
Stephen R. Davis is the bestselling author of numerous books and
articles, including C# For Dummies. He has been programming for over
30 years and currently works for Booz Allen Hamilton in the area of
Homeland Defense.

Cover Image: ©iStockphoto.com/gavni

Go to Dummies.com®
for videos, step-by-step examples,

how-to articles, or to shop!

 Open the book and find:

•	How to create your first
program in Code::Blocks

•	Mathematical and logical
operations

•	An introduction to pointers

•	What you need to know about
object-oriented programming

•	How to use the copy constructor

•	Ways to handle errors and keep
your program from being
hacked

•	A companion website that
features all the code from
the book

$29.99 USA / $35.99 CAN / £21.99 UK

9 781118 823774

52999

ISBN:978-1-118-82377-4

Computers/Programming Languages/C

The bestselling guide that
shows you how to master
C++ from the ground up
Whether you’re a beginner or intermediate programmer
looking to fine-tune your skills, C++ For Dummies gives you
clear instructions and guidance on becoming a functional
C++ programmer. Updated to reflect the latest changes
for C++ 2014, this hands-on guide shows you how to make
sense of classes, inheritance, and advanced strokes—and
much more.

•	C++	Programming	101	—	find	out	what	it	means	to	write	a	
computer	program,	learn	to	speak	the	C++	language,	and		
start	crunching	C++	commands

•	Put	the	“fun”	in	functional	programming	—	build	upon	your	
newly-gained	knowledge	to	bundle	sections	of	C++	code	into	
modules,	and	then	reuse	those	modules	in	programs

•	The	plot	thickens	—	get	the	scoop	on	object-oriented	
programing	and	grasp	classes,	constructors,	destructors,		
and	much	more

•	Fly	first	class	—	understand	why	inheritance	is	the	key	to	
effective	C++	programming,	and	become	a	first-rate	object-
oriented	programmer

•	Become	a	master	programmer	—	take	your	skills	to	the	next	
level	and	master	features	like	file	input/output,	error-handling,	
constructs,	and	templates

C ++
Davis

7th Edition

Stephen R. Davis
Bestselling author of C# For Dummies

Learn	to:
• Program in C++ from the ground up

• Write your first program in C++

• Work with master classes and
inheritance

• Sail through streaming I/O

C++
7th	EditionMaking	Everything	Eas

ier!™

www.allitebooks.com

http://www.allitebooks.org

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/cplusplus

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

www.allitebooks.com

http://www.allitebooks.org

C++

7th Edition

by Stephen R. Davis

www.allitebooks.com

http://www.allitebooks.org

C++ For Dummies®, 7th Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE
RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand. If
this book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2013958400

ISBN 978-1-118-82377-4 (pbk); ISBN 978-1-118-82382-8 (ebk); ISBN 978-1-118-82383-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance
Introduction .. 1

Part I: Getting Started with C++ Programming 7
Chapter 1: Writing Your First C++ Program.. 9
Chapter 2: Declaring Variables Constantly... 33
Chapter 3: Performing Mathematical Operations .. 47
Chapter 4: Performing Logical Operations ... 53
Chapter 5: Controlling Program Flow .. 69

Part II: Becoming a Functional C++ Programmer 87
Chapter 6: Creating Functions.. 89
Chapter 7: Storing Sequences in Arrays ... 105
Chapter 8: Taking a First Look at C++ Pointers .. 121
Chapter 9: Taking a Second Look at C++ Pointers ... 135
Chapter 10: The C++ Preprocessor .. 153

Part III: Introduction to Classes 167
Chapter 11: Examining Object-Oriented Programming ... 169
Chapter 12: Adding Class to C++ .. 175
Chapter 13: Point and Stare at Objects ... 191
Chapter 14: Protecting Members: Do Not Disturb ... 207
Chapter 15: “Why Do You Build Me Up, Just to Tear Me Down, Baby?”................. 215
Chapter 16: Making Constructive Arguments .. 225
Chapter 17: The Copy/Move Constructor .. 247
Chapter 18: Static Members: Can Fabric Softener Help? .. 261

Part IV: Inheritance ... 271
Chapter 19: Inheriting a Class .. 273
Chapter 20: Examining Virtual Member Functions: Are They for Real? 281
Chapter 21: Factoring Classes .. 291

Part V: Security ... 301
Chapter 22: A New Assignment Operator, Should You Decide to Accept It 303
Chapter 23: Using Stream I/O ... 315
Chapter 24: Handling Errors — Exceptions .. 337

www.allitebooks.com

http://www.allitebooks.org

Chapter 25: Inheriting Multiple Inheritance ... 347
Chapter 26: Tempting C++ Templates ... 359
Chapter 27: Standardizing on the Standard Template Library 369
Chapter 28: Writing Hacker-Proof Code .. 381

Part VI: The Part of Tens .. 407
Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 409
Chapter 30: Ten Ways to Protect Your Programs from Hackers 417

Index ... 431

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Introduction ... 1

About This Book .. 1
Icons Used in This Book ... 4
Beyond the Book ... 4
Where to Go from Here ... 5

Part I: Getting Started with C++ Programming 7

Chapter 1: Writing Your First C++ Program . 9
Grasping C++ Concepts ... 9
Installing Code::Blocks .. 11

Windows.. 11
Ubuntu Linux .. 13
Macintosh ... 15

Creating Your First C++ Program ... 19
Creating a project .. 19
Entering the C++ code ... 21
Cheating .. 23
Building your program .. 24

Executing Your Program ... 25
Reviewing the Annotated Program ... 26

Examining the framework for all C++ programs 27
Clarifying source code with comments .. 27
Basing programs on C++ statements ... 28
Writing declarations .. 29
Generating output .. 30

Calculating Expressions .. 30
Storing the results of an expression .. 30
Examining the remainder of Conversion .. 31

Chapter 2: Declaring Variables Constantly . 33
Declaring Variables ... 33
Declaring Different Types of Variables ... 34

Reviewing the limitations of integers in C++ 35
Solving the truncation problem ... 36
Looking at the limits of floating point numbers 37

www.allitebooks.com

http://www.allitebooks.org

C++ For Dummies, 7th Edition vi
Declaring Variable Types ... 38

Types of constants .. 40
Range of Numeric Types ... 41
Special characters ... 42

Wide Loads on Char Highway .. 43
Are These Calculations Really Logical? .. 44
Mixed Mode Expressions .. 44
Automatic Declarations .. 46

Chapter 3: Performing Mathematical Operations 47
Performing Simple Binary Arithmetic ... 47
Decomposing Expressions ... 48
Determining the Order of Operations ... 49
Performing Unary Operations .. 50
Using Assignment Operators ... 51

Chapter 4: Performing Logical Operations . 53
Why Mess with Logical Operations? ... 53
Using the Simple Logical Operators .. 54

Storing logical values .. 55
Using logical int variables ... 57
Be careful performing logical operations

on floating-point variables .. 57
Expressing Binary Numbers ... 59

The decimal number system .. 59
Other number systems.. 60
The binary number system .. 60

Performing Bitwise Logical Operations .. 62
The single-bit operators .. 63
Using the bitwise operators ... 64
A simple test ... 65

Chapter 5: Controlling Program Flow . 69
Controlling Program Flow with the Branch Commands 69
Executing Loops in a Program ... 71

Looping while a condition is true .. 72
Using the autoincrement/autodecrement feature 74
Using the for loop .. 75
Avoiding the dreaded infinite loop .. 78
For each his own .. 79
Applying special loop controls .. 80

Nesting Control Commands ... 82
Switching to a Different Subject? ... 84

www.allitebooks.com

http://www.allitebooks.org

vii Table of Contents

Part II: Becoming a Functional C++ Programmer 87

Chapter 6: Creating Functions . 89
Writing and Using a Function ... 89

Defining our first function ... 92
Defining the sumSequence() function .. 92
Calling the function sumSequence() ... 92
Divide and conquer ... 93

Understanding the Details of Functions ... 93
Understanding simple functions .. 94
Understanding functions with arguments .. 94

Overloading Function Names ... 98
Defining Function Prototypes .. 99
Defaulting Arguments ... 101
Passing by Value and Passing by Reference .. 102
Variable Storage Types ... 104

Chapter 7: Storing Sequences in Arrays . 105
Arraying the Arguments for Arrays ... 105

Using an array .. 107
Initializing an array .. 110
Accessing too far into an array .. 110
Arraying range-based for loops.. 111
Defining and using arrays of arrays ... 112

Using Arrays of Characters .. 112
Creating an array of characters ... 112
Creating a string of characters ... 114

Manipulating Strings with Character .. 115
Adding Some Library Functions .. 117
Making Room for Wide Strings .. 118

Chapter 8: Taking a First Look at C++ Pointers 121
Variable Size ... 121
What’s in an Address? ... 122
Address Operators .. 123
Using Pointer Variables .. 125

Using different types of pointers ... 126
Passing Pointers to Functions .. 126

Passing by value ... 127
Passing pointer values .. 127
Passing by reference ... 128

Constant const Irritation .. 129

www.allitebooks.com

http://www.allitebooks.org

C++ For Dummies, 7th Edition viii
Making Use of a Block of Memory Called the Heap 130

Limited scope ... 131
Examining the scope problem .. 132
Providing a solution using the heap .. 133

Chapter 9: Taking a Second Look at C++ Pointers 135
Defining Operations on Pointer Variables .. 135

Reexamining arrays in light of pointer variables 136
Applying operators to the address of an array 138
Expanding pointer operations to a string 139
Justifying pointer-based string manipulation 141
Applying operators to pointer types other than char 142
Contrasting a pointer with an array .. 142

When Is a Pointer Not? .. 144
Declaring and Using Arrays of Pointers .. 145

Utilizing arrays of character strings .. 146
Accessing the arguments to main() .. 148

Chapter 10: The C++ Preprocessor . 153
What Is a Preprocessor? ... 153
Including Files .. 154
#Defining Things .. 157

Okay, how about not #defining things?... 160
Enumerating other options... 161

Including Things #if I Say So .. 162
Intrinsically Defined Objects .. 164
Typedef ... 166

Part III: Introduction to Classes 167

Chapter 11: Examining Object-Oriented Programming 169
Abstracting Microwave Ovens ... 169

Preparing functional nachos .. 170
Preparing object-oriented nachos ... 171

Classifying Microwave Ovens .. 171
Why Classify? ... 172

Chapter 12: Adding Class to C++ . 175
Introducing the Class .. 175
The Format of a Class ... 176
Accessing the Members of a Class .. 177
Activating Our Objects ... 177

Simulating real-world objects ... 178
Why bother with member functions? .. 178

www.allitebooks.com

http://www.allitebooks.org

ix Table of Contents

Adding a Member Function .. 179
Calling a Member Function ... 180

Accessing other members from a member function 182
Scope Resolution (And I Don’t Mean How Well

Your Telescope Works) .. 183
Defining a Member Function in the Class ... 185
Keeping a Member Function after Class ... 187
Overloading Member Functions .. 188

Chapter 13: Point and Stare at Objects . 191
Declaring Arrays of Objects ... 191
Declaring Pointers to Objects .. 192

Dereferencing an object pointer .. 193
Pointing toward arrow pointers ... 194

Passing Objects to Functions ... 194
Calling a function with an object value ... 195
Calling a function with an object pointer 196
Calling a function by using the reference operator 198

Why Bother with Pointers or References? ... 199
Returning to the Heap ... 199

Allocating heaps of objects .. 200
When memory is allocated for you.. 201

Linking Up with Linked Lists .. 201
Performing other operations on a linked list 203
Hooking up with a LinkedListData program 203

Ray of Hope: A List of Containers Linked to the C++ Library 206

Chapter 14: Protecting Members: Do Not Disturb 207
Protecting Members .. 207

Why you need protected members ... 208
Discovering how protected members work 208

Making an Argument for Using Protected Members 210
Protecting the internal state of the class .. 210
Using a class with a limited interface .. 211

Giving Non-member Functions Access to Protected Members 211

Chapter 15: “Why Do You Build Me Up,
Just to Tear Me Down, Baby?” . 215

Creating Objects .. 215
Using Constructors .. 216

Constructing a single object ... 217
Constructing multiple objects .. 218
Constructing a duplex ... 219

Dissecting a Destructor .. 221
Why you need the destructor .. 221
Working with destructors ... 221

C++ For Dummies, 7th Edition x
Chapter 16: Making Constructive Arguments 225

Outfitting Constructors with Arguments .. 225
Using a constructor ... 226

Placing Too Many Demands on the Carpenter:
Overloading the Constructor ... 228

Defaulting Default Constructors .. 231
Constructing Class Members ... 233

Constructing a complex data member .. 233
Constructing a constant data member ... 239

Reconstructing the Order of Construction .. 239
Local objects construct in order ... 240
Static objects construct only once .. 240
All global objects construct before main() 241
Global objects construct in no particular order 242
Members construct in the order in which they are declared 243
Destructors destruct in the reverse order

of the constructors .. 243
Constructing Arrays .. 244
Constructors as a Form of Conversion ... 245

Chapter 17: The Copy/Move Constructor . 247
Copying an Object ... 247

Why you need the copy constructor ... 248
Using the copy constructor .. 248

The Automatic Copy Constructor ... 250
Creating Shallow Copies versus Deep Copies .. 252
It’s a Long Way to Temporaries ... 256

Avoiding temporaries, permanently.. 257
The move constructor... 258

Chapter 18: Static Members: Can Fabric Softener Help? 261
Defining a Static Member .. 261

Why you need static members ... 261
Using static members .. 262
Referencing static data members .. 263
Uses for static data members ... 264

Declaring Static Member Functions .. 265
What Is this About Anyway? .. 268

Part IV: Inheritance .. 271

Chapter 19: Inheriting a Class . 273
Do I Need My Inheritance? ... 274
How Does a Class Inherit? .. 275

Using a subclass ... 277
Constructing a subclass .. 278

xi Table of Contents

Destructing a subclass .. 279
Inheriting constructors ... 279

Having a HAS_A Relationship ... 280

Chapter 20: Examining Virtual Member Functions:
Are They for Real? . 281

Why You Need Polymorphism ... 284
How Polymorphism Works ... 284
When Is a Virtual Function Not? .. 286
Considering Virtual Considerations .. 287

Chapter 21: Factoring Classes . 291
Factoring ... 291
Implementing Abstract Classes ... 295

Describing the abstract class concept .. 296
Making an honest class out of an abstract class 298
Passing abstract classes ... 298

Part V: Security .. 301

Chapter 22: A New Assignment Operator,
Should You Decide to Accept It . 303

Comparing Operators with Functions .. 303
Inserting a New Operator ... 304
Creating Shallow Copies Is a Deep Problem .. 305
Overloading the Assignment Operator ... 306
Overloading the Subscript Operator .. 311
The Move Constructor and Move Operator ... 312

Chapter 23: Using Stream I/O . 315
How Stream I/O Works .. 315

Default stream objects .. 316
Stream Input/Output ... 317

Open modes .. 319
Hey, file, what state are you in? ... 320
Can you show me an example? .. 320

Other Methods of the Stream Classes .. 323
Reading and writing streams directly ... 325
Controlling format ... 327
What’s up with endl? ... 329
Positioning the pointer within a file .. 329

Using the stringstream Subclasses ... 330
Manipulating Manipulators .. 333

C++ For Dummies, 7th Edition xii
Chapter 24: Handling Errors — Exceptions . 337

Justifying a New Error Mechanism? .. 339
Examining the Exception Mechanism ... 340
What Kinds of Things Can I Throw? .. 342
Just Passing Through .. 345

Chapter 25: Inheriting Multiple Inheritance . 347
Describing the Multiple Inheritance Mechanism 347
Straightening Out Inheritance Ambiguities .. 349
Adding Virtual Inheritance ... 350
Constructing the Objects of Multiple Inheritance 356
Voicing a Contrary Opinion .. 357

Chapter 26: Tempting C++ Templates . 359
Generalizing a Function into a Template .. 360
Class Templates ... 362
Tips for Using Templates .. 365
External Template Instantiations .. 366
Implementing an Initializer List ... 366

Chapter 27: Standardizing on the Standard Template Library 369
The string Container ... 370
Iterating through Lists .. 375

Making your way through a list ... 376
Operations on an entire list .. 378
Can you show me an example? .. 378

Chapter 28: Writing Hacker-Proof Code . 381
Understanding the Hacker’s Motives .. 381
Understanding Code Injection ... 383

Examining an example SQL injection .. 383
Avoiding code injection .. 386

Overflowing Buffers for Fun and Profit ... 386
Can I see an example? ... 387
How does a call stack up? ... 389
Hacking BufferOverflow .. 393
Avoiding buffer overflow — first attempt 397
Avoiding buffer overflow — second attempt 399
Another argument for the string class .. 402
Why not always use string functions? ... 403

xiii Table of Contents

Part VI: The Part of Tens ... 407

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 409
Enable All Warnings and Error Messages ... 409
Adopt a Clear and Consistent Coding Style ... 410
Limit the Visibility ... 411
Comment Your Code While You Write It .. 412
Single-Step Every Path at Least Once ... 413
Avoid Overloading Operators .. 413
Manage the Heap Systematically ... 413
Use Exceptions to Handle Errors ... 414
Declare Destructors Virtual ... 414
Avoid Multiple Inheritance ... 416

Chapter 30: Ten Ways to Protect Your Programs from Hackers 417
Don’t Make Assumptions about User Input ... 417
Handle Failures Gracefully ... 418
Maintain a Program Log .. 419
Follow a Good Development Process ... 421
Implement Good Version Control .. 421
Authenticate Users Securely .. 423
Manage Remote Sessions ... 425
Obfuscate Your Code .. 426
Sign Your Code With a Digital Certificate ... 429
Use Secure Encryption Wherever Necessary .. 429

Index ... 431

C++ For Dummies, 7th Edition xiv

Introduction

W
elcome to C++ For Dummies, 7th Edition. Think of this book as C++:
Reader’s Digest Edition, bringing you everything you need to know to

start programming without all the boring stuff.

About This Book
C++ For Dummies is an introduction to the C++ language. I start from the
beginning (where else?) and work my way from early concepts through more
sophisticated techniques. I don’t assume that you have any prior knowledge
(at least, not of programming).

The book is full of examples. Every concept is documented in numerous snip-
pets and several complete programs.

Unlike other C++ programming books, C++ For Dummies considers the “why”
just as important as the “how.” The features of C++ are like pieces of a jigsaw
puzzle. Rather than just present the features, I think it’s important that you
understand how they fit together. You can also use the book as a reference:
If you want to understand what’s going on with all the template stuff, for
example, just flip to Chapter 26. Each chapter contains necessary references
to other earlier chapters in case you don’t read the chapters in sequence.

C++ For Dummies is not operating system–specific. It is just as useful to
Macintosh or Linux programmers as it is to Windows-based developers. The
book doesn’t cover Windows or .NET programming.

You have to master a powerful programming language, like C++, first even if
your plan is to become an accomplished Windows application or .NET pro-
grammer. Once you’ve finished C++ For Dummies you will be in position to
continue in your area of specialization, whatever it might be.

In this modern era of hackerdom, learning defensive programming is important,
even for beginners, so I do cover important concepts to keep your program
from being hacked.

2 C++ For Dummies, 7th Edition

When I describe a message that you see onscreen, it appears like this:

Hi mom!

In addition, code listings appear as follows:

// some program
int main()
{
 ...
}

If you’re entering these programs by hand, you must enter the text exactly as
shown with one exception: The amount of whitespace (spaces, tabs, and new-
lines) is not critical. You can’t put a space in the middle of a keyword, but you
don’t have to worry about entering one too many or too few spaces.

 Case IS critical however. If it says int, it does not mean Int or INT !

C++ words are usually based on English words with similar meanings. This
can make reading a sentence containing both English and C++ difficult with-
out a little assistance. To help out, C++ commands and function names appear
in a different font, like this. In addition, function names are always followed by

What is C++?
C++ is an object-oriented, low-level standard
programming language. As a low-level language
similar to and compatible with its predecessor
C, C++ can generate very efficient, very fast pro-
grams. It is often used to write games, graphics
software, hardware control software, and other
applications where performance really counts.

As an object-oriented language, C++ has the
power and extensibility to write large-scale
programs. C++ is one of the most popular pro-
gramming languages for all types of programs.
Most of the programs you use on your PC every
day are written in C++ (or the subset, which is
the C language).

C++ has been certified as a 99.9 percent pure
standard, which makes it a portable language.
A standard C++ compiler exists for every major
operating system. Some versions support
extensions to the basic language — in partic-
ular, Visual Studio and Visual Studio Express
from Microsoft includes a C++ compiler that
implements several extensions that allow their
programs to interface better with other .NET
languages. Nevertheless, any student is better
off learning the standard C++ first. Learning the
extensions is easy once you’ve mastered the
basics demonstrated here.

3 Introduction

open and closed parentheses, such as myFavoriteFunction(). The arguments
to the function are left off except when there’s a specific need to make them
easier to read.

Sometimes, I’ll tell you to use menu commands, such as File➪Open. This
notation means to use the keyboard or mouse to open the File menu and then
choose the Open option.

Use of gender is always a tricky subject when writing a how-to book. I don’t
want to appear to be telling gentlemen how ignorant they are while giving
the ladies a pass by using he and him all the time. In this book, I use the
pronouns she and her when referring to the programmer and he and him
when referring to the user of the program. So, she writes a program that he
can use.

Each new feature is introduced by answering the following three questions:

 ✓ What is this new feature?

 ✓ Why was it introduced into the language?

 ✓ How does it work?

Small pieces of code are sprinkled liberally throughout the chapters. Each
demonstrates some newly introduced feature or highlights some brilliant
point I’m making. These snippets may not be complete and certainly don’t
do anything meaningful. However, every concept is demonstrated in at least
one functional program that you can execute and play with on your own
computer.

A real-world program can take up lots of pages. However, seeing such a pro-
gram is an important didactic tool for any reader. I’ve included a series of
programs along with an explanation of how these programs work.

I use one simple example program that I call BUDGET. The program starts
life as a simple, functionally oriented BUDGET1. This program maintains a
set of simple checking and savings accounts. The reader is encouraged to
review this program at the end of Part II. The subsequent version, BUDGET2,
adds the object-oriented concepts presented in Part III. The examples work
their way using more and more features of the language, culminating with
BUDGET5, which you should review after you master all the chapters in the
book. The BUDGET programs are included with the book’s source code at
www.dummies.com/extras/cplusplus.

4 C++ For Dummies, 7th Edition

Icons Used in This Book
 This is technical stuff that you can skip on the first reading.

 Tips highlight a point that can save you a lot of time and effort.

 Remember this. It’s important.

 Remember this, too. This one can sneak up on you when you least expect it
and generate one of those really hard-to-find bugs.

 This icon flags some 2011 additions to the language compared to the prede-
cessor standard (which is known as C++ 2003). If you already have some famil-
iarity with C++ and something seems completely new or if something doesn’t
work with your existing C++ tools, it may be because it’s an ’11 addition.

 This icon flags proposed additions of the C++ 2014 standard. These features
are not implemented in the Code::Blocks/gcc that’s available as of this writing
but they may be available at www.codeblocks.org by the time you read this.

Beyond the Book
C++ For Dummies includes the following goodies online for easy download:

 ✓ A cheat sheet that provides an overview of C++ grammar in one (fairly)
easy to read page is available at www.dummies.com/cheatsheet/
cplusplus. Beginners will want to print this out and keep it handy as
they work through the later chapters. Like creeping socialism, eventu-
ally C++ syntax will become second nature and you won’t need the cheat
sheet anymore.

 ✓ The source code for all of the examples in the book can be downloaded
from www.dummies.com/extras/cplusplus. The programs are orga-
nized by chapter number. I have included a project file for Code::Blocks
(more about Code::Blocks in the next bullet, and I explain project files in
Chapter 1).

www.allitebooks.com

http://www.allitebooks.org

5 Introduction

 ✓ This book uses the free, open source Code::Blocks environment and
GCC C++ compiler. The version of Code::Blocks used in writing this
book (Version13.12) is available for download at www.dummies.com/
extras/cplusplus. I have included versions for Windows (2000 and
later) and for Macintosh (10.6 and later). Versions for Linux are avail-
able online as well. Chapter 1 includes instructions for how to download
and install Code::Blocks. You can find newer versions of Code::Blocks
and versions for different versions of Linux at www.codeblocks.org/
downloads/binaries.

 If you do go to www.codeblocks.org, be sure to download a version that
includes the gcc compiler.

If you already have a C++ compiler installed on your computer that you would
prefer to use, feel free to do so as long as it is compatible with the C++ standard
(most are). Not all compilers have implemented the 2011 standard yet so I’ve
flagged the ’11 extensions in the book. In addition, if you use a different compiler,
your screen may not look exactly like the figures in the book.

 I don’t recommend using the Visual Studio or Visual Studio Express packages
with this book. It has many extensions designed to make it compatible with
the .NET Framework. Once you’ve learned C++ on Code::Blocks, you can
learn .NET programming with Visual Studio.

Where to Go from Here
Finding out about a programming language is not a spectator sport. I’ll try to
make it as painless as possible, but you have to power up the ol’ PC and get
down to some serious programming. Limber up the fingers, break the spine
on the book so that it lies flat next to the keyboard (and so that you can’t
take it back to the bookstore), and dive in.

If you run into a problem, first check the Frequently Asked Questions (FAQ)
at www.stephendavis.com.

6 C++ For Dummies, 7th Edition

Part I
Getting Started with
C++ Programming

 Visit www.dummies.com for great Dummies content online.

In this part...
 ✓ Explaining the building blocks

 ✓ Declaring variables

 ✓ Defining mathematical operators

 ✓ Using logical operators

 ✓ Visit www.dummies.com for great Dummies content
online.

Chapter 1

Writing Your First C++ Program
In This Chapter
▶ Finding out about C++

▶ Installing Code::Blocks on Windows, Ubuntu Linux, or Macintosh OS X

▶ Creating your first C++ program

▶ Executing your program

O
 kay, so here we are: No one here but just you and me. Nothing left to do
but get started. Might as well lay out a few fundamental concepts.

A computer is an amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason), but it does exactly what it’s
told — nothing more and nothing less.

Perhaps unfortunately for us, computers don’t understand any reasonable
human language — they don’t speak English either. Okay, I know what you’re
going to say: “I’ve seen computers that could understand English.” What
you really saw was a computer executing a program that could meaningfully
understand English.

Computers understand a language variously known as computer language or
machine language. It’s possible but extremely difficult for humans to speak
machine language. Therefore, computers and humans have agreed to sort of
meet in the middle, using intermediate languages such as C++. Humans can
speak C++ (sort of), and C++ can be converted into machine language for the
computer to understand.

Grasping C++ Concepts
A C++ program is a text file containing a sequence of C++ commands put
together according to the laws of C++ grammar. This text file is known as the
source file (probably because it’s the source of all frustration). A C++ source
file normally carries the extension .CPP just as an Adobe Acrobat file ends
in .PDF or an MS-DOS (remember that?) batch file ends in .BAT.

10 Part I: Getting Started with C++ Programming

The point of programming in C++ is to write a sequence of commands that
can be converted into a machine-language program that actually does what
we want done. This conversion is called compiling and is the job of the com-
piler. The machine code that you wrote must be combined with some setup
and teardown instructions and some standard library routines in a process
known as linking. Together, compiling and linking are known as building. The
resulting machine-executable files carry the extension .EXE in Windows. They
don’t carry any particular extension in Linux or Macintosh.

That sounds easy enough — so what’s the big deal? Keep going.

To write a program, you need two specialized computer programs. One (an
editor) is what you use to write your code as you build your .CPP source file.
The other (a compiler) converts your source file into a machine-executable
file that carries out your real-world commands (open spreadsheet, make rude
noises, deflect incoming asteroids, whatever).

Nowadays, tool developers generally combine compiler and editor into a
single package — a development environment. After you finish entering the
commands that make up your program, you need only click a button to build
the executable file.

Fortunately, there are public-domain C++ environments. I use one of them in
this book — the Code::Blocks environment. This editor will work with a lot of
different compilers, but the version of Code::Blocks combined with the GNU
gcc compiler used to write this book is available for download for Windows,
Macintosh, and various versions of Linux, as described in the installation
 section of this chapter.

Although Code::Blocks is public domain, you’re encouraged to pay some
small fee to support its further development. You don’t have to pay to
use Code::Blocks, but you can contribute to the cause if you like. See the
Code::Blocks website for details.

I have tested the programs in this book with Code::Blocks 13.12 which comes
bundled with gcc version 4.7.1. This version of gcc implements most of the
C++ 2011 standard.

 You can use different versions of gcc or even different compilers if you prefer,
but they may not implement the complete ’11 standard. For that reason, 2011
extensions are marked with the ’11 icon seen here.

 The gcc compiler does not implement any of the extensions added in the C++
2014 standard as of this writing, but I have included them, where applicable,
because some day it will.

Okay, I admit it: This book is somewhat Windows-centric. I have tested all of
the programs in the book on Windows 2000/XP/Vista/7/8, Ubuntu Linux, and
Macintosh OS X. I flag any differences between operating systems in the text.

11 Chapter 1: Writing Your First C++ Program

In addition, I include installation instructions for each of the above three
operating systems in this chapter. Versions of Code::Blocks and gcc are avail-
able for other flavors of Linux and other versions of the Macintosh OS. The
programs should work with these, as well.

 The Code::Blocks/gcc package generates 32-bit programs, but it does not
easily support creating “windowed” programs. The programs in this book run
from a command line prompt and write out to the command line. As boring as
that may sound, I strongly recommend that you work through the examples
in this book first to learn C++ before you tackle windowed development. C++
and windows programming are two separate things and (for the sake of your
sanity) should remain so in your mind.

Follow the steps in the next section to install Code::Blocks and build your
first C++ program. This program’s task is to convert a temperature value
entered by the user from degrees Celsius to degrees Fahrenheit.

Installing Code::Blocks
The www.dummies.com/extra/cplusplus website includes the most
recent version of the Code::Blocks environment at the time of this writing for
Windows, Ubuntu Linux, and Macintosh OS X 10.6 or later. Follow the installa-
tion instructions below that apply to your operating system.

Windows
The Code::Blocks environment comes in an easy-to-install, compressed
executable file that is compatible with all versions of Windows after Windows
2000. Here’s the rundown on installing the environment:

 1. Download the executable codeblocks-13.12.mingw-setup.exe
from www.dummies.com/extra/cplusplus.

 Save the executable to your desktop or some other place that you can
easily find it.

 This includes the 4.71 version of the GCC compiler. This is not
the newest version of GCC but it’s the version recommended by
Code::Blocks. If you want the newer but perhaps slightly buggy 4.81
version, you can download and install codeblocks-13.12.mingw-
setup-TDM-GCC-481.exe instead. I tested the programs in this book
with both versions but I used 4.71 during its writing.

12 Part I: Getting Started with C++ Programming

 2. Double-click the program once it has completed downloading.

 3. Depending on what version of Windows you’re using, you may get the
ubiquitous “An unidentified program wants access to your computer”
warning pop-up. If so, click Allow to get the installation ball rolling.

 4. Click Next after closing all extraneous applications as you are warned
in the Welcome dialog box to the Code::Blocks Setup Wizard.

 5. Read the End User License Agreement (commonly known as the EULA)
and then click I Agree if you can live with its provisions.

 It’s not like you have much choice — the package really won’t install
itself if you don’t accept. Assuming you do click OK, Code::Blocks opens a
dialog box showing the installation options. The default options are fine.

 6. Click the Next button.

 The installation program allows you to install only some subset of the
features. You must select at least the Default Install and the MinGW
Compiler Suite. The default is to install everything — that’s the best
choice.

 If the MinGW Compiler Suite is not an option, then you must have down-
loaded a version of Code::Blocks that does not include gcc. This version
will not work correctly.

 7. Click Install and accept the default Destination Folder.

 Code::Blocks commences to copying a whole passel of files to your hard
drive. Code::Blocks then asks “Do you want to run Code::Blocks now?”

 8. Click Yes to start Code::Blocks.

 Code::Blocks now asks which compiler you intend to use. The default is
GNU GCC Compiler, which is the proper selection.

 9. From within Code::Blocks, choose Settings➪Compiler.

 10. Select the Compiler Flags tab.

 11. Make sure that the following three flags are selected, as shown in
Figure 1-1:

	 •	Enable All Compiler Warnings

	 •	Have	g++	Follow	the	Coming	C++0x	ISO	C++	Language	Standard

	 •	Have	g++	Follow	the	C++11	ISO	C++	Language	Standard

 The C++ 2011 standard was originally supposed to be the C++ 2008 or
2009 standard. Since it wasn’t clear, the standard became known as the
0x standard. The standard wasn’t completely accepted until 2011. Within
gcc, C++0x and C++11 refer to the same standard.

13 Chapter 1: Writing Your First C++ Program

 12. Select the Toolchain Executables tab. Make sure that it appears like
Figure 1-2.

 The default location for the gcc compiler is the MinGW\bin subdirectory
of the Code::Blocks directory.

 If the default location is empty, then Code::Blocks does not know where
the gcc compiler is, and it will not be able to build your programs. Make
sure that you downloaded a version of Code::Blocks that includes gcc
and that you included MinGW during the installation. If you are using an
existing gcc compiler that you’ve already installed, then you will need to
point Code::Blocks to where it is located on your hard drive.

 13. Close the Settings dialog box.

 14. Click Next in the Code::Blocks Setup dialog box and then click Finish
to complete the setup program.

 The setup program exits.

Ubuntu Linux
Code::Blocks does not include gcc on Linux, so installation is a two-step process.
First you will need to install gcc. Then you can install Code::Blocks.

Figure 1-1:
Ensure that
the Enable

All Compiler
Warnings

and the C++
2011 flags

are set.

14 Part I: Getting Started with C++ Programming

Figure 1-2:
Ensure

that the
Compiler’s

installation
directory is

correct.

Installing gcc
The gcc compiler is readily available for Linux. Follow these steps to install it:

 1. Enter the following commands from a command prompt:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install g++

 The standard Ubuntu Linux distribution includes a GNU C compiler, but
it does not include the C++ extensions and, in particular, not the C++
2011 standard extensions. The first two commands update and upgrade
the tools you already have. The third command installs C++.

 2. Enter the following command from a command prompt:

gcc --version

 My Ubuntu 13.04 downloaded GNU C++ version 4.7.3. You’ll be fine with
version 4.7.1 or later. If you have an earlier version, some of the C++ 2011
features may not work properly, but otherwise, it should be okay.

www.allitebooks.com

http://www.allitebooks.org

15 Chapter 1: Writing Your First C++ Program

 If you are using Debian Linux, the commands are the same. If you’re using Red
Hat Linux, replace the command apt-get with yum so that you end up with

sudo yum install g++

Installing Code::Blocks
Fortunately for all concerned, an Ubuntu-ready version of Code::Blocks is avail-
able in the Ubuntu Software Center. Many other versions of Linux include some-
thing similar to the Software Center. Follow these steps to install Code::Blocks:

 1. Click on the Software Center icon on the Ubuntu desktop.

 2. Select Code::Blocks from the list of available software.

 This will start the installation process.

 Code::Blocks searches your hard drive for your C++ compiler. It should
be able to find it without a problem, but if it doesn’t, then execute the
following steps.

 3. Start Code::Blocks.

 4. Select Settings➪Compiler.

 5. Select the Compiler Flags tab.

 6. Make sure that the following three flags are selected, as shown in
Figure 1-1:

	 •	Enable All Compiler Warnings

	 •	Have	g++	Follow	the	Coming	C++0x	ISO	C++	Language	Standard

	 •	Have	g++	Follow	the	C++11	ISO	C++	Language	Standard

 7. Select the Toolchain Executables tab.

 8. Select the “. . .” button.

 9. Navigate to /usr, unless you installed your gcc compiler someplace
other than the default location of /user/bin.

 10. The “C compiler” should be gcc, the “C++ compiler” should be g++
and the “Linker for dynamic libs” should be g++.

 11. Select OK to close the dialog box.

Macintosh
The Macintosh version of Code::Blocks relies on the Xcode distribution from
Apple for its compiler. I have divided the installation into three separate
parts for this reason.

16 Part I: Getting Started with C++ Programming

Installing Xcode
Xcode is a free development package offered by Apple that you will need.
Follow these steps to install it first:

 1. Open the Safari browser and go to http://developer.apple.com.

 2. Click on Download Xcode to get the most recent version.

 This will open the Xcode download dialog box shown in Figure 1-3.

Figure 1-3:
The Xcode
download
dialog box
allows you

to install
Xcode for

free.

 3. Click on the Free icon to change it to Install App. Click on it again.

 4. Enter your system password (the one you log in with when your Mac
boots up).

 The icon changes to Installing.

 The download and installation takes quite some time, as Xcode is a little
over 2GB as of this writing.

Installing the Command Line Tools
As big as Xcode is, you would think that it has everything you need, but you
would be wrong. You need one more package from Apple to make your joy
complete and to get a working gcc compiler on your Macintosh. Follow these
steps to install the Command Line Tools for Xcode:

 1. Open the Safari browser and go to http://developer.apple.com/
downloads.

17 Chapter 1: Writing Your First C++ Program

 You may be asked to sign up for an Apple Developer ID. Go ahead and do
so — it’s free.

 2. Search for Command Line Tools for Xcode. Select the application
shown in Figure 1-4. Click on the Download icon.

 3. Double-click on the mpkg package that downloads to install it.

 4. Accept all of the default values.

 The installation should finish with Installation Was Successful.

Installing Code::Blocks
Now, you can finish your installation by downloading the Code::Blocks editor:

 1. Open the Safari browser and go to www.codeblocks.org/downloads.

 2. Click on Downloads➪Binaries.

Figure 1-4:
You must

install both
Xcode

and the
Command
Line Tools

for Xcode to
get the gcc

compiler for
Macintosh.

18 Part I: Getting Started with C++ Programming

 3. Click on Mac OS X.

 4. Select either the BerliOS or Sourceforge.net mirror for the most
recent version.

 At the time of this writing, CodeBlocks-13.12 -mac.zip was the most
recent.

 5. Install the downloaded Zip file into the Applications folder.

 If you have never installed an application from a third-party site, you
may need to execute these extra steps before you can do so:

 a. Click on System Preferences.

 b. Click on Security and Privacy.

 c. Click the padlock in the lower-left corner of the dialog box to allow
changes.

 d. Click on Allow Applications Downloaded from: Anywhere, as shown
in Figure 1-5.

 Once you have completed the installation of Code::Blocks, you may
choose to return to this dialog box and restore the settings to Mac
App Store.

Figure 1-5:
You will
need to

allow
 third-party

applica-
tions to be

installed
before you
can install

Code::Blocks
on your

Macintosh.

 6. Double-click on the Code::Blocks icon.

 The first time you do this, the Mac OS will ask, “Are you sure you want
to open it?”

 7. Select Don’t Warn Me When Opening Applications on This Disk Image
and click Open.

 Code::Blocks should start and find the gcc compiler installed with the
Command Line Tools.

19 Chapter 1: Writing Your First C++ Program

 8. Select the gcc compiler, as shown in Figure 1-6. Click on Set as Default
and then click on OK to continue starting Code::Blocks.

 Code::Blocks will open with a banner page followed by a menu across
the top of the dialog box.

 9. Select Settings➪Compiler, then click the Have g++ Follow the Coming
C++0x ISO C++ Language Standard. Click on OK to close the dialog box.

 You are now ready to build your first C++ program.

Figure 1-6:
Code::Blocks

automati-
cally finds

the gcc
compiler the
first time you

execute it.

Creating Your First C++ Program
In this section, you create your first C++ program. You enter the C++ code into
a file called CONVERT.CPP and then convert the C++ code into an executable
program.

Creating a project
The first step to creating a C++ program is to create what is known as a proj-
ect. A project tells Code::Blocks the names of the .CPP source files to include
and what type of program to create. Most of the programs in the book will
consist of a single source file and will be command-line style:

 1. Start up the Code::Blocks tool.

 2. From within Code::Blocks, choose File➪New➪Project.

20 Part I: Getting Started with C++ Programming

 3. Select the Console Application icon and then click Go.

 4. Select C++ as the language you want to use from the next dialog box.
Click Next.

 Code::Blocks and gcc also support plain ol’ C programs.

 5. In the Folder to Build Project In field, select the “. . .” icon.

 6. Click on Computer and then the C: drive on Windows.

 On Linux and Macintosh, you can select the Desktop.

 7. Select the Make New Folder button at the lower left of the screen.

 8. Name the new folder CPP_Programs_from_Book.

 The result should look like Figure 1-7.

Figure 1-7:
Put your

project in
the C:\CPP_
Programs_
from_Book

folder on
Windows.

21 Chapter 1: Writing Your First C++ Program

 9. In the Project Title field, type the name of the project, in this case
Conversion.

 The resulting screen is shown in Figure 1-8 on Windows. The Linux and
Macintosh version look the same except for the path.

Figure 1-8:
I created

the project
Conversion
for the first

program.

 10. Click Next.

 The next dialog box gives you the option of creating an application for
testing or the final version. The default is fine.

 11. Click Finish to create the Conversion project.

Entering the C++ code
The Conversion project that Code::Blocks creates consists of a single, default
main.cpp file that displays the message “Hello, world”. The next step is to
enter our program:

 1. In the Management dialog box on the left, double-click main.cpp,
which is under Sources, which is under Conversion.

 Code::Blocks opens the empty main.cpp program that it created in the code
editor, as shown in Figure 1-9.

22 Part I: Getting Started with C++ Programming

Figure 1-9:
The

Manage-
ment dialog

box displays
a directory

structure for
all available

programs.

 2. Edit main.cpp with the following program exactly as written.

 Don’t worry too much about indentation or spacing — it isn’t critical
whether a given line is indented two or three spaces, or whether there
are one or two spaces between two words. C++ is case sensitive, how-
ever, so you need to make sure everything is lowercase.

 You can cheat by using the files at www.dummies.com/extra/
cplusplus, as described in the next section.

//
// Conversion - Program to convert temperature from
// Celsius degrees into Fahrenheit:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the temperature in Celsius
 int celsius;
 cout << "Enter the temperature in Celsius:";
 cin >> celsius;

 // calculate conversion factor for Celsius
 // to Fahrenheit
 int factor;
 factor = 212 - 32;

23 Chapter 1: Writing Your First C++ Program

 // use conversion factor to convert Celsius
 // into Fahrenheit values
 int fahrenheit;
 fahrenheit = factor * celsius/100 + 32;

 // output the results (followed by a NewLine)
 cout << "Fahrenheit value is:";
 cout << fahrenheit << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

 3. Choose File➪Save to save the source file.

 I know that it may not seem all that exciting, but you’ve just created
your first C++ program!

Cheating
All the programs in the book are included online, along with the project files
to build them. You will need to download them and install them onto your
hard drive before you can use them by following this procedure:

 The following instructions are for Windows. The steps to follow for Linux or
Macintosh are very similar.

 1. Open your Internet browser.

 2. Migrate to www.dummies.com/extras/cplusplus.

 3. Click on the CPP_programs link.

 A dialog box appears asking you where you want to download the speci-
fied file.

 4. Click on Save File.

 Windows will copy the CPP_programs.zip file to the default download
location. This may be either your Downloads folder or the Desktop.

 5. Right-click on the CPP_programs.zip file and select Open.

 A dialog box opens containing the single directory
CPP_Programs_from_Book.

 6. Copy this folder to the C: drive.

 This will copy all of the sources used in the book to the directory
C:\CPP_Programs_from_Book.

24 Part I: Getting Started with C++ Programming

 You can put the CPP_Programs_from_Book folder at some other location, but
don’t put your source files in a directory that includes a space. On Windows,
that means don’t put any of your Code::Blocks folders in My Documents or on
the Desktop, as they both include a space in their paths.

You can use these files in two ways: One way is to go through all the steps I
describe in the book to create the program by hand first, but copy and paste
from the provided files into your program if you get into trouble (or your fin-
gers start cramping). This is the preferred technique.

A second approach is that you can use the sources and project file provided
as-is:

 1. Double-click AllPrograms.workspace in C:\CPP_Programs_from_Book.

 A workspace is a single file that references one or more projects. The
AllPrograms.workspace file contains references to all the projects
defined in the book.

 2. Right-click the Conversion project in the Management dialog box on
the left. Choose Activate Project from the context-sensitive menu that
appears.

 Code::Blocks turns the Conversion label bold to verify that this is the
program you are working on right now. When you subsequently select
Build, Code::Blocks, it always builds the active project.

 3. Double-click the main.cpp file to open the file in the editor.

The problem with this approach is that you tend to learn very little about C++
if you don’t enter the code yourself.

Building your program
After you’ve saved your C++ source file to your hard drive, it’s time to generate
the executable machine instructions.

To build your Conversion program, you choose Build➪Build from the menu
or press Ctrl-F9. Almost immediately, Code::Blocks takes off, compiling your
program with gusto. If all goes well, the happy result of 0 Errors, 0 Warnings
appears in the lower-right dialog box, as shown in Figure 1-10.

Code::Blocks generates a message if it finds any type of error in your C++
 program — and coding errors are about as common as ice cubes in Alaska.
You’ll undoubtedly encounter numerous warnings and error messages, prob-
ably even when entering the simple Conversion.cpp. To demonstrate the error-
reporting process, change Line 16 from cin >> celsius; to cin >>> celsius;.

www.allitebooks.com

http://www.allitebooks.org

25 Chapter 1: Writing Your First C++ Program

Figure 1-10:
Code::Blocks

builds the
Conversion

program
quickly.

This seems an innocent enough offense — forgivable to you and me perhaps,
but not to C++. Choose Build➪Build to start the compile and build process.
Code::Blocks almost immediately places a red square next to the erroneous
line. The message in the Build Message tab is a rather cryptic error: expected
primary-expression before ’>’ token. To get rid of the message, remove the
extra > and recompile.

 You probably consider the error message generated by the example a little
mysterious, but give it time — you’ve been programming for only about
30 minutes now. Over time, you’ll come to understand the error messages gen-
erated by Code::Blocks and gcc much better.

 Code::Blocks was able to point directly at the error this time, but it isn’t
always that good. Sometimes it doesn’t notice the error until the next line or
the one after that, so if the line flagged with the error looks okay, start looking
at its predecessor to see if the error is there.

Executing Your Program
It’s now time to execute your new creation . . . that is, to run your program.
You will run the Conversion program file and give it input to see how well
it works.

26 Part I: Getting Started with C++ Programming

To execute the Conversion program on Windows Code::Blocks, choose
Build➪Build and Run, or press F9. This rebuilds the program if anything has
changed and executes the program if the build is successful.

A dialog box opens immediately, requesting a temperature in Celsius. Enter a
known temperature, such as 100 degrees. After you press Enter, the program
returns with the equivalent temperature of 212 degrees Fahrenheit as follows:

Enter the temperature in Celsius:100
Fahrenheit value is:212
Press Enter to continue . . .

The message Press Enter to continue . . . gives you the opportunity to read what
you’ve entered before it goes away. Press Enter, and the dialog box (along with
its contents) disappears. Congratulations! You just entered, built, and executed
your first C++ program.

Notice that Code::Blocks is not truly intended for developing windowed
programs like those used in Windows. In theory, you can write a Windows
application by using Code::Blocks, but it isn’t easy. (Building windowed appli-
cations is so much easier in Visual Studio.)

Windows programs show the user a visually oriented output, all nicely
arranged in onscreen windows. Conversion.exe is a 32-bit program that exe-
cutes under Windows, but it’s not a Windows program in the visual sense.

If you don’t know what 32-bit program means, don’t worry about it. As I said,
this book isn’t about writing Windows programs. The C++ programs you write
in this book have a command line interface executing within an MS-DOS box.

Budding Windows programmers shouldn’t despair — you didn’t waste your
money. Learning C++ is a prerequisite to writing Windows programs. I think
that they should be mastered separately: C++ first, Windows second.

Reviewing the Annotated Program
Entering data in someone else’s program is about as exciting as watching
someone else drive a car. You really need to get behind the wheel yourself.
Programs are a bit like cars, as well. All cars are basically the same with small
differences and additions — okay, French cars are a lot different than other
cars, but the point is still valid. Cars follow the same basic pattern — steering
wheel in front of you, seat below you, roof above you, and stuff like that.

Similarly, all C++ programs follow a common pattern. This pattern is already
present in this very first program. We can review the Conversion program by
looking for the elements that are common to all programs.

27 Chapter 1: Writing Your First C++ Program

Examining the framework
for all C++ programs
Every C++ program you write for this book uses the same basic framework,
which looks a lot like this:

//
// Template - provides a template to be used as the
// starting point
//
// the following include files define the majority of
// functions that any given program will need
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // your C++ code starts here

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout<< "Press Enter to continue..." <<endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Without going into all the boring details, execution begins with the code
 contained in the open and closed braces immediately following the line
beginning main().

I’ve copied this code into a file called Template.cpp located in the main CPP_
Programs_from_Book folder.

Clarifying source code with comments
The first few lines in the Conversion program appear to be freeform text.
Either this code was meant for human eyes or C++ is a lot smarter than I
give it credit for. These first six lines are known as comments. Comments are
the programmer’s explanation of what she is doing or thinking when writing
a particular code segment. The compiler ignores comments. Programmers
(good programmers, anyway) don’t.

28 Part I: Getting Started with C++ Programming

A C++ comment begins with a double slash (//) and ends with a newline. You can
put any character you want in a comment. A comment may be as long as you
want, but it’s customary to keep comment lines to no more than 80 characters
across. Back in the old days — “old” is relative here — screens were limited to
80 characters in width. Some printers still default to 80 characters across when
printing text. These days, keeping a single line to fewer than 80 characters is just
a good practical idea (easier to read; less likely to cause eyestrain; the usual).

A newline was known as a carriage return back in the days of typewriters — when
the act of entering characters into a machine was called typing and not keyboard-
ing. A newline is the character that terminates a command line.

 C++ allows a second form of comment in which everything appearing after a
/* and before a */ is ignored; however, this form of comment isn’t normally
used in C++ anymore.

It may seem odd to have a command in C++ (or any other programming
language) that’s specifically ignored by the computer. However, all com-
puter languages have some version of the comment. It’s critical that the
programmer explain what was going through her mind when she wrote the
code. A programmer’s thoughts may not be obvious to the next colleague
who tries to use or modify her program. In fact, the programmer herself
may forget what her program meant if she looks at it months after writing
the original code and has left no clue.

Basing programs on C++ statements
All C++ programs are based on what are known as C++ statements. This sec-
tion reviews the statements that make up the program framework used by
the Conversion program.

A statement is a single set of commands. Almost all C++ statements other than
comments end in a semicolon. (You see one other exception in Chapter 10.)
Program execution begins with the first C++ statement after the open brace
and continues through the listing, one statement at a time.

As you look through the program, you can see that spaces, tabs, and new-
lines appear throughout the program. In fact, I place a newline after every
statement in this program. These characters are collectively known as
whitespace because you can’t see them on the monitor.

 You may add whitespace anywhere you like in your program to enhance
 readability — except in the middle of a word:

See wha

t I mean?

29 Chapter 1: Writing Your First C++ Program

Although C++ may ignore whitespace, it doesn’t ignore case. In fact, C++ is
case sensitive to the point of obsession. The variable fullspeed and the vari-
able FullSpeed have nothing to do with each other. The command int is com-
pletely understandable, but C++ has no idea what INT means. See what I mean
about fast but stupid compilers?

Writing declarations
The line int celsius; is a declaration statement. A declaration is a statement
that defines a variable. A variable is a “holding tank” for a value of some type.
A variable contains a value, such as a number or a character.

The term variable stems from algebra formulas of the following type:

x = 10
y = 3 * x

In the second expression, y is set equal to 3 times x, but what is x? The vari-
able x acts as a holding tank for a value. In this case, the value of x is 10, but
we could have just as well set the value of x to 20 or 30 or –1. The second
 formula makes sense no matter what the value of x is.

In algebra, you’re allowed but not required to begin with a statement such as
x = 10. In C++, the programmer must define the variable x before she can use it.

In C++, a variable has a type and a name. The variable defined on line 11 is
called celsius and declared to hold an integer. (Why they couldn’t have just
said integer instead of int, I’ll never know. It’s just one of those things you
learn to live with.)

The name of a variable has no particular significance to C++. A variable must
begin with the letters A through Z, the letters a through z, or an underscore
(_). All subsequent characters must be a letter, a digit 0 through 9, or an
underscore. Variable names can be as long as you want to make them.

 It’s convention that variable names begin with a lowercase letter. Each new
word within a variable begins with a capital letter, as in myVariable.

 Try to make variable names short but descriptive. Avoid names such as x
because x has no particular meaning. A variable name such as lengthOfLine
Segment is much more descriptive.

30 Part I: Getting Started with C++ Programming

Generating output
The lines beginning with cout and cin are known as input/output statements,
often contracted to I/O statements. (Like all engineers, programmers love
contractions and acronyms.)

The first I/O statement says “Output the phrase Enter the temperature in
Celsius to cout” (pronounced “see-out”). cout is the name of the standard C++
output device. In this case, the standard C++ output device is your monitor.

The next line is exactly the opposite. It says, in effect, “Extract a value from
the C++ input device and store it in the integer variable celsius.” The C++ input
device is normally the keyboard. What we have here is the C++ analog to the
algebra formula x = 10 just mentioned. For the remainder of the program, the
value of celsius is whatever the user enters there.

Calculating Expressions
All but the most basic programs perform calculations of one type or another.
In C++, an expression is a statement that performs a calculation. Said another
way, an expression is a statement that has a value. An operator is a command
that generates a value.

For example, in the Conversion example program — specifically, in the two
lines marked as a calculation expression — the program declares a variable
factor and then assigns it the value resulting from a calculation. This par-
ticular command calculates the difference of 212 and 32; the operator is the
minus sign (–), and the expression is 212–32.

Storing the results of an expression
The spoken language can be very ambiguous. The term equals is one of those
ambiguities. The word equals can mean that two things have the same value
as in “a dollar equals one hundred cents.” Equals can also imply assignment,
as in math when you say that “y equals 3 times x.”

To avoid ambiguity, C++ programmers call = the assignment operator, which
says (in effect), “Store the results of the expression to the right of the
assignment sign in the variable to the left.” Programmers say that “factor
is assigned the value 212 minus 32.” For short, you can say “factor gets 212
minus 32.”

31 Chapter 1: Writing Your First C++ Program

 Never say “factor is equal to 212 minus 32.” You’ll hear this from some lazy
types, but you and I know better.

Examining the remainder of Conversion
The second expression in the Conversion program presents a slightly more
complicated expression than the first. This expression uses the same math-
ematical symbols: * for multiplication, / for division, and + for addition. In
this case, however, the calculation is performed on variables and not simply
on constants.

The value contained in the variable called factor (which was calculated as
the results of 212 – 32, by the way) is multiplied by the value contained in
celsius (which was input from the keyboard). The result is divided by 100 and
summed with 32. The result of the total expression is assigned to the integer
variable fahrenheit.

The next two commands output the string Fahrenheit value is: to the display,
followed by the value of fahrenheit — and all so fast that the user scarcely
knows it’s going on.

The final three statements prompt the user to press Enter and then waits for
him to do so. This is because on some systems the program can display the
results and then close the console dialog box so rapidly you don’t even see
that anything’s happened.

 On many systems, you can skip these three lines — Code::Blocks will keep the
dialog box open until you press Enter anyway — but these lines never hurt.

The final return 0 returns control to the operating system.

32 Part I: Getting Started with C++ Programming

Chapter 2

Declaring Variables Constantly
In This Chapter
▶ Declaring variables

▶ Declaring different types of variables

▶ Using floating-point variables

▶ Declaring and using other variable types

T
he most fundamental of all concepts in C++ is the variable — a variable is
like a small box. You can store things in the box for later use, particularly

numbers. The concept of a variable is borrowed from mathematics. A state-
ment such as

x = 1

stores the value 1 in the variable x. From that point forward, the mathemati-
cian can use the variable x in place of the constant 1 — until he changes the
value of x to something else.

Variables work the same way in C++. You can make the assignment

x = 1;

From that point forward in the execution of the program, the value of x is 1
until the program changes the value to something else. References to x are
replaced by the value 1. In this chapter, you will find out how to declare and
initialize variables in C++ programs. You will also see the different types of
variables that C++ defines and when to use each.

Declaring Variables
A mathematician might write something like the following:

(x + 2) = y / 2
x + 4 = y
solve for x and y

34 Part I: Getting Started with C++ Programming

Any reader who’s had algebra realizes right off that the mathematician has
introduced the variables x and y. But C++ isn’t that smart. (Computers may
be fast, but they’re stupid.)

You have to announce each variable to C++ before you can use it. You have to
say something soothing like this:

int x;
x = 10;

int y;
y = 5;

These lines of code declare that a variable x exists, is of type int, and has the
value 10; and that a variable y of type int also exists with the value 5. (The next
section discusses variable types.) You can declare variables (almost) anywhere
you want in your program — as long as you declare the variable before you use it.

Declaring Different Types of Variables
If you’re on friendly terms with math (and who isn’t?), you probably think of
a variable in mathematics as an amorphous box capable of holding whatever
you might choose to store in it. You might easily write something like the
following:

x = 1
x = 2.3
x = "this is a sentence"

Alas, C++ is not that flexible. (On the other hand, C++ can do things that
people can’t do, such as add a billion numbers or so in a second, so let’s not
get too uppity.) To C++, there are different types of variables just as there are
different types of storage bins. Some storage bins are so small that they can
handle only a single number. It takes a larger bin to handle a sentence.

 Some computer languages try harder to accommodate the programmer by allow-
ing her to place different types of data in the same variable. These languages are
called weakly typed languages. C++ is a strongly typed language — it requires the
programmer to specifically declare each variable along with its exact type.

The variable type int is the C++ equivalent of an integer — a number that has
no fractional part. (Integers are also known as counting numbers or whole
numbers.)

www.allitebooks.com

http://www.allitebooks.org

35 Chapter 2: Declaring Variables Constantly

Integers are great for most calculations. I made it through most of elementary
school with integers. It isn’t until I turned 11 or so that my teachers started
mucking up the waters with fractions. The same is true in C++: More than
90 percent of all variables in C++ are declared to be of type int.

Unfortunately, int variables aren’t adapted to every problem. For example, if
you worked through the temperature-conversion program in Chapter 1, you
might have noticed that the program has a potential problem — it can calcu-
late temperatures to the nearest degree. No fractions of a degree are allowed.
This integer limitation wouldn’t affect daily use because it isn’t likely that
someone (other than a meteorologist) would get all excited about being off a
fraction of a degree. There are plenty of cases, however, where this isn’t the
case — for example, you wouldn’t want to come up a half mile short of the
runway on your next airplane trip due to a navigational round-off.

Reviewing the limitations
of integers in C++
The int variable type is the C++ version of an integer. int variables suffer the
same limitations as their counting-number integer equivalents in math do.

Integer round-off
Lopping off the fractional part of a number is called truncation. Consider
the problem of calculating the average of three numbers. Given three int
 variables — nValue1, nValue2, and nValue3 — an equation for calculating the
average is

int nAverage; int nValue1; int nValue2; int nValue3;
nAverage = (nValue1 + nValue2 + nValue3) / 3;

Because all three values are integers, the sum is assumed to be an integer.
Given the values 1, 2, and 2, the sum is 5. Divide that by 3, and you get 12⁄3, or
1.666. C++ uses slightly different rules: Given that all three variables nValue1,
nValue2, and nValue3 are integers, the sum is also assumed to be an integer.
The result of the division of one integer by another integer is also an integer.
Thus, the resulting value of nAverage is the unreasonable but logical value of 1.

The problem is much worse in the following mathematically equivalent
formulation:

int nAverage; int nValue1; int nValue2; int nValue3;
nAverage = nValue1/3 + nValue2/3 + nValue3/3;

36 Part I: Getting Started with C++ Programming

Plugging in the same 1, 2, and 2 values, the resulting value of nAverage is 0
(talk about unreasonable). To see how this can occur, consider that 1⁄ 3 trun-
cates to 0, 2⁄ 3 truncates to 0, and 2⁄ 3 truncates to 0. The sum of 0, 0, and 0 is 0.
You can see that integer truncation can be completely unacceptable.

Limited range
A second problem with the int variable type is its limited range. A normal int
variable can store a maximum value of 2,147,483,647 and a minimum value
of –2,147,483,648 — roughly from positive 2 billion to negative 2 billion, for a
total range of about 4 billion.

 Two billion is a very large number: plenty big enough for most uses. But it’s
not large enough for some applications, including computer technology. In
fact, your computer probably executes faster than 2 gigahertz, depending on
how old your computer is. (Giga is the prefix meaning billion.) A single strand
of communications fiber — the kind that’s been strung back and forth from
one end of the country to the other — can handle way more than 2 billion
bits per second.

Solving the truncation problem
The limitations of int variables can be unacceptable in some applications.
Fortunately, C++ understands decimal numbers that have a fractional part.
(Mathematicians also call those real numbers.) Decimal numbers avoid many
of the limitations of int type integers. To C++ all decimal numbers have a frac-
tional part even if that fractional part is 0. In C++, the number 1.0 is just as
much a decimal number as 1.5. The equivalent integer is written simply as 1.
Decimal numbers can also be negative, such as –2.3.

When you declare variables in C++ that are decimal numbers, you identify
them as floating-point or simply float variables. The term floating-point means
the decimal point is allowed to float back and forth, identifying as many deci-
mal places as necessary to express the value. Floating-point variables are
declared in the same way as int variables:

float fValue1;

Once declared, you cannot change the type of a variable. fValue1 is now a
float and will be a float for the remainder of the program. To see how floating-
point numbers fix the truncation problem inherent with integers, convert all
the int variables to float. Here’s what you get:

float fValue;
fValue = 1.0/3.0 + 2.0/3.0 + 2.0/3.0;

is equivalent to

fValue = 0.333... + 0.666... + 0.666...;

37 Chapter 2: Declaring Variables Constantly

which results in the value

fValue = 1.666...;

 I have written the value 1.6666 . . . as if the number of trailing 6s goes on for-
ever. This is not necessarily the case. A float variable has a limit to the number
of digits of accuracy that we’ll discuss in the next section.

 A constant that has a decimal point is assumed to be a floating-point value.
However, the default type for a floating-point constant is something known
as a double precision, which in C++ is called simply double, as we’ll see in the
next section.

The programs IntAverage and FloatAverage are available from www.dummies.
com/extras/cplusplus in the CPP_Programs_from_Book\Chap02 directory
to demonstrate the round-off error inherent in integer variables.

Looking at the limits of
floating point numbers
Although floating-point variables can solve many calculation problems, such
as truncation, they have some limitations themselves — the reverse of those
associated with integer variables. Floating-point variables can’t be used to
count things, are more difficult for the computer to handle, and also suffer
from round-off error (though not nearly to the same degree as int variables).

Counting
You cannot use floating-point variables in applications where counting is
important. This includes C++ constructs that count. C++ can’t verify which
whole number value is meant by a given floating-point number.

For example, it’s clear to you and me that 1.0 is 1 but not so clear to C++.
What about 0.9 or 1.1? Should these also be considered as 1? C++ simply
avoids the problem by insisting on using int values when counting is involved.

Calculation speed
Historically, a computer processor can process integer arithmetic quicker
than it can floating-point arithmetic. Thus, while a processor can add 1 million
integer numbers in a given amount of time, the same processor may be able
to perform only 200,000 floating-point calculations during the same period.

Calculation speed is becoming less of a problem as microprocessors get
faster. In addition, today’s general-purpose microprocessors include special
floating-point circuitry on board to increase the performance of these opera-
tions. However, arithmetic on integer values is just a heck of a lot easier and
faster than performing the same operation on floating-point values.

38 Part I: Getting Started with C++ Programming

Loss of accuracy
Floating-point float variables have a precision of about 6 digits, and an extra-
economy size, double-strength version of float known as a double can handle
about 13 significant digits. This can cause round-off problems as well.

Consider that 1⁄ 3 is expressed as 0.333 . . . in a continuing sequence. The concept
of an infinite series makes sense in math but not to a computer because it has a
finite accuracy. The FloatAverage program outputs 1.66667 as the average 1, 2,
and 2 — that’s a lot better than the 0 output by the IntAverage version but not
even close to an infinite sequence. C++ can correct for round-off error in a lot
of cases. For example, on output, C++ can sometimes determine that the user
really meant 1 instead of 0.999999. In other cases, even C++ cannot correct for
round-off error.

Not-so-limited range
Although the double data type has a range much larger than that of an inte-
ger, it’s still limited. The maximum value for an int is a skosh more than 2 bil-
lion. The maximum value of a double variable is roughly 10 to the 38th power.
That’s 1 followed by 38 zeroes; it eats 2 billion for breakfast. (It’s even more
than the national debt, at least at the time of this writing.)

 Only the first 13 digits or so of a double have any meaning; the remaining
25 digits are noise having succumbed to floating-point round-off error.

Declaring Variable Types
So far in this chapter, I have been trumpeting that variables must be declared
and that they must be assigned a type. Fortunately (ta-dah!), C++ provides
a number of variable types. See Table 2-1 for a list of variables, their advan-
tages, and limitations.

Table 2-1 Common C++ Variable Types
Variable Defining a

Constant
What It Is

int 1 A simple counting number, either positive or
negative.

short int --- A potentially smaller version of int. It uses less
memory but has a smaller range.

long int 10L A potentially larger version of int. There is no
difference between long and int with gcc.

39 Chapter 2: Declaring Variables Constantly

Variable Defining a
Constant

What It Is

long long
int

10LL A potentially even larger version of int.

float 1.0F A single precision real number. This smaller
version takes less memory than a double but
has less accuracy and a smaller range.

double 1.0 A standard floating-point variable.

long
double

--- A potentially larger floating-point number. On the
PC, long double is used for the native size of the
80x86 floating-point processor, which is 80 bits.

char ‘c’ A single char variable stores a single alphabetic
or digital character. Not suitable for arithmetic.

wchar_t L’c’ A larger character capable or storing symbols
with larger character sets like Chinese.

char
string

“this is a string” A string of characters forms a sentence or
phrase.

bool true The only other value is false. No, I mean, it’s
really false. Logically false. Not false as in fake
or ersatz or . . . never mind.

 The long long int and long double were officially introduced with C++ ’11.

The integer types come in both signed and unsigned versions. Signed is always
the default (for everything except char and wchar_t). The unsigned version is
created by adding the keyword unsigned in front of the type in the declaration.
The unsigned constants include a U or u in their type designation. Thus, the
following declares an unsigned int variable and assigns it the value 10:

unsigned int uVariable;
uVariable = 10U;

The following statement declares the two variables lVariable1 and lVariable2
as type long int and sets them equal to the value 1, while dVariable is a double
set to the value 1.0. Notice in the declaration of lVariable2 that the int is
assumed and can be left off:

// declare two long int variables and set them to 1
long int lVariable1
long lVariable2; // int is assumed
lVariable1 = lVariable2 = 1;
// declare a variable of type double and set it to 1.0
double dVariable; dVariable = 1.0;

40 Part I: Getting Started with C++ Programming

 You can declare a variable and initialize it in the same statement:

int nVariable = 1; // declare a variable and
 // initialize it to 1

A char variable can hold a single character; a character string (which isn’t
really a variable type but works like one for most purposes) holds a string of
characters. Thus, ‘C’ is a char that contains the character C, whereas “C” is a
string with one character in it. A rough analogy is that a ‘C’ corresponds to a
nail in your hand, whereas “C” corresponds to a nail gun with one nail left in
the magazine. (Chapter 9 describes strings in detail.)

 If an application requires a string, you’ve gotta provide one, even if the string
contains only a single character. Providing nothing but the character just
won’t do the job.

Types of constants
A constant value is an explicit number or character (such as 1, 0.5, or ‘c’) that
doesn’t change. As with variables, every constant has a type. In an expression
such as n = 1; the constant value 1 is an int. To make 1 a long integer, write the
statement as n = 1L;. The analogy is as follows: 1 represents a pickup truck
with one ball in it, whereas 1L is a dump truck also with one ball. The number
of balls is the same in both cases, but the capacity of one of the containers is
much larger.

Following the int to long comparison, 1.0 represents the value 1 but in a
floating-point container. Notice, however, that the default for floating-point
constants is double. Thus, 1.0 is a double number and not a float.

You can use either uppercase or lowercase letters for your special constants.
Thus, 10UL and 10ul are both unsigned long integers.

The constant values true and false are of type bool. In keeping with C++’s
attention to case, true is a constant but TRUE has no meaning.

A variable can be declared constant when it is created via the keyword const:

const double PI = 3.14159; // declare a constant variable

A const variable must be initialized with a value when it is declared, and its
value cannot be changed by any future statement.

 Variables declared const don’t have to be named with all capitals, but by
convention they often are. This is just a hint to the reader that this so-called
variable is, in fact, not.

41 Chapter 2: Declaring Variables Constantly

I admit that it may seem odd to declare a variable and then say that it can’t
change. Why bother? Largely because carefully named const variables can
make a program a lot easier to understand. Consider the following two equiv-
alent expressions:

double dC = 6.28318 * dR; // what does this mean?
double dCircumference = TWO_PI * dRadius; // this is a
 // lot easier to understand

It should be a lot clearer to the reader of this code that the second
expression is multiplying the radius of something by 2π to calculate the
circumference.

Range of Numeric Types
It may seem odd, but the C++ standard doesn’t say exactly how big a number
each of the data types can accommodate. The standard speaks only to the
relative size of each data type. For example, it says that the maximum long int
is at least as large as the maximum int.

The authors of C++ weren’t trying to be mysterious. They merely wanted to
allow the compiler to implement the absolute fastest code possible for the
base machine. The standard was designed to work for all different types of
processors running different operating systems.

However, it is useful to know the limits for your particular implementation.
Table 2-2 shows the size of each number type on a Windows PC using the
Code::Blocks/gcc compiler.

Table 2-2 Range of Numeric Types in Code::Block/gcc
Variable Size

(bytes)
Accuracy Range

short 2 exact –32768 to 32767

int 4 exact –2,147,483,648 to 2,147,483,647

long 4 exact –2,147,483,648 to 2,147,483,647

long long
int

8 exact –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float 4 7 digits ±3.4028 x 10±38

double 8 16 digits ±1.7977 x 10±308

long
double

12 19 digits ±1.1897 x 10±4932

42 Part I: Getting Started with C++ Programming

Attempting to calculate a number that’s beyond the range of its type is known
as an overflow. The C++ standard generally leaves the results of an overflow
as undefined. That’s another way that the definers of C++ remained flexible.

 On the PC, a floating-point overflow results in an exception, which if not
handled will cause your program to crash. (I don’t discuss exceptions until
Chapter 24.) As bad as that sounds, an integer overflow is worse — C++
silently generates an incorrect value without complaint.

Special characters
You can store any printable character you want in a char or string variable.
You can also store a set of non-printable characters that are used as character
constants. See Table 2-3 for a description of these important non-printable
characters.

Table 2-3 Special Characters
Character
Constant

What It Is

’\n’ newline

’\t’ tab

’\040’ The character whose value is 40 in octal (see Chapter 4 for a
discussion of number systems)

’\x20’ The character whose value is 20 in hexadecimal (this is the
same as ’\040’)

’\0’ null (i.e., the character whose value is 0)

’\\’ backslash

You have already seen the newline character at the end of strings. This
character breaks a string and puts the parts on separate lines. A newline
character may appear anywhere within a string. For example:

"This is line 1\nThis is line 2"

appears on the output as

This is line 1
This is line 2

43 Chapter 2: Declaring Variables Constantly

Similarly, the \t tab character moves output to the next tab position. (This
position can vary, depending on the type of computer you’re using to run the
program.)

The numerical forms allow you to specify any non-printing character that you
like, but results may vary. The character represented by 0xFB, for example,
depends on the font and the character set (and may not be a legal character
at all).

Because the backslash character is used to signify special characters, a char-
acter pair for the backslash itself is required. The character pair \\ represents
the backslash.

Wide Loads on Char Highway
The standard char variable is a scant 1 byte wide and can handle only 255 dif-
ferent characters. This is plenty enough for European languages but not big
enough to handle symbol-based languages such as kanji.

Several standards have arisen to extend the character set to handle the
demands of these languages. UTF-8 uses a mixture of 8-, 16-, and 32-bit char-
acters to implement almost every kanji or hieroglyph you can think of but
still remain compatible with simple 8-bit ASCII. UTF-16 uses a mixture of 16-
and 32-bit characters to achieve an expanded character set, and UTF-32 uses
32 bits for all characters.

 UTF stands for Unicode Transformation Format, from which it gets the
common nickname Unicode.

 Table 2-4 describes the different character types supported by C++. At first,
C++ tried to get by with a vaguely defined wide character type, wchar_t. This
type was intended to be the wide character type native to the application pro-
gram’s environment. C++ ’11 introduced specific types for UTF-16 and UTF-32.

C++ collision with filenames
Windows uses the backslash character to
separate folder names in the path to a file. (This
is a remnant of MS-DOS that Windows has not
been able to shake.) Thus, Root\FolderA\File
represents File within FolderA, which is a sub-
directory of Root.

Unfortunately, MS-DOS’s use of the backslash
conflicts with the use of the backslash to indi-
cate an escape character in C++. The character
\\ is a backslash in C++. The MS-DOS path Root\
FolderA\File is represented in C++ as the string
“Root\\FolderA\\File”.

44 Part I: Getting Started with C++ Programming

Table 2-4 The C++ Character Types
Variable Example What It Is
char ’c’ ASCII or UTF-8 characters

wchar_t L’c’ Character in wide format

char_16t u’c’ UTF-16 character

char_32t U’c’ UTF-32 character

 UTF-16 is the standard encoding for Windows applications. The wchar_t type
refers to UTF-16 in the Code::Blocks/gcc compiler.

Any of the character types in Table 2-4 can be combined into strings as well:

wchar_t* wideString = L"this is a wide string";

(Ignore the asterisk for now. I have a lot to say about its meaning in Chapter 8.)

Are These Calculations Really Logical?
C++ provides a logical variable called bool. The type bool comes from Boole,
the last name of the inventor of the logical calculus. A Boolean variable has
two values: true and false.

 There are actually calculations that result in the value bool. For example, “x is
equal to y” is either true or false.

