
www.allitebooks.com

http://www.allitebooks.org

Boost.Asio C++ Network
Programming

Enhance your skills with practical examples
for C++ network programming

John Torjo

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Boost.Asio C++ Network Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1120213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-326-8

www.packtpub.com

Cover Image by J.Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
John Torjo

Reviewers
Béla Tibor Bartha

Nicolae Ghimbovschi

Acquisition Editor
Erol Staveley

Commissioning Editor
Ameya Sawant

Technical Editor
Kaustubh S. Mayekar

Project Coordinator
Sherin Padayatty

Proofreader
Claire Cresswell-Lane

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Aditi Gajjar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

John Torjo is a renown C++ expert. He has been programming for over 15 years,
most of which were spent doing C++. Sometimes, he also codes C# or Java.

He’s also enjoyed writing articles about programming in C++ Users Journal
(currently, Dr. Dobbs) and other magazines.

In his spare time, he likes playing poker and driving fast cars. One of his freelance
projects lets him combine two of his passions, programming and poker. You can
reach him at john.code@torjo.com.

I’d like to thank my friends Alexandru Chis, Aurelian Hale, Bela
Tibor Bartha, Cristian Fatu, Horia Uifaleanu, Nicolae Ghimbovschi,
and Ovidiu Deac for their feedback and suggestions relating
to the book. I’d also like to thank the guys at Packt for being
understanding, even though I missed a few deadlines now and then.
And many thanks to Chris Kohlhoff, the author of Boost.Asio, for
writing such a damn good library!

I dedicate the book to my best friend, Darius

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Béla Tibor Bartha is a professional software engineer working on various
technologies and languages. Although, in the last four years, he’s working on iOS
and OSX applications, as C++ is his old passion along with game development as
personal projects.

I would like to thank John for the possibility to review this book.

Nicolae Ghimbovschi is a talented individual, who has been working on various
C/C++ projects for over 5 years. He has been involved mostly in telecommunication
projects for enterprises. He is a dedicated Linux hobbyist, who enjoys testing and
experimenting different operating systems, scripting tools, and programming
languages. Besides programming, he enjoys cycling, yoga, and meditation.

I would like to thank John for letting me to review his book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Boost.Asio	 5

What is Boost.Asio?	 5
History	 6
Dependencies	 7
Building Boost.Asio	 7
Important macros	 8

Synchronous versus asynchronous	 8
Exceptions versus error codes	 11
Threading in Boost.Asio	 12
Not just networking	 13
Timers	 14
The io_service class	 15
Summary	 19

Chapter 2: Boost.Asio Fundamentals	 21
The Network API	 21

Boost.Asio namespaces	 21
IP addresses	 22
Endpoints	 22
Sockets	 23

Synchronous error codes	 24
Socket member functions	 24
Other considerations	 31

The read/write/connect free functions	 35
The connect functions	 35
The read/write functions	 36

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Asynchronous programming	 40
The need for going asynchronous	 40
Asynchronous run(), run_one(), poll(), poll_one()	 44

Running forever	 44
The run_one(), poll(), poll_one() functions	 45

Asynchronous work	 47
Asynchronous post() versus dispatch() versus wrap()	 50

Staying alive	 52
Summary	 55

Chapter 3: Echo Server/Clients	 57
TCP Echo server/clients	 58

TCP synchronous client	 59
TCP synchronous server	 60
TCP asynchronous client	 61
TCP asynchronous server	 64
The code	 66

UDP Echo server/clients	 66
UDP synchronous Echo client	 67
UDP synchronous Echo server	 68

Summary	 68
Chapter 4: Client and Server	 69

The synchronous client/server	 70
Synchronous client	 70
Synchronous server	 73

The asynchronous client/server	 77
Asynchronous client	 78
Asynchronous server	 82

Summary	 86
Chapter 5: Synchronous Versus Asynchronous	 87

Mixing synchronous and asynchronous programming	 87
Passing client to server messages and vice versa	 88
Synchronous I/O in client applications	 89
Synchronous I/O in server applications	 92

Threading in a synchronous server	 94
Asynchronous I/O in client applications	 96
Asynchronous I/O in server applications	 98

Threading in an asynchronous server	 101
Asynchronous operations	 104
Implementing proxies	 108
Summary	 111

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Boost.Asio – Other Features	 113
std streams and std buffer I/O	 113

Boost.Asio and the STL streams	 114
The streambuf class	 116
The free functions that deal with streambuf objects	 118

Co-routines	 120
Summary	 125

Chapter 7: Boost.Asio – Advanced Topics	 127
Asio versus Boost.Asio	 127
Debugging	 128

Handler tracking information	 128
An example	 129
Handler tracking to file	 131

SSL	 132
Boost.Asio Windows features	 133

Stream Handles	 134
Random access Handles	 134
Object Handles	 135

Boost.Asio POSIX features	 135
Local sockets	 135
Connecting local sockets	 136
POSIX file descriptors	 136
Fork	 137

Summary	 138
Index	 139

www.allitebooks.com

http://www.allitebooks.org

Preface
Network programming has been around for a very long time, and it's definitely
not a task for the faint-hearted. Boost.Asio provides an excellent abstraction over
it, making sure that with a minimal amount of coding, you can create beautiful
client-server applications and have tons of fun doing it. And it throws some extra
non-networking features, just as a bonus! Code that uses Boost.Asio is compact,
easy to read, and if you follow what I describe in the book, it is bug-free.

What this book covers
Chapter 1, Getting Started with Boost.Asio will present what Boost.Asio is, how to build
it, and a few examples along the way. Boost.Asio is more than a networking library
as you're about to find out. You'll also discover the most important class that sits at
the heart of Boost.Asio, io_service.

Chapter 2, Boost.Asio Fundamentals will cover what you definitely need to know
in order to know when using Boost.Asio. We'll delve deeper into asynchronous
programming, which is trickier than synchronous and is much more fun. This
chapter was implemented as a reference, which you should come back to, while
implementing your own networking applications.

Chapter 3, Echo Server/Clients will implement you to implement a small client-server
application; probably, the easiest client-server application you will ever write. This
is the Echo application, which is a server that echoes back anything a client writes
and then closes the client's connection. We will implement first a synchronous
application, and then an asynchronous application, so you can easily compare them.

Chapter 4, Client and Server will discuss delving into building non-trivial client and
server applications using Boost.Asio. We will discuss how to avoid pitfalls, such as
memory leaks and deadlocks. All the programs are meant to be skeletons you can
extend and adapt to your needs.

Preface

[2]

Chapter 5, Synchronous Versus Asynchronous will walk you through the things to
consider when choosing to go synchronous or asynchronous. First off, avoid mixing
them. In this chapter, we'll see how easy it can be to implement, test, and debug
each type of application.

Chapter 6, Boost.Asio Other Features will walk you through some of the
not-so-well-known features of Boost.Asio. std streams and streambufs can be a
bit more complicated to use, but as you'll see, they bring their own benefits to the
table. Finally, you'll see a rather late entry to Boost.Asio, that is, co-routines, which
allow you to have code that is asynchronous, but is much easier to read (as if it
was synchronous).

Chapter 7, Boost.Asio Advanced Topics will deal with some of the advanced topics
of Boost.Asio. It's unlikely that you'll need to delve into these for day-to-day
programming, but they are definitely good to know (advanced debugging
Boost.Asio, SSL, Windows-only features, and POSIX-only features).

What you need for this book
In order to compile Boost.Asio and run the examples that come with this book,
you'll need a modern compiler. For instance, Visual Studio 2008+ or g++ 4.4+.

Who this book is for
This book is great for developers that need to do network programming but don't
want to delve into the complicated issues of raw networking API. What you want
is an easy abstraction, which is just what Boost.Asio provides. Being part of the
famous Boost C++ Library, chances are switching to Boost.Asio is just a few
extra #include directives.

In order to read the book, you should be familiar with the core Boost libraries, such
as Boost Smart Pointers, boost::noncopyable, Boost Functors, Boost Bind, shared_
from_this/enabled_shared_from_this, and Boost Threading (threads and mutexes).
A bit of familiarity with Boost Date/Time is required as well. Readers should also
be familiar with the concept of blocking versus "non-blocking" operations.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text are shown as follows: "Usually one instance of io_service will
be enough."

A block of code is set as follows:

read(stream, buffer [, extra options])
async_read(stream, buffer [, extra options], handler)
write(stream, buffer [, extra options])
async_write(stream, buffer [, extra options], handler)

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.PacktPub.com/
http://www.PacktPub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting http://
www.packtpub.com/submit-errata, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of
that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started with
Boost.Asio

First, lets delve into what Boost.Asio is, how to build it, and a few examples
along the way. Boost.Asio is more than a networking library as you're about to
find out. You'll also discover the most important class that sits at the heart of
Boost.Asio – io_service.

What is Boost.Asio?
In short, Boost.Asio is a cross-platform C++ library mainly for networking and
some other low-level input/output programming.

There have been many implementations that have tackled networking, but Boost.
Asio has by far surpassed them all; it was admitted into Boost in 2005, and has since
been tested extensively by Boost users and used in many projects, such as Remobo
(http://www.remobo.com) that allows you to create your own Instant Private
Network (IPN), libtorrent (http://www.rasterbar.com/products/libtorrent),
which is a library that implements a Bittorrent client, and PokerTH (http://www.
pokerth.net), which is a poker game that supports LAN and Internet games.

Boost.Asio has successfully abstracted the concepts of input and output that work
not just for networking but for COM serial ports, files, and so on. On top of these,
you can do input or output programming synchronously or asynchronously:

read(stream, buffer [, extra options])
async_read(stream, buffer [, extra options], handler)
write(stream, buffer [, extra options])
async_write(stream, buffer [, extra options], handler)

Getting Started with Boost.Asio

[6]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

As you can see in the preceding code snippet, the functions take a stream instance,
which can be anything (not just a socket, we can read or write to it).

The library is portable and works across most operating systems, and scales well
over thousands of concurrent connections. The networking part was inspired by
Berkeley Software Distribution (BSD) sockets. It provides an API that deals with
Transmission Control Protocol (TCP) sockets, User Datagram Protocol (UDP)
sockets, Internet Control Message Protocol (IMCP) sockets, and is extensible as
you can adapt it to your own protocol if you wish.

History
Boost.Asio was accepted into Boost 1.35 in December 2005, after being developed in
2003. The original author is Christopher M. Kohlhoff, and he can be reached at chris@
kohlhoff.com.

The library has been tested on the following platforms and compilers:

•	 32-bit and 64-bit Windows, using Visual C++ 7.1 and above
•	 Windows using MinGW
•	 Windows using Cygwin (make sure to define __USE_232_SOCKETS)
•	 Linux based on 2.4 and 2.6 kernels, using g++ 3.3 and above
•	 Solaris, using g++ 3.3 and above
•	 MAC OS X 10.4+, using g++ 3.3 and above

It may also work on the platforms, such as AIX 5.3, HP-UX 11i v3, QNX Neutrino
6.3, Solaris using Sun Studio 11+, True64 v5.1, Windows using Borland C++ 5.9.2+
(consult at www.boost.org for more details).

Chapter 1

[7]

Dependencies
Boost.Asio depends on the following libraries:

•	 Boost.System: This library provides operating system support for Boost
libraries (http://www.boost.org/doc/libs/1_51_0/doc/html/boost_
system/index.html)

•	 Boost.Regex: This library (optional) is used in case you're using the
read_until() or async_read_until() overloads that take a
boost::regex parameter

•	 Boost.DateTime: This library(optional) is used if you use Boost.Asio timers
•	 OpenSSL: This library (optional) is used if you decide to use the SSL support

provided by Boost.Asio

Building Boost.Asio
Boost.Asio is a header-only library. However, depending on your compiler and
the size of your program, you can choose to build in Boost.Asio as a source file.
You may want to do this to decrease the compilation times. This can be done in
the following ways:

•	 In only one of your files, by using #include <boost/asio/impl/src.hpp>
(if you're using SSL, #include <boost/asio/ssl/impl/src.hpp> as well)

•	 By using #define BOOST_ASIO_SEPARATE_COMPILATION in all your
source files

Do note that Boost.Asio depends on Boost.System and optionally Boost.Regex,
so you'll need to at least build boost libraries, using the following code:

bjam –with-system –with-regex stage

If you want to build the tests as well, you should use the following code:

bjam –with-system –with-thread –with-date_time –with-regex –with-
serialization stage

The library comes with lots of examples, which you can check out, along with the
examples that come with this book.

Getting Started with Boost.Asio

[8]

Important macros
Use BOOST_ASIO_DISABLE_THREADS if set; it disables threading support in Boost.
Asio, regardless of whether Boost was compiled with threading support.

