
Sutherland

•฀฀How฀to฀handle฀numbers,฀strings,฀text,฀dates฀and฀times,฀

•฀How฀to฀implement฀a฀variety฀of฀C++฀algorithms
•฀How฀to฀handle฀and฀use฀classes,฀exceptions,฀streams฀and฀flows
•฀฀How฀to฀use฀the฀various฀numerical฀and฀scientific฀C++฀recipes฀and฀

•฀How฀to฀build฀parallel฀processing฀C++฀templates
•฀How฀to฀code฀for฀pointers
•฀฀How฀to฀leverage฀the฀wealth฀of฀C++฀templates฀found฀in฀the฀STL,฀

•฀฀How฀to฀extend฀the฀STL฀and฀more

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Author ..xix

About the Technical Reviewers ..xxi

Acknowledgments ..xxiii

Introduction ...xxv

Chapter 1: Beginning C++ ■ ... 1

Chapter 2: Modern C++ ■ ... 17

Chapter 3: Working with Text ■ .. 59

Chapter 4: Working with Numbers ■ .. 81

Chapter 5: Classes ■ ... 103

Chapter 6: Inheritance ■ ... 133

Chapter 7: The STL Containers ■ .. 151

Chapter 8: The STL Algorithms ■ .. 177

Chapter 9: Templates ■ ... 195

Chapter 10: Memory ■ .. 213

Chapter 11: Concurrency ■ ... 259

Chapter 12: Networking ■ .. 309

Chapter 13: Scripting ■ .. 361

Chapter 14: 3D Graphics Programming ■ ... 399

Index ... 451

www.allitebooks.com

http://www.allitebooks.org

xxv

Introduction

he C++ programming language is undergoing continuous development and improvement. his efort to
keep C++ on the cutting edge of language features is driven by the fact that C++ still inds an important role
to play in high-performance, portable applications. Few other languages can be used on as many platforms
as C++ and without having a runtime environment dependency. his is partly thanks to the nature of C++ as
a compiled programming language. C++ programs are built into application binaries through a combination
of processes that include compiling and linking.

Compiler choice is particularly important in today’s C++ landscape, thanks to the rate at which the
language is changing. Development of the C++ programming language was started by Bjarne Stoustrup
in 1979, when it was called C with Classes. he language didn’t see formal standardization until 1998;
an updated standard was published in 2003. here was another gap of eight years until the standard was
updated again with the introduction of C++11 in 2011. his version brought a considerable number of
updates to the C++ programming language and is distinguished from “older” C++ with the Modern C++
moniker. A further, less signiicant, update to the C++ standard was introduced in late 2014, but we haven’t
yet begun to see compilers that support many of the features added to Modern C++.

his book introduces you to code written speciically for the C++14 standard using the Clang compiler.
Clang is an open source compiler that started life as a closed source Apple project. Apple released the
code to the open source community in 2007, and the compiler has been adding strengths ever since. his
book explains how to install and use Clang on a computer running OS X, Windows, or Linux (Ubuntu). he
examples that accompany each chapter have been compiled and tested using Clang 3.5. I chose Clang for
this project because it’s the compiler that provided support for the most C++14 features when I began to
write this book.

he book’s accompanying web site can be accessed at www.apress.com/9781484201589. You can ind
source code for all of the executable code listings contained in this book along with makeiles that can be
used to build running programs.

www.allitebooks.com

www.apress.com/9781484201589
http://www.allitebooks.org

1

CHAPTER 1

Beginning C++

The C++ programming language is a powerful low-level language that allows you to write programs that are
compiled into machine instructions to be executed on a computer’s processor. This makes C++ different
from newer languages such as C# and Java. These languages are interpreted languages. This means they
are not executed directly on the processor but instead are sent to another program that is responsible for
operating the computer. Java programs are executed using the Java virtual machine (JVM), and C# programs
are executed by the Common Language Runtime (CLR).

Thanks to C++ being a language that is compiled ahead of time, it still finds wide use in fields where
absolute performance is paramount. The most obvious area where C++ is still the most predominantly used
programming language is the video game industry. C++ allows programmers to write applications that take
full advantage of the underlying system architecture. You might become familiar with phrases such as cache

coherency while pursuing a career as a C++ programmer. There aren’t many other languages that allow you
to optimize your applications to suit the individual processors that your program is being designed to run
on. This book introduces you to some of the pitfalls that can affect the performance of your applications at
different times and shows you some techniques to tackle those issues.

Modern C++ is in a period where the language is seeing continual updates to its features. This has not
always been the case. Despite being around since the early 1980s the C++ programming language was only
standardized in 1998. A minor update and clarification of this standard was released in 2003 and is known
as C++03. The 2003 update did not add any new features to the language however it did clarify some of the
existing features that had gone overlooked. One of these was an update to the standard for the STL vector
template to specify that the members of a vector should be stored contiguously in memory. The C++11
standard was released in 2011 and saw a massive update to the C++ programming language. C++ gained
features for generalized type deduction system outside of templates, lambda and closure support, a built-in
concurrency library and many more features. C++14 brings a smaller update to the language and generally
builds upon the features already supplied by C++14. Features such as auto return type deduction from
functions have been cleaned up, lambdas have been updated with new features and there are some new
ways to define properly typed literal values.

This book strives to write portable, standards compliant C++14 code. At the time of writing it’s possible
to write C++14 code on Windows, Linux and OS X machines so long as you use a compiler that provides all
of the language features. To this end, this book will use Clang as the compiler on Windows and Ubuntu and
will use Xcode on OS X. The rest of this chapter focuses on the software you need to write programs in C++
before showing you how to acquire some of the more common options available for Windows, OS X, and
Linux operating systems.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEGINNING C++

2

Recipe 1-1. Finding a Text Editor

Problem
C++ programs are constructed from lots of different source files that must be created and edited by one or
more programmers. Source files are simply text files, which usually come in two different types: header files
and source files. Header files are used to share information about your types and classes between different
files, and source files are generally used to contain the methods and the actual executable code that makes
up your program.

Solution
A text editor then becomes the first major piece of software you require to begin writing C++ programs.
There are many excellent choices of text editors available on different platforms. My best two picks at the
moment are the free Notepad++ for Windows and Sublime Text 2, which despite not being free is available
on all major operating systems. Figure 1-1 shows a screenshot from Sublime Text 2. Vim and gvim are also
very good options that are available for all three operating systems. These editors provide many powerful
features and are excellent choices for someone willing to learn.

Figure 1-1. A screenshot from the Sublime Text 2 Editor

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEGINNING C++

3

Note ■ Don’t feel the urge to grab a text editor straight away. Some of the recipes later in this chapter cover

integrated development environments (IDEs) that include all the software you need to write, build, and debug

C++ applications.

Figure 1-1 shows one of the most important features of a good text editor: it should be able to highlight
the different types of keywords in your source code. You can see in the simple Hello World program in
Figure 1-1 that Sublime Text 2 is capable of highlighting the C++ keywords include, int, and return.
It has also added different-colored highlights to the main function name and the strings <iostream> and
"Hello World!". Once you have some experience writing code with your text editor of choice, you will
become adept at scanning your source files to zero in on the area of code you are interested in, and syntax
highlighting will be a major factor in this process.

Recipe 1-2. Installing Clang on Ubuntu

Problem
You would like to build C++ programs that support the latest C++14 language features on a computer system
running Ubuntu.

Solution
The Clang compiler supports all of the latest C++14 language features and the libstdc++ library supports all
of the C++14 STL features.

How It Works
The Ubuntu operating system comes configured with package repositories that allow you to install Clang
without much difficulty. You can achieve this using the apt-get command in a Terminal window. Figure 1-2
shows the command that you should enter to install Clang.

To install Clang you can enter the following command on the command line sudo apt-get install
clang. Running this command will cause Ubuntu to query its repositories and work out all of the
dependencies needed to install Clang. You will be prompted once this process has been completed to
confirm that you wish to install Clang and its dependencies. You can see this prompt in Figure 1-3.

Figure 1-2. An Ubuntu Terminal window showing the command needed to install Clang

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEGINNING C++

4

At this point you can hit enter to continue as yes is the default option. Ubuntu will then download and
install all of the software needed for you to be able to install Clang on your computer. You can confirm that
this has been successful by running the clang command. Figure 1-4 shows what this should look like if
everything was successful.

Figure 1-3. The apt-get dependency confirmation prompt

Figure 1-4. A successful Clang installation in Ubuntu

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEGINNING C++

5

Recipe 1-3. Installing Clang on Windows

Problem
You would like to build C++14 based programs on the Windows operating system.

Solution
You can use Cygwin for Windows to install Clang and build applications.

How It Works
Cygwin provides a Unix-like command line environment for Windows computers. This is ideal for building
programs using Clang as the Cygwin installed comes pre-configured with package repositories that include
everything you need to install and use Clang on Windows computers.

You can get a Cygwin installer executable from the Cygwin website at http://www.cygwin.com. Be sure
to download the 32bit version of the Cygwin installer as the default packages supplied by Cygwin currently
only work with the 32bit environment.

Once you have downloaded the installer you should run it and click through until you are presented
with the list of packages to install. At this point you want to select the Clang, make and libstdc++ packages.
Figure 1-5 shows the Cygwin installer with the Clang package selected.

Figure 1-5. Filtering the Clang package in the Cygwin installer

www.allitebooks.com

http://www.cygwin.com/
http://www.allitebooks.org

CHAPTER 1 ■ BEGINNING C++

6

Packages can be marked for installation in the installer by clicking on the Skip area on the line for the
package. Clicking skip once moves the package version to the latest. You should select the latest packages for
Clang, make and libstdc++. Once you have selected all 3 you can click Next to be taken to a window asking to
confirm the installation of the dependencies needed by these three packages.

Once you have successfully downloaded and installed all of the packages that you needed to be able
to run Clang you can check that it was successful by opening a Cygwin terminal and typing the clang
command. You can see the result of this output in Figure 1-6.

Recipe 1-4. Installing Clang on OS X

Problem
You would like to build C++14 based programs on a computer running OS X.

Solution
Apple’s Xcode IDE comes with Clang as its default compiler. Installing Xcode from the OS X App Store also
installs Clang.

How It Works
Install the latest version of Xcode from the App Store on your OS X computer. Once you’ve installed Xcode
you can open a Terminal window using Spotlight and type clang to see that the compiler has been installed.
Figure 1-7 shows how this should look.

Figure 1-6. Successfully running Clang in a Cywgin environment in Windows

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEGINNING C++

7

Recipe 1-5. Building Your First C++ Program

Problem
You would like to use your computer to generate executable applications from C++ source code that you write.

Solution
Generating executables from a C++ source file involves two steps; compiling and linking. The steps
undertaken in Recipe 1-2, Recipe 1-3 or Recipe 1-4 depending on your operating system will have resulted in
you having all of the software you need to build applications from C++14 source files. You are now ready to
build your first C++14 program. Create a folder to contain you project and add a text file named HelloWorld.
cpp. Enter the code from Listing 1-1 into the file and save.

Listing 1-1. Your first C++14 Program

#include <iostream>

#include <string>

int main(void)
{
 using namespace std::string_literals;

 auto output = "Hello World!"s;
 std::cout << output << std::endl;

 return 0;
}

The code in Listing 1-1 is a C++ program that will only compile when using a C++14 compatible

compiler. The Recipes 2-4 in this chapter contain instructions on how you can obtain a compiler that can
be used to compile C++14 code for Windows, Ubuntu and OS X. You can build a working application once
you have created a folder and the source file containing the code in Listing 1-1. You do this using a makefile.
Create a file named makefile in the folder alongside your HelloWorld.cpp file. The makefile should not
have a file extension which may seem a little strange to developers used to the Windows operating system
however this is completely normal for Unix based operating systems such as Linux and OS X. Enter the code
from Listing 1-2 into your makefile.

Figure 1-7. Running Clang on OS X after installing Xcode

CHAPTER 1 ■ BEGINNING C++

8

Listing 1-2. The makefile Needed to Build the Code in Listing 1-1

HelloWorld: HelloWorld.cpp
 clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Note ■ The whitespace before the clang++ command in Listing 1-2 is a tab. You cannot replace the tab with

spaces as make will fail to build. Ensure that your recipes in a makefile always begin with tabs.

The text in Listing 1-2 consists of the instructions needed to build an application from your HelloWorld.
cpp source file. The first word on the first line is the name of the target of the makefile. This is the name that
the application executable will be given when the building process has been completed. In this case we
will be building an executable named HelloWorld. This is followed by the prerequisites needed to build the
program. Here you have listed HelloWorld.cpp as the only prerequisite as it is the only source file used to
build the executable.

The target and prerequisites are then followed by a list of recipes that are carried out in order to build
your application. In this small example you have a line that invokes the clang++ compiler to generate
executable code from the HelloWorld.cpp file. The parameter passed to clang++ using –std=c++1y asks
Clang to build using the C++14 language standard and the –o switch specifies the name of the object output
file generated by the compilation process.

Browse to the folder you created to store the source file and makefile using a command shell such as
cmd on Windows or Terminal on Linux or OS X and type make. This will invoke the GNU make program and
will automatically read and execute your makefile. This will output an executable file into the same folder
that you can then run from the command line. You should be able to do this now and see that the text
Hello World is output on your command line. Figure 1-8 shows what this would look like in an Ubuntu
Terminal window.

Figure 1-8. The Output Generated by Runnung HelloWorld in an Ubuntu Terminal

CHAPTER 1 ■ BEGINNING C++

9

Recipe 1-6. Debugging C++ programs using GDB in
Cygwin or Linux

Problem
You are writing a C++14 program and would like to be able to debug the application from the command line.

Solution
Both Cygwin for Windows and Linux based operating systems like Ubuntu can install and use the GDB
command line debugger for C++ applications.

How It Works
You can use the Cygwin installer for Windows or the Package Manager installed with your favorite Linux
distribution to install the GDB debugger. This will give you a command line C++ debugger that can be used
to inspect the functionality of your C++ programs. You can practice this using the source, makefile and
application generated as part of Recipe 1-5. To generate debugging information for your program you
should update the makefile to contain he contents of Listing 1-3 and run make to generate a debuggable
executable file.

Listing 1-3. A makefile to Generate a Debuggable Program

HelloWorld: HelloWorld.cpp
 clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Once you have followed Recipe 1-5, updated the makefile to contain the contents of Listing 1-5 and

generated an executable you can run GDB on your application by browsing to the folder on your command
line and typing gdb HelloWorld. The new –g switch passed to Clang in the makefile from Listing 1-3 asks
the compiler to generate additional information in the application that helps debuggers to provide you with
accurate information about the program while it is executing in the debugger.

Note ■ You may be presented with a notice informing you that your program is already up to date if you had

built previously. Simply delete the existing executable file if this occurs.

Running GDB in HelloWorld should result in your command line running GDB and providing output
such as that shown in Figure 1-9.

CHAPTER 1 ■ BEGINNING C++

10

You now have a running debugger that you can use to inspect the running program while it is executing.
The program has not yet begun when GDB first starts, this allows you to configure some breakpoints before
you get started. To set a breakpoint you can use the break command or the b shorthand for the same
command. Type break main into the GDB command prompt and hit enter. This should result in GDB
echoing the command back to you along with the address of the program where the breakpoint was set and
the filename and line number it detected for the function supplied. You can now type run into your window
to execute the program and have GDB halt at your breakpoint. The output should resemble that shown in
Figure 1-10.

Figure 1-9. A Running Instance of GDB

CHAPTER 1 ■ BEGINNING C++

11

At this point you have several options that allow you to continue the execution of your program. You can
see a list of the most common commands below.

step

The step command is used to step into a function that is to be called at the
current line.

next

The next command is used to step over the current line and stop on the next
line of the same function.

finish

The finish command is used to execute all of the code remaining in the
current function and stop on the next line in the function that called the
current function.

print <name>

The print command followed by the name of a variable can be used to print
the value of a variable in your program.

break

The break command can be used with a line number, a function name or a
source file and line number to set a breakpoint in your programs source code.

Figure 1-10. The Output as Seen When GDB Halts at the Breakpoint Set in main

CHAPTER 1 ■ BEGINNING C++

12

continue

The continue command is used to resume code execution after it has been
halted at a breakpoint.

until

The until command can continue execution from a loop and stop on the first
line immediately after the loop execution has finished.

info

The info command can be used with either the locals command or the
stack command to show information about the current local variables or
stack state in the program.

help

You can type help followed by any command to have GDB give you
information about all of the different ways that a given command can be used.

The GDB debugger can also be run with the command –tui. This will give you a view of the source file
you are currently debugging at the top of the window. You can see how this looks in Figure 1-11.

Figure 1-11. GDB with a Source Window

CHAPTER 1 ■ BEGINNING C++

13

Recipe 1-7. Debugging Your C++ Programs on OS X

Problem
The OS X operating system does not provide any easy method for installing and using GDB.

Solution
Xcode comes with the LLDB debugger than can be used on the command line in-place of GDB.

How It Works
The LLDB debugger is, in essence, very similar to the GDB debugger used in Recipe 1-6. Changing between
GDB and LLDB is simply a case of learning how to carry out the same simple tasks in both by using the
commands provided by each to carry out the same task.

You can execute LLDB on your HelloWorld executable by browsing to the directory containing
HelloWorld in Terminal and typing lldb HelloWorld. This will give you output that resembles that of
Figure 1-12.

Figure 1-12. The LLDB Debugger Running in an OS X Terminal

Note ■ You will need to compile your program using the –g switch. Take a look at Listing 1-3 to see where

this goes if you are unsure.

Once you have LLDB running as shown in Listing 1-12 you can set a breakpoint on the first line of
main by typing breakpoint set –f HelloWorld.cpp –l 8, or b main as shorthand. You can use the run
command to begin execution and have it halt at the breakpoint that you’ve just set. When the program stops
you can use the next command to step over the current line and halt on the next line. You could have used
the step command to step into a function on the current line and halt on the first line of the function. The
finish command will step out of the current function.

You can quit LLDB by typing q and hitting enter. Restart LLDB and type breakpoint set –f HelloWorld.
cpp –l 9. Follow this with the run command and LLDB should print the source around the line where the
application has stopped. You can now type print output to see the value stored by the output variable. You
can also use the frame variable command to see all of the local variables in the current stack frame.

CHAPTER 1 ■ BEGINNING C++

14

These simple commands will allow you to use the LLDB debugger adequately enough while working
through the samples provided along with this book. The following list can be used as a handy cheat sheet
while working with LLDB.

step

The step command is used to step into a function that is to be called at the
current line.

next

The next command is used to step over the current line and stop on the next
line of the same function.

finish

The finish command is used to execute all of the code remaining in the
current function and stop on the next line in the function that called the
current function.

print <name>

The print command followed by the name of a variable can be used to print
the value of a variable in your program.

breakpoint set –-name <name>

breakpoint set –file <name> --line <number>

The breakpoint command can be used with a line number, a function name or a
source file and line number to set a breakpoint in your programs source code.

help

You can type help followed by any command to have GDB give you
information about all of the different ways that a given command can be used.

Recipe 1-8. Switching C++ Compilation Modes

Problem
You would like to be able to switch between the different C++ standards before compiling your programs.

Solution
The std switch is supplied by Clang so that you can specify the C++ standard to be used when compiling.

How It Works
Clang builds with the C++98 standard by default. You can use the std argument with Clang++ to tell the
compiler to use a standard other than the default. Listing 1-4 shows a makefile that is configured to build a
program using the C++14 standard.

CHAPTER 1 ■ BEGINNING C++

15

Listing 1-4. Building with C++14

HelloWorld: HelloWorld.cpp
 clang++ -std=c++1y HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-4 shows how you can specify that Clang should build your source file using

C++14. This example was written using Clang 3.5 that uses the c++1y command to represent C++14.
Listing 1-5 shows how you can build a program using C++11.

Listing 1-5. Building with C++11

HelloWorld: HelloWorld.cpp
 clang++ -std=c++11 HelloWorld.cpp -o HelloWorld

In Listing1-5 you want to use the c++11 option with the std switch to build with C++11. Finally,

Listing 1-6 shows how to configure Clang to explicitly build with C++98.

Listing 1-6. Building with C++98

HelloWorld: HelloWorld.cpp
 clang++ -std=c++98 HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-6 can be used to explicitly build with C++98. You can achieve the same result
by leaving out the std command altogether and Clang will build using C++98 by default.

Note ■ It’s not guaranteed that every compiler will use C++98 by default. Check with your compiler’s

documentation if you’re unsure which standard is the default. You can also be adventurous with Clang and

enable its experimental C++17 support using the c++1z option!

Recipe 1-9. Building with the Boost Library

Problem
You would like to write a program using the Boost library.

Solution
Boost is supplied as source code that can be included with and compiled into your application.

How It Works
Boost is a large C++ library that includes all sorts of great functionality. Coverage of the entire library is out of
the scope of this book; however the string formatting library will be used. You can acquire the Boost library
from the Boost website at http://www.boost.org/.

You will be able to get a compressed folder from the Boost website that contains the latest version of the
Boost library. The only folder you absolutely need to be able to include basic boost functionality is the boost
folder itself. I have downloaded Boost 1.55 and therefore I have created a folder inside my project folder
named boost_1_55_0 and copied the boost folder into this location from the downloaded version.

http://www.boost.org/

CHAPTER 1 ■ BEGINNING C++

16

Once you have a project folder set up with a downloaded copy of Boost you can include Boost header
files into your source code. Listing 1-7 shows a program that uses the boost::format function.

Listing 1-7. Using boost::format

#include <iostream>
#include "boost/format.hpp"

using namespace std;

int main()
{
 std::cout << "Enter your first name: " << std::endl;
 std::string firstName;
 std::cin >> firstName;

 std::cout << "Enter your surname: " << std::endl;
 std::string surname;
 std::cin >> surname;

 auto formattedName = str(boost::format("%1% %2%"s) % firstName % surname);
 std::cout << "You said your name is: " << formattedName << std::endl;

 return 0;
}

The code in Listing 1-7 shows how you can include a Boost header into a source file and how that file’s
functions can be used in your program.

Note ■ Don’t worry about how the format function works if it’s not immediately clear, it is covered in Chapter 3.

You must also tell the compiler where to look for the Boost header files in a makefile otherwise
your program will not compile. Listing 1-8 shows the contents of the makefile that can be used to build
this program.

Listing 1-8. A makefile to Build with Boost

main: main.cpp
 clang++ -g -std=c++1y -Iboost_1_55_0 main.cpp -o main

The makefile in Listing 1-8 passes the –I option to Clang++. This option is used to tell Clang that you

would like to include the given folder in the search paths used when including files using the #include
directive. As you can see I have passed the boost_1_55_0 folder that I created in my project folder. This
folder contains the boost folder that you can see used when including a Boost header in Listing 1-7.

Note ■ If you’re having trouble getting this example to work and aren’t sure of where to put the Boost header

files you can download the samples that accompany this book from the www.apress.com/9781484201589.

www.allitebooks.com

http://dx.doi.org/10.1007/9781484201589_3
http://www.apress.com/9781484201589
http://www.allitebooks.org

17

CHAPTER 2

Modern C++

Development of the C++ programming language began in 1979 as the C with Classes language. The name
C++ was formally adopted in 1983 and development of the language continued throughout the 1980s and
1990s without the adoption of a formal language standard. This all changed in 1998 when the first ISO
standard of the C++ programming language was adopted. There have been three updates to the standard
published since that time, one in 2003, again in 2011 and the latest in 2014.

Note ■ The standard published in 2003 was a minor update to the 1998 standard that didn’t introduce much

in the way of new features. For this reason, it won’t be discussed in any great detail in this book.

This book is primarily going to focus on the very latest C++ programming standard, C++14. Whenever I
mention the C++ programming language you can be assured that I am talking about the language as described by
the current ISO standard. If I am discussing features that were introduced in 2011 then I will explicitly mention the
language as C++11 and for any features that were introduced prior to 2011 I will use the name C++98.

This chapter will look at the programming features added to the language in the latest standard
and with C++11. Many of the modern features of C++ were added in the C++11 standard and have been
expanded with the C++14 standard therefore it is important to be able to identify the differences when
working with compilers that support a standard that is not the latest.

Recipe 2-1. Initializing Variables

Problem
You would like to be able to initialize all variables in a standard manner.

Solution
Uniform initialization was introduced in C++11 and can be used to initialize a variable of any type.

CHAPTER 2 ■ MODERN C++

18

How It Works
It’s necessary to understand the deficiencies with variable initialization in C++98 to appreciate why uniform
initialization is an important language feature in C++11. Listing 2-1 shows a program that contains a single
class, MyClass.

Listing 2-1. The C++Most Vexing Parse Problem

class MyClass
{
private:
 int m_Member;

public:
 MyClass() = default;
 MyClass(const MyClass& rhs) = default;
};

int main()
{
 MyClass objectA;
 MyClass objectB(MyClass());
 return 0;
}

The code in Listing 2-1 will generate a compile error in C++ programs. The problem exists in the
definition of objectB. A C++ compiler will not see this line as defining a variable named objectB of type
MyClass calling a constructor that takes the object constructed by calling the MyClass constructor. This
is what you might expect the compiler to see however what it actually sees is a function declaration.
The compiler thinks that this line is declaring a function named objectB that returns a MyClass object
and has a single, unnamed function pointer to a function that returns a MyClass object and is passed no
parameters.

Compiling the program shown in Listing 2-1 causes Clang to generate the following warning:

main.cpp:14:20: warning: parentheses were disambiguated as a function
 declaration [-Wvexing-parse]
 MyClass objectB(MyClass());
 ^~~~~~~~~~~
main.cpp:14:21: note: add a pair of parentheses to declare a variable
 MyClass objectB(MyClass());
 ^
 ()

The Clang compiler has properly identified that the code entered in Listing 2-1 contains a vexing parse
problem and even helpfully suggests wrapping the MyClass constructor being passed as a parameter in
another pair of parentheses to solve the problem. C++11 has provided an alternative solution in uniform
initialization. You can see this in Listing 2-2.

5

CHAPTER 2 ■ MODERN C++

19

Listing 2-2. Using Uniform Initialization to Solve the Vexing Parse Problem

class MyClass
{
private:
 int m_Member;

public:
 MyClass() = default;
 MyClass(const MyClass& rhs) = default;
};

int main()
{
 MyClass objectA;
 MyClass objectB{MyClass{}};
 return 0;
}

You can see in Listing 2-2 that uniform initialization replaces parentheses with braces. This syntax
change informs the compiler that you would like to use uniform initialization to initialize your variable.
Uniform initialization can be used to initialize almost all types of variables.

Note ■ The paragraph above mentions that uniform initialization can be used to initialize almost all variables.

It can have trouble when initializing aggregates or plain old data types however you won’t need to worry about

those for now.

The ability to prevent narrowing conversions is another benefit of using uniform initialization. The code
in Listing 2-3 will fail to compile when using uniform initialization.

Listing 2-3. Using Uniform Initialization to Prevent Narrowing Conversions

int main()
{
 int number{ 0 };
 char another{ 512 };

 double bigNumber{ 1.0 };
 float littleNumber{ bigNumber };

 return 0;
}

The compiler will throw errors when compiling the code in Listing 2-3 as there are two narrowing
conversions present in the source. The first occurs when trying to define a char variable with the literal
value 512. A char type can store a maximum value of 255 therefore the value 512 would be narrowed into
this data type. A C++11 or newer compiler will not compile this code due to this error. The initialization
of the float from a double type is also a narrowing conversion. Narrowing conversions occur when data is
transferred from one type to another in where the destination type cannot store all of the values represented
by the source type. Precision is lost in the case of a double being converted to a float therefore the compiler

CHAPTER 2 ■ MODERN C++

20

correctly will not build this code as-is. The code in Listing 2-4 uses a static_cast to inform the compiler
that the narrowing conversions are intentional and to compile the code.

Listing 2-4. Using a static_cast to Compile Narrowing Conversions

int main()
{
 int number{ 0 };
 char another{ static_cast<char>(512) };

 double bigNumber{ 1.0 };
 float littleNumber{ static_cast<float>(bigNumber) };

 return 0;
}

Recipe 2-2. Initializing Objects with Initializer Lists

Problem
You would like to construct objects from multiple objects of a given type.

Solution
Modern C++ provides initializer lists that can be used to supply many objects of the same type to a constructor.

How It Works
Initializer lists in C++11 build upon uniform initialization to allow you to initialize complex types with ease.
A common example of a complex type that can be difficult to initialize with data is a vector. Listing 2-5 shows
two different calls to a standard vector constructor.

Listing 2-5. Constructing vector Objects

#include <iostream>
#include <vector>

using namespace std;

int main()
{
 using MyVector = vector<int>;

 MyVector vectorA(1);
 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);
 cout << vectorB.size() << " " << vectorB[0] << endl;

 return 0;
}

CHAPTER 2 ■ MODERN C++

21

The code in Listing 2-5 might not do what you expect at first glance. The vectorA variable will be
initialized with a single int containing 0. You might expect that it would contain a single integer containing
1 but this would be incorrect. The first parameter to a vector constructor determines how many values
the initial vector will be set up to store and in this case we are asking it to store a single variable. You
might similarly expect vectorB to contain two values, 1 and 10 however what we have here is a vector that
contains one value and that value is 10. The vectorB variable is constructed using the same constructor as
vectorA however it specifies a value to use to instantiate the members of the vector rather than using the
default value.

The code in Listing 2-6 uses an initializer list in conjunction with uniform initialization to construct a
vector that contains two elements with the specified values.

Listing 2-6. Using Uniform Initialization to Construct a vector

#include <iostream>
#include <vector>

using namespace std;

int main()
{
 using MyVector = vector<int>;

 MyVector vectorA(1);
 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);
 cout << vectorB.size() << " " << vectorB[0] << endl;

 MyVector vectorC{ 1, 10 };
 cout << vectorC.size() << " " << vectorC[0] << endl;

 return 0;
}

The code in Listing 2-6 creates three different vector objects. You can see the output generated by this
program in Figure 2-1.

Figure 2-1. The Output Generated by Listing 2-6

CHAPTER 2 ■ MODERN C++

22

The console output shown in Figure 2-1 shows the size of each vector and the value stored in the first
element of each vector. You can see that the first vector contains a single element and that its value is 0.
The second vector also contains a single element however its value is 10. The third vector is constructed
using uniform initialization and it contains two values and the value of its first element is 1. The value of the
second element will be 10. This can cause a significant different to the behavior of your programs if you are
not taking particular care to ensure that the correct type of initialization has been used with your types. The
code in Listing 2-7 shows a more explicit use of the initializer_list to construct a vector.

Listing 2-7. Explicit initializer_list Usage

#include <iostream>
#include <vector>

using namespace std;

int main()
{
 using MyVector = vector<int>;

 MyVector vectorA(1);
 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);
 cout << vectorB.size() << " " << vectorB[0] << endl;

 initializer_list<int> initList{ 1, 10 };
 MyVector vectorC(initList);
 cout << vectorC.size() << " " << vectorC[0] << endl;

 return 0;
}

The code in Listing 2-7 contains an explicit initializer_list that is used to construct a vector. The
code in Listing 2-6 implicitly created this object when constructing a vector using uniform initialization.
There’s usually little need to explicitly create initializer lists like this however it’s important that you
understand what the compiler is doing when you write code using uniform initialization.

Recipe 2-3. Using Type Deduction

Problem
You would like to write portable code that doesn’t have a high maintenance cost when changing types.

Solution
C++ provides the auto keyword that can be used to let the compiler deduce the type for a variable automatically.

CHAPTER 2 ■ MODERN C++

23

How It Works
C++98 compilers had the ability to automatically deduce the type of a variable however this functionality
was only available while you were writing code that used templates and you omitted the type specialization.
Modern C++ has extended this type deduction support to many more scenarios. The code in Listing 2-8
shows the use of the auto keyword and the typeid method of working out the type of a variable.

Listing 2-8. Using the auto Keyword

#include <iostream>
#include <typeinfo>

using namespace std;

int main()
{
 auto variable = 1;
 cout << "Type of variable: " << typeid(variable).name() << endl;

 return 0;
}

The code in Listing 2-8 shows how to create a variable with automatically deduced type in C++. The
compiler will automatically work out that you wanted to create an int variable with this code and that’s the
type that will be output by the program, sort of. The Clang compiler will output its internal representation of
an integer type which is actually i. You can pass this output to a program named c++filt to convert this into
a normal typename. Figure 2-2 shows how this can be achieved.

The c++filt program has successfully converted the Clang type i into a human readable C++ type
format. The auto keyword also works with classes. Listing 2-9 shows this.

Figure 2-2. Using c++filt to Produce Proper Type Output From Clang

CHAPTER 2 ■ MODERN C++

24

Listing 2-9. Using auto with a class

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass
{
};

int main()
{
 auto variable = MyClass();
 cout << "Type of variable: " << typeid(variable).name() << endl;

 return 0;
}

This program will print out the name MyClass as you can see in Figure 2-3.

Unfortunately there are times where the auto keyword can produce less than desirable results. You
will definitely come unstuck if you try to combine the auto keyword with uniform initialization. Listing 2-10
shows the use of the auto keyword with uniform initialization.

Listing 2-10. Using auto with Uniform Initialization

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass
{
};

int main()
{
 auto variable{ 1 };
 cout << "Type of variable: " << typeid(variable).name() << endl;

Figure 2-3. Using auto with MyClass

CHAPTER 2 ■ MODERN C++

25

 auto variable2{ MyClass{} };
 cout << "Type of variable: " << typeid(variable2).name() << endl;

 return 0;
}

You might expect that the code in Listing 2-10 will produce a variable of type int and a variable of type
MyClass however this is not the case. Figure 2-4 shows the output generated by the program.

A quick look at Figure 2-4 shows the immediate problem encountered when using the auto keyword along
with uniform initialization. The C++ uniform initialization feature automatically creates an initializer_list
variable that contains the value of the type we want, not the type and value itself. This leads to a relatively
simple piece of advice, do not use uniform initialization when defining variables using auto. I’d recommend
not using auto even if the type you want is actually an initializer_list as the code is much easier to
understand and much less error prone if you don’t mix and match you variable initialization styles. There’s a
final piece of advice to bear in mind, use auto for local variables as much as possible. It’s impossible to declare
an auto variable and not define it therefore it’s impossible to have an undefined local auto variable. You can
use this piece of knowledge to cut down on one potential source of bugs in your programs.

Recipe 2-4. Using auto with Functions

Problem
You would like to create more generic functions using type deduction to increase code maintainability.

Solution
Modern C++ allows you to use type deduction for function parameters and for return types.

How It Works
C++ allows you to utilize type deduction when working with function using two methods. Types can be
deduced for function parameters by creating a template function and calling that function without explicit
specializers. The return type can be deduced for a function using the auto keyword in place of its return type.
Listing 2-11 shows the use of auto to deduce the return type for a function.

Figure 2-4. Output Generated When using auto with Uniform Initialization

CHAPTER 2 ■ MODERN C++

26

Listing 2-11. Deducing a Function’s Return Type Using auto

#include <iostream>

using namespace std;

auto AutoFunctionFromReturn(int parameter)
{
 return parameter;
}

int main()
{
 auto value = AutoFunctionFromReturn(1);
 cout << value << endl;

 return 0;
}

The AutoFunctionFromReturn function’s return type in Listing 2-11 is automatically deduced. The
compiler inspects the type of the variable returned from the function and uses that to deduce the type to be
returned. This all works properly because the compiler has everything it needs inside the function to be able
to deduce the type. The parameter variable is being returned therefore the compiler can use its type as the
return type for the function.

Things get a bit more complicated when you need to build with a C++11 compiler. Building Listing 2-11
using C++11 results in the following error.

main.cpp:5:1: error: 'auto' return without trailing return type
auto AutoFunctionFromReturn(int parameter)

Listing 2-12 includes a function with automatic return type deduction that works in C++11.

Listing 2-12. Return Type Deduction in C++11

#include <iostream>

using namespace std;

auto AutoFunctionFromReturn(int parameter) -> int
{
 return parameter;
}

int main()
{
 auto value = AutoFunctionFromReturn(1);
 cout << value << endl;

 return 0;
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ MODERN C++

27

You might be wondering why you would bother doing this when looking at the code in Listing 2-12.
There’s little use in deducing the return type for a function when you always specify that it will be an int and
you’d be right. Return type deduction is much more useful in functions that don’t have their parameter types
declared in their signature. Listing 2-13 shows the type deduction in action for a template function.

Listing 2-13. Deducing return types for C++11 template functions

#include <iostream>

using namespace std;

template <typename T>
auto AutoFunctionFromParameter(T parameter) -> decltype(parameter)
{
 return parameter;
}

int main()
{
 auto value = AutoFunctionFromParameter(2);
 cout << value << endl;

 return 0;
}

Listing 2-13 shows a useful application of return type deduction. This time the function is specified
as a template therefore the compiler cannot work out the return type using the parameter type. C++11
introduced the decltype keyword to compliment the auto keyword. decltype is used to tell the compiler
to use the type of a given expression. The expression can be a variable name however you could also give a
function here and decltype would deduce the type returned from the function.

At this point the code has come full circle. The C++11 standard allowed auto to be used on functions to
deduce return type but required that the type still be specified as a trailing return type. The trailing return
type can be deduced using decltype however this leads to overly verbose code. C++14 rectifies this situation
by allowing auto to be used on functions without having the trailing return type even when used with
templates as you can see in Listing 2-14.

Listing 2-14. Using auto to Deduce Return Type on a Template Function

#include <iostream>

using namespace std;

template <typename T>
auto AutoFunctionFromParameter(T parameter)
{
 return parameter;
}

int main()
{
 auto value = AutoFunctionFromParameter(2);
 cout << value << endl;

 return 0;
}

CHAPTER 2 ■ MODERN C++

28

Recipe 2-5. Working with Compile Time Constants

Problem
You would like to optimize the runtime operation of your program using compile time constant.

Solution
C++ provides the constexpr keyword that can be used to guarantee that an expression can be evaluated at
compile time.

How It Works
The constexpr keyword can be used to create variables and functions that guarantee that their evaluation
can be evaluated at compile time. Your compiler will throw an error if you add any code to them that
prevents compile time evaluation. Listing 2-15 shows program that uses a constexpr variable to define the
size of an array.

Listing 2-15. Using constexpr to Define the Size of an array

#include <array>
#include <cstdint>
#include <iostream>

int main()
{
 constexpr uint32_t ARRAY_SIZE{ 5 };
 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5 };

 for (auto&& number : myArray)
 {
 std::cout << number << std::endl;
 }

 return 0;
}

The constexpr variable in Listing 2-15 guarantees that the value can be evaluated at compile time.
This is necessary here as the size of an array is something that must be determined when your program is
compiled. Listing 2-16 shows how you can extend this example to include a constexpr function.

Listing 2-16. A constexpr Function

#include <array>
#include <cstdint>
#include <iostream>

constexpr uint32_t ArraySizeFunction(int parameter)
{
 return parameter;
}

CHAPTER 2 ■ MODERN C++

29

int main()
{
 constexpr uint32_t ARRAY_SIZE{ ArraySizeFunction(5) };
 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5 };

 for (auto&& number : myArray)
 {
 std::cout << number << std::endl;
 }

 return 0;
}

You can go another step further than the code in Listing 2-16 and create a class with a constexpr
constructor. This is shown in Listing 2-17.

Listing 2-17. Creating constexpr class Constructors

#include <array>
#include <cstdint>
#include <iostream>

class MyClass
{
private:
 uint32_t m_Member;

public:
 constexpr MyClass(uint32_t parameter)
 : m_Member{parameter}
 {
 }

 constexpr uint32_t GetValue() const
 {
 return m_Member;
 }
};

int main()
{
 constexpr uint32_t ARRAY_SIZE{ MyClass{ 5 }.GetValue() };
 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5 };

 for (auto&& number : myArray)
 {
 std::cout << number << std::endl;
 }

 return 0;
}

CHAPTER 2 ■ MODERN C++

30

The code in Listing 2-17 is able to create an object and call a method in a constexpr statement. This was
possible because the constructor for MyClass was declared as a constexpr constructor. The code shown so
far for constexpr has all been compatible with C++11 compilers. The C++14 standard has relaxed many of
the restrictions that existed in C++11. C++11 constexpr statements are not permitted to do many things that
normal C++ code can. Examples of these things are creating variables and using if statements. The code in
Listing 2-18 shows a C++14 constexpr function that can be used to limit the maximum size of an array.

Listing 2-18. Using a C++14 constexpr Function

#include <array>
#include <cstdint>
#include <iostream>

constexpr uint32_t ArraySizeFunction(uint32_t parameter)
{
 uint32_t value{ parameter };
 if (value > 10)
 {
 value = 10;
 }
 return value;
}

int main()
{
 constexpr uint32_t ARRAY_SIZE{ ArraySizeFunction(15) };
 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for (auto&& number : myArray)
 {
 std::cout << number << std::endl;
 }

 return 0;
}

The code in Listing 2-18 expands on the C++11 compatible code in Listing 2-16 to include a function
that declares a variable and uses an if statement. Compiling this code with a C++11 compiler results in the
following error.

main.cpp:7:14: warning: variable declaration in a constexpr function is a C++1y extension
[-Wc++1y-extensions]
 uint32_t value{ parameter };
 ^
main.cpp:8:5: warning: use of this statement in a constexpr function is a C++1y extension
[-Wc++1y-extensions]
 if (value > 10)
 ^
main.cpp:17:24: error: constexpr variable 'ARRAY_SIZE' must be initialized by a constant
expression
 constexpr uint32_t ARRAY_SIZE{ ArraySizeFunction(15) };

CHAPTER 2 ■ MODERN C++

31

Two warnings are presented to show that the constexpr function cannot be used in a constexpr
context. This is not a compile error because the function can still be used in a non-constexpr context. The
actual error is thrown when the function is used to initialize a constexpr variable.

Recipe 2-6. Working with Lambdas

Problem
You would like to write programs that utilize unnamed function objects.

Solution
C++ provides lambdas that can be used to create closures and can be passed around in your code.

How It Works
The lambda syntax introduced in C++11 can be a little confusing at first. Listing 2-19 shows a simple example
of a program that uses a lambda to print out all of the values in an array.

Listing 2-19. Using a Lambda to Print array Values

#include <algorithm>
#include <array>
#include <cstdint>
#include <iostream>

int main()
{
 using MyArray = std::array<uint32_t, 5>;
 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.cbegin(),
 myArray.cend(),
 [](auto&& number) {
 std::cout << number << std::endl;
 });

 return 0;
}

This code shows how a lambda is defined in C++ source code. The syntax for a lambda is as follows:

[] () {};

The braces represent the capture block. A lambda uses a capture block to capture existing variables
to be used in the lambda. The code in Listing 2-19 does not have a need to capture any variables therefore
it is empty. The parentheses represent the argument block as it does in a normal function. The lambda in
Listing 2-19 has a single parameter that is of type auto&&. The std::for_each algorithm applies the given
function to every element in the sequence. The function here happens to be a closure that was created by

CHAPTER 2 ■ MODERN C++

32

the compiler when it encountered the lambda syntax and passed it to the for_each function. There’s a subtle
terminology difference there that you should become familiar with. A lambda is the source code construct
that defines an anonymous or unnamed function. The compiler uses this syntax to create a closure object
from the lambda.

A closure can be referenced by a variable as shown in Listing 2-20.

Listing 2-20. Referencing a Closure in a Variable

#include <algorithm>
#include <array>
#include <cstdint>
#include <iostream>
#include <typeinfo>

int main()
{
 using MyArray = std::array<uint32_t, 5>;
 MyArray myArray{ 1, 2, 3, 4, 5 };

 auto myClosure = [](auto&& number) {
 std::cout << number << std::endl;
 };
 std::cout << typeid(myClosure).name() << std::endl;

 std::for_each(myArray.begin(),
 myArray.end(),
 myClosure);

 return 0;
}

The example in Listing 2-20 captures the lambda into an auto typed variable. Figure 2-5 shows the
output that this generates.

Figure 2-5. The Type Output by typeid when Passed a Closure

CHAPTER 2 ■ MODERN C++

33

Figure 2-5 shows the type of the closure stored by the myClosure variable in Listing 2-20. The
automatically generated type here isn’t particularly useful however C++ does provide a method for passing
around any type of object that can be called like a function. The function template is provided in the
functional header and is part of the STL. This template takes the signature of the function that the object
represents. You can see how this code looks in Listing 2-21.

Listing 2-21. Passing a Closure into a Function

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>

using MyArray = std::array<uint32_t, 5>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)
{
 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.begin(),
 myArray.end(),
 myFunction);
}

int main()
{
 auto myClosure = [](auto&& number) {
 std::cout << number << std::endl;
 };
 std::cout << typeid(myClosure).name() << std::endl;

 PrintArray(myClosure);

 return 0;
}

You can now create closures and pass them around your program using the function template as shown
in Listing 2-21. This allows you to add some touches to your programs that would have been much more
difficult to achieve in C++98. Listing 2-22 shows a method to copy an array into a vector through a lambda
using the capture block.

CHAPTER 2 ■ MODERN C++

34

Listing 2-22. Using the Lambda Capture Feature

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)
{
 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.begin(),
 myArray.end(),
 myFunction);
}

int main()
{
 MyVector myCopy;
 auto myClosure = [&myCopy](auto&& number) {
 std::cout << number << std::endl;
 myCopy.push_back(number);
 };
 std::cout << typeid(myClosure).name() << std::endl;

 PrintArray(myClosure);

 std::cout << std::endl << "My Copy: " << std::endl;
 std::for_each(myCopy.cbegin(),
 myCopy.cend(),
 [](auto&& number){
 std::cout << number << std::endl;
 });

 return 0;
}

The code in Listing 2-22 contains a use of the lambda capture to store a reference to the object myCopy in
the closure. This object can then be used inside the lambda and has each member of the array pushed onto
it. The main function ends by printing all of the values stored by myCopy to show that the closure was sharing
the same vector as main thanks to the reference capture. The capture was specified as a reference capture
using the & operator. The vector would have been copied into the closure if this had been omitted and the
myCopy vector in main would have remained empty.

Capturing myCopy by value rather than by reference would have led to another problem. The type the
compiler creates for the lambda would no longer be a compatible argument with the parameter used to
declare the function’s signature. Listing 2-23 shows the lambda using capture by value to copy myCopy.

CHAPTER 2 ■ MODERN C++

35

Listing 2-23. Capturing myCopy by Value

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)
{
 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.begin(),
 myArray.end(),
 myFunction);
}

int main()
{
 MyVector myCopy;
 auto myClosure = [myCopy](auto&& number) {
 std::cout << number << std::endl;
 myCopy.push_back(number);
 };
 std::cout << typeid(myClosure).name() << std::endl;

 PrintArray(myClosure);

 std::cout << std::endl << "My Copy: " << std::endl;
 std::for_each(myCopy.cbegin(),
 myCopy.cend(),
 [](auto&& number){
 std::cout << number << std::endl;
 });

 return 0;
}

The code in Listing 2-23 won’t compile and your compiler is unlikely to give you a meaningful or helpful
error message. Clang provides the following error output when trying to compile this code using Cygwin on
Windows.

$ make
clang++ -g -std=c++1y main.cpp -o main
main.cpp:26:13: error: no matching member function for call to 'push_back'
 myCopy.push_back(number);
            ~~~~~~~^~~~~~~~~



CHAPTER 2 ■ MODERN C++

36

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2149:27: note: in instantiation of 
function template
      specialization 'main()::<anonymous class>::operator()<unsigned int>' requested here
        using _Invoke = decltype(__callable_functor(std::declval<_Functor&>())
                                 ^
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2158:2: note: in instantiation of 
template type alias
      '_Invoke' requested here
        using _Callable
        ^
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2225:30: note: in instantiation of 
template type alias
      '_Callable' requested here
           typename = _Requires<_Callable<_Functor>, void>>
                       ^
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note: in instantiation of 
default argument for
      'function<<lambda at main.cpp:24:22> >' required here
        function(_Functor);
        ^~~~~~~~
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note: while substituting 
deduced template arguments
      into function template 'function' [with _Functor = <lambda at main.cpp:24:22>, $1 = 
<no value>]
        function(_Functor);
        ^
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:913:7: note: candidate 
function not viable: 'this'
      argument has type 'const MyVector' (aka 'const vector<MyArray::value_type>'), but 
method is not marked const
      push_back(const value_type& __x)
      ^
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:931:7: note: candidate 
function not viable: 'this'
      argument has type 'const MyVector' (aka 'const vector<MyArray::value_type>'), but 
method is not marked const
      push_back(value_type&& __x)
      ^
main.cpp:30:5: error: no matching function for call to 'PrintArray'
    PrintArray(myClosure);
    ^~~~~~~~~~
main.cpp:12:6: note: candidate function not viable: no known conversion from '<lambda at 
main.cpp:24:22>' to 'const
      std::function<void (MyArray::value_type)>' for 1st argument
void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)
     ^
2 errors generated.
makefile:2: recipe for target 'main' failed
make: *** [main] Error 1
 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2 ■ MODERN C++

37

Given the verbose and confusing error messages output by Clang you may think that the code is very far 
from being in a working state however you might be surprised to learn that this can be solved with a single 
keyword, mutable. Listing 2-24 shows the code in a proper compiling state.

Listing 2-24. Creating a mutable Closure

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>
 
using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;
 
void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)
{
    MyArray myArray{ 1, 2, 3, 4, 5 };
 
    std::for_each(myArray.begin(),
        myArray.end(),
        myFunction);
}
 
int main()
{
    MyVector myCopy;
    auto myClosure = [myCopy](auto&& number) mutable {
            std::cout << number << std::endl;
            myCopy.push_back(number);
        };
    std::cout << typeid(myClosure).name() << std::endl;
 
    PrintArray(myClosure);
 
    std::cout << std::endl << "My Copy: " << std::endl;
    std::for_each(myCopy.cbegin(),
        myCopy.cend(),
        [](auto&& number){
            std::cout << number << std::endl;
        });
 
    return 0;
}
 

Listing 2-24 contains the solution to all of the error output that you can see above. The mutable keyword 
is used to tell the compiler that the lambda function should generate a closure with non-const members 
that have been copied by value.



CHAPTER 2 ■ MODERN C++

38

The closures created by the compiler when they encounter a lambda function are const by default. This 
causes the compiler to create a type for the closure that can no longer be implicitly converted to a standard 
function pointer. The resulting error messages generated by a compiler when you try to use a lambda 
function to generate a closure that is not a suitable type for your code can be exceptionally confusing so 
there is no real solution here other than to properly learn how to use lambda functions and to compile often 
when working to pick up when you have made a change that the compiler cannot handle.

The next problem you might encounter while trying to compile the code that you’ve seen so far in this 
Recipe is to compile with a C++11 compiler that does not support C++14. The problem here is that C++11 
lambdas do not support the auto keyword as a parameter. Building Listing 2-24 with a C++11 compiler 
results in the following output.
 
clang++ -g -std=c++11 main.cpp -o main
main.cpp:24:31: error: 'auto' not allowed in lambda parameter
    auto myClosure = [myCopy](auto&& number) mutable {
                     ^~~~
main.cpp:30:5: error: no matching function for call to 'PrintArray'
    PrintArray(myClosure);
    ^~~~~~~~~~
main.cpp:12:6: note: candidate function not viable: no known conversion from '<lambda at 
main.cpp:24:22>' to 'const
      std::function<void (MyArray::value_type)>' for 1st argument
void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)
     ^
main.cpp:35:5: error: 'auto' not allowed in lambda parameter
        [](auto&& number){
           ^~~~
In file included from main.cpp:1:
In file included from /usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/algorithm:62:
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_algo.h:3755:2: error: no matching 
function for call to object
      of type '<lambda at main.cpp:35:2>'
        __f(*__first);
        ^~~
main.cpp:33:10: note: in instantiation of function template specialization
      'std::for_each<__gnu_cxx::__normal_iterator<const unsigned int *, std::vector<unsigned int,
      std::allocator<unsigned int> > >, <lambda at main.cpp:35:2> >' requested here
    std::for_each(myCopy.cbegin(),
         ^
main.cpp:35:2: note: candidate template ignored: couldn't infer template argument '$auto-0-0'
        [](auto&& number){
        ^
4 errors generated.
makefile:2: recipe for target 'main' failed
make: *** [main] Error 1
 

Thankfully this is a much clearer message than when trying to compile Listing 2-23 and it’s reasonably 
clear that C++11 does not support auto type deduction for lambda function parameters. Listing 2-25 shows 
the code needed to build a working program that copied an array into a vector using a lambda function.



CHAPTER 2 ■ MODERN C++

39

Listing 2-25. A C++11 Compatible Lambda Function

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>
 
using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;
 
void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)
{
    MyArray myArray{ 1, 2, 3, 4, 5 };
 
    std::for_each(myArray.begin(),
        myArray.end(),
        myFunction);
}
 
int main()
{
    MyVector myCopy;
    auto myClosure = [&myCopy](const MyArray::value_type& number) {
            std::cout << number << std::endl;
            myCopy.push_back(number);
        };
    std::cout << typeid(myClosure).name() << std::endl;
 
    PrintArray(myClosure);
 
    std::cout << std::endl << "My Copy: " << std::endl;
    std::for_each(myCopy.cbegin(),
        myCopy.cend(),
        [](const MyVector::value_type& number){
            std::cout << number << std::endl;
        });
 
    return 0;
}
 

The code in Listing 2-25 will work just fine with a C++11 compiler but it does result in lambda functions 
that are slightly less portable between different types. The lambda function used to print the values from 
myCopy can now only be used with the type defined by MyVector::value_type whereas the C++14 version 
could have been reused with any type that could be passed as input to cout.

It goes without saying that none of this code will compile with a C++98 compiler as C++98 does not 
support lambda functions.



CHAPTER 2 ■ MODERN C++

40

Recipe 2-7. Working with Time

Problem
You would like to write portable programs that are aware of the current time or their execution time.

Solution
Modern C++ provides STL templates and classes that provide portable time handling capabilities.

How It Works

Getting the Current Date and Time

C++11 provides access to different real-time clocks in a given computer system. The implementation of each 
clock may be different depending on the computer system that you are running on itself however the general 
intent of each clock will remain the same. You can use the system_clock to query the current time from a 
system wide real time clock. This means that you can use this type of clock to get the current date and time 
for a computer whilst your program is running. Listing 2-26 shows how this can be achieved.

Listing 2-26. Getting the Current Date and Time

#include <ctime>
#include <chrono>
#include <iostream>
 
using namespace std;
using namespace chrono;
 
int main()
{
    auto currentTimePoint = system_clock::now();
    auto currentTime = system_clock::to_time_t( currentTimePoint );
    auto timeText = ctime( &currentTime );
 
    cout << timeText << endl;
 
    return 0;
}
 

The program in Listing 2-26 shows how to retrieve the current time from system_clock. You do this 
using the system_clock::now method. The object returned from now is a time_point that contains a 
representation of time offset from some epoch. The epoch is a reference time that the system uses to offset 
all other times. You will not have to worry about the epoch by using the same clock for all of your time work. 
However you will have to be aware that a time from one computer may not be transferrable directly to 
another if the systems use different epochs for their time.

The time_point structure cannot be printed out directly and there is no method to convert it to a string 
however the class does provide a method to convert the time_point object into a time_t object. The time_t 
type is an old C type that can be converted to a string representation using the ctime function. You can see 
the result of running this program in Figure 2-6.



CHAPTER 2 ■ MODERN C++

41

Comparing Times

You can also use the STL time capabilities to compare one time to another. Listing 2-27 shows how you can 
compare a time to another.

Listing 2-27. Comparing Times

#include <ctime>
#include <chrono>
#include <iostream>
#include <thread>
 
using namespace std;
using namespace chrono;
using namespace literals;
 
int main()
{
    auto startTimePoint = system_clock::now();
 
    this_thread::sleep_for(5s);
 
    auto endTimePoint = system_clock::now();
 
    auto timeTaken = duration_cast<milliseconds>(endTimePoint - startTimePoint);
 
    cout << "Time Taken: " << timeTaken.count() << endl;
 
    return 0;
}
 

Listing 2-27 shows that you can call the now method on a clock multiple times and retrieve different 
values. The program gets a time into the startTimePoint variable then calls the sleep_for method on the 
current execution thread. This call causes the program to go to sleep for 5 seconds and calls the system_
clock::now method again after it resumes. At this point you have two time_point objects that can be used 
to subtract one from the other. The duration_cast can then be used to turn the result of the subtraction 
into a concrete time with a given type of duration. The valid duration types are hours, minutes, seconds, 
milliseconds, microseconds and nanoseconds. The count method is then used on the duration object to get 
the actual number of milliseconds that elapsed between calls to now.

Figure 2-6. The Current Time Printed to the Terminal



CHAPTER 2 ■ MODERN C++

42

Note ■  The code in Listing 2-27 uses a C++14 standard user-defined literal. The 5s passed to sleep for  

defines a literal of 5 seconds. There are also literals defined for h (hours), min (minutes), s (seconds), ms  

(milliseconds), us (microseconds) and ns (nanoseconds). These literals can all be applied to an integer literal 

to inform the compiler that you would like to create a literal of a duration object with the given type of time. 

Applying s to a character literal such as "A String"s tells the compiler to create a literal of type std::string. 

These literals are defined in the std::literals namespace and are a C++14 only feature, meaning that they 

cannot be used in C++11 or C++98 code.

Figure 2-7 shows the output generated when this program is run.

Figure 2-7 shows that the sleep_for method isn’t 100% accurate however it is reasonably close to 5000ms 
with each run. You can now see how you can use the now method to compare two time_points and it’s not 
much more of a stretch to imagine that you can create an if statement that only executes once a certain 
amount of time has passed.

Recipe 2-8. Understanding lvalue and rvalue References

Problem
C++ contains a distinction between an lvalue reference and an rvalue reference. You need to be able to 
understand these concepts to write optimal C++ programs.

Solution
Modern C++ contains two different reference operators, & (lvalue) and && (rvalue). These work hand-in-hand 
with move semantics to reduce the time spent copying objects in your programs.

Figure 2-7. Output from Several Runs of Listing 2-27



CHAPTER 2 ■ MODERN C++

43

How It Works
Move semantics are one of the headline features of the modern C++ programming language. Their 
usefulness is being significantly overplayed and programmers new to modern C++ programming may be 
tempted to jump head first into the shiny new feature and actually make their programs worse due to a lack 
of understanding as to when and why to use an rvalue reference over a lvalue reference.

To put it simply, an rvalue reference should be used to move construct or move assign objects in place 
of copy operations where appropriate. Move semantics should not be used to replace passing parameters 
to methods by const reference. A move operation could be faster than a copy, in the worst case it can be 
slower than a copy and it will always be slower than passing by const reference. This recipe will show you 
the difference between an lvalue reference, an rvalue reference, the copy and move class constructors and 
operators and show some performance issues related to each.

The code in Listing 2-28 shows the implementation for a simple class that uses a static counter value to 
keep track of the number of objects in memory at any given time.

Listing 2-28. A Class that Counts the Number of Instances

#include <iostream>
 
using namespace std;
 
class MyClass
{
private:
    static int s_Counter;
 
    int* m_Member{ &s_Counter };
 
public:
    MyClass()
    {
        ++(*m_Member);
    }
 
    ~MyClass()
    {
        --(*m_Member);
        m_Member = nullptr;
    }
 
    int GetValue() const
    {
        return *m_Member;
    }
};
 



CHAPTER 2 ■ MODERN C++

44

int MyClass::s_Counter{ 0 };
 
int main()
{
    auto object1 = MyClass();
    cout << object1.GetValue() << endl;
 
    {
        auto object2 = MyClass();
        cout << object2.GetValue() << endl;
    }
 
    auto object3 = MyClass();
    cout << object3.GetValue() << endl;
 
    return 0;
}
 

The s_Counter static member in Listing 2-28 counts the number of active instances of the class that 
exist in memory at any given time. This is achieved by initializing the static to 0 and pre-incrementing 
the value in the MyClass constructor through the member integer pointer. The s_Counter value is 
also decremented in ~MyClass to ensure that the number never grows out of control. The need for an 
unconventional setup will become clear when you see the move constructor in action. The output generated 
by this program is shown in Figure 2-8.

You can now extend MyClass to contain a copy constructor and determine the impact this has on the 
number of objects in memory at any given time. Listing 2-29 shows a program that includes a MyClass copy 
constructor.

Listing 2-29. Copying MyClass

#include <iostream>
 
using namespace std;
 
class MyClass
{
private:
    static int s_Counter;
 
    int* m_Member{ &s_Counter };
 

Figure 2-8. The s_Counter variable in action



CHAPTER 2 ■ MODERN C++

45

public:
    MyClass()
    {
        ++(*m_Member);
        cout << "Constructing: " << GetValue() << endl;
    }
 
    ~MyClass()
    {
        --(*m_Member);
        m_Member = nullptr;
 
        cout << "Destructing: " << s_Counter << endl;
    }
 
    MyClass(const MyClass& rhs)
        : m_Member{ rhs.m_Member }
    {
        ++(*m_Member);
        cout << "Copying: " << GetValue() << endl;
    }
 
    int GetValue() const
    {
        return *m_Member;
    }
};
 
int MyClass::s_Counter{ 0 };
 
MyClass CopyMyClass(MyClass parameter)
{
    return parameter;
}
 
int main()
{
    auto object1 = MyClass();
 
    {
        auto object2 = MyClass();
    }
 
    auto object3 = MyClass();
    auto object4 = CopyMyClass(object3);
 
    return 0;
}
 



CHAPTER 2 ■ MODERN C++

46

The code in Listing 2-29 has added a copy constructor and a function to copy object3 into object4. 
This has the impact of needing two copies, one to copy object3 into parameter and one to copy parameter 
into object4. Figure 2-9 shows that the two copy operations have occurred and that there are also two 
subsequent destructors called to destroy these objects.

Move constructors can be utilized to cut down on the complexity of a copy constructor. There will be 
just as many objects in flight however you can safely shallow copy an object in a move constructor thanks 
to the rvalue reference type that they are passed. A rvalue reference is a guarantee from the compiler that 
the object referenced by the variable was a temporary object. This means that you are free to cannibalize 
the object so that you can implement a copy operation faster than if the pre-existing state was needed to be 
preserved. Listing 2-30 shows how to add a move constructor to MyClass.

Listing 2-30. Adding a Move Constructor to MyClass

#include <iostream>
 
using namespace std;
 
class MyClass
{
private:
    static int s_Counter;
 
    int* m_Member{ &s_Counter };
 
public:
    MyClass()
    {
        ++(*m_Member);
        cout << "Constructing: " << GetValue() << endl;
    }
 

Figure 2-9. Copy Constructors in Action

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2 ■ MODERN C++

47

    ~MyClass()
    {
        if (m_Member)
        {
            --(*m_Member);
            m_Member = nullptr;
             
            cout << "Destructing: " << s_Counter << endl;
        }
        else
        {
            cout << "Destroying a moved-from instance" << endl;
        }
    }
 
    MyClass(const MyClass& rhs)
        : m_Member{ rhs.m_Member }
    {
        ++(*m_Member);
        cout << "Copying: " << GetValue() << endl;
    }
 
    MyClass(MyClass&& rhs)
        : m_Member{ rhs.m_Member }
    {
        cout << hex << showbase;
        cout << "Moving: " << &rhs << " to " << this << endl;
        cout << noshowbase << dec;
        rhs.m_Member = nullptr;
    }
    int GetValue() const
    {
        return *m_Member;
    }
};
 
int MyClass::s_Counter{ 0 };
 
MyClass CopyMyClass(MyClass parameter)
{
    return parameter;
}
 
int main()
{
    auto object1 = MyClass();
 
    {
        auto object2 = MyClass();
    }
 
    auto object3 = MyClass();
    auto object4 = CopyMyClass(object3);
 
    return 0;
}
 



CHAPTER 2 ■ MODERN C++

48

The code in Listing 2-30 adds a move constructor to MyClass. This has an immediate impact on the 
running code. You can see that the move constructor is being invoked in Figure 2-10.

The compiler has realized that the state of parameter in Listing 2-30 does not need to be maintained 
after the return statement has ended. This means that the code can invoke a move constructor to create 
object4. This creates a scenario for a possible optimization in your code. This example is trivial and 
therefore there may be minimal performance and memory benefits. If the class was more complicated then 
you would save the memory needed to have both objects in memory at the same time and the time taken to 
copy from one object to the other. The performance benefits of this can be seen in Listing 2-31.

Listing 2-31. Comparing Copy Constructors with Move Constructors

#include <chrono>
#include <iostream>
#include <string>
#include <vector>
 
using namespace std;
using namespace chrono;
using namespace literals;
 
class MyClass
{
private:
    vector<string> m_String{
        "This is a pretty long string that"
        " must be copy constructed into"
        " copyConstructed!"s
    };
 
    int m_Value{ 1 };
 

Figure 2-10. Using a Move Constructor



CHAPTER 2 ■ MODERN C++

49

public:
    MyClass() = default;
    MyClass(const MyClass& rhs) = default;
    MyClass(MyClass&& rhs) = default;
 
    int GetValue() const
    {
        return m_Value;
    }
};
 
int main()
{
    using MyVector = vector<MyClass>;
    constexpr unsigned int ITERATIONS{ 1000000U };
 
    MyVector copyConstructed(ITERATIONS);
    int value{ 0 };
 
    auto copyStartTime = high_resolution_clock::now();
    for (unsigned int i=0; i < ITERATIONS; ++i)
    {
        MyClass myClass;
        copyConstructed.push_back(myClass);
        value = myClass.GetValue();
    }
    auto copyEndTime = high_resolution_clock::now();
 
    MyVector moveConstructed(ITERATIONS);
     
    auto moveStartTime = high_resolution_clock::now();
    for (unsigned int i=0; i < ITERATIONS; ++i)
    {
        MyClass myClass;
        moveConstructed.push_back(move(myClass));
        value = myClass.GetValue();
    }
    auto moveEndTime = high_resolution_clock::now();
 
    cout << value << endl;
 
    auto copyDuration =
        duration_cast<milliseconds>(copyEndTime - copyStartTime);
    cout << "Copy lasted: " << copyDuration.count() << "ms" << endl;
 
    auto moveDuration =
        duration_cast<milliseconds>(moveEndTime - moveStartTime);
    cout << "Move lasted: " << moveDuration.count() << "ms" << endl;
     
    return 0;
}
 



CHAPTER 2 ■ MODERN C++

50

The code in Listing 2-31 makes use of the default keyword to inform the compiler that we would like to 
use the default constructor, copy constructor and move constructor for this class. This is valid here because 
there is no manual memory management or behavior needed by MyClass. We simple want to construct, copy 
or move the members m_String and m_Value. The m_Value variable is used to try to prevent the compiler 
from over-optimizing our example and producing unexpected results. You can see that the move constructor 
is faster in this instance than the copy constructor in Figure 2-11.

Recipe 2-9. Using Managed Pointers

Problem
You would like to automate the task of managing memory in your C++ programs.

Solution
Modern C++ provides the capability to automatically manage dynamically allocated memory.

How It Works

Using unique_ptr

C++ provides three smart pointer types that can be used to automatically manage the lifetime of dynamically 
allocated objects. Listing 2-32 shows the use of a unique_ptr.

Figure 2-11. Showing a Move Constructor can be Faster than a Copy Constructor



CHAPTER 2 ■ MODERN C++

51

Listing 2-32. Using unique_ptr

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    int m_Value{ 10 };
 
public:
    MyClass()
    {
        cout << "Constructing!" << endl;
    }
 
    ~MyClass()
    {
        cout << "Destructing!" << endl;
    }
 
    int GetValue() const
    {
        return m_Value;
    }
};
 
int main()
{
    unique_ptr<MyClass> uniquePointer{ make_unique<MyClass>() };
    cout << uniquePointer->GetValue() << endl;
 
    return 0;
}
 

The code in Listing 3-32 manages to create and destroy a dynamically allocated object without ever 
using new or delete. The make_unique template handles calling new and the unique_ptr object handles 
calling delete when the unique_ptr instance goes out of scope. Unfortunately the make_unique template is 
a C++14 feature and does not exist in C++11. The code in Listing 2-33 shows how you can rectify this.

Listing 2-33. Creating Your Own make_unique

#include <iostream>
#include <memory>
 
using namespace std;
 
#if __cplusplus > 200400L && __cplusplus < 201200L
 
template <typename T, typename... Args>



CHAPTER 2 ■ MODERN C++

52

unique_ptr<T> make_unique(Args... args)
{
    return unique_ptr<T>{ new T(args...) };
}
 
#endif
 
class MyClass
{
private:
    string m_Name;
    int m_Value;
 
public:
    MyClass(const string& name, int value)
        : m_Name{ name }
        , m_Value{ value }
    {
        cout << "Constructing!" << endl;
    }
 
    ~MyClass()
    {
        cout << "Destructing!" << endl;
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    int GetValue() const
    {
        return m_Value;
    }
};
 
int main()
{
    unique_ptr<MyClass> uniquePointer{
        make_unique<MyClass>("MyClass", 10) };
 
    cout << uniquePointer->GetName() << endl;
    cout << uniquePointer->GetValue() << endl;
 
    return 0;
}
 



CHAPTER 2 ■ MODERN C++

53

The code in Listing 2-33 uses another C++11 feature to create a make_unique template. The template 
is a variadic template and it can take as many arguments as you wish to pass to it. This is proven in the call 
to make unique where a string and an int are passed through to the MyClass constructor. The __cplusplus 
preprocessor symbol is used to detect the version of C++ that the compiler is using to build. You may need to 
ensure that this is working properly with the compiler that you are using as not all compilers implement this 
correctly. This code will build in C++11 using the user supplied make_unique template and will compile in 
C++14 using the standard supplied make_unique template.

Unique pointers are exactly as you expect, they are unique and therefore your code cannot have more 
than a single instance of a unique_ptr pointing to the same object at the same time. It achieves this by 
preventing copy operations on unqiue_ptr instances. A unique_ptr can be moved however and this allows 
you to pass a unique_ptr around in your program. Listing 2-34 shows how you can use move semantics to 
pass a unqiue_ptr around your program.

Listing 2-34. Moving a unqiue_ptr

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    string m_Name;
    int m_Value;
 
public:
    MyClass(const string& name, int value)
        : m_Name{ name }
        , m_Value{ value }
    {
        cout << "Constructing!" << endl;
    }
 
    ~MyClass()
    {
        cout << "Destructing!" << endl;
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    int GetValue() const
    {
        return m_Value;
    }
};
 



CHAPTER 2 ■ MODERN C++

54

using MyUniquePtr = unique_ptr<MyClass>;
 
auto PassUniquePtr(MyUniquePtr ptr)
{
    cout << "In Function Name: " << ptr->GetName() << endl;
    return ptr;
}
 
int main()
{
    auto uniquePointer = make_unique<MyClass>("MyClass", 10);
 
    auto newUniquePointer = PassUniquePtr(move(uniquePointer));
 
    if (uniquePointer)
    {
        cout << "First Object Name: " << uniquePointer->GetName() << endl;
    }
 
    cout << "Second Object Name: " << newUniquePointer->GetName() << endl;
 
    return 0;
}
 

The code in Listing 2-34 moves a unique_ptr instance into a function. That instance is then moved back 
out of the function into a second unique_ptr object. There’s no reason why the same unique_ptr couldn’t 
have been used in main other than to show that the original instance is not valid after it has been moved 
from. This is evident in the if call to check if the pointer is valid as this will fail when the code is executed. 
The unique_ptr can be used in this manner and the object pointed to by the instance will be deleted once it 
goes out of scope without having been moved from. The output from this program is shown in Figure 2-12.

Using shared_ptr Instances

Where a unique_ptr can give you sole ownership over a single object that you can move around in a single 
pointer instance, a shared_ptr can give you shared ownership over a single object. This works by having a 
shared_ptr storing an internal reference count along with the pointer to the object and only deleting the 
object once all of the values have gone out of scope. Listing 2-35 shows the use of a shared_ptr.

Figure 2-12. Valid unique_ptr Instances Moved Through a Function



CHAPTER 2 ■ MODERN C++

55

Listing 2-35. Using a shared_ptr

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    string m_Name;
    int m_Value;
 
public:
    MyClass(const string& name, int value)
        : m_Name{ name }
        , m_Value{ value }
    {
        cout << "Constructing!" << endl;
    }
 
    ~MyClass()
    {
        cout << "Destructing!" << endl;
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    int GetValue() const
    {
        return m_Value;
    }
};
 
using MySharedPtr = shared_ptr<MyClass>;
 
auto PassSharedPtr(MySharedPtr ptr)
{
    cout << "In Function Name: " << ptr->GetName() << endl;
    return ptr;
}
 
int main()
{
    auto sharedPointer = make_shared<MyClass>("MyClass", 10);
 
    {
        auto newSharedPointer = PassSharedPtr(sharedPointer);
        if (sharedPointer)



CHAPTER 2 ■ MODERN C++

56

        {
            cout << "First Object Name: " << sharedPointer->GetName() << endl;
        }
 
        cout << "Second Object Name: " << newSharedPointer->GetName() << endl;
    }
 
    return 0;
}
 

The shared_ptr in Listing 2-35 has a different to the unique_ptr that you have seen before. A shared_
ptr can be copied through your program and you can have multiple pointers pointing to the same object. 
This can be seen in Figure 2-13 where the output from the First Object Name statement can be seen.

Using a weak_ptr

Modern C++ also allows you to hold weak references to smart pointers. This allows you to get a reference to 
a pointer to a shared object temporarily while you need it for as long as the shared object exists. Listing 2-36 
shows how you can achieve this using a weak_ptr.

Listing 2-36. Using a weak_ptr

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    string m_Name;
    int m_Value;
 

Figure 2-13. Using a shared_ptr

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2 ■ MODERN C++

57

public:
    MyClass(const string& name, int value)
        : m_Name{ name }
        , m_Value{ value }
    {
        cout << "Constructing!" << endl;
    }
 
    ~MyClass()
    {
        cout << "Destructing!" << endl;
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    int GetValue() const
    {
        return m_Value;
    }
};
 
using MySharedPtr = shared_ptr<MyClass>;
using MyWeakPtr = weak_ptr<MyClass>;
 
auto PassSharedPtr(MySharedPtr ptr)
{
    cout << "In Function Name: " << ptr->GetName() << endl;
    return ptr;
}
 
int main()
{
    MyWeakPtr weakPtr;
    {
        auto sharedPointer = make_shared<MyClass>("MyClass", 10);
        weakPtr = sharedPointer;
 
        {
            auto newSharedPointer = PassSharedPtr(sharedPointer);
            if (sharedPointer)
            {
                cout << "First Object Name: " << sharedPointer->GetName() << endl;
            }
 
            cout << "Second Object Name: " << newSharedPointer->GetName() << endl;
 



CHAPTER 2 ■ MODERN C++

58

            auto sharedFromWeak1 = weakPtr.lock();
            if (sharedFromWeak1)
            {
                cout << "Name From Weak1: " << sharedFromWeak1->GetName() << endl;
            }
        }
    }
 
    auto sharedFromWeak2 = weakPtr.lock();
    if (!sharedFromWeak2)
    {
        cout << "Shared Pointer Out Of Scope!" << endl;
    }
 
    return 0;
}
 

You can see in Listing 2-36 that a weak_ptr can be assigned a shared_ptr however you cannot access 
the shared object directly through the weak pointer. Instead a weak pointer supplies a lock method. The 
lock method returns a shared_ptr instance pointing to the object that you are referencing. This shared_ptr 
holds the object alive for the entirety of its scope if it ends up being the last object pointing to the object. The 
lock method always returns a shared_ptr however the shared_ptr returned by lock will fail an if test if the 
object no longer exists. You can see this at the end of the main function where lock is called after the object 
has been deleted. Figure 2-14 shows that the weak_ptr cannot get a valid shared_ptr after this has occurred.

