { angle: 270; magnitude: 2 }
}

Finally, the hit function has to be updated:

function hit() {
  emitter.burst(50)
  hitAnim.start()
}



Chapter 10

[ 471 ]

What just happened?
In this exercise, we defined a simple particle system that fills the whole scene. We defined a 
simple image painter for the particles where we allow particles to take on all the colors and 
start in all possible rotations. We used a star pixmap as our particle template.

Then, an Emitter object is attached to every coin. Its emitRate is set to 0, which means it 
does not emit any particles on its own. We set a varying life span on particles and let them 
fly in all directions by setting their initial velocity with an angle variation of 180 degrees 
in both directions (giving a total of 360 degrees). By setting an acceleration, we give the 
particles a tendency to travel toward the bottom edge of the scene.

In the hit function, we call a burst() function on the emitter, which makes it give instant 
birth to a given number of particles.

Summary
In this chapter, we have shown you how to extend your QML skills to make your applications 
dynamic and attractive. We've gone through the process of recreating and improving a 
game created earlier in C++ to familiarize you with such concepts as collision detection, 
state-driven objects, and time-based game loops. We also presented you with a tool in the 
form of ShaderEffect, which can serve as a means to create stunning graphics without 
compromising performance, and we taught you to use a particle system.

Of course, Qt Quick is much richer than all this, but we had to stop somewhere. The set 
of skills we have hopefully passed on to you should be enough to develop many great 
games. However, many of the elements have more properties than we have described here. 
Whenever you want to extend your skills, you can check the reference manual to see if the 
element type has more interesting attributes.

This concludes our book on game programming using Qt. We have taught you the general 
basics of Qt, described its widget realm to you, and introduced you to the fascinating world 
of Qt Quick. Widgets (including graphics view) and Qt Quick are the two paths you can take 
when creating games using the Qt framework. We have also shown you ways of merging the 
two approaches by making use of any OpenGL skills you might have, going beyond what Qt 
already offers today. At this point, you should start playing around and experimenting, and 
if at any point you feel lost or simply lack the information on how to do something, the very 
helpful Qt reference manual should be the first resource you direct yourself to.

Good luck and have lots of fun!





[ 473 ]

Pop Quiz Answers

Chapter 3, Qt GUI Programming
Pop quiz – making signal-slot connections

Q1 A slot

Q2 connect(sender, 
SIGNAL(toggled(bool)), receiver, 
SLOT(clear())); and connect(sender, 
&QPushButton::clicked, receiver, 
&QLineEdit::clear);

Pop quiz – using widgets

Q1 sizeHint

Q2 QVariant

Q3 It represents a functionality that a user can invoke 
in the program.



Pop Quiz Answers

[ 474 ]

Chapter 4, Qt Core Essentials
Pop quiz – Qt core essentials

Q1 QString

Q2 ((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
(\.|$)){4}

Q3 XML

Chapter 6, Graphics View
Pop quiz – mastering Graphics View

Q1 You should know, for example, that there is a 
QGraphicsSimpleTextItem that you can use 
to draw a simple text and that you do not have to 
deal with QPainter yourself in these situations. 
You should further know that if you have a more 
complex text containing bold characters you can use 
QGraphicsTextItem, which is able of handling rich 
text.

Q2 The correct answers these questions pertain to the 
origin points of the different systems.

Q3 Be aware that QObject isn't restricted to the "world 
of widgets". You can also use it with items.

Q4 The catchword for the correct answer is Parallax 
Scrolling.

Q5 The correct answer will take into account how you 
can control the cache and how to affect which parts 
of the view are actually redrawn when an update is 
requested.



Appendix

[ 475 ]

Chapter 7, Networking
Pop quiz – testing your knowledge

Q1 QNetworkAccessManager, QNetworkRequest, 
and QNetworkReply.

Q2 One has to use 
QNetworkRequest::setRawHeader() with the 
appropriate HTTP header field "Range".

Q3 QUrlQuery

Q4 One has to use deleteLater() not delete.

Q5 Both inherit QAbstractSocket which inherits 
QIODevice. QIODevice is itself also the base class 
of QFile. So the handling-files and sockets have 
much in common. Thus one does not have to learn 
a second (complex) API only to communicate with 
sockets.

