THE EXPERT’S VOICE® IN C++

-t

C++
Rempes

A Problem-Solution Approach

Bruce Sutherland

SLLLL /11177777 Lt
Ap ress®

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUthOrccvvimimmms e ————————=——=——— Xix
About the Technical REVIEWETSccucssssmssssssmsssmssssssssssssssmssssssssssssssssssssssssssssssnns XXi
AcknowIledgmEeNtSccueersssssssnnnsnnmsmssssssssssnssssssssssssssssssnnsnssssssssssnnnnnnnssssssssnnnnnns XXiii
INtroduction........ccovemmmmim e ———————_————— XXV
Chapter 1: Beginning C++ ...ccccvuisnmmmmmssssnsnmmsssssnsmssssssssssssssssssssssssssssssssnssssssssnnssssss 1
Chapter 2: Modern C++ ...cuuuurrmmmsssssssssmmmmmssssssssssssssssssssssssssssssnsssessssssssnnnsnnssssssssnns 17
Chapter 3: Working with Textccccrmmssmnmmmssssnnsmssssssnsessssssssssssssnssssssssnsssssssnnnnns 59
Chapter 4: Working with NUMDErScccuemmmsssnmmsssnmmsssnsssssssmsssssssssssssssnsssssnssssnns 81
Chapter 5: ClasSeSuueemmrssssnmnmmssssnnnssssssnsnssssssnsnssssssnnnssssssnnnnsssssnnnsssssnnnnsssssnnnnss 103
Chapter 6: INheritance.........cccmrninmmnmnisssnnnmmmsssssnmmssssssnesssssssnessssssssessssnnnsesssnnnnnss 133
Chapter 7: The STL Containersccccussesmmmssssnsnmssssssssssssssssssssssssnsssssssnnssssssannnns 151
Chapter 8: The STL Algorithms........cccuecmmmmsssnmsmmmssssssmmsssssssmmssssssssessssssnssssssnnnnns 177
Chapter 9: Templates.......ccccunmmmmmsmsmmmmmmmmmsss s —————————————————— 195
Chapter 10: MeMOIY....ccccuieemmmmssssnsnmmssssssnmsssssnssssssssnssesssssnnsesssssnnsessssnnnnssssnnnnnns 213
Chapter 11: CONCUITENCY .uuvseeerrssssanssmssssansnssssssnsnsssssnnnssssssansnsssssnnnssssssnnnsssssnnnnnss 259
Chapter 12: Networkingccccvusseesnmmssssnsnmssssssssmsssssssssssssssssssssssssssssssssnssssssnnnnns 309
Chapter 13: SCriptingccuccemmmnneenmmmmsssnmmmmssssnmssss s 361
Chapter 14: 3D Graphics Programming.......cccusssssssssssssssssssssssssssesssssesssnsesssnnenss 399
1T - 451
iii

[vww allitebooks.cond

http://www.allitebooks.org

Introduction

The C++ programming language is undergoing continuous development and improvement. This effort to
keep C++ on the cutting edge of language features is driven by the fact that C++ still finds an important role
to play in high-performance, portable applications. Few other languages can be used on as many platforms
as C++ and without having a runtime environment dependency. This is partly thanks to the nature of C++ as
a compiled programming language. C++ programs are built into application binaries through a combination
of processes that include compiling and linking.

Compiler choice is particularly important in today’s C++ landscape, thanks to the rate at which the
language is changing. Development of the C++ programming language was started by Bjarne Stoustrup
in 1979, when it was called C with Classes. The language didn’t see formal standardization until 1998;
an updated standard was published in 2003. There was another gap of eight years until the standard was
updated again with the introduction of C++11 in 2011. This version brought a considerable number of
updates to the C++ programming language and is distinguished from “older” C++ with the Modern C++
moniker. A further, less significant, update to the C++ standard was introduced in late 2014, but we haven'’t
yet begun to see compilers that support many of the features added to Modern C++.

This book introduces you to code written specifically for the C++14 standard using the Clang compiler.
Clang is an open source compiler that started life as a closed source Apple project. Apple released the
code to the open source community in 2007, and the compiler has been adding strengths ever since. This
book explains how to install and use Clang on a computer running OS X, Windows, or Linux (Ubuntu). The
examples that accompany each chapter have been compiled and tested using Clang 3.5. I chose Clang for
this project because it’s the compiler that provided support for the most C++14 features when I began to
write this book.

The book’s accompanying web site can be accessed at waw.apress.com/9781484201589. You can find
source code for all of the executable code listings contained in this book along with makefiles that can be
used to build running programs.

XXV

[vww allitebooks.cond

www.apress.com/9781484201589
http://www.allitebooks.org

CHAPTER 1

Beginning C++

The C++ programming language is a powerful low-level language that allows you to write programs that are
compiled into machine instructions to be executed on a computer’s processor. This makes C++ different
from newer languages such as C# and Java. These languages are interpreted languages. This means they

are not executed directly on the processor but instead are sent to another program that is responsible for
operating the computer. Java programs are executed using the Java virtual machine (JVM), and C# programs
are executed by the Common Language Runtime (CLR).

Thanks to C++ being a language that is compiled ahead of time, it still finds wide use in fields where
absolute performance is paramount. The most obvious area where C++ is still the most predominantly used
programming language is the video game industry. C++ allows programmers to write applications that take
full advantage of the underlying system architecture. You might become familiar with phrases such as cache
coherency while pursuing a career as a C++ programmer. There aren’t many other languages that allow you
to optimize your applications to suit the individual processors that your program is being designed to run
on. This book introduces you to some of the pitfalls that can affect the performance of your applications at
different times and shows you some techniques to tackle those issues.

Modern C++ is in a period where the language is seeing continual updates to its features. This has not
always been the case. Despite being around since the early 1980s the C++ programming language was only
standardized in 1998. A minor update and clarification of this standard was released in 2003 and is known
as C++03. The 2003 update did not add any new features to the language however it did clarify some of the
existing features that had gone overlooked. One of these was an update to the standard for the STL vector
template to specify that the members of a vector should be stored contiguously in memory. The C++11
standard was released in 2011 and saw a massive update to the C++ programming language. C++ gained
features for generalized type deduction system outside of templates, lambda and closure support, a built-in
concurrency library and many more features. C++14 brings a smaller update to the language and generally
builds upon the features already supplied by C++14. Features such as auto return type deduction from
functions have been cleaned up, lambdas have been updated with new features and there are some new
ways to define properly typed literal values.

This book strives to write portable, standards compliant C++14 code. At the time of writing it’s possible
to write C++14 code on Windows, Linux and OS X machines so long as you use a compiler that provides all
of the language features. To this end, this book will use Clang as the compiler on Windows and Ubuntu and
will use Xcode on OS X. The rest of this chapter focuses on the software you need to write programs in C++
before showing you how to acquire some of the more common options available for Windows, OS X, and
Linux operating systems.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 * BEGINNING C++

Recipe 1-1. Finding a Text Editor

Problem

C++ programs are constructed from lots of different source files that must be created and edited by one or
more programmers. Source files are simply text files, which usually come in two different types: header files
and source files. Header files are used to share information about your types and classes between different
files, and source files are generally used to contain the methods and the actual executable code that makes
up your program.

Solution

A text editor then becomes the first major piece of software you require to begin writing C++ programs.
There are many excellent choices of text editors available on different platforms. My best two picks at the
moment are the free Notepad++ for Windows and Sublime Text 2, which despite not being free is available
on all major operating systems. Figure 1-1 shows a screenshot from Sublime Text 2. Vim and gvim are also
very good options that are available for all three operating systems. These editors provide many powerful
features and are excellent choices for someone willing to learn.

Eile Edit Selection Find View Goto Tools Project Preferences Help

HelloWorld.cpp

#include <iostream>

int main()

{
std: :cout << "Hello World!" << std::endl;
return 0;

DU W N

(&)

Line 8, Column 1

Figure 1-1. A screenshot from the Sublime Text 2 Editor

2

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 * BEGINNING C++

Note Don’t feel the urge to grab a text editor straight away. Some of the recipes later in this chapter cover
integrated development environments (IDEs) that include all the software you need to write, build, and debug
C++ applications.

Figure 1-1 shows one of the most important features of a good text editor: it should be able to highlight
the different types of keywords in your source code. You can see in the simple Hello World program in
Figure 1-1 that Sublime Text 2 is capable of highlighting the C++ keywords include, int, and return.

It has also added different-colored highlights to the main function name and the strings <iostream> and
"Hello World!". Once you have some experience writing code with your text editor of choice, you will
become adept at scanning your source files to zero in on the area of code you are interested in, and syntax
highlighting will be a major factor in this process.

Recipe 1-2. Installing Clang on Ubuntu

Problem

You would like to build C++ programs that support the latest C++14 language features on a computer system
running Ubuntu.

Solution

The Clang compiler supports all of the latest C++14 language features and the libstdc++ library supports all
of the C++14 STL features.

How It Works

The Ubuntu operating system comes configured with package repositories that allow you to install Clang
without much difficulty. You can achieve this using the apt-get command in a Terminal window. Figure 1-2
shows the command that you should enter to install Clang.

bruce@bruce-Virtual-Machine: ~

bruce@bruce-virtual-Machine:~$ sudo apt-get install clangll

Figure 1-2. An Ubuntu Terminal window showing the command needed to install Clang

To install Clang you can enter the following command on the command line sudo apt-get install
clang. Running this command will cause Ubuntu to query its repositories and work out all of the
dependencies needed to install Clang. You will be prompted once this process has been completed to
confirm that you wish to install Clang and its dependencies. You can see this prompt in Figure 1-3.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 * BEGINNING C++

bruce@bruce-Virtual-Machine: ~

bruce@bruce-virtual-Machine:~$ sudo apt-get install clang

[sudo] password for bruce:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:
binfmt-support clang-3.5 libclang-common-3.5-dev libclang1-3.5 libffi-dev
1libobjc-4.9-dev 1libobjc4 libtinfo-dev 1lvm-3.5 1lvm-3.5-dev 1lvm-3.5-runtime

Suggested packages:
gnustep gnustep-devel clang-3.5-doc llvm-3.5-doc

The following NEW packages will be installed:
binfmt-support clang clang-3.5 libclang-common-3.5-dev libclang1-3.5
1libffi-dev libobjc-4.9-dev libobjc4 libtinfo-dev 1lvm-3.5 llvm-3.5-dev
1lvm-3.5-runtime

0 to upgrade, 12 to newly install, © to remove and 208 not to upgrade.

Need to get 39.5 MB of archives.

After this operation, 196 MB of additional disk space will be used.

Do you want to continue? [Y/n]]

Figure 1-3. The apt-get dependency confirmation prompt

At this point you can hit enter to continue as yes is the default option. Ubuntu will then download and
install all of the software needed for you to be able to install Clang on your computer. You can confirm that
this has been successful by running the clang command. Figure 1-4 shows what this should look like if
everything was successful.

bruce@bruce-Virtual-Machine: ~

bruce@bruce-virtual-Machine:~$ clang
clang: error: no input files
bruce@bruce-virtual-Machine:~$ [I

Figure 1-4. A successful Clang installation in Ubuntu

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 * BEGINNING C++

Recipe 1-3. Installing Clang on Windows

Problem

You would like to build C++14 based programs on the Windows operating system.

Solution

You can use Cygwin for Windows to install Clang and build applications.

How It Works

Cygwin provides a Unix-like command line environment for Windows computers. This is ideal for building
programs using Clang as the Cygwin installed comes pre-configured with package repositories that include
everything you need to install and use Clang on Windows computers.

You can get a Cygwin installer executable from the Cygwin website at http://www.cygwin.com. Be sure
to download the 32bit version of the Cygwin installer as the default packages supplied by Cygwin currently
only work with the 32bit environment.

Once you have downloaded the installer you should run it and click through until you are presented
with the list of packages to install. At this point you want to select the Clang, make and libstdc++ packages.
Figure 1-5 shows the Cygwin installer with the Clang package selected.

C Cygwin Setup - Select Packages - olEN
Select Packages
Select packages to install i
Search |clang| Clear (OKeep @Cur (OBp | View Category
Category New B.. S.. Size Package
B All 4 Default
@ Debug & Default
B Devel & Default
3425 a 11,844k clang: C/C++/ObjC compiler frontend based on LLVM
£ Skip nfa nja 56k clang-analyzer: C/C++/0bjC code analyzer
@ Libs £ Default
< >
[¥] Hide obsolete packages
<Back | Net> || Cancel

Figure 1-5. Filtering the Clang package in the Cygwin installer

vww allitebooks.conl

http://www.cygwin.com/
http://www.allitebooks.org

CHAPTER 1 © BEGINNING C++

Packages can be marked for installation in the installer by clicking on the Skip area on the line for the
package. Clicking skip once moves the package version to the latest. You should select the latest packages for
Clang, make and libstdc++. Once you have selected all 3 you can click Next to be taken to a window asking to
confirm the installation of the dependencies needed by these three packages.

Once you have successfully downloaded and installed all of the packages that you needed to be able
to run Clang you can check that it was successful by opening a Cygwin terminal and typing the clang
command. You can see the result of this output in Figure 1-6.

E : S oEN

Bruce@Bruce-PC
$ clang
clang: error: no input files

DA = L

o

“uce-PC

w0

Figure 1-6. Successfully running Clang in a Cywgin environment in Windows

Recipe 1-4. Installing Clang on 0S X

Problem

You would like to build C++14 based programs on a computer running OS X.

Solution

Apple’s Xcode IDE comes with Clang as its default compiler. Installing Xcode from the OS X App Store also
installs Clang.

How It Works

Install the latest version of Xcode from the App Store on your OS X computer. Once you've installed Xcode
you can open a Terminal window using Spotlight and type clang to see that the compiler has been installed.
Figure 1-7 shows how this should look.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 * BEGINNING C++

| NON Recipe1-4 — bash — 80x24

bsutherland-macbook:Recipel-4 bsutherlandmacbook$ clang
clang: error: no input files
bsutherland-macbook:Recipel-4 bsutherlandmacbooks$ [

Figure 1-7. Running Clang on OS X after installing Xcode

Recipe 1-5. Building Your First C++ Program

Problem

You would like to use your computer to generate executable applications from C++ source code that you write.

Solution

Generating executables from a C++ source file involves two steps; compiling and linking. The steps
undertaken in Recipe 1-2, Recipe 1-3 or Recipe 1-4 depending on your operating system will have resulted in
you having all of the software you need to build applications from C++14 source files. You are now ready to
build your first C++14 program. Create a folder to contain you project and add a text file named HelloWorld.
cpp. Enter the code from Listing 1-1 into the file and save.

Listing 1-1. Your first C++14 Program

#include <iostream>

#include <string>

int main(void)

{
using namespace std::string literals;
auto output = "Hello World!"s;
std::cout << output << std::endl;
return 0;

}

The code in Listing 1-1 is a C++ program that will only compile when using a C++14 compatible
compiler. The Recipes 2-4 in this chapter contain instructions on how you can obtain a compiler that can
be used to compile C++14 code for Windows, Ubuntu and OS X. You can build a working application once
you have created a folder and the source file containing the code in Listing 1-1. You do this using a makefile.
Create a file named makefile in the folder alongside your HelloWorld.cpp file. The makefile should not
have a file extension which may seem a little strange to developers used to the Windows operating system
however this is completely normal for Unix based operating systems such as Linux and OS X. Enter the code
from Listing 1-2 into your makefile.

CHAPTER 1 © BEGINNING C++

Listing 1-2. The makefile Needed to Build the Code in Listing 1-1

HelloWorld: HelloWorld.cpp
clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Note The whitespace before the clang++ command in Listing 1-2 is a tab. You cannot replace the tab with
spaces as make will fail to build. Ensure that your recipes in a makefile always begin with tabs.

The text in Listing 1-2 consists of the instructions needed to build an application from your HelloWorld.
cpp source file. The first word on the first line is the name of the target of the makefile. This is the name that
the application executable will be given when the building process has been completed. In this case we
will be building an executable named HelloWorld. This is followed by the prerequisites needed to build the
program. Here you have listed HelloWorld.cpp as the only prerequisite as it is the only source file used to
build the executable.

The target and prerequisites are then followed by a list of recipes that are carried out in order to build
your application. In this small example you have a line that invokes the clang++ compiler to generate
executable code from the HelloWorld.cpp file. The parameter passed to clang++ using -std=c++1y asks
Clang to build using the C++14 language standard and the -o switch specifies the name of the object output
file generated by the compilation process.

Browse to the folder you created to store the source file and makefile using a command shell such as
cmd on Windows or Terminal on Linux or OS X and type make. This will invoke the GNU make program and
will automatically read and execute your makefile. This will output an executable file into the same folder
that you can then run from the command line. You should be able to do this now and see that the text
Hello World is output on your command line. Figure 1-8 shows what this would look like in an Ubuntu
Terminal window.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel-55 ./HelloWorld
Hello World!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel-53% I

Figure 1-8. The Output Generated by Runnung HelloWorld in an Ubuntu Terminal

CHAPTER 1 © BEGINNING C++

Recipe 1-6. Debugging C++ programs using GDB in
Cygwin or Linux

Problem

You are writing a C++14 program and would like to be able to debug the application from the command line.

Solution

Both Cygwin for Windows and Linux based operating systems like Ubuntu can install and use the GDB
command line debugger for C++ applications.

How It Works

You can use the Cygwin installer for Windows or the Package Manager installed with your favorite Linux
distribution to install the GDB debugger. This will give you a command line C++ debugger that can be used
to inspect the functionality of your C++ programs. You can practice this using the source, makefile and
application generated as part of Recipe 1-5. To generate debugging information for your program you
should update the makefile to contain he contents of Listing 1-3 and run make to generate a debuggable
executable file.

Listing 1-3. A makefile to Generate a Debuggable Program

HelloWorld: HelloWorld.cpp
clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Once you have followed Recipe 1-5, updated the makefile to contain the contents of Listing 1-5 and
generated an executable you can run GDB on your application by browsing to the folder on your command
line and typing gdb HelloWorld. The new -g switch passed to Clang in the makefile from Listing 1-3 asks
the compiler to generate additional information in the application that helps debuggers to provide you with
accurate information about the program while it is executing in the debugger.

Note You may be presented with a notice informing you that your program is already up to date if you had
built previously. Simply delete the existing executable file if this occurs.

Running GDB in HelloWorld should result in your command line running GDB and providing output
such as that shown in Figure 1-9.

CHAPTER 1 * BEGINNING C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel-5$ gdb HelloWorld
GNU gdb (Ubuntu 7.8-1ubuntu4) 7.8.0.20141001-cvs

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying”
and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from HelloWorld...(no debugging symbols found)...done.
(gdb)

Figure 1-9. A Running Instance of GDB

You now have a running debugger that you can use to inspect the running program while it is executing.
The program has not yet begun when GDB first starts, this allows you to configure some breakpoints before
you get started. To set a breakpoint you can use the break command or the b shorthand for the same
command. Type break main into the GDB command prompt and hit enter. This should result in GDB
echoing the command back to you along with the address of the program where the breakpoint was set and
the filename and line number it detected for the function supplied. You can now type run into your window
to execute the program and have GDB halt at your breakpoint. The output should resemble that shown in
Figure 1-10.

10

CHAPTER 1 * BEGINNING C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5

bruce@bruce-Vvirtual-Machine:~/Projects/C-Recipes/Recipel-55 gdb HelloWorld
GNU gdb (Ubuntu 7.8-1ubuntu4) 7.8.0.20141001-cvs

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying”
and "show warranty” for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word"” to search for commands related to "word"...

Reading symbols from HelloWorld...done.

(gdb) break main

Breakpoint 1 at 0x400b3f: file HelloWorld.cpp, line 8.

(gdb) run

Starting program: /home/bruce/Projects/C-Recipes/Recipel-5/HelloWorld

Breakpoint 1, main () at HelloWorld.cpp:8
8 auto output = "Hello World!"s;
(gdb) il

Figure 1-10. The Output as Seen When GDB Halts at the Breakpoint Set inmain

At this point you have several options that allow you to continue the execution of your program. You can
see a list of the most common commands below.
step

The step command is used to step into a function that is to be called at the
current line.

next

The next command is used to step over the current line and stop on the next
line of the same function.

finish
The finish command is used to execute all of the code remaining in the

current function and stop on the next line in the function that called the
current function.

print <name>

The print command followed by the name of a variable can be used to print
the value of a variable in your program.

break

The break command can be used with a line number, a function name or a
source file and line number to set a breakpoint in your programs source code.

11

CHAPTER 1 © BEGINNING C++

continue

The continue command is used to resume code execution after it has been
halted at a breakpoint.

until

The until command can continue execution from a loop and stop on the first
line immediately after the loop execution has finished.

info

The info command can be used with either the locals command or the
stack command to show information about the current local variables or
stack state in the program.

help

You can type help followed by any command to have GDB give you
information about all of the different ways that a given command can be used.

The GDB debugger can also be run with the command -tui. This will give you a view of the source file
you are currently debugging at the top of the window. You can see how this looks in Figure 1-11.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5
HelloWorld.cpp

using namespace std::string_literals;

auto output = "Hello World!"s;
std::cout << output << std::endl;

return 0;

exec No process In:

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word” to search for commands related to "word"...
Reading symbols from HelloWorld...done.

(gdb)

Figure 1-11. GDB with a Source Window

12

CHAPTER 1 © BEGINNING C++

Recipe 1-7. Debugging Your C++ Programs on 0S X

Problem

The OS X operating system does not provide any easy method for installing and using GDB.

Solution

Xcode comes with the LLDB debugger than can be used on the command line in-place of GDB.

How It Works

The LLDB debugger is, in essence, very similar to the GDB debugger used in Recipe 1-6. Changing between
GDB and LLDB is simply a case of learning how to carry out the same simple tasks in both by using the
commands provided by each to carry out the same task.

You can execute LLDB on your HelloWorld executable by browsing to the directory containing
HelloWorld in Terminal and typing 11db HelloWorld. This will give you output that resembles that of
Figure 1-12.

® O Recipe1-5 — lldb — 80x24

"bsutherland-macbook:Recipel—s bsutherlandmacbook$ 1ldb HelloWorld
(1ldb) target create "HelloWorld"
Current executable set to 'HelloWorld' (x86_64).

Figure 1-12. The LLDB Debugger Running in an OS X Terminal

Note You will need to compile your program using the -g switch. Take a look at Listing 1-3 to see where
this goes if you are unsure.

Once you have LLDB running as shown in Listing 1-12 you can set a breakpoint on the first line of
main by typing breakpoint set -f HelloWorld.cpp -1 8, orb main asshorthand. You can use the run
command to begin execution and have it halt at the breakpoint that you've just set. When the program stops
you can use the next command to step over the current line and halt on the next line. You could have used
the step command to step into a function on the current line and halt on the first line of the function. The
finish command will step out of the current function.

You can quit LLDB by typing q and hitting enter. Restart LLDB and type breakpoint set -f HelloWorld.
cpp -1 9. Follow this with the run command and LLDB should print the source around the line where the
application has stopped. You can now type print output to see the value stored by the output variable. You
can also use the frame variable command to see all of the local variables in the current stack frame.

13

CHAPTER 1 © BEGINNING C++

These simple commands will allow you to use the LLDB debugger adequately enough while working
through the samples provided along with this book. The following list can be used as a handy cheat sheet
while working with LLDB.

step

The step command is used to step into a function that is to be called at the
current line.

next

The next command is used to step over the current line and stop on the next
line of the same function.

finish
The finish command is used to execute all of the code remaining in the

current function and stop on the next line in the function that called the
current function.

print <name>

The print command followed by the name of a variable can be used to print
the value of a variable in your program.

breakpoint set --name <name>
breakpoint set -file <name> --line <number>

The breakpoint command can be used with a line number, a function name or a
source file and line number to set a breakpoint in your programs source code.

help

You can type help followed by any command to have GDB give you
information about all of the different ways that a given command can be used.

Recipe 1-8. Switching C++ Compilation Modes

Problem

You would like to be able to switch between the different C++ standards before compiling your programs.

Solution

The std switch is supplied by Clang so that you can specify the C++ standard to be used when compiling.

How It Works

Clang builds with the C++98 standard by default. You can use the std argument with Clang++ to tell the
compiler to use a standard other than the default. Listing 1-4 shows a makefile that is configured to build a
program using the C++14 standard.

14

CHAPTER 1 © BEGINNING C++

Listing 1-4. Building with C++14

HelloWorld: HelloWorld.cpp
clang++ -std=c++1y HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-4 shows how you can specify that Clang should build your source file using
C++14. This example was written using Clang 3.5 that uses the c++1y command to represent C++14.
Listing 1-5 shows how you can build a program using C++11.
Listing 1-5. Building with C++11

HelloWorld: HelloWorld.cpp
clang++ -std=c++11 HelloWorld.cpp -o HelloWorld

In Listing1-5 you want to use the c++11 option with the std switch to build with C++11. Finally,
Listing 1-6 shows how to configure Clang to explicitly build with C++98.
Listing 1-6. Building with C++98

HelloWorld: HelloWorld.cpp
clang++ -std=c++98 HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-6 can be used to explicitly build with C++98. You can achieve the same result
by leaving out the std command altogether and Clang will build using C++98 by default.

Note It's not guaranteed that every compiler will use C++98 by default. Check with your compiler’s
documentation if you’re unsure which standard is the default. You can also be adventurous with Clang and
enable its experimental C++17 support using the c++1z option!

Recipe 1-9. Building with the Boost Library

Problem

You would like to write a program using the Boost library.

Solution

Boost is supplied as source code that can be included with and compiled into your application.

How It Works

Boost is a large C++ library that includes all sorts of great functionality. Coverage of the entire library is out of
the scope of this book; however the string formatting library will be used. You can acquire the Boost library
from the Boost website at http://www.boost.org/.

