
www.allitebooks.com

http://www.allitebooks.org

C++ Multithreading
Cookbook

Over 60 recipes to help you create ultra-fast multithreaded
applications using C++ with rules, guidelines, and best
practices

Miloš Ljumović

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

C++ Multithreading Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1250714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-979-0

www.packtpub.com

Cover image by Radivoje Todorović (mr.todorovic@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Miloš Ljumović

Reviewers
Abhishek Gupta

Venkateshwaran Loganathan

Walt Stoneburner

Dinesh Subedi

Commissioning Editor
Edward Gordon

Acquisition Editor
Nikhil Karkal

Content Development Editor
Akshay Nair

Technical Editors
Tanvi Bhatt

Faisal Siddiqui

Copy Editors
Janbal Dharmaraj

Karuna Narayanan

Sayanee Mukherjee

Alfida Paiva

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Kevin McGowan

Chris Smith

Indexers
Hemangini Bari

Mehreen Deshmukh

Rekha Nair

Graphics
Disha Haria

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Miloš Ljumović was born on July 26 in Podgorica, the capital of Montenegro in Europe,
where he attended elementary and high school. He also went to music school to play the
guitar. He studied Computer Science in the Faculty of Natural Science and Mathematics,
Montenegro University. The following year, he picked up interest in operating systems, which
he majored in, in his Master's degree. In December 2009, along with his friend Danijel, he
started his company, Programmer, along with a highly qualified team to provide high-tech
IT solutions. Soon, many skilled developers joined them, and from this collaboration, many
applications and system software, web applications, and database systems have arisen.
His clients were not only the Government of Montenegro, but also some major domestic
companies. He developed a new age financial system for the national domain company,
MeNet; he also developed video recognition software, along with pictures and other digital
media types. He also developed many fascinating websites and other web applications.
The list of customers is too long to be incorporated here.

After working only for a few months as an international consultant, he worked with an American
company in a project involving large e-commerce businesses and data scraping from the
Internet. All this was the spark to open his new company, EXPERT.ITS.ME, in the beginning of
July 2014. Besides development, he provides consulting services and helps small businesses in
the IT sector to manage problems while inspiring them to be and think big. He is also a member
of the Committee of National Chamber (ICT) of Montenegro and MENSA. He likes programming
in C/C++/C# even though he is skilled in HTML, PHP, TSQL, and more while going toward his
dream of developing his own operating system.

In his spare time, he plays tennis, dives, hunts, or plays chess. He favors brainstorming with his
team and fresh, modern ideas in the area of IT and computer science. He is continuously going
towards new beginnings and next-generation software solutions. He specially likes teaching
computer science and math students through private classes and courses and shaping them
to be qualified programmers and helping them find all the beauty of science. To see what his
interests are and what he is doing, visit his company's website (http://expert.its.me) or
his website (http://milos.expert.its.me), or contact him at milos@expert.its.me.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I am grateful to many for writing this book.

I dedicate this book to my parents Radoslav and Slavka and to my sisters Natalija and
Dušanka, who are always there for me no matter what. I am specially grateful to my mother,
without whom I wouldn't became a programmer.

An even greater thanks goes to my beautiful wife, Lara, for putting up with me, for all
her patience and love towards me, for all her unconditional support, and for teaching me
never to give up. Volim te.

My appreciation goes to my dear friend Danijel who taught me how to be great businessman
and pushed me over the edge to be better programmer each day.

I would also like to thank my professors from the University of Montenegro, without whom
I wouldn't be the expert I am today. A special thanks to Rajko Ćalasan for endless hours
teaching me programming, Milo Tomašević for providing me with expertise in object-orienting
programming, and making me love C++ the way I do today, and especially to Goran Šuković,
the greatest teacher of all, for constantly guiding me and teaching me various areas of
computer science and making me wish and get more and more knowledge each day.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Abhishek Gupta is a young embedded software engineer from Bangalore, India. He has
been working on software for Automotive In-Vehicle Infotainment (IVI) for the past few years.
He completed his MTech from IIT Kharagpur, India in Visual Information and Embedded
Systems in 2011. He is passionate about video processing and loves to work on embedded
multimedia systems. His technical knowledge revolves mostly around C and Linux.

You can find more information about him at www.abhitak.wordpress.com/about-me.

Venkateshwaran Loganathan is an eminent software developer who has been involved
in the design, development, and testing of software products for more than 6 years now. He
was introduced to computer programming at an early age of 11 with FoxPro, and then started to
learn and master various computer languages such as C, C++, Perl, Python, Node.js, and Unix
shell scripting. Fascinated by open source development, he has involved himself in contributing
to various Open Source technologies.

He is now working for Cognizant Technology Solutions as an associate in technology, where he
has involved himself in research and development for the Internet of Things domain. He is now
actively involved in using RFID devices to evolve Future of Technology concepts. Before joining
Cognizant, he had worked with some of the major IT firms such as Infosys, Virtusa, and NuVeda.
Starting his career as a network developer, he has gained expertise in various domains such
as networking, e-learning, and healthcare. He has won various awards and accolades in the
companies he has worked for.

He holds a Bachelor's degree in Computer Science and Engineering from Anna University and is
currently pursuing an M.S. in Software Systems from BITS, Pilani. Apart from programming, he is
actively involved in handling various technical and soft skills classes for budding engineers and
college students. He also likes singing and trekking. He likes to get involved in social service and
moves with people a lot. Visit him online at http://www.venkateshwaranloganathan.com
and write to him at anandvenkat4@gmail.com.

www.allitebooks.com

http://www.allitebooks.org

He has also published the book PySide GUI Application Development, Packt Publishing.

I am indebted to many. First of all, I would like to thank my mother, Anbuselvi,
and grandmother, Saraswathi, for their endless effort and perseverance
in bringing me up to this level. I would also like to thank all my friends and
brothers; the list is too long to mention here. They all have been my well-
wishers and have helped me in my tough times. I have not mentioned the
names of many people here, but my thanks are always due to those who
directly or indirectly influenced my life.

Above all, thanks to the Almighty for the showering his blessings on me.

Walt Stoneburner is a software architect with over 25 years of commercial application
development and consulting experience. Fringe passions involve quality assurance,
configuration management, and security. If cornered, he may actually admit to liking
statistics and authoring documentation as well.

He's easily amused by programming language design, collaborative applications, big data,
knowledge management, data visualization, and ASCII art. Self-described as a closet geek,
Walt also evaluates software products and consumer electronics, draws comics, runs a
freelance photography studio specializing in portraits and art (CharismaticMoments.com),
writes humor pieces, performs sleights of hand, enjoys game design, and can occasionally
be found on ham radio.

Walt may be reached directly via e-mail at wls@wwco.com or at Walt.Stoneburner@
gmail.com. He publishes a tech and humor blog called the Walt-O-Matic at http://www.
wwco.com/~wls/blog/.

www.allitebooks.com

http://www.allitebooks.org

His other book reviews and contributions include:

 f AntiPatterns and Patterns in Software Configuration Management
(ISBN 978-0-471-32929-9, p. xi)

 f Exploiting Software: How to Break Code (ISBN 978-0-201-78695-8, p. xxxiii)

 f Ruby on Rails: Web Mashup Projects (ISBN 978-1-847193-93-3)

 f Building Dynamic Web 2.0 Websites with Ruby on Rails (ISBN 978-1-847193-41-4)

 f Instant Sinatra Starter (ISBN 978-1782168218)

 f Learning Selenium Testing Tools with Python (978-1-78398-350-6)

 f Whittier (ASIN B00GTD1RBS)

 f Cooter Brown's South Mouth Book of Hillbilly Wisdom (ISBN 978-1-482340-99-0)

Dinesh Subedi is a software developer at Yomari Incorporated Pvt. Ltd. He is currently
working on data warehouse technology and business intelligence. He is a blogger at www.
codeincodeblock.com writing articles related to software development using C++ and
has four years experience with it. He has completed his B.E. in Computer Engineering form
Pulchowk Campus IOE Kathmandu, Nepal.

I would like to thank my brother Bharat Subedi who helped me while
reviewing this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to C++ Concepts and Features 7

Introduction 7
Creating a C++ project 8
Program structure, execution flow, and runtime objects 10
The structural programming approach 14
Understanding the object-oriented programming approach 17
Explaining inheritance, overloading, and overriding 19
Understanding polymorphism 24
Event handlers and Message Passing Interface 28
Linked list, queue, and stack examples 34

Chapter 2: The Concepts of Process and Thread 45
Introduction 45
Processes and threads 46
Explaining the process model 47
Implementation of processes 51
IPC – Interprocess Communication 55
Solving classical IPC problems 65
Implementation of the thread model 75
Thread usage 81
Implementing threads in user space 89
Implementing threads in the kernel 99

Chapter 3: Managing Threads 105
Introduction 105
Processes versus threads 106
Permissive versus preemptive multitasking 110
Explaining the Windows Thread object 111
Basic thread management 112

ii

Table of Contents

Implementing threads without synchronization 121
Using synchronized threads 127
Win32 synchronization objects and techniques 133

Chapter 4: Message Passing 141
Introduction 141
Explaining the Message Passing Interface 142
Understanding a message queue 147
Using the thread message queue 156
Communicating through the pipe object 161

Chapter 5: Thread Synchronization and Concurrent Operations 167
Introduction 167
Pseudoparallelism 168
Understanding process and thread priority 168
The Windows dispatcher object and scheduling 176
Using mutex 177
Using semaphore 187
Using event 197
Using critical section 206
Using pipes 215

Chapter 6: Threads in the .NET Framework 233
Introduction 233
Managed versus unmanaged code 234
How threading works in .NET 235
The difference between foreground and background threads 243
Understanding the .NET synchronization essentials 247
Locking and avoiding deadlocks 254
Thread safety and types of the .NET framework 261
Signaling with event wait handles 263
Event-based Asynchronous Pattern 269
Using the BackgroundWorker class 276
Interrupting, aborting, and safe canceling the thread execution 281
Non-blocking synchronization 291
Signaling with Wait and Pulse 294
The Barrier class 299

iii

Table of Contents

Chapter 7: Understanding Concurrent Code Design 309
Introduction 309
How to design parallel applications 310
Understanding parallelism in code design 316
Turning on to a parallel approach 324
Improving the performance factors 332

Chapter 8: Advanced Thread Management 341
Introduction 341
Using thread pools 342
Customizing the thread pool dispatcher 354
Using remote threading 371

Appendix 381
Installing MySQL Connector/C 381
Installing WinDDK – Driver Development Kit 384
Setting up a Visual Studio project for driver compilation 386
Using the DebugView application 392
Setting up a Visual Studio project for OpenMP compilation 393

Index 397

Preface
Creating multithreaded applications is a present-day approach towards programming.
Developers expect their applications to be user friendly, with a rich interface and concurrent
execution. The power of the C++ language alongside the native Win32 API features will give
you a head start over all other languages and frameworks. With the power of C++, you can
easily create various types of applications and perform parallelism and optimizations in your
existing work.

This book is a practical, powerful, and easy-to-understand guide to C++ multithreading. You will
learn how to benefit from the multithreaded approach and enhance your development skills to
build better applications. This book will not only help you avoid problems when creating parallel
code, but also help you understand synchronization techniques in detail. The book also covers
the Windows process model alongside scheduling techniques and Interprocess Communication.

Starting from the basics, you will be introduced to the most powerful Integrated Development
Environment ever made, that is Microsoft Visual Studio. You will then learn to use the native
features of a Windows kernel as well as the characteristics of the .NET framework. You will
then understand how to solve some common concurrent problems and learn how to properly
think in a multithreaded environment.

Using mutexes, semaphores, critical sections, monitors, events, and pipes, you will learn the
most efficient way of synchronization in your C++ application. The book will teach you the best
possible approach to learn concurrency in C++.

Using the C++ native calls, the book will show you how to leverage machine hardware for
optimum performance. The end goal of the book is to impart various multithreading concepts
that will enable you to do parallel computing and concurrent programming quickly and efficiently.

Preface

2

What this book covers
Chapter 1, Introduction to C++ Concepts and Features, introduces the C++ programming
language along with its large number of features. It focuses on concepts such as the structure
of the program, execution flow, and Windows OS runtime objects. The structural and object-
oriented approach is also covered in detail.

Chapter 2, The Concepts of Process and Thread, covers process and thread objects in detail.
The idea behind the process model and implementation of Windows processes are covered
thoroughly. We go through Interprocess Communication along with classical IPC problems.
We then go through the overview of thread implementation in the user space as well as in
the kernel.

Chapter 3, Managing Threads, gives you the logic behind the process and the thread. We cover
Windows OS features such as permissive and preemptive multitasking. We also cover thread
synchronization and synchronization objects and techniques in detail.

Chapter 4, Message Passing, focuses on message-passing techniques, window handlers,
along with message queues and pipe communication.

Chapter 5, Thread Synchronization and Concurrent Operations, talks about parallelism,
priority, the dispatcher object, and scheduling techniques. We also explain synchronization
objects such as mutex, semaphore, event, and critical section.

Chapter 6, Threads in the .NET Framework, gives an overview of the C++/CLI .NET thread
object. We briefly cover the Managed approach, .NET synchronization essentials, .NET thread
safety, event-based asynchronous pattern, and the BackgroundWorker object along with
some other topics.

Chapter 7, Understanding Concurrent Code Design, covers features such as performance
factors, correctness, and liveness problems. In this chapter, users can find a better
perspective of concurrency and parallel application design.

Chapter 8, Advanced Thread Management, focuses on a higher aspect of thread
management. Abstractions of the thread pool, along with a custom dispatching object with
deadlock resolution are covered in detail. Remote threading is given as a final example of
advanced management.

Appendix covers the Installation of MySQL Connector C and WinDDK—Driver Development Kit.
Other than that it contains the setting Visual Studio project for driver compilation as well as for
OpenMP compilation. It covers the installation of DebugView application and shows the steps
to use it.

Preface

3

What you need for this book
To execute the examples in the book, the following software will be required:

 f Visual Studio 2013
 � http://www.visualstudio.com/downloads/download-visual-

studio-vs#d-express-windows-8

 f Windows Drivers Kit: WinDDK
 � http://msdn.microsoft.com/en-us/windows/hardware/

hh852365.aspx

 f MySQL Connector C

 � http://dev.mysql.com/downloads/connector/c/

Who this book is for
This book is intended primarily for intermediate and advanced users. Synchronization
concepts are covered from the very beginning, thus making the book readable for all
developers unassociated to any particular branch of expertise. The last two chapters will
provide great knowledge to advanced users, providing an excellent overview on concepts
such as concurrent design and advanced thread management.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We can include other
contexts through the use of the include directive."

A block of code is set as follows:

class CLock
{
public:
 CLock(TCHAR* szMutexName);
 ~CLock();

Preface

4

private:
 HANDLE hMutex;
};

inline CLock::CLock(TCHAR* szMutexName)
{
 hMutex = CreateMutex(NULL, FALSE, szMutexName);
 WaitForSingleObject(hMutex, INFINITE);
}

inline CLock::~CLock()
{
 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

class CLock
{
public:
 CLock(TCHAR* szMutexName);
 ~CLock();
private:
 HANDLE hMutex;
};

inline CLock::CLock(TCHAR* szMutexName)
{
 hMutex = CreateMutex(NULL, FALSE, szMutexName);
 WaitForSingleObject(hMutex, INFINITE);
}

inline CLock::~CLock()
{
 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
}

It is very important is for reader to pay attention when copying and pasting code directly
from the book. Due to book dimensions, some code lines could not be put into a single line.
We tried to overcome this issue but simply it wasn't possible in certain situations. We strongly
recommend you to check such cases before start compiling the examples. Especially in cases
of double quoted strings, if in some accidental case the string is split as it should not be.

Preface

5

Also very important is a step in the "How to do it" sections when we say, for example, "Add
existing header file CQueue.h previously implemented in Chapter 1, Introduction to C++
Concepts and Features". What we mean by this is that you should navigate to the folder where
CQueue.h file resides using Windows Explorer and you should then copy the file along with all
its dependences—in this case CList.h—to the example project working folder, before you add it
to the project, using the "Add Existing Header File" option. By following this procedure you will
be able to properly compile and run the example code.

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Open Solution Explorer
and right-click on Header files."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

www.allitebooks.com

http://www.allitebooks.org

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Introduction to C++

Concepts and Features

In this chapter, we will cover the following topics:

 f Creating a C++ project
 f Program structure, execution flow, and runtime objects
 f The structural programming approach
 f Understanding the object-oriented programming approach
 f Explaining inheritance, overloading, and overriding
 f Understanding polymorphism
 f Event handlers and Message Passing Interface
 f Linked list, queue, and stack examples

Introduction
The central concept in all operating systems is the process or abstraction of an executing
program. Most modern operating systems can do more than one operation at a time. For
example, if the user is typing in a Word document, the computer can print the document,
read from the hard disc drive buffer, play music, and so on. In multitasking operating
systems, the central processing unit (from now on, CPU) makes a fast switch between
programs, executing each program for only a few milliseconds.

While on a single processor system, strictly speaking, only one process can be executed by
the processor in one unit of time—the operating system creates an impression that more
than one process is running simultaneously by switching them extremely quickly. This is
called pseudoparallelism in contrast to hardware-supported native parallelism in
multiprocessor systems.

Introduction to C++ Concepts and Features

8

Multithreading is a very important concept for today's modern operating systems. It allows
more than one thread of execution, which is very important for parallel tasks as well as for
user-friendly application behavior.

In traditional operating systems, every process has its own address space and one thread of
execution—often called the primary thread or main thread. Usually, more than one thread in
the same address space of a single process is needed, executing in a quasi-parallel context
and acting like separated processes, with the exception of a common address space.

Pseudoparallelism is an OS feature executed over a single-processor
environment. The quasi-parallel address space concept is a Windows
OS feature. When executed over a multiprocessor system, Windows
provides every process with a so-called virtual address space, which is
much larger than real physical address space, and hence it is a quasi-
parallel context.

A very important concept in all operating systems is the thread. A thread object maintains
a program counter that takes care of what instruction has to be executed the next time
the thread gets the processor time. It also has registers, which save the current values of
variables that the thread is manipulating, stack where data related to function calls and
parameters are stored, and so on. Even though threads are executed in the context of the
process, there is a big difference between processes and threads. The process is greedy,
wanting all resources for itself; threads are more "friendly", they cooperate and communicate
with each other and share resources such as processor time, memory, and shared variables.

Creating a C++ project
All our examples will require Visual Studio IDE. We will now show you how to properly set up
an IDE. We'll also point out specific settings that will impact multithreaded applications.

Getting ready
Make sure Visual Studio (VS) is up and running.

How to do it...
Run Visual Studio and select a new project on the Start page. A new window with multiple
options will appear. Under Templates on the left side, select C++ and expand the C++ node.
You'll see the CLR, General, Test, and Win32 options. Then, perform the following steps:

1. Select Win32. You'll see two options in the middle row: Win32 console application
and Win32 project.

Chapter 1

9

The Win32 project option is used for applications that have a Graphical User
Interface (GUI) other than the console. The console can still be used, but with
additional option settings in project properties. For now, we will use the Win32
console application option.

2. Select Win32 console application and enter a unique name for your project. We will
name our first Win32 console application project TestProject. Under Location,
select the folder where the project files will be stored. VS will create a folder for
you, and it will remember the folder that you have just entered under Location
as a default folder when creating future projects.

Now, you'll see the Win32 application wizard window. You can select Finish directly
and VS will create all the necessary files for you, or you can select Next and choose
between options where VS creates an empty project. You will have to create the
source and header files yourself, unless VS generates all the necessary files for you.
For now, select Finish and you are ready to create an application.

3. In Solution Explorer, you'll see the stdafx.h and targetver.h header files. The
stdafx.cpp and Test Project.cpp source files are also created. The stdafx.h
and stdafx.cpp files are a part of the precompiled header which is used for an
IntelliSense engine that mimics the command-line compiler by using a Translation
Unit (TU) model to service IntelliSense requests. A typical translation unit consists
of a single source file and the several header files included in that source file. Other
headers can be referenced so that they are included too. The IntelliSense engine
exists to provide information to the users, such as what a particular type is, what the
prototype of a function (and its overloads) is, or what variables are available in the
current scope, beginning with a particular substring. More information is available
at the MSDN reference (http://msdn.microsoft.com).

4. The Test Project.cpp file appears in the central window, and this is where you'll
write your code. Later, we will create and use more files in more complex projects, but
this should do for now.

How it works...
Every program must have its main routine, which is called main. When you want to run your
program, the operating system starts it by calling main. This is the starting point of execution
for all C++ programs. If you write code that adheres to the Unicode programming model, you
can use the wide-character version of main called wmain. You can also use _tmain, which is
defined in TCHAR.h. The _tmain function will resolve to main, unless _UNICODE is defined,
in which case _tmain will resolve to wmain.

Above the Test Project window, you'll see various options; among them is a combobox with
the Win32 option selected, which is called Solution platform. If you want to create a 32-bit
executable, leave it as is. For 64-bit executables, expand the combobox, select Configuration
manager, and select New under Active solution platforms. A new x64 option will appear.
Click on OK, and close the Configuration manager window.

Introduction to C++ Concepts and Features

10

One of the most important settings that you need to change when building 64-bit executables
is under Project properties. Press Alt + F7, or select Project properties in Solution explorer
after right-clicking on the TestProject project. The Test Project Property Pages window
will appear. Expand Configuration Properties and C/C++, and select Preprocessor. Under
Preprocessor definitions, you'll see certain values copied from the Win32 settings. You'll
need to change WIN32 to _WIN64 in order to build a 64-bit executable. Leave the rest as is.

Whether you build 32-bit or 64-bit code, there is one more thing that you need to set
properly, which is code generation. When creating C++ projects, you can select whether your
application will depend on Dynamic Link Libraries (DLL) required for C++ runtime on the user
PC. If you create an application that runs on a PC other than the PC where it is created, you'll
need to think about this. On the PC where you use VS, the required C++ runtime is already
installed, so this does not matter. However, on another PC, where, for example, C++ runtime
isn't installed, this might cause issues. If you want to be sure that no dependency is required,
you'll need to change the Runtime Library option to Multi-threaded Debug (/MTd) for the
Debug mode, or change it to Multi-threaded (/MT) for the Release mode. The Debug
or Release mode can be switched in the Solution Configurations combobox.

For our examples, you can leave everything as it is because 32-bit executables can be run
on both 32-bit and 64-bit machines. The runtime library can also be left as default because
the application will run fine on the PC where it is built as the required C++ Redistributable
Package framework is already installed.

Program structure, execution flow, and
runtime objects

A programming paradigm is a fundamental style of computer programming. There are four
main paradigms: imperative, declarative, functional (or structural), and object-oriented.
The C++ language is certainly the most popular object-oriented language today. It is a very
powerful, flexible, and comfortable programming language. Programmers adopted it very
gladly and quickly, just like its predecessor, C. The key to such success lies in the fact that
it was made by a single programmer, adjusting it to his needs.

Unfortunately, C++ isn't an easy language at all. Sometimes, you can think that it is a limitless
language that cannot be learned and understood entirely, but you don't need to worry about
that. It is not important to know everything; it is important to use the parts that are required
in specific situations correctly. Practice is the best teacher, so it's better to understand how
to use as many of the features as needed.

Chapter 1

11

In examples to come, we will use author Charles Simonyi's Hungarian notation. In his PhD in
1977, he used Meta-Programming – A software production method to make a standard for
notation in programming, which says that the first letter of type or variable should represent
the data type. For the example class that we want to call, a Test data type should be CTest,
where the first letter says that Test is a class. This is good practice because a programmer
who is not familiar with the Test data type will immediately know that Test is a class. The
same standard stands for primitive types, such as int or double. For example, iCount
stands for an integer variable Count, while dValue stands for a double variable Value.
Using the given prefixes, it is easy to read code even if you are not so familiar with it.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our first program by performing the following steps and explaining its structure:

1. Create a new C++ console application named TestDemo.

2. Open TestDemo.cpp.

3. Add the following code:
#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Hello world" << endl;
 return 0;
}

How it works...
The structure of the C++ program varies due to different programming techniques. What most
programs must have is the #include or preprocessor directives.

The #include <iostream> header tells the compiler to include the iostream.h header
file where the available function prototypes reside. It also means that libraries with the
functions' implementations should be built into executables. So, if we want to use some API
or function, we need to include an appropriate header file, and maybe we will have to add an
additional input library that contains the function/API implementation. One more important
difference when including files is <header> versus "header". The first (<>) targets solution-
configured project paths, while the other ("") targets folders relative to the C++ project.

Introduction to C++ Concepts and Features

12

The using command instructs the compiler to use the std namespace. Namespaces are
packages with object declarations and function implementations. Namespaces have a very
important usage. They are used to minimize ambiguity while including third-party libraries
when the same function name is used in two different packages.

We need to implement a program entry point—the main function. As we said before, we
can use main for an ANSI signature, wmain for a Unicode signature, or _tmain where the
compiler will resolve its signature depending on the preprocessor definitions in the project
property pages. For a console application, the main function can have the following four
different prototypes:

 f int _tmain(int argc, TCHAR* argv[])

 f void _tmain(int argc, TCHAR* argv[])

 f int _tmain(void)

 f void _tmain(void)

The first prototype has two arguments, argc and argv. The first argument, argc, or the
argument count, says how many arguments are present in the second argument, argv,
or the argument values. The argv parameter is an array of strings, where each string
represents one command-line argument. The first string in argv is always the current
program name. The second prototype is the same as the first one, except the return type.
This means that the main function may or may not return a value. This value is returned to
the OS. The third prototype has no arguments and returns an integer value, while the fourth
prototype neither has arguments nor returns a value. It is good practice to use the first format.

The next command uses the cout object. The cout object is the name of the standard output
stream in C++, and the meaning of the entire statement is to insert a sequence of characters
(in this case, the Hello world sequence of characters) into the standard output stream (usually
corresponds to the screen).

The cout object is declared in the iostream standard file within the std namespace.
This is why we need to include the specific file and declare that we will use this specific
namespace earlier in our code.

In our usual selection of the (int _tmain(int,_TCHAR**)) prototype, _tmain returns
an integer. We must specify some int value after the return command, in this case 0.
When returning a value to the operating system, 0 usually means success, but this is
operating system dependent.

This simple program is very easy to create. We use this simple example to demonstrate
the basic program structure and usage of the main routine as the entry point for every
C++ program.

Programs with one thread are executed sequentially line-by-line. This is why our program is
not user friendly if we place all code into one thread.

Chapter 1

13

Program execution flow

We need to wait for user input

Here the application will be unresponsive
because it will wait for user input.

After the user gives input,
control is returned to the
application

After the user gives the input, control is returned to the application. Only now can the
application continue the execution. In order to overcome such an issue, we can create
concurrent threads that will handle the user input. In this way, the application does not stall
and is responsive all the time. After a thread handles its task, it can signal that a user has
performed the requested operation to the application.

There's more...
Every time we have an operation that needs to be executed separately from the main execution
flow, we have to think about a separate thread. The simplest example is when we have some
calculations, and we want to have a progress bar where the calculation progress will be shown.
If the same thread was responsible for calculation as well as to update the progress bar,
probably it wouldn't work. This occurs because, if both work and a UI update are performed
from a single thread, such threads can't interact with OS painting adequately; so almost
always, the UI thread is separate from the working threads.

Let's review the following example. Assume that we have created a function where we will
calculate something, for example, sines or cosines of some angle, and we want to display
progress in every step of the calculation:

void CalculateSomething(int iCount)
{
 int iCounter = 0;
 while (iCounter++ < iCount)
 {
 //make calculation
 //update progress bar
 }
}

Introduction to C++ Concepts and Features

14

As commands are executed one after another inside each iteration of the while loop, the
operating system doesn't have the required time to properly update the user interface (in this
case, the progress bar), so we would see an empty progress bar. After the function returns, a
fully filled progress bar appears. The solution for this is to create a progress bar on the main
thread. A separate thread should execute the CalculateSomething function; in each step
of iteration, it should somehow signal the main thread to update the progress bar step by
step. As we said before, threads are switched extremely fast on the CPU, so we can get the
impression that the progress bar is updated at the same time at the calculation is performed.

To conclude, each time we have to make a parallel task, wait for some kind of user input,
or wait for an external dependency such as some response from a remote server, we will
create a separate thread so that our program won't hang and be unresponsive.

In our future examples, we will discuss static and dynamic libraries, so let's say a few words
about both. A static library (*.lib) is usually some code placed in separate files and already
compiled for future use. We will add it to the project when we want to use some of its features.
When we wrote #include <iostream> earlier, we instructed the compiler to include a
static library where implementations of input-output stream functions reside. A static library
is built into the executable in compile time before we actually run the program. A dynamic
library (*.dll) is similar to a static library, but the difference is that it is not resolved during
compilation; it is linked later when we start the program, in another words—at runtime. Dynamic
libraries are very useful when we have functions that a lot of programs will use. So, we don't
need to include these functions into every program; we will simply link every program at runtime
with one dynamic library. A good example is User32.dll, where the Windows OS placed a
majority of GUI functions. So, if we create two programs where both have a window (GUI form),
we do not need to include CreateWindow in both programs. We will simply link User32.dll
at runtime, and the CreateWindow API will be available.

The structural programming approach
As we said before, there are four programming paradigms. Both structural and object-oriented
paradigms can be used when making programs in C++. Even though C++ is an object-oriented
language, you can make programs with a structural approach. Usually, a program contains
one or more functions because every program must have a main routine; so, we can place all
our code into the main function. However, in that way, any large program will be very hard to
read. Then, we will have to split the code in certain program units that we call functions. Let's
give an example of a program that needs to calculate the sum of two complex numbers in the
following sections.

Getting ready
Make sure Visual Studio is up and running.

Chapter 1

15

How to do it...
Perform the following steps:

1. Create a new default console application. Name it ComplexTest.

2. Open the ComplexTest.cpp file and insert the following code:
#include "stdafx.h"
#include <iostream>

using namespace std;

void ComplexAdd(double dReal1, double dImg1, double dReal2,
double dImg2, double& dReal, double& dImg)
{
 dReal = dReal1 + dReal2;
 dImg = dImg1 + dImg2;
}

double Rand(double dMin, double dMax)
{
 double dVal = (double)rand() / RAND_MAX;
 return dMin + dVal * (dMax - dMin);
}

int _tmain(int argc, TCHAR* argv[])
{
 double dReal1 = Rand(-10, 10);
 double dImg1 = Rand(-10, 10);
 double dReal2 = Rand(-10, 10);
 double dImg2 = Rand(-10, 10);
 double dReal = 0;
 double dImg = 0;
 ComplexAdd(dReal1, dImg1, dReal2, dImg2, dReal, dImg);
 cout << dReal<< "+" <<dImg << "i" << endl;
 return 0;
}

www.allitebooks.com

http://www.allitebooks.org

Introduction to C++ Concepts and Features

16

How it works...
We created the ComplexAdd function that has six parameters or three complex numbers.
The first two parameters are the real and imaginary parts of the first complex number,
parameters three and four are the real and imaginary parts of the second complex number,
and the fifth and sixth parameters are the real and imaginary parts of the complex number
that will represent the result or the sum of the first two complex numbers. Note that the fifth
and sixth parameters are passed by reference. We also created a Rand function that will
return a random real number from a range between dMin and dMax.

As you can see, we have achieved what we wanted; however, you'll agree that the given code
is not very readable and the ComplexAdd function has many parameters. Also, we have six
variables in the main function, so the conclusion is that this kind of approach is not very
"friendly". Let's review a slightly different approach by using structures, as shown:

#include "stdafx.h"
#include <iostream>

using namespace std;

struct SComplex
{
 double dReal;
 double dImg;
};

SComplex ComplexAdd(SComplex c1, SComplex c2)
{
 SComplex c;
 c.dReal = c1.dReal + c2.dReal;
 c.dImg = c1.dImg + c2.dImg;
 return c;
}

double Rand(double dMin, double dMax)
{
 double dVal = (double)rand() / RAND_MAX;
 return dMin + dVal * (dMax - dMin);
}
int _tmain(int argc, TCHAR* argv[])
{
 SComplex c1;
 c1.dReal = Rand(-10, 10);
 c1.dImg = Rand(-10, 10);

Chapter 1

17

 SComplex c2;
 c2.dReal = Rand(-10, 10);
 c2.dImg = Rand(-10, 10);

 SComplex c = ComplexAdd(c1, c2);

 cout<<c.dReal<< "+" <<c.dImg << "i" << endl;
 return 0;
}

There's more…
As you can see, by creating a new type (in this case, structure), SComplex, which represents
complex numbers, our code is more readable and more meaningful than the one shown in the
previous example. The conclusion is that if we can somehow create objects that can represent
an abstraction of tasks that we need to perform, our code, and the program itself, will make
much more sense, and it will be easier for us to write and understand the code.

Understanding the object-oriented
programming approach

Object-oriented programming (OOP) is a new approach to create software as a model for the
real world. This is a particular way of designing a program. OOP includes several key concepts,
such as classes, objects, inheritance, and polymorphism.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Let's review the previous example with the OOP approach by performing the following steps:

1. Create a new console application. Name it ComplexTestOO.

2. Open the ComplexTestOO.cpp file and insert the following code:
#include "stdafx.h"
#include <iostream>

using namespace std;

double Rand(double dMin, double dMax)
{

Introduction to C++ Concepts and Features

18

 double dVal = (double)rand() / RAND_MAX;
 return dMin + dVal * (dMax - dMin);
}

class CComplex
{
public:
 CComplex()
 {
 dReal = Rand(-10, 10);
 dImg = Rand(-10, 10);
 }
 CComplex(double dReal, double dImg)
 {
 this->dReal = dReal;
 this->dImg = dImg;
 }
 friend CComplex operator+ (const CComplex& c1, const CComplex&
c2);
 friend ostream& operator<< (ostream& os, const CComplex& c);
private:
 double dReal;
 double dImg;
};

CComplex operator+ (const CComplex& c1, const CComplex& c2)
{
 CComplex c(c1.dReal + c2.dReal, c1.dImg + c2.dImg);
 return c;
}
ostream& operator<< (ostream& os, const CComplex& c)
{
 return os<<c.dReal<< "+" <<c.dImg << "i";
}

int _tmain(int argc, TCHAR* argv[])
{
 CComplex c1;
 CComplex c2(-2.3, 0.9);
 CComplex c = c1 + c2;
 cout << c << endl;

 return 0;
}

Chapter 1

19

How it works...
If you look at the main function, you'll notice that it doesn't differ from the program where
you use integers, for example. Even though an integer is a primitive type and a complex is
not, a programmer's work is made easier by adding a class and properly setting its methods.

Here we have defined a new type of class—CComplex. The defined class has its own attributes
and methods. It can also have friend methods that can access its private members. We have
left the Rand function as it is, but we tried to make the class that represents a complex number
as similar to the abstraction of a complex number as possible. We created the dReal and dImg
attributes that describe the real and imaginary parts of a complex number. We created the
operator+ method so that the + (plus) sign has meaning for the compiler. Now, the code is
more readable and much more comfortable to use because it is easy to understand how to
use it. We created two constructors: the default constructor that uses random real numbers
from -10 to 10, and another constructor that enables the user to set the real and imaginary
parts of a complex number directly.

When you want to overload (this will be explained later in detail) a certain method, you can
choose between two approaches. The first approach is to set the method inside a class, and
this method will change the state (or values) of the calling object. The second approach is to
make the method independent of the class, the so-called outer, but it has to be declared as
friend so that it can access the private and protected members of the objects.

There's more...
The following code tells the compiler that the operator+ function which expects two complex
numbers will be defined somewhere in the code, and it has to be able to access the private
and protected members of the CComplex class:

friend CComplex operator+ (const CComplex& c1, const
CComplex& c2);

This makes the main function the simplest possible. Again, we use user-defined types such
as primitive types, which is very good practice because even programmers not so familiar with
the code will quickly understand what the code means.

Explaining inheritance, overloading, and
overriding

Inheritance is a very important characteristic of OOP. It is the relation between two (or
more) classes: if class B is some kind of class A, then the objects of class B have the same
properties as the objects of class A. In addition to that, class B can implement new methods
and properties, and thus supersede the base class A.

Introduction to C++ Concepts and Features

20

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Let's review this example by performing the following steps:

1. Create a new default console application. Name it InheritanceTest.

2. Open the InheritanceTest.cpp file and insert the following code:
#include "stdafx.h"
#include <iostream>

using namespace std;

class CPerson
{
public:
 CPerson(int iAge, char* sName)
 {
 this->iAge = iAge;
 strcpy_s(this->sName, 32, sName);
 }
 virtual char* WhoAmI()
 {
 return "I am a person";
 }
private:
 int iAge;
 char sName[32];
};

class CWorker : public CPerson
{
public:
 CWorker(int iAge, char* sName, char* sEmploymentStatus)
 : CPerson(iAge, sName)
 {
 strcpy_s(this->sEmploymentStatus, 32, sEmploymentStatus);
 }

Chapter 1

21

 virtual char* WhoAmI()
 {
 return "I am a worker";
 }
private:
 char sEmploymentStatus[32];
};

class CStudent : public CPerson
{
public:
 CStudent(int iAge, char* sName, char* sStudentIdentityCard)
 : CPerson(iAge, sName)
 {
 strcpy_s(this->sStudentIdentityCard, 32,
sStudentIdentityCard);
 }
 virtual char* WhoAmI()
 {
 return "I am a student";
 }
private:
 char sStudentIdentityCard[32];
};

int _tmain(int argc, TCHAR* argv[])
{
 CPerson cPerson(10, "John");
 cout << cPerson.WhoAmI() << endl;

 CWorker cWorker(35, "Mary", "On wacation");
 cout << cWorker.WhoAmI() << endl;

 CStudent cStudent(22, "Sandra", "Phisician");
 cout << cStudent.WhoAmI() << endl;

 return 0;
}

Introduction to C++ Concepts and Features

22

How it works...
We created a new CPerson data type that represents one human. It has iAge and sName
as attributes that describe some person. Let's assume that we need some worker or student
as another data type. OOP provides a great mechanism, inheritance, which can be used to
achieve this. As a worker is still a person, but with some additional attributes, we will extend
CPerson with CWorker using the following line of code:

class CWorker : public CPerson

So, CWorker is a derived class of CPerson. It has all the attributes and methods from the
base class, CPerson, and an additional sEmploymentStatus attribute that is important to
a worker only. Further, let's say we need a Student data type. Since a student is a person who
has some additional attributes besides age and name, we will extend a person again by using
the following line of code:

class CStudent : public CPerson

What is important for us to know is that when you declare an object, its constructor is being
called. When you declare an object of a derived class, the constructor from the base class
is called first, and the constructor from the derived class is called later. The following is the
code sample:

CWorker(int iAge, char* sName, char* sEmploymentStatus)
: CPerson(iAge, sName)
{
 strcpy_s(this->sEmploymentStatus, 32, sEmploymentStatus);
}

Take a look at the CWorker constructor prototype; after the parameter list, you'll notice a :
(colon) sign after which the base class constructor is called, as shown in the following code,
with the needed parameters iAge and sName, for CPerson to be created:

CPerson(iAge, sName)

The situation with destructors is the opposite. The destructor from the derived class is
called before, from the base class.

Chapter 1

23

Graphically, the CPerson, CWorker, and CStudent objects look like the following
diagrams, respectively:

Virtual Functions Table pointer

int iAge

char sName [32] +8

+4

+0

Cperson object

Virtual Functions Table pointer

int iAge (inherited)

+8

+40

+4

+0

Cperson object

char sName [32] (inherited)

char sEmploymentStatus [32]

Virtual Functions Table pointer

int iAge (inherited)

+8

+40

+4

+0

Cperson object

char sName [32] (inherited)

char sStudentIdentityCard [32]

Introduction to C++ Concepts and Features

24

The meaning of the operators can be defined even for user-defined types, such as CComplex
in the previous example. It is very handy, as you saw, because it is more meaningful to write
c = c1 + c2, where c, c1, and c2 are complex numbers, than to write c = ComplexAdd(
c1, c2).

The user must implement the operator functions or overload them in order for the compiler to
know how to deal with user-specific types. The compiler knows what to do with primitive types,
such as adding two integers, but imagine two matrices m1 and m2 and the expression matrix
m = m1 + m2. Well, if we do not define the CMatrix operator + (const CMatrix&
m1, const CMatrix& m2) function, the compiler won't know what to do because it doesn't
know how to add matrices.

Overriding a method is a feature that allows a derived class to provide a specific
implementation of a method that is already provided in the base class. Take a look
at the WhoAmI method from the previous example. Its output will be as follows:

I am a person
I am a worker
I am a student

Even though a method from each class has the same name, it is a different method and has
a different functionality. We can say that the WhoAmI method is overridden in the CPerson
derived class.

There's more...
Overriding is an excellent feature in OOP and C++, but polymorphism is even better. Let's
review the following example.

Understanding polymorphism
Polymorphism is a feature where an object executes an operation in the way that it is
implemented in the derived class that it belongs to, even if we access it through a pointer or a
reference of the base class. Polymorphism is a feature that allows an object to take many forms.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Perform the following steps:

1. Create a new default console application. Name it PolymorphismTest.

Chapter 1

25

2. Open the PolymorphismTest.cpp file and insert the following code:
#include "stdafx.h"
#include <iostream>

#define M_PI 3.14159265358979323846

using namespace std;

class CFigure
{
public:
 virtual char* FigureType() = 0;
 virtual double Circumference() = 0;
 virtual double Area() = 0;
 virtual ~CFigure(){ }
};

class CTriangle : public CFigure
{
public:
 CTriangle()
 {
 a = b = c = 0;
 }
 CTriangle(double a, double b, double c) : a(a), b(b), c(c){ }
 virtual char* FigureType()
 {
 return "Triangle";
 }
 virtual double Circumference()
 {
 return a + b + c;
 }
 virtual double Area()
 {
 double S = Circumference() / 2;
 return sqrt(S * (S - a) * (S - b) * (S - c));
 }
private:
 double a, b, c;
};

www.allitebooks.com

http://www.allitebooks.org

Introduction to C++ Concepts and Features

26

class CSquare : public CFigure
{
public:
 CSquare()
 {
 a = b = 0;
 }
 CSquare(double a, double b) : a(a), b(b) { }
 virtual char* FigureType()

 {
 return "Square";
 }
 virtual double Circumference()
 {
 return 2 * a + 2 * b;
 }
 virtual double Area()
 {
 return a * b;
 }
private:
 double a, b;
};

class CCircle : public CFigure
{
public:
 CCircle()
 {
 r = 0;
 }
 CCircle(double r) : r(r) { }
 virtual char* FigureType()
 {
 return "Circle";
 }
 virtual double Circumference()
 {
 return 2 * r * M_PI;
 }
 virtual double Area()
 {

Chapter 1

27

 return r * r * M_PI;
 }
private:
 double r;
};

int _tmain(int argc, _TCHAR* argv[])
{
 CFigure* figures[3];

 figures[0] = new CTriangle(2.1, 3.2, 4.3);
 figures[1] = new CSquare(5.4, 6.5);
 figures[2] = new CCircle(8.8);

 for (int i = 0; i < 3; i++)
 {
 cout << "Figure type:\t" << figures[i]->FigureType()
 << "\nCircumference:\t" <<
 figures[i]->Circumference()
 << "\nArea:\t\t" << figures[i]->Area()
 << endl << endl;
 }

 return 0;
}

How it works...
First, we created a new type, CFigure. We would like to create some real figures, such as
triangles, squares, or circles, and methods that will calculate their circumference and area.
You'll agree that we can't calculate these features for the figure itself because we don't know
what type of real figure it is. This is why we created CFigure as an abstract class. An abstract
class is a class where at least one of its virtual methods is declared with no implementation
and has = 0 after its prototype. Functions declared in such a manner are called pure virtual
functions. An abstract class can't have objects, but inherited classes can. You can instantiate
pointers and references of abstract classes. We extend the CTriangle, CSquare, and
CCircle classes that represent triangles, squares, and circles, respectively. In these derived
classes, we implement the FigureType, Circumference, and Area methods because we
want to have the ability to instantiate such types of objects.

Introduction to C++ Concepts and Features

28

Each of these three classes has the same method names but different implementations, similar
to overriding but different in meaning. How? Well, if you look at the main function, you'll notice
that we declared an array of three pointers of the CFigure type. As a pointer or reference to
a base class can always point to any of its derived classes, it is possible to create an object of
type CTriangle and set the CFigure pointer to point at it, using the following code:

figures[0] = new CTriangle(2.1, 3.2, 4.3);

In the same way, we set other figures using the following code:

figures[1] = new CSquare(5.4, 6.5);
figures[2] = new CCircle(8.8);

Now, refer to the following code:

for (int i = 0; i < 3; i++)
{
 cout << "Figure type:\t" << figures[i]->FigureType()
<< "\nCircumference:\t" << figures[i]->Circumference()
<< "\nArea:\t\t" << figures[i]->Area() << endl<<endl;
}

The compiler will use a C++ feature called dynamic binding to resolve the type of object
to which the figure points. It'll then call an appropriate virtual method. Dynamic binding is
possible only if the method is declared virtually and if you access it via a pointer or reference.

Let's go back to the example with persons. We had to declare objects of type CPerson,
CWorker, and CStudent. All three are of different types, and you can call the WhoAmI
method, for example, by using the following code:

cPerson.WhoAmI()

The compiler knows that you are referring to the cPerson object, which is of a CPerson
type, and its method is WhoAmI. On the other hand, in the example with figures, the compiler
doesn't know what type of object the figure pointer will point to during compilation. This will
be resolved during the runtime. This is why it is called dynamic binding.

Event handlers and Message Passing
Interface

Many programs respond to some events, such as when a user presses a button or inputs
some text. A very important mechanism is event handling or the ability of a program to react
to user action. If we want to handle when a user presses a button, we need to create some
kind of a listener that will listen to button events, in this case a press action.

Chapter 1

29

An event handler is a function that the operating system calls each time the control sends
some kind of message, such as I have been pressed in the case of buttons or I received
a character in the case of a textbox.

Event handlers are very important. Timers are events that trigger after a certain portion
of time has elapsed. When you press a key on the keyboard, the operating system raises
a "key is pressed" event, and so on.

Event handlers for windows are very important for us. The majority of applications have windows
or forms. Every window needs its event handler, which will be called each time some event
occurs in its space. For example, if you create a window with a few buttons and textboxes, you
must have a window procedure associated with that window in order to handle such events.

The Windows operating system provides such a mechanism in the form of a window
procedure, usually called WndProc (but you can name it as you like). This procedure is called
by the operating system each time some event specific to that window occurs. In the following
example, we will create our first Windows application, where we will have a window and
explain the usage of a window procedure.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Perform the following steps:

1. Create a new empty Win32 C++ project. Name it GUIProject, and then click on
OK. Now, right-click on the source files and navigate to Add | New item in Solution
Explorer. Name it main, and then click on Add.

2. Now, let's create the code. First, we will add a header that we need, as shown:
#include <windows.h>

The windows.h header is needed for the majority of APIs that are responsible for visual
features such as windows, controls, enumerations, and styles. Before we create an
application entry point, we have to declare a window procedure prototype so that we
can use it in the window structure, as shown in the following code:

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
lParam);

Introduction to C++ Concepts and Features

30

We will implement WndProc later but for now the declaration is enough. Now, we need an
application entry point. Unlike a console application, the main function in Win32 applications
has a slightly different prototype, as shown in the following code:

int WINAPI WinMain(HINSTANCE hThis, HINSTANCE hPrev, LPSTR szCmdLine,
int iCmdShow)

After the return type (int), you will notice the WINAPI macro. It represents a calling convention.

WINAPI or stdcall means that a call stack will clean the callee. WinMain is the name and
it must have four parameters in a given order. The first parameter, hThis, is a handle to the
current instance of the application. The second parameter, hPrev, is a handle to the previous
instance of the application. If you refer to the MSDN documentation (http://msdn.
microsoft.com/en-us/library/windows/desktop/ms633559%28v=vs.85%29.
aspx), you'll notice that the hPrev parameter is always NULL, so I guess that this has been
left for compatibility with previous versions of Windows operating systems, as it can't have
values in current versions. The third parameter is szCmdLine or the command line for the
application, excluding the program name. The final parameter controls how the window is to
be shown.

It can have one or more values combining bit values with the OR (|) operator (more
information available on MSDN).

We will then use the UNREFERENCED_PARAMETER macro to tell the compiler that we will not
use certain parameters so that it can do some additional optimization. Use the following code:

UNREFERENCED_PARAMETER(hPrev);
UNREFERENCED_PARAMETER(szCmdLine);

Next, we need to instantiate the WNDCLASSEX window structure. This is an object where
details of future windows, such as stack size, handle to current application instance, window
style, window color, icon, and mouse pointer, will be stored. The code to instantiate the
WNDCLASSEX window structure is as follows:

WNDCLASSEX wndEx = { 0 };

The number of extra bytes to allocate after instantiating the window class structure can be
defined by using the following code:

wndEx.cbClsExtra = 0;

The size, in bytes, of this structure can be defined by using the following code:

wndEx.cbSize = sizeof(wndEx);

Chapter 1

31

The number of extra bytes to allocate after instantiating the window instance can be defined
by using the following code:

wndEx.cbWndExtra = 0;

A handle to the class background brush can be defined by using the following code:

wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

A handle to the class cursor can be defined by using the following code:

wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);

Handles to the class icon can be defined by using the following code:

wndEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

A handle to the instance that contains the window procedure for the class can be defined by
using the following code:

wndEx.hInstance = hThis;

A pointer to the window procedure can be defined by using the following code:

wndEx.lpfnWndProc = WndProc;

A pointer to a null-terminated string or an atom can be defined by using the following code:

wndEx.lpszClassName = TEXT("GUIProject");

A pointer to a null-terminated character string that specifies the resource name of the class
menu, as the name appears in the resource file, can be defined using the following code:

wndEx.lpszMenuName = NULL;

The class style(s) can be defined using the following code:

wndEx.style = CS_HREDRAW | CS_VREDRAW;

The following code registers a window class for subsequent use in calls to the CreateWindow
or CreateWindowEx function:

if (!RegisterClassEx(&wndEx))
{
 return -1;
}

Introduction to C++ Concepts and Features

32

The CreateWindow API creates an overlapped, pop-up, or child window. It specifies the window
class, window title, window style, and (optionally) the initial position and size of the window. The
function also specifies the window's parent or owner, if any, and the window's menu, as shown in
the following code:

HWND hWnd = CreateWindow(wndEx.lpszClassName, TEXT("GUI Project"),
WS_OVERLAPPEDWINDOW, 200, 200, 400, 300, HWND_DESKTOP,NULL, hThis, 0
);

if (!hWnd)
{
 return -1;
}

The UpdateWindow function updates the client area of the specified window by sending a
WM_PAINT message to the window if the window's update region is not empty. The function
sends a WM_PAINT message directly to the window procedure of the specified window
bypassing the application queue. The usage is shown in the following code:

UpdateWindow(hWnd);

The following code sets the specified window's show state:

ShowWindow(hWnd, iCmdShow);

Now, we need the instance of the MSG structure that represents the window message.

MSG msg = { 0 };

Here, we enter the message loop. Windows-based applications are event driven. They do not
make explicit function calls (such as C runtime library calls) to obtain input. Instead, they wait
for the system to pass input to them. The system passes all input for an application to the
various windows in the application. Each window has a function, called a window procedure,
which the system calls whenever it has input for the window. The window procedure processes
the input and returns control to the system. The GetMessage API retrieves a message from
the calling thread's message queue, as shown in the following code:

while (GetMessage(&msg, NULL, NULL, NULL))
{
 // Translates virtual-key messages into character messages.
 TranslateMessage(&msg);
 // Dispatches a message to a window procedure.
 DispatchMessage(&msg);
}

Chapter 1

33

When we close the application or send some command that signals it to exit, the system
releases an application message queue. This means that our application will have no more
messages, and it will end the while loop. The DestroyWindow API destroys the specified
window. The function sends the WM_DESTROY and WM_NCDESTROY messages to the window to
deactivate it and removes the keyboard focus from it. The function also destroys the window's
menu, flushes the thread message queue, destroys timers, removes clipboard ownership, and
breaks the clipboard viewer chain (if the window is at the top of the viewer chain).

DestroyWindow(hWnd);

The function also unregisters a window class, freeing the memory required for the class.

UnregisterClass(wndEx.lpszClassName, hThis);

The function returns a success exit code or a last message code from the application
message queue, as shown in the following code:

return (int) msg.wParam;

Now, we need to implement a window procedure or an application main event handler. For
our first example, we will create a simple WndProc with only the functionality of handling
mandatory events. The window procedure returns 64-bit long signed integer values. It has
four parameters: the hWnd structure that represents the window identifier, the uMsg unsigned
integer that represents a window message code, the wParam unsigned 64-bit long integer
to pass application-defined data, and the lParam signed 64-bit long integer to pass
application-defined data too.

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
lParam)
{

Messages are handled by their message code. For example, we need to handle default
messages (in this case, WM_CLOSE), which the system sends when the application is closing.
Then, we will call the PostQuitMessage API to free system resources and to safely close
the application, using the following code:

switch (uMsg)
{
 case WM_CLOSE:
 {
 PostQuitMessage(0);
 break;
 }

 default:
 {

Introduction to C++ Concepts and Features

34

Call the default window procedure to provide default processing for any window message
that an application does not process. This function ensures that every message is processed.
The default window procedure can be used in the following manner:

 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

Though this was a very simple example of a window application, it completely reflects the
event-driven system features and the event-handling mechanism. In chapters to come, we will
use event handling all the time, so it is very important for you to understand the basic process.

Linked list, queue, and stack examples
The following example demonstrates the OOP usage of a linear linked list that can contain any
generic type T. The idea behind this example is to show inheritance usage as a model for the
relation that "B is a kind of A".

A linear list is a structure of linearly arranged elements in which we know that the first element
links to the second, the second element links to the third, and so on. Basic operations with a
linked list are insert element (PUT) and obtain element (GET). A queue is a linear list where the
elements are arranged in order so that what enters a queue first gets out first, in other words,
FIFO—First In First Out. Therefore, when you get an element, it is obtained from the top of the
list, and you put a new element at the bottom of the list. A stack is a linear list where elements
are arranged such that they are obtained in the reverse order of how they were inserted. The
element is placed at the top of the list, and it is obtained from the top of the list, or LIFO—Last
In First Out.

A linear list is an arranged collection of elements. Each list has methods that can set element
value, obtain an element from the list, or simply peek an element. A list can be used to store any
type of objects. Yet, for specializations of list class, queue, and stack, it is defined exactly where
elements must be inserted or obtained from. So, a list as a general object will be a base class.

You should be aware that a list designed in such a manner can be implemented as a static
or dynamic structure. In other words, it can be implemented as an array of elements or
as a structure of elements linked by pointers to the next (or previous or both) element.
Implementation using pointers is mostly used in practice and will be shown here.

The list, in the following example, will be implemented as a collection of pointers that point
to the original objects that are placed in the list using its methods. So, the original objects
won't be copied to the list, which enables polymorphism for list elements. Semantics,
as such, requires additional attention and careful design.

Chapter 1

35

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Perform the following steps:

1. Create a new empty C++ console application project. Name it LinkedList.

2. Add a new header file named CList.h. Copy and paste the following code into it:
#ifndef _LIST_
#define _LIST_

#include <Windows.h>

template <class T>
class CNode
{
public:
 CNode(T* tElement) : tElement(tElement), next(0) { }
 T* Element() const { return tElement; }
 CNode*& Next(){ return next; }
private:
 T* tElement;
 CNode* next;
};

template <class T>
class CList
{
public:
 CList() : dwCount(0), head(0){ }
 CList(T* tElement) : dwCount(1), head(new CNode<T>(tElement)){ }
 virtual ~CList(){ }
 void Append(CNode<T>*& node, T* tElement);
 void Insert(T* tElement);
 bool Remove(T* tElement);
 DWORD Count() const { return dwCount; }
 CNode<T>*& Head() { return head; }
 T* GetFirst(){ return head != NULL ? head->Element() : NULL; }
 T* GetLast();

www.allitebooks.com

http://www.allitebooks.org

Introduction to C++ Concepts and Features

36

 T* GetNext(T* tElement);
 T* Find(DWORD(*Function)(T* tParameter), DWORD dwValue);
protected:
 CList(const CList& list);
 CList& operator = (const CList& list);
private:
 CNode<T>* head;
 DWORD dwCount;
};

template <class T>
void CList<T>::Append(CNode<T>*& node, T* tElement)
{
 if (node == NULL)
 {
 dwCount++;
 node = new CNode<T>(tElement);

 return;
 }

 Append(node->Next(), tElement);
}

template <class T>
void CList<T>::Insert(T* tElement)
{
 dwCount++;
 if (head == NULL)
 {
 head = new CNode<T>(tElement);
 return;
 }

 CNode<T>* tmp = head;
 head = new CNode<T>(tElement);
 head->Next() = tmp;
}

template <class T>
bool CList<T>::Remove(T* tElement)
{
 if (head == NULL)
 {

Chapter 1

37

 return NULL;
 }

 if (head->Element() == tElement)
 {
 CNode<T>* tmp = head;
 head = head->Next();

 delete tmp;
 dwCount--;

 return true;
 }

 CNode<T>* tmp = head;
 CNode<T>* lst = head->Next();

 while (lst != NULL)
 {
 if (lst->Element() == tElement)
 {
 tmp->Next() = lst->Next();

 delete lst;
 dwCount--;

 return true;
 }

 lst = lst->Next();
 tmp = tmp->Next();
 }

 return false;
}

template <class T>
T* CList<T>::GetLast()
{
 if (head)
 {
 CNode<T>* tmp = head;
 while (tmp->Next())
 {

Introduction to C++ Concepts and Features

38

 tmp = tmp->Next();
 }
 return tmp->Element();
 }

 return NULL;
}

template <class T>
T* CList<T>::GetNext(T* tElement)
{
 if (head == NULL)
 {
 return NULL;
 }

 if (tElement == NULL)
 {
 return GetFirst();
 }

 if (head->Element() == tElement)
 {
 return head->Next() != NULL ? head->Next()->Element() :
NULL;
 }

 CNode<T>* lst = head->Next();
 while (lst != NULL)
 {
 if (lst->Element() == tElement)
 {
 return lst->Next() != NULL ? lst->Next()->Element() :
NULL;
 }

 lst = lst->Next();
 }

 return NULL;
}

template <class T>
T* CList<T>::Find(DWORD(*Function)(T* tParameter), DWORD dwValue)

Chapter 1

39

{
 try
 {
 T* tElement = NULL;
 while (tElement = GetNext(tElement))
 {
 if (Function(tElement) == dwValue)
 {
 return tElement;
 }
 }
 }
 catch (...) { }

 return NULL;
}

#endif

3. The provided files contain definitions and implementations of the CList class. Now,
we can create CQueue and CStack very easily. Under the header files, create a new
header file named CQueue.h and insert the following code:
#ifndef __QUEUE__
#define __QUEUE__

#include "CList.h"

template<class T>
class CQueue : CList<T>
{
public:
 CQueue() : CList<T>(){ }
 CQueue(T* tElement) : CList<T>(tElement){ }
 virtual ~CQueue(){ }
 virtual void Enqueue(T* tElement)
 {
 Append(Head(), tElement);
 }
 virtual T* Dequeue()
 {
 T* tElement = GetFirst();
 Remove(tElement);
 return tElement;
 }

Introduction to C++ Concepts and Features

40

 virtual T* Peek()
 {
 return GetFirst();
 }
 CList<T>::Count;
protected:
 CQueue(const CQueue<T>& cQueue);
 CQueue<T>& operator = (const CQueue<T>& cQueue);
};

#endif

4. For CStack, we will do something similar. Under the header files, create a new
header file named CStack.h and insert the following code:
#ifndef __STACK__
#define __STACK__
#include "CList.h"

template<class T>
class CStack : CList<T>
{
public:
 CStack() : CList<T>(){ }
 CStack(T* tElement) : CList<T>(tElement){ }
 virtual ~CStack(){ }
 virtual void Push(T* tElement)
 {
 Insert(tElement);
 }
 virtual T* Pop()
 {
 T* tElement = GetFirst();
 Remove(tElement);
 return tElement;
 }
 virtual T* Peek()
 {
 return GetFirst();
 }
 CList<T>::Count;
protected:
 CStack(const CStack<T>& cStack);
 CStack<T>& operator = (const CStack<T>& cStack);
};

#endif

Chapter 1

41

5. Finally, let's implement the following code in LinkedList.cpp, our placeholder
for the main routine:
#include <iostream>

using namespace std;

#include "CQueue.h"
#include "CStack.h"

int main()
{
 CQueue<int>* cQueue = new CQueue<int>();
 CStack<double>* cStack = new CStack<double>();

 for (int i = 0; i < 10; i++)
 {
 cQueue->Enqueue(new int(i));
 cStack->Push(new double(i / 10.0));
 }

 cout << "Queue - integer collection:" << endl;
 for (; cQueue->Count();)
 {
 cout << *cQueue->Dequeue() << " ";
 }

 cout << endl << endl << "Stack - double collection:" << endl;
 for (; cStack->Count();)
 {
 cout << *cStack->Pop() << " ";
 }

 delete cQueue;
 delete cStack;

 cout << endl << endl;
 return system("pause");
}

Introduction to C++ Concepts and Features

42

How it works...
Let's explain all the parts of the CList class first. The list consists of elements of type
CNode for easier handling. The CNode class has two attributes: the tElement pointer to the
user-defined element and the next pointer to the next list item. It implements two methods:
Element and Next; the former returns a reference to the element address while the latter
returns a reference to the next item address.

In literature constructor is referred as ctor and destructor as dtor. The CList default
constructor is the public method that creates an empty list. The second constructor
creates a list with a single starting element with a supplied pointer. As a list is a dynamic
structure, the destructor is required. The Append method inserts an element as the last
element in a collection. The Insert method inserts an element as the first element in a
collection. The Count method returns the number of elements currently in the list. The Head
method returns a reference to the list starting node.

The GetFirst method returns the first element from the list, or NULL if the list is empty. The
GetLast method returns the last element from the list, or NULL if it's empty. The GetNext
method returns the next list item, relative from the item for which the address is provided as
the T* tElement parameter. If such an item is not found, the method returns NULL.