Q6 QUdpSocket

Chapter 8, Scripting
Pop quiz – scripting

Q1 QScriptEngine::evaluate()

Q2 QScriptValue

Q3 PyValue

Q4 They contain all the variables defied within a function 
invocation so that a set of variables visible from within 
a script can be modified without affecting the global 
environment (called sandboxing).



Pop Quiz Answers

[ 476 ]

Chapter 11, Miscellaneous and Advanced Concepts
Pop quiz – testing your knowledge

Q1 The suffix is Reading, for example, QRotationReading.

Q2 The class named QSensorGestureRecognizer.

Q3 It's the Qt Positioning module and you activate it by adding 
QT += positioning to the project fie.

Q4 One has to overload QDebug& operator<<()

Q5 It aborts the execution of the program if condition is 
false only if the program was built in the debug mode.



[ 477 ]

Index
A
accelerators  48
Add-ons  7
Affine Transformations project

running  17-19
animations

action game, scene  411, 412
behaviors  424, 425
car dashboard, animating  426
composing  414-416
elements, animating  410
generic animations  410
non-linear animations  417
property value sources  420
sun animation, furnishing  421, 422
sun, making rise and set  416, 417
sun, path improving  418-420
sun rays, animating  423, 424
suns color, adjusting  420, 421
suns horizontal movement, animating  412, 413
types  430

application, main window
about  57-60
central widget, filling in  62-65
game, extending  66
pull-down menu, adding  61
Qt resource system  58
toolbar, creating  62

artificial intelligence (AI)  291
asynchronous approach  277

B
button component

creating  332, 333
button content

adding  334

C
C++

and Python, data converting between  313-315
C++11 support  8
Canvas

preparing, for hearbeat visualization  363, 364
C++ functions

exposing, to scripts  297-300
script functions, exposing  300
script, storing  300-302

character
animating, sprites used  441, 442

chess game
making, interactive  148-155

ChessView class  139-144
child widgets

adding, to window  27
client

about  274
chat, extending with user list  276
setting up  274, 275
text messages, receiving  275, 276
text messages, sending  276



[ 478 ]

C++ objects
car dashboard, self-updating  380-388
engine properties, grouping  389
pushing, to QML  375-379

collision detection
about  448, 449
coins, collecting  449-452
notes  452

Comma-separated Values (CSV) format  73
commercial license

URL  9
components

about  357, 358
analog clock application  350-353
clock, making functional  356, 357
dynamic objects  357
imperative painting  363
item creation, delaying  360, 361
items component functionality,  

accessing  361, 362
needles, adding to clock  354, 355
objects, creating on request  358-360

connectivity state
about  264
QNetworkConfiguration  266
QNetworkConfigurationManager  264, 265
QNetworkInterface  268
QNetworkSession  266, 267

cube
animating  172, 173

D
data serialization

about  90
binary streams  91
JavaScript Object Notation (JSON)  99
JSON parser, implementing  102, 103
of custom structure  91, 92
player data JSON serializer  100, 101
QSettings  104, 105
XML parser, implementing for player data  93-98
XML serializer, for player data  99
XML streams  92, 93

data storage
about  81
data serialization  90
devices  81
files  81
text streams  88-90

declarative programming  324, 325
designer forms

dialog, logic  55, 56
direct approach  53, 54
multiple inheritance approach  54
single inheritance approach  54
using  53

devices
about  84
GUI, for Caesar cipher  88
implementing, to encrypt data  85-87

Docker
URL  244

Document Object Model (DOM) standard  92
double-buffered oscillogram

implementing  131
download progress

showing  254
drawing

optimizing  129
oscillogram drawing, optimizing  129, 130

drawing, optimizing
chess game, making interactive  148-155
ChessView class  139-144
double-buffered oscillogram, implementing  131
game algorithm, connecting  156-161
game architecture, developing  131-134
game board class, implementing  135-139
pieces, rendering  145-148
UCI-compliant chess engine, connecting  162
UI, implementing around chess board  162

E
error handling

about  247
proper error message, displaying  248, 249

error recovery  307-309
error signal  253



[ 479 ]

Essentials  6, 7
event handlers

about  337
keyboard input  345-348
mouse input  337
touch input  342

extensions  309

F
Facebook

connecting to  256
URL  256

files
basic file access, getting  83, 84
basic file downloader, extending  247
directories, traversing  81, 82
downloading  245-247
downloading, in parallel  250, 251
downloading, over FTP  250
downloading, over HTTP  244