You will be able to get a compressed folder from the Boost website that contains the latest version of the
Boost library. The only folder you absolutely need to be able to include basic boost functionality is the boost
folder itself. I have downloaded Boost 1.55 and therefore I have created a folder inside my project folder
named boost_1_55_0 and copied the boost folder into this location from the downloaded version.

15

http://www.boost.org/

CHAPTER 1 © BEGINNING C++

Once you have a project folder set up with a downloaded copy of Boost you can include Boost header
files into your source code. Listing 1-7 shows a program that uses the boost: : format function.

Listing 1-7. Using boost: :format

#include <iostream>
#include "boost/format.hpp"

using namespace std;

int main()

{
std::cout << "Enter your first name: " << std::endl;
std::string firstName;
std::cin >> firstName;

std::cout << "Enter your surname: " << std::endl;
std::string surname;

std::cin >> surname;

auto formattedName = str(boost::format("%1% %2%"s) % firstName % surname);
std::cout << "You said your name is: " << formattedName << std::endl;

return 0;

The code in Listing 1-7 shows how you can include a Boost header into a source file and how that file’s
functions can be used in your program.

Note Don’t worry about how the format function works if it's not immediately clear, it is covered in Chapter 3.

You must also tell the compiler where to look for the Boost header files in a makefile otherwise
your program will not compile. Listing 1-8 shows the contents of the makefile that can be used to build
this program.

Listing 1-8. A makefile to Build with Boost

main: main.cpp
clang++ -g -std=c++1y -Iboost 1 55 0 main.cpp -o main

The makefile in Listing 1-8 passes the -I option to Clang++. This option is used to tell Clang that you
would like to include the given folder in the search paths used when including files using the #include
directive. As you can see I have passed the boost_1 55 0 folder thatI created in my project folder. This
folder contains the boost folder that you can see used when including a Boost header in Listing 1-7.

Note If you’re having trouble getting this example to work and aren’t sure of where to put the Boost header
files you can download the samples that accompany this book from the www.apress.com/9781484201589.

16

vww allitebooks.conl

http://dx.doi.org/10.1007/9781484201589_3
http://www.apress.com/9781484201589
http://www.allitebooks.org

CHAPTER 2

Modern C++

Development of the C++ programming language began in 1979 as the C with Classes language. The name
C++ was formally adopted in 1983 and development of the language continued throughout the 1980s and
1990s without the adoption of a formal language standard. This all changed in 1998 when the first ISO
standard of the C++ programming language was adopted. There have been three updates to the standard
published since that time, one in 2003, again in 2011 and the latest in 2014.

Note The standard published in 2003 was a minor update to the 1998 standard that didn’t introduce much
in the way of new features. For this reason, it won’t be discussed in any great detail in this book.

This book is primarily going to focus on the very latest C++ programming standard, C++14. Whenever I
mention the C++ programming language you can be assured that I am talking about the language as described by
the current ISO standard. If I am discussing features that were introduced in 2011 then I will explicitly mention the
language as C++11 and for any features that were introduced prior to 2011 I will use the name C++98.

This chapter will look at the programming features added to the language in the latest standard
and with C++11. Many of the modern features of C++ were added in the C++11 standard and have been
expanded with the C++14 standard therefore it is important to be able to identify the differences when
working with compilers that support a standard that is not the latest.

Recipe 2-1. Initializing Variables

Problem

You would like to be able to initialize all variables in a standard manner.

Solution

Uniform initialization was introduced in C++11 and can be used to initialize a variable of any type.

17

CHAPTER 2 = MODERN C++

How It Works

It's necessary to understand the deficiencies with variable initialization in C++98 to appreciate why uniform
initialization is an important language feature in C++11. Listing 2-1 shows a program that contains a single
class, MyClass.

Listing 2-1. The C++Most Vexing Parse Problem

class MyClass

{
private:
int m_Member;
public:
MyClass() = default;
MyClass(const MyClass& rhs) = default;
b
int main()
{
MyClass objectA;
MyClass objectB(MyClass());
return 0;
}

The code in Listing 2-1 will generate a compile error in C++ programs. The problem exists in the
definition of objectB. A C++ compiler will not see this line as defining a variable named objectB of type
MyClass calling a constructor that takes the object constructed by calling the MyClass constructor. This
is what you might expect the compiler to see however what it actually sees is a function declaration.
The compiler thinks that this line is declaring a function named objectB that returns a MyClass object
and has a single, unnamed function pointer to a function that returns a MyClass object and is passed no
parameters.

Compiling the program shown in Listing 2-1 causes Clang to generate the following warning:

main.cpp:14:20: warning: parentheses were disambiguated as a function
declaration [-Wvexing-parse]

PP

main.cpp:14:21: note: add a pair of parentheses to declare a variable
MyClass objectB(MyClass());

()

The Clang compiler has properly identified that the code entered in Listing 2-1 contains a vexing parse
problem and even helpfully suggests wrapping the MyClass constructor being passed as a parameter in
another pair of parentheses to solve the problem. C++11 has provided an alternative solution in uniform
initialization. You can see this in Listing 2-2.

18

CHAPTER 2 = MODERN C++

Listing 2-2. Using Uniform Initialization to Solve the Vexing Parse Problem

class MyClass

{
private:
int m_Member;
public:
MyClass() = default;
MyClass(const MyClass& rhs) = default;
};
int main()
MyClass objectA;
MyClass objectB{MyClass{}};
return 0O;
}

You can see in Listing 2-2 that uniform initialization replaces parentheses with braces. This syntax
change informs the compiler that you would like to use uniform initialization to initialize your variable.
Uniform initialization can be used to initialize almost all types of variables.

Note The paragraph above mentions that uniform initialization can be used to initialize almost all variables.
It can have trouble when initializing aggregates or plain old data types however you won't need to worry about
those for now.

The ability to prevent narrowing conversions is another benefit of using uniform initialization. The code
in Listing 2-3 will fail to compile when using uniform initialization.

Listing 2-3. Using Uniform Initialization to Prevent Narrowing Conversions

int main()

{
int number{ o };
char another{ 512 };

double bigNumber{ 1.0 };
float littleNumber{ bigNumber };

return 0;

The compiler will throw errors when compiling the code in Listing 2-3 as there are two narrowing
conversions present in the source. The first occurs when trying to define a char variable with the literal
value 512. A char type can store a maximum value of 255 therefore the value 512 would be narrowed into
this data type. A C++11 or newer compiler will not compile this code due to this error. The initialization
of the float from a double type is also a narrowing conversion. Narrowing conversions occur when data is
transferred from one type to another in where the destination type cannot store all of the values represented
by the source type. Precision is lost in the case of a double being converted to a float therefore the compiler

19

CHAPTER 2 = MODERN C++

correctly will not build this code as-is. The code in Listing 2-4 uses a static_cast to inform the compiler
that the narrowing conversions are intentional and to compile the code.
Listing 2-4. Using a static_cast to Compile Narrowing Conversions

int main()

{

int number{ 0 };
char another{ static_cast<char>(512) };

double bigNumber{ 1.0 };
float littleNumber{ static_cast<float>(bigNumber) };

return 0;

Recipe 2-2. Initializing Objects with Initializer Lists

Problem

You would like to construct objects from multiple objects of a given type.

Solution

Modern C++ provides initializer lists that can be used to supply many objects of the same type to a constructor.

How It Works

Initializer lists in C++11 build upon uniform initialization to allow you to initialize complex types with ease.
A common example of a complex type that can be difficult to initialize with data is a vector. Listing 2-5 shows
two different calls to a standard vector constructor.

Listing 2-5. Constructing vector Objects

#include <iostream>
#include <vector>

using namespace std;

int main()

{

using MyVector = vector<int>;

MyVector vectorA(1);
cout << vectorA.size() <«

<< vectorA[0] << endl;

MyVector vectorB(1, 10);
cout << vectorB.size() <<

<< vectorB[0] << endl;

return 0;

20

CHAPTER 2 = MODERN C++

The code in Listing 2-5 might not do what you expect at first glance. The vectorA variable will be
initialized with a single int containing 0. You might expect that it would contain a single integer containing
1 but this would be incorrect. The first parameter to a vector constructor determines how many values
the initial vector will be set up to store and in this case we are asking it to store a single variable. You
might similarly expect vectorB to contain two values, 1 and 10 however what we have here is a vector that
contains one value and that value is 10. The vectorB variable is constructed using the same constructor as
vectorA however it specifies a value to use to instantiate the members of the vector rather than using the
default value.

The code in Listing 2-6 uses an initializer list in conjunction with uniform initialization to construct a
vector that contains two elements with the specified values.

Listing 2-6. Using Uniform Initialization to Construct a vector

#include <iostream>
#include <vector>

using namespace std;

int main()

{

using MyVector = vector<int>;

MyVector vectorA(1);
cout << vectorA.size() <<

<< vectorA[0] << endl;

MyVector vectorB(1, 10);
cout << vectorB.size() <<

<< vectorB[0] << endl;

MyVector vectorC{ 1, 10 };
cout << vectorC.size() <«

<< vectorC[o0] << endl;

return 0;

The code in Listing 2-6 creates three different vector objects. You can see the output generated by this
program in Figure 2-1.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-2/Listing2-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-2/Listing2-6$./main
190

2 1
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe2-2/Listing2-6% | |

Figure 2-1. The Output Generated by Listing 2-6

21

CHAPTER 2 = MODERN C++

The console output shown in Figure 2-1 shows the size of each vector and the value stored in the first
element of each vector. You can see that the first vector contains a single element and that its value is 0.
The second vector also contains a single element however its value is 10. The third vector is constructed
using uniform initialization and it contains two values and the value of its first element is 1. The value of the
second element will be 10. This can cause a significant different to the behavior of your programs if you are
not taking particular care to ensure that the correct type of initialization has been used with your types. The
code in Listing 2-7 shows a more explicit use of the initializer list to constructa vector.

Listing 2-7. Explicit initializer_list Usage

#include <iostream>
#include <vector>

using namespace std;

int main()

{

using MyVector = vector<int>;

MyVector vectorA(1);
cout << vectorA.size() <<

<< vectorA[0] << endl;

MyVector vectorB(1, 10);
cout << vectorB.size() <<

<< vectorB[0] << endl;
initializer list<inty initList{ 1, 10 };

MyVector vectorC(initList);

cout << vectorC.size() << " " << vectorC[o] << endl;

return 0;
The code in Listing 2-7 contains an explicit initializer list thatis used to construct a vector. The
code in Listing 2-6 implicitly created this object when constructing a vector using uniform initialization.

There’s usually little need to explicitly create initializer lists like this however it’s important that you
understand what the compiler is doing when you write code using uniform initialization.

Recipe 2-3. Using Type Deduction

Problem

You would like to write portable code that doesn’t have a high maintenance cost when changing types.

Solution

C++ provides the auto keyword that can be used to let the compiler deduce the type for a variable automatically.

22

CHAPTER 2 = MODERN C++

How It Works

C++98 compilers had the ability to automatically deduce the type of a variable however this functionality
was only available while you were writing code that used templates and you omitted the type specialization.
Modern C++ has extended this type deduction support to many more scenarios. The code in Listing 2-8
shows the use of the auto keyword and the typeid method of working out the type of a variable.

Listing 2-8. Using the auto Keyword

#include <iostream>
#include <typeinfo>

using namespace std;

int main()
{
auto variable = 1;
cout << "Type of variable:

<< typeid(variable).name() << endl;

return 0;

The code in Listing 2-8 shows how to create a variable with automatically deduced type in C++. The
compiler will automatically work out that you wanted to create an int variable with this code and that’s the
type that will be output by the program, sort of. The Clang compiler will output its internal representation of
an integer type which is actually i. You can pass this output to a program named c++filt to convert this into
a normal typename. Figure 2-2 shows how this can be achieved.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-3/Listing2-8

bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-8$. /main
++filt -t

ype of variable: int
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-8S$ I

Figure 2-2. Using c++filt to Produce Proper Type Output From Clang

The c++filt program has successfully converted the Clang type i into a human readable C++ type
format. The auto keyword also works with classes. Listing 2-9 shows this.

23

CHAPTER 2 = MODERN C++

Listing 2-9. Using auto with a class

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass

{

};

int main()
auto variable = MyClass();
cout << "Type of variable: " << typeid(variable).name() << endl;
return 0;

}

This program will print out the name MyClass as you can see in Figure 2-3.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-3/Listing2-9

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-9$./main |
c++filt -t

Type of variable: MyClass
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-9% I

Figure 2-3. Using auto with MyClass

Unfortunately there are times where the auto keyword can produce less than desirable results. You
will definitely come unstuck if you try to combine the auto keyword with uniform initialization. Listing 2-10
shows the use of the auto keyword with uniform initialization.

Listing 2-10. Using auto with Uniform Initialization

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass

{
};

int main()
{
auto variable{ 1 };
cout << "Type of variable:

<< typeid(variable).name() << endl;

24

CHAPTER 2 = MODERN C++

auto variable2{ MyClass{} };
cout << "Type of variable: " << typeid(variable2).name() << endl;

return 0;

You might expect that the code in Listing 2-10 will produce a variable of type int and a variable of type
MyClass however this is not the case. Figure 2-4 shows the output generated by the program.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-3/Listing2-10

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-10% ./main
c++filt -t

Type of variable: std::initilalizer_list<int>

Type of variable: std::initializer_list<MyClass>
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-10% ||

Figure 2-4. Output Generated When using auto with Uniform Initialization

A quick look at Figure 2-4 shows the immediate problem encountered when using the auto keyword along
with uniform initialization. The C++ uniform initialization feature automatically creates an initializer list
variable that contains the value of the type we want, not the type and value itself. This leads to a relatively
simple piece of advice, do not use uniform initialization when defining variables using auto. I'd recommend
not using auto even if the type you want is actually an initializer list as the code is much easier to
understand and much less error prone if you don’t mix and match you variable initialization styles. There’s a
final piece of advice to bear in mind, use auto for local variables as much as possible. It’s impossible to declare
an auto variable and not define it therefore it’s impossible to have an undefined local auto variable. You can
use this piece of knowledge to cut down on one potential source of bugs in your programs.

Recipe 2-4. Using auto with Functions

Problem

You would like to create more generic functions using type deduction to increase code maintainability.

Solution

Modern C++ allows you to use type deduction for function parameters and for return types.

How It Works

C++ allows you to utilize type deduction when working with function using two methods. Types can be
deduced for function parameters by creating a template function and calling that function without explicit
specializers. The return type can be deduced for a function using the auto keyword in place of its return type.
Listing 2-11 shows the use of auto to deduce the return type for a function.

25

CHAPTER 2 = MODERN C++

Listing 2-11. Deducing a Function’s Return Type Using auto

#include <iostream>
using namespace std;

auto AutoFunctionFromReturn(int parameter)

{
return parameter;
}
int main()
{
auto value = AutoFunctionFromReturn(1);
cout << value << endl;
return 0;
}

The AutoFunctionFromReturn function’s return type in Listing 2-11 is automatically deduced. The
compiler inspects the type of the variable returned from the function and uses that to deduce the type to be
returned. This all works properly because the compiler has everything it needs inside the function to be able
to deduce the type. The parameter variable is being returned therefore the compiler can use its type as the
return type for the function.

Things get a bit more complicated when you need to build with a C++11 compiler. Building Listing 2-11
using C++11 results in the following error.

main.cpp:5:1: error: 'auto' return without trailing return type
auto AutoFunctionFromReturn(int parameter)

Listing 2-12 includes a function with automatic return type deduction that works in C++11.

Listing 2-12. Return Type Deduction in C++11

#include <iostream>
using namespace std;

auto AutoFunctionFromReturn(int parameter) -> int

{
return parameter;
}
int main()
{
auto value = AutoFunctionFromReturn(1);
cout << value << endl;
return 0;
}
26

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 = MODERN C++

You might be wondering why you would bother doing this when looking at the code in Listing 2-12.
There’s little use in deducing the return type for a function when you always specify that it will be an int and
you'd be right. Return type deduction is much more useful in functions that don’t have their parameter types
declared in their signature. Listing 2-13 shows the type deduction in action for a template function.

Listing 2-13. Deducing return types for C++11 template functions

#include <iostream>
using namespace std;

template <typename T>
auto AutoFunctionFromParameter(T parameter) -> decltype(parameter)

{
return parameter;
}
int main()
{
auto value = AutoFunctionFromParameter(2);
cout << value << endl;
return 0;
}

Listing 2-13 shows a useful application of return type deduction. This time the function is specified
as a template therefore the compiler cannot work out the return type using the parameter type. C++11
introduced the decltype keyword to compliment the auto keyword. decltype is used to tell the compiler
to use the type of a given expression. The expression can be a variable name however you could also give a
function here and decltype would deduce the type returned from the function.

At this point the code has come full circle. The C++11 standard allowed auto to be used on functions to
deduce return type but required that the type still be specified as a trailing return type. The trailing return
type can be deduced using decltype however this leads to overly verbose code. C++14 rectifies this situation
by allowing auto to be used on functions without having the trailing return type even when used with
templates as you can see in Listing 2-14.

Listing 2-14. Using auto to Deduce Return Type on a Template Function
#include <iostream>
using namespace std;

template <typename T>
auto AutoFunctionFromParameter(T parameter)

{
return parameter;
}
int main()
{
auto value = AutoFunctionFromParameter(2);
cout << value << endl;
return 0;
}

27

CHAPTER 2 = MODERN C++

Recipe 2-5. Working with Compile Time Constants

Problem

You would like to optimize the runtime operation of your program using compile time constant.

Solution

C++ provides the constexpr keyword that can be used to guarantee that an expression can be evaluated at
compile time.

How It Works

The constexpr keyword can be used to create variables and functions that guarantee that their evaluation
can be evaluated at compile time. Your compiler will throw an error if you add any code to them that
prevents compile time evaluation. Listing 2-15 shows program that uses a constexpr variable to define the
size of an array.

Listing 2-15. Using constexpr to Define the Size of an array

#include <array>
#include <cstdint>
#include <iostream>

int main()

{
constexpr uint32_t ARRAY SIZE{ 5 };

std::array<uint32_t, ARRAY SIZE> myArray{ 1, 2, 3, 4, 5 };

for (autod& number : myArray)

{

std::cout << number << std::endl;
}
return 0;

The constexpr variable in Listing 2-15 guarantees that the value can be evaluated at compile time.
This is necessary here as the size of an array is something that must be determined when your program is
compiled. Listing 2-16 shows how you can extend this example to include a constexpr function.

Listing 2-16. A constexpr Function

#include <array>
#include <cstdint>
#include <iostream>

constexpr uint32_t ArraySizeFunction(int parameter)

{

}
28

return parameter;

CHAPTER 2 = MODERN C++

int main()

{
constexpr uint32_t ARRAY_SIZE{ ArraySizeFunction(5) };

std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5 };

for (auto8d number : myArray)

{

std::cout << number << std::endl;
}
return 0;

You can go another step further than the code in Listing 2-16 and create a class with a constexpr
constructor. This is shown in Listing 2-17.
Listing 2-17. Creating constexpr class Constructors

#include <array>
#include <cstdint>
#include <iostream>

class MyClass

{
private:
uint32_t m_Member;
public:
constexpr MyClass(uint32_t parameter)
: m_Member{parameter}
{
}
constexpr uint32_t GetValue() const
{
return m_Member;
}
};
int main()
constexpr uint32_t ARRAY SIZE{ MyClass{ 5 }.GetValue() };
std::array<uint32_t, ARRAY SIZE> myArray{ 1, 2, 3, 4, 5 };
for (autod& number : myArray)
{
std::cout << number << std::endl;
}
return 0;
}

29

CHAPTER 2 = MODERN C++

The code in Listing 2-17 is able to create an object and call a method in a constexpr statement. This was
possible because the constructor for MyClass was declared as a constexpr constructor. The code shown so
far for constexpr has all been compatible with C++11 compilers. The C++14 standard has relaxed many of
the restrictions that existed in C++11. C++11 constexpr statements are not permitted to do many things that
normal C++ code can. Examples of these things are creating variables and using if statements. The code in
Listing 2-18 shows a C++14 constexpr function that can be used to limit the maximum size of an array.

Listing 2-18. Using a C++14 constexpr Function

#include <array>
#include <cstdint>
#include <iostream>

constexpr uint32_t ArraySizeFunction(uint32_t parameter)

{

uint32_t value{ parameter };
if (value » 10)

{
}

return value;

value = 10;

int main()

constexpr uint32_t ARRAY SIZE{ ArraySizeFunction(15) };
std::array<uint32_t, ARRAY SIZE> myArray{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for (autod& number : myArray)

{
}

std::cout << number << std::endl;
return 0;

The code in Listing 2-18 expands on the C++11 compatible code in Listing 2-16 to include a function
that declares a variable and uses an if statement. Compiling this code with a C++11 compiler results in the
following error.

main.cpp:7:14: warning: variable declaration in a constexpr function is a C++1ly extension
[-Wc++1y-extensions]
uint32_t value{ parameter };
N

main.cpp:8:5: warning: use of this statement in a constexpr function is a C++1ly extension
[-Wc++1y-extensions]

if (value > 10)
main.cpp:17:24: error: constexpr variable 'ARRAY SIZE' must be initialized by a constant
expression

constexpr uint32_t ARRAY SIZE{ ArraySizeFunction(15) };

30

CHAPTER 2 = MODERN C++

Two warnings are presented to show that the constexpr function cannot be used in a constexpr
context. This is not a compile error because the function can still be used in a non-constexpr context. The
actual error is thrown when the function is used to initialize a constexpr variable.

Recipe 2-6. Working with Lambdas

Problem

You would like to write programs that utilize unnamed function objects.

Solution

C++ provides lambdas that can be used to create closures and can be passed around in your code.

How It Works

The lambda syntax introduced in C++11 can be a little confusing at first. Listing 2-19 shows a simple example
of a program that uses a lambda to print out all of the values in an array.

Listing 2-19. Using a Lambda to Print array Values

#include <algorithm>
#include <array>
#include <cstdint>
#include <iostream>

int main()

{
using MyArray = std::array<uint32_t, 5>;
MyArray myArray{ 1, 2, 3, 4, 5 };

std::for_each(myArray.cbegin(),
myArray.cend(),
[](auto8& number) {
std::cout << number << std::endl;
D;

return 0;

This code shows how a lambda is defined in C++ source code. The syntax for a lambda is as follows:

[10

The braces represent the capture block. A lambda uses a capture block to capture existing variables
to be used in the lambda. The code in Listing 2-19 does not have a need to capture any variables therefore
itis empty. The parentheses represent the argument block as it does in a normal function. The lambda in
Listing 2-19 has a single parameter that is of type auto8&. The std: : for_each algorithm applies the given
function to every element in the sequence. The function here happens to be a closure that was created by

31

CHAPTER 2 = MODERN C++

the compiler when it encountered the lambda syntax and passed it to the for_each function. There’s a subtle
terminology difference there that you should become familiar with. A lambda is the source code construct
that defines an anonymous or unnamed function. The compiler uses this syntax to create a closure object
from the lambda.

A closure can be referenced by a variable as shown in Listing 2-20.

Listing 2-20. Referencing a Closure in a Variable

#include <algorithm>
#include <array>
#include <cstdint>
#include <iostream>
#include <typeinfo>

int main()

{
using MyArray = std::array<uint32_t, 5>;
MyArray myArray{ 1, 2, 3, 4, 5 };

auto myClosure = [](auto8& number) {
std::cout << number << std::endl;
};
std::cout << typeid(myClosure).name() << std::endl;

std::for_each(myArray.begin(),
myArray.end(),
myClosure);

return 0;

The example in Listing 2-20 captures the lambda into an auto typed variable. Figure 2-5 shows the
output that this generates.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-6/Listing2-20

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-6/Listing2-205 ./main |
c++filt -t
ain::5_0

im
1
2
3
4
5
b

ruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-6/Listing2-20$ i

Figure 2-5. The Type Output by typeid when Passed a Closure

32

CHAPTER 2 = MODERN C++

Figure 2-5 shows the type of the closure stored by the myClosure variable in Listing 2-20. The
automatically generated type here isn’t particularly useful however C++ does provide a method for passing
around any type of object that can be called like a function. The function template is provided in the
functional header and is part of the STL. This template takes the signature of the function that the object
represents. You can see how this code looks in Listing 2-21.

Listing 2-21. Passing a Closure into a Function

#include
#include
#include
#include
#include
#include

<algorithm>
<array>
<cstdint>
<functional>
<iostream>
<typeinfo>

using MyArray = std::array<uint32_t, 5>;

void PrintArray(const std::function<void(MyArray::value type)>8 myFunction)

{
MyArray myArray{ 1, 2, 3, 4, 5 };
std: :for_each(myArray.begin(),
myArray.end(),
myFunction);
}
int main()
{
auto myClosure = [](auto8& number) {
std::cout << number << std::endl;
};
std::cout << typeid(myClosure).name() << std
PrintArray(myClosure);
return 0;
}

::endl;

You can now create closures and pass them around your program using the function template as shown
in Listing 2-21. This allows you to add some touches to your programs that would have been much more
difficult to achieve in C++98. Listing 2-22 shows a method to copy an array into a vector through a lambda
using the capture block.