Synchronous versus asynchronous
First off, asynchronous programming is extremely different than synchronous
programming. In synchronous programming, you do the operations in sequential
order, such as read (request) from socket S, then write (answer) to socket. Each
operation is blocking. Since operations are blocking, in order not to interrupt the
main program while you're reading from or writing to a socket, you'll usually
create one or more threads that deal with socket's input/output. Thus, synchronous
servers/clients are usually multi-threaded.

In contrast, asynchronous programming is event-driven. You start an operation,
but you don't know when it will end; you supply a callback, which the API will
call when the operation ends, together with the operation result. To programmers
that have extensive experience with QT, Nokia's cross-platform library for creating
graphical user interface applications, this is second nature. Thus, in asynchronous
programming, you don't necessary need more than one thread.

You should decide early on in your project (preferably at the start) whether you go
synchronous or asynchronous with networking, as switching midway will be very
difficult and error-prone; not only will the API differ substantially, the semantic of
your program will change completely (asynchronous networking is usually harder
to test and debug than synchronous networking). You'll want to think of either going
for blocking calls and multi-threading (synchronous, usually simpler) or less-threads
and events (asynchronous, usually more complex).

Here's a basic example of a synchronous client:

using boost::asio;
io_service service;
ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 2001);
ip::tcp::socket sock(service);
sock.connect(ep);

First, your program needs at least an io_service instance. Boost.Asio uses
io_service to talk to the operating system's input/output services. Usually one
instance of an io_service will be enough. Next, create the address and port you
want to connect to. Create the socket. Connect the socket to your address and port:

Chapter 1

[9]

Here is a simple synchronous server:using boost::asio;
typedef boost::shared_ptr<ip::tcp::socket> socket_ptr;
io_service service;
ip::tcp::endpoint ep(ip::tcp::v4(), 2001)); // listen on 2001
ip::tcp::acceptor acc(service, ep);
while (true) {
 socket_ptr sock(new ip::tcp::socket(service));
 acc.accept(*sock);
 boost::thread(boost::bind(client_session, sock));
}

void client_session(socket_ptr sock) {
 while (true) {
 char data[512];
 size_t len = sock->read_some(buffer(data));
 if (len > 0)
 write(*sock, buffer("ok", 2));
 }
}

Again, first your program needs at least one io_service instance. You then
specify the port you're listening to, and create an acceptor, one object that accepts
client connections.

In the following loop, you create a dummy socket and wait for a client to connect.
Once a connection has been established, you create a thread that will deal with
that connection.

In the client_session thread, read a client's request, interpret it, and answer back.

To create a basic asynchronous client, you'll do something similar to the following:

using boost::asio;
io_service service;
ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 2001);
ip::tcp::socket sock(service);
sock.async_connect(ep, connect_handler);
service.run();

void connect_handler(const boost::system::error_code & ec) {
 // here we know we connected successfully
 // if ec indicates success

}

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Boost.Asio

[10]

Your program needs at least one io_service instance. You specify where you
connect to and create the socket.

You then connect asynchronously to the address and port once the connection is
complete (its completion handler), that is, connect_handler is called.

When connect_handler is called, check for the error code (ec), and if successful,
you can write asynchronously to the server.

Note that the service.run() loop will run as long as there are asynchronous
operations pending. In the preceding example, there's only one such operation,
that is, the socket async_connect. After that, service.run() exits.

Each asynchronous operation has a completion handler, a function that is called
when the operation has completed.

The following code is of a basic asynchronous server:

using boost::asio;
typedef boost::shared_ptr<ip::tcp::socket> socket_ptr;
io_service service;
ip::tcp::endpoint ep(ip::tcp::v4(), 2001)); // listen on 2001
ip::tcp::acceptor acc(service, ep);
socket_ptr sock(new ip::tcp::socket(service));
start_accept(sock);
service.run();

void start_accept(socket_ptr sock) {
 acc.async_accept(*sock, boost::bind(handle_accept, sock, _1));
}

void handle_accept(socket_ptr sock, const boost::system::error_code &
err) {
 if (err) return;
 // at this point, you can read/write to the socket

 socket_ptr sock(new ip::tcp::socket(service));
 start_accept(sock);
}

In the preceding code snippet, first, you create an io_service instance. You then
specify what port you're listening to. Then, you create the acc acceptor, an object
to accept client connections and also, create a dummy socket, and asynchronously
wait for a client to connect.

Chapter 1

[11]

Finally, run the asynchronous service.run() loop. When a client connects,
handle_accept is called (the completion handler for the async_accept call).
If there's no error, you can use this socket for read/write operations.

After using the socket, you create a new socket, and call start_accept() again,
which appends another "wait for client to connect" asynchronous operation,
keeping the service.run() loop busy.

Exceptions versus error codes
Boost.Asio allows for both exceptions or error codes. All the synchronous functions
have overloads that either throw in case of error or can return an error code. In case
the function throws, it will always throw a boost::system::system_error error.

using boost::asio;
ip::tcp::endpoint ep;
ip::tcp::socket sock(service);
sock.connect(ep); // Line 1
boost::system::error_code err;
sock.connect(ep, err); // Line 2

In the preceding code, sock.connect(ep) will throw in case of an error, and sock.
connect(ep, err) will return an error code.

Take a look at the following code snippet:

try {
 sock.connect(ep);
} catch(boost::system::system_error e) {
 std::cout << e.code() << std::endl;
}

The following code snippet is similar to the preceding one:

boost::system::error_code err;
sock.connect(ep, err);
if (err)
 std::cout << err << std::endl;

In case you're using asynchronous functions, they all return an error code, which you
can examine in your callback. Asynchronous functions never throw an exception, as
it would make no sense to do so. And who would catch it?

Getting Started with Boost.Asio

[12]

In your synchronous functions, you can use exceptions or error codes (whatever
you wish), but do it consistently. Mixing them up can cause problems and most
of the time crashes (when you forget to handle a thrown exception, by mistake). If
your code is complex (socket read/write function calls), you should probably prefer
exceptions and embody your reads/writes in the try {} catch block of a function.

void client_session(socket_ptr sock) {
 try {
 ...
 } catch (boost::system::system_error e) {
 // handle the error
 }
}

If using error codes, you can very nicely see when the connection is closed, as shown
in the following code snippet:

char data[512];
boost::system::error_code error;
size_t length = sock.read_some(buffer(data), error);
if (error == error::eof)
 return; // Connection closed

All Boost.Asio error codes are in namespace boost::asio::error (in case you want
to create a big switch to check out the cause of the error). Just check out the boost/
asio/error.hpp header for more details.

Threading in Boost.Asio
When it comes to threading in Boost.Asio, we will talk about:

•	 io_service: The io_service class is thread-safe. Several threads
can call io_service::run(). Most of the time you'll probably call
io_service::run() from a single thread that function is blocking
until all asynchronous operations complete. However, you can call io_
service::run() from several threads. This will block all threads that have
called io_service::run(). All callbacks will be called in the context of any
of the threads that called io_service::run(); this also means that if you
call io_service::run() in only one thread, all callbacks are called in the
context of that thread.

Chapter 1

[13]

•	 socket: The socket classes are not thread-safe. Thus, you should avoid
doing such as reading from a socket in one thread and write to it in a
different thread (this isn't recommended in general, let alone with
Boost.Asio).

•	 utility: For the utility classes, it usually does not make sense to be used
in several threads, nor are they thread-safe. Most of them are meant to just
be used for a short time, then go out of scope.

The Boost.Asio library itself can use several threads besides your own, but it
guarantees that from those threads, it will not call any of your code. This in
turn means that callbacks are called only from the threads that have called
io_service::run().

Not just networking
Boost.Asio, in addition to networking, provides other input/output facilities.

Boost.Asio allows waiting for signals, such as SIGTERM (software terminate), SIGINT
(signal interrupt), SIGSEGV (segment violation), and so on.

You create a signal_set instance, and specify what signals to asynchronously wait
for, and when any of them happen, your asynchronous handler is called:

void signal_handler(const boost::system::error_code & err, int signal)
{
 // log this, and terminate application
}

boost::asio::signal_set sig(service, SIGINT, SIGTERM);
sig.async_wait(signal_handler);

If SIGINT is generated, you'll catch it in your signal_handler callback.

Using Boost.Asio, you can easily connect to a serial port. The port name is COM7 on
Windows, or /dev/ttyS0 on POSIX platforms:

io_service service;
serial_port sp(service, "COM7");

Once opened, you can set some options, such as port's baud rate, parity, stop bits,
as set in the following code snippet:

serial_port::baud_rate rate(9600);
sp.set_option(rate);

Getting Started with Boost.Asio

[14]

Once the port is open, you can treat the serial port as a stream, and on top of that,
use the free functions to read from and/or write to the serial port, such as, read(),
async_read(), write, async_write(), as used in the following code snippet:

char data[512];
read(sp, buffer(data, 512));

Boost.Asio also allows you to connect to Windows files, and again use the free
functions, such as read(), asyn_read(), and so on, as used in the following
code snippet:

HANDLE h = ::OpenFile(...);
windows::stream_handle sh(service, h);
char data[512];
read(h, buffer(data, 512));

You can do the same with POSIX file descriptors, such as pipes, standard I/O,
various devices (but not with regular files), as done in the following code snippet:

posix::stream_descriptor sd_in(service, ::dup(STDIN_FILENO));
char data[512];
read(sd_in, buffer(data, 512));

Timers
Some I/O operations can have a deadline to complete. You can apply this only to
asynchronous operations (synchronous means blocking, thus, no deadline). For
instance, the next message from your partner needs to reach you in 100 milliseconds:

bool read = false;
void deadline_handler(const boost::system::error_code &) {
 std::cout << (read ? "read successfully" : "read failed") <<
std::endl;
}
void read_handler(const boost::system::error_code &) {
 read = true;
}

ip::tcp::socket sock(service);
…
read = false;
char data[512];

Chapter 1

[15]

sock.async_read_some(buffer(data, 512));
deadline_timer t(service, boost::posix_time::milliseconds(100));
t.async_wait(&deadline_handler);
service.run();

In the preceding code snippet, if we read our data before the deadline, read is set to
true, thus our partner reached us in time. Otherwise, when deadline_handler is
called, read is still set to false, which means we did not meet our deadline.

Boost.Asio allows for synchronous timers as well, but they are usually equivalent to
a simple sleep operation. The boost::this_thread::sleep(500); code and the
following snippet of code accomplish the same thing:

deadline_timer t(service, boost::posix_time::milliseconds(500));
t.wait();

The io_service class
You've already seen that most code that uses Boost.Asio will use some instance
of io_service. The io_service is the most important class in the library; it deals
with the operating system, waiting for all asynchronous operations to end, and then
calling the completion handler for each such operation.

If you choose to create your application synchronously, you won't need to worry
about what I'm about to show you in this section.

You can use io_service instances in several ways. In the following examples,
we have three asynchronous operations, two socket connections and a timer wait:

•	 Single-thread with one io_service and one handler thread:
io_service service_;
// all the socket operations are handled by service_
ip::tcp::socket sock1(service_);
// all the socket operations are handled by service_
ip::tcp::socket sock2(service_);
sock1.async_connect(ep, connect_handler);
sock2.async_connect(ep, connect_handler);
deadline_timer t(service_, boost::posix_time::seconds(5));
t.async_wait(timeout_handler);
service_.run();

Getting Started with Boost.Asio

[16]

•	 Multi-threaded with a single io_service instance and several
handler threads:
io_service service_;
ip::tcp::socket sock1(service_);
ip::tcp::socket sock2(service_);
sock1.async_connect(ep, connect_handler);
sock2.async_connect(ep, connect_handler);
deadline_timer t(service_, boost::posix_time::seconds(5));
t.async_wait(timeout_handler);

for (int i = 0; i < 5; ++i)
 boost::thread(run_service);

void run_service() {
 service_.run();
}

•	 Multi-threaded with several io_service instances and several threads:

io_service service_[2];
ip::tcp::socket sock1(service_[0]);
ip::tcp::socket sock2(service_[1]);
sock1.async_connect(ep, connect_handler);
sock2.async_connect(ep, connect_handler);
deadline_timer t(service_[0], boost::posix_time::seconds(5));
t.async_wait(timeout_handler);

for (int i = 0; i < 2; ++i)
 boost::thread(boost::bind(run_service, i));

void run_service(int idx) {
 service_[idx].run();
}

First off, notice you can't have several io_service instances and one thread.
It would make no sense to have the following code snippet:

for (int i = 0; i < 2; ++i)
 service_[i].run();

Chapter 1

[17]

The preceding code snippet makes no sense, because service_[1].run() would
need service_[0].run() to complete first. Thus, all asynchronous operations
handled by service_[1] would have to wait, which is not a good idea.

In all the three preceding scenarios, we're waiting for three asynchronous operations
to complete. To explain the differences, we'll assume that, after a while, operation
1 completes, and just after that, operation 2 completes. We'll also assume that each
completion handler takes a second to complete.