Forsyth-Edwards Notation (FEN)  137
Framebuffer Objects (FBO)  183
functions

attacks, defending against  304
exposing  297
heartbeat event, implementing  303, 304
initialization function, providing  302

G
game

animation, polishing  435
character navigation  433, 434
character navigation, approach  434, 435
coins, generating  436, 437
communicating between  268
loop  432
programming  431, 432
simple chat program, realizing  268

game board class
implementing  135-139

Git
URL  20
used, for setting up Qt sources  20

GL buffers  181, 182
god object pattern  432

Google
connecting to  256
Distance Matrix API, using  256, 257
query, constructing  257, 258
servers reply, parsing  259-263
XML, selecting as reply format  264

Graphics View architecture
about  185
items  187
scenes  198
view  208

GUIs
accelerators  48
designing  43-45
dialog, polishing  48
game configuration dialog, designing  46, 47
label buddies  48
tab order  49

I
images

loading  124
modifying  125, 126
painting  126
working with  123

imperative painting
Canvas, preparing for heartbeat  

visualization  363, 364
diagram, making colorful  367, 368
heartbeat, drawing  364-366

initialization function
providing  302

items
about  185-187
adding, to scenes  198
appearance  189
black rectangular item, creating  189, 190
coordinate system  195
creating, with different origins  196
customizing  193
multiple transformations, applying  198
parent child relationship  187-189
rotating  197, 198
selection state, reacting to  191
size, making definable  192, 193
standard items  193, 194



[ 480 ]

J
JavaScript, alternatives

about  310
Python  310

JavaScript Object Notation (JSON)
about  99, 100
parser, implementing  102

jumping elephant example
about  218
animation  236
animation, using to smoothly  

move items  230, 231
background, moving  228
Benjamin, moving  222-227
coins, exploding  233, 234
game, extending  235
game play  218
item collision detection  233
item, creating for Benjamin  219-221
items  229
new background layers, adding  229
parallax scrolling  227
player item  219
playing field  221
playing field, setting up  235
property animations  230
QObject  229, 230
scene  222
scene, handling Benjamins jump  232, 233

K
keyboard input

about  346-348
key-event propagation  348, 349

L
license

commercial license  9
open source license  8
selecting  8

M
MAMP

URL  244

meta-objects  8
mouse input

about  337
button, making clickable  337, 338
button state, visualizing  339
environment, notifying about button  

state  340-342
mouse tracking  120

O
object hierarchies

about  328-331
button component, creating  332, 333
button content, adding  334
button, making reusable component  335-337
button, sizing  335

objects
creating, on requests  358-360
dynamic objects  357

online installer
used, for installing Qt  12-14

OpenGL
about  163
cube, animating  172, 173
GL buffers  181, 182
off-screen rendering  183
Off-screen rendering  183
Qt, used for drawing triangle  165-167
scene-based rendering  167, 168
shaded object  175-181
shaders  173, 174
textured cube, drawing  168-171
used, for drawing triangle  165-167
with Qt  164, 165, 173

open source license
about  8
URL  9

optimizations
about  238
binary space partition tree  238
items paint function, caching  239
view, optimizing  239, 240

oscillogram
drawing  118, 119
drawing, optimizing  129, 130
making, selectable  120, 121



[ 481 ]

P
parallax scrolling

about  227, 445
revisiting  446, 448
vertical parallax sliding  448

particles  459
pattern occurrences

finding  80
Perl script

URL  20
platforms  3
properties

about  41
adding, to board class  42, 43
declaring  41, 42
using  42

property binding  326
property value source  420
proxy

using  255
pull-down menu

adding  61
Python

about  310, 311
and C++, data converting between  313, 314
embedding, Qt wrapper writing  311, 312
functions, calling  317
Qt objects, wrapping into Python objects  319
remaining conversions, implementing  315, 316
URL  319
values, returning  317-319

Q
QML objects

creating, from C++  369-371
pulling, to C++  372-375

QML (Qt Modeling Language)
about  324, 325
element properties  325-327
group properties  327, 328
object hierarchies  328-331

QML (Qt Modeling Language), extending
about  390
CarInfo, making instantiable  391-393
classes, registering as QML elements  390