33

CHAPTER 2 = MODERN C++

Listing 2-22. Using the Lambda Capture Feature

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{
MyArray myArray{ 1, 2, 3, 4, 5 };

std: :for_each(myArray.begin(),
myArray.end(),
myFunction);

int main()

MyVector myCopy;

auto myClosure = [&myCopy](auto8& number) {
std::cout << number << std::endl;
myCopy . push_back(number);

std::cout << typeid(myClosure).name() << std::endl;
PrintArray(myClosure);

std::cout << std::endl << "My Copy: " << std::endl;
std: :for_each(myCopy.cbegin(),
myCopy.cend(),
[1(autod8 number){
std::cout << number << std::endl;

B;

return 0;

The code in Listing 2-22 contains a use of the lambda capture to store a reference to the object myCopy in
the closure. This object can then be used inside the lambda and has each member of the array pushed onto
it. The main function ends by printing all of the values stored by myCopy to show that the closure was sharing
the same vector as main thanks to the reference capture. The capture was specified as a reference capture
using the & operator. The vector would have been copied into the closure if this had been omitted and the
myCopy vector in main would have remained empty.

Capturing myCopy by value rather than by reference would have led to another problem. The type the
compiler creates for the lambda would no longer be a compatible argument with the parameter used to
declare the function’s signature. Listing 2-23 shows the lambda using capture by value to copy myCopy.

34

CHAPTER 2

Listing 2-23. Capturing myCopy by Value

#include <algorithm>
#include <array»
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>8 myFunction)

{

int

MyArray myArray{ 1, 2, 3, 4, 5 };

std: :for_each(myArray.begin(),
myArray.end(),
myFunction);

main()

MyVector myCopy;

auto myClosure = [myCopy](auto8& number) {
std::cout << number << std::endl;
myCopy . push_back(number);

5
std::cout << typeid(myClosure).name() << std::endl;
PrintArray(myClosure);

std::cout << std::endl << "My Copy: " << std::endl;
std: :for_each(myCopy.cbegin(),
myCopy.cend(),
[](auto8& number){
std::cout << number << std::endl;

1

return 0;

MODERN C++

The code in Listing 2-23 won’t compile and your compiler is unlikely to give you a meaningful or helpful
error message. Clang provides the following error output when trying to compile this code using Cygwin on
Windows.

$ make
clang++ -g -std=c++1y main.cpp -o main
main.cpp:26:13: error: no matching member function for call to 'push_back'

myCopy . push_back(number);

NS A A A A

35

CHAPTER 2 = MODERN C++

/usr/1lib/gcc/i1686-pc-cygwin/4.9.2/include/c++/functional:2149:27: note: in instantiation of
function template
specialization 'main()::<anonymous class>::operator()<unsigned int>' requested here
using Invoke = decltype(callable functor(std::declval< Functor8>())

/usr/1ib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2158:2: note: in instantiation of
template type alias
' Invoke' requested here
using _Callable

/usr/1ib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2225:30: note: in instantiation of
template type alias
' Callable' requested here
typename = Requires<_Callable<_Functor>, void>>

/usr/1ib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note: in instantiation of
default argument for
'function<<lambda at main.cpp:24:22> >' required here
function(_Functor);

/usr/1ib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note: while substituting
deduced template arguments
into function template 'function' [with _Functor = <lambda at main.cpp:24:22>, $1 =
<no value>]
function(_Functor);
A
/usr/1ib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:913:7: note: candidate
function not viable: 'this'
argument has type 'const MyVector' (aka 'const vector<MyArray::value type>'), but
method is not marked const
push_back(const value typed x)

/usr/1ib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:931:7: note: candidate
function not viable: 'this'

argument has type 'const MyVector' (aka 'const vector<MyArray::value type>'), but
method is not marked const

push_back(value type8& x)

main.cpp:30:5: error: no matching function for call to 'PrintArray’

main.cpp:12:6: note: candidate function not viable: no known conversion from '<lambda at
main.cpp:24:22>" to 'const

std::function<void (MyArray::value type)>' for 1st argument
void PrintArray(const std::function<void(MyArray::value type)>8 myFunction)

2 errors generated.

makefile:2: recipe for target 'main' failed
make: *** [main] Error 1

36

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 = MODERN C++

Given the verbose and confusing error messages output by Clang you may think that the code is very far
from being in a working state however you might be surprised to learn that this can be solved with a single
keyword, mutable. Listing 2-24 shows the code in a proper compiling state.

Listing 2-24. Creating amutable Closure

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value type)>& myFunction)

{
MyArray myArray{ 1, 2, 3, 4, 5 };

std::for_each(myArray.begin(),
myArray.end(),
myFunction);

int main()

MyVector myCopy;

auto myClosure = [myCopy](auto8& number) mutable {
std::cout << number << std::endl;
myCopy . push_back(number);

5
std::cout << typeid(myClosure).name() << std::endl;
PrintArray(myClosure);

std::cout << std::endl << "My Copy: " << std::endl;
std: :for_each(myCopy.cbegin(),
myCopy.cend(),
[](auto8& number){
std::cout << number << std::endl;

1

return 0;

Listing 2-24 contains the solution to all of the error output that you can see above. The mutable keyword
is used to tell the compiler that the lambda function should generate a closure with non-const members
that have been copied by value.

37

CHAPTER 2 = MODERN C++

The closures created by the compiler when they encounter alambda function are const by default. This
causes the compiler to create a type for the closure that can no longer be implicitly converted to a standard
function pointer. The resulting error messages generated by a compiler when you try to use a lambda
function to generate a closure that is not a suitable type for your code can be exceptionally confusing so
there is no real solution here other than to properly learn how to use lambda functions and to compile often
when working to pick up when you have made a change that the compiler cannot handle.

The next problem you might encounter while trying to compile the code that you've seen so far in this
Recipe is to compile with a C++11 compiler that does not support C++14. The problem here is that C++11
lambdas do not support the auto keyword as a parameter. Building Listing 2-24 with a C++11 compiler
results in the following output.

clang++ -g -std=c++11 main.cpp -o main
main.cpp:24:31: error: ‘auto’ not allowed in lambda parameter
auto myClosure = [myCopy](auto8& number) mutable {

Anrons

main.cpp:30:5: error: no matching function for call to 'PrintArray’

main.cpp:12:6: note: candidate function not viable: no known conversion from '<lambda at
main.cpp:24:22>" to 'const

std::function<void (MyArray::value type)>' for 1st argument
void PrintArray(const std::function<void(MyArray::value type)>8& myFunction)

main.cpp:35:5: error: ‘auto' not allowed in lambda parameter
[1(autod& number){
Ao
In file included from main.cpp:1:
In file included from /usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/algorithm:62:
/usr/1lib/gcc/i1686-pc-cygwin/4.9.2/include/c++/bits/stl_algo.h:3755:2: error: no matching
function for call to object
of type '<lambda at main.cpp:35:2>'
_f(*__first);
main.cpp:33:10: note: in instantiation of function template specialization
"std::for_each<_ gnu_cxx::_normal iterator<const unsigned int *, std::vector<unsigned int,
std::allocator<unsigned int> > >, <lambda at main.cpp:35:2> >' requested here
std: :for_each(myCopy.cbegin(),

main.cpp:35:2: note: candidate template ignored: couldn't infer template argument '$auto-0-0'
[1(autodd number){

4 errors generated.

makefile:2: recipe for target 'main' failed

make: *** [main] Error 1

Thankfully this is a much clearer message than when trying to compile Listing 2-23 and it’s reasonably

clear that C++11 does not support auto type deduction for lambda function parameters. Listing 2-25 shows
the code needed to build a working program that copied an array into a vector using a lambda function.

38

CHAPTER 2

Listing 2-25. A C++11 Compatible Lambda Function

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{

int

MyArray myArray{ 1, 2, 3, 4, 5 };

std: :for_each(myArray.begin(),
myArray.end(),
myFunction);

main()

MyVector myCopy;

auto myClosure = [8myCopy](const MyArray::value_type& number) {
std::cout << number << std::endl;
myCopy . push_back(number);

std::cout << typeid(myClosure).name() << std::endl;
PrintArray(myClosure);

std::cout << std::endl << "My Copy: " << std::endl;
std: :for_each(myCopy.cbegin(),
myCopy.cend(),
[1(const MyVector::value_type& number){
std::cout << number << std::endl;

};

return 0;

MODERN C++

The code in Listing 2-25 will work just fine with a C++11 compiler but it does result in lambda functions
that are slightly less portable between different types. The lambda function used to print the values from
myCopy can now only be used with the type defined by MyVector: :value_type whereas the C++14 version
could have been reused with any type that could be passed as input to cout.
It goes without saying that none of this code will compile with a C++98 compiler as C++98 does not
supportlambda functions.

39

CHAPTER 2 = MODERN C++

Recipe 2-7. Working with Time

Problem

You would like to write portable programs that are aware of the current time or their execution time.

Solution

Modern C++ provides STL templates and classes that provide portable time handling capabilities.

How It Works
Getting the Current Date and Time

C++11 provides access to different real-time clocks in a given computer system. The implementation of each
clock may be different depending on the computer system that you are running on itself however the general
intent of each clock will remain the same. You can use the system_clock to query the current time from a
system wide real time clock. This means that you can use this type of clock to get the current date and time
for a computer whilst your program is running. Listing 2-26 shows how this can be achieved.

Listing 2-26. Getting the Current Date and Time

#include <ctime>
#include <chrono>
#include <iostream>

using namespace std;
using namespace chrono;

int main()

{
auto currentTimePoint = system_clock: :now();
auto currentTime = system_clock::to time t(currentTimePoint);
auto timeText = ctime(¤tTime);

cout << timeText << endl;

return 0;

The program in Listing 2-26 shows how to retrieve the current time from system_clock. You do this
using the system_clock: :now method. The object returned from now is a time_point that contains a
representation of time offset from some epoch. The epoch is a reference time that the system uses to offset
all other times. You will not have to worry about the epoch by using the same clock for all of your time work.
However you will have to be aware that a time from one computer may not be transferrable directly to
another if the systems use different epochs for their time.

The time_point structure cannot be printed out directly and there is no method to convert it to a string
however the class does provide a method to convert the time_point object into a time_t object. The time_t
type is an old C type that can be converted to a string representation using the ctime function. You can see
the result of running this program in Figure 2-6.

40

CHAPTER 2 = MODERN C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-7/Listing2-26

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-26% ./mailn
Mon Apr 6 13:15:40 2015

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-26S I

Figure 2-6. The Current Time Printed to the Terminal

Comparing Times

You can also use the STL time capabilities to compare one time to another. Listing 2-27 shows how you can
compare a time to another.

Listing 2-27. Comparing Times

#include <ctime>
#include <chrono>
#include <iostream>
#include <thread>

using namespace std;
using namespace chrono;
using namespace literals;

int main()
auto startTimePoint = system clock::now();
this thread::sleep for(5s);
auto endTimePoint = system clock::now();

auto timeTaken = duration cast<milliseconds>(endTimePoint - startTimePoint);

cout << "Time Taken: " << timeTaken.count() << endl;

return 0;

Listing 2-27 shows that you can call the now method on a clock multiple times and retrieve different
values. The program gets a time into the startTimePoint variable then calls the sleep for method on the
current execution thread. This call causes the program to go to sleep for 5 seconds and calls the system_
clock: :now method again after it resumes. At this point you have two time_point objects that can be used
to subtract one from the other. The duration_cast can then be used to turn the result of the subtraction
into a concrete time with a given type of duration. The valid duration types are hours, minutes, seconds,
milliseconds, microseconds and nanoseconds. The count method is then used on the duration object to get
the actual number of milliseconds that elapsed between calls to now.

41

CHAPTER 2 = MODERN C++

Note The code in Listing 2-27 uses a C++14 standard user-defined literal. The 5s passed to sleep for
defines a literal of 5 seconds. There are also literals defined for h (hours), min (minutes), s (seconds), ms
(milliseconds), us (microseconds) and ns (nanoseconds). These literals can all be applied to an integer literal
to inform the compiler that you would like to create a literal of a duration object with the given type of time.
Applying s to a character literal such as "A String"s tells the compiler to create a literal of type std: :string.
These literals are defined in the std: : 1iterals namespace and are a C++14 only feature, meaning that they
cannot be used in C++11 or C++98 code.

Figure 2-7 shows the output generated when this program is run.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-7/Listing2-27

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-27% ./mailn
Time Taken: 5002
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-27$./main
Time Taken: 5001
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-27$./main
Time Taken: 5002
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipez-7/Listing2-27$./main
Time Taken: 5003
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-275 |

Figure 2-7. Output from Several Runs of Listing 2-27

Figure 2-7 shows that the sleep_for method isn’t 100% accurate however it is reasonably close to 5000ms
with each run. You can now see how you can use the now method to compare two time_points and it’s not
much more of a stretch to imagine that you can create an if statement that only executes once a certain
amount of time has passed.

Recipe 2-8. Understanding Ivalue and rvalue References

Problem

C++ contains a distinction between an lvalue reference and an rvalue reference. You need to be able to
understand these concepts to write optimal C++ programs.

Solution

Modern C++ contains two different reference operators, & (lvalue) and 88& (rvalue). These work hand-in-hand
with move semantics to reduce the time spent copying objects in your programs.

42

CHAPTER 2 = MODERN C++

How It Works

Move semantics are one of the headline features of the modern C++ programming language. Their
usefulness is being significantly overplayed and programmers new to modern C++ programming may be
tempted to jump head first into the shiny new feature and actually make their programs worse due to a lack
of understanding as to when and why to use an rvalue reference over a lvalue reference.

To put it simply, an rvalue reference should be used to move construct or move assign objects in place
of copy operations where appropriate. Move semantics should not be used to replace passing parameters
to methods by const reference. A move operation could be faster than a copy, in the worst case it can be
slower than a copy and it will always be slower than passing by const reference. This recipe will show you
the difference between an lvalue reference, an rvalue reference, the copy and move class constructors and
operators and show some performance issues related to each.

The code in Listing 2-28 shows the implementation for a simple class that uses a static counter value to
keep track of the number of objects in memory at any given time.

Listing 2-28. A Class that Counts the Number of Instances
#include <iostream>
using namespace std;
class MyClass
{
private:
static int s_Counter;

int* m_Member{ &s_Counter };

public:
MyClass()

++(*m_Member);

}

~MyClass()

{
--(*m_Member);
m_Member = nullptr;

}

int GetValue() const
{

}

return *m_Member;

};

43

CHAPTER 2 = MODERN C++

int MyClass::s_Counter{ 0 };
int main()

auto object1l = MyClass();
cout << objecti.GetValue() << endl;

{

auto object2 = MyClass();
cout << object2.GetValue() << endl;

}

auto object3 = MyClass();
cout << object3.GetValue() << endl;

return 0;

The s_Counter static member in Listing 2-28 counts the number of active instances of the class that
exist in memory at any given time. This is achieved by initializing the static to 0 and pre-incrementing
the value in the MyClass constructor through the member integer pointer. The s_Counter value is
also decremented in “MyClass to ensure that the number never grows out of control. The need for an
unconventional setup will become clear when you see the move constructor in action. The output generated
by this program is shown in Figure 2-8.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-28

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-285 ./main
1
2
2
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-285 |

Figure 2-8. Thes_Counter variable in action

You can now extend MyClass to contain a copy constructor and determine the impact this has on the
number of objects in memory at any given time. Listing 2-29 shows a program that includes a MyClass copy
constructor.

Listing 2-29. Copying MyClass
#include <iostream>
using namespace std;

class MyClass
{

private:
static int s_Counter;

int* m Member{ &s Counter };

44

CHAPTER 2 = MODERN C++

public:
MyClass()
++(*m_Member);
cout << "Constructing: " << GetValue() << endl;
}
~MyClass()
--(*m_Member);
m_Member = nullptr;
cout << "Destructing: " << s_Counter << endl;
}

MyClass(const MyClass& rhs)
: m_Member{ rhs.m_Member }

{
++(*m_Member);
cout << "Copying: " << GetValue() << endl;
}
int GetValue() const
{
return *m_Member;
}

};
int MyClass::s_Counter{ o0 };
MyClass CopyMyClass(MyClass parameter)

return parameter;

}

int main()

{
auto object1 = MyClass();
{

auto object2 = MyClass();

}
auto object3 = MyClass();
auto object4 = CopyMyClass(object3);
return 0;

}

45

CHAPTER 2 = MODERN C++

The code in Listing 2-29 has added a copy constructor and a function to copy object3 into object4.
This has the impact of needing two copies, one to copy object3 into parameter and one to copy parameter
into object4. Figure 2-9 shows that the two copy operations have occurred and that there are also two
subsequent destructors called to destroy these objects.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-29

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-295 ./main
Constructing: 1

Constructing: 2

Destructing: 1

Constructing: 2

Copying: 3

Copying: 4

Destructing: 3

Destructing: 2

Destructing: 1

Destructing:
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-29S il

@

Figure 2-9. Copy Constructors in Action

Move constructors can be utilized to cut down on the complexity of a copy constructor. There will be
just as many objects in flight however you can safely shallow copy an object in a move constructor thanks
to the rvalue reference type that they are passed. A rvalue reference is a guarantee from the compiler that
the object referenced by the variable was a temporary object. This means that you are free to cannibalize
the object so that you can implement a copy operation faster than if the pre-existing state was needed to be
preserved. Listing 2-30 shows how to add a move constructor to MyClass.

Listing 2-30. Adding a Move Constructor to MyClass
#include <iostream>

using namespace std;

class MyClass

{

private:
static int s_Counter;

int* m_Member{ &s Counter };

public:
MyClass()
{

++(*m_Member);
cout << "Constructing: " << GetValue() << endl;

46

vww allitebooks.conl

http://www.allitebooks.org

};

CHAPTER 2
~MyClass()

if (m_Member)
{

--(*m_Member);

m_Member = nullptr;

cout << "Destructing: " << s_Counter << endl;
}
else
{

cout << "Destroying a moved-from instance" << endl;
}

}

MyClass(const MyClass& rhs)
: m_Member{ rhs.m_Member }
{

++(*m_Member);
cout << "Copying: " << GetValue() << endl;
}

MyClass(MyClass88& rhs)
: m_Member{ rhs.m Member }

{
cout << hex << showbase;
cout << "Moving: " << &rhs << " to " << this << endl;
cout << noshowbase << dec;
rhs.m_Member = nullptr;
}
int GetValue() const
{
return *m_Member;
}

int MyClass::s_Counter{ 0 };

MyClass CopyMyClass(MyClass parameter)

return parameter;

}

int main()

{
auto object1l = MyClass();
{

auto object2 = MyClass();

}
auto object3 = MyClass();
auto object4 = CopyMyClass(object3);
return 0;

}

MODERN C++

47

CHAPTER 2 = MODERN C++

The code in Listing 2-30 adds a move constructor to MyClass. This has an immediate impact on the
running code. You can see that the move constructor is being invoked in Figure 2-10.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-30

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-30$./main
Constructing: 1

Constructing: 2

Destructing: 1

Constructing: 2

Copying: 3

Moving: Ox7ffffcab4b20 to ox7ffffcab4b2s

Destroying a moved-from instance

Destructing: 2

Destructing: 1

Destructing: ©
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-30S% l

Figure 2-10. Using a Move Constructor

The compiler has realized that the state of parameter in Listing 2-30 does not need to be maintained
after the return statement has ended. This means that the code can invoke a move constructor to create
object4. This creates a scenario for a possible optimization in your code. This example is trivial and
therefore there may be minimal performance and memory benefits. If the class was more complicated then
you would save the memory needed to have both objects in memory at the same time and the time taken to
copy from one object to the other. The performance benefits of this can be seen in Listing 2-31.

Listing 2-31. Comparing Copy Constructors with Move Constructors

#include <chrono>
#include <iostream>
#include <string>
#include <vector>

using namespace std;
using namespace chrono;
using namespace literals;

class MyClass
{
private:
vector<string> m_String{
"This is a pretty long string that"
" must be copy constructed into"
copyConstructed!"s

};

int m_Value{ 1 };

48

CHAPTER 2

public:

};

int

MyClass() = default;
MyClass(const MyClass& rhs) = default;
MyClass(MyClass8& rhs) = default;

int GetValue() const

{

return m_Value;
}
main()

using MyVector = vector<MyClass>;
constexpr unsigned int ITERATIONS{ 1000000U };

MyVector copyConstructed(ITERATIONS);
int value{ 0 };

auto copyStartTime = high resolution clock::now();
for (unsigned int i=0; i < ITERATIONS; ++i)

MyClass myClass;
copyConstructed.push_back(myClass);
value = myClass.GetValue();

}

auto copyEndTime = high resolution_clock: :now();
MyVector moveConstructed(ITERATIONS);

auto moveStartTime = high resolution clock: :now();
for (unsigned int i=0; i < ITERATIONS; ++i)

MyClass myClass;
moveConstructed.push_back(move(myClass));
value = myClass.GetValue();

}

auto moveEndTime = high resolution_clock: :now();
cout << value << endl;
auto copyDuration =

duration_cast<milliseconds>(copyEndTime - copyStartTime);
cout << "Copy lasted: " << copyDuration.count() << "ms" << endl;
auto moveDuration =

duration_cast<milliseconds>(moveEndTime - moveStartTime);

cout << "Move lasted: " << moveDuration.count() << "ms" << endl;

return 0;

MODERN C++

49

CHAPTER 2 = MODERN C++

The code in Listing 2-31 makes use of the default keyword to inform the compiler that we would like to
use the default constructor, copy constructor and move constructor for this class. This is valid here because
there is no manual memory management or behavior needed by MyClass. We simple want to construct, copy
or move the membersm_String and m_Value. The m_Value variable is used to try to prevent the compiler
from over-optimizing our example and producing unexpected results. You can see that the move constructor
is faster in this instance than the copy constructor in Figure 2-11.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-31

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-31$./main
1
Copy lasted: 429ms

Move lasted: 368ms
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-31$. /main
1
Copy lasted: 438ms

Move lasted: 333ms
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-31$. /main
1
Copy lasted: 471ms

Move lasted: 357ms
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-31$ i

Figure 2-11. Showing a Move Constructor can be Faster than a Copy Constructor

Recipe 2-9. Using Managed Pointers

Problem

You would like to automate the task of managing memory in your C++ programs.

Solution

Modern C++ provides the capability to automatically manage dynamically allocated memory.

How It Works
Using unique_ptr

C++ provides three smart pointer types that can be used to automatically manage the lifetime of dynamically
allocated objects. Listing 2-32 shows the use of a unique_ptr.

50

CHAPTER 2 = MODERN C++

Listing 2-32. Using unique_ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass

{
private:
int m Value{ 10 };
public:
MyClass()
cout << "Constructing!" << endl;
}
~MyClass()
{
cout << "Destructing!" << endl;
}
int GetValue() const
{
return m_Value;
}
};
int main()
{
unique ptr<MyClass> uniquePointer{ make unique<MyClass>() };
cout << uniquePointer->GetValue() << endl;
return 0;
}

The code in Listing 3-32 manages to create and destroy a dynamically allocated object without ever
using new or delete. The make_unique template handles calling new and the unique_ptr object handles
calling delete when the unique_ptr instance goes out of scope. Unfortunately the make_unique template is
a C++14 feature and does not exist in C++11. The code in Listing 2-33 shows how you can rectify this.

Listing 2-33. Creating Your Own make_unique

#include <iostream>
#include <memory>

using namespace std;
#if _ cplusplus > 200400L &&% _ cplusplus < 201200L

template <typename T, typename... Args>

51

CHAPTER 2 = MODERN C++

unique_ptr<T> make unique(Args... args)

{
}

#endif

return unique_ptr<T>{ new T(args...) };

class MyClass

{

private:
string m_Name;
int m Value;

public:
MyClass(const string® name, int value)
: m_Name{ name }
, m_Value{ value }

{
}

~MyClass()

cout << "Constructing!" << endl;

cout << "Destructing!" << endl;

}

const string& GetName() const

{
}

int GetValue() const
{

}

return m_Name;

return m_Value;
};
int main()
{
unique ptr<MyClass> uniquePointer{

make_unique<MyClass>("MyClass", 10) };

cout << uniquePointer->GetName() << endl;
cout << uniquePointer->GetValue() << endl;

return 0;

52

CHAPTER 2 = MODERN C++

The code in Listing 2-33 uses another C++11 feature to create a make_unique template. The template
is a variadic template and it can take as many arguments as you wish to pass to it. This is proven in the call
to make unique where a string and an int are passed through to the MyClass constructor. The __ cplusplus
preprocessor symbol is used to detect the version of C++ that the compiler is using to build. You may need to
ensure that this is working properly with the compiler that you are using as not all compilers implement this
correctly. This code will build in C++11 using the user supplied make_unique template and will compile in
C++14 using the standard supplied make_unique template.

Unique pointers are exactly as you expect, they are unique and therefore your code cannot have more
than a single instance of a unique_ptr pointing to the same object at the same time. It achieves this by
preventing copy operations on unqiue_ptr instances. A unique_ptr can be moved however and this allows
you to pass a unique_ptr around in your program. Listing 2-34 shows how you can use move semantics to
pass aunqiue_ptr around your program.

Listing 2-34. Moving a unqiue_ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass

{

private:
string m_Name;
int m_Value;

public:
MyClass(const string& name, int value)
: m_Name{ name }
, m_Value{ value }

{
}

~MyClass()

cout << "Constructing!" << endl;

cout << "Destructing!" << endl;

}

const stringd& GetName() const

{
}

int GetValue() const
{

}

return m_Name;

return m_Value;

};

53

CHAPTER 2 = MODERN C++

using MyUniquePtr = unique ptr<MyClass>;

auto PassUniquePtr(MyUniquePtr ptr)

{
cout << "In Function Name: " << ptr->GetName() << endl;
return ptr;
}
int main()
{
auto uniquePointer = make unique<MyClass>(“"MyClass", 10);
auto newUniquePointer = PassUniquePtr(move(uniquePointer));
if (uniquePointer)
cout << "First Object Name: " << uniquePointer->GetName() << endl;
}
cout << "Second Object Name: " << newUniquePointer->GetName() << endl;
return 0;
}

The code in Listing 2-34 moves a unique_ptr instance into a function. That instance is then moved back
out of the function into a second unique_ptr object. There’s no reason why the same unique_ptr couldn’t
have been used in main other than to show that the original instance is not valid after it has been moved
from. This is evident in the if call to check if the pointer is valid as this will fail when the code is executed.
The unique_ptr can be used in this manner and the object pointed to by the instance will be deleted once it
goes out of scope without having been moved from. The output from this program is shown in Figure 2-12.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-9/Listing2-34

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-34S$./main
Constructing!