In the first case, we're waiting for all three operations to complete in one thread.
Once operation 1 completes, we call its completion handler. Even though operation
2 completes just after, the completion handler for operation 2 will be called one
second after the operation 1's handler completes.

In the second case, we're waiting for the three operations to complete in two threads.
Once operation 1 completes, we call its completion handler in the first thread. Once
operation 2 completes, just after, we'll call its completion handler instantly, in the
second thread (while thread 1 is busy responding to operation 1 handler's, thread
2 is free to answer any incoming new operation).

In the third case, in case operation 1 is connect of sock1, and operation 2 is connect
of sock2, the application will behave like in the second case. Thread 1 will handle
connect of sock1 completion handler, and thread 2 will handle connect of sock2
completion handler. However, if connect of sock1 is operation 1, and timeout of
deadline_timer t is operation 2, thread 1 will end up handling connect of sock1
completion handler. Therefore, timeout of deadline_timer t completion handler
will have to wait until connect of sock1 completion handler ends (it will wait one
second), since thread 1 handles both connection handler sock1 and timeout handler
of t.

Here's what you should have learnt from the previous examples:

•	 Situation 1 is for very basic applications. You will always run into bottleneck
problem if several handlers need to be called at the same time, as they will
be called in a serial manner. If one handler takes too long to complete, all
subsequent handlers will have to wait.

•	 Situation 2 is for most applications. It is very robust – if several handlers
are to be called at the same time (this is possible) they will each be called in
their own thread. The only bottleneck you can have is if all handler threads
are busy and new handlers are to be called at that time. However, as a quick
solution, just increase the number of handler threads.

Getting Started with Boost.Asio

[18]

•	 Situation 3 is the most complex and most flexible. You should use this
only when situation 2 is not enough. That will probably be when you have
thousands of concurrent (socket) connections. You can consider that each
handler thread (thread running io_service::run()) has its own select/
epoll loop; it waits for any socket, it monitors to have a read/write
operation, and then once it finds such an operation, it executes it. In most
cases, you don't need to worry about this, as you'll only need to worry if
the number of sockets you're monitoring grows exponentially (greater than
1,000 sockets). In that case, having several select/epoll loops can increase
response times.

If, in your application, you think, you'll ever need to switch to situation 3, make
sure that the monitor for operations code (the code that calls io_service::run())
is insulated from the rest of the application, so you can easily change it.

Finally, always remember that .run() will always end if there are no more
operations to monitor, as given in the following code snippet:

io_service service_;
tcp::socket sock(service_);
sock.async_connect(ep, connect_handler);
service_.run();

In the previous case, once sock has established a connection, connect_handler
will be called, and afterwards, service.run() will complete.

If you want to make sure service_.run() continues to run, you have to assign more
work to it. There are two ways of accomplishing this. One way is to assign more
work inside connect_handler by starting another asynchronous operation.

The other way is to simulate some work for it, by using the following code snippet:

typedef boost::shared_ptr<io_service::work> work_ptr;
work_ptr dummy_work(new io_service::work(service_));

The preceding code will make sure that service_.run()never stops unless you
either useservice_.stop() or dummy_work.reset(0); // destroy dummy_work.

Chapter 1

[19]

Summary
Boost.Asio is a complex library, making networking quite simple. Building it is
easy. It's done quite a good job at avoiding use of macros; it's got a few macros
to turn options on/off, but there's only quite a few you need to worry about.

Boost.Asio allows for both synchronous and asynchronous programming. They
are very different; you should choose one way or the other as early as possible,
since switching is quite complicated and prone to error.

If you go synchronous, you can choose between exceptions and error codes,
going from exceptions to error codes is simple; just add one more argument
to the function call (the error code).

Boost.Asio is not just for networking. It's got a few more features, making it
even more valuable, such as signals, timers, and so on.

In the next chapter, we'll delve into the multitude of functions and classes
Boost.Asio provides for networking. Also, we'll learn a few tricks about
asynchronous programming.

www.allitebooks.com

http://www.allitebooks.org

Boost.Asio Fundamentals
In this chapter, we'll cover what you definitely need to know when using Boost.
Asio. We'll delve deeper into asynchronous programming, which is trickier than
synchronous and is much more fun.

The Network API
This section shows what you definitely need to know in order to write a networking
application using Boost.Asio.

Boost.Asio namespaces
Everything in Boost.Asio resides in the boost::asio namespace, or a sub-namespace
of that:

•	 boost::asio: This is where core classes and functions reside. The
important classes are io_service and streambuf. Here, we also have the
free functions, such as read, read_at, read_until, their asynchronous
counterparts, and their write and asynchronous write counterparts.

•	 boost::asio::ip: This is where the networking part resides. The
important classes are address, endpoint, tcp, udp, icmp, and the
important free functions are connect and async_connect. Note that in the
boost::asio::ip::tcp::socket name, socket is just a typedef keyword
inside the boost::asio::ip::tcp class.

•	 boost::asio::error: This namespace contains the error codes you can get
while calling I/O routines.

•	 boost::asio::ssl: This namespace contains classes dealing with SSL.
•	 boost::asio::local: This namespace contains POSIX-specific classes.
•	 boost::asio::windows: This namespace contains Windows-specific classes.

Boost.Asio Fundamentals

[22]

IP addresses
To deal with IP addresses, Boost.Asio provides the ip::address , ip::address_v4
and ip::address_v6 classes.

They offer quite a few functions. Here are the most important ones:

•	 ip::address(v4_or_v6_address): This function converts a v4 or v6
address to ip::address

•	 ip::address:from_string(str): This function creates an address from
an IPv4 address (separated by dots) or from an IPv6 (hexadecimal notation)

•	 ip::address::to_string(): This function returns the friendly
representation of the address

•	 ip::address_v4::broadcast([addr, mask]): This function creates
a broadcast address

•	 ip::address_v4::any(): This function returns an address that represents
any address

•	 ip::address_v4::loopback(), ip_address_v6::loopback():
This function returns the loopback address (for v4/v6 protocol)

•	 ip::host_name(): This function returns the name of the current host
as string datatype

You'll likely use ip::address::from_string most of the time:

ip::address addr = ip::address::from_string("127.0.0.1");

If you need to connect to a host name, read on. This code snippet won't work:

// throws an exception
ip::address addr = ip::address::from_string("www.yahoo.com");

Endpoints
Endpoint is an address you connect to, together with a port. Each different
type of socket has its own endpoint class, such as ip::tcp::endpoint,
ip::udp::endpoint, and ip::icmp::endpoint.

If you want to connect to localhost, port 80, here you go:

ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 80);

Chapter 2

[23]

You can construct an endpoint in three ways:

•	 endpoint(): This is the default constructor and can be used sometimes
for UDP/ICMP sockets

•	 endpoint(protocol, port): This is usually used on server sockets
for accepting new connections

•	 endpoint(addr, port): This creates an endpoint to an address and a port
Its examples are:

ip::tcp::endpoint ep1;
ip::tcp::endpoint ep2(ip::tcp::v4(), 80);
ip::tcp::endpoint ep3(ip::address::from_string("127.0.0.1), 80);

If you want to connect to a hostname (not an IP address), here's what you do:

// outputs "87.248.122.122"
io_service service;
ip::tcp::resolver resolver(service);
ip::tcp::resolver::query query("www.yahoo.com", "80");
ip::tcp::resolver::iterator iter = resolver.resolve(query);
ip::tcp::endpoint ep = *iter;
std::cout << ep.address().to_string() << std::endl;

You'll replace tcp with the socket type you need. First, create a query for the name
you want, then resolve it using the resolve() function. If successful, it will return
at least one entry. On the given returned iterator, either always use only the first
entry, or iterate through the list.

Given an endpoint, you can obtain its address, port, and IP protocol (v4 or v6):

std::cout << ep.address().to_string() << ":" << ep.port()
 << "/" << ep.protocol() << std::endl;

Sockets
Boost.Asio comes with three types of socket classes: ip::tcp, ip::udp, and
ip::icmp, and is of course extensible. You can create your own socket class, even
though that is pretty complicated. In case you choose to do so, take a look at boost/
asio/ip/tcp.hpp, boost/asio/ip/udp.hpp, and boost/asio/ip/icmp.hpp. They
are all pretty small classes with internal typedef keywords.

Boost.Asio Fundamentals

[24]

You can think of the ip::tcp, ip::udp, ip::icmp classes as placeholders; they give
you easy access to other classes/functions, which are given as follows:

•	 ip::tcp::socket, ip::tcp::acceptor, ip::tcp::endpoint,
ip::tcp::resolver, ip::tcp::iostream

•	 ip::udp::socket, ip::udp::endpoint, ip::udp::resolver
•	 ip::icmp::socket, ip::icmp::endpoint, ip::icmp::resolver

The socket classes create a corresponding socket. You always pass the io_service
instance at construction:

io_service service;
ip::udp::socket sock(service)
sock.set_option(ip::udp::socket::reuse_address(true));

Each of the socket names is a typedef keyword:

•	 ip::tcp::socket = basic_stream_socket<tcp>
•	 ip::udp::socket = basic_datagram_socket<udp>
•	 ip::icmp::socket = basic_raw_socket<icmp>

Synchronous error codes
All synchronous functions have overloads that either throw an exception or return
an error code, as given in the following code snippet:

sync_func(arg1, arg2 ... argN); // throws
boost::system::error_code ec;
sync_func(arg1 arg2, ..., argN, ec); // returns error code

In the remainder of this chapter, you'll see a lot of synchronous functions. To
keep things simple, I omitted showing the overloads that return an error code,
but they exist.

Socket member functions
The functions are split into a few groups. Not all functions are available for each
type of socket. A list at the end of this section will show you which function belongs
to which socket classes.

Note that all asynchronous functions return immediately, while their synchronous
counterparts will return only after the operation has been completed.

Chapter 2

[25]

Connecting-related functions
These are the functions that connect or bind the socket, disconnect it, and query
whether the connection is active or not:

•	 assign(protocol,socket): This function assigns a raw (native) socket to
this socket instance. Use it when dealing with legacy code (that is, the native
sockets are already created).

•	 open(protocol): This function opens a socket with the given IP protocol
(v4 or v6). You'll use this mainly for UDP/ICMP sockets, or for server sockets.

•	 bind(endpoint): This function binds to this address.
•	 connect(endpoint): This function synchronously connects to the address.
•	 async_connect(endpoint): This function asynchronously connects to

the address.
•	 is_open(): This function returns true if the socket is open.
•	 close(): This function closes the socket. Any asynchronous operations

on this socket are canceled immediately and will complete with
error::operation_aborted error code.

•	 shutdown(type_of_shutdown): This function disables send operations,
receive operations, or both, starting now.

•	 cancel(): This function cancels all asynchronous operations on this socket.
The asynchronous operations on this socket will all finish immediately with
the error::operation_aborted error code.

Its example is given as follows:

ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 80);
ip::tcp::socket sock(service);
sock.open(ip::tcp::v4()); n
sock.connect(ep);
sock.write_some(buffer("GET /index.html\r\n"));
char buff[1024]; sock.read_some(buffer(buff,1024));
sock.shutdown(ip::tcp::socket::shutdown_receive);
sock.close();

Read/write functions
These are the functions that perform the I/O on the socket.

Boost.Asio Fundamentals

[26]

For asynchronous functions, the signature of the handler, void handler
(const boost::system::error_code& e, size_t bytes), is the same:

•	 async_receive(buffer, [flags,] handler): This function starts the
asynchronous receive operation of data from the socket.

•	 async_read_some(buffer,handler): This function is equivalent to
async_receive(buffer, handler).

•	 async_receive_from(buffer, endpoint[, flags], handler): This
function starts the asynchronous receive of data from a specific endpoint.

•	 async_send(buffer [, flags], handler): This function starts an
asynchronous send function of the buffer' data.

•	 async_write_some(buffer, handler): This function is equivalent to
async_send(buffer, handler).

•	 async_send_to(buffer, endpoint, handler): This function starts an
asynchronous send function of the buffer' data to the specific endpoint.

•	 receive(buffer [, flags]): This function synchronously receives data
in the given buffer. The function blocks until data is received, or an error
occurs.

•	 read_some(buffer): This function is equivalent to receive(buffer).
•	 receive_from(buffer, endpoint [, flags]): This function synchronously

receives data from a given endpoint into the given buffer. The function
blocks until data is received, or an error occurs.

•	 send(buffer [, flags]): This function synchronously sends the buffer's
data. The function blocks until data is successfully sent, or an error occurs.

•	 write_some(buffer): This function is equivalent to send(buffer).
•	 send_to(buffer, endpoint [, flags]): This function synchronously

sends the buffer's data to a given endpoint. The function blocks until data
is successfully sent or an error occurs.

•	 available(): This function returns how many bytes can be read
synchronously without blocking.