QNetworkAccessManager
about  243, 244
basic file downloader, extending  247
downloadProgress method  254, 255
error handling  247
error message, displaying  248, 249
error signal  253
file, downloading  245-247
files, downloading in parallel  250, 251
files, downloading over FTP  250
files, downloading over HTTP  244
finished signal  251, 252
OOP conform code writing, QSignalMapper 

used  252, 253
proxy, using  255
readyRead signal  253, 254

QNetworkConfiguration  266
QNetworkConfigurationManager  265
QNetworkInterface  268
QNetworkSession  267
QSettings  104, 105
QSignalMapper

using  273
Qt

about  1
Add-ons  7
building  21
building, from sources  20
configuring  21
cross-platform programming  1, 2
Essentials  6
history  3, 5
installing, online installer used  12-14
meta-objects  33
platforms  3
URL  12

Qt 5
features  5-8

QTcpServer
about  269
disconnect, detecting  273
new message, forwarding  271, 272
new pending connection, reacting on  270, 271
QSignalMapper, using  273
setting up  269, 270



[ 482 ]

Qt Creator
Affine Transformations project, running  17, 19
example project, loading  16, 17
setting up  15, 16

Qt Designer  43
Qt Desktop project

creating  24-26
Qt JavaScript environment  310
Qt Modeling Language (QML)  5
Qt objects

in scripts, creating  306, 307
Qt Platform Abstraction (QPA)  2
Qt project

creating  23
Qt Quick

and C++  369
components, using  350

Qt Quick 2.0  7
Qt Quick application

about  452
blur parallax scrolled game view  457, 458
coins spawning particles, vanishing  470, 471
emitter, tuning  460-462
graphical effects  455-457
particles, moving  464-470
particles, rendering  463, 464
particle system  459
user interfaces, auto-scaling  453-455

Qt Quick items
about  394
border, supporting for RegularPolygon  401
creating, for drawing outlined text  402-406
OpenGL items  394
painted items  402
regular polygon item, creating  395-400

Qt Script
and Qt, integrating  290
basics  282
Dungeons & Dragons game, extending  296
editor, creating  284-288
JavaScript expressions, evaluating  282, 283
objects, exposing  290, 291
sandboxed script evaluation  289, 290
scripting, employing for npc AI  291-295
signals and slots, using  304, 305

Qt SDK
installing  11

Qt sources
setting up, Git used  20

Qt wrapper
writing, for embedding Python  311-313

R
raster painting

about  107, 108
painter, attributes  108-114

readyRead signal  253, 254
regular expressions (regex or regexp)

about  75
simple quiz game  76, 77

S
scenes

about  185, 198
child items, transforming  206, 207
content, rendering to image  203, 204
coordinate system  204-206
items, adding  198-200
items, iterating with  200, 202
parent items, transforming  206, 207
rendering  203
specific parts, rendering  204
z value, playing with  207

scene-based rendering  167-168
scripts

about  281, 282
C++ functions, exposing  297-300
exposing, to C++  300
Qt objects, using  306, 307

shaders  173, 174
signal  34-52
signals and slots

used, for triggering defense  305
using, in scripts  304, 305

signal-slot connections
making  37

slot  34-52
sprite animation

about  437
character animation used  441, 442



[ 483 ]

jumping, adding with sprite transitions  443-445
simple character animation,  

implementing  438-440
tail, wiggling  445

sprites  439
states  427-430
static user interfaces  409
strings

and numbers, conversions  74
arguments, using  75
dissecting  73
information, extracting  78, 79
manipulating  70
operations, basic  71, 72
search and lookup  72

T
tab order  49, 50
text

decoding  70
encoding  70
handling  69
painting  126
rich text  128, 129
static text  127
string operations, basic  71, 72
strings, manipulating  70

textured cube
drawing  168-172

tic-tac-toe game board
functionality  38-40
implementing  30-33

toolbar
creating  62

touch input
about  342
item, dragging  342
picture, rotating by pinching  343, 344
picture, scaling by pinching  343, 344
rotating, with mouse  345
scaling, with mouse  345

transitions  427-430
Transmission Control Protocol (TCP)  269
Twitter

connecting to  256

U
UDP

Benjamin game players, connecting  279
used, for sending text  278
using  278

Uniform Server
URL  244

User Interface Compiler (uic)  53
Universal Chess Interface (UCI)  162
user interfaces