In Function Name: MyClass

Second Object Name: MyClass

Destructing!
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-34s i

Figure 2-12. Valid unique_ptr Instances Moved Through a Function

Using shared_ptr Instances

Where a unique_ptr can give you sole ownership over a single object that you can move around in a single
pointer instance, a shared_ptr can give you shared ownership over a single object. This works by having a
shared_ptr storing an internal reference count along with the pointer to the object and only deleting the
object once all of the values have gone out of scope. Listing 2-35 shows the use of a shared ptr.

54

Listing 2-35. Using a shared ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass

{

private:
string m_Name;
int m_Value;

public:
MyClass(const string& name, int value)
: m_Name{ name }
, m Value{ value }

{
}

~MyClass()

cout << "Constructing!" << endl;

cout << "Destructing!" << endl;

}

const stringd& GetName() const

{
}

int GetValue() const
{

}

return m_Name;

return m_Value;
1
using MySharedPtr = shared ptr<MyClass>;

auto PassSharedPtr(MySharedPtr ptr)

{
cout << "In Function Name: " << ptr->GetName() << endl;
return ptr;

}

int main()

{

auto sharedPointer = make_shared<MyClass>("MyClass", 10);

{

auto newSharedPointer = PassSharedPtr(sharedPointer);
if (sharedPointer)

CHAPTER 2

MODERN C++

55

CHAPTER 2 = MODERN C++

{
cout << "First Object Name: " << sharedPointer->GetName() << endl;
}
cout << "Second Object Name: " << newSharedPointer->GetName() << endl;
}
return 0;

The shared_ptr in Listing 2-35 has a different to the unique_ptr that you have seen before. A shared_
ptr can be copied through your program and you can have multiple pointers pointing to the same object.
This can be seen in Figure 2-13 where the output from the First Object Name statement can be seen.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-9/Listing2-35

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-355 ./main
Constructing!

In Function Name: MyClass

First Object Name: MyClass

Second Object Name: MyClass

Destructing!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-355% [

Figure 2-13. Usinga shared ptr

Using a weak_ptr

Modern C++ also allows you to hold weak references to smart pointers. This allows you to get a reference to
a pointer to a shared object temporarily while you need it for as long as the shared object exists. Listing 2-36
shows how you can achieve this using a weak ptr.

Listing 2-36. Using a weak_ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass

{
private:
string m_Name;
int m_Value;
56

vww allitebooks.conl

http://www.allitebooks.org

public:
MyClass(const string® name, int value)
: m_Name{ name }
, m_Value{ value }

{
cout << "Constructing!" << endl;
}
~MyClass()
cout << "Destructing!" << endl;
}
const stringd& GetName() const
{
return m_Name;
}
int GetValue() const
{
return m_Value;
}

};

using MySharedPtr = shared ptr<MyClass>;
using MyWeakPtr = weak ptr<MyClass>;

auto PassSharedPtr(MySharedPtr ptr)

{
cout << "In Function Name: " << ptr->GetName() << endl;
return ptr;

}

int main()

{

MyWeakPtr weakPtr;
{

auto sharedPointer = make_shared<MyClass>("MyClass", 10);
weakPtr = sharedPointer;

{

auto newSharedPointer = PassSharedPtr(sharedPointer);
if (sharedPointer)

{
}

cout << "First Object Name:

cout << "Second Object Name:

CHAPTER 2

<< sharedPointer->GetName() << endl;

<< newSharedPointer->GetName() << endl;

MODERN C++

57

CHAPTER 2 = MODERN C++

auto sharedFromWeaki = weakPtr.lock();
if (sharedFromWeak1)

{
}

cout << "Name From Weaki: " << sharedFromWeaki->GetName() << endl;

}

auto sharedFromWeak2 = weakPtr.lock();
if (!sharedFromWeak2)

{

cout << "Shared Pointer Out Of Scope!" << endl;
}
return 0;

You can see in Listing 2-36 that aweak_ptr can be assigned a shared_ptr however you cannot access
the shared object directly through the weak pointer. Instead a weak pointer supplies a lock method. The
lock method returns a shared_ptr instance pointing to the object that you are referencing. This shared_ptr
holds the object alive for the entirety of its scope if it ends up being the last object pointing to the object. The
lock method always returns a shared_ptr however the shared_ptr returned by lock will fail an if test if the
object no longer exists. You can see this at the end of the main function where lock is called after the object
has been deleted. Figure 2-14 shows that the weak _ptr cannot get a valid shared_ptr after this has occurred.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-9/Listing2-36
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-36$./main
Constructing!
In Function Name: MyClass
First Object Name: MyClass
Second Object Name: MyClass
Name From Weakl: MyClass
Destructing!

Shared Pointer Out Of Scope!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-36% |

Figure 2-14. Aweak ptr Failing to lock a Deleted Object

58

CHAPTER 3

Working with Text

Working with text will be one of the most regular tasks a C++ programmer will have to deal with. You are
likely to need to read in user input, write out messages to the user or writing logging functionality for other
programmers to more easily debug running programs. Unfortunately working with text is not an easy or
straight-forward task. All too often programmers rush into the job and make fundamental errors with

their text handling which become major issues later into their projects. The worst of these is not properly
accounting for localized versions of text strings. Working with English character sets is generally easy as all
English characters and punctuation fit into the ASCII character set. This is convenient as every character
needed to represent the English language can fit into a single 8-bit char variable. Things become unstuck as
soon as you are required to support foreign languages with your programs. Every character which you need
to support will no longer fit into a single 8-bit value. C++ can handle non-English languages in a number of
ways which I will cover in this chapter.

Recipe 3-1. Representing Strings in Code Using Literals

Problem

It’s is often useful to supply output text when debugging programs. To do this C++ allows you to embed
strings directly into your code.

Solution

C++ programs have a concept known as a string table and all string literals in your program are included in
the program’s executable.

How It Works

A standard C++ string literal is easy to work with. Listing 3-1 shows code which creates a string literal.

59

CHAPTER 3 © WORKING WITH TEXT

Listing 3-1. A string literal

#include <iostream>
#include <string>

using namespace std;

namespace
{
const std::string STRING{ "This is a string"s };
}
int main()
{
cout << STRING << endl;
return 0;
}

The string literal in this example is the sentence which is included inside the quote marks and followed
by the letter s. The compiler will create a table of strings during compilation and place them all together. You
can see this string inside the exe file created from the source in Figure 3-1.

60

CHAPTER 3 © WORKING WITH TEXT

. HxD - [C\Users\Bruce\Documents\C-Recipes2\Recipe3-1\Listing3-1\main.exe] = =
- &) File Edit Search View Analysis Extras Window ? [=][=][x]
IR | @B icd16 [v]]Ans V|| hex v/

'ﬁl Apress.lnk_. 5] main.exe

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF 2

00000F60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..uevvevanveanns
00000E70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...evveeanvennns
00000F80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..uvuveeavseanns
00000FS0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..uvvveeavsaanns
00000FA0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..ueuvesanssanns
00000FBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..evuvseansaanns
00000FCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..eeusseanssanns
00000FDO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..eevsseasssanns
00000FE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...euseeenseanns
00000FFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...euseeenseanns
00001000 63 79 67 67 63 63 SF 73 2D 31 2E 64 6C 6C 00 SF cyggcoc_s-1.dll._
00001010 SF 72 65 67 69 73 74 65 72 SF 66 72 61 6D 65 SF _register_frame_
00001020 69 6E 66 6F 00 SF S5F 64 65 72 65 67 69 73 74 65 info._ deregiste
00001030 72 5F 66 72 61 6D 65 S5F 69 6E 66 6F 00 63 79 67 r_frame info.cyg
00001040 67 63 6A 2D 31 35 2E 64 6C 6C 00 5F 4A 76 5F 52 gcj-15.dll._Jv R
00001050 65 67 69 73 74 65 72 43 6C 61 73 73 65 73 00 00 egisterClasses..
00001060 [F4 68 69 73 20 69 73 20 61 20 73 74 72 69 6E 67
00001070 00 00 00 00 DO 17 00 00 47 43 43 3A 20 28 47 4ED...GCC: (GN
00001080 55 29 20 34 2E 38 2E 33 20 32 30 31 34 30 35 32 U) 4.8.3 2014052
00001090 32 20 28 46 65 64 6F 72 61 20 43 79 67 77 69 6E 2 (Fedora Cygwin
000010A0 20 34 2E 38 2E 33 2D 36 29 00 00 00 47 43 43 3A 4.8.3-6)...GCC:
000010B0 20 28 47 4E 55 29 20 34 2E 39 2E 32 00 00 00 00 (GNU) 4.9.2....
000010C0O 47 43 43 3R 20 28 47 4E 55 29 20 34 2E 38 2E 33 GCC: (GNU) 4.8.3
000010D0 20 32 30 31 34 30 35 32 32 20 28 46 65 64 6F 72 20140522 (Fedor
000010E0 61 20 43 79 67 77 69 6E 20 34 2E 38 2E 33 2D 36 a Cygwin 4.8.3-6
000010F0 29 00 00 00 47 43 43 3A 20 28 47 4E 55 29 20 34)...GCC: (GNU) 4
00001100 2E 38 2E 33 20 32 30 31 34 30 35 32 32 20 28 46 .8.3 20140522 (F
00001110 65 64 6F 72 61 20 43 79 67 77 69 6E 20 34 2E 38 edora Cygwin 4.8
00001120 2E 33 2D 36 29 00 00 00 47 43 43 3A 20 28 47 4E .3-6)...GCC: (GN
00001130 55 29 20 34 2E 38 2E 33 20 32 30 31 34 30 35 32 U) 4.8.3 2014052
00001140 32 20 28 46 65 64 6F 72 61 20 43 79 67 77 69 6E 2 (Fedora Cygwin
00001150 20 34 2E 38 2E 33 2D 36 29 00 00 00 47 43 43 3A 4.8.3-6)...GCC:
00001160 20 28 47 4E 55 29 20 34 2E 38 2E 33 20 32 30 31 (GNU) 4.8.3 201
00001170 34 30 35 32 32 20 28 46 65 64 6F 72 61 20 43 79 40522 (Fedora Cy
00001180 67 77 63 6E 20 34 2E 38 2E 33 2D 36 29 00 00 00 gwin 4.8.3-6)...
00001190 47 43 43 3A 20 28 47 4E 55 29 20 34 2E 38 2E 33 GCC: (GNU) 4.8.3
000011R0 20 32 30 31 34 30 35 32 32 20 28 46 65 64 6F 72 20140522 (Fedor
000011B0 61 20 43 79 67 77 69 6E 20 34 2E 38 2E 33 2D 36 a Cvawin 4.8.3-6 v

Offset: 1060 Block: 1060-106F Length: 10 Overwrite

Figure 3-1. A screenshot fromHxD showing the string literal embedded into an executable

You can use string literals to initialize STL string objects. The compiler will find all of the strings in your
program and use the address from the string table to initialize your string. You can see this in Listing 3-1 where
the pointer STRING is initialized using the string literal, in effect this code is actually telling the compiler
to add the literal to the string table and get the address of this specific string from the table to pass it to the
string constructor.

The string literal in Listing 3-1 is a C++14 style string literal. Older style string literals must be used with
care as they come with a few caveats. The first is that you should never try to alter the contents of a string
literal. Consider the code in Listing 3-2.

61

CHAPTER 3 © WORKING WITH TEXT

Listing 3-2. Editing a string literal

#include <iostream>
using namespace std;

namespace

{

const char* const STRING{ "This is a string" };
char* EDIT STRING{ "Attempt to Edit" };

}

int main()

{
cout << STRING << endl;
cout << EDIT_STRING << endl;
EDIT_STRING[O] = 'a’';
cout << EDIT_STRING << endl;
return 0;

}

Listing 3-2 adds a new string literal which is assigned to a non-const pointer. The main function also has
code which tries to edit the first character in the string to be a lower case a. This code will compile without
error, however you should receive a warning from a C++11/C++14 compiler, as it is perfectly valid to attempt
to alter strings using the array operator. However it is a runtime exception to try to alter data contained
within string literals. Trying to run this program results in the error shown in Figure 3-2.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-1/Listing3-2

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-25 ./main
IThis is a string

Attempt to Edit

segmentation fault (core dumped)
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-2$ l

Figure 3-2. Runtime error generated when attempting to alter string literals

You can catch these errors at compile time rather than runtime by following a very simple piece of
advice. Always assign old-style string literals to variables of type const char* const. You can use the
makefile from Listing 3-3 if you want to enforce this in a very straight forward fashion.

Listing 3-3. Compiling with warnings as errors

main: main.cpp
clang++ -Werror -std=c++ly main.cpp -o main

Compiling your program with the makefile in Listing 3-3 will ensure that the compiler fails to build your
application with non-const string literals. An example of the output you can expect can be seen in Figure 3-3.

62

CHAPTER 3 © WORKING WITH TEXT

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-1/Listing3-3

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-3$ make
clang++ -Werror -std=c++1y main.cpp -o main
main.cpp:8:24: error: ISO C++11 does not allow conversion from string literal to|
'char *' [-Werror,-Wwritable-strings]
char* EDIT_STRING{ "Attempt to Edit" };

1 error generated.

makefile:2: recipe for target 'main' failed

make: *** [main] Error 1
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-3$]

Figure 3-3. Error Output When Compiling with -Werror and Writiable String Literals

The second problem caused by string literals is that they increase the size of your program. In a digital
world, reducing the download size of your programs is a key target to help increase the number of installs
of your software. Removing unnecessary string literals is one thing you can do to reduce the size of your
executable. Listing 3-4 shows how this can be achieved using the preprocessor.

Listing 3-4. Removing debug string literals from builds
#include <iostream>

#include <string>

using namespace std;

#define DEBUG_STRING LITERALS !NDEBUG

namespace

{
#if DEBUG_STRING_LITERALS

using Stringliteral = string;
#endif

StringlLiteral STRING{ "This is a String!"s };

}

int main()

{ cout << STRING << endl;
} return 0;

Listing 3-4 creates a preprocessor symbol DEBUG_STRING_LITERALS using the NDEBUG symbol. The
NDEBUG preprocessor symbol stands for not debug and therefore we can use it to determine whether we
would like to have debug string literals included in our program or not. The definition of the type alias
Stringliteral is then wrapped in a #if. . .#endif block which ensures that Stringliteral only exists

63

CHAPTER 3 © WORKING WITH TEXT

when building debug builds. The NDEBUG symbol is commonly used in IDEs when building release builds
of your program. As the samples that accompany this book are built using make you will have to manually
define this in your makefile. An example makefile is shown in Listing 3-5.

Listing 3-5. A makefile that Defines NDEBUG

main: main.cpp
clang++ -D NDEBUG -02 -Werror -std=c++ly main.cpp -o main

At that point you will also need to wrap any code which creates or uses any variables of the
Stringliteral type. You should see a problem at this point, using this define means that you cannot have
any string literals in your program. A better solution is shown in Listing 3-6.

Listing 3-6. Separating debug and non-debug string literals

#include <iostream>
#include <string>

using namespace std;
#define DEBUG_STRING_LITERALS !NDEBUG

namespace

{
#if DEBUG_STRING_LITERALS

using DebugStringliteral = string;
#endif

#if DEBUG_STRING LITERALS
DebugStringlLiteral STRING{ "This is a String!"s };
#endif

}

int main()

{
#if DEBUG_STRING_LITERALS

cout << STRING << endl;
#endif
return 0;

Using the debug literals for diagnostic code, as in Listing 3-6, that the end user should never see allows you
to remove strings and code and in turn reduces the size of your executable and increases execution speed.

Recipe 3-2. Localizing User Facing Text

Problem

You never know when you might need to support a language other than your own native tongue. Ensure that
any strings the user can see come from a localized source.

64

CHAPTER 3 © WORKING WITH TEXT

Solution

Build a string manager class which returns strings from a self-created table and only ever reference strings
using IDs.

How It Works

You could legitimately code your entire project by communicating with the user using strings that you
define in your source as string literals. This has a few major drawbacks. First is that it’s difficult to switch
out languages on the fly. Today it’s very likely that your software will be distributed via the internet. It’s
exceptionally unlikely that your program will not be used by people who speak a different language to
yourself. On large development teams there is a possibility that people on the development team have a
different first language. Building the ability to localize text into your programs from the beginning will save
you many headaches further down the track. This is achieved by loading in the string data for your program
from a file. You can then include multiple different languages in your data by writing your strings in your
native tongue and having friends or a translation service translate the strings into other languages for you.
You will need to create a class to handle the localized string content for your game. Listing 3-7 shows the
class definition for the Localization Manager.

Listing 3-7. The Localization Manager

#pragma once

#include <array>
#include <cinttypes>
#include <string>
#include <unordered map>

namespace Localization

using StringID = int32_t;

enum class Languages

{
EN_US,
EN_GB,
Number
b

const StringID STRING COLOR{ 0 };

class Manager

{

private:
using Strings = std::unordered map<StringID, std::string>;
using StringPacks =
std::array<Strings, static_cast<size_t>(Languages: :Number)>;

StringPacks m_StringPacks;
Strings* m_CurrentStringPack{ nullptr };

uint32_t m_LanguageIndex;

65

CHAPTER 3 © WORKING WITH TEXT

public:
Manager();

void Setlanguage(Languages language);

std::string GetString(StringID stringId) const;
b

There are a number of things being done in the Listing 3-7. The first aspect of the source to pay attention
to is the namespace. You'll find it easier to manage your code if you keep different classes in namespaces
that have names which make sense. For the localization module I've used the name Localization. This will
help make it clear in your code when you are using classes and objects from this module.

There is a type alias being created to act as an identifier for different strings. Once again a type alias is
useful here as you may decide to change the type of your string ids at some point in the future. There is an
enum class which determines the languages the Localization Manager supports. The StringID STRING_
COLOR is defined as being 0. This is the only StringID in this example as it is all we need to illustrate how the
Localization Manager operates.

The Manager itself defines some private type aliases to make the code clear. There is an alias defined
to allow us to create an unordered_map of StringID to std::string pairs and another that allows the
creation of an array of these string maps. There is also a variable declared to instantiate an array of string
maps as well as a pointer to the current string map in use. The class has a constructor and two other
methods, SetLanguage and GetString. Listing 3-8 shows the source for the constructor.

Listing 3-8. Localization::Manager Constructor

Manager : :Manager ()

{
static const uint32_t INDEX EN US{ static_cast<uint32_t>(Languages::EN_US) };
m_StringPacks[INDEX EN_US][STRING COLOR] = "COLOR"s;
static const uint32_t INDEX EN_GB{ static_cast<uint32_t>(Languages::EN_GB) };
m_StringPacks[INDEX_EN_GB][STRING COLOR] = "COLOUR"s;
SetLanguage(Languages: :EN_US);

}

This basic constructor is initializing two string maps, one for the US English language and one for
British English. You can see the different spellings of the word color being passed into each map. The last
line of the source sets the default language to US English. The SetLanguage method is shown in Listing 3-9.
Listing 3-9. Localization::Manager::SetLanguage

void Manager::Setlanguage(Languages language)

{
}

m_CurrentStringPack = &(m_StringPacks[static_cast<uint32_t>(language)]);

66

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 3 © WORKING WITH TEXT

This method is straight forward. It simply sets the m_CurrentStringPack variable to store the address
of the string map for the selected language. You must static_cast the enum type variable as C++’s STL
array will not allow you to use an index which is not a numeric type. You can see the static_cast in action
converting the language parameter to a uint32_t.

The last method in the Manager class is the GetString method which you can see in Listing 3-10.

Listing 3-10. Localization::Manager::GetString

std::string Manager::GetString(StringID stringId) const
{

stringstream resultStream;

resultStream << "!!!1"s;

resultStream << stringld;

resultStream << "!!!1"s;

string result{ resultStream.str() };

auto iter = m CurrentStringPack->find(stringId);
if (iter != m_CurrentStringPack->end())
{

}

return result;

result = iter->second;

The GetString method begins by building a default string to return from the function. This will
allow you to print out any missing string ids in your program to help with localization testing efforts. The
unordered _map::find method is then used to search for the string id in the map. You know if the find call
was successful if it returns a valid iterator. It will return the end iterator if the search fails to find a match.
The if statement is checking to see whether the string id was found in the map. If it was found the string for
the given id is stored in the result variable and passed back to the method caller.

Note You could make the default missing string happen only for non-final builds. This would save the
execution cost of building this string on your end user’s computers. They should hopefully never see missing
strings in their programs.

Listing 3-11 lists an updated main function which shows how this Manager can be used in your code.

Listing 3-11. Using the Localization: :Manager class

#include <iostream>
#include "LocalizationManager.h"

using namespace std;

int main()

{
Localization::Manager localizationManager;
string color{ localizationManager.GetString(Localization::STRING COLOR) };
cout << "EN_US Localized string: " << color.c_str() << endl;

67

CHAPTER 3 © WORKING WITH TEXT

localizationManager.SetlLanguage(Localization::Languages: :EN_GB);
color = localizationManager.GetString(Localization: :STRING COLOR);
cout << "EN_GB Localized string: " << color.c_str() << endl;

color = localizationManager.GetString(1);
cout << color.c_str() << endl;

return 0;

The main function now creates an instance of the Localization: :Manager class. You can see an
example of how to retrieve a string from the manager and use it to output using cout. The language is then
switched to British English and the string is retrieved and printed a second time. For completeness sake the
last example shows what happens when you request a string id which does not exist. Figure 3-4 contains the
output from the program.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-2/Listing3-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-2/Listing3-7$./main
EN_US Localized string: COLOR

EN_GB Localized string: COLOUR

INREERN
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe3-2/Listing3-7$ |

Figure 3-4. The output from the Localization Manager’s strings

This figure shows output as you would expect. The US English spelling of color appears first, followed
by the British English spelling and finally the missing id is output with triple exclamation points at the
beginning and end. This should help to have missing string identifiers stand out in your program.

Recipe 3-3. Reading Strings from a File

Problem

Embedding user facing text in your source code makes future text updates and localization difficult to
manage.

Solution

You can load your localized string data from a data file.

How It Works

I'm going to show you how to load string data into your program from a Comma Separated Values (.csv) file.
Before you can load such a file you will need to create one. Figure 3-5 shows the data I entered into Excel for
export as a .csv file.

68

CHAPTER 3 © WORKING WITH TEXT

strings.csv - Excel

BE S o -
HOME INSERT

PAGE LAYOUT FORMULAS DATA REVIEW VIEW TEAM
Calibri I & General ~| FE Conditional Formatting =
N E ~ §$-% ,.:‘_‘FormatasTable'
E B I U~ - - %% N (57 Cell Styles -
Clipboard & Font [Alignment G Number Styles
c2 *| 3 fe | Flavour
A B C D E F G H
1 0 Color Colour
2| 1Flavor [Flavour]
3
4
5 {
6
7
8
9
10
11
12
13
14
15
16
17 |
18
19
20
21
22
Sheet1 ® «

7 BB - O X

Bruce Sutherland - F

N
g“’lnsert . E - ';Y-
B Delete - [T]- M-

“::IFarmal- &~

Cells Editing A

v

J K L |~

Figure 3-5. The strings.csv file in Excel 2013

I have used Excel to create a very basic .csv file. You can see the Color and Colour values I used in the last
section as well as the US and UK spellings of flavor. Figure 3-6 shows how this file appears in a basic text editor.

69

CHAPTER 3 © WORKING WITH TEXT

| C:\Users\Bruce\SkyDrive\Documents\Apress\C++ Recipes\Projects\Chapt

File Edit Search View Encoding Language Settings Macro Run Plugins Window ?
cHOHERLAsnR| e iny| 2z BESI1EEVEIRB @Y
[strings.csv

i 0,Color,Colour
2 1,Flavor,Flavour

Norma length: 34 lines: 3 Ln:3 Col:1 Sel:0]0 Dos\Windows ANSI

Figure 3-6. The strings.csv file open in Notepad++

Each row from the Excel document has been placed into its own line in the csv file and each column has
been separated by a comma. This is from where the csv derives its name. Now that we have a csv file we can
load the data in the Localization: :Manager’s constructor. Listing 3-12 contains code which can be used to
load and parse the string csv file.

Listing 3-12. Loading strings from a csv

Manager : :Manager ()
ifstream csvStringFile{ "strings.csv's };

assert(csvStringFile);
if (csvStringFile)

while (!csvStringFile.eof())
{

string line;
getline(csvStringFile, line);

if (line.size() > 0)

// Create a stringstream for the line
stringstream lineStream{ line };

// Use the line stream to read in the string id
string stringIdText;
getline(lineStream, stringIdText, ',');

stringstream idStream{ stringIdText };

uint32_t stringld;
idStream >> stringld;

70

CHAPTER 3 © WORKING WITH TEXT

// Loop over the line and read in each string
uint32_t languageld = 0;

string stringText;

while (getline(lineStream, stringText, ','))

m_StringPacks[languageId++][stringId] = stringText;

}

SetLanguage(Languages: :EN_US);

The code to read in the strings.csv file isn’t overly complicated. The first step is to open the file for
reading and the code achieves this using an ifstream object. The ifstream class is provided by C++ to read
data in from files and provides methods to achieve this. The first method we use is the overloaded pointer
operator. This is called when we use assert or if to determine whether the file passed into the ifstream
was valid and was opened. This is followed by a while loop which will run until the end of file or eof method
returns true. This is ideal because we do not wish to stop reading data until all of our strings are loaded.