Chapter 2

[27]

We'll talk about buffers shortly. Let's examine the flags. The default value for flags
is 0 but can be a combination of:

•	 ip::socket_type::socket::message_peek: This flag only peeks at the
message. It will return the message, but the next call to read the message
will re-read this message.

•	 ip::socket_type::socket::message_out_of_band: This flag processes
out-of-band (OOB) data. OOB data is data that is flagged as more important
than normal data. A discussion about OOB data is out of the scope of this book.

•	 ip::socket_type::socket::message_do_not_route: This flag specifies
that the message should be sent without using routing tables.

•	 ip::socket_type::socket::message_end_of_record: This flag specifies
that the data marks the end of a record. This is not supported on Windows.

You will most likely use message_peek, if ever you use the following code snippet:

char buff[1024];
sock.receive(buffer(buff), ip::tcp::socket::message_peek);
memset(buff,1024, 0);
// re-reads what was previously read
sock.receive(buffer(buff));

Following are examples that give guidance to read synchronously and
asynchronously to different types of sockets:

•	 Example 1 is to write and read synchronously to a TCP socket:
ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 80);
ip::tcp::socket sock(service);
sock.connect(ep);
sock.write_some(buffer("GET /index.html\r\n"));
std::cout << "bytes available " << sock.available() << std::endl;
char buff[512];
size_t read = sock.read_some(buffer(buff));

•	 Example 2 is to read and write synchronously to a UDP socket:
ip::udp::socket sock(service);
sock.open(ip::udp::v4());
ip::udp::endpoint receiver_ep("87.248.112.181", 80);
sock.send_to(buffer("testing\n"), receiver_ep);
char buff[512];
ip::udp::endpoint sender_ep;
sock.receive_from(buffer(buff), sender_ep);

Boost.Asio Fundamentals

[28]

Note that to read from a UDP socket using receive_from, you
need a default-constructed endpoint, as shown in the previous code
snippet.

•	 Example 3 is to read asynchronously from a UDP server socket:

using namespace boost::asio;
io_service service;
ip::udp::socket sock(service);
boost::asio::ip::udp::endpoint sender_ep;
char buff[512];

void on_read(const boost::system::error_code & err, std::size_t
read_bytes) {
 std::cout << "read " << read_bytes << std::endl;
 sock.async_receive_from(buffer(buff), sender_ep, on_read);
}

int main(int argc, char* argv[]) {
 ip::udp::endpoint ep(ip::address::from_string("127.0.0.1"),
8001);
 sock.open(ep.protocol());
 sock.set_option(boost::asio::ip::udp::socket::reuse_
address(true));
 sock.bind(ep);
 sock.async_receive_from(buffer(buff,512), sender_ep, on_read);
 service.run();
}

Socket control
These functions deal with the advanced socket options:

•	 get_io_service(): This function returns the io_service instance that was
passed at construction

•	 get_option(option): This function returns a socket option
•	 set_option(option): This function sets a socket option
•	 io_control(cmd): This function executes an I/O command on the socket

Chapter 2

[29]

Here are the options you can get/set for a socket:

Name Description Type
broadcast If true, it allows broadcasting messages bool

debug If true, it enables socket-level
debugging

bool

do_not_route If true, it prevents routing and use local
interfaces only

bool

enable_
connection_
aborted

If true, it reports connections that were
aborted on accept()

bool

keep_alive If true, it sends keep-alives bool

linger If true, socket lingers on close() if
there's unsent data

bool

receive_buffer_
size

This is a received buffer size for a socket int

receive_low_
watemark

This provides a minimum number of
bytes to process for socket input

int

reuse_address If true, socket can be bound to an
address already in use

bool

send_buffer_
size

This sends buffer size for a socket int

send_low_
watermark

This provides a minimum number of
bytes to send for socket output

int

ip::v6_only If true, it allows only IPv6
communication

bool

Each name represents an inner socket typedef or a class. Here is how to use them:

ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 80);
ip::tcp::socket sock(service);
sock.connect(ep);
// TCP socket can reuse address
ip::tcp::socket::reuse_address ra(true);
sock.set_option(ra);
// get sock receive buffer size
ip::tcp::socket::receive_buffer_size rbs;
sock.get_option(rbs);
std::cout << rbs.value() << std::endl;
// set sock's buffer size to 8192
ip::tcp::socket::send_buffer_size sbs(8192);
sock.set_option(sbs);

www.allitebooks.com

http://www.allitebooks.org

Boost.Asio Fundamentals

[30]

The socket needs to be open for the previous features to work,
otherwise, an exception is thrown.

TCP versus UDP versus ICMP
As I previously said, not all member functions are available to all socket classes. I've
made a list where member functions differ. If a member function is not here, it means
that it's present in all socket classes:

Name TCP UDP ICMP
async_read_some Yes - -
async_receive_from - Yes Yes
async_write_some Yes - -
async_send_to - Yes Yes
read_some Yes - -
receive_from - Yes Yes
write_some Yes - -
send_to - Yes Yes

Miscellaneous functions
Other functions unrelated to connection or input/output are as follows:

•	 local_endpoint(): This function returns the address, where the socket is
connected locally.

•	 remote_endpoint(): This function returns the remote address, where the
socket is connected to.

•	 native_handle(): This function returns the handle of the raw socket. You
only need this if you want to call a raw function not supplied by Boost.Asio.

•	 non_blocking(): This function returns true if the socket is non-blocking,
false otherwise.

•	 native_non_blocking(): This function returns true if the socket is
non-blocking, false otherwise. However, it will call the native API on the
raw socket. Usually, you don't need this (non_blocking() already caches
this result); you should only use it if you deal with the native_handle()
directly yourself.

•	 at_mark(): This function returns true if the socket is about to read OOB
data. You will very seldom need this.

Chapter 2

[31]

Other considerations
As a final note, a socket instance cannot be copied, as the Copy constructor and
operator = are inaccessible:

ip::tcp::socket s1(service), s2(service);
s1 = s2; // compile time error
ip::tcp::socket s3(s1); // compile time error

This makes a lot of sense, since each instance holds and manages a resource
(the raw socket itself). If we were to allow copy-construction, we could end up
with two instances having the same raw socket; they would need to somehow
manage ownership (either one instance has ownership, or use reference counting,
or any method). Boost.Asio chose to disallow copying (if you want to create copies,
just use a shared pointer):

typedef boost::shared_ptr<ip::tcp::socket> socket_ptr;
socket_ptr sock1(new ip::tcp::socket(service));
socket_ptr sock2(sock1); // ok
socket_ptr sock3;
sock3 = sock1; // ok

Socket buffers
When reading from or writing to a socket, you'll need a buffer, one that will hold the
incoming data or the outgoing data. The memory in the buffer must outlive the I/O
operation; you have to make sure if it is not deallocated or goes out of scope as long
as the I/O operation lasts.

This is extremely easy for synchronous operations; of course, the buff will outlive
both receive and send:

char buff[512];
...
sock.receive(buffer(buff));
strcpy(buff, "ok\n");
sock.send(buffer(buff));

Boost.Asio Fundamentals

[32]

This is not so straightforward for asynchronous operations, as given in the following
code snippet:

// very bad code ...
void on_read(const boost::system::error_code & err, std::size_t read_
bytes)
{ ... }
void func() {
 char buff[512];
 sock.async_receive(buffer(buff), on_read);
}

After the call to async_receive(), buff will go out of scope, thus its memory will
be deallocated. When we're about to actually receive some data on the socket, we'll
copy them into memory we don't own anymore; it could either be deallocated, or
reallocated by some other code for some other data, thus, corrupting memory.

There are several solutions to the above problem:

•	 Use global buffers
•	 Create a buffer, and destroy it when the operation completes
•	 Have a connection object that maintains the socket, and additional data,

such as, buffer(s)

The first solution is not that good, since we all know global variables are quite bad.
Besides, what happens if two handlers use the same buffer?

Here's how you can implement the second solution:

void on_read(char * ptr, const boost::system::error_code & err,
std::size_t read_bytes) {
 delete[] ptr;
}
....
char * buff = new char[512];
sock.async_receive(buffer(buff, 512), boost::bind(on_
read,buff,_1,_2));

Or, if you want the buffer to go automatically out of scope as the operation
completes, use a shared pointer:

Chapter 2

[33]

struct shared_buffer {
 boost::shared_array<char> buff;
 int size;
 shared_buffer(size_t size) : buff(new char[size]), size(size) {
 }
 mutable_buffers_1 asio_buff() const {
 return buffer(buff.get(), size);
 }
};

// when on_read goes out of scope, the boost::bind object is released,
// and that will release the shared_buffer as well
void on_read(shared_buffer, const boost::system::error_code & err,
 std::size_t read_bytes) {}
...
shared_buffer buff(512);
sock.async_receive(buff.asio_buff(), boost::bind(on_read,buff,_1,_2));

The shared_buffer class holds internally shared_array<>, which are the copies
of the shared_buffer instance that shared_array<> will stay alive for—when the
last one goes out of scope, shared_array<> is automatically destroyed, which is just
what we want.

This works as you'd expect, because Boost.Asio will keep a copy to the completion
handler, to call when the operation completes. That copy is a boost::bind functor,
which internally holds a copy to our shared_buffer instance. It is pretty neat!

The third option is to use a connection object that maintains the socket and
additional data, such as the buffers, is usually the right solution but is pretty
complex. It will be discussed at the end of this chapter.

The buffer function wrapper
Throughout the code you've seen that whenever we need a buffer for a read/write
operation, the code wraps the real buffer object into a buffer() call, and passes it to
the function:

char buff[512];
sock.async_receive(buffer(buff), on_read);

This basically wraps any buffer we have into a class that allows the Boost.Asio
functions to iterate through the buffer. Say, you use the following code:

sock.async_receive(some_buffer, on_read);

Boost.Asio Fundamentals

[34]

The some_buffer instance needs to meet some requirements, namely
ConstBufferSequence or MutableBufferSequence (you can look them up in
Boost.Asio's documentation). The details of creating your own class to meet these
requirements are pretty complex, but Boost.Asio already provides some classes,
modeling those requirements. You don't access them directly, you use the
buffer() function.

Suffice to say, you can wrap any of the following into a buffer() function:

•	 A char[] const array
•	 A void* pointer and size in characters
•	 An std::string string
•	 An POD[] const array (POD stands for plain old data, meaning, constructor

and destructor do nothing)
•	 An std::vector array of any POD
•	 A boost::array array of any POD
•	 An std::array array of any POD

The following code works:

struct pod_sample { int i; long l; char c; };
...
char b1[512];
void * b2 = new char[512];
std::string b3; b3.resize(128);
pod_sample b4[16];
std::vector<pod_sample> b5; b5.resize(16);
boost::array<pod_sample,16> b6;
std::array<pod_sample,16> b7;
sock.async_send(buffer(b1), on_read);
sock.async_send(buffer(b2,512), on_read);
sock.async_send(buffer(b3), on_read);
sock.async_send(buffer(b4), on_read);
sock.async_send(buffer(b5), on_read);
sock.async_send(buffer(b6), on_read);
sock.async_send(buffer(b7), on_read);

All in all, rather than creating your own class to meet the requirements of
ConstBufferSequence or MutableBufferSequence, you can probably create a class
that will hold the buffer as long as it's needed, and return an instance of mutable_
buffers_1, which is what we did in shared_buffer class earlier.

Chapter 2

[35]

The read/write/connect free functions
Boost.Asio gives you free functions to deal with I/O. I've split them into four groups.

The connect functions
These functions connect the socket to an endpoint:

•	 connect(socket, begin [, end] [, condition]): This function
synchronously connects by trying each endpoint in the sequence begin and
end. The begin iterator is the result of a socket_type::resolver::query
call (you might want to check out the Endpoints section again). Specifying the
end iterator is optional; you can forget about it. You can supply a condition
function that is called before each connection attempt. Its signature is
Iterator connect_condition(const boost::system::error_code & err,
Iterator next);. You can choose to return a different iterator than next,
allowing you to skip over some endpoints.

•	 async_connect(socket, begin [, end] [, condition], handler): This
function executes the connection asynchronously, and at the end, it calls
the completion handler. The handler's signature is void handler(const
boost::system::error_code & err, Iterator iterator);. The second
parameter passed to the handler is the successfully connected endpoint
(or the end iterator otherwise).

Its example is given as follows:

using namespace boost::asio::ip;
tcp::resolver resolver(service);
tcp::resolver::iterator iter = resolver.resolve(
 tcp::resolver::query("www.yahoo.com",
"80"));
tcp::socket sock(service);
connect(sock, iter);

A hostname can resolve into more than one address, thus connect and
async_connect release you of the burden of trying each address until
one works; they do that for you.