Mixed Mode Expressions
C++ allows you to mix variable types in a single expression. That is, you are
allowed to add an integer with a double precision floating-point value. In the
following expression, for example, nValue1 is allowed to be an int:

// in the following expression the value of nValue1
// is converted into a double before performing the
// assignment
int nValue1 = 1;
nValue1 + 1.0;

An expression in which the two operands are not the same type is called a
mixed mode expression. Mixed mode expressions generate a value whose
type is equal to the more capable of the two operands. In this case, nValue1

www.allitebooks.com

http://www.allitebooks.org

45 Chapter 2: Declaring Variables Constantly

is converted to a double before the calculation proceeds. Similarly, an expres-
sion of one type may be assigned to a variable of a different type, as in the
following statement:

// in the following assignment, the whole
// number part of fVariable is stored into nVariable
double dVariable = 1.0;
int nVariable;
nVariable = dVariable;

 You can lose precision or range if the variable on the left side of the assign-
ment is smaller. In the preceding example, C++ truncates the value of dVariable
before storing it in nVariable.

Converting a larger value type into a smaller value type is called demotion,
whereas converting values in the opposite direction is known as promotion.
Programmers say that the value of int variable nVariable1 is promoted to a
double in expressions such as the following:

int nVariable1 = 1;
double dVariable = nVariable1;

 Mixed mode expressions are not a good idea. Avoid forcing C++ to do your
conversions for you.

Naming conventions
You may have noticed that the name of each of
the variables that I create begins with a special
character that seems to have nothing to do with
the name. These special characters are not
special to C++ at all; they are merely meant to
jog the reader’s memory and indicate the type
of the variable. A partial list of these special
characters follows. Using this convention, I can
immediately recognize dVariable as a variable
of type double, for example.

Character Type
n int
l long
f float
d double
c character
sz string

Religious wars worse than the True Value of
BitCoin have broken out over whether or not
this naming convention clarifies C++ code. It
helps me, so I stick with it. Try it for awhile. If
after a few months, you don’t think it helps, feel
free to change your naming convention.

46 Part I: Getting Started with C++ Programming

Automatic Declarations
 If you are really lazy, you can let C++ determine the types of your variables for

you. Consider the following declaration:

int nVar = 1;

You might ask, “Why can’t C++ figure out the type of nVar?” The answer is, it
will if you ask nicely, as follows:

auto var1 = 1;
auto var2 = 2.0;

This says, “declare var1 to be a variable of the same type as the constant
value 1 (which happens to be an int) and declare var2 to be the same type as
2.0 (which is a double).”

 I consider the term auto to be a particularly unfortunate choice for this pur-
pose because prior to C++ ’11, the keyword auto had a completely different
meaning. However, auto had fallen out of use for at least 20 years, so the stan-
dards people figured that it would be safe to usurp the term. Just be aware
that if you see the keyword auto in some old code, you will need to remove it.

 You can also tell C++ that you want a variable to be declared to be of the same
type as another variable, whatever that might be, using the keyword decltype().

int var1;
decltype(var1) var2; // declare var2 to be of the
 // same type as var1

C++ replaces the decltype(var1) with the type of var1, again an int.

Chapter 3

Per forming Mathematical
Operations

In This Chapter
▶ Defining mathematical operators in C++

▶ Using the C++ mathematical operators

▶ Identifying expressions

▶ Increasing clarity with special mathematical operators

C
++ offers all the common arithmetic operations: C++ programs can
multiply, add, divide, and so forth. Programs have to be able to perform

these operations to get anything done. What good is a health insurance
program if it can’t calculate how much you’re supposed to (over) pay?

C++ operations look like the arithmetic operations you would perform on a
piece of paper, except you have to declare any variables before you can use
them (as detailed in Chapter 2):

int var1;
int var2 = 1;
var1 = 2 * var2;

This code snippet declares two variables, var1 and var2. It initializes var2 to 1
and then stores the results of multiplying 2 times the value of var2 into var1.

This chapter describes the complete set of C++ mathematical operators.

Performing Simple Binary Arithmetic
A binary operator is one that has two arguments. If you can say var1 op var2,
op must be a binary operator. The most common binary operators are the
simple operations you performed in grade school. The binary operators are
flagged in Table 3-1. (This table also includes the unary operators, which I
describe a little later in this chapter.)

48 Part I: Getting Started with C++ Programming

Table 3-1 Mathematical Operators in Order of Precedence
Precedence Operator What It Is
1 + (unary) Effectively does nothing

1 - (unary) Returns the negative of its
argument

2 ++ (unary) Increment

2 -- (unary) Decrement

3 * (binary) Multiplication

3 / (binary) Division

3 % (binary) Modulo

4 + (binary) Addition

4 - (binary) Subtraction

5 =, *=,%=,+=,-= (special) Assignment types

Multiplication, division, modulus, addition, and subtraction are the operators
used to perform arithmetic. In practice, they work just like the familiar arith-
metic operations as well. For example, using the binary operator for division
with a floating point double variable looks like this:

double var = 133.0 / 10.0;

 The expression 133/10 performs integer division, producing the int result 13
rather than the floating-point 13.3.

Each of the binary operators has the conventional meaning that you studied
in grammar school — with one exception. You may not have encountered
modulus in your studies. The modulus operator (%) works much like divi-
sion, except it produces the remainder after division instead of the quotient.
For example, 4 goes into 14 three times with a remainder of 2. Thus we say
14 modulus 4 is 2:

int var = 14 % 4; // var is set to 2

Modulus is not defined for floating point variables. (I discuss round-off errors
in Chapter 2.)

Decomposing Expressions
The most common type of statement in C++ is the expression. An expression
is a C++ statement with a value. Every expression also has a type, such as
int, double, or char. A statement involving any mathematical operator is an

49 Chapter 3: Performing Mathematical Operations

expression since all these operators return a value. For example, 1 + 2 is an
expression whose value is 3 and type is int. (Remember that a constant with-
out a decimal point is of type int.)

Expressions can be complex or extremely simple. In fact, the statement 1 is
an expression because it has a value (1) and a type (const int). The following
statement has six expressions:

z = x * y + w;

The expressions are

x
y
w
x * y
x * y + w
z = x * y + w

Determining the Order of Operations
All operators perform some defined function. In addition, every operator has
a precedence — a specified order in which the expressions are evaluated.
Consider, for example, how precedence affects solving the following problem:

int var = 2 * 3 + 1;

If the addition is performed before the multiplication, the value of the expres-
sion is 2 times 4, or 8. If the multiplication is performed first, the value is
6 plus 1, or 7.

The precedence of the operators determines who goes first. Table 3-1 shows
that multiplication has higher precedence than addition, so the result is 7.
(The concept of precedence is also present in arithmetic. C++ adheres to the
common arithmetic precedence.)

So what happens when two operators of the same precedence appear in the
same expression? For example:

int var = 8 / 4 / 2;

When operators of the same precedence appear in the same expression, they
are evaluated from left to right (the same rule applied in arithmetic). Thus,
in this code snippet, var is equal to 8 divided by 4 (which is 2) divided by 2
(which is 1).

50 Part I: Getting Started with C++ Programming

The expression

x / 100 + 32

divides x by 100 before adding 32. But what if the programmer wanted to
divide x by 100 plus 32? The programmer can change the precedence by bun-
dling expressions together in parentheses (shades of algebra!), as follows:

x /(100 + 32)

This expression has the same effect as dividing x by 132. The original
expression

x / 100 + 32

is identical to the expression

(x / 100) + 32

Performing Unary Operations
Arithmetic binary operators — those operators that take two arguments — are
familiar to a lot of us from school days. But consider the unary operators, which
take a single argument (for example, –a). Many unary operations are not so
well known.

The unary mathematical operators are plus, minus, plus-plus, and minus-minus
(respectively, +, –, ++, and – –). The minus operator changes the sign of its argu-
ment. Positive numbers become negative and vice versa. The plus operator does
not change the sign of its argument. The plus operator is rarely, if ever, used.

int var1 = 10;
int var2 = -var1; // var2 is now -10

The latter expression uses the minus unary operator (–) to calculate the
value negative 10.

The ++ and the – – operators might be new to you. These operators (respec-
tively) add one to their arguments or subtract one from their arguments, so
they’re known (also respectively) as the increment and decrement operators.
Because they’re dependent upon numbers that can be counted, they’re lim-
ited to non-floating point variables. For example, the value of var after execut-
ing the following expression is 11:

int var = 10; // initalize var
var++; // now increment it
 // value of var is now 11

51 Chapter 3: Performing Mathematical Operations

The increment and decrement operators are peculiar in that both come in
two flavors: a prefix version and a postfix version (known as pre-increment
and post-increment, respectively). Consider, for example, the increment
operator (the decrement works in the same way).

Suppose that the variable n has the value 5. Both ++n and n++ increment n
to the value 6. The difference between the two is that the value of ++n is the
value after incrementing (6) while the value of n++ is the value before incre-
menting (5). The following example illustrates this difference:

// declare three integer variables
int n1, n2, n3;

n1 = 5;
n2 = ++n1; // the value of both n1 and n2 is now 6

n1 = 5;
n3 = n1++;// the value of n1 is 6 but the value of n3 is 5

Thus n2 is given the value of n1 after n1 has been incremented (using the pre-
increment operator), whereas n3 gets the value of n1 before it is incremented
using the post-increment operator.

Using Assignment Operators
An assignment operator is a binary operator that changes the value of its left
argument. The equal sign (=), a simple assignment operator, is an absolute
necessity in any programming language. This operator puts the value of
the right-hand argument into the left-hand argument. The other assignment
operators are odd enough that they seem to be someone’s whim.

Why define a separate increment operator?
The authors of C++ noted that programmers add
1 more than any other constant. To provide some
convenience, a special add 1 instruction was
added to the language. In addition, most present-
day computer processors have an increment

instruction that is faster than the addition instruc-
tion. Back when C++ was created — with micro-
processors being what they were — saving a
few instructions was a big deal. Today, not so
much.

52 Part I: Getting Started with C++ Programming

So what about the following:

int var1;
int var2 = 2;
var1 = var2 = 1;

If we used the left to right rule, var1 ends up with the value 2 but var2 with
the value 1, which is counterintuitive. To avoid this, multiple assignment
operators are evaluated from right to left. Thus, the example snippet assigns
the value 1 to var2 and then copies the same value into var1.

The creators of C (from which C++ originated) noticed that assignments often
follow the form of

variable = variable # constant

where # is some binary operator. Thus, to increment an integer operator
by 2, the programmer might write

nVariable = nVariable + 2;

This expression says, “Add 2 to the value of nVariable and store the results
back into nVariable.” Doing so changes the value of nVariable to 2 more than
it was.

Because the same variable appears on both sides of the = sign, the same Fathers
of the C Revolution decided to create a version of the assignment operator with
a binary operator attached. This says, in effect, “Thou shalt perform whatever
operation on a variable and store the results right back into the same variable.”

Every binary operator has one of these nifty assignment versions. Thus, the
assignment just given could have been written this way:

nVariable = nVariable + 2;
nVariable += 2;

Here the first line says (being very explicit now), “Take the value of nVariable,
add 2, and store the results back into nVariable.” The next line says (a bit
more abruptly), “Add 2 to the value of nVariable.”

 Other than assignment itself, these assignment operators are not used all that
often. However, as odd as they might look, sometimes they can actually make
the resulting program easier to read

Chapter 4

Performing Logical Operations
In This Chapter
▶ Using sometimes-illogical logical operators

▶ Defining logical variables

▶ Operating with bitwise logical operators logically, a bit at a time

T
he most common statement in C++ is the expression. Most expressions
involve the arithmetic operators, such as addition (+), subtraction (–)

and multiplication (*), as demonstrated in Chapter 3.

This chapter describes a whole other class of operators known as the logical
operators. In comparison with the arithmetic operators, most people don’t
think nearly as much about this type of operation. It isn’t that people don’t
deal with logical operations such as AND and OR — we compute them con-
stantly. I won’t eat cereal unless the bowl contains cereal AND the bowl has
milk in it AND the cereal is coated with sugar (lots of sugar). I’ll have a Scotch
IF it’s single-malt AND someone else is paying for it. People use such logical
operations all the time, but they don’t write them down as machine instruc-
tions (or think of them in that light).

Logical operators fall into two types. The AND and OR operators are what I
will call simple logical operators. The second type of logical operator is the
bitwise operator. People don’t use the bitwise operator in their daily business
at all; it’s unique to the computer world. We’ll start with the simple and sneak
up on the bitwise in this chapter.

Why Mess with Logical Operations?
C++ programs have to make decisions. A program that can’t make decisions
is of limited use. The temperature-conversion program laid out in Chapter 1
is about as complex as you can get without some type of decision-making.
Invariably a computer program gets to the point where it has to figure out
situations such as “Do this if the a variable is less than some value; do that

54 Part I: Getting Started with C++ Programming

other thing if it’s not.” The ability to make decisions is what makes a com-
puter appear to be intelligent. (By the same token, that same property makes
a computer look really stupid when the program makes the wrong decision.)
Making decisions, right or wrong, requires the use of logical operators.

Using the Simple Logical Operators
The simple logical operators, shown in Table 4-1, evaluate to true or false.

Table 4-1 Simple Operators Representing Daily Logic
Operator What It Does
== Equality; true if the left-hand argument has the same value as the right

!= Inequality; opposite of equality

>, < Greater than, less than; true if the left-hand argument is greater than or
less than the right-hand argument

>=, <= Greater than or equal to, less than or equal to; true if either > or == is
true, or either < or == is true

&& AND; true if both the left- and right-hand arguments are true
|| OR; true if either the left- or right-hand argument is true
! NOT; true if its argument is false; otherwise, false

The first six entries in Table 4-1 are comparison operators. The equality oper-
ator is used to compare two numbers. For example, the following is true if the
value of n is 0, and is false otherwise:

n == 0;

 Looks can be deceiving. Don’t confuse the equality operator (==) with the
assignment operator (=). Not only is this a common mistake, but it’s a mis-
take that the C++ compiler generally cannot catch — that makes it more than
twice as bad. The following statement does not initialize n to 0; it compares
the current value of n with 0 and then does nothing with the results of that
comparison:

n == 0; // programmer meant to say n = 0

www.allitebooks.com

http://www.allitebooks.org

55 Chapter 4: Performing Logical Operations

The greater-than (>) and less-than (<) operators are similarly common in
everyday life. The following logical comparison is true:

int n1 = 1;
int n2 = 2;
n1 < n2;

The greater-than-or-equal-to operator (>=) and the less-than-or-equal-to oper-
ator (<=) are similar to the less-than and greater-than operators, with one
major exception. They include equality; the other operators don’t.

The && (AND) and || (OR) work in combination with the other logic opera-
tors to build more complex logical expressions, like this:

// the following is true if n2 is greater than n1
// AND n2 is smaller than n3
// (this is the most common way determining that n2 is in
// the range of n1 to n3, exclusive)
(n1 < n2) && (n2 < n3);

Storing logical values
The result of a logical operation can be assigned to a variable of type bool.
The term bool refers to Boolean algebra, which is the algebra of logic. This
was invented by a British mathematician, George Boole, in the 19th century.

int n1 = 1;
int n2 = 2;
bool b;
b = (n1 == n2);

This expression highlights the difference between the assignment operator =
and the comparison operator ==. The expression says, “Compare the vari-
ables n1 and n2. Store the results of this comparison in the variable b.”

The following BoolTest program demonstrates the use of a bool variable:

// BoolTest - compare variables input from the
// keyboard and store the results off
// into a logical variable
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

56 Part I: Getting Started with C++ Programming

int main(int nNumberofArgs, char* pszArgs[])
{
 // set output format for bool variables
 // to true and false instead
 // of 1 and 0
 cout.setf(cout.boolalpha);

 // input two values
 int nArg1;
 cout << "Input value 1: ";
 cin >> nArg1;

 int nArg2;
 cout << "Input value 2: ";
 cin >> nArg2;

 // compare the two variables and store the results
 bool b;
 b = nArg1 == nArg2;

 cout << "The statement, " << nArg1
 << " equals " << nArg2
 << " is " << b
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The first line cout.setf() makes sure that our bool variable b is output as “true”
or “false”. The next section explains why this is necessary.

The program inputs two values from the keyboard and displays the result of
the equality comparison:

Input value 1: 5
Input value 2: 5
The statement, 5 equals 5 is true
Press Enter to continue...

 The special value endl inserts a newline. The difference between the value endl
and the character ‘\n’ as described in Chapter 2 is subtle and explained in
Chapter 23.

57 Chapter 4: Performing Logical Operations

Using logical int variables
C++ hasn’t always had a bool type variable. Back in the old days (when cam-
eras still used actual film), C++ used int variables to store logical values. A
value of 0 was considered false and all other values true. By the same token, a
logical operator generated a 0 for false and a 1 for true. (Thus, 10 < 5 returned 0
while 10 > 5 returned 1.)

C++ retains a high degree of compatibility between bool and int to support the
older programs. You get completely different output from the BitTest program
if you remove the line cout.setf(cout.boolalpha):

Input value 1: 5
Input value 2: 5
The statement, 5 equals 5 is 1
Press Enter to continue...

Variables of type int and bool can be mixed in expressions as well. For exam-
ple, C++ allows the following bizarre statement without batting an eyelid:

int n;
n = (nArg1 == nArg2) * 5;

This sets n to 5 if nArg1 and nArg2 are equal and 0 otherwise.

Be careful performing logical operations
on floating-point variables
Round-off errors in floating-point computation can create havoc with logical
operations. Consider the following example:

float f1 = 10.0;
float f2 = f1 / 3;
bool b1 = (f1 == (f2 * 3.0)); // are these two equal?

Even though it’s obvious to us that f1 is equal to f2 times 3, the resulting
value of b1 is not necessarily true. A floating-point variable cannot hold an
unlimited number of significant digits. Thus, f2 is not equal to the number
we’d call “three-and-a-third,” but rather to 3.3333 . . ., stopping after some
number of decimal places.

58 Part I: Getting Started with C++ Programming

 A float variable supports about 7 digits of accuracy while a double supports a
skosh over 16 digits. I say “about” and “skosh” because the computer is likely to
generate a number like 3.3333347 due to vagaries in floating-point calculations.

Now, in pure math, the number of 3s after the decimal point is infinite, but
no computer built can handle an infinite number of digits. So, after multiply-
ing 3.3333 by 3, you get 9.9999 instead of the 10 you’d get if you multiplied
“three-and-a-third” — in effect, a round-off error. Such small differences may
be unnoticeable to a person but not to the computer. Equality means exactly
that — exact equality.

Modern processors are sophisticated in performing such calculations. The
processor may, in fact, accommodate the round-off error, but from inside C++,
you can’t predict exactly what any given processor will do.

The safer comparison follows:

float f1 = 10.0;
float f2 = f1 / 3;
float f3 = f2 * 3.0;
float delta = f1 - f3;
bool bEqual = -0.0001 < delta && delta < 0.0001;

This comparison is true if f1 and f3 are within some small delta from each
other, which should still be true even if you take some small round-off error
into account.

Short circuits and C++
The logical AND && and logical OR || operators perform what is called short-
circuit evaluation. Consider the following:

condition1 && condition2

If condition1 is not true, the overall result is not true, no matter what the value
of condition2. (For example, condition2 could be true or false without changing
the result.) The same situation occurs in the following:

condition1 || condition2

If condition1 is true, the result is true, no matter what the value of condition2 is.

To save time, C++ doesn’t evaluate condition2 if it doesn’t need to. For example,
in the expression condition1 && condition2, C++ doesn’t evaluate condition2
if condition1 is false. Likewise, in the expression condition1 || condition2, C++
doesn’t evaluate condition2 if condition1 is true. This is known as short-circuit
evaluation.

59 Chapter 4: Performing Logical Operations

 Short-circuit evaluation may mean that condition2 is not evaluated even if that
condition has side effects. Consider the following admittedly contrived code
snippet:

int nArg1 = 1;
int nArg2 = 2;
int nArg3 = 3;

bool b = (nArg1 > nArg2) && (nArg2++ > nArg3);

The variable nArg2 is never incremented because the comparison nArg2++ >
nArg3 is not performed. There’s no need because nArg1 > nArg2 already returned
a false so the overall expression must be false.

Expressing Binary Numbers
C++ variables are stored internally as so-called binary numbers. Binary numbers
are stored as a sequence of 1 and 0 values known as bits. Most of the time, you
don’t really need to deal with which particular bits you use to represent num-
bers. Sometimes, however, it’s practical and convenient to tinker with numbers
at the bit level — so C++ provides a set of operators for that purpose.

 Fortunately, you won’t have to deal too often with C++ variables at the bit
level, so it’s pretty safe to consider the remainder of this chapter a Deep
Techie excursion.

The so-called bitwise logical operators operate on their arguments at the bit
level. To understand how they work, let’s first examine how computers store
variables.

The decimal number system
The numbers we’ve been familiar with from the time we could first count on our
fingers are known as decimal numbers because they’re based on the number 10.
(If beer by the six-pack had been invented early enough, our number system
might well be based on the number 6.) In general, the programmer expresses
C++ variables as decimal numbers. Thus you could specify the value of var as
(say) 123, but consider the implications.

A number such as 123 refers to 1 * 100 + 2 * 10 + 3 * 1. All of these base
 numbers — 100, 10, and 1 — are powers of 10.

123 = 1 * 100 + 2 * 10 + 3 * 1

60 Part I: Getting Started with C++ Programming

Expressed in a slightly different (but equivalent) way, 123 looks like this:

123 = 1 * 102 + 2 * 101 + 3 * 100

Remember that any number to the zero power is 1.

Other number systems
Well, okay, using 10 as the basis (or base) of our counting system probably
stems from those 10 human fingers, the original counting tools. An alterna-
tive base for a counting system could just as easily have been 20 (maybe the
inventor of base 10 had shoes on at the time).

If our numbering scheme had been invented by dogs, it might well be based on 8
(one digit of each paw is out of sight on the back part of the leg). Mathematically,
such an octal system would have worked just as well:

12310 = 1 * 8
2 + 7 * 81 + 3 * 80 = 1738

The small 10 and 8 here refer to the numbering system, 10 for decimal (base 10)
and 8 for octal (base 8). A counting system may use any positive base.

The binary number system
Computers have essentially two fingers. (Maybe that’s why computers are
so stupid: without an opposing thumb, they can’t grasp anything. And then
again, maybe not.) Computers prefer counting using base 2. The number
12310 would be expressed this way:

12310 = 0*2
7 + 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 1*21 + 1*20

12310 = 0*128 + 1*64 + 1*32 + 1*16 + 1*8 + 0*4 + 1*2 + 1*1
 = 011110112

Computer convention expresses binary numbers by using 4, 8, 16, 32, or even
64 binary digits, even if the leading digits are 0. This is also because of the
way computers are built internally.

Because the term digit refers to a multiple of 10, a binary digit is called a bit
(an abbreviation of binary digit). A byte is made up of 8 bits. (Calling a binary
digit a byte-it didn’t seem like a good idea.) Memory is usually measured in
bytes (like rolls are measured in units of baker’s dozen).

61 Chapter 4: Performing Logical Operations

With such a small base, you have to use a large number of bits to express
numbers. Human beings don’t want the hassle of using an expression such as
011110112 to express such a mundane value as 12310. Programmers prefer to
express numbers by using an even number of bits. The octal system — which
is based on 3 bits — was the default binary system in the early days of C. We
see a vestige of this even today — a constant that begins with a 0 is assumed
to be octal in C++. Thus, the line:

cout << "0173 = " << 0173 << endl;

produces the following output:

0173 = 123

However, octal has been almost completely replaced by the hexadecimal
system, which is based on 4-bit digits.

Hexadecimal uses the same digits for the numbers 0 through 9. For the digits
between 9 and 16, hexadecimal uses the first six letters of the alphabet: A for
10, B for 11, and so on. Thus, 12310 becomes 7B16, like this:

123 = 7 * 161 + B (i.e. 11) * 160 = 7B16

Programmers prefer to express hexadecimal numbers in multiples of 4 hexa-
decimal digits even when the leading digit in each case is 0.

Finally, who wants to express a hexadecimal number such as 7B16 by using a
subscript? Terminals don’t even support subscripts. Even on a word proces-
sor such as the one I’m using now, it’s a drag to change fonts to and from
subscript mode just to type two lousy digits. Therefore, programmers (no
fools, they) use the convention of beginning a hexadecimal number with a 0x.
(Why? Well, the reason for such a strange convention goes back to the early
days of C, in a galaxy far, far, away . . . never mind.) Thus, 7B becomes 0x7B.
Using this convention, the hexadecimal number 0x7B is equal to 123 decimal
while 0x123 hexadecimal is equal to 291 decimal. The code snippet

cout << "0x7B = " << 0x7B << endl;
cout << "0x123 = " << 0x123 << endl;

produces the following output:

0x7B = 123
0x123 = 291

62 Part I: Getting Started with C++ Programming

You can use all the mathematical operators on hexadecimal numbers in the
same way you’d apply them to decimal numbers. (Well, okay, most of us can’t
perform a multiplication such as 0xC * 0xE in our heads, but that has more to
do with the multiplication tables we learned in school than it has to do with
any limitation in the number system.)

 If you really want to, you can write binary numbers in C++ ’14 using the prefix
‘0b’. Thus, 123 becomes 0b01111011.

Performing Bitwise Logical Operations
All C++ numbers can be expressed in binary form. Binary numbers use only
the digits 1 and 0 to represent a value. Table 4-2 defines the set of operations
that work on numbers one bit at a time, hence the term bitwise operators.

Table 4-2 Bitwise Operators
Operator Function
~ NOT: toggle each bit from 1 to 0 and from 0 to 1

& AND each bit of the left-hand argument with that on the right

| OR each bit of the left-hand argument with that on the right

^ XOR (exclusive OR) each bit of the left-hand argument with that on
the right

Bitwise operations can potentially store a lot of information in a small amount
of memory. Many traits in the world have only two possibilities — that are
either this way or that way. You are either married or you’re not. You are
either male or female (at least that’s what my driver’s license says). In C++,
you can store each of these traits in a single bit — in this way, you can pack
32 separate binary properties into a single 32-bit int.

In addition, bit operations can be extremely fast. No performance penalty is
paid for that 32-to-1 savings.

 Even though memory is cheap these days, it’s not unlimited. Sometimes, when
you’re storing large amounts of data, this ability to pack a whole lot of proper-
ties into a single word is a big advantage.

63 Chapter 4: Performing Logical Operations

The single-bit operators
The bitwise operators — AND (&), OR (|) and NOT (~) — perform logic oper-
ations on single bits. If you consider 0 to be false and 1 to be true (it doesn’t
have to be this way, but it’s a common convention), you can say things like
the following for the NOT operator:

~ 1 (true) is 0 (false)
~ 0 (false) is 1 (true)

The AND operator is defined as following:

1 (true) & 1 (true) is 1 (true)
1 (true) & 0 (false) is 0 (false)

It’s a similar situation for the OR operator:

1 (true) | 0 (false) is 1 (true)
0 (false) | 0 (false) is 0 (false)

The definition of the AND operator appears in Table 4-3. Read one argument
as the column head and the other argument as the row head — the result is
the intersection. Thus, 1 AND 1 is 1. 0 AND 1 is 0.

Table 4-3 Truth Table for the AND Operator
AND 1 0
1 1 0

0 0 0

You read Table 4-3 as the column corresponding to the value of one of the
arguments while the row corresponds to the other. Thus, 1 & 0 is 0. (Column 1
and row 0.) The only combination that returns anything other than 0 is 1 & 1.
(This is known as a truth table.)

Similarly, the truth table for the OR operator is shown in Table 4-4.

Table 4-4 Truth Table for the OR Operator
OR 1 0
1 1 1

0 1 0

64 Part I: Getting Started with C++ Programming

One other logical operation that is not so commonly used in day-to-day living
is the OR ELSE operator, commonly contracted to XOR. XOR is true if either
argument is true but not if both are true. The truth table for XOR is shown in
Table 4-5.

Table 4-5 Truth Table for the XOR Operator
XOR 1 0
1 0 1

0 1 0

Armed with these single-bit operators, we can take on the C++ bitwise logical
operations.

Using the bitwise operators
The bitwise operators are used much like any other binary arithmetic opera-
tor. The NOT operator is the easiest to understand. To NOT a number is to
NOT each bit that makes up that number (and to a programmer, that sen-
tence makes perfect sense — honest). Consider this example:

 ~01102 (0x6)
 10012 (0x9)

Thus we say that ~0x6 equals 0x9 (pronounced “NOT 6 equals 9”).

The following calculation demonstrates the & operator:

 01102
&
 00112
 00102

Beginning with the most significant bit, 0 AND 0 is 0. In the next bit, 1 AND 0
is 0. In bit 3, 1 AND 1 is 1. In the least significant bit, 0 AND 1 is 0. Expressed in
hexadecimal, the same expression appears as follows:

 0x6 01102
 & &
 0x3 00112
 0x2 00102

In shorthand, we say that 0x6 & 0x3 equals 0x2 (pronounced “6 AND 3 equals 2”).

65 Chapter 4: Performing Logical Operations

A simple test
The following program illustrates the bitwise operators in action. The pro-
gram initializes two variables and outputs the result of ANDing, ORing, and
XORing them:

// BitTest - initialize two variables and output the
// results of applying the ~,& , | and ^
// operations
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // set output format to hexadecimal
 cout.unsetf(cout.dec);
 cout.setf(cout.hex);

 // initialize two arguments
 int nArg1 = 0x78ABCDEF;
 int nArg2 = 0x12345678;

 // now perform each operation in turn
 // first the unary NOT operator
 cout << " nArg1 = 0x" << nArg1 << endl;
 cout << "~nArg1 = 0x" << ~nArg1 << "\n" << endl;
 cout << " nArg2 = 0x" << nArg2 << endl;
 cout << "~nArg2 = 0x" << ~nArg2 << "\n" << endl;

 // now the binary operators
 cout << " 0x" << nArg1 << "\n"
 << "& 0x" << nArg2 << "\n"
 << " ----------" << "\n"
 << " 0x" << (nArg1 & nArg2) << "\n"
 << endl;

 cout << " 0x" << nArg1 << "\n"
 << "| 0x" << nArg2 << "\n"
 << " ----------" << "\n"
 << " 0x" << (nArg1 | nArg2) << "\n"
 << endl;

 cout << " 0x" << nArg1 << "\n"
 << "^ 0x" << nArg2 << "\n"

66 Part I: Getting Started with C++ Programming

 << " ----------" << "\n"
 << " 0x" << (nArg1 ^ nArg2) << "\n"
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The first two expressions in our program, cout.unsetf(ios::dec) and cout.
setf(ios::hex), changes the default output format from decimal to hexadeci-
mal. (You’ll have to trust me until Chapter 23 that it works.)

The remainder of the program is straightforward. The program assigns nArg1
the test value 0x78ABCDEF and nArg2 the value 0x12345678. The program then
outputs all combinations of bitwise calculations. The extra newlines, such as
in the following line, cause a blank line to appear to help group the output to
make it easier to read:

cout << "~nArg1 = 0x" << ~nArg1 << "\n" << endl;

The output appears as follows:

 nArg1 = 0x78abcdef
~nArg1 = 0x87543210

 nArg2 = 0x12345678
~nArg2 = 0xedcba987

 0x78abcdef
& 0x12345678

 0x10204468

 0x78abcdef
0x12345678
 0x7abfdfff

 0x78abcdef
^ 0x12345678

 0x6a9f9b97

Press Enter to continue...

67 Chapter 4: Performing Logical Operations

You can convert each of the digits into binary to check the bitwise arithme-
tic. For example, from the first digit of each of the examples, you can see that
7 & 1 equals 1, 7 | 1 equals 7, and 7 ^ 1 equals 6.

Running through simple and bitwise logical calculations in your head at par-
ties is fun (well, okay, for some of us), but a program has to make actual, prac-
tical use of these values to make them worth the trouble. Coming right up:
Chapter 5 demonstrates how logical calculations are used to control program
flow.

68 Part I: Getting Started with C++ Programming

Chapter 5

Controlling Program Flow
In This Chapter
▶ Controlling the flow through the program

▶ Executing a group of statements repetitively

▶ Avoiding infinite loops

T
he simple programs that appear in Chapters 1 through 4 process a
fixed number of inputs, output the result of that calculation, and quit.

However, these programs lack any form of flow control. They cannot make
tests of any sort. Computer programs are all about making decisions. If the
user presses a key, the computer responds to the command.

For example, if the user presses Ctrl+C, the computer copies the currently
selected area to the Clipboard. If the user moves the mouse, the pointer
moves on the screen. If the user clicks the right mouse button with the
Windows key depressed, the computer crashes. The list goes on and on.
Programs that don’t make decisions are necessarily pretty boring.

Flow-control commands allow the program to decide what action to take
based on the results of the C++ logical operations performed (see Chapter 4).
There are basically three types of flow-control statements: the branch, the
loop, and the switch.

Controlling Program Flow with
the Branch Commands

The simplest form of flow control is the branch statement. This instruction
allows the program to decide which of two paths to take through C++ instruc-
tions, based on the results of a logical expression (see Chapter 4 for a descrip-
tion of logical expressions).

70 Part I: Getting Started with C++ Programming

In C++, the branch statement is implemented using the if statement:

if (m > n)
{
 // Path 1
 // ...instructions to be executed if
 // m is greater than n
}
else
{
 // Path 2
 // ...instructions to be executed if not
}

First, the logical expression m > n is evaluated. If the result of the expression
is true, control passes down the path marked Path 1 in the previous snippet. If
the expression is false, control passes to Path 2. The else clause is optional. If
it is not present, C++ acts as if it is present but empty.

 Actually, the braces are not required if there’s only one statement to execute
as part of the if. Originally, braces were only used if there were two or more
statements that you wanted to treat as one. However, people quickly realized
that it was cleaner and less error prone if you used braces every time, no
matter how many statements there are.

The following program demonstrates the if statement (note all the lovely
braces):

// BranchDemo - input two numbers. Go down one path of the
// program if the first argument is greater
// than the first or the other path if not
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the first argument...
 int nArg1;
 cout << "Enter arg1: ";
 cin >> nArg1;

 // ...and the second
 int nArg2;
 cout << "Enter arg2: ";
 cin >> nArg2;

 // now decide what to do:
 if (nArg1 > nArg2)

71 Chapter 5: Controlling Program Flow

 {
 cout<< "Argument 1 is greater than argument 2"
 << endl;
 }
 else
 {
 cout<< "Argument 1 is not greater than argument 2"
 << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here the program reads two integers from the keyboard and compares them.
If nArg1 is greater than nArg2, control flows to the output statement cout <<
“Argument 1 is greater than argument 2”. If nArg1 is not greater than nArg2,
control flows to the else clause where the statement cout << “Argument 1 is not
greater than argument 2\n” is executed. Here’s what that operation looks like:

Enter arg1: 5
Enter arg2: 6
Argument 1 is not greater than argument 2
Press Enter to continue...

 Notice how the instructions within the if blocks are indented slightly. This
is strictly for human consumption because C++ ignores whitespace (spaces,
tabs, and newlines). It may seem trivial, but a clear coding style increases the
readability of your C++ program. The Code::Blocks editor can enforce this style
or any one of several other coding styles for you. Select Settings➪Editor, then
click on the Source Formatter selection from the scrolled list on the left. I use
the ANSI bracket style with four spaces per indent.

Executing Loops in a Program
Branch statements allow you to direct the flow of a program’s execution down
one path or another. This is a big improvement but still not enough to write
full-strength programs.

Consider the problem of updating the computer display. The typical PC must
update well over a thousand pixels for each row as it paints an image from
left to right. It repeats this process for each of the thousand or so rows on the
display. It does this by executing the same small number of instructions, mil-
lions of times — once for each pixel.

72 Part I: Getting Started with C++ Programming

Looping while a condition is true
The simplest form of looping statement is the while loop. Here’s what the while
loop looks like:

while(condition)
{
 // ...repeatedly executed as long as condition is true
}

The condition is tested. This condition could be if var > 10 or if var1 == var2
or any other expression you might think of as long as it returns a value of
true or false. If the condition is true, the statements within the braces are
executed. Upon encountering the closed brace, C++ returns control to the
beginning, and the process starts over. If the condition is false, control passes
to the first statement after the closed brace. The effect is that the C++ code
within the braces is executed repeatedly as long as the condition is true.
(Kind of reminds me of how I get to walk around the yard with my dog until
she . . . well, until we’re done.)

If the condition were true the first time, what would make it be false in the
future? Consider the following example program:

// WhileDemo - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int nLoopCount;
 cout << "Enter loop count: ";
 cin >> nLoopCount;

 // now loop that many times
 while (nLoopCount > 0)
 {
 nLoopCount = nLoopCount - 1;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
 }

73 Chapter 5: Controlling Program Flow

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

WhileDemo begins by retrieving a loop count from the user, which it stores in
the variable nLoopCount. The program then executes a while loop. The while
first tests nLoopCount. If nLoopCount is greater than 0, the program enters the
body of the loop (the body is the code between the braces), where it decre-
ments nLoopCount by 1 and outputs the result to the display. The program
then returns to the top of the loop to test whether nLoopCount is still positive.

When executed, the program WhileDemo outputs the results shown in this
next snippet. Here I entered a loop count of 5. The result is that the program
loops five times, each time outputting a countdown:

Enter loop count: 5
Only 4 loops to go
Only 3 loops to go
Only 2 loops to go
Only 1 loops to go
Only 0 loops to go
Press Enter to continue...

If the user enters a negative loop count, the program skips the loop entirely.
That’s because the specified condition is never true, so control never enters
the loop. In addition, if the user enters a very large number, the program
loops for a long time before completing.

A separate, less frequently used version of the while loop known as the do . . .
while appears identical except the condition isn’t tested until the bottom of
the loop:

do
{
 // ...the inside of the loop
} while (condition);

Because the condition isn’t tested until the end, the body of the do . . . while
is always executed at least once.

 The condition is checked only at the beginning of the while loop or at the end
of the do . . . while loop. Even if the condition ceases to be true at some time
during the execution of the loop, control does not exit the loop until the condi-
tion is retested.

74 Part I: Getting Started with C++ Programming

Using the autoincrement/
autodecrement feature
Programmers very often use the autoincrement ++ or the autodecrement – –
operators with loops that count something. Notice from the following snippet
extracted from the WhileDemo example that the program decrements the
loop count by using assignment and subtraction statements, like this:

// now loop that many times
while (nLoopCount > 0)
{
 nLoopCount = nLoopCount - 1;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
}

A more compact version uses the autodecrement feature, which does what
you may well imagine:

while (nLoopCount > 0)
{
 nLoopCount--;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
}

The logic in this version is the same as in the original. The only difference is
the way that nLoopCount is decremented.

Because the autodecrement both decrements its argument and returns its
value, the decrement operation can be combined with the while loop. In par-
ticular, the following version is the smallest loop yet:

 while (nLoopCount-- > 0)
 {
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
 }

Believe it or not, nLoopcount- - > 0 is the version that most C++ programmers
would use. It’s not that C++ programmers like being cute (although they do).
In fact, the more compact version (which embeds the autoincrement or auto-
decrement feature in the logical comparison) is easier to read, especially as
you gain experience.

 Both nLoopCount- - and - -nLoopCount expressions decrement nLoopCount. The
former expression, however, returns the value of nLoopCount before being dec-
remented; the latter expression does so after being decremented.

75 Chapter 5: Controlling Program Flow

How often should the autodecrement version of WhileDemo execute when the
user enters a loop count of 1? If you use the pre-decrement version, the value
of - -nLoopCount is 0, and the body of the loop is never entered. With the post-
decrement version, the value of nLoopCount is 1, and control enters the loop.

Beware thinking that the version of the program with the autodecrement
command executes faster than the simple “- 1” version (since it contains
fewer statements). It probably executes exactly the same. Modern compilers
are good at getting the number of machine-language instructions down to a
minimum, no matter which of the decrement instructions shown here you
actually use.

Using the for loop
The most common form of loop is the for loop. The for loop is preferred over
the more basic while loop because it’s generally easier to read (there’s really
no other advantage).

The for loop has the following format:

for (initialization; conditional; increment)
{
 // ...body of the loop
}

The for loop is equivalent to the following while loop:

{
 initialization;
 while(conditional)
 {
 {
 // ...body of the loop
 }
 increment;
 }
}

Execution of the for loop begins with the initialization clause, which got its
name because it’s normally where counting variables are initialized. The ini-
tialization clause is executed only once, when the for loop is first encountered.

Execution continues with the conditional clause. This clause works just like
the while loop: As long as the conditional clause is true, the for loop contin-
ues to execute.

76 Part I: Getting Started with C++ Programming

After the code in the body of the loop finishes executing, control passes to the
increment clause before returning to check the conditional clause — thereby
repeating the process. The increment clause normally houses the autoincre-
ment or autodecrement statements used to update the counting variables.

The for loop is best understood by example. The following ForDemo1 pro-
gram is nothing more than the WhileDemo converted to use the for loop
construct:

// ForDemo1 - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int nLoopCount;
 cout << "Enter loop count: ";
 cin >> nLoopCount;

 // count up to the loop count limit
 for (; nLoopCount > 0;)
 {
 nLoopCount = nLoopCount - 1;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program reads a value from the keyboard into the variable nloopCount.
The for starts out comparing nloopCount to 0. Control passes into the for loop
if nloopCount is greater than 0. Once inside the for loop, the program decre-
ments nloopCount and displays the result. That done, the program returns to
the for loop control. Control skips to the next line after the for loop as soon as
nloopCount has been decremented to 0.

 All three sections of a for loop may be empty. An empty initialization or incre-
ment section does nothing. An empty comparison section is treated like a
comparison that returns true.

77 Chapter 5: Controlling Program Flow

This for loop has two small problems. First, it’s destructive — not in the
sense of what my puppy does to a slipper, but in the sense that it changes
the value of nloopCount, “destroying” the original value. Second, this for loop
counts backward from large values down to smaller values. These two prob-
lems are addressed by adding a dedicated counting variable to the for loop.
Here’s what it looks like:

// ForDemo2 - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int nLoopCount;
 cout << "Enter loop count: ";
 cin >> nLoopCount;

 // count up to the loop count limit
 for (int i = 1; i <= nLoopCount; i++)
 {
 cout << "We've finished " << i
 << " loops" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This modified version of ForDemo loops the same as it did before. Instead of
modifying the value of nLoopCount, however, this ForDemo2 version uses a
new counter variable.

This for loop declares a counter variable i and initializes it to 0. It then com-
pares this counter variable to nLoopCount. If i is less than nLoopCount, con-
trol passes to the output statement within the body of the for loop. Once the
body has completed executing, control passes to the increment clause where
i is incremented and compared to nLoopCount again, and so it goes.

78 Part I: Getting Started with C++ Programming

The following shows example output from the program:

Enter loop count: 5
We've finished 1 loops
We've finished 2 loops
We've finished 3 loops
We've finished 4 loops
We've finished 5 loops
Press Enter to continue...

 When declared within the initialization portion of the for loop, the index vari-
able is known only within the for loop itself. Nerdy C++ programmers say that
the scope of the variable is limited to the for loop. In the ForDemo2 example
just given, the variable i is not accessible from the return statement because
that statement is not within the loop.

Avoiding the dreaded infinite loop
An infinite loop is an execution path that continues forever. An infinite loop
occurs any time the condition that would otherwise terminate the loop can’t
occur — usually the result of a coding error.

Consider the following minor variation of the earlier loop:

while (nLoopCount > 0)
{
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
}

The programmer forgot to decrement the variable nLoopCount. The result is a
loop counter that never changes. The test condition is either always false or
always true. The program executes in a never-ending (infinite) loop.

 I realize that nothing’s infinite. Eventually the power will fail, the computer will
break, Microsoft will go bankrupt, and dogs will sleep with cats. . . . Either the
loop will stop executing, or you won’t care anymore. But an infinite loop will
continue to execute until something outside the control of the program makes
it stop.

You can create an infinite loop in many more ways than shown here, most of
which are a lot more difficult to spot than this was.

79 Chapter 5: Controlling Program Flow

For each his own
 New for 2011 is a form of the for statement commonly known as the “for each”

or the “range-based for loop.” In this for loop, the counting variable is followed
by a list of values, as shown in the following demo program:

 The ForEach does not work on the Macintosh version of Code::Blocks as of
this writing.

// ForEachDemo - C++ includes a form of the "for each"
// which iterates through each member of
// a list
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "The primes less than 20 are:" << endl;
 for(int n : {1, 2, 3, 5, 7, 11, 13, 17, 19})
 {
 cout << n << ", ";
 }
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The values within the braces are known as a list. The variable n is assigned
each value in the list: 1 the first time through the loop, then the value 2, then
3, then 5, and so on. The for loop terminates when the list is exhausted. The
output of this program appears as follows:

The primes less than 20 are:
1, 2, 3, 5, 7, 11, 13, 17, 19,
Press Enter to continue...

I touch on initializer lists again in Chapter 7 and discuss in detail in Chapter 26.

 The range-based loop example shown here does not work on the Macintosh
version of Code::Blocks/gcc. The array-based examples in Chapter 7 do work
correctly on the Mac, however.

80 Part I: Getting Started with C++ Programming

Applying special loop controls
C++ defines two special flow-control commands known as break and continue.
Sometimes the condition for terminating a loop occurs at neither the begin-
ning nor the end of the loop, but in the middle. Consider a program that accu-
mulates numbers of values entered by the user. The loop terminates when the
user enters a negative number.

The challenge with this problem is that the program can’t exit the loop until the
user has entered a value but must exit before the value is added to the sum.

For these cases, C++ defines the break command. When encountered, the
break causes control to exit the current loop immediately. Control passes
from the break statement to the statement immediately following the closed
brace at the end of the loop.

The format of the break commands is as follows:

while(condition) // break works equally well in for loop
{
 if (some other condition)
 {
 break; // exit the loop
 }
} // control passes here when the
 // program encounters the break

Armed with this new break command, my solution to the accumulator prob-
lem appears as the program BreakDemo:

// BreakDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a negative number.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int accumulator = 0;
 cout << "This program sums values from the user\n"
 << "Terminate by entering a negative number"
 << endl;

 // loop "forever"
 for(;;)

81 Chapter 5: Controlling Program Flow

 {
 // fetch another number
 int nValue = 0;
 cout << "Enter next number: ";
 cin >> nValue;

 // if it's negative...
 if (nValue < 0)
 {
 // ...then exit
 break;
 }

 // ...otherwise add the number to the accumulator
 accumulator += nValue;
 }

 // now that we've exited the loop
 // output the accumulated result
 cout << "\nThe total is "
 << accumulator
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

After explaining the rules to the user (entering a negative number to termi-
nate and so on), the program enters what looks like an infinite for loop. Once
within the loop, BreakDemo retrieves a number from the keyboard. Only after
the program has read the number can it test to see whether that number
matches the exit criteria. If the input number is negative, control passes to
the break, causing the program to exit the loop. If the input number is not
negative, control skips over the break command to the expression that sums
the new value into the accumulator. After the program exits the loop, it out-
puts the accumulated value and then exits.

 When performing an operation on a variable repeatedly in a loop, make sure
that the variable is initialized properly before entering the loop. In this case,
the program zeros accumulator before entering the loop where nValue is added
to it.

82 Part I: Getting Started with C++ Programming

The result of an example run appears as follows:

This program sums values from the user
Terminate by entering a negative number
Enter next number: 1
Enter next number: 2
Enter next number: 3
Enter next number: -1

The total is 6
Press Enter to continue...

The similar continue command is used less frequently. When the program
encounters the continue command, it immediately moves back to the top of
the loop. The rest of the statements in the loop are ignored for the current
iteration.

The following example snippet ignores negative numbers that the user might
input. Only a 0 terminates this version (the complete program appears on the
website as ContinueDemo):

while(true) // this while() has the same effect as for(;;)
{
 // input a value
 cout << "Input a value:";
 cin >> nValue;

 // if the value is negative...
 if (nValue < 0)
 {
 // ...output an error message...
 cout << "Negative numbers are not allowed\n";

 // ...and go back to the top of the loop
 continue;
 }

 // ...continue to process input like normal
}

Nesting Control Commands
Return to our PC-screen-repaint problem. Surely it must need a loop struc-
ture of some type to write each pixel from left to right on a single line. (Do
Middle Eastern terminals scan from right to left? I have no idea.) What about
repeatedly repainting each scan line from top to bottom? (Do PC screens
in Australia scan from bottom to top?) For this particular task, you need to
include a left-to-right scan loop within the top-to-bottom scan loop.

83 Chapter 5: Controlling Program Flow

A loop command within another loop is known as a nested loop. As an
example, I have modified the BreakDemo program to accumulate any number
of sequences. In this NestedDemo program, the inner loop sums numbers
entered from the keyboard until the user enters a negative number. The outer
loop continues accumulating sequences until the sum is 0. Here’s what it
looks like:

// NestedDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a 0. Repeat the process
// until the sum is 0.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // the outer loop
 cout << "This program sums multiple series\n"
 << "of numbers. Terminate each sequence\n"
 << "by entering a negative number.\n"
 << "Terminate the series by entering two\n"
 << "negative numbers in a row\n";

 // continue to accumulate sequences
 int accumulator;
 for(;;)
 {
 // start entering the next sequence
 // of numbers
 accumulator = 0;
 cout << "Start the next sequence\n";

 // loop forever
 for(;;)
 {
 // fetch another number
 int nValue = 0;
 cout << "Enter next number: ";
 cin >> nValue;

 // if it's negative...
 if (nValue < 0)
 {
 // ...then exit
 break;
 }

84 Part I: Getting Started with C++ Programming

 // ...otherwise add the number to the
 // accumulator
 accumulator += nValue;
 }

 // exit the loop if the total accumulated is 0
 if (accumulator == 0)
 {
 break;
 }

 // output the accumulated result and start over
 cout << "The total for this sequence is "
 << accumulator << endl << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Notice the inner for loop looks like the earlier accumulator example. Immediately
after that loop, however, is an added test. If accumulator is equal to 0, the pro-
gram executes a break statement that exits the outer loop. Otherwise, the pro-
gram outputs the accumulated value and starts over.

Switching to a Different Subject?
One last control statement is useful in a limited number of cases. The switch
statement resembles a compound if statement by including a number of dif-
ferent possibilities rather than a single test:

switch(expression)
{
 case c1:
 // go here if the expression == c1
 break;
 case c2:
 // go here if expression == c2
 break;
 default:
 // go here if there is no match
}

85 Chapter 5: Controlling Program Flow

The value of expression must be an integer (int, long, or char). The case
values must be constants.

 As of the ’14 standard, they can also be a constant expression. I don’t describe
constant expressions until Chapter 10.

When the switch statement is encountered, the expression is evaluated and
compared to the various case constants. Control branches to the case that
matches. If none of the cases matches, control passes to the default clause.

Consider the following example code snippet:

int choice;
cout << "Enter a 1, 2 or 3:";
cin >> choice;

switch(choice)
{
 case 1:
 // do "1" processing
 break;

 case 2:
 // do "2" processing
 break;

 case 3:
 // do "3" processing
 break;

 default:
 cout << "You didn't enter a 1, 2 or 3\n";
}

Once again, the switch statement has an equivalent; in this case, multiple
if statements. However, when there are more than two or three cases, the
switch structure is easier to understand.

 The break statements are necessary to exit the switch command. Without
the break statements, control falls through from one case to the next. (Look
out below!)

86 Part I: Getting Started with C++ Programming

Part II
Becoming a Functional

C++ Programmer

 Visit www.dummies.com/extras/cplusplus for great Dummies
content online.

In this part...
 ✓ Writing functions

 ✓ Using arrays

 ✓ Passing pointers

 ✓ Defining constants and macros

 ✓ Visit www.dummies.com/extras/cplusplus for great
Dummies content online

Chapter 6

Creating Functions
In This Chapter
▶ Writing functions

▶ Passing data to functions

▶ Naming functions with different arguments

▶ Creating function prototypes

▶ Passing by value versus passing by reference

▶ Providing default values for arguments

T
he programs developed in prior chapters have been small enough that
they can be easily read as a single unit. Larger, real-world programs are

often many thousands if not millions of lines long. Developers need to break
up these monster programs into smaller chunks that are easier to conceive,
describe, develop, and maintain.

C++ allows programmers to divide their code into just such chunks known as
functions. A function is a small block of code that can be executed as a single
entity. This allows the programmer to divide her program into a number of
such entities, each that implements some well-defined subset of the overall
program. Functions are themselves broken up into smaller, more detailed
functions in a pyramid of ever smaller, more detailed solutions that make up
the complete program.

This divide-and-conquer approach reduces the complexity of creating a working
program of significant size to something achievable by a mere mortal.

Writing and Using a Function
Functions are best understood by example. This section starts with the example
program FunctionDemo, which simplifies the NestedDemo program I discussed
in Chapter 5 by defining a function to contain part of the logic. Then this section
explains how the function is defined and how it is invoked, using FunctionDemo
as a pattern for understanding both the problem and the solution.

90 Part II: Becoming a Functional C++ Programmer

The NestedDemo program in Chapter 5 contains at least three parts that can
be easily separated both in your mind and in fact:

 ✓ An explanation to the operator as to how data is to be entered

 ✓ An inner loop that sums up a single sequence of numbers

 ✓ An outer loop that repeatedly invokes the inner loop until the accumulated
value is 0

Separating the program along these lines allows the programmer to concen-
trate on each piece of the program separately. The following FunctionDemo
program shows how NestedDemo can be broken up by creating the functions
displayExplanation() and sumSequence():

// FunctionDemo - demonstrate the use of functions
// by breaking the inner loop of the
// NestedDemo program off into its own
// function
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// displayExplanation - prompt the user as to the rules
// of the game
void displayExplanation(void)
{
 cout << "This program sums multiple series\n"
 << "of numbers. Terminate each sequence\n"
 << "by entering a negative number.\n"
 << "Terminate the series by entering an\n"
 << "empty sequence.\n"
 << endl;
 return;
}

// sumSequence - add a sequence of numbers entered from
// the keyboard until the user enters a
// negative number.
// return - the summation of numbers entered
int sumSequence(void)
{
 // loop forever
 int accumulator = 0;
 for(;;)
 {
 // fetch another number
 int nValue = 0;
 cout << "Enter next number: ";
 cin >> nValue;

91 Chapter 6: Creating Functions

 // if it's negative...
 if (nValue < 0)
 {
 // ...then exit from the loop
 break;
 }

 // ...otherwise add the number to the
 // accumulator
 accumulator += nValue;
 }

 // return the accumulated value
 return accumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // display prompt to the user
 displayExplanation();

 // accumulate sequences of numbers...
 for(;;)
 {
 // sum a sequence of numbers entered from
 // the keyboard
 cout << "Enter next sequence" << endl;
 int accumulatedValue = sumSequence();

 // terminate the loop if sumSequence() returns
 // a zero
 if (accumulatedValue == 0)
 {
 break;
 }

 // now output the accumulated result
 cout << "The total is " << accumulatedValue
 << endl << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

92 Part II: Becoming a Functional C++ Programmer

Defining our first function
The statement void displayExplanation(void) is known as a function declaration —
 it introduces the function definition that immediately follows. A function decla-
ration always starts with the name of the function preceded by the type of value
the function returns and followed by a pair of open and closed parentheses
containing any arguments to the function.

The return type void means that displayExplanation() does not return a value.
The void within the argument list means that it doesn’t take any arguments
either. (We’ll get to what that means very soon.) The body of the function is
contained in the braces immediately following the function declaration.

 Function names are normally written as a multiword description with all the
words rammed together. I start function names with lowercase but capitalize
all intermediate words. Function names almost always appear followed by an
open and close parenthesis pair.

A function doesn’t do anything until it is invoked. Our program starts executing
with the first line in main() just like always. The first non-comment line in main()
is the call to displayExplanation():

displayExplanation();

This passes program control to the first line in the displayExplanation() func-
tion. The computer continues to execute there until it reaches the return
statement at the end of displayExplanation() or until control reaches the
closed brace at the end of the function.

Defining the sumSequence() function
The declaration int sumSequence(void) begins the definition of the
sumSequence() function. This declaration says that the function does not
expect any arguments but returns a value of type int to the caller. The body of
this function contains the same code previously found in the inner loop of the
NestedDemo example.

The sumSequence() function also contains a return statement to exit the pro-
gram. This return is not optional since it contains the value to be returned,
accumulator. The type of value returned must match the type of the function
in the declaration, in this case int.

Calling the function sumSequence()
Return back to the main() function in FunctionDemo again. This section of
code looks similar to the outer loop in NestedDemo.

93 Chapter 6: Creating Functions

The main difference is the expression accumulatedValue = sumSequence();
that appears where the inner loop would have been. The sumSequence()
statement invokes the function of that name. The value of the expression
sumSequence() is the value returned by the function. This value is stored in
the variable accumulatedValue and then displayed. The main program contin-
ues to loop until sumSequence() returns a sum of 0, which indicates that the
user has finished calculating sums.

Divide and conquer
The FunctionDemo program has split the outer loop in main() from the inner
loop into a function sumSequence() and created a displayExplanation() to get
things kicked off. This division wasn’t arbitrary: Both functions in FunctionDemo
perform a logically separate operation.

 A good function is easy to describe. You shouldn’t have to use more than
a single sentence, with a minimum of such words as and, or, unless, until or
but. For example, here’s a simple, straightforward definition: “The function
sumSequence accumulates a sequence of integer values entered by the user.”
This definition is concise and clear. It’s a world away from the NestedDemo
program description: “The program explains to the user how the program
works AND then sums a sequence of positive values AND displays the sum
AND starts over again UNTIL the user enters a zero-length sum.”

The output of a sample run of this program appears identical to that generated
by the NestedDemo program.

Understanding the Details of Functions
Functions are so fundamental to creating C++ programs that getting a handle
on the details of defining, creating, and testing them is critical. Armed with the
example FunctionDemo program, consider the following definition of function:
A function is a logically separated block of C++ code.

The function construct has the following form:

<return type> name(<arguments to the function>)
{
 // ...
 return <expression>;
}

The arguments to a function are values that can be passed to the function to
be used as input information. The return value is a value that the function
returns. For example, in the call to the function square(10), the value 10 is an
argument to the function square(). The returned value is 100 (if it’s not, this is
one poorly named function).

94 Part II: Becoming a Functional C++ Programmer

Both the arguments and the return value are optional. If either is absent, the
keyword void is used instead. That is, if a function has a void argument list,
the function does not take any arguments when called (this was the case with
the FunctionDemo program). If the return type is void, the function does not
return a value to the caller.

 The default argument type to a function is void, meaning that it takes no
arguments. A function int fn(void) may be declared as int fn().

Understanding simple functions
The simple function sumSequence() returns an integer value that it calculates.
Functions may return any of the intrinsic variable types described in Chapter 2.
For example, a function might return a double or a char. If a function returns no
value, the return type of the function is labeled void.

 A function may be labeled by its return type — for example, a function that
returns an int is often known as an integer function. A function that returns no
value is known as a void function.

For example, the following void function performs an operation but returns
no value:

void echoSquare()
{
 int value;
 cout << "Enter a value:";
 cin >> value;
 cout << "\nThe square is:" << (value * value) << "\n";
 return;
}

Control begins at the open brace and continues through to the return state-
ment. The return statement in a void function is not followed by a value. The
return statement in a void function is optional. If it isn’t present, execution
returns to the calling function when control encounters the close brace.

Understanding functions with arguments
Functions without arguments are of limited use because the communication from
such functions is one-way — through the return value. Two-way communication
is through function arguments.

95 Chapter 6: Creating Functions

Functions with arguments
A function argument is a variable whose value is passed to the calling function
during the call operation. The following SquareDemo example program defines
and uses a function square() that returns the square of a double-precision float
passed to it:

// SquareDemo - demonstrate the use of a function
// which processes arguments

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// square - returns the square of its argument
// doubleVar - the value to be squared
// returns - square of doubleVar
double square(double doubleVar)
{
 return doubleVar * doubleVar;
}

// displayExplanation - prompt the user as to the rules
// of the game
void displayExplanation(void)
{
 cout << "This program sums the square of multiple\n"
 << "series of numbers. Terminate each sequence\n"
 << "by entering a negative number.\n"
 << "Terminate the series by entering an\n"
 << "empty sequence.\n"
 << endl;
 return;
}

// sumSquareSequence - accumulate the square of the number
// entered at the keyboard into a sequence
// until the user enters a negative number
double sumSquareSequence(void)
{
 // loop forever
 double accumulator = 0.0;
 for(;;)
 {
 // fetch another number
 double dValue = 0;
 cout << "Enter next number: ";
 cin >> dValue;

96 Part II: Becoming a Functional C++ Programmer

 // if it's negative...

 if (dValue < 0)
 {
 // ...then exit from the loop
 break;
 }

 // ...otherwise calculate the square
 double value = square(dValue);

 // now add the square to the
 // accumulator
 accumulator += value;
 }

 // return the accumulated value
 return accumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 displayExplanation();

 // Continue to accumulate numbers...
 for(;;)
 {
 // sum a sequence of numbers entered from
 // the keyboard
 cout << "Enter next sequence" << endl;
 double accumulatedValue = sumSquareSequence();

 // terminate if the sequence is zero or negative
 if (accumulatedValue <= 0.0)
 {
 break;
 }

 // now output the accumulated result
 cout << "\nThe total of the values squared is "
 << accumulatedValue << endl << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

97 Chapter 6: Creating Functions

This is essentially the same FunctionDemo program, except that the sumSquare
Sequence() function accumulates the square of the values entered and returns
them as a double rather than an int. The function square() returns the value of
its one argument multiplied by itself. The change to the sumSequence() func-
tion is simple: Rather than accumulate the value entered, the function now
accumulates the result returned from square().

Functions with multiple arguments
Functions may have multiple arguments that are separated by commas. Thus,
the following function returns the product of its two arguments:

int product(int arg1, int arg2)
{
 return arg1 * arg2;
}

main() exposed
The “keyword” main() from our standard program template is nothing more
than a function — albeit a function with strange arguments but a function
nonetheless.

When C++ builds a program from source code, it adds some boilerplate code
that executes before your program ever starts. (You can’t see this code with-
out digging into the bowels of the C++ library functions.) This code sets up the
environment in which your program operates. For example, this boilerplate
code opens the default input and output channels cin and cout.

After the environment has been established, the C++ boilerplate code calls
the function main(), thereby beginning execution of your code. When your
program finishes, it exits from main(). This enables the C++ boilerplate to
clean up a few things before turning control over to the operating system that
kills the program.

The arguments to main() are complicated — we’ll review those later. The
int returned from main() is a status indicator. The program returns a 0 if
the program terminates normally. Any other value can be used to indicate
an error — the actual value returned indicates the nature of the error that
caused the program to quit.

98 Part II: Becoming a Functional C++ Programmer

Overloading Function Names
C++ must have a way of telling functions apart. Thus, two functions cannot
share the same name and argument list, known as the extended name or the
signature. The following extended function names are all different and can
reside in the same program:

void someFunction(void)
{
 //perform some function
}
void someFunction(int n)
{
 // ...perform some different function
}
void someFunction(double d)
{
 // ...perform some very different function
}
void someFunction(int n1, int n2)
{
 //do something different yet
}

C++ knows that the functions someFunction(void), someFunction(int),
someFunction(double), and someFunction(int, int) are not the same.

 This multiple use of names is known as function overloading.

Programmers often refer to functions by their shorthand name, which is the
name of the function without its arguments, such as someFunction(), in the
same way that I have the shorthand name Stephen (actually, my nickname is
Randy, but work with me on this one). But if there’s any doubt, I can be differ-
entiated from other Stephens by including my family name. In the same way,
overloaded functions can be differentiated by their argument lists.

Here’s a typical application that uses overloaded functions with unique
extended names:

int intVariable1, intVariable2;
double doubleVariable;

// functions are distinguished by the type of
// the argument passed
someFunction(); // calls someFunction(void)

99 Chapter 6: Creating Functions

someFunction(intVariable1); // calls someFunction(int)
someFunction(doubleVariable);// calls someFunction(double)
someFunction(intVariable1, intVariable2); // calls
 // someFunction(int, int)

// this works for constants as well
someFunction(1); // calls someFunction(int)
someFunction(1.0); // calls someFunction(double)
someFunction(1, 2); // calls someFunction(int, int)

In each case, the type of the arguments matches the extended names of the
three functions.

 The return type is not part of the extended name of the function. The following
two functions have the same name, so they can’t be part of the same program:

int someFunction(int n); // full name of the function
 // is someFunction(int)
double someFunction(int n); // same name
long l = someFunction(10); // call which function?

Here C++ does not know whether to convert the value returned from the
double version of someFunction() to a long or promote the value returned
from int version.

Defining Function Prototypes
A function must be declared before it can be used. That’s so C++ can compare
the call against the declaration to make sure that any necessary conversions
are performed. However, a function does not have to be defined when it is
first declared. A function may be defined anywhere in the module. (A module
is another name for a C++ source file.)

Consider the following code snippet:

int main(int nNumberofArgs, char* pszArgs[])
{
 someFunc(1, 2);
}
int someFunc(double dArg1, int nArg2)
{
 // ...do something
}

100 Part II: Becoming a Functional C++ Programmer

main() doesn’t know the proper argument types of the function someFunc()
at the time of the call. C++ might surmise from the call that the full function
definition is someFunc(int, int) and that its return type is void; however, the
definition of the function that appears immediately after main() shows that
the programmer wants the first argument converted to a floating point and
that the function does actually return a value.

I know, I know — C++ could be less lazy and look ahead to determine the
extended name of someFunc() on its own, but it doesn’t. What is needed is
some way to inform main() of the full name of someFunc() before it is used.
This is handled by what we call a function prototype declaration.

A prototype declaration appears the same as a function with no body. In use,
a prototype declaration looks like this:

int someFunc(double, int);
int main(int nNumberofArgs, char* pszArgs[])
{
 someFunc(1, 2);
}
int someFunc(double dArg1, int nArg2)
{
 // ...do something
}

The prototype declaration tells the world (at least that part of the world after the
declaration) that the extended name for someFunc() is someFunction(double, int).
The call in main() now knows to cast the 1 to a double before making the call. In
addition, main() knows that someFunc() returns an int value to the caller.

It is common practice to include function prototypes for every function in a
module either at the beginning of the module or, more often, in a separate file
that can be included within other modules at compile-time. That’s the function
of the include statements that appear at the beginning of the Official C++ For
Dummies program template:

#include <cstdio>
#include <cstdlib>
#include <iostream>

These three files cstdio, cstdlib, and iostream include prototype declarations
for the common system functions that we’ve been using, such as cout <<
“string”. The contents of these files are inserted at the point of the #include
statement by the compiler as part of its normal duties.

Chapter 10 is dedicated to include files and other so-called preprocessor
commands.

101 Chapter 6: Creating Functions

Defaulting Arguments
You can provide default values for arguments in your function declaration.
Consider the following simple example:

// isLegal - return true if the age is greater
// than or equal to the minimum age
// which defaults to 21
bool isLegal(int age, int minAge = 21)
{
 return age >= minAge;
}

This function returns a true if the first argument passed, age, is greater than
the second argument, minAge, and the second argument defaults to 21 if you
don’t say otherwise in the function call. Thus, the following calls are both
legal:

legal = isLegal(age); // same as isLegal(age, 21)
if (inLouisiana())
{
 legal = isLegal(age, 18);
}

The call isLegal(age) is completely equivalent to isLegal(age, 21). C++ just
provides the default argument for you. The call to isLegal(age, 18) ignores the
default value.

 Normally the defaults are provided in the prototype declarations.

You can default more than one argument, but defaults must be defined from
right to left and filled in from left to right:

// the following is legal
bool isWorkingAge(int age, int minAge=18, int maxAge=65);

// check if the worker is between 18 and 65
legal = isWorkingAge(age);

// check if worker is between 21 and 65
legal = isWorkingAge(age, 21);

// check if work is between 21 and 60
legal = isWorkingAge(age, 21, 60);

// the following does NOT check if the worker is
// between 18 and 60
legal = isWorkingAge(age, 60);

102 Part II: Becoming a Functional C++ Programmer

The first call uses the default values for both the minimum and maximum age
(18 and 65, respectively). The second call uses the default maximum age of
65 but supplies a different minimum age of 21. The third call provides both an
explicit minimum and maximum age.

 The last call does not check whether age is between 18 and 60 as you might
expect. In this case, the call is made with a minimum age of 60 and a maximum
age of 65.

 Default arguments can sometimes confuse C++ when combined with function
overloading. For example, the following is not legal:

bool isLegal(int age);
bool isLegal(int age, int minAge = 21); // not allowed

The problem is that if you called isLegal(10), C++ wouldn’t know which one
of the two functions to call: the first function with just one argument or the
second function with the second argument defaulted.

Passing by Value and
Passing by Reference

C++ normally passes arguments to functions by value. That is, if I call a function
fn(n), it is the value of n that gets passed to the function. This allows me to make
calls like the following:

fn(a + b); // pass the value of a + b

What gets passed in this snippet is the result of the expression a + b.

This has a perhaps surprising side effect demonstrated by the following
snippet:

void multiplyByTwo(int m)
{
 m *= 2;
}

int n = 1;
multiplyByTwo(n);

cout << "n = " << n << endl;

103 Chapter 6: Creating Functions

You may be surprised to find out that this example prints out n = 1.

Let’s go through the example one step at a time:

 1. The main program declares the variable n and initializes it to 1.

 2. The program then passes the value of n (1) to the function multiplyByTwo()
and calls it m.

 3. The function multiplies the value passed it by two and stores the result
in the local variable

 4. multiplyByTwo() discards m upon returning.

 5. The main program displays the unchanged value of n (1).

 This is called pass by value — the alternative is called pass by reference.

You can tell C++ that you want to pass not the value of a variable but a refer-
ence to a variable by adding an ampersand (&) to the type, as in the following
snippet:

void multiplyByTwo(int& m) // referential argument
{
 m *= 2;
}

int n = 1;
multiplyByTwo(n);

cout << "n = " << n << endl;

This example does the following:

 1. The main program declares the variable n and initializes it to 1.

 2. The program then passes a reference to n to the function multiplyByTwo()
which calls that reference m.

 3. The function multiplies by two the variable referenced by m and saves
the results back into the variable referenced by m (in other words, the
variable n).

 4. The main program displays the changed value of n (2).

 Arrays (which I introduce in the next chapter) are always passed by reference
for reasons that I will explain in Chapter 8.

I will have a lot more to say about reference arguments in Chapter 8.

104 Part II: Becoming a Functional C++ Programmer

Variable Storage Types
Variables are also assigned a storage type depending on where and how they
are defined in the function, as shown in the following example:

int globalVariable;
void fn()
{
 int localVariable;
 static int staticVariable = 1;
}

Variables declared within a function like localVariable are said to be local.
The variable localVariable doesn’t exist until execution passes through its
declaration within the function fn(). localVariable ceases to exist when the
function returns. Upon return, whatever value that is stored in localVariable
is lost. In addition, only fn() has access to localVariable — other functions
cannot reach into the function to access it.

By comparison, the variable globalVariable is created when the program
begins execution and exists as long as the program is running. All functions
have access to globalVariable all the time.

The keyword static can be used to create a sort of mishling — something
between a global and local variable. The static variable staticVariable is cre-
ated when execution reaches the declaration the first time that function fn()
is called, just like a local variable. The static variable is not destroyed when
program execution returns from the function, however. Instead, it retains its
value from one call to the next. If fn() assigns a value to staticVariable once,
it’ll still be there the next time fn() is called. The initialization portion of the
declaration is ignored every subsequent time execution passes through.

Chapter 7

Storing Sequences in Arrays
In This Chapter
▶ Considering the need for something like an array

▶ Introducing the array data type

▶ Using an array

▶ Using the most common type of array — the character string

A
n array is a sequence of variables that shares the same name and that is
referenced using an index. Arrays are useful little critters that allow you

to store a large number of values of the same type that are related in some
way — for example, the batting averages of all the players on the same team
might be a good candidate for storage within an array. Arrays can be multi-
dimensional, too, allowing you, for example, to store an array of batting aver-
ages within an array of months, which allows you to work with the batting
averages of the team as they occur by month.

In this chapter, you find out how to initialize and use arrays for fun and profit.
You also find out about an especially useful form of array called a char string.

Arraying the Arguments for Arrays
Consider the following problem. You need a program that can read a
sequence of numbers from the keyboard and display their sum. You guessed
it — the program stops reading in numbers as soon as you enter a negative
number. Unlike similar programs in Chapters 5 and 6, however, this program
will output all the numbers entered before displaying the average.

You could try to store numbers in a set of independent variables, as in

cin >> value1;
if (value1 >= 0)
{
 cin >> value2;
 if (value2 >= 0)
 {
 ...

106 Part II: Becoming a Functional C++ Programmer

You can see that this approach can’t handle sequences involving more than
just a few numbers. Besides, it’s ugly. What we need is some type of structure
that has a name like a variable but that can store more than one value. May I
present to you, Ms. A. Ray.

An array solves the problem of sequences nicely. For example, the following
snippet declares an array valueArray that has storage for up to 128 int values.
It then populates the array with numbers entered from the keyboard:

int nValue;

// declare an array capable of holding up to 128 ints
int nValueArray[128];

// define an index used to access subsequent members of
// of the array; don't exceed the 128 int limit
for (int i = 0; i < 128; i++)
{
 cin >> nValue;

 // exit the loop when the user enters a negative
 // number
 if (nValue < 0)
 {
 break;
 }
 nValueArray[i] = nValue;
}

The second line of this snippet declares an array nValueArray. Array declara-
tions begin with the type of the array members: in this case, int. This is followed
by the name of the array. The last elements of an array declaration are open
and closed brackets containing the maximum number of elements that the
array can hold. In this code snippet, nValueArray can store up to 128 integers.

 The size of an array must be a constant expression — this means an expres-
sion that C++ can calculate when it does the build.

 The 2014 standards allows the program to declare the size of an array with
any expression as long as its value is known when the declaration is encoun-
tered. However, once declared, the size of the array is fixed.

This snippet reads a number from the keyboard and stores it into each sub-
sequent member of the array nValueArray. You access an individual element
of an array by providing the name of the array followed by brackets contain-
ing the index. The first integer in the array is nValueArray[0], the second is
nValueArray[1], and so on.

In use, nValueArray[i] represents the ith element in the array. The index vari-
able i must be a counting variable — that is, i must be a char, an int, or a long.
If nValueArray is an array of ints, nValueArray[i] is an int.