The ifstream class provides a getline method which can be used with C-style string arrays. It's
generally better and less error prone to use std: : string rather than raw C strings so in Listing 3-12 you can
see a use of the std: :getline method which takes a reference to any type of stream. The first use of getline
retrieves a whole line of text from the csv file into a std: : string object. This line contains data about a
single string starting with its id, followed by each of the localized versions of the text.

The std: :getline method has a very useful third parameter. By default the method retrieves text from
a file until it reaches a newline character however we can pass in a different character as a third parameter
and the function will stop gathering text when this character is encountered. Listing 3-11 makes use of this
feature by passing in a comma as the delimiter. This allows us to pull out the values from each of the cells in
the Excel document.

The getline function requires a stream object to be passed to it however the line was read into a
std: :string. You can see that this problem is solved by creating a stringstream object and passing the line
variable to the constructor. Once the stringstream has been created the getline method is used to retrieve the
string id using a stringstream object.

Note C++ provides several methods to convert strings into values. These include stoi to convert to
integers and stof to convert to floats as well as others. These are all defined in the string header file. You'll
also find a function there named to_string which can be used to convert several different types into a string.
These aren’t always supplied by the implementation of the STL that you may be using. The version of libstdc++
currently available in Cygwin for example does not provide these functions therefore the code samples have not
used them.

After the method has retrieved the id it loops over the rest of the line and reads out the string data for
each language. This relies on the Languages enum class definition having the languages in the same order
as the columns in the csv file.

71

CHAPTER 3 © WORKING WITH TEXT

Recipe 3-4. Reading the Data from an XML File

Problem

Whilst CSV files are a very simple format and great for some applications they have a major flaw; separating
strings by comma means that you cannot use commas in your string data because the loading code would
interpret those as the end of the string. If this happens the code can crash as it tries to read in too many
strings and overrun the array.

Solution

Save the string file as an XML document and use a parser to load the data.

How It Works

The RapidXML library is an open source XML solution which can be used with your C++ applications.

It is supplied as a header file which can be included into any source file you need to have XML handling
capabilities. You can download the latest version of RapidXML from the following location
http://rapidxml.sourceforge.net/.Isaved my Excel document using the XML Spreadsheet 2003 file type.
The code shown in this section is capable of loading this type of XML file. Listing 3-13 shows the entire file
which contains our string data.

Listing 3-13. The XML Spreadsheet file

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"”
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:x="urn:schemas-microsoft-com:office:excel”
xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet”
xmlns:html="http://www.w3.0rg/TR/REC-html40">
<DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">
272103_1_EnBruce Sutherland</Author>
<LastAuthor>Bruce</LastAuthor>
<Created>2014-06-13T06:29:44Z</Created>
<Version>15.00</Version>

</DocumentProperties>

<OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">
<AllowPNG/>

</0fficeDocumentSettings>

<ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">
<WindowHeight>12450</WindowHeight>
<WindowWidth>28800</Windowhidth>
<WindowTopX>0</WindowTopX>
<WindowTopY>0</WindowTopY>
<ProtectStructure>False</ProtectStructure>
<ProtectWindows>False</ProtectWindows>

</ExcelWorkbook>

72

http://rapidxml.sourceforge.net/
http://rapidxml.sourceforge.net/

CHAPTER 3 © WORKING WITH TEXT

<Styles>
<Style ss:ID="Default" ss:Name="Normal">
<Alignment ss:Vertical="Bottom"/>
<Borders/>

<Interior/>
<NumberFormat/>
<Protection/>
</Style>
</Styles>
<Worksheet ss:Name="strings">
<Table ss:ExpandedColumnCount="3" ss:ExpandedRowCount="2" x:FullColumns="1"
x:FullRows="1" ss:DefaultColumnWidth="54" ss:DefaultRowHeight="14.25">
<Row>
<Cell><Data ss:Type="Number">0</Data></Cell>
<Cell><Data ss:Type="String">Color</Data></Cell>
<Cell><Data ss:Type="String">Colour</Data></Cell>
</Row>
<Row>
<Cell><Data ss:Type="Number">1</Data></Cell>
<Cell><Data ss:Type="String">Flavor</Data></Cell>
<Cell><Data ss:Type="String">Flavour</Data></Cell>
</Row>
</Table>
<WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">
<PageSetup>
<Header x:Margin="0.3"/>
<Footer x:Margin="0.3"/>
<PageMargins x:Bottom="0.75" x:Left="0.7" x:Right="0.7" x:Top="0.75"/>
</PageSetup>
<Selected/>
<ProtectObjects>False</ProtectObjects>
<ProtectScenarios>False</ProtectScenarios>
</WorksheetOptions>
</Worksheet>
</Workbook>

You might be able to tell from this file listing that our parsing code is going to be required to ignore an
awful lot of data. From the document root we will access the string data through the Workbook node then
the Worksheet, Table, Row, Cell and finally Data nodes.

Note This XML data format is very verbose and a bit heavy on unnecessary data. You would be better
served by writing your own lightweight exporter using Excel’s Visual Basic for Applications macro support but
that topic is out with the scope of this book.

73

CHAPTER 3 © WORKING WITH TEXT

Listing 3-14 covers the code necessary to use RapidXML to load your string data.

Listing 3-14. Using RapidXML to load the strings

Manager : :Managex ()

{

74

ifstream xmlStringFile{ "strings.xml"s };

xmlStringFile.seekg(0, ios::end);

uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };
char* buffer{ new char[size]{} };

xmlStringFile.seekg(0, ios::beg);

xmlStringFile.read(buffer, size);

xmlStringFile.close();

rapidxml::xml_document<> document;
document.parse<0>(buffer);

rapidxml::xml node<>* workbook{ document.first node("Workbook") };
if (workbook != nullptr)

{

rapidxml::xml_node<>* worksheet{ workbook->first node("Worksheet") };
if (worksheet != nullptr)
{
rapidxml::xml node<>* table{ worksheet->first node("Table") };
if (table != nullptr)
{
rapidxml::xml node<>* row{ table->first node("Row") };
while (row != nullptr)

{
uint32_t stringId{ UINT32_MAX };
rapidxml::xml_node<>* cell{ row->first node("Cell") };
if (cell != nullptr)
{
rapidxml::xml _node<>* data{ cell->first node("Data") };
if (data != nullptr)
{
stringld = static_cast<uint32_t>(atoi(data->value()));
}
}

if (stringId != UINT32_MAX)
uint32_t languageIndex{ 0 };

cell = cell->next_sibling("Cell");

while (cell != nullptr)

{
rapidxml::xml node<>* data = cell->first node("Data");
if (data != nullptr)
{

}

m_StringPacks[languageIndex++][stringId] = data->value();

CHAPTER 3 © WORKING WITH TEXT

cell = cell->next_sibling("Cell");

row = row->next sibling("Row");

This listing has a lot going on so I will break it down section by section. The first step involves using the
following code to load the entire contents of the XML file into memory.

ifstream xmlStringFile{ "strings.xml"s };

xmlStringFile.seekg(0, ios::end);

uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };
char* buffer{ new char[size]{} };

xmlStringFile.seekg(0, ios::beg);

xmlStringFile.read(buffer, size);

xmlStringFile.close();

You need the entire file to be stored in a memory buffer which is null terminated and this is why the
file is opened using ifstream and then seekg is used to move to the end of the stream. Once at the end
the tellg method can be used to work out how big the file is. There is a 1 added to the value from tellg
to ensure that there is enough memory allocated to allow for a null terminating character as RapidXML
requires. Dynamic memory allocation is used to create the buffer in memory and memset clears the entire
buffer to contain zeroes. The seekg method is used to move the file stream location to the beginning of the
file before read is used to obtain the entire contents of the file into the allocated buffer. The last step is to
close the file stream as soon as the code is finished with the file.

These two lines are responsible for initializing the XML data structure from the contents of the file.

rapidxml::xml_document<> document;
document . parse<o> (buffer);

This code creates an XML document object which contains a parse method. The 0 passed as a template
parameter can be used to set different flags on the parser but this example has no need for any of these. Now
that the code has created a parsed representation of the XML document it can begin to access the nodes it
contains. The next few lines retrieve pointers to the Workbook, Worksheet, Table and Row nodes.

rapidxml::xml node<>* workbook{ document.first node("Workbook") };
if (workbook != nullptr)
{
rapidxml::xml node<>* worksheet{ workbook->first node("Worksheet") };
if (worksheet != nullptr)
{
rapidxml::xml node<>* table{ worksheet->first node("Table") };
if (table != nullptr)
{
rapidxml::xml node<>* row{ table->first node("Row") };
while (row != nullptr)

{

75

CHAPTER 3 © WORKING WITH TEXT

These lines are all straight forward. There is only a single Workbook, Worksheet and Table in a simple
Excel XML document so we can simply ask each node for its first child of that name. Once the code gets to
the row elements there is a while loop. This will allow us to go over each line from the spreadsheet and load
our strings into the appropriate maps. The entire row while loop is as follows.

rapidxml::xml node<>* row{ table->first node("Row") };
while (row != nullptr)

{
uint32_t stringId{ UINT32_MAX };
rapidxml::xml_node<>* cell{ row->first node("Cell") };
if (cell != nullptr)
{
rapidxml::xml _node<>* data{ cell->first node("Data") };
if (data != nullptr)
{
stringld = static_cast<uint32_t>(atoi(data->value()));
}
}
if (stringId != UINT32_MAX)
uint32_t languageIndex{ 0 };
cell = cell->next_sibling("Cell");
while (cell != nullptr)
{
rapidxml::xml_node<>* data = cell->first node("Data");
if (data != nullptr)
{
m_StringPacks[languageIndex++][stringId] = data->value();
}
cell = cell->next_sibling("Cell");
}
}
row = row->next_sibling("Row");
}

The while loop starts by getting the stringId from the first Cell and Data nodes. The atoi function is
used to turn the C-style string into an integer that must be cast to an unsigned int. The following if checks
whether a valid string id was obtained, if it was then the code enters another while loop. This loop grabs
each string from the subsequent Cell and Data nodes and places them into the correct map. It does this by
setting the language index to 0 initially and post-incrementing the index after each string is entered. This,
again, requires that the localized strings be entered into the spreadsheet in the correct order.

That is all you need to be able to load string data in from XML files. You should be able to come up with
a better way to generate these files which don’t consume so much data. You might also reach a point where
having all of your text loaded consumes too much system RAM. At that point you should consider splitting
each language into a separate file and only loading the languages when you need them. It will be unlikely for
a user to need every translated language which you choose to support.

76

CHAPTER 3 © WORKING WITH TEXT

Recipe 3-5. Inserting Runtime Data into Strings

Problem

Occasionally you will be required to enter runtime data such as numbers or the user’s name into your
strings. While C++ supports the older C functions for formatting C-style strings these do not work with STL's
string class.

Solution

The boost library provides extensive library support for C++ which includes methods and function for
formatting data held in STL strings.

How It Works

To begin you should add a new row to your spreadsheet with the following data; 2, %1% %2%, %2% %1%.
You should place each element that comes after a comma in a new cell. Listing 3-15 has updated the main
function to utilize this new string.

Listing 3-15. Using boost: :format

#include <iostream>
#include "LocalizationManager.h"
#include "boost/format.hpp"

using namespace std;

int main()

{

Localization: :Manager localizationManager;
std::string color{ localizationManager.GetString(Localization::STRING COLOR) };
std::cout << "EN_US Localized string: " << color.c_str() << std::endl;

std::string flavor{ localizationManager.GetString(Localization::STRING FLAVOR) };
std::cout << "EN_US Localized string: " << flavor.c_str() << std::endl;

localizationManager.SetlLanguage(Localization: :Languages: :EN_GB);
color = localizationManager.GetString(Localization::STRING COLOR);
std::cout << "EN_GB Localized string: " << color.c_str() << std::endl;

flavor = localizationManager.GetString(Localization::STRING FLAVOR);
std::cout << "EN_GB Localized string: " << flavor.c_str() << std::endl;

color = localizationManager.GetString(3);
std::cout << color.c_str() << std::endl;

std::cout << "Enter your first name: " << std::endl;

std::string firstName;
std::cin >> firstName;

7

CHAPTER 3 © WORKING WITH TEXT

std::cout << "Enter your surname: " << std::endl;
std::string surname;
std::cin >> surname;

localizationManager.SetlLanguage(Localization::Languages: :EN_US);

std::string formattedName{ localizationManager.GetString(Localization::STRING NAME) };
formattedName = str(boost::format(formattedName) % firstName % surname);

std::cout << "You said your name is: " << formattedName << std::endl;

localizationManager.SetLanguage(Localization::Languages: :EN_GB);
formattedName = localizationManager.GetString(Localization::STRING _NAME);
formattedName = str(boost::format(formattedName) % firstName % surname);
std::cout << "You said your name is: " << formattedName << std::endl;

return 0;

You can see that the additions to main added in Listing 3-15 ask the user to enter their own name.

The call to cin will stall program execution until the user has entered their first name then surname. Once
the program has stored the user’s name it changes the language to EN_US and gets the string from the
Localization Manager. The next line uses the boost: : format function to replace the symbols in the string
with the firstName and surname values. Our new string contained the symbols %1% and %2%. This is
used to decide which variables are replaced into the string. The call to format is followed by a % operator
then the firstName string. Because firstName is the first parameter passed to the % operator it will replace
the %1% in our string. Similarly the surname will be used to replace the %2% because it is the second
parameter passed using %.

This all works because the format function is setting up an object which is returned from the format
function. This object is then passed to its % operator which stores the value in firstName. This first call to
operator % returns a reference to the boost format object which is passed to the second call to the operator %. The
symbols in the source string aren’t actually resolved until the format object is passed into the str function.
Boost declares the str function in the global namespace therefore it does not need a namespace scope
operator. The str method takes the format object and constructs a new string with the parameters replaced
into the appropriate positions. When you entered the source strings into the spreadsheet the EN_GB string
had the names switched. You can see the results of the code in Figure 3-7.

78

CHAPTER 3 © WORKING WITH TEXT

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-5/Listing3-15

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-5/Listing3-155 ./main
EN_US Localized string: Color

EN_US Localized string: Flavor

EN_GB Localized string: Colour

EN_GB Localized string: Flavour

BRKIRN!

Enter your first name:

Bruce

Enter your surname:

Sutherland

'You said your name is: Bruce Sutherland

IYou said your name is: Sutherland Bruce
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe3-5/Listing3-15% [

Figure 3-7. The output from boost: : format

You can use boost: : format to replace all sorts of data into strings. Unfortunately boost does not follow
the same conventions as the standard C printf functions therefore you will be required to use different
strings to standard C programs. A full list of the formatting options provided by boost can be found at
http://www.boost.org/doc/1libs/1_55 0/1ibs/format/doc/format.html.

The makefile needed to include the boost/format.hpp header in your program is relatively straight
forward. You can see it in Listing 3-16.

Listing 3-16. Including the Boost Library

main: main.cpp LocalizationManager.cpp
clang++ -g -std=c++1y -Iboost 1 55 0 main.cpp LocalizationManager.cpp -o main

You can see from this makefile that I was using the 1.55 version of the Boost library and that I placed the
folder in the same folder as my makefile. The convention for including Boost headers is to name the Boost
folder in the include directive therefore the -I switch in the clang++ command simply tells the compiler to
look inside the boost_1_55_0 folder. The boost folder sits inside this folder.

79

http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html

CHAPTER 4

Working with Numbers

Computers are designed and built to crunch numbers. The programs you write will take advantage of the
computational power of computers to provide experiences to users that are completely dependent on your
ability to understand and utilize the tools provided by C++ to manipulate numbers. C++ provides support
for different types of numbers, this support includes whole numbers and real numbers as well as multiple
different ways of storing and representing these.

The C++ integer types will be used to store whole numbers and the floating point types will be used to
store real numbers with decimal points. There are different tradeoffs and considerations to be taken into
account when using each type of number in C++ and this chapter will introduce you to different challenges
and scenarios where each type is appropriate. You'll also see an older technique named fixed point
arithmetic that can use integer types to approximate floating point types.

Recipe 4-1. Using the Integer Types in C++

Problem

You need to represent whole numbers in your program but are unsure of the limitations and capabilities of
the different integer types.

Solution

Learning about the different integer types supported by C++ will allow you to use the correct type for the
task at hand.

How It Works
Working with the int Type

C++ provides an exact representation of the different integer types supported by modern processors. All
of the integer types behave in exactly the same way however they may contain more or less data than each
other. Listing 4-1 shows how to define an integer variable in C++.

81

CHAPTER 4 © WORKING WITH NUMBERS

Listing 4-1. Defining an integer

int main(int argc, char* argv[])

{

int wholeNumber{ 64 };
return 0;

Asyou can see an integer is defined using the int type in C++. The int type in C++ can be used in
conjunction with standard arithmetic operators that allow you to add, subtract, multiply, divide and take the
modulus. Listing 4-2 uses these operator to initialize additional integer variables.

Listing 4-2. Initializing integerss using opertors

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

82

int wholeNumber1{ 64 };
cout << "wholeNumber1 equals

int wholeNumber2{ wholeNumber1
cout << "wholeNumber2 equals "

int wholeNumber3{ wholeNumber2
cout << "wholeNumber3 equals "

int wholeNumber4{ wholeNumber2
cout << "wholeNumber4 equals "

int wholeNumber5{ wholeNumbers
cout << "wholeNumber5 equals "

int wholeNumber6{ wholeNumber4
cout << "wholeNumber6 equals "

return 0;

<< wholeNumber1 <<

+32 };
<< wholeNumber2 <<

- wholeNumber1 };
<< wholeNumber3 <<

* wholeNumber1 };
<< wholeNumbers <<

/ wholeNumber1 };
<< wholeNumber5 <<

% wholeNumber1 };
<< wholeNumber6 <<

endl;

endl;

endl;

endl;

endl;

endl;

The code in Listing 4-2 contains lines that use operators to initialize additional integers. The operators
can be used in a number of ways. You can see that the operators can have either literal values such as 32 or
other variables on either side. Figure 4-1 shows the output from this program.

CHAPTER 4 © WORKING WITH NUMBERS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-1/Listing4-2

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-1/Listing4-2$./main
wholeNumber1l equals 64

wholeNumber2 equals 96

wholeNumber3 equals 32

wholeNumber4 equals 6144

wholeNumber5 equals 96

wholeNumber6 equals 0
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Reciped-1/Listing4-25 ||

Figure 4-1. The output from running the code in Listing 4-2

The output from Listing 4-2 is shown in Figure 4-1. The following list explains how the values shown in
the output ends up in each variable.

e The variable wholeNumber1 was initialized with the value of 64 and therefore the
output is 64.

e Theliteral 32 is added to the value of wholeNumber1 and stored in wholeNumber2
therefore the output in 96.

e The next line outputs 32 as the code has subtracted wholeNumber2 from
wholeNumberi. The effect of this is that we have managed to store the literal value
from the initialization of wholeNumbexr2 in the variable wholeNumbexr3.

e The value of wholeNumber4 is output as 6144 which is the result of 64*96.

e The program prints the value of 96 for wholeNumbers5 as it is the result of dividing
6144 by 64 or the value of wholeNumber4 divided by the value of wholeNumber1.

e The value of wholeNumber6 is output as 32. The modulo operator returns the
remainder from a division. In this case the remainder of 96/64 is 32 therefore the
modulo operator has returned 32.

Working with Different Types of Integers

The C++ programming language provides support for different types of integers. Table 4-1 shows the
different types of integers and their properties.

Table 4-1. The C++ integer types

Type Name Number of Bytes Minimum Value Maximum Value

char 1 -128 127

short 2 -32,768 32,767

int 4 -2,147,483,648 2,147,483,647

long 4 -2,147,483,648 2,147,483,647

long long 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

83

CHAPTER 4 © WORKING WITH NUMBERS

Table 4-1 lists the five main types that C++ supplies to work with whole numbers. The problem C++
presents is that these types are not always guaranteed to represent the number of bytes as shown in Table 4-1.
This is because the C++ standard leaves the decision of how many bytes represents up to the platform. The
situation isn't entirely the fault of C++. Processor manufacturers may choose to represent integers using
different numbers of bytes and therefore the compiler writers for those platforms are free to alter the types to
suit their processor by the standard. You can however write code that guarantees the number of bytes in your
integers by using the cinttypes header. Table 4-2 shows the different integers available through cinttypes.

Table 4-2. The cinttypes integers

Type Name Number of Bytes Minimum Value Maximum Value

int8 t 1 -128 127

int16 t 2 -32,768 32,767

int32_t 4 -2,147,483,648 2,147,483,647

int64_t 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

The types supplied by cinttypes contain the number of bits that they represent. Given that there are
8 bits in a byte you can see the relationship by the type and the number of bytes in Table 4-2. Listing 4-3 uses
the same operators as Listing 4-2 but is updated to use the int32_t type in place of int.

Listing 4-3. Using the int32_t type with operators

#include <iostream>
#include <cinttypes>

using namespace std;

int main(int argc, char* argv[])

{
int32_t whole32BitNumberi{ 64 };
cout << "whole32BitNumberl equals " << whole32BitNumber1l << endl;
int32_t whole32BitNumber2{ whole32BitNumberl + 32 };
cout << "whole32BitNumber2 equals " << whole32BitNumber2 << endl;
int32_t whole32BitNumber3{ whole32BitNumber2 - whole32BitNumber1 };
cout << "whole32BitNumber3 equals " << whole32BitNumber3 << endl;
int32_t whole32BitNumber4{ whole32BitNumber2 * whole32BitNumber1 };
cout << "whole32BitNumber4 equals " << whole32BitNumber4 << endl;
int32_t whole32BitNumber5{ whole32BitNumber4 / whole32BitNumber1 };
cout << "whole32BitNumber5 equals " << whole32BitNumber5 << endl;
int whole32BitNumber6{ whole32BitNumber2 % whole32BitNumber1 };
cout << "whole32BitNumber6 equals " << whole32BitNumber6 << endl;
return 0;

}

84

CHAPTER 4 © WORKING WITH NUMBERS

The output resulting from this code is similar to that of Figure 4-1 as you can see in Figure 4-2.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-1/Listing4-3

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-1/Listing4-35 ./main
whole32BitNumberl equals 64

whole32BitNumber2 equals 96

whole32BitNumber3 equals 32

whole32BitNumber4 equals 6144

whole32BitNumber5 equals 96

whole32BitNumberé equals 32
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-1/Listing4-3$ []

Figure 4-2. The output when using the int32_t and code from Listing 4-2

Working with Unsigned Integers

Each of the types shown in Table 4-1 and Table 4-2 have unsigned counterparts. Using an unsigned version
of the type means that you will no longer have access to negative numbers however you will have a much
longer range of positive numbers represented by the same number of bytes. You can see the C++ standard
unsigned types in Table 4-3.

Table 4-3. C++’s built-in unsigned types

Type Name Number of Bytes ~ Minimum Value Maximum Value

unsigned char 1 0 255

unsigned short 2 0 65,535

unsigned int 4 0 4,294,967,295

unsigned long 4 0 4,294,967,295

unsigned long long 8 0 18,446,744,073,709,551,615

The unsigned numbers store the same range of numbers as their signed counterparts. Both a signed char
and an unsigned char can store 256 unique values. The signed char stores values from -128 to 127 while the
unsigned version stores the 256 values from 0 to 255. The built-in unsigned types suffer from the same problem
as the signed types, they may not represent the same number of bytes on different platforms. C++'s cinttypes
header file provides unsigned types that guarantee their size. Table 4-4 documents these types.

Table 4-4. The cintypes header file’s unsigned ineteger types

Type Name Number of Bytes ~ Minimum Value Maximum Value

uint8_t 1 0 255

uint16_t 2 0 65,535

uint32_t 4 0 4,294,967,295

uint64 t 8 0 18,446,744,073,709,551,615

85

CHAPTER 4 © WORKING WITH NUMBERS

Recipe 4-2. Making Decisions with Relational Operators

Problem

You are writing a program and must make a decision based on the result of a comparison between two values.

Solution

C++ provides relational operators that return true or false based on the comparison being calculated.

How It Works

C++ provides four major relational operators. These are:
e The equality operator
¢ Theinequality operator
e The greater-than operator
e The less-than operator

These operators allow you to quickly compare two values and determine whether the result is true or
false. The result of a true or false comparison can be stored in the bool type provided by C++. A bool can
only represent either true or false.

The Equality Operator

Listing 4-4 shows the equality operator in use.

Listing 4-4. The C++ equality operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
int32_t equali{ 10 };
int32_t equal2{ 10 };
bool isEqual = equall == equal2;
cout << "Are the numbers equal? " << isEqual << endl;
int32_t notEquali{ 10 };
int32_t notEqual2{ 100 };
bool isNotEqual = notEquali == notEqual2;
cout << "Are the numbers equal? " << isNotEqual << endl;
return 0;
}

86

CHAPTER 4 © WORKING WITH NUMBERS

The code in Listing 4-4 generates the output shown in Figure 4-3.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-2/Listing4-4

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-2/Listing4-4$. /main
Are the numbers equal? 1

Are the numbers equal? ©
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Reciped-2/Listing4-4$ ||

Figure 4-3. Output from the relational equality operator

The equality operator will set a bool variable’s value to true (represented by 1 in the output) in the
event of the values on both sides of the operator being the same. This is the case where Listing 4-4 compares
equall to equal2. The result of the operator is false when the values on both sides are different as when the
code compares notEquali to notEqual2.

The Inequality Operator

The inequality operator is used to determine when numbers are not equal. Listing 4-5 shows the inequality
operator in use.