Boost.Asio Fundamentals

[36]

The read/write functions
These functions read from or write to a stream (which can be a socket, or any other
class that behaves like a stream):

•	 async_read(stream, buffer [, completion] ,handler): This function
asynchronously reads from a stream. On completion, the handler is called.
The handler's signature is void handler(const boost::system::error_
code & err, size_t bytes);. You can optionally specify a completion
function. The completion function is called after each successful read,
and tells Boost.Asio if the async_read operation is complete (if not,
it will continue to read). Its signature is size_t completion(const
boost::system::error_code& err, size_t bytes_transfered). When
this completion function returns 0, we consider the read operation complete;
if it returns a non-zero value, it indicates the maximum number of bytes to be
read on the next call to the stream's async_read_some operation.
An example will follow to clear up this.

•	 async_write(stream, buffer [, completion], handler): This function
asynchronously writes to a stream. The meaning of the arguments is similar
to async_read.

•	 read(stream, buffer [, completion]): This function synchronously reads
from a stream. The meaning of the arguments is similar to async_read.

•	 write(stream, buffer [, completion]): This function synchronously
writes to a stream. The meaning of the arguments is similar to async_read:

°° async_read(stream, stream_buffer [, completion], handler)
°° async_write(strean, stream_buffer [, completion], handler)
°° write(stream, stream_buffer [, completion])
°° read(stream, stream_buffer [, completion])

First, note that instead of socket, the first argument is a stream. This includes
sockets but is not limited. For instance, instead of a socket, you can use a Windows
file handle.

Each read or write operation will end when one of these conditions occur:

•	 The supplied buffer is full (for read) or all the data in the buffer has been
written (for write)

•	 The completion function returns 0 (if you supplied one such function)
•	 An error occurs

The following code will asynchronously read from the socket until it meets '\n':

Chapter 2

[37]

io_service service;
ip::tcp::socket sock(service);
char buff[512];
int offset = 0;
size_t up_to_enter(const boost::system::error_code &, size_t bytes) {
 for (size_t i = 0; i < bytes; ++i)
 if (buff[i + offset] == '\n')
 return 0;
 return 1;
}
void on_read(const boost::system::error_code &, size_t) {}
...
async_read(sock, buffer(buff), up_to_enter, on_read);

Boost.Asio comes with a few helper completion functors as well:

•	 transfer_at_least(n)

•	 transfer_exactly(n)

•	 transfer_all()

Its example is given as follows:

char buff[512];
void on_read(const boost::system::error_code &, size_t) {}
// read exactly 32 bytes
async_read(sock, buffer(buff), transfer_exactly(32), on_read);

The last four functions, instead of the usual buffer, use a stream_buffer function,
which is the Boost.Asio's std::streambuf derived class. STL streams and stream
buffers are very flexible; here's an example:

io_service service;
void on_read(streambuf& buf, const boost::system::error_code &,
size_t) {
 std::istream in(&buf);
 std::string line;
 std::getline(in, line);
 std::cout << "first line: " << line << std::endl;
}
int main(int argc, char* argv[]) {
 HANDLE file = ::CreateFile("readme.txt", GENERIC_READ, 0, 0,
 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
0);
 windows::stream_handle h(service, file);
 streambuf buf;
 async_read(h, buf, transfer_exactly(256),
 boost::bind(on_read,boost::ref(buf),_1,_2));
 service.run();
}

Boost.Asio Fundamentals

[38]

Here, I've shown you that you can also call async_read (and the like) on a Windows
file handle. We read the first 256 characters, and store them into the buffer. When
the read operation is complete, on_read is called, I create std::istream passing
the buffer, read the first line (std::getline), and dump it to the console.

The read_until/async_read_until functions
These functions read until a condition is met:

•	 async_read_until(stream, stream_buffer, delim, handler): This
function starts an asynchronous read operation. The read operation will
stop when a delimeter is met. The delimeter can be any of a character,
std::string or boost::regex. The handler's signature is void
handler(const boost::system::error_code & err, size_t bytes);.

•	 async_read_until(stream, stream_buffer, completion, handler):
This function is the same as the previous one, but instead of a delimeter,
we have a completion function. The completion's signature is
pair<iterator,bool> completion(iterator begin, iterator end);,
where iterator = is buffers_iterator<streambuf::const_buffers_type>.
What you need to remember is that the iterator is of type random-access-
iterator. You scan the range (begin, end), and decide if the read operation
should stop or not. You will return a pair; the first member will be an iterator
passed at the end of the last character consumed by the function; the second
member is true if the read operation should stop, or false otherwise.

•	 read_until(stream, stream_buffer, delim): This function performs
a synchronous read operation. The parameters' meaning is same as in
async_read_until.

•	 read_until(stream, stream_buffer, completion): This function
performs a synchronous read operation. The parameters' meaning is
same as in async_read_until.

The following example will read up to a punctuation sign:

typedef buffers_iterator<streambuf::const_buffers_type> iterator;
std::pair<iterator, bool> match_punct(iterator begin, iterator end) {
 while (begin != end)
 if (std::ispunct(*begin))
 return std::make_pair(begin,true);
 return std::make_pair(end,false);
}

Chapter 2

[39]

void on_read(const boost::system::error_code &, size_t) {}
...
streambuf buf;
async_read_until(sock, buf, match_punct, on_read);

If we wanted to read up to space, we'd modify the last line to:

async_read_until(sock, buff, ' ', on_read);

The *_at functions
These functions do random read/write operations on a stream. You specify where
the read or write operation is to start from (the offset):

•	 async_read_at(stream, offset, buffer [, completion], handler):
This function starts an asynchronous read operation starting at offset, on
the given stream. When the operation completes, it will call the handler. The
handler's signature is void handler(const boost::system::error_code&
err, size_t bytes);. The buffer can be the usual buffer() wrapper or
a streambuf function. If you specify a completion function, it is called
after each successful read, and tells Boost.Asio if the async_read_at
operation is complete (if not, it will continue to read). Its signature is size_t
completion(const boost::system::error_code& err, size_t bytes);.
When this completion function returns 0, we consider the read operation
complete; if it returns a non-zero value, it indicates the maximum number
of bytes to be read on the next call to the stream's async_read_some_at.

•	 async_write_at(stream, offset, buffer [, completion], handler):
This function starts an asynchronous write operation. The parameters'
meaning is the same as async_read_at.

•	 read_at(stream, offset, buffer [, completion]): This function reads
at offset, on the given stream. The parameters' meaning is the same as
async_read_at.

•	 write_at(stream, offset, buffer [, completion]): This function writes
at offset, on the given stream. The parameters' meaning is the same as
async_read_at.

These functions do not deal with sockets. They deal with random access streams; in
other words, streams that can be accessed randomly. Sockets are clearly not the case
(sockets are forward-only).

www.allitebooks.com

http://www.allitebooks.org

Boost.Asio Fundamentals

[40]

Here's how you can read 128 bytes from a file, starting at offset 256:

io_service service;
int main(int argc, char* argv[]) {
 HANDLE file = ::CreateFile("readme.txt", GENERIC_READ, 0, 0,
 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
0);
 windows::random_access_handle h(service, file);
 streambuf buf;
 read_at(h, 256, buf, transfer_exactly(128));
 std::istream in(&buf);
 std::string line;
 std::getline(in, line);
 std::cout << "first line: " << line << std::endl;
}

Asynchronous programming
This section delves very deep into some of the issues you'll run into when doing
asynchronous programming. After reading it once, I suggest you come back to it, as
you progress through the book, to solidify your understanding of these concepts.

The need for going asynchronous
As I previously said, usually, synchronous work is quite easier than asynchronous
programming. This is because, it's much easier to think linearly (call to function A,
call to function A ends, call to function B, call to function B ends, and so on, so that
to think in event-handling manner). In the latter case, you can have, lets say, five
events, and you can never know the order in which they execute, and you can't
even know if they will all execute!

Even though asynchronous programming is harder, you'll very likely prefer it,
in say, writing servers that need to deal with lots of concurrent clients. The more
concurrent clients you have, the easier asynchronous programming is compared to
synchronous programming.

Say, you have an application that deals with 1,000 concurrent clients, each message
client to server and server to client, ending in '\n'.

Chapter 2

[41]

Synchronous code, 1 thread:

using namespace boost::asio;
struct client {
 ip::tcp::socket sock;
 char buff[1024]; // each msg is at maximum this size
 int already_read; // how much have we already read?
};
std::vector<client> clients;
void handle_clients() {
 while (true)
 for (int i = 0; i < clients.size(); ++i)
 if (clients[i].sock.available()) on_read(clients[i]);
}
void on_read(client & c) {
 int to_read = std::min(1024 - c.already_read, c.sock.
available());
 c.sock.read_some(buffer(c.buff + c.already_read, to_read));
 c.already_read += to_read;
 if (std::find(c.buff, c.buff + c.already_read, '\n') < c.buff +
c.already_read) {
 int pos = std::find(c.buff, c.buff + c.already_read, '\n') -
c.buff;
 std::string msg(c.buff, c.buff + pos);
 std::copy(c.buff + pos, c.buff + 1024, c.buff);
 c.already_read -= pos;
 on_read_msg(c, msg);
 }
}
void on_read_msg(client & c, const std::string & msg) {
 // analyze message, and write back
 if (msg == "request_login")
 c.sock.write("request_ok\n");
 else if ...
}

The one thing you want to avoid in any server (and in any networking application
basically) is for code to become unresponsive. In our case, we want the handle_
clients() function to block as little as possible. If the function blocks at any point,
any incoming messages from clients will have to wait until the function unblocks
and starts processing them.

Boost.Asio Fundamentals

[42]

In order to stay responsive, we only read from a socket when there's data on it, that
is, if (clients[i].sock.available()) on_read(clients[i]). In on_read, we
will only read as much as is available; calling read_until(c.sock, buffer(...),
'\n') would be a very bad idea, since that will block until we've read the full
message from this particular client (we never know when that will happen).

The bottleneck here is the on_read_msg() function; as long as that executes, any
incoming messages are put on hold. A well-written on_read_msg() function will
make sure that hardly happens, but it can still happen (sometimes writing to a
socket can be blocked when its buffers fill up, for instance).

Synchronous code, 10 threads:

using namespace boost::asio;
struct client {
 // ... same as before
 bool set_reading() {
 boost::mutex::scoped_lock lk(cs_);
 if (is_reading_) return false; // already reading
 else { is_reading_ = true; return true; }
 }
 void unset_reading() {
 boost::mutex::scoped_lock lk(cs_);
 is_reading_ = false;
 }
private:
 boost::mutex cs_;
 bool is_reading_;
};
std::vector<client> clients;
void handle_clients() {
 for (int i = 0; i < 10; ++i)
 boost::thread(handle_clients_thread);
}
void handle_clients_thread() {
 while (true)
 for (int i = 0; i < clients.size(); ++i)
 if (clients[i].sock.available())
 if (clients[i].set_reading()) {
 on_read(clients[i]);
 clients[i].unset_reading();
 }
}
void on_read(client & c) {
 // same as before
}
void on_read_msg(client & c, const std::string & msg) {
 // same as before
}

Chapter 2

[43]

In order to use more threads, we'll need to synchronize them, and that's what the
set_reading() and set_unreading() functions do. The set_reading() function
is very important. You want to "test for reading and mark as reading" in one step.
If you had two steps ("test for reading" and "mark as reading"), you can have two
threads that test for reading successfully for the same client, and then you'd end up
with two threads calling on_read for the same client, ending up in data corruption
and possibly an application crash.

You'll notice that the code becomes increasingly complex.

There's a third option for synchronized code, that is, to have one thread per
client. But as the number of concurrent clients grows, this becomes pretty much
a no-no situation.

And now, lets go asynchronous. We're constantly asynchronously reading. When
a client asks us something, on_read gets called, we answer back, and then wait for
the next request to come (do another asynchronous read operation).

Asynchronous code, 10 threads:

using namespace boost::asio;
io_service service;
struct client {
 ip::tcp::socket sock;
 streambuf buff; // reads the answer from the client
}
std::vector<client> clients;
void handle_clients() {
 for (int i = 0; i < clients.size(); ++i)
 async_read_until(clients[i].sock, clients[i].buff, '\n',
 boost::bind(on_read, clients[i], _1, _2));
 for (int i = 0; i < 10; ++i)
 boost::thread(handle_clients_thread);
}

void handle_clients_thread() {
 service.run();
}

void on_read(client & c, const error_code & err, size_t read_bytes) {
 std::istream in(&c.buff);
 std::string msg;
 std::getline(in, msg);
 if (msg == "request_login")

Boost.Asio Fundamentals

[44]

 c.sock.async_write("request_ok\n", on_write);
 else if ...
 ...
 // now, wait for the next read from the same client
 async_read_until(c.sock, c.buff, '\n',
 boost::bind(on_read, c, _1, _2));
}

Notice how simple the code became. The client structure has only two members,
handle_clients() just calls async_read_until, and then it creates ten threads,
each calling service.run(). These threads will process and dispatch any
asynchronous read operations from or write operations to clients. One more thing
to note is that on_read() will constantly prepare for the next asynchronous read
operation (see the last line of code).