107 Chapter 7: Storing Sequences in Arrays

Using an array
The following program inputs a sequence of integer values from the keyboard
until the user enters a negative number. The program then displays the num-
bers input and reports their sum.

// ArrayDemo - demonstrate the use of arrays
// by reading a sequence of integers
// and then displaying them and their sum
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
int readArray(int integerArray[], int maxNumElements);
int sumArray(int integerArray[], int numElements);
void displayArray(int integerArray[], int numElements);

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 cout << "This program sums values entered "
 << "by the user\n";
 cout << "Terminate the loop by entering "
 << "a negative number\n";
 cout << endl;

 // read numbers to be summed from the user into a
 // local array
 int inputValues[128];
 int numberOfValues = readArray(inputValues, 128);

 // now output the values and the sum of the values
 displayArray(inputValues, numberOfValues);
 cout << "The sum is "
 << sumArray(inputValues, numberOfValues)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// readArray - read integers from the operator into
// 'integerArray' until operator enters neg.
// Return the number of elements stored.
int readArray(int integerArray[], int maxNumElements)

108 Part II: Becoming a Functional C++ Programmer

{
 int numberOfValues;
 for(numberOfValues = 0;
 numberOfValues < maxNumElements;
 numberOfValues++)
 {
 // fetch another number
 int integerValue;
 cout << "Enter next number: ";
 cin >> integerValue;

 // if it's negative...
 if (integerValue < 0)
 {
 // ...then exit
 break;
 }

 // ... otherwise store the number
 // into the storage array
 integerArray[numberOfValues] = integerValue;
 }

 // return the number of elements read
 return numberOfValues;
 }

// displayArray - display the members of an
// array of length sizeOfloatArray
void displayArray(int integerArray[], int numElements)
{
 cout << "The value of the array is:" << endl;
 for (int i = 0; i < numElements; i++)
 {
 cout << i << ": " << integerArray[i] << endl;
 }
 cout << endl;
}

// sumArray - return the sum of the members of an
// integer array
int sumArray(int integerArray[], int numElements)
{
 int accumulator = 0;
 for (int i = 0; i < numElements; i++)
 {
 accumulator += integerArray[i];
 }
 return accumulator;
}

The program ArrayDemo begins with prototype declarations of the functions
readArray(), sumArray(), and displayArray(), which it will need later. The
main program starts with a prompt to the user to input data to be summed.

109 Chapter 7: Storing Sequences in Arrays

The program then declares an array inputValues[] to be used to store the
values input by the user. The main program passes this array to readArray(),
along with the length of the array — readArray() cannot read more than
128 values even if the user does not enter a negative number since that’s all
the room allocated in the inputValues[] array.

 The array inputValues is declared as 128 integers long. If you’re thinking that this
must be more than enough, don’t count on it. No matter how large you make
the array, always put a check to make sure that you do not exceed the limits of
the array. Writing more data than an array can hold causes your program to per-
form erratically and often to crash. This is discussed in detail in Chapter 28.

The main function then calls displayArray() to print the contents of the array.
Finally, the function calls sumArray() to add the elements in the array.

The readArray() function takes two arguments: the integerArray[] into which
to store the values it reads and maxNumElements, the maximum number of
integer values for which there is room at the inn. The function begins with a
for loop that reads integer values. Every non-negative value that the function
reads is saved into integerArray[]. The first element goes into integerArray[0],
the second into integerArray[1], and so forth.

Once the user enters a negative number, the program breaks out of the loop
and returns the total numberOfValues input.

The displayArray() function also uses a for loop to traverse the elements of the
array, starting at 0 and continuing to the last element, which is numElements - 1.
The final function, sumArray(), also iterates through the array but sums the ele-
ments stored there into accumulator, which it then returns to the caller.

Notice, yet again, that the index i in the displayArray() and sumArray() func-
tions is initialized to 0 and not to 1. In addition, notice how the for loop ter-
minates as soon as i reaches numElements. The output from a sample run
appears as follows:

This program sums values entered by the user
Terminate the loop by entering a negative number

Enter next number: 10
Enter next number: 20
Enter next number: 30
Enter next number: 40
Enter next number: -1
The value of the array is:
0: 10
1: 20
2: 30
3: 40

The sum is 100
Press Enter to continue...

110 Part II: Becoming a Functional C++ Programmer

 Just to keep non-programmers guessing, the term iterate means to traverse
through a set of objects such as an array. Programmers say that the preceding
functions iterate through the array.

Initializing an array
A local variable does not start life with a valid value, not even the value 0.
Said another way, a local variable contains garbage until you actually store
something in it. Locally declared arrays are the same — each element contains
garbage until you actually assign something to it. You should initialize local
variables when you declare them. This rule is even truer for arrays. It is far too
easy to access uninitialized array elements thinking that they are valid values.

 By “local variable”, I’m talking about the normal variables declared within a
function. C++ purists actually call these automatic variables to differentiate
them from static variables (discussed in Chapter 18).

Fortunately, a small array may be initialized at the time it is declared with an
initializer list. The following code snippet demonstrates how this is done:

float floatArray[5] = {0.0, 1.0, 2.0, 3.0, 4.0};

This initializes floatArray[0] to 0, floatArray[1] to 1.0, floatArray[2] to 2.0, and
so on.

C++ pads the initialization list with 0s if the number of elements in the list is
less than the size of the array. In fact, an empty initializer list can be used to
initialize an array to 0:

int nArray[128] = {}; // initialize array to all 0's

The number of initialization constants can determine the size of the array.
For example, you could have determined that floatArray has five elements
just by counting the values within the braces. C++ can count as well (here’s at
least one thing C++ can do for itself).

float floatArray[] = {0.0, 1.0, 2.0, 3.0, 4.0};

Accessing too far into an array
Mathematicians start counting arrays with 1. Most program languages start
with an offset of 1 as well. C++ arrays begin counting at 0. The first member
of a C++ array is valueArray[0]. That makes the last element of a 128-integer
array integerArray[127] and not integerArray[128].

111 Chapter 7: Storing Sequences in Arrays

Unfortunately for the programmer, C++ does not check to see whether the
index you are using is within the range of the array. C++ is perfectly happy
giving you access to integerArray[200]. Our integerArray yard is only 128 inte-
gers long — 200 is 72 integers into someone else’s yard. No telling who lives
there and what he’s storing at that location. Reading from integerArray[200]
will return some unknown and unpredictable value. Writing to that location
generates unpredictable results. It may do nothing — the house may be aban-
doned and the yard unused. On the other hand, it might overwrite some data,
thereby confusing the neighbor and making the program act in a seemingly
random fashion. Or it might crash the program.

 The most common wrong way to access an array is to read or write location
integerArray[128]. Although it’s only one element beyond the end of the array,
reading or writing this location is just as dangerous as using any other incorrect
address.

Arraying range-based for loops
 You can access the elements of an array using a range-based for loop in some

cases. The following for loop initializes all of the members of nArray to 0:

int nArray[128];
for(int& n: nArray)
{
 n = 0;
}

This for loop says assign the variable n to be a reference to each element of
nArray in turn. A 0 is then assigned to each element in nArray through the
reference n.

 The following range-based for loop has no effect:

int nArray[128];
for(int n: nArray)
{
 n = 0;
}

Without the ampersand (&), n is assigned the value of each element of nArray
in turn. The variable n is then overwritten with a 0, leaving the value of
nArray unchanged. Compare this to passing arguments to functions by value
versus passing by reference, as described in Chapter 6.

112 Part II: Becoming a Functional C++ Programmer

 Range-based for loops can be used only where C++ knows the size of the array
at build time. A range-based for loop would not work within the displayArray()
function, for example. This function is built to handle arrays of any size. You get
really strange build time error messages when you use range-based for loops on
arrays where the size is not known. I have more to say about this in Chapter 26.

Defining and using arrays of arrays
Arrays are adept at storing sequences of numbers. Some applications require
sequences of sequences. A classic example of this matrix configuration is the
spreadsheet. Laid out like a chessboard, each element in the spreadsheet has
both an x and a y offset.

C++ implements the matrix as follows:

int intMatrix[10][5];

This matrix is 10 elements in one dimension and 5 in another, for a total of
50 elements. In other words, intMatrix is a 10-element array, each element
of which is a 5-int array. As you might expect, one corner of the matrix is in
intMatrix[0][0], while the other corner is intMatrix[9][4].

Whether you consider intMatrix to be 10 elements long in the x dimension or
in the y dimension is a matter of taste. A matrix can be initialized in the same
way that an array is:

int intMatrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

This line initializes the 3-element array intMatrix[0] to 1, 2, and 3; and the
3-element array intMatrix[1] to 4, 5, and 6.

Using Arrays of Characters
The elements of an array can be of any type. Arrays of floats, doubles,
and longs are all possible; however, arrays of characters have particular
significance.

Creating an array of characters
Human words and sentences can be expressed as an array of characters. An
array of characters containing my first name would appear as

char sMyName[] = {'S', 't', 'e', 'p', 'h', 'e', 'n'};

113 Chapter 7: Storing Sequences in Arrays

The following small program displays my name:

// CharDisplay - output a character array to
// standard output, the MS-DOS window
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
void displayCharArray(char charArray[], int sizeOfArray);

int main(int nNumberofArgs, char* pszArgs[])
{
 char charMyName[]={'S', 't', 'e', 'p', 'h', 'e', 'n'};
 displayCharArray(charMyName, 7);
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// displayCharArray - display an array of characters
// by outputing one character at
// a time
void displayCharArray(char charArray[], int sizeOfArray)
{
 for(int i = 0; i< sizeOfArray; i++)
 {
 cout << charArray[i];
 }
}

The program declares a fixed array of characters charMyName containing —
you guessed it — my name (what better name?). This array is passed to the
function displayCharArray() along with its length. The displayCharArray()
function is identical to the displayArray() function in the earlier example
program except that this version displays chars rather than ints.

This program works fine; however, it is inconvenient to pass the length of the
array with the array itself. If we could come up with a rule for determining
the end of the string of characters, we wouldn’t need to pass its length — you
would know that the string was complete when you encountered the special
rule that told you so.

114 Part II: Becoming a Functional C++ Programmer

Creating a string of characters
In many cases, all values for each element are possible. However, C++
reserves the special “character” 0 as the non-character. You can use ‘\0’ to
mark the end of a character array. (The numeric value of ‘\0’ is 0, but the
type of ‘\0’ is char.)

 The character ‘\y’ is the character whose octal value is y. The character ‘\0’ is
the character with a value of 0, otherwise known as the null character. Using
that rule, the previous small program becomes

// DisplayString - output a character array to
// standard output, the MS-DOS window
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
void displayString(char stringArray[]);

int main(int nNumberofArgs, char* pszArgs[])
{
 char charMyName[] =
 {'S', 't', 'e', 'p', 'h', 'e', 'n', '\0'};
 displayString(charMyName);
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// displayString - display a character string
// one character at a time
void displayString(char stringArray[])
{
 for(int i = 0; stringArray[i] != '\0'; i++)
 {
 cout << stringArray[i];
 }
}

The declaration of charMyName declares the character array with the extra
null character ‘\0’ on the end. The displayString program iterates through the
character array until a null character is encountered.

115 Chapter 7: Storing Sequences in Arrays

The function displayString() is simpler to use than its displayCharArray()
predecessor because it is no longer necessary to pass along the length of the
character array. This secret handshake of terminating a character array with
a null is so convenient that it is used throughout the C++ language. C++ even
gives such an array a special name.

 A string of characters is a null-terminated character array. It is officially known
as a null-terminated byte string, or NTBS. The simpler term C-string is also used
to differentiate from the C++ type string.

The choice of ‘\0’ as the terminating character was not random. Remember
that 0 is the only numeric value that converts to false; all other values trans-
late to true. This means that the for loop could be (and usually is) written as

for(int i = 0; stringArray[i]; i++)

This whole business of null-terminated character strings is so ingrained in
the C++ language psyche that C++ uses a string of characters surrounded by
double quotes to be an array of characters automatically terminated with a
‘\0’ character. The following are identical declarations:

char szMyName[] = "Stephen";
char szAlsoMyName[] =
 {'S', 't', 'e', 'p', 'h', 'e', 'n', '\0'};

The naming convention used here is exactly that, a convention. C++ does not
care. The prefix sz stands for zero-terminated string.

 The string Stephen is eight characters long and not seven — the null character
after the n is assumed. The string "" is one character long, consisting of just
the null character.

Manipulating Strings with Character
The following Concatenate program inputs two strings from the keyboard and
concatenates them into a single string:

// Concatenate - concatenate two strings
// with a " - " in the middle
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
void concatString(char szTarget[], const char szSource[]);

116 Part II: Becoming a Functional C++ Programmer

int main(int nNumberofArgs, char* pszArgs[])
{
 // read first string...
 char szString1[256];
 cout << "Enter string #1:";
 cin.getline(szString1, 128);

 // ...now the second string...
 char szString2[128];
 cout << "Enter string #2:";
 cin.getline(szString2, 128);

 // ...concatenate a " - " onto the first...
 concatString(szString1, " - ");

 // ...now add the second string...
 concatString(szString1, szString2);

 // ...and display the result
 cout << "\n" << szString1 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// concatString - concatenate the szSource string
// onto the end of the szTarget string
void concatString(char szTarget[], const char szSource[])
{
 // find the end of the first string
 int targetIndex = 0;
 while(szTarget[targetIndex])
 {
 targetIndex++;
 }

 // tack the second onto the end of the first
 int sourceIndex = 0;
 while(szSource[sourceIndex])
 {
 szTarget[targetIndex] =
 szSource[sourceIndex];
 targetIndex++;
 sourceIndex++;
 }

 // tack on the terminating null
 szTarget[targetIndex] = '\0';
}

117 Chapter 7: Storing Sequences in Arrays

The Concatenate program reads two character strings and appends them
together with a " - " in the middle.

The program begins by reading a string from the keyboard. The program does
not use the normal cin >> szString1 for two reasons. First, the cin >> operation
stops reading when any type of whitespace is encountered. Characters up
to the first whitespace are read, the whitespace character is tossed, and the
remaining characters are left in the input hopper for the next cin >> statement.
Thus, if I were to enter “the Dog”, szString2 would be filled with “the” and the
word “Dog” would be left in the input buffer.

The second reason is that the getline() allows the programmer to specify the
size of the buffer. The call to getline(szString2, 128) will not read more than
128 bytes no matter how many are input.

Instead, the call to getline() inputs an entire line up to but not including the
newline at the end. We’ll review this function with other file I/O functions in
detail in Chapter 23.

After reading the first string into szString1[], the program appends " - " onto
the end by calling concatString(). It concatenates the second string by calling
concatString() with szString2[].

The concatString() function accepts a target string, szTarget, and a source
string, szSource. The function begins by scanning szTarget for the terminat-
ing null character, which it stores in targetIndex. The function then enters a
second loop in which it copies characters from the szSource into szTarget
starting at the terminating null. The final statement in concatString() slaps a
terminating null on the completed string.

An example output from the program appears as follows:

Enter string #1:this is a string
Enter string #2:THIS IS A STRING

this is a string - THIS IS A STRING
Press Enter to continue...

Adding Some Library Functions
The C++ programmer is often required to manipulate zero-terminated strings.
C++ provides a number of standard string-manipulation functions to make the
job easier. A few of these functions are listed in Table 7-1.

118 Part II: Becoming a Functional C++ Programmer

Table 7-1 String-Handling Functions
Name Operation
int strlen(string) Returns the number of characters in a string (not

including the terminating null).

char* strcpy(target, source) Copies the source string into a target array.

char* strcat(target, source) Concatenates the source string onto the end of
the target string.

char* strncpy(target,
source, n)

Copies a string up to n characters from the source
string into a target array.

char* strncat(target,
source, n)

Concatenates the source string onto the end
of the target string or n characters, whichever
comes first.

char* strstr(string, pattern) Returns the address of the first occurrence of pat-
tern in string. Returns a null if pattern is not found.

int strcmp(source1,
source2)

Compares two strings. Returns –1 if source1
occurs before source2 in the dictionary and 1 if
later. Returns 0 if the two strings match exactly.

int strncmp(source1,
source2, n)

Compares the first n characters in two strings.

 You need to add the statement #include <cstring> to the beginning of any pro-
gram that uses a str... function because this include file contains the prototype
declarations that C++ requires to check up on your work.

 The arguments to the str...() functions appear backward to any reasonable
individual (you might consider this an acid test for “reasonable”). For exam-
ple, the function strcat(target, source) tacks the second string source onto the
end of the first argument target.

The strncpy() and strncat() functions are similar to their strcpy() and strcat()
counterparts except that they accept the length of the target buffer as one
of their arguments. The call strncpy(szTarget, szSource, 128) says “copy the
characters in szSource into szTarget until you copy a null character or until
you’ve copied 128 characters, whichever comes first.” This avoids inadver-
tently writing beyond the end of the source string array.

Making Room for Wide Strings
The standard C++ library includes similar functions to handle wide character
strings. A few of these functions are listed in Table 7-2.

119 Chapter 7: Storing Sequences in Arrays

Table 7-2 Wide String-Handling Functions
Name Operation
int wcslen(string) Returns the number of wide characters in

a string, not including the terminating null.

wchar_t* wcscpy(target, source) Copies the source wide string into a
target array.

wchar_t* wcscat(target, source) Concatenates the source wide string
onto the end of the target wide string.

wchar_t* wcsncpy(target, source, n) Copies a wide string up to n characters
from the source string into a target array.

wchar_t* wcsncat(target, source, n) Concatenates the source string onto the
end of the target string or n characters,
whichever comes first.

wchar_t* wcsstr(string, pattern) Finds the address of the first occurrence
of pattern in string. Returns a null if pat-
tern is not found.

int wcscmp(source1, source2) Compares two wide strings. Returns –1
if source1 occurs before source2 in the
dictionary and 1 if later. Returns 0 if the
two strings match exactly.

int wcsncmp(source1, source2, n) Compares the first n wide characters in
two wide strings.

 Remember from Chapter 2 that wide characters are used for applications that
must support foreign languages, where a measly 255 different characters may
not be enough.

The following shows a wide character version of the Concatenate program:

// ConcatenateWide - concatenate two wide strings
// with a " - " in the middle using library routines
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // read first string...
 wchar_t wszString1[260];
 cout << "Enter string #1:";
 wcin.getline(wszString1, 128);

 // ...now the second string...
 wchar_t wszString2[128];

120 Part II: Becoming a Functional C++ Programmer

 cout << "Enter string #2:";
 wcin.getline(wszString2, 128);

 // now tack the second onto the end of the first
 // with a dash in between
 wcsncat(wszString1, L" - ", 260);
 wcsncat(wszString1, wszString2, 260);

 wcout << L"\n" << wszString1 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The wide character string program looks similar to its single-byte character
string cousin except for the following differences:

 ✓ Variables are declared wchar_t rather than char.

 ✓ Constant characters and constant strings appear preceded by an L, as in
L“This is a wide string”.

 ✓ The objects wcin and wcout are used in place of cin and cout for input
and output.

 ✓ The wcs . . . functions appear in place of the narrow str . . . functions.

 The output from ConcatenateWide appears identical to that of the char-based
Concatenate program to those of us who do most of their input/output in
European languages. The topic of writing programs capable of handling mul-
tiple languages with different alphabets and rules of grammar is known as
localization and beyond the scope of a beginning book.

 ANSI C++ includes a type string designed to make it easier to manipulate
strings of text. However, this type makes use of features of the language that
you haven’t seen yet. I return to the string type in Chapter 13.

Chapter 8

Taking a First Look at C++ Pointers
In This Chapter
▶ Addressing variables in memory

▶ Declaring and using pointer variables

▶ Recognizing the inherent dangers of pointers

▶ Passing pointers to functions

▶ Allocating objects off the heap (whatever that is)

S
o far, the C++ language has been fairly conventional compared with other
programming languages. Sure, some computer languages lack (il-)logical

operators like those in Chapter 4, and C++ has its own unique symbols for
things, but there’s been nothing new in the way of concepts. C++ really sepa-
rates itself from the crowd in its use of pointer variables. A pointer is a vari-
able that “points at” other variables. I realize that’s a circular argument, but
suspend your disbelief at least until you can get into the chapter.

This chapter introduces the pointer variable type. It begins with some con-
cept definitions, flows through pointer syntax, and then introduces some of
the reasons for the pointer mania that grips the C++ programming world.

Variable Size
My weight goes up and down all the time, but here I’m really referring to the
size of a variable, not my own variable size. Memory is measured in bytes or
bits. The keyword sizeof returns the size of its argument in bytes. The following
program uses this to determine the size of the different variable types:

// VariableSize - output the size of each type of variable
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

122 Part II: Becoming a Functional C++ Programmer

int main(int nNumberofArgs, char* pszArgs[])
{
 bool b; char c; int n; long l;
 long long ll; float f; double d; long double ld;

 cout << "sizeof a bool = " << sizeof b << endl;
 cout << "sizeof a char = " << sizeof c << endl;
 cout << "sizeof an int = " << sizeof n << endl;
 cout << "sizeof a long = " << sizeof l << endl;
 cout << "sizeof a long long = " << sizeof ll<< endl;
 cout << "sizeof a float = " << sizeof f << endl;
 cout << "sizeof a double = " << sizeof d << endl;
 cout << "sizeof a long double = " << sizeof ld<< endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The VariableSize program generates the following output:

sizeof a bool = 1
sizeof a char = 1
sizeof an int = 4
sizeof a long = 4
sizeof a long long = 8
sizeof a float = 4
sizeof a double = 8
sizeof a long double = 12
Press Enter to continue...

 As they say, “Your results may vary.” You may get different results if using a
compiler other than gcc for Windows. For example, you may find that an int is
smaller than a long. C++ doesn’t say exactly how big a variable type must be; it
just says that a long is the same size as or larger than an int and that a double
is the same size as or larger than a float. The sizes shown here are typical for a
32-bit 80-x-86 processor.

What’s in an Address?
Like the saying goes, “Everyone has to be somewhere.” Every C++ variable is
stored somewhere in the computer’s memory. Memory is broken into individual
bytes, with each byte carrying its own address numbered 0, 1, 2, and so on.

123 Chapter 8: Taking a First Look at C++ Pointers

A variable intReader might be at address 0x100, whereas floatReader might be
over at location 0x180. (By convention, memory addresses are expressed in
hexadecimal.) Of course, intReader and floatReader might be somewhere else
in memory entirely — only the computer knows for sure and only at the time
that the program is executed.

This is somewhat analogous to a hotel. When you make your reservation, you
may be assigned room 0x100. (I know that suite numbers are normally not
expressed in hexadecimal, but bear with me.) Your buddy may be assigned
80 doors down in room 0x180. Each variable is assigned an address when it is
created (more on that in this chapter when we talk about scope).

Address Operators
The two pointer-related operators are shown in Table 8-1. The & operator
says “tell me your address,” and * says “the value at the following address.”

Table 8-1 Pointer Operators
Operator Meaning
& (unary) (In an expression) the address of

& (unary) (In a declaration) reference to

* (unary) (In an expression) the thing pointed at by

* (unary) (In a declaration) pointer to

 These are not to be confused with the binary & and * operators discussed in
Chapters 3 and 4.

The following Layout program demonstrates how the & operator can be used
to display the layout of variables in memory:

// Layout - this program tries to give the
// reader an idea of the layout of
// local memory in her compiler
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

124 Part II: Becoming a Functional C++ Programmer

int main(int nNumberofArgs, char* pszArgs[])
{
 int start;
 int n; long l; long long ll;
 float f; double d; long double ld;
 int end;

 // set output to hex mode
 cout.setf(ios::hex);
 cout.unsetf(ios::dec);

 // output the address of each variable
 // in order to get an idea of how variables are
 // laid out in memory
 cout << "--- = " << &start << endl;
 cout << "&n = " << &n << endl;
 cout << "&l = " << &l << endl;
 cout << "&ll = " << &ll << endl;
 cout << "&f = " << &f << endl;
 cout << "&d = " << &d << endl;
 cout << "&ld = " << &ld << endl;
 cout << "--- = " << &end << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program declares a set of variables of different types. It then applies the
& operator to each one to find out its address. The results of one execution of
this program with Code::Blocks appear as follows:

--- = 0x28fefc
&n = 0x28fef8
&l = 0x28fef4
&ll = 0x28fee8
&f = 0x28fee4
&d = 0x28fed8
&ld = 0x28fec0
--- = 0x28febc
Press Enter to continue...

 Your results may vary. The absolute address of program variables depends on
a lot of factors. The C++ standard certainly doesn’t specify how variables are
to be laid out in memory.

Notice how the variable n is exactly 4 bytes from the first variable declared
(start), which corresponds to the size of an int (4 bytes). Similarly, the variable
l appears 4 bytes down from that, which is also the size of a long. However,
the float variable f is a full 12 bytes from its neighboring variable d (0x28fee4 –
0x28fed8 = 0x000c). That’s way more than the 4 bytes required for a float.

125 Chapter 8: Taking a First Look at C++ Pointers

 There is no requirement that the C++ compiler pack variables in memory with
no spaces between them. In fact, you often see these gaps in memory when
mixing variables of different size.

 The Code::Blocks/gcc compiler could be storing variables for its own use in
between our variables. Or, more likely, a peculiarity in the way the variables
are being laid out in memory is causing the compiler to waste a small amount
of space.

Using Pointer Variables
A pointer variable is a variable that contains an address, usually the address
of another variable. Returning to the analogy of hotel room numbers, I
might tell my son that I will be in room 0x100 on my trip. My son can act as
a pointer variable of sorts. Anyone can ask him at any time, “Where’s your
father staying?” Include $5 with that question, and he’ll spill his guts without
hesitation.

By the way, notice something about pointer variables: No matter where my
son is, and no matter how many other people he tells of my whereabouts, I’m
still in room 0x100.

The following pseudo-C++ demonstrates how the two address operators
shown in Table 8-1 are used:

mySon = &DadsRoom; // tell mySon the address of Dad's Room
room = *mySon; // "Dad's room number is"

The following C++ code snippet shows these operators used correctly:

void fn()
{
 int nVar;
 int* pnVar;

 pnVar = &nVar; // pnVar now points to nVar
 *pnVar = 10; // stores 10 into the int location
} // pointed at by pnVar

The function fn() begins with the declaration of nVar. The next statement
declares the variable pnVar to be a variable of type pointer to an int.

Pointer variables are declared like normal variables except for the addition
of the unary * character. This * character can appear anywhere between the
base type name — the following two declarations are equivalent:

int* pnVar1;
int *pnVar2;

126 Part II: Becoming a Functional C++ Programmer

Which you use is a matter of personal preference.

 The * character is called the asterisk character (that’s logical enough), but
because asterisk is hard to say, many programmers have come to call it the
star or, less commonly, the splat character. Thus, they would say “star pnVar”
or “splat pnVar.”

In an expression, the unary operator & means “the address of.” Thus, we would
read the assignment pnVar = &nVar; as “pnVar gets the address of nVar.”

Using different types of pointers
Every expression has a type as well as a value. The type of the expression
nVar is int; the type of &nVar is “pointer to an integer,” written int*. Comparing
this with the declaration of pVar, you see that the types match exactly:

int* pnVar = &nVar; // both sides of the assignment
 // are of type int*

Similarly, because pnVar is of type int*, the type of *pnVar is int:

*pnVar = 10; // both sides of the assignment are
 // of type int

The type of the thing pointed to by pnVar is int. This is equivalent to saying
that if houseAddress is the address of a house, the thing pointed at by house-
Address must be a house. Amazing, but true.

Pointers to other types of variables are expressed the same way:

double doubleVar;
double* pdoubleVar = &doubleVar;
*pdoubleVar = 10.0;

A pointer on a Pentium class machine takes 4 bytes no matter what it points
to. That is, an address on a Pentium is 4 bytes long, period.

Passing Pointers to Functions
One of the uses of pointer variables is in passing arguments to functions. To
understand why this is important, you need to understand how arguments
are passed to a function. (I touched on this in Chapter 6, but you’re now in a
much better place to understand this armed with your new understanding of
pointers.)

127 Chapter 8: Taking a First Look at C++ Pointers

Passing by value
By default, arguments are passed to functions by value. This has the some-
what surprising result that changing the value of a variable in a function does
not normally change its value in the calling function. Consider the following
example code segment:

void fn(int nArg)
{
 nArg = 10;
 // value of nArg at this point is 10
}

void parent(void)
{
 int n1 = 0;
 fn(n1);
 // value of n1 at this point is still 0
}

Here the parent() function initializes the integer variable n1 to 0. The value
of n1 is then passed to fn(). Upon entering the function, nArg is equal to 0,
the value passed. fn() changes the value of nArg to 10 before returning to
parent(). Upon returning to parent(), the value of n1 is still 0.

The reason for this behavior is that C++ doesn’t pass a variable to a function. (I’m
not even sure what that would mean.) Instead, C++ passes the value contained in
the variable at the time of the call. That is, the expression is evaluated, even if it
is just a variable name, and the result is passed.

In the example, the value of n1, which is 0, was passed to fn(). What the function
does with that value has no effect on n1.

Passing pointer values
Like any other intrinsic type, a pointer may be passed as an argument to a
function:

void fn(int* pnArg)
{
 *pnArg = 10;
}

void parent(void)
{
 int n = 0;

 fn(&n); // this passes the address of i
 // now the value of n is 10
}

128 Part II: Becoming a Functional C++ Programmer

In this case, the address of n is passed to the function fn() rather than the
value of n. The significance of this difference is apparent when you consider
the assignment within fn().

Suppose n is located at address 0x100. Rather than the value 10, the call
fn(&n) passes the value 0x100. Within fn(), the assignment *pnArg = 10 stores
the value 10 in the int variable located at location 0x100, thereby overwriting
the value 0. Upon returning to parent(), the value of n is 10 because n is just
another name for 0x100.

Passing by reference
C++ provides a shorthand for passing arguments by address — a shorthand
that enables you to avoid having to hassle with pointers. The following decla-
ration creates a variable n1 and a second reference to the same n1 but with a
new name, nRef:

int n1; // declare an int variable
int& nRef = n1; // declare a second reference to n1

nRef = 1; // now accessing the reference
 // has the same effect as accessing n1;
 // n1 is now equal to 1

A reference variable like nRef must be initialized when it is declared because
every subsequent time that its name is used, C++ will assume that you mean
the variable that nRef refers to.

Reference variables find their primary application in function calls:

void fn(int& rnArg)// declare reference argument
{
 rnArg = 10; // change the value of the variable...
} //...that rnArg refers to

void parent(void)
{
 int n1 = 0;
 fn(n1); // pass a reference to n1
 // here the value of n1 is 10
}

This is called passing by reference. The declaration int& rnArg declares rnArg
to be a reference to an integer argument. The fn() function stores the value 10
into the int location referenced by rnArg.

 Passing by reference is the same as passing the address of a variable. The ref-
erence syntax puts the onus on C++ to apply the “address of” operator to the
reference rather than requiring the programmer to do so.

129 Chapter 8: Taking a First Look at C++ Pointers

 You cannot overload a pass by value function with its pass by reference equiv-
alent. Thus, you could not define the two functions fn(int) and fn(int&) in the
same program. C++ would not know which one to call.

Constant const Irritation
The keyword const means that a variable cannot be changed once it has been
declared and initialized.

const double PI = 3.1415926535;

Arguments to functions can also be declared const, meaning that the argu-
ment cannot be changed within the function. However, this introduces an
interesting dichotomy in the case of pointer variables. Consider the following
declaration:

const int* pInt;

Exactly what is the constant here? What can we not change? Is it the variable
pInt or the integer pointed at by pInt? It turns out that both are possible, but
this declaration declares a variable pointer to a constant memory location.
Thus the following:

const int* pInt; // declare a pointer to a const int
int nVar;
pInt = &nVar; // this is allowed
*pInt = 10; // but this is not

We can change the value of pInt, for example, assigning it the address of nVar.
But the final assignment in the example snippet generates a compiler error
since we cannot change the const int pointed at by pInt.

What if I had intended to create a pointer variable with a constant value? The
following snippet shows this in action:

int nVar;
int * const cpInt = &nVar; // declare a constant pointer
 // to a variable integer
*cpInt = 10; // now this is legal...
cpInt++; // ...but this is not

The variable cpInt is a constant pointer to a variable int. The programmer
cannot change the value of the pointer, but she can change the value of the
integer pointed at.

130 Part II: Becoming a Functional C++ Programmer

The const-ness can be added via an assignment or initialization but cannot be
(readily) cast away. Thus, the following:

int nVar = 10;
int pVar = &nVar;
const int* pcVar = pVar; // this is legal
int* pVar2 = pcVar; // this is not

The assignment pcVar = pVar; is okay — this is adding the const restriction. The
final assignment in the snippet is not allowed since it attempts to remove the
const-ness restriction of pcVar.

A variable can be implicitly recast as part of a function call, as in the following
example:

void fn(const int& nVar);

void mainFn()
{
 int n;

 fn(10); // calls fn(const int&)
 fn(n); // calls the same function by treating n
} // as if it were const

The declaration fn(const int&) says that the function fn() does not modify the
value of its argument. That’s important when passing a reference to the con-
stant 10. It isn’t important when passing a reference to the variable n, but it
doesn’t hurt anything either.

Finally, const can be used as a discriminator between functions of the same name:

void fn(const int& nVar);
void fn(int& nVar);

void mainFn()
{
 int n;

 fn(10); // calls the first function
 fn(n); // calls the second function
}

Making Use of a Block of
Memory Called the Heap

The heap is an amorphous block of memory that your program can access as
necessary. This section describes why it exists and how to use it.

131 Chapter 8: Taking a First Look at C++ Pointers

Just as it is possible to pass a pointer to a function, it is possible for a function
to return a pointer. A function that returns the address of a double is declared
as follows:

double* fn(void);

However, you must be very careful when returning a pointer. To understand
the dangers, you must know something about variable scope. (No, I don’t
mean a variable zoom rifle scope.)

Limited scope
Besides being a mouthwash, scope is the range over which a variable is
defined. Consider the following code snippet:

// the following variable is accessible to
// all functions and defined as long as the
// program is running(global scope)
int intGlobal;

// the following variable intChild is accessible
// only to the function and is defined only
// as long as C++ is executing child() or a
// function which child() calls (function scope)
void child(void)
{
 int intChild;
}

// the following variable intParent has function
// scope
void parent(void)
{
 int intParent = 0;
 child();

 int intLater = 0;
 intParent = intLater;
}

int main(int nArgs, char* pArgs[])
{
 parent();
}

This program fragment starts with the declaration of a variable intGlobal. This
variable exists from the time the program begins executing until it terminates.
We say that intGlobal “has program scope.” We also say that the variable
“goes into scope” even before the function main() is called.

132 Part II: Becoming a Functional C++ Programmer

The function main() immediately invokes parent(). The first thing that the
processor sees in parent() is the declaration of intParent. At that point,
intParent goes into scope — that is, intParent is defined and available for the
remainder of the function parent().

The second statement in parent() is the call to child(). Once again, the func-
tion child() declares a local variable, this time intChild. The scope of the
variable intChild is limited to the function child(). Technically, intParent is not
defined within the scope of child() because child() doesn’t have access to
intParent; however, the variable intParent continues to exist while child() is
executing.

When child() exits, the variable intChild goes out of scope. Not only is intChild
no longer accessible, it no longer exists. (The memory occupied by intChild is
returned to the general pool to be used for other things.)

As parent() continues executing, the variable intLater goes into scope at the
declaration. At the point that parent() returns to main(), both intParent and
intLater go out of scope.

Because intGlobal is declared globally in this example, it is available to all
three functions and remains available for the life of the program.

Examining the scope problem
The following code segment compiles without error but doesn’t work (don’t
you just hate that?):

double* child(void)
{
 double dLocalVariable;
 return &dLocalVariable;
}

void parent(void)
{
 double* pdLocal;
 pdLocal = child();
 *pdLocal = 1.0;
}

The problem with this function is that dLocalVariable is defined only within
the scope of the function child(). Thus, by the time the memory address of
dLocalVariable is returned from child(), it refers to a variable that no longer
exists. The memory that dLocalVariable formerly occupied is probably being
used for something else.

133 Chapter 8: Taking a First Look at C++ Pointers

 This error is very common because it can creep up in a number of ways. Unfor-
tunately, this error does not cause the program to instantly stop. In fact, the
program may work fine most of the time — that is, the program continues to
work as long as the memory formerly occupied by dLocalVariable is not reused
immediately. Such intermittent problems are the most difficult ones to solve.

Providing a solution using the heap
The scope problem originated because C++ took back the locally defined
memory before the programmer was ready. What is needed is a block of
memory controlled by the programmer. She can allocate the memory and put
it back when she wants to — not because C++ thinks it’s a good idea. Such a
block of memory is called the heap.

Heap memory is allocated using the new keyword followed by the type of
object to allocate. The new command breaks a chunk of memory off the heap
big enough to hold the specified type of object and returns its address. For
example, the following allocates a double variable off the heap:

double* child(void)
{
 double* pdLocalVariable = new double;
 return pdLocalVariable;
}

This function now works properly. Although the variable pdLocalVariable
goes out of scope when the function child() returns, the memory to which
pdLocalVariable refers does not. A memory location returned by new does
not go out of scope until it is explicitly returned to the heap using the key-
word delete, which is specifically designed for that purpose:

void parent(void)
{
 // child() returns the address of a block
 // of heap memory
 double* pdMyDouble = child();

 // store a value there
 *pdMyDouble = 1.1;

 // ...

 // now return the memory to the heap
 delete pdMyDouble;
 pdMyDouble = 0;

 // ...
}

134 Part II: Becoming a Functional C++ Programmer

Here the pointer returned by child() is used to store a double value. After
the function is finished with the memory location, it is returned to the heap.
The function parent() sets the pointer to 0 after the heap memory has been
returned — this is not a requirement, but it is a very good idea. If the pro-
grammer mistakenly attempts to store something in * pdMyDouble after the
delete, the program will crash immediately with (I hope) a meaningful error
message.

You can use new to allocate arrays from the heap as well, but you must return
an array using the delete[] keyword:

int* nArray = new int[10];

nArray[0] = 0;

delete[] nArray;

 Technically new int[10] invokes the new[] operator but it works the same as new.

I have more to say about the relationship between pointers and arrays in
Chapter 9.

Chapter 9

Taking a Second Look
at C++ Pointers

In This Chapter
▶ Performing arithmetic operations on character pointers

▶ Examining the relationship between pointers and arrays

▶ Increasing program performance

▶ Extending pointer operations to different pointer types

▶ Explaining the arguments to main() in our C++ program template

C
++ allows the programmer to operate on pointer variables much as she
would on simple types of variables. (The concept of pointer variables is

introduced in Chapter 8.) How and why this is done, along with its implica-
tions, are the subjects of this chapter.

Defining Operations on
Pointer Variables

Some of the same arithmetic operators I cover in Chapter 3 can be applied to
pointer types. This section examines the implications of applying these oper-
ators both to pointers and to the array types (I discuss arrays in Chapter 7).
Table 9-1 lists the three fundamental operations that are defined on pointers.
In Table 9-1, pointer, pointer1, and pointer2 are all of some pointer type, say
char*;, and offset is an integer, for example, long. C++ also supports the other
operators related to addition and subtraction, such as ++ and +=., although
they are not listed in Table 9-1.

136 Part II: Becoming a Functional C++ Programmer

Table 9-1 The Three Basic Operations Defined on Pointer Types
Operation Result Meaning
pointer +
offset

pointer Calculate the address of the object offset entries
from pointer.

pointer
– offset

pointer The opposite of addition.

pointer2
– pointer1

offset Calculate the number of entries between pointer2
and pointer1.

The neighborhood memory model is useful to explain how pointer arithmetic
works. Consider a city block in which all houses are numbered sequentially.
The house at 123 Main Street has 122 Main Street on one side and 124 Main
Street on the other.

Now it’s pretty clear that the house four houses down from 123 Main Street
must be 127 Main Street; thus, you can say 123 Main + 4 = 127 Main. Similarly,
if I were to ask how many houses there are from 123 Main to 127 Main, the
answer would be four — 127 Main – 123 Main = 4. (Just as an aside, a house is
zero houses from itself: 123 Main – 123 Main = 0.)

But it makes no sense to ask how far away from 123 Main Street is 4 or what the
sum of 123 Main and 127 Main is. In similar fashion, you can’t add two addresses.
Nor can you multiply an address, divide an address, square an address, or take
the square root — you get the idea. You can perform any operation that can be
converted to addition or subtraction. For example, if you increment a pointer to
123 Main Street, it now points to the house next door (at 124 Main, of course!).

Reexamining arrays in light
of pointer variables
Now return to the wonderful array for just a moment. Consider the case of an
array of 32 1-byte characters called charArray. If the first byte of this array is
stored at address 0x100, the array will extend over the range 0x100 through
0x11f. charArray[0] is located at address 0x100, charArray[1] is at 0x101,
charArray[2] at 0x102, and so on.

After executing the expression

char* ptr = &charArray[0];

137 Chapter 9: Taking a Second Look at C++ Pointers

the pointer ptr contains the address 0x100. The addition of an integer offset
to a pointer is defined such that the relationships shown in Table 9-2 are true.
Table 9-2 also demonstrates why adding an offset n to ptr calculates the address
of the nth element in charArray.

Table 9-2 Adding Offsets
Offset Result Is the Address Of
+ 0 0x100 charArray[0]
+ 1 0x101 charArray[1]
+ 2 0x102 charArray[2]

+ n 0x100 + n charArray[n]

The addition of an offset to a pointer is identical to applying an index to an array.

Thus, if

char* ptr = &charArray[0];

then

*(ptr + n) ← corresponds with → charArray[n]

 Because * has higher precedence than addition, * ptr + n adds n to the char-
acter that ptr points to. The parentheses are needed to force the addition to
occur before the indirection. The expression *(ptr + n) retrieves the character
pointed at by the pointer ptr plus the offset n.

In fact, the correspondence between the two forms of expression is so strong
that C++ considers array[n] nothing more than a simplified version of *(ptr + n),
where ptr points to the first element in array.

array[n] -- C++ interprets as → *(&array[0] + n)

To complete the association, C++ takes a second shortcut. If given

char charArray[20];

charArray is defined as &charArray[0];. That is, the name of an array without
a subscript present is the address of the array itself. Thus, you can further
simplify the association to

138 Part II: Becoming a Functional C++ Programmer

array[n] -- C++ interprets as → *(array + n)

 The type of charArray is actually char const*; that is, “constant pointer to a
character” since its address cannot be changed.

Applying operators to the
address of an array
The correspondence between indexing an array and pointer arithmetic is
useful. For example, a displayArray() function used to display the contents of
an array of integers can be written as follows:

// displayArray - display the members of an
// array of length nSize
void displayArray(int intArray[], int nSize)
{
 cout << "The value of the array is:\n";

 for(int n = 0; n < nSize; n++)
 {
 cout << n << ": " << intArray[n] << "\n";
 }
 cout << endl;
}

This version uses the array operations with which you are familiar. A pointer
version of the same appears as follows:

// displayArray - display the members of an
// array of length nSize
void displayArray(int intArray[], int nSize)
{
 cout << "The value of the array is:\n";

 // initialize the pointer pArray with the
 // the address of the array intArray
 int* pArray = intArray;
 for(int n = 0; n < nSize; n++, pArray++)
 {
 cout << n << ": " << *pArray << "\n";
 }
 cout << endl;
}

The new displayArray() begins by creating a pointer to an integer pArray that
points at the first element of intArray.

139 Chapter 9: Taking a Second Look at C++ Pointers

 The name intArray by itself is of type int* and refers to the address of the
array.

The function then loops through each element of the array. On each loop,
displayArray() outputs the current integer (that is, the integer pointed at
by pArray) before incrementing the pointer to the next entry in intArray.
 displayArray() can be tested using the following version of main():

int main(int nNumberofArgs, char* pszArgs[])
{
 int array[] = {4, 3, 2, 1};
 displayArray(array, 4);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The output from this program is

The value of the array is:
0: 4
1: 3
2: 2
3: 1

Press Enter to continue...

You may think this pointer conversion is silly; however, the pointer version
of displayArray() is actually more common than the array version among C++
programmers in the know. For some reason, C++ programmers don’t seem to
like arrays, but they love pointer manipulation.

The use of pointers to access arrays is nowhere more common than in the
accessing of character arrays.

Expanding pointer operations to a string
A null-terminated string is simply a constant character array whose last charac-
ter is a null. C++ uses the null character at the end to serve as a terminator. This
null-terminated array serves as a quasi-variable type of its own. (See Chapter 7
for an explanation of null-terminated string arrays.) Often C++ programmers use
character pointers to manipulate such strings. The following code examples
compare this technique to the earlier technique of indexing in the array.

140 Part II: Becoming a Functional C++ Programmer

Character pointers enjoy the same relationship with a character array that
any other pointer and array share. However, the fact that strings end in a
terminating null makes them especially amenable to pointer-based manipula-
tion, as shown in the following DisplayString program:

// DisplayString - display an array of characters both
// using a pointer and an array index
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // declare a string
 const char* szString = "Randy";
 cout << "The array is '" << szString << "'" << endl;

 // display szString as an array
 cout << "Display the string as an array: ";
 for(int i = 0; i < 5; i++)
 {
 cout << szString[i];
 }
 cout << endl;

 // now using typical pointer arithmetic
 cout << "Display string using a pointer: ";
 const char* pszString = szString;
 while(*pszString)
 {
 cout << *pszString;
 pszString++;
 }
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program first makes its way through the array szString by indexing
into the array of characters. The for loop chosen stops when the index
reaches 5, the length of the string.

The second loop displays the same string using a pointer. The program sets
the variable pszString equal to the address of the first character in the array.
It then enters a loop that will continue until the char pointed at by pszString is
equal to false — in other words, until the character is a null.

141 Chapter 9: Taking a Second Look at C++ Pointers

 The integer value 0 is interpreted as false — all other values are true.

The program outputs the character pointed at by pszString and then incre-
ments the pointer so that it points to the next character in the string before
being returned to the top of the loop.

 The dereference and increment can be (and usually are) combined into a
single expression as follows:

cout << *pszString++;

The output of the program appears as follows:

The array is 'Randy'
Display the string as an array: Randy
Display string using a pointer: Randy
Press Enter to continue...

Justifying pointer-based
string manipulation
The sometimes-cryptic nature of pointer-based manipulation of character
strings might lead the reader to wonder, “Why?” That is, what advantage does
the char* pointer version have over the easier-to-read index version?

The answer is partially (pre-)historic and partially human nature. When C,
the progenitor to C++, was invented, compilers were pretty simplistic. These
compilers could not perform the complicated optimizations that modern
compilers can. As complicated as it might appear to the human reader, a
statement such as *pszString++ could be converted into an amazingly small
number of machine-level instructions even by a stupid compiler.

Older computer processors were not very fast by today’s standards. In the
early days of C, saving a few computer instructions was a big deal. This gave
C a big advantage over other languages of the day, notably Fortran, which did
not offer pointer arithmetic.

In addition to the efficiency factor, programmers like to generate clever pro-
gram statements. After C++ programmers learn how to write compact and
cryptic but efficient statements, there is no getting them back to accessing
arrays with indices.

 Do not generate complex C++ expressions to create a more efficient program.
There is no obvious relationship between the number of C++ statements and
the number of machine instructions generated.

142 Part II: Becoming a Functional C++ Programmer

Applying operators to pointer
types other than char
It is not too hard to convince yourself that szTarget + n points to szTarget [n]
when szTarget is an array of chars. After all, a char occupies a single byte. If
szTarget is stored at 0x100, szTarget[5] is located at 0x105.

It is not so obvious that pointer addition works in exactly the same way for
an int array because an int takes 4 bytes for each char’s 1 byte (at least it
does on a 32-bit Intel processor). If the first element in intArray were located
at 0x100, then intArray[5] would be located at 0x114 (0x100 + (5 * 4) = 0x114)
and not 0x104.

Fortunately for us, array + n points at array[n] no matter how large a single
element of array might be. C++ takes care of the element size for us — it’s
clever that way.

Once again, the dusty old house analogy works here as well. (I mean dusty
analogy, not dusty house.) The third house down from 123 Main is 126 Main,
no matter how large the buildings might be, whether they’re bungalows or
mansions.

Contrasting a pointer with an array
There are some differences between an array and a pointer. For one, the array
allocates space for the data, whereas the pointer does not, as shown here:

void arrayVsPointer()
{
 // allocate storage for 128 characters
 char charArray[128];

 // allocate space for a pointer but not for
 // the thing pointed at
 char* pArray;
}

Here charArray allocates room for 128 characters. pArray allocates only 4
bytes — the amount of storage required by a pointer.

Consider the following example:

char charArray[128];
charArray[10] = '0'; // this works fine

char* pArray;
pArray[10] = '0'; // this writes into random location

143 Chapter 9: Taking a Second Look at C++ Pointers

The expression pArray[10] is syntactically equivalent to charArray[10], but
pArray has not been initialized so pArray[10] references some random (gar-
bage) location in memory.

 The mistake of referencing memory with an uninitialized pointer variable
is generally caught by the CPU when the program executes, resulting in the
dreaded segment violation error that from time to time issues from your favor-
ite applications under your favorite, or not-so-favorite, operating system. This
problem is not generally the fault of the processor or the operating system,
but of the application.

 Another implication of this difference is that you can use a range-based for
loop on an array where the size of the array is known but not on a pointer
where the number of elements is not known:

Strings have me constantly confused
You may have noticed that I slipped a const declaration into the earlier DisplayString example pro-
gram. This was necessary to account for differences between an array and a pointer. A string such
as “this is a string” is considered a constant address of a string of constant characters. In other
words, neither the address of the string nor the characters themselves can be changed. Why is that?

One problem is that you don’t know where C++ stores its local strings nor do you know how many
times it reuses the same string. Often C++ stores constant strings in the same memory locations
as source code, and it very often reuses the same string in several places in the program. For this
reason, C++ often marks constant strings as unwritable.

The initialization of a pointer variable is similar to initializing any other simple variable:

int i = 1;
const char* pString = "this is a string";

Both declarations initialize the variable on the left with the constant value on the right. However,
since pString points directly at the immutable string “this is a string” it’s important that pString be
declared const char*, that is, a pointer to constant characters.

The equivalent array is more complicated than it first appears:

char sChars[] = "this is a string"; // declare and init array

This declares and allocates memory for an array sChars[] and then copies the initialization string
into it. Thus, the letter t that is the first character in sChars is not the same letter t that makes up
the immutable initialization string.

In fact, the preceding is shorthand for the more long-winded but descriptive

char sChars[17]; // declare the array and...
strcpy(sChars, "this is a string"); // ...then initialize it

Remember that strcpy() copies the string of characters represented by the second argument into the
array pointed at by the first argument. And also remember to allocate space for the terminating null.

144 Part II: Becoming a Functional C++ Programmer

char charArray[128];
for(char& c : charArray) { c = '\0';} // initialize array

char* pArray = charArray;
for(char& c : pArray) {c = '\0';} //not legal

The first range-based for loop can be used to initialize the charArray to null
characters. The second for loop does not compile, however. Even though
pArray is assigned the address of the character array with its 128 characters,
C++ doesn’t keep that size information with the pointer, so it doesn’t know
how far to iterate in the range-based for loop. (See Chapter 5 for a description
of the range-based for loop.)

A second difference between a pointer and the address of an array is that
charArray is a constant, whereas pArray is not. Thus, the following for loop
used to initialize the array charArray does not work:

char charArray[10];
for (int i = 0; i < 10; i++)
{
 *charArray = '\0'; // this makes sense...
 charArray++; // ...this does not
}

The expression charArray++ makes no more sense than 10++. The following
version is correct:

char charArray[10];
char* pArray = charArray;
for (int i = 0; i < 10; i++)
{
 *pArray = '\0'; // this works great
 pArray++; // this is ok - not a const pointer
}

When Is a Pointer Not?
C++ is completely quiet about what is and isn’t a legal address, with one
exception. C++ predefines the constant nullptr with the following properties:

 ✓ It is a constant value.

 ✓ It can be assigned to any pointer type.

 ✓ It evaluates to false.

 ✓ It is never a legal address.

145 Chapter 9: Taking a Second Look at C++ Pointers

The constant nullptr is used to indicate when a pointer has not been initialized.
It is also often used to indicate the last element in an array of pointers in much
the same way that a null character is used to terminate a character string.

 Actually the keyword nullptr was introduced in the 2011 standard. Before that,
the constant 0 was used to indicate a null pointer.

It is a safe practice to initialize pointers to the nullptr (or 0 if your compiler
doesn’t support nullptr yet). You should also clear out the contents of a
pointer to heap memory after you invoke delete to avoid deleting the same
memory block twice:

delete pHeap; // return memory to the heap
pHeap = nullptr; // now clear out the pointer

 Passing the same address to delete twice will always cause your program to
crash. Passing a nullptr (or 0) to delete has no effect.

Declaring and Using Arrays of Pointers
If pointers can point to arrays, it seems only fitting that the reverse should be
true. Arrays of pointers are a type of array of particular interest.

Just as arrays may contain other data types, an array may contain pointers.
The following declares an array of pointers to ints:

int* pInts[10];

Given the preceding declaration, pInts[0] is a pointer to an int value. Thus,
the following is true:

void fn()
{
 int n1;
 int* pInts[3];
 pInts[0] = &n1;
 *pInts[0] = 1;
}

or

void fn()
{
 int n1, n2, n3;
 int* pInts[3] = {&n1, &n2, &n3};
 for (int i = 0; i < 3; i++)
 {
 *pInts[i] = 0;
 }
}

146 Part II: Becoming a Functional C++ Programmer

or even

void fn()
{
 int* pInts[3] = {(new int),
 (new int),
 (new int)};
 for (int i = 0; i < 3; i++)
 {
 *pInts[i] = 0;
 }
}

The latter declares three int objects off the heap. This type of declaration isn’t
used very often except in the case of an array of pointers to character strings.
The following two examples show why arrays of character strings are useful.

Utilizing arrays of character strings
Suppose I need a function that returns the name of the month corresponding
to an integer argument passed to it. For example, if the program is passed a 1,
it returns a pointer to the string “January”; if 2, it reports “February”, and so
on. The month 0 and any numbers greater than 12 are assumed to be invalid.
I could write the function as follows:

// int2month() - return the name of the month
const char* int2month(int nMonth)
{
 const char* pszReturnValue;

 switch(nMonth)
 {
 case 1: pszReturnValue = "January";
 break;
 case 2: pszReturnValue = "February";
 break;
 case 3: pszReturnValue = "March";
 break;
 // ...and so forth...
 default: pszReturnValue = "invalid";
 }
 return pszReturnValue;
}

 The switch() control command is like a sequence of if statements.

147 Chapter 9: Taking a Second Look at C++ Pointers

A more elegant solution uses the integer value for the month as an index
into an array of pointers to the names of the months. In use, this appears as
follows:

// define an array containing the names of the months
const char *const pszMonths[] = {"invalid",
 "January",
 "February",
 "March",
 "April",
 "May",
 "June",
 "July",
 "August",
 "September",
 "October",
 "November",
 "December"};

// int2month() - return the name of the month
const char* int2month(int nMonth)
{
 // first check for a value out of range
 if (nMonth < 1 || nMonth > 12)
 {
 return "invalid";
 }

 // nMonth is valid - return the name of the month
 return pszMonths[nMonth];
}

Here int2month() first checks to make sure that nMonth is a number between 1
and 12, inclusive (the default clause of the switch statement handled that in the
previous example). If nMonth is valid, the function uses it as an offset into an
array containing the names of the months.

 This technique of referring to character strings by index is especially useful
when writing your program to work in different languages. For example, a
program may declare a ptrMonths of pointers to Julian months in different lan-
guages. The program would initialize ptrMonth to the proper names, be they
in English, French, or German (for example), at execution time. In that way,
ptrMonth[1] points to the correct name of the first Julian month, irrespective
of the language.

A program that demonstrates int2Month() is included in the extras at www.
dummies.com/extras/cplusplus as DisplayMonths.

148 Part II: Becoming a Functional C++ Programmer

Accessing the arguments to main()
Now the truth can be told — what are all those funny argument declarations
to main() in our program template? The second argument to main() is an
array of pointers to null-terminated character strings. These strings contain
the arguments to the program. The arguments to a program are the strings
that appear with the program name when you launch it. These arguments
are also known as parameters. The first argument to main() is the number of
parameters passed to the program. For example, suppose that I entered the
following command at the command prompt:

MyProgram file.txt /w

The operating system executes the program contained in the file MyProgram
(or MyProgram.exe on a Windows machine), passing it the arguments file.txt
and /w.

Consider the following simple program:

// PrintArgs - write the arguments to the program
// to the standard output
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // print a warning banner
 cout << "The arguments to "
 << pszArgs[0] << " are:\n";

 // now write out the remaining arguments
 for (int i = 1; i < nNumberofArgs; i++)
 {
 cout << i << ":" << pszArgs[i] << "\n";
 }

 // that's it
 cout << "That's it" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

149 Chapter 9: Taking a Second Look at C++ Pointers

As always, the function main() accepts two arguments. The first argument is an
int that I have been calling (quite descriptively, as it turns out) nNumberofArgs.
This variable is the number of arguments passed to the program. The second
argument is an array of pointers of type char* that I have been calling pszArgs.

Accessing program arguments DOS-style
If I were to execute the PrintArgs program from the command prompt window as

PrintArgs arg1 arg2 arg3 /w

nArgs would be 5 (one for each argument). The first argument is the name of
the program itself. This could be anywhere from the simple “PrintArgs” to the
slightly more complicated “PrintArgs.exe” to the full path — the C++ standard
doesn’t specify. The environment can even supply a null string “ ” if it doesn’t
have access to the name of the program.

The remaining elements in pszArgs point to the program arguments. For
example, the element pszArgs[1] points to “arg1” and pszArgs[2] to “arg2”.
Because Windows does not place any significance on “/w”, this string is also
passed as an argument to be processed by the program.

 Actually, C++ includes one final value. The last value in the array, the one after
the pointer to the last argument of the program, contains nullptr.

To demonstrate how argument passing works, you need to build the program
from within Code::Blocks and then execute the program directly from a com-
mand prompt. First ensure that Code::Blocks has built an executable by open-
ing the PrintArgs projects and choosing Build➪Rebuild.

Next, open a command prompt window. If you are running Unix or Linux,
you’re already there. If you are running Windows, choose Programs➪
Accessories➪Command Prompt to open an 80-character-wide window with a
command prompt.

Now you need to use the CD command to navigate to the directory where
Code::Blocks placed the PrintArgs program. If you used the default settings
when installing Code::Blocks, that directory will be C:\CPP_Programs_from_
Book\Chap09\PrintArgs\bin\Debug.

150 Part II: Becoming a Functional C++ Programmer

You can now execute the program by typing its name followed by your argu-
ments. The following shows what happened when I did it in Windows 7:

C:\Users\Randy>cd \cpp_programs_from_book\chap09\printargs\bin\debug

C:\CPP_Programs_from_book\Chap09\PrintArgs\bin\Debug>PrintArgs arg1 arg2 arg3 /n
The arguments to PrintArgs are:
1:arg1
2:arg2
3:arg3
4:/n
That's it
Press Enter to continue...

Wild cards such as *.* may or may not be expanded before being passed to
the program — the standard is silent on this point. The Code::Blocks/gcc
compiler does perform such expansion on Windows, as the following exam-
ple shows:

C:\CPP_Programs_from_book\Chap09\PrintArgs>bin\debug\PrintArgs *.*
The arguments to bin\debug\PrintArgs are:
1:bin
2:main.cpp
3:obj
4:PrintArgs.cbp
That's it
Press Enter to continue...

Here you see the names of the files in the current directory in place of the *.*
that I entered.

 Wild-card expansion is performed under all forms of Linux, as well as on the
Macintosh.

Accessing program arguments Code::Blocks–style
You can add arguments to your program when you execute it from
Code::Blocks as well. Choose Project➪Set programs’ arguments from within
Code::Blocks. Enter the command line you would like in the Program argu-
ments window.

Accessing program arguments Windows-style
Windows passes arguments as a means of communicating with your program
as well. Try the following experiment: Build your program as you would nor-
mally. Find the executable file using Windows Explorer. (As noted earlier, the
default location for the PrintArgs program is C:\CPP_Programs_from_book\
Chap09\PrintArgs\bin\Debug.) Now grab a file and drop it onto the filename.

151 Chapter 9: Taking a Second Look at C++ Pointers

(It doesn’t matter what file you choose because the program won’t hurt it
anyway.) Bam! The PrintArgs program starts right up, and the name of the file
that you dropped on the program appears.

Now try again, but drop several files at once. Select multiple filenames while
pressing the Ctrl key or by using the Shift key to select a group. Now drag the
lot of them onto PrintArgs.exe and let go. The name of each file appears as
output.

I dropped a few of the files that appear in my \Program Files\WinZip folder
onto PrintArgs as an example:

The arguments to
C:\CPP_Programs_from_book\Chap09\PrintArgs\bin\Debug\PrintArgs.
exe are:

1:C:\Program Files\WinZip\VENDOR.TXT
2:C:\Program Files\WinZip\WHATSNEW.TXT
3:C:\Program Files\WinZip\WINZIP.CHM
4:C:\Program Files\WinZip\WINZIP.TXT
5:C:\Program Files\WinZip\WINZIP32.EXE
6:C:\Program Files\WinZip\WZ.COM
That's it
Press Enter to continue...

Notice that the name of each file appears as a single argument, even though
the filename may include spaces. Also note that Windows passes the full
pathname of the file.

152 Part II: Becoming a Functional C++ Programmer

Chapter 10

The C++ Preprocessor
In This Chapter
▶ Including source files

▶ Defining constants and macros

▶ Enumerating alternatives to constants

▶ Inserting compile-time checks

▶ Simplifying declarations via typedef

Y
ou only thought that all you had to learn was C++. It turns out that C++
includes a preprocessor that works on your source files before the “real

C++ compiler” ever gets to see it. Unfortunately, the syntax of the preproces-
sor is completely different than that of C++ itself.

Before you despair, however, let me hasten to add that the preprocessor is
very basic and the C++ ’11 standard has added a number of features that
make the preprocessor almost unnecessary. Nevertheless, if the conversation
turns to C++ at your next Coffee Club meeting, you’ll be expected to under-
stand the preprocessor.

What Is a Preprocessor?
Up until now, you may have thought of the C++ compiler as munching on
your source code and spitting out an executable program in one step, but
that isn’t quite true.

First, the preprocessor makes a pass through your program looking for pre-
processor instructions. The output of this preprocessor step is an intermedi-
ate file that has all the preprocessor commands expanded. This intermediate
file gets passed to the C++ compiler for processing. The output from the C++
compiler is an object file that contains the machine instruction equivalent
to your C++ source code. During the final step, a separate program known as

154 Part II: Becoming a Functional C++ Programmer

the linker combines a set of standard libraries with your object file (or files,
as we’ll see in Chapter 21) to create an executable program. (More on the
 standard library in the next section of this chapter.)

 Object files normally carry the extension .o. Executable programs always
carry the extension .exe in Windows and have no extension under Linux or
Mac OS X. Code::Blocks stores the object and executable files in their own
folders. For example, if you’ve already built the IntAverage program from
Chapter 2, you will have on your hard disk a folder C:\CPP_Programs_from_
book\IntAverage\obj\Debug containing main.o and a folder C:\CPP_Programs_
from_book\IntAverage\bin\Debug that contains the executable program.

All preprocessor commands start with a # symbol in column 1 and end with
the newline.

 Like almost all rules in C++, this rule has an exception. You can spread a
 preprocessor command across multiple lines by ending the line with a back-
slash character: \. We won’t have any preprocessor commands that are that
complicated, however.

In this book, we’ll be working with three preprocessor commands:

 ✓ #include includes the contents of the specified file in place of the
#include statement.

 ✓ #define defines a constant or macro.

 ✓ #if includes a section of code in the intermediary file if the following
 condition is true.

Each of these preprocessor commands is covered in the following sections.

Including Files
The C++ standard library consists of functions that are basic enough that
almost everyone needs them. It would be silly to force every programmer to
have to write them for herself. For example, the I/O functions, which we have
been using to read input from the keyboard and write out to the console, are
contained in the standard library.

However, C++ requires a prototype declaration for any function you call,
whether it’s in a library or not (see Chapter 6 if that doesn’t make sense to
you). Rather than force the programmer to type all these declarations by

155 Chapter 10: The C++ Preprocessor

hand, the library authors created include files that contain little more than
prototype declarations. All you have to do is #include the source file that
 contains the prototypes for the library routines you intend to use.

Take the following simple example. Suppose I had created a library that con-
tains the trigonometric functions sin(), cosin(), tan(), and a whole lot more.
I would likely create an include file mytrig with the following contents to go
along with my standard library:

// include prototype declarations for my library
double sin(double x);
double cosin(double x);
double tan(double x);
// ...more prototype declarations...

Any program that wanted to make use of one of these math functions would
#include that file, enclosing the name of the include file either in brackets or
quotes as in

#include <mytrig>

or

#include "mytrig"

 The difference between the two forms of #include is a matter of where the pre-
processor goes to look for the mytrig file. When the file is enclosed in quotes,
the preprocessor assumes that the include file is locally grown, so it starts
looking for the file in the same directory in which it found the source file. If it
doesn’t find the file there, it starts looking in its own include file directories.
The preprocessor assumes that include files in angle brackets are from the
C++ library, so it skips looking in the source file directory and goes straight
to the standard include file folders. Use quotes for any include file that you
create and angle brackets for C++ library include files.

Thus, you might write a source file like the following:

// MyProgram - is very intelligent
#include "mytrig"

int main(int nArgc, char* pArguments[])
{
 cout << "The sin of .5 is " << sin(0.5) << endl;
 return 0;
}

156 Part II: Becoming a Functional C++ Programmer

Playing in your own name sandbox
(This is truly technical, so feel free to skip this sidebar and come back to it later.) The authors
of the C++ standard worry a lot about name collisions. For example, besides my mathematical
function log(x) that returns the logarithm of x, suppose in another context I had written a function
log(x) that writes status information to a system log. Clearly, two different functions with the same
arguments can’t coexist in one program. This is known as a name collision.

To avoid this, C++ allows the programmer to bundle declarations into a namespace using the key-
word of the same name:

namespace Mathematics
{
 double log(double x)
 {
 // ...the definition of the function...
 }
}
namespace SystemLog
{
 int log(double x)
 {
 // ...log the value to file...
 }
}

The namespace becomes part of the extended name of the function. Thus, the following code snip-
pet actually logs the logarithm of a value:

void myFunc(double x)
{
 // invoke the logarithm function...
 double dl = Mathematics::log(x);

 // ...now log it to disk
 SystemLog::log(dl);
}

Fortunately, you don’t have to specify the namespace every single time. The keyword using allows
the programmer to specify a default namespace for a given function:

using double Mathematics::log(double);
void myFunc(double x)
{
 // the default is the mathematics version...
 double dl = log(x);

 // ...however, the other version is still accessible by
 // explicitly specifying the namespace
 SystemLog::log(dl);
}

157 Chapter 10: The C++ Preprocessor

The C++ compiler sees the following intermediary file after the preprocessor
gets finished expanding the #include:

// MyProgram - is very intelligent
// include prototype declarations for my library
double sin(double x);
double cosin(double x);
double tan(double x);
// ...more prototype declarations...

int main(int nArgc, char* pArguments[])
{
 cout << "The sin of .5 is " << sin(0.5) << endl;
 return 0;
}

 Historically, the convention was to end include files with .h. C still uses that
standard. However, C++ dropped the extension when it revamped the include
file structure. Now, C++ standard include files have no extension.

#Defining Things
The preprocessor also allows the programmer to #define expressions that
get expanded during the preprocessor step. For example, you can #define a
 constant to be used throughout the program.

You can automatically default every declaration within a namespace:

using namespace Mathematics;
void myFunc(double x)
{
 // look in the Mathematics namespace first...
 double dl = log(x);

 // ...however, the other version is still accessible by
 // explicitly specifying the namespace
 SystemLog::log(dl);
}

See the program NamespaceExample in the extras at www.dummies.com/extras/
cplusplus for an example of the use of namespaces.

The standard library functions reside in the std namespace; the statement using namespace std;
included at the beginning of each of the programs in this book gives the programs access to the
standard library functions without the need to specify the namespace explicitly.

158 Part II: Becoming a Functional C++ Programmer

 In usage, you pronounce the # sign as “pound,” so you say “pound-define a
constant” to distinguish from defining a constant in some other way.

#define TWO_PI 6.2831852

This makes the following statement much easier to understand:

double diameter = TWO_PI * radius;

than the equivalent expression, which is actually what the C++ compiler sees
after the preprocessor has replaced TWO_PI with its definition:

double diameter = 6.2831852 * radius;

Another advantage is the ability to #define a constant in one place and use it
everywhere. For example, I might include the following #define in an include file:

#define MAX_NAME_LENGTH 512

Throughout the program, I can truncate the names that I read from the key-
board to a common and consistent MAX_NAME_LENGTH. Not only is this
easier to read, but it also provides a single place in the program to change
should I want to increase or decrease the maximum name length that I choose
to process.

The preprocessor also allows the program to #define function-like macros
with arguments that are expanded when the definition is used:

#define SQUARE(X) X * X

In use, such macro definitions look a lot like functions:

// calculate the area of a circle
double dArea = HALF_PI * SQUARE(dRadius);

Remember that the C++ compiler actually sees the file generated from the
expansion of all macros. This can lead to some unexpected results. Consider the
following code snippets (these are all taken from the program MacroConfusion,
which is included among the extra programs at www.dummies.com/extras/
cplusplus):

int nSQ = SQUARE(2);
cout << "SQUARE(2) = " << nSQ << endl;

Reassuringly, this generates the expected output:

SQUARE(2) = 4

159 Chapter 10: The C++ Preprocessor

However, the following lines

int nSQ = SQUARE(1 + 2);
cout << "SQUARE(1 + 2) = " << nSQ << endl;

generate the surprising result

SQUARE(1 + 2) = 5

The preprocessor simply replaced X in the macro definition with 1 + 2. What
the C++ compiler actually sees is

int nSQ = 1 + 2 * 1 + 2;

Since multiplication has higher precedence than addition, this is turned into
1 + 2 + 2 which, of course, is 5. This confusion could be solved by liberal use
of parentheses in the macro definition:

#define SQUARE(X) ((X) * (X))

This version generates the expected

SQUARE(1 + 2) → ((1 + 2) * (1 + 2)) → 9

However, some unexpected results cannot be fixed no matter how hard you
try. Consider the following snippet:

int i = 2;
cout << "i = " << i << endl;
int nSQ = SQUARE(i++);
cout << "SQUARE(i++) = " << nSQ << endl;
cout << "now i = " << i << endl;

This generates the following:

i = 3;
SQUARE(i++) = 9
now i = 5

The value generated by SQUARE is correct, but the variable i has been
incremented twice. The reason is obvious when you consider the expanded
macro:

int i = 3;
nSQ = i++ * i++;

Since autoincrement has precedence, the two i++ operations are performed
first. Both return the current value of i, which is 3. These two values are then
multiplied together to return the expected value of 9. However, i is then incre-
mented twice to generate a resulting value of 5.

160 Part II: Becoming a Functional C++ Programmer

Okay, how about not #defining things?
The sometimes unexpected results from the preprocessor have created
heartburn for the fathers (and mothers) of C++ almost from the beginning.
C++ has included features over the years to make most uses of #define
unnecessary.

For example, C++ defines the inline function to replace the macro. This looks
just like any other function declaration with the addition of the keyword
inline tacked to the front:

inline int SQUARE(int x) { return x * x; }

This inline function definition looks very much like the previous macro defini-
tion for SQUARE() (I have written this definition on one line to highlight the
similarities). However, an inline function is processed by the C++ compiler
rather than by the preprocessor. This definition of SQUARE() does not suffer
from any of the strange effects noted previously.

 The inline keyword is supposed to suggest to the compiler that it “expand the
function inline” rather than generate a call to some code somewhere to per-
form the operation. This was to satisfy the speed freaks, who wanted to avoid
the overhead of performing a function call compared to a macro definition that
generates no such call. The best that can be said is that inline functions may
be expanded in place, but then again, they may not. There’s no way to be sure
without performing detailed timing analysis or examining the machine code
output by the compiler.

 C++ allows programmers to use a variable declared const to take the place
of a #define constant so long as the value of the constant is spelled out at
 compile time:

const int MAX_NAME_LENGTH = 512;
int szName[MAX_NAME_LENGTH];

 The ’11 standard goes so far as to allow you to declare a function to be a
constexpr:

constexpr int square(int n1, int n2)
 {return n1 * n1 + n2 * n2;}

This makes a declaration like the following legal:

int matrix[square(5)];

However, ’11 puts a lot of significant restrictions on what can go into a const
expression. For example, such a function is pretty much limited to a single line.

161 Chapter 10: The C++ Preprocessor

 The ’14 standard loosens the rules concerning const expressions quite a bit. In
general, a function can be declared a constexpr if all of the sub-expressions can
be calculated at compile time.

Enumerating other options
C++ provides a mechanism for defining constants of a separate, user-defined
type. Suppose, for example, that I were writing a program that manipulated
States of the Union. I could refer to the states by their name, such as “Texas”
or “North Dakota.” In practice, this is not convenient since repetitive string
comparisons are computationally intensive and subject to error.

I could define a unique value for each state as follows:

#define DC_OR_TERRITORY 0
#define ALABAMA 1
#define ALASKA 2
#define ARKANSAS 3
// ...and so on...

Not only does this avoid the clumsiness of comparing strings; it allows me
to use the name of the state as an index into an array of properties such as
population:

// increment the population of ALASKA (they need it)
population[ALASKA]++;

A statement such as this is much easier to understand than the semantically
identical population[2]++. This is such a common thing to do that C++ allows
the programmer to define what’s known as an enumeration:

enum STATE {DC_OR_TERRITORY, // gets 0
 ALABAMA, // gets 1
 ALASKA, // gets 2
 ARKANSAS,
 // ...and so on...

Each element of this enumeration is assigned a value starting at 0, so DC_
OR_TERRITORY is defined as 0, ALABAMA is defined as 1, and so on. You can
override this incremental sequencing by using as assign statement as follows:

enum STATE {DC,
 TERRITORIES = 0,
 ALABAMA,
 ALASKA,
 // ...and so on...