Listing 4-5. The Inequality Operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
int32_t equali{ 10 };
int32_t equal2{ 10 };
bool isEqual = equali != equal2;
cout << "Are the numbers not equal? " << isEqual << endl;

int32_t notEquali{ 10 };

int32_t notEqual2{ 100 };

bool isNotEqual = notEquali != notEqual2;

cout << "Are the numbers not equal? " << isNotEqual << endl;

return 0;

87

CHAPTER 4 © WORKING WITH NUMBERS

The output generated by Listing 4-5 is shown in Figure 4-4.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-2/Listing4-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-2/Listing4-55 ./main
Are the numbers not equal? ©

Are the numbers not equal? 1
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-2/Listing4-5$ |

Figure 4-4. The output from Listing 4-5 showing the results of the inequality operator

You can see from Listing 4-5 and Figure 4-4 that the inequality operator will return true when the values
are not equal and false when the values are equal.

The Greater-than Operator

The greater-than operator can tell you whether the number on the left is greater-than the number on the
right. Listing 4-6 shows this in action.

Listing 4-6. The greater-than operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
int32_t greaterThani{ 10 };
int32_t greaterThan2{ 1 };
bool isGreaterThan = greatexThani > greaterThan2;
cout << "Is the left greater than the right? " << isGreaterThan << endl;

int32_t notGreaterThani{ 10 };

int32_t notGreaterThan2{ 100 };

bool isNotGreaterThan = notGreaterxThani » notGreaterThan2;

cout << "Is the left greater than the right? " << isNotGreaterThan << endl;

return 0;

The greater-than operator sets the value of a bool to be either true or false. The result will be true when
the number on the left is greater than the number on the right and false when the number on the right is
greater than that on the left. Figure 4-5 shows the output generated by Listing 4-6.

88

CHAPTER 4 © WORKING WITH NUMBERS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Reciped-2/Listing4-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-2/Listing4-6S . /main
Is the left greater than the right? 1

Is the left greater than the right? ©
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-2/Listing4-6S [|

Figure 4-5. The output generated by Listing 4-6

The Less-than Operator

The less-than operator produces the opposite result of the greater than operator. The less-than operator
returns true when the number of the left is less than that on the right. Listing 4-7 shows the operator in use.

Listing 4-7. The Less-than operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
int32_t lessThani{ 1 };
int32_t lessThan2{ 10 };
bool islessThan = lessThani < lessThan2;
cout << "Is the left less than the right? " << islessThan << endl;

int32_t notLessThani{ 100 };

int32_t notLessThan2{ 10 };

bool isNotlLessThan = notLessThani < notLessThan2;

cout << "Is the left less than the right? " << isNotlLessThan << endl;

return 0;

Figure 4-6 shows the results when the code in Listing 4-7 is executed.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-2/Listing4-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-2/Listing4-7$./main
Is the left less than the right? 1

Is the left less than the right? o
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-2/Listing4-7$ | |

Figure 4-6. The output generated when the less-than operator is used in Listing 4-7

89

CHAPTER 4 © WORKING WITH NUMBERS

Recipe 4-3. Chaining Decisions with Logical Operators

Problem

Sometimes your code will require that multiple conditions are satisfied in order to set a Boolean value to true.

Solution

C++ provides logical operators that allow the chaining of relational statements.

How It Works

C++ provides two logical operators that allow the chaining of multiple relational statements. These are:
e The && (and) Operator
e The|| (or) Operator

The && Operator

The && operator is used when you would like to determine that two different relational operators are both
true. Listing 4-8 shows the && operator in use.

Listing 4-8. The Logical && Operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
bool isTrue { (10 == 10) && (12 == 12) };
cout << "True? " << isTrue << endl;
bool isFalse = isTrue && (1 == 2);
cout << "True? " << isFalse << endl;
return 0;

}

The value of isTrue is set to true because both of the relational operations result in a true value. The
value of isFalse is set to false because both of the relational statements do not result in a true statement.
The output of these operations can be seen in Figure 4-7.

90

CHAPTER 4 © WORKING WITH NUMBERS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-3/Listing4-8
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-3/Listing4-85 ./main

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-3/Listing4-85 [

Figure 4-7. The Logical && Operator output generated by Listing 4-8

The Logical |l Operator

The logical || operator is used to determine when either or both of the statements used are true. Listing 4-9
contains code that tests the results of the || operator.

Listing 4-9. The Logical || Operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
bool isTrue { (1 ==1) || (0 ==1) };
cout << "True? " << isTrue << endl;
isTrue = (0 == 1) || (1 == 1);
cout << "True? " << isTrue << endl;
isTrue = (1 == 1) || (1 == 1);
cout << "True? " << isTrue << endl;
isTrue = (0 == 1) || (1 == 0);
cout << "True? " << isTrue << endl;
return 0;

}

The resulting output generated by this code can be seen in Figure 4-8.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Reciped-3/Listing4-9

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-3/Listing4-95 ./main
True? 1

True? 1

True? 1

True? ©
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-3/Listing4-9S I

Figure 4-8. The output generated when using logical || operators

91

CHAPTER 4 © WORKING WITH NUMBERS

Listing 4-9 proves that the logical || operator will return true whenever either or both of the relational
operations are also true. When both are false the || operator will also return false.

Note There is a commonly used optimization when using logical operators. Execution will end as soon as
the operator is satisfied. This means that a || operator will not evaluate the second term when the first is true
and the && operator will not evaluate the second term when the first is false. Be wary of this when calling
functions in the right side statement that have secondary effects outside of their Boolean return value.

Recipe 4-4. Using Hexadecimal Values

Problem

You are working with code that contains hexadecimal value and you need to understand how they work.

Solution

C++ allows the use of hexadecimal values in code and programmers routinely use hex values when writing
out binary representation of numbers.

How It Works

Computer processors use a binary representation to store numbers in memory and used binary instructions
to test and modify these values. Due to its low level nature, C++ provides bitwise operators that can operate
on the bits in variables exactly as a processor would. A bit of information can either be a 1 or a 0. We can
construct higher numbers by using chains of bits. A single bit can represent the digits 1 or 0. Two bits
however can represent 0, 1, 2 or 3. This can be achieved because two bits can represent four unique signals;
00, 01, 10 and 11. The C++ int8_t data type is made up of 8 bits. The data in Table 4-5 shows how these
different bits are represented numerically.

Table 4-5. The numerical values of bits in an 8bit variable

128 64 32 16 8 4 2 1

1 0 0 0 1 0 0 1

A uint8_t variable that stored the value represented by Table 4-5 would contain the number 137. In fact,
an 8bit variable can store 256 individual values. You can work out the number of values a variable can store
by raising the number 2 to the power of the number of bits i.e. 28 is 256.

92

CHAPTER 4 © WORKING WITH NUMBERS

Note Negative numbers are represented in signed types using the same number of bits as unsigned types.
In Table 4-4, a signed value would lose the position at 128 to become a sign bit. You can convert a positive
number to a negative using the Two’s Complement of the number. To do this you flip all of the bits and add 1.
For a two bit number 1 you would have the binary representation 01. To get the Two’s Complement, and therefore
the negative, firstly flip the bits to 10 then add 1 ending with 11. In an 8 bit value you’d follow the same process.
00000001 becomes 11111110 and adding 1 results in 11111111. No matter than number of bits in a variable,
-1 is always represented in Two’s Complement by all bits being turned on, this is a useful fact to remember.

Writing bits out in their entirety quickly gets out of hand when dealing with 16, 32 and 64 bit numbers.
Programmers tend to write binary representations in a hexadecimal format instead. Hex numbers are
represented by the values 0-9 and, A, B, C, D, E and E The values A-F represent the numbers 10 through 15.
It takes 4 bits to represent the 16 hexadecimal values therefore we can now represent the bit pattern in
Table 4-5 using the hexadecimal 0x89 where the 9 represents the lower 4 bits (8+1 is 9) and the 8 represents
the higher 4 bits.

Listing 4-10 shows how you can use hexadecimal literals in your code and use cout to print them to
the console.

Listing 4-10. Using Hexadecimal Literal Values

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
uint32_t hexValue{ 0x89 };
cout << "Decimal: " << hexValue << endl;
cout << hex << "Hexadecimal: " << hexValue << endl;
cout << showbase << hex << "Hexadecimal (with base): " << hexValue << endl;
return 0;
}

Hexadecimal literals in C++ are proceeded by 0x. This lets the compiler know that you intend for it to
interpret the number in hex and not decimal. Figure 4-9 shows the effect of the different output flags used
with cout in Listing 4-10.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-4/Listing4-10

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-4/Listing4-10S ./main
Decimal: 137

Hexadecimal: 89

Hexadecimal (with base): 0x89
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-4/Listing4-10S |

Figure 4-9. Printing out hexadecimal values

93

CHAPTER 4 © WORKING WITH NUMBERS

The cout stream by default prints the decimal representation of integer variables. You must pass flags
to cout to alter this behavior. The hex flag informs cout that it should print the number in hexadecimal
however this does not automatically prepend the 0x base. If you wish your output to have the base on your
hexadecimal numbers (and you usually will so that other users don't read the value as decimal 89 instead of 137)
you can use the showbase flag which will make cout add the 0x to your hex values.

Listing 4-10 stores the value of 0x89 in a 32bit integer type but the representation still only has an 8 bit
value. The other 6 bits are implicitly 0. The proper 32bit representation of 137 would actually be 0x00000089.

Note While it’s acceptable to drop the Os when they are implied however it is also common practice to
print all 8 hex values out when a 32bit number is intended. This is more important when representing negative
numbers such as -1. When using an int32_t 0xF would represent 16 or 0x0000000F where -1 would be
OxFFFFFFFF. Be sure you're setting the value you really wanted when using hexadecimal values.

Recipe 4-5. Bit Twiddling with Binary Operators

Problem

You are developing an application where you would like to pack data into as small a format as possible.

Solution

You can use bitwise operators to set and test individual bits on a variable.

How It Works
C++ provides the following bitwise operators:
e The & (bitwise and) operator
e The | (bitwise or) operator
e The / (exclusive or) operator
e The << (left shift) operator
e The >> (right shift) operator

e The ~ (One’s Complement) operator

The & (Bitwise And) Operator

The bitwise & operator returns a value that has all of the bits that were set in both the left and right sides of
the operator. Listing 4-11 shows an example of this in action.

94

CHAPTER 4 © WORKING WITH NUMBERS

Listing 4-11. The & operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
uint32_t bits{ 0x00011000 };
cout << showbase << hex;
cout << "Result of 0x00011000 & 0x00011000: " << (bits & bits) << endl;
cout << "Result of 0x00011000 & 0x11100111: " << (bits & ~bits) << endl;
return 0;

}

Listing 4-11 makes use of both the & and ~ operators. The fest use of & will result in the value 0x00011000
being output to the console. The second use of & is used in conjunction with ~. The ~ operator flips all of the
bits therefore the output from this use of & will be 0. You can see this in Figure 4-10.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-11

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-11$. /main
Result of 0x00011000 & 0x00011000: 0x11000

Result of 0x00011000 & 0x11100111: ©
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-115 [

Figure 4-10. The output resulting from Listing 4-11

The | (Bitwise Or) Operator

The bitwise or operator returns a value that contains all of the set bits from the left and right side of the operator.
This is true whether either or both of the values are set. The only time a 0 will be placed into a bit is when both the
left and right side of the operator does not have that position set. Listing 4-12 shows the | operator in use.

Listing 4-12. The | Operator
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
uint32_t leftBits{ 0x00011000 };
uint32_t rightBits{ 0x00010100 };
cout << showbase << hex;
cout << "Result of 0x00011000 | 0x00010100: " << (leftBits | rightBits) << endl;
cout << "Result of 0x00011000 & 0x11100111: " << (leftBits | ~leftBits) << endl;
return 0;

}

95

CHAPTER 4 © WORKING WITH NUMBERS

The first use of | will result in the value 0x00011100 and the second will result in OXFFFFFFFE You can
see that this is true in Figure 4-11.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-125% ./main
Result of Ox00011000 | Ox00010100: 0x11100

Result of 0x00011000 & Ox11100111: Oxffffffff
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-5/Listing4-12S l

Figure 4-11. The output generated by Listing 4-12

The values stored in leftBits and rightBits share a single bit position that is set to 1. There are two
positions where one has a bit set and the other doesn’t. All three of these bits are set in the resulting value.
The second use demonstrates that all bits are set so long as the bit position is set in one of the two places.
The distinction between the two is important when you look at the results of the next operator.

The ~ (Exclusive Or) Operator

This operator will produce a single bit of difference between its output and the output of the | operator
shown in Figure 4-11. This is because the exclusive or operator only sets the resulting bit to true when either
the left or the right bit is set, not when both are set and not when neither are set. The first | operator in
Listing 4-12 resulted in the value 0x00011100 being stored as the result. The A operator will result in
0x00001100 being stored when using the same values. Listing 4-13 shows the code for this scenario.

Listing 4-13. The A operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
uint32_t leftBits{ 0x00011000 };
uint32_t rightBits{ 0x00010100 };
cout << showbase << hex;
cout << "Result of 0x00011000 " 0x00010100: " << (leftBits ~ rightBits) << endl;
cout << "Result of 0x00011000 "~ 0x11100111: " << (leftBits ~ ~leftBits) << endl;

return 0;

96

CHAPTER 4 © WORKING WITH NUMBERS

The evidence of the different output produced can be seen in Figure 4-12.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-13

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-135 ./main
Result of 0x00011000 ~ Ox00010100: 0x1100

Result of 0x00011000 ~ Ox11100111: Oxffffffff
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Reciped-5/Listings-13$ [

Figure 4-12. The output generated by the " operator in Listing 4-13

The << and >> Operators

The left shift and right shift operators are handy tools that allow you to pack smaller sets of data into larger
variables. Listing 4-14 shows code that shifts a value from the lower 16 bits of a uint32_t into the upper 16 bits.

Listing 4-14. Using the << operator

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
const uint32_t maskBits{ 16 };
uint32_t leftShifted{ 0x00001010 << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;
return 0;

}

This code results in the value 0x10100000 being stored in the variable leftShifted. This has freed
up the lower 16 bits which you can now use to store another 16 bit value. Listing 4-15 uses the |=and &
operators to do just that.

Note Each of the bitwise operators have an assignment variant for use in statements such as that in
Listing 4-15.

97

CHAPTER 4 © WORKING WITH NUMBERS

Listing 4-15. Using a mask to pack values into a variable

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
const uint32_t maskBits{ 16 };
uint32_t leftShifted{ 0x00001010 << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;
uint32_t lowerMask{ OXOO000FFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;
return 0;
}

This code now sees two separate 16 bit values being packed into a single 32 bit variable. The value
packed into the lower 16 bits has all of its upper 16 bits masked out using the & operator in conjunction with
a mask value, in this case 0x0000FFFE This ensures that the |= operator leaves the values in the upper 16 bits
unchanged by virtue of the fact that the value being or’d in won’t have any of those upper bits set. You can
see this is true in Figure 4-13.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-15

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-155 . /main
Left shifted: 0x10100000

Packed left shifted: 0x10100110
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-15$ I

Figure 4-13. The results of masking values into integers using bitwise operators

The final two lines of output in Figure 4-13 are the result of operations to unmask the values from the
lower and upper sections of the variable. You can see how this was achieved in Listing 4-16.

Listing 4-16. Unmasking packed data

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
const uint32_t maskBits{ 16 };
uint32_t leftShifted{ 0x00001010 << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;

98

CHAPTER 4 © WORKING WITH NUMBERS

uint32_t lowerMask{ OxO000FFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;

uint32_t lowerValue{ (leftShifted & lowerMask) };
cout << "Lower value unmasked: " << lowerValue << endl;

uint32_t upperValue{ (leftShifted >> maskBits) };
cout << "Upper value unmasked: " << upperValue << endl;

return 0;
The & operator and the >> operator are used in Listing 4-16 to retrieve the two distinct values from our
packed variable. Unfortunately this code has an issue that has yet to be uncovered. Listing 4-17 provides an

example of the issue.

Listing 4-17. Shifting and narrowing conversions

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
const uint32_t maskBits{ 16 };
uint32_t narrowingBits{ 0x00008000 << maskBits };
return O;

}

The code in Listing 4-17 would fail to compile. You will receive an error that a narrowing conversion
was going to take place and your compiler will prevent you from building your executable until the
problem code is fixed. The problem here is that the value 0x00008000 has the 16™ bit set and once it is
shifted 16 bits to the right the 3274 bit would be set. This would cause the value to become a negative
number under normal circumstances. At this stage you have two different options in your arsenal to deal
with the situation.

Note Those of you who have used C++ before may have noticed that the samples are not using the =
operator to initialize variables, such as uint32_t maskBits = 16; Instead I'm using uniform initialization that
was introduced in C++11. Uniform initialization is the form of initialization using the {} operator as seen in
these examples. The major benefit of uniform initialization is the protection from narrowing conversions that I've
just described.

99

CHAPTER 4 © WORKING WITH NUMBERS

Listing 4-18 shows how you can use an unsigned literal to tell the compiler the value should be
unsigned.

Listing 4-18. Using unsigned literals

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
const uint32_t maskBits{ 16 };
uint32_t leftShifted{ 0x00008080u << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;

uint32_t lowerMask{ OXOOOOFFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;

uint32_t lowerValue{ (leftShifted & lowerMask) };
cout << "Lower value unmasked: " << lowerValue << endl;

uint32_t upperValue{ (leftShifted >> maskBits) };
cout << "Upper value unmasked: " << upperValue << endl;

return 0;

Adding a u to the end of a numeric literal causes the compiler to evaluate that literal as an unsigned
value. Another option would have been to use signed values instead. However this introduces a new
consideration. When right shifting signed values the sign bit is placed into the new values coming in from
the right. The following things can occur:

e 0x10100000 >> 16 becomes 0x00001010
. 0x80800000 >> 16 becomes 0xFFFF8080

Listing 4-19 and Figure 4-14 show code and output that proves the negative sign bit propagation.

Listing 4-19. Right shifting negative values

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
const uint32_t maskBits{ 16 };
int32_t leftShifted{ 0x00008080 << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;

100

CHAPTER 4 © WORKING WITH NUMBERS

int32_t lowerMask{ OXO00OFFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;

int32_t rightShifted{ (leftShifted »> maskBits) };
cout << "Right shifted: " << rightShifted << endl;
cout << "Unmasked right shifted: " << (rightShifted & lowerMask) << endl;

return 0;

You can see the new code need two extract the upper masked value in the bold lines in Listing 4-19. A
shift alone is no longer suitable when using signed integers. Figure 4-14 shows the output proving this point.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-19

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-195 ./main
Left shifted: 0x80800000

Packed left shifted: ©x80800110

Right shifted: oxffffgsose

Unmasked right shifted: 0x8080
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-5/Listing4-195 |

Figure 4-14. Output showing the sign bit propagation after a right shift

Asyou can see, I've had to shift the variable to the right and mask out the upper bits in order to retrieve
the original value from the upper part of the variable. After our shift the value contained the decimal
value -32,640 (0xFFFF8080) but the value we expected was actually 32,896 (0x00008080). 0x00008080 was
retrieved by using the & operator (0xFFFF8080 | 0x0000FFFF = 0x00008080).

101

CHAPTER 5

Classes

Classes are the language feature that sets C++ apart from the C programming language. The addition

of classes to C++ allows it to be used for programs designed using the object-oriented programming
(OOP) paradigm. OOP quickly became the main software engineering practice used worldwide to build
complex applications. You can find class support in most leading languages today, including Java, C#, and
Objective-C.

Recipe 5-1. Defining a Class

Problem

Your program design calls for objects, and you need to be able to define classes in your programs.

Solution

C++ provides the class keyword and syntax for creating class definitions.

How It Works

The class keyword is used in C++ to create class definitions. This keyword is followed by the class name and
then the body of the class. Listing 5-1 shows a class definition.

Listing 5-1. A Class Definition

class Vehicle

{
};

The Vehicle class definition in Listing 5-1 tells the compiler that it should recognize the word Vehicle
as a type. This means code can now create variables of type Vehicle. Listing 5-2 shows this in action.

103

CHAPTER 5 © CLASSES

Listing 5-2. Creating a Vehicle Variable

class Vehicle

{
};
int main(int argc, char* argv[])
{
Vehicle myVehicle;
return 0;
}

Creating a variable like this results in your program creating an object. In the common terminology
used when working with classes, the class definition itself is referred to as the class. Variables of the class are
referred to as objects, so you can have multiple objects of the same class. The process of creating an object
from a class is referred to as instantiating a class.

Recipe 5-2. Adding Data to a Class

Problem

You would like to be able to store data in your classes.

Solution

C++ allows classes to contain variables. Each object gets its own unique variable and can store its own values.

How It Works

C++ has the concept of a member variable: a variable that exists in the class definition. Each instantiated
object from the class definition gets its own copy of the variable. Listing 5-3 shows a class that contains a
single member variable.

Listing 5-3. The Vehicle Class with a Member Variable

#include <cinttypes>

class Vehicle

{
public:

uint32_t m_NumberOfWheels;
};

The Vehicle class contains a single uint32_t variable to store the number of wheels the vehicle has.
Listing 5-4 shows how you can set this value and print it.

104

Listing 5-4. Accessing Member Variables

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:

uint32_t m_NumberOfWheels;
};

int main(int argc, char* argv[])
{
Vehicle myCar;
myCar.m_NumberOfWheels = 4;

cout << "Number of wheels: " << myCar.m NumberOfWheels << endl;

return 0O;

CHAPTER 5

CLASSES

Listing 5-4 shows that you can use the dot (.) operator to access member variables on an object. This

operator is used twice in the code: once to set the value of m_NumberOfWheels to 4 and once to retrieve

the value to print it. Listing 5-5 adds another instance of the class to show that different objects can store

different values in their members.

Listing 5-5. Adding a Second Object

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:

uint32_t m_NumberOfWheels;
};

int main(int argc, char* argv[])
{
Vehicle myCar;
myCar.m_NumberOfWheels = 4;

cout << "Number of wheels: " << myCar.m_NumberOfWheels << endl;

Vehicle myMotorcycle;
myMotorcycle.m_NumberOfWheels =

cout << "Number of wheels:

return 0;

<< myMotorcycle.m NumberOfWheels << endl;

105

CHAPTER 5 © CLASSES

Listing 5-5 adds a second object and names it myMotorcycle. This instance of the class has its
m_NumberOfWheels variable set to 2. You can see the different output values in Figure 5-1.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-2/Listing5-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-2/Listing5-5% ./main
Number of wheels: 4

Number of wheels: 2
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-2/Listing5-5$ I

Figure 5-1. The output generated by Listing 5-5

Recipe 5-3. Adding Methods

Problem

You need to be able to carry out repeatable tasks on a class.

Solution

C++ allows programmers to add functions to classes. These functions are known as member methods and
have access to class member variables.

How It Works

You can add a member method to a class simply by adding a function to that class. Any function you add can
then use the member variables that belong to the class. Listing 5-6 shows two member methods in action.

Listing 5-6. Adding Member Methods to a Class

#include <cinttypes>

class Vehicle

{
public:
uint32_t m NumberOfWheels;
void SetNumberOfWheels(uint32_t numberOfWheels)
{
m_NumberOfWheels = numberOfWheels;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
};

106

CHAPTER 5~ CLASSES

The Vehicle class shown in Listing 5-6 contains two member methods: SetNumberOfhheels takes a
parameter that is used to set the member m_NumberOfWheels, and GetNumberOfWheels retrieves the value of
m_NumberOfWheels. Listing 5-7 uses these methods.

Listing 5-7. Using the Member Methods from the Vehicle Class
#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{

private:
uint32_t m NumberOfWheels;

public:
void SetNumberOfWheels(uint32_t numberOfWheels)
{

}

uint32_t GetNumberOfWheels()
{

}

m_NumberOfWheels = numberOfWheels;

return m_NumberOfWheels;
};
int main(int argc, char* argv[])

Vehicle myCar;
myCar . SetNumberOfWheels(4);

cout << "Number of wheels: " << myCar.GetNumberOfiWheels() << endl;

Vehicle myMotorcycle;
myMotorcycle.SetNumberOfiheels(2);

cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;

return O;

107

CHAPTER 5 © CLASSES

The member methods are used to alter and retrieve the value of the m_NumberOfWheels member
variable in Listing 5-7. The output generated by this code is shown in Figure 5-2.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-3/Listing5-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-3/Listing5-7$./main
Number of wheels: 4

Number of wheels: 2
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-3/Listing5-7$ I

Figure 5-2. The output generated by the code in Listing 5-7

Recipe 5-4. Using Access Modifiers

Problem

Exposing all member variables to calling code can lead to several problems including high coupling and
higher maintenance costs.

Solution

Use the C++ access modifiers to utilize encapsulation and hide class implementations from calling code.

How It Works

C++ provides access modifiers that allow you to control whether code can access internal member variables
and methods. Listing 5-8 shows how you can use the private access modifier to restrict access to a variable
and the public access specifier to provide methods that access the member indirectly.

Listing 5-8. Using the public and private Access Modifiers

#include <cinttypes>

class Vehicle

{
private:
uint32_t m_NumberOfWheels;
public:
void SetNumberOfWheels(uint32_t numberOfWheels)
{
m_NumberOfWheels = numberOfWheels;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfhheels;
}
};

108

CHAPTER 5~ CLASSES

To use an access modifier, insert the keyword into your class, followed by a colon. Once invoked, the
access modifier is applied to all member variables and methods that follow until another access modifier is
specified. In Listing 5-8, this means the m_NumberOfWheels variable is private and the SetNumberOfWheels
and GetNumberOflheels member methods are public.