Figure 2-14. A weak_ptr Failing to lock a Deleted Object



59

CHAPTER 3

Working with Text

Working with text will be one of the most regular tasks a C++ programmer will have to deal with. You are 
likely to need to read in user input, write out messages to the user or writing logging functionality for other 
programmers to more easily debug running programs. Unfortunately working with text is not an easy or 
straight-forward task. All too often programmers rush into the job and make fundamental errors with 
their text handling which become major issues later into their projects. The worst of these is not properly 
accounting for localized versions of text strings. Working with English character sets is generally easy as all 
English characters and punctuation fit into the ASCII character set. This is convenient as every character 
needed to represent the English language can fit into a single 8-bit char variable. Things become unstuck as 
soon as you are required to support foreign languages with your programs. Every character which you need 
to support will no longer fit into a single 8-bit value. C++ can handle non-English languages in a number of 
ways which I will cover in this chapter.

Recipe 3-1. Representing Strings in Code Using Literals

Problem
It’s is often useful to supply output text when debugging programs. To do this C++ allows you to embed 
strings directly into your code.

Solution
C++ programs have a concept known as a string table and all string literals in your program are included in 
the program’s executable.

How It Works
A standard C++ string literal is easy to work with. Listing 3-1 shows code which creates a string literal.



CHAPTER 3 ■ WORKING WITH TEXT

60

Listing 3-1. A string literal

#include <iostream>
#include <string>
 
using namespace std;
 
namespace
{
    const std::string STRING{ "This is a string"s };
}
 
int main()
{
    cout << STRING << endl;
 
    return 0;
}
 

The string literal in this example is the sentence which is included inside the quote marks and followed 
by the letter s. The compiler will create a table of strings during compilation and place them all together. You 
can see this string inside the exe file created from the source in Figure 3-1.



CHAPTER 3 ■ WORKING WITH TEXT

61

You can use string literals to initialize STL string objects. The compiler will find all of the strings in your 
program and use the address from the string table to initialize your string. You can see this in Listing 3-1 where 
the pointer STRING is initialized using the string literal, in effect this code is actually telling the compiler 
to add the literal to the string table and get the address of this specific string from the table to pass it to the 
string constructor.

The string literal in Listing 3-1 is a C++14 style string literal. Older style string literals must be used with 
care as they come with a few caveats. The first is that you should never try to alter the contents of a string 
literal. Consider the code in Listing 3-2.

Figure 3-1. A screenshot fromHxD showing the string literal embedded into an executable



CHAPTER 3 ■ WORKING WITH TEXT

62

Listing 3-2. Editing a string literal

#include <iostream>
 
using namespace std;
 
namespace
{
    const char* const STRING{ "This is a string" };
    char* EDIT_STRING{ "Attempt to Edit" };
}
 
int main()
{
    cout << STRING << endl;
 
    cout << EDIT_STRING << endl;
    EDIT_STRING[0] = 'a';
    cout << EDIT_STRING << endl;
 
    return 0;
}
 

Listing 3-2 adds a new string literal which is assigned to a non-const pointer. The main function also has 
code which tries to edit the first character in the string to be a lower case a. This code will compile without 
error, however you should receive a warning from a C++11/C++14 compiler, as it is perfectly valid to attempt 
to alter strings using the array operator. However it is a runtime exception to try to alter data contained 
within string literals. Trying to run this program results in the error shown in Figure 3-2.

You can catch these errors at compile time rather than runtime by following a very simple piece of 
advice. Always assign old-style string literals to variables of type const char* const. You can use the 
makefile from Listing 3-3 if you want to enforce this in a very straight forward fashion.

Listing 3-3. Compiling with warnings as errors

main: main.cpp
clang++ -Werror -std=c++1y main.cpp -o main
 
Compiling your program with the makefile in Listing 3-3 will ensure that the compiler fails to build your 

application with non-const string literals. An example of the output you can expect can be seen in Figure 3-3.

Figure 3-2. Runtime error generated when attempting to alter string literals



CHAPTER 3 ■ WORKING WITH TEXT

63

The second problem caused by string literals is that they increase the size of your program. In a digital 
world, reducing the download size of your programs is a key target to help increase the number of installs 
of your software. Removing unnecessary string literals is one thing you can do to reduce the size of your 
executable. Listing 3-4 shows how this can be achieved using the preprocessor.

Listing 3-4. Removing debug string literals from builds

#include <iostream>
#include <string>
 
using namespace std;
 
#define DEBUG_STRING_LITERALS !NDEBUG
 
namespace
{
#if DEBUG_STRING_LITERALS
    using StringLiteral = string;
#endif
 
    StringLiteral STRING{ "This is a String!"s };
}
 
int main()
{
    cout << STRING << endl;
 
    return 0;
}
 

Listing 3-4 creates a preprocessor symbol DEBUG_STRING_LITERALS using the NDEBUG symbol. The 
NDEBUG preprocessor symbol stands for not debug and therefore we can use it to determine whether we 
would like to have debug string literals included in our program or not. The definition of the type alias 
StringLiteral is then wrapped in a #if...#endif block which ensures that StringLiteral only exists 

Figure 3-3. Error Output When Compiling with –Werror and Writiable String Literals



CHAPTER 3 ■ WORKING WITH TEXT

64

when building debug builds. The NDEBUG symbol is commonly used in IDEs when building release builds 
of your program. As the samples that accompany this book are built using make you will have to manually 
define this in your makefile. An example makefile is shown in Listing 3-5.

Listing 3-5. A makefile that Defines NDEBUG

main: main.cpp
        clang++ -D NDEBUG -O2 -Werror -std=c++1y main.cpp -o main

 
At that point you will also need to wrap any code which creates or uses any variables of the 

StringLiteral type. You should see a problem at this point, using this define means that you cannot have 
any string literals in your program. A better solution is shown in Listing 3-6.

Listing 3-6. Separating debug and non-debug string literals

#include <iostream>
#include <string>
 
using namespace std;
 
#define DEBUG_STRING_LITERALS !NDEBUG
 
namespace
{
#if DEBUG_STRING_LITERALS
    using DebugStringLiteral = string;
#endif
 
#if DEBUG_STRING_LITERALS
    DebugStringLiteral STRING{ "This is a String!"s };
#endif
}
 
int main()
{
#if DEBUG_STRING_LITERALS
    cout << STRING << endl;
#endif
 
    return 0;
}
 

Using the debug literals for diagnostic code, as in Listing 3-6, that the end user should never see allows you 
to remove strings and code and in turn reduces the size of your executable and increases execution speed.

Recipe 3-2. Localizing User Facing Text

Problem
You never know when you might need to support a language other than your own native tongue. Ensure that 
any strings the user can see come from a localized source.



CHAPTER 3 ■ WORKING WITH TEXT

65

Solution
Build a string manager class which returns strings from a self-created table and only ever reference strings 
using IDs.

How It Works
You could legitimately code your entire project by communicating with the user using strings that you 
define in your source as string literals. This has a few major drawbacks. First is that it’s difficult to switch 
out languages on the fly. Today it’s very likely that your software will be distributed via the internet. It’s 
exceptionally unlikely that your program will not be used by people who speak a different language to 
yourself. On large development teams there is a possibility that people on the development team have a 
different first language. Building the ability to localize text into your programs from the beginning will save 
you many headaches further down the track. This is achieved by loading in the string data for your program 
from a file. You can then include multiple different languages in your data by writing your strings in your 
native tongue and having friends or a translation service translate the strings into other languages for you.

You will need to create a class to handle the localized string content for your game. Listing 3-7 shows the 
class definition for the Localization Manager.

Listing 3-7. The Localization Manager

#pragma once
 
#include <array>
#include <cinttypes>
#include <string>
#include <unordered_map>
 
namespace Localization
{
    using StringID = int32_t;
 
    enum class Languages
    {
        EN_US,
        EN_GB,
        Number
    };
 
    const StringID STRING_COLOR{ 0 };
 
    class Manager
    {
    private:
        using Strings = std::unordered_map<StringID, std::string>;
        using StringPacks =
            std::array<Strings, static_cast<size_t>(Languages::Number)>;
 
        StringPacks m_StringPacks;
        Strings* m_CurrentStringPack{ nullptr };
 
        uint32_t m_LanguageIndex;
 



CHAPTER 3 ■ WORKING WITH TEXT

66

    public:
        Manager();
 
        void SetLanguage(Languages language);
 
        std::string GetString(StringID stringId) const;
    };
}
 

There are a number of things being done in the Listing 3-7. The first aspect of the source to pay attention 
to is the namespace. You’ll find it easier to manage your code if you keep different classes in namespaces 
that have names which make sense. For the localization module I’ve used the name Localization. This will 
help make it clear in your code when you are using classes and objects from this module.

There is a type alias being created to act as an identifier for different strings. Once again a type alias is 
useful here as you may decide to change the type of your string ids at some point in the future. There is an 
enum class which determines the languages the Localization Manager supports. The StringID STRING_
COLOR is defined as being 0. This is the only StringID in this example as it is all we need to illustrate how the 
Localization Manager operates.

The Manager itself defines some private type aliases to make the code clear. There is an alias defined 
to allow us to create an unordered_map of StringID to std::string pairs and another that allows the 
creation of an array of these string maps. There is also a variable declared to instantiate an array of string 
maps as well as a pointer to the current string map in use. The class has a constructor and two other 
methods, SetLanguage and GetString. Listing 3-8 shows the source for the constructor.

Listing 3-8. Localization::Manager Constructor

Manager::Manager()
{
    static const uint32_t INDEX_EN_US{ static_cast<uint32_t>(Languages::EN_US) };
    m_StringPacks[INDEX_EN_US][STRING_COLOR] = "COLOR"s;
 
    static const uint32_t INDEX_EN_GB{ static_cast<uint32_t>(Languages::EN_GB) };
    m_StringPacks[INDEX_EN_GB][STRING_COLOR] = "COLOUR"s;
 
    SetLanguage(Languages::EN_US);
}
 

This basic constructor is initializing two string maps, one for the US English language and one for 
British English. You can see the different spellings of the word color being passed into each map. The last 
line of the source sets the default language to US English. The SetLanguage method is shown in Listing 3-9.

Listing 3-9. Localization::Manager::SetLanguage

void Manager::SetLanguage(Languages language)
{
    m_CurrentStringPack = &(m_StringPacks[static_cast<uint32_t>(language)]);
}
 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 3 ■ WORKING WITH TEXT

67

This method is straight forward. It simply sets the m_CurrentStringPack variable to store the address 
of the string map for the selected language. You must static_cast the enum type variable as C++’s STL 
array will not allow you to use an index which is not a numeric type. You can see the static_cast in action 
converting the language parameter to a uint32_t.

The last method in the Manager class is the GetString method which you can see in Listing 3-10.

Listing 3-10. Localization::Manager::GetString

std::string Manager::GetString(StringID stringId) const
{
    stringstream resultStream;
    resultStream << "!!!"s;
    resultStream << stringId;
    resultStream << "!!!"s;
    string result{ resultStream.str() };
 
    auto iter = m_CurrentStringPack->find(stringId);
    if (iter != m_CurrentStringPack->end())
    {
        result = iter->second;
    }
 
    return result;
}
 

The GetString method begins by building a default string to return from the function. This will 
allow you to print out any missing string ids in your program to help with localization testing efforts. The 
unordered_map::find method is then used to search for the string id in the map. You know if the find call 
was successful if it returns a valid iterator. It will return the end iterator if the search fails to find a match. 
The if statement is checking to see whether the string id was found in the map. If it was found the string for 
the given id is stored in the result variable and passed back to the method caller.

Note ■  You could make the default missing string happen only for non-final builds. This would save the 

execution cost of building this string on your end user’s computers. They should hopefully never see missing 

strings in their programs.

Listing 3-11 lists an updated main function which shows how this Manager can be used in your code.

Listing 3-11. Using the Localization::Manager class

#include <iostream>
#include "LocalizationManager.h"
 
using namespace std;
 
int main()
{
    Localization::Manager localizationManager;
    string color{ localizationManager.GetString(Localization::STRING_COLOR) };
    cout << "EN_US Localized string: " << color.c_str() << endl;
 



CHAPTER 3 ■ WORKING WITH TEXT

68

    localizationManager.SetLanguage(Localization::Languages::EN_GB);
    color = localizationManager.GetString(Localization::STRING_COLOR);
    cout << "EN_GB Localized string: " << color.c_str() << endl;
 
    color = localizationManager.GetString(1);
    cout << color.c_str() << endl;
 
    return 0;
}
 

The main function now creates an instance of the Localization::Manager class. You can see an 
example of how to retrieve a string from the manager and use it to output using cout. The language is then 
switched to British English and the string is retrieved and printed a second time. For completeness sake the 
last example shows what happens when you request a string id which does not exist. Figure 3-4 contains the 
output from the program.

This figure shows output as you would expect. The US English spelling of color appears first, followed 
by the British English spelling and finally the missing id is output with triple exclamation points at the 
beginning and end. This should help to have missing string identifiers stand out in your program.

Recipe 3-3. Reading Strings from a File

Problem
Embedding user facing text in your source code makes future text updates and localization difficult to 
manage.

Solution
You can load your localized string data from a data file.

How It Works
I’m going to show you how to load string data into your program from a Comma Separated Values (.csv) file. 
Before you can load such a file you will need to create one. Figure 3-5 shows the data I entered into Excel for 
export as a .csv file.

Figure 3-4. The output from the Localization Manager’s strings



CHAPTER 3 ■ WORKING WITH TEXT

69

I have used Excel to create a very basic .csv file. You can see the Color and Colour values I used in the last 
section as well as the US and UK spellings of flavor. Figure 3-6 shows how this file appears in a basic text editor.

Figure 3-5. The strings.csv file in Excel 2013



CHAPTER 3 ■ WORKING WITH TEXT

70

Each row from the Excel document has been placed into its own line in the csv file and each column has 
been separated by a comma. This is from where the csv derives its name. Now that we have a csv file we can 
load the data in the Localization::Manager’s constructor. Listing 3-12 contains code which can be used to 
load and parse the string csv file.

Listing 3-12. Loading strings from a csv

Manager::Manager()
{
    ifstream csvStringFile{ "strings.csv"s };
 
    assert(csvStringFile);
    if (csvStringFile)
    {
        while (!csvStringFile.eof())
        {
            string line;
            getline(csvStringFile, line);
 
            if (line.size() > 0)
            {
                // Create a stringstream for the line
                stringstream lineStream{ line };
 
                // Use the line stream to read in the string id
                string stringIdText;
                getline(lineStream, stringIdText, ',');
 
                stringstream idStream{ stringIdText };
                uint32_t stringId;
                idStream >> stringId;

Figure 3-6. The strings.csv file open in Notepad++



CHAPTER 3 ■ WORKING WITH TEXT

71

 
                // Loop over the line and read in each string
                uint32_t languageId = 0;
                string stringText;
                while (getline(lineStream, stringText, ','))
                {
                    m_StringPacks[languageId++][stringId] = stringText;
                }
            }
        }
    }
 
    SetLanguage(Languages::EN_US);
}
 

The code to read in the strings.csv file isn’t overly complicated. The first step is to open the file for 
reading and the code achieves this using an ifstream object. The ifstream class is provided by C++ to read 
data in from files and provides methods to achieve this. The first method we use is the overloaded pointer 
operator. This is called when we use assert or if to determine whether the file passed into the ifstream 
was valid and was opened. This is followed by a while loop which will run until the end of file or eof method 
returns true. This is ideal because we do not wish to stop reading data until all of our strings are loaded.

The ifstream class provides a getline method which can be used with C-style string arrays. It’s 
generally better and less error prone to use std::string rather than raw C strings so in Listing 3-12 you can 
see a use of the std::getline method which takes a reference to any type of stream. The first use of getline 
retrieves a whole line of text from the csv file into a std::string object. This line contains data about a 
single string starting with its id, followed by each of the localized versions of the text.

The std::getline method has a very useful third parameter. By default the method retrieves text from 
a file until it reaches a newline character however we can pass in a different character as a third parameter 
and the function will stop gathering text when this character is encountered. Listing 3-11 makes use of this 
feature by passing in a comma as the delimiter. This allows us to pull out the values from each of the cells in 
the Excel document.

The getline function requires a stream object to be passed to it however the line was read into a 
std::string. You can see that this problem is solved by creating a stringstream object and passing the line 
variable to the constructor. Once the stringstream has been created the getline method is used to retrieve the 
string id using a stringstream object.

Note ■  C++ provides several methods to convert strings into values. These include stoi to convert to 

integers and stof to convert to floats as well as others. These are all defined in the string header file. You’ll 

also find a function there named to_string which can be used to convert several different types into a string. 

These aren’t always supplied by the implementation of the STL that you may be using. The version of libstdc++ 

currently available in Cygwin for example does not provide these functions therefore the code samples have not 

used them.

After the method has retrieved the id it loops over the rest of the line and reads out the string data for 
each language. This relies on the Languages enum class definition having the languages in the same order 
as the columns in the csv file.



CHAPTER 3 ■ WORKING WITH TEXT

72

Recipe 3-4. Reading the Data from an XML File

Problem
Whilst CSV files are a very simple format and great for some applications they have a major flaw; separating 
strings by comma means that you cannot use commas in your string data because the loading code would 
interpret those as the end of the string. If this happens the code can crash as it tries to read in too many 
strings and overrun the array.

Solution
Save the string file as an XML document and use a parser to load the data.

How It Works
The RapidXML library is an open source XML solution which can be used with your C++ applications. 
It is supplied as a header file which can be included into any source file you need to have XML handling 
capabilities. You can download the latest version of RapidXML from the following location  
http://rapidxml.sourceforge.net/. I saved my Excel document using the XML Spreadsheet 2003 file type. 
The code shown in this section is capable of loading this type of XML file. Listing 3-13 shows the entire file 
which contains our string data.

Listing 3-13. The XML Spreadsheet file

<?xml version="1.0"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:html="http://www.w3.org/TR/REC-html40">
 <DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">
  272103_1_EnBruce Sutherland</Author>
  <LastAuthor>Bruce</LastAuthor>
  <Created>2014-06-13T06:29:44Z</Created>
  <Version>15.00</Version>
 </DocumentProperties>
 <OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">
  <AllowPNG/>
 </OfficeDocumentSettings>
 <ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">
  <WindowHeight>12450</WindowHeight>
  <WindowWidth>28800</WindowWidth>
  <WindowTopX>0</WindowTopX>
  <WindowTopY>0</WindowTopY>
  <ProtectStructure>False</ProtectStructure>
  <ProtectWindows>False</ProtectWindows>
 </ExcelWorkbook>

http://rapidxml.sourceforge.net/
http://rapidxml.sourceforge.net/


CHAPTER 3 ■ WORKING WITH TEXT

73

 <Styles>
  <Style ss:ID="Default" ss:Name="Normal">
   <Alignment ss:Vertical="Bottom"/>
   <Borders/>
   <Font ss:FontName="Calibri" x:Family="Swiss" ss:Size="11" ss:Color="#000000"/>
   <Interior/>
   <NumberFormat/>
   <Protection/>
  </Style>
 </Styles>
 <Worksheet ss:Name="strings">
  <Table ss:ExpandedColumnCount="3" ss:ExpandedRowCount="2" x:FullColumns="1"
   x:FullRows="1" ss:DefaultColumnWidth="54" ss:DefaultRowHeight="14.25">
   <Row>
    <Cell><Data ss:Type="Number">0</Data></Cell>
    <Cell><Data ss:Type="String">Color</Data></Cell>
    <Cell><Data ss:Type="String">Colour</Data></Cell>
   </Row>
   <Row>
    <Cell><Data ss:Type="Number">1</Data></Cell>
    <Cell><Data ss:Type="String">Flavor</Data></Cell>
    <Cell><Data ss:Type="String">Flavour</Data></Cell>
   </Row>
  </Table>
  <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">
   <PageSetup>
    <Header x:Margin="0.3"/>
    <Footer x:Margin="0.3"/>
    <PageMargins x:Bottom="0.75" x:Left="0.7" x:Right="0.7" x:Top="0.75"/>
   </PageSetup>
   <Selected/>
   <ProtectObjects>False</ProtectObjects>
   <ProtectScenarios>False</ProtectScenarios>
  </WorksheetOptions>
 </Worksheet>
</Workbook>
 

You might be able to tell from this file listing that our parsing code is going to be required to ignore an 
awful lot of data. From the document root we will access the string data through the Workbook node then 
the Worksheet, Table, Row, Cell and finally Data nodes.

Note ■  This XML data format is very verbose and a bit heavy on unnecessary data. You would be better 

served by writing your own lightweight exporter using Excel’s Visual Basic for Applications macro support but 

that topic is out with the scope of this book.



CHAPTER 3 ■ WORKING WITH TEXT

74

Listing 3-14 covers the code necessary to use RapidXML to load your string data.

Listing 3-14. Using RapidXML to load the strings

Manager::Manager()
{
    ifstream xmlStringFile{ "strings.xml"s };
    xmlStringFile.seekg(0, ios::end);
    uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };
    char* buffer{ new char[size]{} };
    xmlStringFile.seekg(0, ios::beg);
    xmlStringFile.read(buffer, size);
    xmlStringFile.close();
 
    rapidxml::xml_document<> document;
    document.parse<0>(buffer);
 
    rapidxml::xml_node<>* workbook{ document.first_node("Workbook") };
    if (workbook != nullptr)
    {
        rapidxml::xml_node<>* worksheet{ workbook->first_node("Worksheet") };
        if (worksheet != nullptr)
        {
            rapidxml::xml_node<>* table{ worksheet->first_node("Table") };
            if (table != nullptr)
            {
                rapidxml::xml_node<>* row{ table->first_node("Row") };
                while (row != nullptr)
                {
                    uint32_t stringId{ UINT32_MAX };
 
                    rapidxml::xml_node<>* cell{ row->first_node("Cell") };
                    if (cell != nullptr)
                    {
                        rapidxml::xml_node<>* data{ cell->first_node("Data") };
                        if (data != nullptr)
                        {
                            stringId = static_cast<uint32_t>(atoi(data->value()));
                        }
                }
 
                if (stringId != UINT32_MAX)
                {
                    uint32_t languageIndex{ 0 };
 
                    cell = cell->next_sibling("Cell");
                    while (cell != nullptr)
                    {
                        rapidxml::xml_node<>* data = cell->first_node("Data");
                        if (data != nullptr)
                        {
                            m_StringPacks[languageIndex++][stringId] = data->value();
                        }
 



CHAPTER 3 ■ WORKING WITH TEXT

75

                        cell = cell->next_sibling("Cell");
                    }
                }
 
                row = row->next_sibling("Row");
            }
        }
    }
}
 

This listing has a lot going on so I will break it down section by section. The first step involves using the 
following code to load the entire contents of the XML file into memory.
 
ifstream xmlStringFile{ "strings.xml"s };
xmlStringFile.seekg(0, ios::end);
uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };
char* buffer{ new char[size]{} };
xmlStringFile.seekg(0, ios::beg);
xmlStringFile.read(buffer, size);
xmlStringFile.close();
 

You need the entire file to be stored in a memory buffer which is null terminated and this is why the 
file is opened using ifstream and then seekg is used to move to the end of the stream. Once at the end 
the tellg method can be used to work out how big the file is. There is a 1 added to the value from tellg 
to ensure that there is enough memory allocated to allow for a null terminating character as RapidXML 
requires. Dynamic memory allocation is used to create the buffer in memory and memset clears the entire 
buffer to contain zeroes. The seekg method is used to move the file stream location to the beginning of the 
file before read is used to obtain the entire contents of the file into the allocated buffer. The last step is to 
close the file stream as soon as the code is finished with the file.

These two lines are responsible for initializing the XML data structure from the contents of the file.
 
rapidxml::xml_document<> document;
document.parse<0>(buffer);
 

This code creates an XML document object which contains a parse method. The 0 passed as a template 
parameter can be used to set different flags on the parser but this example has no need for any of these. Now 
that the code has created a parsed representation of the XML document it can begin to access the nodes it 
contains. The next few lines retrieve pointers to the Workbook, Worksheet, Table and Row nodes.
 
rapidxml::xml_node<>* workbook{ document.first_node("Workbook") };
if (workbook != nullptr)
{
    rapidxml::xml_node<>* worksheet{ workbook->first_node("Worksheet") };
    if (worksheet != nullptr)
    {
        rapidxml::xml_node<>* table{ worksheet->first_node("Table") };
       if (table != nullptr)
        {
            rapidxml::xml_node<>* row{ table->first_node("Row") };
            while (row != nullptr)
            {
 



CHAPTER 3 ■ WORKING WITH TEXT

76

These lines are all straight forward. There is only a single Workbook, Worksheet and Table in a simple 
Excel XML document so we can simply ask each node for its first child of that name. Once the code gets to 
the row elements there is a while loop. This will allow us to go over each line from the spreadsheet and load 
our strings into the appropriate maps. The entire row while loop is as follows.
 
rapidxml::xml_node<>* row{ table->first_node("Row") };
while (row != nullptr)
{
    uint32_t stringId{ UINT32_MAX };
 
    rapidxml::xml_node<>* cell{ row->first_node("Cell") };
    if (cell != nullptr)
    {
        rapidxml::xml_node<>* data{ cell->first_node("Data") };
        if (data != nullptr)
        {
            stringId = static_cast<uint32_t>(atoi(data->value()));
        }
    }
 
    if (stringId != UINT32_MAX)
    {
        uint32_t languageIndex{ 0 };
 
        cell = cell->next_sibling("Cell");
        while (cell != nullptr)
        {
            rapidxml::xml_node<>* data = cell->first_node("Data");
            if (data != nullptr)
            {
                m_StringPacks[languageIndex++][stringId] = data->value();
            }
 
            cell = cell->next_sibling("Cell");
        }
    }
 
    row = row->next_sibling("Row");
}
 

The while loop starts by getting the stringId from the first Cell and Data nodes. The atoi function is 
used to turn the C-style string into an integer that must be cast to an unsigned int. The following if checks 
whether a valid string id was obtained, if it was then the code enters another while loop. This loop grabs 
each string from the subsequent Cell and Data nodes and places them into the correct map. It does this by 
setting the language index to 0 initially and post-incrementing the index after each string is entered. This, 
again, requires that the localized strings be entered into the spreadsheet in the correct order.

That is all you need to be able to load string data in from XML files. You should be able to come up with 
a better way to generate these files which don’t consume so much data. You might also reach a point where 
having all of your text loaded consumes too much system RAM. At that point you should consider splitting 
each language into a separate file and only loading the languages when you need them. It will be unlikely for 
a user to need every translated language which you choose to support.



CHAPTER 3 ■ WORKING WITH TEXT

77

Recipe 3-5. Inserting Runtime Data into Strings

Problem
Occasionally you will be required to enter runtime data such as numbers or the user’s name into your 
strings. While C++ supports the older C functions for formatting C-style strings these do not work with STL’s 
string class.

Solution
The boost library provides extensive library support for C++ which includes methods and function for 
formatting data held in STL strings.

How It Works
To begin you should add a new row to your spreadsheet with the following data; 2, %1% %2%, %2% %1%. 
You should place each element that comes after a comma in a new cell. Listing 3-15 has updated the main 
function to utilize this new string.

Listing 3-15. Using boost::format

#include <iostream>
#include "LocalizationManager.h"
#include "boost/format.hpp"
 
using namespace std;
 
int main()
{
    Localization::Manager localizationManager;
    std::string color{ localizationManager.GetString(Localization::STRING_COLOR) };
    std::cout << "EN_US Localized string: " << color.c_str() << std::endl;
 
    std::string flavor{ localizationManager.GetString(Localization::STRING_FLAVOR) };
    std::cout << "EN_US Localized string: " << flavor.c_str() << std::endl;
 
    localizationManager.SetLanguage(Localization::Languages::EN_GB);
    color = localizationManager.GetString(Localization::STRING_COLOR);
    std::cout << "EN_GB Localized string: " << color.c_str() << std::endl;
 
    flavor = localizationManager.GetString(Localization::STRING_FLAVOR);
    std::cout << "EN_GB Localized string: " << flavor.c_str() << std::endl;
 
    color = localizationManager.GetString(3);
    std::cout << color.c_str() << std::endl;
 
    std::cout << "Enter your first name: " << std::endl;
    std::string firstName;
    std::cin >> firstName;
 



CHAPTER 3 ■ WORKING WITH TEXT

78

    std::cout << "Enter your surname: " << std::endl;
    std::string surname;
    std::cin >> surname;
 
    localizationManager.SetLanguage(Localization::Languages::EN_US);
    std::string formattedName{ localizationManager.GetString(Localization::STRING_NAME) };
    formattedName = str( boost::format(formattedName) % firstName % surname );
    std::cout << "You said your name is: " << formattedName << std::endl;
 
    localizationManager.SetLanguage(Localization::Languages::EN_GB);
    formattedName = localizationManager.GetString(Localization::STRING_NAME);
    formattedName = str(boost::format(formattedName) % firstName % surname);
    std::cout << "You said your name is: " << formattedName << std::endl;
 
    return 0;
}
 

You can see that the additions to main added in Listing 3-15 ask the user to enter their own name. 
The call to cin will stall program execution until the user has entered their first name then surname. Once 
the program has stored the user’s name it changes the language to EN_US and gets the string from the 
Localization Manager. The next line uses the boost::format function to replace the symbols in the string 
with the firstName and surname values. Our new string contained the symbols %1% and %2%. This is 
used to decide which variables are replaced into the string. The call to format is followed by a % operator 
then the firstName string. Because firstName is the first parameter passed to the % operator it will replace 
the %1% in our string. Similarly the surname will be used to replace the %2% because it is the second 
parameter passed using %.

This all works because the format function is setting up an object which is returned from the format 
function. This object is then passed to its % operator which stores the value in firstName. This first call to 
operator % returns a reference to the boost format object which is passed to the second call to the operator %. The 
symbols in the source string aren’t actually resolved until the format object is passed into the str function. 
Boost declares the str function in the global namespace therefore it does not need a namespace scope 
operator. The str method takes the format object and constructs a new string with the parameters replaced 
into the appropriate positions. When you entered the source strings into the spreadsheet the EN_GB string 
had the names switched. You can see the results of the code in Figure 3-7.



CHAPTER 3 ■ WORKING WITH TEXT

79

Figure 3-7. The output from boost::format

You can use boost::format to replace all sorts of data into strings. Unfortunately boost does not follow 
the same conventions as the standard C printf functions therefore you will be required to use different 
strings to standard C programs. A full list of the formatting options provided by boost can be found at 
http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html.

The makefile needed to include the boost/format.hpp header in your program is relatively straight 
forward. You can see it in Listing 3-16.

Listing 3-16. Including the Boost Library

main: main.cpp LocalizationManager.cpp
        clang++ -g -std=c++1y -Iboost_1_55_0 main.cpp LocalizationManager.cpp -o main
 

You can see from this makefile that I was using the 1.55 version of the Boost library and that I placed the 
folder in the same folder as my makefile. The convention for including Boost headers is to name the Boost 
folder in the include directive therefore the –I switch in the clang++ command simply tells the compiler to 
look inside the boost_1_55_0 folder. The boost folder sits inside this folder.

http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html


81

CHAPTER 4

Working with Numbers

Computers are designed and built to crunch numbers. The programs you write will take advantage of the 
computational power of computers to provide experiences to users that are completely dependent on your 
ability to understand and utilize the tools provided by C++ to manipulate numbers. C++ provides support 
for different types of numbers, this support includes whole numbers and real numbers as well as multiple 
different ways of storing and representing these.

The C++ integer types will be used to store whole numbers and the floating point types will be used to 
store real numbers with decimal points. There are different tradeoffs and considerations to be taken into 
account when using each type of number in C++ and this chapter will introduce you to different challenges 
and scenarios where each type is appropriate. You’ll also see an older technique named fixed point 
arithmetic that can use integer types to approximate floating point types.

Recipe 4-1. Using the Integer Types in C++

Problem
You need to represent whole numbers in your program but are unsure of the limitations and capabilities of 
the different integer types.

Solution
Learning about the different integer types supported by C++ will allow you to use the correct type for the  
task at hand.

How It Works

Working with the int Type

C++ provides an exact representation of the different integer types supported by modern processors. All 
of the integer types behave in exactly the same way however they may contain more or less data than each 
other. Listing 4-1 shows how to define an integer variable in C++.



CHAPTER 4 ■ WORKING WITH NUMBERS

82

Listing 4-1. Defining an integer

int main(int argc, char* argv[])
{
    int wholeNumber{ 64 };
    return 0;
}
 

As you can see an integer is defined using the int type in C++. The int type in C++ can be used in 
conjunction with standard arithmetic operators that allow you to add, subtract, multiply, divide and take the 
modulus. Listing 4-2 uses these operator to initialize additional integer variables.

Listing 4-2. Initializing integerss using opertors

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    int wholeNumber1{ 64 };
    cout << "wholeNumber1 equals " << wholeNumber1 << endl;
 
    int wholeNumber2{ wholeNumber1 + 32 };
    cout << "wholeNumber2 equals " << wholeNumber2 << endl;
 
    int wholeNumber3{ wholeNumber2 - wholeNumber1 };
    cout << "wholeNumber3 equals " << wholeNumber3 << endl;
 
    int wholeNumber4{ wholeNumber2 * wholeNumber1 };
    cout << "wholeNumber4 equals " << wholeNumber4 << endl;
 
    int wholeNumber5{ wholeNumber4 / wholeNumber1 };
    cout << "wholeNumber5 equals " << wholeNumber5 << endl;
 
    int wholeNumber6{ wholeNumber4 % wholeNumber1 };
    cout << "wholeNumber6 equals " << wholeNumber6 << endl;
 
    return 0;
}
 

The code in Listing 4-2 contains lines that use operators to initialize additional integers. The operators 
can be used in a number of ways. You can see that the operators can have either literal values such as 32 or 
other variables on either side. Figure 4-1 shows the output from this program.



CHAPTER 4 ■ WORKING WITH NUMBERS

83

The output from Listing 4-2 is shown in Figure 4-1. The following list explains how the values shown in 
the output ends up in each variable.

The variable •฀ wholeNumber1 was initialized with the value of 64 and therefore the 
output is 64.

The literal 32 is added to the value of •฀ wholeNumber1 and stored in wholeNumber2 
therefore the output in 96.

The next line outputs 32 as the code has subtracted •฀ wholeNumber2 from 
wholeNumber1. The effect of this is that we have managed to store the literal value 
from the initialization of wholeNumber2 in the variable wholeNumber3.

The value of •฀ wholeNumber4 is output as 6144 which is the result of 64*96.

The program prints the value of 96 for •฀ wholeNumber5 as it is the result of dividing 
6144 by 64 or the value of wholeNumber4 divided by the value of wholeNumber1.

The value of •฀ wholeNumber6 is output as 32. The modulo operator returns the 
remainder from a division. In this case the remainder of 96/64 is 32 therefore the 
modulo operator has returned 32.

Working with Different Types of Integers

The C++ programming language provides support for different types of integers. Table 4-1 shows the 
different types of integers and their properties.

Figure 4-1. The output from running the code in Listing 4-2

Table 4-1. The C++ integer types

Type Name Number of Bytes Minimum Value Maximum Value

char 1 -128 127

short 2 -32,768 32,767

int 4 -2,147,483,648 2,147,483,647

long 4 -2,147,483,648 2,147,483,647

long long 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807



CHAPTER 4 ■ WORKING WITH NUMBERS

84

Table 4-1 lists the five main types that C++ supplies to work with whole numbers. The problem C++ 
presents is that these types are not always guaranteed to represent the number of bytes as shown in Table 4-1. 
This is because the C++ standard leaves the decision of how many bytes represents up to the platform. The 
situation isn’t entirely the fault of C++. Processor manufacturers may choose to represent integers using 
different numbers of bytes and therefore the compiler writers for those platforms are free to alter the types to 
suit their processor by the standard. You can however write code that guarantees the number of bytes in your 
integers by using the cinttypes header. Table 4-2 shows the different integers available through cinttypes.

The types supplied by cinttypes contain the number of bits that they represent. Given that there are  
8 bits in a byte you can see the relationship by the type and the number of bytes in Table 4-2. Listing 4-3 uses 
the same operators as Listing 4-2 but is updated to use the int32_t type in place of int.

Listing 4-3. Using the int32_t type with operators

#include <iostream>
#include <cinttypes>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    int32_t whole32BitNumber1{ 64 };
    cout << "whole32BitNumber1 equals " << whole32BitNumber1 << endl;
 
    int32_t whole32BitNumber2{ whole32BitNumber1 + 32 };
    cout << "whole32BitNumber2 equals " << whole32BitNumber2 << endl;
 
    int32_t whole32BitNumber3{ whole32BitNumber2 - whole32BitNumber1 };
    cout << "whole32BitNumber3 equals " << whole32BitNumber3 << endl;
 
    int32_t whole32BitNumber4{ whole32BitNumber2 * whole32BitNumber1 };
    cout << "whole32BitNumber4 equals " << whole32BitNumber4 << endl;
 
    int32_t whole32BitNumber5{ whole32BitNumber4 / whole32BitNumber1 };
    cout << "whole32BitNumber5 equals " << whole32BitNumber5 << endl;
 
    int whole32BitNumber6{ whole32BitNumber2 % whole32BitNumber1 };
    cout << "whole32BitNumber6 equals " << whole32BitNumber6 << endl;
 
    return 0;
}
 

Table 4-2. The cinttypes integers

Type Name Number of Bytes Minimum Value Maximum Value

int8_t 1 -128 127

int16_t 2 -32,768 32,767

int32_t 4 -2,147,483,648 2,147,483,647

int64_t 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807



CHAPTER 4 ■ WORKING WITH NUMBERS

85

The output resulting from this code is similar to that of Figure 4-1 as you can see in Figure 4-2.

Working with Unsigned Integers

Each of the types shown in Table 4-1 and Table 4-2 have unsigned counterparts. Using an unsigned version 
of the type means that you will no longer have access to negative numbers however you will have a much 
longer range of positive numbers represented by the same number of bytes. You can see the C++ standard 
unsigned types in Table 4-3.

The unsigned numbers store the same range of numbers as their signed counterparts. Both a signed char 
and an unsigned char can store 256 unique values. The signed char stores values from -128 to 127 while the 
unsigned version stores the 256 values from 0 to 255. The built-in unsigned types suffer from the same problem 
as the signed types, they may not represent the same number of bytes on different platforms. C++’s cinttypes 
header file provides unsigned types that guarantee their size. Table 4-4 documents these types.

Figure 4-2. The output when using the int32_t and code from Listing 4-2

Table 4-3. C++’s built-in unsigned types

Type Name Number of Bytes Minimum Value Maximum Value

unsigned char 1 0 255

unsigned short 2 0 65,535

unsigned int 4 0 4,294,967,295

unsigned long 4 0 4,294,967,295

unsigned long long 8 0 18,446,744,073,709,551,615

Table 4-4. The cintypes header file’s unsigned ineteger types

Type Name Number of Bytes Minimum Value Maximum Value

uint8_t 1 0 255

uint16_t 2 0 65,535

uint32_t 4 0 4,294,967,295

uint64_t 8 0 18,446,744,073,709,551,615



CHAPTER 4 ■ WORKING WITH NUMBERS

86

Recipe 4-2. Making Decisions with Relational Operators

Problem
You are writing a program and must make a decision based on the result of a comparison between two values.

Solution
C++ provides relational operators that return true or false based on the comparison being calculated.

How It Works
C++ provides four major relational operators. These are:

The equality operator•฀

The inequality operator•฀

The greater-than operator•฀

The less-than operator•฀

These operators allow you to quickly compare two values and determine whether the result is true or 
false. The result of a true or false comparison can be stored in the bool type provided by C++. A bool can 
only represent either true or false.

The Equality Operator

Listing 4-4 shows the equality operator in use.

Listing 4-4. The C++ equality operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    int32_t equal1{ 10 };
    int32_t equal2{ 10 };
    bool isEqual = equal1 == equal2;
    cout << "Are the numbers equal? " << isEqual << endl;
 
    int32_t notEqual1{ 10 };
    int32_t notEqual2{ 100 };
    bool isNotEqual = notEqual1 == notEqual2;
    cout << "Are the numbers equal? " << isNotEqual << endl;
 
    return 0;
}
 



CHAPTER 4 ■ WORKING WITH NUMBERS

87

The code in Listing 4-4 generates the output shown in Figure 4-3.

The equality operator will set a bool variable’s value to true (represented by 1 in the output) in the 
event of the values on both sides of the operator being the same. This is the case where Listing 4-4 compares 
equal1 to equal2. The result of the operator is false when the values on both sides are different as when the 
code compares notEqual1 to notEqual2.

The Inequality Operator

The inequality operator is used to determine when numbers are not equal. Listing 4-5 shows the inequality 
operator in use.

Listing 4-5. The Inequality Operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    int32_t equal1{ 10 };
    int32_t equal2{ 10 };
    bool isEqual = equal1 != equal2;
    cout << "Are the numbers not equal? " << isEqual << endl;
 
    int32_t notEqual1{ 10 };
    int32_t notEqual2{ 100 };
    bool isNotEqual = notEqual1 != notEqual2;
    cout << "Are the numbers not equal? " << isNotEqual << endl;
 
    return 0;
}
 

Figure 4-3. Output from the relational equality operator



CHAPTER 4 ■ WORKING WITH NUMBERS

88

The output generated by Listing 4-5 is shown in Figure 4-4.

You can see from Listing 4-5 and Figure 4-4 that the inequality operator will return true when the values 
are not equal and false when the values are equal.

The Greater-than Operator

The greater-than operator can tell you whether the number on the left is greater-than the number on the 
right. Listing 4-6 shows this in action.

Listing 4-6. The greater-than operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    int32_t greaterThan1{ 10 };
    int32_t greaterThan2{ 1 };
    bool isGreaterThan = greaterThan1 > greaterThan2;
    cout << "Is the left greater than the right? " << isGreaterThan << endl;
 
    int32_t notGreaterThan1{ 10 };
    int32_t notGreaterThan2{ 100 };
    bool isNotGreaterThan = notGreaterThan1 > notGreaterThan2;
    cout << "Is the left greater than the right? " << isNotGreaterThan << endl;
 
    return 0;
}
 

The greater-than operator sets the value of a bool to be either true or false. The result will be true when 
the number on the left is greater than the number on the right and false when the number on the right is 
greater than that on the left. Figure 4-5 shows the output generated by Listing 4-6.

Figure 4-4. The output from Listing 4-5 showing the results of the inequality operator



CHAPTER 4 ■ WORKING WITH NUMBERS

89

The Less-than Operator

The less-than operator produces the opposite result of the greater than operator. The less-than operator 
returns true when the number of the left is less than that on the right. Listing 4-7 shows the operator in use.

Listing 4-7. The Less-than operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    int32_t lessThan1{ 1 };
    int32_t lessThan2{ 10 };
    bool isLessThan = lessThan1 < lessThan2;
    cout << "Is the left less than the right? " << isLessThan << endl;
 
    int32_t notLessThan1{ 100 };
    int32_t notLessThan2{ 10 };
    bool isNotLessThan = notLessThan1 < notLessThan2;
    cout << "Is the left less than the right? " << isNotLessThan << endl;
 
    return 0;
}
 

Figure 4-6 shows the results when the code in Listing 4-7 is executed.

Figure 4-5. The output generated by Listing 4-6

Figure 4-6. The output generated when the less-than operator is used in Listing 4-7



CHAPTER 4 ■ WORKING WITH NUMBERS

90

Recipe 4-3. Chaining Decisions with Logical Operators

Problem
Sometimes your code will require that multiple conditions are satisfied in order to set a Boolean value to true.

Solution
C++ provides logical operators that allow the chaining of relational statements.

How It Works
C++ provides two logical operators that allow the chaining of multiple relational statements. These are:

The && (and) Operator•฀

The || (or) Operator•฀

The && Operator

The && operator is used when you would like to determine that two different relational operators are both 
true. Listing 4-8 shows the && operator in use.

Listing 4-8. The Logical && Operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    bool isTrue { (10 == 10) && (12 == 12) };
    cout << "True? " << isTrue << endl;
 
    bool isFalse = isTrue && (1 == 2);
    cout << "True? " << isFalse << endl;
 
    return 0;
}
 

The value of isTrue is set to true because both of the relational operations result in a true value. The 
value of isFalse is set to false because both of the relational statements do not result in a true statement. 
The output of these operations can be seen in Figure 4-7.



CHAPTER 4 ■ WORKING WITH NUMBERS

91

The Logical || Operator

The logical || operator is used to determine when either or both of the statements used are true. Listing 4-9 
contains code that tests the results of the || operator.

Listing 4-9. The Logical || Operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    bool isTrue { (1 == 1) || (0 == 1) };
    cout << "True? " << isTrue << endl;
 
    isTrue = (0 == 1) || (1 == 1);
    cout << "True? " << isTrue << endl;
 
    isTrue = (1 == 1) || (1 == 1);
    cout << "True? " << isTrue << endl;
 
    isTrue = (0 == 1) || (1 == 0);
    cout << "True? " << isTrue << endl;
 
    return 0;
}
 

The resulting output generated by this code can be seen in Figure 4-8.

Figure 4-7. The Logical && Operator output generated by Listing 4-8

Figure 4-8. The output generated when using logical || operators



CHAPTER 4 ■ WORKING WITH NUMBERS

92

Listing 4-9 proves that the logical || operator will return true whenever either or both of the relational 
operations are also true. When both are false the || operator will also return false.

Note ■  There is a commonly used optimization when using logical operators. Execution will end as soon as 

the operator is satisfied. This means that a || operator will not evaluate the second term when the first is true 

and the && operator will not evaluate the second term when the first is false. Be wary of this when calling 

 functions in the right side statement that have secondary effects outside of their Boolean return value.

Recipe 4-4. Using Hexadecimal Values

Problem
You are working with code that contains hexadecimal value and you need to understand how they work.

Solution
C++ allows the use of hexadecimal values in code and programmers routinely use hex values when writing 
out binary representation of numbers.

How It Works
Computer processors use a binary representation to store numbers in memory and used binary instructions 
to test and modify these values. Due to its low level nature, C++ provides bitwise operators that can operate 
on the bits in variables exactly as a processor would. A bit of information can either be a 1 or a 0. We can 
construct higher numbers by using chains of bits. A single bit can represent the digits 1 or 0. Two bits 
however can represent 0, 1, 2 or 3. This can be achieved because two bits can represent four unique signals; 
00, 01, 10 and 11. The C++ int8_t data type is made up of 8 bits. The data in Table 4-5 shows how these 
different bits are represented numerically.

A uint8_t variable that stored the value represented by Table 4-5 would contain the number 137. In fact, 
an 8bit variable can store 256 individual values. You can work out the number of values a variable can store 
by raising the number 2 to the power of the number of bits i.e. 2^8 is 256.

Table 4-5. The numerical values of bits in an 8bit variable

128 64 32 16 8 4 2 1

1 0 0 0 1 0 0 1



CHAPTER 4 ■ WORKING WITH NUMBERS

93

Note ■  Negative numbers are represented in signed types using the same number of bits as unsigned types. 

In Table 4-4, a signed value would lose the position at 128 to become a sign bit. You can convert a positive 

number to a negative using the Two’s Complement of the number. To do this you flip all of the bits and add 1.  

For a two bit number 1 you would have the binary representation 01. To get the Two’s Complement, and therefore 

the negative, firstly flip the bits to 10 then add 1 ending with 11. In an 8 bit value you’d follow the same process. 

00000001 becomes 11111110 and adding 1 results in 11111111. No matter than number of bits in a variable,  

-1 is always represented in Two’s Complement by all bits being turned on, this is a useful fact to remember.

Writing bits out in their entirety quickly gets out of hand when dealing with 16, 32 and 64 bit numbers. 
Programmers tend to write binary representations in a hexadecimal format instead. Hex numbers are 
represented by the values 0-9 and, A, B, C, D, E and F. The values A-F represent the numbers 10 through 15.  
It takes 4 bits to represent the 16 hexadecimal values therefore we can now represent the bit pattern in 
Table 4-5 using the hexadecimal 0x89 where the 9 represents the lower 4 bits (8+1 is 9) and the 8 represents 
the higher 4 bits.

Listing 4-10 shows how you can use hexadecimal literals in your code and use cout to print them to  
the console.

Listing 4-10. Using Hexadecimal Literal Values

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    uint32_t hexValue{ 0x89 };
    cout << "Decimal: " << hexValue << endl;
    cout << hex << "Hexadecimal: " << hexValue << endl;
    cout << showbase << hex << "Hexadecimal (with base): " << hexValue << endl;
 
    return 0;
}
 

Hexadecimal literals in C++ are proceeded by 0x. This lets the compiler know that you intend for it to 
interpret the number in hex and not decimal. Figure 4-9 shows the effect of the different output flags used 
with cout in Listing 4-10.

Figure 4-9. Printing out hexadecimal values



CHAPTER 4 ■ WORKING WITH NUMBERS

94

The cout stream by default prints the decimal representation of integer variables. You must pass flags 
to cout to alter this behavior. The hex flag informs cout that it should print the number in hexadecimal 
however this does not automatically prepend the 0x base. If you wish your output to have the base on your 
hexadecimal numbers (and you usually will so that other users don’t read the value as decimal 89 instead of 137) 
you can use the showbase flag which will make cout add the 0x to your hex values.

Listing 4-10 stores the value of 0x89 in a 32bit integer type but the representation still only has an 8 bit 
value. The other 6 bits are implicitly 0. The proper 32bit representation of 137 would actually be 0x00000089.

Note ■  While it’s acceptable to drop the 0s when they are implied however it is also common practice to 

print all 8 hex values out when a 32bit number is intended. This is more important when representing  negative 

 numbers such as -1. When using an int32_t 0xF would represent 16 or 0x0000000F where -1 would be 

0xFFFFFFFF. Be sure you’re setting the value you really wanted when using hexadecimal values.

Recipe 4-5. Bit Twiddling with Binary Operators

Problem
You are developing an application where you would like to pack data into as small a format as possible.

Solution
You can use bitwise operators to set and test individual bits on a variable.

How It Works
C++ provides the following bitwise operators:

The & (bitwise and) operator•฀

The | (bitwise or) operator•฀

The ^ (exclusive or) operator•฀

The << (left shift) operator•฀

The >> (right shift) operator•฀

The ~ (One’s Complement) operator•฀

The & (Bitwise And) Operator

The bitwise & operator returns a value that has all of the bits that were set in both the left and right sides of 
the operator. Listing 4-11 shows an example of this in action.



CHAPTER 4 ■ WORKING WITH NUMBERS

95

Listing 4-11. The & operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    uint32_t bits{ 0x00011000 };
    cout << showbase << hex;
    cout << "Result of 0x00011000 & 0x00011000: "  << (bits & bits) << endl;
    cout << "Result of 0x00011000 & 0x11100111: "  << (bits & ~bits) << endl;
 
    return 0;
}
 

Listing 4-11 makes use of both the & and ~ operators. The fest use of & will result in the value 0x00011000 
being output to the console. The second use of & is used in conjunction with ~. The ~ operator flips all of the 
bits therefore the output from this use of & will be 0. You can see this in Figure 4-10.

The | (Bitwise Or) Operator

The bitwise or operator returns a value that contains all of the set bits from the left and right side of the operator. 
This is true whether either or both of the values are set. The only time a 0 will be placed into a bit is when both the 
left and right side of the operator does not have that position set. Listing 4-12 shows the | operator in use.

Listing 4-12. The | Operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    uint32_t leftBits{ 0x00011000 };
    uint32_t rightBits{ 0x00010100 };
    cout << showbase << hex;
    cout << "Result of 0x00011000 | 0x00010100: " << (leftBits | rightBits) << endl;
    cout << "Result of 0x00011000 & 0x11100111: " << (leftBits | ~leftBits) << endl;
 
    return 0;
}
 

Figure 4-10. The output resulting from Listing 4-11



CHAPTER 4 ■ WORKING WITH NUMBERS

96

The first use of | will result in the value 0x00011100 and the second will result in 0xFFFFFFFF. You can 
see that this is true in Figure 4-11.

The values stored in leftBits and rightBits share a single bit position that is set to 1. There are two 
positions where one has a bit set and the other doesn’t. All three of these bits are set in the resulting value. 
The second use demonstrates that all bits are set so long as the bit position is set in one of the two places. 
The distinction between the two is important when you look at the results of the next operator.

The ^ (Exclusive Or) Operator

This operator will produce a single bit of difference between its output and the output of the | operator 
shown in Figure 4-11. This is because the exclusive or operator only sets the resulting bit to true when either 
the left or the right bit is set, not when both are set and not when neither are set. The first | operator in  
Listing 4-12 resulted in the value 0x00011100 being stored as the result. The ^ operator will result in 
0x00001100 being stored when using the same values. Listing 4-13 shows the code for this scenario.

Listing 4-13. The ^ operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    uint32_t leftBits{ 0x00011000 };
    uint32_t rightBits{ 0x00010100 };
    cout << showbase << hex;
    cout << "Result of 0x00011000 ^ 0x00010100: " << (leftBits ^ rightBits) << endl;
    cout << "Result of 0x00011000 ^ 0x11100111: " << (leftBits ^ ~leftBits) << endl;
 
    return 0;
}
 

Figure 4-11. The output generated by Listing 4-12



CHAPTER 4 ■ WORKING WITH NUMBERS

97

The evidence of the different output produced can be seen in Figure 4-12.

The << and >> Operators

The left shift and right shift operators are handy tools that allow you to pack smaller sets of data into larger 
variables. Listing 4-14 shows code that shifts a value from the lower 16 bits of a uint32_t into the upper 16 bits.

Listing 4-14. Using the << operator

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t maskBits{ 16 };
    uint32_t leftShifted{ 0x00001010 << maskBits };
    cout << showbase << hex;
    cout << "Left shifted: " << leftShifted << endl;
 
    return 0;
}
 

This code results in the value 0x10100000 being stored in the variable leftShifted. This has freed 
up the lower 16 bits which you can now use to store another 16 bit value. Listing 4-15 uses the |= and & 
operators to do just that.

Note ■  Each of the bitwise operators have an assignment variant for use in statements such as that in  

Listing 4-15.

Figure 4-12. The output generated by the ^ operator in Listing 4-13



CHAPTER 4 ■ WORKING WITH NUMBERS

98

Listing 4-15.  Using a mask to pack values into a variable

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t maskBits{ 16 };
    uint32_t leftShifted{ 0x00001010 << maskBits };
    cout << showbase << hex;
    cout << "Left shifted: " << leftShifted << endl;
 
    uint32_t lowerMask{ 0x0000FFFF };
    leftShifted |= (0x11110110 & lowerMask);
    cout << "Packed left shifted: " << leftShifted << endl;
 
    return 0;
}
 

This code now sees two separate 16 bit values being packed into a single 32 bit variable. The value 
packed into the lower 16 bits has all of its upper 16 bits masked out using the & operator in conjunction with 
a mask value, in this case 0x0000FFFF. This ensures that the |= operator leaves the values in the upper 16 bits 
unchanged by virtue of the fact that the value being or’d in won’t have any of those upper bits set. You can 
see this is true in Figure 4-13.

The final two lines of output in Figure 4-13 are the result of operations to unmask the values from the 
lower and upper sections of the variable. You can see how this was achieved in Listing 4-16.

Listing 4-16. Unmasking packed data

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t maskBits{ 16 };
    uint32_t leftShifted{ 0x00001010 << maskBits };
    cout << showbase << hex;
    cout << "Left shifted: " << leftShifted << endl;
 

Figure 4-13. The results of masking values into integers using bitwise operators



CHAPTER 4 ■ WORKING WITH NUMBERS

99

    uint32_t lowerMask{ 0x0000FFFF };
    leftShifted |= (0x11110110 & lowerMask);
    cout << "Packed left shifted: " << leftShifted << endl;
 
    uint32_t lowerValue{ (leftShifted & lowerMask) };
    cout << "Lower value unmasked: " << lowerValue << endl;
 
    uint32_t upperValue{ (leftShifted >> maskBits) };
    cout << "Upper value unmasked: " << upperValue << endl;
 
    return 0;
}
 

The & operator and the >> operator are used in Listing 4-16 to retrieve the two distinct values from our 
packed variable. Unfortunately this code has an issue that has yet to be uncovered. Listing 4-17 provides an 
example of the issue.

Listing 4-17. Shifting and narrowing conversions

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t maskBits{ 16 };
    uint32_t narrowingBits{ 0x00008000 << maskBits };
 
    return 0;
}
 

The code in Listing 4-17 would fail to compile. You will receive an error that a narrowing conversion 
was going to take place and your compiler will prevent you from building your executable until the 
problem code is fixed. The problem here is that the value 0x00008000 has the 16th bit set and once it is 
shifted 16 bits to the right the 32nd bit would be set. This would cause the value to become a negative 
number under normal circumstances. At this stage you have two different options in your arsenal to deal 
with the situation.

Note ■  Those of you who have used C++ before may have noticed that the samples are not using the = 

operator to initialize variables, such as uint32_t maskBits = 16; Instead I’m using uniform initialization that 

was introduced in C++11. Uniform initialization is the form of initialization using the {} operator as seen in 

these examples. The major benefit of uniform initialization is the protection from narrowing conversions that I’ve 

just described.



CHAPTER 4 ■ WORKING WITH NUMBERS

100

Listing 4-18 shows how you can use an unsigned literal to tell the compiler the value should be 
unsigned.

Listing 4-18. Using unsigned literals

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t maskBits{ 16 };
    uint32_t leftShifted{ 0x00008080u << maskBits };
    cout << showbase << hex;
    cout << "Left shifted: " << leftShifted << endl;
 
    uint32_t lowerMask{ 0x0000FFFF };
    leftShifted |= (0x11110110 & lowerMask);
    cout << "Packed left shifted: " << leftShifted << endl;
 
    uint32_t lowerValue{ (leftShifted & lowerMask) };
    cout << "Lower value unmasked: " << lowerValue << endl;
 
    uint32_t upperValue{ (leftShifted >> maskBits) };
    cout << "Upper value unmasked: " << upperValue << endl;
 
    return 0;
}
 

Adding a u to the end of a numeric literal causes the compiler to evaluate that literal as an unsigned 
value. Another option would have been to use signed values instead. However this introduces a new 
consideration. When right shifting signed values the sign bit is placed into the new values coming in from 
the right. The following things can occur:

0x10100000 >> 16 becomes 0x00001010•฀

0x80800000 >> 16 becomes 0xFFFF8080•฀

Listing 4-19 and Figure 4-14 show code and output that proves the negative sign bit propagation.

Listing 4-19. Right shifting negative values

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t maskBits{ 16 };
    int32_t leftShifted{ 0x00008080 << maskBits };
    cout << showbase << hex;
    cout << "Left shifted: " << leftShifted << endl;
 



CHAPTER 4 ■ WORKING WITH NUMBERS

101

Figure 4-14. Output showing the sign bit propagation after a right shift

    int32_t lowerMask{ 0x0000FFFF };
    leftShifted |= (0x11110110 & lowerMask);
    cout << "Packed left shifted: " << leftShifted << endl;
 
    int32_t rightShifted{ (leftShifted >> maskBits) };
    cout << "Right shifted: " << rightShifted << endl;
    cout << "Unmasked right shifted: " << (rightShifted & lowerMask) << endl;
 
    return 0;
}
 

You can see the new code need two extract the upper masked value in the bold lines in Listing 4-19. A 
shift alone is no longer suitable when using signed integers. Figure 4-14 shows the output proving this point.

As you can see, I’ve had to shift the variable to the right and mask out the upper bits in order to retrieve 
the original value from the upper part of the variable. After our shift the value contained the decimal  
value -32,640 (0xFFFF8080) but the value we expected was actually 32,896 (0x00008080). 0x00008080 was 
retrieved by using the & operator (0xFFFF8080 | 0x0000FFFF = 0x00008080).



103

CHAPTER 5

Classes

Classes are the language feature that sets C++ apart from the C programming language. The addition 
of classes to C++ allows it to be used for programs designed using the object-oriented programming 
(OOP) paradigm. OOP quickly became the main software engineering practice used worldwide to build 
complex applications. You can find class support in most leading languages today, including Java, C#, and 
Objective-C.

Recipe 5-1. Defining a Class

Problem
Your program design calls for objects, and you need to be able to define classes in your programs.

Solution
C++ provides the class keyword and syntax for creating class definitions.

How It Works
The class keyword is used in C++ to create class definitions. This keyword is followed by the class name and 
then the body of the class. Listing 5-1 shows a class definition.

Listing 5-1. A Class Definition

class Vehicle
{
 
};

The Vehicle class definition in Listing 5-1 tells the compiler that it should recognize the word Vehicle 
as a type. This means code can now create variables of type Vehicle. Listing 5-2 shows this in action.



CHAPTER 5 ■ CLASSES

104

Listing 5-2. Creating a Vehicle Variable

class Vehicle
{
 
};
 
int main(int argc, char* argv[])
{
    Vehicle myVehicle;
    return 0;
}
 

Creating a variable like this results in your program creating an object. In the common terminology 
used when working with classes, the class definition itself is referred to as the class. Variables of the class are 
referred to as objects, so you can have multiple objects of the same class. The process of creating an object 
from a class is referred to as instantiating a class.

Recipe 5-2. Adding Data to a Class

Problem
You would like to be able to store data in your classes.

Solution
C++ allows classes to contain variables. Each object gets its own unique variable and can store its own values.

How It Works
C++ has the concept of a member variable: a variable that exists in the class definition. Each instantiated 
object from the class definition gets its own copy of the variable. Listing 5-3 shows a class that contains a 
single member variable.

Listing 5-3. The Vehicle Class with a Member Variable

#include <cinttypes>
 
class Vehicle
{
public:
    uint32_t m_NumberOfWheels;
};
 

The Vehicle class contains a single uint32_t variable to store the number of wheels the vehicle has. 
Listing 5-4 shows how you can set this value and print it.



CHAPTER 5 ■ CLASSES

105

Listing 5-4. Accessing Member Variables

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
public:
    uint32_t m_NumberOfWheels;
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar;
    myCar.m_NumberOfWheels = 4;
 
    cout << "Number of wheels: " << myCar.m_NumberOfWheels << endl;
 
    return 0;
}
 

Listing 5-4 shows that you can use the dot (.) operator to access member variables on an object. This 
operator is used twice in the code: once to set the value of m_NumberOfWheels to 4 and once to retrieve 
the value to print it. Listing 5-5 adds another instance of the class to show that different objects can store 
different values in their members.

Listing 5-5. Adding a Second Object

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
public:
    uint32_t m_NumberOfWheels;
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar;
    myCar.m_NumberOfWheels = 4;
 
    cout << "Number of wheels: " << myCar.m_NumberOfWheels << endl;
 
    Vehicle myMotorcycle;
    myMotorcycle.m_NumberOfWheels = 2;
 
    cout << "Number of wheels: " << myMotorcycle.m_NumberOfWheels << endl;
 
    return 0;
}
 



CHAPTER 5 ■ CLASSES

106

Listing 5-5 adds a second object and names it myMotorcycle. This instance of the class has its  
m_NumberOfWheels variable set to 2. You can see the different output values in Figure 5-1.

Recipe 5-3. Adding Methods

Problem
You need to be able to carry out repeatable tasks on a class.

Solution
C++ allows programmers to add functions to classes. These functions are known as member methods and 
have access to class member variables.

How It Works
You can add a member method to a class simply by adding a function to that class. Any function you add can 
then use the member variables that belong to the class. Listing 5-6 shows two member methods in action.

Listing 5-6. Adding Member Methods to a Class

#include <cinttypes>
 
class Vehicle
{
public:
    uint32_t m_NumberOfWheels;
 
    void SetNumberOfWheels(uint32_t numberOfWheels)
    {
        m_NumberOfWheels = numberOfWheels;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 

Figure 5-1. The output generated by Listing 5-5



CHAPTER 5 ■ CLASSES

107

The Vehicle class shown in Listing 5-6 contains two member methods: SetNumberOfWheels takes a 
parameter that is used to set the member m_NumberOfWheels, and GetNumberOfWheels retrieves the value of 
m_NumberOfWheels. Listing 5-7 uses these methods.

Listing 5-7. Using the Member Methods from the Vehicle Class

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels;
 
public:
    void SetNumberOfWheels(uint32_t numberOfWheels)
    {
        m_NumberOfWheels = numberOfWheels;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar;
    myCar.SetNumberOfWheels(4);
 
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle;
    myMotorcycle.SetNumberOfWheels(2);
 
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    return 0;
}
 



CHAPTER 5 ■ CLASSES

108

The member methods are used to alter and retrieve the value of the m_NumberOfWheels member 
variable in Listing 5-7. The output generated by this code is shown in Figure 5-2.

Recipe 5-4. Using Access Modifiers

Problem
Exposing all member variables to calling code can lead to several problems including high coupling and 
higher maintenance costs.

Solution
Use the C++ access modifiers to utilize encapsulation and hide class implementations from calling code.

How It Works
C++ provides access modifiers that allow you to control whether code can access internal member variables 
and methods. Listing 5-8 shows how you can use the private access modifier to restrict access to a variable 
and the public access specifier to provide methods that access the member indirectly.

Listing 5-8. Using the public and private Access Modifiers

#include <cinttypes>
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels;
 
public:
    void SetNumberOfWheels(uint32_t numberOfWheels)
    {
        m_NumberOfWheels = numberOfWheels;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};

 

Figure 5-2. The output generated by the code in Listing 5-7



CHAPTER 5 ■ CLASSES

109

To use an access modifier, insert the keyword into your class, followed by a colon. Once invoked, the 
access modifier is applied to all member variables and methods that follow until another access modifier is 
specified. In Listing 5-8, this means the m_NumberOfWheels variable is private and the SetNumberOfWheels 
and GetNumberOfWheels member methods are public.

If you tried to access m_NumberOfWheels directly in calling code, your compiler would give you an access 
error. Instead, you have to access the variable through the member methods. Listing 5-9 shows a working 
sample with a private member variable.

Listing 5-9. Using Access Modifiers

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels;
 
public:
    void SetNumberOfWheels(uint32_t numberOfWheels)
    {
        m_NumberOfWheels = numberOfWheels;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar;
    // myCar.m_NumberOfWheels = 4; -Access error
    myCar.SetNumberOfWheels(4);
 
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle;
    myMotorcycle.SetNumberOfWheels(2);
 
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    return 0;
}
 

You can see the error that the compiler generates by uncommenting the bold line in Listing 5-9. 
Encapsulating data in this manner allows you to alter the implementation at a later time without affecting 
the rest of your code. Listing 5-10 updates the code from Listing 5-9 to use a completely different method of 
working out the number of wheels on a vehicle.



CHAPTER 5 ■ CLASSES

110

Listing 5-10. Altering the Vehicle Class Implementation

#include <vector>
#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Wheel
{
 
};
 
class Vehicle
{
private:
    using Wheels = vector<Wheel>;
    Wheels m_Wheels;
 
public:
    void SetNumberOfWheels(uint32_t numberOfWheels)
    {
        m_Wheels.clear();
        for (uint32_t i = 0; i < numberOfWheels; ++i)
        {
            m_Wheels.push_back({});
        }
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_Wheels.size();
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar;
    myCar.SetNumberOfWheels(4);
 
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle;
    myMotorcycle.SetNumberOfWheels(2);
 
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    return 0;
}
 



CHAPTER 5 ■ CLASSES

111

Comparing the Vehicle class from Listing 5-9 and that in Listing 5-10 reveals that the implementations 
of SetNumberOfWheels and GetNumberOfWheels are completely different. The class in Listing 5-10 doesn’t 
store the value in a uint32_t member; instead, it stores a vector of Wheel objects. The SetNumberOfWheels 
method adds a new instance of Wheel to the vector for the number supplied as its numberOfWheels 
parameter. The GetNumberOfWheels method returns the size of the vector. The main function in both 
listings is identical, as is the output generated by executing the code.

Recipe 5-5. Initializing Class Member Variables

Problem
Uninitialized variables can cause undefined program behavior.

Solution
C++ classes can initialize their member variables at instantiation and provide constructor methods for  
user-supplied values.

How It Works

Uniform Initialization

Classes in C++ can use uniform initialization to provide default values to class members when they’re 
instantiated. Uniform initialization allows you to use a common syntax when initializing built-in types or 
objects created from your classes. C++ uses the curly-braces syntax to support this form of initialization. 
Listing 5-11 shows a class with a member variable initialized in this way.

Listing 5-11. Initializing a Class Member Variable

#include <cinttypes>
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels{};
 
public:
    uint32 GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 

In Listing 5-11, the class’s m_NumberOfWheels member is initialized using uniform initialization. This 
is achieved using the curly braces after the name. No value is supplied to the initializer, which causes the 
compiler to initialize the value to 0. Listing 5-12 shows this class used in context.



CHAPTER 5 ■ CLASSES

112

Listing 5-12. Using the Vehicle Class

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels{};
 
public:
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar;
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle;
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    return 0;
}
 

Figure 5-3 shows the output generated by this code.

Figure 5-3 shows output with a 0 for each class. This is an improvement on code that doesn’t initialize 
the data, as shown in Figure 5-4.

Figure 5-3. The output generated by the code in Listing 5-12.



CHAPTER 5 ■ CLASSES

113

Using Constructors

Figure 5-3 represents a better situation than Figure 5-4, but neither is ideal. You’d really like the myCar and 
myMotorcycle objects in Listing 5-12 to print different values. Listing 5-13 adds a constructor so that you can 
specify the number of wheels when instantiating classes.

Listing 5-13. Adding a Constructor to a Class

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle(uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar{ 4 };
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle{ 2 };
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    return 0;
}

 

Figure 5-4. The output generated by a program that doesn’t initialize its member variables



CHAPTER 5 ■ CLASSES

114

Listing 5-13 adds the ability to initialize the number of wheels on a Vehicle at the time of instantiation. 
It does this by adding a constructor to the Vehicle class that takes the number of wheels as a parameter. The 
use of a constructor lets you rely on a function call to occur at the time of object creation. This function is 
used to ensure that all the member variables your class contains have been properly initialized. Uninitialized 
data is a very common cause of unexpected program behavior such as crashes.

The myCar and myMotorcycle objects are instantiated with different values for their number of wheels. 
Unfortunately, adding a constructor to the class means you can no longer construct default versions of this 
class; you must always supply a value for the number of wheels in Listing 5-13. Listing 5-14 overcomes this 
limitation by adding an explicit default operator to the class.

Listing 5-14. Default Constructors

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 
    Vehicle(uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar{ 4 };
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle{ 2 };
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    Vehicle noWheels;
    cout << "Number of wheels: " << noWheels.GetNumberOfWheels() << endl;
 
    return 0;
}
 



CHAPTER 5 ■ CLASSES

115

The Vehicle class in Listing 5-14 contains an explicit default constructor. The default keyword is used 
along with an equals operator to inform the compiler that you want to add a default constructor to this 
class. Thanks to the uniform initialization of the m_NumberOfWheels variable, you can create an instance of 
the class noWheels that contains 0 in the m_NumberOfWheels variable. Figure 5-5 shows the output generated 
by this code.

Recipe 5-6. Cleaning Up Classes

Problem
Some classes require their members to be cleaned up when an object is being destroyed.

Solution
C++ provides for destructors to be added to classes that allow code to be executed when a class is being 
destroyed.

How It Works
You can add a special destructor method to your classes in C++ using the ~ syntax. Listing 5-15 shows how to 
achieve this.

Listing 5-15. Adding a Destructor to a Class

#include <cinttypes>
#include <string>
 
using namespace std;
 
class Vehicle
{
private:
    string m_Name;
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 

Figure 5-5. The output generated by Listing 5-14, showing the 0 in the noWheels class



CHAPTER 5 ■ CLASSES

116

    Vehicle(string name, uint32_t numberOfWheels)
        : m_Name{ name }
        , m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    ~Vehicle()
    {
        cout << m_Name << " is being destroyed!" << endl;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 

The Vehicle class in Listing 5-15 contains a destructor. This destructor simply prints out the name of 
the object being destroyed. The constructor can be initialized with the name of an object, and the default 
constructor of Vehicle calls the default constructor of the string class automatically. Listing 5-16 shows 
how this class can be used in practice.

Listing 5-16. Using Classes with Destructors

#include <cinttypes>
#include <iostream>
#include <string>
 
using namespace std;
 
class Vehicle
{
private:
    string m_Name;
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 
    Vehicle(string name, uint32_t numberOfWheels)
        : m_Name{ name }
        , m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    ~Vehicle()
    {
        cout << m_Name << " is being destroyed!" << endl;
    }
 



CHAPTER 5 ■ CLASSES

117

    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar{ "myCar", 4 };
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle{ "myMotorcycle", 2 };
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    Vehicle noWheels;
    cout << "Number of wheels: " << noWheels.GetNumberOfWheels() << endl;
 
    return 0;
}

 
As you can see from the main function in Listing 5-16, you don’t have to add any special code to call a 

class destructor. Destructors are called automatically when objects go out of scope. In this case, the calls to 
the destructors of the Vehicle objects occur after the return. Figure 5-6 shows the output from this program 
to prove the destructor code is executed.

It’s important to pay attention to the order in which these destructors are called. The Vehicle objects 
are destroyed in an order that’s the reverse of that in which they were created. This is important if you have 
resources that rely on being created and destroyed in the correct order.

The compiler implicitly creates a default destructor if you don’t define your own. You can also explicitly 
define a destructor using the code shown in Listing 5-17.

Figure 5-6. The output generated by Listing 5-16, showing that destructors have been executed



CHAPTER 5 ■ CLASSES

118

Listing 5-17. Explicitly Defining a Destructor

#include <cinttypes>
 
class Vehicle
{
private:
        uint32_t m_NumberOfWheels{};
 
public:
        Vehicle() = default;
 
        Vehicle(uint32_t numberOfWheels)
                : m_NumberOfWheels{ numberOfWheels }
        {
 
        }
 
        ~Vehicle() = default;
 
        uint32_t GetNumberOfWheels()
        {
                return m_NumberOfWheels;
        }
};
 

It’s considered good practice to always be explicit with your default constructor and destructors. Doing 
so removes any ambiguity from the code and lets other programmers know that you were happy with the 
default behavior. The omission of this code could lead others to believe that you overlooked its inclusion.

Recipe 5-7. Copying Classes

Problem
You would like to ensure that you’re copying data from one object to another in a proper manner.

Solution
C++ provides the copy constructor and assignment operator that you can use to add code to your class that is 
executed when a copy takes place.

How It Works
You can copy objects in C++ in a number of scenarios. An object is copied when you pass it into the 
constructor of another object of the same type. An object is also copied when you assign one object to 
another. Passing an object into a function or method by value also results in a copy operation taking place.



CHAPTER 5 ■ CLASSES

119

Implicit and Default Copy Constructors and Assignment Operators

C++ classes support these operations through the copy constructor and assignment operator. Listing 5-18 
shows the default versions of these methods being invoked in the main method.

Listing 5-18. Using the Copy Constructor and Assignment Operator

#include <cinttypes>
#include <iostream>
#include <string>
 
using namespace std;
 
class Vehicle
{
private:
    string m_Name;
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 
    Vehicle(string name, uint32_t numberOfWheels)
        : m_Name{ name }
        , m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    ~Vehicle()
    {
        cout << m_Name << " at " << this << " is being destroyed!" << endl;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar{ "myCar", 4 };
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle{ "myMotorcycle", 2 };
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    Vehicle myCopiedCar{ myCar };
    cout << "Number of wheels: " << myCopiedCar.GetNumberOfWheels() << endl;
 



CHAPTER 5 ■ CLASSES

120

    Vehicle mySecondCopy;
    mySecondCopy = myCopiedCar;
    cout << "Number of wheels: " << mySecondCopy.GetNumberOfWheels() << endl;
 
    return 0;
}
 

The myCopiedCar variable is constructed using a copy constructor. This is achieved by passing 
another object of the same type into myCopiedCar’s brace initializer. The mySecondCopy variable is 
constructed using the default constructor. Thus the object is initialized with an empty name and 0 as the 
number of wheels. The code then assigns to mySecondCopy using myCopiedCar. You can see the results of 
these operations in Figure 5-7.

As expected, you have three objects named myCar, each of which has four wheels. You can see the 
distinct objects when the destructor prints the address in memory where each object resides.

Explicit Copy Constructors and Assignment Operators

The code in Listing 5-18 takes advantage of the implicit copy constructor and assignment operator. The C++ 
compiler automatically adds these functions to your classes when it encounters code that will use them. 
Listing 5-19 shows how you can create these functions explicitly.