162 Part II: Becoming a Functional C++ Programmer

This version of STATE defines an element DC, which is given the value 0. It
then defines a new element TERRITORIES, which is also assigned the value 0.
ALABAMA picks up with 1 just as before.

 The ’11 standard extends enumerations by allowing the programmer to create
a user-defined enumerated type as follows (note the addition of the keyword
class in the snippet):

 enum class STATE {DC,
 TERRITORIES = 0,
 ALABAMA,
 ALASKA,
 // ...and so on...

This declaration creates a new type STATE and assigns it 52 members (ALABAMA
through WYOMING plus DC and TERRITORIES). The programmer can now use
STATE as she would any other variable type. A variable can be declared to be of
type STATE:

STATE s = STATE::ALASKA;

Function calls can be differentiated by this new type:

int getPop(STATE s); // return population
int setPop(STATE s, int pop); // set the population

The type STATE is not just another word for int: Arithmetic is not defined for
members of type STATE. The following attempt to use STATE as an index into
an array is not legal:

int getPop(STATE s)
{
 return population[s]; // not legal
}

However, the members of STATE can be converted to their integer equiva-
lent (0 for DC and TERRITORIES, 1 for ALABAMA, 2 for ALASKA, and so on)
through the application of a cast:

int getPop(STATE s)
{
 return population[(int)s]; // is legal
}

Including Things #if I Say So
The third major class of preprocessor statement is the #if, which is a prepro-
cessor version of the C++ if statement:

163 Chapter 10: The C++ Preprocessor

#if constexpression
// included if constexpression evaluates to other than 0
#else
// included if constexpression evaluates to 0
#endif

This is known as conditional compilation because the set of statements
between the #if and the #else or #endif are included in the compilation only if
a condition is true. The constexpression phrase is limited to simple arithme-
tic and comparison operators. That’s okay because anything more than an
equality comparison and the occasional addition is rare.

For example, the following is a common use for #if. I can include the following
definition within an include file with a name such as LogMessage:

#if DEBUG == 1
inline void logMessage(const char *pMessage)
 { cout << pMessage << endl; }
#else
#define logMessage(X) (0)
#endif

I can now sprinkle error messages throughout my program wherever I need
them:

#define DEBUG 1
#include "LogMessage"
void testFunction(char *pArg)
{
 logMessage(pArg);
 // ...function continues...

With DEBUG set to 1, the logMessage() is converted into a call to an inline
function that outputs the argument to the display. Once the program is work-
ing properly, I can remove the definition of DEBUG. Now the references to
logMessage() invoke a macro that does nothing.

A second version of the conditional compilation is the #ifdef (which is pro-
nounced “if def”):

#ifdef DEBUG
// included if DEBUG has been #defined
#else
// included if DEBUG has not been #defined
#endif

There is also an #ifndef (pronounced “if not def”), which is the logical reverse
of #ifdef.

164 Part II: Becoming a Functional C++ Programmer

Intrinsically Defined Objects
C++ defines a set of intrinsic constants, which are shown in Table 10-1. These
are constants that C++ thinks are just too cool to be without — and that you
would have trouble defining for yourself anyway.

Table 10-1 Predefined Preprocessor Constants
Constant Type Meaning
__FILE__ const char

const *
The name of the source file.

__LINE__ const int The current line number.

__func__ const char
const *

The name of the current function (C++ ’11
only).

__DATE__ const char
const *

The current date.

__TIME__ const char
const *

The current time.

__TIMESTAMP__ const char
const *

The current date and time.

__STDC__ int Set to 1 if the C++ compiler is compliant with
the standard.

__cplusplus int Set to 1 if the compiler is a C++ compiler (as
opposed to a C compiler). This allows include
files to be shared across environments.

These internal macros are particularly useful when generating error mes-
sages. You would think that C++ generates plenty of error messages on its
own and doesn’t need any more help, but sometimes you want to create your
own compiler errors. For you, C++ offers not one, not two, but three options:
#error, assert(), and static_assert(). Each of these three mechanisms works
slightly differently.

The #error command is a preprocessor directive (as you can tell by the fact
that it starts with the # sign). It causes the preprocessor to stop and output a
message. Suppose that your program just won’t work with anything but stan-
dard C++. You could add the following to the beginning of your program:

#if !__cplusplus || !__STDC__
#error This is a standard C++ program.
#endif

165 Chapter 10: The C++ Preprocessor

Now if someone tries to compile your program with anything other than a
C++ compiler that strictly adheres to the standards, she will get a single neat
error message rather than a raft of potentially meaningless error messages
from a confused non-standard compiler.

Unlike #error, assert() performs its test when the resulting program is executed.
For example, suppose that I had written a factorial program that calculates
N * (N - 1) * (N - 2) and so on down to 1 for whatever N I pass it. Factorial is
only defined for positive integers; passing a negative number to a factorial is
always a mistake. To be careful, I should add a test for a non-positive value at
the beginning of the function:

int factorial(int N)
{
 assert(N > 0);
 // ...program continues...

The program now checks the argument to factorial() each time it is called. At
the first sign of negativity, assert() halts the program with a message to the
operator that the assertion failed, along with the file and line number.

Liberal use of assert() throughout your program is a good way to detect
problems early during development, but constantly testing for errors that
have already been found and removed during testing slows the program
needlessly. To avoid this, C++ allows the programmer to “remove” the tests
when creating the version of the program to be shipped to users: #define the
constant NDEBUG (for “not debug mode”). This causes the preprocessor to
convert all the calls to assert() in your module to “do nothings” (universally
known as NO-OPs).

 The preprocessor cannot perform certain compile-time tests. For example,
suppose that your program works properly only if the default integer size is
32 bits. The preprocessor is of no help since it knows nothing about integers
or floating points. To address this situation, C++ introduced the keyword
static_assert(), which is interpreted by the compiler (rather than the prepro-
cessor). It accepts two arguments: a const expression and a string, as in the
following example:

static_assert(sizeof(int) == 4, "int is not 32-bits.");

If the const expression evaluates to 0 or false during compilation, the compiler
outputs the string and stops. The static_assert() does not generate any run-time
code. Remember, however, that the expression is evaluated at compile time,
so it cannot contain function calls or references to things that are known only
when the program executes.

166 Part II: Becoming a Functional C++ Programmer

Typedef
The typedef keyword allows the programmer to create a shorthand name
for a declaration. The careful application of typedef can make the resulting
program easier to read. (Note that typedef is not actually a preprocessor com-
mand, but it’s largely associated with include files and the preprocessor.)

typedef int* IntPtr;
typedef const IntPtr IntConstPtr;

int i;
int *const ptr1 = &i;
IntConstPtr ptr2= ptr1; // ptr1 and ptr2 are the same type

The first two declarations in this snippet give a new name to existing types.
Thus, the second declaration declares IntConstPtr to be another name for int
const*. When this new type is used in the declaration of ptr2, it has the same
effect as the more complicated declaration of ptr1.

Although typedef does not introduce any new capability, it can make some
complicated declarations a lot easier to read.

Part III
Introduction to Classes

 Visit www.dummies.com/extras/cplusplus for great Dummies
content online.

In this part...
 ✓ Reviewing object-oriented programming

 ✓ Declaring and defining class members

 ✓ Declaring constructors and destructors

 ✓ Defining static member functions

 ✓ Visit www.dummies.com/extras/cplusplus for great
Dummies content online

Chapter 11

Examining Object-Oriented
Programming

In This Chapter
▶ Making nachos

▶ Reviewing object-oriented programming

▶ Introducing abstraction and classification

▶ Discovering why object-oriented programming is important

W
hat, exactly, is object-oriented programming? Object-oriented pro-
gramming, or OOP as those in the know prefer to call it, relies on two

principles you learned before you ever got out of Pampers: abstraction and
classification. To explain, let me tell you a little story.

Abstracting Microwave Ovens
Sometimes when my son and I are watching football (which only happens
when my wife can’t find the switcher), I whip up a terribly unhealthy batch
of nachos. I dump some chips on a plate, throw on some beans, cheese, and
lots of jalapeños, and nuke the whole mess in the microwave oven for five
minutes. To use my microwave, I open the door, throw the stuff in, and punch
a few buttons. After a few minutes, the nachos are done.

Now think for a minute about all the things I don’t do to use my microwave:

 ✓ I don’t rewire or change anything inside the microwave to get it to work.
The microwave has an interface — the front panel with all the buttons
and the little time display — that lets me do everything I need to do.

 ✓ I don’t have to reprogram the software used to drive the little proces-
sor inside my microwave, even if I cooked a different dish the last time
I used the microwave.

170 Part III: Introduction to Classes

 ✓ I don’t look inside my microwave’s case.

 ✓ Even if I were a microwave designer and knew all about the inner work-
ings of a microwave, including its software, I would still use it the same
way to heat my nachos without thinking about all that stuff inside.

These are not profound observations. You can deal with only so much stress
in your life. To reduce the number of things that you deal with, you work at a
certain level of detail.

 In object-oriented (OO) computerese, the level of detail at which you are work-
ing is called the level of abstraction. To introduce another OO term while I have
the chance, I abstract away the details of the microwave’s innards.

When I’m working on nachos, I view my microwave oven as a box. (I can’t
worry about the innards of the microwave oven and still follow the Cowboys
on the tube.) As long as I operate the microwave only through its interface
(the keypad), there should be nothing I can do to

 ✓ Cause the microwave to enter an inconsistent state and crash.

 ✓ Turn my nachos into a blackened, flaming mass.

 ✓ Make the microwave (along with the surrounding house) burst into
flames!

Preparing functional nachos
Suppose that I were to ask my son to write an algorithm for how Dad makes
nachos. After he understood what I wanted, he would probably write “open a
can of beans, grate some cheese, cut the jalapeños,” and so on. When it came
to the part about microwaving the concoction, he would write something like
“cook in the microwave for five minutes.”

That description is straightforward and complete. But it’s not the way a
functional programmer would code a program to make nachos. Functional
programmers live in a world devoid of objects such as microwave ovens and
other appliances. They tend to worry about flow charts with their myriad
functional paths. In a functional solution to the nachos problem, the flow of
control would pass through my finger to the front panel and then to the inter-
nals of the microwave. Pretty soon, flow would be wiggling around through
complex logic paths about how long to turn on the microwave tube and
whether to sound the “come and get it” tone.

In a world like this, it’s difficult to think in terms of levels of abstraction. There
are no objects, no abstractions behind which to hide inherent complexity.

171 Chapter 11: Examining Object-Oriented Programming

Preparing object-oriented nachos
In an object-oriented approach to making nachos, I would first identify the
types of objects in the problem: chips, beans, cheese, and an oven. Then
I would begin the task of modeling these objects in software, without regard
to the details of how they will be used in the final program.

While I am doing this, I’m said to be working (and thinking) at the level of
the basic objects. I need to think about making a useful oven, but I don’t
have to think about the logical process of making nachos yet. After all, the
microwave designers didn’t think about the specific problem of my making a
snack. Rather, they set about the problem of designing and building a useful
microwave.

After the objects I need have been successfully coded and tested, I can
ratchet up to the next level of abstraction. I can start thinking at the nacho-
making level, rather than the microwave-making level. At this point, I can
pretty much translate my son’s instructions directly into C++ code.

Classifying Microwave Ovens
Critical to the concept of abstraction is that of classification. If I were to ask
my son, “What’s a microwave?” he would probably say, “It’s an oven that . . .”
If I then asked, “What’s an oven?” he might reply, “It’s a kitchen appliance
that . . .” (If I then asked, “What’s a kitchen appliance?” he would probably
say, “Why are you asking so many stupid questions?”)

The answers my son gave to my questions stem from his understanding of
our particular microwave as an example of the type of things called micro-
wave ovens. In addition, my son sees microwave ovens as just a special type
of oven, which itself is just a special type of kitchen appliance.

 In object-oriented computerese, the microwave in my kitchen is an instance of
the class microwave. The class microwave is a subclass of the class oven, and
the class oven is a subclass of the class kitchen appliances. We say that micro-
waves inherit their cooking properties from oven.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things we have to remember. Take, for exam-
ple, the first time you saw a hybrid car. The advertisement probably called
the hybrid “unique, the likes of which have never been seen.” But you and
I know that that just isn’t so. I like hybrids and I will grant you that they have
a lot of differences under the hood, but hey, a hybrid is still a car. As such, it

172 Part III: Introduction to Classes

shares all of (or at least most of) the properties of other cars. It has a steering
wheel, seats, a motor, brakes, and so on. I bet I could even drive one without
first reading the owner’s manual.

I don’t have to clutter my limited storage with all the things that a hybrid
has in common with other cars. All I have to remember is “a hybrid is a car
that . . .” and tack on those few things that are unique to a hybrid (like the
price tag). I can go further. Cars are a subclass of wheeled vehicles along with
other members, such as trucks and pickups. Maybe wheeled vehicles are a
subclass of vehicles, which includes boats and planes. And on and on and on.

Why Classify?
Why do we classify? It sounds like a lot of trouble. Besides, people have been
using the functional approach for so long, why change now?

It may seem easier to design and build a microwave oven specifically for this
one problem, rather than build a separate, more generic oven object. Suppose,
for example, that I want to build a microwave to cook nachos and nachos only.
I wouldn’t need to put a front panel on it, other than a Start button. I always
cook nachos the same amount of time, so I could dispense with all that Defrost
and Temp Cook nonsense. My nachos-only microwave needs to hold only one
flat little plate. Three cubic feet of space would be wasted on nachos.

For that matter, I can dispense with the concept of “microwave oven” altogether.
All I really need is the guts of the oven. Then, in the recipe, I put the instruc-
tions to make it work: “Put nachos in the box. Connect the red wire to the
black wire. Bring the radar tube up to about 3,000 volts. Notice a slight hum.
Try not to stand too close if you intend to have children.” Stuff like that.

But the functional approach has some problems:

 ✓ Too complex: I don’t want the details of oven building mixed into the
details of nacho building. If I can’t define the objects and pull them out
of the morass of details to deal with separately, I must deal with all the
complexities of the problem at the same time.

 ✓ Not flexible: Someday I may need to replace the microwave oven with
some other type of oven. I should be able to do so as long as its interface
is the same. Without being clearly delineated and developed separately,
it becomes impossible to cleanly remove an object type and replace it
with another.

 ✓ Not reusable: Ovens are used to make lots of different dishes. I don’t
want to create a new oven every time I encounter a new recipe. Having
solved a problem once, it would be nice to be able to reuse the solution
in future programs.

173 Chapter 11: Examining Object-Oriented Programming

The remaining chapters in this part demonstrate how the object-oriented
 language features of C++ address these problems.

 In real life, it isn’t quite as pure as I make it sound here. I can’t spend the time
to build the software equivalent of a generic microwave oven. After all, teams
of engineers spends thousands of developer hours designing microwave ovens
(and still the front panel comes out incomprehensible!). When I build my classes,
I generally only build in the capabilities that I will need for the particular problem
at hand, but still the principle is the same. When I am building the microwave
oven, I need only think about the oven. When I am making nachos, I only have to
think about using the oven. It’s simpler that way.

174 Part III: Introduction to Classes

Chapter 12

Adding Class to C++
In This Chapter
▶ Grouping data into classes

▶ Declaring and defining class members

▶ Adding active properties to the class

▶ Accessing class member functions

▶ Overloading member functions

P
rograms often deal with groups of data: a person’s name, rank, and serial
number, stuff like that. Any one of these values is not sufficient to describe

a person — only in the aggregate do the values make any sense. A simple struc-
ture such as an array is great for holding standalone values, but it doesn’t work
well for data groups. This makes good ol’ arrays inadequate for storing complex
data (such as personal credit records that the Web companies maintain so they
can lose them to hackers).

For reasons that will become clear shortly, I’ll call such a grouping of data an
object. A microwave oven is an object (see Chapter 11 if that doesn’t make
sense). You are an object (no offense). Your savings account information in a
database is an object.

Introducing the Class
How nice it would be if we could create objects in C++ that have the relevant
properties of the real-world objects we’re trying to model. What we need is a
structure that can hold all the different types of data necessary to describe
a single object. C++ calls the structure that combines multiple pieces of data
into a single object a class.

176 Part III: Introduction to Classes

The Format of a Class
A class consists of the keyword class followed by a name and an open and
closed brace. A class used to describe a savings account including account
number and balance might appear as follows:

class SavingsAccount
{
 public:
 unsigned accountNumber;
 double balance;
};

The statement after the open brace is the keyword public. (Hold off asking
about the meaning of the public keyword. I’ll make its meaning public a little
later.)

 The alternative keyword struct can be used in place of class. The two keywords
are identical except that the public declaration is assumed in the struct and can
be omitted. You should stick with class for most programs for reasons that will
become clear later in this chapter.

Following the public keyword are the entries it takes to describe the object. The
SavingsAccount class contains two elements: an unsigned integer accountNumber
and the account balance. We can also say that accountNumber and balance are
members or properties of the class SavingsAccount.

To create an actual savings account object, I type something like the
following:

SavingsAccount mySavingsAccount;

We say that mySavingsAccount is an instance of the class SavingsAccount.

 The naming convention used here is common: Class names are normally
capitalized. In a class name with multiple words such as SavingsAccount, each
word is capitalized, and the words are jammed together without an under-
score. Object names follow the same rule of jamming multiple words together,
but they normally start with a small letter, as in mySavingsAccount. As always,
these norms (I hesitate to say rules) are to help out the human reader — C++
doesn’t care one way or the other.

177 Chapter 12: Adding Class to C++

Accessing the Members of a Class
The following syntax is used to access the property of a particular object:

// Create a savings account object
SavingsAccount mySave;
mySave.accountNumber = 1234;
mySave.balance = 0.0;

// Input a second savings account from the keyboard
cout << "Input your account number and balance" << endl;
SavingsAccount urSave;
cin >> urSave.accountNumber;
cin >> urSave.balance;

This code snippet declares two objects of class SavingsAccount, mySave and
urSave. The snippet initializes mySave by assigning a value to the account
number and a 0 to the balance (as per usual for my savings account). It then
creates a second object of the same class, urSave. The snippet reads the
account number and balance from the keyboard.

An important point to note in this snippet is that mySave and urSave are sep-
arate, independent objects. Manipulating the members of one has no effect
on the members of the other (lucky for urSave).

In addition, the name of the member without an associated object makes no
sense. I cannot say either of the following:

balance = 0.0; // illegal; no object
SavingsAccount.balance = 0.0;// class but still no object

Every savings account has its own unique account number and maintains a
separate balance. (There may be properties that are shared by all savings
accounts — we’ll get to those in Chapter 18 — but account and balance don’t
happen to be among them.)

Activating Our Objects
You use classes to simulate real-world objects. The Savings class tries to repre-
sent a savings account. This allows you to think in terms of objects rather than
simply lines of code. The closer C++ objects are to modeling the real world, the
easier it is to deal with them in programs. This sounds simple enough. However,
the Savings class doesn’t do a very good job of simulating a savings account.

178 Part III: Introduction to Classes

Simulating real-world objects
Real-world accounts have data-type properties such as account numbers and
balances, the same as the Savings class. This makes Savings a good starting
point for describing a real account. But real-world accounts do things. Savings
accounts accumulate interest; CDs charge a substantial penalty for early
withdrawal — stuff like that.

Functional programs “do things” through functions. A C++ program might call
strcmp() to compare two character strings or max() to return the maximum
of two values. In fact, Chapter 23 explains that even stream I/O (cin >> and
cout <<) is a special form of function call.

The Savings class needs active properties of its own if it’s to do a good job of
representing a real concept:

class Savings
{
 public:
 double deposit(double amount)
 {
 balance += amount;
 return balance;
 }

 unsigned accountNumber;
 double balance;
};

In addition to the account number and balance, this version of Savings
includes the function deposit(). This gives Savings the ability to control its
own future. The class Savings needs a function accumulateInterest(), and the
class CD a function to penalizeForEarlyWithdrawal().

 Functions defined in a class are called member functions.

Why bother with member functions?
Why should you bother with member functions? What’s wrong with the good
ol’ days of functional programming?

 I’m using the term “functional programming” synonymously with “procedural
programming”, the way programming was done before object-oriented pro-
gramming came along.

179 Chapter 12: Adding Class to C++

class Savings
{
 public:
 unsigned accountNumber;
 double balance;
};
double deposit(Savings& s, double amount)
{
 s.balance += amount;
 return s.balance;
}

Here, deposit() implements the “deposit into savings account” function. This
functional solution relies on an outside function, deposit(), to implement an
activity that savings accounts perform but that Savings lacks. This gets the
job done, but it does so by breaking the object-oriented (OO) rules.

The microwave oven has internal components that it “knows” how to use
to cook, defrost, and burn to a crisp. Class data members are similar to the
parts of a microwave — the member functions of a class perform cook-like
functions.

When I make nachos, I don’t have to start hooking up the internal compo-
nents of the oven in a certain way to make it work. Nor do I rely on some
external device to reach into a mess of wiring for me. I want my classes to
work the same way my microwave does (and, no, I don’t mean “not very
well”). I want my classes to know how to manipulate their internals without
outside intervention.

Adding a Member Function
To demonstrate member functions, start by defining a class Student. One
possible representation of such a class follows (taken from the program
CallMemberFunction):

class Student
{
 public:
 // add a completed course to the record
 double addCourse(int hours, double grade)
 {
 // calculate the sum of all courses times
 // the average grade
 double weightedGPA;
 weightedGPA = semesterHours * gpa;

 // now add in the new course
 semesterHours += hours;
 weightedGPA += grade * hours;

180 Part III: Introduction to Classes

 gpa = weightedGPA / semesterHours;

 // return the new gpa
 return gpa;
 }

 int semesterHours;
 double gpa;
};

The function addCourse(int, double) is called a member function of the
class Student. In principle, it’s a property of the class like the data members
semesterHours and gpa.

Sometimes functions that are not members of a class are class “plain ol’ func-
tions,” but I’ll refer to them simply as nonmembers.

 The member functions do not have to precede the data members as in this
example. The members of a class can be listed in any order — I just prefer to
put the functions first.

 For historical reasons, member functions are also called methods. This term
originated in one of the original object-oriented languages. The name made
sense there, but it makes no sense in C++. Nevertheless, the term has gained
popularity in OO circles because it’s easier to say than “member function.”
(The fact that it sounds more impressive probably doesn’t hurt, either.) So, if
your friends start spouting off at a dinner party about “methods of the class,”
just replace methods with member functions and reparse anything they say.

Calling a Member Function
The following CallMemberFunction program shows how to invoke the member
function addCourse():

// CallMemberFunction - define and invoke a function
// that's a member of the class Student
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 // add a completed course to the record
 double addCourse(int hours, double grade)
 {
 // calculate the sum of all courses times

181 Chapter 12: Adding Class to C++

 // the average grade
 double weightedGPA;
 weightedGPA = semesterHours * gpa;

 // now add in the new course
 semesterHours += hours;
 weightedGPA += grade * hours;
 gpa = weightedGPA / semesterHours;

 // return the new gpa
 return gpa;
 }

 int semesterHours;
 double gpa;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a Student object and initialize it
 Student s;
 s.semesterHours = 3;
 s.gpa = 3.0;

 // the values before the call
 cout << "Before: s = (" << s.semesterHours
 << ", " << s. gpa << ")" << endl;

 // the following subjects the data members of the s
 // object to the member function addCourse()
 cout << "Adding 3 hours with a grade of 4.0" << endl;
 s.addCourse(3, 4.0); // call the member function

 // the values are now changed
 cout << "After: s = (" << s.semesterHours
 << ", " << s. gpa << ")" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The syntax for calling a member function looks like a cross between the
syntax for accessing a data member and that used for calling a function. The
right side of the dot looks like a conventional function call, but an object is
on the left of the dot.

182 Part III: Introduction to Classes

In the call s.addCourse(), we say that “addCourse() operates on the object s”
or, said another way, “s is the student to which the course is to be added.”
You can’t fetch the number of semester hours without knowing from which
student to fetch those hours — you can’t add a student to a course without
knowing which student to add. Calling a member function without an object
makes no more sense than referencing a data member without an object.

Accessing other members
from a member function
I can see it clearly: You repeat to yourself, “Accessing a member without an
object makes no sense. Accessing a member without an object makes no
sense. Accessing . . .” Just about the time you’ve accepted this, you look at
the member function Student::addCourse() and Wham! It hits you: addCourse()
accesses other class members without reference to an object. So how do they
do that?

Okay, which is it, can you or can’t you? Believe me, you can’t. When you ref-
erence a member of Student from addCourse(), that reference is against the
Student object with which the call to addCourse() was made. Huh? Go back to
the CallMemberFunction example. A stripped-down version appears here:

int main(int nNumberofArgs, char* pszArgs[])
{
 Student s;
 s.semesterHours = 10;
 s.gpa = 3.0;
 s.addCourse(3, 4.0); // call the member function

 Student t;
 t.semesterHours = 6;
 t.gpa = 1.0; // not doing so good
 t.addCourse(3, 1.5); // things aren't getting
 // much better

 return 0;
}

When addCourse() is invoked with the object s, all of the otherwise unquali-
fied member references in addCourse() refer to s as well. Thus, the reference
to semesterHours in addCourse() refers to s.semesterHours, and gpa refers to
s.gpa. But when addCourse() is invoked with the Student t object, these same
references are to t.semesterHours and t.gpa instead.

 The object with which the member function was invoked is the “current”
object, and all unqualified references to class members refer to this object. Put
another way, unqualified references to class members made from a member
function are always against the current object.

183 Chapter 12: Adding Class to C++

Scope Resolution (And I Don’t Mean
How Well Your Telescope Works)

The :: between a member and its class name is called the scope resolution
operator because it indicates the class to which a member belongs. The class
name before the colons is like the family last name, while the function name

Naming the current object
How does the member function know what the current object is? It’s not magic — the address
of the object is passed to the member function as an implicit and hidden first argument. In other
words, the following conversion is taking place:

s.addCourse(3, 2.5)

is like

Student::addCourse(&s, 3, 2.5)

(Note that you can’t actually use the explicit syntax; this is just the way C++ sees it.)

Inside the function, this implicit pointer to the current object has a name, in case you need to refer
to it. It is called this, as in “Which object? This object.” Get it? The type of this is always a pointer
to an object of the appropriate class.

Anytime a member function refers to another member of the same class without providing an
object explicitly, C++ assumes that the programmer meant this. You also can refer to this explicitly,
if you like. I could have written Student::addCourse() as follows:

double Student::addCourse(int hours, double grade)
{
 double weightedGPA;
 weightedGPA = this->semesterHours * this->gpa;

 // now add in the new course
 this->semesterHours += hours;
 weightedGPA += hours * grade;
 this->gpa = weightedGPA / this->semesterHours;
 return this->gpa;
}

The effect is the same whether you explicitly include this, as in the preceding example, or leave it
implicit, as you did before.

184 Part III: Introduction to Classes

after the colons is like the first name — the order is similar to a Chinese
name, family name first.

You use the :: operator to describe a non-member function by using a null class
name. The non-member function addCourse, for example, can be referred to
as ::addCourse(int, double), if you prefer. This is like a function without a home.

Normally the :: operator is optional, but there are a few occasions when this
is not so, as illustrated here:

// addCourse - combine the hours and grade into
// a weighted grade
double addCourse(int hours, double grade)
{
 return hours * grade;
}

class Student
{
 public:
 // add a completed course to the record
 double addCourse(int hours, double grade)
 {
 // call some external function to calculate the
 // weighted grade
 double weightedGPA=::addCourse(semesterHours,gpa);

 // now add in the new course
 semesterHours += hours;

 // use the same function to calculate the weighted
 // grade of this new course
 weightedGPA += ::addCourse(hours, grade);
 gpa = weightedGPA / semesterHours;

 // return the new gpa
 return gpa;
 }

 int semesterHours;
 double gpa;
};

Here, I want the member function Student::addCourse() to call the non-member
function ::addCourse(). Without the :: operator, however, a call to addCourse()
from Student refers to Student::addCourse(). This would result in the function
calling itself.

185 Chapter 12: Adding Class to C++

Defining a Member Function in the Class
A member function can be defined either in the class or separately. When
defined in the class definition, the function looks like the following, which is
contained in the include file Savings.h:

// Savings - define a class that includes the ability
// to make a deposit
class Savings
{
 public:
 // define a member function deposit()
 double deposit(double amount)
 {
 balance += amount;
 return balance;
 }

 unsigned int accountNumber;
 double balance;
};

Using an include like this is pretty slick. Now a program can include the class
definition (along with the definition for the member function), as follows in
the venerable SavingsClass_inline program:

//
// SavingsClassInline - invoke a member function that's
// both declared and defined within
// the class Student
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;
#include "Savings.h"

int main(int nNumberofArgs, char* pszArgs[])
{
 Savings s;
 s.accountNumber = 123456;
 s.balance = 0.0;

 // now add something to the account
 cout << "Depositing 10 to account "
 << s.accountNumber << endl;
 s.deposit(10);
 cout << "Balance is " << s.balance << endl;

186 Part III: Introduction to Classes

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This is cool because everyone other than the programmer of the Savings class
can concentrate on the act of performing a deposit rather than the details of
banking. These details are neatly tucked away in their own include files.

 The #include directive inserts the contents of the file during the compilation
process. The C++ compiler actually “sees” your source file with the contents of
the Savings.h file included. See Chapter 10 for details on include files.

Inlining member functions
Member functions defined in the class default
to inline (unless they have been specifically out-
lined by a compiler switch or for any number of
very technical reasons). Mostly, this is because
a member function defined in the class is usu-
ally very small, and small functions are prime
candidates for inlining.

Remember that an inline function is expanded
where it is invoked. (See Chapter 10 for a com-
parison of inline functions and macros.) An inline
function executes faster because the processor
doesn’t have to jump over to where the func-
tion is defined — inline functions usually take
up more memory because they are copied into
every call instead of being defined just once.

There is another good but more technical reason
to inline member functions defined within a
class. Remember that C++ structures are nor-
mally defined in include files, which are then
included in the .CPP source files that need them.
Such include files should not contain data or
functions because these files are compiled mul-
tiple times. Including an inline function is okay,
however, because it (like a macro) expands in
place in the source file. The same applies to
C++ classes. By defaulting member functions
defined in classes inline, you avoid the preced-
ing problem.

187 Chapter 12: Adding Class to C++

Keeping a Member Function after Class
For larger functions, putting the code directly in the class definition can lead
to some large, unwieldy class definitions. To prevent this, C++ lets you define
member functions outside the class.

 A function that is defined outside the class is said to be an outline function.
This term is meant to be the opposite of an inline function that has been
defined within the class. Your basic functions such as those we have defined
since Chapter 5 are also outline functions.

When written outside the class declaration, the Savings.h file declares the
deposit() function without defining it as follows:

// Savings - define a class that includes the ability
// to make a deposit
class Savings
{
 public:
 // declare but don't define member function
 double deposit(double amount);
 unsigned int accountNumber;
 double balance;
};

The definition of the deposit() function must be included in one of the source
files that make up the program. For simplicity, I defined it within main.cpp.

 You would not normally combine the member function definition with the
rest of your program. It is more convenient to collect the outlined member
function definitions into a source file with an appropriate name (such as
Savings.cpp). This source file is combined with other source files as part of
building the executable program. I describe this in Chapter 21.

// SavingsClassOutline - invoke a member function that's
// declared within a class but
// defined in a separate file
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;
#include "Savings.h"

// define the member function Savings::deposit()
// (normally this is contained in a separate file that is
// then combined with a different file that is combined)
double Savings::deposit(double amount)

188 Part III: Introduction to Classes

{
 balance += amount;
 return balance;
}

// the main program
int main(int nNumberofArgs, char* pszArgs[])
{
 Savings s;
 s.accountNumber = 123456;
 s.balance = 0.0;

 // now add something to the account
 cout << "Depositing 10 to account "
 << s.accountNumber << endl;
 s.deposit(10);
 cout << "Balance is " << s.balance << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This class definition contains nothing more than a prototype declaration
for the function deposit(). The function definition appears separately. The
member function prototype declaration in the structure is analogous to any
other prototype declaration and, like all prototype declarations, is required.

Notice how the function nickname deposit() was good enough when the func-
tion was defined within the class. When defined outside the class, however,
the function requires its extended name, Savings::deposit().

Overloading Member Functions
Member functions can be overloaded in the same way that conventional
functions are overloaded. (See Chapter 6 if you don’t remember what that
means.) Remember, however, that the class name is part of the extended
name. Thus, the following functions are all legal:

class Student
{
 public:
 // grade -- return the current grade point average
 double grade();

189 Chapter 12: Adding Class to C++

 // grade -- set the grade and return previous value
 double grade(double newGPA);
 // ...data members and other stuff...
};
class Slope
{
 public:
 // grade -- return the percentage grade of the slope
 double grade();
 // ...stuff goes here too...
};

// grade - return the letter equivalent of a number grade
char grade(double value);

int main(int argcs, char* pArgs[])
{
 Student s;
 s.grade(3.5); // Student::grade(double)
 double v = s.grade(); // Student::grade()

 char c = grade(v); // ::grade(double)

 Slope o;
 double m = o.grade(); // Slope::grade()
 return 0;
}

Each call made from main() is noted in the comments with the extended
name of the function called.

When calling overloaded functions, not only the arguments of the function
but also the type of the object (if any) with which the function is invoked are
used to resolve the call. (The term resolve is object-oriented talk for “decide
at compile time which overloaded function to call.” A mere mortal might say
“differentiate.”)

190 Part III: Introduction to Classes

Chapter 13

Point and Stare at Objects
In This Chapter
▶ Examining the object of arrays of objects

▶ Getting a few pointers on object pointers

▶ Strong typing — getting picky about our pointers

▶ Navigating through lists of objects

C
++ programmers are forever generating arrays of things — arrays of
ints, arrays of doubles — so why not arrays of students? Students stand

in line all the time — a lot more than they care to. The concept of Student
objects all lined up quietly awaiting their names to jump up to perform some
mundane task is just too attractive to pass up.

Declaring Arrays of Objects
Arrays of objects work the same way arrays of simple variables work.
(Chapter 7 goes into the care and feeding of arrays of simple — intrinsic —
variables, and Chapters 8 and 9 describe simple pointers in detail.) Take, for
example, the following snippet from the ArrayOfStudents program:

// ArrayOfStudents - define an array of student objects
// and access an element in it. This
// program doesn't do anything
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
 double addCourse(int hours, double grade){return 0.0;}
};

192 Part III: Introduction to Classes

void someFn()
{
 // declare an array of 10 students
 Student s[10];

 // assign the 5th student a gpa of 4.0 (lucky guy)
 s[4].gpa = 4.0;
 s[4].semesterHours = 32;

 // add another course to the 5th student;
 // this time he failed - serves him right
 s[4].addCourse(3, 0.0);
}

Here s is an array of Student objects. s[4] refers to the fifth Student object in
the array. By extension, s[4].gpa refers to the GPA of the fifth student. Further,
s[4].addCourse() adds a course to the fifth Student object.

Declaring Pointers to Objects
Pointers to objects work like pointers to simple types, as you can see in the
example program ObjPtr:

// ObjPtr - define and use a pointer to a Student object
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
 double addCourse(int hours, double grade);
};

int main(int argc, char* pArgs[])
{
 // create a Student object
 Student s;
 s.gpa = 3.0;

 // now create a pointer pS to a Student object
 Student* pS;

 // make pS point to our Student object
 pS = &s;

193 Chapter 13: Point and Stare at Objects

 // now output the gpa of the object, once thru
 // the variable name and a second time thru pS
 cout << "s.gpa = " << s.gpa << "\n"
 << "pS->gpa = " << pS->gpa << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program declares a variable s of type Student. It then goes on to declare
a pointer variable pS of type “pointer to a Student object,” also written as
Student*. The program initializes the value of one of the data members in s.
It then proceeds to assign the address of s to the variable pS. Finally, it refers
to the same Student object, first using the object’s name, s, and then using the
pointer to the object, pS. I explain the strange notation pS->gpa; in the next
section of this chapter.

Dereferencing an object pointer
By analogy of pointers to simple variables, you might think that the following
refers to the GPA of student s:

int main(int argc, char* pArgs[])
{
 Student s;
 Student* pS = &s; // create a pointer to s

 // access the gpa member of the obj pointed at by pS
 // (this doesn't work)
 *pS.gpa = 3.5;

 return 0;
}

As the comments indicate, this doesn’t work. The problem is that the dot
operator (.) is evaluated before the pointer (*). Thus, *ps.gpa is interpreted as
if written *(ps.gpa). Parentheses are necessary to force the pointer operator to
be evaluated before the dot:

int main(int argc, char* pArgs[])
{
 Student s;
 Student* pS = &s; // create a pointer to s

194 Part III: Introduction to Classes

 // access the gpa member of the obj pointed at by pS
 // (this works as expected)
 (*pS).gpa = 3.5;

 return 0;
}

The *pS evaluates to the pointer’s Student object pointed at by pS. The .gpa
refers to the gpa member of that object.

Pointing toward arrow pointers
Using the asterisk operator together with parentheses works just fine for
dereferencing pointers to objects; however, even the most hardened techies
would admit that this mixing of asterisks and parentheses is a bit tortured.

C++ offers a more convenient operator for accessing members of an object
to avoid clumsy object pointer expressions. The -> operator is defined as
follows:

ps->gpa is equivalent to(*pS).gpa

This leads to the following:

int main(int argc, char* pArgs[])
{
 Student s;
 Student* pS = &s; // create a pointer to s

 // access the gpa member of the obj pointed at by pS
 pS->gpa = 3.5;

 return 0;
}

The arrow operator is used almost exclusively because it is easier to read;
however, the two forms are completely equivalent.

Passing Objects to Functions
Passing pointers to functions is just one of the many ways to entertain your-
self with pointer variables.

195 Chapter 13: Point and Stare at Objects

Calling a function with an object value
As you know, C++ passes arguments to functions by reference when the argu-
ment type is flagged with the & property (see Chapter 8). However, by default,
C++ passes arguments to functions by value. (You can check Chapter 6 on
this one, if you insist.)

Complex, user-defined class objects are passed the same as simple int values,
as shown in the following PassObjVal program:

// PassObjVal - attempts to change the value of an object
// in a function fail when the object is
// passed by value
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
};

void someFn(Student copyS)
{
 copyS.semesterHours = 10;
 copyS.gpa = 3.0;
 cout << "The value of copyS.gpa = "<<copyS.gpa<< endl;
}

int main(int argc, char* pArgs[])
{
 Student s;
 s.gpa = 0.0;

 // display the value of s.gpa before calling someFn()
 cout << "The value of s.gpa = " << s.gpa << endl;

 // pass the address of the existing object
 cout << "Calling someFn(Student)" << endl;
 someFn(s);
 cout << "Returned from someFn(Student)" << endl;

 // the value of s.gpa remains 0
 cout << "The value of s.gpa = " << s.gpa << endl;

196 Part III: Introduction to Classes

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The function main() creates an object s and then passes s to the function
someFn().

 It is not the object s itself that is passed, but a copy of s.

The object copyS in someFn() begins life as an exact copy of the variable s in
main(). Since it is a copy, any change to copyS made within someFn() has no
effect on s back in main(). Executing this program generates the following
understandable but disappointing response:

The value of s.gpa = 0
Calling someFn(Student)
The value of copyS.gpa = 3
Returned from someFn(Student)
The value of s.gpa = 0
Press Enter to continue...

Calling a function with an object pointer
Most of the time, the programmer wants any changes made in the function to
be reflected in the calling function as well. For this, the C++ programmer must
pass either the address of an object or a reference to the object. The follow-
ing PassObjPtr program uses the address approach:

// PassObjPtr - change the contents of an object in
// a function by passing a pointer
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
};

197 Chapter 13: Point and Stare at Objects

void someFn(Student* pS)
{
 pS->semesterHours = 10;
 pS->gpa = 3.0;
 cout << "The value of pS->gpa = " << pS->gpa << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Student s;
 s.gpa = 0.0;

 // display the value of s.gpa before calling someFn()
 cout << "The value of s.gpa = " << s.gpa << endl;

 // pass the address of the existing object
 cout << "Calling someFn(Student*)" << endl;
 someFn(&s);
 cout << "Returned from someFn(Student*)" << endl;

 // the value of s.gpa is now 3.0
 cout << "The value of s.gpa = " << s.gpa << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The type of the argument to someFn() is a pointer to a Student object (other-
wise known as Student*). This is reflected in the way that the program calls
someFn(), passing the address of s rather than the value of s. Giving someFn()
the address of s allows him to modify whatever value that is stored there.
Conceptually, this is akin to writing down the address of the house s on the
piece of paper pS and then passing that paper to someFn(). The function
someFn() uses the arrow syntax for dereferencing the pS pointer.

The output from PassObjPtr is much more satisfying (to me, anyway):

The value of s.gpa = 0
Calling someFn(Student*)
The value of pS->gpa = 3
Returned from someFn(Student*)
The value of s.gpa = 3
Press Enter to continue...

198 Part III: Introduction to Classes

Calling a function by using
the reference operator
Chapter 6 introduces the concept of passing simple argument types to func-
tions by reference using the “&” operator. The following PassObjRef demon-
strates the same for user-defined objects:

// PassObjRef - change the contents of an object in
// a function by using a reference
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
};

// same as before, but this time using references
void someFn(Student& refS)
{
 refS.semesterHours = 10;
 refS.gpa = 3.0;
 cout << "The value of copyS.gpa = " <<refS.gpa<< endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Student s;
 s.gpa = 0.0;

 // display the value of s.gpa before calling someFn()
 cout << "The value of s.gpa = " << s.gpa << endl;

 // pass the address of the existing object
 cout << "Calling someFn(Student*)" << endl;
 someFn(s);
 cout << "Returned from someFn(Student&)" << endl;

 // the value of s.gpa is now 3.0
 cout << "The value of s.gpa = " << s.gpa << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

199 Chapter 13: Point and Stare at Objects

In this example, C++ passes a reference to s rather than a copy. The output
from this version is identical to the PassObjPtr program — changes made in
someFn() are retained in main().

Why Bother with Pointers or References?
Okay, so both pointers and references provide relative advantages, but why
bother with either one? Why not just always pass the object? I mentioned one
obvious answer earlier in this chapter: You can’t modify the object from a
function that gets nothing but a copy of the structure object.

Here’s a second reason: Some objects are large — I mean really large. An
object representing a screen image can be many megabytes in length. Passing
such an object by value means copying the entire thing into the function’s
memory.

The object will need to be copied again should that function call another, and
so on. After a while, you can end up with dozens of copies of this object. That
consumes memory, and copying all the objects can make execution of your
program slower than booting up Windows.

 The problem of copying objects gets worse. You see in Chapter 17 that making
a copy of an object can be even more painful than simply copying some
memory around.

Passing a pointer (or a reference) is very fast. A pointer is 4 bytes, no matter
how big the object being pointed at is.

Returning to the Heap
The problems that exist for simple types of pointers plague class object
pointers as well. In particular, you must make sure that the pointer you’re
using actually points to a valid object. For example, don’t return a reference
to an object defined local to the function:

MyClass* myFunc()
{
 // the following does not work
 MyClass mc;
 MyClass* pMC = &mc;
 return pMC;
}

200 Part III: Introduction to Classes

Upon return from myFunc(), the mc object goes out of scope. The pointer
returned by myFunc() is not valid in the calling function.

 The problem of returning memory that’s about to go out of scope is discussed
in Chapter 9.

Allocating the object off the heap solves the problem:

MyClass* myFunc()
{
 MyClass* pMC = new MyClass;
 return pMC;
}

Here the memory allocated off the heap is not returned when the variable
pMC goes out of scope.

 Programmers allocate memory from the heap if they don’t want the memory
to be lost when any particular variable goes out of scope. The programmer is
responsible for both allocating and returning heap memory.

Allocating heaps of objects
It is also possible to allocate an array of objects off the heap using the follow-
ing syntax:

class MyClass
{
 public:
 int nValue;
};
void fn()
{
 MyClass* pMC = new MyClass[5]

 // reference individual members like any array
 for (int i = 0; i < 5; i++)
 {
 pMC[i].nValue = i;
 }

 // uses a different delete keyword to return memory
 // to the heap
 delete[] pMC;
};

Notice that once allocated, pMC can be used like any other array, with pMC[i]
referring to the ith object of type MyClass. Notice also that you use the slightly
different keyword delete[] to return arrays of class objects to the heap.

201 Chapter 13: Point and Stare at Objects

When memory is allocated for you
Many classes (particularly the containers described in Chapter 27) manage
heap memory for you. For example, the string class maintains a character
string in memory that it allocates off of the heap. The authors of these
classes are careful to return heap memory in all the right places so that it’s
safe to write a function like the following:

string myFunc()
{
 string localString;
 localString << cin;
 return localString;
}

The object localString allocates heap memory when it is created but carefully
returns said memory when it goes out of scope at the end of the function.
(You will see in Chapters 16 and 17 how this magic is performed.)

Linking Up with Linked Lists
The second most common structure after the array is called a list. Lists come
in different sizes and types; however, the most common one is the linked list.
In the linked list, each object points to the next member in a sort of chain that
extends through memory. The program can simply point the last element in
the list to an object to add it to the list. This means that the user doesn’t have
to declare the size of the linked list at the beginning of the program — you
can add and remove objects from the list by merely unlinking them. In addi-
tion, you can sort the members of a linked list — without actually moving
data objects around — by changing the links.

The cost of such flexibility is speed of access. You can’t just reach in and grab
the tenth element, for example, like you would in the case of an array. Instead,
you have to start at the beginning of the list and link ten times from one
object to the next.

A linked list has one other feature besides its run-time expandability (that’s
good) and its difficulty in accessing an object at random (that’s bad): A linked
list makes significant use of pointers. This makes linked lists a great tool for
giving you experience in manipulating pointer variables (that’s very good).

 The C++ standard library offers a number of different types of lists. You can
see them in action in Chapter 27; however, it’s always good to implement your
first linked list yourself to get practice in manipulating pointers.

202 Part III: Introduction to Classes

Not every class can be used to create a linked list. You declare a linkable
class as follows:

class LinkableClass
{
 public:
 LinkableClass* pNext;

 // other members of the class
};

The key to a linkable class is the pNext pointer. At first blush, this seems odd
indeed — a class contains a pointer to itself? Actually, pNext is not a pointer
to itself but to another, different object of the same type.

A linked list is similar to a chain of school children crossing the street. The
pNext pointer corresponds to a child’s arm reaching out and grabbing the
child next to him.

Somewhere outside the linked list is a pointer to the first element of the list,
the head pointer. The head pointer is simply a pointer of type LinkableClass*:,
sort of like the teacher holding onto the first kid in the chain.

 Always initialize any pointer to nullptr, the pointer that doesn’t point to any-
thing, the non-pointer.

LinkableClass* pHead = nullptr;

 For C++ compilers prior to the ’11 standard that don’t implement nullptr, use a
hardcoded 0 or an equivalent #define instead:#define NULLPTR 0.

LinkableClass* pHead = NULLPTR;

To see how linked lists work in practice, consider the following function,
which adds the argument passed it to the beginning of a list:

void addHead(LinkableClass* pLC)
{
 pLC->pNext = pHead;
 pHead = pLC;
}

Here, the pNext pointer of the object is set to point to the first member of
the list. This is akin to grabbing the hand of the first kid in the chain. For one
instruction, both you and the teacher have hold of this first kid in the list.
The second line points the head pointer to the object, sort of like having the
teacher let go of the kid you’re holding onto and grabbing you. That makes
you the first kid in the chain.

203 Chapter 13: Point and Stare at Objects

Performing other operations
on a linked list
Adding an object to the head of a list is the simplest operation on a linked
list. Moving through the elements in a list gives you a better idea about how a
linked list works:

// navigate through a linked list
LinkableClass* pL = pHead;
while(pL)
{
 // perform some operation here

 // get the next entry
 pL = pL->pNext;
}

The program initializes the pL pointer to the first object of a list of LinkableClass
objects through the pointer pHead. (Grab the first kid’s hand.) The program then
enters the while loop. If the pL pointer is non-null, it points to some LinkableClass
object. Control enters the loop, where the program can then perform whatever
operations it wants on the object pointed at by pL.

The assignment pL = pL->pNext “moves” the pL pointer over to the next kid in
the list of objects. The program checks to see if pL is null, meaning that we’ve
exhausted the list . . . I mean run out of kids, not exhausted all the kids in the list.

Hooking up with a LinkedListData
program
The LinkedListData program shown here implements a linked list of objects
containing a person’s name. The program could easily contain whatever
other data you might like, such as Social Security number, grade point aver-
age, height, weight, and bank account balance. I’ve limited the information to
just a name to keep the program as simple as possible.

// LinkedListData - store data in a linked list of objects
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

// NameDataSet - stores a person's name (these objects
// could easily store any other information
// desired).

204 Part III: Introduction to Classes

class NameDataSet
{
 public:
 string sName;

 // the link to the next entry in the list
 NameDataSet* pNext;
};

// the pointer to the first entry in the list
NameDataSet* pHead = nullptr;

// add - add a new member to the linked list
void add(NameDataSet* pNDS)
{
 // point the current entry to the beginning of list
 pNDS->pNext = pHead;

 // point the head pointer to the current entry
 pHead = pNDS;
}

// getData - read a name and social security
// number; return null if no more to read
NameDataSet* getData()
{
 // read the first name
 string name;
 cout << "Enter name:";
 cin >> name;

 // if the name entered is 'exit'...
 if (name == "exit")
 {
 // ...return a null to terminate input
 return nullptr;
 }

 // get a new entry and fill in values
 NameDataSet* pNDS = new NameDataSet;
 pNDS->sName = name;
 pNDS->pNext = nullptr; // zero link

 // return the address of the object created
 return pNDS;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Read names of students\n"
 << "Enter 'exit' for first name to exit"
 << endl;

205 Chapter 13: Point and Stare at Objects

 // create (another) NameDataSet object
 NameDataSet* pNDS;
 while (pNDS = getData())
 {
 // add it to the list of NameDataSet objects
 add(pNDS);
 }

 // to display the objects, iterate through the
 // list (stop when the next address is NULL)
 cout << "\nEntries:" << endl;
 for(NameDataSet *pIter = pHead;
 pIter; pIter = pIter->pNext)
 {
 // display name of current entry
 cout << pIter->sName << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Although somewhat lengthy, the LinkedListData program is simple if you take
it in parts. The NameDataSet structure has room for a person’s name and a
link to the next NameDataSet object in a linked list. I mentioned earlier that
this class would have other members in a real-world application.

 I have used the class string to contain the person’s name. Although I don’t
describe all the methods of the string class until Chapter 27, it is much easier to
use than zero-terminated character strings. You will see the string class used in
preference to character strings in most applications these days. The string class
has become about as close to an intrinsic type in the C++ language as possible.

The main() function starts looping, calling getData() on each iteration to
fetch another NameDataSet entry from the user. The program exits the loop if
getData() returns a null, the “nonaddress,” for an address.

The getData() function prompts the user for a name and reads in whatever
the user enters. If the string entered is equal to exit, the function returns a
null to the caller, thereby exiting the while loop. If the string entered is not
exit, the program creates a new NameDataSet object, populates the name, and
zeroes out the pNext pointer.

 Never leave link pointers uninitialized. Use the old programmer’s wives’ tale:
“When in doubt, zero it out.” (I mean “Old tale,” not “Tale of an old wife.”)

Finally, getData() returns the object’s address to main().

206 Part III: Introduction to Classes

main() adds each object returned from getData() to the beginning of the
linked list pointed at by the global variable pHead. Control exits the initial
while loop when getData() returns a null. main() then enters a second section
that iterates through the completed list, displaying each object.

This time I used a for loop that is functionally equivalent to the earlier while
loop. The for loop initializes the iteration pointer pIter to point to the first ele-
ment in the list through the assignment pIter = pHead. It next checks to see if
pIter is null, which will be the case when the list is exhausted. It then enters
the loop. On each round trip through the for loop, the third clause moves
pIter from one object to the next with the assignment pIter = pIter->pNext
before repeating the test and the body of the loop. This pattern is commonly
followed for all list types.

The output of a sample run of the program appears as follows:

Read names of students
Enter 'exit' for first name to exit
Enter name:Randy
Enter name:Loli
Enter name:Bodi
Enter name:exit

Entries:
Bodi
Loli
Randy
Press Enter to continue...

 The program outputs the names in the opposite order in which they were
entered. This is because each new object is added to the beginning of the list.
Alternatively, the program could have added each object to the end of the
list — doing so just takes a little more code. I included just such a version in
the programs on the web site. Called LinkedListForward, it links newly added
objects to the end of the list so that the list comes out in the same order it was
entered. The only difference is in the add() function. See if you can create this
forward version before you peek at my solution.

Ray of Hope: A List of Containers
Linked to the C++ Library

I believe everyone should walk before they run, should figure out how to per-
form arithmetic in their heads before using a calculator, and should write a
linked list program before using a list class written by someone else. That being
said, in Chapter 27, I describe the list class provided by the C++ environment.

Chapter 14

Protecting Members:
Do Not Disturb

In This Chapter
▶ Declaring members protected

▶ Accessing protected members from within the class

▶ Accessing protected members from outside the class

C
hapter 12 introduces the concept of the class. That chapter describes
the public keyword as though it were part of the class declaration —

just something you do. In this chapter, you find out about an alternative to
public.

Protecting Members
The members of a class can be marked protected, which makes them inac-
cessible outside the class. The alternative is to make the members public.
Public members are accessible to all.

 Please understand the term inaccessible in a weak sense. Any programmer can
go into the source code, remove the protected keyword, and do whatever she
wants. Further, any hacker worth his salt can code into a protected section of
code. The protected keyword is designed to protect a programmer from herself
by preventing inadvertent access.

208 Part III: Introduction to Classes

Why you need protected members
To understand the role of protected, think about the goals of object-oriented
programming:

 ✓ To protect the internals of the class from outside functions. Suppose,
for example, that you have a plan to build a software microwave (or
whatever), provide it with a simple interface to the outside world, and
then put a box around it to keep others from messing with the insides.
The protected keyword is that box.

 ✓ To make the class responsible for maintaining its internal state. It’s
not fair to ask the class to be responsible if others can reach in and
manipulate its internals (any more than it’s fair to ask a microwave
designer to be responsible for the consequences of my mucking with a
microwave’s internal wiring).

 ✓ To limit the interface of the class to the outside world. It’s easier to
figure out and use a class that has a limited interface (the public mem-
bers). Protected members are hidden from the user and need not be
learned. The interface becomes the class; this is called abstraction (see
Chapter 11 for more on abstraction).

 ✓ To reduce the level of interconnection between the class and other code.
By limiting interconnection, you can more easily replace one class with
another or use the class in other programs.

Now, I know what you non-object oriented types out there are saying: “You
don’t need some fancy feature to do all that. Just make a rule that says cer-
tain members are publicly accessible and others are not.”

Although that is true in theory, it doesn’t work. People start out with all kinds
of good intentions, but as long as the language doesn’t at least discourage
direct access of protected members, these good intentions get crushed under
the pressure to get the product out the door.

Discovering how protected members work
By default, the members of a class are protected, which means they are not
accessible by nonmembers of the class. Adding the keyword public to a class
makes subsequent members public, which means that they are accessible
by nonmember functions. Adding the keyword protected makes subsequent
members of the class protected. You can switch between public and protected
as often as you like.

209 Chapter 14: Protecting Members: Do Not Disturb

Suppose you have a class named Student. In this example, the following
 capabilities are all that a fully functional, upstanding Student needs (notice
the absence of spendMoney() and drinkBeer() — this is a highly stylized
student):

addCourse(inthours, double grade) — adds a course

grade() — returns the current grade point average

hours() — returns the number of hours earned toward graduation

The remaining members of Student can be declared protected to keep other
functions’ prying expressions out of Student’s business.

class Student
{
 public:
 // grade - return the current grade point average
 double grade() { return gpa;}

 // hours - return the number of semester hours
 int hours() { return semesterHours; }
 // addCourse - add a course to the student's record
 double addCourse(int hours, double grade);

 // the following members are off-limits to others
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa; // grade point average
};

Now the members semester hours and gpa are accessible only to other mem-
bers of Student. Thus, the following doesn’t work:

Student s;
int main(int argcs, char* pArgs[])
{
 // raise my grade (don't make it too high; otherwise, no
 // one would believe it)
 s.gpa = 3.5; // <- generates compiler error
 double gpa = s.grade();// <- this public function reads
 // a copy of the value, but you
 return 0; // can't change it from here
}

The application’s attempt to change the value of gpa is flagged with a c ompiler
error.

 A class member can also be protected by declaring it private. In this book,
I use the protected keyword exclusively. The difference between private and
protected has to do with inheritance, which is presented in Chapter 19.

210 Part III: Introduction to Classes

Making an Argument for Using
Protected Members

Now that you know a little more about how to use protected members in an
actual class, I can replay the arguments for using protected members.

Protecting the internal state of the class
Making the gpa member protected precludes the application from setting
the grade point average to some arbitrary value. The application can add
courses, but it can’t change the grade point average directly.

If the application has a legitimate need to set the grade point average directly,
the class can provide a member function for that purpose, as follows:

class Student
{
 public:
 // same as before
 double grade() { return gpa; }
 // here we allow the grade to be changed
 double grade(double newGPA)
 {
 double oldGPA = gpa;
 // only if the new value is valid
 if (newGPA > 0 && newGPA <= 4.0)
 {
 gpa = newGPA;
 }
 return oldGPA;
 }
 // ...other stuff is the same including the data

members:
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};

The addition of the member function grade(double) allows the application to
set the gpa. Notice, however, that the class still hasn’t given up control com-
pletely. The application can’t set gpa to any old value; only a gpa in the legal
range of values (from 0 through 4.0) is accepted.

Thus, the Student class has provided access to an internal data member
 without abdicating its responsibility to make sure that the internal state of
the class is valid.

211 Chapter 14: Protecting Members: Do Not Disturb

Using a class with a limited interface
A class provides a limited interface. To use a class, you need to know only its
public members as well as what they do and their arguments. This can drastically
reduce the number of things you need to master and remember to use the class.

As conditions change or as bugs are found, you want to be able to change the
internal workings of a class. Changes to those details are less likely to require
changes in the external application code if you can hide the internal workings
of the class.

A second, perhaps more important, reason lies in the limited ability of humans
(I can’t speak for dogs and cats) to keep a large number of things in their
minds at any given instant. Using a strictly defined class interface allows the
programmer to forget the details that go on behind it. Likewise, a programmer
building the class need not concentrate to quite the same degree on exactly
how each of the functions is being used.

Giving Non-member Functions Access
to Protected Members

Occasionally, you want a non-member function to have access to the pro-
tected members of a class. You do so by declaring the function to be a friend
of the class by using the keyword friend.

The friend declaration appears in the class that contains the protected
member. The friend declaration is like a prototype declaration in that it
includes the extended name and the return type. In the following example,
the function initialize() can now access anything it wants in Student:

class Student
{
 friend void initialize(Student*);
 public:
 // same public members as before...
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};
// the following function is a friend of Student
// so it can access the protected members
void initialize(Student *pS)
{
 pS->gpa = 0; // this is now legal...
 pS->semesterHours = 0; // ...when it wasn't before
}

212 Part III: Introduction to Classes

A single function can be declared a friend of two classes at the same time.
Although this can be convenient, it tends to bind the two classes together.
This binding of classes is normally considered bad because it makes one
class dependent on the other. If the two classes naturally belong together,
however, it’s not all bad, as shown here:

class Student; // forward declaration
class Teacher
{
 friend void registration(Teacher& t, Student& s);
 public:
 void assignGrades();
 protected:
 int noStudents;
 Student *pList[100];
};
class Student
{
 friend void registration(Teacher& t, Student& s);
 public:
 // same public members as before...
 protected:
 Teacher *pT;
 int semesterHours; // hours earned toward graduation
 double gpa;
};

void registration(Teacher& t, Student& s)
{
 // initialize the Student object
 s.semesterHours = 0;
 s.gpa = 0;

 // if there's room...
 if (t.noStudents < 100)
 {
 // ...add it onto the end of the list
 t.pList[t.noStudents] = &s;
 t.noStudents++;
 }
}

In this example, the registration() function can reach into both the Student
and Teacher classes to tie them together at registration time, without being a
member function of either one.

 The first line in the example declares the class Student, but none of its members.
This is called a forward declaration and just defines the name of the class so that
other classes, such as Teacher, can define a pointer to it. Forward declarations
are necessary when two classes refer to each other.

213 Chapter 14: Protecting Members: Do Not Disturb

A member function of one class may be declared a friend of another class, as
shown here:

class Teacher
{
 // ...other members as well...
 public:
 void assignGrades();
};
class Student
{
 friend void Teacher::assignGrades();
 public:
 // same public members as before...
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};
void Teacher::assignGrades()
{
 // can access protected members of Teacher from here
}

Unlike in the non-member example, the member function assignGrades()
must be declared before the class Student can declare it to be a friend.

An entire class can be named a friend of another. This has the effect of
making every member function of the class a friend:

class Student; // forward declaration
class Teacher
{
 protected:
 int noStudents;
 Student *pList[100];
 public:
 void assignGrades();
};
class Student
{
 friend class Teacher; // make entire class a friend
 public:
 // same public members as before...
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};

Now, any member function of Teacher has access to the protected members
of Student. Declaring one class a friend of the other inseparably binds the two
classes together.

214 Part III: Introduction to Classes

Chapter 15

“Why Do You Build Me Up, Just
to Tear Me Down, Baby?”

In This Chapter
▶ Creating and destroying objects

▶ Declaring constructors and destructors

▶ Invoking constructors and destructors

O
bjects in programs are built and scrapped just like objects in the real
world. If the class is to be responsible for its well-being, it must have

some control over this process. As luck would have it (I suppose some plan-
ning was involved as well), C++ provides just the right mechanism. But first,
a discussion of what it means to create an object.

Creating Objects
Some people get a little sloppy in using the terms class and object. What’s the
difference? What’s the relationship?

I can create a class Dog that describes the relevant properties of man’s best
friend. At my house, we have two dogs. Thus, my single class Dog has two
instances, Jack and Scruffy. (Well, I think there are two instances — I haven’t
seen Scruffy in a few days.)

 A class describes a type of thing. An object is one of those things. An object is
an instance of a class. There is only one class Dog, no matter how many dogs
I have.

Objects are created and destroyed, but classes simply exist. My pets come
and go, but the class Dog (evolution aside) is perpetual.

216 Part III: Introduction to Classes

Different types of objects are created at different times. Global objects are
 created when the program first begins execution. Local objects are created
when the program encounters their declaration.

 A global object is one that is declared outside a function. A local object is one
that is declared within a function and is, therefore, local to the function. In the
following example, the variable me is global, and the variable notMe is local to
the function pickOne():

int me = 0;
void pickOne()
{
 int notMe;
 }

 According to the rules, global objects are initialized to all zeros when the pro-
gram starts executing. Objects declared local to a function have no particular
initial value. Having all data members have a random state may not be a valid
condition for all classes.

C++ allows the class to define a special member function that is invoked
automatically when an object of that class is created. This member function,
called the constructor, initializes the object to a valid initial state. In addition,
the class can define a destructor to handle the destruction of the object.
These two functions are the topics of this chapter.

Using Constructors
The constructor is a member function that is called automatically when an
object is created. Its primary job is to initialize the object to a legal initial
value for the class. (It’s the job of the remaining member functions to ensure
that the state of the object stays legal.)

The constructor carries the same name as the class to differentiate it from
the other members of the class. The designers of C++ could have made up
a different rule, such as: “The constructor must be called init().” It wouldn’t
have made any difference, as long as the compiler can recognize the con-
structor. In addition, the constructor has no return type, not even void,
because it is called only automatically — if the constructor did return some-
thing, there would be no place to put it. A constructor cannot be invoked
manually.

217 Chapter 15: “Why Do You Build Me Up, Just to Tear Me Down, Baby?”

Constructing a single object
With a constructor, the class Student appears as follows:

// Constructor - example that invokes a constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student()
 {
 cout << "constructing student" << endl;
 semesterHours = 0;
 gpa = 0.0;
 }
 // ...other public members...
 protected:
 int semesterHours;
 double gpa;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Creating a new Student object" << endl;
 Student s;

 cout << "Creating a new object off the heap" << endl;
 Student* pS = new Student;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

At the point of the declaration of s, the compiler inserts a call to the con-
structor Student::Student(). Allocating a new Student object from the heap has
the same effect, as demonstrated by the output from the program:

Creating a new Student object
constructing student
Creating a new object off the heap
constructing student
Press Enter to continue...

218 Part III: Introduction to Classes

This simple constructor was written as an inline member function. Constructors
can be written also as outline functions, as shown here:

class Student
{
 public:
 Student();
 // ...other public members...
 protected:
 int semesterHours;
 double gpa;
};
Student::Student()
{
 cout << "constructing student" << endl;
 semesterHours = 0;
 gpa = 0.0;
}

Constructing multiple objects
Each element of an array must be constructed on its own. For example, the
following ConstructArray program creates five Student objects by declaring a
single five-element array:

// ConstructArray - example that invokes a constructor
// on an array of objects
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student()
 {
 cout << "constructing student" << endl;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Creating an array of 5 Student objects"
 << endl;
 Student s[5];

219 Chapter 15: “Why Do You Build Me Up, Just to Tear Me Down, Baby?”

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing the program generates the following output:

Creating an array of 5 Student objects
constructing student
constructing student
constructing student
constructing student
constructing student
Press Enter to continue...

Constructing a duplex
If a class contains a data member that is an object of another class, the con-
structor for that class is called automatically as well. Consider the following
ConstructMembers example program. I added output statements so that you
can see the order in which the objects are invoked.

// ConstructMembers - the member objects of a class
// are each constructed before the
// container class constructor gets
// a shot at it
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Course
{
 public:
 Course(){ cout << "constructing course" << endl;}
};

class Student
{
 public:
 Student()
 {
 cout << "constructing student" << endl;
 semesterHours = 0;
 gpa = 0.0;
 }

220 Part III: Introduction to Classes

 protected:
 int semesterHours;
 double gpa;
};
class Teacher
{
 public:
 Teacher(){cout << "constructing teacher" << endl;}
 protected:
 Course c;
};
class TutorPair
{
 public:
 TutorPair()
 {
 cout << "constructing tutorpair" << endl;
 noMeetings = 0;
 }
 protected:
 Student student;
 Teacher teacher;
 int noMeetings;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Creating TutorPair object" << endl;
 TutorPair tp;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing this program generates the following output:

Creating TutorPair object
constructing student
constructing course
constructing teacher
constructing tutorpair
Press Enter to continue...

Creating the object tp in main automatically invokes the constructor for
TutorPair. Before control passes into the body of the TutorPair constructor,
however, the constructors for the two-member objects, student and teacher,
are invoked.

221 Chapter 15: “Why Do You Build Me Up, Just to Tear Me Down, Baby?”

The constructor for Student is called first because it is declared first. Then
the constructor for Teacher is called.

The member Teacher.c of class Course is constructed as part of building the
Teacher object. The Course constructor gets a shot first. Each object within
a class must construct itself before the class constructor can be invoked.
Otherwise, the main constructor would not know the state of its data members.

After all member data objects have been constructed, control returns to the
open brace, and the constructor for TutorPair is allowed to construct the
remainder of the object.

Dissecting a Destructor
Just as objects are created, so are they destroyed (ashes to ashes, dust to dust).
If a class can have a constructor to set things up, it should also have a special
member function to take the object apart. This member is called the destructor.

Why you need the destructor
A class may allocate resources in the constructor; these resources need to
be deallocated before the object ceases to exist. For example, if the construc-
tor opens a file, the file needs to be closed before leaving that class or the
program. Or, if the constructor allocates memory from the heap, this memory
must be freed before the object goes away. The destructor allows the class
to do these cleanup tasks automatically without relying on the application to
call the proper member functions.

Working with destructors
The destructor member has the same name as the class but with a tilde (~)
added at the front. (C++ is being cute again — the tilde is the symbol for the
logical NOT operator. Get it? A destructor is a “not constructor.” Très clever.)
Like a constructor, the destructor has no return type. For example, the class
Student with a destructor added appears as follows:

class Student
{
 public:
 Student()
 {
 semesterHours = 0;
 gpa = 0.0;
 }

222 Part III: Introduction to Classes

 ~Student()
 {
 // ...whatever assets are returned here...
 }
 protected:
 int semesterHours;
 double gpa;
};

The destructor is invoked automatically when an object is destroyed, or
in C++ parlance, when an object is destructed. That sounds sort of circular
(“the destructor is invoked when an object is destructed”), so I’ve avoided
the term until now. For non-heap memory, you can also say, “when the
object goes out of scope.” A local object goes out of scope when the func-
tion returns. A global or static object goes out of scope when the program
terminates.

But what about heap memory? An object that has been allocated off the heap
is destructed when it’s returned to the heap using the delete command. This
is demonstrated in the following DestructMembers program:

// DestructMembers - this program both constructs and
// destructs a set of data members
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Course
{
 public:
 Course() { cout << "constructing course" << endl; }
 ~Course() { cout << "destructing course" << endl; }
};

class Student
{
 public:
 Student() { cout << "constructing student" << endl;}
 ~Student() { cout << "destructing student" << endl; }
};
class Teacher
{
 public:
 Teacher()
 {
 cout << "constructing teacher" << endl;
 pC = new Course;
 }

223 Chapter 15: “Why Do You Build Me Up, Just to Tear Me Down, Baby?”

 ~Teacher()
 {
 cout << "destructing teacher" << endl;
 delete pC;
 }
 protected:
 Course* pC;
};
class TutorPair
{
 public:
 TutorPair(){cout << "constructing tutorpair" << endl;}
 ~TutorPair(){cout << "destructing tutorpair" << endl; }
 protected:
 Student student;
 Teacher teacher;
};

TutorPair* fn()
{
 cout << "Creating TutorPair object in function fn()"
 << endl;
 TutorPair tp;

 cout << "Allocating TutorPair off the heap" << endl;
 TutorPair* pTP = new TutorPair;

 cout << "Returning from fn()" << endl;
 return pTP;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // call function fn() and then return the
 // TutorPair object returned to the heap
 TutorPair* pTPReturned = fn();
 cout << "Return heap object to the heap" << endl;
 delete pTPReturned;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The function main() invokes a function fn() that defines the object tp — this
is to allow you to watch the variable go out of scope when control exits the
function. fn() also allocates heap memory that it returns to main() where the
memory is returned to the heap.

224 Part III: Introduction to Classes

If you execute this program, it generates the following output:

Creating TutorPair object in function fn()
constructing student
constructing teacher
constructing course
constructing tutorpair
Allocating TutorPair off the heap
constructing student
constructing teacher
constructing course
constructing tutorpair
Returning from fn()
destructing tutorpair
destructing teacher
destructing course
destructing student
Return heap object to the heap
destructing tutorpair
destructing teacher
destructing course
destructing student
Press Enter to continue...

Each constructor is called in turn as the TutorPair object is built up, starting
from the smallest data member and working up to the TutorPair::TutorPair()
constructor function.

Two TutorPair objects are created. The first, tp, is defined locally to the func-
tion fn(); the second, pTP, is allocated off the heap. tp goes out of scope and
is destructed when control passes out of the function. The heap memory
whose address is returned from fn() is not destructed until main() deletes it.

 When an object is destructed, the sequence of destructors is invoked in the
reverse order in which the constructors were called.

 C++ provides a separate keyword for deleting arrays, delete[]:

Student* pS = new Student[5]; // construct 5 Students

// ...later in the program...
delete[] pS; // delete heap memory and invoke
 // destructor on each object

Only the delete[] keyword knows to invoke the destructor for each object
allocated.

Chapter 16

Making Constructive Arguments
In This Chapter
▶ Making argumentative constructors

▶ Overloading the constructor

▶ Creating objects by using constructors

▶ Invoking member constructors

▶ Constructing the order of construction and destruction

A
 class represents a type of object in the real world. For example, in ear-
lier chapters, I use the class Student to represent the properties of a stu-

dent. Just like students, classes are autonomous. Unlike a student, a class is
responsible for its own care and feeding — a class must keep itself in a valid
state at all times.

The default constructor presented in Chapter 15 isn’t always enough. For exam-
ple, a default constructor can initialize the student ID to 0 so that it doesn’t con-
tain a random value; however, a Student ID of 0 is probably not valid.

C++ programmers require a constructor that accepts some type of argument
to initialize an object to other than its default value. This chapter examines
constructors with arguments.

Outfitting Constructors with Arguments
C++ enables programmers to define a constructor with arguments, as shown
here:

class Student
{
 public:
 Student(const char *pName);

 // ...class continues...
};

226 Part III: Introduction to Classes

Using a constructor
Conceptually, the idea of adding an argument is simple. A constructor is a
member function, and member functions can have arguments. Therefore,
constructors can have arguments.

Remember, though, that you don’t call the constructor like a normal function.
Therefore, the only time to pass arguments to the constructor is when the
object is created. For example, the following program creates an object s of
the class Student by calling the Student(const char*) constructor. The object s
is destructed when the function main() returns.

// ConstructorWArg - a class may pass along arguments
// to the members' constructors
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student(const char* pName)
 {
 cout << "constructing Student " << pName << endl;
 name = pName;
 semesterHours = 0;
 gpa = 0.0;
 }

 // ...other public members...
 protected:
 string name;
 int semesterHours;
 double gpa;
};

int main(int argcs, char* pArgs[])
{
 // create a student locally and one off of the heap
 Student s1("Jack");
 Student* pS2 = new Student("Scruffy");

 // be sure to delete the heap student
 delete pS2;

 // wait until user is ready before terminating program
 // to allow the user to see the program results

227 Chapter 16: Making Constructive Arguments

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The Student constructor here looks like the constructors shown in Chapter 15
except for the addition of the const char* argument pName. The constructor
initializes the data members to their empty start-up values, except for the
data member name, which gets its initial value from pName because a Student
object without a name is not a valid student.

The object s1 is created in main(). The argument to be passed to the con-
structor appears in the declaration of s1, right next to the name of the object.
Thus, the student s1 is given the name Jack in this declaration.

A second student is allocated off the heap on the very next line. The argu-
ments to the constructor in this case appear next to the name of the class.

 The third executable line in the program returns the newly allocated object to
the heap before exiting the program. This may not be necessary; for example,
Windows or Unix will close any files you may have open and return all heap
memory when a program terminates even if you forget to do so yourself.
However, it’s good practice to delete your heap memory when you’re finished.