The Find method is most certainly an advanced feature. It is designed to use the undefined
type T, and use its undefined Function method with the tParameter parameter. If we
wanted to use a list of some objects, for example students, we would like to iterate them
(using the GetNext method, for example) or find a specific student. What if it's possible for
a future defined type to implement some method that will return unsigned long (DWORD)
and can compare it with the dwValue parameter? For example, if we want to find a student
based on their ID, we can use the following code:

#include <windows.h>
#include "CList.h"

class CStudent
{
public:
 CStudent(DWORD dwStudentId) : dwStudentId(dwStudentId){ }
 static DWORD GetStudentId(CStudent* student)
 {
 DWORD dwValue = student->GetId();
 return dwValue;
 }
 DWORD GetId() const
 {
 return dwStudentId;
 }

Chapter 1

43

private:
 DWORD dwStudentId;
};

int main()
{
 CList<CStudent>* list = new CList<CStudent>();
 list->Insert(new CStudent(1));
 list->Insert(new CStudent(2));
 list->Insert(new CStudent(3));

 CStudent* s = list->Find(&CStudent::GetStudentId, 2);
 if (s != NULL)
 {
 // s FOUND
 }

 return 0;
}

If a list is used for primitive types, such as int, we can use the list as shown in the following code:

#include <windows.h>
#include "CList.h"

DWORD Predicate(int* iElement)
{
 return (DWORD)(*iElement);
}

int main()
{
 CList<int>* list = new CList<int>();
 list->Insert(new int(1));
 list->Insert(new int(2));
 list->Insert(new int(3));

 int* iElement = list->Find(Predicate, 2);
 if (iElement != NULL)
 {
 // iElement FOUND
 }

 return 0;
}

Introduction to C++ Concepts and Features

44

The protected methods are copy constructor (copy constructor) and operator= (operator
equal). Why do we set these two methods as protected? The list implemented here, as we
said, saves only pointers to objects that "live" outside the list itself. It would be dangerous
to allow the user to copy the list intentionally or unintentionally and without caution, either
using copy constructor or equal op for this reason. This is why we decided to protect copy
constructor and disable the user from using it. In order to achieve this behavior, we need to
declare, and later implement, both methods; else the compiler will generate them as public,
by default, implementing them with copying pointers one by one, which is wrong. It is not
enough to declare them as private either; in such a case, the same problem will occur
for classes derived from the CList base class. They too need to declare copy constructor
and equal op, else these methods will be public, generated from the compiler by default.
When copy constructor exists in base class, the derived copy constructor will call it by default,
except if the derived class calls it explicitly in another way. As we want to enable the CList
copy constructor to be made available to the derived classes, it is declared as protected.

The private section of the CList class contains objects needed for the implementation
of the linked list as a linear linked list. This means that every element points to the next,
while the head node points to the first element.

The CQueue and CStack classes implement queue and stack, respectively. Notice how
easy their implementation was after properly designing the CList base class (especially
the Enqueue, Dequeue, Push, Pop, and Peek methods). Once the CList class is carefully
designed, it is very simple to design and implement CQueue and CStack, or even some
other classes later.

2
The Concepts of

Process and Thread

In this chapter we will cover the following topics:

 f Processes and threads

 f Explaining the process model

 f Implementation of processes

 f IPC – Interprocess Communication

 f Solving classical IPC problems

 f Implementation of the thread model

 f Thread usage

 f Implementing threads in user space

 f Implementing threads in the kernel

Introduction
Modern computers can do several things at the same time. Windows users are not fully aware
of this, so let's give an example that will illustrate things more closely. When the PC system is
booted, many processes that are hidden from the user are started. For example, a process that
manages incoming e-mails, a process in charge of obtaining latest antivirus definitions, and
so on. Explicit user processes may also be running: printing files, or burning CDs, all while the
user is performing some other tasks such as surfing the Web. Activities such as these must be
managed, and a multitasking system, which supports multiple processes, can be very handy
here. In such a multitasking system, the CPU switches between processes quickly, running each
process for a few milliseconds. Strictly speaking, at any instant of time, the CPU is running only
one process by switching quickly among processes—giving the illusion of parallelism.

www.allitebooks.com

http://www.allitebooks.org

The Concepts of Process and Thread

46

Operating systems over the years have evolved to a sequential conceptual model (sequential
processes) where all the runnable software on the computer, including the operating system,
is represented as a set of sequential processes. A process is an instance of an executing
program. Each process has its own virtual address space and a thread of control. Thread is
the basic unit for which Scheduler (operating system) allocates processor time. We can
think of a system as a collection of processes running in a quasi-parallel environment.
Rapid switching between processes (programs), back and forth, is called multitasking.

Processes and threads
In the following figure, we see a single core CPU multitasking system with four programs
scheduled for execution:

In the following figure, we have a multicore CPU multitasking system with four executing
processes, each one with its own control flow and each one running independently of the
other ones:

In the following figure, we see that over a time interval, processes have made progress,
but at any instant of time, only one process can run on one CPU core:

Chapter 2

47

As we said earlier, in any traditional operating system, each process has an address space and
a single thread of control. We have many situations where multiple threads are executing in the
address space of a process, running in a quasi-parallel context as they were separate processes.
The main reason to have the threads is that in many applications, multiple operations are
executed at once. Some of these operations may wait (block) for some time. By decomposing
such an application into multiple sequential threads that run in a quasi-parallel context, the
programming model becomes simpler. By adding threads, the operating system provides us
with a new feature: the ability for parallel entities to share an address space and all of its data
among themselves. This ability is essential for concurrent execution.

Explaining the process model
Traditional operating systems must provide a way to create and terminate processes. There are
four principal events that cause processes to be created; they are as follows:

 f System initialization
 f Execution of a process-creation system call by a running process
 f A user request to create a new process
 f Initiation of a batch job

After the operating system has been started, several processes are created. Some of these are
foreground processes. They are processes that interact with users (humans) and perform work
for them. Others are background processes that are not associated with any particular user
action but, instead, have some specific functions. For example, one background process may
be designed to accept incoming e-mails; it might sleep most of the day but suddenly come to
life when an incoming e-mail arrives. Background processes usually handle activities such as
e-mails, printing, and so on.

In Windows, a single Win32 function call, CreateProcess, handles both process
creation and loading process context. You can find more about CreateProcess on
MSDN (http://msdn.microsoft.com/en-us/library/windows/desktop/
ms682425%28v=vs.85%29.aspx), but we will demonstrate basic process creation
and synchronization in the following example.

The Concepts of Process and Thread

48

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ Console application named ProcessDemo.

2. Open ProcessDemo.cpp.

3. Add the following code to it:
#include "stdafx.h"
#include <Windows.h>
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 STARTUPINFO startupInfo = { 0 };
 PROCESS_INFORMATION processInformation = { 0 };

 BOOL bSuccess = CreateProcess(
 TEXT("C:\\Windows\\notepad.exe"), NULL, NULL,
 NULL, FALSE, NULL, NULL, NULL, &startupInfo,
 &processInformation);

 if (bSuccess)
 {
 cout << "Process started." << endl
 << "Process ID:\t"
 << processInformation.dwProcessId << endl;
 }
 else
 {
 cout << "Cannot start process!" << endl
 << "Error code:\t" << GetLastError() << endl;
 }

 return system("pause");
}

Chapter 2

49

The output of the program is shown in the following screenshot:

As you can see in the preceding screenshot, a new process (Notepad) has been started.

How it works...
The CreateProcess function is used to create a new process and its primary thread.
The new process runs in the security context of the calling process.

The operating system assigns the process identifier to the process. The identifier is valid
until the process terminates. It is used to identify the process, or for some APIs, such as the
OpenProcess function, it is used to obtain a handle to the process. A thread identifier is also
assigned to the initial thread in the process. It can be specified in the OpenThread function
to open a handle to the thread. The identifier is valid until the thread terminates and can be
used to uniquely identify the thread within the system. These identifiers are returned in the
PROCESS_INFORMATION structure.

The Concepts of Process and Thread

50

The calling thread can use the WaitForInputIdle function to wait until the new process has
finished its initialization and is waiting for user input with no input pending. This can be useful
for synchronization between parent and child processes, because CreateProcess returns
without waiting for the new process to finish its initialization. For example, the creating process
would use the WaitForInputIdle function before trying to find a window associated with the
new process.

The proper way to terminate a process is by calling the ExitProcess function, as it sends a
notification of approaching termination to all DLLs attached to the process. Other means to shut
down a process, such as using the TerminateProcess API, do not notify the attached DLLs.
Note that when a thread calls the ExitProcess function, the other threads of the process
are terminated without an opportunity to execute any additional code (including the thread
termination code of the attached DLLs).

There's more...
Although each process is an independent entity, with its own instruction pointer and internal
state, processes often need to interact with other processes. One process might generate some
output data that another process might use as input data. Depending on the relative speed of
the two processes, it might happen that in an example, the read operation is ready to run, but
there is no input waiting for it. It must then be blocked until some input is available to read from.
When a process is blocked, it logically cannot continue. This is because the process is waiting
for input that is not yet available. It is also possible for a process to be stopped because the
operating system has decided to allocate the CPU to another process for a while. These two
conditions are completely different. In the first case, the suspension is inherent in the problem
(you cannot parse the user's command line until it has been typed). In the second case, it is a
technicality of the system (not enough CPUs to give each process its own time on the processor).

In the following figure, we see a state diagram that shows the three states a process may be
in; they are as follows:

 f Running: This means the process is actually using the CPU at that instant

 f Ready: This means the process is runnable; it is temporarily stopped to let another
process run

 f Blocked: This means the process is unable to run until some external event occurs

The Running and Ready states are similar. In both cases, the process is willing to run.
However, in the second one, there is temporarily no CPU available for the process. The
Blocked state is different from the first two; the process cannot run, even if the CPU has
nothing else to do.

Chapter 2

51

Running

Blocked Ready

1
3

2

4

Transition one sets the process in the blocked state for input. Transition two occurs when
Scheduler picks another process for execution on the CPU. The third transition occurs when
Scheduler picks this process, while the fourth transition occurs when the requested input
becomes available.

Implementation of processes
In modern multitasking systems, the Process Control Block (PCB) stores many different
items of data, all needed for correct and efficient process management. PCB is the data
structure that resides in the operating system kernel which contains the information needed
to manage the process. The PCB is the representation of the process in the operating system.
Though the details of these structures are system-dependent, there are some very common
parts, which could be classified into three main categories:

 f Process identification data

 f Processor state data

 f Process control data

The Concepts of Process and Thread

52

The role of the PCB is central in process management. It is accessed and/or modified by
most operating system utilities, including those involved with scheduling, memory and I/O
resource access, and performance monitoring. Data structuring for processes is often done
in terms of PCBs. For example, pointers to other PCBs inside a PCB allow the creation of
queues of processes in various scheduling states (Ready, Blocked, and so on), which we
mentioned earlier.

The operating system must manage resources on behalf of processes. It must continuously take
care of the state of each process and its resources and internal values. The following example
will demonstrate how to obtain a process basic information structure address, where one of the
attributes is the address of PCB. Another attribute is the unique process ID. For the simplicity
of this example, we'll simply output a process ID read from the object.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Let's create another program that manipulates processes; only this time, we will obtain the
process ID from the process basic information structure. Perform the following steps:

1. Create a new C++ Console application named NtProcessDemo.

2. Open NtProcessDemo.cpp.

3. Add the following code to it:
#include "stdafx.h"
#include <Windows.h>
#include <Winternl.h>
#include <iostream>

using namespace std;

typedef NTSTATUS(NTAPI* QEURYINFORMATIONPROCESS)(
 IN HANDLE ProcessHandle,
 IN PROCESSINFOCLASS ProcessInformationClass,
 OUT PVOID ProcessInformation,
 IN ULONG ProcessInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

int _tmain(int argc, _TCHAR* argv[])
{
 STARTUPINFO startupInfo = { 0 };

Chapter 2

53

 PROCESS_INFORMATION processInformation = { 0 };

 BOOL bSuccess = CreateProcess(
 TEXT("C:\\Windows\\notepad.exe"), NULL, NULL,
 NULL, FALSE, NULL, NULL, NULL, &startupInfo,
 &processInformation);

 if (bSuccess)
 {
 cout << "Process started." << endl << "Process ID:\t"
 << processInformation.dwProcessId << endl;

 PROCESS_BASIC_INFORMATION pbi;
 ULONG uLength = 0;

 HMODULE hDll = LoadLibrary(
 TEXT("C:\\Windows\\System32\\ntdll.dll"));

 if (hDll)
 {
 QEURYINFORMATIONPROCESS QueryInformationProcess =
 (QEURYINFORMATIONPROCESS)GetProcAddress(
 hDll, "NtQueryInformationProcess");

 if (QueryInformationProcess)
 {
 NTSTATUS ntStatus = QueryInformationProcess(
 processInformation.hProcess,
 PROCESSINFOCLASS::ProcessBasicInformation,
 &pbi, sizeof(pbi), &uLength);

 if (NT_SUCCESS(ntStatus))
 {
 cout << "Process ID (from PCB):\t"
 << pbi.UniqueProcessId << endl;
 }
 else
 {
 cout << "Cannot open PCB!" << endl
 << "Error code:\t" << GetLastError()
 << endl;
 }
 }
 else
 {
 cout << "Cannot get "
 << "NtQueryInformationProcess function!"
 << endl << "Error code:\t"
 << GetLastError() << endl;

The Concepts of Process and Thread

54

 }

 FreeLibrary(hDll);
 }
 else
 {
 cout << "Cannot load ntdll.dll!" << endl
 << "Error code:\t" << GetLastError() << endl;
 }
 }
 else
 {
 cout << "Cannot start process!" << endl
 << "Error code:\t" << GetLastError() << endl;
 }

 return 0;
}

How it works...
For this example, we used some additional header files: Winternl.h and Windows.h.
Header Winternl include prototypes for the majority of Windows' internal routines and
data representation; this includes the PROCESS_BASIC_INFORMATION structure with the
following definition:

typedef struct _PROCESS_BASIC_INFORMATION {
 PVOID Reserved1;
 PPEB PebBaseAddress;
 PVOID Reserved2[2];
 ULONG_PTR UniqueProcessId;
 PVOID Reserved3;
} PROCESS_BASIC_INFORMATION;

The preceding structure is used by the operating system in calls made between the user mode
and kernel mode subroutines. In combination with the PROCESSINFOCLASS::ProcessBas
icInformation enumeration, we are using the UniqueProcessId attribute to obtain the
process identifier, only as a demonstration.

First, we will define QEURYINFORMATIONPROCESS, a typedef for the
NtQueryInformationProcess function loaded from the ntdll.dll library. When the
address of the function is obtained using the GetProcAddress Win32 API, we can query
for the PROCESS_BASIC_INFORMATION object. Pay attention to the PebBaseAddress field;
it is a pointer to the PCB of the newly created process. If you want to explore the PCB further
to check the newly created process, you would have to use the ReadProcessMemory routine
in runtime, because the memory to which PebBaseAddress points belongs to the newly
created process.

Chapter 2

55

IPC – Interprocess Communication
It is very important that processes have some way of communicating with each other. Operating
systems provide such mechanisms, but we need to focus on issues related with it. For example,
what if two processes in an airline reservation system are trying to sell the last seat on the
plane at the same time? Of course, this is very wrong because you can't sell the same seat
twice. There is also a dependency problem: if process A produces some kind of data and
process B is reading that data (for example, to print it), then process B must wait until process
A really produces the required data. The difference between processes and threads is that the
first task for the thread is much easier to implement due to fact that threads share a common
address space while processes don't. Regarding the second issue, it is equally applicable to
threads; that's why it's very important to understand synchronizing mechanisms.

To see how IPC appears, let's consider a simple example: a CD burner. When a process
wants to burn something, it sets the file handles (we are burning more files at once) in a
special burn buffer. Another process, responsible for burning, checks to see if there are any
files to be burned and if there are, it burns them and then removes their handles from the
buffer. Let's assume that the burn buffer has enough indexes, numbered I0, I1, I2, and so
on, each one of them capable of holding an adequate number of the requested file
handles. Let's also assume that there are two shared variables: p_next, which points to
the next buffer index to be burned, and p_free, which points to the next free index in the
buffer. These two variables must be available to all processes. At a certain instant of time,
indexes I0 to I2 are empty (the files have already been burned) and slots I3 to I5 are filled.
Simultaneously, processes 5 and 6 decide they want to queue the file handles for burning.
This situation is shown in the following figure:

www.allitebooks.com

http://www.allitebooks.org

The Concepts of Process and Thread

56

The following can happen when Process 5 reads p_free and stores the value, I6, in a local
variable called f_slot. Then, a clock interrupt occurs, and the CPU decides that Process
5 has run long enough, so it switches to Process 6. Process 6 also reads p_free, and also
gets a 7. It too stores it p_free its local variable f_slot. At this instant, both processes think
that the next available index is I6. Process 6 now continues to run. It stores the handles of its
files at index I6 and updates p_free to be an I7. The system then puts Process 6 to sleep.
Now, Process 5 runs again, starting from the place it left off. It looks at f_slot, finds an I6
there, and writes its file handle at index I6, erasing the handle that Process 6 just put there.
Then, it computes f_slot + 1, which is I7, and sets p_free to I7. The burn buffer is now
internally consistent, so the burner process will not notice anything wrong, but Process 6
will never receive any output.

Process 6 will hang around for an infinite period of time, waiting for an output that will never
occur. Situations like this, where two or more entities are reading or writing some shared data
and the final result depends on which one runs precisely when, are called race conditions.

How to avoid race conditions? Most of the solutions involve shared memory, shared files,
and everything else that can help us deny a process from reading while the other process
is writing the shared data at the same time. In another words, we need mutual exclusion
or a mechanism that will provide exclusive access to a shared object, whether it is a shared
variable or file, or any other object. The difficulty can occur when Process 6 starts using one
of the shared objects before Process 5 has finished with it.

That part of the program where the shared memory is accessed is called the critical section
or critical region. We need to assure that no two processes ever get in their critical sections
at the same time in order to avoid race condition. Even though race condition is avoided, this
approach may not be efficient when having parallel processes, which are intended to cooperate
correctly and efficiently. If we intend to use shared data, we must take care of the following
four conditions:

 f No two processes may be simultaneously inside their critical regions

 f No assumptions may be made about speeds or the number of CPUs

 f No process running outside its critical region may block other processes

 f No process should have to wait forever to enter its critical region

What we described earlier is shown in the following figure. Process A enters its critical
section at time T1. In some time, T2 (later Process B) attempts to enter its critical section
but fails because another process is already in its critical section, and we allow only one
process at a time in the critical section. Process B must be temporarily suspended until
time T3 when Process A leaves its critical section, allowing Process B to enter immediately.
Eventually, Process B leaves (at T4), and we are back to the beginning where no process is
in its critical section.

Chapter 2

57

We will show an example of Interprocess Communication by creating a program that will start
two processes that need to draw random rectangles in a common window. Processes need to
communicate with each other in a way that when one process is drawing, the other waits.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
1. Create a new C++ Console application. Name it IPCDemo.

2. Right click on Solution explorer and select Add New Project. Select another
C++ Win32 Console Application and name it IPCWorker.

3. Open the IPCWorker.cpp file and insert the following code:
#include "stdafx.h"
#include <Windows.h>

#define COMMUNICATION_OBJECT_NAME TEXT("__FILE_MAPPING__")
#define SYNCHRONIZING_MUTEX_NAME TEXT("__TEST_MUTEX__")

typedef struct _tagCOMMUNICATIONOBJECT
{
 HWND hWndClient;
 BOOL bExitLoop;
 LONG lSleepTimeout;

The Concepts of Process and Thread

58

} COMMUNICATIONOBJECT, *PCOMMUNICATIONOBJECT;

int _tmain(int argc, _TCHAR* argv[])
{
 HBRUSH hBrush = NULL;

 if (_tcscmp(TEXT("blue"), argv[0]) == 0)
 {
 hBrush = CreateSolidBrush(RGB(0, 0, 255));
 }
 else
 {
 hBrush = CreateSolidBrush(RGB(255, 0, 0));
 }

 HWND hWnd = NULL;
 HDC hDC = NULL;
 RECT rectClient = { 0 };
 LONG lWaitTimeout = 0;
 HANDLE hMapping = NULL;
 PCOMMUNICATIONOBJECT pCommObject = NULL;
 BOOL bContinueLoop = TRUE;

 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE,
SYNCHRONIZING_MUTEX_NAME);
 hMapping = OpenFileMapping(FILE_MAP_READ, FALSE,
COMMUNICATION_OBJECT_NAME);

 if (hMapping)
 {
 while (bContinueLoop)
 {
 WaitForSingleObject(hMutex, INFINITE);
 pCommObject = (PCOMMUNICATIONOBJECT) MapViewOfFile(hMapping,
FILE_MAP_READ, 0, 0, sizeof(COMMUNICATIONOBJECT));

 if (pCommObject)
 {
 bContinueLoop = !pCommObject->bExitLoop;
 hWnd = pCommObject->hWndClient;
 lWaitTimeout = pCommObject->lSleepTimeout;
 UnmapViewOfFile(pCommObject);
 hDC = GetDC(hWnd);
 if (GetClientRect(hWnd, &rectClient))

Chapter 2

59

 {
 FillRect(hDC, &rectClient, hBrush);
 }
 ReleaseDC(hWnd, hDC);
 Sleep(lWaitTimeout);
 }
 ReleaseMutex(hMutex);
 }
 }
 CloseHandle(hMapping);
 CloseHandle(hMutex);
 DeleteObject(hBrush);

 return 0;
}

4. Open IPCDemo.cpp and insert following code:
#include "stdafx.h"
#include <Windows.h>
#include <iostream>

using namespace std;

#define COMMUNICATION_OBJECT_NAME TEXT("__FILE_MAPPING__")
#define SYNCHRONIZING_MUTEX_NAME TEXT("__TEST_MUTEX__")
#define WINDOW_CLASS_NAME TEXT("__TMPWNDCLASS__")
#define BUTTON_CLOSE 100

typedef struct _tagCOMMUNICATIONOBJECT
{
 HWND hWndClient;
 BOOL bExitLoop;
 LONG lSleepTimeout;
} COMMUNICATIONOBJECT, *PCOMMUNICATIONOBJECT;

LRESULT CALLBACK WndProc(HWND hDlg, UINT uMsg, WPARAM wParam,
LPARAM lParam);
HWND InitializeWnd();
PCOMMUNICATIONOBJECT pCommObject = NULL;
HANDLE hMapping = NULL;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Interprocess communication demo." << endl;

The Concepts of Process and Thread

60

 HWND hWnd = InitializeWnd();
 if (!hWnd)
 {
 cout << "Cannot create window!" << endl << "Error:\t" <<
GetLastError() << endl;
 return 1;
 }
 HANDLE hMutex = CreateMutex(NULL, FALSE,
SYNCHRONIZING_MUTEX_NAME);
 if (!hMutex)
 {
 cout << "Cannot create mutex!" << endl << "Error:\t" <<
GetLastError() << endl;
 return 1;
 }
 hMapping = CreateFileMapping((HANDLE)-1, NULL, PAGE_READWRITE,
0, sizeof(COMMUNICATIONOBJECT), COMMUNICATION_OBJECT_NAME);
 if (!hMapping)
 {
 cout << "Cannot create mapping object!" << endl << "Error:\t"
<< GetLastError() << endl;
 return 1;
 }
 pCommObject = (PCOMMUNICATIONOBJECT) MapViewOfFile(hMapping,
FILE_MAP_WRITE, 0, 0, 0);
 if (pCommObject)
 {
 pCommObject->bExitLoop = FALSE;
 pCommObject->hWndClient = hWnd;
 pCommObject->lSleepTimeout = 250;
 UnmapViewOfFile(pCommObject);
 }

 STARTUPINFO startupInfoRed = { 0 };
 PROCESS_INFORMATION processInformationRed = { 0 };
 STARTUPINFO startupInfoBlue = { 0 };
 PROCESS_INFORMATION processInformationBlue = { 0 };

 BOOL bSuccess = CreateProcess(TEXT("..\\Debug\\IPCWorker.exe"),
TEXT("red"), NULL, NULL, FALSE, 0, NULL, NULL, &startupInfoRed,
&processInformationRed);
 if (!bSuccess)
 {

Chapter 2

61

 cout << "Cannot create process red!" << endl << "Error:\t" <<
GetLastError() << endl;
 return 1;
 }
 bSuccess = CreateProcess(TEXT("..\\Debug\\IPCWorker.exe"),
TEXT("blue"), NULL, NULL, FALSE, 0, NULL, NULL, &startupInfoBlue,
&processInformationBlue);
 if (!bSuccess)
 {
 cout << "Cannot create process blue!" << endl << "Error:\t" <<
GetLastError() << endl;
 return 1;
 }
 MSG msg = { 0 };
 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 UnregisterClass(WINDOW_CLASS_NAME, GetModuleHandle(NULL));
 CloseHandle(hMapping);
 CloseHandle(hMutex);
 cout << "End program." << endl;
 return 0;
}

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {
 case BUTTON_CLOSE:
 {
 PostMessage(hWnd, WM_CLOSE, 0, 0);
 break;
 }
 }
 break;
 }
 case WM_DESTROY:

The Concepts of Process and Thread

62

 {
 pCommObject = (PCOMMUNICATIONOBJECT) MapViewOfFile(hMapping,
FILE_MAP_WRITE, 0, 0, 0);
 if (pCommObject)
 {
 pCommObject->bExitLoop = TRUE;
 UnmapViewOfFile(pCommObject);
 }

 PostQuitMessage(0);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

HWND InitializeWnd()
{
 WNDCLASSEX wndEx;
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WndProc;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = GetModuleHandle(NULL);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = WINDOW_CLASS_NAME;
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
MAKEINTRESOURCE(IDI_APPLICATION));
 if (!RegisterClassEx(&wndEx))
 {
 return NULL;
 }
 HWND hWnd = CreateWindow(wndEx.lpszClassName,
 TEXT("Interprocess communication Demo"),

Chapter 2

63

 WS_OVERLAPPEDWINDOW, 200, 200, 400, 300, NULL, NULL,
 wndEx.hInstance, NULL);
 if (!hWnd)
 {
 return NULL;
 }
 HWND hButton = CreateWindow(TEXT("BUTTON"), TEXT("Close"),
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON | WS_TABSTOP,
 275, 225, 100, 25, hWnd, (HMENU)BUTTON_CLOSE, wndEx.hInstance,
NULL);
 HWND hStatic = CreateWindow(TEXT("STATIC"), TEXT(""), WS_CHILD |
WS_VISIBLE, 10, 10, 365, 205, hWnd, NULL, wndEx.hInstance, NULL);
 ShowWindow(hWnd, SW_SHOW);
 UpdateWindow(hWnd);
 return hStatic;
}

How it works...
Our example was slightly different this time, because we had to create two projects in the
same solution due to fact that we are working with separate processes.

Let's begin with IPCWorker. The idea is that we need process that will do some work for us. For
the simplicity of the example, we will create two processes from our main application, IPCDemo,
which will paint a certain region of the application window. Without proper communication
and process synchronization, multiple access to shared resources would occur. The operating
system switches between processes quickly and, considering the fact that on the majority of
PCs there is more than one CPU core, most likely, processes would paint the region at the same
time, creating an unwanted situation where multiple processes are accessing an unprotected
region at once.

We are using a mapping object—the location in memory allocated for our processes to read/
write from. IPCWorker, or simply worker, needs to ask for a named mutex and, if granted, it
can proceed and obtain a pointer to the memory region (file mapping) where information for
it will be stored. Mutex must be acquired because of exclusive access. A process gets mutex
after WaitForSingleObject returns. Let's review the following statements:

HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE,
 SYNCHRONIZING_MUTEX_NAME);

We are allocating a handle for the mutex (hMutex). A call to the OpenMutex Win32 API
results in obtaining a handle to the named mutex, that is, if mutex exists. Please check the
next statement:

WaitForSingleObject(hMutex, INFINITE);

The Concepts of Process and Thread

64

After the preceding statement, the execution continues when the WaitForSingleObject
API returns.

pCommObject = (PCOMMUNICATIONOBJECT)
 MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0,
 sizeof(COMMUNICATIONOBJECT));

A call to MapViewOfFile Win32 API obtains the handle (pointer) to the file mapping object.
Now, the process can read from the shared memory object and obtain the required information.
The process needs to read the bExitLoop variable in order to sustain whether it will continue
execution. After that, it needs to read the window handle (hWnd) whose window region needs to
be painted. Finally, the lSleepTimeout variable interval is needed to sustain for how long the
process will sleep. We intentionally added sleep time, as switching between processes takes
place too quickly to be noticed.

ReleaseMutex(hMutex);

A call to the ReleaseMutex Win32 API releases mutex ownership, making the other
process able to obtain mutex and continue execution. Let's go back to the IPCDemo project.
We defined the _tagCOMMUNICATIONOBJECT struct for communication between objects
through file mapping.

File mapping is the association of a file's contents with a portion of the virtual address space of
a process. The system creates a file mapping object (also known as a section object) to maintain
this association. A file view is the portion of virtual address space that a process uses to access
the file's contents. File mapping allows the process to use both random I/O and sequential I/O.
It also allows the process to work efficiently with a large data file, such as a database, without
having to map the whole file into memory. Multiple processes can also use memory-mapped
files to share data. You can find more on MSDN (http://msdn.microsoft.com/en-us/
library/windows/desktop/aa366883%28v=vs.85%29.aspx).

IPCDemo creates the file mapping before it runs worker processes. That's why we could ask
for file mapping from worker process without checking if it is created first. After IPCDemo
creates and initializes the application window and region to paint, it creates a named mutex,
and file mapping. Afterwards, processes are created with different command-line arguments
to distinguish them.

The WndProc routine will handle the WM_COMMAND and WM_DESTROY messages. The first
one will be triggered on a button push event when we need to inform the application that it
needs to safely close. The other one release used file mapping and posts the following close
message to the main thread message queue:

PostQuitMessage(0);

Chapter 2

65

There's more...
File mapping operates with content on the disk and view in memory. View in memory is much
faster to read/write from than to use the hard disk drive. Using file mapping is a good practice
when we want to use shared objects between processes for simple purposes. When we supply
-1 for the first argument in a call to Win32 API

CreateFileMapping((HANDLE) -1, NULL, PAGE_READWRITE, 0,
sizeof(COMMUNICATIONOBJECT), COMMUNICATION_OBJECT_NAME);

file on disk won't exist at all. This is good because we intend to use a portion of memory; it is
faster and just enough for what we need.

Pay attention when calling IPCWorker processes. For debugging purposes, we set calls to the
following:

bSuccess = CreateProcess(TEXT("..\\Debug\\IPCWorker.exe"),
 TEXT("red"), NULL, NULL, FALSE, 0, NULL, NULL,
 &startupInfoRed, &processInformationRed);

This is because, in debugging mode, Visual Studio doesn't start from the program exe folder,
but from the project folder. Also, Visual Studio by default puts all Win32 project outputs in the
same folder, so in the file path, we had to move one step (folder) up from the project folder
and then to the Debug folder where the entire project outputs (exe) reside. If you would not
like to start exe from VS, you would have to change the path in CreateProcess calls or
add functionality to pass the file path through the command line or something similar.

Solving classical IPC problems
Inter process communication is very important. Its implementation, on the other hand,
is very complex. Operating system designers (and developers) may face various problems.
Here, we will explain some of the most common problems.

The dining philosophers problem
The definition for the dining philosopher's problem was taken from Andrew Tanenbaum's
book, Modern Operating Systems Third Edition. The authors' solution provided for this book
is genuine.

The Concepts of Process and Thread

66

In 1965, Dijkstra proposed and solved a synchronization problem that he called the dining
philosophers' problem. The problem is quite simply as follows: five philosophers are seated
around a circular table. Each philosopher has a plate of spaghetti. The spaghetti is so slippery
that a philosopher needs two forks to eat it. Between each pair of plates is one fork. The layout
of the table is illustrated in the following figure:

An assumption is that the life of a philosopher consists of alternate periods of eating and
thinking. When a philosopher gets hungry, he tries to acquire his left and right forks, one at
a time, in either order. If he is successful in acquiring two forks, he eats for a while, then puts
down the forks, and continues to think. The key question is: can you write a program for each
philosopher that does what it is supposed to do and never get stuck?

We could wait until the specified fork is available and then seize it. Unfortunately, the obvious
solution is wrong. Suppose that all five philosophers take their left forks simultaneously. None
will be able to take their right forks, and there will be a deadlock.

We could modify the program so that, after taking the left fork, the program checks to
see if the right fork is available. If it is not, the philosopher puts down the left one, waits
for some time, and then repeats the whole process. This proposal too fails, although for a
different reason. With a little bit of bad luck, all the philosophers could start the algorithm
simultaneously, picking up their left forks, seeing that their right forks were not available,
putting down their left forks, waiting, and picking up their left forks again simultaneously,
and so on, forever. A situation like this in which all the programs continue to run indefinitely
but fail to make any progress is called starvation.

Chapter 2

67

One improvement that has no deadlock and no starvation is to protect the five statements
that follow the call to think by a mutex. Before starting to acquire forks, a philosopher would
ask for a mutex. As we said earlier, mutex stands for mutual exclusion or the ability to provide
exclusive access to some object. After replacing the forks, he would release the mutex. From
a theoretical viewpoint, this solution is adequate. From a practical one, it has a performance
issue: only one philosopher can eat at any instant of time. With five forks available, we should
be able to allow two philosophers to eat at the same time.

The complete solution is given in the following example.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
1. Create a new Win32 project. Name it PhilosophersDinner.

2. Open stdafx.h and paste the following code:
#pragma once
#include "targetver.h"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <commctrl.h>
#include <stdlib.h>
#include <malloc.h>
#include <memory.h>
#include <tchar.h>
#include <stdio.h>
#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

3. Open PhilosophersDinner.cpp and paste the following code:
#include "stdafx.h"

#define BUTTON_CLOSE 100
#define PHILOSOPHER_COUNT 5
#define WM_INVALIDATE WM_USER + 1

typedef struct _tagCOMMUNICATIONOBJECT
{
 HWND hWnd;

The Concepts of Process and Thread

68

 bool bExitApplication;
 int iPhilosopherArray[PHILOSOPHER_COUNT];
 int PhilosopherCount;
} COMMUNICATIONOBJECT, *PCOMMUNICATIONOBJECT;

HWND InitInstance(HINSTANCE hInstance, int nCmdShow);
ATOM MyRegisterClass(HINSTANCE hInstance);
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam);
int PhilosopherPass(int iPhilosopher);
void FillEllipse(HWND hWnd, HDC hDC, int iLeft, int iTop, int
iRight, int iBottom, int iPass);

TCHAR* szTitle = TEXT("Philosophers Dinner Demo");
TCHAR* szWindowClass = TEXT("__PD_WND_CLASS__");
TCHAR* szSemaphoreName = TEXT("__PD_SEMAPHORE__");
TCHAR* szMappingName = TEXT("__SHARED_FILE_MAPPING__");
PCOMMUNICATIONOBJECT pCommObject = NULL;

int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE
hPrevInstance, LPTSTR lpCmdLine, int nCmdShow)
{
 UNREFERENCED_PARAMETER(hPrevInstance);
 UNREFERENCED_PARAMETER(lpCmdLine);

 HANDLE hMapping = CreateFileMapping((HANDLE)-1, NULL,
PAGE_READWRITE, 0, sizeof(COMMUNICATIONOBJECT), szMappingName);
 if (!hMapping)
 {
 MessageBox(NULL, TEXT("Cannot open file mapping"),
TEXT("Error!"), MB_OK);
 return 1;
 }
 pCommObject = (PCOMMUNICATIONOBJECT) MapViewOfFile(hMapping,
FILE_MAP_ALL_ACCESS, 0, 0, 0);
 if (!pCommObject)
 {
 MessageBox(NULL, TEXT("Cannot get access to file mapping! "),
TEXT("Error!"), MB_OK);
 CloseHandle(hMapping);
 return 1;
 }
 InitCommonControls();
 MyRegisterClass(hInstance);
 HWND hWnd = NULL;

Chapter 2

69

 if (!(hWnd = InitInstance(hInstance, nCmdShow)))
 {
 return FALSE;
 }
 pCommObject->bExitApplication = false;
 pCommObject->hWnd = hWnd;
 memset(pCommObject->iPhilosopherArray, 0,
sizeof(*pCommObject->iPhilosopherArray));
 pCommObject->PhilosopherCount = PHILOSOPHER_COUNT;
 HANDLE hSemaphore = CreateSemaphore(NULL,
int(PHILOSOPHER_COUNT / 2), int(PHILOSOPHER_COUNT / 2),
szSemaphoreName);
 STARTUPINFO startupInfo[PHILOSOPHER_COUNT] =
{ { 0 }, { 0 }, { 0 }, { 0 }, { 0 } };
 PROCESS_INFORMATION processInformation[PHILOSOPHER_COUNT] =
{ { 0 }, { 0 }, { 0 }, { 0 }, { 0 } };

 HANDLE hProcesses[PHILOSOPHER_COUNT];
 TCHAR szBuffer[8];
 for (int iIndex = 0; iIndex < PHILOSOPHER_COUNT; iIndex++)
 {
#ifdef UNICODE
 wsprintf(szBuffer, L"%d", iIndex);
#else
 sprintf(szBuffer, "%d", iIndex);
#endif

 if (CreateProcess(TEXT("..\\Debug\\Philosopher.exe"),
szBuffer, NULL, NULL,
 FALSE, 0, NULL, NULL, &startupInfo[iIndex],
&processInformation[iIndex]))
 {
 hProcesses[iIndex] = processInformation[iIndex].hProcess;
 }
 }
 MSG msg = { 0 };
 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 pCommObject->bExitApplication = true;
 UnmapViewOfFile(pCommObject);
 WaitForMultipleObjects(PHILOSOPHER_COUNT, hProcesses, TRUE,
INFINITE);
 for (int iIndex = 0; iIndex < PHILOSOPHER_COUNT; iIndex++)

The Concepts of Process and Thread

70

 {
 CloseHandle(hProcesses[iIndex]);
 }
 CloseHandle(hSemaphore);
 CloseHandle(hMapping);
 return (int)msg.wParam;
}
ATOM MyRegisterClass(HINSTANCE hInstance)
{
 WNDCLASSEX wndEx;
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WndProc;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hInstance;
 wndEx.hIcon = LoadIcon(hInstance,
MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
MAKEINTRESOURCE(IDI_APPLICATION));
 return RegisterClassEx(&wndEx);
}
HWND InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPED
| WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX, 200, 200, 540, 590,
NULL, NULL, hInstance, NULL);
 if (!hWnd)
 {
 return NULL;
 }
 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE, FALSE,
FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
FF_MODERN, TEXT("Microsoft Sans Serif"));
 HWND hButton = CreateWindow(TEXT("BUTTON"), TEXT("Close"),
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON | WS_TABSTOP, 410, 520, 100,
25, hWnd, (HMENU)BUTTON_CLOSE, hInstance, NULL);

Chapter 2

71

 SendMessage(hButton, WM_SETFONT, (WPARAM)hFont, TRUE);
 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);
 return hWnd;
}
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {
 case BUTTON_CLOSE:
 {
 DestroyWindow(hWnd);
 break;
 }
 }
 break;
 }
 case WM_INVALIDATE:
 {
 InvalidateRect(hWnd, NULL, TRUE);
 break;
 }
 case WM_PAINT:
 {
 PAINTSTRUCT paintStruct;
 HDC hDC = BeginPaint(hWnd, &paintStruct);
 FillEllipse(hWnd, hDC, 210, 10, 310, 110,
PhilosopherPass(1));
 FillEllipse(hWnd, hDC, 410, 170, 510, 270,
PhilosopherPass(2));
 FillEllipse(hWnd, hDC, 335, 400, 435, 500,
PhilosopherPass(3));
 FillEllipse(hWnd, hDC, 80, 400, 180, 500,
PhilosopherPass(4));
 FillEllipse(hWnd, hDC, 10, 170, 110, 270,
PhilosopherPass(5));
 EndPaint(hWnd, &paintStruct);
 break;
 }

The Concepts of Process and Thread

72

 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}
int PhilosopherPass(int iPhilosopher)
{
 return pCommObject->iPhilosopherArray[iPhilosopher - 1];
}
void FillEllipse(HWND hWnd, HDC hDC, int iLeft, int iTop, int
iRight, int iBottom, int iPass)
{
 HBRUSH hBrush = NULL;
 if (iPass)
 {
 hBrush = CreateSolidBrush(RGB(255, 0, 0));
 }
 else
 {
 hBrush = CreateSolidBrush(RGB(255, 255, 255));
 }
 HBRUSH hOldBrush = (HBRUSH) SelectObject(hDC, hBrush);
 Ellipse(hDC, iLeft, iTop, iRight, iBottom);
 SelectObject(hDC, hOldBrush);
 DeleteObject(hBrush);
}

4. Right click on Solution explorer and add a new Win32 Console application project.
Name it Philosopher.

5. Open stdafx.h and paste the following code:
#pragma once
#include "targetver.h"
#include <stdio.h>
#include <tchar.h>
#include <windows.h>.

Chapter 2

73

6. Open Philosopher.cpp and paste the following code:
#include "stdafx.h"
#include <Windows.h>

#define EATING_TIME 1000
#define PHILOSOPHER_COUNT 5
#define WM_INVALIDATE WM_USER + 1

typedef struct _tagCOMMUNICATIONOBJECT
{
 HWND hWnd;
 bool bExitApplication;
 int iPhilosopherArray[PHILOSOPHER_COUNT];
 int PhilosopherCount;
} COMMUNICATIONOBJECT, *PCOMMUNICATIONOBJECT;

void Eat();
TCHAR* szSemaphoreName = TEXT("__PD_SEMAPHORE__");
TCHAR* szMappingName = TEXT("__SHARED_FILE_MAPPING__");
bool bExitApplication = false;

int _tmain(int argc, _TCHAR* argv[])
{
 HWND hConsole = GetConsoleWindow();
 ShowWindow(hConsole, SW_HIDE);
 int iIndex = (int)_tcstol(argv[0], NULL, 10);
 HANDLE hMapping = OpenFileMapping(FILE_MAP_ALL_ACCESS, FALSE,
szMappingName);
 while (!bExitApplication)
 {
 HANDLE hSemaphore = OpenSemaphore(SEMAPHORE_ALL_ACCESS, FALSE,
szSemaphoreName);
 WaitForSingleObject(hSemaphore, INFINITE);
 PCOMMUNICATIONOBJECT pCommObject = (PCOMMUNICATIONOBJECT)
MapViewOfFile(hMapping, FILE_MAP_ALL_ACCESS, 0, 0,
sizeof(COMMUNICATIONOBJECT));
 bExitApplication = pCommObject->bExitApplication;
 if (!pCommObject->iPhilosopherArray[
(iIndex + pCommObject->PhilosopherCount - 1)
% pCommObject->PhilosopherCount]
 && !pCommObject->iPhilosopherArray[
(iIndex + 1) % pCommObject->PhilosopherCount])
 {
 pCommObject->iPhilosopherArray[iIndex] = 1;
 Eat();

The Concepts of Process and Thread

74

 }
 SendMessage(pCommObject->hWnd, WM_INVALIDATE, 0, 0);
 pCommObject->iPhilosopherArray[iIndex] = 0;
 UnmapViewOfFile(pCommObject);
 ReleaseSemaphore(hSemaphore, 1, NULL);
 CloseHandle(hSemaphore);
 }
 CloseHandle(hMapping);
 return 0;
}

void Eat()
{
 Sleep(EATING_TIME);
}

How it works...
We have created five processes to mimic five philosophers. Each philosopher (process) has to
think and eat. If a philosopher wants to eat, they need two forks, so they must ask for the left
fork and, if it is available, then they ask for right fork. If both forks are available, it is possible
to eat; if not, the philosopher leaves the left fork (if obtained) and waits for their next turn.
We've set the eating time at 1 second.

PhilosopherDinner is our main app. By creating file mapping, we are able to communicate
with other processes. Then it's important to synchronize processes by creating a Semaphore
object. As we said earlier, using mutex would allow us to make only one philosopher dinning
at one instance of time. It would work, but it wouldn't be optimized enough. If we need two
forks for each philosopher to eat, then we can have FLOOR(NUMBER_OF_PHILOSOPHERS /
2) eating simultaneously. That's why we would set a maximum of two objects that can pass
semaphore at one instance of time, as shown in the following code:

HANDLE hSemaphore = CreateSemaphore(NULL,
 int(PHILOSOPHER_COUNT / 2),
 int(PHILOSOPHER_COUNT / 2), szSemaphoreName);

What is important for us to know is that semaphore can initially have a certain number of
objects that can pass it, but this number can be increased with the third parameter of the
CreateSemaphore API. In our example, we won't need this feature.

After initializing the semaphore object, the processes are created, and the application can enter
its message loop. Let's review the other part of the application—Philosopher application. It is
a console application and because we need no interface, we will hide its main window (in this
case, console) as shown in the following code:

HWND hConsole = GetConsoleWindow();
ShowWindow(hConsole, SW_HIDE);

Chapter 2

75

The application then needs to obtain its index (philosopher name):

int iIndex = (int) _tcstol(argv[0], NULL, 10);

After that, the philosopher has to obtain a handle to the file mapping object and enter the loop.
In the loop, the philosopher waits for their turn by requesting the pass-through semaphore
object. When the philosopher gets a semaphore pass, it can obtain both forks. Then, it sends
a message to update the main app user interface with the following SendMessage API:

SendMessage(pCommObject->hWnd, WM_INVALIDATE, 0, 0);

When all work is done, it can release the semaphore object and continue execution.

See also...
There are other classical IPC problems such as "Sleeping barber" and "Producer–Consumer
problem". Producer–Consumer problem will be solved later in the chapter.

Implementation of the thread model
We can say that the process is an object whose task is to group related resources together.
Every process has an address space with a representation, as shown in the following figure.

This so-called process image must be loaded in the physical memory on initialization of
CreateProcess. All resources such as file handles, information about child processes,
pending alarms, signaling handlers, and so on are stored. They can be managed more easily
by grouping them together in the form of a process.

The Concepts of Process and Thread

76

The other important concept besides process is a thread of execution, which is usually called
thread. The thread is the lowest unit that can be scheduled for execution on the CPU. In another
words, the process itself cannot get CPU time, only one of its threads can. The thread saves
information about CPU registers with its working variables, along with the stack. The stack
contains data related to functions call - with one frame for each function called but not yet
returned from. A thread can be executed on the CPU, not a process. However, a process must
have at least one thread, which is usually called main thread, so when we say that a process
is executing on the CPU, we are referring to the process' main thread.

Processes are used to group resources together; threads are the entities scheduled for
execution on the CPU. It is important to understand that a thread allows multiple executions
to take place in the same process environment. Having multiple threads running in parallel in
a single process context is the same as having multiple processes running in parallel on one
computer. The term "multithreading" is used to describe the situation where multiple threads
are running in the context of the single process.

In the following figure, we see three processes:

In the following figure, we see a single process with three threads of control. Although in
both cases we have three threads, in the first figure, each of the threads operates in a
different address space, whereas in the second figure, all the three threads share the
same address space.

Chapter 2

77

When a multithreaded process is run on a single CPU system, the threads take turns
running. By switching between multiple processes, the system gives the illusion of parallelism.
Multithreading works in the same way. With three threads in a process, the threads appear to
run in parallel, each one on a CPU, with one-third the time that the CPU has scheduled for its
process (approximately, because CPU time depends on OS, scheduling algorithm and more).
On a multiprocessor system, the situation is similar, only that each CPU core executes threads
in same manner as described here. The good side is that with more cores, more threads can
run in parallel, giving us the power of native hardware parallelism and multithreaded execution.

In our next example, we will demonstrate basic thread usage by implementing a simple array
sorting using two threads.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
1. Create a new empty Win32 Console application. Name it

MultithreadedArraySort.

2. Open MultithreadedArraySort.cpp and paste the following code:
#include "stdafx.h"
#include <Windows.h>
#include <iostream>
#include <tchar.h>

The Concepts of Process and Thread

78

using namespace std;

#define THREADS_NUMBER 2
#define ELEMENTS_NUMBER 200
#define BLOCK_SIZE ELEMENTS_NUMBER / THREADS_NUMBER
#define MAX_VALUE 1000

typedef struct _tagARRAYOBJECT
{
 int* iArray;
 int iSize;
 int iThreadID;
} ARRAYOBJECT, *PARRAYOBJECT;

DWORD WINAPI ThreadStart(LPVOID lpParameter);
void PrintArray(int* iArray, int iSize);
void MergeArrays(int* leftArray, int leftArrayLenght, int*
rightArray, int rightArrayLenght, int* mergedArray);

int _tmain(int argc, TCHAR* argv[])
{
 int iArray1[BLOCK_SIZE];
 int iArray2[BLOCK_SIZE];
 int iArray[ELEMENTS_NUMBER];
 for (int iIndex = 0; iIndex < BLOCK_SIZE; iIndex++)
 {
 iArray1[iIndex] = rand() % MAX_VALUE;
 iArray2[iIndex] = rand() % MAX_VALUE;
 }

 HANDLE hThreads[THREADS_NUMBER];
 ARRAYOBJECT pObject1 = { &(iArray1[0]), BLOCK_SIZE, 0 };
 hThreads[0] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
ThreadStart, (LPVOID)&pObject1, 0, NULL);

 ARRAYOBJECT pObject2 = { &(iArray2[0]), BLOCK_SIZE, 1 };
 hThreads[1] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
ThreadStart, (LPVOID)&pObject2, 0, NULL);

 cout << "Waiting execution..." << endl;
 WaitForMultipleObjects(THREADS_NUMBER, hThreads, TRUE,
INFINITE);

Chapter 2

79

 MergeArrays(&iArray1[0], BLOCK_SIZE, &iArray2[0], BLOCK_SIZE,
&iArray[0]);
 PrintArray(iArray, ELEMENTS_NUMBER);

 CloseHandle(hThreads[0]);
 CloseHandle(hThreads[1]);

 cout << "Array sorted..." << endl;
 return 0;
}
DWORD WINAPI ThreadStart(LPVOID lpParameter)
{
 PARRAYOBJECT pObject = (PARRAYOBJECT)lpParameter;
 int iTmp = 0;
 for (int iIndex = 0; iIndex < pObject->iSize; iIndex++)
 {
 for (int iEndIndex = pObject->iSize - 1; iEndIndex > iIndex;
iEndIndex--)
 {
 if (pObject->iArray[iEndIndex] < pObject->iArray[iIndex])
 {
 iTmp = pObject->iArray[iEndIndex];
 pObject->iArray[iEndIndex] = pObject->iArray[iIndex];
 pObject->iArray[iIndex] = iTmp;
 }
 }
 }
 return 0;
}

void PrintArray(int* iArray, int iSize)
{
 for (int iIndex = 0; iIndex < iSize; iIndex++)
 {
 cout << " " << iArray[iIndex];
 }
 cout << endl;
}

void MergeArrays(int* leftArray, int leftArrayLenght, int*
rightArray, int rightArrayLenght, int* mergedArray)
{
 int i = 0;
 int j = 0;

The Concepts of Process and Thread

80

 int k = 0;
 while (i < leftArrayLenght && j < rightArrayLenght)
 {
 if (leftArray[i] < rightArray[j])
 {
 mergedArray[k] = leftArray[i];
 i++;
 }
 else
 {
 mergedArray[k] = rightArray[j];
 j++;
 }
 k++;
 }
 if (i >= leftArrayLenght)
 {
 while (j < rightArrayLenght)
 {
 mergedArray[k] = rightArray[j];
 j++;
 k++;
 }
 }
 if (j >= rightArrayLenght)
 {
 while (i < leftArrayLenght)
 {
 mergedArray[k] = leftArray[i];
 i++;
 k++;
 }
 }
}

How it works...
This is a very simple example that demonstrates basic thread usage. The idea was to
somehow split the problem and distribute it among the threads in order to reduce the
execution time by adding parallelism (divide and conquer). As we said earlier, the ability to
divide the problem into smaller units (dependent or independent) makes it easier for us to
create parallel logic in implementation, while at the same time, using system resources in
parallel makes our application faster and more optimized.

Chapter 2

81

There's more...
As we said earlier, every application has a main thread. Additional threads are created using
the CreateThread Win32 API. A prototype of the same is as follows:

HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter, DWORD dwFlags, LPDWORD lpThreadId);

It is important to set a thread start address or thread routine passed by the lpStartAddress
parameter and a value for the provided routine passed by the lpParameter parameter. It is a
predefined routine (function) pointer and is shown in the following code:

typedef DWORD (WINAPI *PTHREAD_START_ROUTINE)
(LPVOID lpThreadParameter);

Our ThreadStart method matches the specified prototype, and this is where the thread
starts its execution. The fourth parameter of the CreateThread API is passed to the thread
routine. As it is a pointer, if you need to pass more than one parameter, you could create a
structure or class and pass the object address. You can find more on the CreateThread
API on MSDN (http://msdn.microsoft.com/en-us/library/windows/desktop/
ms682453%28v=vs.85%29.aspx).

Thread usage
A majority of today's applications are using some database. In many cases, such applications
usually ran from different PCs, with simultaneous read/write operations. The following example
will demonstrate threads using the MySQL database.

Getting ready
For our next example, you will need to install the MySQL C connector. A detailed explanation
can be found in the Appendix. After the successful installation of the MySQL C connector,
start Visual Studio.

How to do it...
1. Create a new C++ Console application. Name it MultithreadedDBTest.

2. Open Solution explorer and add a new header file. Name it CMySQL.h.
Open CMySQL.h and paste the following code:
#include "stdafx.h"
#include <stdio.h>

The Concepts of Process and Thread

82

#include <stdlib.h>
#include <mysql.h>

class CMySQL
{
public:
 static CMySQL* CreateInstance(char* szHostName, char*
szDatabase, char* szUserId, char* szPassword);
 static void ReleaseInstance();
 bool ConnectInstance();
 bool DisconnectInstance();
 bool ReadData(char* szQuery, char* szResult, size_t
uBufferLenght);
 bool WriteData(char* szQuery, char* szResult, size_t
uBufferLenght);
private:
 CMySQL(char* szHostName, char* szDatabase, char* szUserId, char*
szPassword);
 ~CMySQL();
 char* szHostName;
 char* szDatabase;
 char* szUserId;
 char* szPassword;
 MYSQL* mysqlConnection;
 static CMySQL* mySqlInstance;
};

3. Open Solution explorer and add a new CMySQL.cpp file. Open CMySQL.cpp
and paste the following code:
#include "stdafx.h"
#include "CMySQL.h"

CMySQL* CMySQL::mySqlInstance = NULL;

CMySQL* CMySQL::CreateInstance(char* szHostName, char* szDatabase,
char* szUserId, char* szPassword)
{
 if (mySqlInstance)
 {
 return mySqlInstance;
 }
 return new CMySQL(szHostName, szDatabase, szUserId, szPassword);
}

Chapter 2

83

void CMySQL::ReleaseInstance()
{
 if (mySqlInstance)
 {
 delete mySqlInstance;
 }
}

CMySQL::CMySQL(char* szHostName, char* szDatabase, char* szUserId,
char* szPassword)
{
 size_t length = 0;

 this->szHostName = new char[length = strlen(szHostName) + 1];
 strcpy_s(this->szHostName, length, szHostName);

 this->szDatabase = new char[length = strlen(szDatabase) + 1];
 strcpy_s(this->szDatabase, length, szDatabase);

 this->szUserId = new char[length = strlen(szUserId) + 1];
 strcpy_s(this->szUserId, length, szUserId);

 this->szPassword = new char[length = strlen(szPassword) + 1];
 strcpy_s(this->szPassword, length, szPassword);
}

CMySQL::~CMySQL()
{
 delete szHostName;
 delete szDatabase;
 delete szUserId;
 delete szPassword;
}

bool CMySQL::ConnectInstance()
{
 MYSQL* mysqlLink = NULL;

 try
 {
 mysqlConnection = mysql_init(NULL);
 mysqlLink = mysql_real_connect(mysqlConnection, szHostName,
szUserId, szPassword, szDatabase, 3306, NULL, 0);
 }

The Concepts of Process and Thread

84

 catch (...)
 {
 mysqlConnection = 0;
 return false;
 }
 return mysqlLink ? true : false;
}

bool CMySQL::DisconnectInstance()
{
 try
 {
 mysql_close(mysqlConnection);
 return true;
 }
 catch (...)
 {
 return false;
 }
}

bool CMySQL::ReadData(char* szQuery, char* szResult, size_t
uBufferLenght)
{
 int mysqlStatus = 0;
 MYSQL_RES* mysqlResult = NULL;
 MYSQL_ROW mysqlRow = NULL;
 my_ulonglong numRows = 0;
 unsigned numFields = 0;

 try
 {
 mysqlStatus = mysql_query(mysqlConnection, szQuery);
 if (mysqlStatus)
 {
 return false;
 }
 else
 {
 mysqlResult = mysql_store_result(mysqlConnection);
 }

Chapter 2

85

 if (mysqlResult)
 {
 numRows = mysql_num_rows(mysqlResult);
 numFields = mysql_num_fields(mysqlResult);
 }

 mysqlRow = mysql_fetch_row(mysqlResult);
 if (mysqlRow)
 {
 if (!mysqlRow[0])
 {
 mysql_free_result(mysqlResult);
 return false;
 }
 }
 else
 {
 mysql_free_result(mysqlResult);
 return false;
 }

 size_t szResultLength = strlen(mysqlRow[0]) + 1;
 strcpy_s(szResult, szResultLength > uBufferLenght ?
uBufferLenght : szResultLength, mysqlRow[0]);
 if (mysqlResult)
 {
 mysql_free_result(mysqlResult);
 mysqlResult = NULL;
 }
 }
 catch (...)
 {
 return false;
 }
 return true;
}

bool CMySQL::WriteData(char* szQuery, char* szResult, size_t
uBufferLenght)
{
 try
 {

The Concepts of Process and Thread

86

 int mysqlStatus = mysql_query(mysqlConnection, szQuery);
 if (mysqlStatus)
 {
 size_t szResultLength = strlen("Failed!") + 1;
 strcpy_s(szResult, szResultLength > uBufferLenght ?
uBufferLenght : szResultLength, "Failed!");
 return false;
 }
 }
 catch (...)
 {
 size_t szResultLength = strlen("Exception!") + 1;
 strcpy_s(szResult, szResultLength > uBufferLenght ?
uBufferLenght : szResultLength, "Exception!");
 return false;
 }

 size_t szResultLength = strlen("Success") + 1;
 strcpy_s(szResult, szResultLength > uBufferLenght ?
uBufferLenght : szResultLength, "Success");
 return true;
}

4. Open MultithreadedDBTest.cpp and paste the following code:
#include "stdafx.h"
#include "CMySQL.h"

#define BLOCK_SIZE 4096
#define THREADS_NUMBER 3

typedef struct
{
 char szQuery[BLOCK_SIZE];
 char szResult[BLOCK_SIZE];
 bool bIsRead;
} QUERYDATA, *PQUERYDATA;

CRITICAL_SECTION cs;
CMySQL* mySqlInstance = NULL;

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 PQUERYDATA pQueryData = (PQUERYDATA)lpParameter;

Chapter 2

87

 EnterCriticalSection(&cs);
 if (mySqlInstance->ConnectInstance())
 {
 if (pQueryData->bIsRead)
 {
 memset(pQueryData->szResult, 0, BLOCK_SIZE-1);
 mySqlInstance->ReadData(pQueryData->szQuery,
 pQueryData->szResult, BLOCK_SIZE - 1);
 }
 else
 {
 mySqlInstance->WriteData(pQueryData->szQuery,
 pQueryData->szResult, BLOCK_SIZE - 1);
 }
 mySqlInstance->DisconnectInstance();
 }
 LeaveCriticalSection(&cs);
 return 0L;
}
int main()
{
 InitializeCriticalSection(&cs);
 mySqlInstance = CMySQL::CreateInstance(
 "mysql.services.expert.its.me", "expertit_9790OS",
 "expertit_9790", "$dbpass_1342#");
 if (mySqlInstance)
 {
 HANDLE hThreads[THREADS_NUMBER];
 QUERYDATA queryData[THREADS_NUMBER] =
 {
 { "select address from clients where id = 3;",
 "", true },
 {"update clients set name='Merrill & Lynch' where id=2;",
 "", false },
 { "select name from clients where id = 2;",
 "", true }
 };
 for (int iIndex = 0; iIndex < THREADS_NUMBER; iIndex++)
 {
 hThreads[iIndex] = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress,
 &queryData[iIndex], 0, 0);
 }

The Concepts of Process and Thread

88

 WaitForMultipleObjects(THREADS_NUMBER, hThreads, TRUE,
INFINITE);
 for (int iIndex = 0; iIndex < THREADS_NUMBER; iIndex++)
 {
 printf_s("%s\n", queryData[iIndex].szResult);
 }
 CMySQL::ReleaseInstance();
 }

 DeleteCriticalSection(&cs);
 return system("pause");
}

How it works...
The previous example demonstrates thread synchronization from the application that operates
over the MySQL database. The example shows only one way to achieve this, while there was
another way to use thread synchronization from Database Management System (DBMS) itself,
using table locks. The important thing here was disabling the thread to read or write in the same
time as another thread was performing either a read or write operation. We assumed that two
out of our three threads have to read, while the third one has to write certain data. You could
assume that after reading, the thread has to signal the main application or some other handler
with the data read, to continue processing. The same thing stands for the thread that has to
write data—it would obtain data from some handler and then perform the necessary operation.
For thread synchronization, we were using a critical section object. A detailed explanation of a
critical section object will be presented in Chapter 3, Managing Threads.

There's more...
As we said earlier, there was another, easier way to synchronize threads while they operate
over the MySQL database. With today's modern MySQL DBMS, we can achieve this using table
locking. Only to give a hint to the user, we will demonstrate one way of performing query from
two threads but at the same time to retain synchronized read and write operations, without
interference from one another:

1. Read thread:
lock table TABLE_NAME read;
select something from TABLE_NAME;
unlock tables;

2. Write thread:
lock table TABLE_NAME write;
insert into TABLE_NAME values(…);

Chapter 2

89

update TABLE_NAME set something;
unlock tables;

3. Both operations from a single thread—others must wait:
lock table TABLE_NAME TABLE_ALIAS read, TABLE_NAME write;
select something from TABLE_NAME as TABLE_ALIAS;
insert into TABLE_NAME values …
unlock tables;

Pay attention that there are many MySQL engine models (InnoDB, MyISAM, Memory, and so
on), and table locking and locks granularity varies between engines.

Implementing threads in user space
There are two ways to implement a thread's package: in the user space and in the kernel.
The choice is moderately controversial and a hybrid implementation, where it is also possible
to use a combination of user and kernel thread.

We will now describe these methods, along with their advantages and disadvantages. The first
method is to put the threads package entirely in the user space. The kernel knows nothing about
them. As far as the kernel is concerned, it is managing ordinary, single-threaded processes. The
first and most obvious advantage is that a user-level threads package can be implemented on
an operating system that does not support threads.