Asynchronous run(), run_one(), poll(), poll_
one()
To implement the listening loop, io_service class provides four functions, such as
run(), run_one(), poll(), and poll_one(). While most of the time you'll be happy
with service.run(). You'll learn here what the other functions accomplish.

Running forever
Once again, run() will run as long as there are pending operations to be executed or
you manually call io_service::stop(). To keep the io_service instance running,
usually you add one or more asynchronous operations, and when they are executed,
you keep adding asynchronous operations on and on, as in the following code:

using namespace boost::asio;
io_service service;
ip::tcp::socket sock(service);
char buff_read[1024], buff_write[1024] = "ok";
void on_read(const boost::system::error_code &err, std::size_t bytes)
;
void on_write(const boost::system::error_code &err, std::size_t bytes)
{
 sock.async_read_some(buffer(buff_read), on_read);
}
void on_read(const boost::system::error_code &err, std::size_t bytes)
{
 // ... process the read ...

Chapter 2

[45]

 sock.async_write_some(buffer(buff_write,3), on_write);
}
void on_connect(const boost::system::error_code &err) {
 sock.async_read_some(buffer(buff_read), on_read);
}
int main(int argc, char* argv[]) {
 ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"),
2001);
 sock.async_connect(ep, on_connect);
 service.run();
}

When service.run() is called, there's one asynchronous operation pending. When
the socket gets connected to a server, on_connect is called, which will add one more
asynchronous operation. After on_connect finishes, we're left with one pending
operation (read). When on_read is called, we write an answer, which adds another
pending operation. When on_read finishes, we're left with one pending operation
(write). When on_write is called, we read the next message from the server, which
will add another pending operation. When on_write finishes, we have one pending
operation (read). And so, the cycle continues, until we decide to close the application.

The run_one(), poll(), poll_one() functions
You've seen me write that asynchronous function handlers are called in threads that
have previously called io_service::run. I've said this for simplicity, and because
at least 90 to 95 percent of the time, this is the only function you will use. The same
holds true for threads calling run_one(), poll(), or poll_one().

The run_one() function will execute and dispatch at most one asynchronous
operation:

•	 If there are no pending operations, function returns immediately, and
returns 0

•	 If there are pending operations, function blocks until first operation is
executed, and then returns 1

You can consider the following code equivalent:

io_service service;
service.run(); // OR
while (!service.stopped()) service.run_once();

Boost.Asio Fundamentals

[46]

You can use run_once() to start an asynchronous operation, and then wait for it
to complete:

io_service service;
bool write_complete = false;
void on_write(const boost::system::error_code & err, size_t bytes)
{ write_complete = true; }
...
std::string data = "login ok";
write_complete = false;
async_write(sock, buffer(data), on_write);
do service.run_once() while (!write_complete);

There are also some examples that make use of run_one(), bundled with Boost.Asio
like blocking_tcp_client.cpp and blocking_udp_client.cpp.

The poll_one function runs at most one pending operation that is ready to run,
without blocking:

•	 If there is at least one operation pending, and that is ready to be run
without blocking, the poll_one function runs it and returns 1

•	 Otherwise, the function returns immediately and returns 0

Operation pending, ready to be ran without blocking, usually means any of:

•	 A timer that has expired, and its async_wait handler needs to be called
•	 An I/O operation that has completed (such as, async_read), and its handler

needs to be called
•	 A custom function handler that was previously added to io_services

instance's queue (this is explained in detail in the following section)

You can use poll_one to make sure all handlers of completed I/O operations ran,
and then do some other coding as well:

io_service service;
while (true) {
 // run all handlers of completed IO operations
 while (service.poll_one()) ;
 // ... do other work here ...
}

Chapter 2

[47]

The poll() function will run all operations that are pending and can be run without
blocking. The following code is equivalent:

io_service service;
service.poll(); // OR
while (service.poll_one()) ;

All the preceding functions will throw a boost::system::system_error exception
on failure. This should never happen; an error thrown here is usually fatal, maybe
an out-of-resources error or so, or maybe one of your handlers threw an exception.
Anyway, each of the functions has an overload that does not throw and takes a
boost::system::error_code argument and is set upon its return:

io_service service;
boost::system::error_code err = 0;
service.run(err);
if (err) std::cout << "Error " << err << std::endl;

Asynchronous work
Asynchronous work is not just about asynchronously accepting clients connecting
to a server, asynchronous reads from or writes to sockets. It encompasses any
operation that can execute asynchronously.

By default, you don't know the order in which each asynchronous handler function
is called. Besides, the usual asynchronous calls (coming from asynchronous socket
reads/writes/accepts). You can use service.post() to post your custom function
to be called asynchronously. For instance:

#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <boost/asio.hpp>
#include <iostream>
using namespace boost::asio;
io_service service;
void func(int i) {
 std::cout << "func called, i= " << i << std::endl;
}
void worker_thread() {
 service.run();
}

Boost.Asio Fundamentals

[48]

int main(int argc, char* argv[]) {
 for (int i = 0; i < 10; ++i)
 service.post(boost::bind(func, i));
 boost::thread_group threads;
 for (int i = 0; i < 3; ++i)
 threads.create_thread(worker_thread);
 // wait for all threads to be created
 boost::this_thread::sleep(boost::posix_time::millisec(500));
 threads.join_all();
}

In the preceding example, service.post(some_function) adds an asynchronous
function call. This function returns immediately, after requesting the io_service
instance to invoke the given some_function, in one of the threads that called
service.run(). In our case, this is one of the three threads we previously created.
You can't be certain about the order of the asynchronous function calls. You should
not expect them to be called in the order they were posted (post()). A possible
outcome of running the previous example is as follows:

func called, i= 0
func called, i= 2
func called, i= 1
func called, i= 4
func called, i= 3
func called, i= 6
func called, i= 7
func called, i= 8
func called, i= 5
func called, i= 9

There will be times when you want to order some of the asynchronous handler
functions. Say, you have to go to restaurant (go_to_restaurant), order (order), and
eat (eat). You'll want to go to the restaurant first, then order, and finally eat. For this,
you'll use io_service::strand, which will order your asynchronous handler calls.
Consider the following example:

using namespace boost::asio;
io_service service;
void func(int i) {
 std::cout << "func called, i= " << i << "/"
 << boost::this_thread::get_id() << std::endl;
}

Chapter 2

[49]

void worker_thread() {
 service.run();
}
int main(int argc, char* argv[])
{
 io_service::strand strand_one(service), strand_two(service);
 for (int i = 0; i < 5; ++i)
 service.post(strand_one.wrap(boost::bind(func, i)));
 for (int i = 5; i < 10; ++i)
 service.post(strand_two.wrap(boost::bind(func, i)));
 boost::thread_group threads;
 for (int i = 0; i < 3; ++i)
 threads.create_thread(worker_thread);
 // wait for all threads to be created
 boost::this_thread::sleep(boost::posix_time::millisec(500));
 threads.join_all();
}

In the preceding code, we made sure that the first five and the last five were
serialized namely, func called, i = 0 is called before func called, i = 1,
which is called before func called, i = 2, and so on. The same goes for func
called, i = 5, which is called before func called, i = 6, and func called, i
= 6 is called before func called, i = 7, and so on. You should note that even if
the function calls are serialized, that does not mean they will all happen in the same
thread. A possible outcome of running this program can be:

func called, i= 0/002A60C8
func called, i= 5/002A6138
func called, i= 6/002A6530
func called, i= 1/002A6138
func called, i= 7/002A6530
func called, i= 2/002A6138
func called, i= 8/002A6530
func called, i= 3/002A6138
func called, i= 9/002A6530
func called, i= 4/002A6138

www.allitebooks.com

http://www.allitebooks.org

Boost.Asio Fundamentals

[50]

Asynchronous post() versus dispatch()
versus wrap()
Boost.Asio provides three ways to add your function handler to be
asynchronously called:

•	 service.post(handler): This function guarantees that it returns
immediately after it has requested the io_service instance to invoke the
given function handler. The handler will be called later in one of the threads
that has called service.run().

•	 service.dispatch(handler): This requests the io_service instance to
invoke the given function handler, but in addition, it can execute the handler
inside the function if the current thread has called service.run().

•	 service.wrap(handler): This function creates a wrapper function that
when called will call service.dispatch(handler). This is a bit confusing;
I'll explain shortly what this means.

You've seen an example of service.post() in the previous section, together with
a possible outcome of running the program. Lets modify it, and see how service.
dispatch() affects the outcome:

using namespace boost::asio;
io_service service;
void func(int i) {
 std::cout << "func called, i= " << i << std::endl;
}
void run_dispatch_and_post() {
 for (int i = 0; i < 10; i += 2) {
 service.dispatch(boost::bind(func, i));
 service.post(boost::bind(func, i + 1));
 }
}
int main(int argc, char* argv[]) {
 service.post(run_dispatch_and_post);
 service.run();
}

Chapter 2

[51]

Before explaining what's happening, lets see the results by running the program:

func called, i= 0
func called, i= 2
func called, i= 4
func called, i= 6
func called, i= 8
func called, i= 1
func called, i= 3
func called, i= 5
func called, i= 7
func called, i= 9

Even numbers are written first, then the odd ones. This is because I use dispatch()
to write the even numbers, and post() to write the odd numbers. dispatch()
will call the handler before it returns, because the current thread has called
service.run(), while post() always returns immediately.

Now, lets talk about service.wrap(handler). The wrap() returns a functor,
which can be further used as an argument to another functions:

using namespace boost::asio;
io_service service;
void dispatched_func_1() {
 std::cout << "dispatched 1" << std::endl;
}
void dispatched_func_2() {
 std::cout << "dispatched 2" << std::endl;
}
void test(boost::function<void()> func) {
 std::cout << "test" << std::endl;
 service.dispatch(dispatched_func_1);
 func();
}
void service_run() {
 service.run();
}
int main(int argc, char* argv[]) {
 test(service.wrap(dispatched_func_2));
 boost::thread th(service_run);
 boost::this_thread::sleep(boost::posix_time::millisec(500));
 th.join();
}

Boost.Asio Fundamentals

[52]

The line test(service.wrap(dispatched_func_2)); will wrap dispatched_
func_2 and create a functor passed as an argument to test. When test() is called,
it will dispatch calling function 1, and call func(). At this point, you'll see that
calling func() is equivalent to service.dispatch(dispatched_func_2), because
they are called sequentially. The output of the program confirms it:

test
dispatched 1
dispatched 2

The io_service::strand class (used for serializing asynchronous actions) also
contains the member functions poll(), dispatch() and wrap(). Their meaning
is the same as io_service's poll(), dispatch(), and wrap(). However, most of
the time you will only use io_service::strand::wrap() function as argument to
io_service::poll() or io_service::dispatch().

Staying alive
Say, you do the following operation:

io_service service;
ip::tcp::socket sock(service);
char buff[512];
...
read(sock, buffer(buff));

In this case, sock and buff must both outlive the call to read(). In other words,
they must be valid after the call to read() returns. This is just what you'd expect;
all arguments you pass to a function should be valid inside the function. Things
get more complicated when we go asynchronous:

io_service service;
ip::tcp::socket sock(service);
char buff[512];
void on_read(const boost::system::error_code &, size_t) {}
...
async_read(sock, buffer(buff), on_read);

In this case, sock and buff must outlive the read operation itself, which we don't
know when will happen, since it's asynchronous.

Chapter 2

[53]

When using socket buffers, you can have a buffer instance outlive an asynchronous
call (make use of boost::shared_array<>). We can use the same principle here by
creating a class that internally holds the socket and its read/write buffers. Then, for
all asynchronous calls, I will pass a boost::bind functor with a shared pointer:

using namespace boost::asio;
io_service service;
struct connection : boost::enable_shared_from_this<connection> {
 typedef boost::system::error_code error_code;
 typedef boost::shared_ptr<connection> ptr;
 connection() : sock_(service), started_(true) {}
 void start(ip::tcp::endpoint ep) {
 sock_.async_connect(ep,
 boost::bind(&connection::on_connect, shared_from_this(),
_1));
 }
 void stop() {
 if (!started_) return;
 started_ = false;
 sock_.close();
 }
 bool started() { return started_; }
private:
 void on_connect(const error_code & err) {
 // here you decide what to do with the connection: read or
write
 if (!err) do_read();
 else stop();
 }
 void on_read(const error_code & err, size_t bytes) {
 if (!started()) return;
 std::string msg(read_buffer_, bytes);
 if (msg == "can_login") do_write("access_data");
 else if (msg.find("data ") == 0) process_data(msg);
 else if (msg == "login_fail") stop();
 }
 void on_write(const error_code & err, size_t bytes) {
 do_read();
 }
 void do_read() {

Boost.Asio Fundamentals

[54]

 sock_.async_read_some(buffer(read_buffer_),
 boost::bind(&connection::on_read, shared_from_this(),
_1, _2));
 }
 void do_write(const std::string & msg) {
 if (!started()) return;
 // note: in case you want to send several messages before
 // doing another async_read, you'll need several write
buffers!
 std::copy(msg.begin(), msg.end(), write_buffer_);
 sock_.async_write_some(buffer(write_buffer_, msg.size()),
 boost::bind(&connection::on_write, shared_from_this(),
_1, _2));
 }
 void process_data(const std::string & msg) {
 // process what comes from server, and then perform another
write
 }
private:
 ip::tcp::socket sock_;
 enum { max_msg = 1024 };
 char read_buffer_[max_msg];
 char write_buffer_[max_msg];
 bool started_;
};

int main(int argc, char* argv[]) {
 ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"),
8001);
 connection::ptr(new connection)->start(ep);
}

In all asynchronous calls, we pass a boost::bind functor as an argument. That
functor internally keeps a shared pointer to the connection instance. As long as
there's an asynchronous operation pending, Boost.Asio will keep a copy of the
boost::bind functor, which keeps a shared pointer to the connection instance,
keeping the connection instance alive. Problem solved!