 The const in the constructor declaration Student::Student(const char*) is
 necessary to allow statements such as the following:

Student s1("Jack");

The type of “Jack” is const char*. I could not pass a pointer to a constant
character string to a constructor declared Student(char*). A function, includ-
ing a constructor, declared this way might attempt to modify the character
string, which would not be good. You cannot strip away the const part of a
declaration.

You can add const-ness, however, as in the following:

void fn(char* pName)
{
 // the following is allowed even though constructor
 // declared Student(const char*)
 Student s(pName);
 // ...do whatever...
}

The function fn() passes a char* string to a constructor that promises to treat
the string as if it were a constant. No harm there!

228 Part III: Introduction to Classes

Placing Too Many Demands on
the Carpenter: Overloading
the Constructor

I can draw one more parallel between constructors and other more normal
member functions in this chapter: Constructors can be overloaded.

 Overloading a function means to define two functions with the same short
name but with different types of arguments. See Chapter 6 for the latest news
on function overloading.

C++ chooses the proper constructor based on the arguments in the declara-
tion of the object. For example, the class Student can have all three construc-
tors shown in the following snippet at the same time:

// OverloadConstructor - provide the class multiple
// ways to create objects by
// overloading the constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string.h>

using namespace std;
class Student
{
 public:
 Student()
 {
 cout << "constructing student No Name" << endl;
 name = "No Name";
 semesterHours = 0;
 gpa = 0.0;
 }
 Student(const char *pName)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 semesterHours = 0;
 gpa = 0;
 }
 Student(const char *pName, int xfrHours, float xfrGPA)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 semesterHours = xfrHours;
 gpa = xfrGPA;
 }

229 Chapter 16: Making Constructive Arguments

 protected:
 string name;
 int semesterHours;
 float gpa;
};

int main(int argcs, char* pArgs[])
{
 // the following invokes three different constructors
 Student noName;
 Student freshman("Marian Haste");
 Student xferStudent("Pikup Andropov", 80, 2.5);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Because the object noName appears with no arguments, it’s constructed
using the constructor Student::Student(). This constructor is called the default
constructor. The freshman is constructed using the constructor that has only
a const char* argument, and the xferStudent uses the constructor with three
arguments.

Notice the similarity in all three constructors. The number of semester
hours and the GPA default to 0 if only the name is provided. Otherwise,
there is no difference between the two constructors. You wouldn’t need
both constructors if you could just specify a default value for the two
arguments.

C++ enables you to specify a default value for a function argument in the dec-
laration to be used in the event that the argument is not present. By adding
defaults to the last constructor, all three constructors can be combined into
one. For example, the following class combines all three constructors into a
single, clever constructor:

// ConstructorWDefaults - multiple constructors can often
// be combined with the definition
// of default arguments
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

230 Part III: Introduction to Classes

class Student

{
 public:
 Student(const char *pName = "No Name",
 int xfrHours = 0,
 double xfrGPA = 0.0)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 semesterHours = xfrHours;
 gpa = xfrGPA;
 }

 protected:
 string name;
 int semesterHours;
 double gpa;
};
// ...the rest is the same...

Now all three objects are constructed using the same constructor; defaults
are provided for non-existent arguments in noName and freshman.

 A slightly more flexible alternative added in the 2011 standard is to invoke one
constructor from another as shown in ConstructorsCallingEachOther. This is
known as delegating constructors:

// ConstructorsCallingEachOther - new for 2011,
// one constructor can invoke another constructor
// in the same class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student

{
 public:
 Student(const char *pName,
 int xfrHours,
 double xfrGPA)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 semesterHours = xfrHours;
 gpa = xfrGPA;
 }

231 Chapter 16: Making Constructive Arguments

 Student() : Student("No Name", 0, 0.0) {}
 Student(const char *pName): Student(pName, 0, 0.0){}

 protected:
 string name;
 int semesterHours;
 double gpa;
};
// ...the rest is the same as before...

Here the declaration Student noName invokes the no argument constructor
which turns around and calls the generic constructor, providing default
 arguments. The Student freshman declaration invokes the Student(const char*)
constructor.

This is more flexible because you can default arguments other than the last
one. In addition, you have more control over how arguments are defaulted.
For example, it makes no sense to construct a student with semester hours
but no GPA. This version would not allow such an object to be constructed
since no Student(const char*, int) is provided.

 The somewhat bizarre syntax will seem a lot more reasonable by the time you
reach the end of this chapter.

Defaulting Default Constructors
As far as C++ is concerned, every class must have a constructor; otherwise,
you can’t create objects of that class. If you don’t provide a constructor for
your class, C++ should probably just generate an error, but it doesn’t. To
provide compatibility with existing C code, which knows nothing about con-
structors, C++ automatically provides a default constructor (sort of a default
default constructor).

If you define a constructor for your class, C++ doesn’t provide the automatic
default constructor on its own. By creating a constructor, the author is in
effect telling C++ that the default constructor is not good enough.

The following code snippets help demonstrate this point. This is legal:

class Student
{

 string name;
};

int main(int argcs, char* pArgs[])

232 Part III: Introduction to Classes

{
 Student noName;
 return 0;
}

The automatically provided default constructor invokes the default string
constructor to create an empty name object. The following code snippet does
not compile properly:

class Student
{
 public:
 Student(const char *pName) {name = pName;}

 string name;
};

int main(int argcs, char* pArgs[])
{
 Student noName; // doesn't compile
 return 0;
}

The seemingly innocuous addition of the Student(const char*) constructor
precludes C++ from automatically providing a Student() constructor with
which to build object noName.

 The C++ ’11 standard allows you to "get the default constructor back" via the
new keyword default, as follows:

class Student
{
 public:
 Student(const char *pName) { name = pName; }
 Student() = default;

 string name;
};

int main(int argcs, char* pArgs[])
{
 Student noName;
 return 0;
}

The default keyword says, in effect, “I know that I defined a constructor but
I still want my automatic default constructor back.”

233 Chapter 16: Making Constructive Arguments

The ’11 standard also allows a default method such as the default construc-
tor to be explicitly removed using the new keyword delete:

class Student
{
 public:
 Student() = delete; // remove the default constructor

 string name;
};

Constructing Class Members
In the previous examples, all data members are of simple types, such as int
and double. With simple types, it’s sufficient to assign a value to the variable
within the constructor. Problems arise when initializing certain types of data
members, however.

Constructing a complex data member
Members of a class have the same problems as any other variable. It makes
no sense for a Student object to have some default ID of 0. This is true even
if the object is a member of a class. Consider the following example that cre-
ates a new class, StudentId, to manage the student identification numbers
instead of relying on a plain ol’ integer variable:

//
// ConstructingMembers - a class may pass along arguments
// to the members' constructors
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int nextStudentId = 1000; // first legal Student ID
class StudentId
{
 public:
 // default constructor assigns id's sequentially
 StudentId()
 {
 value = nextStudentId++;
 cout << "Take next student id " << value << endl;
 }

234 Part III: Introduction to Classes

 // int constructor allows user to assign id
 StudentId(int id)
 {
 value = id;
 cout << "Assign student id " << value << endl;
 }
 protected:
 int value;
};

class Student
{
 public:
 Student(const char* pName)
 {
 cout << "constructing Student " << pName << endl;
 name = pName;
 semesterHours = 0;
 gpa = 0.0;
 }

 // ...other public members...
 protected:
 string name;
 int semesterHours;
 double gpa;
 StudentId id;
};

int main(int argcs, char* pArgs[])
{
 // create a couple of students
 Student s1("Jack");
 Student s2("Scruffy");

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

A student ID is assigned to each student as the Student object is constructed.
In this example, the default constructor for StudentId assigns IDs sequentially
using the global variable nextStudentId to keep track.

The Student class invokes the default constructor for the two students s1 and
s2. The output from the program shows that this is working properly:

235 Chapter 16: Making Constructive Arguments

Take next student id 1000
constructing Student Jack
Take next student id 1001
constructing Student Scruffy
Press Enter to continue...

Notice that the message from the StudentId constructor appears before
the output from the Student constructor. This implies that the constructor
StudentId was invoked even before the Student constructor got underway.

If the programmer does not provide a constructor, the default constructor
provided by C++ automatically invokes the default constructors for data
members. The same is true come harvesting time. The destructor for the
class automatically invokes the destructor for data members that have
destructors. The C++–provided destructor does the same.

Okay, this is all great for the default constructor. But what if you want to
invoke a constructor other than the default? Where do you put the object?
The StudentId class provides a second constructor that allows the student ID
to be assigned to any arbitrary value. The question is, how do you invoke it?

Let me first show you what doesn’t work. Consider the following program
segment (only the relevant parts are included here — the entire program,
ConstructSeparateID, is with the material that accompanies this book at
www.dummies.com/extras/cplusplus):

class Student
{
 public:
 Student(const char *pName, int ssId)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 // don't try this at home kids. It doesn't work
 StudentId id(ssId); // construct a student id
 }
 protected:
 string name;
 StudentId id;
};

int main(int argcs, char* pArgs[])
{
 Student s("Jack", 1234);
 cout << "This message from main" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
}

236 Part III: Introduction to Classes

Within the constructor for Student, the programmer (that’s me) has (cleverly)
attempted to construct a StudentId object named id. (I also added a destruc-
tor to StudentId that does nothing but output the ID of the object being
destroyed.)

If you look at the output from this program, you can see the problem:

take next student id 1000
constructing student Jack
assign student id 1234
destructing 1234
This message from main
Press Enter to continue...

We seem to be constructing two StudentId objects: The first one is created
with the default constructor as before. After control enters the constructor
for Student, a second StudentId is created with the assigned value of 1234.
Mysteriously, this 1234 object is then destroyed as soon as the program exits
the Student constructor.

The explanation for this rather bizarre behavior is clear. The data member
id already exists by the time the body of the constructor is entered. Instead
of constructing the existing data member id, the declaration provided in
the constructor creates a local object of the same name. This local object is
destructed upon returning from the constructor.

Somehow, we need a different mechanism to indicate “construct the existing
member; don’t create a new one.” This mechanism needs to appear after the
function argument list but before the open brace. C++ provides a construct for
this, as shown in the following subset taken from the ConstructDataMembers
program (the only change between this program and its predecessor is to
the Student class constructor — the entire program is with the accompanying
material at www.dummies.com/extras/cplusplus):

class Student
{
 public:
 Student(const char *pName, int ssId)
 : name(pName), id(ssId)
 {
 cout << "constructing student " << pName << endl;
 }
 protected:
 string name;
 StudentId id;
};

237 Chapter 16: Making Constructive Arguments

Notice in particular the first line of the constructor. Here’s something you
haven’t seen before. The : means that what follows are calls to the construc-
tors of data members of the current class. To the C++ compiler, this line reads
“Construct the members name and id using the arguments pName and ssId,
respectively, of the Student constructor. Whatever data members are not
called out in this fashion are constructed using their default constructor.”

 The string type is actually a conventional class defined in an include file which
is included by iostream. Programs prior to this example have been using the
default string constructor to create an empty name and then copying the stu-
dent’s name into the object within the body of the constructor. It is more effi-
cient to assign the string object a value when it’s created, if possible.

This new program generates the expected result:

assign student id 1234
constructing student Jack
This message from main
Press Enter to continue...

 Now you can see where the syntax for invoking one constructor from another
came from!

Combining this with member initialization
 So what happens when a constructor competes with a C++ ’11-style member

initializer? Consider the following contrived example:

// ConstructMembersWithInitializers - this program
// demonstrates what happens when a data member
// with an initializer is constructed
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class StudentId
{
 public:
 StudentId(int id) : value(id)
 {
 cout << "id = " << value << endl;
 }

 protected:
 int value;
};

238 Part III: Introduction to Classes

int nextStudentId = 1000;
class Student
{
 public:
 Student(const char *pName, int ssId)
 : name(pName), id(ssId)
 {
 cout << "constructing student " << pName << endl;
 }
 Student(const char *pName): name(pName)
 {
 cout << "constructing student " << pName << endl;
 }
 protected:
 string name;
 StudentId id = nextStudentId++;
};

int main(int argcs, char* pArgs[])
{
 Student s1("Jack", 1234);
 Student s2("Scruffy");

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here I have provided the StudentID class with a single constructor. It is now up
to the Student class to decide which id to use. The output from this program
is enlightening:

id = 1234
constructing student Jack
id = 1000
constructing student Scruffy
Press Enter to continue...

In the first case, the student Jack is created using the student ID 1234 pro-
vided in the constructor. The student Scruffy accepts the default student ID,
the next value starting with 1000. But this is curious — if the member initial-
izer had been invoked when Jack was constructed, then Scruffy should have
been assigned the ID 1001.

239 Chapter 16: Making Constructive Arguments

 The moral to this story is that the member initializer (that’s the StudentId id =
nextStudentId++) is ignored if the member is constructed in the class
constructor.

Constructing a constant data member
Argument construction solves a similar problem with const data members as
shown in the following example:

class Mammal
{
 public:
 Mammal(int nof) : numberOfFeet(nof) {}
 protected:
 const int numberOfFeet;
};

Ostensibly, a given Mammal has a fixed number of feet (barring amputation).
The number of feet can, and should, be declared const. This constructor
definition assigns a value to the variable numberOfFeet when the object is
created. The numberOfFeet cannot be modified once it’s been declared and
initialized.

Reconstructing the Order of Construction
When there are multiple objects, all with constructors, programmers usually
don’t care about the order in which things are built. If one or more of the
 constructors has side effects, however, the order can make a difference.

The rules for the order of construction are as follows:

 ✓ Local and static objects are constructed in the order in which their
 declarations are invoked.

 ✓ Static objects are constructed only once.

 ✓ All global objects are constructed before main().

 ✓ Global objects are constructed in no particular order.

 ✓ Members are constructed in the order in which they are declared in
the class within a given access type (that is, all the public members are
declared in order declared and all the protected members in the order
that they’re declared)

 ✓ Objects are destructed in the opposite order in which they were
constructed.

240 Part III: Introduction to Classes

 A static variable is a variable that is local to a function but retains its value
from one function invocation to the next. A global variable is a variable
declared outside a function.

Now we’ll consider each of the preceding rules in turn.

Local objects construct in order
Local objects are constructed in the order in which the program encounters
their declaration. Normally, this is the same as the order in which the objects
appear in the function, unless the function jumps around particular declara-
tions. (By the way, jumping around declarations is a bad thing. It confuses the
reader and the compiler.)

Static objects construct only once
Static objects are similar to local variables, except that they are constructed
only once. C++ waits until the first time control passes through the static’s
declaration before constructing the object. Consider the following trivial
ConstructStatic program:

// ConstructStatic - demonstrate that statics are only
// constructed once
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class DoNothing
{
 public:
 DoNothing(int initial) : nValue(initial)
 {
 cout << "DoNothing constructed with a value of "
 << initial << endl;
 }
 ~DoNothing()
 {
 cout << "DoNothing object destructed" << endl;
 }
 int nValue;
};
void fn(int i)
{

241 Chapter 16: Making Constructive Arguments

 cout << "Function fn passed a value of " << i << endl;
 static DoNothing dn(i);
}

int main(int argcs, char* pArgs[])
{
 fn(10);
 fn(20);
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing this program generates the following results:

Function fn passed a value of 10
DoNothing constructed with a value of 10
Function fn passed a value of 20
Press Enter to continue...
DoNothing object destructed

Notice that the message from the function fn() appears twice, but the mes-
sage from the constructor for DoNothing appears only the first time fn() is
called. This indicates that the object is constructed the first time that fn() is
called but not thereafter. Also notice that the destructor is not invoked until
the program returns from main() as part of the program shutdown process.

All global objects construct before main()
All global variables go into scope as soon as the program starts. Thus, all
global objects are constructed before control is passed to main().

 Initializing global variables can cause real debugging headaches. Some debug-
gers try to execute up to main() as soon as the program is loaded and before
they hand over control to the user. This can be a problem because the con-
structor code for all global objects has already been executed by the time you
can wrest control of your program. If one of these constructors has a fatal bug,
you never even get a chance to find the problem. In this case, the program
appears to die before it even starts!

 The best way I’ve found to detect this type of problem is to set a breakpoint
in every constructor that you even remotely suspect as well as the first state-
ment in main(). You will hit a breakpoint for each global object declared as
soon as you start the program. Press Continue after each breakpoint until the
program crashes — now you know that you pressed Continue once too often.

242 Part III: Introduction to Classes

Restart the program and repeat the process, but stop on the constructor that
caused the program to crash. You can now single-step through the construc-
tor until you find the problem. If you make it all the way to the breakpoint in
main(), the program did not crash while constructing global objects.

Global objects construct
in no particular order
Figuring out the order of construction of local objects is easy. An order is
implied by the flow of control. With globals, no such flow is available to give
order. All globals go into scope simultaneously — remember? Okay, you
argue, why can’t the compiler just start at the top of the file and work its way
down the list of global objects?

That would work fine for a single file (and I presume that’s what most compil-
ers do). Most programs in the real world consist of several files that are com-
piled separately and then linked. Because the compiler has no control over
the order in which these files are linked, it cannot affect the order in which
global objects are constructed from file to file.

Most of the time, the order of global construction is pretty ho-hum stuff.
Once in a while, though, global variables generate bugs that are extremely
 difficult to track down. (It happens just often enough to make it worth
 mentioning in a book.)

Consider the following example:

class Student
{
 public:
 Student (int id) : studentId(id) {}
 const int studentId;
};
class Tutor
{
 public:
 Tutor(Student& s) : tutoredId(s.studentId) {}
 int tutoredId;
};

// set up a student
Student randy(1234);

// assign that student a tutor
Tutor janet(randy);

243 Chapter 16: Making Constructive Arguments

Here the constructor for Student assigns a student ID. The constructor for
Tutor records the ID of the student to help. The program declares a student
randy and then assigns that student a tutor janet.

The problem is that the program makes the implicit assumption that randy is
constructed before janet. Suppose it were the other way around. Then janet
would be constructed with a block of memory that had not yet been turned
into a Student object and, therefore, had garbage for a student ID.

 The preceding example is not too difficult to figure out and more than a little
contrived. Nevertheless, problems deriving from global objects being con-
structed in no particular order can appear in subtle ways. To avoid this prob-
lem, don’t allow the constructor for one global object to refer to the contents
of another global object.

Members construct in the order
in which they are declared
Members of a class are constructed according to the order in which they’re
declared within the class. This isn’t quite as obvious as it may sound. Consider
the following example:

class Student
{
 public:
 Student (int id, int age) : nAge(age), nId(id){}
 const int nId;
 const int nAge;
 double dAverage = 0.0;
};

In this example, nId is constructed before nAge, even though nId appears
second in the constructor’s initialization list because it appears before nAge
in the class definition. The data member dAverage is constructed last for the
same reason. The only time you might detect a difference in the construction
order is when both data members are an instance of a class that has a con-
structor that has some mutual side effect.

Destructors destruct in the reverse
order of the constructors
Finally, no matter in what order the constructors kick off, you can be assured
that the destructors are invoked in the reverse order. (It’s nice to know that
at least one rule in C++ has no ifs, ands, or buts.)

244 Part III: Introduction to Classes

Constructing Arrays
When you declare an array, each element of the array must be constructed.
For example, the following declaration calls the default Student constructor
five times, once for each member of the array:

Student s[5];

 The 2011 standard allows you to invoke a constructor other than the default
constructor using an initializer list, as shown in this truncated example pro-
gram (the full program is available in the online material at www.dummies.
com/extras/cplusplus):

//
// ConstructArray - construct an array of objects
//

// ...same Student class with overloaded constructors...

int main(int argcs, char* pArgs[])
{
 // the following invokes three different constructors
 Student s[]{"Marian Haste", "Pikup Andropov"};
 Student t[]{{"Jack", 0, 0.0}, {"Scruffy", 12, 2.5}};

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The array s is created with two members by calling the Student(const char*)
constructor twice. The array t is constructed with the Student(const char*, int,
double) constructor. The output of this program appears as follows:

constructing freshman Marian Haste
constructing freshman Pikup Andropov
constructing transfer Jack
constructing transfer Scruffy
Press Enter to continue...

 A string of objects contained within braces is known as an initializer list.

245 Chapter 16: Making Constructive Arguments

Constructors as a Form of Conversion
C++ views constructors with a single argument as a way of converting from one
type to another. Consider a user-defined type Complex designed to represent
complex numbers. Without getting too technical (for me, not for you), there is
a natural conversion between real numbers and complex numbers just like the
conversion from integers to real numbers, as in the following example:

double d = 1; // this is legal
Complex c = d; // this should be allowed as well

In fact, C++ looks for ways to try to make sense out of statements like this. If
the class Complex has a constructor that takes as its argument a double, C++
will use that constructor as a form of conversion, as if the preceding state-
ment had been written as follows:

double d = 1;
Complex c(d);

Some constructor-introduced conversions do not make sense. For example,
you may not want C++ to convert an integer into a Student object just because
a Student(int) constructor exists. Unexpected conversions can lead to strange
run-time errors when C++ tries to make sense out of simple coding mistakes.

 The programmer can use the keyword explicit to avoid creating unexpected
and unintended conversion paths. A constructor marked explicit cannot be
used as an implicit conversion path:

class Student
{
 public:
 // the following "No Name" constructor cannot be used
 // as an implicit conversion path from int to Student
 explicit Student(int nStudentID);
};

Student s = 1; // generates compiler error
Student t(123456); // this is still allowed

The declaration of s does not implicitly invoke the Student(int) constructor
since it is flagged as “explicitly invokable only.” The explicit invoking of the
constructor to create the object t is still okay.

A complete TypeConversion program to demonstrate this principle is included
with the online material at www.dummies.com/extras/cplusplus.

246 Part III: Introduction to Classes

Chapter 17

The Copy/Move Constructor
In This Chapter
▶ Introducing the copy/move constructor

▶ Making copies

▶ Having copies made for you automatically

▶ Creating shallow copies versus deep copies

▶ Avoiding all those copies with a move constructor

T
he constructor is a special function that C++ invokes automatically when
an object is created to allow the object to initialize itself. Chapter 15

introduces the concept of the constructor, whereas Chapter 16 describes
other types of constructors. This chapter examines two particular variations
of the constructor known as the copy and move constructors.

Copying an Object
A copy constructor is the constructor that C++ uses to make copies of
objects. It carries the name X::X(const X&), where X is the name of the class.
That is, it’s the constructor of class X, which takes as its argument a refer-
ence to an object of class X. Now, I know that this sounds really useless, but
just give me a chance to explain why C++ needs such beasties.

 The move constructor is unique to C++ 2011. Most of this chapter concerns the
copy constructor. I present the details of the move constructor towards the
end of this chapter.

248 Part III: Introduction to Classes

Why you need the copy constructor
Think for a moment about what happens when you call a function like the
following:

void fn(Student fs)
{
 // ...same scenario; different argument...
}
int main(int argcs, char* pArgs[])
{
 Student ms;
 fn(ms);
 return 0;
}

In the call to fn(), C++ passes a copy of the object ms and not the object itself.

Now consider what it means to create a copy of an object. First, it takes a
constructor to create an object, even a copy of an existing object. C++ could
create a default copy constructor that copies the existing object into the new
object one byte at a time. That’s what older languages such as C do. But what
if the class doesn’t want a simple copy of the object? What if something else
is required? (Ignore the “why?” for a little while.) The class needs to be able
to specify exactly how the copy should be created.

Thus, C++ uses a copy constructor in the preceding example to create a copy
of the object ms on the stack during the call of function fn(). This particular
copy constructor would be Student::Student(Student&) — say that three times
quickly.

Using the copy constructor
The best way to understand how the copy constructor works is to see one in
action. Consider the following CopyConstructor program:

// CopyConstructor - demonstrate a copy constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{

249 Chapter 17: The Copy/Move Constructor

 public:
 // conventional constructor
 Student(const char *pName = "no name", int ssId = 0)
 : name(pName), id(ssId)
 { cout << "Constructed " << name << endl; }

 // copy constructor
 Student(const Student& s)
 : name("Copy of " + s.name), id(s.id)
 { cout << "Constructed " << name << endl; }

 ~Student() { cout << "Destructing " << name << endl; }

 protected:
 string name;
 int id;
};

// fn - receives its argument by value
void fn(Student copy)
{
 cout << "In function fn()" << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Student scruffy("Scruffy", 1234);
 cout << "Calling fn()" << endl;
 fn(scruffy);
 cout << "Back in main()" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The output from executing this program appears as follows:

Constructed Scruffy
Calling fn()
Constructed Copy of Scruffy
In function fn()
Destructing Copy of Scruffy
Back in main()
Press Enter to continue...

250 Part III: Introduction to Classes

The normal Student constructor generates the first message from the declara-
tion on the first line of main() about creating scruffy. main() then outputs the
Calling . . . message before calling fn(). As part of the function call process,
C++ invokes the copy constructor to make a copy of scruffy to pass to fn().
The copy constructor prepends the string “Copy of” to the student’s name
before displaying it on the console. The function fn() outputs the In function . . .
message. The copied Student object copy is destructed at the return from fn().
(You can tell it’s the copy because of the “Copy of” prepended to the front.)
The original object, scruffy, is destructed at the end of main().

The Automatic Copy Constructor
Like the default constructor, the copy constructor is important; important
enough that C++ thinks no class should be without one. If you don’t provide
your own copy constructor, C++ generates one for you. (This differs from the
default constructor that C++ provides unless your class has constructors
defined for it.)

The copy constructor provided by C++ performs a member-by-member copy
of each data member. You can see this in the following DefaultCopyConstructor
program. (I left out the definition of the Student class to save space — it’s
identical to that shown in the CopyConstructor program. The entire
DefaultCopyConstructor program is available online at www.dummies.com/
extras/cplusplus.)

class Tutor
{
 public:
 Tutor(Student& s)
 : student(s), id(0)
 { cout << "Constructing Tutor object" << endl; }
 protected:
 Student student;
 int id;
};

void fn(Tutor tutor)
{
 cout << "In function fn()" << endl;
}

int main(int argcs, char* pArgs[])
{
 Student scruffy("Scruffy");
 Tutor tutor(scruffy);

251 Chapter 17: The Copy/Move Constructor

 cout << "Calling fn()" << endl;
 fn(tutor);
 cout << "Back in main()" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing this program generates the following output:

Constructed Scruffy
Constructed Copy of Scruffy
Constructing Tutor object
Calling fn()
Constructed Copy of Copy of Scruffy
In function fn()
Destructing Copy of Copy of Scruffy
Back in main()
Press Enter to continue...

Destructing Copy of Scruffy
Destructing Scruffy

Constructing the scruffy object generates the first output message from
the “plain Jane” constructor. The constructor for the tutor object invokes
the Student copy constructor to generate its own Student data member
and then outputs its own message. This accounts for the next two lines of
output.

The program then passes a copy of the Tutor object to the function fn().
Because the Tutor class does not define a copy constructor, the program
invokes the default copy constructor to make a copy to pass to fn().

The default Tutor copy constructor invokes the copy constructor for each
data member. The copy constructor for int does nothing more than copy the
value. You’ve already seen how the Student copy constructor works. This is
what generates the Constructed Copy of Copy of Scruffy message. The destruc-
tor for the copy is invoked as part of the return from function fn(). The final
destructors are invoked when the program returns from main().

252 Part III: Introduction to Classes

Creating Shallow Copies
versus Deep Copies

Performing a member-by-member copy seems the obvious thing to do in a
copy constructor. Other than adding the capability to tack on silly things
such as Copy of to the front of students’ names, when would you ever want to
do anything but a member-by-member copy?

Consider what happens if the constructor allocates an asset, such as memory
off the heap. If the copy constructor simply makes a copy of that asset with-
out allocating its own asset, you end up with a troublesome situation: two
objects thinking they have exclusive access to the same asset. This becomes
nastier when the destructor is invoked for both objects and they both try to
put the same asset back. To make this more concrete, consider the following
example class:

// ShallowCopy - performing a byte-by-byte (shallow) copy
// is not correct when the class holds assets
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Person
{
 public:
 Person(const char *pN)
 {
 cout << "Constructing " << pN << endl;
 pName = new string(pN);
 }
 ~Person()
 {
 cout << "Destructing " << pName
 << " (" << *pName << ")" << endl;
 *pName = "already destructed memory";
 // delete pName;
 }
 protected:
 string *pName;
};

void fn()
{
 // create a new object
 Person p1("This_is_a_very_long_name");

253 Chapter 17: The Copy/Move Constructor

 // copy the contents of p1 into p2
 Person p2(p1);
}

int main(int argcs, char* pArgs[])
{
 cout << "Calling fn()" << endl;
 fn();
 cout << "Back in main()" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program generates the following output:

Calling fn()
Constructing This_is_a_very_long_name
Destructing 0x3f2bb8 (This_is_a_very_long_name)
Destructing 0x3f2bb8 (already destructed memory)
Back in main()
Press Enter to continue...

The constructor for Person allocates memory off the heap to store the per-
son’s name. The destructor would normally return this memory to the heap
using the delete keyword; however, in this case, I’ve replaced the call to delete
with a statement that replaces the name with a message. The main program
calls the function fn(), which creates one person, p1, and then makes a copy of
that person, p2. Both objects are destructed automatically when the program
returns from the function.

Only one constructor output message appears when this program is exe-
cuted. That’s not too surprising because the C++–provided copy constructor
used to build p2 performs no output. The Person destructor is invoked twice,
however, as both p1 and p2 go out of scope. The first destructor outputs the
expected This_is_a_very_long_name. The second destructor indicates that
the memory has already been deleted. Notice also that the address of the
memory block is the same for both objects (0x3F2BB8).

 If the program really were to delete the name, the program would become
unstable after the second delete and might not even complete properly
 without crashing.

254 Part III: Introduction to Classes

The problem is shown graphically in Figure 17-1. The object p1 is copied into the
new object p2, but the assets are not. Thus, p1 and p2 end up pointing to the
same assets (in this case, heap memory). This is known as a shallow copy
because it just “skims the surface,” copying the members themselves.

Figure 17-1:
Shallow

copy of p1
to p2.

The solution to this problem is demonstrated visually in Figure 17-2. This
figure represents a copy constructor that allocates its own assets to the new
object.

Figure 17-2:
Deep copy
of p1 to p2.

The following shows an appropriate copy constructor for class Person,
the type you’ve seen up until now. (This class is embodied in the program
DeepCopy, which is on this book’s online material at www.dummies.com/
extras/cplusplus.)

255 Chapter 17: The Copy/Move Constructor

class Person
{
 public:
 Person(const char *pN)
 {
 cout << "Constructing " << pN << endl;
 pName = new string(pN);
 }
 Person(Person& person)
 {
 cout << "Copying " << *(person.pName) << endl;
 pName = new string(*person.pName);
 }
 ~Person()
 {
 cout << "Destructing " << pName
 << " (" << *pName << ")" << endl;
 *pName = "already destructed memory";
 // delete pName;
 }
 protected:
 string *pName;
}

Here you see that the copy constructor allocates its own memory block for
the name and then copies the contents of the source object name into this
new name block. This is a situation similar to that shown in Figure 17-2. Deep
copy is so named because it reaches down and copies all the assets. (Okay,
the analogy is pretty strained, but that’s what they call it.)

The output from this program is as follows:

Calling fn()
Constructing This_is_a_very_long_name
Copying This_is_a_very_long_name
Destructing 0x9f2be0 (This_is_a_very_long_name)
Destructing 0x9f2ba0 (This_is_a_very_long_name)
Back in main()
Press Enter to continue...

The destructor for Person now indicates that the string pointers in p1 and p2
don’t point to the same block of memory: the addresses of the two objects
are different, and the name in the version owned by the copy has not been
overwritten indicating that it’s been deleted.

 The real ~Person destructor should delete pName.

256 Part III: Introduction to Classes

It’s a Long Way to Temporaries
Passing arguments by value to functions is the most obvious but not the only
example of the use of the copy constructor. C++ creates a copy of an object
under other conditions as well.

Consider a function that returns an object by value. In this case, C++ must
create a copy using the copy constructor. This situation is demonstrated in
the following code snippet:

Student fn(); // returns object by value
int main(int argcs, char* pArgs[])
{
 Student s;
 s = fn(); // call to fn() creates temporary

 // how long does the temporary returned by fn()last?
 return 0;
}

The function fn() returns an object by value. Eventually, the returned object
is copied to s, but where does it reside until then?

C++ creates a temporary object into which it stuffs the returned object.
“Okay,” you say. “C++ creates the temporary, but how does it know when to
destruct it?” Good question. In this example, it doesn’t make much difference
because you’ll be through with the temporary when the copy constructor
copies it into s. But what if s is defined as a reference? It makes a big differ-
ence how long temporaries live because refS exists for the entire function:

int main(int argcs, char* pArgs[])
{
 Student& refS = fn();
 // ...now what?...
 return 0;
}

Temporaries created by the compiler are valid throughout the extended
expression in which they were created and no further.

In the following function, I mark the point at which the temporary is no
longer valid:

Student fn1();
int fn2(Student&);
int main(int argcs, char* pArgs[])
{

257 Chapter 17: The Copy/Move Constructor

 int x;
 // create a Student object by calling fn1().
 // Pass that object to the function fn2().
 // fn2() returns an integer that is used in some
 // silly calculation.
 // All this time the temporary returned from fn1()
 // remains valid.
 x = 3 * fn2(fn1()) + 10;

 // the temporary returned from fn1() is now no longer
valid

 // ...other stuff...
 return 0;
}

This makes the reference example invalid because the object may go away
before refS does, leaving refS referring to a non-object.

Avoiding temporaries, permanently
It may have occurred to you that all this copying of objects hither and yon
can be a bit time-consuming. What if you don’t want to make copies of every-
thing? The most straightforward solution is to pass objects to functions and
return objects from functions by reference. Doing so avoids the majority of
temporaries.

But what if you’re still not convinced that C++ isn’t out there craftily con-
structing temporaries that you know nothing about? Or what if your class
allocates unique assets that you don’t want copied? What do you do then?

You can add an output statement to your copy constructor. The presence of
this message when you execute the program warns you that a copy has just
been made.

A more clever approach is to declare the copy constructor protected, as
follows:

class Student
{
 protected:
 Student(Student&s){}

 public:
 // ...everything else normal...
};

258 Part III: Introduction to Classes

 The C++ ’11 standard also allows the programmer to delete the copy
constructor:

class Student
{
 Student(Student&s) = delete;

 // ...everything else normal...
};

Either declaring the copy constructor protected or deleting it entirely pre-
cludes any external functions, including C++, from constructing a copy of
your Student objects. If no one can invoke the copy constructor, no copies are
being generated. Voilà.

The move constructor
Under certain conditions, C++ can create a copy of an object that is used only
for the duration of a single statement. Such objects, known as temporaries,
are destructed as soon as the expression is completed. It doesn’t make sense
to make copies of temporary objects that are about to be destructed anyway.

 C++ ’11 allows the programmer to create a constructor known as a move
constructor that simply moves assets from the source to the destination
rather than making unnecessary copies. Move constructors have the format
X::X(X&&). This is a new use of “&&”.

Consider the following highly contrived example.

 C++ ’11 includes several return optimizations to avoid the creation of unneces-
sary copies of objects which this example has to defeat to demonstrate the
move constructor. You’ll see much less contrived examples in the discussion
of overloading operators in Chapter 22.

//
// MoveCopy - demonstrate the principle of moving a
// temporary rather than creating a copy
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Person
{
 public:

259 Chapter 17: The Copy/Move Constructor

 Person(const char *pN)
 {
 pName = new string(pN);
 cout << "Constructing " << *pName << endl;
 }
 Person(Person& p)
 {
 cout << "Copying " << *p.pName << endl;
 pName = new string("Copy of ");
 *pName += *p.pName;
 }
 Person(Person&& p)
 {
 cout << "Moving " << *p.pName << endl;
 pName = p.pName;
 p.pName = nullptr;
 }
 ~Person()
 {
 if (pName)
 {
 cout << "Destructing " << *pName << endl;
 delete pName;
 }
 else
 {
 cout << "Destructing null object" << endl;
 }
 }
 protected:
 string* pName;
};

Person fn2(Person p)
{
 cout << "Entering fn2" << endl;
 return p;
}

Person fn1(char* pName)
{
 cout << "Entering fn1_ << endl;
 return fn2(*new Person(pName));
}

int main(int argcs, char* pArgs[])
{
 Person s(fn1("Scruffy"));

 // wait until user is ready before terminating program
 // to allow the user to see the program results

260 Part III: Introduction to Classes

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Notice how the move constructor assigns the pName pointer from the source
object p and then zeroes out that pointer so that the destructor does not
return the memory when the temporary is destructed. This is much more
efficient than allocating yet another string object off of the heap and copying
the contents of p.pName to this new string.

The output from this program appears as follows:

Entering fn1
Constructing Scruffy
Copying Scruffy
Entering fn2
Moving Copy of Scruffy
Destructing null object
Press Enter to continue...

Destructing Copy of Scruffy

In this case, fn1() creates a Person object. It then copies this object in the
call to fn2() using the copy constructor. The function fn2() does nothing
more than return a copy of this object to fn1(); however, this copy is just a
temporary object that fn1() returns to main(). Rather than use the copy con-
structor to create a “Copy of copy of Scruffy,” C++ ’11 invokes the move con-
structor to take the contents of the temporary object. When this temporary
is subsequently destructed, it is a “null object” because its pName has been
taken away and reassigned.

 You don’t have to create a move constructor. The program would have worked
just fine, albeit a hair slower, with just the copy constructor. Move construc-
tors should be considered an advanced topic. You will see examples that are
less contrived in Chapter 22.

Chapter 18

Static Members: Can Fabric
Softener Help?

In This Chapter
▶ Declaring static member data

▶ Defining and using static member functions

▶ Understanding why my static member function can’t call my other member functions

B
y default, data members are allocated on a per-object basis. For example,
each person has his or her own name. You can also declare a member

to be shared by all objects of a class by declaring that member static. The
term static applies to both data members and member functions, although
the meaning is slightly different. This chapter describes both types, begin-
ning with static data members.

Defining a Static Member
The programmer can make a data member common to all objects of the class
by adding the keyword static to the declaration. Such members are called static
data members. (I would be a little upset if they were called something else.)

Why you need static members
Most properties are properties of the object. Using the well-worn (one might
say, threadbare) student example, properties such as name, ID number, and
courses are specific to the individual student. However, all students share
some properties — for example, the number of students currently enrolled, the
highest grade of all students, or a pointer to the first student in a linked list.

262 Part III: Introduction to Classes

It’s easy enough to store this type of information in a common, ordinary,
 garden-variety global variable. For example, you could use a lowly int variable
to keep track of the number of Student objects. The problem with this solu-
tion, however, is that global variables are outside the class. It’s like putting
the voltage regulator for my microwave outside the enclosure. Sure, I could
do it, and it would probably work — the only problem is that I wouldn’t be
too happy if my dog got into the wires and I had to peel him off the ceiling
(the dog wouldn’t be thrilled about it, either).

If a class is going to be held responsible for its own state, objects such as
global variables must be brought inside the class, just as the voltage regula-
tor must be inside the microwave lid, away from prying paws. This is the idea
behind static members.

 You may hear static members referred to as class members; this is because all
objects in the class share them. By comparison, normal members are referred
to as instance members, or object members, because each object receives its
own copy of these members.

Using static members
A static data member is one that has been declared with the static storage
class, as shown here:

class Student
{
 public:
 Student(char *pName = "no name") : name(pName)
 {
 noOfStudents++;
 }
 ~Student(){ noOfStudents--; }

 static int noOfStudents;
 string name;
};

Student s1;
Student s2;

The data member noOfStudents is part of the class Student but is not part of
either s1 or s2. That is, for every object of class Student, there is a separate
name, but there is only one noOfStudents, which all Students must share.

263 Chapter 18: Static Members: Can Fabric Softener Help?

“Well then,” you ask, “if the space for noOfStudents is not allocated in any of
the objects of class Student, where is it allocated?” The answer is, “It isn’t.”
You have to specifically allocate space for it, as follows:

int Student::noOfStudents = 0;

This somewhat peculiar-looking syntax allocates space for the static data
member and initializes it to 0. (You don’t have to initialize a static member
when you declare it; C++ will invoke the default constructor if you don’t.)
Static data members must be global — a static variable cannot be local to a
function.

 The name of the class is required for any member when it appears outside its
class boundaries.

 This business of allocating space manually is somewhat confusing until you
consider that class definitions are designed to go into files that are included
by multiple source code modules. C++ has to know in which of those .cpp
source files to allocate space for the static variable. This is not a problem with
non-static variables because space is allocated in every object created.

Referencing static data members
The access rules for static members are the same as the access rules for
normal members. From within the class, static members are referenced like
any other class member. Public static members can be referenced from out-
side the class, whereas well-protected static members can’t. Both types of
reference are shown in the following code snippet using the declaration of
Student from the previous section:

void fn(Student& s1, Student& s2)
{
 // reference public static
 cout << "No of students "
 << s1.noOfStudents // reference from outside
 << endl; // of the class
}

In fn(), noOfStudents is referenced using the object s1. But s1 and s2 share the
same member noOfStudents. How did I know to choose s1? Why didn’t I use
s2 instead? It doesn’t make any difference. You can reference a static member
using any object of that class.

264 Part III: Introduction to Classes

In fact, you don’t need an object at all. You can use the class name directly
instead, if you prefer, as in the following:

// ...class defined the same as before...
void fn(Student& s1, Student& s2)
{
 // the following produce identical results
 cout << "Number of students "
 << Student::noOfStudents
 << endl;
}

If you do use an object name when accessing a static member, C++ uses only
the declared class of the object.

 This is a minor technicality, but in the interest of full disclosure: The object
used to reference a static member is not evaluated even if it’s an expression.
For example, consider the following case:

class Student
{
 public:
 static int noOfStudents;
 Student& nextStudent();
 // ...other stuff the same...
};

void fn(Student& s)
{
 cout << s.nextStudent().noOfStudents << "\n"
}

The member function nextStudent() is not actually called. All C++ needs to
access noOfStudents is the return type, and it can get that without bothering
to evaluate the expression. This is true even if nextStudent() should do other
things, such as wash windows or shine your shoes. None of those things will
be done. Although the example is obscure, it does happen. That’s what you
get for trying to cram too much stuff into one expression.

Uses for static data members
Static data members have umpteen uses, but let me touch on a few here.
First, you can use static members to keep count of the number of objects
floating about. In the Student class, for example, the count is initialized to 0,
the constructor increments it, and the destructor decrements it. At any
given instant, the static member contains the count of the number of existing

265 Chapter 18: Static Members: Can Fabric Softener Help?

Student objects. Remember, however, that this count reflects the number of
Student objects (including any temporaries) and not necessarily the number
of students.

A closely related use for a static member is as a flag to indicate whether a
particular action has occurred. For example, a class Radio may need to ini-
tialize hardware before sending the first tune command but not before subse-
quent tunes. A flag indicating that this is the first tune is just the ticket. This
includes flagging when an error has occurred.

Another common use is to provide space for the pointer to the first member
of a list — the so-called head pointer (see Chapter 13 if this doesn’t sound
familiar). Static members can allocate bits of common data that all objects
in all functions share (overuse of this common memory is a really bad idea
because doing so makes tracking errors difficult).

Declaring Static Member Functions
Member functions can be declared static as well. Static member functions are
useful when you want to associate an action to a class, but you don’t need to
associate that action with a particular object. For example, the member func-
tion Duck::fly() is associated with a particular duck, whereas the rather more
drastic member function Duck::goExtinct() is not.

Like static data members, static member functions are associated with a
class and not with a particular object of that class. This means that, like a ref-
erence to a static data member, a reference to a static member function does
not require an object. If an object is present, only its type is used.

Thus, both calls to the static member function number() in the following
example are legal. This brings us to our first static program — I mean our
first program using static members — CallStaticMember:

// CallStaticMember - demonstrate two ways to call a
// static member function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student(const char* pN = "no name") : sName(pN)

266 Part III: Introduction to Classes

 {
 noOfStudents++;
 }
 ~Student() { noOfStudents--; }
 const string& name() { return sName; }
 static int number() { return noOfStudents; }

 protected:
 string sName;
 static int noOfStudents;
};
int Student::noOfStudents = 0;

int main(int argcs, char* pArgs[])
{
 // create two students and ask the class "how many?"
 Student s1("Chester");
 Student* pS2 = new Student("Scooter");

 cout << "Created " << s1.name()
 << " and " << pS2->name() << endl;
 cout << "Number of students is "
 << s1.number() << endl;

 // now get rid of a student and ask again
 cout << "Deleting " << pS2->name() << endl;
 delete pS2;
 cout << "Number of students is "
 << Student::number() << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program creates two Student objects, one locally and one off the heap. It
then displays their names and the count of the number of students. Next the
program deletes one of the students and asks the class how many students
are out there. The output from the program appears as follows:

Created Chester and Scooter
Number of students is 2
Deleting Scooter
Number of students is 1
Press any key to continue...

267 Chapter 18: Static Members: Can Fabric Softener Help?

This class keeps its data members protected and provides access functions
that allow outside (non-Student) code to read but not modify them.

 Declaring the return type of name() method to be string& rather than simply
string causes the function to return a reference to the object’s existing name
rather than create a temporary string object. (See Chapter 17 for a brilliant
treatise on constructing and avoiding temporaries.) Adding the const to the
declaration keeps the caller from modifying the class’s name member.

Notice how the static member function number() can access the static data
member noOfStudents. In fact, that’s the only member of the class that it can
access — a static member function is not associated with any object. Were I
to declare name() to be static, I could refer to Student::name(), which would
immediately beg the question, “Which name?”

The following snippet is only one case that I’m aware of where a static
method can refer directly to a non-static member:

class Student
{
 public:
 static int elementsInName()
 {
 int sizeOfArray = sizeof(name);
 return sizeOfArray/sizeof(char);
 }

 protected:
 char name[MAX_NAME_SIZE];
};

 Here the static method elementsInName() refers to name without referenc-
ing any object. This was not legal prior to the 2011 standard. It’s allowed now
because the sizeof name is the same for all objects. Thus, it doesn’t matter
which object you refer to.

 You may wonder why I divided sizeof(name) by sizeof(char). The sizeof(name)
returns the number of bytes in the array name. But what we want is the number
of elements in name, so we have to divide by the size of each element in name.
But isn’t sizeof(char) equal to 1? Well, maybe, but maybe not. Dividing the sizeof
the array by the sizeof a single element always works for all array types.

268 Part III: Introduction to Classes

What Is this About Anyway?
How does a non-static object method know what object it’s referring to? In
other words, when I ask the Student object for its name, how does name()
know which sName to return?

The address of the current object is passed as an implied first argument to
every non-static method. When it is necessary to refer to this object, C++
gives it the name this. this is a keyword in every object method meaning "the
current object.” This is illustrated in the following code snippet:

class SC
{
 public:
 void dyn(int a); // like SC::dyn(SC *this, int a)
 static void stat(int a); // like SC::stat(int a)
};

void fn(SC& s)
{
 s.dyn(10); // -converts to-> SC::dyn(&s, 10);
 s.stat(10); // -converts to-> SC::stat(10);
}

That is, the function dyn() is interpreted almost as though it were declared
void SC::dyn(SC *this, int a). The call to dyn() is converted by the compiler as
shown, with the address of s passed as the first argument. (You can’t actually
write the call this way, but this is what the compiler is doing.)

References to other non-static members within SC::dyn() automatically use
the this argument as the pointer to the current object. When SC::stat() was
called, no object address was passed. Thus, it has no this pointer to use when
referencing non-static functions, which is why I say that a static member
function is not associated with any current object.

You can see this used explicitly in an object-oriented version of the linked list
program from Chapter 13; called LinkedLIstData. The entire program is avail-
able with the online material at www.dummies.com/extras/cplusplus;
the NameDataSet class appears here:

// NameDataSet - stores a person's name (these objects
// could easily store any other information
// desired).
class NameDataSet
{
 public:
 NameDataSet(string& refName)
 : sName(refName), pNext(nullptr) {}

269 Chapter 18: Static Members: Can Fabric Softener Help?

 // add self to beginning of list
 void add()
 {
 this->pNext = pHead;
 pHead = this;
 }

 // access methods
 static NameDataSet* first() { return pHead; }
 NameDataSet* next() { return pNext; }
 const string& name() { return sName; }
 protected:
 string sName;

 // the link to the first and next member of list
 static NameDataSet* pHead;
 NameDataSet* pNext;
};

// allocate space for the head pointer
NameDataSet* NameDataSet::pHead = nullptr;

Here you can see that the pHead pointer to the beginning of the list has been
converted into a static data member because it applies to the entire class.
In addition, pNext has been made a data member and access methods have
been provided to give other programs access to the now protected members
of the class.

The add() method adds the current object to the list by first setting its pNext
pointer to the beginning of the list. The next statement causes the head
pointer to point to the current object via the assignment pHead = this.

270 Part III: Introduction to Classes

Part IV
Inheritance

 Visit www.dummies.com/extras/cplusplus for great Dummies
content online.

In this part...
 ✓ Inheriting a base class

 ✓ Exploring relationships

 ✓ Factoring common properties

 ✓ Declaring abstract classes

 ✓ Visit www.dummies.com/extras/cplusplus for great
Dummies content online

Chapter 19

Inheriting a Class
In This Chapter
▶ Defining inheritance

▶ Inheriting a base class

▶ Constructing the base class

▶ Exploring meaningful relationships: The IS_A versus the HAS_A relationship

T
his chapter discusses inheritance, the ability of one class to inherit capa-
bilities or properties from another class.

Inheritance is a common concept. I am a human (except when I first wake
up in the morning). I inherit certain properties from the class Human, such
as my ability to converse (more or less) intelligently and my dependence on
air, water, and carbohydrate-based nourishment (a little too dependent on
the latter, I’m afraid). These properties are not unique to humans. The class
Human inherits the dependencies on air, water, and nourishment from the
class Mammal, which inherited it from the class Animal.

The capability of passing down properties is a powerful one. It enables you
to describe things in an economical way. For example, if my son asks, “What’s
a duck?” I can say, “It’s a bird that goes quack.” Despite what you may think,
that answer conveys a considerable amount of information. He knows what a
bird is, and now he knows all those same things about a duck plus the duck’s
additional property of “quackness.” (Refer to Chapter 11 for a further discus-
sion of this and other profound observations.)

Object-oriented (OO) languages express this inheritance relationship by
allowing one class to inherit from another. OO languages can generate a
model that’s closer to the real world (remember that real-world stuff!) than
the model generated by languages that don’t support inheritance.

274 Part IV: Inheritance

C++ allows one class to inherit another class as follows:

class Student
{
};

class GraduateStudent : public Student
{
};

Here, a GraduateStudent inherits all the members of Student. Thus, a Graduate
Student IS_A Student. (The capitalization of IS_A stresses the importance of
this relationship.) Of course, GraduateStudent may also contain other mem-
bers that are unique to a GraduateStudent.

Do I Need My Inheritance?
Inheritance was introduced into C++ for several reasons. Of course, the major
reason is the capability of expressing the inheritance relationship. (I’ll return to
that in a moment.) A minor reason is to reduce the amount of typing. Suppose
that you have a class Student, and you’re asked to add a new class called
GraduateStudent. Inheritance can drastically reduce the number of things you
have to put in the class. All you really need in the class GraduateStudent are
things that describe the differences between students and graduate students.

Another minor side effect has to do with software modification. Suppose you
inherit from some existing class. Later, you find that the base class doesn’t do
exactly what the subclass needs. Or perhaps the class has a bug. Modifying
the base class might break other code that uses that base class. Creating and
using a new subclass that overloads the incorrect feature with a corrected
version solves your problem without causing someone else further problems.

This IS_A-mazing
To make sense of our surroundings, humans build
extensive taxonomies. Fido is a special case of
dog, which is a special case of canine, which is
a special case of mammal, and so it goes. This
shapes our understanding of the world.

To use another example, a student is a (spe-
cial type of) person. Having said this, I already
know a lot of things about students (American
students, anyway). I know they have social

security numbers, they watch too much TV, and
they daydream about the opposite sex (the male
ones, anyway). I know all these things because
these are properties of all people.

In C++, we say that the class Student inher-
its from the class Person. Also, we say that
Person is a base class of Student, and Student
is a subclass of Person. One final phrase and
then I’ll stop: Student extends the class Person.

275 Chapter 19: Inheriting a Class

How Does a Class Inherit?
Here’s the GraduateStudent example filled out into a program
InheritanceExample:

// InheritanceExample - demonstrate an inheritance
// relationship in which the subclass
// constructor passes argument information
// to the constructor in the base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
class Advisor {}; // define an empty class

class Student
{
 public:
 Student(const char *pName = "no name")
 : name(pName), average(0.0), semesterHours(0)
 {
 cout << "Constructing student " << name << endl;
 }

 void addCourse(int hours, float grade)
 {
 cout << "Adding grade to " << name << endl;
 average = semesterHours * average + grade;
 semesterHours += hours;
 average = average / semesterHours;
 }

 int hours() { return semesterHours;}
 float gpa() { return average;}

Finally, we say that a Student IS_A Person
(using all caps is a common way of expressing
this unique relationship — I didn’t make it up).
C++ shares this terminology with other object-
oriented languages.

Notice that although Student IS_A Person, the
reverse is not true. A Person IS not a Student.
(A statement like this always refers to the gen-
eral case. It could be that a particular Person
is, in fact, a Student.) A lot of people who are
members of class Person are not members of

class Student. In addition, class Student has
properties it does not share with class Person.
For example, Student has a grade point aver-
age, but Person does not.

The inheritance property is transitive. For exam-
ple, if I define a new class GraduateStudent
as a subclass of Student, GraduateStudent
must also be Person. It has to be that way: If a
GraduateStudent IS_A Student and a Student
IS_A Person, a GraduateStudent IS_A Person.

276 Part IV: Inheritance

 protected:
 string name;
 double average;
 int semesterHours;
};

class GraduateStudent : public Student
{
 public:
 GraduateStudent(const char *pName, Advisor adv,
 double qG = 0.0)
 : Student(pName), advisor(adv), qualifierGrade(qG)
 {
 cout << "Constructing graduate student "
 << pName << endl;
 }

 double qualifier() { return qualifierGrade; }

 protected:
 Advisor advisor;
 double qualifierGrade;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a dummy advisor to give to GraduateStudent
 Advisor adv;

 // create two Student types
 Student llu("Cy N Sense");
 GraduateStudent gs("Matt Madox", adv, 1.5);

 // now add a grade to their grade point average
 llu.addCourse(3, 2.5);
 gs.addCourse(3, 3.0);

 // display the graduate student's qualifier grade
 cout << "Matt's qualifier grade = "
 << gs.qualifier() << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

277 Chapter 19: Inheriting a Class

This program demonstrates the creation and use of two objects, one of class
Student and a second of GraduateStudent. The output of this program is as
follows:

Constructing student Cy N Sense
Constructing student Matt Madox
Constructing graduate student Matt Madox
Adding grade to Cy N Sense
Adding grade to Matt Madox
Matt's qualifier grade = 1.5
Press Enter to continue...

Using a subclass
The class Student has been defined in the conventional fashion. The class
GraduateStudent is a bit different, however. The colon followed by the phrase
public Student at the beginning of the class definition declares GraduateStudent
to be a subclass of Student.

 The appearance of the keyword public implies that there is probably protected
inheritance as well. All right, it’s true, but protected inheritance is rarely used
and beyond the scope of this book.

Programmers love inventing new terms or giving new meaning to existing
terms. Heck, programmers even invent new terms and then give them a
second meaning. Here is a set of equivalent expressions that describes the
same relationship:

 ✓ GraduateStudent is a subclass of Student.

 ✓ Student is the base class or is the parent class of GraduateStudent.

 ✓ GraduateStudent inherits or is derived from Student.

 ✓ GraduateStudent extends Student.

As a subclass of Student, GraduateStudent inherits all its members. For exam-
ple, a GraduateStudent has a name even though that member is declared up
in the base class. However, a subclass can add its own members, for example
qualifierGrade. After all, gs quite literally IS_A Student plus a little bit more.

The main() function declares two objects, llu of type Student and gs of type
GraduateStudent. It then proceeds to access the addCourse() member function
for both types of students. main() then accesses the qualifier() function that
is only a member of the subclass.

278 Part IV: Inheritance

Constructing a subclass
Even though a subclass has access to the protected members of the base class
and could initialize them, each subclass is responsible for initializing itself.

Before control passes beyond the open brace of the constructor for Graduate
Student, control passes to the proper constructor of Student. If Student were
based on another class, such as Person, the constructor for that class would
be invoked before the Student constructor got control. Like a skyscraper, the
object is constructed starting at the “base”-ment class and working its way
up the class structure one story at a time.

Just as with member objects, you often need to be able to pass arguments to
the base class constructor. The example program declares the subclass con-
structor as follows:

GraduateStudent(const char *pName, Advisor adv,
 double qG = 0.0)
 : Student(pName), advisor(adv), qualifierGrade(qG)
{
 // whatever else the constructor does
}

Here the constructor for GraduateStudent invokes the Student constructor,
passing it the argument pName. C++ then initializes the members advisor and
qualifierGrade before executing the statements within the constructor’s open
and close braces.

The default constructor for the base class is executed if the subclass makes
no explicit reference to a different constructor. Thus, in the following code
snippet, the Pig base class is constructed before any members of LittlePig,
even though LittlePig makes no explicit reference to that constructor:

class House {};
class Pig
{
 public:
 Pig() : pHouse(nullptr) {}
 protected:
 House* pHouse;
};
class LittlePig : public Pig
{
 public:
 LittlePig(double volStraw, int numSticks,
 int numBricks)
 : straw(volStraw), sticks(numSticks),
 bricks(numBricks) { }

279 Chapter 19: Inheriting a Class

 protected:
 double straw;
 int sticks;
 int bricks;
};

Similarly, the copy constructor for a base class is invoked automatically.

Destructing a subclass
Following the rule that destructors are invoked in the reverse order of the
constructors, the destructor for GraduateStudent is given control first. After
it’s given its last full measure of devotion, control passes to the destructor
for Advisor and then to the destructor for Student. If Student were based on a
class Person, the destructor for Person would get control after Student.

This is logical. The blob of memory is first converted to a Student object. Only
then is it the job of the GraduateStudent constructor to transform this simple
Student into a GraduateStudent. The destructor simply reverses the process.

Inheriting constructors
 As of the 2011 standard, subclass can inherit the constructor of its base class

as well, as shown in the following snippet:

class Student
{
 public:
 Student(string name);
};
class GraduateStudent : public Student
{
 public:
 using Student::Student; // inherit base constructors
};

This creates a GraduateStudent(string) constructor exactly as if the following
had been entered:

class GraduateStudent : public Student
{
 public:
 GraduateStudent(string name) : Student(name) {}
};

The advantage of inheriting the constructors of the base class is that the sub-
class inherits all of the base class constructors. This is useful when building a
subclass that extends an important base class in some trivial way.

280 Part IV: Inheritance

Having a HAS_A Relationship
Notice that the class GraduateStudent includes the members of class Student
and Advisor, but in a different way. By defining a data member of class Advisor,
you know that a Student has all the data members of an Advisor within it.
However, you can’t say that a GraduateStudent is an Advisor — instead you
say that a GraduateStudent HAS_A Advisor. What’s the difference between
this and inheritance?

Use a car as an example. You could logically define a car as being a subclass of
vehicle, so it inherits the properties of other vehicles. At the same time, a car
has a motor. If you buy a car, you can logically assume that you are buying a
motor as well. (Unless you go to the used-car lot where I got my last junk heap.)

If friends ask you to show up at a rally on Saturday with your vehicle of
choice and you go in your car, they can’t complain (even if someone else
shows up on a bicycle) because a car IS_A vehicle. But, if you appear on foot
carrying a motor, your friends will have reason to laugh at you because a
motor is not a vehicle. A motor is missing certain critical properties that all
vehicles share — such as a place to ride.

From a programming standpoint, the HAS_A relationship is just as straight-
forward. Consider the following:

class Vehicle {};
class Motor {};
class Car : public Vehicle
{
 public:
 Motor motor;
};

void VehicleFn(Vehicle& v);
void MotorFn(Motor& m);

int main(int nNumberofArgs, char* pszArgs[])
{
 Car car;
 VehicleFn(car); // this is allowed
 MotorFn(car); // this is not allowed
 MotorFn(car.motor);// this is allowed
 return 0;
}

The call VehicleFn(c) is allowed because car IS_A vehicle. The call MotorFn(car)
is not because car is not a Motor, even though it contains a Motor. If the inten-
tion were to pass the Motor portion of c to the function, this must be expressed
explicitly, as in the call MotorFn(car.motor).

Chapter 20

Examining Virtual Member
Functions: Are They for Real?

In This Chapter
▶ Discovering how polymorphism (a.k.a. late binding) works

▶ Finding out how safe polymorphic nachos are

▶ Overriding member functions in a subclass

▶ Checking out special considerations with polymorphism

T
he number and type of a function’s arguments are included in its full, or
extended, name. This enables you to give two functions the same name as

long as the extended name is different:

void someFn(int);
void someFn(char*);
void someFn(char*, double);

In all three cases, the short name for these functions is someFn() (hey! this
is some fun). The extended names for all three differ: someFn(int) versus
someFn(char*), and so on. C++ is left to figure out which function is meant by
the arguments during the call.

Member functions can be overloaded. The number of arguments, the type of
arguments, and the class name are all part of the extended name.

Inheritance introduces a whole new wrinkle, however. What if a function in
a base class has the same name as a function in the subclass? Consider, for
example, the following simple code snippet:

class Student
{
 public:
 double calcTuition();
};

282 Part IV: Inheritance

class GraduateStudent : public Student
{
 public:
 double calcTuition();
};

int main(int argcs, char* pArgs[])
{
 Student s;
 GraduateStudent gs;
 s.calcTuition(); //calls Student::calcTuition()
 gs.calcTuition();//calls GraduateStudent::calcTuition()
 return 0;
}

As with any overloading situation, when the programmer refers to calcTuition(),
C++ has to decide which calcTuition() is intended. Obviously, if the two functions
differed in the type of arguments, there’s no problem. Even if the arguments
were the same, the class name should be sufficient to resolve the call, and this
example is no different. The call s.calcTuition() refers to Student::calcTuition()
because s is declared locally as a Student, whereas gs.calcTuition() refers to
GraduateStudent::calcTuition().

But what if the exact class of the object can’t be determined at compile-time?
To demonstrate how this can occur, change the preceding program in a seem-
ingly trivial way:

// OverloadOverride - demonstrate when a function is
// overloaded at compile time vs. overriden at runtime
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 // uncomment one or the other of the next
 // two lines; one binds calcTuition() early and
 // the other late
// void calcTuition()
 virtual void calcTuition()
 {
 cout << "We're in Student::calcTuition" << endl;
 }
};

283 Chapter 20: Examining Virtual Member Functions: Are They for Real?

class GraduateStudent : public Student
{
 public:
 void calcTuition()
 {
 cout<<"We're in GraduateStudent::calcTuition"<<endl;
 }
};

void fn(Student& x)
{
 x.calcTuition(); // which calcTuition()?
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // pass a base class object to function
 // (to match the declaration)
 Student s;
 fn(s);

 // pass a specialization of the base class instead
 GraduateStudent gs;
 fn(gs);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Instead of calling calcTuition() directly, the call is now made through an inter-
mediate function, fn(). Depending on how fn() is called, x can be a Student or
a GraduateStudent. A GraduateStudent IS_A Student.

 Refer to Chapter 19 if you don’t remember why a GraduateStudent IS_A Student.

The argument x passed to fn() is declared to be a reference to Student.

 Passing an object by reference can be a lot more efficient than passing it by
value. See Chapter 17 for a treatise on making copies of objects.

You might want x.calcTuition() to call Student::calcTuition() when x is a
Student but to call GraduateStudent::calcTuition() when x is a GraduateStudent.
It would be really cool if C++ were that smart.

284 Part IV: Inheritance

 The type that you’ve been accustomed to until now is called the static, or
compile-time, type. The compile-time type of x is Student in both cases because
that’s what the declaration in fn() says. The other kind is the dynamic, or run-
time, type. In the case of the example function fn(), the run-time type of x is
Student when fn() is called with s and GraduateStudent when fn() is called with
gs. Aren’t we having fun?

The capability of deciding at runtime which of several overloaded member
functions to call based on the run-time type is called polymorphism, or late
binding. Deciding which overloaded function to call at compile-time is called
early binding because that sounds like the opposite of late binding.

Overloading a base class function polymorphically is called overriding the
base class function. This new name is used to differentiate this more compli-
cated case from the normal overload case.

Why You Need Polymorphism
Polymorphism is key to the power of object-oriented programming. It’s so
important that languages that don’t support polymorphism can’t advertise
themselves as OO languages. (I think it’s a government regulation — you
can’t label a language OO if it doesn’t support polymorphism unless you add
a disclaimer from the Surgeon General, or something like that.)

Without polymorphism, inheritance has little meaning. Remember how I
made nachos in the oven? In this sense, I was acting as the late binder. The
recipe read: Heat the nachos in the oven. It didn’t read: If the type of oven is
microwave, do this; if the type of oven is conventional, do that; if the type of
oven is convection, do this other thing. The recipe (the code) relied on me
(the late binder) to decide what the action (member function) heat means
when applied to the oven (the particular instance of class Oven) or any of its
variations (subclasses), such as a microwave oven (Microwave). This is the
way people think, and designing a language along the lines of the way people
think allows the programming model to more accurately describe the world
in which people live.

How Polymorphism Works
Any given language can support either early or late binding based upon the
whims of its developers. Older languages like C tend to support early binding
alone. Recent languages like Java and C# support only late binding. As a fence
straddler, C++ supports both early and late binding.

285 Chapter 20: Examining Virtual Member Functions: Are They for Real?

You may be surprised that the default for C++ is early binding. The output of
the OverloadOverride program the way it appears is as follows:

We're in Student::calcTuition
We're in Student::calcTuition
Press Enter to continue...

The reason is simple, if a little dated. First, C++ has to act as much like C as
possible by default to retain upward compatibility with its predecessor. Second,
polymorphism adds a small amount of overhead to every function call both in
terms of data storage and code needed to perform the call. The founders of C++
were concerned that any additional overhead would be used as a reason not to
adopt C++ as the system’s language of choice, so they made the more efficient
early binding the default.

To make a member function polymorphic, the programmer must flag the
function with the C++ keyword virtual, as shown in the following modification
to the declaration in the OverloadOveride program:

class Student
{
 public:
 virtual void calcTuition()
 {
 cout << "We're in Student::calcTuition" << endl;
 }
};

The keyword virtual that tells C++ that calcTuition() is a polymorphic member
function. That is to say, declaring calcTuition() virtual means that calls to it
will be bound late if there is any doubt as to the run-time type of the object
with which calcTuition() is called.

Executing the OverloadOveride program with calcTuition() declared virtual
generates the following output:

We're in Student::calcTuition
We're in GraduateStudent::calcTuition
Press Enter to continue...

 If you’re comfortable with the debugger that comes with your C++ environ-
ment, you really should single-step through this example. It’s so cool to see
the program single-step into Student::calcTuition() the first time that fn() is
called but into GraduateStudent::calcTuition() on the second call. I don’t think
that you can truly appreciate polymorphism until you’ve tried it.

286 Part IV: Inheritance

 You need to declare the function virtual only in the base class. The “virtual-
ness” is carried down to the subclass automatically. In this book, however,
I follow the coding standard of declaring the function virtual everywhere
(virtually).

When Is a Virtual Function Not?
Just because you think that a particular function call is bound late doesn’t
mean that it is. If not declared with the same arguments in the subclasses, the
member functions are not overridden polymorphically, whether or not they
are declared virtual.

One exception to the identical declaration rule is that if the member func-
tion in the base class returns a pointer or reference to a base class object, an
overridden member function in a subclass may return a pointer or reference
to an object of the subclass. In other words, the function makeACopy() is
polymorphic, even though the return type of the two functions differ:

class Base
{
 public:
 // return a copy of the current object
 Base* makeACopy();
};

class SubClass : public Base
{
 public:
 // return a copy of the current object
 SubClass* makeACopy();
};

void fn(Base& bc)
{
 Base* pCopy = bc.makeACopy();

 // proceed on...
}

In practice, this is quite natural. A makeACopy() function should return an
object of type SubClass, even though it might override BaseClass::makeACopy().

 This business of silently deciding when a function is overridden and when
not is a source of error in C++; so much so that the 2011 standard introduced
the descriptor override that the programmer can use to indicate her intent to
override a base class function. C++ generates a compiler error if a function is
declared override but does not, in fact, override a base class function for some
reason (such as a mismatched argument) as in the following example:

287 Chapter 20: Examining Virtual Member Functions: Are They for Real?

class Student
{
 public:
 virtual void addCourseGrade(double grade);
};
class GradStudent : public Student
{
 public:
 virtual void addCourseGrade(float grade) override;
};

This snippet generates a compile-time error because the method GradStudent::
addCourseGrade(float) was declared override but it does not, in fact, override
the base class function Student::addCourseGrade(double) because the argument
types don’t match.

 The programmer can also declare a function as not overrideable using the
final keyword, even if that function itself overrides some earlier base class
function, as demonstrated in the following additional PostDoc class:

class GradStudent : public Student
{
 public:
 virtual void addCourseGrade(double grade) final;
};
class PostDoc : public GradStudent
{
 public:
 virtual void addCourseGrade(double grade);
};

Since Student::addCourseGrade() is marked final, the declaration of PostDoc::
addCourseGrade() generates an error because it attempts to override the
Student method.

 In addition, an entire class can be declared final:

class GradStudent final: public Student

This affects more than just the virtual methods of the class. A final class
cannot be inherited from at all.

Considering Virtual Considerations
You need to keep in mind a few things when using virtual functions. First,
static member functions cannot be declared virtual. Because static member
functions are not called with an object, there is no runtime object upon
which to base a binding decision.

288 Part IV: Inheritance

Second, specifying the class name in the call forces a call to bind early,
whether or not the function is virtual. For example, the following call is to
Base::fn() because that’s what the programmer indicated, even if fn() is
declared virtual:

void test(Base& b)
{
 b.Base::fn(); // this call is not bound late
}

Finally, constructors cannot be virtual because there is no (completed)
object to use to determine the type. At the time the constructor is called, the
memory that the object occupies is just an amorphous mass. It’s only after
the constructor has finished that the object is a member of the class in good
standing.

By comparison, the destructor should almost always be declared virtual. If
not, you run the risk of improperly destructing the object, as in the following
circumstance:

class Base
{
 public:
 ~Base();
};

class SubClass : public Base
{
 public:
 ~SubClass();
};

void finishWithObject(Base* pHeapObject)
{
 // ...work with object...
 // now return it to the heap
 delete pHeapObject; // this calls ~Base() no matter
} // the runtime type of
 // pHeapObject

If the pointer passed to finishWithObject() really points to a SubClass, the
SubClass destructor is not invoked properly — because the destructor has
not been declared virtual, it’s always bound early. Declaring the destructor
virtual solves the problem.

So when would you not want to declare the destructor virtual? There’s only
one case. Virtual functions introduce a “little” overhead. Let me be more
 specific: When the programmer defines the first virtual function in a class,

289 Chapter 20: Examining Virtual Member Functions: Are They for Real?

C++ adds an additional, hidden pointer — not one pointer per virtual function,
just one pointer if the class has any virtual functions. A class that has no
virtual functions (and does not inherit any virtual functions from base
classes) does not have this pointer.

Now, one pointer doesn’t sound like much, and it isn’t unless the following
two conditions are true:

 ✓ The class doesn’t have many data members (so that one pointer repre-
sents a lot compared to what’s there already).

 ✓ You intend to create a lot of objects of this class (otherwise, the over-
head doesn’t make any difference).

If these two conditions are met and your class doesn’t already have virtual
member functions, you may not want to declare the destructor virtual.

 Except for this one case, always declare destructors to be virtual, even if a
class is not subclassed (yet) — you never know when someone will come
along and use your class as the base class for her own. If you don’t declare the
destructor virtual, then declare the class final (if your compiler supports this
feature) and document it!

290 Part IV: Inheritance

Chapter 21

Factoring Classes
In This Chapter
▶ Factoring common properties into a base class

▶ Using abstract classes to hold factored information

▶ Declaring abstract classes

▶ Inheriting from an abstract class

▶ Dividing a program into multiple modules using a project file

T
he concept of inheritance allows one class to inherit the properties of a
base class. Inheritance has a number of purposes, including paying for

my son’s college. The main benefit of inheritance is the ability to point out
the relationship between classes. This is the so-called IS_A relationship — a
MicrowaveOven IS_A Oven and stuff like that.

Factoring is great stuff if you make the correct correlations. For example, the
microwave versus conventional oven relationship seems natural. Claim that
microwave is a special kind of toaster, and you’re headed for trouble. True,
they both make things hot, they both use electricity, and they’re both found
in the kitchen, but the similarity ends there — a microwave can’t make toast
and a toaster can’t make nachos.

Identifying the classes inherent in a problem and drawing the correct rela-
tionships among these classes is a process known as factoring. (The word is
related to the arithmetic that you were forced to do in grade school: factor-
ing out the least common denominators, for example, 12 is equal to 2 times 2
times 3.)

Factoring
This section describes how you can use inheritance to simplify your programs
using a bank account example. Suppose that you were asked to write a simple
bank program that implemented the concept of a savings account and a check-
ing account.

292 Part IV: Inheritance

I can talk until I’m blue in the face about these classes; however, object-
oriented programmers have come up with a concise way to describe the
salient points of a class in a drawing. The Checking and Savings classes are
shown in Figure 21-1. (This is only one of several ways to graphically express
the same thing.)

Figure 21-1:
Independent

classes
Checking

and
Savings.

To read this figure and the other figures, remember the following:

 ✓ The big box is the class, with the class name at the top.

 ✓ The names in boxes are member functions.

 ✓ The names not in boxes are data members.

 ✓ The names that extend partway out of the boxes are publicly accessible
members; that is, these members can be accessed by functions that are
not part of the class or any of its descendents. Those members that are
completely within the box are not accessible from outside the class.

 ✓ A thick arrow (see Figure 21-2) represents the IS_A relationship.

 ✓ A thin arrow represents the HAS_A relationship.

 A Car IS_A Vehicle, but a Car HAS_A Motor.