Traditional operating systems used to fall into this category, and even now, some still do. With
this approach, threads are implemented by a library. All of these implementations have the
same general structure. The threads run on top of a runtime system, which is a collection
of procedures that manage threads. We have seen a few of these already (CreateThread,
TerminateThread, and others), but usually, there are more.

The following example will demonstrate thread usage in user space. We want to copy large
files. We don't want to read it entirely first and write it after that. No, it would be more
optimized to read it piece by piece, at the same time writing whatever piece was previously
read. This scenario demonstrates the Producer-Consumer problem, mentioned earlier in
the Interprocess Communication recipe.

Getting ready
Make sure Visual Studio is up and running.

The Concepts of Process and Thread

90

How to do it...
1. Create a new empty Win32 application project and name it ConcurrentFileCopy.

2. Open Solution explorer and add a new header file. Name it ConcurrentFileCopy.h.
Open ConcurrentFileCopy.h and paste the following code:
#pragma once

#include <windows.h>
#include <commctrl.h>
#include <memory.h>
#include <tchar.h>
#include <math.h>

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

ATOM RegisterWndClass(HINSTANCE hInstance);
HWND InitializeInstance(HINSTANCE hInstance, int nCmdShow, HWND&
hWndPB);
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam);
DWORD WINAPI ReadRoutine(LPVOID lpParameter);
DWORD WINAPI WriteRoutine(LPVOID lpParameter);
BOOL FileDialog(HWND hWnd, LPTSTR szFileName, DWORD
dwFileOperation);
DWORD GetBlockSize(DWORD dwFileSize);

#define BUTTON_CLOSE 100
#define FILE_SAVE 0x0001
#define FILE_OPEN 0x0002
#define MUTEX_NAME _T("__RW_MUTEX__")

typedef struct _tagCOPYDETAILS
{
 HINSTANCE hInstance;
 HWND hWndPB;
 LPTSTR szReadFileName;
 LPTSTR szWriteFileName;
} COPYDETAILS, *PCOPYDETAILS;

Chapter 2

91

3. Now, open Solution explorer and add a new source file. Name it
ConcurrentFileCopy.cpp. Open ConcurrentFileCopy.cpp and paste the
following code:
#include "ConcurrentFileCopy.h"

TCHAR* szTitle = _T("Concurrent file copy");
TCHAR* szWindowClass = _T("__CFC_WND_CLASS__");

DWORD dwReadBytes = 0;
DWORD dwWriteBytes = 0;

DWORD dwBlockSize = 0;
DWORD dwFileSize = 0;

HLOCAL pMemory = NULL;

int WINAPI _tWinMain(HINSTANCE hInstance, HINSTANCE hPrev, LPTSTR
szCmdLine, int iCmdShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCmdLine);

 RegisterWndClass(hInstance);

 HWND hWnd = NULL;
 HWND hWndPB = NULL;
 if (!(hWnd = InitializeInstance(hInstance, iCmdShow, hWndPB)))
 {
 return 1;
 }

 MSG msg = { 0 };
 TCHAR szReadFile[MAX_PATH];
 TCHAR szWriteFile[MAX_PATH];

 if (FileDialog(hWnd, szReadFile, FILE_OPEN) && FileDialog(hWnd,
szWriteFile, FILE_SAVE))
 {
 COPYDETAILS copyDetails = { hInstance, hWndPB, szReadFile,
szWriteFile };

 HANDLE hMutex = CreateMutex(NULL, FALSE, MUTEX_NAME);
 HANDLE hReadThread = CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE)ReadRoutine, ©Details, 0, NULL);

The Concepts of Process and Thread

92

 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 CloseHandle(hReadThread);
 CloseHandle(hMutex);
 }
 else
 {
 MessageBox(hWnd, _T("Cannot open file!"),
_T("Error!"), MB_OK);
 }

 LocalFree(pMemory);
 UnregisterClass(szWindowClass, hInstance);
 return (int)msg.wParam;
}

ATOM RegisterWndClass(HINSTANCE hInstance)
{
 WNDCLASSEX wndEx;

 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WndProc;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hInstance;
 wndEx.hIcon = LoadIcon(hInstance,
MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
MAKEINTRESOURCE(IDI_APPLICATION));

 return RegisterClassEx(&wndEx);
}

Chapter 2

93

HWND InitializeInstance(HINSTANCE hInstance, int iCmdShow, HWND&
hWndPB)
{
 HWND hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPED
| WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX, 200, 200, 440, 290,
NULL, NULL, hInstance, NULL);
 RECT rcClient = { 0 };
 int cyVScroll = 0;

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE, FALSE,
 FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH | FF_MODERN,
 _T("Microsoft Sans Serif"));
 HWND hButton = CreateWindow(_T("BUTTON"), _T("Close"), WS_CHILD
| WS_VISIBLE | BS_PUSHBUTTON | WS_TABSTOP, 310, 200, 100, 25,
hWnd, (HMENU)BUTTON_CLOSE, hInstance, NULL);
 SendMessage(hButton, WM_SETFONT, (WPARAM)hFont, TRUE);

 GetClientRect(hWnd, &rcClient);
 cyVScroll = GetSystemMetrics(SM_CYVSCROLL);

 hWndPB = CreateWindow(PROGRESS_CLASS, (LPTSTR)NULL, WS_CHILD |
 WS_VISIBLE, rcClient.left, rcClient.bottom - cyVScroll,
 rcClient.right, cyVScroll, hWnd, (HMENU)0, hInstance, NULL);
 SendMessage(hWndPB, PBM_SETSTEP, (WPARAM)1, 0);

 ShowWindow(hWnd, iCmdShow);
 UpdateWindow(hWnd);

 return hWnd;
}

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_COMMAND:
 {

The Concepts of Process and Thread

94

 switch (LOWORD(wParam))
 {
 case BUTTON_CLOSE:
 {
 DestroyWindow(hWnd);
 break;
 }
 }
 break;
 }
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

DWORD WINAPI ReadRoutine(LPVOID lpParameter)
{
 PCOPYDETAILS pCopyDetails = (PCOPYDETAILS)lpParameter;
 HANDLE hFile = CreateFile(pCopyDetails->szReadFileName,
 GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL);
 if (hFile == (HANDLE)INVALID_HANDLE_VALUE)
 {
 return FALSE;
 }
 dwFileSize = GetFileSize(hFile, NULL);
 dwBlockSize = GetBlockSize(dwFileSize);
 HANDLE hWriteThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)WriteRoutine, pCopyDetails,
 0, NULL);
 size_t uBufferLength = (size_t)ceil((double)
 dwFileSize / (double)dwBlockSize);
 SendMessage(pCopyDetails->hWndPB, PBM_SETRANGE, 0,
 MAKELPARAM(0, uBufferLength));

Chapter 2

95

 pMemory = LocalAlloc(LPTR, dwFileSize);
 void* pBuffer = LocalAlloc(LPTR, dwBlockSize);

 int iOffset = 0;
 DWORD dwBytesRed = 0;

 do
 {
 ReadFile(hFile, pBuffer, dwBlockSize, &dwBytesRed, NULL);
 if (!dwBytesRed)
 {
 break;
 }

 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE,
MUTEX_NAME);
 WaitForSingleObject(hMutex, INFINITE);

 memcpy((char*)pMemory + iOffset, pBuffer, dwBytesRed);
 dwReadBytes += dwBytesRed;

 ReleaseMutex(hMutex);

 iOffset += (int)dwBlockSize;
 } while (true);

 LocalFree(pBuffer);
 CloseHandle(hFile);
 CloseHandle(hWriteThread);
 return 0;
}

DWORD WINAPI WriteRoutine(LPVOID lpParameter)
{
 PCOPYDETAILS pCopyDetails = (PCOPYDETAILS)lpParameter;
 HANDLE hFile = CreateFile(pCopyDetails->szWriteFileName,
GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
NULL);
 if (hFile == (HANDLE)INVALID_HANDLE_VALUE)
 {
 return FALSE;
 }

 DWORD dwBytesWritten = 0;
 int iOffset = 0;

The Concepts of Process and Thread

96

 do
 {
 int iRemainingBytes = (int)dwFileSize - iOffset;
 if (iRemainingBytes <= 0)
 {
 break;
 }

 Sleep(10);
 if (dwWriteBytes < dwReadBytes)
 {
 DWORD dwBytesToWrite = dwBlockSize;
 if (!(dwFileSize / dwBlockSize))
 {
 dwBytesToWrite = (DWORD)iRemainingBytes;
 }

 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE,
MUTEX_NAME);
 WaitForSingleObject(hMutex, INFINITE);

 WriteFile(hFile, (char*)pMemory + iOffset, dwBytesToWrite,
&dwBytesWritten, NULL);
 dwWriteBytes += dwBytesWritten;

 ReleaseMutex(hMutex);

 SendMessage(pCopyDetails->hWndPB, PBM_STEPIT, 0, 0);
 iOffset += (int)dwBlockSize;
 }
 } while (true);

 CloseHandle(hFile);
 return 0;
}

BOOL FileDialog(HWND hWnd, LPTSTR szFileName, DWORD
dwFileOperation)
{
#ifdef _UNICODE
 OPENFILENAMEW ofn;
#else
 OPENFILENAMEA ofn;

Chapter 2

97

#endif
 TCHAR szFile[MAX_PATH];

 ZeroMemory(&ofn, sizeof(ofn));
 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = hWnd;
 ofn.lpstrFile = szFile;
 ofn.lpstrFile[0] = '\0';
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFilter = _T("All\0*.*\0Text\0*.TXT\0");
 ofn.nFilterIndex = 1;
 ofn.lpstrFileTitle = NULL;
 ofn.nMaxFileTitle = 0;
 ofn.lpstrInitialDir = NULL;
 ofn.Flags = dwFileOperation == FILE_OPEN ? OFN_PATHMUSTEXIST |
OFN_FILEMUSTEXIST : OFN_SHOWHELP | OFN_OVERWRITEPROMPT;

 if (dwFileOperation == FILE_OPEN)
 {
 if (GetOpenFileName(&ofn) == TRUE)
 {
 _tcscpy_s(szFileName, MAX_PATH - 1, szFile);
 return TRUE;
 }
 }
 else
 {
 if (GetSaveFileName(&ofn) == TRUE)
 {
 _tcscpy_s(szFileName, MAX_PATH - 1, szFile);
 return TRUE;
 }
 }
 return FALSE;
}

DWORD GetBlockSize(DWORD dwFileSize)
{
 return dwFileSize > 4096 ? 4096 : 512;
}

The Concepts of Process and Thread

98

How it works...
We created a UI pretty much similar to the Philosophers Dinner example. Routines
MyRegisterClass, InitInstance and WndProc are pretty much the same. We added
FileDialog to ask the user for the file path to read from and the file path to write to.
We started two threads in order to read and write, respectively.

Scheduling in operating systems is very complex and a large challenge. As a result of either
the scheduling algorithm or hardware interrupts, we could never know when the thread will
be scheduled for execution on the CPU next! This means that the thread that writes could be
scheduled for execution before the thread that reads. This situation would bring an exception,
because the thread that needs to write has nothing to write.

That's why we added an extra if condition in the write operation, as shown in the
following code:

if (dwBytesWritten < dwBytesRead)
{
WriteFile(hFile, pCharTmp, sizeof(TCHAR) * BLOCK_SIZE,
&dwFileSize, NULL);
dwBytesWritten += dwFileSize;
SendMessage(hProgress, PBM_STEPIT, 0, 0);
}

After a thread obtains a mutex, it can perform a write operation. However, there is a possibility
that it was scheduled before the thread that is reading has, and the buffer might be empty.
Every time the read thread gets something, it adds the number of bytes read to a dwBytesRed
variable, and if the thread that needs to write has written less bytes than bytes read, it can
write. If not, it will skip writing in this cycle and simply release mutex for the other thread.

There's more...
The producer-consumer problem is also known as the bounded-buffer problem. Two processes
share a common, fixed-size buffer. One of them, the producer, puts information into the buffer,
and the other one, the consumer, takes it out. It is also possible to generalize the problem
to have m producers and n consumers, but we will only consider the case of one producer
and one consumer because this assumption simplifies the solution. Trouble arises when the
producer wants to put a new item in the buffer, but it is already full. The solution is for the
producer to go to sleep, and to be awakened when the consumer has removed one or more
items. Similarly, if the consumer wants to remove an item from the buffer and sustains that
the buffer is empty, it goes to sleep until the producer puts something in the buffer and wakes
it up. This approach sounds simple enough, but it leads to the same kind of race conditions as
we saw earlier with the spooler directory. It is left to the reader to try to solve similar situations
using the knowledge obtained here.

Chapter 2

99

Implementing threads in the kernel
The entire kernel is a process with a lot of system (kernel) threads running in its context.
The kernel has a thread table that keeps track of all the threads in the system.

The kernel maintains the traditional process table to keep track of processes. Function calls
that can block a thread are executed as system calls, at much greater cost than the executing
system procedure. When a thread blocks, the kernel must run another thread. When a thread
is destroyed, it is marked as not runnable—but its kernel data structures are not otherwise
affected. Afterwards, when a new thread needs to be created, an old thread is reactivated,
recycling resources for usage. Thread recycling is also possible for user-level threads, but as
the thread management overhead is much smaller, there is less incentive to do this.

Getting ready
For our next example, you will need to install WinDDK—Driver Development Kit. The detailed
explanation can be found in the Appendix. After the successful installation of WinDDK, start
Visual Studio.

How to do it...
1. Create a new empty Win32 application project. Name it KernelThread.

2. Open Solution explorer and add a new header file. Name it ThreadApp.h.
Open ThreadApp.h and paste the following code:
#include <windows.h>
#include <tchar.h>

#define DRIVER_NAME TEXT("TestDriver.sys")
#define DRIVER_SERVICE_NAME TEXT("TestDriver")
#define Message(n) MessageBox(0, TEXT(n), \
 TEXT("Test Driver Info"), 0)

BOOL StartDriver(LPTSTR szCurrentDriver);
BOOL StopDriver(void);

3. Now, open Solution explorer and add a new source file. Name it ThreadApp.cpp.
Open ThreadApp.cpp and paste the following code:
#include "ThreadApp.h"

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR szCommandLine, int iCmdShow)
{
 StartDriver(DRIVER_NAME);

The Concepts of Process and Thread

100

 ShellAbout(0, DRIVER_SERVICE_NAME, TEXT(""), NULL);
 StopDriver();
 return 0;
}
BOOL StartDriver(LPTSTR szCurrentDriver)
{
 HANDLE hFile = 0;
 DWORD dwReturn = 0;
 SC_HANDLE hSCManager = { 0 };
 SC_HANDLE hService = { 0 };
 SERVICE_STATUS ServiceStatus = { 0 };
 TCHAR szDriverPath[MAX_PATH] = { 0 };
 GetSystemDirectory(szDriverPath, MAX_PATH);
 TCHAR szDriver[MAX_PATH + 1];
#ifdef _UNICODE
 wsprintf(szDriver, L"\\drivers\\%ws", DRIVER_NAME);
#else
 sprintf(szDriver, "\\drivers\\%s", DRIVER_NAME);
#endif
 _tcscat_s(szDriverPath, (_tcslen(szDriver) + 1) * sizeof(TCHAR),
szDriver);
 BOOL bSuccess = CopyFile(szCurrentDriver, szDriverPath, FALSE);
 if (bSuccess == FALSE)
 {
 Message("copy driver failed");
 return bSuccess;
 }
 hSCManager = OpenSCManager(NULL, NULL,
SC_MANAGER_CREATE_SERVICE);
 if (hSCManager == 0)
 {
 Message("open sc manager failed!");
 return FALSE;
 }
 hService = CreateService(hSCManager, DRIVER_SERVICE_NAME,
DRIVER_SERVICE_NAME, SERVICE_START | DELETE | SERVICE_STOP,
SERVICE_KERNEL_DRIVER, SERVICE_DEMAND_START, SERVICE_ERROR_IGNORE,
szDriverPath, NULL, NULL, NULL, NULL, NULL);
 if (hService == 0)
 {
 hService = OpenService(hSCManager, DRIVER_SERVICE_NAME,
SERVICE_START | DELETE | SERVICE_STOP);
 Message("create service failed!");
 }
 if (hService == 0)
 {

Chapter 2

101

 Message("open service failed!");
 return FALSE;
 }
 BOOL startSuccess = StartService(hService, 0, NULL);
 if (startSuccess == FALSE)
 {
 Message("start service failed!");
 return startSuccess;
 }
 CloseHandle(hFile);
 return TRUE;
}
BOOL StopDriver(void)
{
 SC_HANDLE hSCManager = { 0 };
 SC_HANDLE hService = { 0 };
 SERVICE_STATUS ServiceStatus = { 0 };
 TCHAR szDriverPath[MAX_PATH] = { 0 };
 GetSystemDirectory(szDriverPath, MAX_PATH);
 TCHAR szDriver[MAX_PATH + 1];
#ifdef _UNICODE
 wsprintf(szDriver, L"\\drivers\\%ws", DRIVER_NAME);
#else
 sprintf(szDriver, "\\drivers\\%s", DRIVER_NAME);
#endif
 _tcscat_s(szDriverPath, (_tcslen(szDriver) + 1) * sizeof(TCHAR),
szDriver);
 hSCManager = OpenSCManager(NULL, NULL,
SC_MANAGER_CREATE_SERVICE);
 if (hSCManager == 0)
 {
 return FALSE;
 }
 hService = OpenService(hSCManager, DRIVER_SERVICE_NAME,
SERVICE_START | DELETE | SERVICE_STOP);
 if (hService)
 {
 ControlService(hService, SERVICE_CONTROL_STOP,
&ServiceStatus);
 DeleteService(hService);
 CloseServiceHandle(hService);
 BOOL ifSuccess = DeleteFile(szDriverPath);
 return TRUE;
 }
 return FALSE;
}

The Concepts of Process and Thread

102

4. Now, open Solution explorer and create a new empty Win32 Console project. Name
it DriverApp.

5. Add a new header file. Name it DriverApp.h. Open DriverApp.h and paste the
following code:
#include <ntddk.h>

DRIVER_INITIALIZE DriverEntry;
DRIVER_UNLOAD OnUnload;

6. Now, open Solution explorer, and under the DriverApp project, add a new source
file. Name it DriverApp.cpp. Open DriverApp.cpp and paste the following code:
#include "DriverApp.h"

VOID ThreadStart(PVOID lpStartContext)
{
 PKEVENT pEvent = (PKEVENT)lpStartContext;
 DbgPrint("Hello! I am kernel thread. My ID is %u. Regards..",
(ULONG)PsGetCurrentThreadId());
 KeSetEvent(pEvent, 0, 0);
 PsTerminateSystemThread(STATUS_SUCCESS);
}
NTSTATUS DriverEntry(PDRIVER_OBJECT theDriverObject,
PUNICODE_STRING theRegistryPath)
{
 HANDLE hThread = NULL;
 NTSTATUS ntStatus = 0;
 OBJECT_ATTRIBUTES ThreadAttributes;
 KEVENT kEvent = { 0 };
 PETHREAD pThread = 0;
 theDriverObject->DriverUnload = OnUnload;
 DbgPrint("Entering KERNEL mode..");
 InitializeObjectAttributes(&ThreadAttributes, NULL,
OBJ_KERNEL_HANDLE, NULL, NULL);
 __try
 {
 KeInitializeEvent(&kEvent, SynchronizationEvent, 0);
 ntStatus = PsCreateSystemThread(&hThread, GENERIC_ALL,
&ThreadAttributes, NULL, NULL, (PKSTART_ROUTINE) &ThreadStart,
&kEvent);
 if (NT_SUCCESS(ntStatus))
 {
 KeWaitForSingleObject(&kEvent, Executive, KernelMode, FALSE,
NULL);

Chapter 2

103

 ZwClose(hThread);
 }
 else
 {
 DbgPrint("Could not create system thread!");
 }
 }
 __except (EXCEPTION_EXECUTE_HANDLER)
 {
 DbgPrint("Error while creating system thread!");
 }
 return STATUS_SUCCESS;
}

VOID OnUnload(PDRIVER_OBJECT DriverObject)
{
 DbgPrint("Leaving KERNEL mode..");
}

How it works...
First, we created a Win32 application but only for demonstration purposes. We won't have
a UI, not even a message loop. We simply want to load a driver into the kernel; then, we will
show the ShellAbout dialog only to give the user time to read the DbgView output (detailed
explanation about DbgView can be found in the Appendix), and after the user closes the
ShellAbout dialog, the driver is unloaded and the application ends.

The Win32 application that we created can only load and unload the driver, so no further
explanation will occur. Now, let's review the DriverApp project. After the proper setting of the
Visual Studio project for driver compilation (detailed explanation about compilation settings for
Visual Studio can be found in the Appendix), we have declared the following two main routines
that every driver must have in the DriverApp.h header file:

DRIVER_INITIALIZE DriverEntry;
DRIVER_UNLOAD OnUnload;

These two routines are the driver entry point and driver unload routine. We will use driver
entry point to initialize a thread object and start the kernel thread. A newly created thread
will only write us a message that will display its unique identifier and will return immediately.
Further, the kernel exploration and development is not part of this book. We only wanted to
give a taste of the kernel thread. As the driver is compiled as /TC2, we had to make sure that
all variables are declared before the first command. This is shown in the following code:

HANDLE hThread = NULL;
NTSTATUS ntStatus = 0;

The Concepts of Process and Thread

104

OBJECT_ATTRIBUTES ThreadAttributes;
KEVENT kEvent = { 0 };
PETHREAD pThread = 0;

Then, we had to set the unload routine:

theDriverObject->DriverUnload = OnUnload;

Now, before we can create the kernel thread, we need to initialize the ThreadAttribute
object by calling the InitializeObjectAttributes routine first:

InitializeObjectAttributes(&ThreadAttributes, NULL,
 OBJ_KERNEL_HANDLE, NULL, NULL);

The kernel development must be performed with extreme caution, because even the smallest
of mistakes can lead to Blue Screen Of Death (BSOD) or a machine crash. That's why we are
using the __try - __except block, which is slightly different from try - catch that we
are used to.

Handles created in the kernel are not the same as handles created in the user
space. The handle returned by PsCreateSystemThread can't be used for the
KeWaitForSingleObject routine. We need to initialize an event that will be signaled
(events will be explained in detail in Chapter 3, Managing Threads) from the thread itself
when KeWaitForSingleObject returns. Every call to PsCreateSystemThread must
have its matching call to the ZwClose routine. A call to ZwClose closes the kernel handle
and prevents memory leaks.

Finally, we need to implement PKSTART_ROUTINE or a thread start address where
instructions for the thread execution will start. An example of this is as follows:

VOID (__stdcall* KSTART_ROUTINE)(PVOID StartContext);

We have passed a pointer to KEVENT via the last parameter of PsCreateSystemThread.
Now, using DbgPrint, we will simply write a message to the user with the corresponding
thread ID. After that, we will set an event so that the corresponding KeWaitForSingleObject
call can return and safely exit the driver. Make sure that PsTerminateSystemThread does
not return. The kernel will clean the thread object on unloading the driver.

There's more...
While the kernel threads solve some problems, they do not solve all of them. For example,
what happens when a multithreaded process creates another multithreaded process? Does
the new process have as many threads as the old one did, or does it have just one? In many
cases, the best choice depends on what the process is planning to do next. If it is going to
start a new program, probably one thread is the correct choice, but if it continues to execute,
reproducing all the threads is probably the right thing to do.

3
Managing Threads

In this chapter we will cover the following topics:

 f Processes versus threads

 f Permissive versus preemptive multitasking

 f Explaining the Windows Thread object

 f Basic thread management

 f Implementing threads without synchronization

 f Using synchronized threads

 f Win32 synchronization objects and techniques

Introduction
To understand thread management better along with how to use threads, we need to
understand three major thread operations: thread creation, termination, and joining to the
parent thread, or simply join. We already said that every process must have at least one
thread—the main thread. So when we refer to a thread, the context can be applied to a
process as well.

Every thread can create another thread. A thread is created using Win32 API
CreateThread. The following is the prototype of the CreateThread API:

HANDLE WINAPI CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,

Managing Threads

106

 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

By creating a separate thread, we are dividing the execution or operation that we need to
perform on separate entities, which may (or may not) be executed concurrently. We intentionally
mentioned may or may not, because we can run a separate thread asynchronously without
blocking the caller (creator), or synchronously when the caller is blocked (waiting) for the calling
thread to complete operation (we often say return). Each time we need to perform a concurrent
task, we somehow need to split the execution in order to execute these independent operations
concurrently. Well, we can achieve this by creating a separate thread.

As with any other task, threads are not meant to run forever. When a thread is created, its
StartAddress must be provided. StartAddress is a pointer to the user-defined routine
where the thread will start its execution. When the routine returns, the thread terminates.
The StartAddress example is as follows:

DWORD WINAPI StartAddress(
 LPVOID lpParameter
);

A thread can be terminated by force, using Win32 API's TerminateThread. This is not the
correct way to terminate a thread, and should be used only when it's absolutely necessary.
This is because the operating system won't release the resources used by the thread properly.

When a thread is terminated, the resources held by the thread are released and the thread's
exit code is set. The thread object is signaled due to its termination, and the process is
terminated if it was the only thread in the process.

By forcefully terminating the thread, we may run into problems such as not freeing the memory
stack, or not cleaning up the resources, and not informing the attached DLLs. The handles held
by the thread are also not closed.

There are many situations when threads need to cooperate with each other. For example,
if thread A needs some output data from thread B (user input or similar), we often say that
thread A needs to wait for thread B. When thread A needs to wait for thread B, we say that
thread B needs to join thread A. This term is used when one execution flow can't continue
until another completes.

Processes versus threads
It is very important to decide properly when to use processes and when to use threads.
One thing that we must be aware of is that a process must have a file loaded from a disk.
We must understand that process is the complete entity which needs to be prepared and
properly used. One more thing about a process is that its creation utilizes a lot of system
resources, so you should use processes only when you need them.

Chapter 3

107

On the other hand, threads are created much faster with less overhead, and loading from a disk
does not occur. You only need to supply the StartAddress pointer, which is a user-defined
routine (function). Do not forget that a process is still needed for stuff such as daemons,
listeners (servers), and the like. However, when talking about smaller concurrent operations,
threads should be your choice in most situations.

As we already used processes and threads in our previous examples, the following example
will demonstrate a big difference when creating and using both.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure using the following steps:

1. Create a new C++ Console application named tmpThread.

2. Open tmpThread.cpp.

3. Add the following code to it:
#include "stdafx.h"
#include <windows.h>
#include <iostream>

using namespace std;

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 cout << "Hello. I am a very simple thread."
 << endl
 << "I am used to demonstrate thread creation."
 << endl;

 return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
 // Thread creation. Pay attention that we only need
 // to define the StartAddress routine in the same code
 // segment as our main function to start thread and
 // perform concurrent operation.
 HANDLE hThread = CreateThread(NULL, 0, StartAddress, NULL, 0,

Managing Threads

108

NULL);

 // Process creation. Pay attention that first argument
 // of CreateProcess points to the file which content
 // needs to be loaded from the disk.
 STARTUPINFO startupInfo = { 0 };
 PROCESS_INFORMATION processInformation = { 0 };

#ifdef _DEBUG
 BOOL bSuccess = CreateProcess(
 TEXT("..//Debug//tmpProcess.exe"), NULL, NULL,
 NULL, FALSE, 0, NULL, NULL, &startupInfo,
 &processInformation);
#else
 BOOL bSuccess = CreateProcess(
 TEXT("..//Release//tmpProcess.exe"), NULL, NULL,
 NULL, FALSE, 0, NULL, NULL, &startupInfo,
 &processInformation);
#endif

 WaitForSingleObject(hThread, INFINITE);
 CloseHandle(hThread);

 return system("pause");
}

4. Create a new C++ Console application named tmpProcess.

5. Open Solution Explorer. Right-click on the tmpThread project. Select Project
Dependencies. In the drop-down list, select tmpThread. In the space below,
check the tmpProcess project.

6. Open tmpProcess.cpp.

7. Add the following code to it:
#include "stdafx.h"
#include <iostream>

int _tmain(int argc, _TCHAR* argv[])
{
 std::cout << "Hello. I am a very simple process."
 << std::endl
 << "I am used to demonstrate process creation."
 << std::endl;

 return 0;
}

Chapter 3

109

How it works...
The previous example is a very simple one. The idea was to show a big difference between the
processes and the creation of threads. To create and use a thread, we need to implement and
supply a routine within the same code segment (it can be implemented in a separate code
segment or even in DLL). However, managing threads in parallel is a complex task. Creation
and process usage is concurrent by definition. We could make it synchronous—by waiting for
a primary thread of process—yet again it is performed on thread level not process.

We'll use another opportunity to point out the biggest difference between processes and
threads. When we are using processes, a good thing is that the process is an entire entity,
along with address space, object contexts, file handles, and a lot more. However, the down
side is that it's greedy—it wants all the resources for itself. Communication between processes
is harder to implement as you can't use addresses (pointers) from one process to another,
since addresses are private.

In the following figure, we see three processes loaded into the physical memory, which are either
ready for execution or executing on the CPU:

With more work for process communication and synchronization—a thread is the most obvious
choice. Compared to processes, threads are friendlier—if properly managed and synchronized,
they can provide parallelism and much faster execution. The advantage for threads is that all
the process resources belong to the common address space. Handles, pointers, and objects
are all available along with a much smaller system overhead in transfers from RAM to the CPU.

Managing Threads

110

In the following figure, we see one process with three threads loaded into the memory.
Its threads are ready to execute on the CPU:

There's more...
You should consider the creation of threads each time the program performs an asynchronous
operation. For example, programs with multiple windows have much to gain from creating a
thread for each window. Another example would be to use a modern word processor, such
as Microsoft Word, with built-in automatic grammar checking. Here, one thread (or several)
is responsible for responding to the activities of the keyboard, another thread to update the
text on the screen, and another one to govern the regular updating of the spare version of
the work file, and so on.

Permissive versus preemptive multitasking
It is good for users to understand the current operating system's implementation regarding
thread behavior, so we will give a short explanation regarding multitasking.

The earlier versions of the Windows operating system prior to Windows 2000 have worked
on the permissive multitasking principle, while the newer versions of the Windows operating
system are implemented on the preemptive multitasking principle.

In permissive multitasking, the operating system is relaying on the fair share of resources.
In other words, the applications return the control to the system, so that another process
(application) could get processor time as well.

Chapter 3

111

In preemptive multitasking, the operating system collectively suspends thread execution, so that
the other threads get equal processor time.

Obviously, preemptive multitasking has the ability to provide a much easier and safer task
execution, with the fact that it does not depend on the processes' good will or programmer's
skill in handing over the control to the system.

Explaining the Windows Thread object
At the operating system level, a thread is an object created by the Object Manager. Like all
the system objects, the thread has attributes (data) and methods (functions). The following
table schematically shows the thread object and gives a list of its attributes and methods.

Most of the methods for threads have adequate Win32 API functions. For example, when
we call SuspendThread, the Win32 subsystem calls the corresponding method Suspend.
In other words, the Win32 API presents a method Suspend for the Win32 applications.

Windows has always protected some internal structures, such as windows or brushes of direct
manipulation. Threads that are executed on a user level can't directly examine or modify the
interior of the system object. It can only be done by calling the adequate Win32 API method
that can do something with an object. Windows provides an identification code that identifies
the object, while the programmers pass the identification code to the function that they need.

Managing Threads

112

Threads have identification codes such as semaphores, events, files, and all objects in
general. Only the Object Manager can change the state of an object. The CreateThread
Win32 API routine that creates a thread returns an identification code for the new object.
With the provided identification code, we can perform the following tasks:

 f Raise or lower the thread priority

 f Pause or resume the thread

 f Terminate the thread

 f Find out the thread exit code

Basic thread management
We are going to implement the thread class to give the user a sense of abstraction of the
thread's implementation, which is useful for a specific problem. We will implement another
helper class CLock, which we will use for synchronized execution if needed.

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure using the following steps:

1. Create a new empty C++ Console application named CThread.

2. Add a new header file named CThread.h.

3. Add the following code to it:
#ifndef _CTHREAD_
#define _CTHREAD_

#include <windows.h>

#define STATE_RUNNING 0x0001
#define STATE_READY 0x0002
#define STATE_BLOCKED 0x0004
#define STATE_ALIVE 0x0008
#define STATE_ASYNC 0x0010
#define STATE_SYNC 0x0020
#define STATE_CONTINUOUS 0x0040

class CLock

Chapter 3

113

{
public:
 CLock();
 ~CLock();
private:
 HANDLE hMutex;
};

class CThread
{
public:
 CThread() : hThread(0), dwThreadId(0), dwState(0),
lpUserData(0), lpParameter(0){ }
 HANDLE Create(LPVOID lpParameter,
 DWORD dwInitialState = STATE_ASYNC, DWORD dwCreationFlag = 0);
 void Join(DWORD dwWaitInterval = INFINITE);
 DWORD Suspend();
 DWORD Resume();
 void SetUserData(void* lpUserData);
 void* GetUserData() const;
 DWORD GetId() const;
 HANDLE GetHandle() const;
 DWORD GetAsyncState() const;
 DWORD GetState() const;
 void SetState(DWORD dwNewState);
 BOOL Alert();
protected:
 virtual void Run(LPVOID lpParameter = 0) = 0;
 LPVOID lpParameter;
private:
 static DWORD WINAPI StartAddress(LPVOID lpParameter);
 HANDLE hThread;
 DWORD dwThreadId;
 DWORD dwState;
 void* lpUserData;
 HANDLE hEvent;
};

inline DWORD CThread::GetId() const
{
 return dwThreadId;
}

inline HANDLE CThread::GetHandle() const

Managing Threads

114

{
 return hThread;
}

#endif

4. Add a new source file named CThread. Open the CThread.cpp file and add the
following code to it:
#include "CThread.h"

CLock::CLock()
{
 hMutex = CreateMutex(NULL, FALSE, TEXT("_tmp_mutex_lock_"));
 WaitForSingleObject(hMutex, INFINITE);
}

CLock::~CLock()
{
 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
}

HANDLE CThread::Create(LPVOID lpParameter, DWORD dwInitialState,
DWORD dwCreationFlag)
{
 dwState |= dwInitialState;
 this->lpParameter = lpParameter;
 if (dwState & STATE_ALIVE)
 {
 return hThread;
 }
 hThread = CreateThread(NULL, 0, StartAddress, this,
dwCreationFlag, &dwThreadId);
 dwState |= STATE_ALIVE;
 if (dwState & STATE_CONTINUOUS)
 {
 hEvent = CreateEvent(NULL, TRUE, FALSE,
 TEXT("__tmp_event__"));
 }
 return hThread;
}

void CThread::Join(DWORD dwWaitInterval)
{
 if (dwState & STATE_BLOCKED)

Chapter 3

115

 {
 return;
 }
 if (dwState & STATE_READY)
 {
 return;
 }
 dwState |= STATE_READY;
 WaitForSingleObject(hThread, dwWaitInterval);
 dwState ^= STATE_READY;
}

DWORD CThread::Suspend()
{
 if (dwState & STATE_BLOCKED)
 {
 return DWORD(-1);
 }
 if (dwState & STATE_READY)
 {
 return DWORD(-1);
 }
 DWORD dwSuspendCount = SuspendThread(hThread);
 dwState |= STATE_BLOCKED;
 return dwSuspendCount;
}

DWORD CThread::Resume()
{
 if (dwState & STATE_RUNNING)
 {
 return DWORD(-1);
 }
 DWORD dwSuspendCount = ResumeThread(hThread);
 dwState ^= STATE_BLOCKED;
 return dwSuspendCount;
}

void CThread::SetUserData(void* lpUserData)
{
 this->lpUserData = lpUserData;
}

void* CThread::GetUserData() const

Managing Threads

116

{
 return lpUserData;
}

DWORD CThread::GetAsyncState() const
{
 if (dwState & STATE_ASYNC)
 {
 return STATE_ASYNC;
 }
 return STATE_SYNC;
}

DWORD CThread::GetState() const
{
 return dwState;
}

void CThread::SetState(DWORD dwNewState)
{
 dwState = 0;
 dwState |= dwNewState;
}

BOOL CThread::Alert()
{
 return SetEvent(hEvent);
}

DWORD WINAPI CThread::StartAddress(LPVOID lpParameter)
{
 CThread* cThread = (CThread*)lpParameter;
 if (cThread->GetAsyncState() == STATE_SYNC)
 {
 if (cThread->dwState & STATE_CONTINUOUS)
 {
 DWORD dwWaitStatus = 0;
 while (TRUE)
 {

Chapter 3

117

 cThread->Run();

 dwWaitStatus = WaitForSingleObject(cThread->hEvent, 10);

 if (dwWaitStatus == WAIT_OBJECT_0)
 {
 break;
 }
 }
 return 0;
 }

 cThread->Run();
 return 0;
 }
 if (cThread->dwState & STATE_CONTINUOUS)
 {
 DWORD dwWaitStatus = 0;
 while (TRUE)
 {
 CLock lock;
 {
 cThread->Run();
 }

 dwWaitStatus = WaitForSingleObject(cThread->hEvent, 10);

 if (dwWaitStatus == WAIT_OBJECT_0)
 {
 break;
 }
 }
 return 0;
 }
 CLock lock;
 {
 cThread->Run();
 }
 return 0;
}

Managing Threads

118

5. Add a new source file main.cpp. Add the following code to it:
#include "CThread.h"

class Thread : public CThread
{
protected:
 virtual void Run(LPVOID lpParameter = 0);
};

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);

void Thread::Run(LPVOID lpParameter)
{
 WNDCLASSEX wndEx = { 0 };

 wndEx.cbClsExtra = 0;
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.cbWndExtra = 0;
 wndEx.hbrBackground = (HBRUSH)COLOR_BACKGROUND;
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wndEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
 wndEx.hInstance = GetModuleHandle(NULL);
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.lpszClassName = (LPCTSTR) this->lpParameter;
 wndEx.lpszMenuName = NULL;
 wndEx.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

 if (!RegisterClassEx(&wndEx))
 {
 return;
 }

 HWND hWnd = CreateWindow(wndEx.lpszClassName,
 TEXT("Basic Thread Management"), WS_OVERLAPPEDWINDOW, 200,
 200, 800, 600, HWND_DESKTOP, NULL, wndEx.hInstance, NULL);

 UpdateWindow(hWnd);
 ShowWindow(hWnd, SW_SHOW);

 MSG msg = { 0 };
 while (GetMessage(&msg, 0, 0, 0))

Chapter 3

119

 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);
}

int main()
{
 Thread thread;
 thread.Create(TEXT("WND_CLASS_1"));

 Thread pthread;
 pthread.Create(TEXT("WND_CLASS_2"));

 thread.Join();
 pthread.Join();

 return 0;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 case WM_CLOSE:
 {
 DestroyWindow(hWnd);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

Managing Threads

120

How it works...
The CThread class is an abstract class with a pure virtual member function, Run. It's
not meant to be used as is; it must be derived first. We will explain it thoroughly. First, we
will declare the class CLock. This class is used for synchronized execution when needed.
Implementation follows in the CThread.cpp file. In the CLock constructor, we try to create
a mutex, or open an existing one. If a mutex is created, the thread that created it does not
take the ownership. This is because FALSE is passed as the second parameter of a call to
the CreateMutex API. A thread that wants a mutex ownership must request it by calling the
WaitForSingleObject function. If a mutex is held by another thread, the thread that wants
the mutex will be blocked, and will wait until the mutex is released. After the operation is
completed, CLock is released and its destructor is called. In the CLock destructor, a mutex is
released and the handle is closed.

For the CThread class, we have defined the following seven macros required for the thread
states and execution methods:

 f STATE_RUNNING: This sets the running flag. It means that the thread is running.

 f STATE_READY: This sets the ready flag. It means that the thread is joining the caller.

 f STATE_BLOCKED: This sets the blocked flag. It means that the thread is suspended.

 f STATE_ALIVE: This sets the alive flag. It means that the thread is created.

 f STATE_ASYNC: This sets the asynchronic flag. It means that the thread will perform
execution concurrently—in other words, the caller won't block until the thread returns.

 f STATE_SYNC: This sets the synchronic flag. It means that the thread will not
perform the execution concurrently—in other words, the caller will block until
the thread returns.

 f STATE_CONTINUOUS: This sets the run forever flag. It means that the thread
will have to do some continuous work that will never stop, or at least not until
the process exit.

The CThread constructor implementation is quite simple; we only need to set the class
attribute's value to zero. The Create method creates the actual thread. The first argument,
lpParameter, must be provided and it will later be passed to the thread, StartAddress,
where it will begin its execution. The second parameter, dwAsyncState, represents the thread
execution method. The parameter is, by default, passed with the STATE_ASYNC value, but the
user can change it to STATE_SYNC, STATE_CONTINUOUS, or both if necessary. If STATE_SYNC
is set, the CLock object is used. The third parameter dwCreationFlag sets the thread state
to zero by default. This means that the thread will start its execution immediately after creation.
It is possible to create a thread in the suspended state by providing the STATE_BLOCKED flag,
which is equivalent to CREATE_SUSPENDED. If the STATE_CONTINUOUS flag is set, the event
object is created, or if it already exists, then the event object is opened. This flag is meant
for stopping the thread that has to run some continuous task in a normal manner, without
terminating it on process exit.

Chapter 3

121

The Join method sets the STATE_READY flag and wait for the thread object to become
signaled, or until the interval dwWaitInterval expires. The dwWaitInterval parameter
is set to INFINITE by default.

The Suspend and Resume methods suspend and resume the thread respectively. The STATE
_BLOCKED flag is set in Suspend and unset in Resume. The thread class has the lpUserData
attribute designed for the future user-specific data to be set if necessary. The SetUserData
and GetUserData methods set and get the user data value respectively. The GetAsyncState
method returns the object asynchronous state.

The GetState and SetState methods get and set the dwState value or object state
respectively. It is meant for additional object state change.

The Alert method changes the event's state to signaled. It is meant for a situation
where STATE_CONTINUOUS is used. If a thread is meant to run a continuous task, there
has to be some mechanism to stop the thread in a normal manner. So when we have one
or more threads running continuously, we only have to call Alert from one thread instance.
It will alert all the threads to stop continuous work and return.

As the class member functions (methods) have a first implicit argument (not shown) this,
we must declare the StartAddress method as static. However, we can pass the object
address (the this pointer) to the StartAddress method and make it behave like a
non-static method using the pure virtual function, Run.

The GetId and GetHandle methods return a unique thread identifier and a thread handle
respectively. Both the methods are implemented as inline routines.

There's more...
We were following the object-oriented approach very precisely in the previous thread
implementation due to code reuse and simplicity of programming. The following topic
will demonstrate the usage of CThread with very little difficulty.

Implementing threads without
synchronization

In a lot of situations, parallel tasks need to occur without depending on each other. Such
situations could happen in an application with more user-interface dialogs. For example, on a
primary application window, there is a list view with customers shown. On another application
window (or application tab), there is a list view with products shown. When we start such an
application, it would be foolish to load the customers first and then the products. We can start
two threads, each responsible for loading the object from the database (the first thread would
load the customers, and the other one would load the products).

Managing Threads

122

Now, let's review a simple example. We have to initialize the main application window and
then need to create four child windows. For each window, we will create a separate thread
with no constraints on system resources—in our example, a brush for painting each window
respectively. Later, in our next example, we will assume that only one brush is available to
demonstrate the synchronizing action.

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure using the following steps:

1. Create a new empty C++ Windows application named AsyncThreads.

2. Add a new source file named AsyncThreads. Open AsyncThreads.cpp.

3. Add the following code to it:
#include "CThread.h"
#include <windowsx.h>
#include <tchar.h>
#include <time.h>

#define THREADS_NUMBER 4
#define WINDOWS_NUMBER 10
#define SLEEP_TIME 500

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);

class Thread : public CThread
{
protected:
 virtual void Run(LPVOID lpParameter = 0);
};

void Thread::Run(LPVOID lpParameter)
{
 // reseed random generator
 srand((unsigned)time(NULL));

 HWND hWnd = (HWND)GetUserData();

Chapter 3

123

 RECT rect;

 // get window's dimensions
 BOOL bError = GetClientRect(hWnd, &rect);
 if (!bError)
 {
 return;
 }

 int iClientX = rect.right - rect.left;
 int iClientY = rect.bottom - rect.top;

 //do not draw if the window does not have any dimensions
 if ((!iClientX) || (!iClientY))
 {
 return;
 }

 // get device context for drawing
 HDC hDC = GetDC(hWnd);

 if (hDC)
 { // draw the ten random figures
 for (int iCount = 0; iCount < WINDOWS_NUMBER; iCount++)
 {
 // set coordinates
 int iStartX = (int)(rand() % iClientX);
 int iStopX = (int)(rand() % iClientX);
 int iStartY = (int)(rand() % iClientY);
 int iStopY = (int)(rand() % iClientY);
 // set the color
 int iRed = rand() & 255;
 int iGreen = rand() & 255;
 int iBlue = rand() & 255;

 // create a solid brush
 HANDLE hBrush = CreateSolidBrush(GetNearestColor(hDC,
RGB(iRed, iGreen, iBlue)));
 HANDLE hbrOld = SelectBrush(hDC, hBrush);

 Rectangle(hDC, min(iStartX, iStopX), max(iStartX, iStopX),
min(iStartY, iStopY), max(iStartY, iStopY));

 // delete the brush

Managing Threads

124

 DeleteBrush(SelectBrush(hDC, hbrOld));
 }

 // release the Device Context
 ReleaseDC(hWnd, hDC);
 }

 Sleep(SLEEP_TIME);

 return;
}

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 WNDCLASSEX wndEx = { 0 };

 wndEx.cbClsExtra = 0;
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.cbWndExtra = 0;
 wndEx.hbrBackground = (HBRUSH)COLOR_BACKGROUND;
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wndEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
 wndEx.hInstance = hThis;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.lpszClassName = _T("async_thread");
 wndEx.lpszMenuName = NULL;
 wndEx.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 HWND hWnd = CreateWindow(wndEx.lpszClassName,
 TEXT("Basic Thread Management"), WS_OVERLAPPEDWINDOW, 200,
 200, 840, 440, HWND_DESKTOP, NULL, wndEx.hInstance, NULL);

 HWND hRects[THREADS_NUMBER];

Chapter 3

125

 hRects[0] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 20, 20, 180,
 350, hWnd, NULL, hThis, NULL);
 hRects[1] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 220, 20, 180,
 350, hWnd, NULL, hThis, NULL);
 hRects[2] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 420, 20, 180,
 350, hWnd, NULL, hThis, NULL);
 hRects[3] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 620, 20, 180,
 350, hWnd, NULL, hThis, NULL);

 UpdateWindow(hWnd);
 ShowWindow(hWnd, SW_SHOW);

 Thread threads[THREADS_NUMBER];
 for (int iIndex = 0; iIndex < THREADS_NUMBER; iIndex++)
 {
 threads[iIndex].Create(NULL, STATE_ASYNC | STATE_CONTINUOUS);
 threads[iIndex].SetUserData(hRects[iIndex]);
 }

 SetWindowLongPtr(hWnd, GWLP_USERDATA, (LONG_PTR)threads);

 MSG msg = { 0 };
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);
 return 0;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_DESTROY:

Managing Threads

126

 {
 PostQuitMessage(0);
 break;
 }
 case WM_CLOSE:
 {
 Thread* pThread = (Thread*)GetWindowLongPtr(hWnd,
 GWLP_USERDATA);
 pThread->Alert();
 for (int iIndex = 0; iIndex < THREADS_NUMBER; iIndex++)
 {
 pThread[iIndex].Join();
 }
 DestroyWindow(hWnd);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

4. Now, copy CThread.h and CThread.cpp to the project directory.

5. Open Solution Explorer and right-click on Header files. Select Add Existing and
add the CThread.h file.

6. Open Solution Explorer and right-click on Source files. Select Add Existing and
add the CThread.cpp file.

How it works...
We are using the CThread class that we've implemented in our previous example. As we
said before, we need to subclass it in order to use it. So, we've created the Thread class
that is derived from CThread. There is a routine, Run, which we must define (implement)
as it was declared abstract.

Let's explain the Run routine. First, we will calculate the window rectangle size. We need
these coordinates in order to sustain what window area to paint. For that purpose, we will
use the GetClientRect API. Then, we will determine the color so that we can create a
proper brush. Now, we need the device context in order to paint. The GetDC API is used.
We will use CreateSolidBrush in addition to the GetNearestColor call to get a known
color. After using the resources, we will free them by calling proper methods such
as DeleteBrush and ReleaseDC respectively.

Chapter 3

127

Let's review the main routine now. First, the WNDCLASSEX object that is needed for the
application window is created, initialized, and registered with the RegisterClassEx call.
After we've created a window with the CreateWindow API, we have to create four child
windows where the threads will perform the paint action. Calls to UpdateWindow and
ShowWindow follow. We will create four thread objects. Next, we'll call its method, Create,
with the STATE_ASYNC and STATE_CONTINUOUS flags merged using the operator, bitwise
OR (|), and then we'll set the user data pointer to the child window handle, which will later
be used to identify the portion of the window that it needs to paint.

The call to SetWindowLongPtr follows. This routine associates certain user data (with the
provided flag GWLP_USERDATA) with the window identified by the first parameter—in our case,
the main application window. The third parameter is meant for a specific user data that needs
to be associated with the window. We will pass the Thread array address, so that we can use
it later in WindowProcedure, after that application enters the message loop.

In WindowProcedure, we are processing only two cases: when the user closes the
application and when the window needs to be destroyed. The case WM_CLOSE is where we
need to wait for threads to safely join. First, we'll obtain the address of the thread array by
calling GetWindowLongPtr, where we saved its address before. As we said before, it is
enough that only one thread calls the method, Alert. All the threads that are listening for
an event signal will receive it. Then, we'll call Join for each thread and exit the program.

There's more...
As you will notice, it is a very simple example with great complements to properly design the
CThread class previously defined. Once again, the object-oriented approach is useful when
you need to take advantage of code reuse.

Using synchronized threads
Contrary to the previous recipe, there are a lot of situations where parallel tasks need to
occur with dependency on each other. Such situations could occur in an application with
a user interface dialog for displaying customers and for the selected customer payment
history. For example, on the application window, there is a list view with customers. Below,
there is a list view with the payment history for a selected customer. When loading the initial
set of customers, we need to display the first customer's (selected on load) payment history.
We'll start one thread for loading the customer list. At the same time, another thread that
is responsible for loading a specific customer payment history will also start. Until the first
customer is loaded, the payment thread must wait for the customer ID.

Now, let's go back to the example from the previous recipe. We'll assume the same situation,
but this time, with limited system resources, we have to initialize the main application window,
and then we need to create four child windows. For each window, we will create a separate
thread; this time, we will have only one brush for painting each window respectively.

Managing Threads

128

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure using the following steps:

1. Create a new empty C++ Windows application named SyncThreads.

2. Add a new source file named SyncThreads. Open SyncThreads.cpp.

3. Add the following code to it:
#include "CThread.h"
#include <windowsx.h>
#include <tchar.h>
#include <time.h>

#define THREADS_NUMBER 4
#define WINDOWS_NUMBER 10
#define SLEEP_TIME 500

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);

class Thread : public CThread
{
protected:
 virtual void Run(LPVOID lpParameter = 0);
};

void Thread::Run(LPVOID lpParameter)
{
 // reseed random generator
 srand((unsigned)time(NULL));

 HWND hWnd = (HWND)GetUserData();
 RECT rect;

 // get window's dimensions
 BOOL bError = GetClientRect(hWnd, &rect);
 if (!bError)
 {

Chapter 3

129

 return;
 }
 int iClientX = rect.right - rect.left;
 int iClientY = rect.bottom - rect.top;

 //do not draw if the window does not have any dimensions
 if ((!iClientX) || (!iClientY))
 {
 return;
 }

 // get device context for drawing
 HDC hDC = GetDC(hWnd);

 if (hDC)
 { // draw the ten random figures
 for (int iCount = 0; iCount < WINDOWS_NUMBER; iCount++)
 {
 // set coordinates
 int iStartX = (int)(rand() % iClientX);
 int iStopX = (int)(rand() % iClientX);
 int iStartY = (int)(rand() % iClientY);
 int iStopY = (int)(rand() % iClientY);
 // set the color
 int iRed = rand() & 255;
 int iGreen = rand() & 255;
 int iBlue = rand() & 255;

 // create a solid brush
 HANDLE hBrush = CreateSolidBrush(GetNearestColor(hDC,
RGB(iRed, iGreen, iBlue)));
 HANDLE hbrOld = SelectBrush(hDC, hBrush);

 Rectangle(hDC, min(iStartX, iStopX), max(iStartX, iStopX),
min(iStartY, iStopY), max(iStartY, iStopY));

 // delete the brush
 DeleteBrush(SelectBrush(hDC, hbrOld));
 }

 // release the Device Context
 ReleaseDC(hWnd, hDC);

Managing Threads

130

 }

 Sleep(SLEEP_TIME);

 return;
}

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 WNDCLASSEX wndEx = { 0 };

 wndEx.cbClsExtra = 0;
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.cbWndExtra = 0;
 wndEx.hbrBackground = (HBRUSH)COLOR_BACKGROUND;
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wndEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
 wndEx.hInstance = hThis;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.lpszClassName = _T("async_thread");
 wndEx.lpszMenuName = NULL;
 wndEx.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 HWND hWnd = CreateWindow(wndEx.lpszClassName,
 TEXT("Basic Thread Management"), WS_OVERLAPPEDWINDOW, 200,
 200, 840, 440, HWND_DESKTOP, NULL, wndEx.hInstance, NULL);

 HWND hRects[THREADS_NUMBER];
 hRects[0] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 20, 20, 180, 350,
 hWnd, NULL, hThis, NULL);
 hRects[1] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 220, 20, 180, 350,
 hWnd, NULL, hThis, NULL);
 hRects[2] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 420, 20, 180, 350,
 hWnd, NULL, hThis, NULL);

Chapter 3

131

 hRects[3] = CreateWindow(_T("STATIC"), _T(""), WS_BORDER |
 WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN, 620, 20, 180, 350,
 hWnd, NULL, hThis, NULL);

 UpdateWindow(hWnd);
 ShowWindow(hWnd, SW_SHOW);

 Thread threads[THREADS_NUMBER];
 for (int iIndex = 0; iIndex < THREADS_NUMBER; iIndex++)
 {
 threads[iIndex].Create(NULL, STATE_SYNC | STATE_CONTINUOUS);
 threads[iIndex].SetUserData(hRects[iIndex]);
 }

 SetWindowLongPtr(hWnd, GWLP_USERDATA, (LONG_PTR)threads);

 MSG msg = { 0 };
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);
 return 0;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 case WM_CLOSE:
 {
 Thread* pThread = (Thread*)GetWindowLongPtr(hWnd,
 GWLP_USERDATA);
 pThread->Alert();
 for (int iIndex = 0; iIndex < THREADS_NUMBER; iIndex++)
 {

Managing Threads

132

 pThread[iIndex].Join();
 }
 DestroyWindow(hWnd);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

4. Now, copy CThread.h and CThread.cpp to the project directory.

5. Open Solution Explorer and right-click on Header files. Select Add Existing and add
the CThread.h file.

6. Open Solution Explorer and right-click on Source files. Select Add Existing and add
the CThread.cpp file.

How it works...
Well, this is almost the same code as before. The only difference being that this code differs
by a single letter. Instead of initializing the threads on creation with STATE_ASYNC, we've
used the STATE_SYNC flag. That's all.

Everything that we need for both our examples was done much before with proper design of
the CThread class.

There's more...
We would like to highlight the power of the object-oriented approach here, as well as the
simplicity of code reuse with proper design of the problem itself. It is important to properly
decide on the major points in your problem before you actually start coding. Sometimes, it is
better to spend a lot of time thinking and designing the solution itself before any line of code
is made. With such an approach, programming becomes a lot easier, especially with the usage
of object-oriented techniques.

Chapter 3

133

Win32 synchronization objects and
techniques

In order for the threads to be executed, they must be scheduled for execution. In order for
them to be executed without interfering with each other, they must be synchronized.

Suppose that one thread creates a brush and then creates several threads that share the
same brush and draw with it. The first thread must not destroy the brush until other threads
have finished drawing. Or, for example, one thread accepts input from the user and writes it
to a file, while another thread reads from the file and processes the text. The thread that
reads can't read if a thread that writes is writing that file. Both situations require a means
of coordination among several threads.

One solution would be to create a global Boolean variable, bDone, which one thread uses to
signal another thread. The thread that writes could set bDone to TRUE, while the thread that
needs to read executes a loop until it finds the indicator bDone changed. Such a mechanism
would work but the thread that executes the loop consumes a lot of CPU time. Instead, the
Windows operating system supports a number of synchronization objects as follows:

 f The mutex object (mutual exclusion) works as a narrow gate where it can take only
one thread at a time

 f The semaphore object works as a gateway where certain number of threads can
pass at one instance of time

 f The event object that broadcasts a public signal, which any thread that listens can
receive (hear)

 f The critical section object works just like a mutex but only within a single process

All of these objects are system objects created by the Object Manager. Although each
synchronization object coordinates with the various interactions, they all work in the same
way. The thread that wants to execute a coordinated operation waits for an answer from one
of these objects and resumes only when it receives it. The dispatcher removes the objects
from a queue, which are in the wait state, to avoid wasting CPU time. When the signal arrives,
the dispatcher allows the thread to continue.

Even the unrelated processes can share mutexes, semaphores, and events. Processes can
coordinate with the shared object's activities as threads can. There are three mechanisms
for distribution. One is inheritance, when a process creates another and the new process
gets a copy of the parent identification codes. Only these identification codes, which are
marked to be inherited when they are created, will be passed (inherited).

Managing Threads

134

Other methods include calling a function to create another ID code for an existing object. Which
routine we call depends on the information that we already have. If we have the identification
codes for the source and the destination processes, we will use the DuplicateHandle API.
If we have the name of the object, we will use one of the Open functions. The two programs can
agree in advance when it comes to the names of objects that they share, or one may refer to
another object name via shared memory or pipes.

Mutexes, semaphores, and events are held in memory until all the processes that own them are
completed, or until all the objects' identification codes are closed with the CloseHandle API.

Synchronization object – mutex
How and when the signal arrives depends on the object. For example, one important feature
of a mutex is that only one thread can own it. A mutex does nothing, except that it allows
ownership for only one thread at a time. If you need a few threads to work with one file,
you can create a mutex to protect the file. When any thread starts an operation on the file,
it must first ask for the ownership of the mutex, and if no other thread is holding the mutex,
the thread gets an ownership. If, on the other hand, some other thread just grabbed the
mutex for itself, the request fails; the thread is blocked and becomes suspended while
waiting to take the ownership of the mutex. When a thread finishes writing, it releases the
mutex, and the waiting thread becomes alive again on receiving the mutex and performs
the requested operations on the file.

A mutex does not protect anything active. It works in the following manner: the threads that
will use it agree to not use a shared object without holding the mutex ownership first. There
is nothing to prevent the threads from attempting to enroll at once. A mutex is a signal, like
the Boolean variable bDone from the previous example. A mutex can be used to protect a
global variable, a hardware port, the identification code for the pipe, or the client area of the
window. Every time multiple threads share a system resource, you should consider using a
mutex for the synchronization, in order to avoid the mutual conflicts.

The following code shows the routines for mutex usage. To create or open an existing mutex
object, you can use CreateMutex:

HANDLE WINAPI CreateMutex(
 LPSECURITY_ATTRIBUTES lpMutexAttributes,
 BOOL bInitialOwner,
 LPCTSTR szName
);

You can set the security attributes or leave them empty for default values. If TRUE is set for
bInitialOwner, the caller gets immediate ownership on the mutex. The mutex name must
be supplied.

Chapter 3

135

It is possible to open an existing mutex using OpenMutex:

HANDLE WINAPI OpenMutex(
 DWORD dwDesiredAccess,
 BOOL bInheritHandle,
 LPCTSTR szName
);

If the mutex does not exist, the routine fails and returns ERROR_FILE_NOT_FOUND.
After the thread finishes its work, it must release the mutex in order for other threads
to get it. The ReleaseMutex API is used:

BOOL WINAPI ReleaseMutex(
 HANDLE hMutex
);

It has one argument—handle to mutex, which was previously returned by CreateMutex
or OpenMutex.

Synchronization object – semaphore
As we said before, a semaphore works like a mutex, with the difference that multiple objects
can hold its ownership. Assume that we need a full logical CPU core for a task, for example,
a complex mathematical calculation. If we use only one thread per core, we can get the proper
result, and if we use more than one thread per core, we won't get proper results. Assume that
we also need more threads than the number of logical cores to work simultaneously.

In such a situation, the semaphore object would be a great choice, because we would set
its maximum value to be the number of logical cores on the machine. While the number of
threads does not exceed the number of cores, they can work concurrently, optimized for the
maximum result. When the number of threads exceeds the number of cores, some of the
threads will be suspended and will wait for another thread to complete.

While only one thread at a time can get the mutex, the semaphore remains signaled until its
acquisition number reaches the maximum number of objects that can hold the ownership of
the semaphore. If a thread tries to wait for the semaphore, it will be suspended until another
thread does not release it.

The following are the routines for semaphore usage. To create or open an existing semaphore
object, you can use CreateSemaphore:

HANDLE WINAPI CreateSemaphore(
 LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
 LONG lInitialCount,
 LONG lMaximumCount,
 LPCTSTR szName
);

Managing Threads

136

You can set the security attributes or leave it empty for the default values. The initial count is
set to determine the initial signaled state of the semaphore. If it is zero, its state is nonsignaled.
It also must be smaller than the lMaximumCount value. The maximum count represents
the maximum number of objects (threads) that can hold ownership at the same time. The
semaphore name must be supplied.

It is possible to open an existing semaphore using OpenSemaphore:

HANDLE WINAPI OpenSemaphore(
 DWORD dwDesiredAccess,
 BOOL bInheritHandle,
 LPCTSTR szName
);

If a semaphore does not exist, the routine fails and returns NULL. After the thread finishes
its work, it must release the semaphore in order for its counter to be decremented, so that
other threads can get it. The ReleaseSemaphore API is used:

BOOL WINAPI ReleaseSemaphore(
 HANDLE hSemaphore,
 LONG lReleaseCount
 LPLONG lpPreviousCount
);

It has three arguments. The first one is the handle to the semaphore, which was previously
returned by CreateSemaphore or OpenSemaphore. The second one is how many objects
the semaphore needs to decrement. Well, usually one, because the thread that releases it
needs to decrement it by one. In a situation where a thread takes the semaphore and then
creates another thread that will also request for the semaphore, and the thread creator
finishes its task before the thread that was created, the newly created thread won't know
that it will forcibly be terminated, so the thread that created it can terminate the child
thread and decrement the semaphore for two.