fluid  323

V
view

about  185, 208
item, creation on transformation  

visibility  213, 214
merging  209-211
scene, moving ability  215, 216
scene, scaling ability  214, 215
scene specific areas, showing  211, 212
scene, transforming  213
zoom level, taking into account  217

viewport
transforming  117, 118

VirtualBox
URL  244

W
widget

content, managing  28, 29
inside Graphics View  236, 237
tic-tac-toe game board, implementing  30-33

widget painting
about  114
custom-painted widgets  115, 116
input events  120
left mouse button, reacting to  122
oscillogram, drawing  118, 119
oscillograms, making selectable  120, 121
viewport, transforming  117, 118



[ 484 ]

X
XAMPP

URL  244
XML parser

implementing, for player data  93-98
XML serializer

for player data  99
XML streams  92



 
Thank you for buying  

Game Programming using QT

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're 
using to get the job done. Packt books are more specific and less general than the IT books 
you have seen in the past. Our unique business model allows us to bring you more focused 
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order 
to continue its focus on specialization. This book is part of the Packt Open Source brand, 
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and  
you would like to discuss it first before writing a formal book proposal, then please contact 
us; one of our commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get 
some additional reward for your expertise.



Qt 5 Blueprints
ISBN: 978-1-78439-461-5         Paperback: 272 pages

Design, build, and deploy cross-platform GUI projects 
using the amazingly powerful Qt 5 framework

1.	 Develop native graphical applications that can run 
anywhere with one of the world's best open-source 
frameworks.

2.	 Learn all about signals, slots, models, and views to 
design a robust structure for your application.

3.	 A comprehensive tutorial with step-by-step 
instructions to help you extend your applications 
across a wide domain.

Learning Unreal® Engine iOS Game Development
ISBN: 978-1-78439-771-5          Paperback: 212 pages

Create exciting iOS games with the power of the new 
Unreal® Engine 4 subsystems

1.	 Learn each step in the iOS game development 
process, from start to finish.

2.	 Develop exciting iOS games with the Unreal Engine 
4.x toolset.

3.	 Step-by-step tutorials to build optimized iOS games.

Please check www.PacktPub.com for information on our titles



Learning C++ by Creating Games with UE4
ISBN: 978-1-78439-657-2           Paperback: 342 pages

Learn C++ programming with a fun, real-world 
application that allows you to create your own 
games!

1.	 Be a top programmer by being able to visualize 
programming concepts; how data is saved in 
computer memory, and how a program flows.

2.	 Keep track of player inventory, create monsters, and 
keep those monsters at bay with basic spell casting 
by using your C++ programming skills within Unreal 
Engine 4.

3.	 Understand the C++ programming concepts to 
create your own games.

Raspberry Pi Gaming - Second Edition
ISBN: 978-1-78439-933-7           Paperback: 140 pages

Design, create, and play all kinds of video games on 
your Raspberry Pi computer 

1.	 Program your very own video game on the 
Raspberry Pi using the Scratch programming 
language.

2.	 Install and manage your Raspberry Pi.

3.	 Set up your Raspberry Pi to play hundreds of retro 
and classic games.

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Qt
	The cross-platform programming
	Qt Platform Abstraction
	Supported platforms

	A journey through time
	New in Qt 5
	Restructured codebase
	Qt Essentials
	Qt Add-ons

	Qt Quick 2.0
	Meta-objects
	C++11 support

	Choosing the right license
	An open source license
	A commercial license

	Summary

	Chapter 2: Installation
	Installing the Qt SDK
	Time for action – installing Qt using an online installer
	Setting up Qt Creator
	Time for action – loading an example project
	Time for action – running the Affine Transformations project
	Building Qt from sources
	Time for action – setting up Qt sources using Git
	Time for action – configuring and building Qt
	Summary

	Chapter 3: Qt GUI Programming
	Windows and dialogs
	Creating a Qt project

	Time for action – creating a Qt Desktop project
	Adding child widgets to a window
	Managing widget content


	Time for action – implementing a tic-tac-toe game board
	Qt meta-objects
	Signals and slots

	Time for action – functionality of a tic-tac-toe board
	Properties
	Declaring a property
	Using a property