Listing 5-19. Explicitly Creating the Copy Constructor and Assignment Operator

#include <cinttypes>
#include <iostream>
#include <string>
 
using namespace std;
 
class Vehicle
{
private:
    string m_Name;
    uint32_t m_NumberOfWheels{};
 

Figure 5-7. The output generated by Listing 5-18



CHAPTER 5 ■ CLASSES

121

public:
    Vehicle() = default;
 
    Vehicle(string name, uint32_t numberOfWheels)
        : m_Name{ name }
        , m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    ~Vehicle()
    {
        cout << m_Name << " at " << this << " is being destroyed!" << endl;
    }
 
    Vehicle(const Vehicle& other) = default;
    Vehicle& operator=(const Vehicle& other) = default;
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 

The signature for a copy constructor resembles that of a normal constructor. It’s a method with no 
return type; however, the copy constructor takes a constant reference to an object of the same type as a 
parameter. The assignment operator uses operator overloading to overload the = arithmetic operator for 
the class when the right side of the statement is another object of the same type, as in someVehicle = 
someOtherVehicle. The default keyword comes in useful again to allow you to communicate with other 
programmers that you’re happy with the default operations.

Disallowing Copy and Assignment

Sometimes you’ll create classes in which you absolutely don’t want copy constructors and assignment 
operators to be used. C++ provides the delete keyword for these cases. Listing 5-20 shows how this is 
implemented.

Listing 5-20. Disallowing Copy and Assignment

#include <cinttypes>
#include <iostream>
#include <string>
 
using namespace std;
 
class Vehicle
{
private:
    string m_Name;
    uint32_t m_NumberOfWheels{};
 



CHAPTER 5 ■ CLASSES

122

public:
    Vehicle() = default;
 
    Vehicle(string name, uint32_t numberOfWheels)
        : m_Name{ name }
        , m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    ~Vehicle()
    {
        cout << m_Name << " at " << this << " is being destroyed!" << endl;
    }
 
    Vehicle(const Vehicle& other) = delete;
    Vehicle& operator=(const Vehicle& other) = delete;
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myCar{ "myCar", 4 };
    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
 
    Vehicle myMotorcycle{ "myMotorcycle", 2 };
    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
 
    Vehicle myCopiedCar{ myCar };
    cout << "Number of wheels: " << myCopiedCar.GetNumberOfWheels() << endl;
 
    Vehicle mySecondCopy;
    mySecondCopy = myCopiedCar;
    cout << "Number of wheels: " << mySecondCopy.GetNumberOfWheels() << endl;
 
    return 0;
}
 

The delete keyword is used in place of default to inform the compiler that you don’t wish the copy 
and assignment operations to be available to a class. The code in the main function will no longer compile 
and operate.

Custom Copy Constructors and Assignment Operators

In addition to using the default versions of these operations, it’s possible to supply your own versions. This is 
done by using the same signatures for the methods in your class definition but providing a method body in 
place of the default assignment.



CHAPTER 5 ■ CLASSES

123

More often than not in modern C++, the places you’ll overload these operators are limited; but it’s 
important to be aware of the one place where you absolutely want to do so. The default copy and assignment 
operations carry out a shallow copy. They call the assignment operator on each member of an object and 
assign the value from the class passed in. There are occasions when you have a class that manually manages 
a resource, such as memory, and a shallow copy ends up with a pointer in both classes pointing to the same 
address in memory. If that memory is freed in the class’s destructor, you’re left in a situation where one 
object is pointing to memory that has been freed by another. In this case, your program is likely to crash or 
exhibit other strange behavior. Listing 5-21 shows an example in which this could occur.

Listing 5-21. Shallow-Copying a C-Style String Member

#include <cinttypes>
#include <cstring>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    char* m_Name{};
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 
    Vehicle(const char* name, uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
        const uint32_t length = strlen(name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, name);
    }
 
    ~Vehicle()
    {
        delete m_Name;
        m_Name = nullptr;
    }
 
    Vehicle(const Vehicle& other) = default;
    Vehicle& operator=(const Vehicle& other) = default;
 
    char* GetName()
    {
        return m_Name;
    }
 



CHAPTER 5 ■ CLASSES

124

    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myAssignedCar;
 
    {
        Vehicle myCar{ "myCar", 4 };
        cout << "Vehicle name: " << myCar.GetName() << endl;
 
        myAssignedCar = myCar;
        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
    }
 
    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
 
    return 0;
} 

Note ■  The code in Listing 5-21 is purposefully constructed to create a situation that would be better solved 

by using a STL string class. This code is simply intended to be an easy-to-understand example of how things 

can go wrong.

The main function in Listing 5-21 creates two instances of the Vehicle class. The second is created in 
a block. This block causes the myCar object to be destructed when the block ends and the object goes out 
of scope. This is a problem because the last line of the block invokes the assignment operator and does a 
shallow copy of the class members. After this takes place, the myCar and myAssignedCar objects point to the 
same memory address in their m_Name variables. This memory is released in the destructor for myCar before 
the code tries to print the name of myAssignedCar. You can see the result of this error in Figure 5-8.

Figure 5-8. Output showing the error from shallow-copying an object before it’s destroyed



CHAPTER 5 ■ CLASSES

125

Figure 5-8 proves that the shallow copy results in a dangerous situation for the code. The memory 
pointed to by the m_Name variable in myAssignedCar is no longer valid as soon as the myCar variable has been 
destroyed. Listing 5-22 solves this problem by providing a copy constructor and an assignment operator that 
carry out a deep copy of the class.

Listing 5-22. Carrying Out a Deep Copy

#include <cinttypes>
#include <cstring>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    char* m_Name{};
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 
    Vehicle(const char* name, uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
        const uint32_t length = strlen(name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, name);
    }
 
    ~Vehicle()
    {
        delete m_Name;
        m_Name = nullptr;
    }
 
    Vehicle(const Vehicle& other)
    {
        const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, other.m_Name);
 
        m_NumberOfWheels = other.m_NumberOfWheels;
    }
 
    Vehicle& operator=(const Vehicle& other)
    {
        if (m_Name != nullptr)
        {
            delete m_Name;
        }
 



CHAPTER 5 ■ CLASSES

126

        const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, other.m_Name);
 
        m_NumberOfWheels = other.m_NumberOfWheels;
 
        return *this;
    }
 
    char* GetName()
    {
        return m_Name;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myAssignedCar;
 
    {
        Vehicle myCar{ "myCar", 4 };
        cout << "Vehicle name: " << myCar.GetName() << endl;
 
        myAssignedCar = myCar;
        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
    }
 
    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
 
    return 0;
}
 

This time, the code provides methods to be carried out when a copy or assignment takes place. The 
copy constructor is invoked when a new object is created by copying an old object, so you never need to 
worry about deleting the old data. The assignment operator, on the other hand, can’t guarantee that the 
existing class didn’t already exist. You can see the implications of this in the assignment operator when it’s 
responsibly deleting the memory allocated for the existing m_Name variable. The result of these deep copies 
can be seen in Figure 5-9.



CHAPTER 5 ■ CLASSES

127

The output is now correct, thanks to the use of a deep copy. This gives the myAssignedCar variable its 
own copy of the name string rather than simply having its pointer assigned the same address as the myCar 
class. The proper solution to solving the problem in this case is to use an STL string in place of the C-style 
string, but the example will be valid if you ever have to write classes that may end up pointed to the same 
dynamically allocated memory or stack memory in the future.

Recipe 5-8. Optimizing Code with Move Semantics

Problem
Your code is running slowly, and you think the problem is caused by copying temporary objects.

Solution
C++ provides support for move semantics in the form of a move constructor and a move assignment operator.

How It Works
The code shown in Listing 5-23 performs a deep copy of an object to avoid the scenario where a different 
object is left pointing at an invalid memory address.

Listing 5-23. Using Deep Copy to Avoid Invalid Pointers

#include <cinttypes>
#include <cstring>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    char* m_Name{};
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 

Figure 5-9. The result of using a deep copy



CHAPTER 5 ■ CLASSES

128

    Vehicle(const char* name, uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
        const uint32_t length = strlen(name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, name);
    }
 
    ~Vehicle()
    {
        delete m_Name;
        m_Name = nullptr;
    }
 
    Vehicle(const Vehicle& other)
    {
        const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, other.m_Name);
 
        m_NumberOfWheels = other.m_NumberOfWheels;
    }
 
    Vehicle& operator=(const Vehicle& other)
    {
        if (m_Name != nullptr)
        {
            delete m_Name;
        }
 
        const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, other.m_Name);
 
        m_NumberOfWheels = other.m_NumberOfWheels;
 
        return *this;
    }
 
    char* GetName()
    {
        return m_Name;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 



CHAPTER 5 ■ CLASSES

129

int main(int argc, char* argv[])
{
    Vehicle myAssignedCar;
 
    {
        Vehicle myCar{ "myCar", 4 };
        cout << "Vehicle name: " << myCar.GetName() << endl;
 
        myAssignedCar = myCar;
        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
    }
 
    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
 
    return 0;
}
 

This is the correct solution when you know that two objects may live a considerable time but one may 
be destroyed before the other, which would likely result in a crash. Sometimes, however, you know that the 
object you’re copying from is about to destroyed. C++ allows you to optimize such situations using move 
semantics. Listing 5-24 adds a move constructor and a move assignment operator to the class and uses the 
move function to invoke them.

Listing 5-24. The Move Constructor and Move Assignment Operator

#include <cinttypes>
#include <cstring>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    char* m_Name{};
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 
    Vehicle(const char* name, uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
        const uint32_t length = strlen(name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, name);
    }
 



CHAPTER 5 ■ CLASSES

130

    ~Vehicle()
    {
        if (m_Name != nullptr)
        {
            delete m_Name;
            m_Name = nullptr;
        }
    }
 
    Vehicle(const Vehicle& other)
    {
        const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, other.m_Name);
 
        m_NumberOfWheels = other.m_NumberOfWheels;
    }
 
    Vehicle& operator=(const Vehicle& other)
    {
        if (m_Name != nullptr)
        {
            delete m_Name;
        }
 
        const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
        m_Name = new char[length]{};
        strcpy(m_Name, other.m_Name);
 
        m_NumberOfWheels = other.m_NumberOfWheels;
 
        return *this;
    }
 
    Vehicle(Vehicle&& other)
    {
        m_Name = other.m_Name;
        other.m_Name = nullptr;
 
        m_NumberOfWheels = other.m_NumberOfWheels;
    }
 
    Vehicle& operator=(Vehicle&& other)
    {
        if (m_Name != nullptr)
        {
            delete m_Name;
        }
 



CHAPTER 5 ■ CLASSES

131

        m_Name = other.m_Name;
        other.m_Name = nullptr;
 
        m_NumberOfWheels = other.m_NumberOfWheels;
 
        return *this;
    }
 
    char* GetName()
    {
        return m_Name;
    }
 
    uint32_t GetNumberOfWheels()
    {
        return m_NumberOfWheels;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myAssignedCar;
 
    {
        Vehicle myCar{ "myCar", 4 };
        cout << "Vehicle name: " << myCar.GetName() << endl;
 
        myAssignedCar = move(myCar);
        //cout << "Vehicle name: " << myCar.GetName() << endl;
        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
    }
 
    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
 
    return 0;
}
 

Move semantics work by providing class methods that take rvalue references as parameters. These 
rvalue references are denoted by using the double ampersand operator on the parameter type. You can 
invoke the move operations using the move function; you can see this in action in the main function. The 
move function can be used here because you know that myCar is about to be destroyed. The move assignment 
operator is invoked, and the pointer address is shallow-copied to myAssignedCar. The move assignment 
operator releases the memory that the object may already have been using for m_Name. Importantly, it then 
copies the address from other before setting other.m_Name to nullptr. Setting the other object’s pointer 
to nullptr prevents that object from deleting the memory in its destructor. In this case, the code is able 
to move the value of m_Name from other to this without having to allocate more memory and deep-copy 
the values from one to the other. The end result is that you can no longer use the value of m_Name stored by 
myCar—the commented-out line in Listing 5-24’s main function would result in a crash.



133

CHAPTER 6

Inheritance

C++ allows you to build complex software applications in a number of ways. One of the most common is the 
object-oriented programming (OOP) paradigm. Classes in C++ are used to provide a blueprint for objects 
that contain your data and the operations that can be carried out on that data.

Inheritance takes this a step further by letting you construct complex hierarchies of classes. The C++ 
language provides various different features you can use to organize your code in a logical manner.

Recipe 6-1. Inheriting from a Class

Problem
You’re writing a program that has a natural is-a relationship between objects and would like to reduce code 
duplication.

Solution
Inheriting a class from a parent class allows you to add your code to the parent and share it between multiple 
derived types.

How It Works
In C++, you can inherit one class from another. The inheriting class gains all the properties of the base class. 
Listing 6-1 shows an example of two classes that inherit from a shared parent.

Listing 6-1. Class Inheritance

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels{};
 



CHAPTER 6 ■ INHERITANCE

134

public:
    Vehicle(uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    uint32_t GetNumberOfWheels() const
    {
        return m_NumberOfWheels;
    }
};
 
class Car : public Vehicle
{
public:
    Car()
        : Vehicle(4)
    {
 
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle()
        : Vehicle(2)
    {
 
    }
};
 
int main(int argc, char* argv[])
{
    Car myCar{};
    cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels() << " wheels." << endl;
 
    return 0;
}
 

The Vehicle class contains a member variable to store the number of wheels the vehicle has. This value 
is initialized to 0 by default or is set in the constructor. Vehicle is followed by another class named Car. The 
Car class contains only a constructor that is used to call the constructor for Vehicle. The Car constructor 
passes the number 4 into the Vehicle constructor and therefore sets m_NumberOfWheels to 4.



CHAPTER 6 ■ INHERITANCE

135

The Motorcycle class also contains only a constructor, but it passes 2 to the Vehicle constructor. 
Because both Car and Motorcycle inherit from the Vehicle class, they both inherit its properties. They both 
contain a variable to hold the number of wheels, and they will both have a method to retrieve the number of 
wheels. You can see this in the main function, where GetNumberOfWheels is called on both the myCar object 
and the myMotorcycle object. Figure 6-1 shows the output generated by this code.

Figure 6-1. Output generated by the code in Listing 6-1

The Car class and the Motorcycle class both inherit the properties of Vehicle and both set the 
appropriate number of wheels in their constructor.

Recipe 6-2. Controlling Access to Member Variables and 
Methods in Derived Classes

Problem
Your derived class needs to be able to access the fields in its parent.

Solution
C++ access modifiers have an effect on the way variables can be accessed in derived classes. Using the 
correct access modifier is essential in properly constructing a class hierarchy.

How It Works

The public Access Specifier

The public access specifier grants public access to a variable or method in a class. This applies equally to 
member variables and methods. You can see this clearly in Listing 6-2.



CHAPTER 6 ■ INHERITANCE

136

Listing 6-2. The public Access Specifier

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
public:
    uint32_t m_NumberOfWheels{};
 
    Vehicle() = default;
};
 
class Car : public Vehicle
{
public:
    Car()
    {
        m_NumberOfWheels = 4;
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle()
    {
        m_NumberOfWheels = 2;
    }
};
 
int main(int argc, char* argv[])
{
    Car myCar{};
    cout << "A car has " << myCar.m_NumberOfWheels << " wheels." << endl;
    myCar.m_NumberOfWheels = 3;
    cout << "A car has " << myCar.m_NumberOfWheels << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    cout << "A motorcycle has " << myMotorcycle.m_NumberOfWheels << " wheels." << endl;
    myMotorcycle.m_NumberOfWheels = 3;
    cout << "A motorcycle has " << myMotorcycle.m_NumberOfWheels << " wheels." << endl;
 
    return 0;
}
 

Any variables with public access can be accessed by a derived class. Both the Car constructor and 
the Motorcycle constructor take advantage of this and set the number of wheels they have appropriately. 
The downside is that other code can also access the public member variables. You can see this in the main 
function, where the m_NumberOfWheels is read and assigned to both the myCar object and the myMotorcycle 
object. Figure 6-2 shows the output generated by this code.



CHAPTER 6 ■ INHERITANCE

137

The private Access Specifier

Instead of making variables public, you can make them private and provide public accessors to them.  
Listing 6-3 shows the use of a private member variable.

Listing 6-3. The private Access Specifier

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
private:
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle(uint32_t numberOfWheels)
        : m_NumberOfWheels{ numberOfWheels }
    {
 
    }
 
    uint32_t GetNumberOfWheels() const
    {
        return m_NumberOfWheels;
    }
};
 
class Car : public Vehicle
{
public:
    Car()
        : Vehicle(4)
    {
 
    }
};
 

Figure 6-2. The output generated by Listing 6-2



CHAPTER 6 ■ INHERITANCE

138

class Motorcycle : public Vehicle
{
public:
    Motorcycle()
        : Vehicle(2)
    {
 
    }
};
 
int main(int argc, char* argv[])
{
    Car myCar{};
    cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels() << " wheels." << endl;
 
    return 0;
}
 

Listing 6-3 shows the use of the private access specifier with the m_NumberOfWheels variable. The 
Car and Motorcycle classes can no longer access the m_NumberOfWheels variable directly; therefore, the 
Vehicle class provides a method to initialize the variable through its constructor. This makes the classes a 
little harder to work with but adds the benefit of not allowing any external code direct access to the member 
variable. You ca see this in the main function, where the code must get the number of wheels through the 
GetNumberOfWheels accessor method.

The protected Access Specifier

The protected access specifier allows for a mix of public and private access specifiers. It acts like a public 
specifier for classes that derive from the current class, and it acts like a private specifier for external code. 
Listing 6-4 shows this behavior.

Listing 6-4. The protected Access Specifier

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
protected:
    uint32_t m_NumberOfWheels{};
 
public:
    Vehicle() = default;
 



CHAPTER 6 ■ INHERITANCE

139

    uint32_t GetNumberOfWheels() const
    {
        return m_NumberOfWheels;
    }
};
 
class Car : public Vehicle
{
public:
    Car()
    {
        m_NumberOfWheels = 4;
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle()
    {
        m_NumberOfWheels = 2;
    }
};
 
int main(int argc, char* argv[])
{
    Car myCar{};
    cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels() << " wheels." << endl;
 
    return 0;
}
 

Listing 6-4 shows that both Car and Motorcycle can access the m_NumberOfWheels variable directly 
from their parent class, Vehicle. Both classes set the m_NumberOfWheels variable in their constructors. 
The calling code in the main function doesn’t have access to this variable and therefore has to call the 
GetNumberOfWheels method to be able to print this value.

Recipe 6-3. Hiding Methods in Derived Classes

Problem
You have a derived class that needs behavior in a method that is different than the behavior provided by the 
parent class.



CHAPTER 6 ■ INHERITANCE

140

Solution
C++ allows you to hide methods in parent classes by defining a method with the same signature in the 
derived class.

How It Works
You can hide a method in a parent class by defining a method with exactly the same signature in the base 
class. This example shows how derived classes can use explicit method hiding to provide functionality that 
differs from the parent class’s. This is a key concept to understand when you’re using inheritance, because 
it’s the primary method employed to differentiate hierarchies of class types.

Listing 6-5 contains a Vehicle class, a Car class, and a Motorcycle class. The Vehicle class defines a 
method named GetNumberOfWheels that returns 0. The same method is defined in the Car class and the 
Motorcycle class; these versions of the method return 4 and 2, respectively.

Listing 6-5. Hiding Methods

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
public:
    Vehicle() = default;
 
    uint32_t GetNumberOfWheels() const
    {
        return 0;
    }
};
 
class Car : public Vehicle
{
public:
    Car() = default;
 
    uint32_t GetNumberOfWheels() const
    {
        return 4;
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle() = default;
 



CHAPTER 6 ■ INHERITANCE

141

    uint32_t GetNumberOfWheels() const
    {
        return 2;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle myVehicle{};
    cout << "A vehicle has " << myVehicle.GetNumberOfWheels() << " wheels." << endl;
 
    Car myCar{};
    cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels() << " wheels." << endl;
 
    return 0;
}
 

The main function in Listing 6-5 calls the three different versions of GetNumberOfWheels and returns the 
appropriate value for each. You can see the output generated by this code in Figure 6-3.

Figure 6-3. The output generated by executing the code in Listing 6-5

Accessing these methods directly through objects or pointers to these class types results in the correct 
output.

Note ■  Method hiding doesn’t work properly when you’re using polymorphism. Accessing a derived class 

through a pointer to a base class results in the method on the base class being called. This is very rarely the 

behavior you want. See Recipe 8-5 for the proper solution when using polymorphism.

Recipe 6-4. Using Polymorphic Base Classes

Problem
You would like to write generic code that works with pointers to base classes and that still calls the proper 
methods in derived classes.



CHAPTER 6 ■ INHERITANCE

142

Solution
The virtual keyword allows you to create methods that can be overridden by derived classes.

How It Works
The virtual keyword tells the C++ compiler that you would like a class to contain a virtual method table 
(v-table). A v-table contains lookups for methods that allows the correct method to be called for a given type 
even if the object is being accessed through a pointer to one of its parent classes. Listing 6-6 shows a class 
hierarchy that uses the virtual keyword to specify that a method should be included in the class’s v-table.

Listing 6-6. Creating a Virtual Method

#include <cinttypes>
 
class Vehicle
{
public:
    Vehicle() = default;
 
    virtual uint32_t GetNumberOfWheels() const
    {
        return 2;
    }
};

class Car : public Vehicle
{
public:
    Car() = default;
 
    uint32_t GetNumberOfWheels() const override
    {
        return 4;
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle() = default;
};
 

The Car and Motorcycle classes in Listing 6-6 derive from the Vehicle class. The GetNumberOfWheels 
method in the Vehicle class is listed as a virtual method. This causes any calls to that method through a 
pointer to be called through the v-table. Listing 6-7 shows a full example with a main function that accesses 
objects through a Vehicle pointer.



CHAPTER 6 ■ INHERITANCE

143

Listing 6-7. Accessing Virtual Methods through a Base Pointer

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
public:
    Vehicle() = default;
 
    virtual uint32_t GetNumberOfWheels() const
    {
        return 2;
    }
};
 
class Car : public Vehicle
{
public:
    Car() = default;
 
    uint32_t GetNumberOfWheels() const override
    {
        return 4;
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle() = default;
};
 
int main(int argc, char* argv[])
{
    Vehicle* pVehicle{};
 
    Vehicle myVehicle{};
    pVehicle = &myVehicle;
    cout << "A vehicle has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    Car myCar{};
    pVehicle = &myCar;
    cout << "A car has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    pVehicle = &myMotorcycle;
    cout << "A motorcycle has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    return 0;
}
 



CHAPTER 6 ■ INHERITANCE

144

The main function defines a pointer to a Vehicle object on its first line. This pointer is then used in 
each of the cout statements to access the GetNumberOfWheels method for the current object. The Vehicle 
and Motorcycle objects have the address of the Vehicle::GetNumberOfWheels method in their v-tables; 
therefore, both return 2 for their number of wheels.

The Car class overrides the GetNumberOfWheels method. This causes Car to replace the address for 
Vehicle::GetNumberOfWheels in the lookup table with the address of Car::GetNumberOfWheels. As a result, 
when the same Vehicle pointer is assigned the address of myCar and subsequently calls GetNumberOfWheels, 
it calls the method defined in the Car class and not that defined in the Vehicle class. Figure 6-4 shows the 
output generated by the code in Listing 6-7, where you can see that this is the case.

Figure 6-4. The output generated by executing the code in Listing 6-7

The override keyword is used at the end of the GetNumberOfWheels method’s signature in the Car 
class. This keyword is a hint to the compiler that you expect this method to override a virtual method in 
the parent class. The compiler will throw an error if you enter the signature incorrectly or if the signature of 
the method you’re overriding is changed later. This feature is very useful, and I recommend that you use it 
(although the override keyword itself is optional).

Recipe 6-5. Preventing Method Overrides

Problem
You have a method that you don’t wish to be overridden by deriving classes.

Solution
You can use the final keyword to prevent classes from overriding a method.

How It Works
The final keyword informs the compiler that you don’t want a virtual method to be overridden by a 
deriving class. Listing 6-8 shows an example of using the final keyword.



CHAPTER 6 ■ INHERITANCE

145

Listing 6-8. Using the final Keyword

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
public:
    Vehicle() = default;
 
    virtual uint32_t GetNumberOfWheels() const final
    {
        return 2;
    }
};
 
class Car : public Vehicle
{
public:
    Car() = default;
 
    uint32_t GetNumberOfWheels() const override
    {
        return 4;
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle() = default;
};
 
int main(int argc, char* argv[])
{
    Vehicle* pVehicle{};
 
    Vehicle myVehicle{};
    pVehicle = &myVehicle;
    cout << "A vehicle has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    Car myCar{};
    pVehicle = &myCar;
    cout << "A car has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    pVehicle = &myMotorcycle;
    cout << "A motorcycle has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    return 0;
}
 



CHAPTER 6 ■ INHERITANCE

146

The GetNumberOfWheels method in the Vehicle class uses the final keyword to prevent derived 
classes from trying to override it. This causes the code in Listing 6-8 to fail to compile, because the Car class 
attempts to override GetNumberOfWheels. You can comment out this method to get the code to compile.

The final keyword can also stop further overrides of a method in a longer chain. Listing 6-9 shows how 
this is possible.

Listing 6-9. Preventing Overrides in an Inheritance Hierarchy

#include <cinttypes>
 
class Vehicle
{
public:
    Vehicle() = default;
 
    virtual uint32_t GetNumberOfWheels() const
    {
        return 2;
    }
};
 
class Car : public Vehicle
{
public:
    Car() = default;
 
    uint32_t GetNumberOfWheels() const final
    {
        return 4;
    }
};
 
class Ferrari : public Car
{
public:
    Ferrari() = default;
 
    uint32_t GetNumberOfWheels() const override
    {
        return 5;
    }
};
 

Vehicle defines a virtual method named GetNumberOfWheels that returns the value 2. Car overrides 
this method to return 4 (this example ignores the fact that not all cars have four wheels) and declares that 
the method is final. No other classes deriving from Car are allowed to override the same method. This makes 
sense for the application if the requirements only require support for four-wheeled cars. The compiler will 
throw an error when it reaches any class that derives from Car or derives from any other class that has Car in 
its hierarchy and that tries to override the GetNumberOfWheels method.



CHAPTER 6 ■ INHERITANCE

147

Recipe 6-6. Creating Interfaces

Problem
You have a base class method that should not define any behavior but should simply be overridden by 
deriving classes.

Solution
You can create pure virtual methods in C++ that don’t define a method body.

How It Works
You can define pure virtual methods in C++ by adding = 0 to the end of the method signature.  
Listing 6-10 shows an example.

Listing 6-10. Creating Pure Virtual Methods

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Vehicle
{
public:
    Vehicle() = default;
 
    virtual uint32_t GetNumberOfWheels() const = 0;
};
 
class Car : public Vehicle
{
public:
    Car() = default;
 
    uint32_t GetNumberOfWheels() const override
    {
        return 4;
    }
};
 
class Motorcycle : public Vehicle
{
public:
    Motorcycle() = default;
 



CHAPTER 6 ■ INHERITANCE

148

    uint32_t GetNumberOfWheels() const override
    {
        return 2;
    }
};
 
int main(int argc, char* argv[])
{
    Vehicle* pVehicle{};
 
    Car myCar{};
    pVehicle = &myCar;
    cout << "A car has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    Motorcycle myMotorcycle;
    pVehicle = &myMotorcycle;
    cout << "A motorcycle has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
 
    return 0;
}
 

The Vehicle class defines GetNumberOfWheels as a pure virtual method. This has the effect of ensuring 
that an object of type Vehicle can never be created. The compiler doesn’t allow this because it doesn’t 
have a method to call for GetNumberOfWheels. Car and Motorcycle both override this method and can 
be instantiated. You can see this occur in the main function. Figure 6-5 shows that the methods return the 
correct values for Car and Motorcycle.

Figure 6-5. The output generated by executing the code in Listing 6-10

A class that contains a pure virtual method is known as an interface. If a class inherits from an interface 
and you wish to be able to instantiate that class, you must override any pure virtual methods in the parent. 
It’s possible to derive from an interface and not override these methods, but that derived class can then only 
be used as an interface to further derived classes.

Recipe 6-7. Multiple Inheritance

Problem
You have a class that you wish to derive from more than one parent.



CHAPTER 6 ■ INHERITANCE

149

Solution
C++ supports multiple inheritance.

How It Works
You can derive a class from multiple parents in C++ using a comma-separated list of parent classes.  
Listing 6-11 shows how this can be achieved.

Listing 6-11. Multiple Inheritance

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
class Printable
{
public:
    virtual void Print() = 0;
};
 
class Vehicle
{
public:
    Vehicle() = default;
 
    virtual uint32_t GetNumberOfWheels() const = 0;
};
 
class Car
    : public Vehicle
    , public Printable
{
public:
    Car() = default;
 
    uint32_t GetNumberOfWheels() const override
    {
        return 4;
    }
 
    void Print() override
    {
        cout << "A car has " << GetNumberOfWheels() << " wheels." << endl;
    }
};
 



CHAPTER 6 ■ INHERITANCE

150

class Motorcycle
    : public Vehicle
    , public Printable
{
public:
    Motorcycle() = default;
 
    uint32_t GetNumberOfWheels() const override
    {
        return 2;
    }
 
    void Print() override
    {
        cout << "A motorcycle has " << GetNumberOfWheels() << " wheels." << endl;
    }
};
 
int main(int argc, char* argv[])
{
    Printable* pPrintable{};
 
    Car myCar{};
    pPrintable = &myCar;
    pPrintable->Print();
 
    Motorcycle myMotorcycle;
    pPrintable = &myMotorcycle;
    pPrintable->Print();
 
    return 0;
}
 

The Car and Motorcycle classes both derive from multiple parents. These classes are now both 
Vehicles and Printables. You can see the interplay between the two parents in the overridden Print 
methods. These methods both call the overridden GetNumberOfWheels method in Car and Motorcycle. 
The main function accesses the overridden Print methods through a pointer to a Printable object, using 
polymorphism to call the correct Print method and also the correct GetNumberOfWheels method in Print. 
Figure 6-6 shows that the output from the program is correct.

Figure 6-6. Output showing that multiple inheritance works with polymorphism



151

CHAPTER 7

The STL Containers

The Standard Template Library (STL) consists of a standard set of functionality that implementers are 
required to support. Creating a standard ensures that code can be used interchangeably on different 
platforms and operating systems as long as the supplied implementations conform to that standard. A large 
part of the standard defines a set of containers that can be used to store data structures. This chapter looks at 
different scenarios where each of the STL containers prove useful.

Note ■  The string container was covered in Chapter 3.

Recipe 7-1. Storing a Fixed Number of Objects

Problem
You have a requirement to store a fixed number of objects in your program.

Solution
C++ provides built in arrays that can be used for this purpose however the STL array provides a more flexible 
interface comparable to other STL containers.

How It Works
C++ has support for built-in arrays that have existed since the formation of the language. If you have 
programmed in C or C++ before these will be familiar to you. Listing 7-1 shows a standard C-style array.

http://dx.doi.org/10.1007/9781484201589_3


CHAPTER 7 ■ THE STL CONTAINERS

152

Listing 7-1. A C-style array

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t numberOfElements{ 5 };
    int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };
 
    for (uint32_t i{ 0 }; i < numberOfElements; ++i)
    {
        cout << normalArray[i] << endl;
    }
 
    return 0;
}
 

This code shows the use of a C-style array in C++. The array contains 5 integers and the main function 
has a for loop that is used to iterate the array and print out the values at each position. It’s also possible to 
use a range based for loop to iterate a C-style array. Listing 7-2 shows how this is done.

Listing 7-2. Using a range based for loop with a C-style array

#include <cinttypes>
#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const uint32_t numberOfElements{ 5 };
    int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };
 
    for (auto&& number : normalArray)
    {
        cout << number << endl;
    }
 
    return 0;
}
 

The main function in Listing 7-2 takes advantage of a range based for loop to iterate the array. This is a 
useful construct to use when you have no need for the value of the index of the array.

Note ■  The range based for loop in Listing 7-2 uses syntax that looks like a rvalue reference. This isn’t the 

case. Head to Chapter 2 if you’re not sure how this code works or of the difference between a lvalue and a rvalue.

http://dx.doi.org/10.1007/9781484201589_2


CHAPTER 7 ■ THE STL CONTAINERS

153

C-style arrays are useful in many circumstances however modern C++ also provides another version of 
arrays that can be used with the STL iterators and algorithms. Listing 7-3 shows how to define an STL array.

Listing 7-3. Using a STL array

#include <array>
#include <cinttypes>
#include <iostream>
 
int main(int argc, char* argv[])
{
    const uint32_t numberOfElements{ 5 };
    std::array<int32_t, numberOfElements> stlArray{ 10, 65, 3000, 2, 49 };
 
    for (uint32_t i = 0; i < numberOfElements; ++i)
    {
        std::cout << stlArray[i] << std::endl;
    }
 
    for (auto&& number : stlArray)
    {
        std::cout << number << std::endl;
    }
 
    return 0;
}
 

Listing 7-3 shows that a STL array is defined by passing the type stored in the array and the number of 
elements it contains into the type template. Once the array has been defined it can be used interchangeably 
with a normal C-style array. This is because the range based for loop can iterate both types of array and 
because the STL array defines an array operator overload that allows elements to be accessed using [].

Note ■  The major advantage to using the STL array container over C-style arrays is that it allows access to 

STL iterators and algorithms, both of which are covered in Chapter 8.

Arrays store their objects in a contiguous block of memory. This means that the address of each 
array element lies next to each other in memory. This makes them very efficient for iteration on modern 
processors. An array will generally result in excellent cache coherency and as a result cause fewer stalls 
as the processor reads from RAM into a local cache. Arrays are excellent choices for algorithms where 
performance is paramount and a fixed number of objects is needed.

http://dx.doi.org/10.1007/9781484201589_8


CHAPTER 7 ■ THE STL CONTAINERS

154

Recipe 7-2. Storing a Growing Number of Objects

Problem
Sometimes you will not know at compile time how many objects you need to store in your array.

Solution
The STL provides the vector template that allows for dynamically growing arrays.

How It Works
The vector works in a very similar way to array. Listing 7-4 shows the definition of a vector and two styles 
of for loop.

Listing 7-4. Using STL vector

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int32_t> stlVector{ 10, 65, 3000, 2, 49 };
 
    for (uint32_t i = 0; i < stlVector.size(); ++i)
    {
        std::cout << stlVector[i] << std::endl;
    }
 
    for (auto&& number : stlVector)
    {
        std::cout << number << endl;
    }
 
    return 0;
}
 

The major different between the definition of a vector and an array is the lack of a size. As a vector is 
resizable setting a limit on the number of elements it can contain makes little sense. This manifests itself in 
the traditional for loop in the main function. You can see that the loop end condition checks for completion 
by comparing the index against the value returned from the size method. In this case size will return 5 as 
the vector contains 5 elements.



CHAPTER 7 ■ THE STL CONTAINERS

155

Listing 7-5 lets you see that a vector can be resized at runtime unlike an array.

Listing 7-5. Resizing a vector

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int32_t> stlVector{ 10, 65, 3000, 2, 49 };
 
    cout << "The size is: " << stlVector.size() << endl;
 
    stlVector.emplace_back( 50 );
 
    cout << "The size is: " << stlVector.size() << endl;
 
    for (auto&& number : stlVector)
    {
        std::cout << number << endl;
    }
 
    return 0;
}
 

The resulting output from Listing 7-5 is shown in Figure 7-1.

Figure 7-1 shows that the vector has grown from size 5 to size 6 after the call to emplace_back. The 
range based for loop prints out all the values stored in the vector. You can see that emplace_back has added 
the value to the end of the vector.

Figure 7-1. The output generated by Listing 7-5 showing a growing vector



CHAPTER 7 ■ THE STL CONTAINERS

156

The way a vector resizes is implementation defined which means that it’s up to the vendor creating the 
library you are using. All implementations operate by using a similar method. They generally tend to allocate 
memory for a new array internally that includes the current size of the vector as well as a variable number 
of empty slots for new values. Listing 7-6 contains code that uses the capacity method to determine how 
many elements the vector is capable of storing before it will resize.

Listing 7-6. A resizing vector

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int32_t> stlVector
    {
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        11,
        12,
        13,
        14,
        15,
        16
    };
 
    cout << "The size is: " << stlVector.size() << endl;
    cout << "The capacity is: " << stlVector.capacity() << endl;
 
    stlVector.emplace_back(17);
 
    cout << "The size is: " << stlVector.size() << endl;
    cout << "The capacity is: " << stlVector.capacity() << endl;
 
    for (auto&& number : stlVector)
    {
        std::cout << number << std::endl;
    }
 
    return 0;
}
 



CHAPTER 7 ■ THE STL CONTAINERS

157

The code in Listing 7-6 creates a vector that contains 16 elements. Figure 7-2 shows the affect adding a 
new element has on the capacity of the vector.

Figure 7-2 shows that adding a value to a vector does not result in an increase in size of one element. 
Microsoft have decided that their implementation of the STL will increase the capacity of the vector by 50%. 
Adding a new element to a vector of size 16 adds capacity for 8 new elements when a single new element is 
added.

It’s also possible to add elements into a vector at places other than the end. Listing 7-7 shows how the 
emplace method can be used for this purpose.

Listing 7-7. Adding elements to arbitrary points in a vector

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int32_t> stlVector
    {
        1,
        2,

Figure 7-2. Output showing the increased capacity of a vector when using Microsoft Visual Studio 2013 STL



CHAPTER 7 ■ THE STL CONTAINERS

158

        3,
        4,
        5
    };
 
    auto iterator = stlVector.begin() + 2;
    stlVector.emplace(iterator, 6);
 
    for (auto&& number : stlVector)
    {
        std::cout << number << std::endl;
    }
 
    return 0;
}
 

Listing 7-7 uses an iterator to place the value 6 into the 3rd position of the vector. This operation 
increases the capacity of the vector if necessary and shifts all elements after the position one place to the 
right. Figure 7-3 shows the output from this operation.

It is also possible to remove elements from a vector. Listing 7-8 shows code that removes each element 
of the vector using an iterator to the last element.

Listing 7-8. Removing elements from a vector

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int32_t> stlVector
    {
        1,
        2,

Figure 7-3. The output from Listing 7-7 showing the element inserted into the 3rd position in the vector



CHAPTER 7 ■ THE STL CONTAINERS

159

        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        11,
        12,
        13,
        14,
        15,
        16
    };
 
    cout << "The size is: " << stlVector.size() << endl;
    cout << "The capacity is: " << stlVector.capacity() << endl << endl;
 
    for (auto&& number : stlVector)
    {
        std::cout << number << ", ";
    }
 
    while (stlVector.size() > 0)
    {
        auto iterator = stlVector.end() - 1;
        stlVector.erase(iterator);
    }
 
    cout << endl << endl << "The size is: " << stlVector.size() << endl;
    cout << "The capacity is: " << stlVector.capacity() << endl << endl;
 
    for (auto&& number : stlVector)
    {
        std::cout << number << ", ";
    }
 
    std::cout << std::endl;
 
    return 0;
}
 

The while loop in the main function of Listing 7-8 erases each element from the vector one by one. 
This will change the size of the vector but not the capacity. Listing 7-9 adds code to reduce the capacity of 
the vector.



CHAPTER 7 ■ THE STL CONTAINERS

160

Listing 7-9. Reducing the capacity of a vector

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int32_t> stlVector
    {
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        11,
        12,
        13,
        14,
        15,
        16
    };
 
    while (stlVector.size() > 0)
    {
        auto iterator = stlVector.end() - 1;
        stlVector.erase(iterator);
 
        if ((stlVector.size() * 2) == stlVector.capacity())
        {
            stlVector.shrink_to_fit();
        }
 
        cout << "The size is: " << stlVector.size() << endl;
        cout << "The capacity is: " << stlVector.capacity() << endl << endl;
    }
 
    return 0;
}
 

As the while loop removes elements it also checks for when the size of the vector reaches half of 
the capacity. When this condition is met the shrink_to_fit method is called. Figure 7-4 shows the effect 
shrink_to_fit has on the capacity of the vector.



CHAPTER 7 ■ THE STL CONTAINERS

161

Resizing a vector, either up or down, comes with a performance cost. New memory has to be 
allocated and the elements in the internal array have to be transferred from one to another. Two things are 
recommended in this scenario:

Work out the maximum number of elements that can be added to the •฀ vector at 
runtime and use the reserve method to allocate the requisite amount of memory 
required only once.

Determine if you can avoid using a •฀ vector altogether and use an array to create 
a pool of objects. This can be achieved by reusing elements in the array using a 
scheme such as a least recently used algorithm.

Figure 7-4. The effect of shrink_to_fit on a vector's capacity



CHAPTER 7 ■ THE STL CONTAINERS

162

Recipe 7-3. Storing a Set of Elements that Is  
Constantly Altered

Problem
You have a set of data where you will be constantly entering and removing elements from arbitrary positions.

Solution
The STL provides two containers that offer efficient insertion and deletion from the middle of the container. 
These are the list and forward_list containers.

How It Works
The array and vector containers store elements in contiguous memory. This provides for fast iteration over 
the set as they play into the strengths of the modern CPU architectures. The array container cannot be added 
to or removed from at runtime, elements can simply be altered. The vector container can have elements 
added and removed but this requires a new memory allocation and the transfer of all elements from the old 
memory block to the new memory block.

The list containers on the other hand do not store elements in contiguous blocks of memory. Instead 
each element in the list is stored in an independent node that contains a pointer to the next and last element 
in the list. This allows bi-directional traversal in the list container. A forward_list only stores a pointer 
to the next element, not the last, and can therefore only be traversed front to back. Adding and removing 
elements from a list becomes a trivial exercise in updating the pointers that reference the next and last nodes 
in the list structure.

This non-contiguous storage results in a performance penalty when traversing the list. The CPU cache 
cannot always pre-load the next element in the list therefore these structures should be avoided for sets of 
data that are regularly traversed. Their advantage comes from the rapid insertion and deletion of nodes. 
Listing 7-10 shows a list container in use.

Listing 7-10. Using a list

#include <cinttypes>
#include <iostream>
#include <list>
 
using namespace std;
 
int main(int argv, char* argc[])
{
    list<int32_t> myList{ 1, 2, 3, 4, 5 };
 
    myList.emplace_front(6);
    myList.emplace_back(7);
 



CHAPTER 7 ■ THE STL CONTAINERS

163

    auto forwardIter = myList.begin();
    ++forwardIter;
    ++forwardIter;
    myList.emplace(forwardIter, 9);
 
    auto reverseIter = myList.end();
    --reverseIter;
    --reverseIter;
    --reverseIter;
    myList.emplace(reverseIter, 8);
 
    for (auto&& number : myList)
    {
        cout << number << endl;
    }
 
    return 0;
}
 

The list container used in the main function of Listing 7-10 allows for forward and backward traversal 
from the iterators returned from begin or end. Figure 7-5 contains the output generated by traversing the 
list where you can see the arbitrary order of the added elements.

Listing 7-11 shows similar code with a forward_list

Listing 7-11. Using a forward_list

#include <cinttypes>
#include <forward_list>
#include <iostream>
 
using namespace std;
 

Figure 7-5. The output when traversing the list container in Listing 7-10



CHAPTER 7 ■ THE STL CONTAINERS

164

int main(int argv, char* argc[])
{
    forward_list<int32_t> myList{ 1, 2, 3, 4, 5 };
 
    myList.emplace_front(6);
 
    auto forwardIter = myList.begin();
    ++forwardIter;
    ++forwardIter;
    myList.emplace_after(forwardIter, 9);
 
    for (auto&& number : myList)
    {
        cout << number << endl;
    }
 
    return 0;
}
 

There are a few differences in Listing 7-11 when compared to Listing 7-10. A forward_list does not 
contain the methods emplace or emplace_back. It does contain emplace_front and also emplace_after 
which allow you to add elements to the beginning of the forward_list or after a specific position in the 
forward_list.

Recipe 7-4. Storing Sorted Objects in a Container that 
Enables Fast Lookups

Problem
You have a large collection of objects that you would like to be ordered and frequently have to look up to find 
specific information.

Solution
The STL provides the set and map containers that can automatically sort their objects and provide very fast 
search characteristics.

How It Works
The set and map containers are associative containers. This means that they associate their data elements 
with a key. In the case of a set the key is the object or value itself and for a map they key is a value supplied 
along with an object or value.

These containers are implemented using binary search trees and this is why they offer automatic sorting 
and fast search characteristics. Binary search trees operate by comparing keys for objects. If an object’s key is 
less than that of the current node then it is added to the left, if it is greater it goes to the right or vice versa.



CHAPTER 7 ■ THE STL CONTAINERS

165

Note ■  In fact you can provide a function to both containers that allows you to specify the sort order  

for yourself.

Listing 7-12 shows the creation of a set that orders its elements from smallest to largest.

Listing 7-12. Using a set

#include <cinttypes>
#include <iostream>
#include <set>
#include <string>
 
using namespace std;
 
class SetObject
{
private:
    string m_Name;
    int32_t m_Key{};
 
public:
    SetObject(int32_t key, const string& name)
        : m_Name{ name }
        , m_Key{ key }
    {
 
    }
 
    SetObject(int32_t key)
        : SetObject(key, "")
    {
 
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    int32_t GetKey() const
    {
        return m_Key;
    }
 
    bool operator<(const SetObject& other) const
    {
        return m_Key < other.m_Key;
    }
 



CHAPTER 7 ■ THE STL CONTAINERS

166

    bool operator>(const SetObject& other) const
    {
        return m_Key > other.m_Key;
    }
};
 
int main(int argv, char* argc[])
{
    set<SetObject> mySet
    {
        { 6, "Six" },
        { 3, "Three" },
        { 4, "Four" },
        { 1, "One" },
        { 2, "Two" }
    };
 
    for (auto&& number : mySet)
    {
        cout << number.GetName() << endl;
    }
 
    auto iter = mySet.find(3);
    if (iter != mySet.end())
    {
        cout << "Found: " << iter->GetName() << endl;
    }
 
    return 0;
}
 

The set defined in the main function of Listing 7-12 is initialized with five SetObject instances. Each of 
these instances stores an integer key and a string representation of that key. By default a set is initialized to 
order the elements it contains from lowest to highest. You can see this proven in Figure 7-6.

Figure 7-6. The output generated by the code in Listing 7-12



CHAPTER 7 ■ THE STL CONTAINERS

167

The ordering of class objects was achieved using operator overloading. The SetObject class overloads the 
< and > operators and this enables the class to be used with these operators. When adding a new element  
the set will call a comparison function that determines the order the elements should appear in the set. 
The default case calls for the use of the < operator on the elements. As you can see the SetObject class 
compares the m_Key variables in the operators to determine the order in which they should be stored.

Listing 7-13 shows how you can alter the default set to order the elements from highest to lowest.

Listing 7-13. Ordering elements in a set from highest to lowest

#include <cinttypes>
#include <functional>
#include <iostream>
#include <set>
#include <string>
 
using namespace std;
 
class SetObject
{
private:
    string m_Name;
    int32_t m_Key{};
 
public:
    SetObject(int32_t key, const string& name)
        : m_Name{ name }
        , m_Key{ key }
    {
 
    }
 
    SetObject(int32_t key)
        : SetObject(key, "")
    {
 
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    int32_t GetKey() const
    {
        return m_Key;
    }
 
    bool operator<(const SetObject& other) const
    {
        return m_Key < other.m_Key;
    }
 



CHAPTER 7 ■ THE STL CONTAINERS

168

    bool operator>(const SetObject& other) const
    {
        return m_Key > other.m_Key;
    }
};
 
using namespace std;
 
int main(int argv, char* argc[])
{
    set<SetObject, greater<SetObject>> mySet
    {
        { 6, "Six" },
        { 3, "Three" },
        { 4, "Four" },
        { 1, "One" },
        { 2, "Two" }
    };
 
    for (auto&& number : mySet)
    {
        cout << number.GetName() << endl;
    }
 
    auto iter = mySet.find(3);
    if (iter != mySet.end())
    {
        cout << "Found: " << iter->GetName() << endl;
    }
 
    return 0;
}
 

The only difference between Listing 7-12 and Listing 7-13 is the addition of a second template 
parameter to set. Listing 7-13 supplies the greater template from the functional header. This template will 
create a method from a function that can call the > operator on two SetObject instances. You can imagine 
that the default set had an implied less parameter:

set<SetObject, less<SetObject>>

Figure 7-7 shows the resulting output from a set with elements ordered from highest to lowest.

Figure 7-7. The set ordered from highest to lowest using greater



CHAPTER 7 ■ THE STL CONTAINERS

169

Listing 7-14 shows how you can add elements to a set after initialization.

Listing 7-14. Adding elements to a set

#include <cinttypes>
#include <functional>
#include <iostream>
#include <set>
#include <string>
 
using namespace std;
 
class SetObject
{
private:
    string m_Name;
    int32_t m_Key{};
 
public:
    SetObject(int32_t key, const string& name)
        : m_Name{ name }
        , m_Key{ key }
    {
 
    }
 
    SetObject(int32_t key)
        : SetObject(key, "")
    {
 
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    int32_t GetKey() const
    {
        return m_Key;
    }
 
    bool operator<(const SetObject& other) const
    {
        return m_Key < other.m_Key;
    }
 
    bool operator>(const SetObject& other) const
    {
        return m_Key > other.m_Key;
    }
};
 



CHAPTER 7 ■ THE STL CONTAINERS

170

int main(int argv, char* argc[])
{
    set<SetObject, greater<SetObject>> mySet
    {
        { 6, "Six" },
        { 3, "Three" },
        { 4, "Four" },
        { 1, "One" },
        { 2, "Two" }
    };
 
    for (auto&& number : mySet)
    {
        cout << number.GetName() << endl;
    }
 
    cout << endl;
 
    mySet.emplace(SetObject( 5, "Five" ));
 
    for (auto&& number : mySet)
    {
        cout << number.GetName() << endl;
    }
 
    cout << endl;
 
    auto iter = mySet.find(3);
    if (iter != mySet.end())
    {
        cout << "Found: " << iter->GetName() << endl;
    }
 
    return 0;
}
 

The emplace method can be used to add new elements to a set as in Listing 7-14. Figure 7-8 shows that 
the new element was inserted into the set in the correct position given the greater ordering.



CHAPTER 7 ■ THE STL CONTAINERS

171

The map container is very similar to the set container except for the fact that the key is stored 
independently of the object value. Listing 7-15 shows code to create a map container.

Listing 7-15. Creating a map

#include <cinttypes>
#include <functional>
#include <iostream>
#include <map>
#include <string>
 
using namespace std;
 
class MapObject
{
private:
    string m_Name;
 
public:
    MapObject(const string& name)
        : m_Name{ name }
    {
 
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
};
 

Figure 7-8. Shows a new element has been added to the set in the correct position



CHAPTER 7 ■ THE STL CONTAINERS

172

int main(int argv, char* argc[])
{
    map<int32_t, MapObject, greater<int32_t>> myMap
    {
        pair<int32_t, MapObject>(6, MapObject("Six")),
        pair<int32_t, MapObject>(3, MapObject("Three")),
        pair<int32_t, MapObject>(4, MapObject("Four")),
        pair<int32_t, MapObject>(1, MapObject("One")),
        pair<int32_t, MapObject>(2, MapObject("Two"))
    };
 
    for (auto&& number : myMap)
    {
        cout << number.second.GetName() << endl;
    }
 
    cout << endl;
 
    myMap.emplace(pair<int32_t, MapObject>(5, MapObject("Five")));
 
    for (auto&& number : myMap)
    {
        cout << number.second.GetName() << endl;
    }
 
    cout << endl;
 
    auto iter = myMap.find(3);
    if (iter != myMap.end())
    {
        cout << "Found: " << iter->second.GetName() << endl;
    }
 
    return 0;
}
 

Listing 7-15 achieves exactly the same result as the code in Listing 7-14 using a map in place of a set. The 
MapObject class does not contain a key nor does it contain any overloaded operators to compare the objects 
instantiated using this class. That’s because the key for a map is stored independently of the data. Elements 
are added to a map using the pair template and each pair associates a key value to an object.

The code for a map is more verbose than for that of a set however the objects contained can be less 
complex. A map is a good candidate over a set when the key is not related to the rest of the data in the class. 
Objects that have a natural order and are already comparable are good candidates for storing in a set.

The iterator to a map is also a pair. The MapObject it contains can be retrieved using the second field on 
the iterator while first stores the key value. Iterting over a map or a set is a slow operation as the elements 
are not contained in contiguous memory. The benefit of associative containers is mostly their fast lookups 
while the ordering is a secondary benefit that should only be used sparingly for performance reasons.



CHAPTER 7 ■ THE STL CONTAINERS

173

Recipe 7-5. Storing Unsorted Elements in a Container for 
Very Fast Lookups

Problem
You have a set of data that does not need to be sorted but will be used for frequent lookups and data retrieval.

Solution
The STL provides the unordered_set and unordered_map containers for this purpose.

How It Works
The unordered_set and unordered_map containers are implemented as hash maps. A hash map provides for 
constant time insertion, removal and searching of objects. Constant time means that the operations will take 
the same length of time regardless of how many elements are in the container.

As the unordered_set and unordered_map containers are hash maps they rely on a hashing function 
being supplied that can convert your data into a numeric value. Listing 7-16 shows how you can create a set 
to store user defined classes that can be hashed and compared.

Listing 7-16. Using an unordered_set

#include <cinttypes>
#include <functional>
#include <iostream>
#include <string>
#include <unordered_set>
 
using namespace std;
 
class SetObject;
 
namespace std
{
    template <>
    class hash<SetObject>
    {
    public:
        template <typename... Args>
        size_t operator()(Args&&... setObject) const
        {
            return hash<string>()((forward<Args...>(setObject...)).GetName());
        }
    };
}
 
class SetObject
{
private:
    string m_Name;
    size_t m_Hash{};
 



CHAPTER 7 ■ THE STL CONTAINERS

174

public:
    SetObject(const string& name)
        : m_Name{ name }
        , m_Hash{ hash<SetObject>()(*this) }
    {
 
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
 
    const size_t& GetHash() const
    {
        return m_Hash;
    }
 
    bool operator==(const SetObject& other) const
    {
        return m_Hash == other.m_Hash;
    }
};
 
int main(int argv, char* argc[])
{
    unordered_set<SetObject> mySet;
    mySet.emplace("Five");
    mySet.emplace("Three");
    mySet.emplace("Four");
    mySet.emplace("One");
    mySet.emplace("Two");
 
    cout << showbase << hex;
     
    for (auto&& number : mySet)
    {
        cout << number.GetName() << " - " << number.GetHash() << endl;
    }
     
    auto iter = mySet.find({ "Three" });
    if (iter != mySet.end())
    {
        cout << "Found: " << iter->GetName() << " with hash: " << iter->GetHash() << endl;
    }
     
    return 0;
}
 



CHAPTER 7 ■ THE STL CONTAINERS

175

Using an unordered_set to store class objects requires some difficult to understand code. First off 
we have a partial specialization for the hash template. This allows us to create a function that is capable of 
creating a hash value for the SetObject class. This is achieved by passing a SetObject instance and calling 
the STL hash function for a string. The SetObject instance is passed to the () operator using a universal 

reference and the forward function to achieve perfect forwarding.

Note ■  Templates are covered in Chapter 9 and universal references are covered along with lvaues, rvalues 

and perfect forwarding in Chapter 2.

The SetObject class requires an overloaded == operator to function properly in an unordered_set. The 
code would not compile if this was missing. The m_Hash member variable is not needed, I simply included 
this to show you the values hash creates and how you can call the hash function for yourself. If the m_Hash 
variable did not exist you can compare the m_Name strings for equality. Figure 7-9 shows the resulting output 
generated by this code.

An unordered_map does not come with the difficulty of creating your own hash function so long as 
you use a type for the key that the STL can already hash. Listing 7-17 shows an unordered_map that uses an 
integer as the key.

Listing 7-17. Using unordered_map

#include <cinttypes>
#include <iostream>
#include <string>
#include <unordered_map>
 
using namespace std;
 
class MapObject
{
private:
    string m_Name;
 

Figure 7-9. The output generated by Listing 7-16

http://dx.doi.org/10.1007/9781484201589_9
http://dx.doi.org/10.1007/9781484201589_2


CHAPTER 7 ■ THE STL CONTAINERS

176

public:
    MapObject(const string& name)
        : m_Name{ name }
    {
 
    }
 
    const string& GetName() const
    {
        return m_Name;
    }
};
 
int main(int argv, char* argc[])
{
    unordered_map<int32_t, MapObject> myMap;
    myMap.emplace(pair<int32_t, MapObject>(5, MapObject("Five")));
    myMap.emplace(pair<int32_t, MapObject>(3, MapObject("Three")));
    myMap.emplace(pair<int32_t, MapObject>(4, MapObject("Four")));
    myMap.emplace(pair<int32_t, MapObject>(1, MapObject("One")));
    myMap.emplace(pair<int32_t, MapObject>(2, MapObject("Two")));
 
    cout << showbase << hex;
 
    for (auto&& number : myMap)
    {
        cout << number.second.GetName() << endl;
    }
 
    auto iter = myMap.find(3);
    if (iter != myMap.end())
    {
        cout << "Found: " << iter->second.GetName() << endl;
    }
 
    return 0;
}
 

Listing 7-17 shows that the unordered_map container stores key value pairs as its elements. The first 
field of the pair stores the key while the second field of the pair stores the value, in this case an instance of 
MapObject.



177

CHAPTER 8

The STL Algorithms

The STL provides a set of algorithms that can be used along with the containers that it also supplies. These 
algorithms all work with iterators. An iterator is an abstraction mechanism that allows traversal behavior on many 
different STL collections. This chapter covers iterators and some of different algorithms along with their uses.

Recipe 8-1. Using an iterator to Define a Sequence  
within a Container

Problem
You have a STL container and would like to mark a sequence within that container that begins and ends at 
certain points.

Solution
The STL provides iterators that work with all containers and can be used to denote the beginning and end of 
a sequence within that container. The sequence can include every node in the container or it can include a 
subset of the nodes in the container.

How It Works
Iterators are designed to work in a similar manner to pointers. Their syntax turns out to be very similar. You 
can see the use of iterators in Listing 8-1.

Listing 8-1. Using an iterator with a vector

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int arcg, char* argv[])
{
    using IntVector = vector<int32_t>;
    using IntVectorIterator = IntVector::iterator;
 



CHAPTER 8 ■ THE STL ALGORITHMS

178

    IntVector myVector{ 0, 1, 2, 3, 4 };
    for (IntVectorIterator iter = myVector.begin(); iter != myVector.end(); ++iter)
    {
        cout << "The value is: " << *iter << endl;
    }
 
    return 0;
}
 

A vector of int type is created in the main function in Listing 8-1. A type alias is used to make a new 
type of IntVector to represent this type of collection. A second alias is used to represent the type of the 
iterator that is used with this collection. You can see that the iterator type is accessed through the initial 
vector type. This is necessary as the iterator must also operate on the same type of objects that the vector 
itself operates with. Including the iterator type within the vector type allows you to specify the type to 
operate on, in this case int32 _t, at the same time for both.

The iterator type is used to get references to the beginning and the end of the myVector collection in 
the for loop. The begin and end methods of a vector return iterators. A collection is said to be empty if the 
iterator denoting the beginning of the collection is equal to the iterator denoting the end of the collection. 
This is the first property that iterators share in common with pointers, they are comparable.

The iter variable in the for loop is initialized to the value returned by the vector::begin method. The 
for loop executes until the iter variable is equal to the iterator returned by the vector::end method. This 
shows that sequences of values in a collection can be represented by two iterators, one at the beginning of 
a sequence and one at the end of a sequence. An iterator provides an increment operator that allows the 
iterator to be moved to the next element in the sequence. This is how the iter variable in the for loop can 
be initialized to the iterator returned by begin and can be tested against end until the sequence traversal 
has been completed. This also happens to be another property that iterators share with pointers, an 
increment or decrement will move the iterator to the next or last element in a sequence.

Note ■  not all iterators support increment and decrement operations. You’ll see some situations where that is 

the case in the following paragraphs.

The last operation that is important to cover with an iterator is the dereference operator. You may be 
familiar with these from standard pointer operations and this is the last property that iterators share with 
pointers. You can see from Listing 8-1 that the dereference operator is used to retrieve the value represented 
by the iterator. In this example the dereference is used to retrieve each iterator from the collection to be 
sent to the console. Figure 8-1 shows that this is the case.

Figure 8-1. The output from Listing 8-1 when the myVector collection is traversed



CHAPTER 8 ■ THE STL ALGORITHMS

179

Trying to print out the iterator without using the dereference operator would have resulted in a 
compilation error as the cout::<< operator does not include support for iterator types.

The code from Listing 8-1 is using a standard forward iterator. This type of iterator provides non-const 
access to each element in the container. Listing 8-2 shows the implication of this attribute.

Listing 8-2. Using non-const iterators

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int arcg, char* argv[])
{
    using IntVector = vector<int32_t>;
    using IntVectorIterator = IntVector::iterator;
 
    IntVector myVector(5, 0);
    int32_t value{ 0 };
    for (IntVectorIterator iter = myVector.begin(); iter != myVector.end(); ++iter)
    {
        *iter = value++;
    }
 
    for (IntVectorIterator iter = myVector.begin(); iter != myVector.end(); ++iter)
    {
        cout << "The value is: " << *iter << endl;
    }
 
    return 0;
}
 

If you were to compare Listing 8-2 to Listing 8-1 you would see that the initialization of the myVector 
collection is handled in a different way. Listing 8-2 initializes the vector to contain 5 copies of the value 0.  
A for loop then walks the vector and assigns the post-incremented value variable to each position in 
myVector using the iterator dereference operator. This is possible due to the non-const nature of the 
iterator type. If you wish to use an iterator that you know should not have write access to its value then 
you can use a const_iterator as shown in Listing 8-3.

Listing 8-3. Using a const_iterator

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int arcg, char* argv[])
{
    using IntVector = vector<int32_t>;
    using IntVectorIterator = IntVector::iterator;
    using ConstIntVectorIterator = IntVector::const_iterator;
 



CHAPTER 8 ■ THE STL ALGORITHMS

180

    IntVector myVector(5, 0);
    int32_t value{ 0 };
    for (IntVectorIterator iter = myVector.begin(); iter != myVector.end(); ++iter)
    {
        *iter = value++;
    }
 
    for (ConstIntVectorIterator iter = myVector.cbegin(); iter != myVector.cend(); ++iter)
    {
        cout << "The value is: " << *iter << endl;
    }
 
    return 0;
}
 

Listing 8-3 uses the vector::cbegin and vector::cend methods in the second for loop to gain access  
to the elements of myVector without providing write access. Any attempt to assign values to a const_iterator 
results in a compile error being thrown when you try to build your program. The iterator and const_iterator  
types provided by C++ collections are both examples of forward iterators. That means that they both traverse 
the collection in the order you would suspect, from beginning to end. STL collections also supply support 
for the reverse_iterator and const_reverse_iterator types. These allow you to traverse your sequence 
backwards. Listing 8-4 shows the use of a reverse_itertor to initialize the myVector collection from highest 
to lowest.

Listing 8-4. Initializing myVector using a reverse_iterator

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int arcg, char* argv[])
{
    using IntVector = vector<int32_t>;
 
    using IntVectorIterator = IntVector::iterator;
    using ConstIntVectorIterator = IntVector::const_iterator;
 
    using ReverseIntVectorIterator = IntVector::reverse_iterator;
    using ConstReverseIntVectorIterator = IntVector::const_reverse_iterator;
 
    IntVector myVector(5, 0);
    int32_t value { 0 };
    for (ReverseIntVectorIterator iter = myVector.rbegin(); iter != myVector.rend(); ++iter)
    {
        *iter = value++;
    }
 



CHAPTER 8 ■ THE STL ALGORITHMS

181

    for (ConstIntVectorIterator iter = myVector.cbegin(); iter != myVector.cend(); ++iter)
    {
        cout << "The value is: " << *iter << endl;
    }
 
    return 0;
}
 

Listing 8-4 shows that the reverse_iterator should be used with the rbegin and rend methods 
supplied by vector. Incrementing a reverse_iterator causes it to move backwards through the collection. 
Figure 8-2 shows that the myVector collection has stored the values in reverse order.

Figure 8-2. The values from myVector in reverse order

The output in Figure 8-2 can also be achieved using the code in Listing 8-5 which uses a  
const_reverse_iterator to print the values.

Listing 8-5. Using a const_reverse_iterator to print myVector in reverse

#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int arcg, char* argv[])
{
    using IntVector = vector<int32_t>;
 
    using IntVectorIterator = IntVector::iterator;
    using ConstIntVectorIterator = IntVector::const_iterator;
 
    using ReverseIntVectorIterator = IntVector::reverse_iterator;
    using ConstReverseIntVectorIterator = IntVector::const_reverse_iterator;
 
    IntVector myVector(5, 0);
    int32_t value{ 0 };
    for (IntVectorIterator iter = myVector.begin(); iter != myVector.end(); ++iter)
    {
        *iter = value++;
    }
 



CHAPTER 8 ■ THE STL ALGORITHMS

182

    for (ConstReverseIntVectorIterator iter = myVector.crbegin();
        iter != myVector.crend();
        ++iter)
    {
        cout << "The value is: " << *iter << endl;
    }
 
    return 0;
}
 

Listing 8-5 uses const_reverse_iterator along with the crbegin and crend methods to walk the 
collection from last to first and print the values in reverse order.

Iterators will play an important part in the rest of this chapter as they are used as the input to the 
algorithms supplied by the STL.

Recipe 8-2. Calling a Function on Every Element in a Container

Problem
You have a container and would like a simple method to call a function on every element.

Solution
The STL provides the for_each function that takes a beginning iterator, an ending iterator and a function to 
call on each element between the two.

How It Works
The for_each function can be passed two iterators. These iterators define the beginning point and the end 
point in the container that should be traversed. The 3rd parameter is a function that should be called for each 
element. The element itself is passed into the function. Listing 8-6 shows a use of the for_each function.

Listing 8-6. The for_each algorithm

#include <algorithm>
#include <cinttypes>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int32_t> myVector
    {
        1,
        2,
        3,
        4,
        5
    };
 



CHAPTER 8 ■ THE STL ALGORITHMS

183

    for_each(myVector.begin(), myVector.end(),
        [](int32_t value)
        {
            cout << value << endl;
        });
 
    return 0;
}
 

The code in Listing 8-6 creates a vector with 5 elements, the numbers 1 through 5. The for_each 
function is passed the iterators returned by the begin and end methods to define the range of values that 
should be passed to the function supplied in parameter 3. Parameter 3 is an unnamed function or a lambda.

The square braces of the lambda denote a capture list. This list is used to allow the lambda access to 
variables that exist in the function where it is created. In this case we do not capture any variables from 
the function. The brackets then denote the parameter list. The lambda in Listing 8-1 takes an int32_t as a 
parameter as that is the type stored in the vector. The curly braces denote the function body just as they do 
with standard function bodies. Executing this code results in the output shown in Figure 8-3.

Figure 8-3. The output generated by the for_each and lambda in Listing 8-6

This output is generated because the for_each algorithm passes the integer from each position in 
myVector into the function supplied, in this case a lambda.

Recipe 8-3. Finding the Maximum and Minimum Values  
in a Container

Problem
Occasionally you will want to find the largest or smallest value in a container.

Solution
The STL provides algorithms that allow you to find both the largest and smallest values in a STL container. 
These are the min_element and max_element functions.



CHAPTER 8 ■ THE STL ALGORITHMS

184

How It Works

Finding the Minimum Value in a Container

The min_element function operates by taking an iterator to the beginning and the end of a given sequence. 
It walks this sequence and finds the minimum value contained in that sequence. Listing 8-7 shows this 
algorithm being used.

Listing 8-7. Using the min_element algorithm

#include <algorithm>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int> myVector{ 4, 10, 6, 9, 1 };
    auto minimum = min_element(myVector.begin(), myVector.end());
 
    cout << "Minimum value: " << *minimum << std::endl;
 
    return 0;
}
 

In this case you can see that a vector is being used to store integer elements. The min_element 
function is passed the iterator that denotes the beginning and the end of the sequence contained by the 
vector. This algorithm returns an iterator to the element that contains the smallest value. I’m using auto 
here to avoid having to write out the entirety of the iterator’s type (which would be vector<int>::iterator). 
It is clear that an iterator is returned when looking at the line that outputs the value. The pointer dereference 
operator is required to retrieve the integer value from the iterator. You can see the output generated by the 
code in Figure 8-4.

Figure 8-4. The output from Listing 8-7 showing the retrieved minimum value

The container in Listing 8-7 shows a trivial case where the container stores integer values. This case 
is trivial as two int variables are already comparable using the < operator. You can use min_element with 
your own classes by providing an overloaded < operator in your class. You can see an example of this in 
Listing 8-8.



CHAPTER 8 ■ THE STL ALGORITHMS

185

Listing 8-8. Using min_element in conjunction with a class that contains a < operator

#include <algorithm>
#include <iostream>
#include <vector>
 
using namespace std;
 
class MyClass
{
private:
    int m_Value;
 
public:
    MyClass(const int value)
        : m_Value{ value }
    {
 
    }
 
    int GetValue() const
    {
        return m_Value;
    }
 
    bool operator <(const MyClass& other) const
    {
        return m_Value < other.m_Value;
    }
};
 
int main(int argc, char* argv[])
{
    vector<MyClass> myVector{ 4, 10, 6, 9, 1 };
    auto minimum = min_element(myVector.begin(), myVector.end());
 
    if (minimum != myVector.end())
    {
        cout << "Minimum value: " << (*minimum).GetValue() << std::endl;
    }
 
    return 0;
}
 

Listing 8-7 and 10-8 differ by using a vector of MyClass objects rather than a vector of integer values. 
The call to min_element however remains exactly the same. In this case the min_element call will walk the 
sequence and use the < operator added to the MyClass class to find the lowest value. It’s also necessary to 
protect against hitting the end of the sequence in this case as the end element will not point to a valid object 
and therefore the dereference and call to GetValue will likely crash.

Another option to compare non-basic types is to provide a comparison function directly to the  
min_element function directly. This option is shown in Listing 8-9.



CHAPTER 8 ■ THE STL ALGORITHMS

186

Listing 8-9. Using a separate function with min_element

#include <algorithm>
#include <iostream>
#include <vector>
 
using namespace std;
 
class MyClass
{
private:
    int m_Value;
 
public:
    MyClass(const int value)
        : m_Value{ value }
    {
 
    }
 
    int GetValue() const
    {
        return m_Value;
    }
};
 
bool CompareMyClasses(const MyClass& left, const MyClass& right)
{
    return left.GetValue() < right.GetValue();
}
 
int main(int argc, char* argv[])
{
    vector<MyClass> myVector{ 4, 10, 6, 9, 1 };
    auto minimum = min_element(myVector.begin(), myVector.end(), CompareMyClasses);
 
    if (minimum != myVector.end())
    {
        cout << "Minimum value: " << (*minimum).GetValue() << std::endl;
    }
 
    return 0;
}
 

In Listing 8-9 we supply a pointer to a comparison function to the min_element function. This function 
is used to compare the values returned from the MyClass GetValue method. The comparison function is 
constructed in a very specific way and takes two parameters, both constant references to MyClass objects. 
The function should return true if the first parameter is evaluated as being less than the second. The names 
left and right are chosen to help visualize the usual look of a < operator. The call to min_element is altered 
to contain a third parameter, the pointer to the CompareMyClasses function. The code shown in Listings 10-8 
and 10-9 both produce output that is identical to that shown in Figure 8-4.



CHAPTER 8 ■ THE STL ALGORITHMS

187

Finding the Maximum Values in a Container

Where the min_element function can be used to find the smallest value in a sequence, the max_element 
function can be used to find the largest. The function can be used in exactly the same way as the min_element 
function as you can see in Listing 8-10.

Listing 8-10. Using max_element

#include <algorithm>
#include <iostream>
#include <vector>
 
using namespace std;
 
class MyClass
{
private:
    int m_Value;
 
public:
    MyClass(const int value)
        : m_Value{ value }
    {
 
    }
 
    int GetValue() const
    {
        return m_Value;
    }
 
    bool operator <(const MyClass& other) const
    {
        return m_Value < other.m_Value;
    }
};
 
bool CompareMyClasses(const MyClass& left, const MyClass& right)
{
    return left.GetValue() < right.GetValue();
}
 
int main(int argc, char* argv[])
{
    vector<int> myIntVector{ 4, 10, 6, 9, 1 };
    auto intMinimum = max_element(myIntVector.begin(), myIntVector.end());
    if (intMinimum != myIntVector.end())
    {
        cout << "Maxmimum value: " << *intMinimum << std::endl << std::endl;
    }
 



CHAPTER 8 ■ THE STL ALGORITHMS

188

    vector<MyClass> myMyClassVector{ 4, 10, 6, 9, 1 };
    auto overrideOperatorMinimum = max_element(myMyClassVector.begin(),
        myMyClassVector.end());
    if (overrideOperatorMinimum != myMyClassVector.end())
    {
        cout << "Maximum value: " << (*overrideOperatorMinimum).GetValue() <<
            std::endl << std::endl;
    }
 
    auto functionComparisonMinimum = max_element(myMyClassVector.begin(),
        myMyClassVector.end(),
        CompareMyClasses);
    if (functionComparisonMinimum != myMyClassVector.end())
    {
        cout << "Maximum value: " << (*functionComparisonMinimum).GetValue() <<
            std::endl << std::endl;
    }
 
    return 0;
}
 

Listing 8-10 shows that the max_element function can be used in place of the min_element function.  
It’s important to realize that the max_element function still uses the < operator. It may seem that the  
max_element would use the > operator instead but it’s just as valid to use the < operator and respond to a 
result of false rather than true to indicate that one value is greater than another.

Recipe 8-4. Counting Instances of a Value in a Sequence

Problem
Sometimes you may wish to know how many instances of a specific value exist in a sequence.

Solution
The STL provides an algorithm called count. This algorithm can search through a sequence of values and 
return the number of times a supplied value is found.

How It Works
The count function takes 3 parameters, a beginning iterator, an ending iterator and a value to find. 
Given these three pieces of information the algorithm will return the number of times the value is present. 
Listing 8-11 shows this algorithm in use.



CHAPTER 8 ■ THE STL ALGORITHMS

189

Listing 8-11. Using the count algorithm

#include <algorithm>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int> myVector{ 3, 2, 3, 7, 3, 8, 9, 3 };
    auto number = count(myVector.begin(), myVector.end(), 3);
    cout << "The number of 3s in myVector is: " << number << endl;
 
    return 0;
}
 

The code in Listing 8-11 will have the count function walk the sequence and return the number of times 
the value 3 is encountered. You can see that the result of this operation is 4 in Figure 8-5.

Figure 8-5. The resulting output generated by Listing 8-11

C++ also provides some special predicate functions that can be used in conjunction with character data 
and the count_if function. These include functions that can be used to count the number of upper or lower 
case letter and whether a character is alphanumeric, white space or punctuation. You can see all of these in 
action in Listing 8-12.

Listing 8-12. Using character predicates with count

#include <algorithm>
#include <cctype>
#include <iostream>
#include <string>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    string myString{ "Bruce Sutherland!" };
 



CHAPTER 8 ■ THE STL ALGORITHMS

190

    auto numberOfCapitals = count_if(
        myString.begin(),
        myString.end(),
        [](auto&& character)
        {
            return static_cast<bool>(isupper(character));
        });
    cout << "The number of capitals: " << numberOfCapitals << endl;
 
    auto numberOfLowerCase = count_if(
        myString.begin(),
        myString.end(),
        [](auto&& character)
        {
            return static_cast<bool>(islower(character));
        });
    cout << "The number of lower case letters: " << numberOfLowerCase << endl;
 
    auto numberOfAlphaNumerics = count_if(
        myString.begin(),
        myString.end(),
        [](auto&& character)
        {
            return static_cast<bool>(isalpha(character));
        });
    cout << "The number of alpha numeric characters: " << numberOfAlphaNumerics << endl;
 
    auto numberOfPunctuationMarks = count_if(
        myString.begin(),
        myString.end(),
        [](auto&& character)
        {
            return static_cast<bool>(ispunct(character));
        });
    cout << "The number of punctuation marks: " << numberOfPunctuationMarks << endl;
 
    auto numberOfWhiteSpaceCharacters = count_if(
        myString.begin(),
        myString.end(),
        [](auto&& character)
        {
            return static_cast<bool>(isspace(character));
        });
    cout << "The number of white space characters: " << numberOfWhiteSpaceCharacters << endl;
 
    return 0;
}
 



CHAPTER 8 ■ THE STL ALGORITHMS

191

The predicates can be seen being passed to the count_if function using a lambda in Listing 8-12. The 
lambda is necessary for the count_if template to be properly satisfied that the function being supplied is 
a predicate returns a bool. The count_if function will return the number of times the supplied function 
returns true. You can see the result of the different calls to count_if in Figure 8-6.