Synchronization object – event
The event is an object that a program creates when it needs some kind of mechanism for
alerting the thread when some action occurs. In its simplest form—the manual reset event —the
object sets its signal on and off as a response to the two commands SetEvent (signal on) and
ResetEvent (signal off). When the signal is turned on, all the threads that are waiting for the
event will receive it. When the signal is switched off, all the threads that are waiting for an event
are blocked. Unlike a mutex and semaphores, events change their state only when a thread
explicitly sets or resets it.

For example, the manual reset event can be used to allow certain threads to run only when
the program is not painting its window, or only after the user enters certain information.

Chapter 3

137

The automatic reset event always releases only one thread at each signal before resetting.
It could be useful for a program where the main thread prepares data for other working
threads. Each time a new set of data is ready, the main thread sets the event and the working
threads are released. Other working threads remain waiting in a queue to get a new task.

In addition to setting and resetting, the event can be pulsed. A pulse sets a signal for a very
short time and then turns it off. When we pulse a manual reset event, we allow all the threads
that are waiting to continue, and then the event is reset. Pulsing an automatic event allows
only one thread that is waiting to pass, and then resets the event. If no thread is waiting,
neither will pass. Setting an automatic event, on the other hand, will cause the event to
leave its signal while a thread is waiting. As soon as one thread passes, the event it reset.

The following are the routines for event usage. To create or open an existing event object,
you can use CreateEvent or CreateEventEx:

HANDLE WINAPI CreateEvent(
 LPSECURITY_ATTRIBUTES lpEventAttributes,
 BOOL bManualReset,
 BOOL bInitialState,
 LPCTSTR szName
);
HANDLE WINAPI CreateEventEx(
 LPSECURITY_ATTRIBUTES lpEventAttributes,
 LPCTSTR szName,
 DWORD dwFlags,
 DWORD dwDesiredAccess
);

For the CreateEvent API, you can set the security attributes or leave it empty for the
default values. The bManualReset value determines the event object. If the bManualReset
parameter is set to TRUE, ResetEvent must be used to set the object state to nonsignaled.
The bInitialState value sets the state of an event. If the value is set to TRUE, the object
is set to the signaled state immediately. The event name must be supplied.

On the other hand, CreateEventEx works pretty much the same way, only its terminology
is different. Apart from the security attributes, which are the same, you need to supply the
name and value for dwFlags, which have predefined macros for the initial set and manual
reset event types: CREATE_EVENT_INITIAL_SET and CREATE_EVENT_MANUAL_RESET.
The only real difference is that dwDesiredAccess can set the access mask for the event
object. For a complete list of Synchronization Object Security and Access Rights, refer
to MSDN http://msdn.microsoft.com/en-us/library/windows/desktop/
ms686670%28v=vs.85%29.aspx.

Managing Threads

138

It is possible to open an existing event object using OpenEvent:

HANDLE WINAPI OpenEvent(
 DWORD dwDesiredAccess,
 BOOL bInheritHandle,
 LPCTSTR szName
);

If the event does not exist, the routine fails and returns NULL. Calling OpenEvent enables
multiple threads to hold the same event, but only if the event was previously created by
calling CreateEvent or CreateEventEx.

For setting an event object, SetEvent is used:

BOOL WINAPI SetEvent(
 HANDLE hEvent
);

It has one argument—handle to the event object previously created by CreateEvent
and CreateEventEx, or opened by OpenEvent. The manual reset event state remains
signaled until it is explicitly set to nonsignaled, by calling the ResetEvent API.

To reset an event object, ResetEvent is used:

BOOL WINAPI ResetEvent(
 HANDLE hEvent
);

It has one argument—handle to the event object previously created by CreateEvent
and CreateEventEx, or opened by OpenEvent. The manual reset event state remains
nonsignaled until it is explicitly set to signaled, by calling the SetEvent API.

To pulse an event object, PulseEvent is used:

BOOL WINAPI PulseEvent(
 HANDLE hEvent
);

This method sets the event object to the signaled state and then resets it to the nonsignaled
state, releasing a specific number of waiting threads.

Chapter 3

139

Synchronization object – critical section
A critical section performs the same function as a mutex, except that a critical section can't
be shared. It is visible only within a single process. Both the critical section and the mutex
allow only one thread to own it, but critical sections work much faster and with less overhead.

The routines that operate with critical sections do not use the same terminology as the ones
that work with a mutex, but they do mostly the same thing.

Unlike other objects that have been waiting for one of the wait functions, the critical section
object works in a different way. The critical section object enters its unsignaled state.

After it is released, the critical section object enters its signaled state.

In order to use the critical section object, first we need to declare it:

CRITICAL_SECTION cs;

After that, we need to initialize it:

void WINAPI InitializeCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
);

Then, we can use it by asking a thread to enter the critical region by calling the
EnterCriticalSection or TryEnterCriticalSection API:

void WINAPI EnterCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
);
BOOL WINAPI TryEnterCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
);

After the thread finishes its task, it must leave the critical region by calling the
LeaveCriticalSection API:

void WINAPI LeaveCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
);

After that, it needs to free the resources by calling the DeleteCriticalSection API:

void WINAPI DeleteCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
);

4
Message Passing

In this chapter, we will cover the following topics:

 f Explaining Message Passing Interface

 f Understanding a message queue

 f Using the thread message queue

 f Communicating through the pipe object

Introduction
To explain the Message Passing Interface (MPI), we need to understand the operating
system well. As we mentioned in Chapter 1, Introduction to C++ Concepts and Features,
modern Windows operating systems are designed as event-driven systems.

An event-driven system is the one where some action occurs as a response to some signal
sent to the operating system. For example, when you move a mouse, cursor X-coordinate
change and cursor Y-coordinate change events are raised (we say an event is raised,
not occurred). When you press any keyboard key, another event is raised—key pressed and
so on.

At the operating system level, a large numbers of events are raised every few milliseconds,
hidden from the user. Programming without events would be very difficult, especially for
synchronization tasks.

One form of an event is the message at the operating system level. When you press your
left mouse button, the operating system calls the window procedure (event handler) for the
window in which region (area) the click occurred. Parameters that define a message, along
with event-specific details, such as click coordinates, are passed to the window procedure
that's being called.

Message Passing

142

Every application that has a UI must have some form of a window. Top-level windows must
implement top-level window handlers or window procedures, which will handle application
events (messages), for example, button click, window paint, and others.

To be able to process messages for the window, an application must implement the event
handler that the OS will call each time an event is raised. If you remember that every application
must have its primary thread, then you can use the primary thread to process messages from
other threads. In other words, you can use the window procedure from the main application
window to receive messages from other threads to communicate with each other.

There are other ways to pass a message to the thread, such as the PostThreadMessage
API, but the thread to which the message is posted must have created a message queue.
We will explain this approach too, later in this chapter. However, using the window message
queue is much easier, in cases when your application has a UI.

This chapter will explain in detail how to use message passing for various tasks, especially
for synchronization between separate threads.

Explaining the Message Passing Interface
In order to explain message passing in detail we'll discuss the button click. Like any other
control, it belongs to some top-level window, whose procedure is called when a button click
event is raised as a response to the mouse button press.

The following example will demonstrate the basic usage of message handling, responsible
for the mouse move and button-click.

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new empty C++ Win32 project application named basic_MPI.

2. Open Solution Explorer and right-click on Source file. Add the new source file
named basic_MPI. Open basic_MPI.cpp and add the following code to it:
#include <windows.h>
#include <windowsx.h>

Chapter 4

143

#include <tchar.h>

#include <commctrl.h>

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

#define BUTTON_MSG 100
#define BUTTON_CLOSE 101
#define LABEL_TEXT 102

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__basic_MPI_wnd_class__");

 WNDCLASSEX wndEx = { 0 };
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))

Message Passing

144

 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass, _T("Basic Message
Passing Interface"), WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU |
WS_MINIMIZEBOX, 200, 200, 440, 340, NULL, NULL, wndEx.hInstance,
NULL);

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH
 | FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hButtonMsg = CreateWindow(_T("BUTTON"), _T("Show msg"),
 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON | WS_TABSTOP, 190,
 260, 100, 25, hWnd, (HMENU)BUTTON_MSG, wndEx.hInstance, NULL);

 HWND hButtonClose = CreateWindow(_T("BUTTON"), _T("Close me"),
 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON | WS_TABSTOP, 310, 260,
 100, 25, hWnd, (HMENU)BUTTON_CLOSE, wndEx.hInstance, NULL);

 HWND hText = CreateWindow(_T("STATIC"), NULL, WS_CHILD |
 WS_VISIBLE | SS_LEFT | WS_BORDER, 15, 20, 390, 220, hWnd,
 (HMENU)LABEL_TEXT, wndEx.hInstance, NULL);

 SendMessage(hButtonMsg, WM_SETFONT, (WPARAM)hFont, TRUE);
 SendMessage(hButtonClose, WM_SETFONT, (WPARAM)hFont, TRUE);
 SendMessage(hText, WM_SETFONT, (WPARAM)hFont, TRUE);

 ShowWindow(hWnd, iWndShow);
 UpdateWindow(hWnd);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);

Chapter 4

145

 DispatchMessage(&msg);
 }

 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {
 case BUTTON_MSG:
 {
 MessageBox(hWnd, _T("Hello!"), _T("Basic MPI"), MB_OK |
MB_TOPMOST);
 break;
 }
 case BUTTON_CLOSE:
 {
 PostMessage(hWnd, WM_CLOSE, 0, 0);
 break;
 }
 }
 break;
 }

 case WM_MOUSEMOVE:
 {
 int xPos = GET_X_LPARAM(lParam);
 int yPos = GET_Y_LPARAM(lParam);

 TCHAR szBuffer[4096];
 wsprintf(szBuffer,
 _T("\n\n\t%ws\t%d\n\t%ws\t%d"),
 _T("Cursor X position:"), xPos,
 _T("Cursor Y position:"), yPos);

 HWND hText = GetDlgItem(hWnd, LABEL_TEXT);
 SetWindowText(hText, szBuffer);
 break;

Message Passing

146

 }
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }

 return 0;
}

How it works...
The purpose of this example was to demonstrate the basic message passing. You need
to pay close attention to the BUTTON_CLOSE and LABEL_TEXT macros that we defined
earlier. We need them later as child-control identifiers. For a child window, hMenu specifies
the child-window identifier.

The child-control identifier is an integer value used by the window to notify
its parent about events. The application determines the child-window
identifier; it must be unique for all child windows for the same parent
window (from MSDN).

Let's examine the WinMain entry point now. We've created the WNDCLASSEX instance
first and initialized it. After a successful window class registration with subsequent call to
RegisterClassEx, we create a main window, followed by a call to CreateWindow.

Then, we need to create a text label and button control. Button and label are also windows
but with predefined system class (BUTTON, STATIC, and so on). For the complete system
class reference, refer to MSDN at http://msdn.microsoft.com/en-us/library/
windows/desktop/ms632679(v=vs.85).aspx.

After a call to ShowWindow, the application enters its message loop by calling the Win32 API,
GetMessage, in the while loop. When the application closes the top-level window, a call to
GetMessage returns zero (0), and there are no more messages for the application to process.

Chapter 4

147

As opposed to MS-DOS-based applications, Win32 applications are event-driven. They don't
perform explicit function calls to obtain input. Instead, they wait for the system to pass input
to them. The operating system passes all the messages designated for the application to the
application window. The window has a function called a window procedure that the system
calls whenever it has messages for the window. The window procedure processes
the message and returns the control to the system.

Let's focus on WindowProcedure now. We decided to process only two messages: WM_
MOUSEMOVE, which is responsible for mouse move, and WM_COMMAND, which is responsible
for button click. For mouse move, we've used predefined macros, GET_X_LPARAM, to obtain
the x-coordinate, and GET_Y_LPARAM, to obtain the y-coordinate. For button click, we are
using the lower 16 bits from the wParam argument to determine which child control raised
the click. After we determine which control raised an event, we can perform any processing
that we need for that control. In our case, we are using the Show msg button to display a
message box and the Close me button to close the application.

There's more...
Even though there are operating system specialized synchronization objects and routines, it
is very handy and much easier to use window messages for synchronization tasks whenever
possible. For example, if you run a separate thread asynchronously to do some task, you can
use message passing to notify the main thread when the working thread finishes its task. In
the examples to come, we will use message passing for communication between threads.

Understanding a message queue
To understand message passing better, let's review the message queue. Every top-level
window has its own message queue that is created by the operating system. In a multitasking
environment, there are many applications executed at the same time with a lot of windows
displayed on the user's screen. The operating system is processing a very large number
of messages, handling various events raised from the system itself, and running various
applications. At the same time, the user is pressing keyboard keys, clicking the mouse,
or swiping the touch screen.

To demonstrate message passing along with the queue operations, let's review the following
example. Let's assume that we need to perform complex drawings represented with a graphical
plot with four axes. Every axis represents a certain mathematical calculation that needs
graphical representation.

We will create an application where one thread is responsible for a drawing based on
the calculation performed by another thread, while the other thread is responsible for the
calculation. Let's assume that the thread calculation time is smaller than the drawing time
that is needed for a portion of the plot that has to be drawn.

Message Passing

148

We need to implement a message queue, where the threads that perform calculation store
their messages. These threads (producers) are performing the calculations faster than the
draw thread (consumer), which is processing the messages taken from the queue. Each time
the producer finishes its task, it places a message in the queue, which is later processed by
the consumer.

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ Win32 empty project application named queue_MPI.

2. Open Solution Explorer and right-click on Header files. Add an existing header
file CQueue.h from from Chapter 1, Introduction to C++ Concepts and Features.

3. Open Solution Explorer and right-click on Source files. Add a new source file
named queue_MPI. Open queue_MPI.cpp. Add the following code to it:
#include <windows.h>
#include <windowsx.h>
#include <tchar.h>
#include "CQueue.h"
#include <commctrl.h>

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

#define BUFFER_SIZE 4096

#define LABEL_TEXT 100

#define WM_PLOTDATA WM_USER + 1
#define WM_ENDTASK WM_PLOTDATA + 1

#define THREAD_NUMBER 4
#define MAX_MSGCOUNT 10

#define CALCULATION_TIME 1000

Chapter 4

149

#define DRAWING_TIME 2300

#define EVENT_NAME _T("__t_event__")

typedef struct tagPLOTDATA
{
 int value;
 DWORD dwThreadId;
 int iMsgID;
} PLOTDATA, *PPLOTDATA;

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);
DWORD WINAPI StartAddress(LPVOID lpParameter);
DWORD WINAPI DrawPlot(LPVOID lpParameter);

int iMessageID = 0;
HANDLE gEvent = NULL;
HANDLE hThreads[THREAD_NUMBER];
HANDLE hThread = NULL;

CRITICAL_SECTION cs;
CQueue<PLOTDATA> queue;

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 InitializeCriticalSection(&cs);

 TCHAR* szWindowClass = _T("__basic_MPI_wnd_class__");

 WNDCLASSEX wndEx = { 0 };
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);

Message Passing

150

 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass, _T("Basic Message
Passing Interface"), WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU |
WS_MINIMIZEBOX, 200, 200, 440, 300, NULL, NULL, wndEx.hInstance,
NULL);

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
 FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hText = CreateWindow(_T("STATIC"), NULL, WS_CHILD |
 WS_VISIBLE | SS_LEFT | WS_BORDER, 15, 20, 390, 220, hWnd,
 (HMENU)LABEL_TEXT, wndEx.hInstance, NULL);

 SendMessage(hText, WM_SETFONT, (WPARAM)hFont, TRUE);

 ShowWindow(hWnd, iWndShow);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);

Chapter 4

151

 }

 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 WaitForMultipleObjects(THREAD_NUMBER, hThreads, TRUE, INFINITE);

 for (int iIndex = 0; iIndex < THREAD_NUMBER; iIndex++)
 {
 CloseHandle(hThreads[iIndex]);
 }

 WaitForSingleObject(hThread, INFINITE);

 CloseHandle(hThread);
 CloseHandle(gEvent);

 DeleteCriticalSection(&cs);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_CREATE:
 {
 gEvent = CreateEvent(NULL, TRUE, FALSE, EVENT_NAME);

 for (int iIndex = 0; iIndex < THREAD_NUMBER; iIndex++)
 {
 hThreads[iIndex] = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, hWnd, 0, NULL);
 }

 hThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
DrawPlot, hWnd, 0, NULL);
 break;
 }
 case WM_PLOTDATA:

Message Passing

152

 {
 PPLOTDATA pData = (PPLOTDATA)lParam;

 HWND hLabel = GetDlgItem(hWnd, LABEL_TEXT);

 TCHAR szBuffer[BUFFER_SIZE];
 GetWindowText(hLabel, szBuffer, BUFFER_SIZE);

 wsprintf(szBuffer,
 _T("%ws\n\n\tMessage has been received. Msg ID:\t%d"),
 szBuffer, pData->iMsgID);
 SetWindowText(hLabel, szBuffer);

 break;
 }
 case WM_ENDTASK:
 {
 HWND hLabel = GetDlgItem(hWnd, LABEL_TEXT);

 TCHAR szBuffer[BUFFER_SIZE];

 wsprintf(szBuffer,
 _T("\n\n\tPlot is drawn. You can close the window now."));
 SetWindowText(hLabel, szBuffer);
 break;
 }
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }

 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 HWND hWnd = (HWND)lpParameter;

Chapter 4

153

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, EVENT_NAME);

 if (hEvent != NULL)
 {
 SetEvent(hEvent);
 }

 CloseHandle(hEvent);

 int iCount = 0;
 while (iCount++ < MAX_MSGCOUNT)
 {
 // perform calculation
 Sleep(CALCULATION_TIME);

 // assembly result into PLOTDATA structure
 PPLOTDATA pData = new PLOTDATA();
 pData->value = (rand() % 0xFFFF) - iMessageID;
 pData->dwThreadId = GetCurrentThreadId();
 pData->iMsgID = ++iMessageID;

 EnterCriticalSection(&cs);
 queue.Enqueue(pData);
 LeaveCriticalSection(&cs);

 PostMessage(hWnd, WM_PLOTDATA, 0, (LPARAM)pData);
 }

 return 0L;
}

DWORD WINAPI DrawPlot(LPVOID lpParameter)
{
 HWND hWnd = (HWND)lpParameter;

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, EVENT_NAME);

 WaitForSingleObject(hEvent, INFINITE);
 CloseHandle(hEvent);

 int iCount = 0;
 while (iCount++ < MAX_MSGCOUNT * THREAD_NUMBER)
 {
 EnterCriticalSection(&cs);

Message Passing

154

 PPLOTDATA pData = queue.Dequeue();
 LeaveCriticalSection(&cs);

 if (!pData)
 {
 break;
 }

 // perform drawing
 Sleep(DRAWING_TIME);

 HWND hLabel = GetDlgItem(hWnd, LABEL_TEXT);

 TCHAR szBuffer[BUFFER_SIZE];

 wsprintf(szBuffer,
#ifdef _UNICODE
 _T("\n\n\t%ws\t%u\n\t%ws\t%d\n\t%ws\t%d"),
#else
 _T("\n\n\t%s\t%u\n\t%s\t%d\n\t%s\t%d"),
#endif
 _T("Thread ID:"), (DWORD)pData->dwThreadId,
 _T("Current value:"), (int)pData->value,
 _T("Message ID:"), pData->iMsgID);
 SetWindowText(hLabel, szBuffer);

 delete pData;
 }

 PostMessage(hWnd, WM_ENDTASK, 0, 0);

 return 0L;
}

How it works...
First, we need to define certain message values. A message is represented as a unique integer,
larger than the Windows predefined WM_USER value. All the messages larger than the WM_USER
(1024) value are considered application specific (user defined). The first 1024 messages are
used (reserved) by Windows. We decided to define the two messages as follows:

 f WM_PLOTDATA for the calculation thread to inform the main thread that calculation
has been completed

 f WM_ENDTASK to inform the main thread that all the drawing has been completed

Chapter 4

155

In an application entry point, we have created a queue whose elements are references to the
PLOTDATA type or some specific structure that the user has defined. After creating a window,
we will associate the following queue address to the window section for user-specific data that
belongs to the window:

SetWindowLongPtr(hWnd, GWLP_USERDATA, (LONG_PTR) &queue);

Using the GWLP_USERDATA macro as a parameter to set the SetWindowLongPtr API call,
the function associates the address of the queue object in a manner that if you have the window
handle (hWnd), you can always obtain the queue address. After creating the necessary controls,
we need to create four threads for calculation purposes and one thread to draw. Whenever we
need the queue object address, we can obtain it using GetWindowLongPtr as follows:

 CQueue<PLOTDATA>* plotPtr = (CQueue<PLOTDATA>*)
GetWindowLongPtr(hWnd, GWLP_USERDATA);

In order to avoid the complexity of drawing (which is not the topic here), we will set the working
threads to sleep for 1 second, while the draw thread will sleep for 2.3 seconds, only to create
an environment where the consumer is slower than the producer. All the threads have fixed
number of calculations to perform as well as the draw thread to draw.

After each calculation is completed, the PLOTDATA object is created and put into the
queue. The thread then calls the PostMessage API to send (post) a message to the window
procedure specified with the first parameter—the handle to the window. The second parameter
specifies a message to send (post), while the third and fourth parameters are message
specific. If it is a Windows message (less than WM_USER), then its meaning is known; if it is
a user-defined message then both the parameters are left to the user to use. We are using
the lParam parameter to pass the address of a newly created PLOTDATA object so that the
window procedure can display the message ID or any value from the PLOTDATA object that
the user needs.

After the producer creates a message, it places the message into the queue. The draw thread
consumer, on the other hand, is taking the messages from the queue to perform drawing. If a
pointer to the PLOTDATA object is obtained (the queue wasn't empty), the consumer performs
drawing. After a successful drawing, the PLOTDATA object is destroyed in order to avoid memory
leaks. When all the points are drawn and all the messages are processed, the draw thread uses
PostMessage to notify the window procedure about completion.

There's more...
Even though we have used the PostMessage API, we are using the term message is sent
and not the term posted. Why? Well, both the routines send messages; the only difference
is that PostMessage returns without waiting for the callee to process the message. The
SendMessage API does the same thing; it sends the messages, except that it waits while
the callee processes the message, leaving the caller blocked till then. The messages in a
message queue are retrieved using the GetMessage or PeekMessage API.

Message Passing

156

Using the thread message queue
As we said earlier, we can send a message to the thread without creating the window (UI).
In our previous example, we were simply using the message queue created for the thread
because it owns a window. Here, we will explain the ability to pass messages without using
the window message queue.

Due to the simplicity of the example, we will send a message to the thread each time the
user clicks on a button.

An analogy to such a task would be if we want to create an application that will display
information about the weather forecast, we will have two threads: one is responsible for physical
devices such as pressure meter, wind speed meter, and similar, while the other thread needs
to wait for the data collected from the first thread. After it obtains the data, it can process it and
display it to the user.

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new empty C++ Windows application named threadMPI.

2. Open Solution Explorer and right-click on Header files. Add an existing header
file CQueue.h from the Chapter 1, Introduction to C++ Concepts and Features.

3. Open Solution Explorer and right-click on Source file. Add a new source file
named threadMPI. Open threadMPI.cpp.

4. Add the following code to it:
#include <windows.h>
#include <windowsx.h>
#include <tchar.h>
#include "CQueue.h"
#include <commctrl.h>

#pragma comment (lib, "comctl32.lib")

Chapter 4

157

#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

#define BUFFER_SIZE 4096

#define BUTTON_CLOSE 100

#define T_MESSAGE WM_USER + 1
#define T_ENDTASK T_MESSAGE + 1

#define EVENT_NAME _T("__t_event__")

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);
DWORD WINAPI StartAddress(LPVOID lpParameter);

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__basic_MPI_wnd_class__");

 WNDCLASSEX wndEx = { 0 };
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;

Message Passing

158

 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass, _T("Basic Message
Passing Interface"), WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU |
WS_MINIMIZEBOX, 200, 200, 440, 300, NULL, NULL, wndEx.hInstance,
NULL);

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
 FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hButton = CreateWindow(_T("BUTTON"), _T("Send message"),
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON | WS_TABSTOP, 310, 210, 100,
25, hWnd, (HMENU)BUTTON_CLOSE, wndEx.hInstance, NULL);

 SendMessage(hButton, WM_SETFONT, (WPARAM)hFont, TRUE);

 ShowWindow(hWnd, iWndShow);

 HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, EVENT_NAME);

 DWORD dwThreadId = 0;

 HANDLE hThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
StartAddress, hWnd, 0, &dwThreadId);

 SetWindowLongPtr(hWnd, GWLP_USERDATA, (LONG_PTR)&dwThreadId);

 WaitForSingleObject(hEvent, INFINITE);

Chapter 4

159

 CloseHandle(hEvent);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 PostThreadMessage(dwThreadId, T_ENDTASK, 0, 0);
 WaitForSingleObject(hThread, INFINITE);

 CloseHandle(hThread);
 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {
 case BUTTON_CLOSE:
 {
 DWORD* pdwThreadId = (DWORD*)GetWindowLongPtr(hWnd,
GWLP_USERDATA);
 PostThreadMessage(*pdwThreadId, T_MESSAGE, 0, 0);
 break;
 }
 }
 break;
 }
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;

Message Passing

160

 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 MSG msg;
 PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, EVENT_NAME);

 if (hEvent != NULL)
 {
 SetEvent(hEvent);
 }
 CloseHandle(hEvent);

 while (GetMessage(&msg, NULL, 0, 0))
 {
 switch (msg.message)
 {
 case T_MESSAGE:
 {
 // TO DO
 // add some message processing here
 MessageBox(NULL, _T("Hi.\nI've just received a message."),
_T("Thread"), MB_OK);
 break;
 }
 case T_ENDTASK:
 {
 // main thread is exiting
 // return immediately
 return 0L;
 }
 }
 }
 return 0L;
}

Chapter 4

161

How it works...
As in our previous example, and every time we want to use custom messages, we need
to define them first. We will define the following two messages:

 f T_MESSAGE to notify the thread to start its specific task
 f T_ENDTASK to notify the thread that the application is closing, and it needs to

return immediately

As the message queue for the new thread is not created, due to fact that the thread does
not own a window, we need to create it manually. First, we create an event from the thread that
will send messages—producer. The event won't be set until the newly created thread creates
a message queue. We associate the thread ID with the window so that, later, we'll be able to
use it from the window procedure, which we'll use for a simple button-click handling.

Now, we wait for the thread to create a message queue. By calling the PeekMessage API in
the following manner, we are forcing the system to create the message queue:

PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);

After the message queue is created, we can set the event by calling the SetEvent API and
close its handle. The thread then enters its message loop. Subsequent calls to GetMessage
will block the thread until the message is received. When our thread receives a message,
it examines the message identifier and displays a message box. In case of T_MESSAGE, it
displays a message; else, it returns in the case of the T_ENDTASK message.

There's more...
We've mentioned producer and consumer so many times here. Our goal was to point out
the widespread occurrence of consumer/producer problems in everyday tasks. Once again,
a smart designing of the application is more than half the work done. Remember to perform
the application design very carefully, because it is the most important step.

Communicating through the pipe object
Besides message passing, Windows offers other ways to communicate and share data
between processes and threads. One of these ways is the pipe object. Pipe is the object in
memory that the processes use for their communication. The process that creates a pipe
is the pipe server. A process that connects to a pipe is a pipe client. One process writes
information to the pipe, and then another process reads the information from the pipe.

We will implement a small client-server example. One process will be a server; another one
will be a client. The server will run for an infinite period of time. We will use the pipe object
for process communication. Every time the client connects, the server needs to accept the
connection and send a welcome message, while the client needs to receive the server's
welcome message and make a request to the server again by sending a simple message.

Message Passing

162

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new empty C++ Console application named pipe_server.

2. Open Solution Explorer and right-click on Source file. Add a new source file named
pipe_server. Open pipe_server.cpp.

3. Add the following code to it:
#include <windows.h>
#include <stdio.h>
#include <tchar.h>

#define BUFFER_SIZE 4096

DWORD WINAPI StartAddress(LPVOID lpParameter);

int _tmain(void)
{
 LPTSTR szPipename = _T("\\\\.\\pipe\\basicMPI");

 while (TRUE)
 {
 _tprintf(_T("basicMPI: waiting client connection\n"));

 HANDLE hPipe = CreateNamedPipe(szPipename, PIPE_ACCESS_DUPLEX,
 PIPE_WAIT | PIPE_READMODE_MESSAGE | PIPE_TYPE_MESSAGE,
 PIPE_UNLIMITED_INSTANCES, BUFFER_SIZE, BUFFER_SIZE, 0,
 NULL);

 if (hPipe == INVALID_HANDLE_VALUE)
 {
 _tprintf(_T("CreateNamedPipe failed! Error code: [%u]\n"),
GetLastError());
 return 2;
 }

 if (ConnectNamedPipe(hPipe, NULL))
 {

Chapter 4

163

 _tprintf(_T("Connection succeeded.\n"));

 HANDLE hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, hPipe, 0, NULL);

 CloseHandle(hThread);
 }
 }

 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 HANDLE hPipe = (HANDLE)lpParameter;

 PTCHAR szRequest = (PTCHAR)HeapAlloc(GetProcessHeap(), 0,
 BUFFER_SIZE * sizeof(TCHAR));
 PTCHAR szReply = (PTCHAR)HeapAlloc(GetProcessHeap(), 0,
 BUFFER_SIZE * sizeof(TCHAR));
 DWORD dwBytesRead = 0;
 DWORD dwReplyBytes = 0;
 DWORD dwBytesWritten = 0;

 _tprintf(_T("Waiting messages.\n"));

 if (!ReadFile(hPipe, szRequest, BUFFER_SIZE * sizeof(TCHAR),
&dwBytesRead, NULL))
 {
 _tprintf(_T("ReadFile failed! Error code: [%u]\n"),
GetLastError());
 return 2L;
 }

 // do some processing

 _tprintf(_T("Client request:\"%s\"\n"), szRequest);

 _tcscpy_s(szReply, BUFFER_SIZE,
 _T("default answer from server"));

 dwReplyBytes = (_tcslen(szReply) + 1) * sizeof(TCHAR);

 if (!WriteFile(hPipe, szReply, dwReplyBytes, &dwBytesWritten,
NULL))
 {

Message Passing

164

 _tprintf(_T("WriteFile failed! Error code: [%u]"),
GetLastError());
 return 2L;
 }

 FlushFileBuffers(hPipe);
 DisconnectNamedPipe(hPipe);
 CloseHandle(hPipe);

 HeapFree(GetProcessHeap(), 0, szRequest);
 HeapFree(GetProcessHeap(), 0, szReply);

 _tprintf(_T("Success.\n"));

 return 0L;
}

4. Open Solution Explorer and right-click on Add New Project. Create a new empty
C++ Console application named pipe_client.

5. Open Solution Explorer and right-click on Source file. Add a new source file
named pipe_client. Open pipe_client.cpp.

6. Add the following code to it:
#include <windows.h>
#include <stdio.h>
#include <tchar.h>

#define BUFFER_SIZE 4096

int _tmain(void)
{
 TCHAR szBuffer[BUFFER_SIZE];
 DWORD dwRead = 0;
 DWORD dwWritten = 0;
 DWORD dwMode = PIPE_READMODE_MESSAGE;
 LPTSTR szPipename = _T("\\\\.\\pipe\\basicMPI");
 LPTSTR szMessage = _T("Message from client.");
 DWORD dwToWrite = _tcslen(szMessage) * sizeof(TCHAR);

 HANDLE hPipe = CreateFile(szPipename, GENERIC_READ |
 GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);

 WaitNamedPipe(szPipename, INFINITE);

 SetNamedPipeHandleState(hPipe, &dwMode, NULL, NULL);

 if (!WriteFile(hPipe, szMessage, dwToWrite, &dwWritten, NULL))

Chapter 4

165

 {
 _tprintf(_T("WriteFile failed! Error code: [%u]\n"),
GetLastError());
 return -1;
 }

 _tprintf(
 _T("Message sent to server, receiving reply as follows:\n"));

 while (ReadFile(hPipe, szBuffer, BUFFER_SIZE * sizeof(TCHAR),
&dwRead, NULL) && GetLastError() != ERROR_MORE_DATA)
 {
 _tprintf(_T("%s"), szBuffer);
 }

 _tprintf(_T("\nSuccess!\nPress ENTER to exit."));
 scanf_s("%c", szBuffer);

 CloseHandle(hPipe);

 return 0;
}

How it works...
Let's explain the server first. In order to use the pipe object, we need to create one first
using the CreateNamedPipe API. The pipe name must be unique. The name must have
the \\.\pipe\pipename format. Following is an example:

HANDLE hPipe = CreateNamedPipe(szPipename, PIPE_ACCESS_DUPLEX, PIPE_
WAIT | PIPE_READMODE_MESSAGE | PIPE_TYPE_MESSAGE, PIPE_UNLIMITED_
INSTANCES, BUFFER_SIZE, BUFFER_SIZE, 0, NULL);

For a complete reference of the CreateNamedPipe API, refer to MSDN at http://msdn.
microsoft.com/en-us/library/windows/desktop/aa365150%28v=vs.85%29.aspx.

Our server must run forever in order to process the requests, so we will execute it in an infinite
loop followed by a call to ConnectNamedPipe. This call enables the pipe server to wait for
a client to connect to the pipe. In other words, if the handle to the pipe object was obtained
without specifying FILE_FLAG_OVERLAPPED in CreateNamedPipe, the function does not
return until the client is connected. When the client connects, the execution continues. We will
create a thread that will process the client request, while the main thread will be ready for the
next request concurrently.

Message Passing

166

Now, let's review request processing. After we've obtained a handle to the pipe, we need
to allocate enough heap memory for the request as well as for the response. We will use
ReadFile to read from the other end of the pipe and then do some processing. The
response is sent using WriteFile in the following manner:

WriteFile(hPipe, szReply, dwReplyBytes, &dwBytesWritten, NULL);

The first parameter is the pipe handle. Next goes the address of the buffer where the message
is stored. Then, we need to specify the number of bytes we need to write. The address of the
buffer for the bytes written comes next. The final parameter is the address of the OVERLAPPED
object, which we could use for asynchronous operations with WriteFile. After we have written
to the other end of the pipe, we need to flush the buffers, disconnect from the pipe, and close
the pipe handle from here and not from the thread that created the pipe. We do this because
the main thread opens the pipe for one client. If another request arrives, while the first isn't
processed yet, the main thread will create another thread to process the new request. In such
implementations, the thread responsible to process requests will take care of open handles.

Now, let's review the client: We can open the pipe in two ways: using CreateFile or the
CallNamedPipe API. The client needs to wait for the server until the pipe is available. The
execution will continue when the server calls ConnectNamedPipe, and then the thread gets
suspended. We are using WriteFile and ReadFile in the same manner like we did in the
server process. When all the processing is done, we must close the pipe handle.

There's more...
All the techniques shown in this chapter have their advantages and disadvantages. Proper
understanding of each of these techniques will give the user the ability to use them in
conjunction with each other and create the best possible solutions. The following chapters
will demonstrate practical usage of these techniques in order to gain the best results.

5
Thread Synchronization

and Concurrent
Operations

In this chapter, we will cover the following topics:

 f Pseudoparallelism

 f Process and thread priority

 f The Windows dispatcher object and scheduling

 f Using mutex

 f Using semaphore

 f Using events

 f Using critical section

 f Using pipes

Introduction
In order to understand concurrent execution on different processors, we need to distinguish
hardware parallelism and pseudoparallelism. Modern processors have more than one
physical core for processing and these cores can process and compute in parallel, while
older processors have only one core for processing and it is not always possible to get proper
parallel execution.

Furthermore, we will take a short look at Windows scheduling priority, which is necessary
when we need to perform tasks with different priorities.

Thread Synchronization and Concurrent Operations

168

By the end of the chapter, we will use and compare all previously explained synchronization
techniques in order to conclude what we have learned so far.

Pseudoparallelism
As we said before, modern processors have more than one physical core, and parallel
processing is their native feature. What about older ones? Is it possible to create parallel
execution in a single core environment?

Let's give a simple example: suppose we need to calculate a certain mathematical equation.
We will calculate the sum that will be implemented as loop with x iterations. In every iteration,
certain expressions are calculated.

When we create a program, where one thread will execute a certain task, the calculation
time necessary for the task execution is finite. Now let's assume that its value is t. If we split
the execution between two threads, where the first thread will calculate the first half of the
sum of the iterations and the second thread will calculate the other half of the sum of the
iterations, will we get faster execution and the time approximate to t/2?

Well, on a single core processor, the answer is no, because the operating system schedules
both threads for execution, but there is no hardware to support such executions. Since there
is only one core, only one thread can be executed on the CPU at any given instant of time.

It is important to understand that creating threads won't always provide benefits. What if we split
some task into eight threads and tried to execute the program on a single core CPU? We would
only slow down the process because unnecessary thread creation occurs, so division of the task
and separate executions will only waste time. If we add synchronization to such a program, we
will waste a lot of time on waiting between threads when only one thread can run.

Pseudoparallelism is a very important operating system feature. It gives you an illusion that
all tasks (programs) are executed in parallel. For example, while you type in Microsoft Word,
you can play Winamp, print a file, and burns DVD at the same time. Either on a single core or
on multiple cores, all these tasks are divided into separate threads, which are scheduled by
the operating system for execution. Switching quickly among threads, the operating system
creates an illusion that all these threads are executed concurrently.

Understanding process and thread priority
To be able to work with threads, you need to know more than just how to create or terminate a
thread. It's required that threads interact effectively, which demands proper time control. Time
control has two forms: priority and synchronization. Priority controls how often a thread gets
the CPU for execution, while synchronization controls thread competition for shared resources,
and gives the sequence where threads must perform tasks in a specific order.

Chapter 5

169

When one thread finishes, the scheduler looks for the next thread that will be executed. While
selecting the next thread, the threads with higher priority have an advantage. Some activities
such as response to sudden power loss are always executed with higher priority. Elements that
perform system interrupts have a higher priority than user processes. The bottom line is that
every process has a priority rating list, and thread base priority comes from the owning process.

As we've seen before, thread object attributes include the base and dynamic priority. When
we use commands for changing priority, we can only change the base priority. Still, it is not
possible to change the thread priority by more than two levels, either two levels above or two
levels below. That is because the thread can't be more important than its parent process.
Though the process can't change its thread priority by more than two steps, the system can.
The system allows some kind of improvement—dynamic priority—to the threads that need to
execute some important operations. When the user performs some action in the application
window such as a key stroke or a mouse click, the system always increases the window
owning thread priority. When the thread that waits for data from hard drive gets the data,
the system increases the priority for that thread too. These temporary priority improvements,
when added to base priority, form the dynamic priority. The dispatcher, or the element
responsible for scheduling, chooses the next thread based on the dynamic priority.
The base and dynamic priority are shown in the following figure:

Thread Synchronization and Concurrent Operations

170

Decreasing the dynamic priority starts immediately after completion of the task. Dynamic
priority decreases one step each time when the thread receives requested time on the CPU,
and finally stabilizes on the base priority.

The following example will demonstrate the basic use of the process and thread priority. We
will create an application where the main thread will own the main window, while another
thread will be responsible for drawing random figures. It is important that the main thread has
at least one step higher priority than the drawing thread. This is required because the main
thread must respond to any user input, such as moving or minimizing the window or closing
the application.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure.

1. Create a new C++ Win32 empty project application named basic_priority.

2. Open Solution Explorer and right-click on Source file. Add a new source file named
basic_priority. Open basic_priority.cpp.

3. Add the following code:
#include <windows.h>
#include <windowsx.h>
#include <time.h>
#include <tchar.h>
#include <math.h>
#include <commctrl.h>

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

#define RESET_EVENT _T("__tmp_reset_event__")
#define WINDOW_WIDTH 800
#define WINDOW_HEIGHT 600

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);
DWORD WINAPI StartAddress(LPVOID lpParameter);
void DrawProc(HWND hWnd);

Chapter 5

171

unsigned GetNextSeed(void);

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__priority_wnd_class__");

 WNDCLASSEX wndEx = { 0 };

 wndEx.cbSize = sizeof(WNDCLASSEX);

 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, RESET_EVENT);

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass,
 _T("Basic thread priority"), WS_OVERLAPPED | WS_CAPTION
 | WS_SYSMENU | WS_MINIMIZEBOX, 50, 50, WINDOW_WIDTH,
 WINDOW_HEIGHT, NULL, NULL, wndEx.hInstance, NULL);

 if (!hWnd)
 {

Thread Synchronization and Concurrent Operations

172

 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH
 | FF_MODERN, _T("Microsoft Sans Serif"));

 ShowWindow(hWnd, iWndShow);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 CloseHandle(hEvent);

 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_CREATE:
 {
 DWORD dwThreadId = 0;
 SetThreadPriority(GetCurrentThread(),
 THREAD_PRIORITY_NORMAL);
 HANDLE hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, hWnd,
 0, &dwThreadId);(LONG_PTR)dwThreadId);

 Sleep(100);
 CloseHandle(hThread);
 break;
 }
 case WM_CLOSE:
 {

Chapter 5

173

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE,
 RESET_EVENT);
 SetEvent(hEvent);
 DWORD dwThreadId = (DWORD) GetWindowLongPtr(hWnd,
 GWLP_USERDATA);
 HANDLE hThread = OpenThread(THREAD_ALL_ACCESS, FALSE,
 dwThreadId);

 WaitForSingleObject(hThread, INFINITE);
 CloseHandle(hThread);

 DestroyWindow(hWnd);
 break;
 }
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 HWND hWnd = (HWND)lpParameter;

 SetThreadPriority(GetCurrentThread(),
 THREAD_PRIORITY_BELOW_NORMAL);
 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, RESET_EVENT);

 DWORD dwWaitResult(1);
 while (dwWaitResult != WAIT_OBJECT_0)
 {
 dwWaitResult = WaitForSingleObject(hEvent, 100);
 DrawProc(hWnd);
 }

 CloseHandle(hEvent);

Thread Synchronization and Concurrent Operations

174

 return 0L;
}

void DrawProc(HWND hWnd)
{
 int iTotal = 10;

 srand(GetNextSeed());

 HDC hDC = GetDC(hWnd);
 if (hDC)
 {
 for (int iCount = 0; iCount < iTotal; iCount++)
 {
 int iStartX = (int)(rand() % WINDOW_WIDTH);
 int iStopX = (int)(rand() % WINDOW_WIDTH);
 int iStartY = (int)(rand() % WINDOW_HEIGHT);
 int iStopY = (int)(rand() % WINDOW_HEIGHT);

 int iRed = rand() & 255;
 int iGreen = rand() & 255;
 int iBlue = rand() & 255;

 HANDLE hBrush = CreateSolidBrush(GetNearestColor(hDC,
RGB(iRed, iGreen, iBlue)));
 HANDLE hbrOld = SelectBrush(hDC, hBrush);

 Rectangle(hDC, min(iStartX, iStopX), max(iStartX, iStopX),
min(iStartY, iStopY), max(iStartY, iStopY));

 DeleteBrush(SelectBrush(hDC, hbrOld));
 }
 ReleaseDC(hWnd, hDC);
 }
}

unsigned GetNextSeed(void)
{
 static unsigned seed = (unsigned)time(NULL);
 return ++seed;
}

Chapter 5

175

How it works...
When we call the CreateWindow or CreateWindowEx function, the system sends a
WM_CREATE message to the window message queue before the function returns. The window
procedure of the created window receives a message only after the window is created and
also before the window becomes visible. That's why we need to create an event before a call
to CreateWindow is made.

When WindowProcedure receives a WM_CREATE message, we will set the main thread
priority to NORMAL (which is default) and then we'll create another thread, responsible for
drawing. After that thread is created, we will associate its identifier into the window section
for user-specific data that belongs to the window by using the following code:

SetWindowLongPtr(hWnd, GWLP_USERDATA, (LONG_PTR) &dwThreadId);

Then main thread waits for 0.1 second in order for a newly created thread to start execution,
and after that its handle can be closed. Now, let's examine the StartAddress thread
routine. The main window handle is passed as an argument, so we need to cast the
LPVOID type to the HWND type. Now, we will set the thread priority to one step below normal
(THREAD_PRIORITY_BELOW_NORMAL) because it is necessary that the main thread has
at least one step higher priority than the drawing thread. Let's explain this: suppose a user
expects an application to be responsive all the time. In this example, our working thread has
a very simple job to execute: it draws rectangles, with a 0.1 second pause between each
10 rectangles. In another situation, where the working thread should calculate a Fourier
series with large number of iterations for example, the application won't be responsive if
the thread that calculates has equal or higher priority than the main thread. This happens
because the dispatcher selects the next thread for execution, based on its priority and
scheduling algorithm. If the main thread has less priority than the working thread, then the
working thread has more priority and the application won't be responsive to the user input
immediately. It will still process the user input, but after the working thread gets its time on
CPU, which will result in slow application behavior. After setting its priority, the thread enters
an infinite loop where it draws rectangles until the user closes the application.

A Fourier series is a representation of a periodic function usually
presented as an infinite sum of sines and cosines. It has many
applications in cryptography, speech recognition, handwriting,
and so on.

Let's now focus on the DrawProc drawing routine. After calling the srand function to reseed
the random generator, we need to obtain a device context to draw in. Then we will take random
coordinates, which are within the boundaries of the application window and a random color
to draw an actual rectangle. The GetNextSeed routine sets the seed value to the current
timestamp, when called for the first time, as static variables are initialized only once, and
after that, we'll simply increment its value by one ensuring a unique value each time.

Thread Synchronization and Concurrent Operations

176

When the user wants to close the application, we will open an event and set its state to
signaled. In that way, the thread will exit on the next call to WaitForSingleObject.
Then we will obtain the working thread identifier that is associated with the main window
and wait for its exit using the WaitForSingleObject wait function.

There's more...
We may conclude that if we set high priority for a thread, the application will execute faster.
Well, this is incorrect. Pay attention that if you increase the priority for various applications
(whether it is process or thread priority) a lot, the system will devote a lot of time for those
threads, but it won't be able to perform its own tasks, resulting in a slow or even unresponsive
system. If you open the Task Manager, you will see that only few windows' processes are
running on a higher priority than NORMAL. Usually those are dwm.exe (Desktop Window
Manager) and taskmgr.exe (Windows Task Manager). Windows too sets desktop processes
with higher priority to be able to respond to user commands, just like our application that
prefers user input over drawing (calculating). You must use priority with caution, and our
advice is to increase priority only when you must.

The Windows dispatcher object and
scheduling

As we've previously learned, in order to choose the next thread for execution, the dispatcher
selects threads from the queue, starting from a higher priority down to lower priority. However,
the queue does not contain all the threads. Some of them are suspended or blocked. We
previously said that there are three states, Running, Ready, and Blocked. These were basic
condition states. Now, let's expand these states and explain them all.

At any instant, a thread can be in one of the following states:

 f Ready: It resides in the queue waiting for execution

 f Standby: It is next for execution

 f Running: It is executing on the CPU

 f Waiting: It isn't executing—it is waiting for a resume signal

 f Transition: It is to be executed just as soon as the system loads its context

 f Terminated: It is done executing, but the object hasn't been deleted yet

When dispatcher selects the next thread for execution, the system loads its context into
memory. The context includes a series of values such as machine register values, kernel
stack, environment block, and user stack residing in the process address space, even though
a part of the context was swapped to the disk, thread enters transition state, while the system
collects parts. Switching threads means saving all parts of the context and loading all context
parts of the next thread.

Chapter 5

177

The newly loaded thread executes some part of the time, which is called a quantum. The
system maintains a counter that measures the current time. For each clock tick the system
decrements the counter by a certain value. When the counter reaches zero, the dispatcher
performs context switching, and sets up the next thread for execution.

Using mutex
One of the Windows synchronization objects is mutex. We use mutex when we want to acquire
exclusive access to some shared object. We also use mutex when we want to protect some
part of the code, to be executed by one thread at a time.

In our following example, we will ask the user to provide a text file with six integer coordinates
on each line in order to calculate a system of two linear equations:

a x+b y=c
1 1 1

a x+b y=c
2 2 2

We will also use the CQueue class, previously implemented in Chapter 1, Introduction to C++
Concepts and Features. Our task is to load all the values from the file, and then each group of
coordinates will be added to the queue. When each group is loaded, we will start some number
of threads to calculate concurrently. Important decisions to make here are how many threads
we should start, and what areas of code we should protect and synchronize.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new empty C++ Windows application named concurrent_operations.

2. Open Solution Explorer and right-click on Header file. Add the existing header file,
used in Chapter 1, Introduction to C++ Concepts and Features, named CQueue.h.

3. Open Solution Explorer and right-click on Header file. Add a new header file named
main. Open main.h.

Thread Synchronization and Concurrent Operations

178

4. Add the following code:
#pragma once

#include <windows.h>
#include <commctrl.h>
#include <tchar.h>
#include <psapi.h>
#include <strsafe.h>
#include <string.h>
#include <sstream>
#include <fstream>
#include <commdlg.h>
#include "CQueue.h"

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

using namespace std;

#define CONTROL_BROWSE 100
#define CONTROL_START 101
#define CONTROL_RESULT 103
#define CONTROL_TEXT 104
#define CONTROL_PROGRESS 105

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);
DWORD WINAPI StartAddress(LPVOID lpParameter);
BOOL FileDialog(HWND hWnd, LPSTR szFileName);

typedef struct
{
 int iA1;
 int iB1;
 int iC1;
 int iA2;
 int iB2;
 int iC2;
 HWND hWndProgress;
 HWND hWndResult;
} QueueElement, *PQueueElement;

Chapter 5

179

5. Open Solution Explorer and right-click on Source file. Add a new source file named
main. Open main.cpp.

6. Add the following code:
#pragma once

/**
* You need to specify text file with coordinates. *
* Our example will solve system of 2 linear equations *
* a1x + b1y = c1; *
* a2x + b2y = c2; *
* *
* Each line should have exactly six coordinates. *
* File format example: *
* *
* 4 -3 2 -7 5 6 *
* 12 1 -7 9 -5 8 *
* *
* Avoid new line at the end of the file. *
***/
#include "main.h"

char szFilePath[MAX_PATH] = { 0 };
char szResult[4096];
CQueue<QueueElement> queue;
TCHAR* szMutex = _T("__mutex_132__");

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev,
 LPTSTR szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__concurrent_operations__");
 WNDCLASSEX wndEx = { 0 };

 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

Thread Synchronization and Concurrent Operations

180

 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass,
 _T("Concurrent operations"), WS_OVERLAPPED
 | WS_CAPTION | WS_SYSMENU, 50, 50, 305, 250, NULL, NULL,
 wndEx.hInstance, NULL);

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH
 | FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hLabel = CreateWindow(_T("STATIC"),
 _T(" Press \"Browse\" and choose file with coordinates: "),
 WS_CHILD | WS_VISIBLE | SS_CENTERIMAGE | SS_LEFT | WS_BORDER,
 20, 20, 250, 25, hWnd, (HMENU)CONTROL_TEXT, wndEx.hInstance,
 NULL);
 SendMessage(hLabel, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hResult = CreateWindow(_T("STATIC"), _T(""), WS_CHILD |
 WS_VISIBLE | SS_LEFT | WS_BORDER, 20, 65, 150, 75, hWnd,
 (HMENU)CONTROL_RESULT, wndEx.hInstance, NULL);
 SendMessage(hResult, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hBrowse = CreateWindow(_T("BUTTON"), _T("Browse"), WS_CHILD
| WS_VISIBLE

Chapter 5

181

 | BS_PUSHBUTTON, 190, 65, 80, 25, hWnd, (HMENU)CONTROL_BROWSE,
wndEx.hInstance, NULL);
 SendMessage(hBrowse, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hStart = CreateWindow(_T("BUTTON"), _T("Start"), WS_CHILD |
WS_VISIBLE
 | BS_PUSHBUTTON, 190, 115, 80, 25, hWnd, (HMENU)CONTROL_START,
wndEx.hInstance, NULL);
 SendMessage(hStart, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hProgress = CreateWindow(PROGRESS_CLASS, _T(""), WS_CHILD |
WS_VISIBLE
 | WS_BORDER, 20, 165, 250, 25, hWnd, (HMENU)CONTROL_PROGRESS,
wndEx.hInstance, NULL);
 SendMessage(hProgress, PBM_SETSTEP, (WPARAM)1, 0);
 SendMessage(hProgress, PBM_SETPOS, (WPARAM)0, 0);

 ShowWindow(hWnd, iWndShow);

 HANDLE hMutex = CreateMutex(NULL, FALSE, szMutex);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 CloseHandle(hMutex);
 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 case WM_COMMAND:

Thread Synchronization and Concurrent Operations

182

 {
 switch (LOWORD(wParam))
 {
 case CONTROL_BROWSE:
 {
 if (!FileDialog(hWnd, szFilePath))
 {
 MessageBox(hWnd,
 _T("You must choose valid file path!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 else
 {
 char szBuffer[MAX_PATH];
 wsprintfA(szBuffer,
 "\n File: %s Press \"Start\" now.",
 strrchr(szFilePath, '\\') + 1);

 SetWindowTextA(GetDlgItem(hWnd, CONTROL_TEXT),
szBuffer);
 }
 break;
 }
 case CONTROL_START:
 {
 if (!*szFilePath)
 {
 MessageBox(hWnd,
 _T("You must choose valid file path first!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 break;
 }

 ifstream infile(szFilePath);

 if (infile.is_open())
 {
 string line;
 while (std::getline(infile, line))
 {
 QueueElement* pQElement = new QueueElement();
 istringstream iss(line);

 if (!(iss >> pQElement->iA1 >> pQElement->iB1 >>
pQElement->iC1 >> pQElement->iA2 >> pQElement->iB2 >> pQElement-
>iC2))

Chapter 5

183

 {
 break;
 }

 pQElement->hWndProgress = GetDlgItem(hWnd,
 CONTROL_PROGRESS);
 pQElement->hWndResult = GetDlgItem(hWnd,
 CONTROL_RESULT);

 queue.Enqueue(pQElement);
 }
 infile.close();

 SendMessage(GetDlgItem(hWnd, CONTROL_PROGRESS),
 PBM_SETRANGE, 0, MAKELPARAM(0, queue.Count()));

 SYSTEM_INFO sysInfo;
 GetSystemInfo(&sysInfo);
 for (DWORD dwIndex = 0; dwIndex <
 sysInfo.dwNumberOfProcessors; dwIndex++)
 {
 HANDLE hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, &queue,
 0, NULL);
 SetThreadIdealProcessor(hThread, dwIndex);

 Sleep(100);
 CloseHandle(hThread);
 }
 }
 else
 {
 MessageBox(hWnd, _T("Cannot open file!"),
_T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 break;
 }
 }
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }

Thread Synchronization and Concurrent Operations

184

 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 // We'll solve the linear system using Cramer's rule:
 CQueue<QueueElement>* pQueue = (CQueue<QueueElement>*)
lpParameter;

 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, szMutex);
 QueueElement* pQElement = NULL;

 while (true)
 {
 WaitForSingleObject(hMutex, INFINITE);

 pQElement = pQueue->Dequeue();

 ReleaseMutex(hMutex);

 if (pQElement == NULL)
 {
 break;
 }

 char szBuffer[1024];

 double dDeterminant = (pQElement->iA1 * pQElement->iB2) -
(pQElement->iB1 * pQElement->iA2);

 if (dDeterminant != 0)
 {
 double dX = ((pQElement->iC1 * pQElement->iB2) -
 (pQElement->iB1 * pQElement->iC2)) / dDeterminant;
 double dY = ((pQElement->iA1 * pQElement->iC2) -
 (pQElement->iC1 * pQElement->iA2)) / dDeterminant;

 sprintf_s(szBuffer, " x = %8.4lf,\ty = %8.4lf\n", dX, dY);
 }
 else
 {
 sprintf_s(szBuffer, " Determinant is zero.\n");

Chapter 5

185

 }

 strcat_s(szResult, 4096, szBuffer);
 SetWindowTextA(pQElement->hWndResult, szResult);

 SendMessage(pQElement->hWndProgress, PBM_STEPIT, 0, 0);
 delete pQElement;

 Sleep(1000);
 }

 CloseHandle(hMutex);
 return 0L;
}

BOOL FileDialog(HWND hWnd, LPSTR szFileName)
{
 OPENFILENAMEA ofn;

 char szFile[MAX_PATH];

 ZeroMemory(&ofn, sizeof(ofn));

 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = hWnd;
 ofn.lpstrFile = szFile;
 ofn.lpstrFile[0] = '\0';
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFilter = "All\0*.*\0Text\0*.TXT\0";
 ofn.nFilterIndex = 1;
 ofn.lpstrFileTitle = NULL;
 ofn.nMaxFileTitle = 0;
 ofn.lpstrInitialDir = NULL;
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;

 if (GetOpenFileNameA(&ofn) == TRUE)
 {
 strcpy_s(szFileName, MAX_PATH - 1, szFile);
 return TRUE;
 }

 return FALSE;
}

Thread Synchronization and Concurrent Operations

186

How it works...
In the file main.h, we have defined the QueueElement structure in order to load each group
of coordinates to the queue more easily. In main.cpp, we have declared a few global variables:
szFilePath for the file that the user will select; szResult for displaying messages upon
calculation; queue for the actual queue; and szMutex that represents the mutex name for later
synchronization. At the application entry point (_tWinMain), we initialize and create the window,
with the hLabel control, which we will use for displaying the messages about user interaction;
the hResult control, which threads will use for displaying the calculation results; the hBrowse
control, which the user will use in order to select the file; the hStart control, which the user will
use to start the calculation; and the hProgress control, which the application will use to display
the calculation progress.

Before the main thread enters the message loop, it will create a mutex object. When the user
clicks on Browse, we will display the Open file dialog box for the user to choose the actual
file. When the user clicks on the Start button, we will check if the file was previously selected.
If so, we will read one line at a time from the file and initialize the QueueElement object.
The QueueElement object expects coordinates, and provides the handles to the progress
control and the result control. These handles will be used by the threads in order to display
the progress of the calculation and result respectively.

As we said so many times before, proper application design leads to getting adequate results
and reduces the possibility of errors and bugs. The first question that we need to take care of
is how many threads can we start? The next question would be what areas of the code do we
need to protect from simultaneous access? Or for which statements do we need to acquire
exclusive access? The answer to first question would be: if we have less concurrent tasks to
execute than the number of processors available, we could start as many threads as there are
tasks. However, the user can provide a file with an unlimited number of lines with coordinates.
If more tasks than the number of available processors are provided, the system won't perform
so well, and our application won't have the best performance. So when we load all the objects
into the queue, we will query the system information for the available number of CPUs. Then,
we will limit the number of threads in a way not to exceed the number of available processors,
as shown in the following code:

SYSTEM_INFO sysInfo;
GetSystemInfo(&sysInfo);

for (DWORD dwIndex = 0; dwIndex < sysInfo.dwNumberOfProcessors;
dwIndex++)
{
 HANDLE hThread = CreateThread(NULL, 0,(LPTHREAD_START_ROUTINE)
StartAddress, &queue, 0, NULL);
 SetThreadIdealProcessor(hThread, dwIndex);

Chapter 5

187

 Sleep(100);
 CloseHandle(hThread);
}

Well, we could also query the queue count so as to not start more threads than necessary,
but you'll get the point. We are also using the SetThreadIdealProcessor API in order
to tell the system to schedule the thread to the selected processor. This routine specifies a
thread ideal processor and provides a hint to the scheduler about the preferred processor
for a thread. The scheduler runs the thread on the thread's ideal processor when possible,
but without guaranteeing about a given processor number. In a situation where the selected
processor is busy and our thread is next for execution, the system will schedule it on the next
available core.

The answer to the second question is as follows: what is the shared object that all threads
use? Well that would certainly be the queue object. The CQueue::Dequeue operation is
performed from each thread in parallel. That place would be an application bottleneck without
proper synchronization, so we must take care of it. We use a mutex object when we want to
gain exclusive access to one thread. That is perfect for our Dequeue operation because at
any instant of time, only one thread should obtain an object from the queue. By using the
mutex object, we are providing exclusive access to the shared object, in this example queue,
and its operation Dequeue.

There's more...
This was a simple example only to demonstrate how to properly approach the application from
design to the implementation itself. Even though Chapter 7, Understanding Concurrent Code
Design, will explain concurrent code design in detail, it is important for the user to be familiar
with parallel execution and get the habit to think properly before starting coding.

Using semaphore
Another Windows synchronization object is semaphore. Semaphore works as a narrow gate,
which a certain number of threads can pass through at any instant of time. We will use our
previous example again with slight changes to demonstrate various approaches with different
synchronization objects and techniques while achieving the same results.

Getting ready
Make sure Visual Studio is up and running.

Thread Synchronization and Concurrent Operations

188

How to do it...
Now, let's create our program and explain its structure.

1. Create a new empty C++ Windows application named concurrent_operations2.

2. Open Solution Explorer and right-click on Header file. Add the existing header file
used in Chapter 1, Introduction to C++ Concepts and Features, named CQueue.h.