Of course, the connection class is just a skeleton class; you'll have to adapt it to
your needs (it will look quite different in the case of a server).

Notice how easy you create a new connection, connection::ptr(new connection)-
>start(ep). This starts the (asynchronous) connection to the server. When you want
to close this connection, you'll call stop().

Chapter 2

[55]

Once the instance is stared (start()), it will wait to get connected. When connection
happens, on_connect() is called. If there's no error, it performs a read operation
(do_read()). Once the read operation completes, you interpret the message; your
application's on_read() will look very different. When you write a message, you
have to copy it to the buffer, and then send it just like I did in do_write(), because
again, the buffer needs to outlive the asynchronous write. One final note – when
writing, remember that you have to specify how much to write, otherwise, the whole
buffer will be sent.

Summary
The Networking API is rather vast. This chapter was implemented as a reference,
which you should come back to, while implementing your own networking
applications.

Boost.Asio implemented the concept of endpoints, which you can think of as an IP
and a port. If you don't know the exact IP, you can use a resolver object to turn
a hostname, such as www.yahoo.com into one or several IPs.

We've also seen the socket classes, which are at the core of the API. Boost.Asio
provides implementations for TCP, UDP, and ICMP, but you can extend it with
your own protocols; it's not a job for the faint-hearted, though.

Asynchronous programming is a necessary evil. You've seen why you sometimes
need it, especially when writing servers. Usually, you'll be happy with calling
service.run() to implement the asynchronous loop, but just in case you need to
go advanced, you can use run_one(), poll(), or poll_one().

When going asynchronous, you can also have your own functions executed
asynchronously; just use service.post() or service.dispatch().

Finally, in order for both the socket and the buffer (read or write) to be alive for
the whole period of the asynchronous operation (until it completes), we need to take
special precautions. Your connection class should derive from enabled_shared_
from_this, keep internally all its needed buffers, and each asynchronous call will
pass a shared pointer to the this operation.

The next chapter will really put you to work; lots of hands-on coding while
implementing echo client/server applications.

Echo Server/Clients
In this chapter, we'll implement a small client/server application, which is probably
the easiest client/server application you will ever write. This is the Echo application,
a server that echoes back anything a client writes, and then closes the client's
connection. The server can handle any number of clients. As each client connects, it
sends a message. The server receives the full message and sends it back. After that, it
closes the connection.

Therefore, each Echo client connects to the server, sends a message, and reads what
the server replies, making sure it's the same message it sent and finishes talking to
the server.

Echo Server/Clients

[58]

We will implement first a synchronous application, and then an asynchronous
application, so you can easily compare them:

Some of the following code has been trimmed to save space. You will find the full
code in the code accompanying this book.

TCP Echo server/clients
For TCP, we can have an extra guarantee; each message ends in line feed ('\n').
Coding Echo servers/clients synchronously is extremely easy.

Chapter 3

[59]

We will present programs, such as synchronous client, a synchronous server,
a asynchronous client, and an asynchronous server.

TCP synchronous client
In most non-trivial examples, it's usually the client that is easier to code, than the
server (since the server needs to deal with multiple clients).

The following code shows an exception to the rule:

ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 8001);

size_t read_complete(char * buf, const error_code & err, size_t bytes)
{
 if (err) return 0;
 bool found = std::find(buf, buf + bytes, '\n') < buf + bytes;
 // we read one-by-one until we get to enter, no buffering
 return found ? 0 : 1;
}
void sync_echo(std::string msg) {
 msg += "\n";
 ip::tcp::socket sock(service);
 sock.connect(ep);
 sock.write_some(buffer(msg));
 char buf[1024];
 int bytes = read(sock, buffer(buf), boost::bind(read_
complete,buf,_1,_2));
 std::string copy(buf, bytes - 1);
 msg = msg.substr(0, msg.size() - 1);
 std::cout << "server echoed our " << msg << ": "
 << (copy == msg ? "OK" : "FAIL") << std::endl;
 sock.close();
}
int main(int argc, char* argv[]) {
 char* messages[] = { "John says hi", "so does James",
 "Lucy just got home", "Boost.Asio is Fun!", 0
};
 boost::thread_group threads;
 for (char ** message = messages; *message; ++message) {
 threads.create_thread(boost::bind(sync_echo, *message));
 boost::this_thread::sleep(boost::posix_time::millisec(100));
 }
 threads.join_all();
}

www.allitebooks.com

http://www.allitebooks.org

Echo Server/Clients

[60]

The function to watch for is sync_echo. It contains all the logic for connecting
to a server, sending it a message and waiting for the echo back.

You'll notice that, for reading, I've used the free function read(), because I want
to read everything up to '\n'. The sock.read_some() function would not be
enough, since that would only read what's available, which is not necessarily
the whole message.

The third argument to the read() function is a completion handler. It will return 0
when it's read the full message. Otherwise, it will return the maximum buffer it can
read in the next step (until read is complete). In our case, this is always 1, because
we never want to mistakenly read more than we need.

In main(), we create several threads; one thread for each message to send to
the client, and wait for them to complete. If you run the program, you'll see the
following output:

server echoed our John says hi: OK
server echoed our so does James: OK
server echoed our Lucy just got home: OK
server echoed our Boost.Asio is Fun!: OK

Notice that since we're synchronous, there's no need to call service.run().

TCP synchronous server
The Echo synchronous server is quite easy to write, as shown in the following
code snippet:

io_service service;
size_t read_complete(char * buff, const error_code & err, size_t
bytes) {
 if (err) return 0;
 bool found = std::find(buff, buff + bytes, '\n') < buff + bytes;
 // we read one-by-one until we get to enter, no buffering
 return found ? 0 : 1;
}
void handle_connections() {
 ip::tcp::acceptor acceptor(service, ip::tcp::endpoint(ip::tcp:
:v4(),8001));
 char buff[1024];
 while (true) {
 ip::tcp::socket sock(service);
 acceptor.accept(sock);
 int bytes = read(sock, buffer(buff),

Chapter 3

[61]

 boost::bind(read_complete,buff,_1,_2));
 std::string msg(buff, bytes);
 sock.write_some(buffer(msg));
 sock.close();
 }
}
int main(int argc, char* argv[]) {
 handle_connections();
}

The logic of the server is handle_connections(). Since we're single-threaded, we
accept a new client, read the message it sends us, echo it back, and then wait for the
next client. Let's say, if two clients connect at once, the second client will have to wait
for the server to service the first client.

Notice again that since we're synchronous, there's no need to call service.run().

TCP asynchronous client
Once we go asynchronous, the code becomes a bit more complicated. We'll model
the connection class shown in Chapter 2, Staying Alive.

By looking at the following code snippets in this section, you will notice that every
asynchronous operation starts a new asynchronous operation, keeping the service.
run() busy.

First, the core functionality is:

#define MEM_FN(x) boost::bind(&self_type::x, shared_from_this())
#define MEM_FN1(x,y) boost::bind(&self_type::x, shared_from_
this(),y)
#define MEM_FN2(x,y,z) boost::bind(&self_type::x, shared_from_
this(),y,z)

class talk_to_svr : public boost::enable_shared_from_this<talk_to_svr>
 , boost::noncopyable {
 typedef talk_to_svr self_type;
 talk_to_svr(const std::string & message)
 : sock_(service), started_(true), message_(message) {}
 void start(ip::tcp::endpoint ep) {
 sock_.async_connect(ep, MEM_FN1(on_connect,_1));
 }
public:

Echo Server/Clients

[62]

 typedef boost::system::error_code error_code;
 typedef boost::shared_ptr<talk_to_svr> ptr;
 static ptr start(ip::tcp::endpoint ep, const std::string &
message) {
 ptr new_(new talk_to_svr(message));
 new_->start(ep);
 return new_;
 }
 void stop() {
 if (!started_) return;
 started_ = false;
 sock_.close();
 }
 bool started() { return started_; }
 ...
private:
 ip::tcp::socket sock_;
 enum { max_msg = 1024 };
 char read_buffer_[max_msg];
 char write_buffer_[max_msg];
 bool started_;
 std::string message_;
};

We want to always use shared pointers to talk_to_svr, so that as long as there are
asynchronous operations on an instance of talk_to_svr, that instance is alive. In
order to avoid mistakes, such as constructing an instance of the talk_to_svr object
on the stack, I've made the constructor private and disallowed copy construction
(derived from boost::noncopyable).

We have the core functions, such as start(), stop(), and started() that
do just what their names say. To construct a connection, just call talk_to_
svr::start(endpoint, message). We also have one read and one write buffer
(read_buffer_ and write_buffer_).

The MEM_FN* macros are convenience macros, and they enforce always using a
shared pointer to *this, via the shared_ptr_from_this() function.

The following lines are very different than explained earlier:

// equivalent to "sock_.async_connect(ep, MEM_FN1(on_connect,_1));"
sock_.async_connect(ep,
 boost::bind(&talk_to_svr::on_connect,shared_ptr_from_this(),_1));
sock_.async_connect(
 ep, boost::bind(&talk_to_svr::on_connect,this,_1));

Chapter 3

[63]

In the former case, we're creating the async_connect completion handler correctly;
it will hold a shared pointer to the talk_to_server instance until it calls the
completion handler, thus, making sure we're still alive when that happens.

In the latter case, we're creating the completion handler incorrectly. By the time it
gets called, the talk_to_server instance could have been deleted!

To read from or write to the socket, you'll use following code snippet:

void do_read() {
 async_read(sock_, buffer(read_buffer_),
 MEM_FN2(read_complete,_1,_2), MEM_FN2(on_read,_1,_2));
}
void do_write(const std::string & msg) {
 if (!started()) return;
 std::copy(msg.begin(), msg.end(), write_buffer_);
 sock_.async_write_some(buffer(write_buffer_, msg.size()),
 MEM_FN2(on_write,_1,_2));
}
size_t read_complete(const boost::system::error_code & err, size_t
bytes) {
 // similar to the one shown in TCP Synchronous Client
}

The do_read() function will make sure that we read a line from the server, at which
point on_read() is called. The do_write() function will first copy the message into
the buffer (since msg will probably go out of scope and be destroyed by the time the
async_write actually takes place), and then make sure on_write() is called after
the actual write takes place.

And the most important functions, the one that contain the main logic of the class:

void on_connect(const error_code & err) {
 if (!err) do_write(message_ + "\n");
 else stop();
}
void on_read(const error_code & err, size_t bytes) {
 if (!err) {
 std::string copy(read_buffer_, bytes - 1);
 std::cout << "server echoed our " << message_ << ": "
 << (copy == message_ ? "OK" : "FAIL") <<
std::endl;
 }
 stop();
}

Echo Server/Clients

[64]

void on_write(const error_code & err, size_t bytes) {
 do_read();
}

After we're connected, we send the message to the server, do_write(). When the
write operation is finished, on_write() gets called, which initiates a do_read()
function. When do_read() is complete, on_read() gets called; here, we simply
check that the message from the server is simply an echo, and exit from it.