Figure 8-6. The results from calling the code in Listing 8-6

The string supplied in Listing 8-6 is fairly simple so it’s easy to confirm that the character predicates are 
working as expected. You can cross check the results from Figure 8-6 to confirm this is the case.

Recipe 8-5. Finding Values in a Sequence

Problem
You may wish to find an iterator to the first element in a sequence that matches a specific value.

Solution
The STL provides the find function to retrieve iterators to the first element in a sequence that matches a 
supplied value.

How It Works
The find function can be used to retrieve an iterator to the first value that matches a value that you supply. 
You can use this to walk along a sequence from beginning to end. Listing 8-13 shows how you can use this 
along with a while loop to move along an entire sequence.

Listing 8-13. Using find

#include <algorithm>
#include <iostream>
#include <string>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    string myString{ "Bruce Sutherland" };
 



CHAPTER 8 ■ THE STL ALGORITHMS

192

    auto found = find(myString.begin(), myString.end(), 'e');
    while (found != myString.end())
    {
        cout << "Found: " << *found << endl;
 
        found = find(found+1, myString.end(), 'e');
    }
 
    return 0;
}
 

The code in Listing 8-13 will print out the letter e twice as there are two of these in the string stored in 
the variable myString. The first call to find returns an iterator that points to the first instance of the character 
e in the string. The call inside the while loop then starts at the position immediately after that iterator. This 
causes the find function to search progressively through the supplied set of data and eventually reach the 
end. The while loop will terminate once this occurs. The code in Listing 8-13 generates the output shown in 
Figure 8-7.

Figure 8-7. The output generatedby executing the code shown in Listing 8-13

Recipe 8-6. Sorting Elements in a Sequence

Problem
Sometimes you will have data in a container that has become out of order and you wish to reorder that data.

Solution
The STL provides the sort algorithm to reorder data in a sequence.

How It Works
The sort function takes an iterator to the beginning of a sequence and an iterator to the end of a sequence.  
It will automatically sort the values between the iterators into an ascending numerical order. You can see 
code that achieves this in Listing 8-14.



CHAPTER 8 ■ THE STL ALGORITHMS

193

Listing 8-14. Using the sort algorithm

#include <algorithm>
#include <iostream>
#include <vector>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    vector<int> myVector{ 10, 6, 4, 7, 8, 3, 9 };
    sort(myVector.begin(), myVector.end());
 
    for (auto&& element : myVector)
    {
        cout << element << ", ";
    }
 
    cout << endl;
 
    return 0;
}
 

The code in Listing 8-14 will reorder the values in myVector into ascending order. Figure 8-8 shows the 
output this code generates.

Figure 8-8. The myVector elements sorted into ascending order

If you wish to sort the data into a custom order, such as descending then you must supply a predicate 
function to the sort algorithm. Listing 8-15 shows the use of a predicate to sort a numeric vector into 
descending order.

Listing 8-15. Using a predicate with sort

#include <algorithm>
#include <iostream>
#include <vector>
 
using namespace std;
 
bool IsGreater(int left, int right)
{
    return left > right;
}
 



CHAPTER 8 ■ THE STL ALGORITHMS

194

int main(int argc, char* argv[])
{
    vector<int> myVector{ 10, 6, 4, 7, 8, 3, 9 };
    sort(myVector.begin(), myVector.end(), IsGreater);
 
    for (auto&& element : myVector)
    {
        cout << element << ", ";
    }
 
    return 0;
}
 

The data in myVector in Listing 8-15 is the same as the data stored in Listing 8-14. The difference 
between the two Listings is the use of the IsGreater function in Listing 8-15. This is passed to the sort 
function and is used to compare the values in myVector. The standard sort function will order values from 
lowest to highest as you saw in Figure 8-9. Figure 8-10 shows that the code in Listing 8-15 will order the 
numbers from highest to lowest.

Figure 8-9. The output generated by Listing 8-15 with numbers ordered from highest to lowest



195

CHAPTER 9

Templates

The STL is written using a language feature provided by C++ called templates. Templates provide a method 
you can use to write generic code that can be specialized at compile time to create concrete functions and 
classes of varying type. The only requirement for template code is that output can be generated for all of the 
types used to specialize a template in your program. This may be a little difficult to understand at this point, 
but it should be clearer by the time you finish this chapter.

9-1. Creating a Template Function

Problem
You would like to create a function that can be passed different types of parameters and return different 
types of values.

Solution
It’s possible to use method overloading to supply different versions of a function for each type you wish 
to support, but this still limits you to functions with the types supplied. A better approach is to create a 
template function that that be specialized to work with any type.

How It Works
C++ includes a template compiler that can be used to turn generic function definitions into concrete 
functions at compile time.

Creating a Template Function

Templates allow you to write code without specifying concrete types. Code usually contains the types you 
wish to work with; Listing 9-1 shows a function written under these normal circumstances.



CHAPTER 9 ■ TEMPLATES

196

Listing 9-1. A Non-Template Function

#include <iostream>
 
using namespace std;
 
int Add(int a, int b)
{
    return a + b;
}
 
int main(int argc, char* argv[])
{
    const int number1{ 1 };
    const int number2{ 2 };
    const int result{ Add(number1, number2) };
 
    cout << "The result of adding" << endl;
    cout << number1 << endl;
    cout << "to" << endl;
    cout << number2 << endl;
    cout << "is" << endl;
    cout << result;
 
    return 0;
}
 

The Add function in Listing 9-1 is a standard C++ function. It takes two int parameters and returns 
an int value. You could supply a float version of this function by copying the function and altering every 
reference to int so that it used a float instead. You could then do the same for string and any other types 
you wished the function to support. The problem with this approach is that you must duplicate the function 
for every type, even though the body of the function remains the same. An alternative solution is to use a 
template function. You can see a template version of Add in Listing 9-2.

Listing 9-2. A Template Version of Add

template <typename T>
T Add(const T& a, const T& b)
{
    return a + b;
}
 

As you can see, the template version of Add no longer uses the concrete type int. Instead, the function 
is defined inside a template block. The template keyword is used to tell the compiler that the next block of 
code should be treated as a template. This is followed by an angled bracket section (< >) that defines any 
types the template uses. This example defines a single template type, represented by the character T. T is 
then used to specify the return type and the types of both parameters being passed to the function.



CHAPTER 9 ■ TEMPLATES

197

Note ■  It’s a good idea to pass parameters to template functions as const references. The initial 

 implementation of Add passed int types by value, but there’s no guarantee that a template won’t be used by a 

type that would create a performance penalty when passed by value, such as a copied object.

Now that you have templatized the Add function, you can see in Listing 9-3 that the calling code in the 
main function is no different than that shown in Listing 9-1.

Listing 9-3. Calling the Template Add Function

#include <iostream>
 
using namespace std;
 
template <typename T>
T Add(const T& a, const T& b)
{
    return a + b;
}
 
int main(int argc, char* argv[])
{
    const int number1{ 1 };
    const int number2{ 2 };
    const int result{ Add(number1, number2) };
 
    cout << "The result of adding" << endl;
    cout << number1 << endl;
    cout << "to" << endl;
    cout << number2 << endl;
    cout << "is" << endl;
    cout << result;
 
    return 0;
}
 

Listing 9-3 contains a call to the Add function in exactly the same place as the code in Listing 9-1. This is 
possible because compilers can implicitly work out the correct type to use with a template.

Explicit vs. Implicit Template Specialization

Sometimes you want to be explicit about the types your template can use. Listing 9-4 shows an example of 
explicit template specialization.



CHAPTER 9 ■ TEMPLATES

198

Listing 9-4. Explicit and Implicit Template Specialization

#include <iostream>
 
using namespace std;
 
template <typename T>
T Add(const T& a, const T& b)
{
    return a + b;
}
 
template <typename T>
void Print(const T& value1, const T& value2, const T& result)
{
    cout << "The result of adding" << endl;
    cout << value1 << endl;
    cout << "to" << endl;
    cout << value2 << endl;
    cout << "is" << endl;
    cout << result;
 
    cout << endl << endl;
}
 
int main(int argc, char* argv[])
{
    const int number1{ 1 };
    const int number2{ 2 };
    const int intResult{ Add(number1, number2) };
    Print(number1, number2, intResult);
 
    const float floatResult{ Add(static_cast<float>(number1), static_cast<float>(number2)) 
};
    Print<float>(number1, number2, floatResult);
 
    return 0;
}
 

Listing 9-4 adds a template Print function that takes three templatized parameters. This function is 
called twice in the main function. The first time, the template type is deduced implicitly. This is possible 
because all three parameters passed to the function are of type int; therefore the compiler works out that 
you intended to call an int version of the template. The second call to Print is explicit. This is achieved by 
adding angled brackets containing the type to use (in this case, float) immediately after the function name. 
This is necessary due to the different types of variables being passed to the function. Here number1 and 
number2 are both of type int, but floatResult is of type float; as a result, the compiler can’t deduce the 
correct type to use with the template. Visual Studio generated the following error when I tried to compile this 
code using implicit specialization:
 

error C2782: 'void Print(const T &,const T &,const T &)' : template parameter 'T' is ambiguous



CHAPTER 9 ■ TEMPLATES

199

9-2. Partially Specializing a Template

Problem
You have a template function that won’t compile with a specific type.

Solution
You can create template overloads using partial template specialization.

How It Works
The body of a template function contains code that requires implicit properties from the types you use to 
specialize that template. Consider the code in Listing 9-5.

Listing 9-5. A Template Function

#include <iostream>
 
using namespace std;
 
template <typename T>
T Add(const T& a, const T& b)
{
    return a + b;
}
 
template <typename T>
void Print(const T& value1, const T& value2, const T& result)
{
    cout << "The result of adding" << endl;
    cout << value1 << endl;
    cout << "to" << endl;
    cout << value2 << endl;
    cout << "is" << endl;
    cout << result;
 
    cout << endl << endl;
}
 
int main(int argc, char* argv[])
{
    const int number1{ 1 };
    const int number2{ 2 };
    const int intResult{ Add(number1, number2) };
    Print(number1, number2, intResult);
 
    return 0;
}
 



CHAPTER 9 ■ TEMPLATES

200

This code requires two implicit properties from the types used by the Add function and then the Print 
function. The Add function requires that the type used can also be used with the + operator. The Print 
function requires that the type used can be passed to the << operator. The main function uses these functions 
with int variables, so both of these conditions are met. If you were to use Add or Print with a class you 
created, then chances are that the compiler wouldn’t be able to use that class with the + or << operator.

Note ■  The “proper” solution in this case is to add overloaded + and << operators so that the original code 

works as expected. This example shows how you can use partial specialization to achieve the same result.

You can easily update Listing 9-5 to use a simple class, as shown in Listing 9-6.

Listing 9-6. Using Templates with Classes

#include <iostream>
 
using namespace std;
 
class MyClass
{
private:
    int m_Value{ 0 };
 
public:
    MyClass() = default;
 
    MyClass(int value)
        : m_Value{ value }
    {
 
    }
 
    MyClass(int number1, int number2)
        : m_Value{ number1 + number2 }
    {
 
    }
 
    int GetValue() const
    {
        return m_Value;
    }
};
 
template <typename T>
T Add(const T& a, const T& b)
{
    return a + b;
}
 



CHAPTER 9 ■ TEMPLATES

201

template <typename T>
void Print(const T& value1, const T& value2, const T& result)
{
    cout << "The result of adding" << endl;
    cout << value1 << endl;
    cout << "to" << endl;
    cout << value2 << endl;
    cout << "is" << endl;
    cout << result;
 
    cout << endl << endl;
}
 
int main(int argc, char* argv[])
{
    const MyClass number1{ 1 };
    const MyClass number2{ 2 };
    const MyClass intResult{ Add(number1, number2) };
    Print(number1, number2, intResult);
 
    return 0;
}
 

The code in Listing 9-6 won’t compile. Your compiler won’t be able to find suitable operators that can 
be used with the MyClass type for + and <<. You can fix this problem by using partial template specialization, 
as shown in Listing 9-7.

Listing 9-7. Using Partial Template Specialization

#include <iostream>
 
using namespace std;
 
class MyClass
{
private:
    int m_Value{ 0 };
 
public:
    MyClass() = default;
 
    MyClass(int value)
        : m_Value{ value }
    {
 
    }
 
    MyClass(int number1, int number2)
        : m_Value{ number1 + number2 }
    {
 
    }
 



CHAPTER 9 ■ TEMPLATES

202

    int GetValue() const
    {
        return m_Value;
    }
};
 
template <typename T>
T Add(const T& a, const T& b)
{
    return a + b;
}
 
template <>
MyClass Add(const MyClass& myClass1, const MyClass& myClass2)
{
    return MyClass(myClass1.GetValue(), myClass2.GetValue());
}
 
template <typename T>
void Print(const T& value1, const T& value2, const T& result)
{
    cout << "The result of adding" << endl;
    cout << value1 << endl;
    cout << "to" << endl;
    cout << value2 << endl;
    cout << "is" << endl;
    cout << result;
 
    cout << endl << endl;
}
 
template <>
void Print(const MyClass& value1, const MyClass& value2, const MyClass& result)
{
    cout << "The result of adding" << endl;
    cout << value1.GetValue() << endl;
    cout << "to" << endl;
    cout << value2.GetValue() << endl;
    cout << "is" << endl;
    cout << result.GetValue();
 
    cout << endl << endl;
}
 
int main(int argc, char* argv[])
{
    const MyClass number1{ 1 };
    const MyClass number2{ 2 };
    const MyClass intResult{ Add(number1, number2) };
    Print(number1, number2, intResult);
 
    return 0;
}
 



CHAPTER 9 ■ TEMPLATES

203

The code in Listing 9-7 adds specialized versions of Add and Print. It does so by using an empty 
template-type specifier and the concrete MyClass types in the function signatures. You can see this in the 
Add function, where the parameters being passed are of type MyClass and the return value is of type MyClass. 
The partially specialized Print function also passes const references to MyClass variables. The template 
functions can still be used with variables such as ints and floats but now also explicitly support the 
MyClass type.

For the sake of completeness, Listing 9-8 shows a preferred implementation that adds support for the + 
and << operators and MyClass.

Listing 9-8. Adding + and << Operator Support to MyClass

#include <iostream>
 
using namespace std;
 
class MyClass
{
    friend ostream& operator <<(ostream& os, const MyClass& myClass);
 
private:
    int m_Value{ 0 };
 
public:
    MyClass() = default;
 
    MyClass(int value)
        : m_Value{ value }
    {
 
    }
 
    MyClass(int number1, int number2)
        : m_Value{ number1 + number2 }
    {
 
    }
 
    MyClass operator +(const MyClass& other) const
    {
        return m_Value + other.m_Value;
    }
};
 
ostream& operator <<(ostream& os, const MyClass& myClass)
{
    os << myClass.m_Value;
    return os;
}
 



CHAPTER 9 ■ TEMPLATES

204

template <typename T>
T Add(const T& a, const T& b)
{
    return a + b;
}
 
template <typename T>
void Print(const T& value1, const T& value2, const T& result)
{
    cout << "The result of adding" << endl;
    cout << value1 << endl;
    cout << "to" << endl;
    cout << value2 << endl;
    cout << "is" << endl;
    cout << result;
 
    cout << endl << endl;
}
 
int main(int argc, char* argv[])
{
    const MyClass number1{ 1 };
    const MyClass number2{ 2 };
    const MyClass intResult{ Add(number1, number2) };
    Print(number1, number2, intResult);
 
    return 0;
}
 

This code adds support for the + operator to MyClass directly. A function is also specified for the  
<< operator that works along with the ostream type. This works because cout is compatible with ostream 
(which stands for output stream). This function signature is added as a friend of MyClass so that the 
function can access internal data from MyClass. You could also leave the GetValue accessor and not add the 
operator as a friend function.

9-3. Creating Class Templates

Problem
You would like to create a class that can store variables of different types without duplicating all the code.

Solution
C++ allows for the creation of template classes that support abstract types.



CHAPTER 9 ■ TEMPLATES

205

How It Works
You can define a class as a template using the template specifier. The template specifier takes types and 
values as parameters that the compiler uses to build a specialization of the template code. Listing 9-9 shows 
an example that uses an abstract type and value to construct a template class.

Listing 9-9. Creating a Template Class

#include <iostream>
 
using namespace std;
 
template <typename T, int numberOfElements>
class MyArray
{
private:
    T m_Array[numberOfElements];
 
public:
    MyArray()
        : m_Array{}
    {
 
    }
 
    T& operator[](const unsigned int index)
    {
        return m_Array[index];
    }
};
 
int main(int argc, char* argv[])
{
    const unsigned int ARRAY_SIZE{ 5 };
    MyArray<int, ARRAY_SIZE> myIntArray;
    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)
    {
        myIntArray[i] = i;
    }
 
    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)
    {
        cout << myIntArray[i] << endl;
    }
 
    cout << endl;
 
    MyArray<float, ARRAY_SIZE> myFloatArray;
    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)
    {
        myFloatArray[i] = static_cast<float>(i)+0.5f;
    }



CHAPTER 9 ■ TEMPLATES

206

 
    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)
    {
        cout << myFloatArray[i] << endl;
    }
 
    return 0;
}
 

The class MyArray creates a C-style array of type T and a number of elements. Both of these are 
abstract at the time you write the class and are specified at the time you use them in your code. You can 
now use the MyArray class to create an array of any size and containing any number of elements that can be 
represented by an int. You can see this in practice in the main function, where the MyArray class template 
is specialized to create an array of ints and an array of floats. Figure 9-1 shows the output generated when 
running this code: the two arrays contain different types of variables.

Note ■  The creation of an array template wrapper is a simple example that shows the foundation of the 

std::array template supplied by the STL. The STL version supports STL iterators and algorithms and is a  

better choice than writing your own implementation.

9-4. Creating Singletons

Problem
You have a system, and you would like to create a single instance of it that you can access from many places 
in your application.

Figure 9-1. The output generated by running the code in Listing 9-9



CHAPTER 9 ■ TEMPLATES

207

Solution
You can use a template to create a Singleton base class.

How It Works
The basis of the singleton is a class template. The Singleton class template contains a static pointer to an 
abstract type that can be used to represent any type of class you like. A byproduct of using a static pointer 
is that the instance of the class can be accessed from anywhere in your program. You should be careful not 
to abuse this, although it can be a useful property. Listing 9-10 shows show to create and use a Singleton 
template.

Listing 9-10. The Singleton Template

#include <cassert>
#include <iostream>
 
using namespace std;
 
template <typename T>
class Singleton
{
private:
    static T* m_Instance;
 
public:
    Singleton()
    {
        assert(m_Instance == nullptr);
        m_Instance = static_cast<T*>(this);
    }
 
    virtual ~Singleton()
    {
        m_Instance = nullptr;
    }
 
    static T& GetSingleton()
    {
        return *m_Instance;
    }
 
    static T* GetSingletonPtr()
    {
        return m_Instance;
    }
};
 
template <typename T>
T* Singleton<T>::m_Instance = nullptr;
 



CHAPTER 9 ■ TEMPLATES

208

class Manager
    : public Singleton < Manager >
{
public:
    void Print() const
    {
        cout << "Singleton Manager Successfully Printing!";
    }
};
 
int main(int argc, char* argv[])
{
    new Manager();
    Manager& manager{ Manager::GetSingleton() };
    manager.Print();
    delete Manager::GetSingletonPtr();
 
    return 0;
}

 
The Singleton class in Listing 9-10 is a template class that contains a private static pointer to the 

abstract type T. The Singleton constructor assigns a cast of this to the m_Instance variable. It’s possible to 
use a static_cast in this manner because you know that the type of the object will be the type supplied to 
the template. The class’s virtual destructor is responsible for setting m_Instance back to nullptr; there are 
also reference and pointer accessors to the instance.

Listing 9-10 then uses this template to create a Singleton-capable Manager class. It does so by creating a 
class that inherits from Singleton and passes its own type into the Singleton template parameter.

Note ■  Passing the type of a class into a template from which the class derives is known as the curiously 

recursive template pattern.

The main function creates a Manager using the new keyword. The Manager isn’t stored as a reference or 
pointer to the class. Although you could do this, it’s better to simply use the accessor to the Singleton from 
this point. You do so by using the static function syntax with the name of the derived class. The main function 
creates a reference to the Manager instance by calling the Manager::GetSingleton function.

The Singleton instance is deleted by calling delete on the value returned by 
Manager::GetSingletonPtr. This causes ~Singleton to be called, which clears the address stored in  
m_Instance and releases the memory used to store the instance.

Note ■  This Singleton class is based on the implementation originally written by Scott Bilas in Game  

Programming Gems (Charles River Media, 2000).



CHAPTER 9 ■ TEMPLATES

209

9-5. Calculating Values at Compile Time

Problem
You need to calculate complex values and would like to avoid computing them at runtime.

Solution
Template metaprogramming takes advantage of the C++ template compiler to calculate values at compile 
time and save runtime performance for users.

How It Works
Template metaprogramming can be a complex topic to understand. This complexity comes from the scope 
of the C++ template compiler’s capabilities. In addition to letting you carry out generic programming by 
abstracting types from functions and classes, the template compiler can also compute values.

Hashing data is a common method of comparing two sets of data for equality. It works by creating 
a hash of the data at the time of creation and comparing the hash to the runtime version of the data. You 
can use this method to detect changes in executables of data files when your program is being executed. 
The SDBM hash is a simple-to-implement hashing function; Listing 9-11 shows a normal function 
implementation of the SDBM hash algorithm.

Listing 9-11. The SDBM Hash Algorithm

#include <iostream>
#include <string>
 
using namespace std;
 
unsigned int SDBMHash(const std::string& key)
{
    unsigned int result{ 0 };
 
    for (unsigned int character : key)
    {
        result = character + (result << 6) + (result << 16) - result;
    }
 
    return result;
}
 
int main(int argc, char* argv[])
{
    std::string data{ "Bruce Sutherland" };
    unsigned int sdbmHash{ SDBMHash(data) };
 
    cout << "The hash of " << data << " is " << sdbmHash;
 
    return 0;
}
 



CHAPTER 9 ■ TEMPLATES

210

The SDBMHash function in Listing 9-11 works by iterating over the supplied data and calculating a result 
by manipulating each byte from the data set into a result variable. This functional version of SDBMHash is 
useful for creating a hash of data loaded at runtime, but here the data being supplied was known at compile 
time. You can optimize the execution speed of your program by replacing this function with a template 
metaprogram. Listing 9-12 does just that.

Listing 9-12. Replacing SDBMHash with a Template Metaprogram

#include <iostream>
 
using namespace std;
 
template <int stringLength>
struct SDBMCalculator
{
    constexpr static unsigned int Calculate(const char* const stringToHash, unsigned int& value)
    {
        unsigned int character{
            SDBMCalculator<stringLength - 1>::Calculate(stringToHash, value)
        };
        value = character + (value << 6) + (value << 16) - value;
        return stringToHash[stringLength - 1];
    }
 
    constexpr static unsigned int CalculateValue(const char* const stringToHash)
    {
        unsigned int value{};
        unsigned int character{ SDBMCalculator<stringLength>::Calculate(stringToHash, value) };
        value = character + (value << 6) + (value << 16) - value;
        return value;
    }
};
 
template<>
struct SDBMCalculator < 1 >
{
    constexpr static unsigned int Calculate(const char* const stringToHash, unsigned int& value)
    {
        return stringToHash[0];
    }
};
 
constexpr unsigned int sdbmHash{ SDBMCalculator<16>::CalculateValue("Bruce Sutherland") };
 
int main(int argc, char* argv[])
{
    cout << "The hash of Bruce Sutherland is " << sdbmHash << endl;
 
    return 0;
}
 



CHAPTER 9 ■ TEMPLATES

211

Figure 9-2. The output generated by the code in Listing 9-12, showing the SDBM hash of the string “Bruce 
Sutherland”

You can immediately see that the code in Listing 9-12 looks much more complicated than Listing 9-11.  
The syntax required to write template metaprograms isn’t the nicest to read. The main function is now 
a single line of code. The hash value is stored in a constant, and no call is made to any of the template 
functions. You can test this by placing a breakpoint in the template functions and running a release build of 
your program.

The template metaprogram in Listing 9-12 works by using recursion. The length of the data to be 
hashed is supplied to the template parameter and can be seen when the sdbmHash variable is initialized. 
Here, 16 is passed to the template, which is the length of the string “Bruce Sutherland”. The template 
compiler recognizes that it has been supplied with data that it can evaluate at compile time, and therefore 
it automatically calls the Calculate metaprogram function in the CalculateValue function. This recursion 
occurs until the terminator is hit. The terminator is the partially specialized version of Calculate that 
is written to be called once the length of the data to be hashed is 1. When the terminator is reached, the 
recursive calls begin to unwind, and the compiler eventually stores the result of the template metaprogram 
in the sdbmHash variable. You can see the template metaprogram in action using a debug build. The compiler 
won’t optimize out the template metaprogram in a debug build, which allows you to test your code and step 
through it to see the results. Figure 9-2 shows the output from running the code in Listing 9-12.



213

CHAPTER 10

Memory

Memory is a fundamentally important resource in modern computers. All the data that your program 
operates on will at some point or other be stored into RAM to be retrieved by the processor at a later time 
when required to complete part of your algorithms.

Because of this, it’s vitally important for a C++ programmer to understand how and when your program 
uses different types of memory. This chapter introduces three different memory spaces, how they can be 
utilized, and the potential performance impacts that each may cause on your programs.

10-1. Using Static Memory

Problem
You have an object that you would like to be able to access anywhere in your code.

Solution
Static memory can be thought of as global variables. These variables and their values can be accessed by any 
part of your program at any time.

How It Works
The compiler you use automatically adds memory in static memory space for any globals you create.  
The address of static variables can usually be found in the address space of your executable and as such can 
be accessed by any part of your program at any time. Listing 10-1 shows an example of an unsigned integer 
global variable.

Listing 10-1. An Unsigned Integer Global Variable

#include <iostream>
 
using namespace std;
 
unsigned int counter{ 0 };
 



CHAPTER 10 ■ MEMORY

214

void IncreaseCounter()
{
    counter += 10;
    cout << "counter is " << counter << endl;
}
 
int main(int argc, char* argv[])
{
    counter += 5;
    cout << "counter is " << counter << endl;
 
    IncreaseCounter();
 
    return 0;
}
 

The variable counter in Listing 10-1 is declared with global scope. The result is that the variable 
can be accessed globally in your program. You can see this in effect in the main function and in the 
IncreaseCounter function. Both of these functions increase the value of the same global counter variable. 
The result shown in Figure 10-1 confirms that this is the case.

Global variables may be useful under certain circumstances but can cause many problems in other 
situations. Recipe 9-4 showed the use of a static class member variable to create a Singleton object. A static 
member is also a type of global variable and as such is accessible from anywhere in your program. A general 
problem with static variables is their order of creation. The C++ standard doesn’t guarantee that static 
variables will be initialized in a given order. This can cause programs that use many dependent globals to 
run into problems and crashes as a result of an unexpected initialization order. Global variables also cause 
many problems in multithreaded programming because multiple threads can access the static address space 
at the same time with unexpected results. It’s generally recommended that you keep the usage of global 
variables to a minimum.

10-2. Using Stack Memory

Problem
You require memory for temporary variables for doing work within functions.

Solution
A C++ program can use a growing and shrinking stack to provide temporary space for local variables.

Figure 10-1. Output showing the result of changing a global variable



CHAPTER 10 ■ MEMORY

215

How It Works
Because all variables in a C++ program are required to be backed by memory, temporary space is created on 
the fly for variables defined within functions. This is achieved using a stack. When a function is called, the 
compiler adds machine code that allocates enough stack space to store all the variables needed by a function.

The stack is manipulated using two registers (on x86-based CPUs) called esp and ebp. esp is the stack 
pointer, and ebp is the base pointer. The base pointer is used to store the address of the previous stack frame.  
This allows the current function to return to the correct stack when its execution is over. The esp register is used 
to store the current top of the stack; this allows the ebp to be updated if the current function calls another function.

The process of creating enough space on the program stack for local variables is shown in Listing 10-2.

Listing 10-2. x86 Assembly Showing the Creation of a 20-Byte Stack Frame

push ebp
mov ebp, esp
sub esp 20
 

The three lines of x86 Assembly language in Listing 10-2 show the basics of stack-frame creation in 
x86. First the push instruction is used to move the current base pointer onto the stack. The push instruction 
moves esp down far enough the store the value of ebp and then moves that value onto the stack. The current 
value of esp is then moved into ebp, moving the base pointer up to the beginning of the current stack frame. 
The last instruction subtracts the size of the stack frame from esp. It should be clear from this that a stack in 
an x86-based computer grows down toward 0.

A program then accesses each of the variables in the stack using an offset from the base pointer. You can 
see these three lines in the disassembly from Visual Studio shown in Figure 10-2.

Figure 10-2. Disassembly from an x86 program, showing the creation of a stack frame



CHAPTER 10 ■ MEMORY

216

Listing 10-3 shows the code from which the disassembly in Figure 10-2 is taken.

Listing 10-3. Simple Program Used to View the Disassembly

#include <iostream>
 
using namespace std;
 
void Function()
{
    int a{ 0 };
 
    cout << a;
}
 
int main(int argc, char* argv[])
{
    Function();
 
    return 0;
}
 

All the local variables that you create are allocated on the stack. Class variables’ constructors are called 
at the point they’re created, and their destructors are called when the stack is being destroyed. Listing 10-4 
shows a simple program that consists of a class with a constructor and a destructor.

Listing 10-4. Class Variables on the Stack

#include <iostream>
 
using namespace std;
 
class MyClass
{
public:
    MyClass()
    {
        cout << "Constructor called!" << endl;
    }
 
    ~MyClass()
    {
        cout << "Destructor called!" << endl;
    }
};
 
int main(int argc, char* argv[])
{
    MyClass myClass;
 
    cout << "Function body!" << endl;
 
    return 0;
}
 



CHAPTER 10 ■ MEMORY

217

The constructor of the variable myClass in Listing 10-4 is called at the point of initialization. The rest of 
the function body is executed, and the class destructor is called when the variable goes out of scope. The 
myClass variable goes out of scope after the return statement. This happens because the local variables in 
the function may be needed to calculate the value returned from the function. You can see the output from 
Listing 10-4 in Figure 10-3.

The code in Listing 10-4 shows the creation and destruction of class variables in a function. It’s also 
possible to control the creation of stack frames in C++. You do so by using curly braces to create a new scope 
within an existing scope. Listing 10-5 creates several different scopes, each with their own local variables.

Listing 10-5. Creating Multiple Scopes

#include <iostream>
 
using namespace std;
 
class MyClass
{
private:
    static int m_Count;
    int m_Instance{ -1 };
 
public:
    MyClass()
        : m_Instance{m_Count++}
    {
        cout << "Constructor called on " << m_Instance << endl;
    }
 
    ~MyClass()
    {
        cout << "Destructor called on " << m_Instance << endl;
    }
};
 

Figure 10-3. The output from running the code in Listing 10-4



CHAPTER 10 ■ MEMORY

218

int MyClass::m_Count{ 0 };
 
int main(int argc, char* argv[])
{
    MyClass myClass1;
 
    {
        MyClass myClass2;
 
        {
            MyClass myClass3;
        }
    }
 
    return 0;
}
 

The code in Listing 10-5 shows the use of curly braces to create multiple stack frames within a single 
function. The class MyClass contains a static variable m_Count that is used to track the different instances. 
This variable is post-incremented every time a new instance is created, and the pre-incremented value is 
stored in m_Instance. The destructor is called on local variables each time a scope is closed. The results are 
shown in Figure 10-4.

10-3. Using Heap Memory

Problem
You need to create a large pool of memory that outlives a single local scope.

Solution
C++ provides the new and delete operators that allow you to manage large pools of dynamically allocated 
memory.

Figure 10-4. Output showing the destruction order of objects with multiple scopes



CHAPTER 10 ■ MEMORY

219

How It Works
Dynamically allocated memory is important to many long-running programs. It’s essential for programs 
that allow users to generate their own content or load resources from files. It’s usually very difficult if not 
impossible to provide enough memory for programs such as web browsers that are used to stream videos or 
social media content without the use of dynamically allocated memory, because you’re unable to determine 
your memory requirements at the time of creating your program.

You can allocate dynamic memory in an address space commonly called the heap using the C++ new and 
delete operators. The new operator returns a pointer to dynamically allocated memory that is large enough to 
store the type of variable being created. Listing 10-6 shows how the new and delete operators are used.

Listing 10-6. Using new and delete

#include <iostream>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    int* pInt{ new int };
    *pInt = 100;
 
    cout << hex << "The address at pInt is " << pInt << endl;
    cout << dec << "The value at pInt is " << *pInt << endl;
 
    delete pInt;
    pInt = nullptr;
 
    return 0;
}
 

This code uses the new operator to allocate enough memory to store a single int variable. A pointer is 
returned from new and stored in the variable pInt. The memory returned is uninitialized, and it’s generally 
a good idea to initialize this memory at the point of creation. You can see this in main, where the pointer 
dereference operator is used to initialize the memory pointed to by pInt to 100.

Once you have allocated memory from the heap, it’s your responsibility to ensure that it’s returned 
correctly to the operating system. Failing to do so results in a memory leak. Memory leaks can cause 
problems for users and often result in poor computer performance, memory fragmentation, and, in severe 
cases, computer crashes due to insufficient memory.

You return heap memory to the operating system using the delete operator. This operator tells the 
system that you no longer need all the memory that was returned from the initial call to new. Your program 
should no longer attempt to use the memory returned by new after the call to delete has been made. Doing 
so causes undefined behavior that more often than not results in a program crash. Crashes caused by access 
to freed memory are usually very difficult to find, because they manifest themselves in places that you can’t 
link to the offending code in any way. You can ensure that your program doesn’t access deleted memory by 
setting any pointers to the memory to nullptr.

The output from Listing 10-6 is shown in Figure 10-5.



CHAPTER 10 ■ MEMORY

220

The new and delete operators in Listing 10-6 are used to allocate single objects. There are also new and 
delete array operators for allocating multiples of the same object. Listing 10-7 shows the array new and 
delete operators in action.

Listing 10-7. The Array new and delete Operators

#include <iostream>
 
using namespace std;
 
class MyClass
{
private:
    int m_Number{ 0 };
 
public:
    MyClass() = default;
    ~MyClass()
    {
        cout << "Destroying " << m_Number << endl;
    }
 
    void operator=(const int value)
    {
        m_Number = value;
    }
};
 
int main(int argc, char* argv[])
{
    const unsigned int NUM_ELEMENTS{ 5 };
    MyClass* pObjects{ new MyClass[NUM_ELEMENTS] };
    pObjects[0] = 100;
    pObjects[1] = 45;
    pObjects[2] = 31;
    pObjects[3] = 90;

Figure 10-5. The output showing the address of and value stored in dynamically allocated memory  
from Listing 10-6

j



CHAPTER 10 ■ MEMORY

221

    pObjects[4] = 58;
 
    delete[] pObjects;
    pObjects = nullptr;
 
    return 0;
}
 

The code in Listing 10-7 creates an array of objects. The MyClass class consists of an overloaded 
assignment operator to initialize the created objects and a destructor that shows the destruction order of the 
elements in the array. Using the standard delete operator on an array of objects can cause various problems 
for your program, because the standard delete operator only calls the class destructor on the first element 
of the array. If your class had allocated its own memory, then each of the subsequent objects in the array 
would leak their memory. Using the delete array operator ensures that each of the destructors in your array 
is called. You can see that each of the destructors for the elements in the array is called in Figure 10-6.

10-4. Using Automated Shared Memory

Problem
You have an object that can be shared by multiple systems with different lifespans.

Solution
C++ provides the shared_ptr template that can automatically delete memory when it’s no longer needed.

How It Works
Dynamically allocated memory in C++ must be deleted by a programmer. This means you’re responsible for 
ensuring that your program behaves as a user expects at all times. C++ provides the shared_ptr template, 
which tracks how many places in your program are sharing access to the same memory and can delete that 
memory when it’s no longer needed. Listing 10-8 shows how you can create a shared pointer.

Figure 10-6. The output showing that each of the destructors has been called when using the array  
delete operator



CHAPTER 10 ■ MEMORY

222

Listing 10-8. Creating a Shared Pointer

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    int m_Number{ 0 };
 
public:
    MyClass(int value)
        : m_Number{ value }
    {
 
    }
 
    ~MyClass()
    {
        cout << "Destroying " << m_Number << endl;
    }
 
    void operator=(const int value)
    {
        m_Number = value;
    }
 
    int GetNumber() const
    {
        return m_Number;
    }
};
 
using SharedMyClass = shared_ptr< MyClass >;
 
int main(int argc, char* argv[])
{
    SharedMyClass sharedMyClass{ new MyClass(10) };
 
    return 0;
}
 

This code contains a class, MyClass, that has a private integer member variable. There is also a type alias 
used to represent a shared_ptr to a MyClass object. This type alias is used to make writing your code easier 
and more maintainable in the long term. The shared_ptr template itself takes a parameter to the type of 
object that you would like to share around your program. In this case, you want to share dynamic objects of 
type MyClass.



CHAPTER 10 ■ MEMORY

223

An instance of SharedMyClass is created on the first line of the main function. This instance is initialized 
with a dynamically allocated MyClass object. The MyClass object itself is initialized with the value 10. The only 
other code in the body of main is the return statement. Despite this, Figure 10-7 shows that the destructor of 
MyClass has been called on the object stored in sharedMyClass.

The shared_ptr template automatically calls delete on the memory it wraps once the last instance 
of that shared_ptr goes out of scope. In this case, there is only a single shared_ptr in the main function; 
therefore the MyClass object is deleted, and its destructor is called after the function return statement is 
executed.

Listing 10-9 shows how you can use a shared_ptr to transfer ownership of shared memory from one 
function to another and still maintain this automated cleanup code.

Listing 10-9. Transferring Dynamic Memory between Functions

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    int m_Number{ 0 };
 
public:
    MyClass(int value)
        : m_Number{ value }
    {
 
    }
 
    ~MyClass()
    {
        cout << "Destroying " << m_Number << endl;
    }
 
    void operator=(const int value)
    {
        m_Number = value;
    }
 

Figure 10-7. Output showing that the MyClass destructor has been called in Listing 10-8



CHAPTER 10 ■ MEMORY

224

    int GetNumber() const
    {
        return m_Number;
    }
};
 
using SharedMyClass = shared_ptr< MyClass >;
 
void ChangeSharedValue(SharedMyClass sharedMyClass)
{
    if (sharedMyClass != nullptr)
    {
        *sharedMyClass = 100;
    }
}
 
int main(int argc, char* argv[])
{
    SharedMyClass sharedMyClass{ new MyClass(10) };
 
    ChangeSharedValue(sharedMyClass);
 
    return 0;
}
 

Listing 10-9 creates a SharedMyClass instance pointing to a MyClass object initialized with the value 10.  
The sharedMyClass instance is then passed by value into the ChangeSharedValue function. Passing a 
shared_ptr by value makes a copy of the pointer. You now have two instances of the SharedMyClass 
template, both pointing to the same MyClass instance. The destructor for MyClass isn’t called until both 
of the shared_ptr instances of gone out of scope. Figure 10-8 shows that the initial value of the MyClass 
instance was changed and that the destructor was only called a single time.

Figure 10-8. Output showing that the shared object’s stored value was changed and destroyed a single time



CHAPTER 10 ■ MEMORY

225

10-5. Creating Single-Instance Dynamic Objects

Problem
You have an object that you would like to pass around, but you only wish to have a single instance of  
that object.

Solution
C++ provides the unique_ptr template, which allows a pointer instance to be transferred but not shared.

How It Works
unique_ptr is a template that can be used to store a pointer to dynamically allocated memory. It differs 
from shared_ptr in that there can only be a single reference to the dynamic memory at a time. Listing 10-10 
shows how to create a unique_ptr.

Listing 10-10. Creating a unique_ptr

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    int m_Number{ 0 };
 
public:
    MyClass(int value)
        : m_Number{ value }
    {
 
    }
 
    ~MyClass()
    {
        cout << "Destroying " << m_Number << endl;
    }
 
    void operator=(const int value)
    {
        m_Number = value;
    }
 
    int GetNumber() const
    {
        return m_Number;
    }
};
 



CHAPTER 10 ■ MEMORY

226

using UniqueMyClass = unique_ptr< MyClass >;
 
void CreateUniqueObject()
{
    UniqueMyClass uniqueMyClass{ make_unique<MyClass>(10) };
}
 
int main(int argc, char* argv[])
{
    cout << "Begin Main!" << endl;
 
    CreateUniqueObject();
 
    cout << "Back in Main!" << endl;
 
    return 0;
}
 

The unique_ptr in Listing 10-10 is created inside a function to demonstrate that the instance of the 
dynamically created object is destroyed when the unique_ptr goes out of scope. You can see this reflected in 
the output in Figure 10-9.

Listing 10-10 showed that a unique_ptr can be used to automatically delete dynamically allocated 
memory when it’s no longer needed. It didn’t show that a unique_ptr can be used to transfer ownership of  
a single object between different scopes. This is shown in Listing 10-11.

Listing 10-11. Transferring Dynamically Allocated Memory Between unique_ptr instances

#include <iostream>
#include <memory>
 
using namespace std;
 
class MyClass
{
private:
    int m_Number{ 0 };
 

Figure 10-9. Output showing the destruction of a dynamically allocated object stored in a unique_ptr



CHAPTER 10 ■ MEMORY

227

public:
    MyClass(int value)
        : m_Number{ value }
    {
 
    }
 
    ~MyClass()
    {
        cout << "Destroying " << m_Number << endl;
    }
 
    void operator=(const int value)
    {
        m_Number = value;
    }
 
    int GetNumber() const
    {
        return m_Number;
    }
};
 
using UniqueMyClass = unique_ptr< MyClass >;
 
void CreateUniqueObject(UniqueMyClass& referenceToUniquePtr)
{
    UniqueMyClass uniqueMyClass{ make_unique<MyClass>(10) };
 
    cout << hex << showbase;
    cout << "Address in uniqueMyClass " << uniqueMyClass.get() << endl;
 
    referenceToUniquePtr.swap(uniqueMyClass);
 
    cout << "Address in uniqueMyClass " << uniqueMyClass.get() << endl;
}
 
int main(int argc, char* argv[])
{
    cout << "Begin Main!" << endl;
 
    UniqueMyClass uniqueMyClass;
    CreateUniqueObject(uniqueMyClass);
 
    cout << "Address in main's uniqueMyClass " << uniqueMyClass.get() << endl;
 
    cout << dec << noshowbase << "Back in Main!" << endl;
 
    return 0;
}
 



CHAPTER 10 ■ MEMORY

228

The code in Listing 10-11 creates an instance of MyClass in the CreateUniqueObject function. That 
function also takes a reference to another unqiue_ptr<MyClass> that is used to transfer the dynamically 
allocated object out of the function. The transfer is achieved using the swap function supplied by the 
unique_ptr template. The MyClass destructor is called at the end of the main function when all the 
UniqueMyClass instances have gone out of scope. You can see the transfer of memory and the destruction 
order of the MyClass instance in Figure 10-10.

10-6. Creating Smart Pointers

Problem
You would like to use automated pointer management on systems that don’t support shared_ptr and 
unique_ptr.

Solution
You can use member variables in a class to track how many references to the data are currently in use.

How It Works
The unique_ptr and shared_ptr templates were added to the STL in C++11. Some programs are written 
without access to C++11 or without access to the STL. In this situation, you can write your own smart pointer 
implementation. To begin, you need to create an object that can be used to reference-count. Reference 
counting works by increasing an integer every time you make a copy of the object you would like to count. 
Listing 10-12 shows the code for a reference-counting class.

Figure 10-10. The output showing the transfer of a unique_ptr and the destruction of its dynamically 
allocated memory



CHAPTER 10 ■ MEMORY

229

Listing 10-12. The Code for a Reference-Counting Class

class ReferenceCount
{
private:
    int m_Count{ 0 };
 
public:
    void Increment()
    {
        ++m_Count;
    }
 
    int Decrement()
    {
        return --m_Count;
    }
 
    int GetCount() const
    {
        return m_Count;
    }
};
 

The ReferenceCount class is pretty basic. It simply consists of a member variable to keep track of a 
count and methods to increase and decrease that count. The GetCount method is there to provide access to 
the count, to allow for printing during debugging.

The ReferenceCount class is then used in a template class called SmartPointer. This class provides 
a template parameter you can use to specialize the template with the type of object you want to be 
automatically tracked. The class has a member variable that is a pointer to the object being tracked and 
another pointer to a ReferenceCount object. The ReferenceCount object is accessed through a pointer so 
that it can be shared among multiple SmartPointer objects that are all accessing the same dynamically 
allocated object. You can see the code for SmartPointer in Listing 10-13.

Listing 10-13. The SmartPointer Class

template <typename T>
class SmartPointer
{
private:
    T* m_Object{ nullptr };
    ReferenceCount* m_ReferenceCount{ nullptr };
 
public:
    SmartPointer()
    {
     
    }
     



CHAPTER 10 ■ MEMORY

230

    SmartPointer(T* object)
        : m_Object{ object }
        , m_ReferenceCount{ new ReferenceCount }
    {
        m_ReferenceCount->Increment();
 
        cout << "Created smart pointer! Reference count is "
            << m_ReferenceCount->GetCount() << endl;
    }
 
    virtual ~SmartPointer()
    {
        if (m_ReferenceCount)
        {
            int decrementedCount = m_ReferenceCount->Decrement();
            cout << "Destroyed smart pointer! Reference count is "
                << decrementedCount << endl;
            if (decrementedCount == 0)
            {
                delete m_ReferenceCount;
                delete m_Object;
            }
            m_ReferenceCount = nullptr;
            m_Object = nullptr;
        }
    }
 
    SmartPointer(const SmartPointer<T>& other)
        : m_Object{ other.m_Object }
        , m_ReferenceCount{ other.m_ReferenceCount }
    {
        m_ReferenceCount->Increment();
 
        cout << "Copied smart pointer! Reference count is "
            << m_ReferenceCount->GetCount() << endl;
    }
 
    SmartPointer<T>& operator=(const SmartPointer<T>& other)
    {
        if (this != &other)
        {
            if (m_ReferenceCount && m_ReferenceCount->Decrement() == 0)
            {
                delete m_ReferenceCount;
                delete m_Object;
            }
 
            m_Object = other.m_Object;
            m_ReferenceCount = other.m_ReferenceCount;
            m_ReferenceCount->Increment();
        }
 



CHAPTER 10 ■ MEMORY

231

        cout << "Assigning smart pointer! Reference count is "
            << m_ReferenceCount->GetCount() << endl;
 
        return *this;
    }
 
    SmartPointer(SmartPointer<T>&& other)
        : m_Object{ other.m_Object }
        , m_ReferenceCount{ other.m_ReferenceCount }
    {
        other.m_Object = nullptr;
        other.m_ReferenceCount = nullptr;
    }
 
    SmartPointer<T>& operator=(SmartPointer<T>&& other)
    {
        if (this != &other)
        {
            m_Object = other.m_Object;
            m_ReferenceCount = other.m_ReferenceCount;
 
            other.m_Object = nullptr;
            other.m_ReferenceCount = nullptr;
        }
    }
 
    T& operator*()
    {
        return *m_Object;
    }
};
 

You can see the member variables that are used to store the dynamically allocated object and the 
ReferenceCount object in the SmartPointer class in Listing 10-13. The m_Object pointer is a pointer to an 
abstract templatized type; this allows the use of any type to be tracked by the SmartPointer template.

The first public methods in SmartPointer are the constructors. A new SmartPointer can be created 
either as a null pointer or pointing to an already-existing object. A null SmartPointer has both m_Object and 
m_ReferenceCount set to nullptr. The other constructor takes a pointer to T that causes a SmartPointer to 
be initialized. In this case, a new ReferenceCount object is created to track the use of the object being passed 
to the constructor. The side effect of this is that a new SmartPointer can only be created when initialized 
with an object pointer; a null SmartPointer can only be assigned to from another SmartPointer object.

The SmartPointer destructor checks whether a ReferenceCount object is being held by the class 
(remember that it could be nullptr in a null SmartPointer). If a pointer to a ReferenceCount object is 
held, its count is decremented. If the count has reached 0, then you know this SmartPointer is the last to 
be referencing this dynamically allocated object. In this case, you’re free to delete both the ReferenceCount 
object and the object being held by the SmartPointer.

The next method in the SmartPointer is the copy constructor. This method simply copies the m_Object and 
m_ReferenceCount pointers from the parameter passed to the method into the object being copy-constructed. 
It then makes sure the reference count is incremented. The call to Increment is essential because you now 
have two SmartPointer objects that are referencing the same dynamically allocated object. Missing the call 
to Increment here would cause delete to be called in the destructor of the first of these SmartPointers to go 
out of scope.



CHAPTER 10 ■ MEMORY

232

The assignment operator has a slightly different job than the copy constructor. In the copy constructor, 
you’re free to assume that the existing object is new and therefore not already pointing to an existing object 
or ReferenceCount instance. This isn’t true in the assignment operator; therefore it’s necessary to account 
for this occurrence. You can see that the assignment operator first checks to ensure that the operator isn’t 
assigning an object to itself; in this case, there would be no work to be done. If a new object is being assigned, 
then there is a check to see whether the ReferenceCount pointer is valid. If it is, then Decrement is called; 
and in the case where this returns 0, the existing m_ReferenceCount and m_Object pointers are deleted. The 
m_Object and m_ReferenceCount pointers are always copied from the parameter to the assignment operator 
method into the variables of this, and Increment is called on the new ReferenceCount object.

Next in the class are a move constructor and move assignment operator. These are present to conform 
with the C++ rule of five. This is a programming guideline that suggests that in any case where you overload 
the copy constructor or assignment operator, you should overload all five of the destructor, copy constructor, 
assignment operator, move constructor, and move assignment operator. Move operations are destructive in 
nature, so no calls to Increment or Decrement are made. These are unnecessary because the m_Object and 
m_ReferenceCount pointers are set to nullptr on the parameter in both cases, meaning delete will never be 
called in their destructors. Supporting the move constructor and move assignment operator provides a more 
efficient method to pass SmartPointer objects into and out of functions.

The final method provides access to the data stored by the SmartPointer object. This could result in 
crashes if this method is called on null SmartPointer objects. You should take care to only try to dereference 
valid SmartPointer instances.

Note ■  Listing 10-14 contains debug code to allow the printing of object state for the purposes of illustration. 

This code can be removed from a working solution.

Listing 10-14 shows a complete working example of the SmartPointer class in use.

Listing 10-14. Using SmartPointer

#include <iostream>
 
using namespace std;
 
class ReferenceCount
{
private:
    int m_Count{ 0 };
 
public:
    void Increment()
    {
        ++m_Count;
    }
 
    int Decrement()
    {
        return --m_Count;
    }
 



CHAPTER 10 ■ MEMORY

233

    int GetCount() const
    {
        return m_Count;
    }
};
 
template <typename T>
class SmartPointer
{
private:
    T* m_Object{ nullptr };
    ReferenceCount* m_ReferenceCount{ nullptr };
 
public:
    SmartPointer()
    {
 
    }
 
    SmartPointer(T* object)
        : m_Object{ object }
        , m_ReferenceCount{ new ReferenceCount }
    {
        m_ReferenceCount->Increment();
 
         cout << "Created smart pointer! Reference count is "  

<< m_ReferenceCount->GetCount() << endl;
    }
 
    virtual ~SmartPointer()
    {
        if (m_ReferenceCount)
        {
            int decrementedCount = m_ReferenceCount->Decrement();
             cout << "Destroyed smart pointer! Reference count is "  

<< decrementedCount << endl;
            if (decrementedCount <= 0)
            {
                delete m_ReferenceCount;
                delete m_Object;
            }
            m_ReferenceCount = nullptr;
            m_Object = nullptr;
        }
    }
 



CHAPTER 10 ■ MEMORY

234

    SmartPointer(const SmartPointer<T>& other)
        : m_Object{ other.m_Object }
        , m_ReferenceCount{ other.m_ReferenceCount }
    {
        m_ReferenceCount->Increment();
 
         cout << "Copied smart pointer! Reference count is "  

<< m_ReferenceCount->GetCount() << endl;
    }
 
    SmartPointer<T>& operator=(const SmartPointer<T>& other)
    {
        if (this != &other)
        {
            if (m_ReferenceCount && m_ReferenceCount->Decrement() == 0)
            {
                delete m_ReferenceCount;
                delete m_Object;
            }
 
            m_Object = other.m_Object;
            m_ReferenceCount = other.m_ReferenceCount;
            m_ReferenceCount->Increment();
        }
 
         cout << "Assigning smart pointer! Reference count is "  

<< m_ReferenceCount->GetCount() << endl;
 
        return *this;
    }
 
    SmartPointer(SmartPointer<T>&& other)
        : m_Object{ other.m_Object }
        , m_ReferenceCount{ other.m_ReferenceCount }
    {
        other.m_Object = nullptr;
        other.m_ReferenceCount = nullptr;
    }
 
    SmartPointer<T>& operator=(SmartPointer<T>&& other)
    {
        if (this != &other)
        {
            m_Object = other.m_Object;
            m_ReferenceCount = other.m_ReferenceCount;
 
            other.m_Object = nullptr;
            other.m_ReferenceCount = nullptr;
        }
    }
 



CHAPTER 10 ■ MEMORY

235

    T& operator*()
    {
        return *m_Object;
    }
};
 
struct MyStruct
{
public:
    int m_Value{ 0 };
 
    ~MyStruct()
    {
        cout << "Destroying MyStruct object!" << endl;
    }
};
 
using SmartMyStructPointer = SmartPointer< MyStruct >;
 
SmartMyStructPointer PassValue(SmartMyStructPointer smartPointer)
{
    SmartMyStructPointer returnValue;
    returnValue = smartPointer;
    return returnValue;
}
 
int main(int argc, char* argv[])
{
    SmartMyStructPointer smartPointer{ new MyStruct };
    (*smartPointer).m_Value = 10;
 
    SmartMyStructPointer secondSmartPointer = PassValue(smartPointer);
 
    return 0;
}
 

Listing 10-14 shows a MyStruct instance being passed between the main and PassValue functions 
using the SmartPointer template. A type alias is created to ensure that the type of the SmartPointer for 
MyStruct is valid and easily maintainable throughout. The code uses the constructor, copy constructor, and 
assignment operators from the SmartPointer template. The MyStruct object is automatically deleted only 
when the last of the SmartPointer instances has gone out of scope at the end of the main function.

Figure 10-11 shows the output generated when running the code in Listing 10-14.



CHAPTER 10 ■ MEMORY

236

10-7. Debugging Memory Problems by Overloading new 
and delete

Problem
You have some memory issues in your program and would like to add diagnostic code to the allocations and 
deallocations in the program.

Solution
C++ allows the replacement of the new and delete operators with custom written versions.

How It Works
The C++ new and delete operators boil down to being function calls. The signature for the global new 
function is
 
void* operator new(size_t size);
 

The signature for the global delete function is
 
void delete(void* ptr);
 

The new function takes the number of bytes to be allocated as a parameter, and the delete function 
takes a pointer to a memory address that has been returned from new. These functions can be replaced to 
provide added debugging information to your program. Listing 10-15 shows an example of adding a header 
to your memory allocations to help with program debugging.

Figure 10-11. A working example of SmartPointer in action



CHAPTER 10 ■ MEMORY

237

Listing 10-15. Adding a Header to Memory Allocations

#include <cstdlib>
#include <iostream>
 
using namespace std;
 
struct MemoryHeader
{
    const char* m_Filename{ nullptr };
    int m_Line{ -1 };
};
 
void* operator new(size_t size, const char* filename, int line) noexcept
{
    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };
    pMemoryHeader->m_Filename = filename;
    pMemoryHeader->m_Line = line;
 
    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));
}
 
void operator delete(void* pMemory) noexcept
{
    char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof(MemoryHeader) };
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemoryHeaderStart) };
 
    cout << "Deleting memory allocated from: "
        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;
 
    free(pMemoryHeader);
}
 
#define new new(__FILE__, __LINE__)
 
class MyClass
{
private:
    int m_Value{ 1 };
};
 
int main(int argc, char* argv[])
{
    int* pInt{ new int };
    *pInt = 1;
    delete pInt;
 
    MyClass* pClass{ new MyClass };
    delete pClass;
 
    return 0;
}
 



CHAPTER 10 ■ MEMORY

238

This code replaces the new and delete function with custom versions. The custom version of new 
doesn’t conform to the standard signature, so a macro was used to replace the standard version. This was 
done to allow the compiler to tell the custom new function the file name and line number where new is called. 
This allows you to track down individual allocations to their exact place in the program source code. This 
can be a very useful debugging tool when you’re dealing with memory problems.

The custom new function adds the size of the MemoryHeader structure to the number of bytes being 
requested by the program. It then sets the m_Filename pointer in the MemoryHeader struct to the filename 
parameter supplied to new. The m_Line member is similarly set to the line parameter passed in. The 
address returned from new is the address of the beginning of the user area of memory, not including the 
MemoryHeader structure; this allows your debugging information to be added and addressed at the memory 
subsystem level and be completely transparent to the rest of your program.

The delete function shows a basic use for this debugging information. It simply prints out the line 
where the memory chunk being freed was allocated. It gets the address of the memory header by subtracting 
the size of the header from the address the function was passed.

The new macro is used to give a simple method for passing the __FILE__ and __LINE__ macros to the 
overloaded new function. These macros are known as built-in macros and are supplied by most modern C++ 
compilers. These macros are replaced by a pointer to the filename and the line number where they’re used. 
Adding them to the new macro results in the filename and line number for every call to new in your program 
being passed to the custom new allocator.

The malloc and free functions used in the new and delete functions are the C-style memory-allocation 
functions. These are used to prevent conflicts with the many different types of C++ allocation functions. The 
functions shown in Listing 10-15 are suitable for allocating single objects. It’s also possible to replace the C++ 
array new and delete functions. It’s essential to replace these functions when you’re trying to track down 
problems such as memory leaks. Listing 10-16 shows these functions in action.

Listing 10-16. Replacing the Array new and delete Operators

#include <cstdlib>
#include <iostream>
 
using namespace std;
 
struct MemoryHeader
{
    const char* m_Filename{ nullptr };
    int m_Line{ -1 };
};
 
void* operator new(size_t size, const char* filename, int line) noexcept
{
    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };
    pMemoryHeader->m_Filename = filename;
    pMemoryHeader->m_Line = line;
 
    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));
}
 



CHAPTER 10 ■ MEMORY

239

void* operator new[](size_t size, const char* filename, int line) noexcept
{
    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };
    pMemoryHeader->m_Filename = filename;
    pMemoryHeader->m_Line = line;
 
    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));
}
 
void operator delete(void* pMemory) noexcept
{
    char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof(MemoryHeader) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemoryHeaderStart) };
    cout << "Deleting memory allocated from: "
        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;
 
    free(pMemoryHeader);
}
 
void operator delete[](void* pMemory) noexcept
{
    char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof(MemoryHeader) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemoryHeaderStart) };
    cout << "Deleting memory allocated from: "
        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;
 
    free(pMemoryHeader);
}
 
#define new new(__FILE__, __LINE__)
 
class MyClass
{
private:
    int m_Value{ 1 };
};
 
int main(int argc, char* argv[])
{
    int* pInt{ new int };
    *pInt = 1;
    delete pInt;
 
    MyClass* pClass{ new MyClass };
    delete pClass;
 



CHAPTER 10 ■ MEMORY

240

    const unsigned int NUM_ELEMENTS{ 5 };
    int* pArray{ new int[NUM_ELEMENTS] };
    delete[] pArray;
 
    return 0;
}
 

The array new and delete operators’ signatures differ from the standard new and delete operators only 
by having the [] operator present in their signature, as you can see in Listing 10-16. Figure 10-12 shows the 
output generated by this code.

The new and delete functions you have seen so far in this recipe have been global replacements for 
the new and delete operators. It’s also possible to replace new and delete for specific classes. You can add 
these functions directly to a class definition, and those functions will be used when creating and destroying 
dynamic instances of that type of object. Listing 10-17 shows code that replaces the global new, new[], 
delete, and delete[] operators and also adds new and delete operators to the MyClass class definition.

Listing 10-17. Adding new and delete Operators to MyClass

#include <cstdlib>
#include <iostream>
 
using namespace std;
 
struct MemoryHeader
{
    const char* m_Filename{ nullptr };
    int m_Line{ -1 };
};
 
void* operator new(size_t size, const char* filename, int line) noexcept
{
    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };
    pMemoryHeader->m_Filename = filename;
    pMemoryHeader->m_Line = line;
 
    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));
}
 

Figure 10-12. Output showing the use of the replaced new and delete operators



CHAPTER 10 ■ MEMORY

241

void* operator new[](size_t size, const char* filename, int line) noexcept
{
    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };
    pMemoryHeader->m_Filename = filename;
    pMemoryHeader->m_Line = line;
 
    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));
}
 
void operator delete(void* pMemory) noexcept
{
    char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof(MemoryHeader) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemoryHeaderStart) };
 
    cout << "Deleting memory allocated from: "
        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;
 
    free(pMemoryHeader);
}
 
void operator delete[](void* pMemory) noexcept
{
    char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof(MemoryHeader) };
 
    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemoryHeaderStart) };
 
    cout << "Deleting memory allocated from: "
        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;
 
    free(pMemoryHeader);
}
 
class MyClass
{
private:
    int m_Value{ 1 };
 
public:
    void* operator new(size_t size, const char* filename, int line) noexcept
    {
        cout << "Allocating memory for MyClass!" << endl;
        return malloc(size);
    }
 
    void operator delete(void* pMemory) noexcept
    {
        cout << "Freeing memory for MyClass!" << endl;
        free(pMemory);
    }
};
 



CHAPTER 10 ■ MEMORY

242

#define new new(__FILE__, __LINE__)
 
int main(int argc, char* argv[])
{
    int* pInt{ new int };
    *pInt = 1;
    delete pInt;
 
    MyClass* pClass{ new MyClass };
    delete pClass;
 
    const unsigned int NUM_ELEMENTS{ 5 };
    MyClass* pArray{ new MyClass[NUM_ELEMENTS] };
    delete[] pArray;
 
    return 0;
}
 

The new and delete operators in the MyClass definition are called in the main function when creating a 
single instance of MyClass. You can see that this is the case in the output shown in Figure 10-13.

10-8. Calculating Performance Impacts of Code Changes

Problem
You would like to determine whether changes you’re making to code are faster or slower than the  
existing code.

Solution
C++ provides access to a computer system’s high-performance timers to carry out high-precision timing.

Figure 10-13. Output showing the use of member new and delete operators in MyClass



CHAPTER 10 ■ MEMORY

243

How It Works
The C++ programming language provides access to a high-resolution timer that allows you to make timing 
measurements around different parts of your code. This lets you record the time taken for your functions 
or algorithms and compare these across different versions to work out which are the most efficient and 
performant.

Listing 10-18 shows code that is used to time three different numbers of iterations around a loop.

Listing 10-18. Using chrono::high_resolution_timer

#include <chrono>
#include <iostream>
 
using namespace std;
 
void RunTest(unsigned int numberIterations)
{
    auto start = chrono::high_resolution_clock::now();
 
    for (unsigned int i{ 0 }; i < numberIterations; ++i)
    {
        unsigned int squared{ i*i*I };
    }
 
    auto end = chrono::high_resolution_clock::now();
    auto difference = end - start;
 
    cout << "Time taken: "
        << chrono::duration_cast<chrono::microseconds>(difference).count()
        << " microseconds!" << endl;
}
 
int main(int argc, char* argv[])
{
    RunTest(10000000);
    RunTest(100000000);
    RunTest(1000000000);
 
    return 0;
}
 

This listing shows that the chrono namespace in the STL provides a struct named high_resolution_clock  
with a static function called now. This function returns an object that is of type time_point from the 
chrono::system_clock struct. Listing 10-18 uses the auto keyword to deduce this type for the start 
and end variables in the RunTest function. Both start and end are initialized using the high_resolution_
timer::now function, start before the for loop, and end after the for loop. The value of start is subtracted 
from the value of end to give the duration of time elapsed while the function was executing the loop. 
The chrono::duration_cast template is then used to convert the time_point difference variable into a 
representation that can be expressed in a human-readable form, in this case microseconds.



CHAPTER 10 ■ MEMORY

244

The RunTest function is called three different times from the main function. Each call has a different 
number of loop iterations to be run, to show that the timing code can be used to tell which of the runs is  
the least time-efficient. Figure 10-14 shows the output generated when running the program on an Intel  
Core i7-3770.

duration_cast can be used to convert system times into nanoseconds, milliseconds, seconds, minutes, 
and hours, as well as microseconds. Microsecond precision is what you’re looking for when optimizing 
many computer-programming algorithms. The timing techniques used in this recipe will prove useful when 
comparing the impacts of memory storage types on program efficiency.

10-9. Understanding the Performance Impacts of  
Memory Choices

Problem
You have a program that is performing poorly, but you aren’t sure why.

Solution
There is no silver bullet to solve performance problems in modern computer programs. However, a lack 
of understanding of how memory works on a modern computer can lead to poorly performing programs. 
Understanding the impacts of cache misses on program performance will help you write better-performing 
programs.

How It Works
The speed of modern processors has accelerated at a much faster rate than memory-access latencies. This 
had led to a situation where processing performance can be severely hampered by poor memory-access 
patterns in your programs. Understanding how to structure your C++ programs to take effective use of 
processor cache memory is essential to writing the most performant programs possible.

Reading and writing data from main memory can take several hundred cycles on modern computer 
systems. Processors implement caches to help alleviate this problem. A modern CPU cache works by reading 
large chunks of data simultaneously from main memory into much faster cache memory. These chunks 
are known as cache lines. An L1 cache line on an Intel Core i7-3770 processor is 32KB in size. The processor 
reads an entire 32KB chunk into the L1 cache in a single go. If the data you’re reading or writing isn’t present 
in the cache, the result is a cache miss, and the processor must retrieve the data from L2 cache, L3 cache, 

Figure 10-14. Output showing that each subsequent call to RunTest in Listing 10-18 takes longer to execute



CHAPTER 10 ■ MEMORY

245

or system RAM. Cache misses can be very expensive, and seemingly innocuous mistakes or choices in your 
code can have massive performance implications. Listing 10-19 contains one loop to initialize some arrays 
and three different loops that have different memory-access patterns.

Listing 10-19. Exploring the Performance Impacts of Memory Access Patterns

#include <chrono>
#include <iostream>
 
using namespace std;
 
const int NUM_ROWS{ 10000 };
const int NUM_COLUMNS{ 1000 };
int elements[NUM_ROWS][NUM_COLUMNS];
int* pElements[NUM_ROWS][NUM_COLUMNS];
 
int main(int argc, char* argv[])
{
    for (int i{ 0 }; i < NUM_ROWS; ++i)
    {
        for (int j{ 0 }; j < NUM_COLUMNS; ++j)
        {
            elements[i][j] = i*j;
            pElements[i][j] = new int{ elements[i][j] };
        }
    }
 
    auto start = chrono::high_resolution_clock::now();
 
    for (int i{ 0 }; i < NUM_ROWS; ++i)
    {
        for (int j{ 0 }; j < NUM_COLUMNS; ++j)
        {
            const int result{ elements[j][i] };
        }
    }
 
    auto end = chrono::high_resolution_clock::now();
    auto difference = end - start;
 
    cout << "Time taken for j then i: "
        << chrono::duration_cast<chrono::microseconds>(difference).count()
        << " microseconds!" << endl;
 
    start = chrono::high_resolution_clock::now();
 
    for (int i{ 0 }; i < NUM_ROWS; ++i)
    {
        for (int j{ 0 }; j < NUM_COLUMNS; ++j)
        {
            const int result{ elements[i][j] };
        }
    }
 



CHAPTER 10 ■ MEMORY

246

    end = chrono::high_resolution_clock::now();
    difference = end - start;
 
    cout << "Time taken for i then j: "
        << chrono::duration_cast<chrono::microseconds>(difference).count()
        << " microseconds!" << endl;
 
    start = chrono::high_resolution_clock::now();
 
    for (int i{ 0 }; i < NUM_ROWS; ++i)
    {
        for (int j{ 0 }; j < NUM_COLUMNS; ++j)
        {
            const int result{ *(pElements[i][j]) };
        }
    }
 
    end = chrono::high_resolution_clock::now();
    difference = end - start;
 
    cout << "Time taken for pointers with i then j: "
        << chrono::duration_cast<chrono::microseconds>(difference).count()
        << " microseconds!" << endl;
 
    return 0;
}
 

The first loop in Listing 10-19 is used to set up two arrays. The first array stores integer values directly, 
and the second array stores pointers to integers. Each of the arrays contains 10,000 × 1,000 unique elements.

It’s important to understand how multidimensional arrays are laid out in memory, to understand why 
this test creates the results it does with respect to cache-miss performance problems. A 3 × 2 array can be 
thought of as laid out as shown in Table 10-1.

But computer memory isn’t two-dimensional in this manner. The elements of the array are laid out 
linearly in memory in the order of the numbers shown in Table 10-1. Given a 4-byte integer size, that means 
the value in Row 2 Column 1 can be found 12 bytes after the value in Row 1 Column 1. Extend the row size 
to 10,000, and you can see that there is no possibility for the element at the beginning of a following row 
residing in the same cache line as the previous row.

This fact allows the performance implications of cache misses to be tested with a simple loop. You 
can see this in the second loop in Listing 10-18, where the incremented j value is used to walk along the 
columns rather than the rows. The third loop walks along the array in the correct order. That is, it walks 
along the rows in linear order in memory. The fourth loop walks along the pElement array in linear order 

Table 10-1. The Layout of a 3 × 2 Array

Column 1 Column 2 Column 3

Row 1 1 2 3

Row 2 4 5 6



CHAPTER 10 ■ MEMORY

247

but has to dereference a pointer to reach the values stored in the array. The results show you the impacts 
of cache-unaware programming in the first loop, the ideal situation in the second, and the result of 
unnecessary memory indirection in the third. Figure 10-15 shows these results.

You can see that the processor in my computer has a ten-times increase in the length of time taken to 
complete a simple loop when walking an array out of order. Such problems can cause stutters and delays in 
programs that can leave users and customers feeling a sense of frustration with your software. The case with 
pointer dereferences is also around twice as slow as the case where the integers can be accessed directly.  
You should consider the implications of this before using dynamic memory liberally.

10-10. Reducing Memory Fragmentation

Problem
You have a program that requires you to create a lot of small memory allocations over a long period of time, 
which introduces memory-fragmentation problems.

Solution
You can create a small block allocator that can be used to pack small allocations into larger pages.

How It Works
The first step in bundling small allocations together is to create a class that contains a larger page of 
memory. This recipe shows you a straightforward way to wrap a 32KB memory page in a class and manage 
allocations from this pool. The memory is tracked using an array of Boolean values that knows whether a 
given memory block is free or is in use. New pages of memory are added when all current pages are full.

The downside to this approach is that all allocations have a minimum size of 32 bytes. Any request for 
memory that is smaller than 32 bytes is allocated an entire block from a currently active memory page. Pages 
are also freed when they’re completely empty, to ensure that the program doesn’t grow to a high water mark 
and never release unneeded memory. Listing 10-20 shows the class definition for Page.

Figure 10-15. The results from the loops in Listing 10-19



CHAPTER 10 ■ MEMORY

248

Listing 10-20. The Page Class Definition

class Page
{
private:
    char m_Memory[1024 * 32];
    bool m_Free[1024];
    Page* m_pNextPage;
 
public:
    Page();
    ~Page();
 
    void* Alloc();
    bool Free(void* pMem);
 
    bool IsEmpty() const;
};
 

The Page class definition contains two arrays. There is a char array that serves memory-allocation 
requests. This pool is an array of bytes and in this case is 32KB in size. There are 1,024 individual blocks in 
the pool, each 32 bytes in size. The 1,024 blocks are mirrored in the Boolean array m_Free. This array is used 
to track whether a given block is already allocated or is free for allocation. The m_pNextPage pointer stores 
the address of the next page. The next page is used to allocate a block if the current page is entirely in use.

The class consists of five methods: a constructor, a destructor, an Alloc method, a Free method,  
and the IsEmpty method to determine if the page is no longer in use. Listing 10-21 shows the function bodies 
for the Page class’s constructor and destructor.

Listing 10-21. The Page Constructor and Destructor

Page()
    : m_pNextPage{ nullptr }
{
    memset(m_Free, 1, 1024);
}
 
~Page()
{
    if (m_pNextPage)
    {
        delete m_pNextPage;
        m_pNextPage = nullptr;
    }
}
 

The Page constructor is responsible for initializing the m_pNextPage pointer to nullptr and for setting 
all the elements in the m_Free array to true. The destructor for Page is responsible for deleting the object 
pointer to m_pNextPage if it has been allocated.

Listing 10-22 shows the code for the Page::Alloc method.



CHAPTER 10 ■ MEMORY

249

Listing 10-22. The Page::Alloc Method

void* Alloc()
{
    void* pMem{ nullptr };
 
    for (unsigned int i = 0; i < 1024; ++i)
    {
        if (m_Free[i] == true)
        {
            m_Free[i] = false;
            pMem = &m_Memory[i * 32];
            break;
        }
    }
 
    if (pMem == nullptr)
    {
        if (m_pNextPage == nullptr)
        {
            m_pNextPage = new Page();
        }
 
        pMem = m_pNextPage->Alloc();
        }
 
    return pMem;
}
 

The Alloc method is responsible for finding the first unused memory block in the page-linked list. The 
first step is to loop over the m_Free array and check each block to see whether it’s currently in use. If a free 
block is found, the pMem return value is set to the address of the free block. The Boolean for that block is set to 
false to indicate that the block is now in use. If a free block is found, the loop is broken.

In the event that a free block isn’t found, the memory must be allocated from another memory page. If 
another page has already been created, the pointer m_pNextPage already holds its address. If not, a new page 
is created. The Alloc method is then called on m_pNextPage. At this point, the Alloc method is recursive. It’s 
called repeatedly until a memory page is found that contains a free memory block to return up the stack to 
the calling code. The memory returned from a page must also be returned to that page when it’s no longer 
needed. The Free method in Listing 10-23 is responsible for carrying out this task.

Listing 10-23. The Page::Free Method

bool Free(void* pMem)
{
    bool freed{ false };
 
    bool inPage{ pMem >= m_Memory && pMem <= &m_Memory[(NUM_PAGES * BLOCK_SIZE) - 1] };
    if (inPage)
    {
        unsigned int index{
            (reinterpret_cast<unsigned int>(pMem)-reinterpret_cast<unsigned int>(m_Memory))
            / BLOCK_SIZE };
 



CHAPTER 10 ■ MEMORY

250

        m_Free[index] = true;
        freed = true;
    }
    else if (m_pNextPage)
    {
        freed = m_pNextPage->Free(pMem);
 
        if (freed && m_pNextPage->IsEmpty())
        {
            Page* old = m_pNextPage;
            m_pNextPage = old->m_pNextPage;
            old->m_pNextPage = nullptr;
            delete m_pNextPage;
        }
    }
 
    return freed;
}
 

The Page::Free method begins by checking whether the memory address being released is contained 
within the current page. It does so by comparing the address against the address of the beginning of the 
memory page and the address of the last block in the page. If the memory being freed is greater than or equal 
to the page address and less than or equal to the last block in the page, then the memory was allocated from 
this page. In this case, the m_Free Boolean for this block can be set back to true. The memory itself doesn’t 
need to be cleared, because new gives no guarantees of the values contained in the memory it returns—that 
is responsibility of the caller.