3. Open Solution Explorer and right-click on Header file. Add a new header file named
main. Open main.h.

4. Add the following code:
#pragma once

#include <windows.h>
#include <commctrl.h>
#include <tchar.h>
#include <psapi.h>
#include <strsafe.h>
#include <string.h>
#include <sstream>
#include <fstream>
#include <commdlg.h>
#include "CQueue.h"

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

using namespace std;

#define CONTROL_BROWSE 100
#define CONTROL_START 101
#define CONTROL_RESULT 103
#define CONTROL_TEXT 104
#define CONTROL_PROGRESS 105

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);
DWORD WINAPI StartAddress(LPVOID lpParameter);
BOOL FileDialog(HWND hWnd, LPSTR szFileName);

typedef struct

Chapter 5

189

{
 int iA1;
 int iB1;
 int iC1;
 int iA2;
 int iB2;
 int iC2;
 HWND hWndProgress;
 HWND hWndResult;
} QueueElement, *PQueueElement;

5. Open Solution Explorer and right-click on Source file. Add a new source file named
main. Open main.cpp.

6. Add the following code:
#pragma once

/**
* You need to specify text file with coordinates. *
* Our example will solve system of 2 linear equations *
* a1x + b1y = c1; *
* a2x + b2y = c2; *
* *
* Each line should have exactly six coordinates. *
* File format example: *
* *
* 4 -3 2 -7 5 6 *
* 12 1 -7 9 -5 8 *
* *
* Avoid new line at the end of the file. *
***/
#include "main.h"

char szFilePath[MAX_PATH] = { 0 };
char szResult[4096];
CQueue<QueueElement> queue;
TCHAR* szMutex = _T("__mutex_165__");
TCHAR* szSemaphore = _T("__semaphore_456__");

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);

Thread Synchronization and Concurrent Operations

190

 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__concurrent_operations__");

 WNDCLASSEX wndEx = { 0 };
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
MAKEINTRESOURCE(IDI_ APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass,
 _T("Concurrent operations"), WS_OVERLAPPED
 | WS_CAPTION | WS_SYSMENU, 50, 50, 305, 250, NULL, NULL,
 wndEx.hInstance, NULL);

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH
 | FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hLabel = CreateWindow(_T("STATIC"),
 _T(" Press \"Browse\" and choose file with coordinates: "),

Chapter 5

191

 WS_CHILD | WS_VISIBLE | SS_CENTERIMAGE | SS_LEFT | WS_BORDER,
 20, 20, 250, 25, hWnd, (HMENU)CONTROL_TEXT, wndEx.hInstance,
 NULL);

SendMessage(hLabel, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hResult = CreateWindow(_T("STATIC"), _T(""), WS_CHILD |
 WS_VISIBLE | SS_LEFT | WS_BORDER, 20, 65, 150, 75, hWnd,
 (HMENU)CONTROL_RESULT, wndEx.hInstance, NULL);
 SendMessage(hResult, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hBrowse = CreateWindow(_T("BUTTON"), _T("Browse"), WS_CHILD
| WS_VISIBLE
 | BS_PUSHBUTTON, 190, 65, 80, 25, hWnd, (HMENU)CONTROL_BROWSE,
wndEx.hInstance, NULL);
 SendMessage(hBrowse, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hStart = CreateWindow(_T("BUTTON"), _T("Start"), WS_CHILD |
WS_VISIBLE
 | BS_PUSHBUTTON, 190, 115, 80, 25, hWnd, (HMENU)CONTROL_START,
wndEx.hInstance, NULL);
 SendMessage(hStart, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hProgress = CreateWindow(PROGRESS_CLASS, _T(""), WS_CHILD |
WS_VISIBLE
 | WS_BORDER, 20, 165, 250, 25, hWnd, (HMENU)CONTROL_PROGRESS,
wndEx.hInstance, NULL);
 SendMessage(hProgress, PBM_SETSTEP, (WPARAM)1, 0);
 SendMessage(hProgress, PBM_SETPOS, (WPARAM)0, 0);

 ShowWindow(hWnd, iWndShow);

 HANDLE hMutex = CreateMutex(NULL, FALSE, szMutex);

 SYSTEM_INFO sysInfo;
 GetSystemInfo(&sysInfo);
 LONG lProcessorCount = (LONG)sysInfo.dwNumberOfProcessors;
 HANDLE hSemaphore = CreateSemaphore(NULL, lProcessorCount,
lProcessorCount, szSemaphore);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);

Thread Synchronization and Concurrent Operations

192

 DispatchMessage(&msg);
 }

 CloseHandle(hSemaphore);
 CloseHandle(hMutex);
 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {
 case CONTROL_BROWSE:
 {
 if (!FileDialog(hWnd, szFilePath))
 {
 MessageBox(hWnd,
 _T("You must choose valid file path!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 else
 {
 char szBuffer[MAX_PATH];
 wsprintfA(szBuffer,
 "\n File: %s Press \"Start\" now.",
 strrchr(szFilePath, '\\') + 1);

 SetWindowTextA(GetDlgItem(hWnd, CONTROL_TEXT),
szBuffer);
 }
 break;
 }
 case CONTROL_START:

Chapter 5

193

 {
 if (!*szFilePath)
 {
 MessageBox(hWnd,
 _T("You must choose valid file path first!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 break;
 }

 ifstream infile(szFilePath);

 if (infile.is_open())
 {
 string line;
 while (std::getline(infile, line))
 {
 QueueElement* pQElement = new QueueElement();

 istringstream iss(line);

 if (!(iss >> pQElement->iA1 >> pQElement->iB1 >>
pQElement->iC1 >> pQElement->iA2 >> pQElement->iB2 >> pQElement-
>iC2))
 {
 break;
 }

 pQElement->hWndProgress = GetDlgItem(hWnd,
 CONTROL_PROGRESS);
 pQElement->hWndResult = GetDlgItem(hWnd,
 CONTROL_RESULT);

 queue.Enqueue(pQElement);
 }

 infile.close();

 SendMessage(GetDlgItem(hWnd, CONTROL_PROGRESS),
 PBM_SETRANGE, 0, MAKELPARAM(0, queue.Count()));

 int iCount = queue.Count();

 for (int iIndex = 0; iIndex < iCount; iIndex++)
 {
 HANDLE hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, &queue,
 0, NULL);

Thread Synchronization and Concurrent Operations

194

 Sleep(100);
 CloseHandle(hThread);
 }
 }
 else
 {
 MessageBox(hWnd, _T("Cannot open file!"),
_T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 break;
 }
 }
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 // We'll solve the linear system using Cramer's rule:
 CQueue<QueueElement>* pQueue = (CQueue<QueueElement>*)
lpParameter;

 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, szMutex);
 HANDLE hSemaphore = OpenSemaphore(SEMAPHORE_ALL_ACCESS, FALSE,
szSemaphore);
 QueueElement* pQElement = NULL;

 while (true)
 {
 WaitForSingleObject(hSemaphore, INFINITE);
 ReleaseSemaphore(hSemaphore, 1, NULL);

 WaitForSingleObject(hMutex, INFINITE);
 pQElement = pQueue->Dequeue();
 ReleaseMutex(hMutex);

 if (pQElement == NULL)
 {
 break;

Chapter 5

195

 }

 char szBuffer[1024];

 double dDeterminant = (pQElement->iA1 * pQElement->iB2) -
(pQElement->iB1 * pQElement->iA2);

 if (dDeterminant != 0)
 {
 double dX = ((pQElement->iC1 * pQElement->iB2) -
 (pQElement->iB1 * pQElement->iC2)) / dDeterminant;
 double dY = ((pQElement->iA1 * pQElement->iC2) -
 (pQElement->iC1 * pQElement->iA2)) / dDeterminant;

 sprintf_s(szBuffer, " x = %8.4lf,\ty = %8.4lf\n", dX, dY);
 }
 else
 {
 sprintf_s(szBuffer, " Determinant is zero.\n");
 }

 strcat_s(szResult, 4096, szBuffer);
 SetWindowTextA(pQElement->hWndResult, szResult);

 SendMessage(pQElement->hWndProgress, PBM_STEPIT, 0, 0);

 delete pQElement;

 Sleep(1000);
 }

 CloseHandle(hSemaphore);
 CloseHandle(hMutex);

 return 0L;
}

BOOL FileDialog(HWND hWnd, LPSTR szFileName)
{
 OPENFILENAMEA ofn;

 char szFile[MAX_PATH];

 ZeroMemory(&ofn, sizeof(ofn));

 ofn.lStructSize = sizeof(ofn);

Thread Synchronization and Concurrent Operations

196

 ofn.hwndOwner = hWnd;
 ofn.lpstrFile = szFile;
 ofn.lpstrFile[0] = '\0';
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFilter = "All\0*.*\0Text\0*.TXT\0";
 ofn.nFilterIndex = 1;
 ofn.lpstrFileTitle = NULL;
 ofn.nMaxFileTitle = 0;
 ofn.lpstrInitialDir = NULL;
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;

 if (GetOpenFileNameA(&ofn) == TRUE)
 {
 strcpy_s(szFileName, MAX_PATH - 1, szFile);
 return TRUE;
 }

 return FALSE;
}

How it works...
This is a slightly different approach than the one used in our previous example. Instead of
creating as many threads as there are processors available, we instantiate a semaphore object
where the initial as well as the maximum count of parallel operations will not exceed the number
of CPUs. So it is similar; the only difference is the technique used and approach selected. We
have asked the system for the semaphore object inside the StartAddress routine. After
successful operation, we are releasing the semaphore by decrementing it by one:

WaitForSingleObject(hSemaphore, INFINITE);
ReleaseSemaphore(hSemaphore, 1, NULL);

There's more...
Again, the most important part was to properly select the synchronization spots as well as
proper synchronization object selection. We've intentionally selected semaphore in order
to demonstrate to the user that the first solution isn't always the only solution. Fortunately,
Windows provides a variety of synchronization objects, and developers should be aware of
each one of them in order to select the most appropriate one in their development.

Chapter 5

197

Using event
The event synchronization object works as a signal for alerting the thread in a certain manner.
It can be used to start or stop an execution, or when a user input is performed, and so on.

We will use the same example as in our previous two topics, with improvement to application
behavior by adding an event that will signal the threads that the user wants to abort the
execution and end the program. In this way, we will make our application even more user
friendly and more responsive to user input.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure.

1. Create a new empty C++ Windows application named concurrent_operations3.

2. Open Solution Explorer and right-click on Header file. Add an existing header file,
used in Chapter 1, Introduction to C++ Concepts and Features, named CQueue.h.

3. Open Solution Explorer and right-click on Header file. Add a new header file named
main. Open main.h.

4. Add the following code:
#pragma once

#include <windows.h>
#include <commctrl.h>
#include <tchar.h>
#include <psapi.h>
#include <strsafe.h>
#include <string.h>
#include <sstream>
#include <fstream>
#include <commdlg.h>
#include "CQueue.h"

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

Thread Synchronization and Concurrent Operations

198

using namespace std;

#define CONTROL_BROWSE 100
#define CONTROL_START 101
#define CONTROL_RESULT 103
#define CONTROL_TEXT 104
#define CONTROL_PROGRESS 105

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg,
 WPARAM wParam, LPARAM lParam);
DWORD WINAPI StartAddress(LPVOID lpParameter);
BOOL FileDialog(HWND hWnd, LPSTR szFileName);

typedef struct
{
 int iA1;
 int iB1;
 int iC1;
 int iA2;
 int iB2;
 int iC2;
 HWND hWndProgress;
 HWND hWndResult;
} QueueElement, *PQueueElement;

5. Open Solution Explorer and right-click on Source file. Add a new source file named
main. Open main.cpp.

6. Add the following code:
#pragma once

/**
* You need to specify text file with coordinates. *
* Our example will solve system of 2 linear equations *
* a1x + b1y = c1; *
* a2x + b2y = c2; *
* *
* Each line should have exactly six coordinates. *
* File format example: *
* *
* 4 -3 2 -7 5 6 *
* 12 1 -7 9 -5 8 *
* *
* Avoid new line at the end of the file. *
***/

Chapter 5

199

#include "main.h"

char szFilePath[MAX_PATH] = { 0 };
char szResult[4096];
CQueue<QueueElement> queue;
TCHAR* szEvent = _T("__event_879__");
TCHAR* szMutex = _T("__mutex_132__");

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__concurrent_operations__");

 WNDCLASSEX wndEx = { 0 };
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass,
 _T("Concurrent operations"), WS_OVERLAPPED
 | WS_CAPTION | WS_SYSMENU, 50, 50, 305, 250, NULL, NULL,
 wndEx.hInstance, NULL);

Thread Synchronization and Concurrent Operations

200

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH
 | FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hLabel = CreateWindow(_T("STATIC"),
 _T(" Press \"Browse\" and choose file with coordinates: "),
 WS_CHILD | WS_VISIBLE | SS_CENTERIMAGE | SS_LEFT | WS_BORDER,
 20, 20, 250, 25, hWnd, (HMENU)CONTROL_TEXT, wndEx.hInstance,
 NULL);

 SendMessage(hLabel, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hResult = CreateWindow(_T("STATIC"), _T(""), WS_CHILD |
 WS_VISIBLE | SS_LEFT | WS_BORDER, 20, 65, 150, 75, hWnd,
 (HMENU)CONTROL_RESULT, wndEx.hInstance, NULL);
 SendMessage(hResult, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hBrowse = CreateWindow(_T("BUTTON"), _T("Browse"), WS_CHILD
| WS_VISIBLE
 | BS_PUSHBUTTON, 190, 65, 80, 25, hWnd, (HMENU)CONTROL_BROWSE,
wndEx.hInstance, NULL);
 SendMessage(hBrowse, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hStart = CreateWindow(_T("BUTTON"), _T("Start"), WS_CHILD |
WS_VISIBLE
 | BS_PUSHBUTTON, 190, 115, 80, 25, hWnd, (HMENU)CONTROL_START,
wndEx.hInstance, NULL);
 SendMessage(hStart, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hProgress = CreateWindow(PROGRESS_CLASS, _T(""), WS_CHILD
 | WS_VISIBLE | WS_BORDER, 20, 165, 250, 25, hWnd,
 (HMENU)CONTROL_PROGRESS, wndEx.hInstance, NULL);
 SendMessage(hProgress, PBM_SETSTEP, (WPARAM)1, 0);
 SendMessage(hProgress, PBM_SETPOS, (WPARAM)0, 0);

 ShowWindow(hWnd, iWndShow);

 HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, szEvent);
 HANDLE hMutex = CreateMutex(NULL, FALSE, szMutex);

Chapter 5

201

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 CloseHandle(hMutex);
 CloseHandle(hEvent);
 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 case WM_CLOSE:
 {
 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, szEvent);
 SetEvent(hEvent);
 CloseHandle(hEvent);

 DestroyWindow(hWnd);
 break;
 }
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {

 case CONTROL_BROWSE:
 {
 if (!FileDialog(hWnd, szFilePath))
 {
 MessageBox(hWnd,

Thread Synchronization and Concurrent Operations

202

 _T("You must choose valid file path!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 else
 {
 char szBuffer[MAX_PATH];
 wsprintfA(szBuffer,
 "\n File: %s Press \"Start\" now.",
 strrchr(szFilePath, '\\') + 1);

 SetWindowTextA(GetDlgItem(hWnd, CONTROL_TEXT),
szBuffer);
 }
 break;
 }
 case CONTROL_START:
 {
 if (!*szFilePath)
 {
 MessageBox(hWnd,
 _T("You must choose valid file path first!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 break;
 }

 ifstream infile(szFilePath);

 if (infile.is_open())
 {
 string line;

 while (std::getline(infile, line))
 {
 QueueElement* pQElement = new QueueElement();

 istringstream iss(line);

 if (!(iss >> pQElement->iA1 >> pQElement->iB1 >>
pQElement->iC1 >> pQElement->iA2 >> pQElement->iB2 >> pQElement-
>iC2))
 {
 break;
 }

Chapter 5

203

 pQElement->hWndProgress = GetDlgItem(hWnd,
 CONTROL_PROGRESS);
 pQElement->hWndResult = GetDlgItem(hWnd,
 CONTROL_RESULT);

 queue.Enqueue(pQElement);
 }

 infile.close();

 SendMessage(GetDlgItem(hWnd, CONTROL_PROGRESS),
 PBM_SETRANGE, 0, MAKELPARAM(0, queue.Count()));

 SYSTEM_INFO sysInfo;
 GetSystemInfo(&sysInfo);

 for (DWORD dwIndex = 0; dwIndex <
 sysInfo.dwNumberOfProcessors; dwIndex++)
 {
 HANDLE hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, &queue,
 0, NULL);
 SetThreadIdealProcessor(hThread, dwIndex);
 Sleep(100);
 CloseHandle(hThread);
 }
 }
 else
 {
 MessageBox(hWnd, _T("Cannot open file!"),
_T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 break;
 }
 }
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }

Thread Synchronization and Concurrent Operations

204

 }
 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 // We'll solve the linear system using Cramer's rule:
 CQueue<QueueElement>* pQueue = (CQueue<QueueElement>*)
lpParameter;

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, szEvent);
 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, szMutex);
 QueueElement* pQElement = NULL;

 while (true)
 {
 DWORD dwStatus = WaitForSingleObject(hEvent, 10);
 if (dwStatus == WAIT_OBJECT_0)
 {
 break;
 }

 WaitForSingleObject(hMutex, INFINITE);
 pQElement = pQueue->Dequeue();
 ReleaseMutex(hMutex);

 if (pQElement == NULL)
 {
 break;
 }

 char szBuffer[1024];
 double dDeterminant = (pQElement->iA1 * pQElement->iB2) -
(pQElement->iB1 * pQElement->iA2);
 if (dDeterminant != 0)
 {
 double dX = ((pQElement->iC1 * pQElement->iB2) -
 (pQElement->iB1 * pQElement->iC2)) / dDeterminant;
 double dY = ((pQElement->iA1 * pQElement->iC2) -
 (pQElement->iC1 * pQElement->iA2)) / dDeterminant;
 sprintf_s(szBuffer, " x = %8.4lf,\ty = %8.4lf\n", dX, dY);
 }
 else
 {

Chapter 5

205

 sprintf_s(szBuffer, " Determinant is zero.\n");
 }

 strcat_s(szResult, 4096, szBuffer);
 SetWindowTextA(pQElement->hWndResult, szResult);

 SendMessage(pQElement->hWndProgress, PBM_STEPIT, 0, 0);

 delete pQElement;

 Sleep(1000);
 }

 CloseHandle(hMutex);
 CloseHandle(hEvent);
 return 0L;
}

BOOL FileDialog(HWND hWnd, LPSTR szFileName)
{
 OPENFILENAMEA ofn;

 char szFile[MAX_PATH];

 ZeroMemory(&ofn, sizeof(ofn));

 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = hWnd;
 ofn.lpstrFile = szFile;
 ofn.lpstrFile[0] = '\0';
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFilter = "All\0*.*\0Text\0*.TXT\0";
 ofn.nFilterIndex = 1;
 ofn.lpstrFileTitle = NULL;
 ofn.nMaxFileTitle = 0;
 ofn.lpstrInitialDir = NULL;
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;

 if (GetOpenFileNameA(&ofn) == TRUE)
 {
 strcpy_s(szFileName, MAX_PATH - 1, szFile);
 return TRUE;
 }

 return FALSE;
}

Thread Synchronization and Concurrent Operations

206

How it works...
Just as before, we are using a mutex object for synchronization. Only this time we are adding
an event in order to be able to signal to the thread that some action has occurred. That action
is simple: the user wants to end the application. However, this will give the user a wider
picture of how to use the event object in a multithreading environment—very important for its
future development.

So, before the main thread enters the message loop, we will create an event. At the beginning
of the StartAddress thread, we will call WaitForSingleObject with a wait time of 10
milliseconds, only to give the thread the space to query the object signaled state: if it is signaled,
the thread must exit; if not, it will continue execution.

There's more...
Events are very important for a multithreaded environment. Besides synchronization,
objects that take care of exclusive access are almost always required to have some
signaling technique that the threads will use between them to communicate about actions
that occurred. Our example showed basic event usage, while it is left to the user to use and
explore the demonstrated techniques further.

Using critical section
Another Windows synchronization object is critical section. Critical section behaves in the
same manner as mutex. However, it can be used only in a single process context, as opposed
to mutex, which can be shared among multiple processes. However, a critical section object is
allocated faster by the system, with much smaller overhead.

Our following example will use the same task as before, only this time, we will use critical
section instead of mutex. We can use critical section here because our entire application
executes in a single process context.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now let's create our program and explain its structure.

1. Create a new empty C++ Windows application named concurrent_operations4.

2. Open Solution Explorer and right-click on Header file. Add an existing header file,
used in Chapter 1, Introduction to C++ Concepts and Features, named CQueue.h.

Chapter 5

207

3. Open Solution Explorer and right-click on Header file. Add a new header file named
main. Open main.h.

4. Add the following code:
#pragma once

#include <windows.h>
#include <commctrl.h>
#include <tchar.h>
#include <psapi.h>
#include <strsafe.h>
#include <string.h>
#include <sstream>
#include <fstream>
#include <commdlg.h>
#include "CQueue.h"

#pragma comment (lib, "comctl32.lib")
#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

using namespace std;

#define CONTROL_BROWSE 100
#define CONTROL_START 101
#define CONTROL_RESULT 103
#define CONTROL_TEXT 104
#define CONTROL_PROGRESS 105

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);
DWORD WINAPI StartAddress(LPVOID lpParameter);
BOOL FileDialog(HWND hWnd, LPSTR szFileName);

typedef struct
{
 int iA1;
 int iB1;
 int iC1;
 int iA2;
 int iB2;
 int iC2;
 HWND hWndProgress;
 HWND hWndResult;
} QueueElement, *PQueueElement;

Thread Synchronization and Concurrent Operations

208

5. Open Solution Explorer and right-click on Source file. Add a new source file named
main. Open main.cpp.

6. Add the following code:
#pragma once

/**
* You need to specify text file with coordinates. *
* Our example will solve system of 2 linear equations *
* a1x + b1y = c1; *
* a2x + b2y = c2; *
* *
* Each line should have exactly six coordinates. *
* File format example: *
* *
* 4 -3 2 -7 5 6 *
* 12 1 -7 9 -5 8 *
* *
* Avoid new line at the end of the file. *
***/
#include "main.h"

char szFilePath[MAX_PATH] = { 0 };
char szResult[4096];
CQueue<QueueElement> queue;
TCHAR* szEvent = _T("__event_374__");
CRITICAL_SECTION criticalSection;

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__concurrent_operations__");

 WNDCLASSEX wndEx = { 0 };
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;

Chapter 5

209

 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass,
 _T("Concurrent operations"), WS_OVERLAPPED
 | WS_CAPTION | WS_SYSMENU, 50, 50, 305, 250, NULL, NULL,
 wndEx.hInstance, NULL);

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH
 | FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hLabel = CreateWindow(_T("STATIC"),
 _T(" Press \"Browse\" and choose file with coordinates: "),
 WS_CHILD | WS_VISIBLE | SS_CENTERIMAGE | SS_LEFT | WS_BORDER,
 20, 20, 250, 25, hWnd, (HMENU)CONTROL_TEXT, wndEx.hInstance,
 NULL);

SendMessage(hLabel, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hResult = CreateWindow(_T("STATIC"), _T(""), WS_CHILD |
 WS_VISIBLE | SS_LEFT | WS_BORDER, 20, 65, 150, 75, hWnd,
 (HMENU)CONTROL_RESULT, wndEx.hInstance, NULL);

Thread Synchronization and Concurrent Operations

210

 SendMessage(hResult, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hBrowse = CreateWindow(_T("BUTTON"), _T("Browse"), WS_CHILD
| WS_VISIBLE
 | BS_PUSHBUTTON, 190, 65, 80, 25, hWnd, (HMENU)CONTROL_BROWSE,
wndEx.hInstance, NULL);
 SendMessage(hBrowse, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hStart = CreateWindow(_T("BUTTON"), _T("Start"), WS_CHILD |
WS_VISIBLE
 | BS_PUSHBUTTON, 190, 115, 80, 25, hWnd, (HMENU)CONTROL_START,
wndEx.hInstance, NULL);
 SendMessage(hStart, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hProgress = CreateWindow(PROGRESS_CLASS, _T(""), WS_CHILD |
WS_VISIBLE | WS_BORDER,
 20, 165, 250, 25, hWnd, (HMENU)CONTROL_PROGRESS, wndEx.
hInstance, NULL);
 SendMessage(hProgress, PBM_SETSTEP, (WPARAM)1, 0);
 SendMessage(hProgress, PBM_SETPOS, (WPARAM)0, 0);

 ShowWindow(hWnd, iWndShow);

 HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, szEvent);
 InitializeCriticalSection(&criticalSection);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 DeleteCriticalSection(&criticalSection);
 CloseHandle(hEvent);
 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)
{
 switch (uMsg)
 {

Chapter 5

211

 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 case WM_CLOSE:
 {
 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, szEvent);
 SetEvent(hEvent);
 CloseHandle(hEvent);

 DestroyWindow(hWnd);
 break;
 }
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {
 case CONTROL_BROWSE:
 {
 if (!FileDialog(hWnd, szFilePath))
 {
 MessageBox(hWnd,
 _T("You must choose valid file path!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 else
 {
 char szBuffer[MAX_PATH];
 wsprintfA(szBuffer,
 "\n File: %s Press \"Start\" now.",
 strrchr(szFilePath, '\\') + 1);

 SetWindowTextA(GetDlgItem(hWnd, CONTROL_TEXT),
szBuffer);
 }
 break;
 }
 case CONTROL_START:
 {
 if (!*szFilePath)
 {
 MessageBox(hWnd,
 _T("You must choose valid file path first!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);

Thread Synchronization and Concurrent Operations

212

 break;
 }

 ifstream infile(szFilePath);

 if (infile.is_open())
 {
 string line;
 while (std::getline(infile, line))
 {
 QueueElement* pQElement = new QueueElement();
 istringstream iss(line);

 if (!(iss >> pQElement->iA1 >> pQElement->iB1 >>
pQElement->iC1 >> pQElement->iA2 >> pQElement->iB2 >> pQElement-
>iC2))
 {
 break;
 }

 pQElement->hWndProgress = GetDlgItem(hWnd,
 CONTROL_PROGRESS);
 pQElement->hWndResult = GetDlgItem(hWnd,
 CONTROL_RESULT);

 queue.Enqueue(pQElement);
 }

 infile.close();

 SendMessage(GetDlgItem(hWnd, CONTROL_PROGRESS),
 PBM_SETRANGE, 0, MAKELPARAM(0, queue.Count()));

 SYSTEM_INFO sysInfo;
 GetSystemInfo(&sysInfo);

 for (DWORD dwIndex = 0; dwIndex <
 sysInfo.dwNumberOfProcessors; dwIndex++)
 {
 HANDLE hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, &queue,
 0, NULL);
 SetThreadIdealProcessor(hThread, dwIndex);

 Sleep(100);
 CloseHandle(hThread);
 }

Chapter 5

213

 }
 else
 {
 MessageBox(hWnd, _T("Cannot open file!"),
_T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 break;
 }
 }
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 // We'll solve the linear system using Cramer's rule:
 CQueue<QueueElement>* pQueue = (CQueue<QueueElement>*)
lpParameter;

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, szEvent);
 QueueElement* pQElement = NULL;

 while (true)
 {
 DWORD dwStatus = WaitForSingleObject(hEvent, 10);

 if (dwStatus == WAIT_OBJECT_0)
 {
 break;
 }

 EnterCriticalSection(&criticalSection);

 pQElement = pQueue->Dequeue();

 LeaveCriticalSection(&criticalSection);

 if (pQElement == NULL)

Thread Synchronization and Concurrent Operations

214

 {
 break;
 }

 char szBuffer[1024];

 double dDeterminant = (pQElement->iA1 * pQElement->iB2) -
(pQElement->iB1 * pQElement->iA2);

 if (dDeterminant != 0)
 {
 double dX = ((pQElement->iC1 * pQElement->iB2) -
 (pQElement->iB1 * pQElement->iC2)) / dDeterminant;
 double dY = ((pQElement->iA1 * pQElement->iC2) -
 (pQElement->iC1 * pQElement->iA2)) / dDeterminant;

 sprintf_s(szBuffer, " x = %8.4lf,\ty = %8.4lf\n", dX, dY);
 }
 else
 {
 sprintf_s(szBuffer, " Determinant is zero.\n");
 }

 strcat_s(szResult, 4096, szBuffer);
 SetWindowTextA(pQElement->hWndResult, szResult);

 SendMessage(pQElement->hWndProgress, PBM_STEPIT, 0, 0);
 delete pQElement;

 Sleep(1000);
 }

 CloseHandle(hEvent);

 return 0L;
}

BOOL FileDialog(HWND hWnd, LPSTR szFileName)
{
 OPENFILENAMEA ofn;

 char szFile[MAX_PATH];

 ZeroMemory(&ofn, sizeof(ofn));

 ofn.lStructSize = sizeof(ofn);

Chapter 5

215

 ofn.hwndOwner = hWnd;
 ofn.lpstrFile = szFile;
 ofn.lpstrFile[0] = '\0';
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFilter = "All\0*.*\0Text\0*.TXT\0";
 ofn.nFilterIndex = 1;
 ofn.lpstrFileTitle = NULL;
 ofn.nMaxFileTitle = 0;
 ofn.lpstrInitialDir = NULL;
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;

 if (GetOpenFileNameA(&ofn) == TRUE)
 {
 strcpy_s(szFileName, MAX_PATH - 1, szFile);
 return TRUE;
 }

 return FALSE;
}

How it works...
The preceding code is pretty much the same, with differences in the synchronization object
used. Using critical section demands a slightly different approach, because its handle cannot
be inherited by a child process. What's important for us is that the critical section object
allows only one thread to perform exclusive access, the same as mutex, only faster.

There's more...
Selection between mutex and critical section must be performed carefully. Even though the
main difference resides in accessing synchronization objects between processes and system
speed in providing an appropriate action and overhead for creation and manipulation, the
user should always try to predict all possible scenarios (use cases) for the application before
choosing the proper synchronization object and technique.

Using pipes
When we are explaining synchronization, it is absolutely necessary to give an example with
processes. Unlike working in single address space, as with threads, working with multiple
processes and their address spaces has its upsides and downsides.

Thread Synchronization and Concurrent Operations

216

The upsides are generally, in lower probability of errors. The context and address space of a
process is private for the process and all its resources, including threads. If you allocate some
memory location in one process and pass a pointer to another process, it will be meaningless!
The operating system creates separate address spaces for all processes. The running process
does not know anything about other processes, and as such, it is greedy: it wants all resources
for itself. So, when working with multiple processes, you need a shared memory location if
you want to share some data, and/or a so called pipe for communication. There are other
communication objects such as socket, but we would need another book to explain everything
here. We have chosen pipe because it is faster and easier to work with.

Windows Sockets enables programmers to create advanced
Internet, intranet, and other network-capable applications to
transmit application data across the wire, independent of the
network protocol being used.

The downside would be a lot harder work because anything that you want to share among
processes you have to write to shared memory from which other process can then read. Our
following example will use the same task as in the previous three examples, only this time,
there are no working threads; we will have working processes. This approach is good for
daemon tasks such as servers and printers.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now let's create our program and explain its structure.

1. Create a new empty C++ Windows application named concurrent_operations5.

2. Open Solution Explorer and right-click on Header file. Add an existing header file,
used in Chapter 1, Introduction to C++ Concepts and Features, named CQueue.h.

3. Open Solution Explorer and right-click on Header file. Add a new header file named
main. Open main.h.

4. Add the following code:
#pragma once

#include <windows.h>
#include <commctrl.h>
#include <tchar.h>
#include <psapi.h>
#include <strsafe.h>

Chapter 5

217

#include <string.h>
#include <sstream>
#include <fstream>
#include <commdlg.h>
#include "CQueue.h"

#pragma comment (linker, "\"/manifestdependency:type='win32' \
name='Microsoft.Windows.Common-Controls' \
version='6.0.0.0' processorArchitecture='*' \
publicKeyToken='6595b64144ccf1df' language='*'\"")

using namespace std;

#define CONTROL_BROWSE 100
#define CONTROL_START 101
#define CONTROL_RESULT 103
#define CONTROL_TEXT 104
#define CONTROL_PROGRESS 105

#define BUFFER_SIZE 1024

#define PIPE_NAME _T("\\\\.\\pipe__pipe_636__")
#define EVENT_NAME _T("__event_879__")
#define MUTEX_NAME _T("__mutex_132__")
#define MAPPING_NAME _T("__mapping_514__")

typedef struct
{
 int iA1;
 int iB1;
 int iC1;
 int iA2;
 int iB2;
 int iC2;
 HWND hWndProgress;
 HWND hWndResult;
} QueueElement, *PQueueElement;

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam);
DWORD WINAPI ListenerRoutine(LPVOID lpParameter);
DWORD WINAPI StartAddress(LPVOID lpParameter);
BOOL FileDialog(HWND hWnd, LPSTR szFileName);
bool CalculateCramer(QueueElement* pQElement, char* szResult);
BOOL StartProcess(HWND hWndResult);

Thread Synchronization and Concurrent Operations

218

5. Open Solution Explorer and right-click on Source file. Add a new source file named
main. Open main.cpp.

6. Add the following code:
#pragma once

/**
* You need to specify text file with coordinates. *
* Our example will solve system of 2 linear equations *
* a1x + b1y = c1; *
* a2x + b2y = c2; *
* *
* Each line should have exactly six coordinates. *
* File format example: *
* *
* 4 -3 2 -7 5 6 *
* 12 1 -7 9 -5 8 *
* *
* Avoid new line at the end of the file. *
***/
#include "main.h"

char szFilePath[MAX_PATH] = { 0 };
char szResult[4096];
CQueue<QueueElement> queue;

int WINAPI _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iWndShow)
{
 UNREFERENCED_PARAMETER(hPrev);
 UNREFERENCED_PARAMETER(szCommandLine);

 TCHAR* szWindowClass = _T("__concurrent_operations__");

 WNDCLASSEX wndEx = { 0 };
 wndEx.cbSize = sizeof(WNDCLASSEX);
 wndEx.style = CS_HREDRAW | CS_VREDRAW;
 wndEx.lpfnWndProc = WindowProcedure;
 wndEx.cbClsExtra = 0;
 wndEx.cbWndExtra = 0;
 wndEx.hInstance = hThis;
 wndEx.hIcon = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));
 wndEx.hCursor = LoadCursor(NULL, IDC_ARROW);

Chapter 5

219

 wndEx.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wndEx.lpszMenuName = NULL;
 wndEx.lpszClassName = szWindowClass;
 wndEx.hIconSm = LoadIcon(wndEx.hInstance,
 MAKEINTRESOURCE(IDI_APPLICATION));

 if (!RegisterClassEx(&wndEx))
 {
 return 1;
 }

 InitCommonControls();

 HWND hWnd = CreateWindow(szWindowClass,
 _T("Concurrent operations"), WS_OVERLAPPED
 | WS_CAPTION | WS_SYSMENU, 50, 50, 305, 250, NULL, NULL,
 wndEx.hInstance, NULL);

 if (!hWnd)
 {
 return NULL;
 }

 HFONT hFont = CreateFont(14, 0, 0, 0, FW_NORMAL, FALSE,
 FALSE, FALSE, BALTIC_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH
 | FF_MODERN, _T("Microsoft Sans Serif"));

 HWND hLabel = CreateWindow(_T("STATIC"),
 _T(" Press \"Browse\" and choose file with coordinates: "),
 WS_CHILD | WS_VISIBLE | SS_CENTERIMAGE | SS_LEFT | WS_BORDER,
 20, 20, 250, 25, hWnd, (HMENU)CONTROL_TEXT, wndEx.hInstance,
 NULL);

 SendMessage(hLabel, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hResult = CreateWindow(_T("STATIC"), _T(""), WS_CHILD |
 WS_VISIBLE | SS_LEFT | WS_BORDER, 20, 65, 150, 75, hWnd,
 (HMENU)CONTROL_RESULT, wndEx.hInstance, NULL);
 SendMessage(hResult, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hBrowse = CreateWindow(_T("BUTTON"), _T("Browse"), WS_CHILD
| WS_VISIBLE

Thread Synchronization and Concurrent Operations

220

 | BS_PUSHBUTTON, 190, 65, 80, 25, hWnd, (HMENU)CONTROL_BROWSE,
wndEx.hInstance, NULL);
 SendMessage(hBrowse, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hStart = CreateWindow(_T("BUTTON"), _T("Start"), WS_CHILD |
WS_VISIBLE
 | BS_PUSHBUTTON, 190, 115, 80, 25, hWnd, (HMENU)CONTROL_START,
wndEx.hInstance, NULL);
 SendMessage(hStart, WM_SETFONT, (WPARAM)hFont, TRUE);

 HWND hProgress = CreateWindow(PROGRESS_CLASS, _T(""), WS_CHILD
 | WS_VISIBLE | WS_BORDER, 20, 165, 250, 25, hWnd,
 (HMENU)CONTROL_PROGRESS, wndEx.hInstance, NULL);
 SendMessage(hProgress, PBM_SETSTEP, (WPARAM)1, 0);
 SendMessage(hProgress, PBM_SETPOS, (WPARAM)0, 0);

 void* params[2] = { hProgress, hResult };
 HANDLE hThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
ListenerRoutine, params, 0, NULL);
 Sleep(100);
 CloseHandle(hThread);

 ShowWindow(hWnd, iWndShow);

 HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, EVENT_NAME);
 HANDLE hMutex = CreateMutex(NULL, FALSE, MUTEX_NAME);
 HANDLE hMaping = CreateFileMapping((HANDLE)-1, NULL,
 PAGE_READWRITE, 0, sizeof(QueueElement), MAPPING_NAME);

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 CloseHandle(hMaping);
 CloseHandle(hMutex);
 CloseHandle(hEvent);
 UnregisterClass(wndEx.lpszClassName, wndEx.hInstance);

 return (int)msg.wParam;
}

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)

Chapter 5

221

{
 switch (uMsg)
 {
 case WM_DESTROY:
 {
 PostQuitMessage(0);
 break;
 }
 case WM_CLOSE:
 {
 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE,
 EVENT_NAME);
 SetEvent(hEvent);
 CloseHandle(hEvent);

 DestroyWindow(hWnd);
 break;
 }
 case WM_COMMAND:
 {
 switch (LOWORD(wParam))
 {
 case CONTROL_BROWSE:
 {
 if (!FileDialog(hWnd, szFilePath))
 {
 MessageBox(hWnd,
 _T("You must choose valid file path!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 else
 {
 char szBuffer[MAX_PATH];
 wsprintfA(szBuffer,
 "\n File: %s Press \"Start\" now.",
 strrchr(szFilePath, '\\') + 1);

 SetWindowTextA(GetDlgItem(hWnd, CONTROL_TEXT),
szBuffer);
 }
 break;
 }
 case CONTROL_START:
 {

Thread Synchronization and Concurrent Operations

222

 if (!*szFilePath)
 {
 MessageBox(hWnd,
 _T("You must choose valid file path first!"),
 _T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 break;
 }

 ifstream infile(szFilePath);

 if (infile.is_open())
 {
 string line;
 while (std::getline(infile, line))
 {
 QueueElement* pQElement = new QueueElement();
 istringstream iss(line);

 if (!(iss >> pQElement->iA1 >> pQElement->iB1 >>
pQElement->iC1 >> pQElement->iA2 >> pQElement->iB2 >> pQElement-
>iC2))
 {
 break;
 }

 pQElement->hWndProgress = GetDlgItem(hWnd,
 CONTROL_PROGRESS);
 pQElement->hWndResult = GetDlgItem(hWnd,
 CONTROL_RESULT);

 queue.Enqueue(pQElement);
 }

 infile.close();
 SendMessage(GetDlgItem(hWnd, CONTROL_PROGRESS),
 PBM_SETRANGE, 0, MAKELPARAM(0, queue.Count()));

 int iCount = queue.Count();
 for (int iIndex = 0; iIndex < iCount; iIndex++)
 {
 StartProcess(GetDlgItem(hWnd, CONTROL_TEXT));
 Sleep(100);
 }
 }

Chapter 5

223

 else
 {
 MessageBox(hWnd, _T("Cannot open file!"),
_T("Error!"), MB_OK | MB_TOPMOST | MB_ICONERROR);
 }
 break;
 }
 }
 break;
 }
 default:
 {
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
 }
 }
 return 0;
}

DWORD WINAPI ListenerRoutine(LPVOID lpParameter)
{
 void** lpParameters = (void**)lpParameter;
 HWND hWndProgress = (HWND)lpParameters[0];
 HWND hWndResult = (HWND)lpParameters[1];

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, EVENT_NAME);

 while (TRUE)
 {
 DWORD dwStatus = WaitForSingleObject(hEvent, INFINITE);
 if (dwStatus == WAIT_OBJECT_0)
 {
 break;
 }

 HANDLE hPipe = CreateNamedPipe(PIPE_NAME, PIPE_ACCESS_DUPLEX,
PIPE_WAIT | PIPE_READMODE_MESSAGE
 | PIPE_TYPE_MESSAGE, PIPE_UNLIMITED_INSTANCES, BUFFER_SIZE,
BUFFER_SIZE, 0, NULL);
 if (hPipe == INVALID_HANDLE_VALUE)
 {
 char szBuffer[MAX_PATH];
 wsprintfA(szBuffer, " Error: [%u]\n", GetLastError());

 SetWindowTextA(hWndResult, szBuffer);

Thread Synchronization and Concurrent Operations

224

 return 2L;
 }

 if (ConnectNamedPipe(hPipe, NULL))
 {
 void* params[2] = { hPipe, hWndResult };
 HANDLE hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE)StartAddress, params, 0, NULL);
 Sleep(100);
 CloseHandle(hThread);
 }

 SendMessage(hWndProgress, PBM_STEPIT, 0, 0);
 }

 CloseHandle(hEvent);
 return 0L;
}

DWORD WINAPI StartAddress(LPVOID lpParameter)
{
 void** lpParameters = (void**)lpParameter;
 HANDLE hPipe = (HANDLE)lpParameters[0];
 HWND hWndResult = (HWND)lpParameters[1];

 char* szRequest = (char*)HeapAlloc(GetProcessHeap(), 0,
 BUFFER_SIZE * sizeof(char));
 char* szReply = (char*)HeapAlloc(GetProcessHeap(), 0,
 BUFFER_SIZE * sizeof(char));

 DWORD dwBytesRead = 0;
 DWORD dwReplyBytes = 0;
 DWORD dwBytesWritten = 0;

 memset(szRequest, 0, BUFFER_SIZE * sizeof(char));
 memset(szReply, 0, BUFFER_SIZE * sizeof(char));

 if (!ReadFile(hPipe, szRequest, BUFFER_SIZE * sizeof(char),
&dwBytesRead, NULL))
 {
 return 2L;
 }

 char szBuffer[1024] = { 0 };

Chapter 5

225

 wsprintfA(szBuffer, " PID: [%s] connected.\n", szRequest);
 strcat_s(szResult, szBuffer);
 SetWindowTextA(hWndResult, szResult);

 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, MUTEX_NAME);

 WaitForSingleObject(hMutex, INFINITE);

 QueueElement* pQElement = (QueueElement*)queue.Dequeue();

 HANDLE hMapping = OpenFileMapping(FILE_MAP_ALL_ACCESS, FALSE,
MAPPING_NAME);
 QueueElement* pMapping = (QueueElement*)MapViewOfFile(hMapping,
FILE_MAP_ALL_ACCESS, 0, 0, 0);

 memcpy(pMapping, pQElement, sizeof(QueueElement));

 UnmapViewOfFile(pMapping);
 CloseHandle(hMapping);

 ReleaseMutex(hMutex);
 CloseHandle(hMutex);

 sprintf_s(szReply, BUFFER_SIZE * sizeof(char), "OK%s",
szRequest);
 dwReplyBytes = (DWORD)((strlen(szReply) + 1) * sizeof(char));

 if (!WriteFile(hPipe, szReply, dwReplyBytes, &dwBytesWritten,
NULL))
 {
 return 2L;
 }

 memset(szRequest, 0, BUFFER_SIZE * sizeof(char));

 if (!ReadFile(hPipe, szRequest, BUFFER_SIZE * sizeof(char),
&dwBytesRead, NULL))
 {
 return 2L;
 }

 wsprintfA(szBuffer, "%s", szRequest);
 strcat_s(szResult, szBuffer);

Thread Synchronization and Concurrent Operations

226

 SetWindowTextA(hWndResult, szResult);

 delete pQElement;

 FlushFileBuffers(hPipe);
 DisconnectNamedPipe(hPipe);
 CloseHandle(hPipe);
 HeapFree(GetProcessHeap(), 0, szRequest);
 HeapFree(GetProcessHeap(), 0, szReply);

 return 0L;
}

BOOL FileDialog(HWND hWnd, LPSTR szFileName)
{
 OPENFILENAMEA ofn;

 char szFile[MAX_PATH];

 ZeroMemory(&ofn, sizeof(ofn));

 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = hWnd;
 ofn.lpstrFile = szFile;
 ofn.lpstrFile[0] = '\0';
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFilter = "All\0*.*\0Text\0*.TXT\0";
 ofn.nFilterIndex = 1;
 ofn.lpstrFileTitle = NULL;
 ofn.nMaxFileTitle = 0;
 ofn.lpstrInitialDir = NULL;
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;

 if (GetOpenFileNameA(&ofn) == TRUE)
 {
 strcpy_s(szFileName, MAX_PATH - 1, szFile);
 return TRUE;
 }

 return FALSE;
}

BOOL StartProcess(HWND hWndResult)

Chapter 5

227

{
 STARTUPINFO startupInfo = { 0 };
 PROCESS_INFORMATION processInformation = { 0 };

 BOOL bSuccess = CreateProcess(
 _T("..\\x64\\Debug\\ClientProcess.exe"), NULL, NULL, NULL,
 FALSE, 0, NULL, NULL, &startupInfo, &processInformation);

 if (!bSuccess)
 {
 char szBuffer[MAX_PATH];
 wsprintfA(szBuffer, " Process creation fails: [%u]\n",
GetLastError());

 SetWindowTextA(hWndResult, szBuffer);
 }

 return bSuccess;
}

7. Open Solution Explorer and right-click on Solution concurrent_operations5. Add
a new empty Console application named ClientProcess. Now right-click on the
ClientProcess project. Add a new source file named main. Open main.cpp.

8. Add the following code:
#pragma once

#include "..\concurrent_operations5\main.h"

int _tmain(void)
{
 char szBuffer[BUFFER_SIZE];
 DWORD dwRead = 0;
 DWORD dwWritten = 0;
 DWORD dwMode = PIPE_READMODE_MESSAGE;

 char szMessage[1024] = { 0 };
 wsprintfA(szMessage, "%u", GetCurrentProcessId());

 DWORD dwToWrite = (DWORD)(strlen(szMessage) * sizeof(char));

 HANDLE hPipe = NULL;

 while (true)

Thread Synchronization and Concurrent Operations

228

 {
 hPipe = CreateFile(PIPE_NAME, GENERIC_READ | GENERIC_WRITE, 0,
NULL, OPEN_EXISTING, 0, NULL);
 if (hPipe != INVALID_HANDLE_VALUE)
 {
 WaitNamedPipe(PIPE_NAME, INFINITE);
 SetNamedPipeHandleState(hPipe, &dwMode, NULL, NULL);
 break;
 }

 Sleep(100);
 }

 if (!WriteFile(hPipe, szMessage, dwToWrite, &dwWritten, NULL))
 {
 printf("Error: [%u]\n", GetLastError());
 return system("pause");
 }

 printf("Request sent.\nReceiving task:\n");
 char szResult[1024] = { 0 };

 while (ReadFile(hPipe, szBuffer, BUFFER_SIZE * sizeof(char),
&dwRead, NULL) && GetLastError() != ERROR_MORE_DATA)
 {
 if (szBuffer[0] == 'O' && szBuffer[1] == 'K' && ((DWORD)
strtol(szBuffer + 2, NULL, 10) == GetCurrentProcessId()))
 {
 printf("Client process: [%s]\n", szBuffer + 2);

 HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS,
 FALSE, MUTEX_NAME);
 WaitForSingleObject(hMutex, INFINITE);

 HANDLE hMapping = OpenFileMapping(FILE_MAP_ALL_ACCESS,
FALSE, MAPPING_NAME);
 QueueElement* pMapping = (QueueElement*)
MapViewOfFile(hMapping, FILE_MAP_ALL_ACCESS, 0, 0, 0);

 if (pMapping != 0)
 {
 if (CalculateCramer(pMapping, szResult))
 {

Chapter 5

229

 dwToWrite = (DWORD)(strlen(szResult) * sizeof(char));

 if (!WriteFile(hPipe, szResult, dwToWrite, &dwWritten,
NULL))
 {
 printf("Error: [%u]\n", GetLastError());
 break;
 }
 else
 {
 printf("Result: %s\n", szResult);
 }
 }
 }

 UnmapViewOfFile(pMapping);
 CloseHandle(hMapping);

 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
 }
 else
 {
 printf("Error in connection [%u]\n", GetLastError());
 }
 }

 printf("\nSuccess!\nPress ENTER to exit.");
 scanf_s("%c", szBuffer);

 CloseHandle(hPipe);
 return 0;
}

bool CalculateCramer(QueueElement* pQElement, char* szResult)
{
 // We'll solve the linear system using Cramer's rule:
 double dDeterminant = (pQElement->iA1 * pQElement->iB2) -
(pQElement->iB1 * pQElement->iA2);
 if (dDeterminant != 0)
 {
 double dX = ((pQElement->iC1 * pQElement->iB2) -
 (pQElement->iB1 * pQElement->iC2)) / dDeterminant;

Thread Synchronization and Concurrent Operations

230

 double dY = ((pQElement->iA1 * pQElement->iC2) -
 (pQElement->iC1 * pQElement->iA2)) / dDeterminant;
 sprintf_s(szResult, strlen(szResult) - 1,
 " x = %8.4lf,\ty = %8.4lf\n", dX, dY);
 }
 else
 {
 sprintf_s(szResult, strlen(szResult) - 1,
 " Determinant is zero.\n");
 }

 return true;
}

How it works...
Well, this example has a lot more code. However, the good part is that, because there is no
security among threads (without proper synchronization, of course), and one thread can
mess with the other thread's data, or global variables, working with processes is safer by
definition. What we mean by this is that processes are divided by their own address space,
global variables, and synchronization objects. On the other hand, if one thread blocks all
the threads that wait for its output or shared resources will also be blocked. When you learn
about synchronization, it is important to understand the process model and Interprocess
Communication (IPC) as well. Let's explain main.h first. As more projects will use a pipe
name as well as a mutex and file mapping name, we will define them as a macros inside
the main header file. All the rest remains the same.

Now, let's focus on concurrent_operations5. The application entry point remains pretty
much the same. We'll create an event, mutex, and file mapping before the main thread enters
the message loop. We'll dispose all the mentioned objects after the application is closed. The
other thing about file mapping is that it is important that we set the size of the shared object
correctly; so we will set the size to sizeof(QueueElement).

We'll also create a listener thread that will use ListenerRoutine as a start address.
Its task is to loop forever, or until the event state becomes signaled. It will create a
named pipe and wait for client connections, by calling the ConnectNamedPipe API,
as explained in Chapter 4, Message Passing.

When the client connects, it will start another thread responsible for request processing
and will wait for another connection. The working thread starts from the StartAddress
routine. Its task is to allocate enough space for requests and replies, and then it will call
the ReadFile API in order to wait until the client writes a request and sends it back.
Again a very important task is to recognize what we need to protect. If multiple processes
will read and write to shared file mapping, then that is the place we must protect!

Chapter 5

231

It will take the ownership of the mutex, get the element from the queue, write to shared file
mapping, and then it will release the mutex. When a reply is prepared, it will write to the
pipe using the WriteFile API, and again wait for the client's reply using ReadFile. After
receiving the calculation result from an external process, it will release the used resources
and exit.

Inside WindowProcedure, we've changed so that instead of creating threads we create
processes—as many as there are elements in the queue. It would be wiser if we had set only
one working process to calculate and receive tasks one by one, but we wanted to point out
important parts of Interprocess Communication as well as synchronization—so an example
designed like this makes more sense.

Now, let's review the client process: first, it will try to connect to the pipe. As our main
application creates processes fast, with a 0.1 second gap between them, there is a great
possibility that these processes will try to connect to the pipe simultaneously. Well that
is impossible, and you'll probably get an ERROR_INVALID_HANDLE error! That's why the
process will loop, with a 0.1 second delay until it's connected. After successful connection,
the process will introduce itself using a unique process ID. It will then use the ReadFile
API to wait until a request arrives. If the request format is OK12345, where 12345 stands
for its process identifier, it will ask for the ownership of the mutex, and when the process
gets it, it will read coordinates from the shared file mapping and respond using WriteFile
once again. After it responds successfully, it will release the mutex and write its result to the
console output.

There's more...
All these techniques that have been shown in this chapter are ground zero for the user's future
development. The user can apply the knowledge later. We tried to point out the most important
steps in design as well as in development, but the user should take this as a starting point for
development. Further learning and studying operating systems is necessary if development of
complex systems (tasks) is required. Again, a smart design of the application itself is extremely
important! Remember to take application design very carefully, especially when parallel
execution will take place.

6
Threads in the .NET

Framework

In this chapter, we will cover the following topics:

 f Managed versus unmanaged code

 f How threading works in .NET

 f The difference between foreground and background threads

 f Understanding the .NET synchronization essentials

 f Locking and avoiding deadlocks

 f Thread safety and types of the .NET framework

 f Signaling with event wait handles

 f Event-based Asynchronous Pattern

 f The BackgroundWorker class

 f Interrupting, aborting, and safe canceling the thread execution

 f Non-blocking synchronization

 f Signaling with Wait and Pulse

 f The Barrier Class

Introduction
As many of you already know, there are many frameworks today that programmers can use
for their development, which give them many features, rich tools, visually stunning user
experiences, and much easier programming.

Threads in the .NET Framework

234

Our goal is to have a closer look at one of the most powerful frameworks today—the Microsoft
.NET framework. The Microsoft .NET framework provides excellent programming tools such as
UI forms, templates, various predefined controls, code maps, and SQL Server development tools,
with multiple programming languages, such as C#, F#, and Visual Basic. We will focus on the
Common Language Runtime (CLR) C++ language, also known as C++/CLI, where CLI stands
for Common Language Infrastructure, which is a standard part of the framework.

Since the .NET framework is very large and complex—we will focus on explaining the
multithreaded approach and synchronization of objects and techniques.

Managed versus unmanaged code
You can think of a framework as a set of routines and objects that helps you create an
application more easily and with rich content, due to a variety of predefined controls and
UI objects. When you write the code, at the end, you need to compile it. After compilation,
you often get a compiled application (*.exe), a dynamic library (*.dll), a kernel driver
(*.sys), and so on. This compiled file (or more files) contains the machine language (code)
that consists of only zeroes and ones, and it is not readable by humans. This, by definition,
is called unmanaged code. So, native C++ code (the one that we were coding so far) is
compiled directly to the machine language and we call it unmanaged. Unlike managed code,
it is fast and is executed directly on Hardware Abstraction Layer (HAL), which provides direct
interaction with the machine hardware and low-level execution.

The Windows NT HAL refers to a layer of software that deals directly with your
computer hardware. As the HAL operates at a level between the hardware and
the Windows NT executive services, applications and device drivers need not
be aware of any hardware-specific information. It hides hardware-dependent
details such as I/O interfaces, interrupt controllers, and multiprocessor
communication mechanisms. Applications and device drivers are no longer
allowed to deal with the hardware directly and must make calls to the HAL
routines to determine hardware-specific information (from MSDN).

On the other hand, managed code is a bit different. It is executed over common language
runtime, or in another words, a certain layer that resides between the machine hardware
and your application. The code you write isn't compiled directly into the machine language.
It is compiled into an intermediate language, MSIL or Microsoft Intermediate Language.
This ability gives your managed code advantages and disadvantages.

Let's review the advantages. Managed code, after it is compiled into MSIL, is checked
for various errors, such as static type checking (which is not performed on native code
compilation) and runtime checking. It offers a garbage collector, or the ability to free
unused dynamic memory allocated by the application and so on. We already said that
the framework provides rich programming tools, so when we summarize everything,
there are lots of advantages to using the .NET framework.

Chapter 6

235

However, there are disadvantages too. The application developed using any framework, such
as .NET or Java Runtime Environment (JRE), is much slower than an application developed
using native code. This happens because managed code is executed over a CLR layer, which
is then executed on the machine hardware. When you use a framework, it is easier for you
to develop the application, but you will never have complete control over the application's
execution, along with its interaction with the machine itself. The best you can do is what the
framework provides you with.

To conclude, you should use a native approach whenever you need fast execution and/or
complete control over the application execution, while the framework should be used whenever
you need an application that targets rich UI and much simpler development. Over the years,
Microsoft has done an excellent job with the .NET framework, but it will never be able to provide
everything you can do with the native approach. That's why we are focusing on managed code
only in one chapter, and the rest of the chapters are covered with a native approach.

Note that everything that you can do with frameworks you can achieve with a native approach.
You would need more time and much more effort—but it is doable. You can't do everything with
a managed approach, not even a part of what you can do with native code. To explain this even
better, let's examine two scenarios. First, we need to create software that will control nuclear
power plant machines. The second task is to create software that will use a club to rent DVDs.
The first task should be developed using native C++ (or even the assembly language) to provide
extremely fast and precise execution. This is because, and you would agree with me, nuclear
energy is too sensitive a thing to be taken leniently. On the other hand, DVD software should
look good (so that you can sell it better), and the execution time doesn't need to be in micro
or nanoseconds. It is enough to be user friendly and work correctly, so we could use .NET to
develop it faster and with lesser effort.

How threading works in .NET
An application that is executed on a CPU with more than one core should benefit from
concurrent execution, with as many concurrent tasks as there are logical cores to execute
on. Of course, there are many questions that need to be taken care of when we want to
execute parallel tasks:

 f How to divide a set of tasks so that each of them is executed in a multicore
environment?

 f How to ensure that the number of concurrent tasks doesn't exceed the number
of CPU cores?

 f If some task is stopped, such as when you wait for I/O, how to discover this and
make the CPU execute something else while waiting for I/O completion?

 f How to find out when one or more parallel operations are completed?

Threads in the .NET Framework

236

When you use a framework, answers to these questions depend on the framework itself.
Microsoft provides a Thread class as well as a Task class and a collection of auxiliary
types that resides in the System::Threading::Task namespace.

The Task class represents abstraction of concurrent operations. CLR implements tasks
and schedules them for execution using the Thread object and the ThreadPool class.
Multithreaded design can be performed using the Thread class, which resides in the
System::Threading namespace. However, for Windows 8 and the Windows store
application, the Thread class isn't available. You should use the Task class because it
provides very powerful abstraction of multitasking, and if you design an application that
creates a specific (but finite) number of threads, your application won't be scalable enough.
In other words, if the number of threads exceeds the number of cores, you could get slow
and unresponsive behavior. CLR optimizes the number of requested threads so that you
could implement concurrent tasks in the best way with respect to the number of available
cores. When your application creates a Task object, an actual task is added to the working
queue. When a thread becomes available, the task is removed from the queue and the
available thread executes it. The ThreadPool class implements several optimization
techniques and uses an algorithm for the work-stealing strategy for better thread scheduling.

Work-stealing is a feature of the scheduling algorithm, where
problems are analyzed and then the execution (for solving the
problem) is performed. Considering the number of quantums and
the calling depth, if the problem is easy to solve, then it is directly
solved. However, if the problem is considered complex, it is split
into smaller parts using already-created, available threads from
other CPU cores, for task solving. Later, the subresults are merged
into the final result. The idea is to use (steal) available threads,
of course, if possible.

Now, we will create our very first example using CLR. Visual Studio, before 2012 and 2013,
had the C++ Windows Forms template included. Newer versions that were released in 2012
and 2013 don't ship with the forms template, but you can achieve everything with a little
more effort. Our first example will create a simple application, which will calculate the
factorial (the product of all positive integers less than or equal to n) with n number of
iterations, where the working thread will calculate while the main thread will update the
progress bar—only to demonstrate the basic CLR program and explain a very important
feature: cross-thread operations.

Getting ready
Make sure Visual Studio is up and running.

Chapter 6

237

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp. Copy and paste the following code to it:
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++,
select UI. Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code to it:
#pragma once
namespace CLRApplication
{
 using namespace System;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;
 using namespace System::Threading::Tasks;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {

Threads in the .NET Framework

238

 InitializeComponent();
 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;
 static const int N = 25;

 System::Void Form_OnLoad(System::Object^ sender,
System::EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 Task^ task = gcnew Task(gcnew Action<Object^>
 (&MyForm::StartAddress), this);
 task->Start();
 }

 static System::Void StartAddress(Object^ parameter)

Chapter 6

239

 {
 MyForm^ form = (MyForm^)parameter;

 UpdateProgressBarDelegate^ action =
 gcnew UpdateProgressBarDelegate(form,
 &MyForm::UpdateProgressBar);
 __int64 iResult = 1;

 for (int iIndex = 1;
 iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 form->BeginInvoke(action);

 System::Threading::Thread::Sleep(100);
 }

 UpdateLabelTextDelegate^ textAction =
 gcnew UpdateLabelTextDelegate(form,
 &MyForm::UpdateLabelText);
 form->BeginInvoke(textAction, L"Result: "
 + Convert::ToString(iResult));
 }

 delegate void UpdateProgressBarDelegate(void);

 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 delegate void UpdateLabelTextDelegate(String^ szText);

 System::Void UpdateLabelText(String^ szText)
 {
 label->AutoSize = false;
 label->Text = szText;
 label->AutoSize = true;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>

Threads in the .NET Framework

240

 void InitializeComponent(void)
 {
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding = System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

How it works...
Let's explain MyForm.h first. Every .NET application usually starts by defining the application
(one or more) namespaces; in our case, we are using the CLRApplication default
namespace (produced by the designer). As we want to use the framework's features, we need
to specify libraries (also called assemblies) that we want to use, as shown in the following code:

using namespace System;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Drawing;
using namespace System::Threading::Tasks;

These assemblies allow us to use UI tools such as forms, points, and location objects.
Then, we will derive our UI class, MyForm, which represents the template window derived
from the System::Windows::Forms::Form base class. Pay attention to the MyForm
constructor, where the first command is a call to InitializeComponent. After that goes
our code. InitializeComponent loads the compiled page of a component and initializes
base values, such as size, text, and padding. Implementation of InitializeComponent
resides in a region called Windows Form Designer generated code. The designer
also generates a destructor under the protected scope of our class, and a single
components variable under the private scope, which encapsulates zero or more
components (controls). The code follows:

System::ComponentModel::Container ^components;

We've added label, progress, and N variables for the progress bar control, label control,
and the iterations limiter N respectively. The InitializeApp method creates a new label
and sets its location (the x and y coordinates on the parent control). It also creates a new
progress bar and initializes its location, size (the width and height), step (how many steps
the progress bar will update after calling its PerformStep method), maximum (the maximum
value that progress can have), and a starting value. After that, we will add these two controls
to the main form by calling the Add method:

Chapter 6

241

this->Controls->Add(label);
this->Controls->Add(progress);

Now, it is time to create our thread (task). As in the native approach, we must specify
its start address, and, if needed, pass an argument to its starting routine. As our start
routine is marked static, we will pass the this pointer to the routine in order to use
our class instance later. The task constructor expects a pointer to the Action object,
and if the Action<Object^> overload is used, it also expects a parameter constructor.
We will create a pointer to Action<Object^> as follows:

gcnew Action<Object^>(&MyForm::StartAddress)

The Action constructor expects the delegate (function pointer) to pass on, and we are
providing the address of the StartAddress method.