If you tried to access m_NumberOfWheels directly in calling code, your compiler would give you an access
error. Instead, you have to access the variable through the member methods. Listing 5-9 shows a working
sample with a private member variable.

Listing 5-9. Using Access Modifiers
#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{

private:
uint32_t m_NumberOfWheels;

public:
void SetNumberOfWheels(uint32 t numberOfWheels)
{

}

uint32_t GetNumberOfWheels()
{

}

m_NumberOfWheels = numberOfWheels;

return m_NumberOfhheels;
};
int main(int argc, char* argv[])

Vehicle myCar;
// myCar.m_NumberOfWlheels = 4; -Access error
myCar. SetNumberOfiWheels(4);

cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle;
myMotorcycle.SetNumberOfiheels(2);

cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;

return 0;
You can see the error that the compiler generates by uncommenting the bold line in Listing 5-9.
Encapsulating data in this manner allows you to alter the implementation at a later time without affecting

the rest of your code. Listing 5-10 updates the code from Listing 5-9 to use a completely different method of
working out the number of wheels on a vehicle.

109

CHAPTER 5 © CLASSES

Listing 5-10. Altering the Vehicle Class Implementation

#include <vector>
#include <cinttypes>
#include <iostream>

using namespace std;

class Wheel

{
};
class Vehicle
{
private:
using Wheels = vector<Wheel>;
Wheels m_Wheels;
public:
void SetNumberOfWheels(uint32_t numberOfWheels)
{
m_Wheels.clear();
for (uint32_t i = 0; i < numberOfWheels; ++i)
{
m_Wheels.push back({});
}
}
uint32_t GetNumberOfWheels()
{
return m Wheels.size();
}
};
int main(int argc, char* argv[])
{
Vehicle myCar;
myCar . SetNumberOfWheels(4);
cout << "Number of wheels: " << myCar.GetNumberOfiWheels() << endl;
Vehicle myMotorcycle;
myMotorcycle.SetNumberOfiheels(2);
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;
return 0;
}

110

CHAPTER 5~ CLASSES

Comparing the Vehicle class from Listing 5-9 and that in Listing 5-10 reveals that the implementations
of SetNumberOflheels and GetNumberOflWheels are completely different. The class in Listing 5-10 doesn’t
store the value in a uint32_t member; instead, it stores a vector of Wheel objects. The SetNumberOflheels
method adds a new instance of Wheel to the vector for the number supplied as its numberOfiheels
parameter. The GetNumberOflheels method returns the size of the vector. The main function in both
listings is identical, as is the output generated by executing the code.

Recipe 5-5. Initializing Class Member Variables

Problem

Uninitialized variables can cause undefined program behavior.

Solution

C++ classes can initialize their member variables at instantiation and provide constructor methods for
user-supplied values.

How It Works
Uniform Initialization

Classes in C++ can use uniform initialization to provide default values to class members when they're
instantiated. Uniform initialization allows you to use a common syntax when initializing built-in types or
objects created from your classes. C++ uses the curly-braces syntax to support this form of initialization.
Listing 5-11 shows a class with a member variable initialized in this way.

Listing 5-11. Initializing a Class Member Variable

#include <cinttypes>

class Vehicle

{
private:
uint32_t m_NumbexOfWheels{};
public:
uint32 GetNumberOfWheels()
{
return m_NumberOfhheels;
}
b

In Listing 5-11, the class’s m_NumberOfWheels member is initialized using uniform initialization. This
is achieved using the curly braces after the name. No value is supplied to the initializer, which causes the
compiler to initialize the value to 0. Listing 5-12 shows this class used in context.

111

CHAPTER 5 © CLASSES

Listing 5-12. Using the Vehicle Class

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
private:
uint32_t m_NumberOfWheels{};
public:
uint32_t GetNumberOfWheels()
{
return m_NumberOfhheels;
}
};
int main(int argc, char* argv[])
{
Vehicle myCar;
cout << "Number of wheels: " << myCar.GetNumberOfiWheels() << endl;
Vehicle myMotorcycle;
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiWheels() << endl;
return 0;
}

Figure 5-3 shows the output generated by this code.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-5/Listing5-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-12% ./main
Number of wheels: @

Number of wheels: @
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listings-125 |

Figure 5-3. The output generated by the code in Listing 5-12.

Figure 5-3 shows output with a 0 for each class. This is an improvement on code that doesn't initialize
the data, as shown in Figure 5-4.

112

CHAPTER 5~ CLASSES

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-5/Listing5-12
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-12$./main
Number of wheels: 4196331
Number of wheels: 4196800
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listings-125 i

Figure 5-4. The output generated by a program that doesn’t initialize its member variables

Using Constructors

Figure 5-3 represents a better situation than Figure 5-4, but neither is ideal. You'd really like the myCar and
myMotorcycle objects in Listing 5-12 to print different values. Listing 5-13 adds a constructor so that you can
specify the number of wheels when instantiating classes.

Listing 5-13. Adding a Constructor to a Class

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
private:
uint32_t m_NumberOfWheels{};
public:
Vehicle(uint32_t numberOfiheels)
¢ m_NumberOfWheels{ numberOfWlheels }
{
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
};
int main(int argc, char* argv[])
{
Vehicle myCar{ 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
Vehicle myMotorcycle{ 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiWheels() << endl;
return 0,
}

113

CHAPTER 5 © CLASSES

Listing 5-13 adds the ability to initialize the number of wheels on a Vehicle at the time of instantiation.
It does this by adding a constructor to the Vehicle class that takes the number of wheels as a parameter. The
use of a constructor lets you rely on a function call to occur at the time of object creation. This function is
used to ensure that all the member variables your class contains have been properly initialized. Uninitialized
data is a very common cause of unexpected program behavior such as crashes.

The myCar and myMotorcycle objects are instantiated with different values for their number of wheels.
Unfortunately, adding a constructor to the class means you can no longer construct default versions of this
class; you must always supply a value for the number of wheels in Listing 5-13. Listing 5-14 overcomes this
limitation by adding an explicit default operator to the class.

Listing 5-14. Default Constructors

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
private:
uint32_t m_NumberOfWheels{};
public:
Vehicle() = default;
Vehicle(uint32_t numberOfWheels)
: m_NumberOfiWheels{ numberOfWheels }
{
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfhheels;
}
b
int main(int argc, char* argv[])
{
Vehicle myCar{ 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
Vehicle myMotorcycle{ 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;
Vehicle nolheels;
cout << "Number of wheels: " << noWlheels.GetNumbexOfiheels() << endl;
return 0;
}

114

CHAPTER 5~ CLASSES

The Vehicle class in Listing 5-14 contains an explicit default constructor. The default keyword is used
along with an equals operator to inform the compiler that you want to add a default constructor to this
class. Thanks to the uniform initialization of the m_NumberOfWheels variable, you can create an instance of
the class nolheels that contains 0 in the m_NumberOfWheels variable. Figure 5-5 shows the output generated
by this code.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-5/Listing5-14

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-145% ./main
Number of wheels: 4

Number of wheels: 2

Number of wheels: ©
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listings-14$ |

Figure 5-5. The output generated by Listing 5-14, showing the 0 in the noWheels class

Recipe 5-6. Cleaning Up Classes

Problem

Some classes require their members to be cleaned up when an object is being destroyed.

Solution

C++ provides for destructors to be added to classes that allow code to be executed when a class is being
destroyed.

How It Works

You can add a special destructor method to your classes in C++ using the ~ syntax. Listing 5-15 shows how to
achieve this.

Listing 5-15. Adding a Destructor to a Class

#include <cinttypes>
#include <string>

using namespace std;

class Vehicle
{
private:
string m_Name;
uint32_t m_NumberOfWheels{};

public:
Vehicle() = default;

115

CHAPTER 5 © CLASSES

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{
}
~Vehicle()
cout << m_Name << " is being destroyed!" << endl;
}
uint32_t GetNumberOfwheels()
i return m_NumberOfhheels;

};

The Vehicle class in Listing 5-15 contains a destructor. This destructor simply prints out the name of
the object being destroyed. The constructor can be initialized with the name of an object, and the default
constructor of Vehicle calls the default constructor of the string class automatically. Listing 5-16 shows
how this class can be used in practice.

Listing 5-16. Using Classes with Destructors

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle
{
private:
string m_Name;
uint32_t m_NumberOfwheels{};

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{

}

~Vehicle()

i cout << m_Name << " is being destroyed!" << endl;

116

};

int

CHAPTER 5~ CLASSES

uint32_t GetNumberOfWheels()
{

}

return m_NumberOfhheels;

main(int argc, char* argv[])

Vehicle myCar{ "myCar", 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle{ "myMotorcycle", 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiWheels() << endl;

Vehicle nolWheels;
cout << "Number of wheels: " << nolWheels.GetNumberOfWheels() << endl;

return 0;

As you can see from the main function in Listing 5-16, you don’t have to add any special code to call a

class destructor. Destructors are called automatically when objects go out of scope. In this case, the calls to
the destructors of the Vehicle objects occur after the return. Figure 5-6 shows the output from this program
to prove the destructor code is executed.

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-6/Listing5-165 ./main
Number of wheels: 4

Number of wheels: 2

Number of wheels: ©

is being destroyed!

myMotorcycle is being destroyed!

myCar is being destroyed!
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe5-6/Listing5-165 [

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-6/Listing5-16

Figure 5-6. The output generated by Listing 5-16, showing that destructors have been executed

It's important to pay attention to the order in which these destructors are called. The Vehicle objects

are destroyed in an order that’s the reverse of that in which they were created. This is important if you have
resources that rely on being created and destroyed in the correct order.

The compiler implicitly creates a default destructor if you don’t define your own. You can also explicitly

define a destructor using the code shown in Listing 5-17.

117

CHAPTER 5 © CLASSES

Listing 5-17. Explicitly Defining a Destructor

#include <cinttypes>

class Vehicle

{
private:
uint32_t m_NumberOfwheels{};
public:
Vehicle() = default;
Vehicle(uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }
{
}
~Vehicle() = default;
uint32_t GetNumberOfwheels()
{
return m_NumberOfhheels;
}
};

It's considered good practice to always be explicit with your default constructor and destructors. Doing
so removes any ambiguity from the code and lets other programmers know that you were happy with the
default behavior. The omission of this code could lead others to believe that you overlooked its inclusion.

Recipe 5-7. Copying Classes

Problem

You would like to ensure that you're copying data from one object to another in a proper manner.

Solution

C++ provides the copy constructor and assignment operator that you can use to add code to your class that is
executed when a copy takes place.

How It Works

You can copy objects in C++ in a number of scenarios. An object is copied when you pass it into the
constructor of another object of the same type. An object is also copied when you assign one object to
another. Passing an object into a function or method by value also results in a copy operation taking place.

118

CHAPTER 5~ CLASSES

Implicit and Default Copy Constructors and Assignment Operators

C++ classes support these operations through the copy constructor and assignment operator. Listing 5-18
shows the default versions of these methods being invoked in the main method.

Listing 5-18. Using the Copy Constructor and Assignment Operator

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle

{

private:
string m_Name;
uint32_t m_NumberOfWheels{};

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
» m_NumberOfWheels{ numberOfwheels }

{

}

~Vehicle()
{

}

uint32_t GetNumberOfiWheels()
{

}

cout << m_Name << " at " << this << " is being destroyed!" << endl;

return m_NumberOfhheels;
};
int main(int argc, char* argv[])

Vehicle myCar{ "myCar", 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle{ "myMotorcycle", 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;

Vehicle myCopiedCar{ myCar };
cout << "Number of wheels: " << myCopiedCar.GetNumberOfilheels() << endl;

119

CHAPTER 5 © CLASSES

Vehicle mySecondCopy;
mySecondCopy = myCopiedCar;
cout << "Number of wheels: " << mySecondCopy.GetNumbexOfiheels() << endl;

return 0;

The myCopiedCar variable is constructed using a copy constructor. This is achieved by passing
another object of the same type into myCopiedCar’s brace initializer. The mySecondCopy variable is
constructed using the default constructor. Thus the object is initialized with an empty name and 0 as the
number of wheels. The code then assigns to mySecondCopy using myCopiedCar. You can see the results of
these operations in Figure 5-7.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-7/Listing5-18

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-185% ./main
Number of wheels: 4

Number of wheels: 2

Number of wheels: 4

Number of wheels: 4

myCar at ex7fff2fb37480 is being destroyed!

myCar at ox7fff2fb37490 is being destroyed!

myMotorcycle at ex7fff2fb374be is being destroyed!

myCar at ox7fff2fb374e0 is being destroyed!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-18S I

Figure 5-7. The output generated by Listing 5-18

As expected, you have three objects named myCar, each of which has four wheels. You can see the
distinct objects when the destructor prints the address in memory where each object resides.

Explicit Copy Constructors and Assignment Operators

The code in Listing 5-18 takes advantage of the implicit copy constructor and assignment operator. The C++
compiler automatically adds these functions to your classes when it encounters code that will use them.
Listing 5-19 shows how you can create these functions explicitly.

Listing 5-19. Explicitly Creating the Copy Constructor and Assignment Operator

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle

{

private:
string m_Name;
uint32_t m_NumberOfWheels{};

120

CHAPTER 5~ CLASSES

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{

}

~Vehicle()

i cout << m_Name << " at " << this << " is being destroyed!" << endl;

Vehicle(const Vehicle& other) = default;
Vehicle& operator=(const Vehicle& other) = default;

uint32_t GetNumberOfwheels()
{

}

return m_NumberOfhheels;
b

The signature for a copy constructor resembles that of a normal constructor. It’s a method with no
return type; however, the copy constructor takes a constant reference to an object of the same type as a
parameter. The assignment operator uses operator overloading to overload the = arithmetic operator for
the class when the right side of the statement is another object of the same type, as in someVehicle =
someOtherVehicle. The default keyword comes in useful again to allow you to communicate with other
programmers that you're happy with the default operations.

Disallowing Copy and Assignment

Sometimes you'll create classes in which you absolutely don’t want copy constructors and assignment
operators to be used. C++ provides the delete keyword for these cases. Listing 5-20 shows how this is
implemented.

Listing 5-20. Disallowing Copy and Assignment

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle

{

private:
string m_Name;
uint32_t m_NumberOfwheels{};

121

CHAPTER 5 © CLASSES

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{

}

~Vehicle()

i cout << m_Name << " at " << this << " is being destroyed!" << endl;

Vehicle(const Vehicle& other) = delete;
Vehicle8 operator=(const Vehicled other) = delete;

uint32_t GetNumberOfwheels()
{

}

return m_NumberOfhheels;
};
int main(int argc, char* argv[])

Vehicle myCar{ "myCar", 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle{ "myMotorcycle", 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;

Vehicle myCopiedCar{ myCar };
cout << "Number of wheels: " << myCopiedCar.GetNumberOfiWheels() << endl;

Vehicle mySecondCopy;
mySecondCopy = myCopiedCar;
cout << "Number of wheels:

<< mySecondCopy . GetNumberOfihheels() << endl;

return 0;

The delete keyword is used in place of default to inform the compiler that you don’t wish the copy
and assignment operations to be available to a class. The code in the main function will no longer compile
and operate.

Custom Copy Constructors and Assignment Operators

In addition to using the default versions of these operations, it’s possible to supply your own versions. This is
done by using the same signatures for the methods in your class definition but providing a method body in
place of the default assignment.

122

CHAPTER 5~ CLASSES

More often than not in modern C++, the places you'll overload these operators are limited; but it’s
important to be aware of the one place where you absolutely want to do so. The default copy and assignment
operations carry out a shallow copy. They call the assignment operator on each member of an object and
assign the value from the class passed in. There are occasions when you have a class that manually manages
aresource, such as memory, and a shallow copy ends up with a pointer in both classes pointing to the same
address in memory. If that memory is freed in the class’s destructor, you're left in a situation where one
object is pointing to memory that has been freed by another. In this case, your program is likely to crash or
exhibit other strange behavior. Listing 5-21 shows an example in which this could occur.

Listing 5-21. Shallow-Copying a C-Style String Member

#include <cinttypes>
#include <cstring>
#include <iostream>

using namespace std;

class Vehicle

{
private:

char* m_Name{};

uint32_t m NumberOfWheels{};
public:

Vehicle() = default;

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfiWheels{ numberOfWheels }

{
const uint32_t length = strlen(name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m Name, name);
~Vehicle()
{
delete m_Name;
m_Name = nullptr;
}

Vehicle(const Vehicled other) = default;
Vehicle& operator=(const Vehicle& other) = default;

char* GetName()

{
}

return m_Name;

123

CHAPTER 5 © CLASSES

uint32_t GetNumberOfWheels()

{
return m_NumberOfhheels;
}
};
int main(int argc, char* argv[])
{
Vehicle myAssignedCar;
{
Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;
myAssignedCar = myCar;
cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
}
cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
return 0;
}

Note The code in Listing 5-21 is purposefully constructed to create a situation that would be better solved
by using a STL string class. This code is simply intended to be an easy-to-understand example of how things
can go wrong.

The main function in Listing 5-21 creates two instances of the Vehicle class. The second is created in
a block. This block causes the myCar object to be destructed when the block ends and the object goes out
of scope. This is a problem because the last line of the block invokes the assignment operator and does a
shallow copy of the class members. After this takes place, the myCar and myAssignedCar objects point to the
same memory address in their m_Name variables. This memory is released in the destructor for myCar before
the code tries to print the name of myAssignedCar. You can see the result of this error in Figure 5-8.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-7/Listing5-21

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-215 ./main
Vehicle name: myCar

Vehicle name: myCar

Vehicle name:

*** Error in "./main': double free or corruption (fasttop): 0x00000000021c2010 *
%k

\Aborted (core dumped)
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-21% [

Figure 5-8. Output showing the error from shallow-copying an object before it’s destroyed

124

CHAPTER 5~ CLASSES

Figure 5-8 proves that the shallow copy results in a dangerous situation for the code. The memory
pointed to by the m_Name variable in myAssignedCar is no longer valid as soon as the myCar variable has been
destroyed. Listing 5-22 solves this problem by providing a copy constructor and an assignment operator that
carry out a deep copy of the class.

Listing 5-22. Carrying Out a Deep Copy

#include <cinttypes>
#include <cstring>
#include <iostream>

using namespace std;

class Vehicle

{
private:

char* m Name{};

uint32_t m_NumberOfwheels{};
public:

Vehicle() = default;

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfiWheels{ numberOfWheels }

{
const uint32_t length = strlen(name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m_Name, name);
~Vehicle()
{
delete m_Name;
m_Name = nullptr;
}
Vehicle(const Vehicle& other)
{
const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m_Name, other.m_Name);
m_NumberOfiWheels = other.m_NumberOfilheels;
}

Vehicle& operator=(const Vehicle& other)

{
if (m_Name != nullptr)
{
delete m_Name;
}

125

CHAPTER 5 © CLASSES

const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
m_Name = new char[length]{};

strcpy(m_Name, other.m_Name);

m_NumberOfiWheels = other.m_NumbexOfilheels;

retuxrn *this;

}

char* GetName()

{
}

uint32_t GetNumberOfiWheels()
{

}

return m_Name;

return m_NumberOfWheels;
b

int main(int argc, char* argv[])

{

Vehicle myAssignedCar;

{
Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;

myAssignedCar = myCar;
cout << "Vehicle name:

<< myAssignedCar.GetName() << endl;

}

cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

return 0;

This time, the code provides methods to be carried out when a copy or assignment takes place. The
copy constructor is invoked when a new object is created by copying an old object, so you never need to
worry about deleting the old data. The assignment operator, on the other hand, can’t guarantee that the
existing class didn’t already exist. You can see the implications of this in the assignment operator when it’s
responsibly deleting the memory allocated for the existingm_Name variable. The result of these deep copies
can be seen in Figure 5-9.

126

CHAPTER 5~ CLASSES

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-7/Listing5-22

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-22% ./main
ehicle name: myCar
ehicle name: myCar

ehicle name: myCar
bruce@bruce-Vvirtual-Machine:~/Projects/C-Recipes/Recipes-7/Listing5-22$ i

Figure 5-9. The result of using a deep copy

The output is now correct, thanks to the use of a deep copy. This gives the myAssignedCar variable its
own copy of the name string rather than simply having its pointer assigned the same address as the myCar
class. The proper solution to solving the problem in this case is to use an STL string in place of the C-style
string, but the example will be valid if you ever have to write classes that may end up pointed to the same
dynamically allocated memory or stack memory in the future.

Recipe 5-8. Optimizing Code with Move Semantics

Problem

Your code is running slowly, and you think the problem is caused by copying temporary objects.

Solution

C++ provides support for move semantics in the form of a move constructor and a move assignment operator.

How It Works

The code shown in Listing 5-23 performs a deep copy of an object to avoid the scenario where a different
object is left pointing at an invalid memory address.

Listing 5-23. Using Deep Copy to Avoid Invalid Pointers

#include <cinttypes>
#include <cstring>
#include <iostream»

using namespace std;

class Vehicle

{
private:

char* m Name{};

uint32_t m_NumberOfWheels{};
public:

Vehicle() = default;

127

CHAPTER 5 © CLASSES

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfiWheels{ numberOfWheels }

{
const uint32_t length = strlen(name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m Name, name);
~Vehicle()
{
delete m_Name;
m_Name = nullptr;
}
Vehicle(const Vehicle& other)
{
const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m_Name, other.m_Name);
m_NumberOfiWheels = other.m_NumberOfilheels;
}
Vehicle& operator=(const Vehicle& other)
{
if (m_Name != nullptr)
{
delete m_Name;
}
const uint32_t length = strlen(other.m_Name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m_Name, other.m_Name);
m_NumberOfilheels = other.m_NumberOfiheels;
return *this;
}
char* GetName()
{
return m_Name;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfhheels;
}

};

128

CHAPTER 5~ CLASSES

int main(int argc, char* argv[])

{
Vehicle myAssignedCar;
{
Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;
myAssignedCar = myCar;
cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
}
cout << "Vehicle name: " << myAssignedCar.GetName() << endl;
return 0;
}

This is the correct solution when you know that two objects may live a considerable time but one may
be destroyed before the other, which would likely result in a crash. Sometimes, however, you know that the
object you're copying from is about to destroyed. C++ allows you to optimize such situations using move
semantics. Listing 5-24 adds a move constructor and a move assignment operator to the class and uses the
move function to invoke them.

Listing 5-24. The Move Constructor and Move Assignment Operator

#include <cinttypes>
#include <cstring>
#include <iostream>

using namespace std;

class Vehicle

{
private:

char* m_Name{};

uint32_t m_NumberOfWheels{};
public:

Vehicle() = default;

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }
{

const uint32_t length = strlen(name) + 1; // Add space for null terminator

m_Name = new char[length]{};
strcpy(m_Name, name);

129

CHAPTER 5 © CLASSES

~Vehicle()
{
if (m_Name != nullptr)
{
delete m_Name;
m_Name = nullptr;
}
}
Vehicle(const Vehicle& other)
{
const uint32_t length = strlen(other.m Name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m Name, other.m Name);
m_NumberOfWheels = other.m_NumberOfWheels;
}
Vehicle& operator=(const Vehicle8 other)
{
if (m_Name != nullptr)
{
delete m_Name;
}
const uint32_t length = strlen(other.m Name) + 1; // Add space for null terminator
m_Name = new char[length]{};
strcpy(m Name, other.m Name);
m_NumberOfWheels = other.m NumberOfWheels;
return *this;
}
Vehicle(Vehicle&& other)
{
m_Name = other.m_Name;
other.m_Name = nullptr;
m_NumberOfilheels = other.m_NumberOfilheels;
}
Vehicle& operator=(Vehicle&& other)
{
if (m_Name !'= nullptr)
{
delete m_Name;
}

130

};

}

CHAPTER 5~ CLASSES

m_Name = othex.m_Name;
other.m_Name = nullptr;

m_NumberOfiWheels = other.m_NumberOfWlheels;

return *this;

char* GetName()

{
}

return m_Name;

uint32_t GetNumberOfiWheels()

{
}

return m_NumberOfWheels;

int main(int argc, char* argv[])

{

Vehicle myAssignedCar;

{

}

cout << "Vehicle name:

Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;

myAssignedCar = move(myCar);
//cout << "Vehicle name: " << myCar.GetName() << endl;
cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

<< myAssignedCar.GetName() << endl;

return 0;

Move semantics work by providing class methods that take rvalue references as parameters. These
rvalue references are denoted by using the double ampersand operator on the parameter type. You can
invoke the move operations using the move function; you can see this in action in the main function. The
move function can be used here because you know that myCar is about to be destroyed. The move assignment
operator is invoked, and the pointer address is shallow-copied to myAssignedCar. The move assignment
operator releases the memory that the object may already have been using for m_Name. Importantly, it then
copies the address from other before setting other.m_Name to nullptr. Setting the other object’s pointer
to nullptr prevents that object from deleting the memory in its destructor. In this case, the code is able

to move the value of m_Name from other to this without having to allocate more memory and deep-copy
the values from one to the other. The end result is that you can no longer use the value of m_Name stored by
myCar—the commented-out line in Listing 5-24’s main function would result in a crash.

131

CHAPTER 6

Inheritance

C++ allows you to build complex software applications in a number of ways. One of the most common is the
object-oriented programming (OOP) paradigm. Classes in C++ are used to provide a blueprint for objects
that contain your data and the operations that can be carried out on that data.

Inheritance takes this a step further by letting you construct complex hierarchies of classes. The C++
language provides various different features you can use to organize your code in a logical manner.

Recipe 6-1. Inheriting from a Class

Problem

You're writing a program that has a natural is-a relationship between objects and would like to reduce code
duplication.

Solution

Inheriting a class from a parent class allows you to add your code to the parent and share it between multiple
derived types.