If the memory was not found in the current Page, then the Free method checks whether the Page has 
a pointer to another Page object. If it does, then the Free method is called on that Page. The Free method is 
recursive in nature in the same way as the Alloc method. If the call to Free on m_pNextPage returned a true 
value, the Page is checked to see if it’s now empty. If it is, then the Page can be released. Because Page is 
using a simple linked list to track pages, you must make sure you don’t orphan the tails of the list. You need 
to ensure that the m_pNextPage pointer of the current page is set to point to the m_pNextPage pointer of the 
Page being released. The IsEmpty method is called in the Free method; the body of this method is shown in 
Listing 10-24.

Listing 10-24. The Page::IsEmpty Method

bool IsEmpty() const
{
    bool isEmpty{ true };
 
    for (unsigned int i = 0; i < NUM_PAGES; ++i)
    {
        if (m_Free[i] == false)
        {
            isEmpty = false;
            break;
        }
    }
 
    return isEmpty;
}
 



CHAPTER 10 ■ MEMORY

251

The IsEmpty method checks the free list to determine whether the page is currently in use. If any of the 
blocks in the Page aren’t free, than the Page isn’t empty. The linked list of pages is accessed through another 
class called SmallBlockAllocator. This simplifies the management of the pages for the calling code.  
Listing 10-25 shows the SmallBlockAllocator class.

Listing 10-25. The SmallBlockAllocator Class

class SmallBlockAllocator
{
public:
    static const unsigned int BLOCK_SIZE{ 32 };
 
private:
    static const unsigned int NUM_ BLOCKS { 1024 };
    static const unsigned int PAGE_SIZE{ NUM_ BLOCKS * BLOCK_SIZE };
 
    class Page
    {
    private:
        char m_Memory[PAGE_SIZE];
        bool m_Free[NUM_ BLOCKS];
        Page* m_pNextPage;
 
    public:
        Page()
            : m_pNextPage{ nullptr }
        {
            memset(m_Free, 1, NUM_ BLOCKS);
        }
 
        ~Page()
        {
            if (m_pNextPage)
            {
                delete m_pNextPage;
                m_pNextPage = nullptr;
            }
        }
 
        void* Alloc()
        {
            void* pMem{ nullptr };
 
            for (unsigned int i = 0; i < NUM_ BLOCKS; ++i)
            {
                if (m_Free[i] == true)
                {
                    m_Free[i] = false;
                    pMem = &m_Memory[i * BLOCK_SIZE];
                    break;
                }
            }
 



CHAPTER 10 ■ MEMORY

252

            if (pMem == nullptr)
            {
                if (m_pNextPage == nullptr)
                {
                    m_pNextPage = new Page();
                }
 
                pMem = m_pNextPage->Alloc();
            }
 
            return pMem;
        }
 
        bool Free(void* pMem)
        {
            bool freed{ false };
 
            bool inPage{ pMem >= m_Memory &&
                pMem <= &m_Memory[(NUM_ BLOCKS * BLOCK_SIZE) - 1] };
            if (inPage)
            {
                unsigned int index{
                    (reinterpret_cast<unsigned int>(pMem)-
                     reinterpret_cast<unsigned int>(m_Memory)) / BLOCK_SIZE };
                m_Free[index] = true;
                freed = true;
            }
            else if (m_pNextPage)
            {
                freed = m_pNextPage->Free(pMem);
 
                if (freed && m_pNextPage->IsEmpty())
                {
                    Page* old = m_pNextPage;
                    m_pNextPage = old->m_pNextPage;
                    old->m_pNextPage = nullptr;
                    delete m_pNextPage;
                }
            }
 
            return freed;
        }
 
        bool IsEmpty() const
        {
            bool isEmpty{ true };
 



CHAPTER 10 ■ MEMORY

253

            for (unsigned int i = 0; i < NUM_BLOCKS; ++i)
            {
                if (m_Free[i] == false)
                {
                    isEmpty = false;
                    break;
                }
            }
 
            return isEmpty;
        }
    };
 
    Page m_FirstPage;
 
public:
    SmallBlockAllocator() = default;
 
    void* Alloc()
    {
        return m_FirstPage.Alloc();
    }
 
    bool Free(void* pMem)
    {
        return m_FirstPage.Free(pMem);
    }
};
 

The Page class can be seen as an internal class to SmallBlockAllocator in Listing 10-25. This 
helps ensure that only the SmallBlockAllocator itself can be used as an interface to the Page objects. 
SmallBlockAllocator begins by creating static constants to control the size of the blocks and number of 
blocks each Page contains. The only public methods exposed from SmallBlockAllocator are an Alloc 
method and a Free method. These simply wrap calls to Page::Alloc and Page::Free and are called 
on the member m_FirstPage. This means the SmallBlockAllocator class always has at least one page 
of memory allocated for small allocations, and this page will be resident in your program for as long as 
SmallBlockAllocator is active.

Listing 10-26 shows the overloaded new and delete operators that are needed to route small allocations 
to SmallBlockAllocator.

Listing 10-26. Routing Small Allocations to SmallBlockAllocator

static SmallBlockAllocator sba;
 
void* operator new(unsigned int numBytes)
{
    void* pMem{ nullptr };
 
    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)
    {
        pMem = sba.Alloc();
    }



CHAPTER 10 ■ MEMORY

254

    else
    {
        pMem = malloc(numBytes);
    }
 
    return pMem;
}
 
void* operator new[](unsigned int numBytes)
{
    void* pMem{ nullptr };
 
    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)
    {
        pMem = sba.Alloc();
    }
    else
    {
        pMem = malloc(numBytes);
    }
 
    return pMem;
}
 
void operator delete(void* pMemory)
{
    if (!sba.Free(pMemory))
    {
        free(pMemory);
    }
}
 
void operator delete[](void* pMemory)
{
    if (!sba.Free(pMemory))
    {
        free(pMemory);
    }
}
 

The new and new[] operators in Listing 10-26 check the number of bytes being allocated against the 
supported block size of the SmallBlockAllocator class. If the size of memory being requested is smaller or 
equal to the block size of the SBA, the Alloc method is called on the static sba object. If it was larger, then 
malloc is used. The two delete functions both call Free on sba. If Free returns false, then the memory 
being released wasn’t present in any of the small block pages and is released using the free function.

That covers all the code needed to implement a simple small-block allocator. Listing 10-27 shows the 
entire listing for a working example program that uses this class.



CHAPTER 10 ■ MEMORY

255

Listing 10-27. A Working Small-Block Allocator Example

#include <cstdlib>
#include <iostream>
 
using namespace std;
 
class SmallBlockAllocator
{
public:
    static const unsigned int BLOCK_SIZE{ 32 };
 
private:
    static const unsigned int NUM_BLOCKS{ 1024 };
    static const unsigned int PAGE_SIZE{ NUM_BLOCKS * BLOCK_SIZE };
 
    class Page
    {
    private:
        char m_Memory[PAGE_SIZE];
        bool m_Free[NUM_BLOCKS];
        Page* m_pNextPage;
 
    public:
        Page()
            : m_pNextPage{ nullptr }
        {
            memset(m_Free, 1, NUM_BLOCKS);
        }
 
        ~Page()
        {
            if (m_pNextPage)
            {
                delete m_pNextPage;
                m_pNextPage = nullptr;
            }
        }
 
        void* Alloc()
        {
            void* pMem{ nullptr };
 
            for (unsigned int i{ 0 }; i < NUM_BLOCKS; ++i)
            {
                if (m_Free[i] == true)
                {
                    m_Free[i] = false;
                    pMem = &m_Memory[i * BLOCK_SIZE];
                    break;
                }
            }
 



CHAPTER 10 ■ MEMORY

256

            if (pMem == nullptr)
            {
                if (m_pNextPage == nullptr)
                {
                    m_pNextPage = new Page();
                }
 
                pMem = m_pNextPage->Alloc();
            }
 
            return pMem;
        }
 
        bool Free(void* pMem)
        {
            bool freed{ false };
 
            bool inPage{ pMem >= m_Memory &&
                pMem <= &m_Memory[(NUM_BLOCKS * BLOCK_SIZE) - 1] };
            if (inPage)
            {
                unsigned int index{
                    (reinterpret_cast<unsigned int>(pMem)-
                     reinterpret_cast<unsigned int>(m_Memory)) / BLOCK_SIZE };
                m_Free[index] = true;
                freed = true;
            }
            else if (m_pNextPage)
            {
                freed = m_pNextPage->Free(pMem);
 
                if (freed && m_pNextPage->IsEmpty())
                {
                    Page* old = m_pNextPage;
                    m_pNextPage = old->m_pNextPage;
                    old->m_pNextPage = nullptr;
                    delete m_pNextPage;
                }
            }
 
            return freed;
        }
 
        bool IsEmpty() const
        {
            bool isEmpty{ true };
 



CHAPTER 10 ■ MEMORY

257

            for (unsigned int i{ 0 }; i < NUM_BLOCKS; ++i)
            {
                if (m_Free[i] == false)
                {
                    isEmpty = false;
                    break;
                }
            }
 
            return isEmpty;
        }
    };
 
    Page m_FirstPage;
 
public:
    SmallBlockAllocator() = default;
 
    void* Alloc()
    {
        return m_FirstPage.Alloc();
    }
 
    bool Free(void* pMem)
    {
        return m_FirstPage.Free(pMem);
    }
};
 
static SmallBlockAllocator sba;
 
void* operator new(size_t numBytes, const std::nothrow_t& tag) noexcept
{
    void* pMem{ nullptr };
 
    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)
    {
        pMem = sba.Alloc();
    }
    else
    {
        pMem = malloc(numBytes);
    }
 
    return pMem;
}
 



CHAPTER 10 ■ MEMORY

258

void* operator new[](size_t numBytes, const std::nothrow_t& tag) noexcept
{
    void* pMem{ nullptr };
 
    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)
    {
        pMem = sba.Alloc();
    }
    else
    {
        pMem = malloc(numBytes);
    }
 
    return pMem;
}
 
void operator delete(void* pMemory)
{
    if (!sba.Free(pMemory))
    {
        free(pMemory);
    }
}
 
void operator delete[](void* pMemory)
{
    if (!sba.Free(pMemory))
    {
        free(pMemory);
    }
}
 
int main(int argc, char* argv[])
{
    const unsigned int NUM_ALLOCS{ 2148 };
    int* pInts[NUM_ALLOCS];
 
    for (unsigned int i{ 0 }; i < NUM_ALLOCS; ++i)
    {
        pInts[i] = new int;
        *pInts[i] = i;
    }
 
    for (unsigned int i{ 0 }; i < NUM_ALLOCS; ++i)
    {
        delete pInts[i];
        pInts[i] = nullptr;
    }
 
    return 0;
} 



259

CHAPTER 11

Concurrency

CPU manufacturers have recently struggled to improve CPU frequencies at the same rate of progress as 
was possible in the 1990s. CPU performance improvements over time have been maintained by clever 
CPU design and multiple processors being included on a single chip. This means programmers today must 
embrace concurrent programming or multithreaded programming if they wish their programs to perform 
quickly on modern computer chips.

Concurrent programming can be a challenge for programmers to get right. Many pitfalls await 
concurrent programs, including data that gets out of sync and therefore is wrong as well as deadlocks once 
your tasks require the use of locks to manage access. The recipes in this chapter introduce you to some 
practical applications of the STL features supplied by C++ to help you write concurrent programs.

11-1. Using Threads to Execute Concurrent Tasks

Problem
You’re writing a program that is performing poorly, and you’d like to speed up execution by using multiple 
processors in a system.

Solution
C++ provides the thread type, which can be used to create a native operating system thread. Program 
threads can be run on more than a single processor and therefore allow you to write programs that can use 
multiple CPUs and CPU cores.

How It Works

Detecting the Number of Logical CPU Cores

The C++ thread library provides a feature set that lets programs use all the cores and CPUs available in a 
given computer system. The first important function supplied by the C++ threading capabilities that you 
should be aware of allows you to query the number of execution units the computer contains. Listing 11-1 
shows the C++ thread::hardware_concurrency method.



CHAPTER 11 ■ CONCURRENCY

260

Listing 11-1. The thread::hardware_concurrency Method

#include <iostream>
#include <thread>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };
 
    cout << "This system can run " << numberOfProcessors << " concurrent tasks" << endl;
 
    return 0;
}
 

This code uses the thread::hardware_concurrency method to query the number of simultaneous 
threads that can be run on the computer executing the program. Figure 11-1 shows the output generated by 
this program on my desktop computer.

Running the same code on a Surface Pro 2 with an Intel Core i5 4200U processor results in a value of 4 
being returned, as opposed to the 8 returned by the Core i7 3770. You can see the results given by the Surface 
Pro 2 in Figure 11-2.

Running too many threads on a computer that has too few logical cores can cause the computer to 
become unresponsive, so it’s important to keep this in mind when you’re creating programs.

Figure 11-1. The result of calling thread::hardware_concurrency on an Intel Core i7 3770

Figure 11-2. The result of running Listing 11-1 on a Surface Pro 2



CHAPTER 11 ■ CONCURRENCY

261

Creating Threads

Once you know the system you’re running on might benefit from the use of concurrent execution, you can 
use the C++ thread class to create tasks to be run on multiple processor cores. The thread class is a portable, 
built-in type that allows you to write multithreaded code for any operating system.

Note ■  The thread class is a recent addition to the C++ programming language. It was added in the C++11 

language spec, so you may need to check the documentation for the STL library you’re using to ensure that it 

supports this feature.

The thread constructor is simple to use and takes a function to execute on another CPU core. Listing 11-2  
shows a simple thread that outputs to the console.

Listing 11-2. Creating a thread

#include <iostream>
#include <thread>
 
using namespace std;
 
void ThreadTask()
{
    for (unsigned int i{ 0 }; i < 20; ++i)
    {
        cout << "Output from thread" << endl;
    }
}
 
int main(int argc, char* argv[])
{
    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };
 
    cout << "This system can run " << numberOfProcessors << " concurrent tasks" << endl;
 
    if (numberOfProcessors > 1)
    {
        thread myThread{ ThreadTask };
 
        cout << "Output from main" << endl;
 
        myThread.join();
    }
    else
    {
        cout << "CPU does not have multiple cores." << endl;
    }
 
        return 0;
}
 



CHAPTER 11 ■ CONCURRENCY

262

Listing 11-2 determines whether to create a thread based on the number of logical cores on the 
computer executing the program.

Note ■  Most operating systems allow you to run more threads than there are processors, but you might find 

that doing so slows your program due to the overhead of managing multiple threads.

If the CPU has more than one logical core, the program creates a thread object called myThread. The 
myThread variable is initialized with a pointer to a function. This function will be executed in the thread 
context and, more likely than not, on a different CPU thread than the main function.

The ThreadTask function consists of a for loop that simply outputs to the console multiple times. 
The main function also outputs to the console. The intent is to show that both functions are running 
concurrently. You can see that this is true in Figure 11-3, where the output from main occurs in the middle of 
the output from ThreadTask.

Cleaning Up After Threads

The main function in Listing 11-2 immediately calls the join method on the thread. The join method is 
used to tell the current thread to wait for the additional thread to end execution before continuing. This is 
important because C++ programs are required to destroy their own threads to prevent leaks from occurring. 
Calling the destructor on a thread object doesn’t destroy the currently executing thread context. Listing 11-3 
shows code that has been modified to not call join on myThread.

Figure 11-3. The output showing that both main and ThreadTask, from Listing 11-2, are running concurrently



CHAPTER 11 ■ CONCURRENCY

263

Listing 11-3. Forgetting to Call join on a thread

#include <iostream>
#include <thread>
 
using namespace std;
 
void ThreadTask()
{
    for (unsigned int i{ 0 }; i < 20; ++i)
    {
        cout << "Output from thread" << endl;
    }
}
 
int main(int argc, char* argv[])
{
    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };
 
    cout << "This system can run " << numberOfProcessors << " concurrent tasks" << endl;
 
    if (numberOfProcessors > 1)
    {
        thread myThread{ ThreadTask };
 
        cout << "Output from main" << endl;
    }
    else
    {
        cout << "CPU does not have multiple cores." << endl;
    }
 
    return 0;
}
 

This code causes the myThread object to go out of scope before the ThreadTask function has completed 
execution. This can cause a thread leak in your program that may eventually cause the program or the 
operating system to become unstable. A program running on the Linux command line will fail with the error 
shown in Figure 11-4.

Figure 11-4. The Linux error when a thread destructor is called before completion



CHAPTER 11 ■ CONCURRENCY

264

As you can see, this warning isn’t particularly descriptive, and there’s no guarantee that you’ll get any 
warning when using other operating systems and libraries. It’s therefore important to be aware of your 
threads' lifetimes and ensure that you’re dealing with them appropriately.

One approach is to use the join method to make the program wait for threads to finish before closing 
them down. C++ also provides a second option: the detach method. Listing 11-4 shows the detach method 
in use.

Listing 11-4. Using the detach Method

#include <iostream>
#include <thread>
 
using namespace std;
 
void ThreadTask()
{
    for (unsigned int i = 0; i < 20; ++i)
    {
        cout << "Output from thread" << endl;
    }
}
 
int main(int argc, char* argv[])
{
    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };
 
    cout << "This system can run " << numberOfProcessors << " concurrent tasks" << endl;
 
    if (numberOfProcessors > 1)
    {
        thread myThread{ ThreadTask };
 
        cout << "Output from main" << endl;
 
        myThread.detach();
    }
    else
    {
        cout << "CPU does not have multiple cores." << endl;
    }
 
    return 0;
}
 

Listing 11-4 shows that the detach method can be used in place of join. The join method causes the 
program to wait for a running thread to complete before continuing, but the detach method doesn’t.  
The detach method allows you to create threads that outlive the execution of your program. These may be 
useful for system tasks that need to track time over long periods; however, I’m skeptical about whether many 
day-to-day programs will find a use for this method. There’s also a risk that your program will leak threads 
that have been detached and have no way to get those tasks back. Once an execution context in a thread has 
been detached, you can never reattach it.



CHAPTER 11 ■ CONCURRENCY

265

11-2. Creating thread Scope Variables

Problem
You have classes of objects that use static data in their implementations, and you’d like to use them with 
threads.

Solution
C++ provides the thread_local specifier to allow the computer to create an instance of the static data on a 
per-thread basis.

How It Works
Before I cover how to use thread_local, let’s step through a scenario where this problem can occur so you 
can clearly see the issue and the problem the solution itself can cause. Listing 11-5 contains a class that uses 
a static vector of objects to prevent many calls to new and delete.

Listing 11-5. Creating a Class that Uses Static Data to Track State#include <cstdlib>

#include <iostream>
#include <stack>
#include <thread>
#include <vector>
 
using namespace std;
 
class MyManagedObject
{
private:
    static const unsigned int MAX_OBJECTS{ 4 };
 
    using MyManagedObjectCollection = vector < MyManagedObject > ;
    static MyManagedObjectCollection s_ManagedObjects;
 
    static stack<unsigned int> s_FreeList;
 
    unsigned int m_Value{ 0xFFFFFFFF };
 
public:
    MyManagedObject() = default;
    MyManagedObject(unsigned int value)
        : m_Value{ value }
    {
 
    }
 
    void* operator new(size_t numBytes)
    {
        void* objectMemory{};
 



CHAPTER 11 ■ CONCURRENCY

266

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)
        {
            s_ManagedObjects.reserve(MAX_OBJECTS);
        }
 
        if (numBytes == sizeof(MyManagedObject) &&
            s_ManagedObjects.size() < s_ManagedObjects.capacity())
        {
            unsigned int index{ 0xFFFFFFFF };
            if (s_FreeList.size() > 0)
            {
                index = s_FreeList.top();
                s_FreeList.pop();
            }
 
            if (index == 0xFFFFFFFF)
            {
                s_ManagedObjects.push_back({});
                index = s_ManagedObjects.size() - 1;
            }
 
            objectMemory = s_ManagedObjects.data() + index;
        }
        else
        {
            objectMemory = malloc(numBytes);
        }
 
        return objectMemory;
    }
 
    void operator delete(void* pMem)
    {
        const intptr_t index{
            (static_cast<MyManagedObject*>(pMem) - s_ManagedObjects.data()) /
            static_cast<intptr_t>(sizeof(MyManagedObject)) };
        if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.size()))
        {
            s_FreeList.emplace(static_cast<unsigned int>(index));
        }
        else
        {
            free(pMem);
        }
    }
};
 
MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};
stack<unsigned int> MyManagedObject::s_FreeList{};
 



CHAPTER 11 ■ CONCURRENCY

267

int main(int argc, char* argv[])
{
    cout << hex << showbase;
 
    MyManagedObject* pObject1{ new MyManagedObject(1) };
 
    cout << "pObject1: " << pObject1 << endl;
 
    MyManagedObject* pObject2{ new MyManagedObject(2) };
 
    cout << "pObject2: " << pObject2 << endl;
 
    delete pObject1;
    pObject1 = nullptr;
 
    MyManagedObject* pObject3{ new MyManagedObject(3) };
 
    cout << "pObject3: " << pObject3 << endl;
 
    pObject1 = new MyManagedObject(4);
 
    cout << "pObject1: " << pObject1 << endl;
 
    delete pObject2;
    pObject2 = nullptr;
 
    delete pObject3;
    pObject3 = nullptr;
 
    delete pObject1;
    pObject1 = nullptr;
 
    return 0;
}
 

The code in Listing 11-5 overloads the new and delete methods on the MyManagedObject class. These 
overloads are used to return newly created objects from an initial pool of preallocated memory. Doing this 
would allow you to restrict the number of a given type of object to a prearranged limit but still let you use the 
familiar new and delete syntax.

Note ■  The code in Listing 11-5 doesn’t actually enforce the limit; it simply falls back to dynamic allocation 

when the limit has been reached.

The managed class works by using a constant to determine the number of preallocated objects that 
should exist. This number is used to initialize a vector on the first allocation. Each subsequent allocation is 
fulfilled from this vector until it’s exhausted. A free list of indices is maintained. If an object from the pool is 
released, its index is added to the top of the free stack. Objects on the free list are then reissued in the order 
that they were added to this stack. Figure 11-5 shows that pObject3 ends up with the same address that was 
used by pObject1 before it was deleted.



CHAPTER 11 ■ CONCURRENCY

268

The operation of this managed pool uses a static vector and a static stack to maintain the pool 
across all MyManagedObject instances. This causes problems when coupled with threads, because you can’t 
be sure that different threads won’t try to access these objects at the same time.

Listing 11-6 updates the code from Listing 11-5 to use a thread to also create MyManagedObject 
instances.

Listing 11-6. Using a thread to Create MyManagedObject Instances

#include <cstdlib>
#include <iostream>
#include <stack>
#include <thread>
#include <vector>
 
using namespace std;
 
class MyManagedObject
{
private:
    static const unsigned int MAX_OBJECTS{ 8 };
 
    using MyManagedObjectCollection = vector < MyManagedObject >;
    static MyManagedObjectCollection s_ManagedObjects;
 
    static stack<unsigned int> s_FreeList;
 
    unsigned int m_Value{ 0xFFFFFFFF };
 
public:
    MyManagedObject() = default;
    MyManagedObject(unsigned int value)
        : m_Value{ value }
    {
 
    }
 

Figure 11-5. Output showing the correct operation of the MyManagedObject pool



CHAPTER 11 ■ CONCURRENCY

269

    void* operator new(size_t numBytes)
    {
        void* objectMemory{};
 
        if (s_ManagedObjects.capacity() < MAX_OBJECTS)
        {
            s_ManagedObjects.reserve(MAX_OBJECTS);
        }
 
        if (numBytes == sizeof(MyManagedObject) &&
            s_ManagedObjects.size() < s_ManagedObjects.capacity())
        {
            unsigned int index{ 0xFFFFFFFF };
            if (s_FreeList.size() > 0)
            {
                index = s_FreeList.top();
                s_FreeList.pop();
            }
 
            if (index == 0xFFFFFFFF)
            {
                s_ManagedObjects.push_back({});
                index = s_ManagedObjects.size() - 1;
            }
 
            objectMemory = s_ManagedObjects.data() + index;
        }
        else
        {
            objectMemory = malloc(numBytes);
        }
 
        return objectMemory;
    }
 
    void operator delete(void* pMem)
    {
        const intptr_t index{
            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /
            static_cast< intptr_t >(sizeof(MyManagedObject)) };
        if (0 <= index && index < static_cast< intptr_t >(s_ManagedObjects.size()))
        {
            s_FreeList.emplace(static_cast<unsigned int>(index));
        }
        else
        {
            free(pMem);
        }
    }
};
 



CHAPTER 11 ■ CONCURRENCY

270

MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};
stack<unsigned int> MyManagedObject::s_FreeList{};
 
void ThreadTask()
{
    MyManagedObject* pObject4{ new MyManagedObject(5) };
 
    cout << "pObject4: " << pObject4 << endl;
 
    MyManagedObject* pObject5{ new MyManagedObject(6) };
 
    cout << "pObject5: " << pObject5 << endl;
 
    delete pObject4;
    pObject4 = nullptr;
 
    MyManagedObject* pObject6{ new MyManagedObject(7) };
 
    cout << "pObject6: " << pObject6 << endl;
 
    pObject4 = new MyManagedObject(8);
 
    cout << "pObject4: " << pObject4 << endl;
 
    delete pObject5;
    pObject5 = nullptr;
 
    delete pObject6;
    pObject6 = nullptr;
 
    delete pObject4;
    pObject4 = nullptr;
}
 
int main(int argc, char* argv[])
{
    cout << hex << showbase;
 
    thread myThread{ ThreadTask };
 
    MyManagedObject* pObject1{ new MyManagedObject(1) };
 
    cout << "pObject1: " << pObject1 << endl;
 
    MyManagedObject* pObject2{ new MyManagedObject(2) };
 
    cout << "pObject2: " << pObject2 << endl;
 
    delete pObject1;
    pObject1 = nullptr;
 



CHAPTER 11 ■ CONCURRENCY

271

    MyManagedObject* pObject3{ new MyManagedObject(3) };
 
    cout << "pObject3: " << pObject3 << endl;
 
    pObject1 = new MyManagedObject(4);
 
    cout << "pObject1: " << pObject1 << endl;
 
    delete pObject2;
    pObject2 = nullptr;
 
    delete pObject3;
    pObject3 = nullptr;
 
    delete pObject1;
    pObject1 = nullptr;
 
    myThread.join();
 
    return 0;
}
 

The code in Listing 11-6 uses a thread to allocate objects from the pool concurrently with the main 
function. This means the static pool can be accessed simultaneously from two locations, and your program 
can run into problems. Two common issues are unexpected program crashes and data races.

A data race is a more subtle problem and results in unexpected memory corruption. Figure 11-6 
illustrates the problem.

The problem presented by allocating objects from the same pool may be subtle and difficult to spot 
at first. If you look closely, you see that pObject6 and pObject3 are pointing to the same memory address. 
These pointers are created and initialized on different threads, and at no point do you expect them to point 
at the same memory address, even with object reuse in your pools. This again is a difficulty in working with 
threads. The associated problems are very time-sensitive and their manifestations can be altered by the 

Figure 11-6. The problem caused by running into data races between threads



CHAPTER 11 ■ CONCURRENCY

272

conditions of the computer at the time of execution. Other programs may create threads that cause your 
own to be delayed slightly, so that a problem in your thread logic can manifest itself in many different ways 
despite having the same root cause.

C++ provides a solution to this problem: the thread_local keyword. The thread_local keyword works 
by telling the compiler that the static objects you’re creating should be unique for every thread you create 
that uses these objects. The side effect is that you don’t have a single shared instance of the static object 
across all classes. This is a significant departure from the normal usage of static, where there is a single 
shared object for all instances of the type. Listing 11-7 shows the memory-pool functions and the associated 
static variables updated to use thread_local.

Listing 11-7. Using thread_local

#include <cstdlib>
#include <iostream>
#include <stack>
#include <thread>
#include <vector>
 
using namespace std;
 
class MyManagedObject
{
private:
    static thread_local const unsigned int MAX_OBJECTS;
 
    using MyManagedObjectCollection = vector < MyManagedObject >;
    static thread_local MyManagedObjectCollection s_ManagedObjects;
 
    static thread_local stack<unsigned int> s_FreeList;
 
    unsigned int m_Value{ 0xFFFFFFFF };
 
public:
    MyManagedObject() = default;
    MyManagedObject(unsigned int value)
        : m_Value{ value }
    {
 
    }
 
    void* operator new(size_t numBytes)
    {
        void* objectMemory{};
 
        if (s_ManagedObjects.capacity() < MAX_OBJECTS)
        {
            s_ManagedObjects.reserve(MAX_OBJECTS);
        }
 



CHAPTER 11 ■ CONCURRENCY

273

        if (numBytes == sizeof(MyManagedObject) &&
            s_ManagedObjects.size() < s_ManagedObjects.capacity())
        {
            unsigned int index{ 0xFFFFFFFF };
            if (s_FreeList.size() > 0)
            {
                index = s_FreeList.top();
                s_FreeList.pop();
            }
 
            if (index == 0xFFFFFFFF)
            {
                s_ManagedObjects.push_back({});
                index = s_ManagedObjects.size() - 1;
            }
 
            objectMemory = s_ManagedObjects.data() + index;
        }
        else
        {
            objectMemory = malloc(numBytes);
        }
 
        return objectMemory;
    }
 
        void operator delete(void* pMem)
    {
        const intptr_t index{
            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /
            static_cast<intptr_t>(sizeof(MyManagedObject)) };
        if (0 <= index && index < static_cast< intptr_t >(s_ManagedObjects.size()))
        {
            s_FreeList.emplace(static_cast<unsigned int>(index));
        }
        else
        {
            free(pMem);
        }
    }
};
 
thread_local const unsigned int MyManagedObject::MAX_OBJECTS{ 8 };
thread_local MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};
thread_local stack<unsigned int> MyManagedObject::s_FreeList{};
 
void ThreadTask()
{
    MyManagedObject* pObject4{ new MyManagedObject(5) };
 
    cout << "pObject4: " << pObject4 << endl;
 



CHAPTER 11 ■ CONCURRENCY

274

    MyManagedObject* pObject5{ new MyManagedObject(6) };
 

    cout << "pObject5: " << pObject5 << endl;
 
    delete pObject4;
    pObject4 = nullptr;
 
    MyManagedObject* pObject6{ new MyManagedObject(7) };
 
    cout << "pObject6: " << pObject6 << endl;
 
    pObject4 = new MyManagedObject(8);
 
    cout << "pObject4: " << pObject4 << endl;
 
    delete pObject5;
    pObject5 = nullptr;
 
    delete pObject6;
    pObject6 = nullptr;
 
    delete pObject4;
    pObject4 = nullptr;
}
 
int main(int argc, char* argv[])
{
    cout << hex << showbase;
 
    thread myThread{ ThreadTask };
 
    MyManagedObject* pObject1{ new MyManagedObject(1) };
 
    cout << "pObject1: " << pObject1 << endl;
 
    MyManagedObject* pObject2{ new MyManagedObject(2) };
 
    cout << "pObject2: " << pObject2 << endl;
 
    delete pObject1;
    pObject1 = nullptr;
 
    MyManagedObject* pObject3{ new MyManagedObject(3) };
 
    cout << "pObject3: " << pObject3 << endl;
 
    pObject1 = new MyManagedObject(4);
 
    cout << "pObject1: " << pObject1 << endl;
 
    delete pObject2;



CHAPTER 11 ■ CONCURRENCY

275

    pObject2 = nullptr;
 
    delete pObject3;
    pObject3 = nullptr;
 
    delete pObject1;
    pObject1 = nullptr;
 
    myThread.join();
 
    return 0;
}
 

Listing 11-7 shows that you can specify static variables as having thread_local storage by adding 
the thread_local identifier to their declaration and definitions. The impact of this change is that the main 
function and the ThreadTask function have separate s_ManagedObjects, s_FreeList, and MAX_OBJECT 
variables in their own execution context. Now that there are two copies of each, you have twice the number 
of potential objects, because as the pools have been duplicated. This may or may not be a problem for your 
program, but you should be careful when using thread_local and consider any unintended consequences. 
Figure 11-7 shows the result of running the code in Listing 11-7.

You can see the problems when using threads. The first line of output is split between the two threads, 
but it should be very apparent that the two threads are being assigned values from completely separate 
places in memory. This proves that the compiler has made sure the static variables are unique for each 
thread in the program. You could take this further by adding even more threads to the program and seeing 
that they’re allocating objects from different places in memory and that at no point can two pointers on 
different threads be pointing to the same memory address.

Figure 11-7. Output when using thread_local



CHAPTER 11 ■ CONCURRENCY

276

11-3. Accessing Shared Objects Using Mutual Exclusion

Problem
You have an object that you would like to be able to access on more than one thread at a time.

Solution
C++ provides mutex objects that allow you to provide mutually exclusive access to sections of code.

How It Works
A mutex can be used to synchronize threads. This is achieved by the mutex class and the methods it 
provides to acquire and release the mutex. A thread can be sure that no other thread is currently accessing 
a shared resource by waiting until it can acquire the mutex before continuing execution. The program in 
Listing 11-8 contains a data race: a situation in which two threads can access a shared resource at the same 
time and cause unstable and unexpected program behavior.

Listing 11-8. A Program Containing a Data Race

#include <cstdlib>
#include <iostream>
#include <stack>
#include <thread>
#include <vector>
 
using namespace std;
 
class MyManagedObject
{
private:
    static const unsigned int MAX_OBJECTS{ 8 };
 
    using MyManagedObjectCollection = vector < MyManagedObject >;
    static MyManagedObjectCollection s_ManagedObjects;
 
    static stack<unsigned int> s_FreeList;
 
    unsigned int m_Value{ 0xFFFFFFFF };
 
public:
    MyManagedObject() = default;
    MyManagedObject(unsigned int value)
        : m_Value{ value }
    {
 
    }
 
    void* operator new(size_t numBytes)
    {
        void* objectMemory{};



CHAPTER 11 ■ CONCURRENCY

277

 
        if (s_ManagedObjects.capacity() < MAX_OBJECTS)
        {
            s_ManagedObjects.reserve(MAX_OBJECTS);
        }
 
        if (numBytes == sizeof(MyManagedObject) &&
            s_ManagedObjects.size() < s_ManagedObjects.capacity())
        {
            unsigned int index{ 0xFFFFFFFF };
            if (s_FreeList.size() > 0)
            {
                index = s_FreeList.top();
                s_FreeList.pop();
            }
 
            if (index == 0xFFFFFFFF)
            {
                s_ManagedObjects.push_back({});
                index = s_ManagedObjects.size() - 1;
            }
 
            objectMemory = s_ManagedObjects.data() + index;
        }
        else
        {
            objectMemory = malloc(numBytes);
        }
 
        return objectMemory;
    }
 
    void operator delete(void* pMem)
    {
        const intptr_t index{
            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /
            static_cast<intptr_t>(sizeof(MyManagedObject)) };
        if (0 <= index && index < static_cast< intptr_t >(s_ManagedObjects.size()))
        {
            s_FreeList.emplace(static_cast<unsigned int>(index));
        }
        else
        {
            free(pMem);
        }
    }
};
 
MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};
stack<unsigned int> MyManagedObject::s_FreeList{};



CHAPTER 11 ■ CONCURRENCY

278

 
void ThreadTask()
{
    MyManagedObject* pObject4{ new MyManagedObject(5) };
 
    cout << "pObject4: " << pObject4 << endl;
 
    MyManagedObject* pObject5{ new MyManagedObject(6) };
 
    cout << "pObject5: " << pObject5 << endl;
 
    delete pObject4;
    pObject4 = nullptr;
 
    MyManagedObject* pObject6{ new MyManagedObject(7) };
 
    cout << "pObject6: " << pObject6 << endl;
 
    pObject4 = new MyManagedObject(8);
 
    cout << "pObject4: " << pObject4 << endl;
 
    delete pObject5;
    pObject5 = nullptr;
 
    delete pObject6;
    pObject6 = nullptr;
 
    delete pObject4;
    pObject4 = nullptr;
}
 
int main(int argc, char* argv[])
{
    cout << hex << showbase;
 
    thread myThread{ ThreadTask };
 
    MyManagedObject* pObject1{ new MyManagedObject(1) };
 
    cout << "pObject1: " << pObject1 << endl;
 
    MyManagedObject* pObject2{ new MyManagedObject(2) };
 
    cout << "pObject2: " << pObject2 << endl;
 
    delete pObject1;
    pObject1 = nullptr;
 
    MyManagedObject* pObject3{ new MyManagedObject(3) };
 
    cout << "pObject3: " << pObject3 << endl;
 



CHAPTER 11 ■ CONCURRENCY

279

    pObject1 = new MyManagedObject(4);
 
    cout << "pObject1: " << pObject1 << endl;
 
    delete pObject2;
    pObject2 = nullptr;
 
    delete pObject3;
    pObject3 = nullptr;
 
    delete pObject1;
    pObject1 = nullptr;
 
    myThread.join();
 
    return 0;
}
 

This program can’t prevent the code in ThreadTask and the main function from accessing the 
s_ManagedObjects and s_FreeList pools in the MyManagedObject class. Access to these objects can be 
protected by a mutex, as you can see in Listing 11-9.

Listing 11-9. Adding a Mutex to Protect Access to Shared Objects

#include <cstdlib>
#include <iostream>
#include <mutex>
#include <stack>
#include <thread>
#include <vector>
 
using namespace std;
 
class MyManagedObject
{
private:
    static const unsigned int MAX_OBJECTS{ 8 };
 
    using MyManagedObjectCollection = vector < MyManagedObject >;
    static MyManagedObjectCollection s_ManagedObjects;
 
    static stack<unsigned int> s_FreeList;
 
    static mutex s_Mutex;
 
    unsigned int m_Value{ 0xFFFFFFFF };
 
public:
    MyManagedObject() = default;
    MyManagedObject(unsigned int value)
        : m_Value{ value }
    {
 
    }
 



CHAPTER 11 ■ CONCURRENCY

280

    void* operator new(size_t numBytes)
    {
        void* objectMemory{};
 
        s_Mutex.lock();
 
        if (s_ManagedObjects.capacity() < MAX_OBJECTS)
        {
            s_ManagedObjects.reserve(MAX_OBJECTS);
        }
 
        if (numBytes == sizeof(MyManagedObject) &&
            s_ManagedObjects.size() < s_ManagedObjects.capacity())
        {
            unsigned int index{ 0xFFFFFFFF };
            if (s_FreeList.size() > 0)
            {
                index = s_FreeList.top();
                s_FreeList.pop();
            }
 
            if (index == 0xFFFFFFFF)
            {
                s_ManagedObjects.push_back({});
                index = s_ManagedObjects.size() - 1;
            }
 
            objectMemory = s_ManagedObjects.data() + index;
        }
        else
        {
            objectMemory = malloc(numBytes);
        }
 
        s_Mutex.unlock();
 
        return objectMemory;
    }
 
    void operator delete(void* pMem)
    {
        s_Mutex.lock();
 
        const intptr_t index{
            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /
            static_cast<intptr_t>(sizeof(MyManagedObject)) };
        if (0 <= index && index < static_cast< intptr_t >(s_ManagedObjects.size()))
        {
            s_FreeList.emplace(static_cast<unsigned int>(index));
        }
        else



CHAPTER 11 ■ CONCURRENCY

281

        {
            free(pMem);
        }
 
        s_Mutex.unlock();
    }
};
 
MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};
stack<unsigned int> MyManagedObject::s_FreeList{};
mutex MyManagedObject::s_Mutex;
 
void ThreadTask()
{
    MyManagedObject* pObject4{ new MyManagedObject(5) };
 
    cout << "pObject4: " << pObject4 << endl;
 
    MyManagedObject* pObject5{ new MyManagedObject(6) };
 
    cout << "pObject5: " << pObject5 << endl;
 
    delete pObject4;
    pObject4 = nullptr;
 
    MyManagedObject* pObject6{ new MyManagedObject(7) };
 
    cout << "pObject6: " << pObject6 << endl;
 
    pObject4 = new MyManagedObject(8);
 
    cout << "pObject4: " << pObject4 << endl;
 
    delete pObject5;
    pObject5 = nullptr;
 
    delete pObject6;
    pObject6 = nullptr;
 
    delete pObject4;
    pObject4 = nullptr;
}
 
int main(int argc, char* argv[])
{
    cout << hex << showbase;
 
    thread myThread{ ThreadTask };
 
    MyManagedObject* pObject1{ new MyManagedObject(1) };
 



CHAPTER 11 ■ CONCURRENCY

282

    cout << "pObject1: " << pObject1 << endl;
 
    MyManagedObject* pObject2{ new MyManagedObject(2) };
 
    cout << "pObject2: " << pObject2 << endl;
 
    delete pObject1;
    pObject1 = nullptr;
 
    MyManagedObject* pObject3{ new MyManagedObject(3) };
 
    cout << "pObject3: " << pObject3 << endl;
 
    pObject1 = new MyManagedObject(4);
 
    cout << "pObject1: " << pObject1 << endl;
 
    delete pObject2;
    pObject2 = nullptr;
 
    delete pObject3;
    pObject3 = nullptr;
 
    delete pObject1;
    pObject1 = nullptr;
 
    myThread.join();
 
    return 0;
}
 

This code uses a mutex to ensure that the new and delete functions in the MyManagedObject class are 
only executing on a single thread at any given time. This ensures that the object pool being maintained for 
this class is always in a valid state and that the same addresses aren’t being given to different threads. The 
code requires that the lock be held for the entire execution of the functions it’s protecting. C++ provides a 
helper class named lock_guard that automatically locks a mutex on construction and frees the mutex on 
destruction. Listing 11-10 shows a lock_guard in use.

Listing 11-10. Using a lock_guard

#include <cstdlib>
#include <iostream>
#include <mutex>
#include <stack>
#include <thread>
#include <vector>
 
using namespace std;
 



CHAPTER 11 ■ CONCURRENCY

283

class MyManagedObject
{
private:
    static const unsigned int MAX_OBJECTS{ 8 };
 
    using MyManagedObjectCollection = vector < MyManagedObject >;
    static MyManagedObjectCollection s_ManagedObjects;
 
    static stack<unsigned int> s_FreeList;
 
    static mutex s_Mutex;
 
    unsigned int m_Value{ 0xFFFFFFFF };
 
public:
    MyManagedObject() = default;
    MyManagedObject(unsigned int value)
        : m_Value{ value }
    {
 
    }
 
    void* operator new(size_t numBytes)
    {
        lock_guard<mutex> lock{ s_Mutex };
 
        void* objectMemory{};
 
        if (s_ManagedObjects.capacity() < MAX_OBJECTS)
        {
            s_ManagedObjects.reserve(MAX_OBJECTS);
        }
 
        if (numBytes == sizeof(MyManagedObject) &&
            s_ManagedObjects.size() < s_ManagedObjects.capacity())
        {
            unsigned int index{ 0xFFFFFFFF };
            if (s_FreeList.size() > 0)
            {
                index = s_FreeList.top();
                s_FreeList.pop();
            }
 
            if (index == 0xFFFFFFFF)
            {
                s_ManagedObjects.push_back({});
                index = s_ManagedObjects.size() - 1;
            }
 



CHAPTER 11 ■ CONCURRENCY

284

            objectMemory = s_ManagedObjects.data() + index;
        }
        else
        {
            objectMemory = malloc(numBytes);
        }
 
        return objectMemory;
    }
 
    void operator delete(void* pMem)
    {
        lock_guard<mutex> lock{ s_Mutex };
 
        const intptr_t index{
            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /
            static_cast<intptr_t>(sizeof(MyManagedObject)) };
        if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.size()))
        {
            s_FreeList.emplace(static_cast<unsigned int>(index));
        }
        else
        {
            free(pMem);
        }
    }
};
 
MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};
stack<unsigned int> MyManagedObject::s_FreeList{};
mutex MyManagedObject::s_Mutex;
 
void ThreadTask()
{
    MyManagedObject* pObject4{ new MyManagedObject(5) };
 
    cout << "pObject4: " << pObject4 << endl;
 
    MyManagedObject* pObject5{ new MyManagedObject(6) };
 
    cout << "pObject5: " << pObject5 << endl;
 
    delete pObject4;
    pObject4 = nullptr;
 
    MyManagedObject* pObject6{ new MyManagedObject(7) };
 
    cout << "pObject6: " << pObject6 << endl;
 
    pObject4 = new MyManagedObject(8);
 



CHAPTER 11 ■ CONCURRENCY

285

    cout << "pObject4: " << pObject4 << endl;
 
    delete pObject5;
    pObject5 = nullptr;
 
    delete pObject6;
    pObject6 = nullptr;
 
    delete pObject4;
    pObject4 = nullptr;
}
 
int main(int argc, char* argv[])
{
    cout << hex << showbase;
 
    thread myThread{ ThreadTask };
 
    MyManagedObject* pObject1{ new MyManagedObject(1) };
 
    cout << "pObject1: " << pObject1 << endl;
 
    MyManagedObject* pObject2{ new MyManagedObject(2) };
 
    cout << "pObject2: " << pObject2 << endl;
 
    delete pObject1;
    pObject1 = nullptr;
 
    MyManagedObject* pObject3{ new MyManagedObject(3) };
 
    cout << "pObject3: " << pObject3 << endl;
 
    pObject1 = new MyManagedObject(4);
 
    cout << "pObject1: " << pObject1 << endl;
 
    delete pObject2;
    pObject2 = nullptr;
 
    delete pObject3;
    pObject3 = nullptr;
 
    delete pObject1;
    pObject1 = nullptr;
 
    myThread.join();
 
    return 0;
}
 



CHAPTER 11 ■ CONCURRENCY

286

Using a lock_guard means you don’t have to worry about calling unlock on the mutex for yourself.  
It also conforms to the Resource Allocation Is Initialization (RAII) pattern that many C++ developers try  
to follow.

11-4. Creating Threads that Wait for Events

Problem
You would like to create a thread that waits for another event in your program.

Solution
C++ provides the condition_variable class that can be used to signal that an event has occurred to a 
waiting thread.

How It Works
A condition_variable is another C++ construct that wraps a complex behavior into a simple object 
interface. It’s common in multithreaded programming to create threads that you would like to have wait 
for some event to occur in another thread. This is common in a producer/consumer situation, where one 
thread may be creating tasks and another thread is auctioning or carrying out those tasks. A condition 
variable is perfect in these scenarios.

A condition_variable requires a mutex to be effective. It works by waiting for some condition to 
become true and then attempting to acquire a lock on the mutex protecting a shared resource. Listing 11-11  
uses a mutex, a unique_lock, and a condition_variable to communicate between threads when a 
producer thread has queued work for two consumer threads.

Listing 11-11. Using a condition_variable to Wake a Thread

#include <condition_variable>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <mutex>
#include <thread>
#include <stack>
#include <vector>
 
using namespace std;
 
class MyManagedObject
{
private:
    static const unsigned int MAX_OBJECTS{ 8 };
 
    using MyManagedObjectCollection = vector < MyManagedObject >;
    static MyManagedObjectCollection s_ManagedObjects;
 
    static stack<unsigned int> s_FreeList;
 



CHAPTER 11 ■ CONCURRENCY

287

    static mutex s_Mutex;
 
    unsigned int m_Value{ 0xFFFFFFFF };
 
public:
    MyManagedObject() = default;
    MyManagedObject(unsigned int value)
        : m_Value{ value }
    {
 
    }
 
    unsigned int GetValue() const { return m_Value; }
 
    void* operator new(size_t numBytes)
    {
        lock_guard<mutex> lock{ s_Mutex };
 
        void* objectMemory{};
 
        if (s_ManagedObjects.capacity() < MAX_OBJECTS)
        {
            s_ManagedObjects.reserve(MAX_OBJECTS);
        }
 
        if (numBytes == sizeof(MyManagedObject) &&
            s_ManagedObjects.size() < s_ManagedObjects.capacity())
        {
            unsigned int index{ 0xFFFFFFFF };
            if (s_FreeList.size() > 0)
            {
                index = s_FreeList.top();
                s_FreeList.pop();
            }
 
            if (index == 0xFFFFFFFF)
            {
                s_ManagedObjects.push_back({});
                index = s_ManagedObjects.size() - 1;
            }
 
            objectMemory = s_ManagedObjects.data() + index;
        }
        else
        {
            objectMemory = malloc(numBytes);
        }
 
        return objectMemory;
    }
 



CHAPTER 11 ■ CONCURRENCY

288

        void operator delete(void* pMem)
    {
        lock_guard<mutex> lock{ s_Mutex };
 
        const intptr_t index{
            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /
            static_cast<intptr_t>(sizeof(MyManagedObject)) };
        if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.size()))
        {
            s_FreeList.emplace(static_cast<unsigned int>(index));
        }
        else
        {
            free(pMem);
        }
    }
};
 
MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};
stack<unsigned int> MyManagedObject::s_FreeList{};
mutex MyManagedObject::s_Mutex;
 
using ProducerQueue = vector < unsigned int > ;
 
void ThreadTask(
    reference_wrapper<condition_variable> condition,
    reference_wrapper<mutex> queueMutex,
    reference_wrapper<ProducerQueue> queueRef,
    reference_wrapper<bool> die)
{
    ProducerQueue& queue{ queueRef.get() };
 
    while (!die.get() || queue.size())
    {
        unique_lock<mutex> lock{ queueMutex.get() };
 
        function<bool()> predicate{
            [&queue]()
            {
                return !queue.empty();
            }
        };
        condition.get().wait(lock, predicate);
 
        unsigned int numberToCreate{ queue.back() };
        queue.pop_back();
 
        cout << "Creating " <<
            numberToCreate <<
            " objects on thread " <<
            this_thread::get_id() << endl;
 



CHAPTER 11 ■ CONCURRENCY

289

        for (unsigned int i = 0; i < numberToCreate; ++i)
        {
            MyManagedObject* pObject{ new MyManagedObject(i) };
        }
    }
}
 
int main(int argc, char* argv[])
{
    condition_variable condition;
    mutex queueMutex;
    ProducerQueue queue;
    bool die{ false };
 
    thread myThread1{ ThreadTask, ref(condition), ref(queueMutex), ref(queue), ref(die) };
    thread myThread2{ ThreadTask, ref(condition), ref(queueMutex), ref(queue), ref(die) };
 
    queueMutex.lock();
    queue.emplace_back(300000);
    queue.emplace_back(400000);
    queueMutex.unlock();
 
    condition.notify_all();
 
    this_thread::sleep_for( 10ms );
    while (!queueMutex.try_lock())
    {
        cout << "Main waiting for queue access!" << endl;
        this_thread::sleep_for( 100ms );
    }
 
    queue.emplace_back(100000);
    queue.emplace_back(200000);
     
    this_thread::sleep_for( 1000ms );
     
    condition.notify_one();
 
    this_thread::sleep_for( 1000ms );
 
    condition.notify_one();
 
    this_thread::sleep_for( 1000ms );
     
    queueMutex.unlock();
 
    die = true;
 
    cout << "main waiting for join!" << endl;
 
    myThread1.join();
    myThread2.join();
 
    return 0;
}
 



CHAPTER 11 ■ CONCURRENCY

290

This code contains a complex scenario using the C++ language’s multithreading capabilities. The first 
aspect of this example that you need to understand is the method used to pass variables from main into the 
threads. When the thread object is created, you can think of the values you pass to it as being passed into 
a function by value. In effect, this causes your threads to receive copies of variables and not the variables 
themselves. This causes difficulty when you’re trying to share objects between threads, because changes 
in one aren’t reflected in the other. You can overcome this limitation by using the reference_wrapper 
template. A reference_wrapper essentially stores a pointer to the object you’re trying to share between 
threads, but it helps overcome the problem where you would normally have to account for a null pointer by 
ensuring that the value can’t be null. When you pass the variable into the thread constructor, you actually 
pass the variable into the ref function, which in turn passes a reference_wrapper containing your object to 
thread. When the thread constructor makes a copy of the values you passed to it, you receive a copy of the 
reference_wrapper and not a copy of the object itself. You could achieve the same result by using pointers 
to objects, but this built-in C++ method is much simpler and provides more safety. The ThreadTask function 
retrieves the shared objects from their reference_wrapper instances using the get method supplied by the 
reference_wrapper template.

The ThreadTask function is used by two different threads in the program, and therefore the use of 
reference_wrapper is essential to ensure that the two instances share the same mutex and condition_
variable along with main. Each instance uses a unique_lock to wrap the behavior of the mutex. Curiously, 
a unique_lock automatically locks a mutex when it’s constructed, but the code in Listing 11-11 never 
calls unlock on the mutex. The unlock call is carried out by the wait method in the first instance. The 
condition_variable::wait method unlocks the mutex and waits for a signal from another thread that it 
should continue. Unfortunately, this waiting isn’t completely reliable, because some operating systems 
can decide to unblock threads without the appropriate signal being sent. For this reason, it’s a good 
idea to have a backup plan—and the wait method provides this by taking a predicate parameter. The 
predicate takes a variable that can be called like a function. The code in Listing 11-11 provides a closure 
that determines whether the queue is empty. When the thread wakes, because it has been signaled to 
wake either by the program or by the operating system, it first checks to see if the predicate is true before 
attempting to reacquire the lock on the supplied mutex. If the predicate is true, the wait function calls lock 
and returns; doing so allows the thread's function to continue execution. The ThreadTask function creates 
the appropriate number of objects before starting over due to the while loop. At the end of each iteration of 
the while loop, the unique_lock wrapper for the mutex goes out of scope; its destructor calls unlock on the 
mutex, allowing other threads to be unblocked.

Note ■  The use of unique_lock in Listing 11-11 is technically inefficient. Holding the lock for longer than it 

takes to retrieve the number of objects to be created from the queue essentially serializes the creation of the 

objects by causing all threads to synchronize while one thread is creating objects. This example is poorly 

designed on purpose to show how these objects can be used in practice.

Whereas the ThreadTask function is used in two threads to consume jobs from queue, the main function 
is a producer thread that adds jobs to queue. It begins by creating the two consumer threads that will carry 
out its tasks. Once the threads are created, the main function carries on with the task of adding jobs to queue. 
It lock the mutex, adds two jobs—one to create 300,000 objects and another to create 400,000 objects—and 
unlocks the mutex. It then calls notify_all on the condition_variable. The condition_variable object 
stores a list of threads that are waiting for a signal to continue; the notify_all method wakes all of these 
threads so they can carry out work. The main function then uses try_lock to show that it can’t add tasks 
while the threads are busy. In normal code, you could call lock; but this is an example of how to make a 
thread wait for a certain amount of time and how the try_lock method can be used to conditionally execute 
code if the mutex can’t be locked. More tasks are added to queue once try_lock returns true and before the 



CHAPTER 11 ■ CONCURRENCY

291

mutex is unlocked again. The notify_one function is then used to wake a single thread at a time to show that 
it’s possible to write code with finer control over threads. The second thread must also be awakened, or the 
program will stall on the join calls indefinitely.

Figure 11-8 shows the output generated by running this code. You see that main can be blocked while 
waiting for access to the mutex and that both threads are used to consume tasks from queue.

11-5. Retrieving Results from a Thread

Problem
You would like to create a thread that is capable of returning a result.

Solution
C++ provides promise and future objects that can be used to transfer data between threads.

How It Works

Using the promise and future Classes

Transferring data from a worker thread back to the thread that begins a task can be a complicated process. 
You must ensure mutually exclusive access to the memory set aside to store the result as well as handle 
all the signaling between threads. These signals include having the working thread specifying when the 
result of the thread operation is available as well as having the scheduling thread wait for that result to be 
available. Modern C++ solves this problem using the promise template.

A promise template can be specialized with a thread task return type. This creates a contract between 
threads that allows the transfer of this type of object from one to another. A promise contains a future. This 
means a promise can fulfil its name: it essentially promises to provide a value of its specialized type to the 
holder of its future at some point in the future. There is no requirement for a promise to be used on more 
than a single thread, but promises are thread-safe and perfect for this job. Alternate uses for promise/future 
pairs could be to retrieve results from asynchronous operations such as HTTP requests. Listing 11-12 shows 
the use of a promise on a single thread.

Figure 11-8. Output showing multiple threads being awakened by a condition variable



CHAPTER 11 ■ CONCURRENCY

292

Listing 11-12. Using a promise on One Thread

#include <future>
#include <iostream>
 
using namespace std;
 
using FactorialPromise = promise< long long >;
 
long long Factorial(unsigned int value)
{
    return value == 1
        ? 1
        : value * Factorial(value - 1);
}
 
int main(int argc, char* argv[])
{
    using namespace chrono;
 
    FactorialPromise promise;
    future<long long> taskFuture{ promise.get_future() };
 
    promise.set_value(Factorial(3));
    cout << "Factorial result was " << taskFuture.get() << endl;
 
    return 0;
}
 

Listing 11-12 shows the use of a promise to provide storage for a value that can be calculated later and 
retrieved in the future. You could use this for long-running tasks such as loading data from a file or retrieving 
information from a server. A program can continue rendering a UI or a progress bar while the promise hasn’t 
been fulfilled.

The promise is initialized with a default constructor, and you can use the get_future method to get the 
future into which the promise places its value. The set_value method on the promise sets the value on the 
future, and the get method on the future provides access to the value.

It can be a little difficult to see the separation of concerns between the promise and the future when 
they’re used close together as in Listing 11-12. Listing 11-13 overcomes this issue by moving the promise to 
another thread.

Listing 11-13. Moving a promise to a Second Thread

#include <future>
#include <iostream>
 
using namespace std;
 
using FactorialPromise = promise< long long > ;
 
long long Factorial(unsigned int value)
{
    this_thread::sleep_for(chrono::seconds(2));



CHAPTER 11 ■ CONCURRENCY

293

    return value == 1
        ? 1
        : value * Factorial(value - 1);
}
 
void ThreadTask(FactorialPromise& threadPromise, unsigned int value)
{
    threadPromise.set_value(Factorial(value));
}
 
int main(int argc, char* argv[])
{
    using namespace chrono;
 
    FactorialPromise promise;
    future<long long> taskFuture{ promise.get_future() };
 
    thread taskThread{ ThreadTask, std::move(promise), 3 };
 
    while (taskFuture.wait_until(system_clock::now() + seconds(1)) != future_status::ready)
    {
        cout << "Still Waiting!" << endl;
    }
 
    cout << "Factorial result was " << taskFuture.get() << endl;
 
    taskThread.join();
 
    return 0;
}
 

In Listing 11-13, the promise and future objects are initialized the same way as in Listing 11-12; 
however, the Factorial function is called from a thread using the ThreadTask function. Some additional 
lines show how you can use a future to wait for completion without necessarily blocking a thread. The 
Factorial method has a sleep_for call that causes the calculation of the Factorial to take much longer 
than usual. This allows for the example of the future::wait_until method. This method waits either until 
the supplied absolute time or until the promise has been fulfilled and the future’s value can be retrieved. 
The wait_until method takes an absolute system time to wait; this can be supplied easily using the system_
clock::now method with a suitable duration, in this case one second. If the loop that prints “Still Waiting!” 
wasn’t present, then the call to get on the future would be a blocking call. This would cause your thread to 
stall until the set_value method had been called on the promise. Sometimes this behavior is suitable, and 
other times it isn’t. It depends on the requirements of the software you’re writing.

The use of a promise and a future directly relies on you managing your own thread function. 
Sometimes this can be overkill, as is the case in Listing 11-13. The ThreadTask function has only one job: to 
call set_value on the promise. C++ provides the packaged_task template, which removes the need for you 
to create your own thread function. A packaged_task constructor takes the function to call as a parameter; 
a corresponding thread constructor that can take a packaged_task. A thread constructed in this way can 
automatically call the method in the supplied packaged_task and call set_value on its internal promise. 
Listing 11-14 shows the use of a packaged_task.



CHAPTER 11 ■ CONCURRENCY

294

Listing 11-14. Using a packaged_task

#include <future>
#include <iostream>
 
using namespace std;
 
long long Factorial(unsigned int value)
{
    this_thread::sleep_for(chrono::seconds(2));
    return value == 1
        ? 1
        : value * Factorial(value - 1);
}
 
int main(int argc, char* argv[])
{
    using namespace chrono;
 
    packaged_task<long long(unsigned int)> task{ Factorial };
    future<long long> taskFuture{ task.get_future() };
 
    thread taskThread{ std::move(task), 3 };
 
    while (taskFuture.wait_until(system_clock::now() + seconds(1)) != future_status::ready)
    {
        cout << "Still Waiting!" << endl;
    }
 
    cout << "Factorial result was " << taskFuture.get() << endl;
 
    taskThread.join();
 
    return 0;
}
 

Listing 11-14 shows that the ThreadTask function is no longer needed when using a packaged_task. 
The packaged_task constructor takes a function pointer as a parameter. The packaged_task template also 
supplies a get_future method and is passed to a thread using move semantics.

Although a packaged task removes the need for a thread function, you must still create your own thread 
manually. C++ supplies a fourth level of abstraction that prevents you from having to worry about threads. 
Listing 11-15 uses the async function to call a function asynchronously.



CHAPTER 11 ■ CONCURRENCY

295

Listing 11-15. Using async to Call Functions

#include <future>
#include <iostream>
 
using namespace std;
 
long long Factorial(unsigned int value)
{
    cout << "ThreadTask thread: " << this_thread::get_id() << endl;
    return value == 1
        ? 1
        : value * Factorial(value - 1);
}
 
int main(int argc, char* argv[])
{
    using namespace chrono;
 
    cout << "main thread: " << this_thread::get_id() << endl;
 
    auto taskFuture1 = async(Factorial, 3);
    cout << "Factorial result was " << taskFuture1.get() << endl;
 
    auto taskFuture2 = async(launch::async, Factorial, 3);
    cout << "Factorial result was " << taskFuture2.get() << endl;
 
    auto taskFuture3 = async(launch::deferred, Factorial, 3);
    cout << "Factorial result was " << taskFuture3.get() << endl;
 
    auto taskFuture4 = async(launch::async | launch::deferred, Factorial, 3);
    cout << "Factorial result was " << taskFuture4.get() << endl;
 
    return 0;
}
 

Listing 11-15 shows the different possible combinations of the async function and its overloaded 
version, which takes the launch enum as a parameter. The first call to async is the simplest: you call async 
and pass it a function and the parameters for that function. The async function returns a future that can be 
used to get the value returned from the function supplied to async. There is no guarantee, however, that the 
function will be called on another thread. All async guarantees is that the function will be called sometime 
between where you create the object and when you call get on the future.

The overloaded version of async gives you more control. Passing launch::async guarantees that the 
function will be called on another thread as soon as possible. This may not necessarily be a brand-new 
thread. The implementer of async is free to use any thread they choose. This may mean having a pool of 
threads that can be reused if they’re available. The deferred option, on the other hand, tells the returned 
future to evaluate the supplied function when get is called. This isn’t a concurrent process and causes 
the thread calling get to block, but again this is implementation specific and not the same across all C++ 
libraries. You have to check the documentation for your library or test your code by running and checking 
execution times and thread IDs.



CHAPTER 11 ■ CONCURRENCY

296

The final call to async passes both async and deferred using an or. This is the same as calling async 
without specifying an execution policy and lets the implementation decide whether async or deferred 
should be used. Figure 11-9 shows the result of each call to async.

As you can see, the library uses the main thread for every call except the one explicitly marked as async. 
Be sure to test your programs on all platforms and libraries in use to ensure that you’re seeing the behavior 
you expect.

11-6. Synchronizing Queued Messages between Threads

Problem
You have a thread that you would like to live for the entire duration of your program and respond to 
messages it’s sent.

Solution
You can use a combination of function, bind, condition_variable, mutex, and unique_lock to create a 
double-buffered message queue to transfer work from one thread to another.

Figure 11-9. The thread IDs used when calling async



CHAPTER 11 ■ CONCURRENCY

297

How It Works
Many programs benefit from separating their display logic from their business logic (or, in video games, 
separating simulation from rendering) and running them on different CPU cores. Ultimately, these 
tasks can usually be carried out independently of each other as long as you can define a well-structured 
boundary between the systems and develop a method for transferring data from one thread to the other. 
One such approach is to create a double buffer of messages or commands. The business-logic thread can 
add commands to the queue while the display logic thread is reading commands from the queue. Double-
buffering the queue allows you to reduce the number of sync points that exist between the threads in an 
effort to increase throughput on both. The producer thread carries out work and queues a lot of tasks into 
one side of the buffer while the consumer thread is busy working through the last set of tasks to be queued. 
The only time delays occur on either thread is when one is finished and waiting for the other. Listing 11-16 
shows the class definition for a double-buffered message queue.

Listing 11-16. Creating a Double-Buffered Message Queue

#include <future>
#include <iostream>
 
using namespace std;
 
template <typename T>
class MessageQueue
{
private:
    using Queue = vector < T > ;
    using QueueIterator = typename Queue::iterator;
 
    Queue m_A;
    Queue m_B;
 
    Queue* m_Producer{ &m_A };
    Queue* m_Consumer{ &m_B };
 
    QueueIterator m_ConsumerIterator{ m_B.end() };
 
    condition_variable& m_MessageCondition;
    condition_variable m_ConsumptionFinished;
 
    mutex m_MutexProducer;
    mutex m_MutexConsumer;
 
    unsigned int m_SwapCount{ 0 };
 
public:
    MessageQueue(condition_variable& messageCondition)
        : m_MessageCondition{ messageCondition }
    {
 
    }
 



CHAPTER 11 ■ CONCURRENCY

298

    unsigned int GetCount() const
    {
        return m_SwapCount;
    }
 
    void Add(T&& operation)
    {
        unique_lock<mutex> lock{ m_MutexProducer };
        m_Producer->insert(m_Producer->end(), std::move(operation));
    }
 
    void BeginConsumption()
    {
        m_MutexConsumer.lock();
    }
 
    T Consume()
    {
        T operation;
 
        if (m_Consumer->size() > 0)
        {
            operation = *m_ConsumerIterator;
            m_ConsumerIterator = m_Consumer->erase(m_ConsumerIterator);
            assert(m_ConsumerIterator == m_Consumer->begin());
        }
 
        return operation;
    }
 
    void EndConsumption()
    {
        assert(m_Consumer->size() == 0);
        m_MutexConsumer.unlock();
        m_ConsumptionFinished.notify_all();
    }
 
    unsigned int Swap()
    {
        unique_lock<mutex> lockB{ m_MutexConsumer };
        m_ConsumptionFinished.wait(
            lockB,
            [this]()
            {
                return m_Consumer->size() == 0;
            }
        );
 
        unique_lock<mutex> lockA{ m_MutexProducer };
 
        Queue* temp{ m_Producer };



CHAPTER 11 ■ CONCURRENCY

299

        m_Producer = m_Consumer;
        m_Consumer = temp;
 
        m_ConsumerIterator = m_Consumer->begin();
 
        m_MessageCondition.notify_all();
 
        return m_SwapCount++;
    }
};
 

The class template shown in Listing 11-16 is a functional message queue containing a double buffer for 
passing objects from one thread to another. It consists of two vectors, m_A and m_B, that are accessed through 
the pointers m_Producer and m_Consumer. The class, when used properly, allows for nonblocking access 
across the Add and Consume methods. If you were simply adding from one thread and consuming from 
another, you could buffer a lot of work without ever having to synchronize the threads. The only time the 
two threads require synchronization is when the producer thread would like to synchronize work into the 
consumer thread. This is handled in the Swap method. The Swap method uses the m_ConsumptionFinished 
condition_variable to wait for the m_Consumer queue to be empty. The condition_variable here is 
notified by the EndConsumption method. This implementation relies on the consumer thread exhausting the 
queued objects before informing the queue that it has finished. Not doing so would result in a deadlock.

The Add method works by taking an rvalue reference to an object to be moved to the other thread. An 
rvalue reference is used to ensure that the object being sent to the other thread is invalidated in the current 
thread after being moved to the queue. This helps to prevent data races where the producer thread could be 
left a valid reference to data being sent to another thread. Every object added goes at the end of the queue 
so that objects can be consumed in order by the consumer. The Consume method pulls objects from the 
beginning of the queue using a copy operation and then removes the original object from the queue. The 
Swap method simply switches the m_Producer and m_Consumer pointers; it does this under the protection of 
both mutexes and therefore can be confident that the switch is occurring when all producer and consumer 
threads should be able to handle it. Swap also sets m_ConsumerIterator to the correct queue and issues a 
notify to all threads waiting for the swap operation to be complete.

To show this queue in action, the example in Listing 11-17 uses an object to maintain a running total of 
some arithmetic operations. The main function acts as a producer that adds operations to be completed to 
the queue, and a thread is created that receives these operations and carries them out. 

Listing 11-17. A Working MessageQueue Example

#include <cassert>
#include <future>
#include <iostream>
#include <vector>
 
using namespace std;
 
class RunningTotal
{
private:
    int m_Value{ 0 };
    bool m_Finished{ false };
 



CHAPTER 11 ■ CONCURRENCY

300

public:
    RunningTotal& operator+=(int value)
    {
        m_Value += value;
        return *this;
    }
 
    RunningTotal& operator-=(int value)
    {
        m_Value -= value;
        return *this;
    }
 
    RunningTotal& Finish()
    {
        m_Finished = true;
        return *this;
    }
 
    int operator *() const throw(int)
    {
        if (!m_Finished)
        {
            throw m_Value;
        }
        return m_Value;
    }
};
 
template <typename T>
class MessageQueue
{
private:
    using Queue = vector < T > ;
    using QueueIterator = typename Queue::iterator;
 
    Queue m_A;
    Queue m_B;
 
    Queue* m_Producer{ &m_A };
    Queue* m_Consumer{ &m_B };
 
    QueueIterator m_ConsumerIterator{ m_B.end() };
 
    condition_variable& m_MessageCondition;
    condition_variable m_ConsumptionFinished;
 
    mutex m_MutexProducer;
    mutex m_MutexConsumer;
 



CHAPTER 11 ■ CONCURRENCY

301

    unsigned int m_SwapCount{ 0 };
 
public:
    MessageQueue(condition_variable& messageCondition)
        : m_MessageCondition{ messageCondition }
    {
 
    }
 
    unsigned int GetCount() const
    {
        return m_SwapCount;
    }
 
    void Add(T&& operation)
    {
        unique_lock<mutex> lock{ m_MutexProducer };
        m_Producer->insert(m_Producer->end(), std::move(operation));
    }
 
    void BeginConsumption()
    {
        m_MutexConsumer.lock();
    }
 
    T Consume()
    {
        T operation;
 
        if (m_Consumer->size() > 0)
        {
            operation = *m_ConsumerIterator;
            m_ConsumerIterator = m_Consumer->erase(m_ConsumerIterator);
            assert(m_ConsumerIterator == m_Consumer->begin());
        }
 
        return operation;
    }
 
    void EndConsumption()
    {
        assert(m_Consumer->size() == 0);
        m_MutexConsumer.unlock();
        m_ConsumptionFinished.notify_all();
    }
 
    unsigned int Swap()
    {
        unique_lock<mutex> lockB{ m_MutexConsumer };
        m_ConsumptionFinished.wait(
            lockB,



CHAPTER 11 ■ CONCURRENCY

302

            [this]()
            {
                return m_Consumer->size() == 0;
            }
        );
 
        unique_lock<mutex> lockA{ m_MutexProducer };
 
        Queue* temp{ m_Producer };
        m_Producer = m_Consumer;
        m_Consumer = temp;
 
        m_ConsumerIterator = m_Consumer->begin();
 
        m_MessageCondition.notify_all();
 
        return m_SwapCount++;
    }
};
 
using RunningTotalOperation = function < RunningTotal&() > ;
using RunningTotalMessageQueue = MessageQueue < RunningTotalOperation > ;
 
int Task(reference_wrapper<mutex> messageQueueMutex,
        reference_wrapper<condition_variable> messageCondition,
        reference_wrapper<RunningTotalMessageQueue> messageQueueRef)
{
    int result{ 0 };
 
    RunningTotalMessageQueue& messageQueue = messageQueueRef.get();
    unsigned int currentSwapCount{ 0 };
 
    bool finished{ false };
    while (!finished)
    {
        unique_lock<mutex> lock{ messageQueueMutex.get() };
        messageCondition.get().wait(
            lock,
            [&messageQueue, &currentSwapCount]()
            {
                return currentSwapCount != messageQueue.GetCount();
            }
        );
         
        messageQueue.BeginConsumption();
        currentSwapCount = messageQueue.GetCount();
 
        while (RunningTotalOperation operation{ messageQueue.Consume() })
        {
            RunningTotal& runningTotal = operation();
 



CHAPTER 11 ■ CONCURRENCY

303

            try
            {
                result = *runningTotal;
                finished = true;
                break;
            }
            catch (int param)
            {
                // nothing to do, not finished yet!
                cout << "Total not yet finished, current is: " << param << endl;
            }
        }
        messageQueue.EndConsumption();
    }
 
    return result;
}
 
int main(int argc, char* argv[])
{
    RunningTotal runningTotal;
 
    mutex messageQueueMutex;
    condition_variable messageQueueCondition;
    RunningTotalMessageQueue messageQueue(messageQueueCondition);
 
    auto myFuture = async(launch::async,
        Task,
        ref(messageQueueMutex),
        ref(messageQueueCondition),
        ref(messageQueue));
 
    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 3));
    messageQueue.Swap();
 
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));
    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));
    messageQueue.Swap();
 
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));
    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));
    messageQueue.Swap();
 
    messageQueue.Add(bind(&RunningTotal::Finish, &runningTotal));
    messageQueue.Swap();
 
    cout << "The final total is: " << myFuture.get() << endl;
 
    return 0;
}
 



CHAPTER 11 ■ CONCURRENCY

304

This code represents a complex use of many modern C++ language features. Let’s break the source into 
smaller examples to show how individual tasks are executed on a long-running helper thread. Listing 11-18 
covers the RunningTotal class.

Listing 11-18. The RunningTotal Class

class RunningTotal
{
private:
    int m_Value{ 0 };
    bool m_Finished{ false };
 
public:
    RunningTotal& operator+=(int value)
    {
        m_Value += value;
        return *this;
    }
 
    RunningTotal& operator-=(int value)
    {
        m_Value -= value;
        return *this;
    }
 
    RunningTotal& Finish()
    {
        m_Finished = true;
        return *this;
    }
 
    int operator *() const throw(int)
    {
        if (!m_Finished)
        {
            throw m_Value;
        }
        return m_Value;
    }
};
 

The RunningTotal class in Listing 11-18 is a simple object that represents a long-running store of data. 
In a proper program, this class could be an interface to a web server, database, or rendering engine that 
exposes methods to update its state. For the purposes of this example, the class simply wraps an int that 
keeps track of the results of the operations and a bool that determines when the calculations are complete. 
These values are manipulated using an overridden += operator, -= operator, and * operator. There is also a 
Finished method that sets the m_Finished Boolean to true.

The main function is responsible for instantiating the RunningTotal object as well as the message queue 
and the consumer thread. It can be seen in Listing 11-19.