You can see in Figure 21-1 that the Checking and Savings classes have a lot
in common. For example, both classes have a withdrawal() and deposit()
member function. Because the two classes aren’t identical, however, they
must remain as separate classes. (In a real-life bank application, the two
classes would be a good deal more different than in this example.) Still, there
should be a way to avoid this repetition.

You could have one of these classes inherit from the other. Savings has more
members than Checking, so you could let Savings inherit from Checking.
This arrangement is shown in Figure 21-2. The Savings class inherits all the
members. The class is completed with the addition of the data member

293 Chapter 21: Factoring Classes

noWithdrawals and by overriding the function withdrawal(). You have to over-
ride withdrawal() because the rules for withdrawing money from a savings
account are different from those for withdrawing money from a checking
account.

Figure 21-2:
Savings

imple-
mented as a
subclass of

Checking.

Although letting Savings inherit from Checking is laborsaving, it’s not com-
pletely satisfying. The main problem is that, like the weight listed on my driv-
er’s license, it misrepresents the truth. This inheritance relationship implies
that a savings account is a special type of checking account, which it is not.

“So what?” you say. “Inheriting works, and it saves effort.” True, but my
 reservations are more than stylistic trivialities — my reservations are at
some of the best restaurants in town (at least that’s what all the truckers
say). Such misrepresentations are confusing to the programmer, both today’s
and tomorrow’s. Someday, a programmer unfamiliar with our programming
tricks will have to read and understand what our code does. Misleading
 representations are difficult to reconcile and understand.

In addition, such misrepresentations can lead to problems down the road.
Suppose, for example, that the bank changes its policies with respect to
checking accounts. Say it decides to charge a service fee on checking
accounts only if the minimum balance dips below a given value during the
month.

A change like this can be easily handled with minimal changes to the class
Checking. You’ll have to add a new data member to the class Checking to keep
track of the minimum balance during the month. Let’s go out on a limb and
call it minimumBalance.

294 Part IV: Inheritance

But now you have a problem. Because Savings inherits from Checking, Savings
gets this new data member as well. It has no use for this member because
the minimum balance does not affect savings accounts, so it just sits there.
Remember that every checking account object has this extra minimumBalance
member. One extra data member may not be a big deal, but it adds further
confusion.

Changes like this accumulate. Today it’s an extra data member — tomorrow
it’s a changed member function. Eventually, the savings account class is car-
rying a lot of extra baggage that is applicable only to checking accounts.

Now the bank comes back and decides to change some savings account
policy. This requires you to modify some function in Checking. Changes like
this in the base class automatically propagate down to the subclass unless
the function is already overridden in the subclass Savings. For example, sup-
pose that the bank decides to give away toasters for every deposit into the
checking account. (Hey — it could happen!) Without the bank (or its pro-
grammers) knowing it, deposits to checking accounts would automatically
result in toaster donations. Unless you’re very careful, changes to Checking
may unexpectedly appear in Savings.

How can you avoid these problems? Claiming that Checking is a special
case of Savings changes but doesn’t solve our problem. What you need is a
third class (call it Account, just for grins) that embodies the things that are
common between Checking and Savings, as shown in Figure 21-3.

Figure 21-3:
Basing

Checking
and Savings

on a
common
Account

class.

295 Chapter 21: Factoring Classes

How does building a new account solve the problems? First, creating a new
Account class is a more accurate description of the real world (whatever that
is). In our concept of things (or at least in mine), there really is something
known as an account. Savings accounts and checking accounts are special
cases of this more fundamental concept.

In addition, the class Savings is insulated from changes to the class Checking
(and vice versa). If the bank institutes a fundamental change to all accounts,
you can modify Account, and all subclasses will automatically inherit the
change. But if the bank changes its policy only for checking accounts, you
can modify just the Checking account class without affecting Savings.

This process of culling common properties from similar classes is the
essence of class factoring.

 Factoring is legitimate only if the inheritance relationship corresponds to
reality. Factoring together a class Mouse and Joystick because they’re both
hardware pointing devices is legitimate. Factoring together a class Mouse and
Display because they both make low-level operating system calls is not.

Implementing Abstract Classes
As intellectually satisfying as factoring is, it introduces a problem of its own.
Return one more time to the bank account classes, specifically the common
base class Account. Think for a minute about how you might go about defin-
ing the different member functions defined in Account.

Most Account member functions are no problem because both account types
implement them in the same way. Implementing those common functions
with Account::withdrawal() is different, however. The rules for withdraw-
ing from a savings account are different than those for withdrawing from a
checking account. You’ll have to implement Savings::withdrawal() differently
than you do Checking::withdrawal(). But how are you supposed to implement
Account::withdrawal()?

Let’s ask the bank manager for help. I imagine the conversation going
 something like the following:

“What are the rules for making a withdrawal from an account?” you ask.

“What type of account? Savings or checking?” comes the reply.

“From an account,” you say. “Just an account.”

Blank look. (One might say a “blank bank look” . . . then again, maybe not.)

296 Part IV: Inheritance

The problem is that the question doesn’t make sense. There’s no such
thing as “just an account.” All accounts (in this example) are either check-
ing accounts or savings accounts. The concept of an account is an abstract
one that factors out properties common to the two concrete classes. It is
incomplete because it lacks the critical property withdrawal(). (After you get
further into the details, you may find other properties that a simple account
lacks.)

An abstract class is one that exists only in subclasses. A concrete class is a
class that is not abstract.

Describing the abstract class concept
An abstract class is a class with one or more pure virtual functions. Oh, great!
That helps a lot.

Okay, a pure virtual function is a virtual member function that is marked as
having no implementation. Most likely it has no implementation because
no implementation is possible with the information provided in the class,
including any base classes. A conventional, run-of-the-mill non-pure virtual
function is known as a concrete function (note that a concrete function may
be virtual — unfortunately, C++ uses this term to mean polymorphic. See
Chapter 20).

The syntax for declaring a function pure virtual is demonstrated in the
 following class Account:

// Account - this class is an abstract class
class Account
{
 public:
 Account(unsigned accNo, double initialBalance = 0.0);

 // access functions
 unsigned int accountNo();
 double acntBalance();
 static int noAccounts();

 // transaction functions
 void deposit(double amount);

 // the following is a pure virtual function
 virtual void withdrawal(double amount) = 0;

297 Chapter 21: Factoring Classes

 protected:
 // keep accounts in a linked list so there's no limit
 // to the number of accounts
 static int count; // number of accounts
 unsigned accountNumber;
 double balance;
};

The = 0 after the declaration of withdrawal() indicates that the programmer
does not intend to define this function. The declaration is a placeholder for
the subclasses. The subclasses of Account are expected to override this func-
tion with a concrete function. The programmer must provide an implementa-
tion for each member function not declared pure virtual.

 I think this notation is silly, and I don’t like it any more than you do. But it’s
here to stay, so you just have to learn to live with it. There is a reason, if not
exactly a justification, for this notation. Every virtual function must have
an entry in a special table. This entry contains the address of the function.
Presumably, at least at one time, the entry for a pure virtual function was 0. In
any case, it’s the syntax we’re stuck with now.

An abstract class cannot be instanced with an object; that is, you can’t make
an object out of an abstract class. For example, the following declaration is
not legal:

void fn()
{
 // declare an account with 100 dollars
 Account acnt(1234, 100.00);// this is not legal
 acnt.withdrawal(50); // what would you expect
} // this call to do?

If the declaration were allowed, the resulting object would be incomplete,
lacking in some capability. For example, what should the preceding call do?
Remember, there is no Account::withdrawal().

Abstract classes serve as base classes for other classes. An Account contains
all the properties associated with a generic bank account. You can create
other types of bank accounts by inheriting from Account.

 The technical term is to instantiate. We say that the Account class cannot be
instantiated with an object or a given object instantiates the Savings class.

298 Part IV: Inheritance

Making an honest class out
of an abstract class
The subclass of an abstract class remains abstract until all pure virtual func-
tions have been overridden. The class Savings is not abstract because it over-
rides the pure virtual function withdrawal() with a perfectly good definition.
The class Savings knows how to perform withdrawal() when called on to do
so. So does the class Checking, even if the answer is different. Neither class is
virtual because the function withdrawal() overrides the pure virtual function
in the base class.

Passing abstract classes
Because you can’t instantiate an abstract class, it may sound odd that it’s
possible to declare a pointer or a reference to an abstract class. With poly-
morphism, however, this isn’t as crazy as it sounds. Consider the following
code snippet:

void fn(Account *pAccount); // this is legal
void otherFn()
{
 Savings s; Checking c;

 // this is legitimate because Savings IS_A Account
 fn(&s);
 // same here
 fn(&c);
}

Here, pAccount is declared as a pointer to an Account. However, it’s under-
stood that when the function is called, it will be passed the address of some
non-abstract subclass object such as Savings or Checking.

All objects received by fn() will be of either class Savings or class Checking
(or some future equally non-abstract subclass of Account). The function is
assured that you will never pass an actual object of class Account because
you could never create one to pass in the first place.

299 Chapter 21: Factoring Classes

The online material at www.dummies.com/extras/cplusplus includes a
set of programs Budget1 through Budget5. Each program solves essentially
the same problem. Each program allows the user to create and collect the
balance of a series of checking and savings accounts. However, each program
in the sequence is a bit more object-oriented than its predecessors. Budget1
is a completely functional implementation with no concept of classes.
Budget2 implements separate Savings and Checking classes. The Budget3 pro-
gram factors the similarities in these two classes into a common, abstract
Account class using the techniques presented in this chapter. Budget4 and
Budget5 go on to use features presented in the following chapters.

300 Part IV: Inheritance

Part V
Security

 Visit www.dummies.com/extras/cplusplus for great Dummies
content online.

In this part...
 ✓ Introducing the assignment operator

 ✓ Performing input/output

 ✓ Handling program errors

 ✓ Introducing multiple inheritance

 ✓ Applying templates

 ✓ Evading hackers

 ✓ Visit www.dummies.com/extras/cplusplus for great
Dummies content online

Chapter 22

A New Assignment Operator,
Should You Decide to Accept It

In This Chapter
▶ Introducing the assignment operator

▶ Knowing why and when the assignment operator is necessary

▶ Understanding similarities between the assignment operator and the copy constructor

▶ Comparing copy semantics with move semantics

T
he intrinsic data types are built into the language, such as int, float, and
double and the various pointer types. Chapters 3 and 4 describe the

operators that C++ defines for the intrinsic data types. C++ enables the pro-
grammer to define the operators for classes that the programmer has created
in addition to these intrinsic operators. This is called operator overloading.

Normally, operator overloading is optional and not attempted by beginning
C++ programmers. A lot of experienced C++ programmers (including me)
don’t think operator overloading is such a great idea either. However, you will
have to learn how to overload one operator: the assignment operator.

Comparing Operators with Functions
An operator is nothing more than a built-in function with a peculiar syntax.
The following addition operation

a + b

could be understood as though it were written

operator+(a, b)

304 Part V: Security

In fact, C++ gives each operator a function-style name. The functional name
of an operator is the operator symbol preceded by the keyword operator and
followed by the appropriate argument types. For example, the + operator that
adds an int to an int generating an int is called int operator+(int, int).

Any existing operator can be defined for a user-defined class. Thus, I could
create a Complex operator*(const Complex&, const Complex&) that would
allow me to multiply two objects of type Complex. The new operator may
have the same semantics as the operator it overloads, but it doesn’t have to.
The following rules apply when overloading operators:

 ✓ The programmer cannot overload the . (dot), :: (colon), .*, *->, sizeof
and ?: (ternary) operators.

 ✓ The programmer cannot invent a new operator. For example, you cannot
invent the operation x $ y.

 ✓ The syntax of an operator cannot be changed. Thus, you cannot define
an operation %i because % is already defined as a binary operator.

 ✓ The operator precedence cannot change. A program cannot force operator+
to be evaluated before operator*.

 ✓ The operators cannot be redefined when applied to intrinsic
types — you can’t change the meaning of 1 + 2. Existing operators can
be overloaded only for newly defined types.

Overloading operators is one of those things that seems like a much better
idea than it really is. In my experience, operator overloading introduces more
problems than it solves, with three notable exceptions that are the subject of
this chapter.

Inserting a New Operator
The insertion and extraction operators << and >> are nothing more than
the left and right shift operators overloaded for a set of input/output
classes. These definitions are found in the include file iostream (which is
why every program includes that file). Thus, cout << “some string” becomes
operator<<(cout, “some string”). Our old friends cout and cin are predefined
objects that are tied to the console and keyboard, respectively. I discuss this
in detail in Chapter 23.

305 Chapter 22: A New Assignment Operator, Should You Decide to Accept It

Creating Shallow Copies
Is a Deep Problem

No matter what anyone may think of operator overloading, you’ll need to
overload the assignment operator for many classes that you generate. C++
provides a default definition for operator=() for all classes. This default defini-
tion performs a member-by-member copy. This works great for an intrinsic
type like an int where the only “member” is the integer itself.

int i;
i = 10; // "member by member" copy

This same default definition is applied to user-defined classes. In the fol-
lowing example, each member of source is copied over the corresponding
member in destination:

void fn()
{
 MyStruct source, destination;
 destination = source;
}

The default assignment operator works for most classes; however, it is not
correct for classes that allocate resources, such as heap memory. The pro-
grammer must overload operator=() to handle the transfer of resources.

The assignment operator is much like the copy constructor (see Chapter 17).
In use, the two look almost identical:

void fn(MyClass& mc)
{
 MyClass newMC(mc); //of course, this uses the
 //copy constructor
 MyClass newerMC = mc;//less obvious, this also invokes
 //the copy constructor
 MyClass newestMC; //this creates a default object
 newestMC = mc; //and then overwrites it with
 //the argument passed
}

The creation of newMC follows the standard pattern of creating a new object
as a mirror image of the original using the copy constructor MyClass(const
MyClass&). Not so obvious is that newerMC is also created using the copy
constructor. MyClass a = b is just another way of writing MyClass a(b) — in
particular, this declaration does not involve the assignment operator despite
its appearance. However, newestMC is created using the default constructor
and then overwritten with mc using the assignment operator.

306 Part V: Security

 The rule is this: The copy constructor is used when a new object is being
 created. The assignment operator is used if the left-hand object already exists.

Like the copy constructor, an assignment operator should be provided when-
ever a shallow copy is not appropriate. (Chapter 17 discusses shallow versus
deep copy constructors.) A simple rule is to provide an assignment operator
for classes that have a user-defined copy constructor.

Notice that the default copy constructor does work for classes that contain
members that themselves have copy constructors, like in the following
example:

class Student
{
 public:
 int nStudentID;
 string sName;
};

The C++ library class string does allocate memory off the heap, so the
authors of that class include a copy constructor and an assignment operator
that (one hopes) perform all the operations necessary to create a successful
copy of a string. The default copy constructor for Student invokes the string
copy constructor to copy sName from one student to the next. Similarly, the
default assignment operator for Student does the same.

Overloading the Assignment Operator
The DemoAssignmentOperator program demonstrates how to provide an
assignment operator. The program also includes a copy constructor to
 provide a comparison:

//DemoAssignmentOperator - demonstrate the assignment
// operator on a user defined class
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// DArray - a dynamically sized array class used to
// demonstrate the assignment and copy constructor
// operators
class DArray
{

307 Chapter 22: A New Assignment Operator, Should You Decide to Accept It

 public:
 DArray(int nLengthOfArray = 0)
 : nLength(nLengthOfArray), pArray(nullptr)
 {
 cout << "Creating DArray of length = "
 << nLength << endl;
 if (nLength > 0)
 {
 pArray = new int[nLength];
 }
 }
 DArray(DArray& da)
 {
 cout << "Copying DArray of length = "
 << da.nLength << endl;
 copyDArray(da);
 }
 ~DArray()
 {
 deleteDArray();
 }

 //assignment operator
 DArray& operator=(const DArray& s)
 {
 cout << "Assigning source of length = "
 << s.nLength
 << " to target of length = "
 << this->nLength << endl;

 //delete existing stuff...
 deleteDArray();
 //...before replacing with new stuff
 copyDArray(s);
 //return reference to existing object
 return *this;
 }

 int& operator[](int index)
 {
 return pArray[index];
 }

 int size() { return nLength; }

 void display(ostream& out)
 {
 if (nLength > 0)
 {
 out << pArray[0];
 for(int i = 1; i < nLength; i++)

308 Part V: Security

 {
 out << ", " << pArray[i];
 }
 }
 }

 protected:
 void copyDArray(const DArray& da);
 void deleteDArray();

 int nLength;
 int* pArray;
};

//copyDArray() - create a copy of a dynamic array of ints
void DArray::copyDArray(const DArray& source)
{
 nLength = source.nLength;
 pArray = nullptr;
 if (nLength > 0)
 {
 pArray = new int[nLength];
 for(int i = 0; i < nLength; i++)
 {
 pArray[i] = source.pArray[i];
 }
 }
}

//deleteDArray() - return heap memory
void DArray::deleteDArray()
{
 nLength = 0;
 delete pArray;
 pArray = nullptr;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // a dynamic array and assign it values
 DArray da1(5);
 for (int i = 0; i < da1.size(); i++)
 {
 // uses user defined index operator to access
 // members of the array
 da1[i] = i;
 }
 cout << "da1="; da1.display(cout); cout << endl;

 // now create a copy of this dynamic array using
 // copy constructor; this is same as da2(da1)

309 Chapter 22: A New Assignment Operator, Should You Decide to Accept It

 DArray da2 = da1;
 da2[2] = 20; // change a value in the copy
 cout << "da2="; da2.display(cout); cout << endl;

 // overwrite the existing da2 with the original da1
 da2 = da1;
 cout << "da2="; da2.display(cout); cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The class DArray defines an integer array of variable length: You tell the class
how big an array to create when you construct the object. It does this by
wrapping the class around two data members: nLength, which contains the
length of the array, and pArray, a pointer to an appropriately sized block of
memory allocated off the heap.

The default constructor initializes nLength to the indicated length and then
pArray to nullptr.

 The nullptr keyword is new to the ’11 standard. If your compiler doesn’t recog-
nize nullptr, you can add the following definition near the top of your program:

#define nullptr 0

If the length of the array is actually greater than 0, the constructor allocates
an array of int’s of the appropriate size off the heap.

The copy constructor creates an array of the same size as the source object
and then copies the contents of the source array into the current array using
the protected method copyDArray(). The destructor returns the memory allo-
cated in the constructor to the heap using the deleteDArray() method. This
method nulls out the pointer pArray once the memory has been deleted.

The assignment operator=() is a method of the class. It looks to all the world
like a destructor immediately followed by a copy constructor. This is typical.
Consider the assignment in the example da2 = da1. The object da2 already has
data associated with it. In the assignment, the original dynamic array must be
returned to the heap by calling deleteDArray(), just like the DArray destructor.
The assignment operator then invokes copyDArray() to copy the new informa-
tion into the object, much like the copy constructor.

310 Part V: Security

There are two more details about the assignment operator. First, the return type
of operator=() is DArray&, and the returned value is always *this. Expressions
involving the assignment operator have a value and a type, both of which are
taken from the final value of the left-hand argument. In the following example,
the value of operator=() is 2.0, and the type is double.

double d1, d2;
void fn(double);
d1 = 2.0; // the type of this expression is double
 // and the value is 2.0

This is what enables the programmer to write the following:

d2 = d1 = 2.0
fn(d2 = 3.0); // performs the assignment and passes the
 // resulting value to fn()

The value of the assignment d1 = 2.0 (2.0) and the type (double) are passed to
the assignment to d2. In the second example, the value of the assignment d2 = 3.0
is passed to the function fn(), but the type of operator=() is matched to the
declarations to find fn(double).

A user-created assignment operator should support the same semantics as
the intrinsic version:

fn(DArray&); // given this declaration...
fn(da2 = da1); // ...this should be legal

The second detail is that operator=() was written as a member function.
The left-hand argument is taken to be the current object (this). Unlike
other operators, the assignment operator cannot be overloaded with a
non-member function.

 You can delete the default copy constructor and assignment operator if you
don’t want to define your own:

class NonCopyable
{
 public:
 NonCopyable(const NonCopyable&) = delete;
 NonCopyable& operator=(const NonCopyable&) = delete;
 };

An object of class NonCopyable cannot be copied via either construction or
assignment:

311 Chapter 22: A New Assignment Operator, Should You Decide to Accept It

void fn(NonCopyable& src)
{
 NonCopyable copy(src); // not allowed
 copy = src; // nor is this
}

If your compiler does not support the ’11 extensions, you can declare the
assignment operator protected:

class NonCopyable
{
 protected:
 NonCopyable(const NonCopyable&) {};
 NonCopyable& operator=(const NonCopyable&)
 {return *this};
};

 If your class allocates resources such as memory off the heap, you must make
the default assignment operator and copy constructors inaccessible, ideally
by replacing them with your own version.

Overloading the Subscript Operator
The earlier DemoAssignmentOperator example program actually slipped in a third
operator that is often overloaded for container classes: the subscript operator.

The following definition allows an object of class DArray to be manipulated
like an intrinsic array:

int& operator[](int index)
{
 return pArray[index];
}

This makes an assignment like the following legal:

int n = da[0]; // becomes n = da.operator[](0);

Notice, however, that rather than return an integer value, the subscript
operator returns a reference to the value within pArray. This allows
the calling function to modify the value as demonstrated within the
DemoAssignmnentOperator program:

da2[2] = 20;

You can see further examples of overloading the index operator for container
classes in Chapter 27.

312 Part V: Security

The Move Constructor and Move Operator
 This entire subject is new to C++ ’11.

Copy constructors and copy assignment operators are neat for retaining
simple semantics for classes that you create. However, since their inception,
C++ programmers have not been happy with the inefficiencies that they can
create. Consider the following example:

MyContainer fn(int size)
{
 MyContainer localMC(size);
 return mc;
}

MyContainer mc(fn());

In this case, the function fn() creates a local MyContainer object localMC and
then returns it to the caller by value. This simple call could result in the same
MyContainer object being copied not once but twice:

 1. As part of the return, C++ must make a temporary copy of the localMC
object onto the return stack to return to the caller.

 2. The subsequent call to the copy constructor copies the contents of this
temporary object into the local mc object.

The second copy is unnecessary. Since the temporary object is about to be
destructed anyway, the copy constructor could just "take" the assets away
from the temporary object rather than go through the hassle of making a
copy of something that’s about to be put back on the heap anyway. This is
the essence of the move constructor.

The move constructor looks like a copy constructor except for two things:

 ✓ A move constructor takes the resources from the source and gives them
to the target rather than copying.

 ✓ The argument of the move constructor is of type MyContainer&&, the
double ampersand meaning “only use for temporary values.”

The following example program shows both the move constructor and move
assignment operator in action:

313 Chapter 22: A New Assignment Operator, Should You Decide to Accept It

// DemoMoveOperator - demonstrate the move operator
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>

using namespace std;
class MyContainer
{
 public:
 MyContainer(int nS, const char* pS) : nSize(nS)
 {
 pString = new char[nSize];
 strcpy(pString, pS);
 }
 ~MyContainer()
 {
 delete pString;
 pString = nullptr;
 }

 //copy constructor
 MyContainer(const MyContainer& s)
 {
 copyIt(*this, s);
 }
 MyContainer& operator=(MyContainer& s)
 {
 delete pString;
 copyIt(*this, s);
 return *this;
 }

 // move constructor
 MyContainer(MyContainer&& s)
 {
 moveIt(*this, s);
 }
 MyContainer& operator=(MyContainer&& s)
 {
 delete pString;
 moveIt(*this, s);
 return *this;
 }

 protected:
 static void moveIt(MyContainer& tgt, MyContainer& src)
 {
 cout << "Moving " << src.pString << endl;
 tgt.nSize = src.nSize;

314 Part V: Security

 tgt.pString = src.pString;
 src.nSize = 0;
 src.pString = nullptr;
 }
 static void copyIt(MyContainer& tgt,
 const MyContainer& src)
 {
 cout << "Copying " << src.pString << endl;
 delete tgt.pString;
 tgt.nSize = src.nSize;
 tgt.pString = new char[tgt.nSize];
 strncpy(tgt.pString, src.pString, tgt.nSize);
 }
 int nSize;
 char* pString;
};

MyContainer fn(int n, const char* pString)
{
 MyContainer b(n, pString);
 return b;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 MyContainer mc(100, "Original");

 mc = fn(100, "Created in fn()");

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The output from this program appears as follows:

Moving Created in fn()
Press Enter to continue...

The function fn() returns a temporary object that is moved over into the mc
object using the move assignment operator, operator=(MyContainer&&). The
moveIt() function is a lot faster to execute than the copyIt() function would
have been — it doesn’t allocate memory off of the heap or copy anything.
The moveIt() function simply takes the memory block from the src object
which, in this case, is the temporary returned from fn().

 Make sure that you zero out the pointer in the src object; otherwise, the
destructor will return the memory block to the heap, leaving the target object
pointing to unallocated memory.

Chapter 23

Using Stream I/O
In This Chapter
▶ Performing input/output

▶ Rediscovering stream I/O as an overloaded operator

▶ Examining the other methods of the file class

▶ Using stream buffer I/O

P
rograms appearing before this chapter read from the cin input object
and output through the cout output object. Perhaps you haven’t really

thought about it much, but this input/output technique is a subset of what
is known as stream I/O.

In this chapter, I describe stream I/O in more detail. I must warn you that stream
I/O is too large a topic to be covered completely in a single chapter — entire
books are devoted to this one topic. Fortunately for both of us, there isn’t all
that much that you need to know about stream I/O to write the vast majority of
programs.

How Stream I/O Works
Stream I/O is based on overloaded versions of operator>>() and operator<<().
The declaration of these overloaded operators is found in the include file
iostream, which are included in all the programs in this book beginning with
Chapter 1. The code for these functions is included in the standard library,
which your C++ program links with.

The following code shows just a few of the prototypes appearing in iostream:

//for input we have:
istream& operator>>(istream& source, char *pDest);
istream& operator>>(istream& source, string &sDest);
istream& operator>>(istream& source, int &dest);
istream& operator>>(istream& source, double &dest);
//...and so forth...

316 Part V: Security

//for output we have:
ostream& operator<<(ostream& dest, char *pSource);
ostream& operator<<(ostream& dest, string &sDest);
ostream& operator<<(ostream& dest, int source);
ostream& operator<<(ostream& dest, double source);
//...and so it goes...

When overloaded to perform I/O, operator>>() is called the extractor and
operator<<() is called the inserter. The class istream is the basic class for
input from a file or a device such as the keyboard. C++ opens the istream
object cin when the program starts. Similarly, ostream is the basis for output.
The prototypes above are for inserters and extractors for pointers to null
terminated character strings (like “My name”), for string objects, for ints, and
for doubles.

Default stream objects
C++ adds a chunk of code to the front of your program that executes before
main() gets control. Among other things, this code creates the default input/
output objects shown in Table 23-1.

Table 23-1 Standard Stream I/O Objects
Object Class Purpose
cin istream Standard char input

wcin wistream Standard wchar_t “wide char” input

cout ostream Standard char output

wcout wostream Standard wchar_t “wide char” output

cerr ostream Standard error output

wcerr wostream Standard error wchar_t “wide char” output

clog ostream Standard log

wclog ostream Standard wchar_t “wide char” log

You’ve seen cin and cout as they read input from the keyboard and output to
the display, respectively. The user can reroute standard input and standard
output to a file when he executes a program as follows:

C:>MyProgram <InputFile.txt >DefaultOut.txt

317 Chapter 23: Using Stream I/O

Here the operator is saying “Execute MyProgram but read standard input from
InputFile.txt instead of the keyboard and send what would otherwise go to the
standard output to the file DefaultOut.txt.”

 Rerouting input and output works from the DOS prompt in Windows and
under all versions of Unix and Linux. It’s the easiest way to perform file input/
output when you’re trying to write something quick and dirty.

By default, the cerr object outputs to the display just like cout, except it is
rerouted separately — rerouting cout-type default output to a file does not
reroute cerr output. This allows a program to display error messages to the
operator even if cout has been rerouted to a file.

 Error messages should be sent to cerr rather than cout just in case the operator
has rerouted standard output.

The wcin, wcout, and wcerr are wide version of standard input, output, and
error, respectively. These are designed to handle Unicode symbols:

cout << "This is narrow output" << endl;
wcout << L"This is wide output" << endl;

Stream Input/Output
The classes ifstream and ofstream defined in the include file fstream are sub-
classes of istream and ostream designed to perform stream input and output
to disk files. You can use the same extractors and inserters on ifstream and
ofstream objects that you’ve been using on cin and cout.

 The ifstream is actually an instantiation of the template class basic_ifstream<T>
with T set to char. I discuss template classes in Chapter 26. The basic_ifstream<T>
template class is instantiated with other types as well to provide different types
of input classes. For example, the wide stream file class wifstream is based on
the same basic_ifstream<T> with T set to wchar_t. The ofstream is the same as
basic_ofstream<char>.

The classes ifstream and ofstream provide constructors used to open a file for
input and output, respectively:

ifstream::ifstream(const char *pszFileName,
 ios_base::openmode mode = ios_base::in);
ofstream::ofstream(const char *pszFileName,
 ios_base::openmode mode = ios_base::out|ios_base::trunc);

318 Part V: Security

The first argument is a pointer to the name of the file to open. The second
argument specifies the mode. The type openmode is an integer type defined
in ios_base. Also defined within ios_base are the possible values for mode
listed in Table 23-2. These are bit fields that the programmer bitwise ORs
together. (See Chapter 4 for an explanation of the ORing of bit fields.) The
default mode for ifstream is to open the file for input with the pointer set to
the beginning of the file (that’s logical enough).

Table 23-2 Constants that Control How Files Are Opened
Flag Meaning
ios_base::app Seek to end-of-file before each write.

ios_base::ate Seek to end-of-file immediately after opening the file, if it
exists.

ios_base::binary Open file in binary mode (alternative is text mode).

ios_base::in Open file for input (implied for istream).

ios_base::out Open file for output (implied for ostream).

ios_base::trunc Truncate file, if it exists (default for ostream).

The default for ofstream is to open for output and to truncate the file if it
exists already. The alternative to truncate is ios_base::app, which means
append new output onto the end of the file if it exists already. Both options
create a file if it doesn’t already exist.

For example, the following StreamOutput program opens the file MyName.txt
and then writes some important and absolutely true information to that file:

// StreamOutput - simple output to a file
#include <fstream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 ofstream my("MyName.txt");
 my << "Stephen Davis is suave and handsome\n"
 << "and definitely not balding prematurely"
 << endl;
 return 0;
}

319 Chapter 23: Using Stream I/O

The destructor for the file stream classes automatically close the associated
file. In my simple example, the MyName.txt file was closed when the my object
went out of scope upon returning from main(). Global objects are closed as
part of program termination.

Open modes
Table 23-2 shows the different modes that are possible when opening a file.
However, you need to answer three basic questions every time you open a file:

 ✓ Do you want to read from the file or write to the file? Use ifstream to read
and ofstream for writing. If you intend to both write to and read from the
same file, use the fstream and set mode to in|out, but good luck — it’s
much better to write to a file completely and then close it and reopen it
for reading as a separate object.

 ✓ If you are writing to the file and it already exists, do you want to add to
the existing contents (in which case, open with ate set) or truncate the
file and start over (in which case use trunc)?

 ✓ Are you reading or writing text or binary data? Both ifstream and
ofstream default to text mode. Use binary mode if you are reading or
writing raw, non-text data.

The primary difference between binary and text mode lies in the way that
newlines are handled. The Unix operating system was written in the days
when typewriters were still fashionable (when it was called “typing” instead
of “keyboarding”). Unix ended sentences with a linefeed followed by a car-
riage return.

Subsequent operating systems saw no reason to continue using two characters
to end a sentence, but they couldn’t agree on which character to use. Some use
the carriage return, others used the linefeed, now renamed newline. The C++
standard is the single newline.

When a file is opened in text mode, the C++ library converts the single new-
line character into what is appropriate for your operating system on output,
whether it’s a carriage return plus linefeed, a single carriage return, a linefeed,
or something else entirely. It performs the opposite conversion while reading
a file. The C++ library does no such conversions for a file opened in binary
mode.

 Always use binary mode when manipulating a file that’s not in human-readable
format. Otherwise, if a byte in the data stream just happens to be the same as
a carriage return or a linefeed, the file I/O library will modify it.

320 Part V: Security

Hey, file, what state are you in?
A constructed fstream object (including ifstream and ofstream) becomes a
proxy for the file that it is associated with. For example, the stream object
maintains state information about the I/O process. The member function bad()
returns true if something “bad” happens. That nebulous term means that the
file couldn’t be opened, some internal object was messed up, or things are
just generally hosed. A lesser error fail() indicates that either something bad()
happened or the last read failed — for example, if you try to read an int and
all the program can find is a character that rates a fail() but not a bad(). The
member function good() returns true if both bad() and fail() are false.

Attempts to input from or output to a stream object that has an error set
are ignored. The member function clear() zeros out the fail flag to give you
another chance if the error is temporary — in general, clear() clears “fail-
ures” but not “bad” things. All attempts to output to an ofstream object that
has an error have no effect.

 This last paragraph is meant quite literally — no input or output is possible as
long as the internal error state of the stream object you’re using is non-zero.
The program won’t even try until you call clear() to clear the error flags if the
error is temporary and you can clear it.

Can you show me an example?
The following example program demonstrates how to go about using the
ifstream class to extract a series of integers:

// StreamInput - simple input from a file using fstream
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

ifstream& openFile()
{
 ifstream* pFileStream = 0;
 for(;;)
 {
 // open the file specified by the user
 string sFileName;
 cout << "Enter the name of a file with integers:";
 cin >> sFileName;

 //open file for reading
 pFileStream = new ifstream(sFileName.c_str());

321 Chapter 23: Using Stream I/O

 if (pFileStream->good())
 {
 pFileStream->seekg(0);
 cerr << "Successfully opened "
 << sFileName << endl;
 break;
 }
 cerr << "Couldn't open " << sFileName << endl;
 delete pFileStream;
 }
 return *pFileStream;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // get a file stream
 ifstream& fileStream = openFile();

 // stop when no more data in file
 while (!fileStream.eof())
 {
 // read a value
 int nValue = 0;
 fileStream >> nValue;

 // stop if the file read failed (probably because
 // we ran upon something that's not an int or
 // because we found a newline with nothing after
 // it)
 if (fileStream.fail())
 {
 break;
 }

 // output the value just read
 cout << nValue << endl;
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The function openFile() prompts the user for the name of a file to open. The
function creates an ifstream() object with the specified name. Creating an
ifstream object automatically opens the file for input. If the file is opened
properly, the function returns a reference to the ifstream object to use for
reading. Otherwise, the program deletes the object and tries again. The only
way to get out of the loop is to enter a valid filename or abort the program.

322 Part V: Security

 Don’t forget to delete the pFileStream object if the open fails. These are the
sneaky ways that memory leaks creep in.

The program reads integer values from the object referenced by fileStream
until either fail() or the program reaches the end-of-file as indicated by the
member function eof().

 Let me warn you one more time: Not only is nothing returned from reading
an input stream that has an error, but also the buffer comes back unchanged.
This program can easily come to the false conclusion that it has just read the
same value it previously read. Furthermore, eof() will never return a true on an
input stream that has an error.

Don’t overflow that buffer!
If you look closely at the openfile() method in the StreamInput example program, you’ll see yet
another way to make sure that the operator doesn’t overflow the character buffer. Let’s review. I
could have used something like the following:

char szFileName[80]; // any array size is possible
cin >> szFileName; // input the name of the file to open

You can probably find code like this in the early chapters of this book (when you were still wearing
your C++ training wheels). The problem with this approach is that nothing tells the extractor that
the buffer is only 80 characters long — it will continue to read until it sees a newline, which might
be thousands of characters later.

Well, 80 characters is a bit small. How about we increase the buffer size to 256 characters? That
sort of misses the point; the implicit assumption you are making with this type of approach is that
any buffer overflow is the result of an honest mistake (and a very long filename!). More and more
this is not the case. Malicious users find ways to overflow these fixed size buffers all the time.
Several major worms have been launched on the backs of buffer overflow attacks. (I will explain
buffer overflows in detail in Chapter 28.)

One approach to avoiding buffer overflow that you have seen in earlier chapters is to use the get-
line() method to limit to the size of the buffer the number of characters that the program will read:

char szFileName[80];
cin.getline(szFileName, 80); // read not more than 80 chars

This code segment says read a line of input (up to the next newline character) but not more than
80 characters since that’s the size of the buffer. Any characters not read are left for the next call
to getline().

Another approach is to make the buffer size fit the number of available characters. The extractor
for the string class is smart enough to dynamically resize the buffer to fit the available data:

string sFileName;
cin >> sFileName; // string sizes buffer to fit amount of data

input

323 Chapter 23: Using Stream I/O

The output from this program appears as follows (I added boldface to my
input):

Enter the name of a file with integers:chicken
Couldn't open chicken
Enter the name of a file with integers:integers.txt
Successfully opened integers.txt
1
2
3
4
5
6
Press Enter to continue...

 Code::Blocks for Windows opens the console application in the project direc-
tory so all you need to enter is the file name as shown. Code::Blocks for
Macintosh opens the console window in your user directory so you need
to enter the entire path to the file: Desktop/CPP_Programs_from_Book/
Chap23/StreamInput/integers.txt (assuming that you installed the
source files in the default location).

Other Methods of the Stream Classes
The istream and ostream classes provide a number of methods, as shown in
Table 23-3 (this is not a complete list). The prototypes for these functions
reside in the fstream include file. They are described in the remainder of this
section.

Table 23-3 Major Methods of the I/O Stream Classes
Method Meaning
bool bad() Returns true if a serious error has

occurred.
void clear(iostate flags =
ios_base::goodbit)

Clears (or sets) the I/O state flags.

void close() Closes the file associated with a stream
object.

bool eof() Returns true if no more characters are
left in the file to be read.

iostate exception() Returns the conditions that will cause
an exception.

(continued)

324 Part V: Security

Method Meaning
void exception(iostate) Sets the conditions that will cause an

exception. Multiple conditions can be
ORed together; e.g., exception(ios_
base::badbit|ios_base::failbit).
See Chapter 24 for a discussion of
exceptions.

char fill()char fill
(char newFill)

Returns or sets the fill character.

fmtflags flags()fmtflags
flags(fmtflags f)

Returns or sets format flags. (See the
“Controlling format” section.)

void flush() Flushes the output buffer to the disk.
int gcount() Returns the number of bytes read

during the last input.

char get() Reads individual characters from
the file.

char getline(
 char* buffer,
 int count,
 char delimiter = ’\n’)

Reads multiple characters either until
the end-of-file, until a delimiter is
encountered, or until count - 1 charac-
ters read. Tack a null onto the end of
the line read. Do not store the delimiter
read into the buffer.

bool good() Returns true if no error conditions
are set.

void open(const char*
 filename, openmode
 mode = default)

Same arguments as the constructor.
Performs the same file open on an
existing object that the constructor per-
forms when creating a new object.

streamsize precision()
 streamsize precision(
 streamsize s)

Reads or sets the number of digits dis-
played for floating-point variables.

ostream& put(char ch) Writes a single character to the stream.
istream& read(
 char* buffer,
 streamsize num)

Reads a block of data. Reads either
num bytes or until an end-of-file is
encountered, whichever occurs first.

istream& seekg(
 pos_type position)
istream& seekg(
 off_type offset,
 ios_base::seekdir)

Positions the read pointer either posi-
tion bytes from the beginning of the
file or offset bytes from the current
position.

Table 23-3 (continued)

325 Chapter 23: Using Stream I/O

Method Meaning
istream& seekp(
 pos_type position)
istream& seekp(
 off_type offset,
 ios_base::seekdir)

Positions the write pointer.

fmtflags setf(fmtflags) Sets specific format flags. Returns old
value.

pos_type tellg() Returns the position of the read pointer.

pos_type tellp() Returns the position of the write pointer.

fmtflags unsetf(fmtflags) Clears specific format flags. Returns old
value.

int width()
int width(int w)

Reads or sets the number of characters
to be displayed by the next formatted
output statement.

ostream& write(
 const char* buffer,
 streamsize num)

Writes a block of data to the output file.

Reading and writing streams directly
The inserter and extractor operators provide a convenient mechanism for
reading formatted input. However, sometimes you just want to say, “Give it
to me; I don’t care what the format is.” Several methods are useful in this
context.

The simplest function, get(), just returns the next character in the input file.
Its output equivalent is put(). The function getline() returns a string of char-
acters up until some terminator — the default is a newline. getline() strips off
the terminator but makes no other attempt to reformat or otherwise interpret
the input.

The member function read() is even more basic. This function reads the number
of characters that you specify, or less if the program encounters an end-of-file.
The function gcount() always returns the actual number of characters read. The
output equivalent is write().

The following example program uses the read() and write() functions to
create a backup of any file you give it by making a copy with the string
“.backup” appended to the name:

326 Part V: Security

// FileCopy - make backup copies of the files passed
// to the program
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // repeat the process for every file passed
 for (int n = 1; n < nNumberofArgs; n++)
 {
 // create a filename and a ".backup" name
 string szSource(pszArgs[n]);
 string szTarget = szSource + ".backup";

 // now open the source for reading and the
 // target for writing
 ifstream input(szSource.c_str(),
 ios_base::in|ios_base::binary);

 ofstream output(szTarget.c_str(),
 ios_base::out|ios_base::binary|ios_base::trunc);
 if (input.good() && output.good())
 {
 cout << "Backing up " << szSource << "...";

 // read and write 4k blocks until either an
 // error occurs or the file reaches EOF
 while(!input.eof() && input.good())
 {
 char buffer[4096];
 input.read(buffer, 4096);
 output.write(buffer, input.gcount());
 }
 cout << "finished" << endl;
 }
 else
 {
 cerr << "Couldn't copy " << szSource << endl;
 }
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

327 Chapter 23: Using Stream I/O

The program iterates through the arguments passed to it, remembering that
pszArgs[0] points to the name of the program itself. For every source file
passed as an argument, the program creates the target filename by tacking
“.backup” onto the end. It then opens the source file for binary input and
the target for binary output, specifying to truncate the target file if it already
exists.

If either the input or output object has an error set, the program outputs a
“Couldn’t copy” message without attempting to figure out what went wrong. If
both objects are good(), however, the program enters a loop in which it reads
4K blocks from the input and writes them out to the output.

Notice that in the call to write(), the program uses the value returned from
gcount() rather than hardcoding 4096. This is because, unless the source file
just happens to be an integer multiple of 4096 bytes in length, the last call to
read() will fetch less than the requested number of bytes before encountering
end-of-file.

Controlling format
The flags(), setf(), and unsetf() methods are all used to set or retrieve a set of
format flags maintained within the istream or ostream object. These format
flags get set when the object is created to a default value that represents the
most common format options. The options are shown in Table 23-4.

Table 23-4 The I/O Stream Format Flags
Flag If flag is true, then . . .
boolalpha Displays bool as either true or false rather than 1 or 0.
dec Reads or writes integers in decimal format (default).

fixed Displays floating point in fixed point as opposed to scientific
(default).

hex Reads or writes integers in hexadecimal.

left Displays output left justified (i.e., pads on the right).

oct Reads or writes integers in octal.

right Displays output right justified (i.e., pads on the left).

scientific Displays floating point in scientific format.

showbase Displays a leading 0 for octal output and leading 0x for hexa-
decimal output.

(continued)

328 Part V: Security

Flag If flag is true, then . . .
showpoint Displays a decimal point for floating-point output even if the

fractional portion is 0.
skipws Skips over whitespace when reading using the extractor.
unitbuf Flushes output after each output operation.
uppercase Replaces lowercase letters with their uppercase equivalents

on output.

The following code segment has been used in the past to display numbers in
hexadecimal format (see the BitTest program in Chapter 4):

// read the current format flags
// (this is important when you need to restore the output
// format at a later time)
ios_base::fmtflags prevValue = cout.flags();

// clear the decimal flag
cout.unsetf(cout.dec);

// now set the hexadecimal flag
cout.setf(cout.hex);

// ...do stuff..

// call flags() to restore the format flags to their
// previous value
cout.flags(prevValue);

In this example, the program must both set the hexadecimal flags using setf()
and unset (that is, clear) the decimal flag using unsetf() because the decimal,
octal, and hexadecimal flags are mutually exclusive.

The final call to flags() restores the format flags to their previously read
value. This is not necessary if the program is about to terminate anyway.

Further format control is provided by the width() method that sets the mini-
mum width of the next output operation. In the event that the field does not
take up the full width specified, the inserter adds the requisite number of fill
characters. The default fill character is a space, but you can change this by
calling fill(). Whether C++ adds the fill characters on the left or right is deter-
mined by whether the left or right format flag is set.

Table 23-4 (continued)

329 Chapter 23: Using Stream I/O

For example, the following segment

int i = 123;
cout.setf(cout.right);
cout.unsetf(cout.left);
cout.fill('+');
cout << "i = [";
cout.width(10);
cout << i;
cout << "]" << endl;

generates the following output:

i = [+++++++123]

 Notice that the width() method applies only to the very next output statement.
Unlike the other formatting flags, the width() must be reset after every value
that you output.

What’s up with endl?
Most programs in this book terminate an output stream by inserting the
object endl. However, some programs include \n within the text to output a
newline. What’s the deal?

The \n is, in fact, the newline character. The expression cout << “First line\
nSecond line; outputs two lines. The endl object outputs a newline, but con-
tinues one step further.

Disks are slow devices. Writing to disk more often than necessary will slow
down your program considerably. To avoid this, the fstream class collects
output into an internal buffer known as a cache (pronounced like “cash”). The
class writes the contents to disk when the buffer is full (this is known as flush-
ing the cache). The endl object outputs a newline and then flushes the output
cache. The member function flush() flushes the output cache without tacking
a newline onto the end.

Note that the standard error object cerr does not buffer output.

Positioning the pointer within a file
The istream class maintains a read pointer that is the location within the
file of the next byte to read. This is measured as “number of bytes from
the beginning of the file.” You can retrieve this using the tellg() method.

330 Part V: Security

(Similarly, the tellp() returns a pointer to the next location to write in an
ostream object.) Having saved off the location, you can later return to the
same location by passing the value to seekg().

An overloaded version of seekg() takes not an absolute position but an offset
and a seek direction. The legal value for the seek direction is one of the fol-
lowing three constants:

 ✓ ios_base::beg (beg for beginning of file): The offset must be positive and
is taken to be the number of bytes from the beginning of the file.

 ✓ ios_base::end (end for end of file): The offset must be negative and is
taken to be the number of bytes from the end of the file.

 ✓ ios_base::cur (cur for current position): The offset can be either positive or
negative and is the number of bytes to move the pointer (either forward
or backward) from its current position.

Moving the read (or write) pointer around in a file can be very slow (in computer
terms), so be judicious in the use of this feature.

Using the stringstream Subclasses
The stream classes give the programmer mechanisms for easily breaking
input among int, float, and char array variables (among others). A set of so-
called stringstream classes allow the program to read from an array of charac-
ters in memory as if it were reading from a file. The classes istringstream and
ostringstream are defined in the include file sstream.

 The older versions of these classes are istrstream and ostrstream defined in the
include file strstream.

The stringstream classes have the same semantics as the corresponding file-
based classes. This is demonstrated in the following StringStream program,
which parses account information from a file:

// StringStream - read and parse the contents of a file
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <iostream>
using namespace std;

331 Chapter 23: Using Stream I/O

// parseAccountInfo - read a passed buffer as if it were
// an actual file - read the following
// format:
// name, account balance
// return true if all worked well
bool parseString(const char* pString,
 char* pName, int arraySize,
 long& accountNum, double& balance)
{
 // associate an istrstream object with the input
 // character string
 istringstream inp(pString);

 // read up to the comma separator
 inp.getline(pName, arraySize, ',');

 // now the account number
 inp >> accountNum;

 // and the balance
 inp >> balance;

 // return the error status
 return !inp.fail();
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // must provide filename
 char szFileName[128];
 cout << "Input name of file to parse:";
 cin.getline(szFileName, 128);

 // get a file stream
 ifstream* pFileStream = new ifstream(szFileName);
 if (!pFileStream->good())
 {
 cerr << "Can't open " << pszArgs[1] << endl;
 return 0;
 }

 // read a line out of file, parse it and display
 // results
 for(int nLineNum = 1;;nLineNum++)
 {
 // read a buffer
 char buffer[256];
 pFileStream->getline(buffer, 256);
 if (pFileStream->fail())
 {
 break;
 }

332 Part V: Security

 cout << nLineNum << ":" << buffer << endl;

 // parse the individual fields
 char name[80];
 long accountNum;
 double balance;
 bool result = parseString(buffer, name, 80,
 accountNum, balance);
 if (result == false)
 {
 cerr << "Error parsing string\n" << endl;
 continue;
 }

 // output the fields we parsed out
 cout << "Read the following fields:" << endl;
 cout << " name = " << name << "\n"
 << " account = " << accountNum << "\n"
 << " balance = " << balance << endl;

 // put the fields back together in a different
 // order (inserting the 'ends' makes sure the
 // buffer is null terminated
 ostringstream out;
 out << name << ", "
 << balance << " "
 << accountNum << ends;

 string oString = out.str();
 cout << "Reordered fields: " << oString << endl;
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program begins by opening a file called Accounts.txt containing
account information in the format of name, accountNumber, balance,\n.
Assuming that the file was opened successfully, the program enters a loop,
 reading lines until the contents of the file are exhausted. The call to getline()
reads up to the default newline terminator. The program passes the line just
read to the function parseString().

parseString() associates an istringstream object with the character string.
The program reads characters up to the ’,’ (or the end of the string buffer)
using the getline() member function. The program then uses the conventional
extractors to read accountNum and balance.

333 Chapter 23: Using Stream I/O

After the call to parseString(), main() outputs the buffer read from the file
followed by the parsed values. It then uses the ostringstream class to recon-
struct a string object with the same data but a different format (just for the
fun of it).

The result from a sample execution appears as follows:

Input name of file to parse:Accounts.txt
1:Chester, 12345 56.60
Read the following fields:
 name = Chester
 account = 12345
 balance = 56.6
Reordered fields: Chester, 56.6 12345
2:Arthur, 34567 67.50
Read the following fields:
 name = Arthur
 account = 34567
 balance = 67.5
Reordered fields: Arthur, 67.5 34567
3:Trudie, 56x78 78.90
Error parsing string

4:Valerie, 78901 89.10
Read the following fields:
 name = Valerie
 account = 78901
 balance = 89.1
Reordered fields: Valerie, 89.1 78901
Press Enter to continue ...

Reflect a second before continuing. Notice how the program was able to
resync itself after the error in the input file. Notice, also, the simplicity of the
heart of the program, the parseString() function. Consider what this function
would look like without the benefit of the istringstream class.

Manipulating Manipulators
You can use stream I/O to output numbers and character strings by using
default formats. Usually the defaults are fine, but sometimes they don’t cut it.

For example, I was less than tickled when the total from the result of a financial
calculation from a recent program appeared as 249.600006 rather than 249.6
(or, better yet, 249.60). There must be a way to bend the defaults to my desires.
True to form, C++ provides not one but two ways to control the format of
output.

334 Part V: Security

 Depending on the default settings of your compiler, you may get 249.6 as your
output. Nevertheless, you really want 249.60.

First, you can control the format by invoking a series of member functions on
the stream object. For example, the number of significant digits to display is
set by using the function precision() as follows (see Table 23-3):

#include <iostream>
void fn(double interest, double dollarAmount)
{
 cout << "Dollar amount = ";
 cout.precision(2);
 cout << dollarAmount;
 cout.precision(4);
 cout << interest << endl;
}

In this example, the function precision() sets the precision to 2 immediately
before outputting the value dollarAmount. This gives you a number such as
249.60, the type of result you want. It then sets the precision to 4 before out-
putting the interest.

A second approach uses what are called manipulators. (Sounds like someone
behind the scenes of the New York Stock Exchange, doesn’t it?) Manipulators
are objects defined in the include file iomanip to have the same effect as the
member function calls. (You must include iomanip to have access to the manip-
ulators.) The only advantage to manipulators is that the program can insert
them directly into the stream rather than resort to a separate function call.

The most common manipulators and their corresponding meanings are
shown in Table 23-5.

Table 23-5 Common Manipulators and Stream Format
Control Functions

Manipulator Member Function Description
dec setf(dec) Sets radix to 10

hex setf(hex) Sets radix to 16

oct setf(oct) Sets radix to 8

setfill(c) fill(c) Sets the fill character to c
setprecision(n) precision(n) Sets display precision to n
setw(n) width(n) Sets width of field to n characters*
* This returns to its default value after the next field is output.

335 Chapter 23: Using Stream I/O

If you rewrite the preceding example to use manipulators, the program
appears as follows:

#include <iostream>
#include <iomanip>
void fn(double interest, double dollarAmount)
{
 cout << "Dollar amount = "
 << setprecision(2) << dollarAmount
 << setprecision(4) << interest << endl;

336 Part V: Security

Chapter 24

Handling Errors — Exceptions
In This Chapter
▶ Introducing an exceptional way of handling program errors

▶ Finding what’s wrong with good ol’ error returns

▶ Examining throwing and catching exceptions

▶ Packing more heat into that throw

I
 know that it’s hard to accept, but occasionally functions don’t work
properly — not even mine. The traditional means of reporting failure is to

return some indication to the caller. C++ includes a mechanism for capturing
and handling errors called exceptions. The handling of error conditions with
exceptions is the subject of this chapter.

The exception mechanism is based on the keywords try, catch, and throw
(that’s right, more variable names that you can’t use). In outline, it works like
this: A function trys to get through a piece of code. If the code detects a prob-
lem, it throws an error indication that the calling function must catch.

The following code snippet demonstrates how that works in 1s and 0s:

// FactorialException - demonstrate exceptions using
// a factorial function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// factorial - compute factorial
int factorial(int n)
{
 // you can't handle negative values of n;
 // better check for that condition first
 if (n < 0)
 {
 throw string("Argument for factorial negative");
 }

338 Part V: Security

 // go ahead and calculate factorial
 int accum = 1;
 while(n > 0)
 {
 accum *= n;
 n--;
 }
 return accum;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 try
 {
 // this will work
 cout << "Factorial of 3 is "
 << factorial(3) << endl;

 // this will generate an exception
 cout << "Factorial of -1 is "
 << factorial(-1) << endl;

 // control will never get here
 cout << "Factorial of 5 is "
 << factorial(5) << endl;
 }
 // control passes here
 catch(string error)
 {
 cout << "Error occurred: " << error << endl;
 }
 catch(...)
 {
 cout << "Default catch " << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

main() starts out by creating a block outfitted with the try keyword. Within
this block, it can proceed the way it would if the block were not present. In
this case, main() attempts to calculate the factorial of a negative number. Not
to be hoodwinked, the clever factorial() function detects the bogus request
and throws an error indication using the throw keyword. Control passes
to the catch phrase, which immediately follows the closing brace of the try
block. The third call to factorial() is not performed.

339 Chapter 24: Handling Errors — Exceptions

 Through a not-so-clever feature called an exception specification, you can add
the type of objects that factorial() throws to its declaration. At one time, some-
one thought this would be a good idea, but times change. Exception specifica-
tions were never mandatory and have been deprecated in the 2011 standard.
Exception specifications are not presented in this book.

Justifying a New Error Mechanism?
What’s wrong with error returns like FORTRAN used to make? Factorials
cannot be negative, so I could have said something like “Okay, if factorial()
detects an error, it returns a negative number. The actual value indicates the
source of the problem.” What’s wrong with that? That’s how it was done for
ages. (“If it was good enough for my grandpa. . .”)

Unfortunately, several problems arise. First, although it’s true that the result of
a factorial can’t be negative, other functions aren’t so lucky. For example, you
can’t take the log of a negative number either, but logarithms can be either
negative or positive. There’s no value that a logarithm function can’t return.

Second, there’s just so much information that you can store in an integer.
Maybe you can have –1 for “argument is negative” and –2 for “argument is too
large.” But, if the argument is too large, you want to know what the argument
is because that information might help you debug the problem. There’s no
place to store that type of information.

Third, the processing of error returns is optional. Suppose someone writes
 factorial() so that it dutifully checks the argument and returns a negative
number if the argument is out of range. If a function that calls factorial()
doesn’t check the error return, returning an error value doesn’t do any
good. Sure, you can make all kinds of menacing threats, such as “You will
check your error returns or else,” and the programmer may have the best
of intentions, but you all know that people get lazy and return to their old,
non-error-checking ways.

Even if you do check the error return from factorial() or any other function,
what can the function do with the error? It can probably do nothing more
than output an error message of its own and return another error indication
to the caller, which probably does the same. Pretty soon, there’s more error
detection code than "real" code and it’s all mixed together.

The exception mechanism addresses these problems by removing the
error path from the normal code path. Furthermore, exceptions make error
handling obligatory. If your function doesn’t handle the thrown exception,
control passes up the chain of called functions until C++ finds a function to
handle the error. This also gives you the flexibility to ignore errors that you
can’t do anything about anyway. Only the functions that can actually handle
the problem need to catch the exception.

340 Part V: Security

Examining the Exception Mechanism
Take a closer look at the steps that the code goes through to handle an
exception. When the throw occurs, C++ first copies the thrown object to
some neutral place. It then begins looking for the end of the current try block.

If a try block is not found in the current function, control passes to the calling
function. A search is then made of that function. If no try block is found there,
control passes to the function that called it, and so on up the stack of calling
functions. This process is called unwinding the stack.

An important feature of stack unwinding is that as each stack is unwound,
objects that go out of scope are destructed just as though the function had
executed a return statement. This keeps the program from losing assets or
leaving objects dangling.

When the encasing try block is found, the code searches the first catch
phrase immediately following the closing brace of the catch block. If the
object thrown matches the type of argument specified in the catch statement,
control passes to that catch phrase. If not, a check is made of the next catch
phrase. If no matching catch phrases are found, the code searches for the
next higher level try block in an ever-outward spiral until an appropriate catch
can be found. If no catch phrase is found, the program is terminated.

Consider the following example:

// CascadingException - the following program demonstrates
// an example of stack unwinding
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototypes of some functions that we will need later
void f1();
void f2();
void f3();

class Obj
{
 public:
 Obj(char c) : label(c)
 { cout << "Constructing object " << label << endl;}
 ~Obj()
 { cout << "Destructing object " << label << endl; }

 protected:
 char label;
};

341 Chapter 24: Handling Errors — Exceptions

int main(int nNumberofArgs, char* pszArgs[])
{
 f1();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

void f1()
{
 Obj a('a');
 try
 {
 Obj b('b');
 f2();
 }
 catch(float f)
 {
 cout << "Float catch" << endl;
 }
 catch(int i)
 {
 cout << "Int catch" << endl;
 }
 catch(...)
 {
 cout << string("Generic catch") << endl;
 }
}

void f2()
{
 try
 {
 Obj c('c');
 f3();
 }
 catch(string msg)
 {
 cout << "String catch" << endl;
 }
}

void f3()
{
 Obj d('d');
 throw 10;
}

342 Part V: Security

The output from executing this program appears as follows:

Constructing object a
Constructing object b
Constructing object c
Constructing object d
Destructing object d
Destructing object c
Destructing object b
Int catch
Destructing object a
Press Enter to continue...

First, you see the four objects a, b, c, and d being constructed as main() calls
f1() which calls f2() which calls f3(). Rather than return, however, f3() throws
the integer 10. Because no try block is defined in f3(), C++ unwinds f3()’s
stack, causing object d to be destructed. The next function up the chain, f2()
defines a try block, but its only catch phrase is designed to handle a string,
which doesn’t match the int thrown. Therefore, C++ continues looking. This
unwinds f2()’s stack, resulting in object c being destructed.

Back in f1(), C++ finds another try block. Exiting that block causes object b
to go out of scope. C++ skips the first catch phrase for a float. The next catch
phrase matches the int exactly, so C++ passes control to this phrase.

Control passes from the catch(int) phrase to the closing brace of the final
catch phrase and from there back to main(). The final catch(...) phrase, which
would catch any object thrown, is skipped because a matching catch phrase
was already found.

What Kinds of Things Can I Throw?
The thing following the throw keyword is actually an expression that creates
an object of some kind. In the examples so far, I’ve thrown an int and a string
object, but throw can handle any type of object. This means you can throw
almost as much information as you want. Consider the following update to
the factorial program, CustomExceptionClass:

//
// CustomExceptionClass - demonstrate the flexibility
// of the exception mechanism by creating
// a custom exception class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
using namespace std;

343 Chapter 24: Handling Errors — Exceptions

// MyException - generic exception handling class
class MyException
{
 public:
 MyException(const char* pMsg, int n,
 const char* pFunc,
 const char* pFile, int nLine)
 : msg(pMsg), errorValue(n),
 funcName(pFunc), file(pFile), lineNum(nLine){}

 virtual string display()
 {
 ostringstream out;
 out << "Error <" << msg << ">"
 << " - value is " << errorValue << "\n"
 << "in function " << funcName << "()\n"
 << "in file " << file
 << " line #" << lineNum << ends;
 return out.str();
 }
 protected:
 // error message
 string msg;
 int errorValue;

 // function name, file name and line number
 // where error occurred
 string funcName;
 string file;
 int lineNum;
};

// factorial - compute factorial
int factorial(int n) throw(MyException)
{
 // you can't handle negative values of n;
 // better check for that condition first
 if (n < 0)
 {
 throw MyException("Negative argument not allowed",
 n, __func__, __FILE__, __LINE__);
 }

 // go ahead and calculate factorial
 int accum = 1;
 while(n > 0)
 {
 accum *= n;
 n--;
 }
 return accum;
}

344 Part V: Security

int main(int nNumberofArgs, char* pszArgs[])
{
 try
 {
 // this will work
 cout << "Factorial of 3 is "
 << factorial(3) << endl;

 // this will generate an exception
 cout << "Factorial of -1 is "
 << factorial(-1) << endl;

 // control will never get here
 cout << "Factorial of 5 is "
 << factorial(5) << endl;
 }
 // control passes here
 catch(MyException e)
 {
 cout << e.display() << endl;
 }
 catch(...)
 {
 cout << "Default catch " << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program appears much the same as the factorial program at the begin-
ning of this chapter. The difference is the use of a user-defined MyException
class that contains more information concerning the nature of the error than
a simple string contains. The factorial program is able to throw the error
message, the illegal value, and the exact location where the error occurred.

 __FILE__, __LINE__, and __func__ are intrinsic #defines that are set to the name
of the source file, the current line number in that file, and the name of the
current function, respectively.

The catch snags the MyException object and then uses the built-in display()
member function to display the error message. (See Chapter 23 for a review
of how to use the ostringstream class to format an internal string.) The output
from this program appears as follows:

345 Chapter 24: Handling Errors — Exceptions

Factorial of 3 is 6
Error <Negative argument not allowed> - value is -1
in function factorial()
in file C:\CPP_Programs_from_Book\Chap24\CustomExceptionClass\main.cpp line #52
Press Enter to continue...

Just Passing Through
A function that allocates resources locally may need to catch an exception,
do some processing, and then rethrow it up the stack chain. Consider the
following example:

void fileFunc()
{
 ofstream* pOut = new ofstream("File.txt");
 otherFunction();
 delete pOut;
}

As anyone who’s read Chapter 8 knows, the memory allocated by new isn’t
returned to the heap automatically. If otherFunction() were to throw an excep-
tion, control would exit the program without invoking delete, and the memory
allocated at the beginning of fileFunc() would be lost.

To avoid this problem, fileFunc() can include a catch(...) to catch any excep-
tion thrown:

void fileFunc()
{
 ofstream* pOut = new ofstream("File.txt");
 try
 {
 otherFunction();

 delete pOut;
 }
 catch(...)
 {
 delete pOut;
 throw;
 }
}

346 Part V: Security

Within this phrase, fileFunc() returns the memory it allocated earlier to the
heap. However, it is not in a position to process the remainder of the excep-
tion because it has no idea what could have gone wrong. It doesn’t even know
what type of object it just caught.

The throw keyword without any arguments rethrows the current exception
object back up the chain to some function that can properly process the error.

Chapter 25

Inheriting Multiple
Inheritance

In This Chapter
▶ Introducing multiple inheritance

▶ Avoiding ambiguities with multiple inheritance

▶ Avoiding ambiguities with virtual inheritance

▶ Figuring out the ordering rules for multiple constructors

▶ Getting a handle on problems with multiple inheritance

I
n the class hierarchies discussed in other chapters, each class inherits
from a single parent. Such single inheritance is sufficient to describe most

real-world relationships. Some classes, however, represent the blending of
multiple classes into one. (Sounds sort of romantic, doesn’t it?)

An example of such a class is the sleeper sofa that creates the unbeatable com-
bination of a harsh bed and an uncomfortable sofa. To adequately describe a
sleeper sofa in C++, the sleeper sofa should be able to inherit both bed- and
sofa-like properties. This is called multiple inheritance.

Describing the Multiple Inheritance
Mechanism

Figure 25-1 shows the inheritance graph for class SleeperSofa that inherits
both from class Sofa and from class Bed.

348 Part V: Security

Figure 25-1:
Class hier-

archy of
a sleeper

sofa.

The code to implement class SleeperSofa looks like the following:

// MultipleInheritance - a single class can inherit from
// more than one base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Bed
{
 public:
 Bed(){}
 void sleep(){ cout << "Sleep" << endl; }
 int weight;
};

class Sofa
{
 public:
 Sofa(){}
 void watchTV(){ cout << "Watch TV" << endl; }
 int weight;
};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
 public:
 SleeperSofa(){}
 void foldOut(){ cout << "Fold out" << endl; }

};

349 Chapter 25: Inheriting Multiple Inheritance

int main(int nNumberofArgs, char* pszArgs[])
{
 SleeperSofa ss;

 // you can watch TV on a sleeper sofa like a sofa...
 ss.watchTV(); // calls Sofa::watchTV()

 //...and then you can fold it out...
 ss.foldOut(); // calls SleeperSofa::foldOut()

 // ...and sleep on it
 ss.sleep(); // calls Bed::sleep()

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here the classes Bed and Sofa appear as conventional classes. Unlike in ear-
lier examples, however, the class SleeperSofa inherits from both Bed and Sofa.
This is apparent from the appearance of both classes in the class declaration.
SleeperSofa inherits all the members of both base classes. Thus, both of the
calls ss.sleep() and ss.watchTV() are legal. You can use a SleeperSofa as a Bed
or a Sofa. Plus the class SleeperSofa can have members of its own, such as
foldOut(). The output of this program appears as follows:

Watch TV
Fold out
Sleep
Press Enter to continue...

Is this a great country or what?

Straightening Out Inheritance
Ambiguities

Although multiple inheritance is a powerful feature, it introduces several pos-
sible problems. One is apparent in the preceding example. Notice that both
Bed and Sofa contain a member weight. This is logical because both have a
measurable weight. The question is, “Which weight does SleeperSofa inherit?”

350 Part V: Security

The answer is “both.” SleeperSofa inherits a member Bed::weight and a sepa-
rate member Sofa::weight. Because they have the same name, unqualified ref-
erences to weight are now ambiguous. This is demonstrated in the following
snippet, which generates a compile-time error:

#include <iostream>

void fn()
{
 SleeperSofa ss;
 cout << "weight = "
 << ss.weight // illegal - which weight?
 << "\n";
}

The program must now indicate one of the two weights by specifying the
desired base class. The following code snippet is correct:

#include <iostream>
void fn()
{
 SleeperSofa ss;
 cout << "sofa weight = "
 << ss.Sofa::weight // specify which weight
 << "\n";
}

Although this solution corrects the problem, specifying the base class in
the application function isn’t desirable because it forces class information
to leak outside the class into application code. In this case, fn() has to know
that SleeperSofa inherits from Sofa. These types of so-called name collisions
weren’t possible with single inheritance but are a constant danger with mul-
tiple inheritance.

Adding Virtual Inheritance
In the case of SleeperSofa, the name collision on weight was more than a
mere accident. A SleeperSofa doesn’t have a bed weight separate from its
sofa weight. The collision occurred because this class hierarchy doesn’t
completely describe the real world. Specifically, the classes have not been
completely factored.

Thinking about it a little more, it becomes clear that both beds and sofas are
special cases of a more fundamental concept: furniture. (I suppose I could get
even more fundamental and use something like object with mass, but furniture
is fundamental enough.) Weight is a property of all furniture. This relationship
is shown in Figure 25-2.

351 Chapter 25: Inheriting Multiple Inheritance

Figure 25-2:
Further

factoring of
beds and
sofas (by
weight).

Factoring out the class Furniture should relieve the name collision. With much
relief and great anticipation of success, I generate the C++ class hierarchy
shown in the following program, MultipleInheritanceFactoring:

// MultipleInheritanceFactoring - a single class can
// inherit from more than one base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#define TRYIT false
using namespace std;

// Furniture - more fundamental concept; this class
// has "weight" as a property
class Furniture
{
 public:
 Furniture(int w) : weight(w) {}
 int weight;
};

class Bed : public Furniture

352 Part V: Security

{
 public:
 Bed(int weight) : Furniture(weight) {}
 void sleep(){ cout << "Sleep" << endl; }
};

class Sofa : public Furniture
{
 public:
 Sofa(int weight) : Furniture(weight) {}
 void watchTV(){ cout << "Watch TV" << endl; }
};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
 public:
 SleeperSofa(int weight) : Bed(weight), Sofa(weight) {}
 void foldOut(){ cout << "Fold out" << endl; }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 SleeperSofa ss(10);

 // Section 1 -
 // the following is ambiguous; is this a
 // Furniture::Sofa or a Furniture::Bed?
#if TRYIT
 cout << "Weight = " << ss.weight << endl;
#endif

 // Section 2 -
 // the following specifies the inheritance path
 // unambiguously but it sort of ruins the effect
 SleeperSofa* pSS = &ss;
 Sofa* pSofa = (Sofa*)pSS;
 Furniture* pFurniture = (Furniture*)pSofa;
 cout << "Weight = " << pFurniture->weight << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Imagine my dismay when I find that this doesn’t help at all — the reference to
weight in Section 1 of main() is still ambiguous. “Okay,” I say (not really under-
standing why weight is still ambiguous), “I’ll try casting ss to a Furniture.”

353 Chapter 25: Inheriting Multiple Inheritance

#include <iostream.h>

void fn()
{
 SleeperSofa ss;
 Furniture* pF;
 pF = (Furniture*)&ss; // use a Furniture pointer...
 cout << "weight = " // ...to get at the weight
 << pF->weight
 << "\n";
};

Casting ss to a Furniture doesn’t work either. Now, I get some strange message
that the cast of SleeperSofa* to Furniture* is ambiguous. What’s going on?

The explanation is straightforward. SleeperSofa doesn’t inherit from Furniture
directly. Both Bed and Sofa inherit from Furniture and then SleeperSofa inher-
its from them. In memory, a SleeperSofa looks like Figure 25-3.

Figure 25-3:
Memory

layout of a
SleeperSofa.

You can see that a SleeperSofa consists of a complete Bed followed by a
complete Sofa followed by some SleeperSofa unique stuff. Each of these sub-
objects in SleeperSofa has its own Furniture part because each inherits from
Furniture. Thus, a SleeperSofa contains two Furniture objects!

I haven’t created the hierarchy shown in Figure 25-2 after all. The inheritance
hierarchy I’ve actually created is the one shown in Figure 25-4.

354 Part V: Security

Figure 25-4:
Actual

result of my
first attempt.

The MultipleInheritanceFactoring program demonstrates this duplication
of the base class. Section 2 specifies exactly which weight object by recasting
the pointer SleeperSofa first to a Sofa* and then to a Furniture*.

But SleeperSofa containing two Furniture objects is nonsense. SleeperSofa
needs only one copy of Furniture. I want SleeperSofa to inherit only one copy
of Furniture, and I want Bed and Sofa to share that one copy. C++ calls this vir-
tual inheritance because it uses the virtual keyword.

 This is another unfortunate (in my opinion) overloading of a keyword.

Armed with this new knowledge, I return to class SleeperSofa and implement
it as follows:

// VirtualInheritance - using virtual inheritance the
// Bed and Sofa classes can share a common base
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

355 Chapter 25: Inheriting Multiple Inheritance

// Furniture - more fundamental concept; this class
// has "weight" as a property
class Furniture
{
 public:
 Furniture(int w) : weight(w) {}
 int weight;
};

class Bed : virtual public Furniture
{
 public:
 Bed(int w = 0) : Furniture(w) {}
 void sleep(){ cout << "Sleep" << endl; }
};

class Sofa : virtual public Furniture
{
 public:
 Sofa(int w = 0) : Furniture(w) {}
 void watchTV(){ cout << "Watch TV" << endl; }
};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
 public:
 SleeperSofa(int w) : Furniture(w) {}
 void foldOut(){ cout << "Fold out" << endl; }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 SleeperSofa ss(10);

 // the following is no longer ambiguous;
 // there's only one weight shared between Sofa and Bed
 // Furniture::Sofa or a Furniture::Bed?
 cout << "Weight = " << ss.weight << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Notice the addition of the keyword virtual in the inheritance of Furniture in
Bed and Sofa. This says, “Give me a copy of Furniture unless you already have
one somehow, in which case I’ll just use that one.” A SleeperSofa ends up
looking like Figure 25-5 in memory.

356 Part V: Security

Figure 25-5:
Memory
layout of

SleeperSofa
with virtual

inheritance.

Here you can see that a SleeperSofa inherits Furniture, and then Bed minus
the Furniture part, followed by Sofa minus the Furniture part. Bringing up the
rear are the members unique to SleeperSofa. (Note that this may not be the
order of the elements in memory, but that’s not important for the purpose of
this discussion.)

Now the reference in fn() to weight is not ambiguous because a SleeperSofa
contains only one copy of Furniture. By inheriting Furniture virtually, you get
the desired inheritance relationship as expressed in Figure 25-2.

If virtual inheritance solves this problem so nicely, why isn’t it the norm?
The first reason is that virtually inherited base classes are handled internally
much differently than normally inherited base classes, and these differences
involve extra overhead. The second reason is that sometimes you want two
copies of the base class.

As an example of the latter, consider a TeacherAssistant who is both a Student and
a Teacher, both of which are subclasses of Academician. If the university gives its
teaching assistants two IDs — a student ID and a separate teacher ID — the class
TeacherAssistant will need to contain two copies of class Academician.