Now, let's explain the StartAddress method. First, we need to cast Object^ (similar to
void*) to MyForm^; next, we will instantiate a delegate that will later be used for invoking
the main thread to update the progress bar. This part is very important to understand! Unlike
in the native approach, CLR pays attention to which thread creates what control, and only the
thread that has created a certain control can manipulate it. As the main thread has created
the progress bar in the InitializeApp method, only the main thread can manipulate it. If
you try to update the progress bar from another thread, you'll get an exception: Cross-thread
operation not valid: Control 'progress' accessed from a thread other than the thread it was
created on. In other words, the working thread has to ask the main thread to update it, because
the main thread has created the progress bar. This can be achieved by using the Invoke or
BeginInvoke methods. These two methods are doing the same thing; they execute a delegate
on the thread that the control's underlying handle was created on. The only difference between
them is that BeginInvoke does that asynchronously, while Invoke does that by waiting for
the operation to return. Then, we will create a loop that will iterate n times, and at the end of
each iteration we will call BeginInvoke to update the progress bar. After the iterations are
completed, we will perform the same task for setting the label text.

As we said earlier, we will instantiate a delegate for both the previously described
operations. In order to achieve that, we must declare delegates and methods to be
invoked. The declarations are shown in the following code:

delegate void UpdateProgressBarDelegate(void);
System::Void UpdateProgressBar(void)
{
progress->PerformStep();
}

Threads in the .NET Framework

242

We will follow similar steps to set the label text. After we've completed creating our class,
we need to specify the application entry point. This is done in the main.cpp file. Just like
in our unmanaged code examples, we will include certain header files to be able to use
predefined types and the _tWinMain method. We need to include the MyForm.h form
to be able to use our class and assemblies that are required for the framework to work.
We need the System::Windows::Forms assembly in order to use the Application
class. We also need System::Threading to be able to set the thread apartment state
and the CLRApplication namespace in order to use MyForm as an instance to the
Application::Run method. We will set the ApartmentState variable to Single-Threaded
Apartment (STA). This is required for the proper lazy initialization of COM to be UI-friendly,
for example when we want to use drag-and-drop features on windows UI elements, and for
hosting COM controls. The Application::EnableVisualStyles method is used for rich
UI styles, similar to #pragma comment (linker, …) used in our unmanaged example
before. At the end, we will call Application::Run that will launch the application window
and enter its message loop.

There's more...
Even though we've explained a large part of our .NET application, there still remains a lot
of explanation, which is not a part of this book. The framework is so big that we would need a
few books to take care of everything. We tried to explain the most important parts that affect
our application's execution and are essential to the multithreading concept that we are focusing
on. One more thing that is important to understand is the gcnew operator. Even though we
are using managed C++, we could still use unmanaged code. Well, because of this excellent
feature, the new operator is used for unmanaged memory allocation, which has a fixed address
and must be deallocated by the programmer. Unlike unmanaged allocation, the gcnew operator
allocates memory from the CLR heap, and as such, is managed by the framework. This means
that the addresses are not fixed; it could change during execution. It also means that the
programmer doesn't need to take care of its reallocation. CLR will delete it using Garbage
Collector (GC) when it is not needed anymore. This also stands for the ^ and * operators,
which denote pointers, ^ for managed and * for unmanaged, and for the % and & operators,
which denote references for managed and unmanaged respectively. Comparison follows.

Operator Unmanaged Managed
Indirection (pointer) * ^
Reference & %

Chapter 6

243

The difference between foreground and
background threads

In .NET, there are two types of threads: foreground and background. Threads are, by default,
created as foreground threads. You could set the thread state explicitly as background. The
difference is that foreground threads keep an application alive as long as they are running,
while background threads do not. In other words, when you close applications, all background
threads are automatically terminated. So, when all the foreground threads complete execution,
the application can exit before the background threads return. After all the foreground threads
have been stopped, or after the application exits, the system stops all background threads.

Our previous example used the Task object, which runs in the background by default.
Our following example will be the same as the previous one, with the focus on foreground
execution. That's why we will use the Thread object instead of Task.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication2.
2. Open Solution Explorer and right-click on Source file. Add a new source file

named main. Open main.cpp. Copy and paste the following code:
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication2;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{

Threads in the .NET Framework

244

 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once
namespace CLRApplication2
{
 using namespace System;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;
 using namespace System::Threading;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {
 InitializeComponent();
 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);

 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;

Chapter 6

245

 static const int N = 25;

 System::Void Form_OnLoad(System::Object^ sender,
System::EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 Thread^ thread = gcnew Thread(gcnew
ParameterizedThreadStart(&MyForm::StartAddress));
 thread->Start(this);
 }

 static System::Void StartAddress(Object^ parameter)
 {
 MyForm^ form = (MyForm^)parameter;

 UpdateProgressBarDelegate^ action = gcnew
UpdateProgressBarDelegate(form, &MyForm::UpdateProgressBar);

 __int64 iResult = 1;
 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 form->BeginInvoke(action);

 System::Threading::Thread::Sleep(100);

Threads in the .NET Framework

246

 }

 UpdateLabelTextDelegate^ textAction = gcnew
UpdateLabelTextDelegate(form, &MyForm::UpdateLabelText);
 form->BeginInvoke(textAction, L"Result: " +
Convert::ToString(iResult));
 }

 delegate void UpdateProgressBarDelegate(void);

 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 delegate void UpdateLabelTextDelegate(String^ szText);

 System::Void UpdateLabelText(String^ szText)
 {
 label->AutoSize = false;
 label->Text = szText;
 label->AutoSize = true;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components =
 gcnew System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding = System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

Chapter 6

247

How it works...
While threads are created as a foreground, tasks are not. They are, by default, created as
background threads. In your development, you should carefully choose which type of thread
you need and select the appropriate one. For example, if we want to calculate a large factorial
(for example, for 10,000), it would take a long time, and we would use the Task object in order
to be able to interrupt execution by simply closing the application. On the other hand, if our
program must complete its task without any possible interruption from the user (even though
there are other ways to prevent this), we would use the Thread object and its ability to perform
tasks as a foreground thread.

There's more...
We'll also point out that you could use the Thread object for both types of execution, foreground
and background, while the Task object cannot be used for this. In order to use Thread as a
background thread, you would only need to change its IsBackground property to true before
starting it. The code to do so is as follows:

Thread^ thread = gcnew Thread(
 gcnew ParameterizedThreadStart(&MyForm::StartAddress));
thread->IsBackground = true;
thread->Start(this);

Understanding the .NET synchronization
essentials

After basic thread operations such as starting the thread or task and providing its start
address, .NET also provides synchronization mechanisms. These mechanisms are important
in order to understand the proper use of threads for concurrent operations without interfering
with threads. Furthermore, we will explain blocking methods, locking, signaling, and non-
blocking synchronization.

In .NET, the blocking methods are Thread::Sleep, Thread::Join, and Task::Wait.
It is better to block the thread instead of spinning it and wasting processor time. When
we say spin, we think of a loop where a thread will iterate the loop until some condition
is satisfied. The Sleep method simply changes the thread state to suspended for a
certain period of time. The Join method blocks the calling thread until the running thread
terminates. The Wait method waits for Task to complete its execution within a specified
time interval.

Threads in the .NET Framework

248

Our following example will calculate the factorial of 25 and will then ask the user whether it should
continue or not. In this way, we would need to use the Sleep method as the most primitive way
of spinning with a 1-second sleep interval, in order to not waste too much processor time. In order
to communicate between the main thread and the working thread, we will use the PostMessage
API, as the most primitive way, but enough for now, because we will explain other communication
techniques later.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication3.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp.
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication3;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

Chapter 6

249

4. Add the following code:
#pragma once

#include <Windows.h>
#pragma comment (lib, "User32.lib")
#define END_TASK WM_USER + 1

namespace CLRApplication3
{
 using namespace System;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;
 using namespace System::Threading::Tasks;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void) : bContinue(true)
 {
 InitializeComponent();
 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 }

 virtual void WndProc(Message% msg) override
 {
 switch (msg.Msg)
 {
 case END_TASK:
 {
 System::Windows::Forms::DialogResult^ dlgResult =
MessageBox::Show(L"Do you want to calculate again?", L"Question",
MessageBoxButtons::YesNo, MessageBoxIcon::Question);

 if (*dlgResult ==
 System::Windows::Forms::DialogResult::Yes)

Threads in the .NET Framework

250

 {
 bContinue = true;
 progress->Value = 0;
 label->Text = L"Calculating...";
 }
 else
 {
 PostMessage((HWND)this->Handle.ToPointer(), WM_CLOSE,
0, 0);
 }

 break;
 }
 }

 Form::WndProc(msg);
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;
 static const int N = 25;
 bool bContinue;

 System::Void Form_OnLoad(System::Object^ sender,
System::EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;

Chapter 6

251

 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 Task^ task = gcnew Task(gcnew Action<Object^>
 (&MyForm::StartAddress), this);
 task->Start();
 }

 static System::Void StartAddress(Object^ parameter)
 {
 MyForm^ form = (MyForm^)parameter;

 GetFormHandleDelegate^ getHandle = gcnew
GetFormHandleDelegate(form, &MyForm::GetFormHandle);
 IntPtr handle = (IntPtr)form->Invoke(getHandle);

 UpdateProgressBarDelegate^ action = gcnew
UpdateProgressBarDelegate(form, &MyForm::UpdateProgressBar);
 UpdateLabelTextDelegate^ textAction = gcnew
UpdateLabelTextDelegate(form, &MyForm::UpdateLabelText);

 Int64 iResult = 1;

 while (true)
 {
 if (!form->bContinue)
 {
 System::Threading::Thread::Sleep(1000);
 continue;
 }

 iResult = 1;
 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 form->BeginInvoke(action);

 System::Threading::Thread::Sleep(100);

Threads in the .NET Framework

252

 }

 form->BeginInvoke(textAction, L"Result: " +
Convert::ToString(iResult));

 PostMessage((HWND)handle.ToPointer(),END_TASK, 0, 0);

 form->bContinue = false;

 System::Threading::Thread::Sleep(1000);
 }
 }

 delegate void UpdateProgressBarDelegate(void);
 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 delegate void UpdateLabelTextDelegate(String^ szText);
 System::Void UpdateLabelText(String^ szText)
 {
 label->AutoSize = false;
 label->Text = szText;
 label->AutoSize = true;

 }

 delegate IntPtr GetFormHandleDelegate(void);
 System::IntPtr GetFormHandle(void)
 {
 return this->Handle;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components =

Chapter 6

253

 gcnew System::ComponentModel::Container();

 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding = System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

How it works...
The code is pretty much the same here, but we chose the Task object in order to run the
threads in the background, because when the user chooses not to continue, the application
will exit and the working thread needs to exit forcibly. We could also choose the Thread object
with the IsBackground property set. As we want to use the PostMessage API, we need to
include the User32 library, as shown in the following code:

#pragma comment (lib, "User32.lib")

When we are not using the framework, the User32 (among others) library is, by default,
included, while mscorlib.dll isn't. This happens when we are using a framework. The
mscorlib.dll library is included by default while User32 isn't. Next, we will define the
END_TASK message in order to be able to communicate between threads. We will expand
our class and will add the WndProc overridden method to process messages for the main
window. Once again, we are using the window message queue in order to signal the main
thread. We must add another delegate that will invoke the GetFormHandle method and
obtain the main window handle that the working thread needs to post the message. We've
also changed the StartAddress method so that the thread now executes an infinite loop
with sleeping periods of 1 second so that we do not waste too much processor time. After
each calculation is completed, we will signal the main thread to ask the user whether the
application will continue or not. If not, we will simply post the WM_CLOSE message and
terminate the background thread (our Task object) and exit the application. However,
if the user chooses to continue, we will perform the calculations again.

There's more...
Even though we've accomplished the given task, we were using primitive techniques for both
operations. We've used PostMessage to signal the main thread, and the Sleep method
to spin the thread while waiting for an answer from the user. Further on, we'll show the .NET
features that will help us to achieve this with integrated (OR built-in) objects and techniques.

Threads in the .NET Framework

254

Locking and avoiding deadlocks
In our previous example, we had the bContinue variable that both threads were accessing
without any restrictions on which thread can read or write in it. Well, that's usually application
bottleneck and should be avoided. The Microsoft .NET framework provides us with
mechanisms to avoid situations like that with very little difficulty.

Our following example will implement another class, Lock, similar to the previous one that
we used in Chapter 3, Managing Threads. The Lock class will help us to stop one thread from
reading while the other one is writing and vice versa. Unlike the C# language, which provides
the lock operator, C++ doesn't. That's why we will implement our own lock using the Monitor
object to lock the execution and wait while the other thread accesses the shared object.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication4.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp. Copy and paste the following code:
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication4;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

Chapter 6

255

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

#include <Windows.h>
#pragma comment (lib, "User32.lib")

#define END_TASK WM_USER + 1

namespace CLRApplication4
{
 using namespace System;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;
 using namespace System::Threading;
 using namespace System::Threading::Tasks;

 ref class Lock
 {
 Object^ lockObject;
 public:
 Lock(Object^ lock) : lockObject(lock)
 {
 Monitor::Enter(lockObject);
 }
 protected:
 ~Lock()
 {
 Monitor::Exit(lockObject);
 }
 };

 public ref class MyForm : public Form
 {
 public:
 MyForm(void) : bContinue(true)
 {
 lockObject = gcnew Object();
 InitializeComponent();
 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);
 }

Threads in the .NET Framework

256

 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 delete lockObject;
 }

 virtual void WndProc(Message% msg) override
 {
 switch (msg.Msg)
 {
 case END_TASK:
 {
 System::Windows::Forms::DialogResult^ dlgResult =
MessageBox::Show(L"Do you want to calculate again?", L"Question",
MessageBoxButtons::YesNo, MessageBoxIcon::Question);

 if (*dlgResult ==
 System::Windows::Forms::DialogResult::Yes)
 {
 SetState(true);
 progress->Value = 0;
 label->Text = L"Calculating...";
 }
 else
 {
 PostMessage((HWND)this->Handle.ToPointer(), WM_CLOSE,
0, 0);
 }
 break;
 }
 }

 Form::WndProc(msg);
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;
 static const int N = 25;

Chapter 6

257

 bool bContinue;
 Object^ lockObject;

 System::Void Form_OnLoad(System::Object^ sender,
System::EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void SetState(bool bState)
 {
 Lock^ lock = gcnew Lock(this->lockObject);
 bContinue = bState;
 delete lock;
 }

 bool QueryState(void)
 {
 Lock^ lock = gcnew Lock(this->lockObject);
 bool bState = bContinue;
 delete lock;

 return bState;
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 Task^ task = gcnew Task(gcnew Action<Object^>
 (&MyForm::StartAddress), this);

Threads in the .NET Framework

258

 task->Start();
 }

 static System::Void StartAddress(Object^ parameter)
 {
 MyForm^ form = (MyForm^)parameter;

 GetFormHandleDelegate^ getHandle = gcnew
GetFormHandleDelegate(form, &MyForm::GetFormHandle);
 IntPtr handle = (IntPtr)form->Invoke(getHandle);

 UpdateProgressBarDelegate^ action = gcnew
UpdateProgressBarDelegate(form, &MyForm::UpdateProgressBar);
 UpdateLabelTextDelegate^ textAction = gcnew
UpdateLabelTextDelegate(form, &MyForm::UpdateLabelText);

 Int64 iResult = 1;
 while (true)
 {
 if (!form->QueryState())
 {
 Thread::Sleep(1000);
 continue;
 }

 iResult = 1;

 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 form->BeginInvoke(action);

 Thread::Sleep(100);
 }

 form->BeginInvoke(textAction, L"Result: " +
Convert::ToString(iResult));

 PostMessage((HWND)handle.ToPointer(), END_TASK, 0, 0);

 form->bContinue = false;

 Thread::Sleep(1000);

Chapter 6

259

 }
 }

 delegate void UpdateProgressBarDelegate(void);
 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 delegate void UpdateLabelTextDelegate(String^ szText);

 System::Void UpdateLabelText(String^ szText)
 {
 label->AutoSize = false;
 label->Text = szText;
 label->AutoSize = true;
 }

 delegate IntPtr GetFormHandleDelegate(void);
 System::IntPtr GetFormHandle(void)
 {
 return this->Handle;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components =
 gcnew System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding = System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

Threads in the .NET Framework

260

How it works...
First, we'll add a new Lock class. The idea behind the Lock object is to prevent a shared object
from being accessed by more than one thread at one instance of time. For that purpose, we
will use the Monitor object, which resides in the System::Threading namespace, and its
Enter and Exit methods. To be able to use Monitor::Enter and Monitor::Exit, you
must supply a pointer to System::Object in order to prevent the shared object from being
accessed at the same time by two or more threads. We'll instantiate a pointer to the Lock object
before accessing the shared object and will delete the Lock object right after accessing the
shared object. This is due to the fact that the Monitor::Exit call is performed on the Lock
destructor. In this way, we can safely set the value of bContinue or read it, without worrying
whether the two threads will access it at the same time and perform unpredictable results.

There's more...
Let's discuss deadlocks. A deadlock is a situation where one or more threads are waiting
for exclusive access to some object that is held by the thread that is suspended or unable
to proceed for some reason. A deadlock can appear in a case where thread A is waiting for
thread B, while thread B is waiting for thread A. An illustration is given in the following figure:

Deadlocks can appear in many situations where exclusive access is present. For example,
we've added exclusive access to our example in a way that, when the main thread wants to
set the value of bContinue, the working thread can't read it, or when the working thread
wants to read its value, the main thread can't write. What if we suspend the working thread
just after it has set a lock on the bContinue object? Well, we would encounter a deadlock
because the main thread will be blocked until the working thread continues, but the working
thread can't continue because it is suspended. There are many algorithms on how to detect,
avoid, and successfully deal with deadlocks, but this is not the topic here. Deadlock detection
and resolving will be implemented and explained in detail in Chapter 8, Advanced Thread
Management. Our intention is to inform the developer about possible scenarios, while
thorough research should be performed on the deadlock theory using well-documented
materials in the operating system area.

Chapter 6

261

Thread safety and types of the .NET
framework

What is thread safety? It is the ability to perform exclusive access without interfering with
separate threads. Why is this important when we are using .NET? This is because of the
.NET internal implementation of certain types and operations—which are designed to be
thread-safe by Microsoft itself. A good practice is to continue to develop in the same
manner and try to avoid problems from designing the application to the coding itself.

In .NET, all static members are thread-safe while instance members are not. For example,
if two threads want to enumerate a certain List collection concurrently, they will both
get different enumerator objects. It is okay if they do not modify collection values inside
enumeration. However, if some change during enumeration is needed, we would have to
use locks.

Let's review this by showing the code that will enumerate through the list and is thread-safe:

List<int>^ list = gcnew List<int>();

for (int iValue = 0; iValue < 5; iValue++)
{
 list->Add(iValue);
}

array<Object^>^ _t1Params = gcnew array<Object^>(2)
 {list, L"Task _t1" };
Task^ _t1 = gcnew Task(gcnew Action<Object^>
 (&EnumerateList), _t1Params);
_t1->Start();

array<Object^>^ _t2Params = gcnew array<Object^>(2)
 {list, L"Task _t2" };
Task^ _t2 = gcnew Task(gcnew Action<Object^>
 (&EnumerateList), _t2Params);
_t2->Start();

static void EnumerateList(Object^ parameter)
{
 array<Object^>^ _tParams = (array<Object^>^) parameter;

 List<int>^ lst = (List<int>^) _tParams[0];

Threads in the .NET Framework

262

 String^ szValues = gcnew String(L" ");

 for each (int iValue in lst)
 {
 szValues += iValue + L" ";
 }

 MessageBox::Show(szValues, (String^) _tParams[1]);
}
…

As we said before, each thread will get a different enumerating object. Hence, we say that it
is thread-safe. Another feature that .NET provides us with is the initonly keyword, which
enables a concurrent read operation to be safe. So when two (or more) threads are accessing
such a type, it is safe. The code follows:

ref class SafeValue
{
public:
 SafeValue(void){ }
 void Run(void)
 {
 Task^ _t1 = gcnew Task(gcnew Action(&AccessValue));
 _t1->Start();

 Task^ _t2 = gcnew Task(gcnew Action(&AccessValue));
 _t2->Start();
 }
protected:
 ~SafeValue(void){ }
private:
 static void AccessValue(void)
 {
 MessageBox::Show(Convert::ToString(SafeValue::iValue));
 }
 static initonly int iValue = 10;
};

int main()
{
 SafeValue^ safeValue = gcnew SafeValue();
 safeValue->Run();
}

Chapter 6

263

Adding safety to your application usually means surrounding all exclusive access with locks,
but at the same time, you should be aware of the fact that exclusion means waiting between
threads, which results in spending a lot of time, and could potentially lead to a deadlock.
Once again, a proper application design is needed before you actually start coding anything.
Furthermore, in Chapter 7, Understanding Concurrent Code Design, we will thoroughly explain
how to properly think and design an application in such a way that you avoid all potentially
dangerous situations and known problems with respect to the task itself.

Signaling with event wait handles
In the Understanding the .NET synchronization essentials recipe, we used an unsafe way to
access the bContinue shared object, and we used the Sleep method to release the processor
for one second while waiting for the user to make a choice between continuing and exiting the
application. Later, in the Locking and avoiding deadlocks recipe, we've improved our application
to be thread–safe by adding locks to ensure exclusive access—again with the Sleep method
inside the loop. The Microsoft .NET framework provides signaling objects that are mostly similar
to Event, which we have explained in the previous chapters. Those are the AutoResetEvent,
ManualResetEvent, ManualResetEventSlim, CountDownEvent, Barrier, and Wait
and Pulse methods.

We chose to use ManualResetEventSlim in our following example due to its extremely
small overhead—about 40 nanoseconds. We'll now remove the Lock class and access the
shared object—as it's no longer needed. When the working thread completes the calculation
for the first time, it will notify the main thread of the completion of the operation and will
call the ManualResetEventSlim::Wait method to suspend execution. Later, if the user
chooses to continue the calculation, we'll simply set the event object, which will signal the
thread to continue execution.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication5.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp. Copy and paste the following code:
#include <Windows.h>
#include <tchar.h>

Threads in the .NET Framework

264

#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication5;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

#include <Windows.h>
#pragma comment (lib, "User32.lib")

#define END_TASK WM_USER + 1

namespace CLRApplication5
{
 using namespace System;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;
 using namespace System::Threading;
 using namespace System::Threading::Tasks;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {
 mEvent = gcnew ManualResetEventSlim(false);
 InitializeComponent();
 this->Load += gcnew System::EventHandler(this,

Chapter 6

265

&MyForm::Form_OnLoad);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 delete mEvent;
 }

 virtual void WndProc(Message% msg) override
 {
 switch (msg.Msg)
 {
 case END_TASK:
 {
 System::Windows::Forms::DialogResult^ dlgResult =
MessageBox::Show(L"Do you want to calculate again?", L"Question",
MessageBoxButtons::YesNo, MessageBoxIcon::Question);

 if (*dlgResult ==
 System::Windows::Forms::DialogResult::Yes)
 {
 progress->Value = 0;
 label->Text = L"Calculating...";
 mEvent->Set();
 }
 else
 {
 this->Close();
 }
 break;
 }
 }

 Form::WndProc(msg);
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;
 static const int N = 25;

Threads in the .NET Framework

266

 static ManualResetEventSlim^ mEvent;

 System::Void Form_OnLoad(System::Object^ sender,
System::EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 Task^ task = gcnew Task(gcnew Action<Object^>
 (&MyForm::StartAddress), this);
 task->Start();
 }

 static System::Void StartAddress(Object^ parameter)
 {
 MyForm^ form = (MyForm^)parameter;

 GetFormHandleDelegate^ getHandle = gcnew
GetFormHandleDelegate(form, &MyForm::GetFormHandle);
 IntPtr handle = (IntPtr)form->Invoke(getHandle);

 UpdateProgressBarDelegate^ action = gcnew
UpdateProgressBarDelegate(form, &MyForm::UpdateProgressBar);
 UpdateLabelTextDelegate^ textAction = gcnew
UpdateLabelTextDelegate(form, &MyForm::UpdateLabelText);

 Int64 iResult = 1;
 while (true)
 {

Chapter 6

267

 iResult = 1;
 mEvent->Reset();

 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 form->BeginInvoke(action);

 Sleep(100);
 }

 form->BeginInvoke(textAction, L"Result: " +
Convert::ToString(iResult));

 PostMessage((HWND)handle.ToPointer(), END_TASK, 0, 0);

 mEvent->Wait();
 }
 }

 delegate void UpdateProgressBarDelegate(void);
 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 delegate void UpdateLabelTextDelegate(String^ szText);
 System::Void UpdateLabelText(String^ szText)
 {
 label->AutoSize = false;
 label->Text = szText;
 label->AutoSize = true;
 }

 delegate IntPtr GetFormHandleDelegate(void);
 System::IntPtr GetFormHandle(void)
 {
 return this->Handle;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify

Threads in the .NET Framework

268

 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = gcnew
 System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding =
 System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

How it works...
This is a much better approach than the previous two examples. We've removed the Lock
class and at the same time we avoided using the shared object, which is the primary spot
for errors and interference. We've added the ManualResetEventSlim variable in the
private scope. It is declared static due to required safety, which was explained before.
In the MyForm constructor, we will create a new instance of ManualResetEventSlim,
which is not good if you have more than one instance of application. For simplicity of the
given example, we chose to do it like this. It is left to the user to additionally improve the
application if more than one instance is required. Also, the ManualResetEventSlim
constructor expects a bool parameter, which designates whether to set the initial state of
an event to signaled or not. Furthermore, when the working thread starts execution, it will
set the event state to nonsignaled. By calling the Wait method, it will enter a suspended
state and will wait for an event until its state becomes signaled. In the main thread, inside
the WndProc function, after the user chooses to continue, we'll set the event state to
signaled. In this way, the working thread can continue with its execution.

There's more...
ManualResetEventSlim provides a much faster version of ManualResetEvent
and gives better performance when the wait time is expected to be less, and when the
event is not shared between different processes. When the wait time is smaller, the
ManualResetEventSlim overhead is much less expensive, usually in situations other
than waiting for some of wait handles. However, if the state doesn't become signaled
within a short time period, the event behaves as a regular ManualResetEvent object.

Chapter 6

269

Event-based Asynchronous Pattern
Microsoft .NET provides Event-based Asynchronous Pattern (EAP), which offers multithreading
capability without the need for a programmer to explicitly create or start a thread or task. Such
classes are BackgroundWorker or WebClient. We'll focus on BackgroundWorker later
in detail. Now, we'll simply point out the features of WebClient and will expand our factorial
example to use an event instead of posting messages.

The managed WebClient class, among others, provides methods for downloading data
in synchronous and asynchronous execution. Our interest is in asynchronous methods.
The code follows

[HostProtectionAttribute(SecurityAction::LinkDemand, ExternalThreading
= true)]
public: void DownloadDataAsync(Uri^ address)
public: void DownloadDataAsync(Uri^ address, Object^ userToken)
public: event DownloadDataCompletedEventHandler^ DownloadDataCompleted
{
 void add (DownloadDataCompletedEventHandler^ value);
 void remove (DownloadDataCompletedEventHandler^ value);
}

The idea behind the asynchronous approach is that these methods create a new thread to
execute the download operation, while the developer needs to register event notifications,
or in other words, it must provide a method that will be called on completion of the operation.

We'll do something similar with our factorial example. We'll create an event that will fire when
the calculation is over in order to ask the user whether they want to repeat the operation.
Earlier, we've accomplished this by posting messages to the main thread window message
queue, but it's not always possible to do that. What if we create a console application? We
would not have a window there and we can't use the window message queue. That's why it's
important to understand the mechanism of the event in detail.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication6.

Threads in the .NET Framework

270

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp. Copy and paste the following code:
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication6;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

namespace CLRApplication6
{
 using namespace System;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;
 using namespace System::Threading;
 using namespace System::Threading::Tasks;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {
 InitializeComponent();
 mEvent = gcnew ManualResetEventSlim(false);
 EndTaskEvent += gcnew EndTaskEventHandler(&MyForm::EndTask);

Chapter 6

271

 updateProgressBar = gcnew UpdateProgressBarDelegate(this,
&MyForm::UpdateProgressBar);
 updateLabelText = gcnew UpdateLabelTextDelegate(this,
&MyForm::UpdateLabelText);
 updateProgressBarValue = gcnew
 UpdateProgressBarValueDelegate(this,
 &MyForm::UpdateProgressBarValue);
 closeForm = gcnew FormCloseDelegate(this,
&MyForm::FormClose);

 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 delete mEvent;
 }
 private:
 System::ComponentModel::Container ^components;

 delegate void UpdateProgressBarDelegate(void);
 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 delegate void UpdateProgressBarValueDelegate(int iValue);
 System::Void UpdateProgressBarValue(int iValue)
 {
 progress->Value = iValue;
 }

 delegate void UpdateLabelTextDelegate(String^ szText);
 System::Void UpdateLabelText(String^ szText)
 {
 label->AutoSize = false;
 label->Text = szText;
 label->AutoSize = true;
 }

Threads in the .NET Framework

272

 delegate void FormCloseDelegate(void);
 System::Void FormClose(void)
 {
 this->Close();
 }

 Label^ label;
 ProgressBar^ progress;
 static const int N = 25;
 static ManualResetEventSlim^ mEvent;
 delegate void EndTaskEventHandler(MyForm^);
 static event EndTaskEventHandler^ EndTaskEvent;
 UpdateProgressBarDelegate^ updateProgressBar;
 UpdateLabelTextDelegate^ updateLabelText;
 UpdateProgressBarValueDelegate^ updateProgressBarValue;
 FormCloseDelegate^ closeForm;

 System::Void Form_OnLoad(Object^ sender, System::EventArgs^ e)
 {
 InitializeApp();
 }

 static System::Void EndTask(MyForm^ form)
 {
 System::Windows::Forms::DialogResult^ dlgResult =
MessageBox::Show(L"Do you want to calculate again?", L"Question",
MessageBoxButtons::YesNo, MessageBoxIcon::Question);

 if (*dlgResult == System::Windows::Forms::DialogResult::Yes)
 {
 if (form->progress->InvokeRequired)
 {
 form->BeginInvoke(form->updateProgressBarValue,
(Object^)0);
 }
 else
 {
 form->progress->Value = 0;
 }

 if (form->label->InvokeRequired)
 {
 form->BeginInvoke(form->updateLabelText,
L"Calculating...");
 }

Chapter 6

273

 else
 {
 form->label->Text = L"Calculating...";
 }

 mEvent->Set();
 }
 else
 {
 if (form->InvokeRequired)
 {
 form->BeginInvoke(form->closeForm);
 }
 else
 {
 form->Close();
 }
 }
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 Task^ task = gcnew Task(gcnew Action<Object^>
 (&MyForm::StartAddress), this);
 task->Start();
 }

 static System::Void StartAddress(Object^ parameter)
 {

Threads in the .NET Framework

274

 MyForm^ form = (MyForm^)parameter;

 Int64 iResult = 1;
 while (true)
 {
 iResult = 1;

 mEvent->Reset();

 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 form->BeginInvoke(form->updateProgressBar);
 System::Threading::Thread::Sleep(100);
 }

 form->BeginInvoke(form->updateLabelText, L"Result: " +
Convert::ToString(iResult));

 MyForm::EndTaskEvent(form);

 mEvent->Wait();
 }
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = gcnew
 System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding =
 System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

Chapter 6

275

How it works...
We are presenting event usage and we've removed posting messages to the main window
message queue. There is an advantage to this. We're now independent of whether or not
the application has a window. However, there is a down side. As the working thread fires an
event (calling a routine), all manipulation with UI elements, such as changing the value of
the progress bar or label text, must be done by invoking a proper method. We intentionally
created an example like this only to point out cross-thread operations. This is very important
to understand before doing anything asynchronously in .NET, which involves UI controls'
manipulation. Let's review the code. We've changed the MyForm constructor in a way that
the first six lines of code are creating new instances of events and delegates. We've changed
delegates to be class attributes instead of locally-declared variables because more than one
method will use them. We've added a static routine EndTask that will be called on raising
the EndTaskEventHandler event. And finally, inside the StartAddress method, instead of
using the PostMessage API, we are raising an event to ask the user if they want to continue.
So, by following a slightly different approach, we're using EAP in the proper way, which the .NET
framework provides.

There's more...
In order for you to understand the built EAP, we'll give an example of the
WebClientDownloadDataAsync method usage:

...
String^ szUrl = L"http://cplusplus.expert.its.me/testfile.txt";
WebClient^ client = gcnew WebClient();
client->DownloadDataCompleted +=
 gcnew DownloadDataCompletedEventHandler(
 &MyForm::AsyncDownloadDataCompleted);
client->DownloadDataAsync(gcnew Uri(szUrl));
...

static void AsyncDownloadDataCompleted(Object^ sender,
 DownloadDataCompletedEventArgs^ e)
{
 String^ szResult;
 System::Text::Encoding^ enc = System::Text::Encoding::UTF8;
 szResult = enc->GetString(e->Result);

 if (e->Error == nullptr
 && !String::IsNullOrEmpty(szResult))
 {
 System::IO::File::WriteAllText(
 L"C:\\testFile.txt", szResult);
 MessageBox::Show(L"Download commplete.");
 }
}

Threads in the .NET Framework

276

Similar to our previous example, it is required to register for an event, and we
are using the AsyncDownloadDataCompleted method for that. When we call
WebClient::DownloadDataAsync, CLR creates a new thread that will perform
the download operation in parallel and, on completion, it will raise an event with a
subsequent call to the AsyncDownloadDataCompleted method.

Using the BackgroundWorker class
As we said before, EAP is a very good mechanism, which enables a programmer to create
multithreaded applications easily and with much less coding. The BackgroundWorker
object is a general-purpose implementation of the EAP, and has many good features, such
as the handy cancelation model, the ability to safely update another thread's UI controls,
the reporting progress feature, exception forwarding, raising completion event, and more.
We'll now implement our factorial example using the BackgroundWorker class that
resides in the System::ComponentModel namespace.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication7.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp.
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication7;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();

Chapter 6

277

 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

namespace CLRApplication7
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {
 InitializeComponent();

 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;

Threads in the .NET Framework

278

 static const int N = 25;

 System::Void Form_OnLoad(System::Object^ sender,
System::EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 BackgroundWorker^ bckWorker = gcnew BackgroundWorker();
 bckWorker->WorkerReportsProgress = true;
 bckWorker->ProgressChanged +=
 gcnew ProgressChangedEventHandler(this,
 &MyForm::ProgressChanged);

 bckWorker->RunWorkerCompleted +=
 gcnew RunWorkerCompletedEventHandler(this,
 &MyForm::RunningCompleted);
 bckWorker->DoWork += gcnew DoWorkEventHandler(this,
 &MyForm::StartAddress);
 bckWorker->RunWorkerAsync(bckWorker);
 }

 System::Void StartAddress(Object^ sender, DoWorkEventArgs^ e)
 {
 BackgroundWorker^ bckWorker = (BackgroundWorker^)
e->Argument;

 Int64 iResult = 1;
 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)

Chapter 6

279

 {
 iResult *= iIndex;

 bckWorker->ReportProgress(iIndex);

 System::Threading::Thread::Sleep(100);
 }

 e->Result = iResult;
 }

 System::Void ProgressChanged(Object^ sender,
ProgressChangedEventArgs^ e)
 {
 progress->Value = e->ProgressPercentage;
 }

 System::Void RunningCompleted(Object^ sender,
RunWorkerCompletedEventArgs^ e)
 {
 label->AutoSize = false;
 label->Text = L"Result: " + Convert::ToString(e->Result);
 label->AutoSize = true;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = gcnew
 System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding =
 System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

Threads in the .NET Framework

280

How it works...
As you will notice, the deeper we go into the framework's features, the less development
time and coding effort is needed. In our previous variations of the factorial application,
we had to implement delegates in order to manipulate with different thread UI controls.
BackgroundWorker does all that for us with integrated events such as ProgressChanged
or RunWorkerCompleted. These features make coding a lot easier. Here, you need not worry
about cross-thread operations, which are usually a programmer's nightmare. Programming
logic also becomes a lot simpler. Let's review the code. Major changes were done inside
InitializeApp where we had to properly initialize the BackgroundWorker object; we
had to provide method delegates for three events and set the WorkerReportsProgress
property to true. Note that, in order to match the event prototype, we had to change the
StartAddress prototype's signature to the following:

System::Void StartAddress(Object^ sender, DoWorkEventArgs^ e)

We can still pass an argument via the RunWorkerAsync method and obtain it later, inside
the StartAddress method via the Argument attribute of the DoWorkEventArgs object.
When we want to raise a ProgressChanged event, we simply call the BackgroundWorker
::ReportProgress method and pass an integer as an argument, which tells how much of
the progress will be updated. At the end, we want to know when the working thread completes
execution. That's why we've registered the RunWorkerCompleted event. When the thread
exits, that event is raised.

There's more...
Unlike the Thread class, which is implemented as a sealed class, BackgroundWorker is not.
This means that you could subclass and derive your own version of the BackgroundWorker
object, which will be expanded for any need that you have. This might come in handy when you
have a complex task, such as a weather forecast prediction, where your BackgroundWorker
class should have numerous attributes in order to save a lot of data that needs to be processed.
 Note that you need to use the OnDoWork virtual method in case of deriving the
BackgroundWorker class. One variation should look like this:

ref class Worker : BackgroundWorker
{
public:
 Worker() : BackgroundWorker()
 {
 WorkerReportsProgress = true;
 }

protected:
 virtual void OnDoWork(DoWorkEventArgs^ e) override
 {

Chapter 6

281

 Worker^ bckWorker = (Worker^) e->Argument;

 Int64 iResult = 1;
 for (int iIndex = 1; iIndex <= Worker::N; iIndex++)
 {
 iResult *= iIndex;
 bckWorker->ReportProgress(iIndex);

 System::Threading::Thread::Sleep(100);
 }

 e->Result = iResult;
}
private:
 static const int N = 25;
 // additional fields
};

The use would be as follows:

Worker^ worker = gcnew Worker();
worker->RunWorkerAsync(worker);

Interrupting, aborting, and safe canceling
the thread execution

Some tasks require ways to forcibly interrupt the execution of the thread. In our previous
examples, we've used the Task and BackgroundWorker objects due to their background
operations and the ability to be forcibly closed on exiting the application. Now, let's explain
the .NET features that target normal thread interruption and safe cancelation. Each blocking
method will block the thread forever if some unblocking condition is never met or the timeout
is not set. However, sometimes, you need to cancel thread execution and maybe continue the
execution of the application without allowing the thread to continue. In other situations, you
need to cancel the thread, for example, to receive user input, and start the thread again.
The methods for ending the thread are Thread::Interrupt and Thread::Abort.

When you call the Interrupt method, the thread that's not blocked continues execution
until it is blocked the next time, at which point a ThreadInterruptedException is
thrown, while calling an interrupt on a blocked thread forcibly terminates it and again throws
ThreadInterruptedException. As the Abort method has an effect on non-blocked
threads, you should almost always use Abort instead of Interrupt. When you use the
Abort method, a similar exception is thrown: ThreadAbortException. The Abort and
Interrupt methods are not considered safe. This is because if you have an unmanaged
code execution inside the thread routine, when you use Abort, the execution will continue
as far as the next managed code statement is executed. On the other hand, Interrupt
won't affect execution until the thread isn't blocked.

Threads in the .NET Framework

282

In our following example, we'll show how to abort a thread using the Abort method.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication8.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp.
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication8;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

namespace CLRApplication8
{
 using namespace System;
 using namespace System::Threading;
 using namespace System::Windows::Forms;

Chapter 6

283

 using namespace System::Drawing;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {
 InitializeComponent();
 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);

 updateProgressBar = gcnew UpdateProgressBarDelegate(this,
&MyForm::UpdateProgressBar);
 updateLabelText = gcnew UpdateLabelTextDelegate(this,
&MyForm::UpdateLabelText);
 this->FormClosing += gcnew FormClosingEventHandler(this,
&MyForm::FormClosingEvent);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 delegate void UpdateProgressBarDelegate(void);
 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 delegate void UpdateLabelTextDelegate(String^ szText);
 System::Void UpdateLabelText(String^ szText)
 {
 label->AutoSize = false;
 label->Text = szText;
 label->AutoSize = true;
 }

 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;
 static const int N = 25;

Threads in the .NET Framework

284

 Thread^ worker;
 UpdateProgressBarDelegate^ updateProgressBar;
 UpdateLabelTextDelegate^ updateLabelText;

 System::Void Form_OnLoad(System::Object^ sender,
System::EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void FormClosingEvent(Object^ sender,
FormClosingEventArgs^ e)
 {
 System::Windows::Forms::DialogResult^ dlgResult =
MessageBox::Show(L"Do you want to abort execution? ", L"Question",
MessageBoxButtons::YesNo, MessageBoxIcon::Question);

 if (*dlgResult == System::Windows::Forms::DialogResult::Yes)
 {
 worker->Abort();
 }
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 worker = gcnew Thread(gcnew ParameterizedThreadStart(
&MyForm::StartAddress));
 worker->Start(this);

Chapter 6

285

 }

 static System::Void StartAddress(Object^ parameter)
 {
 MyForm^ form = (MyForm^)parameter;

 Int64 iResult = 1;
 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 form->BeginInvoke(form->updateProgressBar);

 Thread::Sleep(100);
 }

 form->BeginInvoke(form->updateLabelText, L"Result: " +
Convert::ToString(iResult));
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions =
 System::Drawing::SizeF(6, 13);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 this->Size = System::Drawing::Size(284, 261);
 this->MaximizeBox = false;
 this->MinimizeBox = false;
 this->Name = L"MyForm";
 this->Text = L"MyForm";
 this->ResumeLayout(false);
 }
#pragma endregion
 };
}

Threads in the .NET Framework

286

How it works...
We're using the same example as before. Our only intention was to show how to use the
Abort method to the user. We recommend that you use these methods with caution, and
only on your own implementation of threads, simply because you would then know exactly
what would happen.

Safe cancelation
Even though the .NET framework implements the Abort and Interrupt methods, you
should avoid their usage whenever possible. Another approach that we would recommend
is to use (when possible) the BackgroundWorker::WorkerSupportsCancellation
property and its CancelAsync method.

Our following example will show how to abort the BackgroundWorker thread using the
CancelAsync method.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication9.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp.
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication9;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();

Chapter 6

287

 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

namespace CLRApplication9
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {
 InitializeComponent();
 this->Load += gcnew System::EventHandler(this,
&MyForm::Form_OnLoad);

 this->FormClosing += gcnew FormClosingEventHandler(this,
&MyForm::FormClosingEvent);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;
 static const int N = 25;

Threads in the .NET Framework

288

 BackgroundWorker^ bckWorker;

 System::Void Form_OnLoad(Object^ sender, EventArgs^ e)
 {
 InitializeApp();
 }

 System::Void FormClosingEvent(Object^ sender,
FormClosingEventArgs^ e)
 {
 System::Windows::Forms::DialogResult^ dlgResult =
MessageBox::Show(L"Do you want to abort execution?", L"Question",
MessageBoxButtons::YesNo, MessageBoxIcon::Question);

 if (*dlgResult == System::Windows::Forms::DialogResult::Yes)
 {
 bckWorker->CancelAsync();
 }
 else
 {
 e->Cancel = true;
 }
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 bckWorker = gcnew BackgroundWorker();
 bckWorker->WorkerReportsProgress = true;
 bckWorker->WorkerSupportsCancellation = true;
 bckWorker->ProgressChanged +=
 gcnew ProgressChangedEventHandler(this,
 &MyForm::ProgressChanged);

Chapter 6

289

 bckWorker->RunWorkerCompleted +=
 gcnew RunWorkerCompletedEventHandler(this,
 &MyForm::RunningCompleted);
 bckWorker->DoWork += gcnew DoWorkEventHandler(this,
 &MyForm::StartAddress);
 bckWorker->RunWorkerAsync(bckWorker);
 }

 System::Void StartAddress(Object^ sender, DoWorkEventArgs^ e)
 {
 BackgroundWorker^ worker = (BackgroundWorker^) e->Argument;

 Int64 iResult = 1;
 for (int iIndex = 1; iIndex <= MyForm::N; iIndex++)
 {
 iResult *= iIndex;
 worker->ReportProgress(iIndex);

 System::Threading::Thread::Sleep(100);

 if (worker->CancellationPending)
 {
 return;
 }
 }

 e->Result = iResult;
 }

 System::Void ProgressChanged(Object^ sender,
ProgressChangedEventArgs^ e)
 {
 progress->Value = e->ProgressPercentage;
 }

 System::Void RunningCompleted(Object^ sender,
RunWorkerCompletedEventArgs^ e)
 {
 label->AutoSize = false;
 label->Text = L"Result: " + Convert::ToString(e->Result);
 label->AutoSize = true;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer

Threads in the .NET Framework

290

 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = gcnew
 System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300, 300);
 this->Text = L"MyForm";
 this->Padding =
 System::Windows::Forms::Padding(0);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

How it works...
We've achieved the same thing, only this time safely, again using .NET's integrated features
—the BackgroundWorker::CancelAsync method and the BackgroundWorker property
WorkerSupportsCancellation. It is not always possible to implement the described
mechanism, especially in situations where you must have full control over execution, and
thread cancelation must be performed instantly. In such a case, you could use a bool
variable (or another type) to mimic the described property, surrounded with a Lock object,
to ensure exclusive access.

Let's review the code. We've added FormClosingEventHandler to handle
the form closing event, and we've set the BackgroundWorker property
WorkerSupportsCancellation to true. Inside StartAddress, we've added the
following statement:

if (worker->CancellationPending)
{
 return;
}

This will cancel the thread execution in an orderly fashion, if needed.

There's more...
Let's review the Task class at the end. A very good and new feature that the .NET Task
object provides is the ContinueWith method. When the task ends, you can immediately
prepare it for another task using continuation, to continue the method.

Chapter 6

291

Continuation is good for tasks that should be executed only after a certain task is done.
For example, if we have two tasks where a second task must use the result of the first
task, then the second task should be considered as a continuation task. When you use
the ContinueWith method, the dispatcher reallocates the thread to continue with the
start address supplied as the argument of the ContinueWith method. The code follows:

static System::Void StartAddress(Object^ parameter);
static System::Void ContinueAddress(Task^ task);
…
Task^ task = gcnew Task(gcnew Action<Object^>(&StartAddress), this);
task->Start();
Task^ continueTask = task->ContinueWith(gcnew Action<Task^>(
&ContinueAddress));
…

The ContinueWith method has many overloads, and you can use it with different values,
such as TaskContinuationOptions, TaskScheduler, or TaskCreationOptions.
More information can be found on MSDN (http://msdn.microsoft.com/en-us/
library/system.threading.tasks.taskcontinuationoptions%28v=vs.110%29.
aspx?cs-save-lang=1&cs-lang=cpp#code-snippet-1). Among the variety of benefits,
the Task object provides the WaitAll and WaitAny methods that are similar to the
WaitForSingleObject and WaitForMultipleObjects APIs.

Non-blocking synchronization
Among many features that .NET provides, programmers must be aware of certain CLR
behavior so as to avoid mistakes when using multiple threads. Both, the Microsoft CLI/
C++ compiler as well as CLR can reorder certain statements at runtime for the sake of
improving efficiency or caching optimizations. For these reasons, it is not always enough
to properly organize the code, it must be protected as well. That's why .NET provides the
MemoryBarrier class that prevents the effects of instruction reordering and read/write
caching, as shown in the following class:

…
ref class TestClass
{
public:
 TestClass()
 {
 bState = false;
 iValue = 0;
 }
 static void SetMethod()
 {
 iValue = 5;

Threads in the .NET Framework

292

 bState = true;
 }
 static void GetMethod()
 {
 if (bState)
 {
 MessageBox::Show(Convert::ToString(iValue));
 }
 }
private:
 static bool bState;
 static int iValue;
};

ref class TestWorker
{
public:
 TestWorker()
 {
 TestClass _t;
 Task^ _t1 = gcnew Task(gcnew Action(&_t.SetMethod));
 _t1->Start();
 Task^ _t2 = gcnew Task(gcnew Action(&_t.GetMethod));
 _t2->Start();
 }
};
…

In your opinion, is it possible that GetMethod shows 0 for iValue? Well, for the mentioned
reasons—yes. The simplest solution is to create a memory fence or surround usage of the
attribute bState with MemoryBarrier statements, as shown in the following code:

…
static void SetMethod()
{
 iValue = 5;
 Thread::MemoryBarrier();
 bState = true;
 Thread::MemoryBarrier();
}
static void GetMethod()
{
 Thread::MemoryBarrier();
 if (bState)
 {

Chapter 6

293

 Thread::MemoryBarrier();
 MessageBox::Show(Convert::ToString(iValue));
 }
}
…

This is called full fence, and it takes around 10 nanoseconds for the execution of this
memory protection.

There is another feature that the C++ compiler provides: the volatile keyword. The use
of the volatile keyword instructs the compiler to create an acquire fence for each read
operation on a volatile memory location, and a release fence for each write operation
on a memory location that is declared as volatile. The acquire fence prevents read/
write operations to be moved above the fence, and the release fence prevents read/write
operations to be moved below the fence. Implementation using a volatile memory
location could be as follows:

…
ref class TestClass
{
public:
 TestClass()
 {
 bState = false;
 iValue = 0;
 }
 static void SetMethod()
 {
 iValue = 5;
 bState = true;
 }
 static void GetMethod()
 {
 if (bState)
 {
 MessageBox::Show(Convert::ToString(iValue));
 }
 }
private:
 static volatile bool bState;
 static int iValue;
};
…

Using volatile memory objects or so-called half fences is much faster due to even more
space for runtime optimization.

Threads in the .NET Framework

294

Signaling with Wait and Pulse
In one of our previous examples, we've used the Lock class whose implementation uses
Monitor::Enter and Monitor::Exit. Another feature of the Monitor object is very
important: the Monitor::Wait and Monitor::Pulse methods (and the Pulse variation
PulseAll). These methods also make EAP constructs. Their ability to wait until a signal is
received from another thread makes them excellent for usage. One of the most important
features is that they prevent spinning, because of which no processor time is wasted. The only
constraint is that they must be enclosed with locks (Monitor::Enter and Monitor::Exit).
Once again, we're introducing the Lock class in order to gain exclusive access to shared objects.

Our following example will show how to use the static Wait and Pulse methods as a
technique to synchronize multiple threads.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRApplication10.

2. Open Solution Explorer and right-click on Source files. Add a new source file
named main. Open main.cpp.
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRApplication10;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

Chapter 6

295

3. Open Solution Explorer and right-click on Header files. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

namespace CLRApplication10
{
 using namespace System;
 using namespace System::Threading;
 using namespace System::Threading::Tasks;
 using namespace System::Windows::Forms;
 using namespace System::Drawing;

 ref class Lock
 {
 Object^ lockObject;
 public:
 Lock(Object^ lock) : lockObject(lock)
 {
 Monitor::Enter(lockObject);
 }
 protected:
 ~Lock()
 {
 Monitor::Exit(lockObject);
 }
 };

 public ref class MyForm : public Form
 {
 public:
 MyForm(void) : syncHandle(gcnew Object())
 {
 InitializeComponent();
 this->Load += gcnew EventHandler(this,
 &MyForm::Form_OnLoad);
 }
 protected:
 ~MyForm()
 {
 if (components)
 {
 delete components;

Threads in the .NET Framework

296

 }
 }
 virtual void SetWait(void)
 {
 Lock^ lock = gcnew Lock(syncHandle);
 Monitor::Wait(syncHandle);
 delete lock;
 }
 virtual void SetPulse(void)
 {
 Lock^ lock = gcnew Lock(syncHandle);
 Monitor::Pulse(syncHandle);
 delete lock;
 }
 private:
 System::ComponentModel::Container ^components;
 Label^ label;
 ProgressBar^ progress;
 static const unsigned N = 25;
 initonly Object^ syncHandle;

 System::Void Form_OnLoad(Object^ sender, EventArgs^ e)
 {
 InitializeApp();
 }

 delegate void TaskCompletedDelegate(UInt64 uResult);
 void TaskCompleted(UInt64 uResult)
 {
 label->AutoSize = false;
 label->Text = L"Result: " + uResult;
 label->AutoSize = true;

 System::Windows::Forms::DialogResult^ dlgResult =
MessageBox::Show(L"Do you want to continue?", L"Question",
MessageBoxButtons::YesNo, MessageBoxIcon::Question);

 if (*dlgResult == System::Windows::Forms::DialogResult::Yes)
 {
 this->SetPulse();
 progress->Value = 0;
 label->Text = L"Calculating...";
 }
 else

Chapter 6

297

 {
 this->Close();
 }
 }

 delegate void UpdateProgressBarDelegate(void);
 System::Void UpdateProgressBar(void)
 {
 progress->PerformStep();
 }

 System::Void InitializeApp(void)
 {
 label = gcnew Label();
 label->Location = Point(2, 25);

 progress = gcnew ProgressBar();
 progress->Location = Point(2, 235);
 progress->Width = 280;
 progress->Height = 25;
 progress->Step = 1;
 progress->Maximum = MyForm::N;
 progress->Value = 0;

 this->Controls->Add(label);
 this->Controls->Add(progress);

 Task^ task = gcnew Task(gcnew Action<Object^>
 (&MyForm::StartAddress), gcnew array<Object^>(2)
 { this, task });
 task->Start();
 }

 static System::Void StartAddress(Object^ parameter)
 {
 array<Object^>^ parameters = (array<Object^>^) parameter;

 MyForm^ form = (MyForm^)parameters[0];
 Task^ task = (Task^)parameters[1];

 TaskCompletedDelegate^ taskCompleted = gcnew
TaskCompletedDelegate(form, &MyForm::TaskCompleted);
 UpdateProgressBarDelegate^ updateProgressBar = gcnew
UpdateProgressBarDelegate(form, &MyForm::UpdateProgressBar);

 UInt64 uResult = 1;

Threads in the .NET Framework

298

 while (true)
 {
 uResult = 1;

 for (unsigned uIndex = 1; uIndex <= MyForm::N; uIndex++)
 {
 uResult *= uIndex;
 form->progress->BeginInvoke(updateProgressBar);

 Thread::Sleep(100);
 }

 form->BeginInvoke(taskCompleted, uResult);

 form->SetWait();
 }
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions =
 System::Drawing::SizeF(6, 13);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 this->Size = System::Drawing::Size(284, 300);
 this->MaximizeBox = false;
 this->MinimizeBox = false;
 this->Name = L"MyForm";
 this->Text = L"MyForm";
 this->ResumeLayout(false);
 }
#pragma endregion
 };
}

Chapter 6

299

How it works...
Implementation of the Lock class remains the same, while the MyForm class introduces
new methods: SetWait and SetPulse. These methods are declared protected in order
to allow other programmers who may create a derivation from the MyForm class further on
to expand its behavior. As we said before, a programmer must enclose the Wait and Pulse
statements with locks. At a private scope, we expanded the MyForm class with the initonly
syncHandle attribute. This attribute will be used as a synchronization object for all the
Monitor method calls. The only difference with the StartAddress method is that we've used
the Control::BeginInvoke method to asynchronously invoke the TaskCompleted routine.
This is required for the following reason: if we had invoked (synchronously) the TaskCompleted
method from the working thread, we would need to create delegates for all statements inside
TaskCompleted that manipulates with the UI created by the main thread. This would of course
raise an exception about cross-thread operations. By invoking TaskCompleted asynchronously,
we are avoiding all this coding and are giving control to the main thread. In order to wait until
the user provides an answer for task continuation, we will use the Monitor::Wait method.
The working thread then enters a suspended state, and no processor time is spent. So, the
control has been given to the main thread. Its task now is to ask the user whether they want
to continue; if the answer is "Yes", then it will call Monitor::Pulse in order to change the
working thread's state to nonsignaled. In this way, the working thread can continue execution
and repeat the process.

There's more...
Monitor::Wait and Monitor::Pulse, in combination with locks, are providing excellent
performance, and the code itself is much smaller. The same features that ResetEvent (Auto
or Manual) or Semaphore provides can be achieved with these routines. If you are aware that
Pulse takes around 100 nanoseconds for execution despite knowing that 400 nanoseconds
is taken by the Set method to signal an event handle, then you should consider using Pulse
whenever possible.

The Barrier class
Among the synchronization base classes for task coordination, an excellent feature of .NET is
the Barrier class. Even though locking is an excellent mechanism, you will almost certainly
find yourself in a situation where some very complex task issues another mechanism that you
would need to solve successfully. The Barrier class enables you to temporarily stop (pause)
execution of a task or a collection of tasks at a certain point in the application and continue
when all tasks reach that point. For synchronization, this feature is important in order for a
series of multiple tasks to be executed in parallel steps.

Threads in the .NET Framework

300

When an application creates a Barrier object, it has to specify the number of tasks
in set that will be synchronized. This value can be observed as a task counter that
is internally maintained inside the Barrier object. This value can be incremented
using the Barrier::AddParticipant method, or decremented using the
Barrier::RemoveParticipant method. When the task reaches the synchronization
point, it calls the Barrier::SignalAndAwait method, which decrements the thread
counter inside the Barrier object. If this counter is greater than zero, the thread is
suspended. Only when the counter reaches zero (no more threads to wait), all tasks
that wait will be released, and only then will they continue execution.

The Barrier object provides the ParticipantCount property, which returns the number
of tasks that need to be synchronized, along with the ParticipantRemaining property,
which returns the number of tasks needed for a SignalAndAwait call to be made before
the barrier is reached, and the suspended tasks continue execution. You can also provide the
postPhaseAction method delegate as an argument of the Barrier constructor, which will
be called when all tasks reach the barrier. The Barrier object is passed as a parameter into
this method. Barrier is not enabled, and tasks are not resumed until this method returns.

Our following example will calculate a certain mathematical formula, and plot its graph in
order to show synchronization using the Barrier object.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ CLR empty project application named CLRBarrier.

2. Open Solution Explorer and right-click on Source file. Add a new source file
named main. Open main.cpp. Copy and paste the following code:
#include <Windows.h>
#include <tchar.h>
#include "MyForm.h"

using namespace System::Windows::Forms;
using namespace System::Threading;
using namespace CLRBarrier;

[STAThreadAttribute]
int APIENTRY _tWinMain(HINSTANCE hThis, HINSTANCE hPrev, LPTSTR
szCommandLine, int iCmdShow)
{

Chapter 6

301

 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 Application::Run(gcnew MyForm());

 return 0;
}

3. Open Solution Explorer and right-click on Header file. Under Visual C++, select UI.
Add a new Windows Form named MyForm. Open MyForm.h.