CHAPTER 11 ■ CONCURRENCY

305

Listing 11-19. The main Function

#include <future>
#include <iostream>
 
using namespace std;
 
using RunningTotalOperation = function < RunningTotal&() >;
using RunningTotalMessageQueue = MessageQueue < RunningTotalOperation > ;
 
int main(int argc, char* argv[])
{
    RunningTotal runningTotal;
 
    mutex messageQueueMutex;
    condition_variable messageQueueCondition;
    RunningTotalMessageQueue messageQueue(messageQueueCondition);
 
    auto myFuture = async(launch::async,
        Task,
        ref(messageQueueMutex),
        ref(messageQueueCondition),
        ref(messageQueue));
 
    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 3));
    messageQueue.Swap();
 
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));
    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));
    messageQueue.Swap();
 
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));
    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));
    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));
    messageQueue.Swap();
 
    messageQueue.Add(bind(&RunningTotal::Finish, &runningTotal));
    messageQueue.Swap();
 
    cout << "The final total is: " << myFuture.get() << endl;
 
    return 0;
}
 

The first piece of important code in Listing 11-19 is the type aliases before main. These are used to create 
types that represent the message queue you’ll be using and the type of objects the message queue contains. 
In this case, I have created a type that you ca n use to carry out operations on the RunningTotal class. This 
type alias is created using the C++ function object, which allows you to create a representation of a function 
to be called later. This type requires that you specify the signature type of the function in the template—and 
you may be surprised to see that the signature is described without parameters. This means the functors 
stored in the queue won’t have parameters passed to them directly. This would normally cause issues for 



CHAPTER 11 ■ CONCURRENCY

306

operations such as += and -= that need parameters; but the bind function comes to the rescue. You can see 
several uses of bind in the main function. All of these examples of bind are used to bind a method pointer 
to a method instance of that type. The second parameter passed to bind when using a method pointer 
should always be the instance of the object on which the method will be called. Any subsequent parameters 
are automatically passed to the function when the functor is executed. This automatic passing of bound 
parameters is why you don’t need to specify any parameter types in the type alias and why you can use a 
single queue to represent functions that have different signatures.

main creates a thread using the async function and queues several operations to be carried out on the 
thread along with multiple swaps. The last piece of the example is the Task function, which is executed on 
the second thread; see Listing 11-20.

Listing 11-20. The Task Function

#include <future>
#include <iostream>
 
using namespace std;
 
int Task(reference_wrapper<mutex> messageQueueMutex,
        reference_wrapper<condition_variable> messageCondition,
        reference_wrapper<RunningTotalMessageQueue> messageQueueRef)
{
    int result{ 0 };
 
    RunningTotalMessageQueue& messageQueue = messageQueueRef.get();
    unsigned int currentSwapCount{ 0 };
 
    bool finished{ false };
    while (!finished)
    {
        unique_lock<mutex> lock{ messageQueueMutex.get() };
        messageCondition.get().wait(
            lock,
            [&messageQueue, &currentSwapCount]()
            {
                return currentSwapCount != messageQueue.GetCount();
            }
        );
         
        messageQueue.BeginConsumption();
        currentSwapCount = messageQueue.GetCount();
 
        while (RunningTotalOperation operation{ messageQueue.Consume() })
        {
            RunningTotal& runningTotal = operation();
 
            try
            {
                result = *runningTotal;
                finished = true;
                break;
            }



CHAPTER 11 ■ CONCURRENCY

307

            catch (int param)
            {
                // nothing to do, not finished yet!
                cout << "Total not yet finished, current is: " << param << endl;
            }
        }
        messageQueue.EndConsumption();
    }
 
    return result;
}
 

The Task function loops until the finished bool has been set to true. It waits for the 
messageCondition condition_variable to be signaled before continuing work, and it uses the lambda to 
ensure that a swap has actually occurred in case the thread was awakened by the operating system rather 
than by a notify call.

Once the thread has been kicked and there is work to be carried out, it calls the BeginConsumption method 
on the queue. This has the effect of locking the queue’s Swap method until all the current jobs in the thread 
have been completed. The currentSwapCount variable is updated to ensure that the condition_variable 
can guarantee safety the next time the loop is entered. A second while loop is responsible for pulling each 
of the functors from the queue until the queue is empty. This is where the bound function objects created by 
main are executed. The thread itself doesn’t know the substance of the work it’s carrying out; it simply responds 
to the requests that have been queued in the main function.

The * operator is used after every operation to test whether the Finished command has been sent. 
The RunningTotal::operator* method will throw an int exception containing the current value stored if 
the Finished method hasn’t been called. You can see how this is used in the Task function with the try...
catch block. The result variable, finished bool, and break statements are executed only in the event that 
the operator* returns a value rather than throwing the value. The current total is printed to the console each 
time an operation completes that doesn’t mark the operations as finished. You can see the result of this code 
in Figure 11-10.

Figure 11-10. The output showing a working message queue in actions



309

CHAPTER 12

Networking

Communicating over the Internet is becoming an increasingly integral part of many modern computer 
programs. It’s hard to find any programs that don’t connect to another instance of the same program or 
to a web server that provides essential functionality to some part of the program or an app. This creates 
opportunities for developers to specialize in the field of network programming. You can take several different 
approaches when writing connected programs, and using a high-level library is a valid technique; however, 
this chapter looks at the Berkeley Sockets library that can be used on OS X, Linux, and Windows.

Berkeley Sockets first appeared in 1983 in the Unix operating system. That OS became unencumbered 
by copyright issues in the late 1980s, allowing the Berkeley Sockets API to become the standard 
implementation used on most OSs today. Even though Windows doesn’t support Berkeley directly, its 
network API is almost entirely the same as the Berkeley standard API.

This chapter covers how to create and use sockets to produce programs that can communicate with 
each other over a network such as the Internet. Recipes 14-1, 14-2, and 14-3 cover the same material for 
each of the major OSs in use today. You should read the Recipe relevant to the system you’re using for 
development then move on to Recipe 12-4.

12-1. Setting Up a Berkeley Sockets Application on OS X

Problem
You would like to create a network socket program that can be used on OS X.

Solution
OS X supplies the Berkeley Sockets API as part of the OS and can be used without having to resort to external 
libraries.

How It Works
Apple provides the Xcode IDE, which you can use to build OS X applications from an Apple computer. Xcode 
is freely available from the App Store. Once installed, you can use Xcode to create programs to be run on 
computers of your choosing. This recipe creates a command-line program that connects to the Internet and 
opens a socket to a server.



CHAPTER 12 ■ NETWORKING

310

You’re asked to select the type of application you wish to create. Select the Command Line Tool option 
under the OS X Application category; Figure 12-2 shows this window.

Figure 12-1. The Xcode Welcome screen with the Create a New Xcode Project option

To begin, you have to create a valid project for your application. Open Xcode, and select the Create a 
New Xcode Project option shown in Figure 12-1.



CHAPTER 12 ■ NETWORKING

311

Next, you’re asked to nominate a folder in which to store your projects files. After you do, the main 
Xcode window opens, and you can select your source files from the Project View on the left. Replace the 
code in the new CPP file with the code from Listing 12-1 to create an application that opens a socket to the 
Google HTTP web server.

Listing 12-1. Opening a Berkeley Socket

#include <iostream>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
 
using SOCKET = int;
 
using namespace std;
 
int main(int argc, const char * argv[])
{
    addrinfo hints{};
    hints.ai_family = AF_UNSPEC;
    hints.ai_socktype = SOCK_STREAM;
     

Figure 12-2. The OS X Application Command Line Tool option



CHAPTER 12 ■ NETWORKING

312

    addrinfo *servinfo{};
    getaddrinfo("www.google.com", "80", &hints, &servinfo);
     
    SOCKET sockfd{
        socket(servinfo->ai_family, servinfo->ai_socktype, servinfo->ai_protocol)
    };
 
    int connectionResult{ connect(sockfd, servinfo->ai_addr, servinfo->ai_addrlen) };
    if (connectionResult == -1)
    {
        cout << "Connection failed!" << endl;
    }
    else
    {
        cout << "Connection successful!" << endl;
    }
     
    freeaddrinfo(servinfo);
     
    return 0;
}
 

The code in Listing 12-1 requires a short primer on how the Internet works in order for you to fully 
understand what is happening. Before you can connect to a server, you need to know the address at which 
it’s located. This is best found using the domain name service (DNS). DNS works by keeping a cache of the 
server addresses for a given host name. In this example, you’re asking DNS for the address associated with 
www.google.com. If you’re creating a program to run on your own network, you can specify the IP addresses 
of the servers manually, but this usually isn’t possible for programs that access information using the 
Internet. Servers can be moved, and IP addresses can be changed or reused for different systems at different 
times. The getaddrinfo function asks DNS for the address associated with www.google.com on port 80.

Server addresses for specific services usually consist of two parts: the IP address of the computer to 
connect to and the port of the specific service on that server that you wish to communicate with. The World 
Wide Web communicates using the HTTP protocol, which is commonly configured to serve data using  
port 80. You can see in Listing 12-1 that this is the port with which you try to establish a connection on the 
remote computer.

The getaddrinfo function takes the web address, the port, and two addrinfo structs as parameters. 
These first of these structs provides the DNS service with some hints as to the type of connection you 
want to establish with the remote computer. The two most important at this point are the ai_family and 
ai_socktype fields.

The ai_family field specifies the type of address you would like to retrieve for your program. This 
allows you to specify whether you want an IPv4, IPv6, NetBIOS, Infrared, or Bluetooth address. The option 
supplied in Listing 12-1 is unspecified, which allows the getaddrinfo function to return all the valid IP 
addresses for the requested web address. These valid IP addresses are represented by the same addrinfo 
struct and are passed back to the program through the pointer supplied to getaddrinfo’s fourth parameter.

The ai_socktype field lets you specify the type of transmission mechanism to be used with the socket in 
question. The SOCK_STREAM option in Listing 12-1 creates a socket that uses TCP/IP as the transport mechanism. 
This type of socket allows you to send packets of information that are guaranteed to arrive in order at the 
destination. The only other type of transmission mechanism used in this chapter is the SOCK_DGRAM type. This 
transport mechanism doesn’t guarantee that packets will arrive or that they will arrive in the order expected; 
however, they don’t have the same overheads that come with the TCP/IP mechanism and therefore can result in 
packets being sent with much lower latency between computers.

http://www.google.com/
http://www.google.com/
http://www.google.com/


CHAPTER 12 ■ NETWORKING

313

The servinfo returned by the getaddrinfo function can be used to create a socket. A socket file 
descriptor is obtained from the socket function, which is passed the info from the servinfo structure. 
The servinfo structure could be a linked list in this instance, because Google supports both the IPv4 and 
IPv6 address formats. You could write code here that chooses the address to use and acts appropriately. 
The ai_next field stores a pointer to the next element in the list for as long as the list has more elements. 
The ai_family, ai_socktype, and ai_protocol variables are all passed into the socket function to create 
a valid socket to use. You can call the connect function once you have a valid socket. The connect function 
takes the socket ID, the ai_addr field from the servinfo object containing the address, and ai_addrlen to 
determine the length of the address. If the connection wasn’t obtained successfully, you receive a return 
value of -1 from connect. Listing 12-1 demonstrates this by printing whether the connection was successful.

12-2. Setting Up a Berkeley Sockets Application in Eclipse 
on Ubuntu

Problem
You would like to create a network socket program that can be used on Ubuntu using Eclipse.

Solution
Ubuntu supplies the Berkeley Sockets API as part of the OS and can be used without having to resort to 
external libraries.

How It Works
The Eclipse IDE can be used to build applications on a computer running Linux. Eclipse is freely available 
from the Ubuntu Software Center. Once installed, you can use Eclipse to create programs to be run on 
computers of your choosing. This recipe creates a command-line program that connects to the Internet and 
opens a socket to a server.

To begin, you have to create a valid project for your application. Open Eclipse, and select the Project ➤ 
New option from the menu bar. The New Project Wizard opens, as shown in Figure 12-3.



CHAPTER 12 ■ NETWORKING

314

The New Project Wizard allows you to select C++ Project as an option. Then, click Next, and you’re 
presented with the C++ Project settings window shown in Figure 12-4.

Figure 12-3. The Eclipse New Project Wizard



CHAPTER 12 ■ NETWORKING

315

In this window, you can name your project and decide which folder it should be created in. Under 
Project Type, select Executable ➤ Hello World C++ Project. Doing so creates a project that’s configured to be 
built as an executable and that contains a source file for adding your own code.

The sample code in this chapter uses features from the C++11 language specification. A default Eclipse 
project doesn’t have this enabled. You can turn it on by right-clicking your project and selecting Properties. 
You should see the Settings window shown in Figure 12-5, with categories on the left side. To enable C++11 
support, select Settings under C/C++ Build, adding –std=c++11 to the All Options field, and click OK.

Figure 12-4. The Eclipse C++ Project settings window



CHAPTER 12 ■ NETWORKING

316

Replace the code in the new CPP file with the code from Listing 12-2 to create an application that opens 
a socket to the Google HTTP web server.

Note ■  The code and description that follow are exactly the same as in Recipe 12-1. If you’ve already read 

this material, you may wish to skip to Recipe 12-4. If you skipped Recipe 12-1 because OS X isn’t relevant to 

you, then read on.

Listing 12-2. Opening a Berkeley Socket

#include <iostream>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
 
using SOCKET = int;
 
using namespace std;
 
int main(int argc, const char * argv[])
{
    addrinfo hints{};
    hints.ai_family = AF_UNSPEC;
    hints.ai_socktype = SOCK_STREAM;
     

Figure 12-5. Adding C++11 support to your Eclipse project



CHAPTER 12 ■ NETWORKING

317

    addrinfo *servinfo{};
    getaddrinfo("www.google.com", "80", &hints, &servinfo);
     
    SOCKET sockfd{
        socket(servinfo->ai_family, servinfo->ai_socktype, servinfo->ai_protocol)
    };
 
    int connectionResult{ connect(sockfd, servinfo->ai_addr, servinfo->ai_addrlen) };
    if (connectionResult == -1)
    {
        cout << "Connection failed!" << endl;
    }
    else
    {
        cout << "Connection successful!" << endl;
    }
     
    freeaddrinfo(servinfo);
     
    return 0;
}
 

The code in Listing 12-2 requires a short primer on how the Internet works in order for you to fully 
understand what is happening. Before you can connect to a server, you need to know the address at which 
it’s located. This is best found using the domain name service (DNS). DNS works by keeping a cache of the 
server addresses for a given host name. In this example, you’re asking DNS for the address associated with 
www.google.com. If you’re creating a program to run on your own network, you can specify the IP addresses 
of the servers manually, but this usually isn’t possible for programs that access information using the 
Internet. Servers can be moved, and IP addresses can be changed or reused for different systems at different 
times. The getaddrinfo function asks DNS for the address associated with www.google.com on port 80.

Server addresses for specific services usually consist of two parts: the IP address of the computer to 
connect to and the port of the specific service on that server that you wish to communicate with. The World 
Wide Web communicates using the HTTP protocol, which is commonly configured to serve data using port 
80. You can see in Listing 12-2 that this is the port with which you try to establish a connection on the remote 
computer.

The getaddrinfo function takes the web address, the port, and two addrinfo structs as parameters. 
These first of these structs provides the DNS service with some hints as to the type of connection you 
want to establish with the remote computer. The two most important at this point are the ai_family and 
ai_socktype fields.

The ai_family field specifies the type of address you would like to retrieve for your program. This 
allows you to specify whether you want an IPv4, IPv6, NetBIOS, Infrared, or Bluetooth address. The option 
supplied in Listing 12-2 is unspecified, which allows the getaddrinfo function to return all the valid IP 
addresses for the requested web address. These valid IP addresses are represented by the same addrinfo 
struct and are passed back to the program through the pointer supplied to getaddrinfo’s fourth parameter.

The ai_socktype field lets you specify the type of transmission mechanism to be used with the socket in 
question. The SOCK_STREAM option in Listing 12-2 creates a socket that uses TCP/IP as the transport mechanism. 
This type of socket allows you to send packets of information that are guaranteed to arrive in order at the 
destination. The only other type of transmission mechanism used in this chapter is the SOCK_DGRAM type. This 
transport mechanism doesn’t guarantee that packets will arrive or that they will arrive in the order expected; 
however, they don’t have the same overheads that come with the TCP/IP mechanism and therefore can result in 
packets being sent with much lower latency between computers.

http://www.google.com/
http://www.google.com/
http://www.google.com/


CHAPTER 12 ■ NETWORKING

318

The servinfo returned by the getaddrinfo function can be used to create a socket. A socket file 
descriptor is obtained from the socket function, which is passed the info from the servinfo structure. 
The servinfo structure could be a linked list in this instance, because Google supports both the IPv4 and 
IPv6 address formats. You could write code here that chooses the address to use and acts appropriately. 
The ai_next field stores a pointer to the next element in the list for as long as the list has more elements. 
The ai_family, ai_socktype, and ai_protocol variables are all passed into the socket function to create 
a valid socket to use. You can call the connect function once you have a valid socket. The connect function 
takes the socket ID, the ai_addr field from the servinfo object containing the address, and ai_addrlen  
to determine the length of the address. If the connection wasn’t obtained successfully, you receive  
a return value of -1 from connect. Listing 12-2 demonstrates this by printing whether the connection  
was successful.

12-3. Setting Up a Winsock 2 Application in Visual Studio  
on Windows

Problem
You would like to create a network socket program that can be used on Windows machines.

Solution
Microsoft supplies the Winsock library, which enable socket-based communication between computers.

How It Works
The Windows OS doesn’t come with a native Berkeley Sockets implementation like OS X or Ubuntu. Instead, 
Microsoft supplies the Winsock library. This library is fortunately very similar to the Berkeley Sockets library, 
to the extent that most of the code is interchangeable between the three platforms. You can create a new 
C++ application that uses Winsock by opening Visual Studio and selecting the File ➤ New ➤ Project option. 
Doing so opens the New Project Wizard shown in Figure 12-6.



CHAPTER 12 ■ NETWORKING

319

You want to create a Win32 Console Application to run the sample code from this chapter. Select this 
type of application, enter a name, and choose a folder in which to store the data; then click OK.

You’re taken to the Win32 Application Wizard. Click Next to go to the dialog shown in Figure 12-7.

Figure 12-7. The Win32 Application Wizard

Figure 12-6. The Visual Studio New Project Wizard



CHAPTER 12 ■ NETWORKING

320

Deselect the Precompiled Header and Security Development Lifecycle (SDL) Checks options, and click 
Finish. When you do, you’re presented with a working project. The project doesn’t support sockets, though, 
because Windows requires that you link against a library to provide socket support. You can do this by  
right-clicking the project from the Solution Explorer window and selecting Properties. Specify the libraries  
to be linked against in the Configuration Properties ➤ Linker ➤ Input section. Figure 12-8 shows this 
window with specific option selected.

Figure 12-8. The Visual Studio linker input options

You want to add a new library to the Additional Dependencies section. Select this option, and click the 
down arrow to open the dialog shown in Figure 12-9.



CHAPTER 12 ■ NETWORKING

321

The Winsock API is provided by the Ws2_32.lib static library. Enter this value in the text box, and click 
OK. This allows you to use the Winsock 2 API in your program without issue.

Replace the code in the new CPP file with the code from Listing 12-3 to create an application that opens 
a socket to the Google HTTP web server.

Note ■  The code and description that follow are mostly the same as in Recipe 12-1. However, some parts 

are unique to Windows. If you’ve already read this material, you may wish to cover the Windows-unique aspects 

and then skip to Recipe 12-4. If you skipped Recipe 12-1 and Recipe 12-2, read on.

Listing 12-3. Opening a Winsock Socket

#include <iostream>
#include <winsock2.h>
#include <WS2tcpip.h>
 
using namespace std;
 
int main(int argc, char* argv[])
{
    WSADATA wsaData;
    if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
    {
        return 1;
    }
 

Figure 12-9. The Additional Dependencies dialog



CHAPTER 12 ■ NETWORKING

322

    addrinfo hints{};
    hints.ai_family = AF_UNSPEC;     // don't care IPv4 or IPv6
    hints.ai_socktype = SOCK_STREAM; // TCP stream sockets
 
    // get ready to connect
    addrinfo* servinfo{};  // will point to the results
    getaddrinfo("www.google.com", "80", &hints, &servinfo);
 
    SOCKET sockfd{ socket(servinfo->ai_family, servinfo->ai_socktype, servinfo->ai_protocol) };
    int connectionResult{ connect(sockfd, servinfo->ai_addr, servinfo->ai_addrlen) };
    if (connectionResult == -1)
    {
        cout << "Connection failed!" << endl;
    }
    else
    {
        cout << "Connection successful!" << endl;
    }
 
    freeaddrinfo(servinfo);
 
    WSACleanup();
 
    return 0;
}
 

The code sections in bold in Listing 12-3 are unique to the Windows socket library and aren’t 
transferable to the Unix and OS X implementations of Berkeley Sockets. Windows requires that your 
program start and shut down the Winsock library. This is achieved using the WSAStartup and WSACleanup 
functions. Another subtle difference is that the Winsock API specifies the SOCKET type to be an unsigned 
int. The Berkeley implementations found in OS X and Ubuntu both return a standard int from the socket 
function. The code in Listing 12-1 and Listing 12-2 uses a type alias to specify the SOCKET type to make the 
code appear more portable; however, the types still differ between the platforms.

This code requires a short primer on how the Internet works in order for you to fully understand what 
is happening. Before you can connect to a server, you need to know the address at which it’s located. This 
is best found using the domain name service (DNS). DNS works by keeping a cache of the server addresses 
for a given host name. In this example, you’re asking DNS for the address associated with www.google.com. 
If you’re creating a program to run on your own network, you can specify the IP addresses of the servers 
manually, but this usually isn’t possible for programs that access information using the Internet. Servers 
can be moved, and IP addresses can be changed or reused for different systems at different times. The 
getaddrinfo function asks DNS for the address associated with www.google.com on port 80.

Server addresses for specific services usually consist of two parts: the IP address of the computer to 
connect to and the port of the specific service on that server that you wish to communicate with. The  
World Wide Web communicates using the HTTP protocol, which is commonly configured to serve data using 
port 80. You can see in Listing 12-3 that this is the port with which you try to establish a connection on the  
remote computer.

The getaddrinfo function takes the web address, the port, and two addrinfo structs as parameters. 
These first of these structs provides the DNS service with some hints as to the type of connection you 
want to establish with the remote computer. The two most important at this point are the ai_family and 
ai_socktype fields.

http://www.google.com/
http://www.google.com/
http://www.google.com/


CHAPTER 12 ■ NETWORKING

323

The ai_family field specifies the type of address you would like to retrieve for your program. This 
allows you to specify whether you want an IPv4, IPv6, NetBIOS, Infrared, or Bluetooth address. The option 
supplied in Listing 12-3 is unspecified, which allows the getaddrinfo function to return all the valid IP 
addresses for the requested web address. These valid IP addresses are represented by the same addrinfo 
struct and are passed back to the program through the pointer supplied to getaddrinfo’s fourth parameter.

The ai_socktype field lets you specify the type of transmission mechanism to be used with the socket in 
question. The SOCK_STREAM option in Listing 12-3 creates a socket that uses TCP/IP as the transport mechanism. 
This type of socket allows you to send packets of information that are guaranteed to arrive in order at the 
destination. The only other type of transmission mechanism used in this chapter is the SOCK_DGRAM type. This 
transport mechanism doesn’t guarantee that packets will arrive or that they will arrive in the order expected; 
however, they don’t have the same overheads that come with the TCP/IP mechanism and therefore can result in 
packets being sent with much lower latency between computers.

The servinfo returned by the getaddrinfo function can be used to create a socket. A socket file 
descriptor is obtained from the socket function, which is passed the info from the servinfo structure. 
The servinfo structure could be a linked list in this instance, because Google supports both the IPv4 and 
IPv6 address formats. You could write code here that chooses the address to use and acts appropriately. 
The ai_next field stores a pointer to the next element in the list for as long as the list has more elements. 
The ai_family, ai_socktype, and ai_protocol variables are all passed into the socket function to create 
a valid socket to use. You can call the connect function once you have a valid socket. The connect function 
takes the socket ID, the ai_addr field from the servinfo object containing the address, and ai_addrlen to 
determine the length of the address. If the connection wasn’t obtained successfully, you receive a return 
value of -1 from connect. Listing 12-3 demonstrates this by printing whether the connection was successful.

12-4. Creating a Socket Connection between Two Programs

Problem
You would like to write a network client program and a server program that can communicate across a 
network.

Solution
You can use the Berkeley Sockets API to send and receive data across a socket.

How It Works
Berkeley sockets are designed to send and receive information across a network. The API provides send and 
recv functions to achieve this goal. The difficulty in getting this to work is that you have to ensure that your 
sockets are configured properly for data transfer. The operations required to receive data are very different 
than the operations required to send data when setting up your sockets. This recipe also creates code that 
can run on multiple platforms and compiles using Microsoft Visual Studio, using Xcode, or on a Linux 
machine using Clang as the compiler.

Note ■  The Socket class won’t compile when using GCC because that compiler doesn’t yet support move 

constructors for the stringstream class. You can alter the sample code to prevent the need to call move with 

stringstream if you’re using GCC.



CHAPTER 12 ■ NETWORKING

324

The first class to look at starts and stops Winsock when the program is built to run on Windows 
machines. This class shouldn’t have any effect when you’re building and running on OS X or Linux 
computers. Listing 12-4 shows how this can be achieved.

Listing 12-4. Wrapping Winsock

#include <iostream>
 
using namespace std;
 
#ifdef _MSC_VER
 
#pragma comment(lib, "Ws2_32.lib")
 
#include <WinSock2.h>
#include <WS2tcpip.h>
 
#define UsingWinsock 1
 
using ssize_t = SSIZE_T;
 
#else
 
#define UsingWinsock 0
 
#endif
 
class WinsockWrapper
{
public:
    WinsockWrapper()
    {
#if UsingWinsock
        WSADATA wsaData;
        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        {
            exit(1);
        }
 
#ifndef NDEBUG
        cout << "Winsock started!" << endl;
#endif
#endif
    }
 
    ~WinsockWrapper()
    {
#if UsingWinsock
        WSACleanup();
 



CHAPTER 12 ■ NETWORKING

325

#ifndef NDEBUG
        cout << "Winsock shut down!" << endl;
#endif
#endif
    }
};
 
int main(int argc, char* argv[])
{
    WinsockWrapper myWinsockWrapper;
 
    return 0;
}
 

The code in Listing 12-4 detects the presence of Microsoft Visual Studio using the preprocessor. Visual 
Studio defines the symbol _MSC_VER when building. You can use this when building a Windows program 
with Visual Studio to include Windows-specific files as I have done here. The Winsock 2 library is included 
using a pragma in this program only when Visual Studio is being used to build; the necessary Winsock 
header files are also included. A define is set up that’s used specifically for this program. When the code is 
building in Visual Studio, the UsingWinsock macro is defined as 1; when the code isn’t building using Visual 
Studio, it’s set to 0. Windows builds also require that you create a type alias to map SSIZE_T to ssize_t, 
because this type uses the lowercase spelling when not building on Windows computers.

The WinsockWrapper class detects the value of UsingWinsock in its constructor and destructor. If this 
value is 1, then the functions to start and stop the Winsock API are compiled in. This code isn’t compiled in 
when not building with Visual Studio; therefore it’s safe to include in this manner.

The main function creates a WinsockWrapper object on its first line. This causes the constructor to be 
called and Winsock to be initialized on Windows machines; it has no effect on non-Windows builds. The 
Winsock API is also shut down when this object goes out of scope, because the destructor is called. You now 
have a convenient method for starting and stopping Winsock in a manner that is portable across multiple 
platforms.

The Socket class is integral to communicating from one program to another. It’s responsible for 
providing an object-oriented wrapper for the C-based Berkeley Sockets API. The socket itself is represented 
by a descriptor that is essentially an int. A method creates a class that associates the data needed for 
creating Berkeley sockets with the code necessary to work with sockets. The entire source for the Socket 
class is shown in Listing 12-5.

Listing 12-5. Creating an Object-Oriented Socket Class

class Socket
{
private:
#if !UsingWinsock
    using SOCKET = int;
#endif
 
    addrinfo* m_ServerInfo{ nullptr };
    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };
    sockaddr_storage m_AcceptedSocketStorage{};
    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };
 



CHAPTER 12 ■ NETWORKING

326

    void CreateSocket(string& webAddress, string& port, addrinfo& hints)
    {
        getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_ServerInfo);
 
        m_Socket = socket(
            m_ServerInfo->ai_family,
            m_ServerInfo->ai_socktype,
            m_ServerInfo->ai_protocol);
    }
 
    Socket(int newSocket, sockaddr_storage&& socketStorage)
        : m_Socket{ newSocket }
        , m_AcceptedSocketStorage(move(socketStorage))
    {
 
    }
 
public:
    Socket(string& port)
    {
#ifndef NDEBUG
        stringstream portStream{ port };
        int portValue{};
        portStream >> portValue;
         assert(portValue > 1024); // Ports under 1024 are reserved for certain  

applications and protocols!
#endif
 
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
        hints.ai_flags = AI_PASSIVE;
 
        string address{ "" };
        CreateSocket(address, port, hints);
    }
 
    Socket(string& webAddress, string& port)
    {
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
 
        CreateSocket(webAddress, port, hints);
    }
 
    Socket(string& webAddress, string& port, addrinfo& hints)
    {
        CreateSocket(webAddress, port, hints);
    }
 



CHAPTER 12 ■ NETWORKING

327

    ~Socket()
    {
        Close();
    }
 
    bool IsValid()
    {
        return m_Socket != -1;
    }
 
    int Connect()
    {
        int connectionResult{
            connect(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo->ai_addrlen)
        };
 
#ifndef NDEBUG
        if (connectionResult == -1)
        {
            cout << "Connection failed!" << endl;
        }
        else
        {
            cout << "Connection successful!" << endl;
        }
#endif
 
        return connectionResult;
    }
 
    int Bind()
    {
        int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo->ai_addrlen) };
 
#ifndef NDEBUG
        if (bindResult == -1)
        {
            cout << "Bind Failed!" << endl;
        }
        else
        {
            cout << "Bind Successful" << endl;
        }
#endif
 
        return bindResult;
    }
 



CHAPTER 12 ■ NETWORKING

328

    int Listen(int queueSize)
    {
        int listenResult{ listen(m_Socket, queueSize) };
 
#ifndef NDEBUG
        if (listenResult == -1)
        {
            cout << "Listen Failed" << endl;
        }
        else
        {
            cout << "Listen Succeeded" << endl;
        }
#endif
 
        return listenResult;
    }
 
    Socket Accept()
    {
        SOCKET newSocket{
            accept(m_Socket,
            reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),
            &m_AcceptedSocketSize)
        };
 
#ifndef NDEBUG
        if (newSocket == -1)
        {
            cout << "Accept Failed" << endl;
        }
        else
        {
            cout << "Accept Succeeded" << endl;
        }
#endif
 
        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);
        return Socket(newSocket, move(m_AcceptedSocketStorage));
    }
 
    void Close()
    {
#ifdef _MSC_VER
        closesocket(m_Socket);
#else
        close(m_Socket);
#endif
 
        m_Socket = -1;
        freeaddrinfo(m_ServerInfo);
    }
 



CHAPTER 12 ■ NETWORKING

329

    ssize_t Send(stringstream data)
    {
        string packetData{ data.str() };
        ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.length(), 0) };
 
#ifndef NDEBUG
        if (sendResult == -1)
        {
            cout << "Send Failed" << endl;
        }
        else
        {
            cout << "Send Succeeded" << endl;
        }
#endif
 
        return sendResult;
    }
 
    stringstream Receive()
    {
        const int size{ 1024 };
        char dataReceived[size];
 
        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };
 
#ifndef NDEBUG
        if (receiveResult == -1)
        {
            cout << "Receive Failed" << endl;
        }
        else if (receiveResult == 0)
        {
            cout << "Receive Detected Closed Connection!" << endl;
            Close();
        }
        else
        {
            dataReceived[receiveResult] = '\0';
            cout << "Receive Succeeded" << endl;
        }
#endif
        stringstream data{ dataReceived };
        return move(data);
    }
};
 

The Socket class comes with three different constructors, allowing you to create sockets for different 
purposes. The first public constructor only takes a port as a parameter. This method of construction is suitable 
for Socket objects used to listen for incoming connections. The hints addrinfo struct in the constructor 
sets the ai_flags parameter to the AI_PASSIVE value and passes an empty string for the address. This 
tells the getaddrinfo function to fill in the local computer’s IP address as the address to use for the socket. 



CHAPTER 12 ■ NETWORKING

330

Using the local address this way lets you open sockets for listening on a computer—this is an essential task 
when you wish to receive data in a program from an external source.

The second public constructor takes an address and a port. This lets you create a Socket that 
automatically uses IPv6 or IPv4 and TCP/IP to create a socket that can be used for sending data. Both 
the first and second constructors are for convenience—both could be deleted in favor of the third public 
constructor, which takes an address, a port, and an addrinfo struct and allows the user to configure a 
Socket as they wish.

The final constructor is a private constructor. This type of constructor is used when an external program 
connects to a socket listening for connections. You can see how this is used in the Accept method.

The IsValid method determines whether the Socket has been initialized with a proper descriptor. The 
socket function in CreateSocket returns -1 in the result of a failure; the default value of m_Socket is also -1.

The Connect method is used when you wish to establish a connection to a remote computer and you 
aren’t interested in receiving connections from other programs. It’s primarily used on the client side of a 
client-server relationship; however, it’s not inconceivable that you could write peer-to-peer programs that 
use different sockets for listening and connecting to others. Connect calls the Berkeley connect function but 
is able to use the m_Socket and m_ServerInfo objects from the object rather than your having to pass them 
manually from an external location.

The Bind method is used when you wish to receive incoming connections. The Berkeley bind function 
is responsible for negotiating for access to the port you wish to use with the OS. The OS is responsible for 
sending and receiving the network traffic, and ports are used for the computer to know which program is 
waiting for data on which port. The scope operator on the bind function is necessary with this code when 
the using namespace std; statement is present. This tells the compiler to use the bind method from the 
global namespace and not from the std namespace. The bind method from the std namespace is used to 
create functors and has nothing to do with sockets.

The Listen method comes after the call to Bind and tells the socket to begin queuing connections 
from remote machines. The queueSize parameter specifies the size of the queue; once the queue is full, 
connections will be dropped from by OS. The number of connections that your OS can support will vary. 
Desktop OSs generally support many fewer queued connections than server-specific OSs. A number such as 
5 is fine for most uses.

The Accept method pulls connections from the queue created when Listen is called. Accept calls 
the Berkeley accept function, which takes the m_Socket variable as its first parameter. The second 
and third parameters are the m_AcceptedSocketStorage and m_AcceptedSocketSize variables. The 
m_AcceptedSocketStorage member variable is of type sockaddr_storage and not the sockaddr type that 
the accept method expects. The sockaddr_storage type is large enough to handle both IPv4 and IPv6 
addresses, but the accept method still expects a pointer to the sockaddr type. This isn’t ideal; however, it can 
be addressed using a reinterpret_cast, because accept also takes into account the size of the object being 
passed. The size is altered if the object returned is smaller than the size being passed in; therefore, the size is 
reset before the function returns. The m_AcceptedSocketStorage object is moved into the new Socket object 
being returned from the function to ensure that the copy in the initial Socket is invalidated.

The Close method is responsible for shutting down the Socket when it’s no longer needed. The closesocket 
function is called on Windows, and the close function is used on non-Windows platforms. The freeaddrinfo 
object is also released in the destructor for the class.

The next method is Send. Unsurprisingly, this method sends data to the machine on the other end of the 
connection. Send is set up to send a stringstream object for now, because properly serializing binary data is 
a little outside the scope of this book. You can see that the send Berkeley function is called with the m_Socket 
descriptor along with the string data and size pulled from the stringstream object passed in.

The Receive method is responsible for bringing data in from the remote connection. This call blocks until 
data is ready to be read from the socket connection. The Receive function can return three types of values: -1 
when an error has been encountered, 0 when the connection has been closed by the remote computer, or a 
positive value indicating the number of bytes received. The received data is read into a char array, which is in 
turn passed into a stringstream object to be returned from the function using a move constructor.



CHAPTER 12 ■ NETWORKING

331

Now that you have a fully functioning Socket class, you can create programs to send and receive data. 
The code in Listing 12-6 can be used to create a program that waits for a remote connection and a single 
received message.

Listing 12-6. Creating a Program That Can Receive Data

#include <cassert>
#include <iostream>
#include <type_traits>
#include <vector>
 
#ifndef NDEBUG
#include <sstream>
#endif
 
using namespace std;
 
#ifdef _MSC_VER
 
#pragma comment(lib, "Ws2_32.lib")
 
#include <WinSock2.h>
#include <WS2tcpip.h>
 
#define UsingWinsock 1
 
using ssize_t = SSIZE_T;
 
#else
 
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
 
#define UsingWinsock 0
 
#endif
 
class WinsockWrapper
{
public:
    WinsockWrapper()
    {
#if UsingWinsock
        WSADATA wsaData;
        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        {
            exit(1);
        }
 
        cout << "Winsock started!" << endl;
#endif
    }
 



CHAPTER 12 ■ NETWORKING

332

    ~WinsockWrapper()
    {
#if UsingWinsock
        WSACleanup();
 
        cout << "Winsock shut down!" << endl;
#endif
    }
};
 
class Socket
{
private:
#if !UsingWinsock
    using SOCKET = int;
#endif
 
    addrinfo* m_ServerInfo{ nullptr };
    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };
    sockaddr_storage m_AcceptedSocketStorage{};
    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };
 
    void CreateSocket(string& webAddress, string& port, addrinfo& hints)
    {
        getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_ServerInfo);
 
        m_Socket = socket(
            m_ServerInfo->ai_family,
            m_ServerInfo->ai_socktype,
            m_ServerInfo->ai_protocol);
    }
 
    Socket(int newSocket, sockaddr_storage&& socketStorage)
        : m_Socket{ newSocket }
        , m_AcceptedSocketStorage(move(socketStorage))
    {
 
    }
 
public:
    Socket(string& port)
    {
#ifndef NDEBUG
        stringstream portStream{ port };
        int portValue{};
        portStream >> portValue;
        assert(portValue > 1024);
        // Ports under 1024 are reserved for certain applications and protocols!
#endif
 



CHAPTER 12 ■ NETWORKING

333

        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
        hints.ai_flags = AI_PASSIVE;
 
        string address{ "" };
        CreateSocket(address, port, hints);
    }
 
    Socket(string& webAddress, string& port)
    {
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
 
        CreateSocket(webAddress, port, hints);
    }
 
    Socket(string& webAddress, string& port, addrinfo& hints)
    {
        CreateSocket(webAddress, port, hints);
    }
 
    ~Socket()
    {
        Close();
    }
 
    bool IsValid()
    {
        return m_Socket != -1;
    }
 
    int Connect()
    {
        int connectionResult{
            connect(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo->ai_addrlen)
        };
 
#ifndef NDEBUG
        if (connectionResult == -1)
        {
            cout << "Connection failed!" << endl;
        }
        else
        {
            cout << "Connection successful!" << endl;
        }
#endif
 
        return connectionResult;
    }
 



CHAPTER 12 ■ NETWORKING

334

    int Bind()
    {
        int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo->ai_addrlen) };
 
#ifndef NDEBUG
        if (bindResult == -1)
        {
            cout << "Bind Failed!" << endl;
        }
        else
        {
            cout << "Bind Successful" << endl;
        }
#endif
 
        return bindResult;
    }
 
    int Listen(int queueSize)
    {
        int listenResult{ listen(m_Socket, queueSize) };
 
#ifndef NDEBUG
        if (listenResult == -1)
        {
            cout << "Listen Failed" << endl;
        }
        else
        {
            cout << "Listen Succeeded" << endl;
        }
#endif
 
        return listenResult;
    }
 
    Socket Accept()
    {
        SOCKET newSocket{
            accept(m_Socket,
                reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),
                &m_AcceptedSocketSize)
        };
 
#ifndef NDEBUG
        if (newSocket == -1)
        {
            cout << "Accept Failed" << endl;
        }



CHAPTER 12 ■ NETWORKING

335

        else
        {
            cout << "Accept Succeeded" << endl;
        }
#endif
 
        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);
        return Socket(newSocket, move(m_AcceptedSocketStorage));
    }
 
    void Close()
    {
#ifdef _MSC_VER
        closesocket(m_Socket);
#else
        close(m_Socket);
#endif
 
        m_Socket = -1;
        freeaddrinfo(m_ServerInfo);
    }
 
    ssize_t Send(stringstream data)
    {
        string packetData{ data.str() };
        ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.length(), 0) };
 
#ifndef NDEBUG
        if (sendResult == -1)
        {
            cout << "Send Failed" << endl;
        }
        else
        {
            cout << "Send Succeeded" << endl;
        }
#endif
 
        return sendResult;
    }
 
    stringstream Receive()
    {
        const int size{ 1024 };
        char dataReceived[size];
 
        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };
 



CHAPTER 12 ■ NETWORKING

336

#ifndef NDEBUG
        if (receiveResult == -1)
        {
            cout << "Receive Failed" << endl;
        }
        else if (receiveResult == 0)
        {
            cout << "Receive Detected Closed Connection!" << endl;
            Close();
        }
        else
        {
            dataReceived[receiveResult] = '\0';
            cout << "Receive Succeeded" << endl;
        }
#endif
        stringstream data{ dataReceived };
        return move(data);
    }
};
 
int main(int argc, char* argv[])
{
    WinsockWrapper myWinsockWrapper;
 
    string port{ "3000" };
    Socket myBindingSocket(port);
    myBindingSocket.Bind();
 
    int listenResult{ myBindingSocket.Listen(5) };
    assert(listenResult != -1);
 
    Socket acceptResult{ myBindingSocket.Accept() };
    assert(acceptResult.IsValid());
 
    stringstream data{ acceptResult.Receive() };
 
    string message;
    getline(data, message, '\0');
 
    cout << "Received Message: " << message << endl;
 
    return 0;
}
 

The code in Listing 12-6 creates a program that has a socket that waits for a single message to be 
received from a remote connection. The main function ends up consisting of only a handful of lines of code, 
thanks to the difficult work wrapped up in the WinsockWrapper and Socket classes. The main function begins 
by creating a WinsockWrapper to initialize Winsock if running on a server built by Visual Studio for Windows 
computers. A Socket is then initialized to port 3000 with an empty address. This port will be used to listen 
for connections on the local computer. You can see that this is the case, because the main function goes on 



CHAPTER 12 ■ NETWORKING

337

to call Bind and then Listen with a queue size of 5 before finally calling Accept. The Accept call blocks until 
a remote connection is present in the queue. Accept returns a separate Socket object that should be used to 
receive data. The Receive call on that Socket is also a blocking call, and the program waits there until data is 
available. The program ends by printing out the received message before returning.

Once you have the server program built and running, you need a client program to connect to it and 
send a message. This is shown in Listing 12-7.

Listing 12-7. The Client Program

#include <cassert>
#include <iostream>
#include <type_traits>
 
#ifndef NDEBUG
#include <sstream>
#endif
 
using namespace std;
 
#ifdef _MSC_VER
 
#pragma comment(lib, "Ws2_32.lib")
 
#include <WinSock2.h>
#include <WS2tcpip.h>
 
#define UsingWinsock 1
 
using ssize_t = SSIZE_T;
 
#else
 
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
 
#define UsingWinsock 0
 
#endif
 
class WinsockWrapper
{
public:
    WinsockWrapper()
    {
#if UsingWinsock
        WSADATA wsaData;
        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        {
            exit(1);
        }
 



CHAPTER 12 ■ NETWORKING

338

#ifndef NDEBUG
        cout << "Winsock started!" << endl;
#endif
#endif
    }
 
    ~WinsockWrapper()
    {
#if UsingWinsock
        WSACleanup();
 
#ifndef NDEBUG
        cout << "Winsock shut down!" << endl;
#endif
#endif
    }
};
 
class Socket
{
private:
#if !UsingWinsock
    using SOCKET = int;
#endif
 
    addrinfo* m_ServerInfo{ nullptr };
    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };
    sockaddr_storage m_AcceptedSocketStorage{};
    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };
 
    void CreateSocket(string& webAddress, string& port, addrinfo& hints)
    {
        getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_ServerInfo);
 
        m_Socket = socket(m_ServerInfo->ai_family,
            m_ServerInfo->ai_socktype,
            m_ServerInfo->ai_protocol);
    }
 
    Socket(int newSocket, sockaddr_storage&& socketStorage)
        : m_Socket{ newSocket }
        , m_AcceptedSocketStorage(move(socketStorage))
    {
 
    }
 



CHAPTER 12 ■ NETWORKING

339

public:
    Socket(string& port)
    {
#ifndef NDEBUG
        stringstream portStream{ port };
        int portValue{};
        portStream >> portValue;
        assert(portValue > 1024);
        // Ports under 1024 are reserved for certain applications and protocols!
#endif
 
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
        hints.ai_flags = AI_PASSIVE;
 
        string address{ "" };
        CreateSocket(address, port, hints);
    }
 
    Socket(string& webAddress, string& port)
    {
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
 
        CreateSocket(webAddress, port, hints);
    }
 
    Socket(string& webAddress, string& port, addrinfo& hints)
    {
        CreateSocket(webAddress, port, hints);
    }
 
    ~Socket()
    {
        Close();
    }
 
    bool IsValid()
    {
        return m_Socket != -1;
    }
 
    int Connect()
    {
        int connectionResult{ connect(
            m_Socket,
            m_ServerInfo->ai_addr,
            m_ServerInfo->ai_addrlen)
        };
 



CHAPTER 12 ■ NETWORKING

340

#ifndef NDEBUG
        if (connectionResult == -1)
        {
            cout << "Connection failed!" << endl;
        }
        else
        {
            cout << "Connection successful!" << endl;
        }
#endif
 
        return connectionResult;
    }
 
    int Bind()
    {
        int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo->ai_addrlen) };
 
#ifndef NDEBUG
        if (bindResult == -1)
        {
            cout << "Bind Failed!" << endl;
        }
        else
        {
            cout << "Bind Successful" << endl;
        }
#endif
 
        return bindResult;
    }
 
    int Listen(int queueSize)
    {
        int listenResult{ listen(m_Socket, queueSize) };
 
#ifndef NDEBUG
        if (listenResult == -1)
        {
            cout << "Listen Failed" << endl;
        }
        else
        {
            cout << "Listen Succeeded" << endl;
        }
#endif
 
        return listenResult;
    }
 



CHAPTER 12 ■ NETWORKING

341

    Socket Accept()
    {
         SOCKET newSocket{ accept(m_Socket, reinterpret_cast<sockaddr*> 

(&m_AcceptedSocketStorage), &m_AcceptedSocketSize) };
 
#ifndef NDEBUG
        if (newSocket == -1)
        {
            cout << "Accept Failed" << endl;
        }
        else
        {
            cout << "Accept Succeeded" << endl;
        }
#endif
 
        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);
        return Socket(newSocket, move(m_AcceptedSocketStorage));
    }
 
    void Close()
    {
#ifdef _MSC_VER
        closesocket(m_Socket);
#else
        close(m_Socket);
#endif
 
        m_Socket = -1;
        freeaddrinfo(m_ServerInfo);
    }
 
    ssize_t Send(stringstream data)
    {
        string packetData{ data.str() };
        ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.length(), 0) };
 
#ifndef NDEBUG
        if (sendResult == -1)
        {
            cout << "Send Failed" << endl;
        }
        else
        {
            cout << "Send Succeeded" << endl;
        }
#endif
 
        return sendResult;
    }
 



CHAPTER 12 ■ NETWORKING

342

    stringstream Receive()
    {
        const int size{ 1024 };
        char dataReceived[size];
 
        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };
 
#ifndef NDEBUG
        if (receiveResult == -1)
        {
            cout << "Receive Failed" << endl;
        }
        else if (receiveResult == 0)
        {
            cout << "Receive Detected Closed Connection!" << endl;
            Close();
        }
        else
        {
            dataReceived[receiveResult] = '\0';
            cout << "Receive Succeeded" << endl;
        }
#endif
        stringstream data{ dataReceived };
        return move(data);
    }
};
 
int main(int argc, char* argv[])
{
    WinsockWrapper myWinsockWrapper;
 
    string address("192.168.178.44");
    string port("3000");
    Socket myConnectingSocket(address, port);
    myConnectingSocket.Connect();
 
    string message("Sending Data Over a Network!");
    stringstream data;
    data << message;
 
    myConnectingSocket.Send(move(data));
 
    return 0;
}
 

Listing 12-7 shows that the same Socket class can be used on the server and the client. The client’s main 
function also uses the WinsockWrapper object to handle starting and closing the Winsock library. A Socket 
is then created that connects to IP address 192.168.178.44. (This is the address of the computer I used to 
host the server program.) The Connect method is called after the Socket is created to establish a connection 
between the two programs running on different computers. The Send method is the last function call and 



CHAPTER 12 ■ NETWORKING

343

sends the string “Sending Data Over a Network!” Figure 12-10 shows the output obtained by running the 
server on a MacBook Pro and the client on a Windows 8.1 desktop PC.

12-5. Creating a Networking Protocol between  
Two Programs

Problem
You would like to create two programs that are able to communicate with each other following standard 
patterns.

Solution
You can create an agreed-on protocol that both programs can follow so that each knows how to respond to a 
given request.

How It Works
A socket connection that is established between two programs can be used to send data both ways: from 
the program that initiated the connection to the receiver, and also back from the receiver to the initiator. 
This feature allows you to write networked applications that can respond to requests and even build more 
complicated protocols that require several messages to be sent back and forth in a single application.

The most common example of a protocol in use today that you may be familiar with is HTTP. HTTP is 
the network protocol that powers the World Wide Web. It’s a request and response protocol that lets a client 
program request data from a server. Common applications can be seen when a browser requests a web page 
from a server, but it’s also not uncommon for mobile apps to use HTTP to transfer data between their app 
and their server back end. Other common protocols are FTP for facilitating file transfers between computers 
and the POP and SMTP e-mail protocols.

Figure 12-10. The output generated by running the server on OS X



CHAPTER 12 ■ NETWORKING

344

This recipe shows a very simple network protocol that asks a server for a question, has a client respond 
with an answer, and has the server tell the client whether the answer was correct. This protocol is trivial 
compared to a complicated example such as HTTP, but it’s an excellent place to start.

The protocol consists of four messages: QUESTION, ANSWER, QUIT, and FINISHED. The QUESTION message 
is sent from the client to the server when the user should be asked a question. The server responds to 
this message by sending a question to the client. The client responds to the question by sending ANSWER 
followed by the user’s answer to the server. The client could instead send QUIT to the server at any time 
to terminate the socket connection. Once the server has sent all the questions to the server, a subsequent 
QUESTION request from the client will result in FINISHED being sent to the client; then the connection will be 
terminated.

The server program in this recipe can handle multiple client connections at a time. It does this by 
accepting a single connection using the Socket::Accept method and then handing the Socket connected to 
the client to a thread using the async function. You can see the source for the server program in Listing 12-8.

Listing 12-8. The Protocol Server Program

#include <array>
#include <cassert>
#include <future>
#include <iostream>
#include <thread>
#include <type_traits>
#include <vector>
 
#ifndef NDEBUG
#include <sstream>
#endif
 
using namespace std;
 
#ifdef _MSC_VER
 
#pragma comment(lib, "Ws2_32.lib")
 
#include <WinSock2.h>
#include <WS2tcpip.h>
 
#define UsingWinsock 1
 
using ssize_t = SSIZE_T;
 
#else
 
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
 



CHAPTER 12 ■ NETWORKING

345

#define UsingWinsock 0
 
#endif
 
class WinsockWrapper
{
public:
    WinsockWrapper()
    {
#if UsingWinsock
        WSADATA wsaData;
        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        {
            exit(1);
        }
 
        cout << "Winsock started!" << endl;
#endif
    }
 
    ~WinsockWrapper()
    {
#if UsingWinsock
        WSACleanup();
 
        cout << "Winsock shut down!" << endl;
#endif
    }
};
 
class Socket
{
private:
#if !UsingWinsock
    using SOCKET = int;
#endif
 
    addrinfo* m_ServerInfo{ nullptr };
    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };
    sockaddr_storage m_AcceptedSocketStorage{};
    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };
 
    void CreateSocket(string& webAddress, string& port, addrinfo& hints)
    {
        getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_ServerInfo);
 
        m_Socket = socket(m_ServerInfo->ai_family,
            m_ServerInfo->ai_socktype,
            m_ServerInfo->ai_protocol);
    }
 



CHAPTER 12 ■ NETWORKING

346

    Socket(int newSocket, sockaddr_storage&& socketStorage)
        : m_Socket{ newSocket }
        , m_AcceptedSocketStorage(move(socketStorage))
    {
 
    }
 
public:
    Socket(string& port)
    {
#ifndef NDEBUG
        stringstream portStream{ port };
        int portValue{};
        portStream >> portValue;
        assert(portValue > 1024);
        // Ports under 1024 are reserved for certain applications and protocols!
#endif
 
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
        hints.ai_flags = AI_PASSIVE;

        string address{ "" };
        CreateSocket(address, port, hints);
    }
 
    Socket(string& webAddress, string& port)
    {
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
 
        CreateSocket(webAddress, port, hints);
    }
 
    Socket(string& webAddress, string& port, addrinfo& hints)
    {
        CreateSocket(webAddress, port, hints);
    }
 
    ~Socket()
    {
        Close();
    }
 
    Socket(const Socket& other) = delete;
 
    Socket(Socket&& other)
        : m_ServerInfo( other.m_ServerInfo )
        , m_Socket( other.m_Socket )



CHAPTER 12 ■ NETWORKING

347

        , m_AcceptedSocketStorage( other.m_AcceptedSocketStorage )
        , m_AcceptedSocketSize( other.m_AcceptedSocketSize )
    {
        if (this != &other)
        {
            other.m_ServerInfo = nullptr;
            other.m_Socket = -1;
            other.m_AcceptedSocketStorage = sockaddr_storage{};
            other.m_AcceptedSocketSize = sizeof(other.m_AcceptedSocketStorage);
        }
    }
 
    bool IsValid()
    {
        return m_Socket != -1;
    }
 
    int Connect()
    {
        int connectionResult{
            connect(m_Socket,
                m_ServerInfo->ai_addr,
                m_ServerInfo->ai_addrlen)
        };
 
#ifndef NDEBUG
        if (connectionResult == -1)
        {
            cout << "Connection failed!" << endl;
        }
        else
        {
            cout << "Connection successful!" << endl;
        }
#endif
 
        return connectionResult;
    }
 
    int Bind()
    {
        int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo->ai_addrlen) };
 
#ifndef NDEBUG
        if (bindResult == -1)
        {
            cout << "Bind Failed!" << endl;
        }



CHAPTER 12 ■ NETWORKING

348

        else
        {
            cout << "Bind Successful" << endl;
        }
#endif
 
        return bindResult;
    }
 
    int Listen(int queueSize)
    {
        int listenResult{ listen(m_Socket, queueSize) };
 
#ifndef NDEBUG
        if (listenResult == -1)
        {
            cout << "Listen Failed" << endl;
        }
        else
        {
            cout << "Listen Succeeded" << endl;
        }
#endif
 
        return listenResult;
    }
 
    Socket Accept()
    {
        SOCKET newSocket{
            accept(m_Socket,
                reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),
                &m_AcceptedSocketSize)
        };
 
#ifndef NDEBUG
        if (newSocket == -1)
        {
            cout << "Accept Failed" << endl;
        }
        else
        {
            cout << "Accept Succeeded" << endl;
        }
#endif
 
        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);
        return Socket(newSocket, move(m_AcceptedSocketStorage));
    }
 



CHAPTER 12 ■ NETWORKING

349

    void Close()
    {
#ifdef _MSC_VER
        closesocket(m_Socket);
#else
        close(m_Socket);
#endif
 
        m_Socket = -1;
        freeaddrinfo(m_ServerInfo);
    }
 
    ssize_t Send(stringstream data)
    {
        string packetData{ data.str() };
        ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.length(), 0) };
 
#ifndef NDEBUG
        if (sendResult == -1)
        {
            cout << "Send Failed" << endl;
        }
        else
        {
            cout << "Send Succeeded" << endl;
        }
#endif
 
        return sendResult;
    }
 
    stringstream Receive()
    {
        const int size{ 1024 };
        char dataReceived[size];
 
        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };
 
#ifndef NDEBUG
        if (receiveResult == -1)
        {
            cout << "Receive Failed" << endl;
        }
        else if (receiveResult == 0)
        {
            cout << "Receive Detected Closed Connection!" << endl;
            Close();
        }



CHAPTER 12 ■ NETWORKING

350

        else
        {
            dataReceived[receiveResult] = '\0';
            cout << "Receive Succeeded" << endl;
        }
#endif
        stringstream data{ dataReceived };
        return move(data);
    }
};
 
namespace
{
    const int NUM_QUESTIONS{ 2 };
    const array<string, NUM_QUESTIONS> QUESTIONS
    {
        "What is the capital of Australia?",
        "What is the capital of the USA?"
    };
    const array<string, NUM_QUESTIONS> ANSWERS{ "Canberra", "Washington DC" };
}
 
bool ProtocolThread(reference_wrapper<Socket> connectionSocketRef)
{
    Socket socket{ move(connectionSocketRef.get()) };
 
    int currentQuestion{ 0 };
 
    string message;
    while (message != "QUIT")
    {
        stringstream sstream{ socket.Receive() };
        if (sstream.rdbuf()->in_avail() == 0)
        {
            break;
        }
         
        sstream >> message;
 
        stringstream output;
        if (message == "QUESTION")
        {
            if (currentQuestion >= NUM_QUESTIONS)
            {
                output << "FINISHED";
                socket.Send(move(output));
                 
                cout << "Quiz Complete!" << endl;
                break;
            }
 
            output << QUESTIONS[currentQuestion];
        }



CHAPTER 12 ■ NETWORKING

351

        else if (message == "ANSWER")
        {
            string answer;
            sstream >> answer;
 
            if (answer == ANSWERS[currentQuestion])
            {
                output << "You are correct!";
            }
            else
            {
                output << "Sorry the correct answer is " << ANSWERS[currentQuestion];
            }
            ++currentQuestion;
        }
        socket.Send(move(output));
    }
 
    return true;
}
 
int main(int argc, char* argv[])
{
    WinsockWrapper myWinsockWrapper;
 
    string port("3000");
    Socket myListeningSocket(port);
 
    int bindResult{ myListeningSocket.Bind() };
    assert(bindResult != -1);
    if (bindResult != -1)
    {
        int listenResult{ myListeningSocket.Listen(5) };
        assert(listenResult != -1);
        if (listenResult != -1)
        {
            while (true)
            {
                Socket acceptedSocket{ myListeningSocket.Accept() };
                async(launch::async, ProtocolThread, ref(acceptedSocket));
            }
        }
    }
 
    return 0;
}
 



CHAPTER 12 ■ NETWORKING

352

The server program in Listing 12-8 uses the same Socket class that is described in detail in Recipe 12-4. 
The main function is responsible for handling multiple clients simultaneously. It does this by creating a 
Socket and binding it to port 3000. The bound Socket is then asked to listen for incoming connections; 
it does so with a queue length of 5. The final part of main uses a while loop to accept any incoming 
connections and hands them off to the async function. The async function creates a thread to handle each 
Socket retrieved from Socket::Accept; the first parameter is launch::async.

The ProtocolThread function responds to the requests of the connected client and upholds the server 
side of the simple quiz network protocol. Data is transferred between the client and the server by packing a 
string into each packet. The message variable holds individual messages from a stringstream. This protocol 
can be handled with a basic if...else if block. When the QUESTION message is received, the server packs 
the current question into the output stringstream. If the message is ANSWER, then the server checks whether 
the user is correct and packs the appropriate response into output. The output stringstream is sent to the 
client using the same Socket that received the data initially, showing that a Socket connection need not 
necessarily be a one-way communication channel. If the QUESTION message is received and all the questions 
that the server has available have been sent, then the server sends the client the FINISHED message and 
breaks out of the loop; this causes the Socket to fall out of scope and in turn closes the connection.

All of this activity requires a client to be connected to communicate with the server program. You can 
see a basic client implementation in Listing 12-9.

Listing 12-9. A Simple Quiz Protocol Client

#include <cassert>
#include <iostream>
#include <type_traits>
 
#ifndef NDEBUG
#include <sstream>
#endif
 
using namespace std;
 
#ifdef _MSC_VER
 
#pragma comment(lib, "Ws2_32.lib")
 
#include <WinSock2.h>
#include <WS2tcpip.h>
 
#define UsingWinsock 1
 
using ssize_t = SSIZE_T;
 
#else
 
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
 
#define UsingWinsock 0
 
#endif
 



CHAPTER 12 ■ NETWORKING

353

class WinsockWrapper
{
public:
    WinsockWrapper()
    {
#if UsingWinsock
        WSADATA wsaData;
        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        {
            exit(1);
        }
 
        cout << "Winsock started!" << endl;
#endif
    }
 
    ~WinsockWrapper()
    {
#if UsingWinsock
        WSACleanup();
 
        cout << "Winsock shut down!" << endl;
#endif
    }
};
 
class Socket
{
private:
#if !UsingWinsock
    using SOCKET = int;
#endif
 
    addrinfo* m_ServerInfo{ nullptr };
    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };
    sockaddr_storage m_AcceptedSocketStorage{};
    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };
 
    void CreateSocket(string& webAddress, string& port, addrinfo& hints)
    {
        getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_ServerInfo);
 
        m_Socket = socket(
            m_ServerInfo->ai_family,
            m_ServerInfo->ai_socktype,
            m_ServerInfo->ai_protocol);
    }
 



CHAPTER 12 ■ NETWORKING

354

    Socket(int newSocket, sockaddr_storage&& socketStorage)
        : m_Socket{ newSocket }
        , m_AcceptedSocketStorage(move(socketStorage))
    {
 
    }
 
public:
    Socket(string& port)
    {
#ifndef NDEBUG
        stringstream portStream{ port };
        int portValue{};
        portStream >> portValue;
        assert(portValue > 1024);
        // Ports under 1024 are reserved for certain applications and protocols!
#endif
 
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
        hints.ai_flags = AI_PASSIVE;
 
        string address{ "" };
        CreateSocket(address, port, hints);
    }
 
    Socket(string& webAddress, string& port)
    {
        addrinfo hints{};
        hints.ai_family = AF_UNSPEC;
        hints.ai_socktype = SOCK_STREAM;
 
        CreateSocket(webAddress, port, hints);
    }
 
    Socket(string& webAddress, string& port, addrinfo& hints)
    {
        CreateSocket(webAddress, port, hints);
    }
 
    ~Socket()
    {
        Close();
    }
 
    Socket(const Socket& other) = delete;
 
    Socket(Socket&& other)
        : m_ServerInfo(other.m_ServerInfo)
        , m_Socket(other.m_Socket)



CHAPTER 12 ■ NETWORKING

355

        , m_AcceptedSocketStorage(other.m_AcceptedSocketStorage)
        , m_AcceptedSocketSize(other.m_AcceptedSocketSize)
    {
        if (this != &other)
        {
            other.m_ServerInfo = nullptr;
            other.m_Socket = -1;
            other.m_AcceptedSocketStorage = sockaddr_storage{};
            other.m_AcceptedSocketSize = sizeof(other.m_AcceptedSocketStorage);
        }
    }
 
    bool IsValid()
    {
        return m_Socket != -1;
    }
 
    int Connect()
    {
        int connectionResult{ connect(
            m_Socket,
            m_ServerInfo->ai_addr,
            m_ServerInfo->ai_addrlen)
        };
 
#ifndef NDEBUG
        if (connectionResult == -1)
        {
            cout << "Connection failed!" << endl;
        }
        else
        {
            cout << "Connection successful!" << endl;
        }
#endif
 
        return connectionResult;
    }
 
    int Bind()
    {
        int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo->ai_addrlen) };
 
#ifndef NDEBUG
        if (bindResult == -1)
        {
            cout << "Bind Failed!" << endl;
        }



CHAPTER 12 ■ NETWORKING

356

        else
        {
            cout << "Bind Successful" << endl;
        }
#endif
 
        return bindResult;
    }
 
    int Listen(int queueSize)
    {
        int listenResult{ listen(m_Socket, queueSize) };
 
#ifndef NDEBUG
        if (listenResult == -1)
        {
            cout << "Listen Failed" << endl;
        }
        else
        {
            cout << "Listen Succeeded" << endl;
        }
#endif
 
        return listenResult;
    }
 
    Socket Accept()
    {
        SOCKET newSocket{ accept(
            m_Socket,
            reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),
            &m_AcceptedSocketSize)
        };
 
#ifndef NDEBUG
        if (newSocket == -1)
        {
            cout << "Accept Failed" << endl;
        }
        else
        {
            cout << "Accept Succeeded" << endl;
        }
#endif
 
        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);
        return Socket(newSocket, move(m_AcceptedSocketStorage));
    }
 



CHAPTER 12 ■ NETWORKING

357

    void Close()
    {
#ifdef _MSC_VER
        closesocket(m_Socket);
#else
        close(m_Socket);
#endif
 
        m_Socket = -1;
        freeaddrinfo(m_ServerInfo);
    }
 
    ssize_t Send(stringstream data)
    {
        string packetData{ data.str() };
        ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.length(), 0) };
 
#ifndef NDEBUG
        if (sendResult == -1)
        {
            cout << "Send Failed" << endl;
        }
        else
        {
            cout << "Send Succeeded" << endl;
        }
#endif
 
        return sendResult;
    }
 
    stringstream Receive()
    {
        const int size{ 1024 };
        char dataReceived[size];
 
        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };
 
#ifndef NDEBUG
        if (receiveResult == -1)
        {
            cout << "Receive Failed" << endl;
        }
        else if (receiveResult == 0)
        {
            cout << "Receive Detected Closed Connection!" << endl;
            Close();
        }



CHAPTER 12 ■ NETWORKING

358

        else
        {
            dataReceived[receiveResult] = '\0';
            cout << "Receive Succeeded" << endl;
        }
#endif
        stringstream data{ dataReceived };
        return move(data);
    }
};
 
int main(int argc, char* argv[])
{
    WinsockWrapper myWinsockWrapper;
 
    string address("192.168.178.44");
    string port("3000");
    Socket mySocket(address, port);
    int connectionResult{ mySocket.Connect() };
    if (connectionResult != -1)
    {
        stringstream output{ "QUESTION" };
        mySocket.Send(move(output));
 
        stringstream input{ mySocket.Receive() };
        if (input.rdbuf()->in_avail() > 0)
        {
            string question;
            getline(input, question, '\0');
            input.clear();
 
            while (question != "FINISHED")
            {
                cout << question << endl;
 
                string answer;
                cin >> answer;
 
                output << "ANSWER ";
                output << answer;
                mySocket.Send(move(output));
 
                input = mySocket.Receive();
                if (input.rdbuf()->in_avail() == 0)
                {
                    break;
                }
 
                string result;
                getline(input, result, '\0');
                cout << result << endl;
 



CHAPTER 12 ■ NETWORKING

359

                output << "QUESTION";
                mySocket.Send(move(output));
 
                input = mySocket.Receive();
                getline(input, question, '\0');
                input.clear();
            }
        }
    }
 
    return 0;
}
 

The client program in Listing 12-9 can connect to the server in Listing 12-8 and present the server quiz 
to the player. The client code is simpler than the server because it only has to consider a single connection 
and therefore has no need for threads or handling multiple sockets. The client does need to know the 
address of the server to connect to; the IP address is the IP for the MacBook Pro I have running the server on 
my home network. The client sends QUESTION to the server and then waits for a response in the Receive call. 
Receive is a blocking call; therefore, the client sits and waits until the data is available. It then gets input from 
the player to send back to the server and waits for the response regarding whether the user is correct. This 
process is repeated in a loop until the server notifies the client that the quiz has ended.

The beauty of network protocols implemented in this manner is that they can be reused in different 
programs. If you wanted to extend this example, you could easily create a GUI version using a framework 
such as Qt, make all the calls to Receive occur in a thread, and have the UI animate a spinning logo to 
indicate to the user that the program is waiting for data to come across a remote connection. You could also 
extend the server application to store results and add to the protocol to let users restart quizzes that were in 
progress. In the end, the protocol simply specifies how two programs should communicate with each other 
to facilitate providing a service from one computer to another.



361

CHAPTER 13

Scripting

C++ is a powerful programming language that can be used in a number of ways and supports several 
different programming paradigms. It allows for high-level object-oriented abstractions and generic 
programming, but it also allows you to code at a very low level that takes into consideration CPU 
characteristics such as the length of cache lines. This power comes at the expense of the need to compile the 
language into machine code. Compiling, building, and linking C++ is a task that programmers need to take 
on and not something that is simple for non-programmers to understand.

Scripting languages can help lower the barrier to making code-related changes to your program and 
enable art and design teams to take control over high-level tasks. It’s not uncommon for things such as 
screen layouts and UI flows to be written in a scripting language so they can easily be changed by non-
programming members of a team. Several popular scripting languages are available, one of which is Lua. 
This chapter looks at how the Lua programming language differs from C++ and how the Lua interpreter and 
engine can be incorporated into your C++ programs.

13-1. Creating a Lua Library Project in Visual Studio

Problem
You wish to make a program using Visual Studio that incorporates the Lua scripting language.

Solution
The Lua programming language is supplied with all the source files you need to make a working Lua program. 
You can include these files into a separate Visual Studio project that can be used to build a static library.

How It Works
Visual Studio programs can be built from several constituent parts. Visual Studio supports this by creating a 
solution file for your application that contains multiple projects. A project in Visual Studio can be configured 
to create an EXE, a static library, or a dynamic library. For this recipe, you create a solution that consists of 



CHAPTER 13 ■ SCRIPTING

362

two projects: one to build a static library containing the Lua library and another to create an application that 
links statically to the Lua project and uses Lua in its code. Follow these steps to create a project that builds an 
application linked to the Lua C Library:

 1. Open Visual Studio, and select the option to create a new project from the start 
screen or the File menu.

 2. Click the Visual C++ category under Installed Templates, and select the Win32 
Project template for your new application.

 3. Give your project a name, choose a location to store its files, and click OK to 
proceed. Figure 13-1 shows the New Project Wizard.  

Figure 13-1. The Visual Studio New Project Wizard at step 3

 4. In the Application Wizard, select Console Application, and uncheck the 
Precompiled Header and Security Development Lifecycle (SDL) options.

 5. Click Finish.

 6. Right-click the newly created solution in the Solution Explorer window, and 
select Add ➤ New Project.

 7. Select Win32 Project again, name the project Lua, and click OK.

 8. Click Next in the Application Wizard, and then select the Static Library option.

 9. Uncheck the Precompiled Header option and the SDL option, and click finish.

 10. Download the Lua source code from www.lua.org.

http://www.lua.org/


CHAPTER 13 ■ SCRIPTING

363

 11. Unpack the tar.gz file you downloaded, using an application such as 7-Zip, and 
copy the src folder to the folder you used to create your Lua project.

 12. Right-click the Source Files folder in your Lua project in the Visual Studio 
Solution Explorer window, and select Add ➤ Existing Item.

 13. Add the following files from the src Lua folder you copied into the project 
directory: 

•฀ lapi.c

•฀ lauxlib.c

•฀ lbaselib.c

•฀ lbitlib.c

•฀ lcode.c

•฀ lcorolib.c

•฀ lctype.c

•฀ ldblib.c

•฀ ldebug.c

•฀ ldo.c

•฀ ldump.c

•฀ lfunc.c

•฀ lgc.c

•฀ linit.c

•฀ liolib.c

•฀ llex.c

•฀ lmathlib.c

•฀ lmem.c

•฀ loadlib.c

•฀ lobject.c

•฀ lopcodes.c

•฀ loslib.c

•฀ lparser.c

•฀ lstate.c

•฀ lstring.c

•฀ lstrlib.c

•฀ ltable.c

•฀ ltablib.c



CHAPTER 13 ■ SCRIPTING

364

•฀ ltm.c

•฀ lundump.c

•฀ lutf8lib.c

•฀ lvm.c

•฀ lzio.c 

 14. Right-click your Lua project, and click Build to see that the Lua.lib file is 
generated without error.

 15. Right-click the Chapter 13 project, and select Properties.

 16. Expand the Common Properties section, and click References.

 17. Click Add New Reference.

 18. Check the Lua project, and select OK.

 19. Expand the C/C++ section under Configuration Properties, and click General.

 20. Ensure that the Configuration option is set to All Configurations.

 21. Edit the Additional Include Directories option so it has the path to the Lua source 
folder you copied into the Lua project folder.

 22. Replace your main function source in the project CPP file with the code from 
Listing 13-1.

Listing 13-1. A Simple Lua Program

#include "lua.hpp"
 
int main(int argc, char* argv[])
{
    lua_State* pLuaState{ luaL_newstate() };
    if (pLuaState)
    {
        luaL_openlibs(pLuaState);
 
        lua_close(pLuaState);
    }

    return 0;
}
  

 23. Build and execute your program to see that the Lua static library is successfully 
included in your project.

Following these steps allows you to create a Lua static library project that you can use throughout the 
remainder of the recipes in this chapter.

http://dx.doi.org/10.1007/9781484201589_13


CHAPTER 13 ■ SCRIPTING

365

13-2. Creating a Lua Library Project in Eclipse

Problem
You wish to create a C++ program using Lua as a scripting language, and you’re developing on a Linux 
computer with Eclipse installed.

Solution
Lua is supplied as source code, and you can create an Eclipse project that can be built into a static library for 
inclusion in other programs.

How It Works
The Eclipse IDE allows you to create new static library projects that can be linked into application projects. 
Follow these steps to create an Eclipse project that builds a Linux-compatible static library for your Lua 
projects:

 1. Open your Eclipse IDE, and navigate to the C/C++ perspective.

 2. Right-click in the Project Explorer window, and select New ➤ C++ Project.

 3. Expand the Static Library category, and select Empty Project.

 4. Give the project a name, and choose a folder to store the project.

 5. Click Finish.

 6. Right-click your new project in the Project Explorer window, and select  
New ➤ Source Folder. Give it a name.

 7. Download the Lua source from www.lua.org.

 8. Unpack the tar.gz file you obtained, and copy the .c and .h files from the src 
folder to your newly created project source folder.

 9. Right-click your project in the Project Explorer window, and select Refresh.

 10. Observe that the Lua source and header files appear in the Project Explorer 
window.

 11. Right-click the project, and select Build to ensure that the source compiles 
correctly.

 12. Right-click empty space in the Project Explorer window, and select New ➤ C++ 
Project.

 13. Select Executable ➤ Hello World C++ Project.

 14. Set the Project Name field.

 15. Select a location.

 16. Click Finish.

 17. Right-click your new executable project in the Project Explorer window, and 
select Properties.

http://www.lua.org/


CHAPTER 13 ■ SCRIPTING

366

 18. Click the C/C++ Build category, and ensure that Configuration is set to Debug.

 19. Expand the C/C++ Build category, and click Settings.

 20. Select the Libraries option under the GCC C++ Linker category.

 21. Click the Add option in the Libraries section, and type Lua (you don’t need to 
type libLua.a—the lib and .a parts are added automatically).

 22. Click the Add option on the Library search path option.

 23. Click Workspace.

 24. Select the Debug folder in the Lua project.

 25. Repeat steps 18–24 for the Release configuration (you need to build the Lua 
project in the Release configuration before the Release folder and library are 
generated).

 26. Select the GCC C++ Compiler ➤ Includes section in the C/C++ Build ➤ Settings 
dialog.

 27. Set Configuration to All Configurations.

 28. Click the Add option in the Include paths section.

 29. Click the Workspace button.

 30. Select the source folder that you added to the Lua project in step 6.

 31. Select the Miscellaneous section under the GCC C++ Compiler settings in the  
C/C++ Build ➤ Settings section.

 32. Add –std=c++11 to the Other Flags field.

 33. Replace your main function with the source code in Listing 13-2. 

Listing 13-2. A Simple Lua Program

#include "lua.hpp"
 
int main()
{
    luaState* pLuaState{ luaL_newstate() };
    if (pLuaState)
    {
        luaL_openlibs(pLuaState);
 
        lua_close(pLuaState);
    }
 
    return 0;
}
  

 34. Debug your application, and step through to ensure that the pLuaState variable 
in Listing 13-2 is valid and everything completes as expected.

The steps in this recipe allow you to create a Lua static library project in Eclipse that you can now use 
throughout the rest of this chapter.



CHAPTER 13 ■ SCRIPTING

367

13-3. Creating a Lua Project in Xcode

Problem
You would like to create a C++ program in Xcode that uses the Lua programming language for scripting.

Solution
You can create projects in Xcode that allow you to generate static libraries to be linked into C++ applications.