	Time for action – adding properties to the board class
	Designing GUIs
	Time for action – designing the game configuration dialog
	Time for action – polishing the dialog
	Accelerators and label buddies
	The tab order
	Signals and slots
	Using designer forms
	Direct approach
	The multiple-inheritance approach
	The single inheritance approach


	Time for action – the logic of the dialog
	An application's main window
	The Qt resource system


	Time for action – the main window of the application
	Time for action – adding a pull-down menu
	Time for action – creating a toolbar
	Time for action – filling in the central widget
	Time for action – putting it all together
	Summary

	Chapter 4: Qt Core Essentials
	Text handling
	Manipulating strings
	Encoding and decoding text
	Basic string operations
	The string search and lookup
	Dissecting strings
	Converting between numbers and strings
	Using arguments in strings

	Regular expressions

	Time for action – a simple quiz game
	Extracting information out of a string
	Finding all pattern occurrences

	Data storage
	Files and devices
	Traversing directories
	Getting access to the basic file
	Devices


	Time for action – implementing a device to encrypt data
	Text streams
	Data serialization
	Binary streams


	Time for action – serialization of a custom structure
	XML streams

	Time for action – implementing an XML parser for player data
	JSON files

	Time for action – the player data JSON serializer
	Time for action – implementing a JSON parser
	QSettings

	Summary

	Chapter 5: Graphics with Qt
	Raster painting
	Painter attributes
	Widget painting

	Time for action – custom-painted widgets
	Time for action – transforming the viewport
	Time for action – drawing an oscillogram
	Input events

	Time for action – making oscillograms selectable
	Working with images
	Loading
	Modifying
	Painting

	Painting text
	Static text
	Rich text

	Optimized drawing

	Time for action – optimizing oscillogram drawing
	Time for action – developing the game architecture
	Time for action – implementing the game board class
	Time for action – understanding the ChessView class
	Time for action – rendering the pieces
	Time for action – making the chess game interactive
	Time for action – connecting the game algorithm
	OpenGL
	Introduction to OpenGL with Qt

	Time for action – drawing a triangle using Qt and OpenGL
	Time for action – scene-based rendering
	Time for action – drawing a textured cube
	Modern OpenGL with Qt
	Shaders


	Time for action – shaded objects
	GL buffers
	Off-screen rendering


	Summary

	Chapter 6: Graphics View
	Graphics View architecture
	Items
	Parent child relationship
	Appearance


	Time for action – creating a black, rectangular item
	Time for action – reacting to an item's selection state
	Time for action – making the item's size definable
	Standard items
	Coordinate system of the items


	Time for action – creating items with different origins
	Time for action – rotating an item
	Scenes
	Adding items to the scene


	Time for action – adding an item to a scene
	Interacting with items on the scene
	Rendering


	Time for action – rendering the scene's content to an image
	Coordinate system of the scene

	Time for action – transforming parent items and child items
	View

	Time for action – putting it all together!
	Showing specific areas of the scene
	Transforming the scene


	Time for action – creating an item where transformations can easily be seen
	Time for action – implementing the ability to scale the scene
	Time for action – implementing the ability to move the scene
	Time for action – taking the zoom level into account
	Questions you should keep in mind

	The jumping elephant or how to animate the scene
	The game play
	The player item

	Time for action – creating an item for Benjamin
	The playing field
	The scene

	Time for action – making Benjamin move
	Parallax scrolling

	Time for action – moving the background
	QObject and items

	Time for action – using properties, signals, and slots with items
	Property animations

	Time for action – using animations to move items smoothly
	Time for action – keeping multiple animations in sync
	Item collision detection

	Time for action – making the coins explode
	Setting up the playing field
	A third way of animation

	Widgets inside Graphics View
	Optimization
	A binary space partition tree
	Caching the item's paint function
	Optimizing the view

	Summary

	Chapter 7: Networking
	QNetworkAccessManager
	Downloading files over HTTP

	Time for action – downloading a file
	Error handling

	Time for action – displaying a proper error message
	Downloading files over FTP
	Downloading files in parallel
	The finished signal


	Time for action – writing the OOP conform code using QSignalMapper
	The error signal
	The readyRead signal
	The downloadProgress method