4. Add the following code:
#pragma once

namespace CLRBarrier
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections::Generic;
 using namespace System::Windows::Forms;
 using namespace System::Threading;
 using namespace System::Threading::Tasks;
 using namespace System::Drawing;

 public ref class MyForm : public Form
 {
 public:
 MyForm(void)
 {
 InitializeComponent();

 iWidth = 800;
 iHeight = 600;

 bitmapGraph = gcnew Bitmap(iWidth, iHeight);
 colorArray = gcnew array<Color>(iWidth * iHeight);

 color = Color::FromArgb(0, 0, 255);

 progress->Maximum = iWidth / 2;
 }
 protected:
 ~MyForm()

Threads in the .NET Framework

302

 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::GroupBox^ groupBox;
 System::Windows::Forms::Label^ status;
 System::Windows::Forms::ProgressBar^ progress;
 System::Windows::Forms::Button^ btnStart;
 System::Windows::Forms::PictureBox^ canvas;
 System::ComponentModel::Container ^components;

 int iWidth;
 int iHeight;
 array<Color>^ colorArray;
 Bitmap^ bitmapGraph;
 Barrier^ barrier;
 Color color;

 delegate void UpdateProgressDelegate(void);
 System::Void UpdateProgress(void)
 {
 progress->PerformStep();
 }

 delegate void SetCanvasDelegate(void);
 void SetCanvas(void)
 {
 canvas->BackColor = Color::Black;
 canvas->Image = bitmapGraph;
 }

 delegate void SetLabelTextDelegate(String^ szText);
 void SetLabelText(String^ szText)
 {
 status->Text = szText;
 }

 System::Void EndTask(Barrier^ b)
 {

Chapter 6

303

 FillBitmap();

 SetLabelTextDelegate^ setLabelText = gcnew
SetLabelTextDelegate(this, &MyForm::SetLabelText);
 status->BeginInvoke(setLabelText, L"Done.");

 SetCanvasDelegate^ canvasDelegate = gcnew
SetCanvasDelegate(this, &MyForm::SetCanvas);
 canvas->BeginInvoke(canvasDelegate);
 }

 System::Void btnStart_Click(Object^ sender, EventArgs^ e)
 {
 status->Text = L"Calculating...";

 Action^ action = gcnew Action(this,
&MyForm::CalculateValues);

 barrier = gcnew Barrier(2, gcnew Action<Barrier^>(this,
&MyForm::EndTask));

 Tasks::Parallel::Invoke(action, action);
 }

 System::Void FillBitmap(void)
 {
 for (int iYPosition = 0; iYPosition < iHeight; iYPosition++)
 {
 for (int iXPosition = 0; iXPosition < iWidth;
iXPosition++)
 {
 bitmapGraph->SetPixel(iXPosition, iYPosition,
colorArray[(iXPosition + (iWidth * iYPosition))]);
 }
 }
 }

 System::Void CalculateValues(void)
 {
 int iLeft = iWidth / 2;
 int iArea = iLeft * iLeft;

Threads in the .NET Framework

304

 int iTop = iHeight / 2;

 UpdateProgressDelegate^ updateProgress = gcnew
UpdateProgressDelegate(this, &MyForm::UpdateProgress);

 for (int iXAxis = 0; iXAxis < iLeft; iXAxis++)
 {
 int iSurface = iXAxis * iXAxis;
 double dSquare = Math::Sqrt(iArea - iSurface);

 for (double dIndex = -dSquare; dIndex < dSquare; dIndex +=
3)
 {
 double dRadius = Math::Sqrt(iSurface + dIndex * dIndex)
/ iLeft;
 double dBottom = (dRadius - .96) * Math::Sin(32 *
dRadius);
 double dYAxis = dIndex / 3 + (dBottom * iTop);

 SetPixelValue(colorArray, (int) (-iXAxis + (iWidth /
2)), (int) (dYAxis + (iHeight / 2)));
 SetPixelValue(colorArray, (int) (iXAxis + (iWidth / 2)),
(int) (dYAxis + (iHeight / 2)));
 }

 progress->BeginInvoke(updateProgress);
 }

 barrier->SignalAndWait();
 }

 System::Void SetPixelValue(array<Color>^ graphArray, int
iXPos, int iYPos)
 {
 int iIndex = (iXPos + iYPos * iWidth);
 graphArray[iIndex] = color;
 }

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer
 /// support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>

Chapter 6

305

 void InitializeComponent(void)
 {
 this->groupBox = (gcnew
 System::Windows::Forms::GroupBox());
 this->status = (gcnew
 System::Windows::Forms::Label());
 this->progress = (gcnew
 System::Windows::Forms::ProgressBar());
 this->btnStart = (gcnew
 System::Windows::Forms::Button());
 this->canvas = (gcnew
 System::Windows::Forms::PictureBox());
 this->groupBox->SuspendLayout();
 (cli::safe_cast
 <System::ComponentModel::ISupportInitialize^>
 (this->canvas))->BeginInit();
 this->SuspendLayout();
 //
 // groupBox
 //
 this->groupBox->Controls->Add(this->status);
 this->groupBox->Controls->Add(this->progress);
 this->groupBox->Controls->Add(this->btnStart);
 this->groupBox->Location =
 System::Drawing::Point(9, 615);
 this->groupBox->Name = L"groupBox";
 this->groupBox->Size =
 System::Drawing::Size(800, 59);
 this->groupBox->TabIndex = 0;
 this->groupBox->TabStop = false;
 //
 // status
 //
 this->status->Location =
 System::Drawing::Point(13, 20);
 this->status->Name = L"status";
 this->status->Size =
 System::Drawing::Size(270, 27);
 this->status->TabIndex = 2;
 this->status->TextAlign =
 System::Drawing::ContentAlignment::MiddleLeft;
 //
 // progress

Threads in the .NET Framework

306

 //
 this->progress->Location =
 System::Drawing::Point(301, 20);
 this->progress->Name = L"progress";
 this->progress->Size =
 System::Drawing::Size(387, 27);
 this->progress->Step = 1;
 this->progress->TabIndex = 1;
 //
 // btnStart
 //
 this->btnStart->Location =
 System::Drawing::Point(704, 20);
 this->btnStart->Name = L"btnStart";
 this->btnStart->Size =
 System::Drawing::Size(81, 27);
 this->btnStart->TabIndex = 0;
 this->btnStart->Text = L"Start";
 this->btnStart->UseVisualStyleBackColor = true;
 this->btnStart->Click += gcnew
 System::EventHandler(this,
 &MyForm::btnStart_Click);
 //
 // canvas
 //
 this->canvas->Location =
 System::Drawing::Point(9, 9);
 this->canvas->Name = L"canvas";
 this->canvas->Size =
 System::Drawing::Size(800, 600);
 this->canvas->TabIndex = 1;
 this->canvas->TabStop = false;
 //
 // MyForm
 //
 this->AutoScaleDimensions =
 System::Drawing::SizeF(6, 13);
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize =
 System::Drawing::Size(817, 684);
 this->Controls->Add(this->canvas);
 this->Controls->Add(this->groupBox);
 this->MaximizeBox = false;

Chapter 6

307

 this->MinimizeBox = false;
 this->Name = L"MyForm";
 this->Text = L"The Barrier example";
 this->groupBox->ResumeLayout(false);
 (cli::safe_cast
 <System::ComponentModel::ISupportInitialize^>
 (this->canvas))->EndInit();
 this->ResumeLayout(false);

 }
#pragma endregion
 };
}

How it works...
We chose to draw an 800 x 600 (pixels) figure in our example. That's why we've set iWidth
to 800 and iHeight to 600. Then, we'll allocate Bitmap and the color array. As we will draw
a symmetrical left and right part of the canvas, we will iterate through half of the pixels' width.
That's why we'll set the progress maximum to iWidth / 2. When we click on the Start button,
we'll create a method delegate in order to pass it to the Tasks::Parallel::Invoke method.
Before we call a parallel invoker, we need to instantiate the barrier object with two participants
and a postPhaseAction method delegate. This post action method delegate is important for
us because we want to draw the figure after the entire calculation is done. We could accomplish
this with an event, or we could post a message to the window message queue, but this is
the proper way when using the Barrier object. Our post action method is EndTask, which
needs to draw the plot and set the label text. We must use delegates to invoke proper methods
because a different thread will make this call and we must avoid cross-thread operations with
UI elements.

There's more...
All these .NET framework constructs that we have explained are very good, but each of them
can be more or less efficient for a given task. As you saw there are many built-in .NET constructs
for user to use in its development. However, it is left to the programmer to explore and research
further on which construct matches which task in its development.

7
Understanding

Concurrent Code
Design

In this chapter, we will cover the following topics:

 f How to design parallel applications

 f Understanding parallelism in code design

 f Turning on to a parallel approach

 f Improving the performance factors

Introduction
Even though synchronization and time are significant factors in developing parallel applications,
adding concurrency to programs brings many additional concerns.

Parallel programming can be a sword with two edges: you can do great things with it, such as
scaling a program to be executed over up-to-date modern multicore processors. Furthermore,
parallelism presents great software capabilities where you can develop a responsive and
rich user interface in GUI applications. However, you must still be aware of the fact that if
parallelism is used incorrectly, it can cause serious performance issues.

Poorly designed parallel programs have worse performance compared to sequential programs
because of the great overhead that occurs on the CPU while it reschedules the threads for
execution, fetches the memory blocks, sets the signaled state on a synchronization object,
maintains protection, and so on.

Understanding Concurrent Code Design

310

In this chapter, we will explain the parallel approach when creating applications, but before
we do, first, we need to remind the user about sequential execution.

The sequential programming approach is very important to the life cycle of the application,
because the algorithm that the program will follow must determine the exact steps that the
application (thread) must execute. Even in parallel applications, it is very important that you
choose the correct sequential approach, as much optimized as possible, and then move on
to parallelization.

Here, we will try to find solutions on how to avoid such situations as well as see the examples,
which demonstrate the correct usage of parallelism.

How to design parallel applications
In order to prevent problematic situations, we need to first identify the possible scenarios.
We can divide problems related to concurrency into two major categories:

 f Correctness problems: These can cause a program to produce incorrect results

 f Liveness problems: These can cause a program to stop producing results completely

Correctness problems are very hard to discover because of the nature of the concurrency
itself. Since each thread takes a different execution path, these situations can occur at any
point of time without the programmer realizing that the program's output is incorrect, and
something went wrong. In the worst case, we can run such a program many times with the
correct results before a scenario occurs where, for example, different parameters can lead to
a situation that will produce incorrect results.

One of these scenarios could be a Data Race—where the relation between the program state
and the control flow must not be violated, or else your application will produce an incorrect
result. Let's review the following situation:

int iValue = 5;
…
int iAValue = iValue;
…
int iBValue = iValue;

If more than one thread is accessing a shared object, iValue, we must add some kind of
concurrency safety, such as exclusive access or data synchronization, in order to prevent
possible unwanted scenarios and, at the same time, incorrect results as well.

In these situations, we must properly decide what we need to synchronize and what are the
most preferable objects or techniques for this task.

Chapter 7

311

Another scenario could be Inconsistent Synchronization, where it is not enough to secure the
object using some kind of protection. Hence, it is imperative to use the same kind of protection
for all the objects that will access the object. In the following code, pay attention to the funcA
and funcB methods where a lock is declared with a different synchronization object:

class Clock
{
public:
 CLock(TCHAR* szMutexName);
 ~CLock();
private:
 HANDLE hMutex;
};
CLock::CLock(TCHAR* szMutexName)
{
 hMutex = CreateMutex(NULL, FALSE, szMutexName);
 WaitForSingleObject(hMutex, INFINITE);
}
CLock::~CLock()
{
 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
}
…
int iValue = 5;
void funcA(void)
{
 CLock* lock = new CLock(TEXT("_tmp_lock_01_"));
 ++iValue;
 delete lock;
}

void funcB(void)
{
 CLock* lock = new CLock(TEXT("_tmp_lock_02_"));
 ++iValue;
 delete lock;
}

In a situation like the one shown here, when the method is called from different threads, we'd
get incorrect results due to an inconsistent protection mechanism. There are so-called benign
situations, where separate threads will only perform the read operation on a shared object,
which is potentially dangerous.

Understanding Concurrent Code Design

312

Another scenario is called Composite Actions, where a constant tradeoff between single-
threaded performance (due to more locks) and parallel (without locks) execution is made. In
other words, proper decision on what are the statements or areas of code to protect is critical.

Imagine a situation where we use a simple linked list, and we remove the head node. When
we mention the tradeoff, and when we want to remove the list's head node, we'd have two
critical regions. First, when the query head node equals to zero (0), that is, node == NULL,
and then on the assignment of a new node, none = node->next. If we protect a lot of
statements, we'll lose parallelism. Understand the tradeoff: the fewer protected statements,
the more concurrency we can achieve.

Assume that our list has only one node. We'll use the CLock class from the previous example
for an exclusive access. The code is as follows:

template class<T>
class CList<T>
{
public:
 CList() : next(0), value(0) { }
 T Pop(void);
private:
 CList* next;
 T* value;
};

template class<T>
T* CList::Pop(void)
{
 CList* node = next;
 if (node == NULL)
 {
 return 0;
 }

 CLock* lock = new CLock(_T("_tmp_lock_"));
 next = node->next;
 delete lock;

 return node->value;
}

Chapter 7

313

The preceding code can lead to issues. Can you see it? The situation is that we have
protected the critical region around the assignment statement. We must take care about
the execution flow all the way! What if we execute this portion of code in parallel? It could lead
to the following situation: thread A enters the Pop method and executes the node == NULL
statement and gets FALSE. It then continues, and the operating system suddenly selects
another thread for execution. Now, thread B enters the Pop method and executes the node
== NULL statement and gets FALSE. Again, the OS selects thread A for execution and it
continues from where it left off. It will acquire a lock and remove the head node.

This is a bad situation because when the OS selects thread B the next time, it will continue
from where it left off, and proceed to acquire the lock and access the non-existing object.
This will most certainly lead to the app crashing! It can be illustrated as follows:

The first column (T) is the time required to execute the statement on the CPU. The next column
consists of the Thread A statements followed by the Thread B column with its statements.
Even if we've included protection, it is not designed correctly. A proper way of solving such a
problem would be to simply protect both statements as follows:

template class<T>
class CList<T>
{
public:
 CList() : next(0), value(0) { }
 T Pop(void);
private:
 CList* next;
 T* value;
};

template class<T>

Understanding Concurrent Code Design

314

T* CList::Pop(void)
{
 CLock* lock = new CLock(_T("_tmp_lock_"));

 CList* node = next;
 if (node == NULL)
 {
 return 0;
 }

 next = node->next;
 delete lock;

 return node->value;
}

Now, even though the OS will change its execution from one thread to another, we won't
have situations where the Correctness problem can occur, because we have properly secured
the intensive operations and statements. However, protecting more statements means more
sequential execution, so you must be aware of the performance improvement at all times.

The idea is to design an application execution flow in such a way that the critical points
are grouped in small heavily-protected portions, and we must take care of as many usage
scenarios (use cases) as possible, only to determine the correct parallel execution flow.

Let's talk a bit about Liveness problems. They don't usually terminate the program, and as
such, are very difficult to detect and diagnose. In most situations, these problems will lead
to the application ceasing to respond. In some cases, the application will stop temporarily.
Deadlock is one of these scenarios—so let's review the example where we need to transfer
money from two bank accounts. We'll implement the CBankAccount class with the ability
to transfer money with lock protection (in case that both accounts are used in parallel).
An obvious approach would look like this:

class CBankAccount
{
public:
 CBankAccount(){ _tcscpy(szLock, LockName()); }
 static void Transfer(CBankAccount* a, CBankAccount* b, double
dAmount);

Chapter 7

315

 static TCHAR* LockName(void);
private:
 unsigned uID;
 double dBalance;
 TCHAR szLock[16];
};

TCHAR* CBankAccount::LockName(void)
{
 static int iCount = 0;
 static TCHAR szBuffer[16];
 wsprintf(szBuffer, _T("_lock_%d_"), ++iCount);
 return szBuffer;
}

void CBankAccount::Transfer(CBankAccount* a, CBankAccount* b, double
dAmount)
{
 CLock* outerLock = new CLock(a->szLock);
 if (dAmount < a->dBalance)
 {
 CLock* innerLock = new CLock(b->szLock);
 a->dBalance -= dAmount;
 b->dBalance += dAmount;
 delete innerLock;
 }
 delete outerLock;
}

The preceding code looks correct, but it isn't. It's incorrect! Assume the situation where thread
A wants to transfer some amount from account X to account Y, while at the same time, thread
B wants to transfer some amount from account Y to account X. When thread A enters the
Transfer method, it will acquire the lock that belongs to account X. Now, assume that the
name of the mutex that is used for account X is lock_1. Then, assume that the next scheduled
thread is B and it acquires the lock that belongs to account Y, and its mutex name is lock_2.
Next, thread A continues and tries to acquire the lock that belongs to account Y. It blocks—
because lock_2 is held by thread B and belongs to account Y. Now, thread B continues and
tries to acquire lock_1, which is held by the previously suspended thread A.

Understanding Concurrent Code Design

316

This is illustrated by the following figure:

Again, the first column (T) is the time required to execute the statements. The following
column consists of the Thread A code statements. Next is the Thread B code statements.
The illustrated situation may occur very rarely, but when we are going to design parallel code,
we must be aware of such situations at all times.

Understanding parallelism in code design
We have already said that the most difficult work for a programmer is not to create the
code—it is to properly design the application. When you follow these steps, after creating a
good and stable design, you only have one step left: to write the code following the created
design step by step. Our following example will try to teach you in a step-by-step manner how
to approach the application creation from scratch, and at the same time think ahead on how
to add parallelism later.

We will create a program that will calculate Schwefel's function. Usually, for the calculation
of Schwefel's function and similar functions where probability and statistics make a significant
difference in the results the genetic algorithm is used. This is because such an algorithm
generates a huge population of genomes with its features, and compares their score (result).
For simplicity of the example, we will create our own class, CSchwefel, which will satisfy
our needs.

Chapter 7

317

The Schwefel's function is as follows:

2

1 1
() , 65.536 65.536

n i

j i
i j

f x x x
= =

= − ≤ ≤

∑ ∑

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new C++ Console application named ConcurrentDesign.

2. Open Solution Explorer and open the stdafx.h file. Copy and paste the following
code to it:
#pragma once

#include "targetver.h"

#include <stdio.h>
#include <tchar.h>
#include <Windows.h>
#include <cfloat>
#include <time.h>
#include <omp.h>

#include "Schwefel.h"

3. Open Solution Explorer and right-click on Header file. Add a new header file named
Schwefel. Open Schwefel.h. Copy and paste the following code to it:
#ifndef __SCHWEFEL__
#define __SCHWEFEL__

#include "stdafx.h"

SYSTEMTIME operator - (const SYSTEMTIME& stFirst, const
SYSTEMTIME& stSecond);

class CSchwefel

Understanding Concurrent Code Design

318

{
public:
 CSchwefel(void) : pdAllele(0) {}
 CSchwefel(unsigned uSize) { pdAllele = new double[this->uSize =
uSize]; Initialize(); }
 double* Allele(void) const { return pdAllele; }
 double Allele(unsigned uIndex) const { return pdAllele[uIndex];
}
 double Allele(double dValue, unsigned uIndex) { return
pdAllele[uIndex] = dValue; }
 unsigned Size(void) const { return uSize; }
 unsigned Size(unsigned uSize) { return this->uSize = uSize; }
 virtual ~CSchwefel(void) { if (pdAllele != 0) delete[] pdAllele;
}
 double& Sum(void) { return dSum; }
 double& Min(void) { return dMin; }
 double& Score(void) { return dScore; }
 double& Best(void) { return dBest; }
 virtual double Evaluate(void* lpParameters = 0);
 void Initialize();
 void Initialize(unsigned uSize);
 SYSTEMTIME& StartTime(void) { return stStart; }
 SYSTEMTIME& EndTime(void) { return stEnd; }
 TCHAR* Elapsed(void);
 TCHAR* Elapsed(TCHAR* szElapsed);
 static const unsigned ThreadNumber = 4;
protected:
 CSchwefel(const CSchwefel&) { }
 CSchwefel& operator = (const CSchwefel&) { return *this; }
 virtual TCHAR* ObjectName(void) const { return _T("Schwefel"); }
private:
 double* pdAllele;
 unsigned uSize;
 double dSum;
 double dMin;
 double dScore;
 double dBest;
 SYSTEMTIME stStart;
 SYSTEMTIME stEnd;

 double Random(double dMin, double dMax);
 static unsigned Seed(void) { static unsigned uSeed = rand() %
time(NULL); return uSeed++; }
};

Chapter 7

319

4. Open Solution Explorer and right-click on Source file. Add a new source file named
Schwefel. Open Schwefel.cpp. Copy and paste the following code to it:
#include "stdafx.h"

double CSchwefel::Evaluate(void* lpParameters)
{
 GetSystemTime(&stStart);

 for (unsigned i = 0; i < uSize; i++)
 {
 dSum += pdAllele[i];

 if (dMin > pdAllele[i])
 {
 dMin = pdAllele[i];
 }

 double dInnerSum = 0;

 for (unsigned j = 0; j < i; j++)
 {
 dInnerSum += pdAllele[j];
 }

 double dTmp = dInnerSum * dInnerSum;
 dScore += dTmp;

 if (i != 0 && dBest > dTmp)
 {
 dBest = dTmp;
 }
 }

 GetSystemTime(&stEnd);

 return dScore;
}

void CSchwefel::Initialize(void)
{
 srand(Seed());

 dSum = 0;
 dMin = DBL_MAX;
 dScore = 0;

Understanding Concurrent Code Design

320

 dBest = DBL_MAX;
 stStart = { 0 };
 stEnd = { 0 };

 for (unsigned uIndex = 0; uIndex < uSize; uIndex++)
 {
 pdAllele[uIndex] = Random(-65.536, 65.536);

 dSum += pdAllele[uIndex];

 if (dMin > pdAllele[uIndex])
 {
 dMin = pdAllele[uIndex];
 }
 }
}

void CSchwefel::Initialize(unsigned uSize)
{
 if (pdAllele == NULL)
 {
 pdAllele = new double[this->uSize = uSize];
 }

 srand(Seed());

 dSum = 0;
 dMin = DBL_MAX;
 dScore = 0;
 dBest = DBL_MAX;
 stStart = { 0 };
 stEnd = { 0 };

 for (unsigned uIndex = 0; uIndex < uSize; uIndex++)
 {
 pdAllele[uIndex] = Random(-65.536, 65.536);

 dSum += pdAllele[uIndex];

 if (dMin > pdAllele[uIndex])
 {
 dMin = pdAllele[uIndex];
 }
 }

Chapter 7

321

}

TCHAR* CSchwefel::Elapsed(void)
{
 static TCHAR szBuffer[1024];

 SYSTEMTIME stTime = stEnd - stStart;

 swprintf(szBuffer, 1024, _T("%ws:\nAllele size:\t%u\nSum:\t\
t%lf\nMin:\t\t%lf\nScore:\t\t%lf\nBest:\t\t%lf\nExecution time:
%02u:%02u:%02u:%03u\n\n"),
 ObjectName(), uSize, dSum, dMin, dScore, dBest, stTime.wHour,
stTime.wMinute, stTime.wSecond, stTime.wMilliseconds);
 return szBuffer;
}

TCHAR* CSchwefel::Elapsed(TCHAR* szElapsed)
{
 if (szElapsed == NULL || _tcslen(szElapsed) < 1024)
 {
 return _T("Error!\nBuffer too small.");
 }

 SYSTEMTIME stTime = stEnd - stStart;

 swprintf(szElapsed, 1024, _T("%ws:\nAllele size:\t%u\nSum:\t\
t%lf\nMin:\t\t%lf\nScore:\t\t%lf\nBest:\t\t%lf\nExecution time:
%02u:%02u:%02u:%03u\n\n"),
 ObjectName(), uSize, dSum, dMin, dScore, dBest, stTime.wHour,
stTime.wMinute, stTime.wSecond, stTime.wMilliseconds);
 return szElapsed;
}

double CSchwefel::Random(double dMin, double dMax)
{
 double dValue = (double)rand() / RAND_MAX;
 return dMin + dValue * (dMax - dMin);
}

SYSTEMTIME operator - (const SYSTEMTIME& stFirst, const
SYSTEMTIME& stSecond)
{
 SYSTEMTIME stResult;
 FILETIME ftTime;

Understanding Concurrent Code Design

322

 ULARGE_INTEGER uLargeInteger;

 __int64 i64Right;
 __int64 i64Left;
 __int64 i64Result;

 SystemTimeToFileTime(&stFirst, &ftTime);
 uLargeInteger.LowPart = ftTime.dwLowDateTime;
 uLargeInteger.HighPart = ftTime.dwHighDateTime;
 i64Right = uLargeInteger.QuadPart;

 SystemTimeToFileTime(&stSecond, &ftTime);
 uLargeInteger.LowPart = ftTime.dwLowDateTime;
 uLargeInteger.HighPart = ftTime.dwHighDateTime;
 i64Left = uLargeInteger.QuadPart;

 i64Result = i64Right - i64Left;

 uLargeInteger.QuadPart = i64Result;
 ftTime.dwLowDateTime = uLargeInteger.LowPart;
 ftTime.dwHighDateTime = uLargeInteger.HighPart;
 FileTimeToSystemTime(&ftTime, &stResult);

 return stResult;
}

5. Open Solution Explorer and open ConcurrentDesign.cpp. Copy and paste the
following code to it:
#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])
{
 CSchwefel Schwefel(100000);
 Schwefel.Evaluate();

 _tprintf_s(Schwefel.Elapsed());

#ifdef _DEBUG
 return system("pause");
#endif

 return 0;
}

Chapter 7

323

How it works...
First, we need to define the CSchwefel class. We are going to use it to store an array of
double values ranging from -65536 to 65536, which is the range of the allowed values for
this function. We will name this array, allele, similar to the genome structure. Also, we'll
need the allele size, sum of elements, minimal value, score, the best value, and the start
and end time.

We'll have two default constructors with allele size. If we use the default constructor, we'll
simply create a dummy object, and we must call the Initialize method before any
calculation. However, we can use another constructor with built-in initialization, but we must
supply the allele size. For our example, the second one is the obvious choice. We need to
implement the set and get methods for our attributes. double* Allele(void) simply
returns the pointer to the allele array; double Allele(unsigned uIndex) returns
the value at the array index specified with uIndex; double Allele(double dValue,
unsigned uIndex) sets the value at the uIndex array with dValue and returns the
newly-added value. The unsigned Size(void) attribute simply returns the allele size;
unsigned Size(unsigned uSize) sets a new size and returns the newly-added size.

The Sum, Min, Score, Best, StartTime, and EndTime methods return a reference
to the class attributes dSum, dMin, dScore, dBest, stStart, and stEnd respectively,
so that we can use these methods for the get and set methods at the same time. The
Initialize(void) and Initialize(unsigned uSize) methods fill the allele array
with random values from -65536 to 65536, and at the same time, are calculating the sum
of the allele array and min value from the same array.

The Evaluate(void*) method as well as destructor are declared as virtual methods because
the derived classes can change the evaluation sequence or the approach that we will follow
for our concurrent approach later on. The Elapsed(void) and Elapsed(TCHAR*) methods
simply write the output to the console. We'll also add the constant value, ThreadNumber, which
we'll use to set the maximum allowed threads. You can change this value to any preferred one.

In the protected scope, we've placed a copy constructor and overloaded operator equal
(=) in order to disallow the programmer from using them. We want to disallow the programmer
from using them because the default copy operation is performed in a manner such that all
the class attributes' values are copied one by one. This is OK for any integral type but not for
pointers. It is not enough to copy a pointer value—this would mean that the pointers from both
the objects point to the same array or any other memory that is referenced by this pointer. You
must implement both the copy constructor and the equal operator to allocate new memory
for each instance of a class object, and then copy the values that the old pointer refers to,
one by one. The TCHAR* ObjectName(void) method simply returns the class name when
formatting the output string in the Elapsed method. In each of our derived classes, we will
overload the ObjectName method to return the correct overloaded class name.

Understanding Concurrent Code Design

324

In the private scope, we've placed the Random(double dMin, double dMax) and
Seed(void) methods that return a random double number from dMin to dMax and the
seed for a random generator respectively.

As we previously mentioned, the Evaluate methods were declared as virtual, and for the
CSchwefel class, implementation is straightforward. First, we call the GetSystemTime
API, with stStart as the parameter in order to store the time before we start calculating;
then, inside the outer loop, we'll calculate the sum and min; inside the inner loop, we'll
calculate the inner sum and multiply it with itself. According to Schwefel's formula, we
add it to the score and calculate the best value. When we finish the outer loop, we'll call
GetSystemTime with the stEnd parameter in order to obtain the system time once again.
When we subtract these two times, we'll get the elapsed time for calculation. One more thing
about the Evaluate method: for the sake of future implementation (for example, class
derivation), we've planned one argument void*, but you can pass as many arguments as
you like in such a manner—just like in any of our examples, which use some routine for the
CreateThread API.

Since the SYSTEMTIME structure does not implement the method for the SYSTEMTIME
subtraction, we'll implement our own: SYSTEMTIME operator - (const SYSTEMTIME&
stFirst, const SYSTEMTIME& stSecond);. Inside this method, we'll convert the
system time to the file time using the SystemTimeToFileTime API so that we get the
integer value from the human-readable time for both the arguments. Then, we'll subtract
these two integers and we'll convert the result to a human readable time using the
FileTimeToSystemTime API.

In our application's entry point, we'll simply instantiate the CSchwefel object with a size of
100,000 alleles and call the Evaluate and Elapsed methods.

There's more...
When we are talking about techniques, there are always variations. Usually, whatever you
implement, there almost always exists another approach or technique to do that in some other
way. Our intention here is to teach you how to properly think and solve the issues related to
concurrency. However, in order to achieve the best results, practice is always the best teacher.

Turning on to a parallel approach
Now, we want to add concurrency to the same example. Note that we've designed the
CSchwefel class for such a task, because beside the Evaluate method, everything remains
the same! Again, the power of object-oriented programming saves us a lot of coding and time.

Chapter 7

325

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create the CSchwefelMT class and explain its structure. Perform the
following steps:

1. Open Solution Explorer and open the file stdafx.h. Copy and paste the following
code to it:
#pragma once

#include "targetver.h"

#include <stdio.h>
#include <tchar.h>
#include <Windows.h>
#include <cfloat>
#include <time.h>
#include <omp.h>

#include "Schwefel.h"
#include "SchwefelMT.h"

2. Open Solution Explorer and right-click on Header file. Add a new header file named
SchwefelMT. Open SchwefelMT.h. Copy and paste the following code to it:
#ifndef __SCHWEFELMT__
#define __SCHWEFELMT__

#include "stdafx.h"

class CSchwefelMT : public CSchwefel
{
public:
 CSchwefelMT() : CSchwefel() { }
 CSchwefelMT(unsigned uSize) : CSchwefel(uSize) { }
 virtual ~CSchwefelMT(void) { }
 virtual double Evaluate(void* lpParameters = 0);
protected:
 CSchwefelMT(const CSchwefel&) { }
 CSchwefelMT& operator = (const CSchwefel&) { return *this; }

Understanding Concurrent Code Design

326

 virtual TCHAR* ObjectName(void) const { return _T("SchwefelMT");
}
private:
 static DWORD WINAPI StartAddress(LPVOID lpParameter);
 struct ThreadParams
 {
 CSchwefelMT* this_ptr;
 unsigned uThreadIndex;
 };
};

#endif

3. Open Solution Explorer and right-click on Source file. Add a new source file named
SchwefelMT. Open SchwefelMT.cpp. Copy and paste the following code to it:
#include "stdafx.h"

DWORD WINAPI CSchwefelMT::StartAddress(LPVOID lpParameter)
{
 ThreadParams* params = (ThreadParams*)lpParameter;

 unsigned uChunk = ((unsigned)params->this_ptr->Size()) /
ThreadNumber;
 unsigned uMax = (params->uThreadIndex + 1) * uChunk;

 for (unsigned i = params->uThreadIndex * uChunk; i < uMax; i++)
 {
 params->this_ptr->Sum() += params->this_ptr->Allele(i);

 if (params->this_ptr->Min() > params->this_ptr->Allele(i))
 {
 params->this_ptr->Min() = params->this_ptr->Allele(i);
 }

 double dInnerSum = 0;

 for (unsigned j = 0; j < i; j++)
 {
 dInnerSum += params->this_ptr->Allele(j);
 }

 double dTmp = dInnerSum * dInnerSum;

Chapter 7

327

 params->this_ptr->Score() += dTmp;

 if (i != 0 && params->this_ptr->Best() > dTmp)
 {
 params->this_ptr->Best() = dTmp;
 }
 }

 return 0L;
}

double CSchwefelMT::Evaluate(void* lpParameters)
{
 HANDLE hThreads[ThreadNumber];
 ThreadParams params[ThreadNumber];

 GetSystemTime(&StartTime());

 for (unsigned uIndex = 0; uIndex < ThreadNumber; uIndex++)
 {
 params[uIndex] = { this, uIndex };
 hThreads[uIndex] = CreateThread(NULL, 0, (LPTHREAD_START_
ROUTINE)StartAddress, ¶ms[uIndex], 0, NULL);
 }

 WaitForMultipleObjects(ThreadNumber, hThreads, TRUE, INFINITE);

 GetSystemTime(&EndTime());

 for (unsigned uIndex = 0; uIndex < ThreadNumber; uIndex++)
 {
 CloseHandle(hThreads[uIndex]);
 }

 return Score();
}

4. Open Solution Explorer and open the ConcurrentDesign.cpp file. Copy and paste
the following code to it:
#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])

Understanding Concurrent Code Design

328

{
 CSchwefel Schwefel(100000);
 Schwefel.Evaluate();

 _tprintf_s(Schwefel.Elapsed());

 CSchwefelMT SchwefelMT(100000);
 SchwefelMT.Evaluate();

 _tprintf_s(SchwefelMT.Elapsed());

#ifdef _DEBUG
 return system("pause");
#endif

 return 0;
}

How it works...
As CSchwefelMT is derived from CSchwefel, we only need to implement the constructors
and destructors along with the virtual Evaluate method. We must disallow the programmer
from using the copy constructor and the equal operator for the same reasons as in the
CSchwefel class. In the private scope, we've added a StartAddress routine for the
threads and the ThreadParams structure for passing the arguments to the threads.

What about the Evaluate method now? It's simple. We'll instantiate ThreadNumber of
threads and ThreadNumber of parameters for them; then we'll call GetSystemTime and
run the declared threads; we'll create a barrier, or in other words, we'll wait for their return
using the WaitForMultipleObjects routine, and then call GetSystemTime once again
and close all the thread handles.

What about StartAddress? Is it straightforward? Let's see. If we simply follow the
logic from the previous single-threaded example, our Evaluate method will have many
Correctness problems! Let's explain and illustrate some of them. Assume that there are
two threads (it is the same for more than two); pay attention to this line:

params->this_ptr->Sum() += params->this_ptr->Allele(i);

Chapter 7

329

We are accessing the dSum attribute from both the threads without any protection! Let's
illustrate what can happen:

Thread A wants to add a value of Allele(i) to dSum. Both Allele(i) and dSum are
memory locations that have a certain address. Let's assume that the address of dSum is
4004 and its current value is 42.56; assume that the address of Allele(i) for thread A
is 1008; thread B also wants to add its own Allele(i) value on the current dSum value;
the dSum address is the same, that is 4004, while the address of thread B Allele(i) is
different than that of thread A (assume it is 2016); thread A is executing (for example) on
CPU 0 while thread B is executing on CPU 1.

The statement at time 0 for thread A is RAX = 42.56 while for thread B it is RAX = 42.56 as
you can see this. The statement at time 1 for thread A is RAX = 42.56 + 5.036, which is 47.596,
while for thread B it is RAX = 42.56 + (-3.047), which is 39.513. As you can see, this is totally
wrong! The value of dSum won't be 44.549 as it should be after we add both the values, as that
was the idea. Again, the correct application design is crucial with concurrency in action!

We must change the Evaluate method in a manner such that it follows the logic needed
for the calculation of Schwefel's function, but at the same time, we must respect the
multithreaded execution, or else we'll most certainly get correctness or liveness problems!
The correct implementation is as follows:

DWORD WINAPI CSchwefelMT::StartAddress(LPVOID lpParameter)
{
ThreadParams* params = (ThreadParams*)lpParameter;

unsigned uChunk = ((unsigned)params->this_ptr->Size()) / ThreadNumber;
unsigned uMax = (params->uThreadIndex + 1) * uChunk;

double dSum = 0;
double dMin = DBL_MAX;

Understanding Concurrent Code Design

330

double dScore = 0;
double dBest = DBL_MAX;

HANDLE hMutex = CreateMutex(NULL, FALSE, _T("__tmp_mutex__"));
WaitForSingleObject(hMutex, INFINITE);

dSum = params->this_ptr->Sum();
dMin = params->this_ptr->Min();
dScore = params->this_ptr->Score();
dBest = params->this_ptr->Best();

ReleaseMutex(hMutex);
CloseHandle(hMutex);

for (unsigned i = params->uThreadIndex * uChunk;i < uMax; i++)
{
 dSum += params->this_ptr->Allele(i);

 if (dMin > params->this_ptr->Allele(i))
 {
 dMin = params->this_ptr->Allele(i);
 }

 double dInnerSum = 0;
 for (unsigned j = 0; j < i; j++)
 {
 dInnerSum += params->this_ptr->Allele(j);
 }
 double dTmp = dInnerSum * dInnerSum;
 dScore += dTmp;

 if (i != 0 && dBest > dTmp)
 {
 dBest = dTmp;
 }
}

hMutex = CreateMutex(NULL, FALSE, _T("__tmp_mutex__"));
WaitForSingleObject(hMutex, INFINITE);

params->this_ptr->Sum() = dSum;
if (dMin < params->this_ptr->Min())

Chapter 7

331

{
 params->this_ptr->Min() = dMin;
}
params->this_ptr->Score() = dScore;
if (dBest < params->this_ptr->Best())
{
 params->this_ptr->Best() = dBest;
}

ReleaseMutex(hMutex);
CloseHandle(hMutex);

return 0L;
}

Now, as you can see, we have designed statements in such a manner that all the accesses
to the shared memory locations are protected. The references to the shared objects are
removed inside the loop because using shared objects and protecting access for them inside
the loop won't do much good! Code like that would only slow the application down because
we would lose concurrent calculation if the majority of the statements inside the loop were
protected! That's why we add the thread-local storage so that the calculations are made in
parallel. In the beginning of the method, we have to protect the statements where we read
the shared objects, then we'll use the thread-local variables, and at the end, we'll again
protect the shared objects and we'll then perform the write operations. Safe and clean!

There's more...
When we think about how to improve the application's performance, we can consider using
parallelism to achieve the same, but we must always take care of two things: the performance
speed-up and the efficiency. Both the things matter when we compare the performances of
the sequential algorithm to the parallel one.

In practice, there are always situations where your application should be fine-tuned for a
specific demand of an important client. For such demands, a carefully-chosen decision
about whether or not to use parallelism is very important. If you decide that performance
improvement will occur, then you should create a strong sequential algorithm and then
wisely transform it into parallel. All the time, you must think about side-effects such as
shared objects or access violation.

These situations are like a beam balance (see-saw). If you want to get the leverage on one
side, for example, you want to improve the application performance, then you will lose the
leverage on the other one. You could use the parallel approach with more work. However,
if you do it right, your application will benefit. This exact type of synchronization must be
included from the beginning.

Understanding Concurrent Code Design

332

Improving the performance factors
We said that it is important to build a strong sequential algorithm before we go parallel.
We also said that there are parameters such as performance speed-up and efficiency. How
can you really measure these variables so that you can determine whether you should go
parallel or not? If we do go parallel, will the application benefit from it and how significantly?

We will try to answer these questions in this topic, and we'll give an example of a built-in
Visual Studio compiler feature, which relies on OpenMP, the API developed by Intel in
cooperation with Livermore National Laboratories from the United States. OpenMP stands for
open multiprocessor compilation, which is the Microsoft implementation of the OpenMP API. It
is an excellent built-in feature that supports the native parallel execution by the compiler itself.

First, let's discuss speed up. How can we properly decide whether to use parallelism
or not? Well, one way would be by measuring and comparing the execution time. Another
way would be to proof a certain mathematical formula that is used to represent the
application execution in parallel. However, the second approach, if chosen, must also be
tested—so again, time measurement is needed.

In order to measure these values, we must bring some variables to the table. If we assume
that T(S) is the execution time needed for the sequential algorithm and T(P) is the execution
time needed for the parallel algorithm, then we could get the following equation:

T S()

T P()
I =

In the preceding equation, l stands for improvement. However, we can distinguish the
following variations of improvement in the result:

 f l < 1 indicates a slowdown, which means that the parallel execution will only
decrease performances

 f l < P indicates a sublinear improvement

 f l ~ P indicates a linear improvement

 f l > P indicates a superlinear improvement

Chapter 7

333

Slowdown usually indicates that the sequential approach will have better performances, but
that may not always be the case. It could also mean that the parallel code wasn't designed
well or there were too many unnecessary protection or synchronization points. It could
also point to some implementation mistake. In theory, such an algorithm itself could be
transformed into a parallel one, but there is another question then: can the hardware support
such an execution? What if you test it on four CPU cores and you get respectable results and
then you try to execute it on two cores? Depending on the algorithm itself—it could happen
that the application's execution time is much higher than, for example, using the sequential
algorithm executing on a single CPU core. All these factors should be checked before you
decide on what approach to choose and how your application should benefit from it. There are
two significant factors that you should always think about:

 f How can the application do more work in less time?

 f How can the application use more resources without affecting the rest of the system
or other applications?

In our following example, we will again calculate Schwefel's sum. We'll derive the CSchwefel
base class and create a new CSchwefelP class that will use the OpenMP features only to
demonstrate another technique that you can use for improved application performance,
all the time taking care about the potential improvement possibility.

In order to use the OpenMP directives, you must properly set the Visual Studio project's
property pages. The detailed settings that are required to run the following code can be
found in the Appendix.

Getting ready
Make sure that Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Open the solution ConcurrentDesign.

2. Open Solution Explorer and right-click on Header file. Add a new header file named
CSchwefelP. Open CSchwefelP.h.

3. Add the following code to it:
#ifndef __SCHWEFELP__
#define __SCHWEFELP__

#include "stdafx.h"

class CSchwefelP : public CSchwefel

Understanding Concurrent Code Design

334

{
public:
 CSchwefelP() : CSchwefel() { }
 CSchwefelP(unsigned uSize) : CSchwefel(uSize) { }
 virtual ~CSchwefelP(void) { }
 virtual double Evaluate(void* lpParameters = 0);
protected:
 CSchwefelP(const CSchwefel&) { }
 CSchwefelP& operator = (const CSchwefel&) { return *this; }
 virtual TCHAR* ObjectName(void) const { return _T("SchwefelP");
}
private:
 //
};

#endif

4. Open Solution Explorer and right-click on Source file. Add a new source file named
CSchwefelP. Open CSchwefelP.cpp.

5. Add the following code to it:
#include "stdafx.h"

double CSchwefelP::Evaluate(void* lpParameters)
{
 GetSystemTime(&StartTime());

 double sum = 0;
 double score = 0;
 double min = DBL_MAX;
 double best = DBL_MAX;
 int iSize = (int)Size();

#pragma omp parallel firstprivate(min) firstprivate(best)
 {
#pragma omp for reduction(+: sum) reduction(+: score) nowait
 for (int i = 0; i < iSize; i++)
 {
 sum += Allele(i);

 if (min > Allele(i))
 {
 min = Allele(i);

Chapter 7

335

 }

 double dInnerSum = 0;

 for (int j = 0; j < i; j++)
 {
 dInnerSum += Allele(j);
 }

 double dTmp = dInnerSum * dInnerSum;
 score += dTmp;

 if (i != 0 && best > dTmp)
 {
 best = dTmp;
 }
 }

#pragma omp critical
 {
 if (Best() > best)
 {
 Best() = best;
 }
 if (Min() > min)
 {
 Min() = min;
 }
 }
 }

 Sum() = sum;
 Score() = score;

 GetSystemTime(&EndTime());

 return Score();
}

6. Open Solution Explorer and double-click on stdafx.h.

Understanding Concurrent Code Design

336

7. Add the following code to it:
#pragma once

#include "targetver.h"

#include <stdio.h>
#include <tchar.h>
#include <Windows.h>
#include <cfloat>
#include <time.h>
#include <omp.h>

#include "Schwefel.h"
#include "SchwefelMT.h"
#include "SchwefelP.h"

8. Open Solution Explorer and double-click on ConcurrentDesign.cpp.

9. Add the following code to ConcurrentDesign.cpp:
#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])
{
 CSchwefel Schwefel(100000);
 Schwefel.Evaluate();

 _tprintf_s(Schwefel.Elapsed());

 CSchwefelMT SchwefelMT(100000);
 SchwefelMT.Evaluate();

 _tprintf_s(SchwefelMT.Elapsed());

 CSchwefelP SchwefelP(100000);
 SchwefelP.Evaluate();

 _tprintf_s(SchwefelP.Elapsed());

#ifdef _DEBUG
 return system("pause");
#endif

 return 0;
}

Chapter 7

337

How it works...
First, let's explain the CSchwefelP derived class. We must implement both, constructor
and destructor, and the virtual method, Evaluate. The constructor as well as destructor
implementation is straightforward. Now, let's see the Evaluate method's implementation.
First, we'll obtain the current system time. Then, similar to the CSchwefelMT class, we'll
instantiate the thread-local storage objects that we'll use for the private as well as shared
objects. Note that we must strictly follow the concurrent logic. All the class attributes that will
be accessed in parallel must be protected all the time! So dSum, dScore, dMin, and dBest
must be protected from inconsistent access at all times. We'll also add the local variable,
iSize, in order to obtain the allele size only once, because placing the i < Size()
statement in the parallel region would be ineffective and would bring inconsistent access
to the shared object.

Now, we'll use the OpenMP directive, #pragma omp parallel, with additional clauses
firstprivate(min) and firstprivate(best). The omp parallel directive instructs
the compiler to define a parallel construct (region), where the code will be executed by
multiple threads in parallel. The firstprivate clause specifies that each thread should
have its own instance of a variable, and that the variable should be initialized with the value
of the variable because it exists before the parallel construct (from MSDN). Our intention is
to make the min and best values private to the thread. This is because all the threads are
calculating the minimum and best scores on their own portion of the allele array. In that way,
we will ensure that there is no unprotected access to any shared class attribute, in our case
dMin or dBest.

The next statement is #pragma omp for reduction(+: sum) reduction(+: score)
nowait, followed by the for loop. The #pragma omp [parallel] for directive causes
the work done in a for loop inside a parallel region to be divided among the threads (from
MSDN). The reduction(operation, variable) clause specifies that one or more
variables that are private to each thread are the subject of a reduction operation at the end
of the parallel region. This means that under the hood, the compiler will use the variable
specified in the reduction clause as it is private for each thread on the operation specified
in the reduction clause, but at the end of the parallel region, it will safely (with mutual
exclusion) perform the necessary reduction—in our case, sum. So, whenever the parallel loop
is executing, each thread will calculate the sum independently. At the end of the for loop,
but before exiting from the loop, all the sum values that are private to the threads will be
added into one. In this manner, parallelism is properly enabled because all the threads'
private work was distinguished from a shared sum. Each thread will calculate its own portion
of the allele array sum without interfering with another thread. At the end of the loop, all the
threads' sum results will be added into one value. All we have to do now is to set the class
attributes. One more thing about the nowait clause: it specifies to the compiler that if the
thread has finished the work in the loop, it doesn't have to wait until other threads finish the
same loop. You can think of nowait as a specification that has no barrier that the threads
will hit and wait until all the others reach that point.

Understanding Concurrent Code Design

338

After the parallel loop has finished, we'll add another parallel construct: #pragma omp
critical. It specifies to the compiler that the statements under the construct must be
executed with exclusive access to any object inside. Each thread has its own minimum and
best score. We must perform the comparison and assignment on each thread sequentially
due to the synchronized access. After the end of the root parallel construct, we'll make the
necessary assignments to dSum and dScore and obtain the system time once again to be
able to calculate the elapsed time.

There's more...
We mentioned earlier about measuring performances. We'll use the previous example
output as shown in the following screenshot:

We're using the Intel i7–3820 processor. It has 8 logical cores with Hyper-Threading
available, and it is capable of running 8 parallel hardware-supported threads.

Hyper-Threading Technology uses the processor resources more efficiently, enabling multiple
threads to run on each core. As a performance feature, Intel HT Technology also increases
the processor throughput, improving the overall performance on threaded software. To learn
more about Intel HT, visit the following link:

http://www.intel.com/content/www/us/en/architecture-and-technology/
hyper-threading/hyper-threading-technology.html

Chapter 7

339

In order to compare the CSchwefelMT object's performance with CSchwefelP, we've set
the attribute CSchwefelMT::ThreadNumber to 8. Using these settings, we came up with
the results from above.

We will now use the improved equation:

T S()

T P()
l =

The first output belongs to the CSchwefel object with the sequential algorithm and a single
thread. Its execution time is 4 seconds and 57 milliseconds. So T(S) is 4057 (in milliseconds).
The second output belongs to the CSchwefelMT object with 8 threads and its execution time
is 955 milliseconds. With the second approach, we accomplished the following improvement:

l = = 4.248
4057

955

The result l < P, l = 4.248 and P = 8 indicates a sublinear improvement, which is the
most common improvement. A linear improvement is harder to achieve because you'll
almost certainly have some kind of synchronization in your program and very often thread
communication. All this affects the perfect linear improvement, making it harder to achieve.
As opposed to these two—a superlinear improvement is almost impossible; if we have X
number of processors, is it possible to execute something that is X times faster? Well,
in certain situations where the shared objects can speed up the application by storing
intermediate results—possibly. A situation like this could be storing the already calculated
half of the tree from the Fibonacci sequence.

The third output belongs to the CSchwefelP object with 8 threads because we haven't explicitly
set the omp parallel construct with num_threads(int). In a situation like this, the
compiler uses all the available threads when creating a dynamic thread pool. Its execution time
is 959 milliseconds. With the third approach, we accomplished the following improvement:

l = = 4.231
4057

959

Understanding Concurrent Code Design

340

l < P also indicates a sublinear improvement. There is a slight smaller improvement in the
performance than for the CSchwefelMT object, which can be related to many things such as
the allele size, OpenMP API implementation, scheduler priority, and many more. Our intention
was to show you that a proper approach from design to code must be planned and performed
in steps. In the beginning, it is necessary to carefully determine whether or not parallelism
would bring benefits and improvements using the described techniques. Practice is always the
best indicator. The more successful work you've done, the better solutions you will produce.

See also
 f You can find more on OpenMP at http://openmp.org/wp/ or on

http://msdn.microsoft.com/en-us/library/tt15eb9t.aspx

8
Advanced Thread

Management

In this chapter, we will cover the following topics:

 f Using thread pools

 f Customizing the thread pool dispatcher

 f Using remote threading

Introduction
When we want to create a complex application, we have to include some kind of sophisticated
mechanisms in order to support the complex design. In my long work experience, I have
seen many well-designed projects that have suffered due to an improper choice of software
solutions. These choices can be a wrong class design or incorrect routine usage. Furthermore,
if parallelism is added, you then need a managing mechanism that will dispatch and control
concurrent threads.

A majority of modern applications as well as the Windows operating system have such
mechanisms. One mechanism is the Windows Dispatcher object that manages processes
threads, schedules their execution on the CPU, and takes care of synchronization. Another
mechanism is the Windows Virtual Memory manager that manages memory operations and
maintains inaccessible memory—reserved for operating system or zero-pointer assignments—
and the usable user space memory for applications.

Advanced Thread Management

342

One thing that is common for such mechanisms is some abstraction of the root object that
is responsible for managing its tasks. This is very important in order to maintain correct
synchronization and exclusive access. Such an object—manager—should create and manage
tasks, ensuring that the necessary resources are available. It must also control task execution
in order to ensure that no two or more tasks will perform invalid or unsynchronized operations.
It also should destroy tasks and release used resources correctly for future reuse.

One of these abstractions is a pool of threads responsible for executing tasks in parallel.
When designing applications with complex or important concurrent operations, users must
involve some type of thread hierarchy—where one thread is more important than the other
threads and, in some way, it manages the others. In such situations, users must take care of
used system resources, the correct way of granting exclusive access, synchronization, and so
on. For all these reasons, the user should first design a smart object that will be able to satisfy
all the above requirements, while at the same time, provide comfortable development.

Using thread pools
Here, we will explain a thread pool, which can be represented as a list of worker threads that,
when available, will execute the required tasks. This is good when an application wants to
reduce the possibly high number of threads and provide management for working threads.
Another scenario where the application should benefit is when there is a large number
of threads responsible for small tasks. In such situations, the overhead for creation and
destruction of a large number of threads is significant, and should be avoided with a small
number of threads that will execute the entire work.

We see a typical thread pool implementation in the following diagram:

Chapter 8

343

We will follow this pattern when designing the ThreadPool class. We'll use a list of threads
that will be available for dispatching. In other words, the application will ask for a worker from
the pool instead of creating threads. The pool manager—Dispatcher—will manage and schedule
workers upon a request from an application.

The Dispatcher is responsible for resource management, alerts and notifications, correct
synchronization, and problem solving. It is important to use enough system resources so that
the application can execute work in parallel, while at the same time, take care not to overload
the system too much. Also, an alert mechanism is required in order for workers to be notified
when some event occurs, such as in a situation where the user has made some input or as a
result of I/O operation in the background.

Because of concurrent execution, synchronization is required between worker items. Features
such as thread local storage must be provided where workers will save/load whatever is
necessary for successful task execution. Another very important feature is potential problem
solving. In a parallel environment, a lot of problems can occur as a result of a random situation.
Even though the application looks properly designed, situations with a deadlock could occur as
explained in Chapter 7, Understanding Concurrent Code Design. When designing a thread pool,
where exclusive access will be featured, a strong protection mechanism should be carefully
planned. Yet, if a situation with a deadlock suddenly occurs the Dispatcher must have some
ability to resolve the problematic situation and ensure normal execution of tasks.

Our following example will implement the thread pool and use it to transfer funds between
two bank accounts.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now let's create our program and explain its structure. Perform the following steps:

1. Create a new empty C++ Console application named ThreadPool.

2. Open Solution Explorer and right-click on Header files. Add a new header file
named main. Open main.h. Copy and paste the following code:
#ifndef __MAIN__
#define __MAIN__

#include <Windows.h>
#include <tchar.h>
#include <time.h>

#endif

Advanced Thread Management

344

3. Open Solution Explorer and right-click on Header files. Add a new header file named
CBankAccount. Open CBankAccount.h. Copy and paste the following code:
#ifndef __BANKACCOUNT__
#define __BANKACCOUNT__

#include "main.h"

class CLock
{
public:
 CLock(TCHAR* szMutexName);
 ~CLock();
private:
 HANDLE hMutex;
};

inline CLock::CLock(TCHAR* szMutexName)
{
 hMutex = CreateMutex(NULL, FALSE, szMutexName);
 WaitForSingleObject(hMutex, INFINITE);
}

inline CLock::~CLock()
{
 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
}

class CBankAccount;

class CParameters
{
public:
 CParameters(CBankAccount* fromAccount, CBankAccount* toAccount,
double dAmount, bool bPrintOutput = true)
 {
 this->fromAccount = fromAccount;
 this->toAccount = toAccount;
 this->dAmount = dAmount;
 this->bPrintOutput = bPrintOutput;
 }
 CBankAccount* fromAccount;
 CBankAccount* toAccount;
 double dAmount;

Chapter 8

345

 bool bPrintOutput;
};

class CBankAccount
{
public:
 CBankAccount(double dBalance) : dBalance(dBalance) { uID =
NewId(); *szLock = 0; _tcscpy_s(szLock, LockName()); }
 CBankAccount(double dBalance, TCHAR* szLockName) :
dBalance(dBalance) { uID = NewId(); *szLock = 0; _tcscpy_s(szLock,
szLockName); }
 static DWORD WINAPI Transfer(LPVOID lpParameter);
 double& Balance(){ return dBalance; }
 unsigned AccountID() const { return uID; }
 TCHAR* LockName(void);
private:
 unsigned uID;
 double dBalance;
 TCHAR szLock[32];
 static unsigned NewId(){ static unsigned uSeed = 61524; return
uSeed++; }
};

TCHAR* CBankAccount::LockName(void)
{
 static int iCount = 0;
 static TCHAR szBuffer[32];

 if (*szLock == 0)
 {
 wsprintf(szBuffer, _T("_lock_%d_"), ++iCount);
 }
 else
 {
 return szLock;
 }

 return szBuffer;
}

DWORD WINAPI CBankAccount::Transfer(LPVOID lpParameter)
{
 CParameters* parameters = (CParameters*)lpParameter;

 CLock* outerLock = new CLock(parameters->fromAccount->szLock);

Advanced Thread Management

346

 if (parameters->dAmount < parameters->fromAccount->dBalance)
 {
 CLock* innerLock = new CLock(parameters->toAccount->szLock);
 parameters->fromAccount->dBalance -= parameters->dAmount;
 parameters->toAccount->dBalance += parameters->dAmount;
 delete innerLock;
 delete outerLock;

 if (parameters->bPrintOutput)
 {
 _tprintf_s(_T("%ws\n%ws\t\t%8.2lf\n%ws\t%8u\n%ws\t%8.2lf\
n%ws\t%8u\n%ws\t%8.2lf\n\n"),
 L"Transfer succeeded.",
 L"Amount:", parameters->dAmount,
 L"From account:", parameters->fromAccount->AccountID(),
 L"Balance:", parameters->fromAccount->Balance(),
 L"To account:", parameters->toAccount->AccountID(),
 L"Balance:", parameters->toAccount->Balance());
 }

 delete parameters;
 return 1;
 }
 delete outerLock;

 if (parameters->bPrintOutput)
 {
 _tprintf_s(_T("%ws\n%ws\t\t%8.2lf\n%ws\t%8u\n%ws\t%8.2lf\n%ws\
t%8u\n%ws\t%8.2lf\n%ws\n\n"),
 L"Transfer failed.",
 L"Amount:", parameters->dAmount,
 L"From account:", parameters->fromAccount->AccountID(),
 L"Balance:", parameters->fromAccount->Balance(),
 L"To account:", parameters->toAccount->AccountID(),
 L"Balance:", parameters->toAccount->Balance(),
 L"Not enough funds!");
 }

 delete parameters;
 return 0;
}

#endif

Chapter 8

347

4. Open Solution Explorer and right-click on Header files. Add a new header file
named CThread. Open CThread.h. Copy and paste the following code:
#ifndef __THREAD__
#define __THREAD__

#include "main.h"

class CThread
{
public:
 CThread(LPTHREAD_START_ROUTINE lpThreadStart) : dwExitCode(0),
lpThreadStart(lpThreadStart){ }
 ~CThread();
 void Start(LPVOID lpContext = 0);
 bool StillAlive(){ return ExitStatus() == STILL_ACTIVE; }
 HANDLE Handle() const { return hThread; }
 DWORD ThreadId() const { return dwThreadId; }
 DWORD ExitStatus(){ GetExitCodeThread(hThread, &dwExitCode);
return dwExitCode; }
 static DWORD GetThreadId(CThread* cThread);
private:
 LPTHREAD_START_ROUTINE lpThreadStart;
 HANDLE hThread;
 DWORD dwThreadId;
 DWORD dwExitCode;
};

CThread::~CThread()
{
 if (StillAlive())
 {
 TerminateThread(hThread, (DWORD)-1);
 }
 CloseHandle(hThread);
}

void CThread::Start(LPVOID lpContext)
{
 hThread = CreateThread(NULL, 0, lpThreadStart, lpContext, 0,
&dwThreadId);
}

DWORD CThread::GetThreadId(CThread* cThread)
{
 return cThread->ThreadId();
}

#endif

Advanced Thread Management

348

5. Open Solution Explorer and right-click on Header files. Add an existing header
file named CList. Open CList.h from Chapter 1, Introduction to C++ Concepts
and Features.

6. Open Solution Explorer and right-click on Header files. Add a new header file named
CThreadPool. Open CThreadPool.h. Copy and paste the following code:
#ifndef __THREADPOOL__
#define __THREADPOOL__

#include "main.h"
#include "CList.h"
#include "CThread.h"

class CThreadPool
{
public:
 CThreadPool();
 CThreadPool(unsigned uMaxThreads) : dwMaxCount(uMaxThreads),
threadList(new CList<CThread>()){ }
 ~CThreadPool(){ RemoveAll(); }
 DWORD Count(){ return threadList->Count(); }
 void RemoveThread(DWORD dwThreadId);
 void WaitAll();
 void RemoveAll();
 DWORD& MaxCount(){ return dwMaxCount; }
 void ReleaseThread(DWORD dwThreadId);
 CThread* RequestThread(LPTHREAD_START_ROUTINE threadStart);
private:
 CList<CThread>* threadList;
 DWORD dwMaxCount;
};

CThreadPool::CThreadPool()
{
 SYSTEM_INFO sysInfo;
 GetSystemInfo(&sysInfo);
 dwMaxCount = sysInfo.dwNumberOfProcessors;

 threadList = new CList<CThread>();
}

void CThreadPool::RemoveThread(DWORD dwThreadId)
{

Chapter 8

349

 CThread* thread = threadList->Find(CThread::GetThreadId,
dwThreadId);
 if (thread)
 {
 delete thread;
 }
}

void CThreadPool::WaitAll()
{
 HANDLE* hThreads = new HANDLE[threadList->Count()];
 CThread* thread = 0;

 for (unsigned uIndex = 0; uIndex < threadList->Count();
uIndex++)
 {
 thread = threadList->GetNext(thread);
 hThreads[uIndex] = thread->Handle();
 }

 WaitForMultipleObjects(threadList->Count(), hThreads, TRUE,
INFINITE);
 delete[] hThreads;
}

void CThreadPool::RemoveAll()
{
 CThread* thread = 0;
 while (thread = threadList->GetNext(thread))
 {
 threadList->Remove(thread);
 thread = 0;
 }
 delete threadList;
}

void CThreadPool::ReleaseThread(DWORD dwThreadId)
{
 CThread* thread = threadList->Find(CThread::GetThreadId,
dwThreadId);
 if (thread != NULL)
 {
 TerminateThread(thread->Handle(), (DWORD)-1);

Advanced Thread Management

350

 }
}

CThread* CThreadPool::RequestThread(LPTHREAD_START_ROUTINE
lpThreadStart)
{
 CThread* thread = NULL;
 if (Count() < MaxCount())
 {
 threadList->Insert(thread = new CThread(lpThreadStart));
 return thread;
 }

 while (thread = threadList->GetNext(thread))
 {
 if (!thread->StillAlive())
 {
 break;
 }
 Sleep(100);
 }

 if (thread == NULL)
 {
 thread = threadList->GetFirst();
 }

 threadList->Remove(thread);

 threadList->Insert(thread = new CThread(lpThreadStart));
 return thread;
}

#endif

7. Open Solution Explorer and right-click on Source files. Add a new source file named
main. Open main.cpp. Copy and paste the following code:
#include "main.h"
#include "CBankAccount.h"

Chapter 8

351

#include "CThreadPool.h"

double Random(double dMin, double dMax)
{
 double dValue = (double)rand() / RAND_MAX;
 return dMin + dValue * (dMax - dMin);
}

int main(void)
{
 srand((unsigned)time(NULL));

#define ACCOUNTS_COUNT 12
 CBankAccount* accounts[ACCOUNTS_COUNT];
 for (unsigned uIndex = 0; uIndex < ACCOUNTS_COUNT; uIndex++)
 {
 accounts[uIndex] = new CBankAccount(Random(10, 1000));
 }

 CThreadPool* pool = new CThreadPool();

#define TASK_COUNT 5
 for (unsigned uIndex = 0; uIndex < TASK_COUNT; uIndex++)
 {
 int nFirstIndex = rand() % ACCOUNTS_COUNT;
 int nSecondIndex = -1;
 while ((nSecondIndex = rand() % ACCOUNTS_COUNT) ==
nFirstIndex){}

 CParameters* params = new CParameters(accounts[nFirstIndex],
accounts[nSecondIndex], Random(50, 200));
 pool->RequestThread(CBankAccount::Transfer)->Start(params);
 }

 pool->WaitAll();
 delete pool;

#ifdef _DEBUG
 return system("pause");
#endif
 return 0;
}

Advanced Thread Management

352

How it works...
Let's explain the header files first. In the main.h file, we include the necessary Windows
headers. Then we create the CBankAccount class in CBankAccount.h. We'll use this class
as an abstraction of a bank account object. We'll implement two helper classes too: CLock and
CParameters. The CLock class implements a simple locking mechanism providing exclusive
access from the CLock object creation until it's destroyed. The CParameters class is used for
parameter passing to the working thread.

The CBankAccount class implements the bank account object. It has the uID attribute
used for the account ID, dBalance used for the fund amount, and szLock used for the
lock name. It has two constructors: the first where you can set only the balance, while the
lock name will be generated using the LockName method; the second where you can set
both balance and lock name. It has two static methods: NewId and Transfer. The NewId
method is used for generating the account ID while Transfer is used for transferring actual
funds from one account to another. The LockName method can be used for obtaining the
current lock name from any bank account. The Transfer method tries to acquire a lock on
the first account called fromAccount. When a lock is acquired, it tries to acquire another
lock—this time on an account called toAccount. When both accounts are locked, the
transfer can be performed by simply subtracting the requested amount from fromAccount
and adding the requested amount to toAccount. If the transfer has been done successfully,
the method returns 1 while for an unsuccessful transfer—in a situation where the balance is
less than the requested amount—the method returns 0.

Furthermore, in CThread.h, we've implemented the CThread class. The CThread object will
be used in the thread pool as an abstraction of the working object. It has the lpThreadStart
attribute used for the thread start address, hThread used for thread handle, dwThreadId
used for thread ID, and dwExitCode used for thread exit code. It implements one constructor
where the exit code is set to zero while lpThreadStart points to actual start address provided
by user. In the destructor, we'll query if the thread is still alive using the StillAlive
method and if so call the TerminateThread API and then close the thread handle. The
Start method creates the thread and (if provided) passes a parameter to its start address.
As mentioned before, the StillAlive method compares the STILL_ACTIVE macro with the
ExitStatus return value, and returns a Boolean value. The Handle and ThreadId methods
return a handle to the thread and thread ID respectively. The ExitStatus method calls the
GetExitCodeThread API to obtain its exit code or STILL_ACTIVE.