How It Works
The Xcode IDE lets you create projects that can build executables or libraries. This recipe shows you how to 
configure a project to build the Lua source as a static library and link this into another project that generates 
an executable. Follow these steps to set up your projects:

 1. Open Xcode.

 2. Select Create a New Xcode Project.

 3. Select the Library option in the OS X Framework & Library section.

 4. Click Next.

 5. Set Product Name to Lua.

 6. Change Framework to None.

 7. Change Type to Static.

 8. Select a folder to store the Xcode library project.

 9. Download the Lua source from www.lua.org.

 10. Unpack the tar,gz file obtained from the web page.

 11. Copy the source files from the src folder to the Lua project folder created  
in step 8.

 12. Right-click the project in Xcode, and select Add Files to Lua.

 13. Close Xcode.

 14. Open Xcode.

 15. Select Create a New Xcode Project.

 16. Select the Command Line Tool option from the OS X Application section.

 17. Set the Product Name field.

 18. Uncheck the Use Storyboards option.

 19. Click Next.

 20. Select a folder to store the project.

 21. Open Finder, and browse to the folder containing your Lua project.

http://www.lua.org/


CHAPTER 13 ■ SCRIPTING

368

 23. Drag the xcodeproj file into the app project in the Xcode window. You should 
now have the Lua project under the app project.

 24. Click the app project, and then click the Build Phases option.

 25. Expand the Link Binary with Libraries option.

 26. Click the plus sign.

 27. Select libLua.a from the Workspace section.

 28. Click Build Settings.

 29. Double-click the Header Search Paths option.

 30. Click the plus sign, and enter the path to the Lua source in your Lua project.

 31. Replace the code in AppDelegate.m with the code in Listing 13-3. 

Listing 13-3. A Simple Lua Program

#import "AppDelegate.h"
#include "lua.hpp"
 
@property (weak) IBOutlet NSWindow *window;
@end
 
@implementation AppDelegate
 
- (void)applicationDidFinishLaunching:(NSNotofication *)aNotification {
    lua_State* pLuaState{ luaL_newstate() };
    if (pLuaState)
    {
        luaL_openlibs(pLuaState);
 
        lua_close(pLuaState);
    }
}
 
- (void)applicationWillTerminate:(NSNotification *)aNotification {
}
 
@end 
 

 32. Build and debug your program, using breakpoints to ensure that the Lua state is 
initialized properly.

The steps and code provided in this chapter were generated using Xcode 6.1.1. You may have to alter the 
remaining examples in the chapter to replace the main function with the applicationDidFinishLaunching 
Objective-C method. If your programs won’t compile, try changing Type of Source File from Objective-C to 
Objective-C++ in the Identity and Type settings.



CHAPTER 13 ■ SCRIPTING

369

13-4. Using the Lua Programming Language

Problem
You’re a C++ programmer and would like to learn the Lua programming language before you add it to your 
own applications.

Solution
The Lua programming language documentation is available at /www.lua.org/manual/5.3, and a live demo 
for testing code is available at www.lua.org/demo.html.

How It Works
The Lua programming language differs from C++ almost entirely. C++ is a compiled language that executes 
directly on a CPU. Lua, on the other hand, is an interpreted language that is executed by a virtual machine 
that in turn is running on a CPU. The Lua language comes with a virtual machine that is written in C, and the 
source is supplied. This means you can embed the virtual machine in any C or C++ program you write, and 
use the scripting language to write and control high-level features of your application.

It’s a good idea to learn some of the features of the Lua programming language before taking on such a task.

Working with Variables

C++ variables are statically typed. That means their type is specified when the variable is declared, and it can’t 
be changed at any point in the future. An int remains an int for the entirety of its lifetime. This helps make 
C++ programs predictable and highly performant when running on a CPU, because the correct instructions 
can be used on the correct types of variables. Lua code, on the other hand, runs in a virtual machine; 
therefore there are fewer restrictions on the types a variable can represent. This leads to Lua being known as a 
dynamically typed language. Listing 13-4 shows the effect dynamic types have on an executing program.

Listing 13-4. Working with Lua Variables

variable = 1
print(variable)
print(type(variable))
 
variable = "1"
print(variable)
print(type(variable))
 

You can copy the code in Listing 13-4 and paste it directly into the Lua Live Demo available at  
www.lua.org/demo.html. The demo has controls to Run, Clear, Restore, and Restart the Lua virtual machine. 
Click Run after pasting or typing the code from Listing 13-4, and the following output is generated by the  
web page:
 

1
number
1
string

 

http://www.lua.org/manual/5.3
http://www.lua.org/demo.html
http://www.lua.org/demo.html


CHAPTER 13 ■ SCRIPTING

370

This output lets you see dynamic types in action. Listing 13-4 initially assigns an integer value to 
variable. This is output by the print function as the number 1 in the log. The type function returns a string 
that represents the type of the variable when it’s called. The first call to type returns number as the type of 
variable. A string representation of the value “1” is then assigned to variable. The print function represents 
the string value of 1 the same way as the integer value. There’s no way to tell from that which type is currently 
stored in the variable. The second call to the type function makes it clear that the value is actually a string 
and is no longer a number.

Dynamically typed languages can make interesting things happen to your program if you aren’t careful. 
In C++, there is no way to add a number to a string unless you overload the assignment operator to handle 
this special case. Lua can handle such an operation with ease. Listing 13-5 shows this in action.

Listing 13-5. Adding a Number to a String

variable = 1
print(variable)
print(type(variable))
 
variable = "1"
print(variable)
print(type(variable))
 
variable = variable + 1
print(variable)
print(type(variable))
 

Listing 13-5 adds an extra operation to the code originally shown in Listing 13-4. This operation adds 
the value 1 to variable. Recall from the earlier output that the value in variable was last represented by a 
string. The following output shows what has happened after executing Listing 13-5:
 

1
number
1
string
2.0
number

 
The variable now holds a number that is represented by the floating-point value 2.0. Not all strings are 

created equal, however. If you try to add a number to a string that can’t be converted to a numeric, then 
you’ll receive an error. Listing 13-6 shows code that attempts this.

Listing 13-6. Adding a Number to a Non-Numeric String

variable = "name"
variable = variable + 1
 

This code causes the Lua virtual machine to produce the following error:
 

input:2: attempt to perform arithmetic on a string value (global 'variable')

 



CHAPTER 13 ■ SCRIPTING

371

All the Lua arithmetic operators can convert types. If both variables are integers, then the resulting 
value is also an integer. If one or both of the values is a floating-point number, then the result is a floating-
point number. And finally, if one or both of the values is a string that can be converted to a number, then the 
resulting value is a floating-point number. You saw this in the output from Listing 13-4, where the value shown 
by print was 2.0 with the .0 representing a floating-point number. Some operators, such as the division 
operator and the exponent operator, always return values that are represented by floating-point numbers.

These examples show one of the features of the Lua programming language that makes it easier for 
non-programmers to work with. You don’t need to have as firm a grasp on the underlying types of variables 
as you do when using C++. There is no concern about having an adequate number of bytes to represent the 
value 512 and having to choose between a char, a short, or an int. You also don’t need to be concerned 
with working with C-style strings or C++ STL strings. Any variable can store any type supported by Lua just 
by assigning a value to a variable at any time in the code.

Working with Functions

The previous section showed that Lua has some built-in functions you can call. It’s also possible to create 
your own functions using the function keyword. Listing 13-7 creates a Lua function.

Listing 13-7. Creating and Calling a Function

variable = "name"
 
function ChangeName()
    variable = "age"
end
 
print(variable)
ChangeName()
print(variable)
 

Listing 13-7 begins by defining a variable that stores the value “name”. This is followed by a function 
definition that changes the value of variable to “age”. The code in the function isn’t called at the time of 
the function definition. This can be seen in the output generated by the print calls. The first call to print 
generates the output name, and the second call generates the output age.

This is a useful example because it shows that by default, Lua variables are global in nature. The 
value stored by variable is printed twice: once before the call to ChangeName and once after. If variable 
wasn’t global, you would expect the value to be the same both times. Lua does support the creation of 
local variables, but you must be careful with their usage. Listing 13-8 shows what happens when you make 
variable local.

Listing 13-8. Making variable Local

local variable = "name"
 
function ChangeName()
    variable = "age"
end
 
print(variable)
ChangeName()
print(variable)
 



CHAPTER 13 ■ SCRIPTING

372

Adding the local specifier to variable in Listing 13-8 doesn’t achieve anything for the code shown. 
Making this local essentially tells the Lua virtual machine that the variable can be accessed anywhere 
in the current scope—which means anywhere in the current file. If you’re using the Lua demo, you can 
imagine that the text box for entering your code is a single Lua file. To prevent the ChangeName function from 
accessing the same instance of variable, you have to use the local keyword on this variable as well, as 
shown in Listing 13-9.

Listing 13-9. Making the ChangeName variable Local

local variable = "name"
 
function ChangeName()
    local variable = "age"
end
 
print(variable)
ChangeName()
print(variable)
 

Both calls to print in Listing 13-9 result in the value “name” being printed to the output window. I 
recommend making all of your variables local to ensure that your code is less likely to introduce bugs that are 
hard to track down, caused by inadvertently using the same variable name in more than one place at a time.

Functions in Lua always return values. The ChangeName function in Listing 13-9 doesn’t specify a return 
value, so it implicitly returns nil. This can be seen in Listing 13-10.

Listing 13-10. Function Returning nil

function GetValue()
    local variable = "age"
end
 
local value = GetValue()
print(value)
 

This code returns nil to the variable value, and this is printed by the print function. The nil value 
is the Lua equivalent of nullptr in C++. It means the absence of a value rather than representing 0. Trying to 
manipulate nil values results in a Lua error such as the following:
 

input:8: attempt to perform arithmetic on a nil value (local 'value')

 
This error was generated by trying to add 1 to value when it stores nil. You can avoid the error by 

properly returning a value from the GetValue function, as shown in Listing 13-11.

Listing 13-11. Returning Properly from a Function

function GetValue()
    return "age"
end
 
local value = GetValue()
print(value)
 

n



CHAPTER 13 ■ SCRIPTING

373

This listing shows that the return function can be used the same as it is in C++. Lua’s return statement 
isn’t the same as return in C++, though. You can use it to return multiple values from a function using the 
comma operator (,). Listing 13-12 shows this in action.

Listing 13-12. Multiple Return Values

function GetValues()
    return "name", "age"
end
 
local name, age = GetValues()
print(name)
print(age)
 

Listing 13-12 shows that to return and store multiple values from a function, you must use the comma 
operator on the return statement and the assignment statement when defining the function and calling the 
function.

Working with Tables

Lua provides tables as a means of storing collections of information. A table can be used as either a standard 
array with an integer-based index or an associative array with key-value pairs. You create a table using curly 
braces, as shown in Listing 13-13.

Listing 13-13. Creating a Tables

newTable = {}
 

This code simply creates a table that can now be used to store values. An associative table can use any 
type of variable as a key. This is true for strings, floats, integers, and even other tables. Listing 13-14 shows 
how to use a Lua table as an associative array.

Listing 13-14. Adding Values to an Associative Array

newTable = {}
 
newTable["value"] = 3.14
 
newTable[3.14] = "value"
 
keyTable = {}
newTable[keyTable] = "VALID"
 
print(newTable["value"])
print(newTable[3.14])
print(newTable[keyTable])
 

Listing 13-14 adds values to a Lua table using keys. There are examples of using strings, floats, and other 
tables as keys in this listing, and you can see how to use the array operator to assign values to a key in a table 
as well as read values from a table. Trying to read the value at newTable[3.14] would result in nil being 
returned before any value was assigned to that key. This is also how you can remove values from a table: 
assign nil to the key you wish to remove. Listing 13-15 shows the removal of objects from a table.



CHAPTER 13 ■ SCRIPTING

374

Listing 13-15. Removing Objects from a Table

newTable = {}
 
newTable["nilValue1"] = 1
newTable["nilValue2"] = 2
 
print(newTable["nilValue1"])
print(newTable["nilValue2"])
 
newTable["nilValue1"] = nil
print(newTable["nilValue1"])
 
print(newTable["nilValue2"])
 

Lua tables can also be used as C-style arrays, and the Lua language provides helper functions to aid 
in the management of these types of arrays. Listing 13-16 shows the creation of an array table and the 
modification of its elements.

Listing 13-16. Creating a Lua Array

newTable = {}
 
table.insert(newTable, "first")
table.insert(newTable, "second")
table.insert(newTable, "third")
print(newTable[2])
 
print(newTable[2])
 
table.insert(newTable, 2, "fourth")
 
print(newTable[2])
 
table.remove(newTable, 1)
 
print(newTable[1])
print(newTable[2])
print(newTable[3])
print(newTable[4])
 

Listing 13-16 uses the table.insert and table.remove Lua functions. You can use the insert 
function two ways: without an index, to add elements to the end of the array; or with an index as the second 
parameter, to insert elements into the array and shift everything from that point on up a place. This shows 
you that Lua arrays behave more like a C++ vector. The remove function takes the index that you would like 
to see removed from the array.

Lua also provides a # operator that can be used with array-style tables. Listing 13-17 shows it in action.



CHAPTER 13 ■ SCRIPTING

375

Listing 13-17. Using the # Operator

newTable = {}
 
table.insert(newTable, "first")
table.insert(newTable, "second")
table.insert(newTable, "third")
 
print(#newTable)
 
newTable[9] = "fourth"
print(newTable[9])
 
print(#newTable)
 

The # operator in Listing 13-17 returns the last continuous index that it can find. The first three elements 
are added without issue, using the insert method; therefore they have continuous indices. However, the 
element added manually at 9 doesn’t. This prevents you from being able to use the # operator to count the 
number of elements in the array unless you can be certain that all the indices in the array are contiguous.

Using Flow Control

Lua provides an if statement, a for loop, and a while loop to help you structure your programs. These 
can be used to make decisions and to loop over all the elements in a table. Listing 13-18 shows the Lua if 
statement.

Listing 13-18. Using the Lua if Statement

value1 = 1
value2 = 2
 
if value1 == value2 then
    print("Are equal")
elseif value1 ~= value2 then
    print("Not equal")
else
    print("Shouldn't be here!")
end
 

Lua’s if statement is formed by creating an expression that evaluates to not nil and not false wrapped 
in the if…then statement. The code in the if block creates its own scope and can consist of its own local 
variables. The elseif statement is supplied to allow multiple expressions to be evaluated in a sequential 
order, and the else statement can provide a default behavior of required. Both the elseif and else 
statements are optional and not required. The entire if statement block is terminated using the end keyword.

There are a couple of things to consider when coming from C++ to Lua and using flow-control 
statements such as if. Assigning a 0 value to a variable would result in a positive test when working with  
if statements. The if statement evaluates for not nil and not false, so a value of 0 is given as true.  
Listing 13-18 also shows the not-equal operator, which in Lua uses the ~ character in place of the  
C++ language’s use of !.



CHAPTER 13 ■ SCRIPTING

376

These cases are also true of the while statement, as shown in Listing 13-19.

Listing 13-19. Using a Lua while Loop

value1 = 2
 
while value1 do
    print("We got here! " .. value1)
    value1 = value1 - 1
    if value1 == -1 then
        value1 = nil
    end
end
 

This code uses a while loop to show that a value of 0 evaluates to true in a Lua control statement.  
The output is as follows:
 

We got here! 2
We got here! 1
We got here! 0

 
The loop is finally terminated after the if statement has triggered and set the value of value1 to nil.  

A better method for controlling the termination of the while loop is shown in Listing 13-20.

Listing 13-20. Better while Termination

value1 = 2
 
while value1 do
    print("We got here! " .. value1)
    value1 = value1 - 1
    if value1 == -1 then
        break
    end
end
 

Listing 13-20 uses a break statement to exit the execution of the while loop. The break statement works 
exactly as you would expect when coming from C++. Yet another option for leaving the loop is shown in 
Listing 13-21.

Listing 13-21. Using Comparison Operators to Leave a Loop

value1 = 2
 
while value1 >= 0 do
    print("We got here! " .. value1)
    value1 = value1 - 1
end
 



CHAPTER 13 ■ SCRIPTING

377

Despite the value 0 resulting in a true result in the while loop test, a comparison for 0 or any other valid 
comparison eventually returns false under normal operating circumstances. Here the value of value1 is 
compared with 0, and the loop stops executing once the value falls below 0.

You can use the Lua for loop to iterate in an algorithm. Listing 13-22 shows a simple for loop.

Listing 13-22. A Lua for Loop

for i=0, 10, 2 do
    print(i)
end
 

This for loop prints the numbers 0, 2, 4, 6, 8, and 10. The statement to generate a for loop takes a start 
position (in this case, a variable and its value), a limit, and finally a step. This example creates a variable 
and assigns it 0, loops until the variable is greater than the limit, and adds the step to the variable at each 
iteration. The loop starts at 0, adds 2 with each iteration, and ends once the variable holds a number greater 
than 10. It the step was negative, it would loop until the variable held a value less than the limit.

You can also use a for loop to iterate over tables using the pairs or ipairs functions. Listing 13-23 
shows these in action.

Listing 13-23. Using pairs and ipairs

newTable = {}
newTable["first"] = 1
newTable["second"] = 2
newTable["third"] = 3
 
for key, value in pairs(newTable) do
    print(key .. ": " .. value)
end
 
newTable = {}
table.insert(newTable, "first")
table.insert(newTable, "second")
table.insert(newTable, "third")
 
for index, value in ipairs(newTable) do
    print(index .. ": " .. value)
end
 

The pairs function returns the key and value from each element in an associative array table, and the 
ipairs function returns the numeric indices of an array-style table. This code shows the benefit of Lua’s 
ability to return multiple values from a function.

13-5. Calling Lua Functions from C++

Problem
You have a task in your program that would benefit from the fast iteration capabilities afforded by scripting 
in Lua.



CHAPTER 13 ■ SCRIPTING

378

Solution
The Lua programming language comes with source code that allows you to compile and execute scripts 
while your program is running.

How It Works
The Lua C++ API provides a programming interface to the Lua state’s stack. The C++ API can manipulate this 
stack to pass parameters to Lua code and receive values from Lua in return. This capability lets you create 
Lua source files that can then act as Lua functions. These Lua functions can be updated while your program 
is running, allowing you to iterate on your program logic much more quickly than would be possible with 
C++ alone.

The Lua APIs are supplied using the C programming language. This means you have to create proxy 
objects if you wish to take a more C++-style approach to using Lua. Listing 13-24 shows how you can create a 
program that loads and executes a Lua script as a function from C++.

Listing 13-24. Calling a Simple Lua Script as a Function

#include <iostream>
#include "lua.hpp"
 
using namespace std;
 
class Lua
{
private:
    lua_State* m_pLuaState{ nullptr };
 
public:
    Lua()
        : m_pLuaState{ luaL_newstate() }
    {
        if (m_pLuaState)
        {
            luaL_openlibs(m_pLuaState);
        }
    }
 
    ~Lua()
    {
        lua_close(m_pLuaState);
    }
 
    Lua(const Lua& other) = delete;
    Lua& operator=(const Lua& other) = delete;
 
    Lua(Lua&& rvalue) = delete;
    Lua& operator=(Lua&& rvalue) = delete;
 



CHAPTER 13 ■ SCRIPTING

379

    bool IsValid() const
    {
        return m_pLuaState != nullptr;
    }
 
    int LoadFile(const string& filename)
    {
        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };
        if (status == 0)
        {
            lua_setglobal(m_pLuaState, filename.c_str());
        }
        return status;
    }
 
    int PCall()
    {
        return lua_pcall(m_pLuaState, 0, LUA_MULTRET, 0);
    }
};
 
class LuaFunction
{
private:
    Lua& m_Lua;
    string m_Filename;
 
    int PCall()
    {
        return m_Lua.PCall();
    }
 
public:
    LuaFunction(Lua& lua, const string& filename)
        : m_Lua{ lua }
        , m_Filename(filename)
    {
        m_Lua.LoadFile(m_Filename);
    }
 
    ~LuaFunction() = default;
 
    LuaFunction(const LuaFunction& other) = delete;
    LuaFunction& operator=(const LuaFunction& other) = delete;
 
    LuaFunction(LuaFunction&& rvalue) = delete;
    LuaFunction& operator=(LuaFunction&& rvalue) = delete;
 



CHAPTER 13 ■ SCRIPTING

380

    int Call()
    {
        m_Lua.GetGlobal(m_Filename);
        return m_Lua.PCall();
    }
};
 
int main(int argc, char* argv[])
{
    Lua lua;
    if (lua.IsValid())
    {
        const string filename{ "LuaCode1.lua" };
        LuaFunction function(lua, filename);
        function.Call();
    }
 
    return 0;
}
 

Listing 13-24 shows a method of containing all the Lua C functions in a single class implementation. 
This lets you put the definitions for all of these methods in a single C++ file and limit the dependencies on 
Lua throughout your program. The Lua class is therefore responsible for maintaining the lua_State pointer 
that manages the Lua context for the program. This example creates a class that limits the ability to copy or 
move the Lua object; you may need this to be possible, but it isn’t necessary for these examples.

The constructor for the Lua class calls the luaL_newstate function. This function calls the lua_newstate 
function and passes default parameters. You could call lua_newstate directly if you wanted to supply your 
own memory allocator to the Lua state machine. A successful call to luaL_newstate results in the  
m_pLuaState field storing a valid address for the state. If that’s true, then the luaL_openlibs function is 
called. This function automatically loads the Lua-provided libraries into the state you created. You can avoid 
calling this function if you have no need for the Lua built-in library functionality.

The Lua class destructor is responsible for calling lua_close to destroy the Lua context created by 
luaL_newstate in the constructor. The IsValid function provides a simple method for your calling code to 
determine whether the Lua context was initialized correctly in the constructor.

The LuaFunction class stores a reference to the Lua class that it uses for the context. This class once 
again prevents copying and moving. The constructor takes a reference to the Lua object that provides it 
with functionality and a string containing the name of the file to load that contains the Lua source code. 
The constructor uses the m_Lua object to call the LoadFile method and passes the m_Filename field. The 
LoadFile method calls luaL_loadfile, which reads the file, compiles the Lua source, and pushes a Lua 
function object onto the top of the Lua stack using the compiled code. If the luaL_loadfile call was 
successful, the lua_setglobal function is called. This function gets the top object from the stack and assigns 
it to a global object with the name supplied. In this case, the function object created by luaL_loadfile is 
assigned to a global variable named with the name of the source file.

The main function creates a LuaFunction object with a file named LuaCode1.lua. The source of this file 
is shown in Listing 13-25.

Listing 13-25. The Code from LuaCode1.lua

print("Printing From Lua!")
 



CHAPTER 13 ■ SCRIPTING

381

This Lua code results in a simple message being printed to the console. This occurs when the main 
function calls the LuaFunction::Call method. This method uses the Lua::GetGlobal function to move 
the global object with a given name to the top of the stack. In this case, the m_Filename variable moves the 
function object created in the LoadFile method onto the stack. The Lua::PCall method then calls the 
function that is closest to the top of the stack. The output generated by this program is shown in Figure 13-2.

Figure 13-2. The output generated by running the code in Listing 13-24 and Listing 13-25

Listing 13-24 doesn’t initialize any data to be consumed by the Lua script. You can handle this by 
creating classes to represent Lua types. Listing 13-26 creates a LuaTable class to create Lua tables in C++ that 
can then be accessed by Lua.

Listing 13-26. Creating a Lua Table in C++

#include <iostream>
#include "lua.hpp"
#include <vector>
 
using namespace std;
 
class Lua
{
private:
    lua_State* m_pLuaState{ nullptr };
 
public:
    Lua()
        : m_pLuaState{ luaL_newstate() }
    {
        if (m_pLuaState)
        {
            luaL_openlibs(m_pLuaState);
        }
    }
 
    ~Lua()
    {
        lua_close(m_pLuaState);
    }
 



CHAPTER 13 ■ SCRIPTING

382

    Lua(const Lua& other) = delete;
    Lua& operator=(const Lua& other) = delete;
 
    Lua(Lua&& rvalue) = delete;
    Lua& operator=(Lua&& rvalue) = delete;
 
    bool IsValid() const
    {
        return m_pLuaState != nullptr;
    }
 
    int LoadFile(const string& filename)
    {
        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };
        if (status == 0)
        {
            lua_setglobal(m_pLuaState, filename.c_str());
            Pop(1);
        }
        return status;
    }
 
    int PCall()
    {
        return lua_pcall(m_pLuaState, 0, LUA_MULTRET, 0);
    }
 
    void NewTable(const string& name)
    {
        lua_newtable(m_pLuaState);
        lua_setglobal(m_pLuaState, name.c_str());
    }
 
    void GetGlobal(const string& name)
    {
        lua_getglobal(m_pLuaState, name.c_str());
    }
 
    void PushNumber(double number)
    {
        lua_pushnumber(m_pLuaState, number);
    }
 
    void SetTableValue(double index, double value)
    {
        PushNumber(index);
        PushNumber(value);
        lua_rawset(m_pLuaState, -3);
    }
 



CHAPTER 13 ■ SCRIPTING

383

    double GetNumber()
    {
        return lua_tonumber(m_pLuaState, -1);
    }
 
    void Pop(int number)
    {
        lua_pop(m_pLuaState, number);
    }
};
 
class LuaTable
{
private:
    Lua& m_Lua;
    string m_Name;
 
public:
    LuaTable(Lua& lua, const string& name)
        : m_Lua{ lua }
        , m_Name(name)
    {
        m_Lua.NewTable(m_Name);
    }
 
    void Set(const vector<int>& values)
    {
        Push();
 
        for (unsigned int i = 0; i < values.size(); ++i)
        {
            m_Lua.SetTableValue(i +  1, values[i]);
        }
 
        m_Lua.Pop(1);
    }
 
    void Push()
    {
        m_Lua.GetGlobal(m_Name);
    }
};
 
class LuaFunction
{
private:
    Lua& m_Lua;
    string m_Filename;
 



CHAPTER 13 ■ SCRIPTING

384

    int PCall()
    {
        return m_Lua.PCall();
    }
 
protected:
    int Call()
    {
        m_Lua.GetGlobal(m_Filename);
        return m_Lua.PCall();
    }
 
    double GetReturnValue()
    {
        double result{ m_Lua.GetNumber() };
        m_Lua.Pop(1);
        return result;
    }
 
public:
    LuaFunction(Lua& lua, const string& filename)
        : m_Lua{ lua }
        , m_Filename( filename )
    {
        int status{ m_Lua.LoadFile(m_Filename) };
    }
};
 
class PrintTable
    : public LuaFunction
{
public:
    PrintTable(Lua& lua, const string& filename)
        : LuaFunction(lua, filename)
    {

    }
 
    double Call(LuaTable& table)
    {
        double sum{};
 
        int status{ LuaFunction::Call() };
        if (status)
        {
            throw(status);
        }
        else
        {
            sum = LuaFunction::GetReturnValue();
        }
 



CHAPTER 13 ■ SCRIPTING

385

        return sum;
    }
};
 
int main(int argc, char* argv[])
{
    Lua lua;
    if (lua.IsValid())
    {
        int loop = 2;
        while (loop > 0)
        {
            const string tableName("cTable");
            LuaTable table(lua, tableName);
 
            vector<int> values{ 1, 2, 3, 4, 5 };
            table.Set(values);
 
            const string filename{ "LuaCode.lua" };
            PrintTable printTableFunction(lua, filename);
 
            try
            {
                double result{ printTableFunction.Call(table) };
                cout << "Result: " << result << endl;
            }
            catch (int error)
            {
                cout << "Call error: " << error << endl;
            }
 
            cout << "Waiting" << endl;
 
            int input;
            cin >> input;
 
            --loop;
        }
    }
 
    return 0;
}
 

Listing 13-26 adds a LuaTable class along with the relevant methods to the Lua class to manage the 
table. The lua_newtable function creates a new table and pushes it onto the stack. Then element is then 
assigned to a global variable with the supplied name in the LuaTable constructor. Values are added to the 
table using the Lua::SetTableValue method. This method only supports number indices for the tables and 
works by pushing two numbers onto the stack: the index to be assigned in the table and the value to assign to 
that index. The lua_rawset function assigns a value to an index on a table, with the table in question existing 
at the supplied index. The first element on the stack is referenced by -1, and this will be the value; the second 



CHAPTER 13 ■ SCRIPTING

386

element on the stack at this point is the index; and the third element is the table, so the value -3 is passed to 
the lua_rawset function. Both the index and the value are popped from the stack by this call, and therefore 
the table is once again found at position -1.

The LuaFunction class is inherited into a new class named PrintTable. This class provides a new call 
method that knows how to retrieve the value returned from the Lua script supplied. The Lua code in  
Listing 13-27 shows why this is necessary.

Listing 13-27. The LuaCode2.lua Source

local x = 0
for i = 1, #cTable do
  print(i, cTable[i])
  x = x + cTable[i]
end
return x
 

This code loops over the cTable table set up in C++ and prints out the values. It also calculates the total 
of all the values in the table and returns them to the calling code using the stack.

The C++ main function creates a table and assigns five integers to it using a vector. The PrintTable 
class creates a C++ Lua function with the LuaCode2.lua file. This function is called, and the value returned is 
retrieved from the stack using the Lua::GetReturnValue function.

The big thing to notice in main is the ability to reload Lua scripts and update the code executed at 
runtime. The main function stalls using cin. While it’s waiting, you can alter the Lua script and see the 
changes reflected once you unblock execution. Figure 13-3 shows output proving that this can occur.

Figure 13-3. Output showing that scripts can be changed at runtime

This output shows that changing the Lua code and reloading the function replaces the code at the given 
global variable. I added a single line of output to the script: you can see this in the figure where the line  
“I changed this!” is printed.



CHAPTER 13 ■ SCRIPTING

387

13-6. Calling C Functions from Lua

Problem
You have some highly complex code that would benefit from the high performance afforded by C/C++ code, 
but you would like to be able to call these functions from Lua.

Solution
Lua provides the lua_CFunction type that lets you create C functions that can be referenced by Lua code.

How It Works
The Lua API provides a type lua_CFunction that essentially determines the signature that can be used with 
a C function to allow it to be called from Lua. Listing 13-28 shows an example that creates a function that can 
add all the parameters supplied to it by Lua.

Listing 13-28. Calling a C Function from Lua

#include <iostream>
#include "lua.hpp"
#include <vector>
 
using namespace std;
 
namespace
{
    int Sum(lua_State *L)
    {
        unsigned int numArguments{ static_cast<unsigned int>(lua_gettop(L)) };
        lua_Number sum{ 0 };
        for (unsigned int i = 1; i <= numArguments; ++i)
        {
            if (!lua_isnumber(L, i))
            {
                lua_pushstring(L, "incorrect argument");
                lua_error(L);
            }
            sum += lua_tonumber(L, i);
        }
        lua_pushnumber(L, sum / numArguments);
        lua_pushnumber(L, sum);
        return 2;
    }
}
 
class Lua
{
private:
    lua_State* m_pLuaState{ nullptr };
 



CHAPTER 13 ■ SCRIPTING

388

public:
    Lua()
        : m_pLuaState{ luaL_newstate() }
    {
        if (m_pLuaState)
        {
            luaL_openlibs(m_pLuaState);
        }
    }
 
    ~Lua()
    {
        lua_close(m_pLuaState);
    }
 
    Lua(const Lua& other) = delete;
    Lua& operator=(const Lua& other) = delete;
 
    Lua(Lua&& rvalue) = delete;
    Lua& operator=(Lua&& rvalue) = delete;
 
    bool IsValid() const
    {
        return m_pLuaState != nullptr;
    }
 
    int LoadFile(const string& filename)
    {
        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };
        if (status == 0)
        {
            lua_setglobal(m_pLuaState, filename.c_str());
        }
        return status;
    }
 
    int PCall()
    {
        return lua_pcall(m_pLuaState, 0, LUA_MULTRET, 0);
    }
 
    void NewTable(const string& name)
    {
        lua_newtable(m_pLuaState);
        lua_setglobal(m_pLuaState, name.c_str());
    }
 
    void GetGlobal(const string& name)
    {
        lua_getglobal(m_pLuaState, name.c_str());
    }
 



CHAPTER 13 ■ SCRIPTING

389

    void PushNumber(double number)
    {
        lua_pushnumber(m_pLuaState, number);
    }
 
    void SetTableValue(double index, double value)
    {
        PushNumber(index);
        PushNumber(value);
        lua_rawset(m_pLuaState, -3);
    }
 
    double GetNumber()
    {
        return lua_tonumber(m_pLuaState, -1);
    }
 
    void Pop(int number)
    {
        lua_pop(m_pLuaState, number);
    }
 
    void CreateCFunction(const string& name, lua_CFunction function)
    {
        lua_pushcfunction(m_pLuaState, function);
        lua_setglobal(m_pLuaState, name.c_str());
    }
};
 
class LuaTable
{
private:
    Lua& m_Lua;
    string m_Name;
 
public:
    LuaTable(Lua& lua, const string& name)
        : m_Lua{ lua }
        , m_Name(name)
    {
        m_Lua.NewTable(m_Name);
    }
 
    void Set(const vector<int>& values)
    {
        Push();
 
        for (unsigned int i = 0; i < values.size(); ++i)
        {
            m_Lua.SetTableValue(i + 1, values[i]);
        }
 



CHAPTER 13 ■ SCRIPTING

390

        m_Lua.Pop(1);
    }
 
    void Push()
    {
        m_Lua.GetGlobal(m_Name);
    }
};
 
class LuaFunction
{
private:
    Lua& m_Lua;
    string m_Filename;
 
protected:
    int PCall()
    {
        m_Lua.GetGlobal(m_Filename);
        return m_Lua.PCall();
    }
 
    double GetReturnValue()
    {
        double result{ m_Lua.GetNumber() };
        m_Lua.Pop(1);
        return result;
    }
 
public:
    LuaFunction(Lua& lua, const string& filename)
        : m_Lua{ lua }
        , m_Filename(filename)
    {
        int status{ m_Lua.LoadFile(m_Filename) };
    }
};
 
class PrintTable
    : public LuaFunction
{
public:
    PrintTable(Lua& lua, const string& filename)
        : LuaFunction(lua, filename)
    {
 
    }
 
    double Call(LuaTable& table)
    {
        double sum{};
 



CHAPTER 13 ■ SCRIPTING

391

        int status{ LuaFunction::PCall() };
        if (status)
        {
            throw(status);
        }
        else
        {
            sum = LuaFunction::GetReturnValue();
        }
 
        return sum;
    }
};
 
int main(int argc, char* argv[])
{
    Lua lua;
    if (lua.IsValid())
    {
        const string functionName("Sum");
        lua.CreateCFunction(functionName, Sum);
 
        const string tableName("cTable");
        LuaTable table(lua, tableName);
 
        vector<int> values{ 1, 2, 3, 4, 5 };
        table.Set(values);
 
        const string filename{ "LuaCode3.lua" };
        PrintTable printTableFunction(lua, filename);
 
        try
        {
            double result{ printTableFunction.Call(table) };
            cout << "Result: " << result << endl;
        }
        catch (int error)
        {
            cout << "Call error: " << error << endl;
        }
 
        cout << "Waiting" << endl;
 
        int input;
        cin >> input;
    }
 
    return 0;
}
 



CHAPTER 13 ■ SCRIPTING

392

The Sum function in Listing 13-28 shows how a C function must interface with Lua. The signature is 
simple: a C function that can be called from Lua returns an integer and receives a pointer to a lua_State 
object as a parameter. When Lua calls a C function, it pushes the number of arguments passed onto the 
top of the Lua stack. This value is read by the function called, which can then loop and pull the appropriate 
number of elements from the stack. A C function then pushes the appropriate number of results onto the 
stack and returns the number of elements that the calling code must pop from the stack.

The Lua::CreateCFunction method uses the lua_pushcfunction method to push a lua_CFunction 
object onto the stack and then uses lua_setglobal to assign it to a named object in the global context. The 
main function simply calls CreateCFunction and supplies the name to use in Lua along with the function 
pointer to be used. The Lua code to call this function is shown in Listing 13-29.

Listing 13-29. Lua Code Calling a C Function

local x = 0
for i = 1, #cTable do
  print(i, cTable[i])
  x = x + cTable[i]
end
local average, sum = Sum(cTable[1], cTable[2], cTable[3])
print("Average: " .. average)
print("Sum: " .. sum)
return sum
 

This Lua code shows the call to Sum and retrieves the average and sum values.

13-7. Creating Asynchronous Lua Functions

Problem
You have a long-running Lua operation that you would like to prevent from blocking your program’s execution.

Solution
Lua allows you to create coroutines. These can be yielded from to let your program execution continue and 
allow for the creation of well-behaved, long-running Lua tasks. Each coroutine receives its own unique Lua 
context.

How It Works
The Lua programming language allows for the creation of coroutines. Coroutines differ from normal 
functions in that they can call the coroutine.yield function from Lua to inform the state machine that their 
execution is suspended. The C API provides a resume function that you can call to wake up the coroutine 
after some time to allow the thread to check whether the situation it was waiting for has occurred. This could 
be because you want to wait for an animation to complete or the Lua script is waiting for information to be 
obtained from an I/O process, such as reading from a file or accessing data on a server.

You create a Lua coroutine using the lua_newthread function. Despite the name, a Lua coroutine is 
executed in the thread where the lua_resume call is made. The lua_resume call is passed a pointer to a 
lua_State object that contains a stack for the coroutine. The code executed on the stack is the Lua function 
object that exists closest to the top at the time of the lua_resume call. Listing 13-30 shows the C++ code 
required to set up a Lua thread and execute its code.



CHAPTER 13 ■ SCRIPTING

393

Listing 13-30. Creating a Lua Coroutine

#include <iostream>
#include <lua.hpp>
 
using namespace std;
 
class Lua
{
private:
    lua_State* m_pLuaState{ nullptr };
    bool m_IsThread{ false };
 
public:
    Lua()
        : m_pLuaState{ luaL_newstate() }
    {
        if (m_pLuaState)
        {
            luaL_openlibs(m_pLuaState);
        }
    }
 
    Lua(lua_State* pLuaState)
        : m_pLuaState{ pLuaState }
    {
        if (m_pLuaState)
        {
            luaL_openlibs(m_pLuaState);
        }
    }
    ~Lua()
    {
        if (!m_IsThread && m_pLuaState)
        {
            lua_close(m_pLuaState);
        }
    }
 
    Lua(const Lua& other) = delete;
    Lua& operator=(const Lua& other) = delete;
 
    Lua(Lua&& rvalue)
        : m_pLuaState( rvalue.m_pLuaState )
        , m_IsThread( rvalue.m_IsThread )
    {
        rvalue.m_pLuaState = nullptr;
    }
 



CHAPTER 13 ■ SCRIPTING

394

    Lua& operator=(Lua&& rvalue)
    {
        if (this != &rvalue)
        {
            m_pLuaState = rvalue.m_pLuaState;
            m_IsThread = rvalue.m_IsThread;
            rvalue.m_pLuaState = nullptr;
        }
    }
 
    bool IsValid() const
    {
        return m_pLuaState != nullptr;
    }
 
    int LoadFile(const string& filename)
    {
        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };
        if (status == 0)
        {
            lua_setglobal(m_pLuaState, filename.c_str());
        }
        return status;
    }
 
    void GetGlobal(const string& name)
    {
        lua_getglobal(m_pLuaState, name.c_str());
    }
 
    Lua CreateThread()
    {
        Lua threadContext(lua_newthread(m_pLuaState));
        threadContext.m_IsThread = true;
        return move(threadContext);
    }
 
    int ResumeThread()
    {
        return lua_resume(m_pLuaState, m_pLuaState, 0);
    }
};
 
class LuaFunction
{
private:
    Lua& m_Lua;
    string m_Filename;
 

3



CHAPTER 13 ■ SCRIPTING

395

public:
    LuaFunction(Lua& lua, const string& filename)
        : m_Lua{ lua }
        , m_Filename(filename)
    {
        int status{ m_Lua.LoadFile(m_Filename) };
    }
 
    void Push()
    {
        m_Lua.GetGlobal(m_Filename);
    }
};
 
class LuaThread
{
private:
    Lua m_Lua;
    LuaFunction m_LuaFunction;
    int m_Status{ -1 };
 
public:
    LuaThread(Lua&& lua, const string& functionFilename)
        : m_Lua(move(lua))
        , m_LuaFunction(m_Lua, functionFilename)
    {
 
    }
 
    ~LuaThread() = default;
 
    LuaThread(const LuaThread& other) = delete;
    LuaThread& operator=(const LuaThread& other) = delete;
 
    LuaThread(LuaThread&& rvalue) = delete;
    LuaThread& operator=(LuaThread&& rvalue) = delete;
 
    void Resume()
    {
        if (!IsFinished())
        {
            if (m_Status == -1)
            {
                m_LuaFunction.Push();
            }
 
            m_Status = m_Lua.ResumeThread();
        }
    }
 



CHAPTER 13 ■ SCRIPTING

396

    bool IsFinished() const
    {
        return m_Status == LUA_OK;
    }
};
 
int main(int argc, char* argv[])
{
    Lua lua;
    if (lua.IsValid())
    {
        const string functionName("LuaCode4.lua");
        LuaThread myThread(lua.CreateThread(), functionName);
 
        while (!myThread.IsFinished())
        {
            myThread.Resume();
            cout << "myThread yielded or finished!" << endl;
        }
        cout << "myThread finished!" << endl;
    }
 
    return 0;
}
 

The Lua class in Listing 13-30 contains a pointer to a lua_State object and a bool variable indicating 
whether a specific object has been created to handle a Lua thread. This is necessary to ensure that only a 
single Lua object is responsible for calling lua_close in its destructor. You can see that this bool value is 
checked in the ~Lua method.

The m_IsThread bool is set to true in the Lua::CreateThread method. This method calls the  
lua_newthread function and passes the new lua_State pointer to a newly constructed Lua object.  
This object then has the m_IsThread bool set to true and is returned from the function. The Lua object 
is returned using move semantics. This ensures that there can’t be any duplicates of a single Lua object 
at any time, and this is enforced by the delete keyword being specified in the copy constructor and copy 
assignment operator. Only the move constructor and move assignment operator are defined.

The Lua::Resume method is also shown in Listing 13-30. This method is responsible for starting or 
resuming the execution of a Lua coroutine.

The LuaThread class is responsible for managing a Lua coroutine. The constructor takes an rvalue 
reference to a Lua object and a string containing the name of the file to be loaded. The class has fields to 
store the Lua object and a LuaFunction object that will be used to Push the function onto the coroutine’s 
stack. The m_Status field determines when the coroutine has finished execution. It’s initialized to -1 because 
this value isn’t used by Lua to represent a state. The LUA_OK value is returned from lua_resume when the 
coroutine execution has been completed, and the LUA_YIELD value is returned when the coroutine has 
yielded. The LuaThread::Resume function first checks whether the status has been set to LUA_OK; if it has, 
then nothing is done. If the m_Status variable contains -1, then the m_LuaFunction object is pushed onto the 
stack. The m_Status variable is updated with the value returned by Lua::ResumeThread.

The main function uses all of this functionality by creating a LuaThread object and calling 
LuaThread::Resume in a while loop that executes until IsFinished returns true on the myThread object.  
The LuaCode4.lua file contains the Lua code from Listing 13-31, which contains several yields in a loop.



CHAPTER 13 ■ SCRIPTING

397

Listing 13-31. The LuaCode4.lua Source

for i=1, 10, 1 do
        print("Going for yield " .. i .. "!")
        coroutine.yield()
end
 

This is a simple example of how to use the coroutine.yield function from within Lua code. The 
lua_resume C function returns LUA_YIELD when this Lua function is executed in the running Lua script. 
Figure 13-4 shows the result of running the combination containing the C++ code in Listing 13-30 and the 
Lua code in Listing 13-31.

Figure 13-4. The output generated by executing Listing 13-30 in combination with Listing 13-31



399

CHAPTER 14

3D Graphics Programming

C++ is the programming language of choice for developers of high-performance applications. This often 
includes applications that are required to display 3D graphics to a user. 3D graphics are common in 
medical applications, design applications, and video games. All of these types of applications demand 
responsiveness as a key usability feature. This makes the C++ language a perfect choice for this type of 
program, because programmers can target and optimize for specific hardware platforms.

Microsoft supplies the proprietary DirectX API for building 3D applications for the Windows operating 
system. This chapter, however, looks at writing a simple 3D program using the OpenGL API. OpenGL is 
supported on Windows, OS X, and most Linux distributions; it’s a perfect choice in this case, because you 
might be using any of these operating systems.

One of the more tedious aspects of OpenGL programming is the requirement to set up and manage 
windows in multiple operating systems if you’re targeting more than one. This job is made much easier by the 
GLFW package, which abstracts this task away behind an API so you don’t have to worry about the details.

14-1. An Introduction to GLFW

Problem
You’re writing a cross platform application containing 3D graphics, and you want a fast way to get up  
and running.

Solution
GLFW abstracts out the task of creating and managing a window for many popular operating systems.

How It Works
The GLFW API is written in the C programming language and can therefore be used in C++ applications 
without issue. The API is available to download from www.glfw.org. You can also read the documentation 
for the API at the same web site. The instructions to configure and build a GLFW library change frequently 
and so aren’t included with this chapter. At the time of this writing, the most up-to-date instructions for 
building GLFW can be found at www.glfw.org/docs/latest/compile.html.

The instructions for GLFW currently involve using CMake to build a project that can then be used to 
compile a library that you can link into your own project. Once you have this up and running, you can use 
the code in Listing 14-1 to run a program that initializes OpenGL and creates a window for your program.

http://www.glfw.org/
http://www.glfw.org/docs/latest/compile.html


CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

400

Listing 14-1. A Simple GLFW Program

#include "GLFW\glfw3.h"
 
intmain()
{
    GLFWwindow* window;
 
    /* Initialize the library */
    if (!glfwInit())
        return -1;
 
    /* Create a windowed mode window and its OpenGL context */
    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
    if (!window)
    {
        glfwTerminate();
        return -1;
    }
 
    /* Make the window's context current */
    glfwMakeContextCurrent(window);
 
    /* Loop until the user closes the window */
    while (!glfwWindowShouldClose(window))
    {
        /* Render here */
 
        /* Swap front and back buffers */
        glfwSwapBuffers(window);
 
        /* Poll for and process events */
        glfwPollEvents();
    }
 
    glfwTerminate();
    return 0;
}
 

The code in Listing 14-1 is the sample program supplied on the GLFW web site to ensure that your 
build is working properly. It initializes the glfw library with a call to glfwInit. A window is created using 
the glfwCreateWindow function. The sample creates a window with 640 × 480 resolution and the title “Hello 
World”. If the window creation fails, then the glfwTerminate function is called. If it’s successful, the program 
calls glfwMakeContextCurrent. The OpenGL API supports multiple rendering contexts, and you have to 
ensure that yours is the current context when you want to render. The main loop of the program continues 
until the glfwWindowShouldClose function returns true. The glfwSwapBuffers function is responsible 
for swapping the front buffer with the back buffer. Double-buffered rendering is useful to prevent the user 
from seeing unfinished frames of animation. The graphics card can display one buffer while the program is 
rendering into a second. These buffers are swapped at the end of each frame. The glfwPollEvents function 
is responsible for communicating with the operating system and receiving any messages. The program ends 
with a call to glfwTerminate to shut everything down.



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

401

The OpenGL API provides a lot of its functionality through extensions, and this means the functions 
you’re using may not be supported directly by the platform you’re working on. Fortunately, the GLEW 
library is available to help with using OpenGL extensions on multiple platforms. Again, the instructions 
for obtaining, building, and linking this library change from time to time. The latest information can be 
obtained from the GLEW web site at http://glew.sourceforge.net.

Once you have GLEW up and running, you can initialize the library using the glewInit function call 
shown in Listing 14-2.

Listing 14-2. Initializing GLEW

#include <GL/glew.h>
#include "GLFW/glfw3.h"
 
int main(void)
{
    GLFWwindow* window;
 
    // Initialize the library
    if (!glfwInit())
    {
        return -1;
    }
 
    // Create a windowed mode window and its OpenGL context
    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
    if (!window)
    {
        glfwTerminate();
        return -1;
    }
 
    // Make the window's context current
    glfwMakeContextCurrent(window);
 
    GLenum glewError{ glewInit() };
    if (glewError != GLEW_OK)
    {
        return -1;
    }
 
    // Loop until the user closes the window
    while (!glfwWindowShouldClose(window))
    {
        // Swap front and back buffers
        glfwSwapBuffers(window);
 
        // Poll for and process events
        glfwPollEvents();
    }
 
    glfwTerminate();
    return 0;
}
 

http://glew.sourceforge.net/


CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

402

It’s important that this step occurs after you have a valid and current OpenGL context, because the 
GLEW library relies on this in order to load the most common extensions you may be using from the 
OpenGL API.

There are sample applications accompanying this book that have both GLEW and GLFW included  
and configured. You should download these if you would like to see a project that has been configured 
to work with these libraries. In addition, excellent documentation is available at the libraries’ web sites 
(http://glew.sourceforge.net/install.html and www.glfw.org/download.html).

14-2. Rendering a Triangle

Problem
You would like to render a 3D object in your application.

Solution
OpenGL provides APIs to configure the rendering pipeline on a graphics card and display 3D objects 
onscreen.

How It Works
OpenGL is a graphics library that allows an application to send data to a GPU in a computer to render 
images to a window. This recipe introduces you to three concepts that are necessary for rendering graphics 
to a window when using OpenGL on a modern computer system. The first is the concept of geometry.

The geometry of an object is made up of a collection of vertices and indices. A vertex specifies the 
point in space where the vertex should be rendered onto the screen. A vertex passes through the GPU, 
and different operations are applied to it at different points. This recipe bypasses most of the processing of 
the vertices and instead specifies vertices in what is known as normalized device coordinates. A GPU 
transforms vertices using a vertex shader to generate vertices that sit inside a normalized cube. These 
vertices are then passed to a fragment shader, and the fragments are used to determine the output color to 
be written to the frame buffer at a given point. You learn more about these operations as you move through 
this chapter’s recipes.

The code in Listing 14-3 shows the Geometry class and how it can be used to specify storage for vertices 
and indices.

Listing 14-3. The Geometry Class

using namespace std;
 
class Geometry
{
public:
    using Vertices = vector < float >;
    using Indices = vector < unsigned short >;
 
private:
    Vertices m_Vertices;
    Indices m_Indices;
 

http://glew.sourceforge.net/install.html
http://www.glfw.org/download.html


CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

403

public:
    Geometry() = default;
    ~Geometry() = default;
 
    void SetVertices(const Vertices& vertices)
    {
        m_Vertices = vertices;
    }
 
    Vertices::size_type GetNumVertices() const
    {
        return m_Vertices.size();
    }
 
    Vertices::const_pointer GetVertices() const
    {
        return m_Vertices.data();
    }
 
    void SetIndices(const Indices& indices)
    {
        m_Indices = indices;
    }
 
    Indices::size_type GetNumIndices() const
    {
        return m_Indices.size();
    }
 
    Indices::const_pointer GetIndices() const
    {
        return m_Indices.data();
    }
};
 

The Geometry class contains two vector aliases. The first alias is used to define a type that represents 
a vector of floats. This type is used to store vertices in the Geometry class. The second type alias defines a 
vector of unsigned shorts. This type alias is used to create the m_Indices vector that is used to store indices.

Indices are a useful tool when working with OpenGL because they allow you to reduce duplicate 
vertices in your vertex data. A mesh is typically made up of a collection of triangles, each of which shares 
edges with other triangles to create a complete shape that doesn’t have any holes. This means a s ingle vertex 
that isn’t at the edge of an object is shared between multiple triangles. Indices let you create all the vertices 
for a mesh and then use the indices to represent the order in which OpenGL reads the vertices to create the 
individual triangles of the mesh. You see vertex and index definitions later in this recipe.

A typical OpenGL program consists of multiple shader programs. Shaders allow you control the 
behavior of multiple stages of the OpenGL rendering pipeline. At this point, you need to be able to create a 
vertex shader and a fragment shader that can act as a single pipeline for the GPU. OpenGL enforces this by 
having you create a vertex shader and a fragment shader independently and link them into a single shader 
program. You typically have more than one of these, so the Shader base class in Listing 14-4 shows how to 
create a base class to be shared among multiple derived shader programs.



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

404

Listing 14-4. The Shader Class

class Shader
{
private:
    void LoadShader(GLuint id, const std::string& shaderCode)
    {
        const unsigned int NUM_SHADERS{ 1 };
 
        const char* pCode{ shaderCode.c_str() };
        GLint length{ static_cast<GLint>(shaderCode.length()) };
 
        glShaderSource(id, NUM_SHADERS, &pCode, &length);
 
        glCompileShader(id);
 
        glAttachShader(m_ProgramId, id);
    }
 
protected:
    GLuint m_VertexShaderId{ GL_INVALID_VALUE };
    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };
    GLint m_ProgramId{ GL_INVALID_VALUE };
 
    std::string m_VertexShaderCode;
    std::string m_FragmentShaderCode;
 
public:
    Shader() = default;
    virtual ~Shader() = default;
 
    virtual void Link()
    {
        m_ProgramId = glCreateProgram();
 
        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);
        LoadShader(m_VertexShaderId, m_VertexShaderCode);
 
        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);
 
        glLinkProgram(m_ProgramId);
    }
 
    virtual void Setup(const Geometry& geometry)
    {
        glUseProgram(m_ProgramId);
    }
};
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

405

The Shader class is the first time you see the use of the OpenGL API. This class contains variables for 
storing the IDs that OpenGL provides to act as handles to the vertex and fragment shaders as well as the 
shader program. The m_ProgramId field is initialized in the Link method when it’s assigned the result of the 
glCreateProgram method. m_VertexShaderId is assigned the value of the glCreateShader program, which 
is passed the GL_VERTEX_SHADER variable. The m_FragmentShaderId variable is initialized using the same 
variable, but it’s passed the GL_FRAGMENT_SHADER variable. You can use the LoadShader method to load 
shader code for either a vertex shader of a fragment shader. You can see this when the LoadShader method 
is called twice in the Link method: first with the m_VertexShaderId and m_VertexShaderCode variables as 
parameters and the second time with the m_FragmentShaderId and m_FragentShaderCode variables. The 
Link method ends with a call to glLinkProgram.

The LoadShader method is responsible for attaching the shader source code to the shader ID, compiling 
the shader, and attaching it to the relevant OpenGL shader program. The Setup method is used while 
rendering objects and tells OpenGL that you would like to make this shader program the active shader in use. 
This recipe needs a single shader program to render a triangle to the screen. This shader program is created 
by deriving a class named BasicShader from the Shader class in Listing 14-4, as shown in Listing 14-5.

Listing 14-5. The BasicShader Class

class BasicShader
    : public Shader
{
private:
    GLint        m_PositionAttributeHandle;
 
public:
    BasicShader()
    {
        m_VertexShaderCode =
            "attribute vec4 a_vPosition;                    \n"
            "void main(){                                   \n"
            "     gl_Position = a_vPosition;                \n"
            "}                                              \n";
 
        m_FragmentShaderCode =
            "#version 150                                   \n"
            "precision mediump float;                       \n"
            "void main(){                                   \n"
            "    gl_FragColor = vec4(0.2, 0.2, 0.2, 1.0);   \n"
            "}                                              \n";
    }
 
    ~BasicShader() override = default;
 
    void Link() override
    {
        Shader::Link();
 
        GLint success;
        glGetProgramiv(m_ProgramId, GL_ACTIVE_ATTRIBUTES, &success);
 
        m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId, "a_vPosition");
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

406

    void Setup(const Geometry& geometry) override
    {
        Shader::Setup(geometry);
 
        glVertexAttribPointer(
            m_PositionAttributeHandle,
            3,
            GL_FLOAT,
            GL_FALSE,
            0,
            geometry.GetVertices());
        glEnableVertexAttribArray(m_PositionAttributeHandle);
    }
};
 

The BasicShader class begins by initializing the protected m_VertexShaderCode and  
m_FragmentShaderCode variables from the Shader class in its constructor. The Link method is responsible 
for calling the base class Link method and then retrieving handles to the attributes in the shader code. 
The Setup method also calls the Setup method in the base class. It then sets up the attribute in the shader 
program. An attribute is a variable that receives data from a data stream or fields set using the OpenGL API 
functions from the application code. In this case, the attribute is a vec4 field in the GL Shading Language 
(GLSL) code. GLSL is used to write OpenGL shader code; this language is based on C and is therefore 
familiar, but it contains its own types and keywords necessary for communication with the application-side 
OpenGL calls. The a_vPosition vec4 attribute in the vertex shader code is responsible for receiving every 
position in a stream of vertices sent to OpenGL for rendering. A handle to the attribute is retrieved using 
the glGetAttribLocation OpenGL API function that takes the program ID and the name of the attribute to 
be retrieved. The attribute handle for a vertex position can then be used with the glVertexAttribPointer 
function in the Setup method. This method takes the attribute handle as a parameter followed by the 
number of elements per vertex. In this case, the vertices are supplied with an x, y, z component; therefore the 
number 3 is passed to the size parameter. The GL_FLOAT value specifies that the vertices are floating-point.  
GL_FALSE tells OpenGL that the vertices should not be normalized by the API when it receives them. The 0 value 
tells OpenGL the size of the gap between positions of the vertex data; in this case there are no gaps, so you can 
pass 0. Finally, a pointer to the vertex data is supplied. After this function call, the glEnableVertexAttribArray 
function is called to tell OpenGL that the attribute should be enabled using the data supplied to it in the previous 
call, to supply position data to the vertex-shader execution system on the GPU.

The next step is to use these classes in the main function to render a triangle to your window. Listing 14-6 
contains the complete listing for a program that achieves this.

Listing 14-6. A Program that Renders a Triangle

#include "GL/glew.h"
#include "GLFW/glfw3.h"
#include <string>
#include <vector>
 
using namespace std;
 
class Geometry
{
public:
    using Vertices = vector < float >;
    using Indices = vector < unsigned short >;
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

407

private:
    Vertices m_Vertices;
    Indices m_Indices;
 
public:
    Geometry() = default;
    ~Geometry() = default;
 
    void SetVertices(const Vertices& vertices)
    {
        m_Vertices = vertices;
    }
 
    Vertices::size_type GetNumVertices() const
    {
        return m_Vertices.size();
    }
 
    Vertices::const_pointer GetVertices() const
    {
        return m_Vertices.data();
    }
 
    void SetIndices(const Indices& indices)
    {
        m_Indices = indices;
    }
 
    Indices::size_type GetNumIndices() const
    {
        return m_Indices.size();
    }
 
    Indices::const_pointer GetIndices() const
    {
        return m_Indices.data();
    }
};
 
class Shader
{
private:
    void LoadShader(GLuint id, const std::string& shaderCode)
    {
        const unsigned int NUM_SHADERS{ 1 };
 
        const char* pCode{ shaderCode.c_str() };
        GLint length{ static_cast<GLint>(shaderCode.length()) };
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

408

        glShaderSource(id, NUM_SHADERS, &pCode, &length);
 
        glCompileShader(id);
 
        glAttachShader(m_ProgramId, id);
    }
 
protected:
    GLuint m_VertexShaderId{ GL_INVALID_VALUE };
    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };
    GLint m_ProgramId{ GL_INVALID_VALUE };
 
    std::string m_VertexShaderCode;
    std::string m_FragmentShaderCode;
 
public:
    Shader() = default;
    virtual ~Shader() = default;
 
    virtual void Link()
    {
        m_ProgramId = glCreateProgram();
 
        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);
        LoadShader(m_VertexShaderId, m_VertexShaderCode);
 
        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);
 
        glLinkProgram(m_ProgramId);
    }
 
    virtual void Setup(const Geometry& geometry)
    {
        glUseProgram(m_ProgramId);
    }
};
 
class BasicShader
    : public Shader
{
private:
    GLint        m_PositionAttributeHandle;
 
public:
    BasicShader()
    {
        m_VertexShaderCode =
            "attribute vec4 a_vPosition;                    \n"
            "void main(){                                   \n"
            "     gl_Position = a_vPosition;                \n"
            "}                                              \n";
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

409

        m_FragmentShaderCode =
            "#version 150                                        \n"
            "precision mediump float;                            \n"
            "void main(){                                        \n"
            "    gl_FragColor = vec4(0.2, 0.2, 0.2, 1.0);        \n"
            "}                                                   \n";
    }
 
    ~BasicShader() override = default;
 
    void Link() override
    {
        Shader::Link();
 
        m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId, "a_vPosition");
    }
 
    void Setup(const Geometry& geometry) override
    {
        Shader::Setup(geometry);
 
        glVertexAttribPointer(
            m_PositionAttributeHandle,
            3,
            GL_FLOAT,
            GL_FALSE,
            0,
            geometry.GetVertices());
        glEnableVertexAttribArray(m_PositionAttributeHandle);
    }
};
 
int CALLBACK WinMain(
    _In_  HINSTANCE hInstance,
    _In_  HINSTANCE hPrevInstance,
    _In_  LPSTR lpCmdLine,
    _In_  int nCmdShow
    )
{
    GLFWwindow* window;
 
    // Initialize the library
    if (!glfwInit())
    {
        return -1;
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

410

    // Create a windowed mode window and its OpenGL context
    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
    if (!window)
    {
        glfwTerminate();
        return -1;
    }
 
    // Make the window's context current
    glfwMakeContextCurrent(window);
 
    GLenum glewError{ glewInit() };
    if (glewError != GLEW_OK)
    {
        return -1;
    }
 
    BasicShader basicShader;
    basicShader.Link();
 
    Geometry triangle;
 
    Geometry::Vertices vertices{
        0.0f, 0.5f, 0.0f,
        0.5f, -0.5f, 0.0f,
        -0.5f, -0.5f, 0.0f
    };
 
    Geometry::Indices indices{ 0, 1, 2 };
 
    triangle.SetVertices(vertices);
    triangle.SetIndices(indices);
 
    glClearColor(0.25f, 0.25f, 0.95f, 1.0f);
 
    // Loop until the user closes the window
    while (!glfwWindowShouldClose(window))
    {
        glClear(GL_COLOR_BUFFER_BIT);
 
        basicShader.Setup(triangle);
 
        glDrawElements(GL_TRIANGLES,
            triangle.GetNumIndices(),
            GL_UNSIGNED_SHORT,
            triangle.GetIndices());
 
        // Swap front and back buffers
        glfwSwapBuffers(window);
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

411

        // Poll for and process events
        glfwPollEvents();
    }
 
    glfwTerminate();
    return 0;
}
 

The main function in Listing 14-6 shows how and where to use the Geometry and BasicShader classes 
to render a triangle to your window. The OpenGL API is available to use immediately after the call to 
glewInit has completed successfully. The main function follows this call by initializing a BasicShader 
object and calling BasicShader::Link then a Geometry object to represent the vertices of a triangle. The 
vertices are supplied in a post-transformed state because the vertex shader in BasicShader isn’t carrying 
out any operations on the data passed through. The vertices are specified in normalized device coordinates; 
in OpenGL, these coordinates must fit inside a cube that ranges from -1, -1, -1 to 1, 1, 1 for the x, y, and z 
coordinates. The indices tell OpenGL the order in which to pass the vertices to the vertex shader; in this case, 
you’re passing the vertices in the order they’re defined.

The glClearColor function tells OpenGL the color to use to represent the background color when 
no other pixels have been rendered to that position. Here the color is set to light blue so it’s easy to tell 
when a pixel has been rendered to. Colors are represented in OpenGL using four components: red, green, 
blue, and alpha. The red, green, and blue components combine to generate a color for a pixel. When all 
the component values are 1, the color is white; and when all the values are 0, the color is black. The alpha 
component is used to determine how transparent a pixel is. There’s little reason to set a transparency value 
of less than 1 on the background color.

You can find a call to glClear in the render loop. This call uses the values set by glClearColor to 
fill the framebuffer and overwrite anything rendered the last time this buffer was used. Remember 
that when you’re using double buffering, the buffer you’re rendering to is two frames old, not one. The 
BasicShader::Setup function sets up the shader with the current geometry for rendering. This could have 
been a one-time operation in this program, but it’s more common for programs to render more than one 
object with a given shader.

Finally, the glDrawElements function is responsible for asking OpenGL to render the triangle. The 
glDrawElements call specifies that you want to render triangle primitives, the number of indices to render, 
the type of the indices, and a pointer to the index data stream.

Figure 14-1 shows the output generated by this program.



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

412

14-3. Creating a Textured Quad

Problem
GPU power is limited, and you would like to give your objects a more highly detailed appearance.

Solution
Texture mapping allows you to create 2D images that you can map over the surface of a mesh to give the 
appearance of increased geometric complexity.

How It Works
GLSL provides support for samplers that you can use to read texels from an assigned texture. A texel is a 
single color element from a texture; the term is short for texture element in the same way that pixel is short for 
picture element. The term pixel is usually used when referring to individual colors that make up the image on 
your display, whereas texel is used when referring to individual colors in a texture image.

A texture is mapped to a mesh using texture coordinates. Each vertex in a mesh is given an associated 
texture coordinate that you can use to look up the color to be applied to the fragment in a fragment shader. 
The texture coordinate from each vertex is interpolated across the surface of a polygon using an interpolator 
unit on the GPU. Interpolated values to be passed from a vertex shader to a fragment shader are represented 

Figure 14-1. The triangle rendered by the code in Listing 14-6



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

413

in OpenGL using the varying keyword. This keyword makes logical sense because varyings are used to 
represent variables that vary across the surface of the polygon. Varyings are initialized in the vertex shader 
by being either assigned from an attribute or by generated by code.

You need a way to represent mesh data that contains texture coordinates before you can worry about 
having textures in your applications. Listing 14-7 shows a definition of the Geometry class that supports 
texture coordinates in the vertex data.

Listing 14-7. A Geometry Class that Supports Texture Coordinates

class Geometry
{
public:
    using Vertices = vector < float >;
    using Indices = vector < unsigned short >;
 
private:
    Vertices m_Vertices;
    Indices m_Indices;
 
    unsigned int m_NumVertexPositionElements{};
    unsigned int m_NumTextureCoordElements{};
    unsigned int m_VertexStride{};
 
public:
    Geometry() = default;
    ~Geometry() = default;
 
    void SetVertices(const Vertices& vertices)
    {
        m_Vertices = vertices;
    }
 
    Vertices::size_type GetNumVertices() const
    {
        return m_Vertices.size();
    }
 
    Vertices::const_pointer GetVertices() const
    {
        return m_Vertices.data();
    }
 
    void SetIndices(const Indices& indices)
    {
        m_Indices = indices;
    }
 
    Indices::size_type GetNumIndices() const
    {
        return m_Indices.size();
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

414

    Indices::const_pointer GetIndices() const
    {
        return m_Indices.data();
    }
 
    Vertices::const_pointer GetTexCoords() const
    {
         return static_cast<Vertices::const_pointer>(&m_Vertices 

[m_NumVertexPositionElements]);
    }
 
    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)
    {
        m_NumVertexPositionElements = numVertexPositionElements;
    }
 
    unsigned int GetNumVertexPositionElements() const
    {
        return m_NumVertexPositionElements;
    }
 
    void SetNumTexCoordElements(unsigned int numTexCoordElements)
    {
        m_NumTextureCoordElements = numTexCoordElements;
    }
 
    unsigned int GetNumTexCoordElements() const
    {
        return m_NumTextureCoordElements;
    }
 
    void SetVertexStride(unsigned int vertexStride)
    {
        m_VertexStride = vertexStride;
    }
 
    unsigned int GetVertexStride() const
    {
        return m_VertexStride;
    }
};
 

This code shows the definition for a Geometry class that stores vertices and indices in separate vectors. 
There are also fields that store the number of vertex position elements and the number of texture coordinate 
elements. A single vertex can consist of a variable number of vertex elements and a variable number of 
texture coordinates. The m_VertexStride field stores the number of bytes from the beginning of one vertex 
to the beginning of the next vertex. The GetTexCoords method is one of the more important methods in 
this class because it shows that the vertex data this class supports is in an array of structures format. There 
are two main ways to read in vertex data: you can set up separate streams for the vertices and the texture 
coordinates in separate arrays, or you can set up a single stream that interleaves the vertex position and 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

415

texture-coordinate data per vertex. This class supports the latter style, because it’s the most optimal data 
format for modern GPUs. The GetTexCoords method returns the address of the first texture coordinate using 
the m_NumVertexPositionElements as an index to find that data. This relies on your mesh data being tightly 
packed and your first texture coordinate coming immediately after the vertex position elements.

The next important element when rendering textured object with OpenGL is a class that can load 
texture data from a file. The TGA file format is simple and easy to use and can store image data. Its simplicity 
means it’s a common choice of file format for uncompressed textures when working with OpenGL. The 
TGAFile class in Listing 14-8 shows how a TGA file is loaded.

Listing 14-8. The TGAFile Class

class TGAFile
{
private:
#ifdef _MSC_VER
#pragma pack(push, 1)
#endif
    struct TGAHeader
    {
        unsigned char m_IdSize{};
        unsigned char m_ColorMapType{};
        unsigned char m_ImageType{};
 
        unsigned short m_PaletteStart{};
        unsigned short m_PaletteLength{};
        unsigned char m_PaletteBits{};
 
        unsigned short m_XOrigin{};
        unsigned short m_YOrigin{};
        unsigned short m_Width{};
        unsigned short m_Height{};
 
        unsigned char m_BytesPerPixel{};
        unsigned char m_Descriptor{};
    }
#ifndef _MSC_VER
    __attribute__ ((packed))
#endif // _MSC_VER
        ;
 
#ifdef _MSC_VER
#pragma pack(pop)
#endif
 
    std::vector<char> m_FileData;
 
    TGAHeader* m_pHeader{};
    void* m_pImageData{};
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

416

public:
    TGAFile(const std::string& filename)
    {
        std::ifstream fileStream{ filename, std::ios_base::binary };
        if (fileStream.is_open())
        {
            fileStream.seekg(0, std::ios::end);
            m_FileData.resize(static_cast<unsigned int>(fileStream.tellg()));
 
            fileStream.seekg(0, std::ios::beg);
            fileStream.read(m_FileData.data(), m_FileData.size());
 
            fileStream.close();
 
            m_pHeader = reinterpret_cast<TGAHeader*>(m_FileData.data());
            m_pImageData = static_cast<void*>(m_FileData.data() + sizeof(TGAHeader));
        }
    }
 
    unsigned short GetWidth() const
    {
        return m_pHeader->m_Width;
    }
 
    unsigned short GetHeight() const
    {
        return m_pHeader->m_Height;
    }
 
    unsigned char GetBytesPerPixel() const
    {
        return m_pHeader->m_BytesPerPixel;
    }
 
    unsigned int GetDataSize() const
    {
        return m_FileData.size() - sizeof(TGAHeader);
    }
 
    void* GetImageData() const
    {
        return m_pImageData;
    }
};
 

The TGAFile class contains a header structure that represents the header data included in a TGA file 
when saved by an image-editing program such as Adobe Photoshop. This structure has some interesting 
compiler metadata associated with it. A modern C++ compiler is aware of the memory layout of the data 
structures in applications. A given CPU architecture may operate more efficiently with variables that lie on 
certain memory boundaries. This is fine for structures that are non-portable and used in a single program on 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

417

a single-CPU architecture, but it may cause problems for data that is saved and loaded by different programs 
on different computers. To counteract this, you can specify the amount of padding a compiler can add to 
your programs to optimize access to individual variables. The TGAHeader struct requires that no padding 
be added, because the TGA file format doesn’t contain any padding when the file is saved. This is achieved 
when using Visual Studio by using the pragma preprocessor directive along with the pack command to push 
and pop a packing value of 1. This disables the automatic spacing of variables for speed efficiency. On most 
other compilers, you can use the __attribute__ ((packed)) compiler directive to achieve the same result.

The TGAHeader fields store metadata that represents the type of image data stored in the file. This recipe 
only deals with RGBA data in a TGA, so the only relevant fields are the width, height, and bytes per pixel. 
These are found in the file in the exact byte positions represented in the TGAHeader structure. The data from 
the file is mapped into the TGAHeader object by using a pointer. The filename is passed to the constructor 
for the class, and this file is opened and read using an ifstream object. The ifstream object is the STL class 
provided for reading data in from a file. The ifstream is constructed by passing it the filename to be opened 
and the binary data mode, because you want to read binary data from the file. The entire file is read into a 
vector of char variables by seeking to the end of the file, reading the position of the end of file to determine 
the size of the data in the file, and then seeking back to the beginning and using the size to resize the vector. 
The data is then read into the vector by using the ifstream read method that takes a pointer to the buffer 
where the data should be read and the size of the buffer to read into. You can then use reinterpret_cast to 
map the data read from the file onto a TGAHeader struct, and a static_cast can be used to store a pointer to 
the beginning of the image data.

Loading the TGA data is separated from the OpenGL texture setup by using separate classes. The  
data loaded from the TGA can be passed to the texture class shown in Listing 14-9 to create an OpenGL 
texture object.

Listing 14-9. The Texture Class

class Texture
{
private:
    unsigned int m_Width{};
    unsigned int m_Height{};
    unsigned int m_BytesPerPixel{};
    unsigned int m_DataSize{};
 
    GLuint m_Id{};
     
    void* m_pImageData;
 
public:
    Texture(const TGAFile& tgaFile)
        : Texture(tgaFile.GetWidth(),
            tgaFile.GetHeight(),
            tgaFile.GetBytesPerPixel(),
            tgaFile.GetDataSize(),
            tgaFile.GetImageData())
    {
 
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

418

    Texture(unsigned int width,
            unsigned int height,
            unsigned int bytesPerPixel,
            unsigned int dataSize,
            void* pImageData)
        : m_Width(width)
        , m_Height(height)
        , m_BytesPerPixel(bytesPerPixel)
        , m_DataSize(dataSize)
        , m_pImageData(pImageData)
    {
 
    }
 
    ~Texture() = default;
 
    GLuint GetId() const
    {
        return m_Id;
    }
 
    void Init()
    {
        GLint packBits{ 4 };
        GLint internalFormat{ GL_RGBA };
        GLint format{ GL_BGRA };
 
        glGenTextures(1, &m_Id);
        glBindTexture(GL_TEXTURE_2D, m_Id);
        glPixelStorei(GL_UNPACK_ALIGNMENT, packBits);
        glTexImage2D(GL_TEXTURE_2D,
            0,
            internalFormat,
            m_Width,
            m_Height,
            0,
            format,
            GL_UNSIGNED_BYTE,
            m_pImageData);
    }
};
 

The Texture class initializes an OpenGL texture for use when rendering objects. The two class 
constructors are provided to simplify initializing the class from a TGA file or from in-memory data. The 
constructor that takes a TGAFile reference uses the C++11 concept of delegating constructors to call the 
in-memory constructor. The Init method is responsible for creating an OpenGL texture object. This method 
can create RGBA textures from a BGRA source using the width and height supplied in the constructor. 
You might notice here that the source pixels in a TGA file are back to front; this method is responsible for 
transposing the red and green channels into the correct position for the GPU. The image data is copied onto 
the GPU by the glTextImage2D function so that draw calls can use this texture data in your fragment shaders.



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

419

The next step in being able to render with textures is to look at the TextureShader class, which includes 
a vertex shader that can read in texture coordinates and pass them to the fragment shader through a varying 
object. You can see this class in Listing 14-10.