How It Works

In C++, you can inherit one class from another. The inheriting class gains all the properties of the base class.
Listing 6-1 shows an example of two classes that inherit from a shared parent.
Listing 6-1. Class Inheritance

#include <cinttypes>
#include <iostream>

using namespace std;
class Vehicle

{

private:
uint32_t m_NumberOfwheels{};

133

CHAPTER 6 * INHERITANCE

public:
Vehicle(uint32_t numberOfWheels)
: m_NumberOfWwheels{ numberOfWheels }

{
}
uint32_t GetNumberOfWheels() const
{
return m_NumberOfWheels;
}
};
class Car : public Vehicle
{
public:
Car()
: Vehicle(4)
{
}
b
class Motorcycle : public Vehicle
{
public:
Motorcycle()
: Vehicle(2)
{
}
};
int main(int argc, char* argv[])
{
Car myCar{};
cout << "A car has " << myCar.GetNumberOfiWheels() << " wheels." << endl;
Motorcycle myMotorcycle;
cout << "A motorcycle has " << myMotorcycle.GetNumberOfiWheels() << " wheels." << endl;
return 0;
}

The Vehicle class contains a member variable to store the number of wheels the vehicle has. This value
is initialized to 0 by default or is set in the constructor. Vehicle is followed by another class named Car. The
Car class contains only a constructor that is used to call the constructor for Vehicle. The Car constructor
passes the number 4 into the Vehicle constructor and therefore sets m_NumberOfhheels to 4.

134

CHAPTER 6 * INHERITANCE

The Motorcycle class also contains only a constructor, but it passes 2 to the Vehicle constructor.
Because both Car and Motorcycle inherit from the Vehicle class, they both inherit its properties. They both
contain a variable to hold the number of wheels, and they will both have a method to retrieve the number of
wheels. You can see this in the main function, where GetNumberOfhheels is called on both the myCar object
and the myMotorcycle object. Figure 6-1 shows the output generated by this code.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-1/Listing6-1

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-1/Listing6-1$./main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-1/Listing6-1$ I

Figure 6-1. Output generated by the code in Listing 6-1

The Car class and the Motorcycle class both inherit the properties of Vehicle and both set the
appropriate number of wheels in their constructor.

Recipe 6-2. Controlling Access to Member Variables and
Methods in Derived Classes

Problem

Your derived class needs to be able to access the fields in its parent.

Solution

C++ access modifiers have an effect on the way variables can be accessed in derived classes. Using the
correct access modifier is essential in properly constructing a class hierarchy.

How It Works
The public Access Specifier

The public access specifier grants public access to a variable or method in a class. This applies equally to
member variables and methods. You can see this clearly in Listing 6-2.

135

CHAPTER 6 * INHERITANCE

Listing 6-2. The public Access Specifier

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
uint32_t m_NumberOfWheels{};
Vehicle() = default;
};
class Car : public Vehicle
{
public:
Car()
{
m_NumberOfWheels = 4;
}
b

class Motorcycle : public Vehicle

{

public:
Motorcycle()
m_NumberOfWheels = 2;
}
};

int main(int argc, char* argv[])

{
Car myCar{};

cout << "A car has " << myCar.m_NumberOfWheels << "

myCar.m_NumberOfWheels = 3;
cout << "A car has "

Motorcycle myMotorcycle;
cout << "A motorcycle has

cout << "A motorcycle has

return O;

<< myCar.m_NumberOfWheels <<

wheels."

wheels."

<< myMotorcycle.m_NumberOfWheels
myMotorcycle.m_NumberOfWheels = 3;
<< myMotorcycle.m NumberOfWheels

<<

<<

<<

<<

endl;

endl;

wheels." << endl;

wheels." << endl;

Any variables with public access can be accessed by a derived class. Both the Car constructor and
the Motorcycle constructor take advantage of this and set the number of wheels they have appropriately.
The downside is that other code can also access the public member variables. You can see this in the main
function, where the m_NumberOfWheels is read and assigned to both the myCar object and the myMotorcycle

object. Figure 6-2 shows the output generated by this code.

136

CHAPTER 6 * INHERITANCE

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-2/Listing6-2

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-2/Listing6-2$. /main
A car has 4 wheels.

A car has 3 wheels.

A motorcycle has 2 wheels.

A motorcycle has 3 wheels.
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-2/Listing6-2S I

Figure 6-2. The output generated by Listing 6-2

The private Access Specifier

Instead of making variables public, you can make them private and provide public accessors to them.
Listing 6-3 shows the use of a private member variable.

Listing 6-3. The private Access Specifier

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
private:
uint32_t m_NumberOfWheels{};
public:
Vehicle(uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }
{
}
uint32_t GetNumberOfWheels() const
{
return m_NumberOfhheels;
}
};
class Car : public Vehicle
{
public:
Car()
: Vehicle(4)
{
}
b

137

CHAPTER 6 * INHERITANCE

class Motorcycle : public Vehicle

{
public:
Motorcycle()
: Vehicle(2)
{
}
};
int main(int argc, char* argv[])
{
Car myCar{};
cout << "A car has " << myCar.GetNumberOfiWheels() << " wheels." << endl;
Motorcycle myMotorcycle;
cout << "A motorcycle has " << myMotorcycle.GetNumberOfiWheels() << " wheels." << endl;
return 0O;
}

Listing 6-3 shows the use of the private access specifier with them_NumberOfWheels variable. The

Car and Motorcycle classes can no longer access the m_NumberOfWheels variable directly; therefore, the
Vehicle class provides a method to initialize the variable through its constructor. This makes the classes a
little harder to work with but adds the benefit of not allowing any external code direct access to the member
variable. You ca see this in the main function, where the code must get the number of wheels through the
GetNumberOfWheels accessor method.

The protected Access Specifier

The protected access specifier allows for a mix of public and private access specifiers. It acts like a public
specifier for classes that derive from the current class, and it acts like a private specifier for external code.
Listing 6-4 shows this behavior.

Listing 6-4. The protected Access Specifier

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{

protected:

uint32_t m_NumberOfwheels{};

public:

138

Vehicle() = default;

uint32_t GetNumberOfWwheels() const
{

return m_NumberOfhheels;

}
b
class Car : public Vehicle
{
public:
Car()
{
m_NumberOfWheels = 4;
}
};

class Motorcycle : public Vehicle

{

public:
Motorcycle()
m_NumberOfWheels = 2;
}
b

int main(int argc, char* argv[])

{
Car myCar{};

cout << "A car has " << myCar.GetNumberOfWheels() << " wheels.'

Motorcycle myMotorcycle;
cout << "A motorcycle has

return 0;

<< myMotorcycle.GetNumberOfiheels() << " wheels.'

CHAPTER 6

<< endl;

INHERITANCE

<< endl;

Listing 6-4 shows that both Car and Motorcycle can access the m_NumberOfWheels variable directly
from their parent class, Vehicle. Both classes set the m_NumberOfWheels variable in their constructors.
The calling code in the main function doesn’t have access to this variable and therefore has to call the

GetNumberOfWheels method to be able to print this value.

Recipe 6-3. Hiding Methods in Derived Classes

Problem

You have a derived class that needs behavior in a method that is different than the behavior provided by the

parent class.

139

CHAPTER 6 * INHERITANCE

Solution

C++ allows you to hide methods in parent classes by defining a method with the same signature in the
derived class.

How It Works

You can hide a method in a parent class by defining a method with exactly the same signature in the base
class. This example shows how derived classes can use explicit method hiding to provide functionality that
differs from the parent class’s. This is a key concept to understand when you’re using inheritance, because
it’s the primary method employed to differentiate hierarchies of class types.

Listing 6-5 contains a Vehicle class, a Car class, and a Motorcycle class. The Vehicle class defines a
method named GetNumberOflheels that returns 0. The same method is defined in the Car class and the
Motorcycle class; these versions of the method return 4 and 2, respectively.

Listing 6-5. Hiding Methods

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
Vehicle() = default;
uint32_t GetNumberOfWheels() const
{
return 0;
}
};
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfWheels() const
{
return 4;
}
};
class Motorcycle : public Vehicle
{
public:

Motorcycle() = default;

140

CHAPTER 6 * INHERITANCE

uint32_t GetNumberOfWheels() const
{

}

return 2;
};
int main(int argc, char* argv[])

Vehicle myVehicle{};
cout << "A vehicle has " << myVehicle.GetNumberOfWheels() << " wheels.'

<< endl;

Car myCar{};
cout << "A car has " << myCar.GetNumberOfiWheels() << " wheels.'

<< endl;

Motorcycle myMotorcycle;
cout << "A motorcycle has

<< myMotorcycle.GetNumberOfiheels() << " wheels." << endl;

return 0;

The main function in Listing 6-5 calls the three different versions of GetNumberOflheels and returns the
appropriate value for each. You can see the output generated by this code in Figure 6-3.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-3/Listing6-5

bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe6-3/Listing6-55 . /main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-3/Listing6-55 ||

Figure 6-3. The output generated by executing the code in Listing 6-5

Accessing these methods directly through objects or pointers to these class types results in the correct
output.

Note Method hiding doesn’t work properly when you’re using polymorphism. Accessing a derived class
through a pointer to a base class results in the method on the base class being called. This is very rarely the
behavior you want. See Recipe 8-5 for the proper solution when using polymorphism.

Recipe 6-4. Using Polymorphic Base Classes

Problem

You would like to write generic code that works with pointers to base classes and that still calls the proper
methods in derived classes.

141

CHAPTER 6 * INHERITANCE

Solution

The virtual keyword allows you to create methods that can be overridden by derived classes.

How It Works

The virtual keyword tells the C++ compiler that you would like a class to contain a virtual method table
(v-table). A v-table contains lookups for methods that allows the correct method to be called for a given type
even if the object is being accessed through a pointer to one of its parent classes. Listing 6-6 shows a class
hierarchy that uses the virtual keyword to specify that a method should be included in the class’s v-table.

Listing 6-6. Creating a Virtual Method

#include <cinttypes>

class Vehicle

{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const
{
return 2;
}
b
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfWheels() const override
{
return 4;
}
b
class Motorcycle : public Vehicle
{
public:

Motorcycle() = default;
5
The Car and Motorcycle classes in Listing 6-6 derive from the Vehicle class. The GetNumberOfiheels
method in the Vehicle class is listed as a virtual method. This causes any calls to that method through a

pointer to be called through the v-table. Listing 6-7 shows a full example with a main function that accesses
objects through a Vehicle pointer.

142

CHAPTER 6 * INHERITANCE
Listing 6-7. Accessing Virtual Methods through a Base Pointer
#include <cinttypes>
#include <iostream>
using namespace std;
class Vehicle
{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const
{
return 2;
}
b
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfWwheels() const override
{
return 4;
}
};
class Motorcycle : public Vehicle
{
public:
Motorcycle() = default;
};
int main(int argc, char* argv[])
{
Vehicle* pVehicle{};
Vehicle myVehicle{};
pVehicle = &myVehicle;
cout << "A vehicle has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
Car myCar{};
pVehicle = &myCar;
cout << "A car has " << pVehicle->GetNumberOfiWheels() << " wheels." << endl;
Motorcycle myMotorcycle;
pVehicle = 8myMotorcycle;
cout << "A motorcycle has " << pVehicle->GetNumberOfhheels() << " wheels." << endl;
return 0;
}

143

CHAPTER 6 * INHERITANCE

The main function defines a pointer to a Vehicle object on its first line. This pointer is then used in
each of the cout statements to access the GetNumberOfiWheels method for the current object. The Vehicle
and Motorcycle objects have the address of the Vehicle: :GetNumberOfWheels method in their v-tables;
therefore, both return 2 for their number of wheels.

The Car class overrides the GetNumberOfiheels method. This causes Car to replace the address for
Vehicle: :GetNumberOfWheels in the lookup table with the address of Car : : GetNumberOfhheels. As a result,
when the same Vehicle pointer is assigned the address of myCar and subsequently calls GetNumberOfWheels,
it calls the method defined in the Car class and not that defined in the Vehicle class. Figure 6-4 shows the
output generated by the code in Listing 6-7, where you can see that this is the case.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-4/Listing6-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-4/Listing6-75 . /main
A vehicle has 2 wheels.

A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-4/Listing6-7$ I

Figure 6-4. The output generated by executing the code in Listing 6-7

The override keyword is used at the end of the GetNumberOfihheels method’s signature in the Car
class. This keyword is a hint to the compiler that you expect this method to override a virtual method in
the parent class. The compiler will throw an error if you enter the signature incorrectly or if the signature of
the method you're overriding is changed later. This feature is very useful, and I recommend that you use it
(although the override keyword itself is optional).

Recipe 6-5. Preventing Method Overrides

Problem

You have a method that you don’t wish to be overridden by deriving classes.

Solution

You can use the final keyword to prevent classes from overriding a method.

How It Works

The final keyword informs the compiler that you don’t want a virtual method to be overridden by a
deriving class. Listing 6-8 shows an example of using the final keyword.

144

CHAPTER 6 * INHERITANCE

Listing 6-8. Using the final Keyword

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const final
{
return 2;
}
b
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfWwheels() const override
{
return 4;
}
b
class Motorcycle : public Vehicle
{
public:
Motorcycle() = default;
};
int main(int argc, char* argv[])
{
Vehicle* pVehicle{};
Vehicle myVehicle{};
pVehicle = &myVehicle;
cout << "A vehicle has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;
Car myCar{};
pVehicle = &myCar;
cout << "A car has " << pVehicle->GetNumberOfiWheels() << " wheels." << endl;
Motorcycle myMotorcycle;
pVehicle = 8myMotorcycle;
cout << "A motorcycle has " << pVehicle->GetNumberOfhheels() << " wheels." << endl;
return 0;
}

145

CHAPTER 6 * INHERITANCE

The GetNumberOflheels method in the Vehicle class uses the final keyword to prevent derived
classes from trying to override it. This causes the code in Listing 6-8 to fail to compile, because the Car class
attempts to override GetNumberOfWheels. You can comment out this method to get the code to compile.

The final keyword can also stop further overrides of a method in a longer chain. Listing 6-9 shows how
this is possible.

Listing 6-9. Preventing Overrides in an Inheritance Hierarchy

#include <cinttypes>

class Vehicle

{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const
{
return 2;
}
};
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfWheels() const final
{
return 4;
}
};
class Ferrari : public Car
{
public:
Ferrari() = default;
uint32_t GetNumberOfWheels() const override
{
return 5;
}
};

Vehicle defines a virtual method named GetNumberOflheels that returns the value 2. Car overrides
this method to return 4 (this example ignores the fact that not all cars have four wheels) and declares that
the method is final. No other classes deriving from Car are allowed to override the same method. This makes
sense for the application if the requirements only require support for four-wheeled cars. The compiler will
throw an error when it reaches any class that derives from Car or derives from any other class that has Car in
its hierarchy and that tries to override the GetNumberOfiWheels method.

146

CHAPTER 6 * INHERITANCE

Recipe 6-6. Creating Interfaces

Problem

You have a base class method that should not define any behavior but should simply be overridden by
deriving classes.

Solution

You can create pure virtual methods in C++ that don’t define a method body.

How It Works

You can define pure virtual methods in C++ by adding = 0 to the end of the method signature.
Listing 6-10 shows an example.

Listing 6-10. Creating Pure Virtual Methods

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const = 0;
};
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfiWheels() const override
{
return 4;
}
};
class Motorcycle : public Vehicle
{
public:

Motorcycle() = default;

147

CHAPTER 6 * INHERITANCE

uint32_t GetNumberOfWheels() const override

{
return 2;
}
b
int main(int argc, char* argv[])
{
Vehicle* pVehicle{};
Car myCar{};
pVehicle = 8myCar;
cout << "A car has " << pVehicle->GetNumberOfiheels() << " wheels." << endl;
Motorcycle myMotorcycle;
pVehicle = 8myMotorcycle;
cout << "A motorcycle has " << pVehicle->GetNumberOfhheels() << " wheels." << endl;
return 0;
}

The Vehicle class defines GetNumberOfheels as a pure virtual method. This has the effect of ensuring
that an object of type Vehicle can never be created. The compiler doesn’t allow this because it doesn’t
have a method to call for GetNumberOflheels. Car and Motorcycle both override this method and can
be instantiated. You can see this occur in the main function. Figure 6-5 shows that the methods return the
correct values for Car and Motorcycle.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-6/Listing6-10

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-6/Listing6-105% ./main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-6/Listing6-10% [

Figure 6-5. The output generated by executing the code in Listing 6-10

A class that contains a pure virtual method is known as an interface. If a class inherits from an interface
and you wish to be able to instantiate that class, you must override any pure virtual methods in the parent.
It’s possible to derive from an interface and not override these methods, but that derived class can then only
be used as an interface to further derived classes.

Recipe 6-7. Multiple Inheritance

Problem

You have a class that you wish to derive from more than one parent.

148

CHAPTER 6 * INHERITANCE

Solution

C++ supports multiple inheritance.

How It Works

You can derive a class from multiple parents in C++ using a comma-separated list of parent classes.
Listing 6-11 shows how this can be achieved.

Listing 6-11. Multiple Inheritance

#include <cinttypes>
#include <iostream>

using namespace std;

class Printable

{
public:
virtual void Print() = 0;
};
class Vehicle
{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const = 0;
};
class Car
¢ public Vehicle
s public Printable
public:
Car() = default;
uint32_t GetNumberOfWwheels() const override
{
return 4;
}
void Print() override
{
cout << "A car has " << GetNumberOfWheels() << " wheels." << endl;
}
b

149

CHAPTER 6 * INHERITANCE

class Motorcycle
¢ public Vehicle
s public Printable

public:
Motorcycle() = default;

uint32_t GetNumberOfWheels() const override

{
}

return 2;

void Print() override

{
}

cout << "A motorcycle has " << GetNumberOfWheels() << " wheels." << endl;
b
int main(int argc, char* argv[])
Printable* pPrintable{};

Car myCar{};
pPrintable = 8myCar;
pPrintable->Print();

Motorcycle myMotorcycle;
pPrintable = 8myMotorcycle;
pPrintable->Print();

return 0;

The Car and Motorcycle classes both derive from multiple parents. These classes are now both
Vehicles and Printables. You can see the interplay between the two parents in the overridden Print
methods. These methods both call the overridden GetNumberOfWheels method in Car and Motorcycle.
The main function accesses the overridden Print methods through a pointer to a Printable object, using
polymorphism to call the correct Print method and also the correct GetNumberOflheels method in Print.
Figure 6-6 shows that the output from the program is correct.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-7/Listing6-11

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-7/Listing6-115 ./main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-7/Listing6-11% [

Figure 6-6. Output showing that multiple inheritance works with polymorphism

150

CHAPTER 7

The STL Containers

The Standard Template Library (STL) consists of a standard set of functionality that implementers are
required to support. Creating a standard ensures that code can be used interchangeably on different
platforms and operating systems as long as the supplied implementations conform to that standard. A large
part of the standard defines a set of containers that can be used to store data structures. This chapter looks at
different scenarios where each of the STL containers prove useful.

Note The string container was covered in Chapter 3.

Recipe 7-1. Storing a Fixed Number of Objects

Problem

You have a requirement to store a fixed number of objects in your program.

Solution

C++ provides built in arrays that can be used for this purpose however the STL array provides a more flexible
interface comparable to other STL containers.

How It Works

C++ has support for built-in arrays that have existed since the formation of the language. If you have
programmed in C or C++ before these will be familiar to you. Listing 7-1 shows a standard C-style array.

151

http://dx.doi.org/10.1007/9781484201589_3

CHAPTER 7 © THE STL CONTAINERS

Listing 7-1. A C-style array

#include <cinttypes>
#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{
const uint32_t numberOfElements{ 5 };
int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };
for (uint32_t i{ 0 }; i < numberOfElements; ++1i)
cout << normalArray[i] << endl;
}
return 0;
}

This code shows the use of a C-style array in C++. The array contains 5 integers and the main function
has a for loop that is used to iterate the array and print out the values at each position. It’s also possible to
use a range based for loop to iterate a C-style array. Listing 7-2 shows how this is done.

Listing 7-2. Using a range based for loop with a C-style array
#include <cinttypes>
#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

const uint32_t numberOfElements{ 5 };
int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };

for (auto8® number : normalArray)

{
}

cout << number << endl;

return 0;

The main function in Listing 7-2 takes advantage of a range based for loop to iterate the array. This is a
useful construct to use when you have no need for the value of the index of the array.

Note The range based for loop in Listing 7-2 uses syntax that looks like a rvalue reference. This isn’t the
case. Head to Chapter 2 if you’re not sure how this code works or of the difference between a Ivalue and a rvalue.

152

http://dx.doi.org/10.1007/9781484201589_2

CHAPTER 7 * THE STL CONTAINERS

C-style arrays are useful in many circumstances however modern C++ also provides another version of
arrays that can be used with the STL iterators and algorithms. Listing 7-3 shows how to define an STL array.
Listing 7-3. Using a STL array

#include <array>
#include <cinttypes>
#include <iostream>

int main(int argc, char* argv[])

{
const uint32_t numberOfElements{ 5 };
std::array<int32_t, numberOfElements> stlArray{ 10, 65, 3000, 2, 49 };
for (uint32_t i = 0; i < numberOfElements; ++i)
{
std::cout << stlArray[i] << std::endl;
}
for (auto8& number : stlArray)
{
std::cout << number << std::endl;
}
return 0;
}

Listing 7-3 shows that a STL array is defined by passing the type stored in the array and the number of
elements it contains into the type template. Once the array has been defined it can be used interchangeably
with a normal C-style array. This is because the range based for loop can iterate both types of array and
because the STL array defines an array operator overload that allows elements to be accessed using [].

Note The major advantage to using the STL array container over C-style arrays is that it allows access to
STL iterators and algorithms, both of which are covered in Chapter 8.

Arrays store their objects in a contiguous block of memory. This means that the address of each
array element lies next to each other in memory. This makes them very efficient for iteration on modern
processors. An array will generally result in excellent cache coherency and as a result cause fewer stalls
as the processor reads from RAM into a local cache. Arrays are excellent choices for algorithms where
performance is paramount and a fixed number of objects is needed.

153

http://dx.doi.org/10.1007/9781484201589_8

CHAPTER 7 © THE STL CONTAINERS

Recipe 7-2. Storing a Growing Number of Objects

Problem

Sometimes you will not know at compile time how many objects you need to store in your array.

Solution

The STL provides the vector template that allows for dynamically growing arrays.

How It Works

The vector works in a very similar way to array. Listing 7-4 shows the definition of a vector and two styles
of for loop.

Listing 7-4. Using STL vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char* argv[])

{
vector<int32_t> stlVector{ 10, 65, 3000, 2, 49 };
for (uint32 t i = 0; i < stlVector.size(); ++i)
{
std::cout << stlVector[i] << std::endl;
}
for (autod® number : stlVector)
{
std::cout << number << endl;
}
return 0;
}

The major different between the definition of a vector and an array is the lack of a size. As a vector is
resizable setting a limit on the number of elements it can contain makes little sense. This manifests itself in
the traditional for loop in the main function. You can see that the loop end condition checks for completion
by comparing the index against the value returned from the size method. In this case size will return 5 as
the vector contains 5 elements.

154

CHAPTER 7 * THE STL CONTAINERS

Listing 7-5 lets you see that a vector can be resized at runtime unlike an array.

Listing 7-5. Resizing a vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

vector<int32_t> stlvVector{ 10, 65, 3000, 2, 49 };

cout << "The size is: " << stlVector.size() << endl;

stlVector.emplace back(50);

cout << "The size is: " << stlVector.size() << endl;

for (autod& number : stlVector)

{

std::cout << number << endl;
}
return 0;

The resulting output from Listing 7-5 is shown in Figure 7-1.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-2/Listing7-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-5% ./main
IThe size is: 5

The size is: 6

10

65

3000

2
149

50
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-55 i

Figure 7-1. The output generated by Listing 7-5 showing a growing vector

Figure 7-1 shows that the vector has grown from size 5 to size 6 after the call to emplace_back. The

range based for loop prints out all the values stored in the vector. You can see that emplace_back has added
the value to the end of the vector.

155

CHAPTER 7 © THE STL CONTAINERS

The way a vector resizes is implementation defined which means that it’s up to the vendor creating the
library you are using. All implementations operate by using a similar method. They generally tend to allocate
memory for a new array internally that includes the current size of the vector as well as a variable number
of empty slots for new values. Listing 7-6 contains code that uses the capacity method to determine how

many elements the vector is capable of storing before it will resize.

Listing 7-6. A resizing vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int

{

156

main(int argc, char* argv[])

vector<int32_t> stlVector
{

1,

2,

3,

4,

15,

};

cout << "The size is: " << stlVector.size() << endl;
cout << "The capacity is: " << stlVector.capacity() << endl;

st1lVector.emplace back(17);

cout << "The size is:
cout << "The capacity is:

<< stlVector.size() << endl;
" << stlVector.capacity() << endl;

for (autodd number : stlVector)

{

std::cout << number << std::endl;
}
return 0;

CHAPTER 7 * THE STL CONTAINERS

The code in Listing 7-6 creates a vector that contains 16 elements. Figure 7-2 shows the affect adding a
new element has on the capacity of the vector.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-2/Listing7-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-65 ./main
The size is: 16

The capacity is: 16

The size is: 17

The capacity is: 32

17
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-65]

Figure 7-2. Output showing the increased capacity of a vector when using Microsoft Visual Studio 2013 STL

Figure 7-2 shows that adding a value to a vector does not result in an increase in size of one element.
Microsoft have decided that their implementation of the STL will increase the capacity of the vector by 50%.
Adding a new element to a vector of size 16 adds capacity for 8 new elements when a single new element is
added.

It's also possible to add elemen