Chapter 8

353

The CThreadPool class implements the actual pool. It has two attributes: a pointer to the list of
items and the maximum possible number of threads that can be created by the pool. It has two
constructor: the first one where thread max count is set by default using the machine's number
of logical processors. The second constructor has one argument—the actual maximum threads
that pool can instantiate. In the destructor, we'll use the RemoveAll method to free the used
resources. The Count method returns the count of the items on the list. The RemoveThread
method searches for the thread specified by the dwThreadId argument and if found,
removes it. The WaitAll method creates an array of thread handles that will be used in the
WaitForMultipleObjects API specifying TRUE for the BOOL bWaitAll parameter in order
to wait for all threads to finish their tasks. After WaitForMultipleObjects returns, it deletes
the array of handles. The RemoveAll method simply removes all the threads from the list
using the RemoveThread method for each thread in the list. The MaxCount method returns a
reference to the dwMaxCount attribute in order to get or set its value. The pool can increase or
decrease its size, if necessary. The ReleaseThread method searches for the thread specified
by the dwThreadId parameter and if found, terminates the thread. The RequestThread
method is used for obtaining a free thread. If the maximum number of threads is not reached,
the method creates a new item and inserts it into the list. If the maximum number is already
reached, the method iterates through the entire list and queries the exit code for each thread.

If all threads are still active, it waits for 0.1 seconds and tries again until it finds the first thread
that has finished its task. When the thread is found, the method removes it and creates a new
one with the start address provided by the user.

In main.cpp, we have created the Random function to obtain a random double number in the
dMin to dMax range. In the application entry point, we'll set a random generator to the current
time and create twelve bank accounts with random balance values. Then we'll instantiate the
pool with five tasks to process. For each task, we'll select a random bank account and then find
another (random) bank account that must be different than the first one. After both accounts
are found, we'll perform a transfer with a random value, using the RequestThread and
Start methods. After we set all tasks, we'll call the WaitAll method in order to wait for the
completion of the task. When WaitAll returns, we can delete the pool.

There's more...
Even though we have carefully designed the pool, paying attention to all the necessary details,
situations such as a deadlock can still occur. That will be rare—almost impossible, because
the transfer from account a to account b must occur in the exact same time as transfer form
account b to account a—but still it is possible. Our next example will expand the pool, making
it much smarter with a feature to solve eventual problems such as a deadlock.

Advanced Thread Management

354

Customizing the thread pool dispatcher
In our previous example, we had to create the thread pool in order to manage certain tasks
—fund transfer from one bank account to another. Our goal was to use enough system
resources, but not too much. At the same time, we had to take care of busy and available
threads and maintain synchronization. Our following example will expand the thread pool
making it a lot smarter and have the ability to solve possible problems that could occur
during execution.

Instead of iterating through the thread list and waiting for some thread to complete execution,
we'll use message passing in order to select the first thread that completes its task and notify
the dispatcher. Instead of simply executing a user-defined function passed as a start address
for the thread, we'll add another layer of abstraction in order to have more control over
task execution.

In the following diagram, we've illustrated the idea behind the new approach:

Chapter 8

355

Even though we'll duplicate a number of threads, as for each task, we'll create two instead of
one thread, we'll still maintain the number of threads. The thread created for the execution
of the task will create one more thread and wait for it, only to have more control over the task
execution. We'll call the first thread worker and we'll call the second thread, which will be
created, context thread. The idea behind such an approach is that we have more control;
if the context thread has been terminated, the worker that waits for it will query its exit code
and notify the dispatcher that something went wrong. Or, if the context thread hangs or it is
unresponsive, the worker will notice that something went wrong and will perform an appropriate
action, again while notifying the dispatcher. This granularity gives us more control and makes
the pool much smarter.

Our following example will target a scenario where a deadlock will be intentionally created
and we will try to resolve such a situation.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new empty C++ Console application named CThreadPool.

2. Open Solution Explorer and right-click on Header files. Add a new header file
named main. Open main.h. Copy and paste the following code:
#ifndef __MAIN__
#define __MAIN__

#include <Windows.h>
#include <tchar.h>
#include <time.h>

#define MSG_ENDTASK 0x1000
#define MAX_WAIT_TIME 120 * 1000

#endif

Advanced Thread Management

356

3. Open Solution Explorer and right-click on Header files. Add a new header file named
CBankAccount. Open CBankAccount.h. Copy and paste the following code:
#ifndef __BANKACCOUNT__
#define __BANKACCOUNT__

#include "main.h"

class CLock
{
public:
 CLock(TCHAR* szMutexName);
 ~CLock();
private:
 HANDLE hMutex;
};

inline CLock::CLock(TCHAR* szMutexName)
{
 hMutex = CreateMutex(NULL, FALSE, szMutexName);
 WaitForSingleObject(hMutex, INFINITE);
}

inline CLock::~CLock()
{
 ReleaseMutex(hMutex);
 CloseHandle(hMutex);
}

class CBankAccount;

class CParameters
{
public:
 CParameters(CBankAccount* fromAccount, CBankAccount* toAccount,
double dAmount, bool bPrintOutput = true)
 {
 this->fromAccount = fromAccount;
 this->toAccount = toAccount;
 this->dAmount = dAmount;
 this->bPrintOutput = bPrintOutput;
 }
 CBankAccount* fromAccount;
 CBankAccount* toAccount;
 double dAmount;
 bool bPrintOutput;

Chapter 8

357

};

class CBankAccount
{
public:
 CBankAccount(double dBalance) : dBalance(dBalance) { uID =
NewId(); *szLock = 0; _tcscpy_s(szLock, LockName()); }
 CBankAccount(double dBalance, TCHAR* szLockName) :
dBalance(dBalance) { uID = NewId(); *szLock = 0; _tcscpy_s(szLock,
szLockName); }
 static DWORD WINAPI Transfer(LPVOID lpParameter);
 double& Balance(){ return dBalance; }
 unsigned AccountID() const { return uID; }
 TCHAR* LockName(void);
private:
 unsigned uID;
 double dBalance;
 TCHAR szLock[32];
 static unsigned NewId(){ static unsigned uSeed = 61524; return
uSeed++; }
};

TCHAR* CBankAccount::LockName(void)
{
 static int iCount = 0;
 static TCHAR szBuffer[32];

 if (*szLock == 0)
 {
 wsprintf(szBuffer, _T("_lock_%d_"), ++iCount);
 }
 else
 {
 return szLock;
 }

 return szBuffer;
}

DWORD WINAPI CBankAccount::Transfer(LPVOID lpParameter)
{
 CParameters* parameters = (CParameters*)lpParameter;

 Sleep(100);

 CLock* outerLock = new CLock(parameters->fromAccount->szLock);

Advanced Thread Management

358

 if (parameters->dAmount < parameters->fromAccount->dBalance)
 {
 CLock* innerLock = new CLock(parameters->toAccount->szLock);
 parameters->fromAccount->dBalance -= parameters->dAmount;
 parameters->toAccount->dBalance += parameters->dAmount;
 delete innerLock;
 delete outerLock;

 if (parameters->bPrintOutput)
 {
 _tprintf_s(_T("%ws\n%ws\t\t%8.2lf\n%ws\t%8u\n%ws
 \t%8.2lf\n%ws\t%8u\n%ws\t%8.2lf\n\n"),
 L"Transfer succeeded.",
 L"Amount:", parameters->dAmount,
 L"From account:", parameters->fromAccount->AccountID(),
 L"Balance:", parameters->fromAccount->Balance(),
 L"To account:", parameters->toAccount->AccountID(),
 L"Balance:", parameters->toAccount->Balance());
 }

 delete parameters;
 return 1;
 }
 delete outerLock;

 if (parameters->bPrintOutput)
 {
 _tprintf_s(_T("%ws\n%ws\t\t%8.2lf\n%ws\t%8u\n%ws
 \t%8.2lf\n%ws\t%8u\n%ws\t%8.2lf\n%ws\n\n"),
 L"Transfer failed.",
 L"Amount:", parameters->dAmount,
 L"From account:", parameters->fromAccount->AccountID(),
 L"Balance:", parameters->fromAccount->Balance(),
 L"To account:", parameters->toAccount->AccountID(),
 L"Balance:", parameters->toAccount->Balance(),
 L"Not enough funds!");
 }

 delete parameters;
 return 0;
}

#endif

Chapter 8

359

4. Open Solution Explorer and right-click on Header files. Add a new header file named
CThread. Open CThread.h. Copy and paste the following code:
#ifndef __THREAD__
#define __THREAD__

#include "main.h"

class CThread
{
public:
 CThread(LPTHREAD_START_ROUTINE lpThreadStart, DWORD
dwDispatcherId);
 ~CThread();
 void Start(LPVOID lpContext = 0){ pThreadContext->lpParameter =
lpContext; ResumeThread(hThread); }
 bool StillAlive(){ return ExitStatus() == STILL_ACTIVE; }
 HANDLE Handle() const { return hThread; }
 HANDLE ContextHandle() const { return pThreadContext->hThread; }
 DWORD ThreadId() const { return dwThreadId; }
 DWORD ContextThreadId() const {
 return pThreadContext->dwThreadId; }
 DWORD ExitStatus(){ GetExitCodeThread(hThread, &dwExitCode);
return dwExitCode; }
 CThread* SetMaxWaitTime(DWORD dwMilliseconds){
 pThreadContext->dwMaxWaitTime = dwMilliseconds;
 return this; }
 static DWORD GetThreadId(CThread* cThread);
protected:
 static DWORD WINAPI StartAddress(LPVOID lpParam);
private:
 typedef struct
 {
 LPTHREAD_START_ROUTINE lpThreadStart;
 LPVOID lpParameter;
 HANDLE hThread;
 DWORD dwThreadId;
 DWORD dwDispatcherId;
 DWORD dwMaxWaitTime;
 } STARTCONTEXT, *PSTARTCONTEXT;
 HANDLE hThread;
 DWORD dwThreadId;
 DWORD dwExitCode;
 PSTARTCONTEXT pThreadContext;

Advanced Thread Management

360

};

CThread::CThread(LPTHREAD_START_ROUTINE lpThreadStart, DWORD
dwDispatcherId) : dwExitCode(0)
{
 pThreadContext = new STARTCONTEXT();
 pThreadContext->lpThreadStart = lpThreadStart;
 pThreadContext->dwDispatcherId = dwDispatcherId;
 pThreadContext->dwMaxWaitTime = MAX_WAIT_TIME;
 hThread = CreateThread(NULL, 0, StartAddress, this,
 CREATE_SUSPENDED, &dwThreadId);
}

CThread::~CThread()
{
 delete pThreadContext;

 if (StillAlive())
 {
 TerminateThread(hThread, (DWORD)-1);
 }
 CloseHandle(hThread);
}

DWORD CThread::GetThreadId(CThread* cThread)
{
 return cThread->ThreadId();
}

DWORD WINAPI CThread::StartAddress(LPVOID lpParam)
{
 CThread* thread = (CThread*)lpParam;
 thread->pThreadContext->hThread = CreateThread(NULL, 0,
 thread->pThreadContext->lpThreadStart,
 thread->pThreadContext->lpParameter, 0,
 &thread->pThreadContext->dwThreadId);

 DWORD dwStatus = WaitForSingleObject(
 thread->pThreadContext->hThread,
 thread->pThreadContext->dwMaxWaitTime);

 CloseHandle(thread->pThreadContext->hThread);

 PostThreadMessage(thread->pThreadContext->dwDispatcherId,
 MSG_ENDTASK, (WPARAM)thread->dwThreadId, 0);
 return 0L;
}

#endif

Chapter 8

361

5. Open Solution Explorer and right-click on Header files. Add an existing header file
named CList from Chapter 1, Introduction to C++ Concepts and Features.

6. Open Solution Explorer and right-click on Header files. Add a new header file named
CThreadPool. Open CThreadPool.h. Copy and paste the following code:
#ifndef __THREADPOOL__
#define __THREADPOOL__

#include "main.h"
#include "CList.h"
#include "CThread.h"
#include <Wct.h>

#pragma comment (lib, "Advapi32.lib")

class CThreadPool
{
public:
 CThreadPool();
 CThreadPool(unsigned uMaxThreads);
 ~CThreadPool();
 DWORD Count(){ return threadList->Count(); }
 void RemoveThread(DWORD dwThreadId);
 void WaitAll();
 void RemoveAll();
 DWORD& MaxCount(){ return dwMaxCount; }
 void ReleaseThread(DWORD dwThreadId);
 CThread* RequestThread(LPTHREAD_START_ROUTINE threadStart);
private:
 void InitializePool();
 static DWORD WINAPI ProblemSolver(LPVOID lpParam);
 void ClearMessageQueue(){ MSG msg; while (PeekMessage(&msg,
NULL, 0, 0, PM_REMOVE)); }
 HANDLE hProblemSolver;
 HANDLE hEvent;
 CList<CThread>* threadList;
 DWORD dwMaxCount;
};

CThreadPool::CThreadPool()
{
 SYSTEM_INFO sysInfo;
 GetSystemInfo(&sysInfo);
 dwMaxCount = sysInfo.dwNumberOfProcessors;

 InitializePool();

Advanced Thread Management

362

}

CThreadPool::CThreadPool(unsigned uMaxThreads)
{
 dwMaxCount = uMaxThreads;

 InitializePool();
}

CThreadPool::~CThreadPool()
{
 SetEvent(hEvent);

 if (WaitForSingleObject(hProblemSolver, MAX_WAIT_TIME) !=
 WAIT_OBJECT_0)
 {
 TerminateThread(hProblemSolver, (DWORD)-1);
 }
 CloseHandle(hProblemSolver);

 CloseHandle(hEvent);

 RemoveAll();
 ClearMessageQueue();
}

void CThreadPool::RemoveThread(DWORD dwThreadId)
{
 CThread* thread = threadList->Find(CThread::GetThreadId,
dwThreadId);
 if (thread)
 {
 delete thread;
 }
}

void CThreadPool::WaitAll()
{
 HANDLE* hThreads = new HANDLE[threadList->Count()];
 CThread* thread = 0;

 for (unsigned uIndex = 0; uIndex < threadList->Count();
uIndex++)
 {

Chapter 8

363

 thread = threadList->GetNext(thread);
 hThreads[uIndex] = thread->Handle();
 }

 WaitForMultipleObjects(threadList->Count(), hThreads, TRUE,
INFINITE);
 delete[] hThreads;
}

void CThreadPool::RemoveAll()
{
 CThread* thread = 0;
 while (thread = threadList->GetNext(thread))
 {
 threadList->Remove(thread);
 thread = 0;
 }
 delete threadList;
}

void CThreadPool::ReleaseThread(DWORD dwThreadId)
{
 CThread* thread = threadList->Find(CThread::GetThreadId,
dwThreadId);
 if (thread != NULL)
 {
 TerminateThread(thread->Handle(), (DWORD)-1);
 }
}

CThread* CThreadPool::RequestThread(LPTHREAD_START_ROUTINE
threadStart)
{
 CThread* thread = NULL;
 if (Count() < MaxCount())
 {
 threadList->Insert(thread = new CThread(threadStart,
GetCurrentThreadId()));
 return thread;
 }

 while (thread = threadList->GetNext(thread))
 {
 if (!thread->StillAlive())
 {

Advanced Thread Management

364

 break;
 }
 }

 if (thread == NULL)
 {
 MSG msg = { 0 };
 while (GetMessage(&msg, NULL, 0, 0) > 0)
 {
 thread = threadList->Find(CThread::GetThreadId,
 (DWORD)msg.wParam);

 if (thread)
 {
 break;
 }
 }
 }

 threadList->Remove(thread);

 threadList->Insert(thread = new CThread(threadStart,
GetCurrentThreadId()));
 return thread;
}

void CThreadPool::InitializePool()
{
 MSG msg;
 PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);

 hEvent = CreateEvent(NULL, TRUE, FALSE, _T("__prbslv_1342__"));
 hProblemSolver = CreateThread(NULL, 0, ProblemSolver, this, 0,
NULL);

 threadList = new CList<CThread>();
}

DWORD WINAPI CThreadPool::ProblemSolver(LPVOID lpParam)
{
 CThreadPool* pool = (CThreadPool*)lpParam;

 DWORD dwWaitStatus = 0;
 while (true)
 {
 dwWaitStatus = WaitForSingleObject(pool->hEvent, 10);
 if (dwWaitStatus == WAIT_OBJECT_0)
 {
 break;

Chapter 8

365

 }

 CThread* thread = NULL;
 while (thread = pool->threadList->GetNext(thread))
 {
 if (thread->StillAlive())
 {
 HWCT hWct = NULL;
 DWORD dwNodeCount = WCT_MAX_NODE_COUNT;
 BOOL bDeadlock = FALSE;
 WAITCHAIN_NODE_INFO NodeInfoArray[WCT_MAX_NODE_COUNT];

 hWct = OpenThreadWaitChainSession(0, NULL);
 if (GetThreadWaitChain(hWct, NULL,
 WCTP_GETINFO_ALL_FLAGS, thread->ContextThreadId(),
 &dwNodeCount, NodeInfoArray, &bDeadlock))
 {
 if (bDeadlock)
 {
 if (TerminateThread(thread->ContextHandle(),
(DWORD)-1))
 {
_tprintf_s(
#ifdef _UNICODE
 _T("%ws\n%ws\t[%u]%ws\n\n"),
#else
 _T("%s\n%s\t[%u]%s\n\n"),
#endif
 _T("Error! Deadlock found!"), _T("Thread:"),
 thread->ContextThreadId(), _T("terminated!"));

 }
 }
 }
 CloseThreadWaitChainSession(hWct);
 }
 }

 Sleep(1000);
 }
 return 0L;
}

#endif

Advanced Thread Management

366

7. Open Solution Explorer and right-click on Source files. Add a new source file named
main. Open main.cpp. Copy and paste the following code:
#include "main.h"
#include "CBankAccount.h"
#include "CThreadPool.h"

int main(void)
{
 int i = 0;
 while (i++ < 10)
 {
 CBankAccount* a = new CBankAccount(200);
 CBankAccount* b = new CBankAccount(200);

 CThreadPool* pool = new CThreadPool(4);

 CParameters* params1 = new CParameters(a, b, 100);
 pool->RequestThread(
 CBankAccount::Transfer)->SetMaxWaitTime(
 6000)->Start(params1);

 CParameters* params2 = new CParameters(b, a, 50);
 pool->RequestThread(CBankAccount::Transfer)->Start(params2);

 pool->WaitAll();
 delete pool;
 }

#ifdef _DEBUG
 return system("pause");
#endif
 return 0;
}

How it works...
Let's explain header files first. In main.h, we have included necessary Windows headers. We
also define two macros: MSG_ENDTASK used for posting the message about a completed task
from the worker to the dispatcher and MAX_WAIT_TIME in order for the thread not to wait too
long for its context thread. The maximum waiting time could be increased or decreased from
the CThread object using the SetMaxWaitTime method, which we will explain later.

Chapter 8

367

The CBankAccount class implemented in CBankAccount.h along with CLock and
CParameters remains the same. The Transfer method is changed in a way that at the
beginning of the method, a sleep time of 0.1 second is added. This is intentionally added in
order to create a situation with deadlock. After two threads are started, if we were to remove
the sleep time—probably deadlock wouldn't occur because the system will give enough time
on the CPU to thread that it won't request for lock in the same time as another thread.

Furthermore, in CThread.h, we've implemented a much smarter CThread class. We are
using the CThread object in the thread pool as an abstraction of a working object. It has the
lpThreadStart attribute used for the thread start address, hThread used for the thread
handle, dwThreadId used for the thread ID, dwExitCode used for thread exit code, and
pThreadContext used for the context thread. As illustrated in earlier diagram, we are creating
another thread, which we'll call the context thread, in order to gain more control over execution.
The context implementation is assembled as an internal structure consisting of the following
attributes: lpThreadStart is used for the actual user-defined start address; lpParameter
is passed by the user for the start address; hThread is used for the context thread handle;
dwThreadId is used for the context thread ID; dwDispatcherId is used as an ID for the pool
manager; and dwMaxWaitTime is used for setting the timeout for waiting for the context thread.
The CThread class implements one constructor where the exit code is set to zero. Constructor
arguments are slightly changed, besides lpThreadStart, dwDispatcherId is added in order
to pass the actual manager identifier to the thread. In constructor, we create a STARTCONTEXT
object where we set lpThreadStart with a user-defined start address. The dwDispatcherId
will be passed, as well as dwMaxWaitTime with MAX_WAIT_TIME default value and we create
a worker thread with the CREATE_SUSPENDED flag. In the destructor, we first delete the memory
used by pThreadContext and then we query if the thread is still alive using the StillAlive
method and if so, call the TerminateThread API and then close the thread handle. The
Start method sets the lpParameter attribute passed by the user and resumes the worker
thread. The StillAlive method compares the STILL_ACTIVE macro with the return value
of ExitStatus, and returns a Boolean value. The Handle and ThreadId methods return
a handle to the worker thread and worker thread ID respectively. The ContextHandle and
ContextThreadId methods return a handle to the context thread and the context thread
ID respectively. The ExitStatus method calls the GetExitCodeThread API to obtain its
exit code or STILL_ACTIVE. The SetMaxWaitTime method sets the maximum waiting time
attribute value. The StartAddress method is added in order to perform task execution by
creating another thread the context thread—and wait for its completion, in the worst case, a
maximum of the pThreadContext->dwMaxWaitTime interval. Either the time interval has
passed or the context thread has returned. Then, the context thread handle is closed and the
MSG_ENDTASK message is posted to the dispatcher message queue.

The CParameters class remains the same. Instead of searching through the list with a
specified wait time, we'll block the dispatcher and wait for the MSG_ENDTASK message
posted from the first available worker thread.

Advanced Thread Management

368

In the CThreadPool class, we include an additional header file called Wct.h. We also
add the Advapi32 library in order to use the API that related to the thread-wait chains,
which we'll explain below. The CThreadPool class has four attributes: a handle to the
hProblemSolver thread that will occasionally check for potential problems; the hEvent
handle to manually reset the event, used for alerting the problem solver thread to exit;
the threadList pointer to the list of items; and dwMaxCount for the maximum possible
number of threads that can be created by the pool. The class implements two constructors:
the first where the thread max count is set by default, using the number of machine logical
processors. The second constructor has one argument—the actual maximum number of
threads that a pool can instantiate. Both constructors call the InitializePool method that
creates the message queue for the dispatcher, also create an event, a problem solver thread,
and a new list of threads. In the destructor, we first set the event to the signaled state and
wait for MAX_WAIT_TIME for the problem solver to safely exit. If the time has passed without
thread completion, we use the TerminateThread API to end the execution of the thread
forcibly. Then we close both handles and we use the RemoveAll method to free the used
resources and the ClearMessageQueue method to empty the message queue.

The Count method returns the count of the items in the list. The RemoveThread method
searches for the thread specified by the dwThreadId parameter and if found, removes
it. The WaitAll method creates an array of thread handles that will be used in the
WaitForMultipleObjects API specifying TRUE for the BOOL bWaitAll parameter in
order to wait for all threads to finish their tasks. After WaitForMultipleObjects returns,
we delete the array of handles. The RemoveAll method simply removes all threads from
the list using the RemoveThread method for each thread in the list. The MaxCount method
returns a reference to the dwMaxCount attribute in order to get or set its value. Again, the
pool size can be increased or decreased if necessary. The ReleaseThread method searches
for the thread specified by the dwThreadId parameter and if found, terminates the thread.

The RequestThread method is used for obtaining free thread. If the maximum number
of threads is not reached, the method creates a new item and inserts it into the list. If the
maximum number of threads is reached, RequestThread iterates through the entire list
and queries the exit code for each thread. If all threads are still active, the dispatcher will
block using the GetMessage API and wait until the first available worker thread posts the
message after finishing its task. We then search for the thread using the passed thread ID
and if found, we remove it and create a new thread with the start address provided by the
user. The ProblemSolver method is used as a monitoring routine for the thread pool.

As shown in the following diagram, it is important that the problem solver is another thread
executing in parallel:

Chapter 8

369

If a problem occurs and the pool is blocked for some reason, this thread will try to resolve
the problem. That's why it's imperative that it does not execute under any thread that belongs
to the pool and could be blocked along with the pool. Its task is to loop forever, or until the
program exits, when the event is set to the signaled state. So, on each iteration, it will call
WaitForSingleObject with a handle to the event passed along with a 0.01 second wait
interval. If the event is set, the thread will exit. If not, it will iterate through the entire thread
list, and it'll call the StillAlive method for each thread. If the thread is alive, it'll call the
OpenThreadWaitChainSession API that creates WCT or Wait Chain Traversal.

Wait Chain Traversal (WCT) enables diagnosing eventual application
hangs and deadlocks. A wait chain is an alternating sequence of threads
and synchronization objects; each thread waits for the object that follows
it, which is owned by the subsequent thread in the chain (from MSDN).

Advanced Thread Management

370

Next, a call to GetThreadWaitChain follows. This API retrieves the wait chain for the
specified thread. If any subset of nodes in the array forms a cycle, the function sets the
IsCycle parameter to TRUE (from MSDN). So, if a cycle is formed, bDeadlock will be set
to TRUE. If so, we terminate the deadlocked thread and close the WCT session using the
CloseThreadWaitChainSession API. We then suspend the thread for one second and
continue monitoring the pool execution.

In the application entry point, we create two bank accounts with certain amounts of money.
After we've created the pool, we request for the thread to transfer funds from the first to the
second account, and we request for another thread to transfer funds from the second to the
first account, trying to create a problematic situation. We perform this in a loop that iterates
ten times only to ensure that a deadlock will occur. If a deadlock is found, the problem solver
will react.

One situation with a deadlock is shown in the following screenshot:

There's more...
The explained example targets a certain possible scenario where a problem can occur.
This situation is known as the Banker's algorithm, given by Edsger Dijkstra. It is most likely
that a given pool implementation, along with problem solving, could be used for any scenario
where a deadlock or a similar problem can occur. Our intention was to teach the user to
carefully design the objects that will help them develop the program more easily, at the same
time giving them the ability to control the execution, respect the resources used, and perform
advanced management and monitoring of program execution. In general, as we said so many
times, it is important to carefully design the application, and if necessary, to include advanced
mechanisms to support such a design.

Chapter 8

371

Using remote threading
So far, we were focusing on situations where we had total control of all application parts and
the execution itself. In practice, this is far from the truth. In many situations, you would have
to continue where some other developer stopped or you would have to use compiled parts or
even external applications where changing the code is not possible. Even in such a situation,
sometimes there is a need to change some application behavior, which we will explain later.

When we are unable to change the code, we could use remote threading. Remote threading is
a feature presented by the Windows operating system, starting from XP OS, and maintained in
all newer versions. A remote thread is actually a thread like any other, with the difference being
that the remote thread does not execute under the current process context but in the address
space of the remote process. That is an excellent feature with the earlier described scenarios.

There are few ways in which you can start a remote thread: using the CreateRemoteThread
API, using the SetWindowsHookEx API, and using the undocumented NtCreateThreadEx
API.

We'll focus on the CreateRemoteThread API. In our following example, we'll assume that
Windows calculator (calc.exe) is some external application whose code we can't change,
and yet we have to alter its main window title (for some reason). Even though we could change
the title of the calculator window from our application without using a remote thread, we
chose this scenario for the simplicity of the example.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
Now, let's create our program and explain its structure. Perform the following steps:

1. Create a new empty C++ Console application named RemoteThreading.

2. Open Windows Explorer and navigate to your solution folder. Create a new text file
named common.txt. Change its extension to .h.

3. Open Solution Explorer and right-click on the RemoteThreading solution. Select the
Add Existing Item option and add common.h. Open common.h. Copy and paste the
following code:
#include <windows.h>
#include <tchar.h>

#define MAPPING_NAME _T("__comm_61524_map__")

Advanced Thread Management

372

#define EVENT_NAME _T("__evnt_68435_rst__")

typedef struct
{
 HMODULE hLibrary;
} COMM_OBJECT, *PCOMM_OBJECT;

4. Open Solution Explorer and under the project RemoteThreading right-click on
Source files. Add a new source file named main. Open main.cpp.

5. Add the following code:
#include <windows.h>
#include <tchar.h>
#include "..\common.h"

int __stdcall RemoteLoadLibrary(HANDLE hProcess, char*
szLibraryName)
{
 LPTHREAD_START_ROUTINE lpLoadLibrary = (LPTHREAD_START_ROUTINE)
GetProcAddress(GetModuleHandleA("Kernel32.dll"), "LoadLibraryA");
 if (lpLoadLibrary == NULL)
 {
 return -1;
 }

 if (hProcess == NULL)
 {
 _tprintf_s(_T("Handle to Process 0x%x was NULL!\n"), (int)
hProcess);
 return -1;
 }

 size_t uMemSize = strlen(szLibraryName) + 1;
 void* lpRemoteMem = VirtualAllocEx(hProcess, NULL, uMemSize,
MEM_COMMIT, PAGE_READWRITE);
 if (lpRemoteMem == NULL)
 {
_tprintf_s(
#ifdef _UNICODE
 _T("%ws\nError:\t%u\n"),
#else
 _T("%s\nError:\t%u\n"),
#endif
 _T("Could not allocate remote virtual memory!"),
 GetLastError());
 return -1;
 }

Chapter 8

373

 BOOL bSuccess = WriteProcessMemory(hProcess, lpRemoteMem,
szLibraryName, uMemSize, NULL);
 if (bSuccess == STATUS_ACCESS_VIOLATION || bSuccess == FALSE)
 {
 _tprintf_s(
 _T("Could not write remote virtual memory!\nError:\t%u\n"),
 GetLastError());
 VirtualFreeEx(hProcess, lpRemoteMem, 0, MEM_RELEASE);
 return -1;
 }

 HANDLE hThread = CreateRemoteThread(hProcess, NULL, 0,
lpLoadLibrary, lpRemoteMem, 0, NULL);
 if (hThread == NULL)
 {
 _tprintf_s(
 _T("Could not create remote thread!\nError:\t%u\n"),
 GetLastError());
 VirtualFreeEx(hProcess, lpRemoteMem, 0, MEM_RELEASE);
 return -1;
 }

 WaitForSingleObject(hThread, INFINITE);

 VirtualFreeEx(hProcess, lpRemoteMem, 0, MEM_RELEASE);
 CloseHandle(hThread);

 return 0;
}

int __stdcall RemoteFreeLibrary(HANDLE hProcess, HMODULE hLib)
{
 LPTHREAD_START_ROUTINE lpLoadLibrary = (LPTHREAD_START_ROUTINE)
GetProcAddress(GetModuleHandleA("Kernel32.dll"), "FreeLibrary");
 if (lpLoadLibrary == NULL)
 {
 return -1;
 }

 if (hProcess == NULL)
 {
 _tprintf_s(_T("Handle to Process 0x%x was NULL!\n"), (int)
hProcess);
 return -1;
 }

 HANDLE hThread = CreateRemoteThread(hProcess, NULL, 0,
lpLoadLibrary, hLib, 0, NULL);

Advanced Thread Management

374

 if (hThread == NULL)
 {
 _tprintf_s(
 _T("Could not create remote thread!\nError:\t%u\n"),
 GetLastError());
 return -1;
 }

 WaitForSingleObject(hThread, INFINITE);

 CloseHandle(hThread);

 return 0;
}

int main(void)
{
 char* szLibrary = PHYSICAL_PATH_TO_YOUR_DLL;

 HANDLE hMapping = CreateFileMapping((HANDLE)-1, NULL,
 PAGE_READWRITE, 0, sizeof(COMM_OBJECT), MAPPING_NAME);
 HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, EVENT_NAME);

 STARTUPINFO startInfo = { 0 };
 PROCESS_INFORMATION processInfo = { 0 };

 BOOL bSuccess = CreateProcess(
 _T("C:\\Windows\\System32\\calc.exe"), NULL, NULL,
 NULL, FALSE, 0, NULL, NULL, &startInfo, &processInfo);

 if (!bSuccess)
 {
 _tprintf_s(_T("Error:\t%u\n"), GetLastError());
 }
 else
 {
 WaitForSingleObject(processInfo.hThread, 500);
 RemoteLoadLibrary(processInfo.hProcess, szLibrary);

 WaitForSingleObject(hEvent, INFINITE);

 PCOMM_OBJECT pCommObject = (PCOMM_OBJECT)
MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);

 if (pCommObject)
 {

Chapter 8

375

 RemoteFreeLibrary(processInfo.hProcess,
 pCommObject->hLibrary);
 }
 }

 CloseHandle(hEvent);
 CloseHandle(hMapping);

#ifdef _DEBUG
 return system("pause");
#endif

 return 0;
}

6. Open Solution Explorer and add a new empty C++ console application project
named RemoteStartAddress. Select Application Type – DLL. Select Additional
Options – Empty Project. Right-click on Source files. Add a new source file named
main. Open main.cpp.

7. Add the following code:
#include <Windows.h>
#include <tchar.h>
#include "..\common.h"

typedef struct
{
 DWORD dwProcessId;
 HWND hWnd;
} WINDOW_INFORMATION, *PWINDOW_INFORMATION;

BOOL IsMainWindow(HWND hWnd)
{
 return GetWindow(hWnd, GW_OWNER) == (HWND)0 &&
IsWindowVisible(hWnd);
}

BOOL CALLBACK EnumWindowsCallback(HWND hWnd, LPARAM lParam)
{
 PWINDOW_INFORMATION pWindowInformation = (PWINDOW_INFORMATION)
lParam;
 DWORD dwProcessId = 0;

 GetWindowThreadProcessId(hWnd, &dwProcessId);

Advanced Thread Management

376

 if (pWindowInformation->dwProcessId == dwProcessId &&
IsMainWindow(hWnd))
 {
 pWindowInformation->hWnd = hWnd;
 return FALSE;
 }

 return TRUE;
}

HWND FindMainWindow()
{
 WINDOW_INFORMATION wndInfo = { GetCurrentProcessId(), 0 };

 EnumWindows(EnumWindowsCallback, (LPARAM)&wndInfo);

 return wndInfo.hWnd;
}

void ChangeWindowTitle()
{
 HWND hWnd = FindMainWindow();
 if (hWnd)
 {
 SetWindowText(hWnd,
 _T("Remotely started thread inside calculator!"));
 }
}

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID
lpReserved)
{
 switch (dwReason)
 {
 case DLL_PROCESS_ATTACH:
 {
 HANDLE hMapping = OpenFileMapping(FILE_MAP_ALL_ACCESS,
FALSE, MAPPING_NAME);
 if (hMapping)
 {
 PCOMM_OBJECT pCommObject = (PCOMM_OBJECT)
MapViewOfFile(hMapping, FILE_MAP_ALL_ACCESS, 0, 0, 0);
 if (pCommObject)

Chapter 8

377

 {
 pCommObject->hLibrary = hInstance;
 }

 CloseHandle(hMapping);
 }

 ChangeWindowTitle();

 HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE,
 EVENT_NAME);
 if (hEvent)
 {
 SetEvent(hEvent);
 CloseHandle(hEvent);
 }
 break;
 }

 case DLL_PROCESS_DETACH:
 {
 //
 break;
 }
 }
 return TRUE;
}

How it works...
First, we have created common.h, in order to define the structure, event, and mapping name
that both projects will use. We must divide our program in two parts: exe and dll. We must
create exe in order to run an application. We must create a separate dll because the remote
thread start address will reside in that dll. In our previous examples, all thread start addresses
were in the same project as the application itself, because the thread was executing in the
address space of the current process. In this example, the thread will execute in the address
space of another process, making all the memory addresses from current process useless.

When we are creating a thread, we must provide a start address or the address of the function
where thread will start. If we define a function inside the current process and try to start a
remote thread using the address of that function, a call to CreateRemoteThread will fail
because the addresses inside the current process are private to it and the external process
can't use them. That's why it is important to define the function inside a dll and load that dll
into the target process context. We can achieve dll loading using the LoadLibrary API.

Advanced Thread Management

378

Now, let's explain the dll itself. Just like the application (exe) the dynamic link library must
have its own entry point. Its prototype must match the following signature:

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID
lpReserved);

When the dll is loaded, its execution starts from this method. You could distinguish reasons
as to why this module was loaded. Those can be as follows:

 f The DLL_PROCESS_ATTACH method notifying that the application just loaded the dll

 f The DLL_PROCESS_DETACH method notifying that the application just unloaded
the dll

 f The DLL_THREAD_ATTACH method notifying that the application where the dll is
loaded just created a new thread

 f The DLL_THREAD_DETACH method notifying that the thread is exiting and some
cleanup can be done

We do all our work inside DLL_PROCESS_ATTACH. Inside our main application, we create a
file mapping necessary for communication between the application and the dll, which we'll
explain later. Inside the dll, we first open the file mapping, using the OpenFileMapping API.
If the mapping is opened, we write the handle to the dll into the hLibrary attribute. We need
this handle later to unload the library from the target process, when we finish our work. Next,
we call the ChangeWindowTitle method. This function tries to find the main window handle
using FindMainWindow. If a handle to the window is found, we can alter the window title.

The FindMainWindow method uses the EnumWindows API to enumerate all top-level
windows. User must provide a pointer to a user-defined function (called callback) as the first
argument to EnumWindows. The second parameter is a user-defined object that will be passed
inside a callback. This callback is called by the operating system for each window handle that
the OS enumerates. We can use this feature to query each window handle for owning the
thread (process). We can achieve this using the GetWindowThreadProcessId API.

If we find a window that belongs to the target process, we should also check if that is the main
window. For that task, we use the IsMainWidow method. This method calls GetWindow
with GW_OWNER as the second parameter and if the value returned is 0 (zero), it will query the
window visibility using the IsWindowVisible API, making sure that, if visible, it is the main
application window from the target process. After ChangeWindowTitle returns, we open an
event that we use for notifying our application that the job inside the target process is done and
we can unload the library. We set the event to the signaled state using the SetEvent API.

Chapter 8

379

Now, let's explain the main application. The RemoteLoadLibrary method is used to
create a remote thread inside the target process. First, we need to obtain the address of the
LoadLibrary API (LoadLibraryA—multibyte version used for this example). This API will be
used as a remote thread start address with our dll name specified as a parameter to load. In
this way, we will load the specified dll into the target process context and perform our execution
inside it. After we've obtained the address of LoadLibrary, we must allocate enough virtual
memory, using the VirtualAllocEx API, inside target process in order to write the dll name
inside. Pay attention that specifying only the dll name isn't correct because the address of an
array of characters inside the current process isn't useful in the target process.

We must write the dll name into the target process, making the address of the array of
characters valid inside the target process. After allocating virtual memory, we use the
WriteProcessMemory API to perform the write operation. If the write operation is successful,
we create a remote thread using the CreateRemoteThread API. We must provide the target
process handle with the correct privileges. We didn't pay much attention to handle privileges
because our application creates the target process, creating the returned handle with all
possible privileges that we would need.

In situations where we could not create a target process, we would have to open an existing
process, specifying the PROCESS_ALL_ACCESS flag as a first parameter for the OpenProcess
API. Only the handle retuned with such privileges can be used for the CreateRemoteThread
API. After successful creation of a remote thread, we use the WaitForSingleObject API
to wait for thread completion and return. The RemoteFreeLibrary method is used for
dll unload. First, we must obtain the address of the FreeLibrary API in order to start a
remote thread whose task will be to run FreeLibrary with the handle to the dll passed as a
parameter. In that way, a remote thread will unload the specified dll with the handle passed.

Inside the application entry point, first we must set the physical path to the compiled dll.
This is important because the remote thread inside the target process will try to load the dll
from the given path. This path must be absolute for successful loading. Next, we create a file
mapping that we use to communicate with the dll. This is important because when we want
to unload the library, we must provide a handle to the dll to the FreeLibrary API. A handle
to the loaded dll inside the target process is known only after successful loading. That's why
we're writing to the file mapping from the target process only after the dll is attached. Next,
we create an event that we'll use inside the dll to signal the main application that the handle
is written to the file mapping and the dll can be unloaded. Then we'll start the calculator using
the CreateProcess API. If a process is created we wait for its initialization specifying 0.5
second in the WaitForSingleObject API. Then we try to create a remote thread and wait
for an event object. After the event is set to the signaled state, we can unload the library
using RemoteFreeLibrary and close all used handles.

Advanced Thread Management

380

See also...
Where do we go from here? Well, we tried to cover most of themes related to concurrency
in programming using the C++ language. Of course, there still remain a lot of details that
everyone who wants to use parallelism must learn but our intention is to give you a good
foundation. In order to manage concurrent execution, one must have thorough knowledge
of operating systems, compilers, object-oriented programming, execution, runtime, and of
course the C++ language if that is the developer's choice. As we said so many times, practice
is the best teacher. So, get ready, and start creating!

Appendix

In this appendix, we will cover the following topics:

 f Installing MySQL Connector/C
 f Installing WinDDK – Driver Development Kit
 f Setting up a Visual Studio project for driver compilation
 f Using the DebugView application
 f Setting up a Visual Studio project for OpenMP compilation

Installing MySQL Connector/C
In order to use MySQL Connector/C, you need to perform the following operations:

1. Open your web browser and navigate to http://dev.mysql.com/downloads/
connector/c/.

Appendix

382

2. Download the mysql-connector-c-6.1.3-win32.msi or mysql-connector-
c-6.1.3-winx64.msi file, depending on your architecture and project configuration,
and then start the installation as shown in the following screenshot:

3. Accept the terms in the license agreement and select the Complete type
of installation. Click on Finish and open Visual Studio, and then open the
MultithreadedDBTest solution.

Appendix

383

4. Open Solution explorer and right-click on the MultithreadedDBTest project. Select
Properties. Under Configuration Properties, expand the General node. Open the
combobox next to Additional Include Directories, and using the Windows folder
browser, navigate to C:\Program Files\MySQL\MySQL Connector C 6.1\
include, as shown in the following screenshot:

5. Click on Select Folder.

Appendix

384

6. Under Configuration Properties, expand the Linker node. Open the combobox
next to Additional Dependences and enter C:\Program Files\MySQL\MySQL
Connector C 6.1\lib\libmysql.lib, as shown in the following screenshot:

7. Using the Windows file explorer, navigate to C:\Program Files\MySQL\MySQL
Connector C 6.1\lib. Copy the libmysql.dll file to C:\Windows\System32.

Now, you can compile and run the MultithreadedDBTest project or any other project that uses
MySQL Connector/C.

Installing WinDDK – Driver Development Kit
In order to use Windows Driver Kit, you need to perform the following operations:

1. Open your web browser and navigate to http://msdn.microsoft.com/en-us/
library/windows/hardware/hh852365.aspx. Since we are using Visual
Studio 2013, you'll need to download WDK 8.1 or use the following address:
http://go.microsoft.com/fwlink/p/?LinkId=393659. The following
is a screenshot of the WDK download page:

Appendix

385

2. Select Next and choose whether you want to participate in Customer Experience
Improvement Program, and then accept License Agreement to start the installation.
You'll see a window as shown in the following screenshot:

Appendix

386

3. Wait for the installation to complete and close the wizard.

Now, Windows Driver Kit is successfully installed.

Setting up a Visual Studio project for driver
compilation

In order to use the features from Windows Driver Kit, such as compilers and libraries,
you need to set up the Visual Studio project properties. To do this, perform the following
operations:

1. If you have followed the instructions from Chapter 2, Thread Concept, the example
Implementing threads in kernel – open the solution KernelThread. In Solution
Explorer, right-click on the DriverApp project and select Properties. Under the
General tab, select Target Extension and choose Edit. Rename .exe to .sys.
Click on Apply, as shown in the following screenshot:

Appendix

387

2. Now, expand the C++ node, and under General, select Additional Include Directories.
Click on Edit and enter the following Windows path: C:\Program Files (x86)\
Windows Kits\8.1\Include\km. Click on OK and then on Apply.

Appendix

388

3. Now, under C++, select Preprocessor, and under Preprocessor Definitions,
choose Edit. Remove all the lines and enter _X86_ if the Win32 configuration
is active, or _AMD64_ if the x64 configuration is active, as follows:

4. Click on OK and then on Apply. Now, under Code Generation, select Enable C++
Exceptions and delete all the text and leave it blank. Click on Apply. Under Basic
Runtimes Check, select Default and then click on Apply. Under Security Check,
select Disable Security Check (/GS-) and click on Apply.

Appendix

389

5. Now, under Advanced, select Calling convention and choose __stdcall (/Gz)
as follows:

Appendix

390

6. Now, expand the Linker node, and under General, select Enable Incremental
Linking and choose No (INCREMENTAL:NO). Now, under Input, select Additional
Dependences and click on Edit. Enter the two following lines: C:\Program Files
(x86)\Windows Kits\8.1\Lib\win8\km\x64\ntoskrnl.lib and C:\
Program Files (x86)\Windows Kits\8.1\Lib\win8\km\x64\hal.lib.
Pay attention to change x64 to x86, depending on your active solution configuration:

7. Click on OK and select Apply. Now, expand the Manifest File node and select
Generate Manifest. From the drop-down list, select No (/MANIFEST:NO). Click on
Apply. Now, expand the System node and select SubSystem. From the drop-down
list, choose Native (/SUBSYSTEM:NATIVE). Select Driver and from the drop-down
list, choose Driver(/Driver). Click on Apply.

Appendix

391

8. Finally, select the Advanced node and then select Entry Point. Insert the text
DriverEntry. Under Base Address, insert the text 0x10000. Then, select Randomize
Base Address and delete all the text and leave it blank. Then, select Data Execution
Prevention and delete all the text and leave it blank. Select Import Library and insert
the text ntoskrnl.lib.

Appendix

392

Now, you can compile and run the project DriverApp. Note that if you're using a 64-bit operating
system, starting a digitally-unsigned driver is not possible, until you make changes to Advanced
Boot Options; Vista and the later versions of Windows support the F8 Advanced Boot Option,
that is, Disable Driver Signature Enforcement, which disables the load-time signature
enforcement for a kernel-mode driver only for the current system session. This setting does not
persist across system restarts (from MSDN). For more information on this, visit http://msdn.
microsoft.com/en-us/library/windows/hardware/ff547565(v=vs.85).aspx.

Using the DebugView application
In order to display the output from the kernel driver, you'll need to install the DebugView
application. Perform the following operations:

1. Open your web browser and navigate to http://technet.microsoft.com/
en-us/sysinternals/bb896647.aspx. Download the DebugView ZIP file and
extract it to a folder. Run the DebugView application and, from the menu, select
Capture. Add a tick to Capture Kernel or press Ctrl + K.

2. Now, if you run your KernelDriver project, you will see the output from the driver,
using DebugView.

Appendix

393

Setting up a Visual Studio project for
OpenMP compilation

In order to use OpenMP, you need to perform the following operations:

1. If you have followed the instructions in Chapter 7, Concurrent Code Design,
the example Improvement of Performance Factors – open the solution KernelT
ConcurrentDesign. In Solution Explorer, right-click on the ConcurrentDesign project
and select Properties. Under the Configuration Properties tab, expand the C++ node
and select General, and then select Multi-processor Compilation. Select Yes (/MP)
and click on Apply.

Appendix

394

2. Now, under Code Generation, select Enable Parallel Code Generation and then
choose Yes (/Qpar). Click on Apply.

3. Now, under Language, select Open MP Support and choose Yes (/openmp).
Click on Apply.

Appendix

395

Now, you can compile and run the ConcurrentDesign project or any other project that uses
the OpenMP support.

Index
Symbols
(int _tmain(int, char**)) prototype 12
.NET

background thread 243
Barrier class 299
EAP 269
foreground thread 243
synchronization mechanisms 247
threading 235-242
thread safety 261, 262

^ operator 242
* operator 242
& operator 242
% operator 242
\WM_PLOTDATA message 154

A
Abort method 281
acquire fence 293
Alert method 121
Append method 42
application

creating, from scratch 316
Application::EnableVisualStyles method 242
AsyncDownloadDataCompleted method 276

B
background thread

differentiating, with foreground
thread 243-247

BackgroundWorker class
about 276
using 276

working 280
BackgroundWorker thread

aborting, with CancelAsync
method 286-291

Banker's algorithm 370
Barrier::AddParticipant method 300
Barrier class 299
Barrier object

used, for synchronization 300-307
Barrier::RemoveParticipant method 300
Barrier::SignalAndAwait method 300
base priority 169, 170
bitwise OR (|) 127
blocked state, process 50
Blue Screen Of Death (BSOD) 104
Boolean value 352
bounded-buffer problem. See

producer-consumer problem
button click 142
BUTTON_CLOSE macro 146

C
CalculateSomething function 14
CancelAsync method

used, for aborting BackgroundWorker
thread 286-290

CBankAccount class 352
C++/CLI 234
CComplex class 19
child-control identifier 146
C++ language 10
client process

reviewing 231
CNode class 42
Common Language Infrastructure (CLI) 234

398

Common Language Runtime (CLR) 234
compiled application (*.exe) 234
ComplexAdd function 16
Composite Actions scenarios 312
concurrency

correctness problem 310
liveness problem 310

constructor (ctor) 42
ContinueWith method 291
correctness problem

about 310
occurring, instances 314

Count method 42
cout object 12
CParameters class 352
C++ program

#include <iostream> header 11
creating 11-14
example 13

C++ project
creating 9, 10

CPU multitasking system 46
Create method 120
CreateNamedPipe API

reference, URL 165
CreateProcess function

about 49
on MDN, URL 47

CreateThread API
on MDN, URL 81

CreateWindow API 32
critical region 56
critical section

about 56, 139, 206
using 206-215

CSchwefelMT class
creating 325-327
working 328

CSchwefelP derived class
working 337-340

CThread class 120
CThreadPool class 353
CWorker class, CPerson 22

D
daemon tasks 216
Database Management System (DBMS) 88
Data Race scenarios 310
deadlock

about 260
avoiding 260

DebugView application
installing 392
using 392

DestroyWindow API 33
destructor (dtor) 42
dining philosophers problem

solving 66-74
dispatcher

about 175, 176, 343
customizing 355-366
working 366-370

dValue 11
dwMaxWaitTime attribute 367
dynamic binding 28
dynamic library (*.dll) 14
dynamic priority 169, 170

E
EAP

about 269
advantage 275
down side 275
example 275, 276
program, creating 269-275
working 275

Elapsed(TCHAR*) method 323
Elapsed(void) method 323
Evaluate method 328
Evaluate(void*) method 323
event

using 197-206
Event-based Asynchronous Pattern. See EAP
event-driven system 141
event handler

about 29
for Windows 29

399

event object 136-138
event synchronization object 197
eventual problem solving feature 343
event wait handles

signaling 263-268
ExitProcess function 50

F
Fibonacci sequence 339
file mapping 64
FindMainWindow method 378
Find method 42
First In First Out (FIFO) 34
foreground thread

differentiating, with background
thread 243-247

Fourier series 175
full fence 293

G
Garbage Collector (GC) 242
gcnew operator 242
GetAsyncState method 121
GetFirst method 42
GetHandle method 121
GetId method 121
GetLast method 42
GetMessage API 32
GetNext method 42
GetUserData method 121
GET_X_LPARAM macro 147
GET_Y_LPARAM macro 147
Graphical User Interface (GUI) 9
GWLP_USERDATA macro 155

H
half fences (volatile memory objects) 293
Hardware Abstraction Layer (HAL) 234
Head method 42
hPrev parameter 30
hThis parameter 30
hThread attribute 367
Hyper-Threading Technology 338

I
iCount 11
Inconsistent Synchronization scenarios 311
inheritance

about 19
example, reviewing 20-22
working 22

InitializeApp method 240
Insert method 42
installation

MySQL Connector/C 381-384
WinDDK 384-386

IntelliSense engine 9
Interprocess Communication. See IPC
Interrupt method 281
int _tmain(int argc, TCHAR* argv[]) prototype

argc argument 12
argv argument 12

int _tmain(void) prototype 12
IPC

about 55, 230
example 55-59
working 63-65

IPCDemo 64
IPC problems

dining philosophers, solving 65-67
IPCWorker 63

J
Java Runtime Environment (JRE) 235
Join method 121

K
kernel

threads, implementing in 99-104

L
LABEL_TEXT macro 146
Last In First Out (LIFO) 34
linear linked list

using 35-41
linear list 34

400

listener thread
creating 230

list view 121
liveness problem 310, 314
LoadLibrary API 379
lock

implementing 254-260
Lock class 254
LockName method 352
lParam parameter 155

M
main function

prototypes 12
main thread 8, 105
managed code

advantages 234
disadvantages 235
versus unmanaged code 234, 235

ManualResetEventSlim event 268
MemoryBarrier class 291
message 141
message passing interface

demonstration 142-147
Message Passing Interface (MPI) 141, 142
message queue

about 147
implementing 148-155

Microsoft .NET. See .NET
Microsoft .NET framework 234
Monitor object

Monitor::Pulse method 294
Monitor::Wait method 294

Monitor::Pulse method
about 294
signaling with 294-299

Monitor::Wait method
about 294
signaling with 294-299

MSDN reference
URL 9

MSI
demonstrating 142-147

multitasking 46
multithreading 8

mutex
about 67, 134, 177
feature 134
using 177-187

mutual exclusion 56
MySQL Connector/C

installing 381-384
MySQL database

used, for demonstrating
thread 81-88

N
namespaces 12
NewId method 352
non-blocking synchronization 291-293

O
Object Manager 111
OOP (Object-oriented programming)

about 17
example, reviewing 17
inheritance 19
working 19

OpenMP (open multiprocessor)
about 332
URL 340

OpenThread function 49
OVERLAPPED object 166
overriding feature 24

P
parallel applications

designing 310-316
parallel approach

turning on 324-331
parallelism

adding, to code design 323, 324
deciding, factors 332

parallel programming 309
PCB

about 51, 52
categories 51

PeekMessage API 161

401

performance factors
improving 332-336

permissive multitasking
versus preemptive multitasking 110

Philosopher application 74
pipe client 161
pipe object

about 161
creating 165
used, for process communication 161-166

pipes
about 216
using 216-230

pipe server 161
PLOTDATA object 155
polymorphism

about 24
performing 24-28

PostMessage API 155
postPhaseAction method delegate 307
PostQuitMessage API 33
PostThreadMessage API 142
preemptive multitasking

versus permissive multitasking 111
primary thread 8
ProblemSolver method 368
process and thread priority

usage 170-176
process communication

pipe object, used for 161-166
Process Control Block. See PCB
processes

about 46
implementing 52-54
versus threads 107-110

process model
blocked state 50
events 47
program, creating 48-51
ready state 50
running state 50

producer-consumer problem 98
program

creating, for Schwefel's function
calculation 317-322

programming paradigm
declarative 10
functional(structural) 10
imperative 10
object-oriented 10

pseudoparallelism 8, 168
pure virtual functions 27

Q
quantum 177
quasi-parallel address space concept 8
queue 34

R
race conditions 56
Rand function 16
ready state, process 50
ready state, thread 176
release fence 293
ReleaseThread method 353
RemoteFreeLibrary method 379
RemoteLoadLibrary method 379
remote threading

about 371
using 371-375
working 377-379

RemoveAll method 353
RemoveThread method 353, 368
request processing 166
RequestThread method 353, 368
ResetEvent 138
Resume method 121
running state, process 50
running state, thread 176

S
Scheduler 46, 51
scheduling, operating system 98
Schwefel's function 317
semaphore

about 135, 136, 187
using 187-196

SendMessage API 155

402

sequential programming approach
importance 310

SetEvent API 161
SetUserData method 121
signaling

with Monitor::Pulse method 294-299
with Monitor::Wait method 294-299

Single-Threaded Apartment (STA) 242
Sleep method 247, 248
socket 216
stack 34
Standby state 176
StartAddress method 241, 328
STATE_ALIVE macro 120
STATE_ASYNC macro 120
STATE_BLOCKED macro 120
STATE_CONTINUOUS macro 120
STATE_READY macro 120
STATE_RUNNING macro 120
STATE_SYNC macro 120
static library (*.lib) 14
StillAlive method 352
structural programming approach

about 14
example 15-17

Suspend method 121
synchronization 168
synchronization mechanisms, .NET

about 248
working 253

synchronization objects, Win32
critical section 133
event 133
mutex 133

synchronized threads
using 127-132

szCmdLine parameter 30

T
Task class

reviewing 290
Task::Wait method 247
TCHAR* ObjectName(void) method 323
T_ENDTASK message

defining 161

Terminated state 176
Thread::Abort method 281
thread execution

aborting 281-286
interrupting 281-286
safe canceling 281-290

thread object 8
threading, .NET

about 235-242
parallel tasks, executing 235
working 237-242

Thread::Interrupt method 281
Thread::Join method 247
thread message queue

using 156-161
thread model

implementing 75-80
thread object attributes

base priority 169
dynamic priority 169

thread pool
about 342
dispatcher, customizing 354-366
implementing 342, 343
using 343-350
working 352, 353

ThreadPool class 236
thread pool dispatcher. See dispatcher
threads

adding 47
demonstrating, with MySQL database 81-88
implementing, in kernel 99-104
implementing, in user space 89-98
implementing, without

synchronization 121-127
managing 112-121
terminating 106
time control 168
versus processes 107-109

thread safety
about 261
in .NET 261

Thread::Sleep method 247
ThreadStart method 81
time control, threads

priority 168
synchronization 168

403

Waiting state 176
Wait method 247
WhoAmI method

overriding 24
Win32

synchronization objects 133
thread object 111

Win32 API CreateThread 105
Win32 thread object 111
WinDDK

installing 384-386
Windows application

creating 29-34
Windows dispatcher object 176, 341
Windows Driver Development

Kit. See WinDDK
Windows NT HAL 234
Windows synchronization object

critical section 206
mutex 177
semaphore 187

Windows Virtual Memory manager
mechanism 341

WM_ENDTASK message 154
WM_USER message 154
WndProc 29
work-stealing feature 236

T_MESSAGE message
defining 161

Transfer method 352
Transition state 176
Translation Unit (TU) model 9
typedef, NtQueryInformationProcess

function 54

U
unmanaged code

about 234
versus managed code 234

UpdateWindow function 32
user space

threads, implementing in 89-98
using command 12

V
Visual Studio project

setting up, for driver compilation 386-392
setting up, for OpenMP compilation 393-395

void _tmain(int argc, TCHAR* argv[])
prototype 12

void _tmain(void) prototype 12
volatile keyword 293

W
WaitAll method 353
Wait Chain Traversal (WCT) 369
WaitForInputIdle function 50

Thank you for buying

C++ Multithreading Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Java 7 Concurrency
Cookbook
ISBN: 978-1-84968-788-1 Paperback: 364 pages

Over 60 simple but incredibly effective recipes for
mastering multithreaded application development
with Java 7

1. Master all that Java 7 has to offer for concurrent
programming.

2. Get to grips with thread management, the Fork/
Join framework, concurrency classes, and much
more in this book and e-book.

3. A practical Cookbook packed with recipes
for achieving the most important Java
Concurrency tasks.

Multithreading in C# 5.0
Cookbook
ISBN: 978-1-84969-764-4 Paperback: 268 pages

Over 70 recipes to help you learn asynchronous and
parallel programming with C# 5.0 quickly and efficiently

1. Delve deep into the .NET threading
infrastructure and use Task Parallel
Library for asynchronous programming.

2. Scale out your server applications effectively.

3. Master C# 5.0 asynchronous operations
language support.

Please check www.PacktPub.com for information on our titles

C++ Application Development
with Code::Blocks
ISBN: 978-1-78328-341-5 Paperback: 128 pages

Develop advanced applications with Code::Blocks
quickly and efficiently with this concise, hands-on guide

1. Successfully install and configure Code::Blocks
for C++ development.

2. Perform rapid application development with
Code::Blocks.

3. Work with advanced C++ features including
code debugging and GUI toolkits.

Boost C++ Application
Development Cookbook
ISBN: 978-1-84951-488-0 Paperback: 348 pages

Over 80 practical, task-based recipes to create
applications using Boost libraries

1. Explores how to write a program once and then
use it on Linux, Windows, Mac OS, and Android
operating systems.

2. Includes everyday use recipes for multithreading,
networking, metaprogramming, and generic
programming from a Boost library developer.

3. Take advantage of the real power of Boost
and C++ to get a good grounding in using it
in any project.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to C++ Concepts and Features
	Introduction
	Creating a C++ project
	Program structure, execution flow, and runtime objects
	The structural programming approach
	Understanding the object-oriented programming approach
	Explaining inheritance, overloading, and overriding
	Understanding polymorphism
	Event handlers and Message Passing Interface
	Linked list, queue, and stack examples

	Chapter 2: The Concepts of Process and Thread
	Introduction
	Processes and threads
	Explaining the process model
	Implementation of processes
	IPC – interprocess communication
	Solving classical IPC problems
	Implementation of the thread model
	Thread usage
	Implementing threads in user space
	Implementing threads in the kernel

	Chapter 3: Managing Threads
	Introduction
	Processes versus threads
	Permissive versus preemptive multitasking
	Explaining the Windows Thread object
	Basic thread management
	Implementing threads without synchronization
	Using synchronized threads
	Win32 synchronization objects and techniques

	Chapter 4: Message Passing
	Introduction
	Explaining the Message Passing Interface
	Understanding a message queue
	Using the thread message queue
	Communicating through the pipe object

	Chapter 5: Thread Synchronization and Concurrent Operations
	Introduction
	Pseudoparallelism
	Understanding process and thread priority
	The Windows dispatcher object and scheduling
	Using mutex
	Using semaphore
	Using event
	Using critical section
	Using pipes

	Chapter 6: Threads in the .NET Framework
	Introduction
	Managed versus unmanaged code
	How threading works in .NET
	The difference between foreground and background threads
	Understanding the .NET synchronization essentials
	Locking and avoiding deadlocks
	Thread safety and types of the .NET framework
	Signaling with event wait handles
	Event-based Asynchronous Pattern
	Using the BackgroundWorker class
	Interrupting, aborting, and safe cancelling the thread execution
	Non-blocking synchronization
	Signaling with Wait and Pulse
	The Barrier class

	Chapter 7: Understanding Concurrent Code Design
	Introduction
	How to design parallel applications
	Understanding parallelism in code design
	Turning on to a parallel approach
	Improving the performance factors

	Chapter 8: Advanced Thread Management
	Introduction
	Using thread pools
	Customizing the thread pool dispatcher
	Using remote threading

	Appendix
	Installing MySQL Connector/C
	Installing WinDDK – Driver Development Kit
	Setting up a Visual Studio project for driver compilation
	Using the DebugView application
	Setting up a Visual Studio project for OpenMP compilation

	Index