Listing 14-10. The TextureShader Class

class Shader
{
private:
    void LoadShader(GLuint id, const std::string& shaderCode)
    {
        const unsigned int NUM_SHADERS{ 1 };
 
        const char* pCode{ shaderCode.c_str() };
        GLint length{ static_cast<GLint>(shaderCode.length()) };
 
        glShaderSource(id, NUM_SHADERS, &pCode, &length);
 
        glCompileShader(id);
 
        glAttachShader(m_ProgramId, id);
    }
 
protected:
    GLuint m_VertexShaderId{ GL_INVALID_VALUE };
    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };
    GLint m_ProgramId{ GL_INVALID_VALUE };
 
    std::string m_VertexShaderCode;
    std::string m_FragmentShaderCode;
 
public:
    Shader() = default;
    virtual ~Shader() = default;
 
    virtual void Link()
    {
        m_ProgramId = glCreateProgram();
 
        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);
        LoadShader(m_VertexShaderId, m_VertexShaderCode);
 
        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);
 
        glLinkProgram(m_ProgramId);
    }
 
    virtual void Setup(const Geometry& geometry)
    {
        glUseProgram(m_ProgramId);
    }
};
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

420

class TextureShader
    : public Shader
{
private:
    const Texture& m_Texture;
 
    GLint m_PositionAttributeHandle;
    GLint m_TextureCoordinateAttributeHandle;
    GLint m_SamplerHandle;
 
public:
    TextureShader(const Texture& texture)
        : m_Texture(texture)
    {
        m_VertexShaderCode =
            "attribute  vec4 a_vPosition;                   \n"
            "attribute  vec2 a_vTexCoord;                   \n"
            "varying    vec2 v_vTexCoord;                   \n"
            "                                               \n"
            "void main() {                                  \n"
            "   gl_Position = a_vPosition;                  \n"
            "   v_vTexCoord = a_vTexCoord;                  \n"
            "}                                              \n";
 
        m_FragmentShaderCode =
            "#version 150                                   \n"
            "                                               \n"
            "precision highp float;                         \n"
            "varying vec2 v_vTexCoord;                      \n"
            "uniform sampler2D s_2dTexture;                 \n"
            "                                               \n"
            "void main() {                                  \n"
            "   gl_FragColor =                              \n"
            "       texture2D(s_2dTexture, v_vTexCoord);    \n"
            "}                                              \n";
    }
 
    ~TextureShader() override = default;
 
    void Link() override
    {
        Shader::Link();
 
        m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId, "a_vPosition");
        m_TextureCoordinateAttributeHandle = glGetAttribLocation(m_ProgramId, "a_vTexCoord");
 
        m_SamplerHandle = glGetUniformLocation(m_ProgramId, "s_2dTexture");
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

421

    void Setup(const Geometry& geometry) override
    {
        Shader::Setup(geometry);
 
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, m_Texture.GetId());
        glUniform1i(m_SamplerHandle, 0);
 
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
 
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 
        glVertexAttribPointer(
            m_PositionAttributeHandle,
            geometry.GetNumVertexPositionElements(),
            GL_FLOAT,
            GL_FALSE,
            geometry.GetVertexStride(),
            geometry.GetVertices());
        glEnableVertexAttribArray(m_PositionAttributeHandle);
 
        glVertexAttribPointer(
            m_TextureCoordinateAttributeHandle,
            geometry.GetNumTexCoordElements(),
            GL_FLOAT,
            GL_FALSE,
            geometry.GetVertexStride(),
            geometry.GetTexCoords());
        glEnableVertexAttribArray(m_TextureCoordinateAttributeHandle);
    }
};
 

The TextureShader class inherits from the Shader class. The vertex shader code in the TextureShader 
class constructor contains two attributes and a varying. The position element of the vertex is passed straight 
through without modification to the built-in gl_Position variable, which receives the final transformed 
position of a vertex. The a_vTexCoord attribute is passed to the v_vTexCoord varying. Varyings are used to 
transfer interpolated data from vertex shaders to fragment shaders, so it’s important that both your vertex 
shader and your fragment shader contain a varying with the same type and name. OpenGL works out the 
plumbing behind the scenes to make sure the varying output from the vertex shader is passed to the same 
varying in the fragment shader.

The fragment shader contains a uniform. Uniforms are more like shader constants in that they’re set by 
a single call for each draw call, and every instance of the shader receives the same value. In this case, every 
instance of the fragment shader receives the same sampler ID to retrieve data from the same texture. This 
data is read using the texture2D function, which takes a sampler2D uniform and the v_vTexCoord varying. 
The texture-coordinate varying has been interpolated across the surface of a polygon, so the polygon is 
mapped using different texels from the texture data.

The TextureShader::Setup function is responsible for initializing the sampler state before each draw 
call. The texture unit you want to use is initialized using the glActiveTexture function. A texture is bound to 
this texture unit using glBindTexture, which is passed the ID of the OpenGL texture. The uniform binding 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

422

is somewhat unintuitive. glActiveTexture receives the constant value GL_TEXTURE0 as the value and not 
0. This allows the glActiveTexture call to associate the texture with the texture-image unit binding, but 
the fragment shader doesn’t use the same value; instead, it uses an index to the texture-image units. In this 
case, GL_TEXTURE0 can be found at index 0, so the value 0 is bound to the m_SamplerHandle uniform in the 
fragment shader.

The sampler parameters are then initialized for the bound texture. They’re set to clamp the texture in 
both directions. This would be useful for cases where you want to use values outside the normal range of 0 
to 1 for texture coordinates. It’s also possible to set up textures to wrap, repeat, or mirror in these cases. The 
next two options configure the settings for sampling textures when they’re minified or magnified on the 
screen. Minification happens when the texture is being applied to an object that takes up less screen space 
than the texture would at a 1-to-1 mapping. This could occur with a 512 × 512 texture that was being rendered 
onscreen at 256 × 256. Magnification occurs in the opposite case, where the texture is being rendered to an 
object that is taking up more screen space than the texture provides texels for. The linear mapping uses the 
four texels nearest to the sampling point to work out an average of the color to be applied to the fragment. 
This gives textures a less blocky appearance at the expense of blurring the texture slightly. The effect is more 
pronounced depending on how much minification or magnification is applied to the texture.

The TextureShader::Setup function then initializes the data streams for the vertex shader’s attribute 
fields. The vertex-position elements are bound to the m_PositionAttributeHandle location using the number 
of position elements from the geometry object as well as the stride from that location. After the attribute is 
initialized, it’s enabled with a call to glEnableVertexAttribArray. The m_TextureCoordinateAttributeHandle 
attribute is initialized using the same functions but with different data. The number of texture elements per 
vertex is retrieved from the geometry object, as is the texture coordinate stream. The stride of the data remains 
the same for both the vertex data and the texture data because they’re packed into the same stream in the  
array-of-structures format.

The code in Listing 14-11 brings all of this together and adds a main function to show how a texture and 
geometry can be initialized to render a quad to the screen that has a texture image applied.

Listing 14-11. The Textured Quad Program

#include "GL/glew.h"
#include "GLFW/glfw3.h"
#include <string>
#include <vector>
 
using namespace std;
 
class Geometry
{
public:
    using Vertices = vector < float >;
    using Indices = vector < unsigned short >;
 
private:
    Vertices m_Vertices;
    Indices m_Indices;
 
    unsigned int m_NumVertexPositionElements{};
    unsigned int m_NumTextureCoordElements{};
    unsigned int m_VertexStride{};
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

423

public:
    Geometry() = default;
    ~Geometry() = default;
 
    void SetVertices(const Vertices& vertices)
    {
        m_Vertices = vertices;
    }
 
    Vertices::size_type GetNumVertices() const
    {
        return m_Vertices.size();
    }
 
    Vertices::const_pointer GetVertices() const
    {
        return m_Vertices.data();
    }
 
    void SetIndices(const Indices& indices)
    {
        m_Indices = indices;
    }
 
    Indices::size_type GetNumIndices() const
    {
        return m_Indices.size();
    }
 
    Indices::const_pointer GetIndices() const
    {
        return m_Indices.data();
    }
 
    Vertices::const_pointer GetTexCoords() const
    {
         return static_cast<Vertices::const_pointer>(&m_Vertices 

[m_NumVertexPositionElements]);
    }
 
    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)
    {
        m_NumVertexPositionElements = numVertexPositionElements;
    }
 
    unsigned int GetNumVertexPositionElements() const
    {
        return m_NumVertexPositionElements;
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

424

    void SetNumTexCoordElements(unsigned int numTexCoordElements)
    {
        m_NumTextureCoordElements = numTexCoordElements;
    }
 
    unsigned int GetNumTexCoordElements() const
    {
        return m_NumTextureCoordElements;
    }
 
    void SetVertexStride(unsigned int vertexStride)
    {
        m_VertexStride = vertexStride;
    }
 
    unsigned int GetVertexStride() const
    {
        return m_VertexStride;
    }
};
 
class TGAFile
{
private:
#ifdef _MSC_VER
#pragma pack(push, 1)
#endif
    struct TGAHeader
    {
        unsigned char m_IdSize{};
        unsigned char m_ColorMapType{};
        unsigned char m_ImageType{};
 
        unsigned short m_PaletteStart{};
        unsigned short m_PaletteLength{};
        unsigned char m_PaletteBits{};
 
        unsigned short m_XOrigin{};
        unsigned short m_YOrigin{};
        unsigned short m_Width{};
        unsigned short m_Height{};
 
        unsigned char m_BytesPerPixel{};
        unsigned char m_Descriptor{};
    }
#ifndef _MSC_VER
    __attribute__ ((packed))
#endif // _MSC_VER
        ;
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

425

#ifdef _MSC_VER
#pragma pack(pop)
#endif
 
    std::vector<char> m_FileData;
 
    TGAHeader* m_pHeader{};
    void* m_pImageData{};
 
public:
    TGAFile(const std::string& filename)
    {
        std::ifstream fileStream{ filename, std::ios_base::binary };
        if (fileStream.is_open())
        {
            fileStream.seekg(0, std::ios::end);
            m_FileData.resize(static_cast<unsigned int>(fileStream.tellg()));
 
            fileStream.seekg(0, std::ios::beg);
            fileStream.read(m_FileData.data(), m_FileData.size());
 
            fileStream.close();
 
            m_pHeader = reinterpret_cast<TGAHeader*>(m_FileData.data());
            m_pImageData = static_cast<void*>(m_FileData.data() + sizeof(TGAHeader));
        }
    }
 
    unsigned short GetWidth() const
    {
        return m_pHeader->m_Width;
    }
 
    unsigned short GetHeight() const
    {
        return m_pHeader->m_Height;
    }
 
    unsigned char GetBytesPerPixel() const
    {
        return m_pHeader->m_BytesPerPixel;
    }
 
    unsigned int GetDataSize() const
    {
        return m_FileData.size() - sizeof(TGAHeader);
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

426

    void* GetImageData() const
    {
        return m_pImageData;
    }
};
 
class Texture
{
private:
    unsigned int m_Width{};
    unsigned int m_Height{};
    unsigned int m_BytesPerPixel{};
    unsigned int m_DataSize{};
 
    GLuint m_Id{};
     
    void* m_pImageData;
 
public:
    Texture(const TGAFile& tgaFile)
        : Texture(tgaFile.GetWidth(),
            tgaFile.GetHeight(),
            tgaFile.GetBytesPerPixel(),
            tgaFile.GetDataSize(),
            tgaFile.GetImageData())
    {
 
    }
 
    Texture(unsigned int width,
            unsigned int height,
            unsigned int bytesPerPixel,
            unsigned int dataSize,
            void* pImageData)
        : m_Width(width)
        , m_Height(height)
        , m_BytesPerPixel(bytesPerPixel)
        , m_DataSize(dataSize)
        , m_pImageData(pImageData)
    {
 
    }
 
    ~Texture() = default;
 
    GLuint GetId() const
    {
        return m_Id;
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

427

    void Init()
    {
        GLint packBits{ 4 };
        GLint internalFormat{ GL_RGBA };
        GLint format{ GL_BGRA };
 
        glGenTextures(1, &m_Id);
        glBindTexture(GL_TEXTURE_2D, m_Id);
        glPixelStorei(GL_UNPACK_ALIGNMENT, packBits);
        glTexImage2D(GL_TEXTURE_2D,
            0,
            internalFormat,
            m_Width,
            m_Height,
            0,
            format,
            GL_UNSIGNED_BYTE,
            m_pImageData);
    }
};
 
class Shader
{
private:
    void LoadShader(GLuint id, const std::string& shaderCode)
    {
        const unsigned int NUM_SHADERS{ 1 };
 
        const char* pCode{ shaderCode.c_str() };
        GLint length{ static_cast<GLint>(shaderCode.length()) };
 
        glShaderSource(id, NUM_SHADERS, &pCode, &length);
 
        glCompileShader(id);
 
        glAttachShader(m_ProgramId, id);
    }
 
protected:
    GLuint m_VertexShaderId{ GL_INVALID_VALUE };
    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };
    GLint m_ProgramId{ GL_INVALID_VALUE };
 
    std::string m_VertexShaderCode;
    std::string m_FragmentShaderCode;
 
public:
    Shader() = default;
    virtual ~Shader() = default;
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

428

    virtual void Link()
    {
        m_ProgramId = glCreateProgram();
 
        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);
        LoadShader(m_VertexShaderId, m_VertexShaderCode);
 
        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);
 
        glLinkProgram(m_ProgramId);
    }
 
    virtual void Setup(const Geometry& geometry)
    {
        glUseProgram(m_ProgramId);
    }
};
 
class TextureShader
    : public Shader
{
private:
    const Texture& m_Texture;
 
    GLint m_PositionAttributeHandle;
    GLint m_TextureCoordinateAttributeHandle;
    GLint m_SamplerHandle;
 
public:
    TextureShader(const Texture& texture)
        : m_Texture(texture)
    {
        m_VertexShaderCode =
            "attribute  vec4 a_vPosition;                   \n"
            "attribute  vec2 a_vTexCoord;                   \n"
            "varying    vec2 v_vTexCoord;                   \n"
            "                                               \n"
            "void main() {                                  \n"
            "   gl_Position = a_vPosition;                  \n"
            "   v_vTexCoord = a_vTexCoord;                  \n"
            "}                                              \n";
 
        m_FragmentShaderCode =
            "#version 150                                   \n"
            "                                               \n"
            "precision highp float;                         \n"
            "varying vec2 v_vTexCoord;                      \n"
            "uniform sampler2D s_2dTexture;                 \n"
            "                                               \n"



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

429

            "void main() {                                  \n"
            "   gl_FragColor =                              \n"
            "       texture2D(s_2dTexture, v_vTexCoord);    \n"
            "}                                              \n";
    }
 
    ~TextureShader() override = default;
 
    void Link() override
    {
        Shader::Link();
 
        m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId, "a_vPosition");
        m_TextureCoordinateAttributeHandle = glGetAttribLocation(m_ProgramId, "a_vTexCoord");
 
        m_SamplerHandle = glGetUniformLocation(m_ProgramId, "s_2dTexture");
    }
 
    void Setup(const Geometry& geometry) override
    {
        Shader::Setup(geometry);
 
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, m_Texture.GetId());
        glUniform1i(m_SamplerHandle, 0);
 
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
 
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 
        glVertexAttribPointer(
            m_PositionAttributeHandle,
            geometry.GetNumVertexPositionElements(),
            GL_FLOAT,
            GL_FALSE,
            geometry.GetVertexStride(),
            geometry.GetVertices());
        glEnableVertexAttribArray(m_PositionAttributeHandle);
 
        glVertexAttribPointer(
            m_TextureCoordinateAttributeHandle,
            geometry.GetNumTexCoordElements(),
            GL_FLOAT,
            GL_FALSE,
            geometry.GetVertexStride(),
            geometry.GetTexCoords());
        glEnableVertexAttribArray(m_TextureCoordinateAttributeHandle);
    }
};
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

430

int CALLBACK WinMain(
    _In_  HINSTANCE hInstance,
    _In_  HINSTANCE hPrevInstance,
    _In_  LPSTR lpCmdLine,
    _In_  int nCmdShow
    )
{
    GLFWwindow* window;
 
    // Initialize the library
    if (!glfwInit())
    {
        return -1;
    }
 
    // Create a windowed mode window and its OpenGL context
    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
    if (!window)
    {
        glfwTerminate();
        return -1;
    }
 
    // Make the window's context current
    glfwMakeContextCurrent(window);
 
    GLenum glewError{ glewInit() };
    if (glewError != GLEW_OK)
    {
        return -1;
    }
 
    TGAFile myTextureFile("MyTexture.tga");
    Texture myTexture(myTextureFile);
    myTexture.Init();
 
    TextureShader textureShader(myTexture);
    textureShader.Link();
 
    Geometry quad;
 
    Geometry::Vertices vertices{
        -0.5f, 0.5f, 0.0f,
        0.0f, 1.0f,
        0.5f, 0.5f, 0.0f,
        1.0f, 1.0f,
        -0.5f, -0.5f, 0.0f,
        0.0f, 0.0f,
        0.5f, -0.5f, 0.0f,
        1.0f, 0.0f
    };
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

431

    Geometry::Indices indices{ 0, 2, 1, 2, 3, 1 };
 
    quad.SetVertices(vertices);
    quad.SetIndices(indices);
    quad.SetNumVertexPositionElements(3);
    quad.SetNumTexCoordElements(2);
    quad.SetVertexStride(sizeof(float) * 5);
 
    glClearColor(0.25f, 0.25f, 0.95f, 1.0f);
 
    // Loop until the user closes the window
    while (!glfwWindowShouldClose(window))
    {
        glClear(GL_COLOR_BUFFER_BIT);
 
        textureShader.Setup(quad);
 
        glDrawElements(GL_TRIANGLES,
            quad.GetNumIndices(),
            GL_UNSIGNED_SHORT,
            quad.GetIndices());
 
        // Swap front and back buffers
        glfwSwapBuffers(window);
 
        // Poll for and process events
        glfwPollEvents();
    }
 
    glfwTerminate();
    return 0;
}
 

The full source for the program in Listing 14-11 shows how all the classes introduced in this recipe  
can be brought together to render a single textured quad. The TGAFile class is initialized to load the 
MyTexture.tga file. This is passed to the myTexture object, which is of type Texture. The Texture::Init 
function is called to initialize the OpenGL texture object. The initialized texture is in turn passed to an 
instance of the TextureShader class, which creates, initializes, and links an OpenGL shader program that 
can be used to render 2D textured geometry. The geometry is then created; the vertices specified include 
three position elements and two texture-coordinate elements for each vertex. OpenGL uses four vertices 
and six indices to render a quad made from two triangles. The vertices at indices 1 and 2 are shared by both 
triangles; you can see how indices can be used to reduce the required geometry definitions for the mesh. 
There’s another optimization advantage here: many modern CPUs cache the results from already-processed 
vertices, so you can read reused vertex data from a cache rather than have the GPU reprocess it.

The actual rendering is trivial after all the setup work is done. There are calls to clear the frame buffer, 
set up the shader, draw the elements, swap the buffers, and poll for operating system events. Figure 14-2 
shows what the output from this program looks like when everything is complete and working properly.



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

432

14-4. Loading Geometry from a File

Problem
You would like to be able to load mesh data from files created by artists on your team.

Solution
C++ allows you to write code that can load many different file formats. This recipe shows you how to load 
Wavefront .obj files.

How It Works
The .obj file format was initially developed by Wavefront Technologies. It can be exported from many  
3D modelling programs and is a simple text-based format, making it an ideal intermediary for learning how 
to import 3D data. The OBJFile class in Listing 14-12 shows how to load an .obj file from a source file.

Listing 14-12. Loading an .obj File

class OBJFile
{
public:
    using Vertices = vector < float > ;
    using TextureCoordinates = vector < float > ;
    using Normals = vector < float > ;
    using Indices = vector < unsigned short > ;
 

Figure 14-2. Output showing a textured quad rendered using OpenGL



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

433

private:
    Vertices m_VertexPositions;
    TextureCoordinates m_TextureCoordinates;
    Normals m_Normals;
 
    Indices m_Indices;
 
public:
    OBJFile(const std::string& filename)
    {
        std::ifstream fileStream{ filename, std::ios_base::in };
        if (fileStream.is_open())
        {
            while (!fileStream.eof())
            {
                std::string line;
                getline(fileStream, line);
 
                stringstream lineStream{ line };
                 
                std::string firstSymbol;
                lineStream >> firstSymbol;
 
                if (firstSymbol == "v")
                {
                    float vertexPosition{};
 
                    for (unsigned int i = 0; i < 3; ++i)
                    {
                        lineStream >> vertexPosition;
                        m_VertexPositions.emplace_back(vertexPosition);
                    }
                }
                else if (firstSymbol == "vt")
                {
                    float textureCoordinate{};
 
                    for (unsigned int i = 0; i < 2; ++i)
                    {
                        lineStream >> textureCoordinate;
                        m_TextureCoordinates.emplace_back(textureCoordinate);
                    }
                }
                else if (firstSymbol == "vn")
                {
                    float normal{};
 
                    for (unsigned int i = 0; i < 3; ++i)
                    {
                        lineStream >> normal;
                        m_Normals.emplace_back(normal);
                    }
                }



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

434

                else if (firstSymbol == "f")
                {
                    char separator;
                    unsigned short index{};
 
                    for (unsigned int i = 0; i < 3; ++i)
                    {
                        for (unsigned int j = 0; j < 3; ++j)
                        {
                            lineStream >> index;
                            m_Indices.emplace_back(index);
 
                            if (j < 2)
                            {
                                lineStream >> separator;
                            }
                        }
                    }
                }
            }
        }
    }
 
    const Vertices& GetVertices() const
    {
        return m_VertexPositions;
    }
 
    const TextureCoordinates& GetTextureCoordinates() const
    {
        return m_TextureCoordinates;
    }
 
    const Normals& GetNormals() const
    {
        return m_Normals;
    }
 
    const Indices& GetIndices() const
    {
        return m_Indices;
    }
};
 

This code shows how to read data from an .obj file. The .obj data is stored in lines. A line that 
represents a vertex position starts with the letter v and contains three floating-point numbers representing 
the x, y, and z displacement of a vertex. A line beginning with vt contains a texture coordinate and the two 
floating-point numbers represent the u and v components of the texture coordinate. The vn lines represent 
vertex normals and contains the x, y, and z components of the vertex normal. The last type of line you’re 
interested in begins with an n and represents the indices for a triangle. Each vertex is represented in the face 
using three numbers: an index into the list of vertex positions, an index into the texture coordinates, and an 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

435

index into the vertex normals. All of this data is loaded into the four vectors in the class; there are accessors 
to retrieve the data from the class. The Geometry class in Listing 14-13 has a constructor that can take a 
reference to an OBJFile object and create a mesh that OpenGL can render.

Listing 14-13. The Geometry Class

class Geometry
{
public:
    using Vertices = vector < float >;
    using Indices = vector < unsigned short >;
 
private:
    Vertices m_Vertices;
    Indices m_Indices;
 
    unsigned int m_NumVertexPositionElements{};
    unsigned int m_NumTextureCoordElements{};
    unsigned int m_VertexStride{};
 
public:
    Geometry() = default;
    Geometry(const OBJFile& objFile)
    {
        const OBJFile::Indices& objIndices{ objFile.GetIndices() };
 
        const OBJFile::Vertices& objVertexPositions{ objFile.GetVertices() };
        const OBJFile::TextureCoordinates& objTextureCoordinates{
            objFile.GetTextureCoordinates() };
 
        for (unsigned int i = 0; i < objIndices.size(); i += 3U)
        {
            m_Indices.emplace_back(i / 3);
 
            const Indices::value_type index{ objIndices[i] - 1U };
            const unsigned int vertexPositionIndex{ index * 3U };
 
            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex]);
            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+1]);
            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+2]);
 
            const OBJFile::TextureCoordinates::size_type texCoordObjIndex{
                objIndices[i + 1] - 1U };
            const unsigned int textureCoodsIndex{ texCoordObjIndex * 2U };
 
            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex]);
            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex+1]);
        }
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

436

    ~Geometry() = default;
 
    void SetVertices(const Vertices& vertices)
    {
        m_Vertices = vertices;
    }
 
    Vertices::size_type GetNumVertices() const
    {
        return m_Vertices.size();
    }
 
    Vertices::const_pointer GetVertices() const
    {
        return m_Vertices.data();
    }
 
    void SetIndices(const Indices& indices)
    {
        m_Indices = indices;
    }
 
    Indices::size_type GetNumIndices() const
    {
        return m_Indices.size();
    }
 
    Indices::const_pointer GetIndices() const
    {
        return m_Indices.data();
    }
 
    Vertices::const_pointer GetTexCoords() const
    {
        return static_cast<Vertices::const_pointer>(&m_Vertices[m_NumVertexPositionElements]);
    }
 
    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)
    {
        m_NumVertexPositionElements = numVertexPositionElements;
    }
 
    unsigned int GetNumVertexPositionElements() const
    {
        return m_NumVertexPositionElements;
    }
 
    void SetNumTexCoordElements(unsigned int numTexCoordElements)
    {
        m_NumTextureCoordElements = numTexCoordElements;
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

437

    unsigned int GetNumTexCoordElements() const
    {
        return m_NumTextureCoordElements;
    }
 
    void SetVertexStride(unsigned int vertexStride)
    {
        m_VertexStride = vertexStride;
    }
 
    unsigned int GetVertexStride() const
    {
        return m_VertexStride;
    }
};
 

Listing 14-13 contains a constructor for the Geometry class that can build the geometry for OpenGL 
from an OBJFile instance. The OBJFile::m_Indices vector contains three indices per OpenGL vertex. The 
Geometry class for this recipe is only concerned with the vertex-position index and the texture-coordinate 
index, but the for loop is still configured to skip ahead three indices for each iteration. The vertex index for 
the Geometry object is the obj index divided by 3; the current vertex is constructed from the data obtained by 
looking up the obj vertex positions and texture coordinates for the given obj index obtained in each iteration 
of the for loop. The vertex indices and texture-coordinate indices in the .obj file start at 1 and not 0, so  
1 is subtracted from each index to get the correct vector index. This index is then multiplied by 3 for  
vertex -position indices or 2 for texture-coordinate indices, because there are three elements per vertex 
position and two elements per texture coordinate read in from the original .obj file. By the end of the loop, 
you have a Geometry object with the vertex and texture-coordinate data loaded from the file. The code in 
Listing 14-14 shows how you can use these classes in a program to render a textured sphere that has been 
created and exported using the Blender 3D modelling package.

Note ■  Most of the recipes in this book are self-contained, but the OpenGL API covers a lot of code that is 

necessary to carry out seemingly simple tasks. Listing 14-14 contains the Texture, Shader, and TextureShader 

classes covered in Recipe 14-3.

Listing 14-14. Rendering a Textured Sphere

#include <cassert>
#include <fstream>
#include "GL/glew.h"
#include "GLFW/glfw3.h"
#include <memory>
#include <sstream>
#include <string>
#include <vector>
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

438

using namespace std;
 
class OBJFile
{
public:
    using Vertices = vector < float > ;
    using TextureCoordinates = vector < float > ;
    using Normals = vector < float > ;
    using Indices = vector < unsigned short > ;
 
private:
    Vertices m_VertexPositions;
    TextureCoordinates m_TextureCoordinates;
    Normals m_Normals;
 
    Indices m_Indices;
 
public:
    OBJFile(const std::string& filename)
    {
        std::ifstream fileStream{ filename, std::ios_base::in };
        if (fileStream.is_open())
        {
            while (!fileStream.eof())
            {
                std::string line;
                getline(fileStream, line);
 
                stringstream lineStream{ line };
                 
                std::string firstSymbol;
                lineStream >> firstSymbol;
 
                if (firstSymbol == "v")
                {
                    float vertexPosition{};
 
                    for (unsigned int i = 0; i < 3; ++i)
                    {
                        lineStream >> vertexPosition;
                        m_VertexPositions.emplace_back(vertexPosition);
                    }
                }
                else if (firstSymbol == "vt")
                {
                    float textureCoordinate{};
 
                    for (unsigned int i = 0; i < 2; ++i)
                    {
                        lineStream >> textureCoordinate;
                        m_TextureCoordinates.emplace_back(textureCoordinate);
                    }
                }



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

439

                else if (firstSymbol == "vn")
                {
                    float normal{};
 
                    for (unsigned int i = 0; i < 3; ++i)
                    {
                        lineStream >> normal;
                        m_Normals.emplace_back(normal);
                    }
                }
                else if (firstSymbol == "f")
                {
                    char separator;
                    unsigned short index{};
 
                    for (unsigned int i = 0; i < 3; ++i)
                    {
                        for (unsigned int j = 0; j < 3; ++j)
                        {
                            lineStream >> index;
                            m_Indices.emplace_back(index);
 
                            if (j < 2)
                            {
                                lineStream >> separator;
                            }
                        }
                    }
                }
            }
        }
    }
 
    const Vertices& GetVertices() const
    {
        return m_VertexPositions;
    }
 
    const TextureCoordinates& GetTextureCoordinates() const
    {
        return m_TextureCoordinates;
    }
 
    const Normals& GetNormals() const
    {
        return m_Normals;
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

440

    const Indices& GetIndices() const
    {
        return m_Indices;
    }
};
 
class Geometry
{
public:
    using Vertices = vector < float >;
    using Indices = vector < unsigned short >;
 
private:
    Vertices m_Vertices;
    Indices m_Indices;
 
    unsigned int m_NumVertexPositionElements{};
    unsigned int m_NumTextureCoordElements{};
    unsigned int m_VertexStride{};
 
public:
    Geometry() = default;
    Geometry(const OBJFile& objFile)
    {
        const OBJFile::Indices& objIndices{ objFile.GetIndices() };
 
        const OBJFile::Vertices& objVertexPositions{ objFile.GetVertices() };
        const OBJFile::TextureCoordinates& objTextureCoordinates{
            objFile.GetTextureCoordinates() };
 
        for (unsigned int i = 0; i < objIndices.size(); i += 3U)
        {
            m_Indices.emplace_back(i / 3);
 
            const Indices::value_type index{ objIndices[i] - 1U };
            const unsigned int vertexPositionIndex{ index * 3U };
 
            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex]);
            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+1]);
            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+2]);
 
            const OBJFile::TextureCoordinates::size_type texCoordObjIndex{
                objIndices[i + 1] - 1U };
            const unsigned int textureCoodsIndex{ texCoordObjIndex * 2U };
 
            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex]);
            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex+1]);
        }
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

441

    ~Geometry() = default;
 
    void SetVertices(const Vertices& vertices)
    {
        m_Vertices = vertices;
    }
 
    Vertices::size_type GetNumVertices() const
    {
        return m_Vertices.size();
    }
 
    Vertices::const_pointer GetVertices() const
    {
        return m_Vertices.data();
    }
 
    void SetIndices(const Indices& indices)
    {
        m_Indices = indices;
    }
 
    Indices::size_type GetNumIndices() const
    {
        return m_Indices.size();
    }
 
    Indices::const_pointer GetIndices() const
    {
        return m_Indices.data();
    }
 
    Vertices::const_pointer GetTexCoords() const
    {
         return static_cast<Vertices::const_pointer>(&m_Vertices 

[m_NumVertexPositionElements]);
    }
 
    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)
    {
        m_NumVertexPositionElements = numVertexPositionElements;
    }
 
    unsigned int GetNumVertexPositionElements() const
    {
        return m_NumVertexPositionElements;
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

442

    void SetNumTexCoordElements(unsigned int numTexCoordElements)
    {
        m_NumTextureCoordElements = numTexCoordElements;
    }
 
    unsigned int GetNumTexCoordElements() const
    {
        return m_NumTextureCoordElements;
    }
 
    void SetVertexStride(unsigned int vertexStride)
    {
        m_VertexStride = vertexStride;
    }
 
    unsigned int GetVertexStride() const
    {
        return m_VertexStride;
    }
};
 
class TGAFile
{
private:
#ifdef _MSC_VER
#pragma pack(push, 1)
#endif
    struct TGAHeader
    {
        unsigned char m_IdSize{};
        unsigned char m_ColorMapType{};
        unsigned char m_ImageType{};
 
        unsigned short m_PaletteStart{};
        unsigned short m_PaletteLength{};
        unsigned char m_PaletteBits{};
 
        unsigned short m_XOrigin{};
        unsigned short m_YOrigin{};
        unsigned short m_Width{};
        unsigned short m_Height{};
 
        unsigned char m_BytesPerPixel{};
        unsigned char m_Descriptor{};
    }
#ifndef _MSC_VER
    __attribute__ ((packed))
#endif // _MSC_VER
        ;
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

443

#ifdef _MSC_VER
#pragma pack(pop)
#endif
 
    std::vector<char> m_FileData;
 
    TGAHeader* m_pHeader{};
    void* m_pImageData{};
 
public:
    TGAFile(const std::string& filename)
    {
        std::ifstream fileStream{ filename, std::ios_base::binary };
        if (fileStream.is_open())
        {
            fileStream.seekg(0, std::ios::end);
            m_FileData.resize(static_cast<unsigned int>(fileStream.tellg()));
 
            fileStream.seekg(0, std::ios::beg);
            fileStream.read(m_FileData.data(), m_FileData.size());
 
            fileStream.close();
 
            m_pHeader = reinterpret_cast<TGAHeader*>(m_FileData.data());
            m_pImageData = static_cast<void*>(m_FileData.data() + sizeof(TGAHeader));
        }
    }
 
    unsigned short GetWidth() const
    {
        return m_pHeader->m_Width;
    }
 
    unsigned short GetHeight() const
    {
        return m_pHeader->m_Height;
    }
 
    unsigned char GetBytesPerPixel() const
    {
        return m_pHeader->m_BytesPerPixel;
    }
 
    unsigned int GetDataSize() const
    {
        return m_FileData.size() - sizeof(TGAHeader);
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

444

    void* GetImageData() const
    {
        return m_pImageData;
    }
};
 
class Texture
{
private:
    unsigned int m_Width{};
    unsigned int m_Height{};
    unsigned int m_BytesPerPixel{};
    unsigned int m_DataSize{};
 
    GLuint m_Id{};
     
    void* m_pImageData;
 
public:
    Texture(const TGAFile& tgaFile)
        : Texture(tgaFile.GetWidth(),
            tgaFile.GetHeight(),
            tgaFile.GetBytesPerPixel(),
            tgaFile.GetDataSize(),
            tgaFile.GetImageData())
    {
 
    }
 
    Texture(unsigned int width,
            unsigned int height,
            unsigned int bytesPerPixel,
            unsigned int dataSize,
            void* pImageData)
        : m_Width(width)
        , m_Height(height)
        , m_BytesPerPixel(bytesPerPixel)
        , m_DataSize(dataSize)
        , m_pImageData(pImageData)
    {
 
    }
 
    ~Texture() = default;
 
    GLuint GetId() const
    {
        return m_Id;
    }
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

445

    void Init()
    {
        GLint packBits{ 4 };
        GLint internalFormat{ GL_RGBA };
        GLint format{ GL_BGRA };
 
        glGenTextures(1, &m_Id);
        glBindTexture(GL_TEXTURE_2D, m_Id);
        glPixelStorei(GL_UNPACK_ALIGNMENT, packBits);
        glTexImage2D(GL_TEXTURE_2D,
            0,
            internalFormat,
            m_Width,
            m_Height,
            0,
            format,
            GL_UNSIGNED_BYTE,
            m_pImageData);
    }
};
 
class Shader
{
private:
    void LoadShader(GLuint id, const std::string& shaderCode)
    {
        const unsigned int NUM_SHADERS{ 1 };
 
        const char* pCode{ shaderCode.c_str() };
        GLint length{ static_cast<GLint>(shaderCode.length()) };
 
        glShaderSource(id, NUM_SHADERS, &pCode, &length);
 
        glCompileShader(id);
 
        glAttachShader(m_ProgramId, id);
    }
 
protected:
    GLuint m_VertexShaderId{ GL_INVALID_VALUE };
    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };
    GLint m_ProgramId{ GL_INVALID_VALUE };
 
    std::string m_VertexShaderCode;
    std::string m_FragmentShaderCode;
 
public:
    Shader() = default;
    virtual ~Shader() = default;
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

446

    virtual void Link()
    {
        m_ProgramId = glCreateProgram();
 
        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);
        LoadShader(m_VertexShaderId, m_VertexShaderCode);
 
        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);
 
        glLinkProgram(m_ProgramId);
    }
 
    virtual void Setup(const Geometry& geometry)
    {
        glUseProgram(m_ProgramId);
    }
};
 
class TextureShader
    : public Shader
{
private:
    const Texture& m_Texture;
 
    GLint m_PositionAttributeHandle;
    GLint m_TextureCoordinateAttributeHandle;
    GLint m_SamplerHandle;
 
public:
    TextureShader(const Texture& texture)
        : m_Texture(texture)
    {
        m_VertexShaderCode =
            "attribute  vec4 a_vPosition;                   \n"
            "attribute  vec2 a_vTexCoord;                   \n"
            "varying    vec2 v_vTexCoord;                   \n"
            "                                               \n"
            "void main() {                                  \n"
            "   gl_Position = a_vPosition;                  \n"
            "   v_vTexCoord = a_vTexCoord;                  \n"
            "}                                              \n";
 
        m_FragmentShaderCode =
            "#version 150                                   \n"
            "                                               \n"
            "varying vec2 v_vTexCoord;                      \n"
            "uniform sampler2D s_2dTexture;                 \n"
            "                                               \n"



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

447

            "void main() {                                  \n"
            "   gl_FragColor =                              \n"
            "       texture2D(s_2dTexture, v_vTexCoord);    \n"
            "}                                              \n";
    }
 
    ~TextureShader() override = default;
 
    void Link() override
    {
        Shader::Link();
 
        m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId, "a_vPosition");
         m_TextureCoordinateAttributeHandle = glGetAttribLocation(m_ProgramId,  

"a_vTexCoord");
 
        m_SamplerHandle = glGetUniformLocation(m_ProgramId, "s_2dTexture");
    }
 
    void Setup(const Geometry& geometry) override
    {
        Shader::Setup(geometry);
 
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, m_Texture.GetId());
        glUniform1i(m_SamplerHandle, 0);
 
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 
        glVertexAttribPointer(
            m_PositionAttributeHandle,
            geometry.GetNumVertexPositionElements(),
            GL_FLOAT,
            GL_FALSE,
            geometry.GetVertexStride(),
            geometry.GetVertices());
        glEnableVertexAttribArray(m_PositionAttributeHandle);
 
        glVertexAttribPointer(
            m_TextureCoordinateAttributeHandle,
            geometry.GetNumTexCoordElements(),
            GL_FLOAT,
            GL_FALSE,
            geometry.GetVertexStride(),
            geometry.GetTexCoords());
        glEnableVertexAttribArray(m_TextureCoordinateAttributeHandle);
    }
};
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

448

int main(void)
{
    GLFWwindow* window;
 
    // Initialize the library
    if (!glfwInit())
    {
        return -1;
    }
 
    glfwWindowHint(GLFW_RED_BITS, 8);
    glfwWindowHint(GLFW_GREEN_BITS, 8);
    glfwWindowHint(GLFW_BLUE_BITS, 8);
    glfwWindowHint(GLFW_DEPTH_BITS, 8);
    glfwWindowHint(GLFW_DOUBLEBUFFER, true);
 
    // Create a windowed mode window and its OpenGL context
    window = glfwCreateWindow(480, 480, "Hello World", NULL, NULL);
    if (!window)
    {
        glfwTerminate();
        return -1;
    }
 
    // Make the window's context current
    glfwMakeContextCurrent(window);
 
    GLenum glewError{ glewInit() };
    if (glewError != GLEW_OK)
    {
        return -1;
    }
 
    TGAFile myTextureFile("earthmap.tga");
    Texture myTexture(myTextureFile);
    myTexture.Init();
 
    TextureShader textureShader(myTexture);
    textureShader.Link();
 
    OBJFile objSphere("sphere.obj");
    Geometry sphere(objSphere);
 
    sphere.SetNumVertexPositionElements(3);
    sphere.SetNumTexCoordElements(2);
    sphere.SetVertexStride(sizeof(float) * 5);
 
    glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
     
    glEnable(GL_CULL_FACE);
    glCullFace(GL_BACK);
 
    glEnable(GL_DEPTH_TEST);
 



CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

449

    // Loop until the user closes the window
    while (!glfwWindowShouldClose(window))
    {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 
        textureShader.Setup(sphere);
 
        glDrawElements(GL_TRIANGLES,
            sphere.GetNumIndices(),
            GL_UNSIGNED_SHORT,
            sphere.GetIndices());
 
        // Swap front and back buffers
        glfwSwapBuffers(window);
 
        // Poll for and process events
        glfwPollEvents();
    }
 
    glfwTerminate();
    return 0;
}
 

Listing 14-14 shows how to load and render an .obj file using the classes covered in this recipe and in 
Recipe 14-3. There are some differences in how the window is created in this recipe. The glfwWindowHint 
function specifies some of the parameters that you wish the frame buffer for the application to possess. The 
most important here is the depth buffer. A depth buffer works on modern GPUs by storing the normalized 
device coordinate of the z component from a polygon at each fragment position during rendering. You can 
then use a depth test to allow or disallow new color writes to the frame buffer during rendering. This is useful 
when rendering your sphere to ensure that the pixels rendered at the rear of the sphere don’t overwrite the 
colors for the fragments at the front of the sphere.

Face culling is also enabled to ensure that you see only the front faces of each polygon. Polygons can have 
two sides: front and back. OpenGL determines whether a polygon is front facing or back facing depending on 
the winding order of the vertices. By default, OpenGL determines that polygons whose vertices are specified 
in counterclockwise order are facing the front and polygons whose vertices are specified in clockwise order 
are facing the back. This can change when an object is rotating, so OpenGL can drop polygons early when 
they aren’t facing toward the camera. You can change the winding order of a front-facing polygon using the 
glFrontFace function if you wish.

The earthmap.tga texture obtained from http://planetpixelemporium.com/earth.html is loaded to 
give the sphere the appearance of the planet Earth; the sphere itself is loaded from a file named sphere.obj. 
You enable front-face culling by calling glEnable and passing the GL_CULL_FACE constant; the face to be culled 
is specified by calling glCullFace. The depth test is enabled by calling glEnable and passing GL_DEPTH_TEST; 
and the glClear call is passed GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT to ensure that the color buffer 
and the depth buffer are both cleared at the beginning of each rendered frame.

Compiling and running the code supplied along with the data from this book’s accompanying web site 
result in a program that renders the planet Earth as shown in Figure 14-3.

http://planetpixelemporium.com/earth.html


CHAPTER 14 ■ 3D GRAPHICS PROGRAMMING

450

Figure 14-3. The rendered planet Earth generated by the code in Listing 14-14



451

A���������
apt-get command, 3

B���������
Berkeley Sockets

OS X application, 309
ai_family ield, 312
ai_socktype ield, 312
code implementation, 311
Command Line Tool, 310
DNS, 312
getaddrinfo function, 312
socket function, 313
Xcode IDE, 309

send and receive functions, 323
Accept method, 330
Bind method, 330
client code implementation, 337
Close method, 330
code implementation, 331
Connect method, 342
IsValid method, 330
Listen method, 330
Receive method, 330
Socket class, 325, 329
WinsockWrapper, 336
WinsockWrapper class, 325
Wrapping Winsock, 324

Ubuntu, Eclipse, 313
ai_socktype ield, 317
C++11 support, 315
code implementation, 316
C++ Project settings window, 314
getaddrinfo function, 317
Google HTTP web server, 316
IP address, 317
socket function, 318

Bitwise operators
<< and >> operators, 97
& (bitwise and) operator, 94–95
| (bitwise or) operator, 95
^ (exclusive or) operator, 96

boost: :format function, 16
break command, 10–11
breakpoint command, 14

C���������
Cache lines, 244
clang command, 4, 6
Clang compiler, 18
Classes

access modiiers, 108
class deinitions, 103
copy constructor and  

assignment operator, 121
deep copy, 125
disallow, 121
explicit, 120
implicit, 119
shallow copy, 123

destructors, 115
initialization

constructors, 113
member variable, 111

member methods, 106
member variable, 104
move constructor and  

assignment  
operator, 127

Comma Separated Values (.csv) ile, 68
Compile time constant

constexpr constructor, 29
constexpr function, 28, 30
constexpr keyword, 28
constexpr variable, 28

Index



■฀INDEX

452

Concurrent programming
condition_variable

notify_all method, 290
reference_wrapper template, 290
threads communication, 286
hreadTask function, 290
try_lock method, 290
wait method, 290

double-bufered message queue
BeginConsumption method, 307
class deinition, 297
Consume method, 299
currentSwapCount variable, 307
main function, 304
message queue, action, 299
* operator, 307
RunningTotal class, 304
Swap method, 299
Task function, 306

mutex
data race, 276
lock_guard class, 282
MyManagedObject class, 279

promise and future objects
async function, 294
data storage, 291
Factorial function, 292
get_future method, 292
HTTP requests, 291
packaged_task, 293
promise template, 291
set_value method, 292–293
system_clock: :now method, 293
hreadTask function, 293
wait_until method, 293

threads
creation, 261
data race, 271
detach method, 264
join method, 262
memory-pool functions, 272
MyManagedObject instances, 268
static vector, 265
thread: :hardware_concurrency method, 259
hreadTask function, 262–263

continue command, 12
count function, 188
count_if function, 189–191
C++ programming language, 1

boost library, 15
code implementation, 7
compilation modes, 14–15

debugging
Cygwin/Linux, 9
OS X operating system, 13

GDB, 9, 11–12
HelloWorld.cpp ile, 8
LLDB debugger, 13–14
OS X, 6–7
text editor, 2
Ubuntu operating system, 3
Windows operating system, 5

Current date and time
comparing times, 41
count method, 41
system_clock: :now method, 40–41
time_point structure, 40

Cygwin, 35

D, E���������
Data race, 271, 276
3D graphics

GLFW
code implementation, 399
glewInit function, 401
glfwCreateWindow function, 400
glfwPollEvents function, 400
glfwSwapBufers function, 400
glfwTerminate function, 400
OpenGL API, 401
overview, 399

OBJFile class
earthmap.tga texture, 449
face culling, 449
Geometry class, 435
glfwWindowHint function, 449
load data, 432
rendering textured sphere, 437

rendering triangle
attribute, 406
BasicShader class, 405
code implementation, 406
Geometry class, 402
glClearColor function, 411
glDrawElements function, 411
glewInit function, 411
LoadShader method, 405
Shader class, 403

textured quad
code implementation, 422
Geometry class, 413
GetTexCoords method, 415
ifstream object, 417



■฀INDEX

453

Init method, 418
mapping, 413
Texture class, 417
TextureShader class, 419
TGAFile class, 415, 431
TGAHeader ields, 417

Domain name service (DNS), 312
Dynamically typed languages, 370

F���������
Face culling, 449
inal keyword, 144–146
ind function, 191–192
inish command, 11, 14
for_each function, 182
for loop, 178
frame variable command, 13

G���������
GLEW library, 401
GL Shading Language (GLSL), 406

pixels, 412
texels, 412

H���������
Hashing data, 209
help command, 12, 14

I, J, K���������
info command, 12
Inheritance

base class, 133–135
interface creation, 147
member variables and methods

private access speciier, 137
protected access speciier, 138
public access speciier, 135

method hiding, 139–141
method overriding, 144
multiple, 149
virtual keyword, 142

Initializer lists
construct vector, uniform initialization, 21
explicit usage, 22
vector constructor, 20

Interface, 147
IsGreater function, 194

L���������
Lambdas

array into vector, 38
array values, 31
autokeyword as parameter, 38
capture block, 31, 33
closure in a variable, 32
Cygwin, 35
function template, 33
mutable closure, 37
myCopy by value, 34
typeid, 32

LLDB debugger, 14
Logical operators

&& operator, 90
|| operator, 91

Lua
C++ function

code implementation, 378
constructor class, 380
destructor class, 380
LuaCode1.lua, 380
LuaFunction: :Call method, 381
LuaFunction class, 380, 386
Lua: :GetGlobal function, 381
Lua: :GetReturnValue  

function, 386
Lua: :PCall method, 381
Lua: :SetTableValue method, 385
LuaTable class, 381

C functions, 387
coroutines

code implementation, 392
LuaCode4.lua ile, 396
lua_newthread function, 392
Lua: :Resume method, 396
Luahread class, 396
m_Ishread bool, 396

CreateCFunction, 392
low control

break statement, 376
elseif statement, 375
else statement, 375
for loop statement, 377
if statement, 375
if…then statement, 375
ipairs function, 377
pairs function, 377
while loop statement, 376
while statement, 376



■฀INDEX

454

functions
ChangeName function, 372
deinition, 371
GetValue function, 372
return function, 373

library project
in Eclipse, 365
in Visual studio, 361

tables
associative array, 373
creation, 373
C-style arrays, 374
insert function, 374
# operator, 374
remove function, 374
remove objects, 373

variables
arithmetic operators, 371
dynamically typed language., 369
loating-point numbers, 371
number to a non-numeric string, 370
number to a string, 370

in Xcode project, 367
lvalue and rvalue references, 42

copy constructor, 44
default keyword, 50
move constructor, 46
move semantics, 43
performance beneits, 48
static counter, 43

M���������
Memory, 213

array new and delete functions, 238
delete function, 238
fragmentation problems (see Page class)
GetCount method, 229
heap memory, 218

array new and delete operators, 220
delete operator, 219
dereference operator, 219
new and delete operators, 219
pointer, 219

high-resolution timer
chrono: :duration_cast, 243
chrono: :system_clock struct, 243
duration_cast, 244
RunTest function, 244

memory-access patterns, performance, 244
new and delete operators

add header to memory, 236
macros, 238
malloc, 238
MemoryHeader structure, 238
MyClass deinition, 240
SmallBlockAllocator class, 253

ReferenceCount class, 228
shared_ptr template

creation, 221
dynamic memory, transfer, 223
MyClass destructor, 223
SharedMyClass instance, 223–224

small-block allocator class, 254
SmartPointer class

code implementation, 229
constructors, 231
copy constructor, 231
destructors, 231
move constructor, 232
MyStruct instance, 232
ReferenceCount object, 231

stack memory, 214
class variables, 216
disassembly view, 216
ebp register, 215
esp register, 215
multiple scopes, 217
x86 Assembly language, 215

static memory, 213
unique_ptr template

creation, 225
dynamic memory, transfer, 226
swap function, 228

Method overriding, 144
min_element function, 184, 187–188

comparison function, 186
GetValue method, 185–186
< operator, 184–185

Multiple inheritance, 149

N���������
Networking protocol

ANSWER message, 344
client code implementation, 352
FINISHED message, 344
HTTP, 343
Protocolhread function, 352

Lua (cont.)

6



■฀INDEX

455

QUESTION message, 344
QUIT message, 344
server code implementation, 344
Socket class, 352
socket connection, 343
stringstream, 352

next command, 11, 14
Numbers

bitwise operators
<< and >> operators, 97
& (bitwise and) operator, 94–95
| (bitwise or) operator, 95
^ (exclusive or) operator, 96

hexadecimal values, 92
integers

cinttypes, 84
deinition, 81
int32_t type, 84
operators, 82
types, 83
variables, 83

logical operators
&& operator, 90
|| operator, 91

relational operators
equality operator, 86
greater-than operator, 88
inequality operator, 87
less-than operator, 89

O���������
OS X, 6–7

P, Q���������
Page class

Alloc method, 248
constructor and destructor, 248
deinition, 248
Free method, 249
IsEmpty method, 250
SmallBlockAllocator class, 251

Pixel, 412
Pointers

make_unique template, 51
shared_ptr instances, 54
unique_ptr instances, 50
unqiue_ptr instances, 53
weak_ptr instances, 56

print command, 11, 14
private access speciier, 137
protected access speciier, 138
public access speciier, 135

R���������
rbegin method, 181
Relational operators

equality operator, 86
greater-than operator, 88
inequality operator, 87
less-than operator, 89

rend method, 181
Resource Allocation Is  

Initialization (RAII) pattern, 286

S���������
SDBM hash algorithm, 209
Security Development  

Lifecycle (SDL), 320
Singleton base class, 207
sorting algorithm, 193
Standard Template  

Library (STL), 151
step command, 11, 14
STL algorithms

count function, 188
count_if function, 189–191
ind function, 191–192
for_each function, 182
iterator

const_iterator, 179–180
const_reverse_iterator, 181–182
for loop, 178
int type, 178
myVector collection, 178
non-const access, 179
reverse_iterator, 180–181
vector, 177

min_element function, 184, 187–188
comparison function, 186
GetValue method, 185–186
< operator, 184–185

sorting algorithm, 193
STL containers, 151

C-style array
for loop, range based, 152
iterators and algorithms, 153



■฀INDEX

456

forward_list containers, 163
list containers, 162
map containers, 171
set containers, 165

emplace method, 169
highest to lowest, 167

SetObject class, 175
unordered_set containers, 173
vector template, 154

capacity method, 156
emplace method, 157
reduce capacity, 159
remove elements, 158
resizing, 155, 161
shrink_to_it, 161

Swap function, 228

T���������
Templates, 195

Add function, 196
class creation, 204
explicit and implicit  

specialization, 197
non-template function, 195
partial specialization

Add function, 200
+ and << operators, MYClass, 203
classes, 200
code implementation, 201
implicit properties, 199
Print function, 200

SDBM hash function
Bruce Sutherland, 211
code implementation, 209
debug build, 211
hash value, 211
metaprogram, 210
recursion, 211

Singleton base class, 207
Texel, 412
Text

boost: :format function, 77
Localization Manager, 65

constructor method, 66
enum class, 66
GetString method, 67
manager class, 67
SetLanguage method, 66

string.csv ile, 69
code implementation, 70
getline method, 71
ifstream class, 71
std: :getline method, 71
stringstream object, 71
text editor, 69

string literals, 59
C++14 style, 61
compilation, 62
debug and non-debug literals, 64
editing, 61
exe ile, 60
NDEBUG preprocessor, 63
non-const pointer, 62
remove debug, 63
runtime error, 62

XML document
atoi function, 76
data structure, 75
load string data, 74
parse method, 75
seekg method, 75
spreadsheet ile, 72
tellg method, 75
unsigned int, 76
while loop, 76

Type deduction, 25
auto keyword, 23
auto keyword, uniform initialization, 24
auto to deduce return type, 27
decltype keyword, 27
return type deduction, 26
return type function, 25
template function, 27
typeid method, 23

U���������
Ubuntu operating system, 3
until command, 12

V���������
Variable initialization

compile narrowing conversions, 20
prevent narrowing conversions, 19
vexing parse problem, 18–19

vector: :end method, 178
virtual keyword, 142

STL containers (cont.)



■฀INDEX

457

W, X, Y, Z���������
Windows operating system, 5
Winsock socket

Additional Dependencies dialog, 321
ai_family ield, 323
ai_socktype ield, 323
code implementation, 321
DNS, 322

getaddrinfo function, 322
library, 318
linker input options, 320
SDL, 320
servinfo, 323
socket function, 322
Visual Studio wizard, 319
Win32 application wizard, 319



C++ Recipes

A Problem-Solution Approach

Bruce Sutherland



C++ Recipes: A Problem-Solution Approach

Copyright © 2015 by Bruce Sutherland

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with 
reviews or scholarly analysis or material supplied speciically for the purpose of being entered and executed 
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or 
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its 
current version, and permission for use must always be obtained from Springer. Permissions for use may be 
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under 
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0158-9

ISBN-13 (electronic): 978-1-4842-0157-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identiied as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. he publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: Onur Cinar, Michael homas, and Rohan Walia
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,  

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jefrey Pepper,  
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Tifany Taylor
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC  
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).  
SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to  
readers at www.apress.com/9781484201589. For detailed information about how to locate your book’s  
source code, go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484201589
www.apress.com/source-code/


v

Contents

About the Author ....................................................................................................xix

About the Technical Reviewers ..............................................................................xxi

Acknowledgments ................................................................................................xxiii

Introduction ...........................................................................................................xxv

Chapter 1: Beginning C++ ■  ..................................................................................... 1

Recipe 1-1. Finding a Text Editor...................................................................................... 2

Problem .................................................................................................................................................. 2

Solution................................................................................................................................................... 2

Recipe 1-2. Installing Clang on Ubuntu ............................................................................ 3

Problem .................................................................................................................................................. 3

Solution................................................................................................................................................... 3

How It Works ........................................................................................................................................... 3

Recipe 1-3. Installing Clang on Windows ......................................................................... 5

Problem .................................................................................................................................................. 5

Solution................................................................................................................................................... 5

How It Works ........................................................................................................................................... 5

Recipe 1-4. Installing Clang on OS X ................................................................................ 6

Problem .................................................................................................................................................. 6

Solution................................................................................................................................................... 6

How It Works ........................................................................................................................................... 6

Recipe 1-5. Building Your First C++ Program .................................................................. 7

Problem .................................................................................................................................................. 7

Solution................................................................................................................................................... 7



■ CONTENTS

vi

Recipe 1-6. Debugging C++ programs using GDB in Cygwin or Linux ............................ 9

Problem .................................................................................................................................................. 9

Solution................................................................................................................................................... 9

How It Works ........................................................................................................................................... 9

Recipe 1-7. Debugging Your C++ Programs on OS X ..................................................... 13

Problem ................................................................................................................................................ 13

Solution................................................................................................................................................. 13

How It Works ......................................................................................................................................... 13

Recipe 1-8. Switching C++ Compilation Modes ............................................................ 14

Problem ................................................................................................................................................ 14

Solution................................................................................................................................................. 14

How It Works ......................................................................................................................................... 14

Recipe 1-9. Building with the Boost Library ................................................................... 15

Problem ................................................................................................................................................ 15

Solution................................................................................................................................................. 15

How It Works ......................................................................................................................................... 15

Chapter 2: Modern C++ ■  ....................................................................................... 17

Recipe 2-1. Initializing Variables .................................................................................... 17

Problem ................................................................................................................................................ 17

Solution................................................................................................................................................. 17

How It Works ......................................................................................................................................... 18

Recipe 2-2. Initializing Objects with Initializer Lists....................................................... 20

Problem ................................................................................................................................................ 20

Solution................................................................................................................................................. 20

How It Works ......................................................................................................................................... 20

Recipe 2-3. Using Type Deduction .................................................................................. 22

Problem ................................................................................................................................................ 22

Solution................................................................................................................................................. 22

How It Works ......................................................................................................................................... 23



■ CONTENTS

vii

Recipe 2-4. Using auto with Functions .......................................................................... 25

Problem ................................................................................................................................................ 25

Solution................................................................................................................................................. 25

How It Works ......................................................................................................................................... 25

Recipe 2-5. Working with Compile Time Constants ....................................................... 28

Problem ................................................................................................................................................ 28

Solution................................................................................................................................................. 28

How It Works ......................................................................................................................................... 28

Recipe 2-6. Working with Lambdas ............................................................................... 31

Problem ................................................................................................................................................ 31

Solution................................................................................................................................................. 31

How It Works ......................................................................................................................................... 31

Recipe 2-7. Working with Time ...................................................................................... 40

Problem ................................................................................................................................................ 40

Solution................................................................................................................................................. 40

How It Works ......................................................................................................................................... 40

Recipe 2-8. Understanding lvalue and rvalue References ............................................. 42

Problem ................................................................................................................................................ 42

Solution................................................................................................................................................. 42

How It Works ......................................................................................................................................... 43

Recipe 2-9. Using Managed Pointers ............................................................................. 50

Problem ................................................................................................................................................ 50

Solution................................................................................................................................................. 50

How It Works ......................................................................................................................................... 50

Chapter 3: Working with Text ■  .............................................................................. 59

Recipe 3-1. Representing Strings in Code Using Literals ............................................... 59

Problem ................................................................................................................................................ 59

Solution................................................................................................................................................. 59

How It Works ......................................................................................................................................... 59



■ CONTENTS

viii

Recipe 3-2. Localizing User Facing Text ......................................................................... 64

Problem ................................................................................................................................................ 64

Solution................................................................................................................................................. 65

How It Works ......................................................................................................................................... 65

Recipe 3-3. Reading Strings from a File ........................................................................ 68

Problem ................................................................................................................................................ 68

Solution................................................................................................................................................. 68

How It Works ......................................................................................................................................... 68

Recipe 3-4. Reading the Data from an XML File ............................................................ 72

Problem ................................................................................................................................................ 72

Solution................................................................................................................................................. 72

How It Works ......................................................................................................................................... 72

Recipe 3-5. Inserting Runtime Data into Strings ............................................................ 77

Problem ................................................................................................................................................ 77

Solution................................................................................................................................................. 77

How It Works ......................................................................................................................................... 77

Chapter 4: Working with Numbers ■  ...................................................................... 81

Recipe 4-1. Using the Integer Types in C++ ................................................................... 81

Problem ................................................................................................................................................ 81

Solution................................................................................................................................................. 81

How It Works ......................................................................................................................................... 81

Recipe 4-2. Making Decisions with Relational Operators .............................................. 86

Problem ................................................................................................................................................ 86

Solution................................................................................................................................................. 86

How It Works ......................................................................................................................................... 86

Recipe 4-3. Chaining Decisions with Logical Operators................................................. 90

Problem ................................................................................................................................................ 90

Solution................................................................................................................................................. 90

How It Works ......................................................................................................................................... 90



■ CONTENTS

ix

Recipe 4-4. Using Hexadecimal Values .......................................................................... 92

Problem ................................................................................................................................................ 92

Solution................................................................................................................................................. 92

How It Works ......................................................................................................................................... 92

Recipe 4-5. Bit Twiddling with Binary Operators ............................................................ 94

Problem ................................................................................................................................................ 94

Solution................................................................................................................................................. 94

How It Works ......................................................................................................................................... 94

Chapter 5: Classes ■  ............................................................................................. 103

Recipe 5-1. Defining a Class ........................................................................................ 103

Problem .............................................................................................................................................. 103

Solution............................................................................................................................................... 103

How It Works ....................................................................................................................................... 103

Recipe 5-2. Adding Data to a Class .............................................................................. 104

Problem .............................................................................................................................................. 104

Solution............................................................................................................................................... 104

How It Works ....................................................................................................................................... 104

Recipe 5-3. Adding Methods ........................................................................................ 106

Problem .............................................................................................................................................. 106

Solution............................................................................................................................................... 106

How It Works ....................................................................................................................................... 106

Recipe 5-4. Using Access Modifiers ............................................................................. 108

Problem .............................................................................................................................................. 108

Solution............................................................................................................................................... 108

How It Works ....................................................................................................................................... 108

Recipe 5-5. Initializing Class Member Variables .......................................................... 111

Problem .............................................................................................................................................. 111

Solution............................................................................................................................................... 111

How It Works ....................................................................................................................................... 111



■ CONTENTS

x

Recipe 5-6. Cleaning Up Classes ................................................................................. 115

Problem .............................................................................................................................................. 115

Solution............................................................................................................................................... 115

How It Works ....................................................................................................................................... 115

Recipe 5-7. Copying Classes ........................................................................................ 118

Problem .............................................................................................................................................. 118

Solution............................................................................................................................................... 118

How It Works ....................................................................................................................................... 118

Recipe 5-8. Optimizing Code with Move Semantics .................................................... 127

Problem .............................................................................................................................................. 127

Solution............................................................................................................................................... 127

How It Works ....................................................................................................................................... 127

Chapter 6: Inheritance ■  ....................................................................................... 133

Recipe 6-1. Inheriting from a Class .............................................................................. 133

Problem .............................................................................................................................................. 133

Solution............................................................................................................................................... 133

How It Works ....................................................................................................................................... 133

Recipe 6-2. Controlling Access to Member Variables and  

Methods in Derived Classes ......................................................................................... 135

Problem .............................................................................................................................................. 135

Solution............................................................................................................................................... 135

How It Works ....................................................................................................................................... 135

Recipe 6-3. Hiding Methods in Derived Classes........................................................... 139

Problem .............................................................................................................................................. 139

Solution............................................................................................................................................... 140

How It Works ....................................................................................................................................... 140

Recipe 6-4. Using Polymorphic Base Classes .............................................................. 141

Problem .............................................................................................................................................. 141

Solution............................................................................................................................................... 142

How It Works ....................................................................................................................................... 142



■ CONTENTS

xi

Recipe 6-5. Preventing Method Overrides ................................................................... 144

Problem .............................................................................................................................................. 144

Solution............................................................................................................................................... 144

How It Works ....................................................................................................................................... 144

Recipe 6-6. Creating Interfaces.................................................................................... 147

Problem .............................................................................................................................................. 147

Solution............................................................................................................................................... 147

How It Works ....................................................................................................................................... 147

Recipe 6-7. Multiple Inheritance .................................................................................. 148

Problem .............................................................................................................................................. 148

Solution............................................................................................................................................... 149

How It Works ....................................................................................................................................... 149

Chapter 7: The STL Containers ■  .......................................................................... 151

Recipe 7-1. Storing a Fixed Number of Objects ........................................................... 151

Problem .............................................................................................................................................. 151

Solution............................................................................................................................................... 151

How It Works ....................................................................................................................................... 151

Recipe 7-2. Storing a Growing Number of Objects ...................................................... 154

Problem .............................................................................................................................................. 154

Solution............................................................................................................................................... 154

How It Works ....................................................................................................................................... 154

Recipe 7-3. Storing a Set of Elements that Is Constantly Altered ................................ 162

Problem .............................................................................................................................................. 162

Solution............................................................................................................................................... 162

How It Works ....................................................................................................................................... 162

Recipe 7-4. Storing Sorted Objects in a Container that Enables Fast Lookups ............ 164

Problem .............................................................................................................................................. 164

Solution............................................................................................................................................... 164

How It Works ....................................................................................................................................... 164



■ CONTENTS

xii

Recipe 7-5. Storing Unsorted Elements in a Container for Very Fast Lookups ............. 173

Problem .............................................................................................................................................. 173

Solution............................................................................................................................................... 173

How It Works ....................................................................................................................................... 173

Chapter 8: The STL Algorithms ■  .......................................................................... 177

Recipe 8-1. Using an iterator to Define a Sequence within a Container ...................... 177

Problem .............................................................................................................................................. 177

Solution............................................................................................................................................... 177

How It Works ....................................................................................................................................... 177

Recipe 8-2. Calling a Function on Every Element in a Container .......................................... 182

Problem .............................................................................................................................................. 182

Solution............................................................................................................................................... 182

How It Works ....................................................................................................................................... 182

Recipe 8-3. Finding the Maximum and Minimum Values in a Container ...................183

Problem .............................................................................................................................................. 183

Solution............................................................................................................................................... 183

How It Works ....................................................................................................................................... 184

Recipe 8-4. Counting Instances of a Value in a Sequence ........................................... 188

Problem .............................................................................................................................................. 188

Solution............................................................................................................................................... 188

How It Works ....................................................................................................................................... 188

Recipe 8-5. Finding Values in a Sequence ................................................................... 191

Problem .............................................................................................................................................. 191

Solution............................................................................................................................................... 191

How It Works ....................................................................................................................................... 191

Recipe 8-6. Sorting Elements in a Sequence ............................................................... 192

Problem .............................................................................................................................................. 192

Solution............................................................................................................................................... 192

How It Works ....................................................................................................................................... 192



■ CONTENTS

xiii

Chapter 9: Templates ■  ......................................................................................... 195

9-1. Creating a Template Function ............................................................................... 195

Problem .............................................................................................................................................. 195

Solution............................................................................................................................................... 195

How It Works ....................................................................................................................................... 195

9-2. Partially Specializing a Template .......................................................................... 199

Problem .............................................................................................................................................. 199

Solution............................................................................................................................................... 199

How It Works ....................................................................................................................................... 199

9-3. Creating Class Templates ...................................................................................... 204

Problem .............................................................................................................................................. 204

Solution............................................................................................................................................... 204

How It Works ....................................................................................................................................... 205

9-4. Creating Singletons ............................................................................................... 206

Problem .............................................................................................................................................. 206

Solution............................................................................................................................................... 207

How It Works ....................................................................................................................................... 207

9-5. Calculating Values at Compile Time ...................................................................... 209

Problem .............................................................................................................................................. 209

Solution............................................................................................................................................... 209

How It Works ....................................................................................................................................... 209

Chapter 10: Memory ■  .......................................................................................... 213

10-1. Using Static Memory........................................................................................... 213

Problem .............................................................................................................................................. 213

Solution............................................................................................................................................... 213

How It Works ....................................................................................................................................... 213

10-2. Using Stack Memory ........................................................................................... 214

Problem .............................................................................................................................................. 214

Solution............................................................................................................................................... 214

How It Works ....................................................................................................................................... 215



■ CONTENTS

xiv

10-3. Using Heap Memory............................................................................................ 218

Problem .............................................................................................................................................. 218

Solution............................................................................................................................................... 218

How It Works ....................................................................................................................................... 219

10-4. Using Automated Shared Memory ...................................................................... 221

Problem .............................................................................................................................................. 221

Solution............................................................................................................................................... 221

How It Works ....................................................................................................................................... 221

10-5. Creating Single-Instance Dynamic Objects......................................................... 225

Problem .............................................................................................................................................. 225

Solution............................................................................................................................................... 225

How It Works ....................................................................................................................................... 225

10-6. Creating Smart Pointers ...................................................................................... 228

Problem .............................................................................................................................................. 228

Solution............................................................................................................................................... 228

How It Works ....................................................................................................................................... 228

10-7. Debugging Memory Problems by Overloading new and delete .......................... 236

Problem .............................................................................................................................................. 236

Solution............................................................................................................................................... 236

How It Works ....................................................................................................................................... 236

10-8. Calculating Performance Impacts of Code Changes ........................................... 242

Problem .............................................................................................................................................. 242

Solution............................................................................................................................................... 242

How It Works ....................................................................................................................................... 243

10-9. Understanding the Performance Impacts of Memory Choices ........................... 244

Problem .............................................................................................................................................. 244

Solution............................................................................................................................................... 244

How It Works ....................................................................................................................................... 244



■ CONTENTS

xv

10-10. Reducing Memory Fragmentation .................................................................... 247

Problem .............................................................................................................................................. 247

Solution............................................................................................................................................... 247

How It Works ....................................................................................................................................... 247

Chapter 11: Concurrency ■  ................................................................................... 259

11-1. Using Threads to Execute Concurrent Tasks ....................................................... 259

Problem .............................................................................................................................................. 259

Solution............................................................................................................................................... 259

How It Works ....................................................................................................................................... 259

11-2. Creating thread Scope Variables ......................................................................... 265

Problem .............................................................................................................................................. 265

Solution............................................................................................................................................... 265

How It Works ....................................................................................................................................... 265

11-3. Accessing Shared Objects Using Mutual Exclusion ............................................ 276

Problem .............................................................................................................................................. 276

Solution............................................................................................................................................... 276

How It Works ....................................................................................................................................... 276

11-4. Creating Threads that Wait for Events ................................................................ 286

Problem .............................................................................................................................................. 286

Solution............................................................................................................................................... 286

How It Works ....................................................................................................................................... 286

11-5. Retrieving Results from a Thread ....................................................................... 291

Problem .............................................................................................................................................. 291

Solution............................................................................................................................................... 291

How It Works ....................................................................................................................................... 291

11-6. Synchronizing Queued Messages between Threads .......................................... 296

Problem .............................................................................................................................................. 296

Solution............................................................................................................................................... 296

How It Works ....................................................................................................................................... 297



■ CONTENTS

xvi

Chapter 12: Networking ■  .................................................................................... 309

12-1. Setting Up a Berkeley Sockets Application on OS X ........................................... 309

Problem .............................................................................................................................................. 309

Solution............................................................................................................................................... 309

How It Works ....................................................................................................................................... 309

12-2. Setting Up a Berkeley Sockets Application in Eclipse on Ubuntu ....................... 313

Problem .............................................................................................................................................. 313

Solution............................................................................................................................................... 313

How It Works ....................................................................................................................................... 313

12-3. Setting Up a Winsock 2 Application in Visual Studio on Windows ...................... 318

Problem .............................................................................................................................................. 318

Solution............................................................................................................................................... 318

How It Works ....................................................................................................................................... 318

12-4. Creating a Socket Connection between Two Programs ...................................... 323

Problem .............................................................................................................................................. 323

Solution............................................................................................................................................... 323

How It Works ....................................................................................................................................... 323

12-5. Creating a Networking Protocol between Two Programs ................................... 343

Problem .............................................................................................................................................. 343

Solution............................................................................................................................................... 343

How It Works ....................................................................................................................................... 343

Chapter 13: Scripting ■  ........................................................................................ 361

13-1. Creating a Lua Library Project in Visual Studio ................................................... 361

Problem .............................................................................................................................................. 361

Solution............................................................................................................................................... 361

How It Works ....................................................................................................................................... 361

13-2. Creating a Lua Library Project in Eclipse ............................................................ 365

Problem .............................................................................................................................................. 365

Solution............................................................................................................................................... 365

How It Works ....................................................................................................................................... 365



■ CONTENTS

xvii

13-3. Creating a Lua Project in Xcode .......................................................................... 367

Problem .............................................................................................................................................. 367

Solution............................................................................................................................................... 367

How It Works ....................................................................................................................................... 367

13-4. Using the Lua Programming Language ............................................................... 369

Problem .............................................................................................................................................. 369

Solution............................................................................................................................................... 369

How It Works ....................................................................................................................................... 369

13-5. Calling Lua Functions from C++ ......................................................................... 377

Problem .............................................................................................................................................. 377

Solution............................................................................................................................................... 378

How It Works ....................................................................................................................................... 378

13-6. Calling C Functions from Lua .............................................................................. 387

Problem .............................................................................................................................................. 387

Solution............................................................................................................................................... 387

How It Works ....................................................................................................................................... 387

13-7. Creating Asynchronous Lua Functions ................................................................ 392

Problem .............................................................................................................................................. 392

Solution............................................................................................................................................... 392

How It Works ....................................................................................................................................... 392

Chapter 14: 3D Graphics Programming ■  ............................................................. 399

14-1. An Introduction to GLFW ..................................................................................... 399

Problem .............................................................................................................................................. 399

Solution............................................................................................................................................... 399

How It Works ....................................................................................................................................... 399

14-2. Rendering a Triangle ........................................................................................... 402

Problem .............................................................................................................................................. 402

Solution............................................................................................................................................... 402

How It Works ....................................................................................................................................... 402



■ CONTENTS

xviii

14-3. Creating a Textured Quad .................................................................................... 412

Problem .............................................................................................................................................. 412

Solution............................................................................................................................................... 412

How It Works ....................................................................................................................................... 412

14-4. Loading Geometry from a File ............................................................................. 432

Problem .............................................................................................................................................. 432

Solution............................................................................................................................................... 432

How It Works ....................................................................................................................................... 432

Index ..................................................................................................................... 451



xix

About the Author

Bruce Sutherland is a video game developer working at Firemonkeys Studios in Melbourne, Australia.  
He is currently working on iOS and Android titles written in C++ for both platforms. Bruce has worked on 
Real Racing 3, Need for Speed: No Limits, the Dead Space series, and he Elder Scrolls: Oblivion, among 
others, in his nine-year video game development career.



xxi

About the Technical Reviewers

Onur Cinar is the author of Android Apps with Eclipse and Pro Android 

C++ with the NDK, and the co-author of Android Best Practices. He 
has more than 19 years of experience in the design, development, and 
management of large-scale, complex software projects, primarily in the 
mobile and telecommunication space. His expertise spans VoIP, video 
communication, mobile applications, grid computing, and networking 
technologies on diverse platforms. He has been actively working with the 
Android platform since its beginning. He has a B.S. in Computer Science 
from Drexel University in Philadelphia, PA. He is currently working at 
the Skype division of Microsoft as the principal development manager 
responsible for the Skype Qik, GroupMe, Skype for Android, and Lync for 
Android products.

Michael homas has worked in software development for more than  
20 years as an individual contributor, team lead, program manager, 
and vice president of engineering. Michael has more than 10 years of 
experience working with mobile devices. His current focus is in the 
medical sector, using mobile devices to accelerate information transfer 
between patients and health care providers.

Rohan Walia is a senior software consultant with extensive experience in 
client/server, web-based, and enterprise application development. He is 
an Oracle Certiied ADF Implementation Specialist and a Sun Certiied 
Java Programmer. Rohan is responsible for designing and developing 
end-to-end applications consisting of various cutting-edge frameworks 
and utilities. His areas of expertise are Oracle ADF, Oracle WebCenter, 
Fusion, Spring, Hibernate, and Java/J2EE. When he’s not working, Rohan 
loves to play tennis, hike, and travel. Rohan would like to thank his wife, 
Deepika Walia, for using all her experience and expertise when reviewing 
this book.



xxiii

Acknowledgments

I’d like to thank the many people who helped me make this book become a reality. A special thank you to my 
wife, who continues to support me through the long hours involved in making games and writing books.

hanks to the entire editorial team at Apress, especially Mark Powers, who had to contend with many 
delays while I juggled game-development and book-writing commitments.

And thank you to the technical review team, who did an excellent job of making sure the source 
contained in this book is as error-free and up to date as possible.


	C++ Recipes
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Index