	Time for action – showing the download progress
	Using a proxy

	Connecting to Google, Facebook, Twitter, and co.
	Time for action – using Google's Distance Matrix API
	Time for action – constructing the query
	Time for action – parsing the server's reply
	Controlling the connectivity state
	QNetworkConfigurationManager
	QNetworkConfiguration
	QNetworkSession
	QNetworkInterface

	Communicating between games
	Time for action – realizing a simple chat program
	The server – QTcpServer
	Time for action – setting up the server
	Time for action – reacting on a new pending connection
	Time for action – forwarding a new message
	Time for action – detecting a disconnect
	The client
	Time for action – setting up the client
	Time for action – receiving text messages
	Time for action – sending text messages
	Improvements
	Using UDP
	Time for action – sending a text via UDP
	Summary

	Chapter 8: Scripting
	Why script?
	The basics of Qt Script
	Evaluating JavaScript expressions

	Time for action – creating a Qt Script editor
	Time for action – sandboxed script evaluation
	Integrating Qt and Qt Script
	Exposing objects

	Time for action – employing scripting for npc AI
	Exposing functions
	Exposing C++ functions to scripts
	Exposing script functions to C++


	Time for action – storing the script
	Time for action – providing an initialization function
	Time for action – implementing the heartbeat event
	Using signals and slots in scripts
	Creating Qt objects in scripts
	Error recovery and debugging
	Extensions
	The other Qt JavaScript environment

	Alternatives to JavaScript
	Python

	Time for action – writing a Qt wrapper for embedding Python
	Time for action – converting data between C++ and Python
	Time for action – calling functions and returning values
	Summary

	Chapter 9: Qt Quick Basics
	Fluid user interfaces
	Declarative UI programming
	Element properties
	Group properties
	Object hierarchies

	Time for action – creating a button component
	Time for action – adding button content
	Time for action – sizing the button properly
	Time for action – making the button a reusable component
	Event handlers
	Mouse input

	Time for action – making the button clickable
	Time for action – visualizing button states
	Time for action – notifying the environment about button states
	Touch input

	Time for action – dragging an item around
	Time for action – rotating and scaling a picture by pinching
	Keyboard input

	Using components in Qt Quick
	Time for action – a simple analog clock application
	Time for action – adding needles to the clock
	Time for action – making the clock functional
	Dynamic objects
	Using components in detail
	Creating objects on request
	Delaying item creation
	Accessing your item's component functionality
	Imperative painting

	Time for action – preparing Canvas for heartbeat visualization
	Time for action – drawing a heartbeat
	Time for action – making the diagram more colorful
	Qt Quick and C++
	Creating QML objects from C++
	Pulling QML objects to C++
	Pushing C++ objects to QML

	Time for action – self-updating car dashboard
	Time for action – grouping engine properties
	Extending QML
	Registering classes as QML elements

	Time for action – making CarInfo instantiable from QML
	Custom Qt Quick items
	OpenGL items


	Time for action – creating a regular polygon item
	Painted items

	Time for action – creating an item for drawing outlined text
	Summary

	Chapter 10: Qt Quick
	Bringing life into static user interfaces
	Animating elements
	Generic animations


	Time for action – scene for an action game
	Time for action – animating the sun's horizontal movement
	Composing animations

	Time for action – making the sun rise and set
	Non-linear animations

	Time for action – improving the path of the sun
	Property value sources

	Time for action – adjusting the sun's color
	Time for action – furnishing sun animation
	Behaviors

	Time for action – animating the car dashboard
	States and transitions
	More animation types


	Quick game programming
	Game loops

	Time for action – character navigation
	Time for action – another approach to character navigation
	Time for action – generating coins
	Sprite animation

	Time for action – implementing simple character animation
	Time for action – animating characters using sprites
	Time for action – adding jumping with sprite transitions
	Parallax scrolling

	Time for action – revisiting parallax scrolling
	Collision detection

	Time for action – collecting coins
	Notes on collision detection
	Eye candy
	Auto-scaling user interfaces
	Graphical effects
	Particle systems
	Tuning the emitter
	Rendering particles
	Making particles move


	Time for action – vanishing coins spawning particles
	Summary

	Appendix: Pop Quiz Answers
	Chapter 3, Qt GUI Programming
	Chapter 4, Qt Core Essentials
	Chapter 6, Graphics View
	Chapter 7, Networking
	Chapter 8, Scripting
	Chapter 11, Miscellaneous and Advanced Concepts

	Index