Constructing the Objects
of Multiple Inheritance

The rules for constructing objects need to be expanded to handle multiple
inheritance. The constructors are invoked in the following order:

 1. First, the constructor for any virtual base classes is called in the order in
which the classes are inherited.

 2. Then the constructor for all non-virtual base classes is called in the order
in which the classes are inherited.

357 Chapter 25: Inheriting Multiple Inheritance

 3. Next, the constructor for all member objects is called in the order in which
the member objects appear in the class.

 4. Finally, the constructor for the class itself is called.

Notice that base classes are constructed in the order in which they are inher-
ited and not in the order in which they appear on the constructor line.

Voicing a Contrary Opinion
I should point out that not all object-oriented practitioners think that mul-
tiple inheritance is a good idea. In addition, many object-oriented languages
don’t support multiple inheritance.

Multiple inheritance is not an easy thing for the language to implement. This
is mostly the compiler’s problem (or the compiler writer’s problem). But mul-
tiple inheritance adds overhead to the code when compared to single inheri-
tance, and this overhead can become the programmer’s problem.

More importantly, multiple inheritance opens the door to additional errors.
First, ambiguities such as those mentioned in the section “Straightening Out
Inheritance Ambiguities” pop up. Second, in the presence of multiple inheri-
tance, casting a pointer from a subclass to a base class often involves chang-
ing the value of the pointer in sophisticated and mysterious ways. Let me
leave the details to the language lawyers and compiler writers.

Third, the way in which constructors are invoked can be a little mysteri-
ous. Notice in the VirtualInheritance example that SleeperSofa must invoke
the Furniture constructor directly. The SleeperSofa cannot initialize weight
through either the Bed or the Sofa constructors.

I suggest that you avoid using multiple inheritance until you’re comfortable
with C++. Single inheritance provides enough expressive power to get used to.

 One exception is that it’s fairly safe to multiply inherit a class that contains only
pure virtual methods and no data members. This is, in effect, C++’s implementa-
tion of what other languages such as Java and C# call an interface. The topic of
interfaces is a bit beyond the scope of this book as it’s not really a part of C++.

358 Part V: Security

Chapter 26

Tempting C++ Templates
In This Chapter
▶ Examining how templates can be applied to functions

▶ Combining common functions into a single template definition

▶ Defining a template or class

▶ Implementing an initializer list for a user-defined class

T
he standard C++ library provides a complete set of math, time, input/
output, and DOS operations, to name just a few. Many of the earlier pro-

grams in this book use the so-called character string functions defined in the
include file strings. The argument types for many of these functions are fixed.
For example, both arguments to strcpy(char*, char*) must be a pointer to a
null-terminated character string — nothing else makes sense.

There are functions that are applicable to multiple types. Consider the exam-
ple of the lowly maximum() function, which returns the maximum of two
arguments. All of the following variations make sense:

int maximum(int n1, int n2); // return max of two integers
unsigned maximum (unsigned u1, unsigned u2);
double maximum (double d1, double d2);
char maximum (char c1, char c2);

I would like to implement maximum() for all four cases.

Of course, I could overload maximum() with all the possible versions:

double maximum(double d1, double d2)
{
 return (d1 > d2) ? d1:d2;
}
int maximum(int n1, int n2)
{
 return (n1 > n2) ? n1:n2;
}

360 Part V: Security

char maximum(char c1, char c2)
{
 return (c1 > c2) ? c1:c2;
}

// ...repeat for all other numeric types...

This approach works. Now C++ selects the best match, maximum(int, int), for
a reference such as maximum(1, 2). However, creating the same function for
each type of variable is a gross waste of time.

The source code for all the maximum(T, T) functions follows the same pattern,
where T is one of the numeric types. It would be so convenient if you could
write the function once and let C++ supply the type T as needed when the
function is used. In fact, C++ lets you do exactly this. These so-called template
definitions are the subject of this chapter.

Generalizing a Function into a Template
A function template enables you to write something that looks like a function
but uses one or more type holders that C++ converts into a true type at com-
pile time.

The following MaxTemplate program defines a template for a generic maxi-
mum() function:

// MaxTemplate - create a template max() function
// that returns the greater of two types
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

template <class T> T maximum(T t1, T t2)
{
 return (t1 > t2) ? t1 : t2;
}

int main(int argc, char* pArgs[])
{
 // find the maximum of two int's;
 // here C++ creates maximum(int, int)
 cout << "maximum(-1, 2) = "<<maximum(-1, 2) << endl;

361 Chapter 26: Tempting C++ Templates

 // repeat for two doubles;
 // in this case, we have to provide T explicitly since
 // the types of the arguments are different
 cout << "maximum(1, 2.5) = "<<maximum<double>(1, 2.5)
 << endl;

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The keyword template is followed by angle brackets containing one or more
type holders known as template parameters, each preceded by the keyword
class, a constant, or both. In this case, the definition of maximum<T>(T, T)
will call the “unknown type” T. Following the angle brackets is what looks
like a normal function definition. In this case, the template function T maxi-
mum<T>(T t1, T t2) returns the larger of two objects t1 and t2, each of which
is of type T, where T is a class to be defined later.

A template function is useless until it is converted into a real function. C++
replaces T with an actual type known as a template argument. The main()
function first invokes the template definition, passing two arguments of type
int. In this case, C++ can instantiate the template providing int as the defini-
tion for T.

 Creating a function from a template is called instantiating the template.

The second call is a problem — no single type can be provided for T in the
template definition that matches both the int first argument and double
second argument. Here the explicit reference instantiates the function
maximum(double, double). C++ promotes the int argument 1 to the double
1.0 before making the call.

The output from this program appears as follows:

maximum(-1, 2) = 2
maximum(1, 2.5) = 2.5
Press Enter to continue...

 Be careful about terminology. For example, I used to be a hip, bad bicyclist,
which is not the same thing as a bad hip bicyclist. Here’s another example:
A function template is not a function. The prototype for a function template is
maximum<T>(T, T). The function that this template creates when T is int is the
function (not function template) maximum(int, int). Your life will be easier if
you remember to keep the terms straight.

362 Part V: Security

Class Templates
C++ also allows the programmer to define class templates. A class template
follows the same principle of using a conventional class definition with a
placeholder for some unknown support classes. For example, the following
TemplateVector program creates a vector for any class that the user provides.
(A vector is a type of container in which the objects are stored in a row; an
array is the classic vector example.)

I stored the TemplateVector class template definition in an include file called
templatevector.h that appears as follows:

// TemplateVector - a simple templatized vector class
template <class T>
class TemplateVector
{
 public:
 TemplateVector(int nArraySize)
 {
 // store off the number of elements
 nSize = nArraySize;
 array = new T[nArraySize];
 reset();
 }
 int size() { return nWriteIndex; }
 void reset() { nWriteIndex = 0; nReadIndex = 0; }
 void add(const T& object)
 {
 if (nWriteIndex < nSize)
 {
 array[nWriteIndex++] = object;
 }
 }
 T& get()
 {
 return array[nReadIndex++];
 }

 protected:
 int nSize;
 int nWriteIndex;
 int nReadIndex;
 T* array;
};

363 Chapter 26: Tempting C++ Templates

The following TemplateVector program includes and uses that template
definition:

// TemplateVector - implement a vector that uses a
// template type
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include "templatevector.h"
using namespace std;

// intFn() - manipulate a collection of integers
void intFn()
{
 // create a vector of integers
 TemplateVector<int> integers(10);

 // add values to the vector
 cout << "Enter integer values to add to a vector\n"
 << "(Enter a negative number to terminate):"
 << endl;
 for(;;)
 {
 int n;
 cin >> n;

 if (n < 0) { break; }
 integers.add(n);
 }

 cout << "\nHere are the numbers you entered:" << endl;
 for(int i = 0; i < integers.size(); i++)
 {
 cout << i << ":" << integers.get() << endl;
 }
}

// Names - create and manipulate a vector of names
class Name
{
 public:
 Name() = default;
 Name(string s) : name(s) {}
 const string& display() { return name; }
 protected:
 string name;
};

364 Part V: Security

void nameFn()
{
 // create a vector of Name objects
 TemplateVector<Name> names(20);

 // add values to the vector
 cout << "Enter names to add to a second vector\n"
 << "(Enter an 'x' to quit):" << endl;
 for(;;)
 {
 string s;
 cin >> s;
 if (s == "x" || s == "X") { break; }
 names.add(Name(s));
 }

 cout << "\nHere are the names you entered" << endl;
 for(int i = 0; i < names.size(); i++)
 {
 Name& name = names.get();
 cout << i << ":" << name.display() << endl;
 }
}

int main(int argc, char* pArgs[])
{
 intFn();
 nameFn();

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The class template TemplateVector<T> contains an array of objects of class
T. The class template presents two member functions: add() and get(). The
add() function adds an object of class T into the next empty spot in the array.
The corresponding function get() returns the next object in the array. The
nWriteIndex and nReadIndex members keep track of the next empty entry and
the next entry to read, respectively.

The intFn() function creates a vector of integers with room for 10 with the
declaration:

TemplateVector<int> integers(10);

The program reads integer values from the keyboard, saves them off, and then
spits the values back out using the functions provided by TemplateVector.

365 Chapter 26: Tempting C++ Templates

The second function, nameFn(), creates a vector of Name objects. Again, the
function reads in names and then displays them back to the user.

Notice that the TemplateVector handles both int values and Name objects with
equal ease. Notice also the similarity between the nameFn() and intFn() func-
tions, even though integers and names have nothing to do with each other.

A sample session appears as follows (I’ve bolded input from the keyboard):

Enter integer values to add to a vector
(Enter a negative number to terminate):
5
10
15
-1

Here are the numbers you entered:
0:5
1:10
2:15
Enter names to add to a second vector
(Enter an 'x' to quit):
Chester
Trude
Lollie
Bodie
x

Here are the names you entered
0:Chester
1:Trude
2:Lollie
3:Bodie
Press Enter to continue...

Tips for Using Templates
You should remember a few things when using templates. First, no code is
generated for a template. (Code is generated after the template is converted
into a concrete class or function.) This implies that a .cpp source file is almost
never associated with a class template. The entire class template definition,
including all the member functions, are usually contained in an include file so
that it can be available for the compiler to expand.

366 Part V: Security

Second, a class template does not consume memory. Therefore, there is no
penalty for creating class templates if they are never instanced. On the other
hand, a class template uses memory every time it is instanced (except as
noted in the next section). Thus, the code for Array<Student> consumes
memory even if Array<int> already exists.

Finally, a class template cannot be compiled and checked for errors until it
is converted into a real class. Thus, a program that references the class
template Array<T> might compile even though Array<T> contains obvious
syntax errors. The errors won’t appear until a class such as Array<int> or
Array<Student> is created.

External Template Instantiations
 The TemplateVector example program instanced TemplateVector twice: once

for integers and once for Name objects. Once instanced, other functions
within main.cpp could refer to TemplateVector<int> without incurring any fur-
ther penalty. However, suppose my program included a second source module;
say, secondModule.cpp. Now suppose that secondModule.cpp also made use of
TemplateVector<int>. This second module would instantiate its own copy of
TemplateVector<int>. For large programs, consisting of dozens of separate
modules, this could mean recompiling dozens of copies of the same code. This
can mean a lot of overhead both in compile time and in the size of the result-
ing code.

The 2011 standard adds the keyword extern to avoid this overhead. In this
example, the programmer would include the following declaration somewhere
near the beginning of secondModule.cpp:

extern template class TemplateVector<int>;

This says, “don’t instantiate another copy of TemplateVector<int> because
some other module has already instantiated one that you can use.”

Implementing an Initializer List
Simple arrays can be initialized with an initializer list as shown here:

int myArray[] = {10, 20, 30, 40, 50};

367 Chapter 26: Tempting C++ Templates

 The 2011 standard implements a class template known as initializer_list<T>
that provides the same capability to user-defined containers.

 The Macintosh version of Code::Blocks does not support initializer lists as of
this writing.

C++ 2011 converts a list of objects contained within braces into a vector of
class initializer_list<T>. The programmer can use this list to initialize a user-
defined object. For example, the TemplateVector class in the MyVector program
adds the following constructor:

class TemplateVector
{
 public:
 TemplateVector(const std::initializer_list<T> il) :
 TemplateVector(il.size())
 {
 // copy the contents of il into the vector
 for(const T* p = il.begin(); p < il.end(); p++)
 {
 add(*p);
 }
 }
 // ...the rest of the class is the same...
};

This allows the programmer to write the following:

// MyVector - demonstrate the use of initializer list
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include "templatevector.h"
using namespace std;

int main(int argc, char* pArgs[])
{
 // the following two are equivalent
 // TemplateVector<int> myVector{10, 20, 30, 40, 50};
 TemplateVector<int> myVector = {10, 20, 30, 40, 50};

 for(int i = 0; i < myVector.size(); i++)
 {
 cout << i << " : " << myVector.get() << "\n";
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

368 Part V: Security

The list {10, 20, 30, 40, 50} is passed to the TemplateVector(initializer_list<int>)
constructor. That constructor first allocates a vector of length 5 and then
copies the contents of the initializer list into the vector. The output of this
program appears as follows:

0 : 10
1 : 20
2 : 30
3 : 40
4 : 50
Press Enter to continue...

Chapter 27

Standardizing on the Standard
Template Library

In This Chapter
▶ Using the string class

▶ Maintaining entries in a Standard Template Library list

▶ Accessing container elements from an iterator

S
ome programs can deal with data as it arrives and dispense with it. Most
programs, however, must store data for later processing. A structure

that is used to store data is known generically as a container or a collection.
(I use the terms interchangeably.) This book has relied heavily on the array
for data storage so far. The array container has a couple of nice properties: It
stores and retrieves things quickly. In addition, the array can be declared to
hold any type of object in a type-safe way. Weighed against these advantages,
however, are two large negatives.

First, you must know the size of the array at the time it is created. This
requirement is generally not achievable, although you will sometimes know
that the number of elements cannot exceed some “large value.” Viruses,
however, commonly exploit this type of “it can’t be larger than this” assump-
tion, which turns out to be incorrect. There is no real way to “grow” an array
except to declare a new array and copy the contents of the old array into the
newer, larger version.

Second, inserting or removing elements anywhere within the array involves
copying elements within the array. This is costly in terms of both memory
and computing time. Sorting the elements within an array is even more
expensive.

C++ now comes with the Standard Template Library, or STL, which includes
many different types of containers, each with its own set of advantages
(and disadvantages).

370 Part V: Security

 The C++ Standard Template Library is a very large library of sometimes-
complex containers. This session is considered just an overview of the
power of the STL.

The string Container
The most common form of array is the null-terminated character string used
to display text, which clearly shows both the advantages and disadvantages
of the array. Consider how easy the following appears:

cout << "This is a string";

But things go sour quickly when you try to perform an operation even as
simple as concatenating two of these null-terminated strings:

char* concatCharString(const char* s1, const char* s2)
{
 int length = strlen(s1) + strlen(s2) + 1;
 char* s = new char[length];
 strcpy(s, s1);
 strcat(s, s2);
 return s;
}

The STL provides a string container to handle display strings. The string
class provides a number of operations (including overloaded operators) to
simplify the manipulation of character strings (see Table 27-1). The same
concat() operation can be performed as follows using string objects:

string concat(const string& s1, const string& s2)
{
 return s1 + s2;
}

Table 27-1 Major Methods of the string Class
Method Meaning
string() Creates an empty string object.
string(const char*) Creates a string object from a null-

terminated character array.
string(const string& s) Creates a new string object as a copy of

an existing string object s.
~string() Destructor returns internal memory to

the heap.

371 Chapter 27: Standardizing on the Standard Template Library

Method Meaning
string& operator=(const
string& s)

Overwrites the current object with a copy
of the string s.

istream& operator>>() Extracts a string from the input file. Stops
when after istream::width() characters
read, error occurs, EOF encountered, or
white space encountered. Guaranteed to
not overflow the internal buffer.

ostream& operator<<() Inserts string to the output file.
string operator+(const
string& s1,
 const string& s2)
string operator+(const
sring& s1,
 const char* pszS2)

Creates a new string that is the concat-
enation of two existing strings.

string& operator+=(
 const string& s);
string& Operator+=(
 const char* pszS)

Appends a string to the end of the cur-
rent string.

char& operator[](size_
type index)

Returns the index’th character of the
current string.

bool operator==(const
string& s1,
 const string& s2)

Returns true if the two strings are lexico-
graphically equivalent.

bool operator<(const
string& s1,
 const string& s2)

Returns true if s1 is lexicographically less
than s2 (i.e., if s1 occurs before s2 in the
dictionary).

bool operator>(const
string& s1,
 const string& s2)

Returns true if s1 is lexicographically
greater than s2 (i.e., if s1 occurs after s2
in the dictionary).

string& append(const
string& s)
string& append(const
char* pszS)

Appends a string to the end of the cur-
rent string.

char at(size_type index) Returns a reference to the index’th
character in the current string.

size_t capacity() Returns the number of characters
the current string object can accom-
modate without allocating more space
from the heap.

int compare(const
string& s)

Returns < 0 if the current object is lexi-
cographically less than s, 0 if the cur-
rent object is equal to s, and > 0 if the
current object is greater than s.

(continued)

372 Part V: Security

Method Meaning
const char* c_str()
const char* data()

Returns a pointer to the null-terminated
character array string within the current
object.

bool empty() Returns true if the current object is
empty.

size_t find(const
string& s,
 size_t index = 0);

Searches for the substring s within the
current string starting at the index’th
character. Returns the index of the sub-
string. Return string::npos if the substring
is not found.

string& insert(size_t
index,
 const string& s)
string& insert(size_t
index,
 const char* pszS)

Inserts a string into the current string
starting at offset index.

size_t max_size() Returns the maximum number of objects
that a string object can hold, ever.

string& replace(size_t
index,
 size_t num,
 const string& s)
string& replace(size_t
index,
 size_t num,
 const char* pszS)

Replaces num characters in the current
string starting at offset index. Enlarges the
size of the current string if necessary.

void resize(size_t size) Resizes the internal buffer to the speci-
fied length.

size_t size()
size_t length()

Returns the length of the current string.

string substr(size_t
index,
 size_t length)

Returns a string consisting of the current
string starting at offset index and continu-
ing for length characters.

 The C++ ’11 standard says that functions such as max_size() return a number of
type size_type. I have listed the argument types in Table 27-1 as size_t because
that’s the way they are declared in the gcc compiler that comes with this book.
Currently they are both synonyms for unsigned long int. Be forewarned that
at some future date these two types might diverge and the argument types in
Table 27-1 might change from size_t to size_type.

Table 27-1 (continued)

373 Chapter 27: Standardizing on the Standard Template Library

The following STLString program demonstrates just a few of the capabilities of
the string class:

// STLString - demonstrates just a few of the features
// of the string class which is part of the
// Standard Template Library
#include <cstdlib>
#include <cstdio>
#include <iostream>
using namespace std;

// removeSpaces - remove any spaces within a string
string removeSpaces(const string& source)
{
 // make a copy of the source string so that we don't
 // modify it
 string s = source;

 // find the offset of the first space;
 // search the string until no more spaces found
 size_t offset;
 while((offset = s.find(" ")) != string::npos)
 {
 // remove the space just discovered
 s.erase(offset, 1);
 }
 return s;
}

// insertPhrase - insert a phrase in the position of
// <ip> for insertion point
string insertPhrase(const string& source)
{
 string s = source;
 size_t offset = s.find("<ip>");
 if (offset != string::npos)
 {
 s.erase(offset, 4);
 s.insert(offset, "Randall");
 }
 return s;
}

int main(int argc, char* pArgs[])
{
 // create a string that is the sum of two strings
 cout << "string1 + string2 = "
 << (string("string 1") + string("string 2"))
 << endl;

374 Part V: Security

 // create a test string and then remove all spaces
 // from it using simple string methods
 string s2("This is a test string");
 cout << "<" << s2 << "> minus spaces = <"
 << removeSpaces(s2) << ">" << endl;

 // insert a phrase within the middle of an existing
 // sentence (at the location of "<ip>")
 string s3 = "Stephen <ip> Davis";
 cout << s3 + " -> " + insertPhrase(s3) << endl;

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The main() function begins by using operator+() to append two strings
together. main() then calls the removeSpaces() method to remove any spaces
found in the string provided. It does this by using the string.find() operation
to return the offset of the first “ ” that it finds. Once found, removeSpaces()
uses the erase() method to remove the space. The function picks up where it
left off, searching for spaces and erasing them until find() returns npos, indi-
cating that it didn’t find what it was looking for.

 The constant npos is a constant of type size_t that is the largest unsigned
value possible. It is numerically equal to –1. This is used for the “not found
position” just like ‘\0’ is the “non-character.”

The insertPhrase() method uses the find() method to find the insertion point
flagged by the substring “<ip>”. The function then calls erase to remove the
“<ip>” flag and string.insert() to insert a new string in the middle of an existing
string.

The resulting output is as follows:

string1 + string2 = string1string2
<this is a test string> minus spaces = <thisisateststring>
Stephen <ip> Davis -> Stephen Randall Davis
Press Enter to continue...

 At its core, a string is still an array. The operations provided by the STL make it
easier to manipulate string objects but not that much faster. Inserting into the
middle of a string still involves moving the contents of arrays around.

 The string class is actually an instantiation of the class template basic_class<T>
with T set to char. The wstring class is another name for basic_class<wchar_t>.
This class provides the same character manipulations shown here for wide
strings. The C++ ’11 definition adds u16string and u32string, which extends the

375 Chapter 27: Standardizing on the Standard Template Library

string manipulation methods to UTF-16 and UTF-32 character strings. All com-
parisons between two string objects are performed lexicographically — that
is, which of the two strings would appear first in the dictionary of the current
language.

Iterating through Lists
The Standard Template Library provides a large number of containers — many
more than I can describe in a single chapter. However, I provide here a descrip-
tion of one of the more useful families of containers.

The STL list container retains objects by linking them like Lego blocks.
(Chapter 13 shows a simplistic implementation of a linked list.) Objects can
be snapped apart and snapped back together in any order. This makes the list
ideal for inserting objects and sorting, merging, and otherwise rearranging
objects. Table 27-2 shows some of the methods of the list containers.

Table 27-2 Major Methods of the list Template Class
Method Meaning
list<T>() Creates an empty list of objects of class T.
~list<T>() Destructs the list, including invoking the

destructor on any T objects remaining in the
list.

list operator=(const
list<T>& l)

Replaces the contents of the current list
with copies of the objects in list l.

bool operator==(const
list<T>& l1,
 const list<T>& l2)

Performs a lexicographic comparison
between each element in the two lists.

list<T>::iterator
begin()

Returns an iterator that points to the
first element in the current list.

void clear() Removes and destructs every object in
the current list.

bool empty() Returns true if the current list is empty.
list<T>::iterator end() Returns an iterator that points to the next

entry beyond the end of the current list.
list<T>::iterator
insert(
 list<T>::iterator
loc,
 const T& object)

Adds object to the list at the position
pointed at by the iterator loc. Returns an
iterator that points to the added object.

void pop_back()
void pop_front()

Removes the last or first object from
the current list.

(continued)

376 Part V: Security

Method Meaning
void push_back(const
T& object)
void push_front(const
T& object)

Adds an object to the end or front of
the current list.

list<T>::reverse_
iterator rbegin()

Returns an iterator that points to the last
entry in the list (useful when iterating
backward through the list, starting at the
end and working toward the beginning).

list<T>::reverse_
iterator rend()

Returns an iterator that points to the entry
before the first entry in the list (useful
when iterating backwards through the
list).

void remove(const
T& object)

Removes all objects from the current list
that are the same as object (as determined
by operator==(T&, T&)).

size_t size() Returns the number of entries in the
current list.

void sort() Sorts the current list such that each object
in the list is less than the next object as
determined by operator<(T&, T&).

void
splice(list<T>::iterator
pos,
 list<T>& source)

Removes the objects from the source list
and adds them to the current list in front of
the object referenced by pos.

void unique() Removes any subsequent equal objects
(as determined by operator==(T&, T&)).

The constructor for list<T> creates an empty list. Objects can be added either
to the front or end of the list using push_front() or push_back(). For example,
the following code snippet creates an empty list of Student objects and adds
two students to the list:

list<Student> students;
students.push_back(Student("Dewie Cheatum"));
students.push_back(Student("Marion Haste"));

Making your way through a list
The programmer iterates through an array by providing the index of each ele-
ment. However, this technique doesn’t work for containers like list that don’t
allow for random access. One could imagine a solution based in methods

Table 27-2 (continued)

377 Chapter 27: Standardizing on the Standard Template Library

such as getFirst() and getNext(); however, the designers of the Standard
Template Library wanted to provide a common method for traversing any
type of container. For this, the Standard Template Library defines the iterator.

An iterator is an object that points to the members of a container. In general,
every iterator supports the following functions:

 ✓ A class can return an iterator that points to the first member of the
collection.

 ✓ The iterator can be moved from one member to the next.

 ✓ The iterator returns an indication when it reaches the end of the list.

 ✓ The program can retrieve the element pointed to by the iterator.

 The Standard Template Library also provides reverse iterators for moving
backward through lists. Everything I say about iterators applies equally for
reverse iterators.

The code necessary to iterate through a list is different from that necessary
to traverse a vector (to name just two examples). However, the iterator hides
these details.

The method begin() returns an iterator that points to the first element of a
list. The indirection operator*() retrieves a reference to the object pointed at
by the iterator. The ++ operator moves the iterator to the next element in the
list. A program continues to increment its way through the list until the itera-
tor is equal to the value returned by end(). The following code snippet starts
at the beginning of a list of students and displays each of their names:

void displayStudents(list<Student>& students)
{
 // allocate an iterator that points to the first
 // element in the list
 list<Student>::iterator iter = students.begin();

 // continue to loop through the list until the
 // iterator hits the end of the list
 while(iter != students.end())
 {
 // retrieve the Student the iterator points at
 Student& s = *iter;
 cout << s.sName << endl;

 // now move the iterator over to the next element
 // in the list
 iter++;
 }
}

378 Part V: Security

 Declarations for iterators can get very complex. This is probably the best
justification for the auto declaration introduced with the ’11 standard:

for(auto iter = students.begin(); iter != students.end(); iter++)
{
 cout << iter->sName << endl;
}

This declares iter to be an iterator of whatever type is returned by the
method list<Student>::begin(), avoiding the tortured declarations shown in
the earlier code snippet. How cool is that!

Operations on an entire list
The STL library defines certain operations on the entire list. For example, the
list<T&>::sort() method says “I’ll sort the list for you if you’ll just tell me which
objects go first.” You do this by defining operator<(const T&, const T&). This
operator is already defined for the intrinsic types and many library classes such
as string. For example, you don’t have to do anything to sort a list of integers:

list<int> scores;
scores.push_back(10);
scores.push_back(1);
scores.push_back(5);
scores.sort();

The programmer must define her own comparison operator for her own
classes if she wants C++ to sort them. For example, the following comparison
sorts Student objects by their student ID:

bool operator<(const Student& s1, const Student& s2)
{
 return s1.ssID < s2.ssID;
}

Can you show me an example?
The following STLListStudents program demonstrates several functions you’ve
seen in this section. It creates a list of user-defined Student objects, iterates
the list, and sorts the list.

379 Chapter 27: Standardizing on the Standard Template Library

The program appears as follows:

// STLListStudents - use a list to contain and sort a
// user defined class
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <list>

using namespace std;

// Student - some example user defined class
class Student
{
 public:
 Student(const char* pszS, int id)
 : sName(pszS), ssID(id) {}
 string sName;
 int ssID;
};

// the following function is required to support the
// sort operation
bool operator<(const Student& s1, const Student& s2)
{
 return s1.ssID < s2.ssID;
}

// displayStudents - iterate through the list displaying
// each element
void displayStudents(list<Student>& students)
{
 // allocate an iterator that points to the first
 // element in the list
 // list<Student>::iterator iter = students.begin();
 auto iter = students.begin();

 // continue to loop through the list until the
 // iterator hits the end of the list
 while(iter != students.end())
 {
 // retrieve the Student the iterator points at
 Student& s = *iter;
 cout << s.ssID << " - " << s.sName << endl;

 // now move the iterator over to the next element
 // in the list
 iter++;
 }
}

380 Part V: Security

int main(int argc, char* pArgs[])
{
 // define a collection of students
 list<Student> students;

 // add three student objects to the list
 students.push_back(Student("Marion Haste", 10));
 students.push_back(Student("Dewie Cheatum", 5));
 students.push_back(Student("Stew Dent", 15));

 // display the list
 cout << "The original list:" << endl;
 displayStudents(students);

 // now sort the list and redisplay
 students.sort();
 cout << "\nThe sorted list:" << endl;
 displayStudents(students);

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program defines a list of user-defined Student objects. Three calls to
push_back() add elements to the list (hard-coding these calls keeps the
program smaller). The program then calls displayStudents() to display the
contents of the list both before and after the list has been sorted using the
template library sort() function.

The output of this program appears as follows:

The original list:
10 - Marion Haste
5 - Dewie Cheatum
15 - Stew Dent

The sorted list:
5 - Dewie Cheatum
10 - Marion Haste
15 - Stew Dent
Press Enter to continue...

 The iterator iter is declared twice in this program. Use the auto version if your
compiler is compliant with the 2011 standard. Comment out that line and
uncomment the more complicated declaration before it, if not.

Chapter 28

Writing Hacker-Proof Code
In This Chapter
▶ How to avoid becoming a soldier in someone’s botnet army

▶ Getting a handle on SQL injection

▶ Understanding buffer overflow hacks

▶ Defensive programming against buffer overflows

▶ Getting a little help from the operating system

I
n the interest of full disclosure, I should admit right now: I’m not sure that
it’s possible to write hacker-proof code. Those slippery devils always seem

to find a way. But by knowing some of their tricks and how to counter them,
you can write programs that are very hacker resistant.

There is more to hacker-proofing that just writing code. Program protection
takes a multitude of forms which I describe in Chapter 30. However, since this
book is about writing programs, after all, and since code writing is probably
the most important component to hacker-proofing, let’s start there.

Understanding the Hacker’s Motives
Why would a hacker want to break into one of the lowly C++ console pro-
grams presented in this book? The short answer is, “He wouldn’t.” The pro-
grams in this book are all written to be executed from the keyboard at normal
user privileges. If the user can get to the keyboard to execute one of these
programs, then he can execute any other command that he wants. He doesn’t
need to resort to hacks.

Think a little further into the future, however. After you’ve finished this book
and sharpened your C++ skills, you land that really sweet job that you were
looking for at the, hmmm, at the bank. Yeah, that’s the ticket. You’re a big-
time programmer at the bank, and you’ve just finished writing the back-end
code for some awesome ledger application that customers use to balance
their accounts. Performance is great because it’s C++, and the customers love
it. You’re looking forward to that big bonus that’s surely coming your way.

382 Part V: Security

Then you get called to the Department Vice President’s office. Seems that
hackers have found a way to get into your program from its interface to the
Internet and transferred money from other peoples’ accounts into their own.
Millions have been lost. Disaster! No bonus. No promotion. Nobody will sit
with you in the cafeteria. Your kids get bullied on the playground. You’ll be
lucky to keep your now greatly reduced job.

The point of this story is that real world programs often have multiple inter-
faces unlike the simple programs in this book. For example, any program that
reads a port or connects to a database is susceptible to being hacked.

What is the hacker after:

 ✓ If you’re lucky, the hacker is doing nothing more than exploiting some
flaw in your program’s logic to cause it to crash. As long as the program
is crashed, no one else can use it. This is called a Denial of Service (DoS)
attack because it denies the service provided by your program to every-
one else.

 DoS attacks can be expensive because they can cost your company lost
revenue from business that doesn’t get conducted or customers who
give up in frustration because your program is not taking calls right now.
And this doesn’t even include the cost of someone going into the code
to find and fix the susceptibility.

 ✓ Some hackers are trying to get access to information that your program
has access to but to which the user has no right. A good example of this
would be identify theft.

 The loss of information is more than embarrassing as a good hacker may
be able to use this information to turn around and steal. For example,
armed with the proper credentials, the hacker can then call up a bank
teller on the phone and order sums of money be transferred from our
hacked customers’ accounts to his own where he can subsequently with-
draw the funds. This is commonly the case with SQL injection attacks,
which I describe in the following section.

 ✓ Finally, some hackers are after remote control of your computer. If
your program opens a connection to the Internet and a hacker can
get your program to execute the proper system calls, that hacker can
turn your program into a remote terminal into your system. From there,
the hacker can download his own program onto your machine, and
from then on you are said to be owned.

 Perhaps the hacker wants access to your accounts, where he can steal
money, or maybe he just wants your computer itself. This is the case
with groups of owned computers that make up what is known as a botnet.

 But how does this work? Your bank program has a very limited interface.
It asks the user for his account number, his name, and the amount of
his deposit. Nowhere does it say, “Would you like to take over this com-
puter?” or “What extra code would you like this computer to execute?”

383 Chapter 28: Writing Hacker-Proof Code

The two most common hacker tricks that you must deal with in your code
are code injection and buffer overflow.

Understanding Code Injection
Code injection occurs when the user entices your program to execute some
piece of user-created code. “What? My program would never do that!” you
say. Consider the most common and, fortunately for us, easiest to understand
variant of this little scam: SQL injection.

Examining an example SQL injection
Let me start with a few facts about SQL:

 ✓ SQL (often pronounced “sequel”) stands for Structured Query Language.

 ✓ SQL is the most common language for accessing databases.

A bot-what?
The term botnet is a contract of “robot net-
work,” meaning a network of roboted (also
called zombie) computers. A zombied com-
puter runs along like normal as long as it’s
not needed. It can run spreadsheets and
Code::Blocks and whatever else, but sitting
deep in the background is a backdoor that’s
open to the person with the proper program and
the passwords — the botnet master.

When the botnet master decides he needs the
zombie computer, he sends commands to his
slave, and it dutifully starts carrying out the
master’s instructions. The owner of the zom-
bied computer may not even notice that there’s
anything wrong, other than the fact that his
computer runs kind of slow sometimes.

Botnets can do lots of things, but one of their
best tricks is to swamp legitimate Web sites
with bogus requests in another form of Denial
of Service attack. Suppose, for example,
that you don’t like the Brotherhood of Aryan

Goatherders, and you want to bring down their
BAG site so that no one can read their lies. You
try to swamp the site with requests from your
computer, but you can’t because the BAG’s
computer is just as fast as yours. So you buy
four or five computers and have all of them hit
their Web site at once. That works for a few
minutes, but it doesn’t take long to figure out
that all these requests are coming from just a
few source IP addresses, so the system admin-
istrator for the Brotherhood (very unfairly)
blocks requests from your PCs!

But what if you could rent the services of a
botnet army consisting of thousands of PCs all
over the world? Each computer has to generate
only a few requests per second in order to bring
the BAG site completely to its knees. And what
can the system administrator do about it? He
can’t block every PC he sees without blocking
legitimate users of the site. The BAG might as
well just give up and close the site down.

384 Part V: Security

 ✓ SQL is used almost universally in accessing relational databases.

 ✓ SQL is not the subject of this book.

This last bullet is important because I have no intent of teaching you SQL just
so you can follow the examples presented here. If you don’t already know SQL,
it’s sufficient to say that SQL is often interpreted at runtime. Very often, C++
statements will send an SQL query to a separate database server and then
process and display whatever the server sends back. A typical SQL query
within a C++ program might look like the following:

char* query = "SELECT * FROM transactions WHERE
accountID='123456789';"

results = submit(query);

This code says, “SELECT all of the fields FROM the transactions table WHERE
the accountID (presumably one of the fields in the transaction table) is equal
to 123456789 (the user’s account id).” The submit() library function might send
this query off to the database server. The database server would respond with
all of the data it has on every transaction that the user has ever made on this
account, which would get stored into the collection results. The program would
then iterate through results, probably displaying the transactions in a table
with each transaction on a separate row.

The user probably doesn’t need that much data. Maybe just those transac-
tions between startDate and endDate, two variables that the program reads
from the user’s query page. This more selective C++ program might contain a
statement like the following:

char* query = "SELECT * FROM transactions WHERE
accountID='123456789'"

 " AND date > '" + startDate + "' AND date < '" +
endDate + "';";

If the user enters 2013/10/1 for a startDate and 2013/11/1 for endDate, then
the resulting query that gets sent to the database is the following:

SELECT * FROM transactions WHERE accountID='123456789' AND
 date > '2013/10/1' AND date < '2013/11/1';

In other words, show all the transactions made in the month of October 2013.
That makes sense. What’s the problem?

The problem arises if the program just accepts whatever the user enters as
start and end dates and plugs them into the query. It doesn’t do any checking
to make sure that the user is entering just a date and nothing but a date. This
program is far too trusting.

385 Chapter 28: Writing Hacker-Proof Code

What if a hacker were to enter 2013/10/1 for the startDate, but for the end-
Date he were to enter something like 2013/11/1’ OR accountID=’234567890.
(Notice the unbalanced single quotes.) Now the combined SQL query that
gets sent to the database server would look like

SELECT * FROM transactions WHERE accountID='123456789' AND
 date > '2013/10/1' AND date < '2013/11/1' OR
 accountID='234567890';

This says, “Show me all the transactions for the account 123456789 for the
month of October 2013, plus all the transactions for some other account
234567890 that I don’t own for any date.”

This little example may raise a few questions in the reader’s mind: “How did
the hacker know that he could enter SQL statements in place of dates?” He
doesn’t know — he just tries entering bogus SQL into every field that accepts
character text and sees what happens. If the program complains, “That’s not
a legal date,” then the hacker knows that the program checks to make sure
that input dates are valid and SQL injection won’t work here. If, on the other
hand, the program displays an error message like Illegal SQL statement, then
the hacker knows that the program accepted the bogus input and shipped it
off to the database server which then kicked it back. Success! Now all he has
to do is formulate the query just right.

So how did the hacker know that the account ID was called accountID?
He didn’t know that either, but how long would it take to guess that one?
Hackers are very persistent.

Finally, how did the hacker know that 234567890 was a valid account number?
Again, he didn’t — but do you really think that the hacker’s going to stop
there? Heck no. He’s going to try every combination of digits he can think of
until he finds some really big accounts with really big balances that are worth
stealing from.

Let me assure you of three things:

 ✓ SQL injection was very common years ago.

 ✓ It was just this simple.

 ✓ With a better knowledge of SQL and some really tortured syntax, a good
hacker can do almost anything he wants with an SQL injection like this.

So how can the programmer avoid this hack?

386 Part V: Security

Avoiding code injection
The first rule of avoiding code inject is never, ever, allow user input to be
processed by a general-purpose language interpreter. The error with the
SQL-injection example was that the program accepted user input as if it were
always a date and inserted it into an SQL query that it then shipped off to the
database engine for processing.

The safest and most user-friendly approach would have been to provide the
user a calendar graphic from which he could select the start and end dates.
The program would then create a date based on what the user clicked. If this
is not possible, then the program should have carefully checked the input
to make sure that the input was in the proper format for a date, in this case
yyyy/mm/dd — in other words, four digits followed by a slash followed by
two digits and a slash and finally two more digits. Nothing else should be con-
sidered acceptable input.

Sometimes you can’t be that specific about the format. If you must allow the
user to enter flexible text, then you can at least avoid special characters. For
example, it’s pretty much impossible to do SQL code injection without using
either a single or double quote. You can’t insert HTML tags without using a
less than (<) and greater than (>) sign. Or you could just take the approach
that anything other than ASCII text will not be tolerated:

// check some string 's' to make sure it's straight ASCII
size_type off = s.find_first_not_of(
 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890_");
if (off != string::npos)
{
 cerr << "Error\n";
}

This code searches the string s for a character that’s not one of the charac-
ters A through Z, a through z, 0 through 9, or underscore. If it finds such a
character, then the program rejects the input.

 If you allow only the Latin characters shown here, your application will not be
useable in many foreign markets such as those that don’t use English charac-
ter sets (such as Arabic, Chinese, Hebrew, or Russian, to name just a few). You
may have to take the opposite approach and just look for the bad characters.

Overflowing Buffers for Fun and Profit
The second common hacker method that I present is the dreaded buffer over-
flow. First you’ll see a very small program with a very big vulnerability. You’ll
see how this vulnerability comes about and how it can be exploited by a hacker.
Then you’ll see a number of different ways to mitigate the vulnerability.

387 Chapter 28: Writing Hacker-Proof Code

Can I see an example?
Consider the smallest, simplest hackable program that I could devise:

// BufferOverflow - this program demonstrates how a
// program that reads data into a fixed
// length buffer without checking can be
// hacked
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <cstring>
#include <string>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller
char* getString(istream& cin)
{
 char buffer[64];

 // now input a string from the file
 char* pB;
 for(pB = buffer;*pB = cin.get(); pB++)
 {
 if (cin.eof())
 {
 break;
 }
 }
 *pB = '\0';

 // return a copy of the string to the caller
 pB = new char[strlen(buffer) + 1];
 strcpy(pB, buffer);
 return pB;
}

int main(int argc, char* pArgv[])
{
 // get the name of the file to read
 cout <<"This program reads input from an input file\n"
 "Enter the name of the file:";
 string sName;
 cin >> sName;

 // open the file
 ifstream c(sName.c_str());

388 Part V: Security

 if (!c)
 {
 cout << "\nError opening input file" << endl;
 exit(-1);
 }

 // read the file's content into a string
 char* pB = getString(c);

 // output what we got
 cout << "\nWe successfully read in:\n" << pB << endl;

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 printf("Done!");
 exit(0);
 return 0;
}

This program starts by prompting the user for the name of a file. The pro-
gram then opens that file and passes the open file handle to the function
getString(). This function does nothing more than read the contents of the file
into a buffer, create a copy of that buffer in a memory block that it allocates
off of the heap, and then returns that chunk of heap memory to the caller.

The output from a sample run of this program appears as follows:

This program reads input from an input file
Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press Enter to continue...

Here the user told the program to read the file OK_File.txt and display the
results, which it did.

 Code::Blocks for Windows opens the console application in the project direc-
tory so all you need to enter is the file name OK_File.txt as shown. Code::Blocks
for Macintosh opens the console window in your user directory so you need
to enter the entire path to the file: Desktop/CPP_Programs_from_Book/Chap28/
BufferOverflow/OK_File.txt (assuming that you installed the source files in the
default location). This same tip is applicable to every file in this chapter.

The problem with this program lies in getString(). The programmer was told
that each input file contains a short string of not more than 20 characters. Not
wanting to be stingy, she allocated a 64-character buffer just to make sure that
there was enough room to hold the file contents. The file OK_File.txt contains
the string This is benign input. which may have been a little longer than the
promised 20 characters but fits comfortably within the 64-character buffer.
But let’s try the program again with the file Big_File.txt; the output of this run
is shown in Figure 28-1.

389 Chapter 28: Writing Hacker-Proof Code

Figure 28-1:
The result

of executing
the Buffer-

Overflow
program on
Big_File.txt.

When presented this new file, the BufferOverflow program crashed rather
than generating any reasonable output.

What you don’t know is that the file Big_File.txt contains the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789

“Wait a minute!” you say. “That’s not fair. That file contains more than 20
characters.” True. And it contains more than 64 characters, and for some
reason that caused the program to crash. Hackers don’t play fair.

How does a call stack up?
 This entire section is fairly technical. You can skip it if you’re not into the

details of computer memory.

Consider how computer memory is laid out: There are variables known as
global variables that are accessible to all functions. These variables reside at
fixed memory locations so that everyone can find them. But most variables

390 Part V: Security

are declared within the scope of a single function. The memory for these vari-
ables is allocated when the function is called and is deallocated when the func-
tion returns. Computers do this through a mechanism known as the stack.

The stack pointer (which in assembly language parlance normally carries the
name ESP) points to the next available location on the stack. A function can
invoke a PUSH instruction to save a value in a register to the stack. This auto-
matically decrements the ESP so that the memory isn’t used for something
else. A corresponding POP instruction restores the value to the register and
increments the ESP back to its original pre-PUSH location.

Another value that gets pushed onto the stack is the return address when-
ever a function is called. The 80x86’s instruction CALL getString pushes the
next address onto the stack and then jumps to the address of the getString()
function. This is shown graphically as a busy but interesting capture from the
Code::Blocks debugger in Figure 28-2.

Figure 28-2:
The ESP and

the stack
memory

immediately
before

the call to
getString().

391 Chapter 28: Writing Hacker-Proof Code

The program is stopped at the beginning of the call to getString() (which you
can tell by the yellow arrows in Figure 28-2, both in the right source view that
shows only the C++ source and in the left mixed disassembly view that shows
the C++ source and the 80x86 assembly language that was generated.) Notice
on the left that the instruction after the CALL to getString() is 0x0046AA6C.
The CPU Registers window shows that the value of the ESP is 0x0028FDC0.

Figure 28-3 shows the same windows immediately after the call to getString().
Notice that the ESP has been decremented by 4 bytes (the size of a return
address) to 0x0028FDBC and that the ESP now points to the value 0x0046AA6C,
the address of the next instruction after the CALL. This is called the return
address.

 What you actually see on the stack in Figure 28-3 is 6C-AA-46-00. This is
because the 80x86 processor stores all values with the least significant byte at
the smallest address. This is called Little Endian.

Figure 28-3:
The ESP and

the stack
memory
immedi-

ately after
the call to

getString().

392 Part V: Security

Figure 28-4 shows the situation immediately after a successful return from
getString(). The small yellow arrow in the disassembly window shows that the
instruction pointer is indeed pointing to the instruction immediately after the
CALL and the ESP has returned to its former value of 0x0028FDC0.

That’s all very nice, but so what? Well, C++ also stores locally defined vari-
ables on the stack. For example, the 64-byte buffer in getString() is stored
on the stack. As long as the program writes only 64 bytes (or less) into this
buffer, everything is fine; but if the program tries to write more data into
buffer than buffer can hold, the remaining data spills over and starts overwrit-
ing other data. If the program writes far enough, it will eventually overwrite
the return address. This is exactly what happened when getString() read the
oversized Big_File.txt. This is shown in Figure 28-5.

Figure 28-4:
The ESP and

the stack
memory

immediately
after the

return from
getString().

393 Chapter 28: Writing Hacker-Proof Code

Figure 28-5:
The return

address
on the

stack are
overwrit-
ten when

getString()
tries to read
Big_File.txt.

You can see that the location 0x0028FDC0 no longer contains the return address,
but rather the value 0x46454443, which happens to be the ASCII characters
“FEDC”, which you can also see along with many of the other characters from
Big_File.txt on the right of Figure 28-5.

 Remember to read the bytes from right to left since the 80x86 is Little Endian.

This doesn’t cause a problem as long as the program is processing through
getString(), but when the program tries to return, the return address that’s
on the stack is not a return address at all. Instead, it points to some illegal
address, and the program crashes as soon as it executes the RET statement
at the end of getString().

Hacking BufferOverflow
The BufferOverflow program crashed because the contents of Big_File.txt
overflowed buffer and overwrote the return address within the function get-
String(). When the function attempted to execute a return instruction, control
passed to some garbage address, and the program crashed.

394 Part V: Security

But what if you could engineer the text file so that it overwrote the return
address not with crazy ASCII characters, but with the address of some
code that you wanted to force the program to execute? When getString()
executed a RET, it wouldn’t crash, it would go off and execute the code you
want it to.

But where could you put this extra code? What better place than within the
text that’s already been read into buffer? So the hack goes like this:

 1. Create a machine language program that does whatever you want the
program to do and insert it into the input file first.

 2. Make sure that the input overflows the buffer just far enough that the
return address gets overwritten with the address of buffer itself.

 3. When the program reads the text into the buffer, it will in effect load the
hacker code into buffer and then overwrite the return address.

 4. When getString() tries to return to where it was called in main(), con-
trol will pass to the beginning of buffer, where the hacker code gets
executed.

 This sounds pretty tricky, and actually, it is. But remember that the hacker
can execute your program as often as he wants. When executed with a good
debugger, he can figure out how big to make the buffer and what address to
use for buffer.

Just to show you that such a thing is possible, check out the following run:

C:\CPP_Programs\Chap28\BufferOverflow>BufferOverflow
This program reads input from an input file
Enter the name of the file:BO_File.txt
You've been hacked!
C:\CPP_Programs\Chap28\BufferOverflow>

Here the program starts out like normal by prompting the user for an input
file. This time the user entered the file name BO_File.txt. In response, the
program didn’t output the contents of the file as you might expect, nor did it
crash. Instead, in response to this file, the program output the ominous mes-
sage “You’ve been hacked!” and exited. Notice in particular that the program
didn’t output the normal “Press Enter to continue. . .”. This program went
directly to Jail, didn’t pass Go, and didn’t collect $200! Control never returned
from getString() back to main().

395 Chapter 28: Writing Hacker-Proof Code

How did this hack work?
Let me start off by saying that the point of this chapter is not to teach you how to hack other
people’s programs — the point is to keep you from being hacked yourself. Let me also say that
the details of this hack have nothing to do with learning C++ programming, so feel free to skip
this sidebar if you want. However, it seems only fair that you get to see how this hack worked in
detail. If you are familiar with 80x86 assembly language, you will probably be able to follow this
small program. If not, then you may want to just accept my assurances that it works and kick the
can on down the road.

The Hex Editor that comes with Code::Blocks displays the contents of the BO_Text.txt file as follows:

0000: 90 90 55 89 E5 31 C0 B0 F8 29 C4 90 90 EB 24 31 U 1) $1
0010: C0 8B 1C E4 36 88 43 13 B8 45 AA 47 01 WD 01 01 6 C U G -
0020: 01 01 FF D0 31 C0 50 B8 F9 FE 42 01 2D 01 01 01 1 P B -
0030: 01 FF D0 E8 D7 FF FF FF 59 6F 72 27 76 65 20 62 You've b
0040: 65 65 6E 20 68 61 63 6B 65 64 21 90 70 FD 28 00 een hacked! p (

That’s not very enlightening. Other than the string You’ve been hacked!, the remainder of the file
appears to be garbage. Let’s try an 80x86 disassembler.

; set up a stack frame to protect our code from being
; overwritten when we make a function call below
; we do this by subtracting a big number like F8 from ESP
entryPoint:
 NOP ; 90
 NOP ; 90
 PUSH EBP ; 55
 MOV ESP,EBP ; 89 E5
 XOR EAX,EAX ; 31 C0
 MOV F8,AL ; B0 F8
 SUB EAX,ESP ; 29 C4

; the following can be replaced by an INT 3 (0xCC) during debug and test
 NOP ; 90
 NOP ; 90

; put the address of the output message on the stack by jumping to a call
 JMP label2 ; EB 24
label1:

; null terminate the string by writing a 0 to *ESP + 13
 XOR EAX,EAX ; 31 C0
 MOV [ESP],EBX ; 8B 1C E4
 MOV AL,SS:[BX+13] ; 36 88 43 13

; now call print (but can't have any zeros in the address)
; this value changes every time you rebuild the program!
 MOV print+01010101,EAX ; B8 45 AA 47 01
 SUB 01010101,EAX ; 2D 01 01 01 01
 CALL EAX ; FF D0 (calls 0047AA45)

(continued)

396 Part V: Security

; and then call exit passing a 0 (this call doesn't return)
 XOR EAX,EAX ; 31 C0
 PUSH EAX ; 50
 MOV exit+01010101,EAX ; B8 F9 FE 42 01
 SUB 01010101,EAX ; 2D 01 01 01 01
 CALL EAX ; FF D0 (calls 0041FDF8)

label2:
 CALL label1 ; E8 D7 FF FF FF
 "You've been hacked!"
 90 ; this will be overwritten the terminating null
 address of entryPoint ; B0 FD 28 00
 ; this will overwrite the return address

Of course, the disassembler didn’t create the comments — I’ve added those to help you out a bit.

The most important part of this program is the last 4 bytes. These overwrite the return address with
the address 0x0028FDB0, which is the address of buffer on the stack. How did I know that? I had
to single-step the program with an assembly language debugger and note the address of buffer
myself.

The getString() function copies this file into the fixed length buffer, dutifully overwriting its own return
address before encountering the terminating NULL. It goes on to make a copy of this string out of
heap memory, a process that we care nothing about. When getString() tries to return to main(), control
passes to the label entryPoint.

The first couple of instructions do nothing — NOP stands for No Op or No Operation. These are
there in case the hack misses the address by a few bytes.

The next few instructions are very important. After getString() executes a return, buffer is no longer
in scope. This means that all of your code is vulnerable to being overwritten if an interrupt occurs
or the next time a function is called. This small section of code moves the ESP around the small
program so that it is not overwritten by the upcoming function calls.

The next small section of code is where I hard-coded breakpoint instructions (INT3 or 0xCC) when
I was debugging this code. They appear as NOPs in the production version that you are seeing.

The next JMP instruction jumps down to the label label2. The CALL instruction located here first
pushes the address of the following instruction, which is actually the address of the string You’ve
been hacked!, and then jumps back to label1. This sleight of hand is the hacker’s way of pushing
the address of the string onto the stack. That done, the program then makes sure that the string
is null terminated by writing a 0 at the location 13 bytes deep into the string. (The XOR EAX,EAX,
which means EXCLUSIVE OR the contents of the EAX register with itself, puts a zero in the EAX
register.)

(continued)

397 Chapter 28: Writing Hacker-Proof Code

In fact, the file BO_File.txt (which stands for Buffer Overflow File, by the
way) contains a small machine language program that outputs the message
“You’ve been hacked!” and then calls exit(0) to exit normally. In addition,
it’s crafted in just such a way that it overwrites the return address with the
beginning of the buffer to cause this program to be executed when getString()
attempts to return, just as described earlier.

 The details of a hack like this are very specific to exactly how the executable
file is laid out in memory. This particular version of BO_File.txt works on only
versions of BufferOverflow built for Windows with a particular version of gcc.
This is not a limitation of the overflow hack itself — I could create a version
of BO_File.txt for Linux or Macintosh and for a different version of gcc. Since
you may not be using the same version of gcc that I am, I have included the
.exe executable in the BufferOverflow directory right next to the source code.
To execute this version, you will need to open a console in Windows, navigate
to the proper directory (in my case, C:\CPP_Programs_from_Book\Chap28\
BufferOverflow), and enter the command BufferOverflow.

Avoiding buffer overflow — first attempt
You can look at the hackable error in getString() as a combination of two
problems: The programmer used a fixed-length buffer, and she assumed that
the input would not overflow that buffer. This error can be fixed by address-
ing either one of these assumptions.

The next block of code actually does nothing more than call the print(), which is located at 0x0046A944.
Unfortunately, the program can’t call this function directly since its address contains a null byte. This
null byte would cause the copying of the block to terminate before overwriting the return address.
To avoid this, I added a 1 to each byte of the address stored in memory, and then I subtract this one
back out before I use the address. The program copies 0x0147AA45 into the EAX register and then
subtracts 0x01010101 to calculate the desired address. The CALL EAX calls the resulting address
contained in the EAX register. This outputs the "You’ve been hacked!" message.

How did I know that print() was located at 0x0046A944? By examining the call to print() in main().

The final block calls the exit() function using the same trick to terminate the program. Control does
not return from exit().

398 Part V: Security

The following NoBufferOverflow1 program addresses the second assumption
by making sure that the input does not exceed the size allocated to the fixed-
size buffer:

// NoBufferOverflow1 - this program avoids being hacked by
// limiting the amount of input into a fixed buffer
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <cstring>
#include <string>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller
char* getString(istream& cin)
{
 char buffer[64];

 // now input a string from the file
 // (but not more than our buffer will hold)
 int i;
 for(i = 0; i < 63; i++)
 {
 // read the next character into the buffer
 buffer[i] = cin.get();

 // exit the loop if we read a NULL or EOF
 if ((buffer[i] == 0) || cin.eof())
 {
 break;
 }
 }
 // make sure that the buffer is null terminated
 buffer[i] = '\0';

 // return a copy of the string to the caller
 char* pB = new char[strlen(buffer) + 1];
 if (pB != nullptr)
 {
 strcpy(pB, buffer);
 }
 return pB;
}

This version of getString() reads input from the file until either one of three
things happen: the function reads a null, the function reads an End of File, or
the function reads 63 bytes.

399 Chapter 28: Writing Hacker-Proof Code

 Remember to leave 1 extra byte for the terminating null.

The output of this program to all three files is as you would expect. The OK_
File.txt outputs a benign message:

This program reads input from an input file
Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press any key to continue...

The program outputs only the first 63 bytes of Big_File.txt but, hey, it doesn’t
crash:

This program reads input from an input file
Enter the name of the file:Big_File.txt

We successfully read in:
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz
Press any key to continue...

The program also reads in the first 63 bytes of our hack program contained
in BO_File.txt, but since it doesn’t exceed the limits of buffer and therefore
doesn’t overwrite the return address, no harm is done and there is no hack.

This program reads input from an input file
Enter the name of the file:BO_File.txt

We successfully read in:
ÉÉUëσ1└░°)─ÉÉδ$1└ï∟Σ6êC‼╕U¬G☺-☺☺☺☺ ╨1└P╕∙■B☺-☺☺☺☺ ╨Φ╫

You've
Press Enter to continue...

 This is the normal way to avoid buffer overflow: Make sure that you don’t
copy more data into the buffer than the buffer can hold, no matter what kind
of garbage is contained in the buffer.

Avoiding buffer overflow —
second attempt
An alternative approach to available buffer overflow is to make sure that
the buffer can grow to accommodate the size of the input. There are several
flexible-size containers in the Standard Template Library. The most common
is the vector class. (See Chapter 27 for details.)

400 Part V: Security

// NoBufferOverflow2 - this program avoids being hacked by
// using a variable-size buffer
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <cstring>
#include <string>
#include <vector>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller
char* getString(istream& cin)
{
 // create a variable-size buffer with an initial
 // length of 64 characters; however, this buffer can
 // grow if there are more than 64 characters in the
 // input file
 vector<char> buffer;
 buffer.reserve(64);

 // now input a string from the file
 for(;;)
 {
 // read the next character
 char c = cin.get();

 // exit the loop if we read a NULL or EOF
 if ((c == 0) || cin.eof())
 {
 break;
 }

 // add the character to the buffer and grow the
 // buffer if necessary to accommodate
 buffer.push_back(c);
 }
 // make sure that the buffer is null terminated
 buffer.push_back('\0');

 // return a copy of the string to the caller
 char* pB = new char[buffer.size()];
 if (pB != nullptr)
 {
 strcpy(pB, buffer.data());
 }
 return pB;
}

401 Chapter 28: Writing Hacker-Proof Code

This version of getString() creates a variable-size vector of char objects. The
function sets the initial size of the vector to 64 characters, but buffer will
grow automatically if necessary. Once in the loop, the function uses the func-
tion push_back() to push each character onto the end of the vector.

 The vector class overloads the bracket operator, so I could have said buffer
[index] = c; however, in order to improve performance, the bracket operator
does not check for buffer overflow. The push_back() method first checks that
there is enough room in the buffer to handle the character being added. If
not, push_back() allocates another buffer, twice as big as the first, and copies
the contents of the smaller buffer into the larger. It repeats this process every
time it needs more room in the input buffer.

The output of NoBufferOverflow2 is indistinguishable from the fixed buffer
version when reading small files:

This program reads input from an input file
Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press Enter to continue...

However, the output differs from the fixed buffer version when reading really
large files:

This program reads input from an input file
Enter the name of the file:Big_File.txt

We successfully read in:
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
Press Enter to continue...

You can see that this version of getString() reads the entire input file rather
than chopping off input at 63 bytes.

402 Part V: Security

Similarly, NoBufferOverflow2 has no problem reading the buffer overflow hack
file:

This program reads input from an input file
Enter the name of the file:BO_file.txt

We successfully read in:
ÉÉUëσ1└░°)─ÉÉδ$1└ï∟Σ6êC‼╕U¬G☺-☺☺☺☺ ╨1└P╕∙■B☺-☺☺☺☺ ╨Φ╫ You've been hacked!Ép²(
Press Enter to continue...

A lot of garbage gets printed out, but no hack occurs.

Another argument for the string class
In a way, all of the buffer overflow examples in this chapter are a bit con-
trived. In actual practice, the safest approach would have been to read input
into an object of class string. Most of the functions associated with string are
designed to vary the size of the internal buffer to accommodate the amount
of input.

// NoBufferOverflow3 - this program avoids being hacked by
// using the string class
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller. Terminate the
// string at a null or the end-of-file
string getString(istream& cin)
{
 string s;
 getline(cin, s, '\0');
 return s;
}

The call to getline() says read from cin into the string s until either a null or an
end-of-file is encountered (the EOF is implied in every call to getline()). The
size of the buffer in s is not fixed but expands to hold whatever is thrown at it.

Just as before, the output of this version is indistinguishable from the others
when reading a benign file:

403 Chapter 28: Writing Hacker-Proof Code

This program reads input from an input file
Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press Enter to continue...

This output of this version is also identical to NoBufferOverflow2 for the over-
sized cases such as Big_File.txt:

This program reads input from an input file
Enter the name of the file:Big_File.txt

We successfully read in:
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
Press Enter to continue...

And for the buffer overflow BO_File.txt case:

This program reads input from an input file
Enter the name of the file:BO_file.txt

We successfully read in:
ÉÉUëσ1└░°)─ÉÉδ$1└ï∟Σ6êC‼╕U¬G☺-☺☺☺☺ ╨1└P╕∙■B☺-☺☺☺☺ ╨Φ╫ You've been hacked!Ép²(
Press Enter to continue...

Again, garbage but no hack.

Why not always use string functions?
Given the relative simplicity of the NoBufferOverflow3 program compared
with the other two, why wouldn’t a programmer always use the string class
and its associated functions? In a way, the answer is, "You should.” But you
need to keep in mind that internally this program is every bit as complicated
as the vector-based NoBufferOverflow2 version. The getline() function is call-
ing a variable-size container such as vector for you. Even though you may
not be making all these extra calls, the calls are being made, and the perfor-
mance of the function reflects that fact. The versions of getString() that rely
on fixed-size buffers are considerably faster than those that use variable-size
structures.

404 Part V: Security

This difference is not noticeable if the program calls getString() only once or
even only a thousand times, but it can be considerable if this function were
being called in the middle of a very time critical loop.

Thus, the string or vector versions of getString() are the way to go for general
use, but there may be conditions that justify the use of fixed-size buffers.

 There is no measurable difference in performance between the version of get-
String() that does not check for buffer overflow and the one that does. There
is no justification for leaving yourself exposed to hacking by buffer overflow
even if you’re trying to shave a few instructions off of the execution time.

Let the operating system help
CPU manufacturers and operating system
vendors have combined to devise ways to
help avoid buffer overflow hacks. Two of the
most common are Address Space Layout
Randomization (ASLR) and Data Execution
Prevention (DEP).

One of the Achilles heels of the preceding hack
is that I had to hard code the address of buffer
on the stack. I could do this because my ver-
sion of Windows always loads that particular
program, BufferOverflow.exe, the same way.
But what if it were to vary things a bit every
time it executed the program? For example,
what if the operating system added some small
constant to the stack pointer before executing
the program each time? It wouldn’t make any
difference to the program, but it would make it
impossible for the hacker to know what value
to overwrite the return address with since the
address of buffer would be slightly different
every time the program executed. This moving
memory around is known as Address Space
Layout Randomization (ASLR).

Another vulnerability of this hack is the fact
that at least for a small period of time the pro-
cessor was being asked to execute machine

instructions that were stored in an area
reserved for data (namely the machine code
that got loaded into buffer). Most 80x86 proces-
sors have the ability known as Data Execution
Prevention (DEP) to mark code segments as
either executable or not executable (using a
flag known as the Nx flag). Operating systems
that support DEP mark memory segments
where code is stored as executable while
marking areas intended only for data, such as
the stack where buffer is stored as not execut-
able. This buffer overflow hack would have
been trapped by the processor as soon as con-
trol passed to the beginning of buffer. The CPU
would have thrown an exception that someone
was trying to execute instructions stored in
non-executable memory — a no-no of the first
order. The operating system would catch the
exception and immediately throw the miscre-
ant program out of memory before any hacker
harm could be done.

In Windows Vista and later, DEP is enabled for
most Windows kernel processes and many
applications to avoid hackers from gaining
administrator privileges but is often not enabled
for user code. The Task Manager will show you

405 Chapter 28: Writing Hacker-Proof Code

which processes have DEP enabled and which
do not (you have to enable this column — by
default, this column is not displayed). This figure
shows the output of the Task Manager on my
Windows 7 machine while BufferOverflow is
executing. Notice that the process created is

called BufferOverflow.exe*32, indicating that
this is a 32-bit process. Also notice that DEP is
disabled for this process. There doesn’t appear
to be a way to tell gcc to generate code that
enables DEP on Windows.

406 Part V: Security

Part VI
The Part of Tens

 Visit www.dummies.com for great Dummies content online.

In this part...
 ✓ Avoiding bugs

 ✓ Preventing hacking

 ✓ Visit www.dummies.com for great Dummies content
online.

Chapter 29

Ten Ways to Avoid Adding Bugs
to Your Program

In This Chapter
▶ Enabling all warnings and error messages

▶ Using a clear and consistent coding style

▶ Limiting the visibility

▶ Adding comments to your code while you write it

▶ Single-stepping every path at least once

▶ Avoiding overloaded operators

▶ Heap handling

▶ Using exceptions to handle errors

▶ Declaring destructors to be virtual

▶ Avoiding multiple inheritance

I
n this chapter, I look at several ways to minimize errors, as well as ways to
make debugging the errors that are introduced easier.

Enable All Warnings and Error Messages
The syntax of C++ allows for a lot of error checking. When the compiler
encounters a construct that it can’t decipher, it has no choice but to generate
an error message. Although the compiler attempts to sync back up with the
next statement, it does not attempt to generate an executable program.

410 Part VI: The Part of Tens

Disabling warning and error messages is a bit like unplugging the Check Engine
light on your car dashboard because it bothers you: Ignoring the problem
doesn’t make it go away. If your compiler has a Syntax Check from Hell mode,
enable it.

Don’t start debugging your code until you remove or at least understand all
warnings generated during compilation. Enabling all warning messages if you
then ignore them does you no good. If you don’t understand the warning, look
it up. What you don’t know will hurt you.

Adopt a Clear and Consistent
Coding Style

Coding in a clear and consistent style not only enhances the readability of
your program but also results in fewer coding mistakes. Remember, the less
brain power you have to spend deciphering C++ syntax, the more you have
left over for thinking about the logic of the program at hand. A good coding
style enables you to do the following with ease:

 ✓ Differentiate class names, object names, and function names.

 ✓ Know something about the object based on its name.

 ✓ Differentiate preprocessor symbols from C++ symbols (that is, #defined
objects should stand out).

 ✓ Identify blocks of C++ code at the same level (this is the result of consis-
tent indentation).

In addition, you need to establish a standard module header that provides
information about the functions or classes in the module, the author (pre-
sumably, that’s you), the date, the version of the compiler you’re using, and a
modification history.

Finally, all programmers involved in a single project should use the same style.
Trying to decipher a program with a patchwork of different coding styles is
confusing.

 You can let Code::Blocks maintain your source code style for you. Select
Settings➪Editor and then select Source Formatter on the left. From the menu
on the right, you can select your preferred source code style. Now select
Pluggins➪Source Code Formatter to completely reformat your modules.

411 Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program

Limit the Visibility
Limiting the visibility of class internals to the outside world is a cornerstone
of object-oriented programming. The class is responsible for its own internals;
the application is responsible for using the class to solve the problem at hand.

Specifically, limited visibility means that data members should not be accessi-
ble outside the class — that is, they should be marked as protected. (Another
storage class, private, is not discussed in this book.) In addition, member
functions that the application software does not need to know about should
also be marked protected. Don’t expose any more of the class internals than
necessary.

A related rule is that public member functions should trust application code
as little as possible. Any argument passed to a public member function should
be treated as though it might cause bugs until it has been proven safe. A func-
tion such as the following is an accident waiting to happen:

class Array
{
 public:
 explicit Array(int s)
 {
 size = 0;
 // new throws exception if memory not available
 pData = new int[s];
 size = s;
 }
 ~Array()
 {
 delete[] pData;
 size = 0;
 pData = nullptr;
 }
 //either return or set the array data
 int data(int index)
 {
 return pData[index];
 }
 int data(int index, int newValue)
 {
 int oldValue = pData[index];
 pData[index] = newValue;
 return oldValue;
 }
 protected:
 int size;
 int *pData;
};

412 Part VI: The Part of Tens

The function data(int) allows the application software to read data out of Array.
This function is too trusting; it assumes that the index provided is within the
data range. What if the index is not? The function data(int, int) is even worse
because it overwrites an unknown location.

What’s needed is a check to make sure that the index is in range. In the fol-
lowing, only the data(int) function is shown for brevity:

int data(unsigned int index)
{
 if (index >= size)
 {
 throw Exception("Array index out of range");
 }
 return pData[index];
}

Now an out-of-range index will be caught by the check. (Making index unsigned
precludes the necessity of adding a check for negative index values.)

Comment Your Code While You Write It
You can avoid errors if you comment your code while you write it rather
than wait until everything works and then go back and add comments. I can
understand not taking the time to write voluminous headers and function
descriptions until later, but you always have time to add short comments
while writing the code.

Short comments should be enlightening. If they’re not, they aren’t worth
much. You need all the enlightenment you can get while you’re trying to
make your program work. When you look at a piece of code you wrote a few
days ago, comments that are short, descriptive, and to the point can make a
dramatic contribution to helping you figure out exactly what it was you were
trying to do.

In addition, consistent code indentation and naming conventions make the
code easier to understand. It’s all very nice when the code is easy to read
after you’re finished with it, but it’s just as important that the code be easy to
read while you’re writing it. That’s when you need the help.

413 Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program

Single-Step Every Path at Least Once
It may seem like an obvious statement, but I’ll say it anyway: As a program-
mer, it’s important for you to understand what your program is doing. Nothing
gives you a better feel for what’s going on under the hood than single-stepping
the program with a good debugger. (Code::Blocks contains an integrated
debugger.)

Beyond that, as you write a program, you sometimes need raw material to
figure out some bizarre behavior. Nothing gives you that material better than
single-stepping new functions as they come into service.

Finally, when a function is finished and ready to be added to the program,
every logical path needs to be traveled at least once. Bugs are much easier
to find when the function is examined by itself rather than after it has been
thrown into the pot with the rest of the functions — and your attention has
gone on to new programming challenges.

Avoid Overloading Operators
Other than using the assignment operator operator=(), you should hold off
overloading operators until you feel comfortable with C++. Overloading oper-
ators other than assignment is almost never necessary and can significantly
add to your debugging woes as a new programmer. You can get the same
effect by defining and using the proper public member functions instead.

After you’ve been C-plus-plussing for a few months, feel free to return and
start overloading operators to your heart’s content.

Manage the Heap Systematically
As a general rule, programmers should allocate and release heap memory
at the same “level.” If a member function MyClass::create() allocates a block
of heap memory and returns it to the caller, there should be a member func-
tion MyClass::release() that returns the memory to the heap. Specifically,
MyClass::create() should not require the parent function to release the memory.
This certainly doesn’t avoid all memory problems — the parent function may
forget to call MyClass::release() — but it does reduce the possibility somewhat.

414 Part VI: The Part of Tens

Use Exceptions to Handle Errors
The exception mechanism in C++ is designed to handle errors conveniently
and efficiently. In general, you should throw an error indicator rather than
return an error flag. The resulting code is easier to write, read, and maintain.
Besides, other programmers have come to expect it — you wouldn’t want to
disappoint them, would you?

It is not necessary to throw an exception from a function that returns a “didn’t
work” indicator if this is a part of everyday life for that function. Consider
a function lcd() that returns the least common denominators of a number
passed to it as an argument. That function will not return any values when
presented a prime number (a prime number cannot be evenly divided by any
other number). This is not an error — the lcd() function has nothing to say
when given a prime.

Declare Destructors Virtual
Don’t forget to create a destructor for your class if the constructor allocates
resources (such as heap memory) that need to be returned when the object
reaches its demise. Having created a destructor, don’t forget to declare it vir-
tual (almost) every time especially if you know that your class is likely to be
inherited and extended by subclasses. The problem is demonstrated in the
following code snippet:

#include <iostream>

using namespace std;
class Person
{
 public:
 Person(const char* pszName)
 {
 psName = new string(pszName);
 }
 ~Person()
 {
 delete psName; psName = nullptr;
 }

 protected:
 string* psName;
};
class Student : public Person

415 Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program

{
 public:
 Student(const char* pszName, unsigned ID,
 const char* pszMajor)
 : Person(pszName), mID(ID)
 {
 psMajor = new string(pszMajor);
 }
 ~Student()
 {
 delete psMajor; psMajor = nullptr;
 }
 protected:
 unsigned mID;
 string* psMajor;
};

void fn()
{
 Person* p = new Student("Stew Dent", 1234, "Physics");
 delete p;
}

The function fn() creates a Student object. The Student class extends a class
Person that allocates heap memory to hold the person’s name in the construc-
tor and returns it in the destructor. In addition, the Student constructor allo-
cates memory that it returns in its own destructor.

The problem occurs when fn() stores the returned pointer to a Student in a
variable declared Person*. This is allowed because a Student IS_A Person
(see Chapter 11 if this doesn’t make sense). The problem is that the delete p
invokes the Person destructor but not the Student destructor, resulting in a
memory leak.

Making the following change to the class solves the problem:

class Person
{
 public:
 Person(char* pszName) { psName = new string(pszName);}
 virtual ~Person() { delete psName; / nullptr; }

 protected:
 string* psName;
};

This causes C++ to invoke the destructor based on the pointer’s actual type
(in this case Student*) and not its declared type (Person*).

416 Part VI: The Part of Tens

Okay, so when should I not declare the destructor virtual? Declaring any
member in a class virtual means that C++ must add an extra pointer or two
to each object of that class to keep track of its virtual members. Thus, if you
were to declare a lot of Person objects, an extra few pointers per object might
be a big deal.

As a general rule, if you expect someone to inherit your class then declare its
destructor virtual. And if you are about to inherit from an existing base class,
make sure that its destructor is declared virtual as well.

Avoid Multiple Inheritance
Multiple inheritance, like operator overloading, adds another level of complex-
ity that you don’t need to deal with when you’re just starting out. Fortunately,
most real-world relationships can be described with single inheritance.

After you feel comfortable with your level of understanding of C++, experi-
ment with setting up some multiple inheritance hierarchies. That way, you’ll
be ready when the unusual situation that requires multiple inheritance to
describe it accurately arises.

Chapter 30

Ten Ways to Protect Your
Programs from Hackers

In This Chapter
▶ Protecting yourself from user input

▶ Handling failures in your code

▶ Maintaining a program log

▶ Following good development process

▶ Practicing good version control

▶ Authenticating users securely

▶ Managing your sessions

▶ Obfuscating your code

▶ Signing your code

▶ Using encryption securely

C
hapter 28 describes things you should do in your code to avoid writing
programs that are vulnerable to hackers. It also describes features that

you can enable if your operating system supports them, such as Address Space
Layout Randomization (ASLR) and Data Execution Prevention (DEP). This chap-
ter describes further steps you can take as part of the software development
process to defend yourself from the “hackerata.”

Don’t Make Assumptions
about User Input

The programmer has a frame of mind when writing a program. She’s thinking
about the problem that she’s trying to solve. Given that a person can keep
only so many things in her mind at one time, she’s probably not thinking
much beyond the immediate problem.

418 Part VI: The Part of Tens

Programmer’s tunnel vision is okay during the early development phase. At
some point, however, the programmer (or, better yet, some other program-
mer who had nothing to do with the development of the code) needs to sit
back and forget about the immediate problem. She needs to ask herself, “How
will this program react to illegal input?”

For example, in the field for the username, suppose someone enters several
thousand garbage characters. How will the program react? Ideally, you want
the program to respond with an error message like, “What the heck are these
several thousand characters doing in the place where I expected a name?”
Barring that, a simple “I don’t understand what you mean” is fine.

In fact, anything short of crashing or corrupting data is acceptable. This is
because a crash indicates a possible intrusion vector that a hacker can exploit
to get your program to do something that you don’t want it to do.

 Not every crash is exploitable, but many crashes are. In fact, throwing lots of
garbage input at a program and looking for the crashes is called fuzzing the
program and is often the first step to finding exploits in deployed applications.

Here are some of the rules for checking input:

 ✓ Make no assumptions about the length of the input.

 ✓ Don’t accept more input than you have room for in your fixed-length buf-
fers (or used variable-size buffers).

 ✓ Check the range of every numerical value to make sure that it makes sense.

 ✓ Check for and filter out special characters that may be used by a hacker
to inject code.

 ✓ Don’t pass raw input onto another service, such as a database server.

And perform all of the same checks on the values returned from remote ser-
vices. The hacker may not be on the input side, he may be on the response side.

Handle Failures Gracefully
By this, I don’t mean “Don’t be a sore loser.” What I mean is that your pro-
gram should respond reasonably to failures that occur within the program.
For example, if your call to a library function returns a nullptr, the program
should detect this and do something reasonable.

Reasonable here is to be understood fairly liberally. I don’t necessarily mean
that the program needs to sniff around to figure out exactly why the func-
tion didn’t return a reasonable address. It could be that the request was for

419 Chapter 30: Ten Ways to Protect Your Programs from Hackers

way too much memory due to unreasonable input. Or it could be that the
constructor detected some type of illegal input. It doesn’t matter. The point
is that the program should restore its state as best it can and set up for the
next bit of input without crashing or corrupting existing data structures such
as the heap.

In general this means the following:

 ✓ Check for illegal input to interface functions and throw an exception
when you detect it.

 ✓ Catch and handle exceptions at the proper points.

 Some programmers are good at checking for illegal input and throwing excep-
tions when problems occur, but they’re not so good at catching exceptions
and handling them properly. I would give this type of programmer a B–. At
least their programs are hard to exploit, but they’re easy to crash, making
them vulnerable to the relatively less dangerous Denial of Service attacks.

Another rule of thumb is to fail secure. For example, if you are trying to
check someone’s password and the user inputs 2,000 characters replete with
embedded SQL statements, not only is it necessary to reject this garbage,
but you must also not approve this nonsense as if it were a valid password.
Whenever you catch an exception, you should not assume things about the
state of the system (like the fact that the user has been properly identified
and credentialed) that may not be true. It is far better to require the user to
reenter his credentials after a major failure than it would be to assume that
an invalid user has already been approved.

Maintain a Program Log
Create and maintain runtime logs that allow someone to reconstruct what
happened in the event of a security failure. (Actually, this is just as true in
the event of any type of failure.) For example, you probably want to log every
time someone signs into or out of your system. You’ll definitely want to know
who was logged into your system when a security event occurred — this is
the group that’s most at risk of a security loss and who are most suspicious
when looking for culprits. In addition, you’ll want to log any system errors
which would include most exceptions.

A real-world production program contains a large number of calls that look
something like the following:

log(DEBUG, "User %s entered legal password", sUser);

420 Part VI: The Part of Tens

 This is just an example. Every program will need some type of log function.
Whether or not it’s actually called log() is immaterial.

This call writes the string User xxx entered legal password, where xxx is replaced
by the name contained in the variable sUser to the program log file when the
system is in Debug mode. When the program is not in Debug mode, this call
does nothing — this is to avoid paying a performance penalty for logging too
much information when everything is going smoothly.

System log functions usually support anywhere from two to five levels of
severity that dictate whether log messages get written out or not. There are
some failures that are always written to the log file:

if (validate(sUser, sPassword) == true)
{
 log(DEBUG, "User %s entered legal password", sUser);
}
else
{
 log(ALWAYS, "User %s entered illegal password",

sUser);
}

Here, the program logs a valid user password only when the system is in
Debug mode, but it always logs an invalid user password just in case this
represents an attempt by someone to break into the system by guessing
passwords.

Log files must be maintained. Generally, that means running a job automati-
cally at midnight or some other time of decreased use that closes the cur-
rent log file, moves it into a separate directory along with the day’s date,
and opens a new log file. This keeps a single log file from getting too big and
unwieldy. It also makes it a lot easier to go back to past log files to find a par-
ticular event.

In addition, reviewing log files is a boring, thankless, and therefore error-prone
job. This makes it a job best performed by computers. Most large systems have
special programs that scan the log file looking for anomalies that may indicate
a problem. For example, one or two invalid passwords per hour is probably
nothing to worry about — people fat-finger their passwords all the time. But a
few thousand invalid passwords in an hour is probably worth getting excited
about. This may indicate an attempt at forced entry by brute-force guessing a
password.

 An entire For Dummies book could be written on log file maintenance. There
is way more to this topic than I can cover here. Log files must be backed up
daily and cleaned out periodically lest they grow forever. In addition, someone
or some program needs to monitor these log files to detect problems such as
repeated attempts to guess someone’s password.

421 Chapter 30: Ten Ways to Protect Your Programs from Hackers

Maintaining a system log gives the system administrator the raw material
that she needs to reconstruct what happened in the event that the unthink-
able happens and a hacker makes it into the system.

Follow a Good Development Process
Every program should follow a well thought out, formal development process.
This process should include at least the following steps:

 ✓ Collect and document requirements, including security requirements.

 ✓ Review design.

 ✓ Adhere to a coding standard.

 ✓ Undergo unit test.

 ✓ Conduct formal acceptance tests that are based on the original
requirements.

In addition, peer reviews should be conducted at key points to verify that the
requirements, design, code, and test procedures are high quality and meet
company standards.

 I am not against New Age development techniques such as recursive and agile
development. But agile is not a synonym for sloppy — just because you are
using an agile development process does not mean that you can skip any of
the preceding development steps.

 I am also not a Process Nazi. The preceding steps do not need to be as formal
or as drawn out for a small program involving one or two developers as they
would be for a project that employs dozens of systems analysts, developers,
and testers. However, even small programs can contain hackable security
flaws, and it takes only one for your computer to become somebody’s bot.

Implement Good Version Control
Version control is a strange thing. It’s natural not to worry about version 1.1
when you’re under the gun to get version 1.0 out the door and into the wait-
ing users’ outstretched hands. However, version control is an important topic
that must be addressed early because it must be built into the program’s ini-
tial design and not bolted on later.

422 Part VI: The Part of Tens

One almost trivial aspect of version control is knowing which version of the
program a user is using. Now this sounds kind of stupid, but believe me, it’s
not. When a user calls up and says, “It does this when I click on that,” the help
desk really needs to know which version of the program the user is using. He
could be describing a problem in his version that’s already been fixed in the
current version.

A program should have an overall version number that either gets displayed
when the program starts or is easily retrievable by the user (or both). Usually
the version number is displayed as part of the help system. In the code, this
can be as simple as maintaining a global variable with the version number
that gets displayed when the user selects Help➪About. The programmer is
responsible for updating this version number whenever a new version gets
pushed out to production. This Help window should also display the version
number of any Web services that the program uses, if possible.

A more pernicious aspect of version control is how to roll new versions of the
application out to users. This includes both the code itself and changes to the
data structures, such as database tables, that the application may access.

The code roll-out problem is trivial with browser-based Web applications —
you simply load a new version onto the server, and the next time the user
clicks on your page, he gets the new version. However, this problem is much
more difficult for applications that install onto the user’s computer. The prob-
lem is that this is a great opportunity for hackers to exploit your application.

Suppose for example that you have devised a really cool update feature in
your application. The user clicks on Update Now, and the application goes
back to the server and checks for a new version. If a new version is available,
the application automatically downloads the update and installs it.

If a hacker figures out the protocol that your application uses for download-
ing updates and if that protocol is not sufficiently secured, a hacker can con-
vince your application on other people’s computers to download a specially
modified version that she’s created, complete with malware of her own cre-
ation. Pretty soon your entire user base is infected with some type of malware
that you know nothing about.

I’m not saying that automatic updates can’t be done securely — obviously
they can, or companies like Microsoft and Apple wouldn’t do them. I’m just
saying that if you do choose the automatic-update route, you need to be very
careful about how you implement security.

Even if you go the old fashioned route and have the user download a new
MyApplication_Setup.exe that installs the new application, you need to worry
about whether some hacker may have uploaded a version of your program

423 Chapter 30: Ten Ways to Protect Your Programs from Hackers

laced with malware. Most download Web sites are pretty careful about checking
applications for malware. Another approach is to calculate a secure checksum
and include it with the download file. The user can then recalculate that check-
sum on the file that he downloads. If the number he calculates doesn’t match
the number that you uploaded, then the executable file may have been tam-
pered with and the user shouldn’t install the program. Although this approach
is pretty secure, very few users bother.

Authenticate Users Securely
User authentication should be straightforward: The user provides an account
name and a password, and your program looks the account name up in a table
and compares the passwords. If the passwords match, the user is authenti-
cated. But when it comes to antihacking, nothing is that simple.

First, never store the passwords themselves in the database. This is called
storing them in the clear and is considered very bad form. It’s far too easy
for a hacker to get his hands on the password file. Instead, save off a secure
transform of the password.

 This is known as a secure hash, and there are several such algorithms defined;
the most common are MD5, SHA1, and SHA256. All of these hash functions
share several common properties: It is very unlikely that two passwords will
generate the same hash value, it is virtually impossible to figure out the origi-
nal password from the hashed value, and even a small change in the password
results in a wildly different hashed value.

Unfortunately no secure hash function is included in the standard C++ library,
but there are standard implementations of the most common algorithms in
many open source libraries. In addition, the algorithms, along with sample
code for each of these, is available on Wikipedia.

In practice, these hash functions work as follows:

 1. The user creates a password when he registers with the application.

 2. The application appends a random string (known as a salt) to either the
front or the end of the password the user enters.

 3. The application runs the resulting string through one of the secure hash
algorithms.

 For example, the SHA256 algorithm generates a 64-digit hexadecimal-
number (256-bit) result. The application stores this result and the salt
string in a database table along with the user’s name.

424 Part VI: The Part of Tens

When the user logs in, the application goes through the following steps to
verify the user’s password:

 1. Uses the username to look up the salt values and the hashed password
in the user table.

 2. Adds the salt string to the user’s password and calculates the secure hash.

 3. Compares this newly calculated value to the value stored in the table. If
it matches the value stored in the table, then the user is authenticated.

This algorithm has the advantage that if a hacker were to get hold of the
password table, it would still be difficult for him to create a password that
would match one of the existing hashes.

 It may be difficult but it is not impossible to find a password that matches a
given hash value, however — the MD5 algorithm, though popular, is particu-
larly susceptible to this type of attack. If you suspect that the password table
has been compromised, you must invalidate all of the user accounts and force
people to securely reregister with the application.

Why salt? It’s bad for the heart
The salt value adds security to the process by
making it difficult for a hacker to deduce the
password, even if he intercepts the hashed
value by sniffing the line. It does this in two ways:

 ✓ One successful technique at guessing
passwords is to construct a table of pre-
hashed common passwords. This is known
as a password dictionary.

 When the hashed password comes over
the line, the hacker looks up the hashed
value in the dictionary — this is a very quick
operation. If it is found, then the hacker
knows the user’s password. However, this
technique will not work, even if the user
picks a common password, if a random long
salt value has been added.

 ✓ A salt can help make up for passwords that
are too short.

 For example, a hacker who knows that a
user is lazy and doesn’t use passwords with
more than six characters has no trouble
trying all possible six-letter combinations to

reconstruct a password from its hash. But a
6-letter password combined with a random
30-letter hash cannot be calculated in
advance. Lastly, a random salt value gives
two different users with the same pass-
word a different hash value.

However, salts aren’t magic. The salt value is
transmitted in the clear. If the user chooses a
sufficiently short password (say, four charac-
ters) and the hacker knows this, the hacker can
still generate the hashes of all possible four-
letter passwords combined with the salt string
and break the lazy user’s password.

Remember that for a salt to be effective it needs
to have three properties:

 ✓ It must be generated separately for each
user — using the same salt value over and
over doesn’t add any security.

 ✓ It must be sufficiently long (say 20 or 30
characters).

 ✓ It must be random.

425 Chapter 30: Ten Ways to Protect Your Programs from Hackers

Once you’ve authenticated a user, your application should assign that user a
role that specifies the types of things that he is allowed to do in the applica-
tion. Consider a weekly status report application. A normal user should only
be able to edit entries that he creates. He may or may not be able to read
other users’ entries. A person assigned the role of supervisor may be able to
edit other users’ entries. Only the few users assigned the role of administra-
tor should be able to edit the tables, register new users, or change the roles
of other users.

By keeping the number of administrators to a minimum, you reduce the number
of vulnerabilities that your application exposes. For example, if a hacker breaks
into a normal user’s account, he can do little more than edit that user’s status
information. Bad but certainly not a disaster.

And, finally, your application should keep statistics on user log-ins. You should
consider deactivating the accounts of users that haven’t used the system in a
long time. In addition, the application should react automatically to repeated
attempts to log in with the wrong password by either permanently, or at least
temporarily, locking out the account. This will make it much more difficult for
a computer on the other end of a connection to run through thousands or mil-
lions of possible passwords attempting to brute-force guess one.

Manage Remote Sessions
You can make certain assumptions when all of your application runs on a single
computer. For one thing, once the user has authenticated himself, you don’t
need to worry about him being transformed into a different person (unless
your application is intended to run at Hogwarts Academy of Witchcraft and
Wizardry). Applications that communicate with a remote server can’t make
this assumption — a hacker who is listening on the line can wait until the user
authenticates himself and then hijack the session.

What can the security-minded programmer do to avoid this situation? You
don’t want to repeatedly ask the user for his password just to make sure that
the connection hasn’t been hijacked. The alternative solution is to establish
and manage a session. You do this by having the server send the remote
application a session cookie once the user has successfully authenticated
himself.

 The term cookie is not very descriptive. It is actually a string of digits or charac-
ters. A cookie can be in a file on the hard disk, or it can be held in RAM. Session
cookies are generally held in RAM for extra security. All modern browsers
include support for cookies.

A cookie may include information such as a hash of the user’s password and
the time that the session started. Throughout the session, the server peri-
odically challenges the remote application for a copy of the cookie. As long

426 Part VI: The Part of Tens

as the remote application presents a valid cookie, the server can be reason-
ably certain that the person on the other end of the connection is the same
person who entered the correct password in the first place.

If at any time the remote application cannot produce a cookie that matches
the cookie provided to it at the beginning of the session, the server appli-
cation automatically logs the user off and refuses to listen to the remote
application until it can log in again with valid username and password. If the
connection between the server and the application is lost, the server invali-
dates the cookie, thereby forcing the application to reauthenticate. When the
user logs out, the session cookie is also invalidated.

In this way the server can be reasonably certain than some nefarious applica-
tion hasn’t managed to hijack the user’s session. But what about in the other
direction? How does the application know whether it can trust the server? A
way to solve this problem is for the remote application to generate a cookie
back to the server that uniquely identifies it as a legitimate server.

A second approach, one that is much more secure, is to establish a secure
session using a standard protocol like Secure Socket Layer (SSL) or Transport
Layer Security (TLS). While the details are well beyond the scope of this book,
these protocols allow the server and the remote application to exchange pass-
words in a secure fashion. These passwords are then used to encrypt all com-
munication between the two for the remainder of the session. This encryption
precludes a hacker from intercepting the session — without the password,
the hacker can’t understand what the server is saying nor trick the server into
accepting its output. Further, since the messages are encrypted with keys that
are exchanged securely, a hacker can’t even understand what information is
being exchanged between the server and the remote app if she happens to be
listening on the line.

Obfuscate Your Code
Code obfuscation is the act of making the executable as difficult for a hacker
to understand as possible.

 To obfuscate means to make obscure or unclear.

The logic is simple. The easier it is for a hacker to understand how your code
works, the easier it will be for the hacker to figure out vulnerabilities.

The single easiest step you can take is to make sure that you only ever distrib-
ute a Release version of your program that does not include debug symbol
information. When you first create the project file, be sure to select that both

427 Chapter 30: Ten Ways to Protect Your Programs from Hackers

a Debug and a Release version should be created, as shown in Figure 30-1.
The only real difference between these two is the compiler switches: The
Debug version includes the -g switch, which tells the compiler to include
symbol table information in the executable file. This symbol information tells
the debugger where each line of code is located within the executable and
where each variable is stored. This information is necessary in order to set
break points and display the value of variables. But if this information is avail-
able in the version distributed to customers, then the hacker will be given a
blue print to each line of your source code.

Figure 30-1:
The wizard

used to
create

programs
allows you

to create
both a

Debug and
a Release
 version of

the project.

The Release version of Code::Blocks does not include the gcc -g switch, so no
symbol information is included in its executable.

 The Release version may also include enhanced code optimizations to gener-
ate faster or smaller executable files via one of the various gcc -O switches.

 You can add a Release version to an existing project in Code::Blocks by select-
ing Project➪Properties and then selecting the Build Targets tab to reveal a
dialog box like that shown in Figure 30-2. Select Add and fill in the name of the
new target. Make sure that the settings in this top-level dialog box match the
Debug settings (for example, make sure that the type is Console Application
and that the target executable and object directories are filled in). Then select
Build options and make sure that the Release target does not have the -g com-
piler switch set.

428 Part VI: The Part of Tens

Figure 30-2:
You can

add a new
build target

from the
Project➪

Properties
window.

You will need to build the Debug version during Unit Test and Debug; but before
final test and release, you should tell Code::Blocks to generate the Release ver-
sion of the program by selecting Build➪Select Target➪Release➪Build➪Rebuild.
To keep things straight, Code::Blocks puts the Release executable in a separate
target directory.

 Never, ever, distribute versions of your application with symbol information
included.

You should always endeavor to make your source code as simple, clean, and
clear as you possibly can. However, you can purchase a commercial code
obfuscator that mangles your program to make it more difficult to reverse
engineer. Some obfuscators work on the machine code, and some work at the
source level, generating a C++ program from your C++ that even you would be
hard pressed to follow. The critical thing about any obfuscator is that while
it makes the code more difficult for a human to follow, it does not change the
meaning of the code in any way.

 Don’t put too much faith in code obfuscators. It may make the code harder to
reverse engineer, but it’s still not impossible. Given enough time, a determined
hacker can reverse engineer any program.

429 Chapter 30: Ten Ways to Protect Your Programs from Hackers

Sign Your Code With a Digital Certificate
Code signing works by generating a secure hash of the executable code and
combining it with a certificate issued by a valid certificate authority. The process
works like this: The company creating the program must first register itself with
one of the certificate authorities. Let’s use the example of my great retirement
hope, My Company, Inc. I must first convince one of the commercially available
certificate authorities that My Company, Inc., is in fact a real company and not
just some den of thieves or figment of my imagination. I do this by revealing its
address, its phone numbers, the names and addresses of its officers, the URL of
its Web site, and so on. I may also be asked to produce My Company’s tax filings
for the past few years to prove that this isn’t some bogus claim.

Once the certificate authority is convinced that My Company is a valid software
entity, it issues a certificate. This is a long number that anyone can use to verify
that the holder of this certificate is the famous My Company of San Antonio.

Executables generated by My Company can then be signed with this certifi-
cate. Signing an executable does two things:

 ✓ It creates a secure hash that would make it very difficult (as close to
impossible as possible) for a hacker to modify the executable without
being detected by the user’s computer.

 ✓ It insures the user that this program was created by a legitimate soft-
ware development company.

When a user runs my program for the first time, the application presents its
certificate and secure hash combination to the operating system. The OS first
calculates a hash of the executable and compares it to the hash presented.
If these match, then the OS is reasonably certain that the executable is the
same one that My Company shipped out of its doors. The OS then validates
the certificate to make sure that it is valid and hasn’t been revoked. If that
matches, the OS presents a dialog box to the user that states this application
is a valid executable from My Company, Inc., and asks whether it should con-
tinue executing it.

Use Secure Encryption
Wherever Necessary

Like any good warning, this admonition has several parts. First, “Use encryp-
tion wherever necessary.” This tends to bring to mind thoughts of communi-
cating bank account information over the Internet, but you should think more

430 Part VI: The Part of Tens

general than that. Data that’s being communicated, whether over the Internet
or over some smaller range, is known generally as Data in Motion. Data in
Motion should be encrypted unless it would be of no use to a hacker.

Data stored on the disk is known as Data at Rest. This data should also
be encrypted if there is a chance of the disk being lost, stolen, or copied.
Business es routinely encrypt the hard disks on their company laptops in
case a laptop gets stolen at the security scanner in the airport or left in a taxi
somewhere. Small portable storage devices such as thumb drives are espe-
cially susceptible to being lost — data on these devices should be encrypted.

Encryption is not limited to data — the entire communication session should
be encrypted if a hacker could coax your application into revealing secrets
by spoofing either the remote application or the server.

But this section’s title says “Use Secure Encryption.” Don’t make up your
own encryption scheme or try to improve upon existing schemes because
the results won’t be secure. Encryption algorithms go through years of test-
ing and evaluation by experts before they are adopted by the public. Don’t
think that you are going to improve on them on your own. You are more
likely to just mess them up.

A good example of this lies in the Wi-Fi in your phone, tablet, or laptop. The
original definition for Wi-Fi (known as 802.11b) used a reasonably secure pub-
lished algorithm for securing the packets of information sent over the airwaves.
It called this standard WEP (Wired Equivalent Privacy, sometimes erroneously
labeled Wireless Encryption Protocol). Unfortunately, the designers of 802.11b
didn’t implement the protocol correctly, which left 802.11b hopelessly vulnera-
ble to hacking. By 2004, programs were available on the Web that could break a
WEP-encrypted data stream in three minutes or less. This flaw was recognized
fairly quickly, and subsequent standards replaced WEP with the more secure
WPA2 (Wi-Fi Protected Access).

 When the holes in WEP were first discovered, the Wi-Fi Alliance, keepers of the
802.11 standard, knew they had a problem. The replacement encryption stan-
dard that they wanted could not be implemented on many of the existing Wi-Fi
Access Points that were built to support WEP. Therefore, the Wi-Fi Alliance
decided to release an intermediate standard known as WPA1. This protocol
implemented the original encryption algorithm the way it should have been
implemented in the first place. Since it was so similar to WEP, WPA1 could
be implemented on existing hardware with relatively minor changes to the
firmware. Nevertheless, the fixes resulted in a significant increase in security
over the flawed WEP implementation. However, WPA1 was never intended to
be anything more than a stop-gap. The completely new WPA2 standard was
introduced in 2004 and required on all devices built after 2006. Secure applica-
tions no longer allow the use of WEP. For example, the Payment Card Industry
outlawed its use in 2008. Though I saw support for WPA1 as late as 2010, WPA2
is the state of the art as of this writing.

Index

• Symbols and Numerics •
-- (decrement) unary operator

defined, 50–51
looping statements, 74–75
order of precedence, 48
prefix and postfix versions, 51, 74–75

- (negative) unary operator
defined, 50
order of precedence, 48

- (subtraction) binary operator, 48, 136
! (NOT) logical operator, 54
!= (inequality) logical operator, 54
symbol, 154, 158
% (modulus) binary operator, 304

defined, 48
order of precedence, 48

& (AND) bitwise operator
defined, 62
test program using, 65–67
using, 64
values, 63

& (unary) pointer operator, 123–124
&& (AND) logical operator

defined, 54–55
general discussion, 53
short-circuit evaluation, 58–59

() parenthesis, order of precedence
and, 50

* (multiplication) binary operator,
48, 137

* (unary) pointer operator, 123, 125–126,
193–194

. wildcards, 150
. (dot) operator, 304
/ (division) binary operator, 48
// (double slash) comment

characters, 28

/* */ comment characters, 28
:: (scope resolution) operator, 183–184,

304, 375
; (semicolons), 28
?: (ternary) operator, 304
\\ (backslash) character, 42–43
^ (XOR) bitwise operator

defined, 62
test program using, 65–67
values, 64

| (OR) bitwise operator
defined, 62
test program using, 65–67
values, 63

|| (OR) logical operator
defined, 54–55
short-circuit evaluation, 58

~ (NOT) bitwise operator
defined, 62
destructors, 221
using, 64
values, 63

+ (addition) binary operator, 48, 136
+ (positive) unary operator

defined, 50
order of precedence, 48

++ (increment) unary operator
defined, 50–51
iterators, 377
looping statements, 74
order of precedence, 48
prefix and postfix versions, 51
reasons for creating, 51

< (less than) logical operator, 54–55, 371
<< (insertion) operator, 304, 315–316, 371
<= (less than or equal to) logical
operator, 54–55
= (assignment operator), 30, 51–52, 54,

371, 375

432 C++ For Dummies, 7th Edition

== (equality) logical operator
assignment operator versus, 54
defined, 54
list class, 375
string class, 371

-> (arrow) operator, 194, 304
> (greater than) logical operator, 54–55, 371
>= (greater than or equal to) logical

operator, 54–55
>> (extraction) operator, 304, 315–316, 371
\0 (null character), 42–43, 114–115
\0nn (octal character), 42–43

• A •
abstract classes

concept of, 295–297
passing, 298
subclasses of, 298

accumulator value, 81, 84, 109
addition (+) binary operator, 48, 136
Address Space Layout Randomization

(ASLR), 404
AND (&) bitwise operator

defined, 62
test program using, 65–67
using, 64
values, 63

AND (&&) logical operator
defined, 54–55
general discussion, 53
short-circuit evaluation, 58–59

app flag, 318
append() function, 371
arguments

default values for, 101–102
defined, 93
functions with, 95–97
functions with multiple, 97
optional nature of, 94
passing by reference, 102–103
passing by value, 102–103

ArrayDemo sample program
displayArray() function, 108–109
inputValues[] array, 109
overview, 107–108

readArray() function, 108–109
sumArray() function, 108–109

ArrayOfStudents sample program, 191–192
arrays

accessing individual elements of, 106
applying operators to addresses,

138–139
arrays of, 112
of characters

concatenating strings, 115–117
creating, 112–113
creating strings of characters, 114–115
utilizing, 146–147

constructing, 244
contrasted with pointers, 142–144
declaring, 106
defined, 105
deleting, 224
disadvantages of, 369
example of, 107–109
initializing, 110
of objects

allocating off heap, 200
constructing, 218–219
declaring, 191–192

of pointers, 145–146
range-based loops, 111–112
relationship to pointers, 136–138
size of, 106, 109
string-handling functions, 117–118
wide string-handling functions, 118–120
writing beyond range of, 110–111

arrow (->) operator, 194, 304
ASLR (Address Space Layout

Randomization), 404
assert() function, 165
assignment operator (=), 30, 51–52, 54,

371, 375
assignment operators

copy constructors versus, 305–306
deleting, 310
move constructor and, 312–314
order of precedence, 48
overloading, 305, 306–311
overview, 51–52
return type and value, 310

433433 Index

at() function, 371
ate flag, 318, 319
auto keyword, 45, 46
automatic variables, 110

• B •
backslash character (\\), 42–43
bad() function, 320, 323
base 2 (binary) number system, 60
base 8 (octal) number system, 60–61
base 10 (decimal) number system, 59–60
base 16 (hexadecimal) number system,

61–62
beg flag, 330
begin() function, 375, 377–378
binary (base 2) number system, 60
binary flag, 318, 319
binary operators

defined, 47
order of precedence, 48

bits, defined, 60
BitTest sample program, 57, 65–66, 328
bitwise logical operators

defined, 62
general discussion, 53
test of, 65–67
using, 64
values, 63–64

bool (Boolean) variables
defined, 39, 44
list class, 375
logical operations, 55–56
string class, 371–372

boolalpha flag, 327
Boolean constants, 40
BoolTest sample program, 55–56
botnets, 382–383
branch statements, 69–71
BranchDemo sample program, 70–71
break command, 80–82, 85
BreakDemo sample program, 80–81
Budget sample programs, 3, 299
buffer overflow

avoiding, 322, 397–402
call stack, 389–393
example of, 387–389

general discussion, 386
hacking, 394–397
operating system helps, 405–406
string class, 402–404

BufferOverflow sample program, 387–389,
394, 397

bug avoidance
avoiding multiple inheritance, 416
avoiding overloading operators, 413
clear and consistent coding style, 410
commenting, 412
declaring destructors virtual, 414–416
enabling all warning and error messages,

409–410
limiting visibility of class internals,

411–412
managing heap memory systematically, 413
single-stepping programs, 413
using exceptions to handle errors, 414

building, defined, 10
bytes, defined, 60

• C •
C++

basic concepts, 9–11
comments, 27–28
declarations, 29
defined, 2
expressions

defined, 30
storing results of, 30–31

framework, 27
I/O statements, 30
as low-level standard programming

language, 2
as object-oriented language, 2
as portable language, 2
programs

building, 24–25
creating projects, 19–21
downloading and installing project

files, 23–24
entering code, 21–23
executing, 25–26

statements, 28–29
as strongly typed language, 34

434 C++ For Dummies, 7th Edition

C++ 2011 standard
0x standard, 12
automatic declarations, 45
const expressions, 160
constructing members with initializers,

237–238
default constructor, 232–233
delegating constructors, 230–231
deleting assignment operator, 310
deleting copy constructor, 258, 310
for each loops, 79
explicit keyword, 245
external template instantiations, 366
final keyword, 287
gcc compiler, 10
inheritance of constructors by

subclasses, 279
initializer lists, 367
invoking constructors other than

default, 244
iterators, 378, 380
move constructor, 247, 258, 312–314
nullptr constant, 145, 202, 309
override descriptor, 286–287
range-based loops, 111–112, 144
size of arrays, 106
size_type type, 372
static member functions, 267
static_assert() function, 165
wchar_t variables, 43

C++ 2014 standard
binary numbers, 62
const expressions, 161
constant expressions, 85
defining constants of separate, user-

defined types, 161–162
gcc compiler, 10
size of arrays, 106

cache flushing, 329
CALL instruction, 390–392, 396–397
CallMemberFunction sample program,

179–182
CallStaticMember sample program, 265–267
capacity() function, 371
CascadingException sample program,

340–342

case sensitivity
general discussion, 2, 22
statements, 29
variables, 29

catch keyword, 337–338, 340, 342, 345
cerr object, 316–317
char (character) variables
char string variables versus, 40
character sets, 43
defined, 39, 44
naming conventions, 45

char string (character string) variables
char variables versus, 40
defined, 39
naming conventions, 45

char_16t (UTF-16 character) variables, 43
char_32t (UTF-32 character) variables, 43
CharDisplay sample program, 113
cin input device, 30, 316
class keyword, 176
class members, 262. See also static

members
classes

abstract
concept of, 295–297
passing, 298
subclasses of, 298

accessing members of, 177
creating objects from, 176
defined, 171, 175, 215
format of, 176
member functions

accessing other members from, 182
calling, 180–182
defining, 177, 179–180
defining in classes, 185–186
defining separately from classes, 187–188
identifying current object, 183
overloading, 188–189
reasons for using, 177

naming conventions, 176
objects versus, 215
protected members

function of, 208–209
general discussion, 207

435435 Index

giving nonmember functions access to,
211–213

need for, 208
protecting internal state of classes, 210
using classes with limited interfaces, 211

scope resolution, 183–184
clear() function, 320, 323, 375
clog object, 316
close() function, 323
code obfuscation, 426–428
Code::Blocks environment

32-bit program, 26
creating projects, 19–21
defined, 10
downloading, 5
installing

for Macintosh, 15–19
for Ubuntu Linux, 13–15
for Windows, 11–14

Management window, 21–22
windowed programs, 11, 26

Command Line Tools (Mac), installing, 16–17
comments

creating while coding, 412
defined, 27
length of, 28

compare() function, 371
comparison operators, defined, 54
compilers, defined, 10
compiling, defined, 10
computer language (machine language), 9
concat() function, 370
Concatenate sample program

original version of, 115–117
wide character version of, 119–120

concrete classes, 296
concrete functions, 296
conditional clause, 75
conditional compilation, 163
const keyword, 40, 129–130, 143,

160–161, 165
constants

Boolean, 40
floating-point, 37
integer, 40
long integer, 40
variables declared as, 40–41

constexpr constant, 160–161
ConstructArray sample program, 218–219
ConstructDataMembers sample program,

236–237
ConstructingMembers sample program,

233–235
ConstructMembers sample program,

219–221
ConstructMembersWithInitializers sample

program, 237–239
constructors

cannot be virtual, 288
combining, 230–231
constructing arrays, 244
constructing complex data members,

233–237
constructing constant data members, 239
constructing duplexes, 219–221
constructing members with initializers,

237–239
constructing multiple objects, 218–219
constructing single objects, 217–218
constructing subclasses, 278–279
copy

assignment operator versus, 305–306
automatic, 250–251
example of, 248–250
overview, 247
reasons for using, 248
shallow versus deep copies, 252–255
temporary objects, 256–258

default, 231–233, 235
defined, 216
defining with arguments, 225–227
delegating, 230–231
inheritance of by subclasses, 279
move, 258–260, 312–314
multiple inheritance, 356–357
open files for input and output, 317–318
overloading, 228–231
rules for order of construction

global objects, 241–243
local objects, 240
order of declaration, 243
overview, 239–240
static objects, 240–241

type conversion, 245

436 C++ For Dummies, 7th Edition

ConstructorsCallingEachOther sample
program, 230–231

ConstructorWArg sample program, 226
ConstructorWDefaults sample program,

229–230
ConstructSeparateID sample program,

235–236
ConstructStatic sample program, 240–241
continue command, 82
ContinueDemo sample program, 82
Conversion sample program

building, 24–25
comments, 27–28
creating project, 19–21
declarations, 29
downloading and installing project files,

23–24
entering code, 21–23
executing, 25–26
expressions

defined, 30
storing results of, 30–31

framework of, 27
I/O statements, 30
statements, 28–29

cookies, 425–426
copy constructors (X::X(const X&))

automatic, 250–251
example of, 248–250
overview, 247
reasons for using, 248
shallow versus deep copies, 252–255
temporary objects, 256–258

CopyConstructor sample program, 248–250
cout output device, 30, 316
__cplusplus__ constant, 164
.CPP extension, 9
create() function, 413
cur flag, 330
CustomExceptionClass sample program,

342–345

• D •
data() function, 412
Data Execution Prevention (DEP), 404–405
__DATE__ constant, 164

Debian Linux, 14–15
dec flag, 327, 334
decimal (base 10) number system, 59–60
declarations

automatic, 45
defined, 29
function, 92
prototype, 99–100

decltype() keyword, 45, 46
decrement (--) unary operator

defined, 50–51
looping statements, 74–75
order of precedence, 48
prefix and postfix versions, 51, 74–75

DeepCopy sample program, 254–255
default keyword, 232
DefaultCopyConstructor sample program,

250–251
#define command

defined, 154
defining constants to be used throughout

program, 157–158
defining function-like macros with

arguments, 158–159
inline functions, 160

delete keyword, 133–134, 222, 224,
233, 253

DemoAssignmentOperator sample
program, 306–311

DemoMoveOperator, 313–314
demotion, defined, 45
denial of service (DoS) attacks, 382–383
DEP (Data Execution Prevention), 404–405
DestructMembers sample program, 222–224
destructors

closing files for input and output, 319
declaring virtual, 288–289, 414–416
destructing subclasses, 279
reasons for using, 221
using, 221–224

digital certificates, 429
display() function, 344
DisplayMonths sample program, 147
DisplayString sample program, 114, 140
division (/) binary operator, 48
do . . . while loops, 73
DoS (denial of service) attacks, 382–383

437437 Index

dot (.) operator, 304
double (double precision) variables

accuracy, 38, 41
defined, 39
naming conventions, 45
range, 38, 41
size, 41

double slash (//) comment characters, 28

• E •
editors, defined, 10
#else command, 163
empty() function, 372, 375
encryption, 429–430
end() function, 375, 377
end flag, 330
#endif command, 163
endl value, 55–56, 329
environments, defined, 10
eof() function, 322, 323
equality (==) logical operator

assignment operator versus, 54
defined, 54
list class, 375
string class, 371

#error command, 164–165
error messages. See also exception

handling mechanism
creating compiler errors, 164
enabling all, 409–410
error: expected primary-

expression before ‘>’ token, 25
file state, 320
illegal SQL statement, 385
overview, 24–25
sent to cerr, 317

ESP (stack pointer), 390–392, 396
exception() function, 324
exception handling mechanism

example of, 337–338
exception specification, 339
overview, 414
process for, 340–341
reasons for using, 339
rethrowing exceptions up the chain,

345–346
throwing objects, 342–345

executable files (.exe), 10, 154
explicit keyword, 245
expressions

calculation, 30
defined, 30
mathematical operations, 48–49
mixed-mode, 44–45
storing results of, 30–31

extended names (signatures), 98
extern keyword, 366
extraction (>>) operator, 304, 315–316, 371

• F •
factorial() function, 337–339
FactorialException sample program,

337–338
factoring

abstract classes
concept of, 295–297
passing, 298
subclasses of, 298

culling common properties from similar
classes, 294–295

defined, 291
direct inheritance versus, 292–294

fail() function, 320, 322
__FILE__ constant, 164, 344
FileCopy sample program, 326–327
fileFunc() function, 345–346
fill() function, 324, 328, 334
final keyword, 286–287
find() function, 372, 374
fixed flag, 327
flags() function, 324, 327–328
float (floating-point) variables

accuracy, 38, 41
calculation speed, 37
counting, 37
defined, 36, 39
logical operations, 57–58
naming conventions, 45
overflow, 42
overview, 36–37
range, 38, 41
size, 41

FloatAverage sample program, 37–38
floating-point constants, 37

438 C++ For Dummies, 7th Edition

flow-control statements
branch statements, 69–71
looping statements

autoincrement/autodecrement
feature, 74–75

avoiding infinite loops, 78
break command, 80–82
continue command, 82
general discussion, 71
for loops, 75–78
nesting, 82–84
range-based loops, 79
while loops, 72–73

overview, 69
switch statements, 84–85

flush() function, 324, 329
for each loops (range-based loops), 79,

111–112, 144
for loops

conditional clause, 75
empty sections, 76
examples of, 76–78
format of, 75
initialization clause, 75

ForDemo sample programs, 76–78
ForEachDemo sample program, 79
forward declarations, 212
friend keyword, 211–213
__func__ constant, 164, 344
function declarations, 92
functional programming

abstraction, 170–171
classification, 172
member functions, 178–179

FunctionDemo sample program
calling sumSequence(), 92–93
defining displayExplanation(), 92
defining sumSequence(), 92
overview, 89–92
splitting loops into multiple

functions, 93
functions. See also member functions

arguments
default values for, 101–102
defined, 93
functions with, 95–97
functions with multiple, 97

optional nature of, 94
passing by reference, 102–103
passing by value, 102–103

defined, 89, 93
example of

calling sumSequence(), 92–93
defining displayExplanation(), 92
defining sumSequence(), 92
overview, 89–92
splitting loops into multiple functions, 93

main(), 97
name collision, 156–157
overloading names of, 98–99
passing objects to

calling functions with object pointers,
196–197

calling functions with object values,
195–196

calling functions with reference
operator, 198–199

memory consumption and copying
objects, 199

passing pointers to
as arguments, 127–128
by reference, 128–129
by value, 127, 129

prototype declarations, 99–100
return values, 93–94
simple, 94
variable storage types, 104

fuzzing the program, 418

• G •
-g switch, 427
gcc compiler

defined, 10
downloading, 5
installing

for Macintosh, 16–19
for Ubuntu Linux, 14–15
for Windows, 11–13

gcount() function, 324, 325, 327
get() function, 324, 325
getline() function, 324, 325, 332,

402–403

439439 Index

getString() function, 388, 390–394,
396–398, 401–404

global objects
defined, 216, 240
going out of scope, 222
rules for order of construction, 239,

241–243
good() function, 320, 324, 327
GraduateStudent sample program, 278–279
greater than (>) logical operator, 54–55, 371
greater than or equal to (>=) logical

operator, 54–55

• H •
.h extension, 157
hacker-proof code

avoiding user input assumptions, 417–418
botnets, 382–383
buffer overflow

avoiding, 397–402
call stack, 389–393
example of, 387–389
general discussion, 386
hacking, 394–397
operating system helps, 405–406
string class, 402–404

checking for illegal input, 418–419
code obfuscation, 426–428
denial of service attacks, 382–383
development process, 421
digital certificates, 429
encryption, 429–430
exception handling, 418–419
fuzzing the program, 418
general discussion, 381
hackers’ motives, 381–382
program logs, 419–421
remote session management, 425–426
secure user authentication, 423–425
SQL injection

avoiding, 386
example of, 383–385

version control, 421–423
HAS_A relationships, 280
head pointers, 202, 265

heap memory
allocating arrays of objects off, 200
allocating objects off, 199–200
assignment operator, 306
classes that automatically

allocate, 201
constructors and destructors, 217,

221–223, 227, 252–254
exception handling mechanism,

345–346
limited scope, 131–133
managing systematically, 413
overview, 130–131
solving scope issues using, 133–134

hex flag, 327, 334
hexadecimal (base 16) number system,

61–62
hexidecimal character (\xnn), 42–43

• I •
identity theft, 382
#if command, 154, 162–163
if statements, 70–71
#ifdef command, 163
#ifndef command, 163
ifstream class, 317, 319, 320–321
in flag, 318, 319
#include command, 157

defined, 154
enclosing file in quotes versus

brackets, 155
include files, 155, 157, 186

increment (++) unary operator
defined, 50–51
iterators, 377
looping statements, 74
order of precedence, 48
prefix and postfix versions, 51
reasons for creating, 51

indentation, 22, 71
inequality (!=) logical operator, 54
infinite loops, 78
inheritance

defined, 171, 273–274
example of, 275–277

440 C++ For Dummies, 7th Edition

factoring
abstract classes, 295–298
culling common properties from similar

classes, 294–295
defined, 291
direct inheritance versus, 292–294

HAS_A relationships, 280
IS_A relationships, 274–275, 291
multiple inheritance mechanism

avoiding, 416
disadvantages of, 357
general discussion, 347
name collision, 349–351
object construction, 356–357
overview, 348–349
virtual inheritance, 350–356

need for, 274–275
polymorphism (late binding)

constructors, 288
declaring functions as not

overrideable, 287
declaring functions virtual, 285–286
defined, 284
destructors, 288–289
need for, 284
overriding base class functions,

281–284, 286–287
static member functions, 287

subclasses
constructing, 278–279
destructing, 279
inheriting constructors, 279
overview, 277

transitive nature of, 275
InheritanceExample sample program,

275–277
initialization clause, 75
initializer lists

arrays, 110
defined, 244
invoking constructors other than

default, 244
range-based loops, 79
templates, 366–368

inline functions, 160
advantages of, 186
defining member functions in classes,

185–186

inline keyword, 160
insert() function, 372, 374, 375
insertion (<<) operator, 304, 315–316, 371
instances, defined, 171, 176
int (integer) variables

accuracy, 41
defined, 34, 38
logical operations, 57
naming conventions, 45
overflow, 42
range, 36, 41
size, 41
truncation, 35–36

IntAverage sample program, 37, 154
integer constants, 40
integers, defined, 34
intrinsic constants, 164–165
I/O statements, 30
IS_A relationships, 274–275, 291
isLegal sample program, 101
istream class, 316, 323, 329–330, 371
istringstream class, 330, 332–333
istrstream class, 330
iteration, defined, 110
iterators, 376–378

• J •
JMP instruction, 396

• L •
late binding. See polymorphism
Layout sample program, 123–124
lcd() function, 414
left flag, 327
length() function, 372
less than (<) logical operator,

54–55, 371
less than or equal to (<=) logical

operator, 54–55
level of abstraction, 170
__LINE__ constant, 164, 344
linked lists

adding objects to head of, 202
advantages of, 201
declaring linkable classes, 202
defined, 201

inheritance (continued)

441441 Index

example of, 203–206
head pointers, 202
moving through elements in, 203

LinkedListClass sample program, 268
LinkedListData sample program,

203–206
linker, 154
linking, defined, 10
list class

example of, 378–380
iterators, 376–378
methods of, 375–376
operations on entire lists, 378
overview, 375

lists
initializer

arrays, 110
defined, 244
invoking constructors other than

default, 244
range-based loops, 79
templates, 366–368

linked
adding objects to head of, 202
advantages of, 201
declaring linkable classes, 202
defined, 201
example of, 203–206
head pointers, 202
moving through elements in, 203

Little Endian, 391, 393
local objects

defined, 216
going out of scope, 222
rules for order of construction,

239–240
logical operations

bitwise logical operators
defined, 62
general discussion, 53
test of, 65–67
using, 64
values, 63–64

reasons for using, 53–54
short-circuit evaluation, 58–59

simple logical operators, 53, 54
storing logical values

Boolean variables, 55–56
floating-point variables, 57–58
integer variables, 57

long double variables
accuracy, 41
defined, 39
range, 41
size, 41

long int (long integer) variables
accuracy, 41
defined, 38
naming conventions, 45
range, 41
size, 41

long integer constants, 40
long long int (long long integer)

variables
accuracy, 41
defined, 39
range, 41
size, 41

looping statements
autoincrement/autodecrement feature,

74–75
avoiding infinite loops, 78
break command, 80–82
continue command, 82
general discussion, 71
for loops, 75–78
nesting, 82–84
range-based loops, 79
while loops, 72–73

• M •
machine language (computer

language), 9
Macintosh

installing Code::Blocks environment,
17–19

installing Command Line Tools, 16–17
installing Xcode, 16

MacroConfusion sample program, 158

442 C++ For Dummies, 7th Edition

main() function
accessing arguments to, 148–149

from Code::Blocks, 150
from command prompt, 149–150
from Windows, 150–151

overview, 97
rules for order of construction, 241–242

manipulators, 333–335
mathematical operations

applying to pointer variables, 135–136
assignment operators, 51–52
binary operators, 47–48
expressions, 48–49
general discussion, 47
order of precedence, 49–50
unary operators, 50–51

max_size() function, 372
maximum() function, 359–361
MaxTemplate sample program, 360–361
MD5 algorithm, 423–424
member functions

accessing other members from, 182
calling, 180–182
constructors

cannot be virtual, 288
combining, 230–231
constructing arrays, 244
constructing complex data members,

233–237
constructing constant data members, 239
constructing duplexes, 219–221
constructing members with initializers,

237–239
constructing multiple objects, 218–219
constructing single objects, 217–218
copy, 247–258
default, 231–233, 235
defined, 216
defining with arguments, 225–227
delegating, 230–231
move, 258–260, 312–314
multiple inheritance, 356–357
open files for input and output, 317–318
overloading, 228–231
rules for order of construction, 239–243
type conversion, 245

defining, 177, 179–180
defining in classes, 185–186

defining separately from classes, 187–188
destructors

declaring virtual, 288–289
reasons for using, 221
using, 221–224

identifying current object, 183
overloading, 188–189
overriding base class functions, 281–284
reasons for using, 177
static, 265–267, 287
virtual

constructors, 288
declaring, 285–286
declaring functions as not

overrideable, 287
destructors, 288–289
overriding base class functions, 286–287
pure, 296
static, 287

methods, 180. See also member functions
Microsoft Windows, installing Code::Blocks

environment, 11–14
MinGW Compiler Suite, 12
mixed-mode expressions, 44–45
modules

defined, 99
headers, 410

modulus (%) binary operator
defined, 48
order of precedence, 48
syntax changes, 304

move constructors (X::X(X&&)), 258–260,
312–314

MoveCopy sample program, 258–260
multiple inheritance mechanism

avoiding, 416
disadvantages of, 357
general discussion, 347
name collision, 349–351
object construction, 356–357
overview, 348–349
virtual inheritance, 350–356

MultipleInheritance sample program,
348–349

MultipleInheritanceFactoring sample
program, 351–354

multiplication (*) binary operator, 48, 137

443443 Index

• N •
\n (newline character), 28, 42, 154, 319, 329
name collision, 156–157, 349–350
NameDataSet sample program, 268–269
namespaces, 156–157
negative (-) unary operator

defined, 50
order of precedence, 48

nested loops, 82–84
NestedDemo sample program, 83–84, 90
new keyword, 133–134
newline character (\n), 28, 42, 154, 319, 329
No Operation (NOP) instruction, 396
NoBufferOverflow sample programs,

398–403
nonmember functions

defined, 180
giving access to protected members,

211–213
NOP (No Operation) instruction, 396
NOT (!) logical operator, 54
NOT (~) bitwise operator

defined, 62
destructors, 221
using, 64
values, 63

NTBS (null-terminated byte strings),
114–115

null character (\0), 42–43, 114–115
nullptr constant, 144–145, 149, 202,

309, 418
null-terminated byte strings (NTBS),

114–115
number systems

binary (base 2), 60
decimal (base 10), 59–60
hexadecimal (base 16), 61–62
octal (base 8), 60–61

Nx flag, 404

• O •
object files (.o), 154
object-oriented programming (OOP)

abstraction, 169–170
classification, 171–172
functional programming versus, 170–172

objects
allocating off heap memory, 199–200
arrays of

allocating off heap memory, 200
declaring, 191–192

classes versus, 215
creating from classes, 176
defined, 215
global

defined, 216, 240
going out of scope, 222
rules for order of construction, 239,

241–243
local

defined, 216
going out of scope, 222
rules for order of construction, 239–240

naming conventions, 176
object pointers

arrow pointers, 194
declaring, 192–193
dereferencing, 193–194

passing to functions
calling functions with object pointers,

196–197
calling functions with object values,

195–196
calling functions with reference

operator, 198–199
memory consumption and copying

objects, 199
static

defined, 240
rules for order of construction, 239–241

ObjPtr sample program, 192–193
oct flag, 327, 334
octal (base 8) number system, 60–61
octal character (\0nn), 42–43
ofstream class, 317–318, 319
online resources

Budget sample program source code, 3
Cheat Sheet (companion to book), 4
Code::Blocks environment, 5
Command Line Tools (Mac), 16–17
Frequently Asked Questions (FAQ), 5
gcc compiler, 5
source code (companion to book), 4
Xcode development package, 16

444 C++ For Dummies, 7th Edition

OOP. See object-oriented programming
open() function, 324
openFile() function, 321–322
operators

assignment, 30
defined, 30
functions versus, 303–304
overloading, 304, 413

OR (|) bitwise operator
defined, 62
test program using, 65–67
values, 63

OR (||) logical operator
defined, 54–55
short-circuit evaluation, 58

ostream class, 316, 323, 371
ostringstream class, 330, 333
ostrstream class, 330
out flag, 318, 319
outline functions, 187–188
OverloadConstructor sample program,

228–229
overloading

assignment operators, 305, 306–311
constructors, 228–231
functions, 98–99
member functions, 188–189
operators, 304, 413
subscript operator, 311

OverloadOverride sample program,
282–283, 285

override descriptor, 286–287

• P •
parameters, 148
parseString() function, 332–333
PassObjPtr sample program, 196–197
PassObjRef sample program, 198–199
PassObjVal sample program, 195–196
pointer variables

accessing arguments to main()
from Code::Blocks, 150
from command prompt, 149–150
overview, 148–149
from Windows, 150–151

addresses, 122–123
applying operators to, 135–136, 142
arrays

applying operators to addresses,
138–139

of character strings, 146–147
contrasted with pointers, 142–144
of pointers, 145–146
relationship to pointers, 136–138

const keyword, 129–130
defined, 121
head pointers, 202
heap memory block

limited scope, 131–133
overview, 130–131
solving scope issues using, 133–134

link pointers, initializing, 202, 205
nullptr constant, 144–145
object pointers

arrow pointers, 194
declaring, 192–193
dereferencing, 193–194

operators, 123–124
passing to functions

as arguments, 127–128
by reference, 128–129
by value, 127, 129

positioning within files, 329–330
string manipulation

with character pointers, 139–141
improving efficiency with, 141

using, 125–126
variable size, 121–122

polymorphism (late binding)
constructors, 288
declaring functions as not

overrideable, 287
declaring functions virtual, 285–286
defined, 284
destructors, 288–289
need for, 284
overriding base class functions, 281–284,

286–287
static member functions, 287

pop_back() function, 375
pop_front() function, 375

445445 Index

positive (+) unary operator
defined, 50
order of precedence, 48

precision() function, 324, 334
preprocessor

commands
#define command, 154, 157–162
#if command, 154, 162–163
#include command, 154–155, 157

defined, 153–154
intrinsic constants, 164–165
typedef keyword, 166

PrintArgs sample program, 148–151
private keyword, 209, 411
program logs (system logs)

maintaining, 420–421
overview, 419–421
reviewing, 420

projects
creating, 19–21
defined, 19
naming, 21

promotion, defined, 45
protected keyword. See protected

members
protected members

declaring constructors as, 257
function of, 208–209
general discussion, 207
giving nonmember functions access to,

211–213
limiting visibility of class internals, 411
need for, 208
protecting internal state of classes, 210
using classes with limited interfaces, 211

public keyword, 176, 208, 277
push_back() function, 376
push_front() function, 376
put() function, 324, 325

• R •
range-based loops (for each loops), 79,

111–112, 144
rbegin() function, 376
read() function, 324, 325–327
Red Hat Linux, 14–15

release() function, 413
remove() function, 376
removeSpaces() function, 374
rend() function, 376
replace() function, 372
resize() function, 372
resolving calls, 189
return 0 statement, 31
right flag, 327

• S •
salt value, 423–424
SavingsClassOutline sample program,

187–188
scientific flag, 327
scope

defined, 131
limited, 131–134

scope resolution (::) operator, 183–184,
304, 375

secure hash, 423–424
Secure Socket Layer (SSL), 426
security

avoiding user input assumptions, 417–418
checking for illegal input, 418–419
code obfuscation, 426–428
development process, 421
digital certificates, 429
encryption, 429–430
exception handling mechanism

example of, 337–338
exception specification, 339
overview, 418–419
process for, 340–341
reasons for using, 339
rethrowing exceptions up the chain,

345–346
throwing objects, 342–345

fuzzing the program, 418
hacker-proof code

botnets, 382–383
buffer overflow, 386–406
denial of service attacks, 382–383
general discussion, 381
hackers’ motives, 381–382
SQL injection, 383–385, 386

446 C++ For Dummies, 7th Edition

multiple inheritance mechanism
avoiding, 416
disadvantages of, 357
general discussion, 347
name collision, 349–351
object construction, 356–357
overview, 348–349
virtual inheritance, 350–356

operators
functions versus, 303–304
insertion and extraction, 304
move constructor and operator, 312–314
overloading assignment operator,

306–311
overloading subscript operator, 311
shallow copies, 305–306

program logs, 419–421
remote session management, 425–426
secure user authentication, 423–425
Standard Template Library

general discussion, 369–370
list class, 375–380
string class, 370–375

stream I/O
default stream objects, 316–317
endl object, 329
example of, 320–321
file state, 320
format control, 327–329
function of, 315–316
manipulators, 333–335
open file modes, 319
opening and closing files, 317–319
positioning pointers within files, 329–330
reading and writing directly to streams,

325–327
reading from files, 319
stringstream subclasses, 330–333
writing to files, 319

templates
class template templates, 362–365
code generation, 365
compilation and error checking, 366
external instantiations, 366
general discussion, 359–360

generalizing functions into, 360–361
initializer lists, 366–368
instantiating, 361
memory consumption, 366
string class, 374–375

version control, 421–423
seekg() function, 324, 330
seekp() function, 325
segment violation errors, 143
semicolons (;), 28
set manipulator, 334
setf() function, 325, 327
setw() function, 334
SHA256 algorithm, 423–424
ShallowCopy sample program, 252–253
short int (short integer) variables

accuracy, 41
defined, 38
range, 41
size, 41

short-circuit evaluation, 58–59
showbase flag, 327
showpoint flag, 328
signatures (extended names), 98
simple logical operators, 53, 54
size() function, 372, 376
sizeof keyword, 121
skipws flag, 328
sort() function, 376, 378, 380
source files, defined, 9
splice() function, 376
SQL (Structured Query Language) injection

avoiding, 386
checking for illegal input, 418–419
example of, 383–385

SquareDemo sample program, 95–97
SSL (Secure Socket Layer), 426
stack pointer (ESP), 390–392, 396
Standard Template Library (STL)

general discussion, 369–370
list class

example of, 378–380
iterators, 376–378
methods of, 375–376
operations on entire lists, 378
overview, 375

security (continued)

447447 Index

string class
capabilities of, 373–374
methods of, 370–372
overview, 370
template, 374–375

statements
branch, 69–71
case sensitivity, 29
declaration, 29
defined, 28
expressions, 30–31
I/O, 30
looping

autoincrement/autodecrement feature,
74–75

avoiding infinite loops, 78
break command, 80–82
continue command, 82
general discussion, 71
for loops, 75–78
nesting, 82–84
range-based loops, 79
while loops, 72–73

switch, 84–85, 146
whitespace, 28

static keyword, 104, 261
static members

defined, 261
static data members

counting objects, 264–265
flagging actions, 265
need for, 261–262
providing space for head pointer, 265
referencing, 263–264
using, 262–263

static member functions, 265–267, 287
this keyword, 268–269

static objects
defined, 240
rules for order of construction, 239–241

static_assert() function, 165
__STDC__ constant, 164
STL. See Standard Template Library
STLListStudents sample program, 378–380
STLString sample program, 373–374
strcat() function, 118
strcmp() function, 118

strcpy() function, 118, 143, 359
stream I/O

default stream objects, 316–317
endl object, 329
example of, 320–321
file state, 320
format control, 327–329
function of, 315–316
manipulators, 333–335
open file modes, 319
opening and closing files, 317–319
positioning pointers within files, 329–330
reading and writing directly to streams,

325–327
reading from files, 319
stringstream subclasses, 330–333
writing to files, 319

StreamInput sample program, 320–323
StreamOutput sample program, 318
string class

capabilities of, 373–374
methods of, 370–372
overview, 370
template, 374–375

string manipulation
with character pointers, 139–141
functions for, 117–118
wide functions for, 118–120

string variable, 120
StringStream sample program, 330–333
strlen() function, 118
strncat() function, 118
strncmp() function, 118
strncpy() function, 118
strstr() function, 118
struct keyword, 176
Structured Query Language. See SQL

injection
subclasses

of abstract classes, 298
constructing, 278–279
defined, 171
destructing, 279
inheriting constructors, 279
overview, 277

submit() function, 384
subscript operator, overloading, 311

448 C++ For Dummies, 7th Edition

substr() function, 372
subtraction (-) binary operator, 48, 136
switch statements, 84–85, 146
system logs. See program logs
sz prefix, 115

• T •
\t (tab character), 42–43
tellg() function, 325, 329
tellp() function, 325, 330
template keyword, 361
Template sample program, 27
templates

class template templates, 362–365
code generation, 365
compilation and error checking, 366
external instantiations, 366
general discussion, 359–360
generalizing functions into, 360–361
initializer lists, 366–368
instantiating, 361
memory consumption, 366
Standard Template Library

general discussion, 369–370
list class, 375–380
string class, 370–375

stream I/O, 317
string class, 374–375

TemplateVector sample program, 362–365,
367–368

ternary (?:) operator, 304
this keyword, 268–269
throw keyword, 337–338, 342–346
__TIME__ constant, 164
__TIMESTAMP__ constant, 164
Transport Layer Security (TLS), 426
trunc flag, 318, 319
truncation

avoiding with floating-point variables,
36–37

defined, 35
logical operations, 57–58
overview, 35–36

try keyword, 337–338, 340, 342
typedef keyword, 166

• U •
Ubuntu Linux

installing Code::Blocks environment, 15
installing gcc compiler, 14–15

unary operators, order of precedence, 48
Unicode Transformation Format (UTF),

43–44
unique() function, 376
unitbuf flag, 328
unsetf() function, 325, 327
unsigned keyword, 39
unsigned variables, 39
unwinding the stack, 340
uppercase flag, 328
user authentication, 423–425
UTF (Unicode Transformation Format),

43–44
UTF-16 character (char_16t) variables, 43
UTF-32 character (char_32t) variables, 43

• V •
variables. See also pointer variables

automatic, 110
Boolean

defined, 39, 44
list class, 375
logical operations, 55–56
string class, 371–372

character
char string variables versus, 40
character sets, 43
defined, 39, 44
naming conventions, 45

character string
char variables versus, 40
defined, 39
naming conventions, 45

common types, 38–40
declaring

automatically, 45
constant, 40–41
overview, 33–34

defined, 29, 33

449449 Index

double precision
accuracy, 38, 41
defined, 39
naming conventions, 45
range, 38, 41
size, 41

floating-point
accuracy, 38, 41
calculation speed, 37
counting, 37
defined, 36, 39
logical operations, 57–58
naming conventions, 45
overflow, 42
overview, 36–37
range, 38, 41
size, 41

integer
accuracy, 41
defined, 34, 38
logical operations, 57
naming conventions, 45
overflow, 42
range, 36, 41
size, 41
truncation, 35–36

long double
accuracy, 41
defined, 39
range, 41
size, 41

long double precision
accuracy, 41
defined, 39
range, 41
size, 41

long integer
accuracy, 41
defined, 38
naming conventions, 45
range, 41
size, 41

long long integer
accuracy, 41
defined, 39
range, 41
size, 41

mixed-mode expressions, 44–45
naming, 29
nonprintable characters, 42–43
overflow, 42
range, 41
short integer

accuracy, 41
defined, 38
range, 41
size, 41

signed and unsigned versions, 39
syntax, 29
unsigned, 39
UTF-16 character, 43
UTF-32 character, 43
wide character, 39, 43–44

VariableSize sample program, 121–122
vectors, 362–365
version control, 421–423
virtual inheritance, 350–356
virtual keyword, 285, 354–355
virtual member functions

constructors, 288
declaring, 285–286
declaring functions as not

overrideable, 287
destructors, 288–289
overriding base class functions, 286–287
pure, 296
static, 287

VirtualInheritance sample program,
354–356

Visual Studio, 5
Visual Studio Express, 5
void keyword, 94, 372, 375–376

• W •
warning messages, enabling all, 409–410
wcerr object, 316–317
wchar_t (wide character) variables, 39,

43–44
wcin object, 316–317
wclog object, 316
wcout object, 316–317
wcscat() function, 119
wcscmp() function, 119

450 C++ For Dummies, 7th Edition

wcscpy() function, 119
wcslen() function, 119
wcsncat() function, 119
wcsncmp() function, 119
wcsncpy() function, 119
wcsstr() function, 119
WEP (Wired Equivalent Privacy), 430
while loops

autodecrement feature, 74–75
overview, 72–73

WhileDemo sample program, 72–74
whitespace, 2

defined, 28
enforcing, 71

wide character (wchar_t) variables, 39,
43–44

wide string-handling functions, 118–120
width() function, 325, 328–329
Wi-Fi Alliance, 430
Wi-Fi Protected Access (WPA1 and WPA2)

standards, 430
wifstream class, 317
Wired Equivalent Privacy (WEP), 430

wistream class, 316
workspaces, defined, 24
wostream class, 316
WPA1 and WPA2 (Wi-Fi Protected Access)

standards, 430
write() function, 325–327
wstring class, 374

• X •
Xcode development package,

installing, 16
\xnn (hexidecimal character), 42–43
XOR (^) bitwise operator

defined, 62
test program using, 65–67
values, 64

XOR instruction, 397

• Z •
zombies, 383

Notes

Notes

Sample	For	Dummies	•	0000-0	Index.1	•	Index	•	Proof	1	•	PLT	•	12/20/99	•	P452

Notes

Notes

Sample	For	Dummies	•	0000-0	Index.1	•	Index	•	Proof	1	•	PLT	•	12/20/99	•	P454

Notes

Notes

Sample	For	Dummies	•	0000-0	Index.1	•	Index	•	Proof	1	•	PLT	•	12/20/99	•	P456

About the Author
Stephen R. Davis, CISSP (who goes by the name “Randy”) lives with his wife
and two dogs in Corpus Christi, Texas. Randy has three kids and two grand-
kids with more on the way (grandkids, not kids). Randy develops browser-
based applications for Agency Consulting Group.

Dedication
To Janet, the love of my life.

Author’s Acknowledgments
I find it very strange that only a single name appears on the cover of any
book, but especially a book like this. In reality, many people contribute to
the creation of a For Dummies book. From the beginning, acquisitions editor
Constance Santisteban, project editor Pat O’Brien, and my agent, Claudette
Moore, were involved in guiding and molding the book’s content. During the
development of the seven editions of this book, I found myself hip-deep in
edits, corrections, and suggestions from a group of project editors, copy-
editors, and technical reviewers — this book would have been a poorer work
but for their involvement. And nothing would have made it into print without
the aid of Suzanne Thomas, who coordinated the first and second editions
of the book, Susan Pink, who worked on the third and sixth editions, Katie
Feltman who worked on the sixth edition, and Danny Kalev, who did the tech-
nical review of the sixth and seventh editions. Nevertheless, one name does
appear on the cover and that name must take responsibility for any inaccura-
cies in the text.

Finally, a summary of the animal activity around my house. For those of you
who have not read any of my other books, I should warn you that this has
become a regular feature of my For Dummies books.

I moved to the “big city” in 2005, which meant giving away our dogs Chester
and Sadie. I tried to keep our two Great Danes, Monty and Bonnie, but they
were just too much for the backyard. We were forced to give them away as
well. I married my high school sweetheart in 2011 and moved from Dallas
back to my home town of Corpus Christi which meant adopting a new pair
of dogs (more like, they adopted me). Jack is a stubborn, black dog of an
unidentifiable breed. Scruffy is said to be a wire haired dachshund but you
couldn’t tell by his appearance as he stays shaved most of the time.

If you are having problems getting started, I maintain a FAQ of common prob-
lems at www.stephendavis.com. You can e-mail me questions from there if
you don’t see your problem. I can’t write your program (you don’t know how
often I get asked to do people’s homework assignments), but I try to answer
most questions.

Publisher’s Acknowledgments

Acquisitions Editor: Connie Santisteban

Project Editor: Pat O’Brien

Copy Editor: Laura K. Miller

Technical Editor: Danny Kalev

Editorial Assistant: Anne Sullivan

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Melissa Cossell

Cover Image: © iStockphoto.com/gavni

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/cplusplus

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

	Contents at a Glance
	Table of Contents
	Table of Contents Introduction
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with C++ Programming
	Chapter 1: Writing Your First C++ Program
	Grasping C++ Concepts
	Installing Code::Blocks
	Creating Your First C++ Program
	Executing Your Program
	Reviewing the Annotated Program
	Calculating Expressions

	Chapter 2: Declaring Variables Constantly
	Declaring Variables
	Declaring Different Types of Variables
	Declaring Variable Types
	Wide Loads on Char Highway
	Are These Calculations Really Logical?
	Mixed Mode Expressions
	Automatic Declarations

	Chapter 3: Performing Mathematical Operations
	Performing Simple Binary Arithmetic
	Decomposing Expressions
	Determining the Order of Operations
	Performing Unary Operations
	Using Assignment Operators

	Chapter 4: Performing Logical Operations
	Why Mess with Logical Operations?
	Using the Simple Logical Operators
	Expressing Binary Numbers
	Performing Bitwise Logical Operations

	Chapter 5: Controlling Program Flow
	Controlling Program Flow with the Branch Commands
	Executing Loops in a Program
	Nesting Control Commands
	Switching to a Different Subject?

	Part II: Becoming a Functional C++ Programmer
	Chapter 6: Creating Functions
	Writing and Using a Function
	Understanding the Details of Functions
	Overloading Function Names
	Defining Function Prototypes
	Defaulting Arguments
	Passing by Value and Passing by Reference
	Variable Storage Types

	Chapter 7: Storing Sequences in Arrays
	Arraying the Arguments for Arrays
	Using Arrays of Characters
	Manipulating Strings with Character
	Adding Some Library Functions
	Making Room for Wide Strings

	Chapter 8: Taking a First Look at C++ Pointers
	Variable Size
	What’s in an Address?
	Address Operators
	Using Pointer Variables
	Passing Pointers to Functions
	Constant const Irritation
	Making Use of a Block of Memory Called the Heap

	Chapter 9: Taking a Second Look at C++ Pointers
	Defining Operations on Pointer Variables
	When Is a Pointer Not?
	Declaring and Using Arrays of Pointers

	Chapter 10: The C++ Preprocessor
	What Is a Preprocessor?
	Including Files
	#Defining Things
	Including Things #if I Say So
	Intrinsically Defined Objects
	Typedef

	Part III: Introduction to Classes
	Chapter 11: Examining Object-Oriented Programming
	Abstracting Microwave Ovens
	Classifying Microwave Ovens
	Why Classify?

	Chapter 12: Adding Class to C++
	Introducing the Class
	The Format of a Class
	Accessing the Members of a Class
	Activating Our Objects
	Adding a Member Function
	Calling a Member Function
	Scope Resolution (And I Don’t Mean How Well Your Telescope Works)
	Defining a Member Function in the Class
	Keeping a Member Function after Class
	Overloading Member Functions

	Chapter 13: Point and Stare at Objects
	Declaring Arrays of Objects
	Declaring Pointers to Objects
	Passing Objects to Functions
	Why Bother with Pointers or References?
	Returning to the Heap
	Linking Up with Linked Lists
	Ray of Hope: A List of Containers Linked to the C++ Library

	Chapter 14: Protecting Members: Do Not Disturb
	Protecting Members
	Making an Argument for Using Protected Members
	Giving Non-member Functions Access to Protected Members

	Chapter 15: “Why Do You Build Me Up, Just to Tear Me Down, Baby?”
	Creating Objects
	Using Constructors
	Dissecting a Destructor

	Chapter 16: Making Constructive Arguments
	Outfitting Constructors with Arguments
	Placing Too Many Demands on the Carpenter: Overloading the Constructor
	Defaulting Default Constructors
	Constructing Class Members
	Reconstructing the Order of Construction
	Constructing Arrays
	Constructors as a Form of Conversion

	Chapter 17: The Copy/Move Constructor
	Copying an Object
	The Automatic Copy Constructor
	Creating Shallow Copies versus Deep Copies
	It’s a Long Way to Temporaries

	Chapter 18: Static Members: Can Fabric Softener Help?
	Defining a Static Member
	Declaring Static Member Functions
	What Is this About Anyway?

	Part IV: Inheritance
	Chapter 19: Inheriting a Class
	Do I Need My Inheritance?
	How Does a Class Inherit?
	Having a HAS_A Relationship

	Chapter 20: Examining Virtual Member Functions: Are They for Real?
	Why You Need Polymorphism
	How Polymorphism Works
	When Is a Virtual Function Not?
	Considering Virtual Considerations

	Chapter 21: Factoring Classes
	Factoring
	Implementing Abstract Classes

	Part V: Security
	Chapter 22: A New Assignment Operator, Should You Decide to Accept It
	Comparing Operators with Functions.
	Inserting a New Operator.
	Creating Shallow Copies Is a Deep Problem.
	Overloading the Assignment Operator.
	Overloading the Subscript Operator.
	The Move Constructor and Move Operator.

	Chapter 23: Using Stream I/O
	How Stream I/O Works.
	Stream Input/Output.
	Other Methods of the Stream Classes.
	Using the stringstream Subclasses.
	Manipulating Manipulators.

	Chapter 24: Handling Errors — Exceptions
	Justifying a New Error Mechanism?.
	Examining the Exception Mechanism.
	What Kinds of Things Can I Throw?.
	Just Passing Through.

	Chapter 25: Inheriting Multiple Inheritance
	Describing the Multiple Inheritance Mechanism.
	Straightening Out Inheritance Ambiguities.
	Adding Virtual Inheritance.
	Constructing the Objects of Multiple Inheritance.
	Voicing a Contrary Opinion.

	Chapter 26: Tempting C++ Templates
	Generalizing a Function into a Template.
	Class Templates.
	Tips for Using Templates.
	External Template Instantiations.
	Implementing an Initializer List.

	Chapter 27: Standardizing on the Standard Template Library
	The string Container.
	Iterating through Lists.

	Chapter 28: Writing Hacker-Proof Code
	Understanding the Hacker’s Motives.
	Understanding Code Injection.
	Overflowing Buffers for Fun and Profit.

	Part VI: The Part of Tens
	Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program
	Enable All Warnings and Error Messages
	Adopt a Clear and Consistent Coding Style
	Limit the Visibility
	Comment Your Code While You Write It
	Single-Step Every Path at Least Once
	Avoid Overloading Operators
	Manage the Heap Systematically
	Use Exceptions to Handle Errors
	Declare Destructors Virtual
	Avoid Multiple Inheritance

	Chapter 30: Ten Ways to Protect Your Programs from Hackers
	Don’t Make Assumptions about User Input
	Handle Failures Gracefully
	Maintain a Program Log
	Follow a Good Development Process
	Implement Good Version Control
	Authenticate Users Securely
	Manage Remote Sessions
	Obfuscate Your Code
	Sign Your Code With a Digital Certificate
	Use Secure Encryption Wherever Necessary

	Index
	About the Author