We'll send three messages to the server just to make it a bit more interesting:

int main(int argc, char* argv[]) {
 ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"),
8001);
 char* messages[] = { "John says hi", "so does James", "Lucy got
home", 0 };
 for (char ** message = messages; *message; ++message) {
 talk_to_svr::start(ep, *message);
 boost::this_thread::sleep(boost::posix_time::millisec(100));
 }
 service.run();
}

The preceding code snippet will generate the following code:

server echoed our John says hi: OK
server echoed our so does James: OK
server echoed our Lucy just got home: OK

TCP asynchronous server
The core functionality is similar to the one from the asynchronous client, shown
as follows:

class talk_to_client : public boost::enable_shared_from_this<talk_to_
client>
 , boost::noncopyable {
 typedef talk_to_client self_type;
 talk_to_client() : sock_(service), started_(false) {}
public:
 typedef boost::system::error_code error_code;
 typedef boost::shared_ptr<talk_to_client> ptr;

Chapter 3

[65]

 void start() {
 started_ = true;
 do_read();
 }
 static ptr new_() {
 ptr new_(new talk_to_client);
 return new_;
 }
 void stop() {
 if (!started_) return;
 started_ = false;
 sock_.close();
 }
 ip::tcp::socket & sock() { return sock_;}
 ...
private:
 ip::tcp::socket sock_;
 enum { max_msg = 1024 };
 char read_buffer_[max_msg];
 char write_buffer_[max_msg];
 bool started_;
};

Since we've a very simple Echo server, there is no need for an is_started()
function. For each client, just read its message, echo it back, and close it.

The do_read(), do_write() and read_complete() functions are exactly the
same as in the TCP asynchronous client.

The main logic of the class is again in on_read() and on_write():

void on_read(const error_code & err, size_t bytes) {
 if (!err) {
 std::string msg(read_buffer_, bytes);
 do_write(msg + "\n");
 }
 stop();
}
void on_write(const error_code & err, size_t bytes) {
 do_read();
}

Echo Server/Clients

[66]

Dealing with the clients is done as follows:

ip::tcp::acceptor acceptor(service, ip::tcp::endpoint(ip::tcp::v4(),
8001));
void handle_accept(talk_to_client::ptr client, const error_code & err)
{
 client->start();
 talk_to_client::ptr new_client = talk_to_client::new_();
 acceptor.async_accept(new_client->sock(),
 boost::bind(handle_accept,new_client,_1));
}
int main(int argc, char* argv[]) {
 talk_to_client::ptr client = talk_to_client::new_();
 acceptor.async_accept(client->sock(),
 boost::bind(handle_accept,client,_1));
 service.run();
}

Each time a client connects to the server, handle_accept is called, which will
asynchronously start reading from that client, and also asynchronously wait for
a new client.

The code
You'll find all four applications (TCP Echo Sync Client, TCP Echo Sync Server, TCP
Echo Sync Client, TCP Echo Sync Server) in the code accompanying this book. When
testing, you can use any client/server combination (such as, an asynchronous client
versus a synchronous server).

UDP Echo server/clients
Since in UDP not all messages reach the recipient, we can't have the "message ends
in enter" guarantee.

Each message we receive, we simply echo back with no socket to close (on the server
side), since we're UDP.

Chapter 3

[67]

UDP synchronous Echo client
The UDP Echo client is simpler than the TCP Echo client:

ip::udp::endpoint ep(ip::address::from_string("127.0.0.1"), 8001);
void sync_echo(std::string msg) {
 ip::udp::socket sock(service, ip::udp::endpoint(ip::udp::v4(), 0)
);
 sock.send_to(buffer(msg), ep);
 char buff[1024];
 ip::udp::endpoint sender_ep;
 int bytes = sock.receive_from(buffer(buff), sender_ep);
 std::string copy(buff, bytes);
 std::cout << "server echoed our " << msg << ": "
 << (copy == msg ? "OK" : "FAIL") << std::endl;
 sock.close();
}
int main(int argc, char* argv[]) {
 char* messages[] = { "John says hi", "so does James", "Lucy got
home", 0 };
 boost::thread_group threads;
 for (char ** message = messages; *message; ++message) {
 threads.create_thread(boost::bind(sync_echo, *message));
 boost::this_thread::sleep(boost::posix_time::millisec(100));
 }
 threads.join_all();
}

The whole logic is in synch_echo(); connect to the server, send the message, receive
the echo from server, and close the connection.

Echo Server/Clients

[68]

UDP synchronous Echo server
The UDP Echo server is the easiest server you'll ever write:

io_service service;
void handle_connections() {
 char buff[1024];
 ip::udp::socket sock(service, ip::udp::endpoint(ip::udp::v4(),
8001));
 while (true) {
 ip::udp::endpoint sender_ep;
 int bytes = sock.receive_from(buffer(buff), sender_ep);
 std::string msg(buff, bytes);
 sock.send_to(buffer(msg), sender_ep);
 }
}
int main(int argc, char* argv[]) {
 handle_connections();
}

That's simple, and quite self-explanatory.

I'll leave the asynchronous UDP client and server as an exercise for the reader.

Summary
We've written full applications and finally put Boost.Asio to work. The Echo
application is a very good tool to start learning a library. You can always study and
run the code shown in this chapter to easily remember the library's fundamentals.

In the following chapter, we'll build more complex client/server applications,
making sure we avoid pitfalls, such as memory leaks, deadlocks, and so on.

Client and Server
In this chapter, we're about to delve into building non-trivial client and server
applications using Boost.Asio. You can run and test them, and once you understand
them, you can use them as skeletons to build your own applications.

In the following examples:

•	 The client logs in to the server with a username (no password)
•	 All connections are initiated by the client, where client asks

and server answers
•	 All requests and answers are finished with a line feed ('\n')
•	 Server disconnects any client that hasn't pinged for 5 seconds

The client can make the following requests:

•	 Get a list of all connected clients
•	 The client can ping, and when it pings, the server answers either with ping

ok or ping client_list_chaned (in the latter case, the client re-requests the
list of connected clients)

To keep things interesting, we'll add a few twists:

•	 Each client application logs in six with user connections, such as John, James,
Lucy, Tracy, Frank, Abby

•	 Each client connection pings the server at random times (random of 7
seconds; thus, every now and then, the server will drop a connection)

Client and Server

[70]

The synchronous client/server
First, we'll implement the synchronous application. You'll see that the code is
straightforward and easy to read. However, the networking part does need its own
thread(s), since all networking calls are blocking.

Synchronous client
The synchronous client does exactly what you'd expect in a serial fashion; connects
to the server, logs in to the server, then performs the connection loop, such as sleep a
bit, make a request, read the server's answer, then sleep a bit again, and so on.

Chapter 4

[71]

Since we're synchronous, lets keep things simple. First, connect to the server, then
the loop, as follows:

ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 8001);
void run_client(const std::string & client_name) {
 talk_to_svr client(client_name);
 try {
 client.connect(ep);
 client.loop();
 } catch(boost::system::system_error & err) {
 std::cout << "client terminated " << std::endl;
 }
}

The following code snippet shows the talk_to_svr class:

struct talk_to_svr {
 talk_to_svr(const std::string & username)
 : sock_(service), started_(true), username_(username) {}
 void connect(ip::tcp::endpoint ep) {
 sock_.connect(ep);
 }
 void loop() {
 write("login " + username_ + "\n");
 read_answer();
 while (started_) {
 write_request();
 read_answer();
 boost::this_thread::sleep(millisec(rand() % 7000));
 }
 }
 std::string username() const { return username_; }
 ...
private:
 ip::tcp::socket sock_;
 enum { max_msg = 1024 };
 int already_read_;
 char buff_[max_msg];
 bool started_;
 std::string username_;
};

Client and Server

[72]

In the loop, we just put a bit and a ping to sleep, and read the server's answer.
We put it to sleep at random (sometimes over 5 seconds), so that the server will
disconnect us at some point:

void write_request() {
 write("ping\n");
}
void read_answer() {
 already_read_ = 0;
 read(sock_, buffer(buff_),
 boost::bind(&talk_to_svr::read_complete, this, _1, _2));
 process_msg();
}
void process_msg() {
 std::string msg(buff_, already_read_);
 if (msg.find("login ") == 0) on_login();
 else if (msg.find("ping") == 0) on_ping(msg);
 else if (msg.find("clients ") == 0) on_clients(msg);
 else std::cerr << "invalid msg " << msg << std::endl;
}

For reading the answer, we use read_complete, explained extensively in the previous
chapter, to make sure that we read up to the line feed ('\n'). The logic is in process_
msg(), where we read the client's answer, and dispatch to the right function:

void on_login() { do_ask_clients(); }
void on_ping(const std::string & msg) {
 std::istringstream in(msg);
 std::string answer;
 in >> answer >> answer;
 if (answer == "client_list_changed")
 do_ask_clients();
}
void on_clients(const std::string & msg) {
 std::string clients = msg.substr(8);
 std::cout << username_ << ", new client list:" << clients;
}
void do_ask_clients() {
 write("ask_clients\n");
 read_answer();
}
void write(const std::string & msg) { sock_.write_some(buffer(msg)); }
size_t read_complete(const boost::system::error_code & err, size_t
bytes) {
 // ... same as before
}

When reading the server's answer to our ping, if we get client_list_changed, we
ask again for the list of clients.

Chapter 4

[73]

Synchronous server
The synchronous server is quite simple as well. It needs two threads, one for
listening to new clients and one for processing existing clients. It cannot use a single
thread; waiting for a new client is a blocking operation, thus, we need an extra
thread to handle the existing clients.

Client and Server

[74]

The server, as expected, is harder to write than the client. For one thing, it needs
to manage all connected clients. Since we're synchronous, we'll need at least two
threads, one that accepts new clients (since accept() is blocking) and one that
answers existing clients:

void accept_thread() {
 ip::tcp::acceptor acceptor(service,
 ip::tcp::endpoint(ip::tcp::v4(),
8001));
 while (true) {
 client_ptr new_(new talk_to_client);
 acceptor.accept(new_->sock());
 boost::recursive_mutex::scoped_lock lk(cs);
 clients.push_back(new_);
 }
}
void handle_clients_thread() {
 while (true) {
 boost::this_thread::sleep(millisec(1));
 boost::recursive_mutex::scoped_lock lk(cs);
 for(array::iterator b = clients.begin(),e = clients.end(); b
!= e; ++b)
 (*b)->answer_to_client();
 // erase clients that timed out
 clients.erase(std::remove_if(clients.begin(), clients.end(),
 boost::bind(&talk_to_client::timed_out,_1)),
clients.end());
 }
}
int main(int argc, char* argv[]) {
 boost::thread_group threads;
 threads.create_thread(accept_thread);
 threads.create_thread(handle_clients_thread);
 threads.join_all();
}

We need to keep a list of all clients in order to process incoming requests from each
of them.

Chapter 4

[75]

Each talk_to_client instance holds a socket. The socket class is not copy-
constructible, thus, if you want to hold it into an std::vector function, you need to
hold a shared pointer to it. There are two ways to go about this: either inside talk_
to_client, hold a shared pointer to a socket and then have an array of talk_to_
client instances, or have the talk_to_client instance hold a the socket by value,
and have an array of shared pointers to talk_to_client. I chose the latter, but you
can go either way:

typedef boost::shared_ptr<talk_to_client> client_ptr;
typedef std::vector<client_ptr> array;
array clients;
boost::recursive_mutex cs; // thread-safe access to clients array

The main talk_to_client code is as follows:

struct talk_to_client : boost::enable_shared_from_this<talk_to_client>
{
 talk_to_client() { ... }
 std::string username() const { return username_; }
 void answer_to_client() {
 try {
 read_request();
 process_request();
 } catch (boost::system::system_error&) {
 stop();
 }
 if (timed_out())
 stop();
 }
 void set_clients_changed() { clients_changed_ = true; }
 ip::tcp::socket & sock() { return sock_; }
 bool timed_out() const {
 ptime now = microsec_clock::local_time();
 long long ms = (now - last_ping).total_milliseconds();
 return ms > 5000 ;
 }
 void stop() {
 boost::system::error_code err; sock_.close(err);
 }

Client and Server

[76]

 void read_request() {
 if (sock_.available())
 already_read_ += sock_.read_some(
 buffer(buff_ + already_read_, max_msg - already_
read_));
 }
 ...
private:
 // ... same as in Synchronous Client
 bool clients_changed_;
 ptime last_ping;
};

The preceding code is pretty self-explanatory. The most important function is
read_request(). This will read only if there's data available, thus, the server
never gets blocked:

void process_request() {
 bool found_enter = std::find(buff_, buff_ + already_read_, '\n')
 < buff_ + already_read_;
 if (!found_enter)
 return; // message is not full
 // process the msg
 last_ping = microsec_clock::local_time();
 size_t pos = std::find(buff_, buff_ + already_read_, '\n') -
buff_;
 std::string msg(buff_, pos);
 std::copy(buff_ + already_read_, buff_ + max_msg, buff_);
 already_read_ -= pos + 1;

 if (msg.find("login ") == 0) on_login(msg);
 else if (msg.find("ping") == 0) on_ping();
 else if (msg.find("ask_clients") == 0) on_clients();
 else std::cerr << "invalid msg " << msg << std::endl;
}
void on_login(const std::string & msg) {
 std::istringstream in(msg);
 in >> username_ >> username_;
 write("login ok\n");
 update_clients_changed();
}

Chapter 4

[77]

void on_ping() {
 write(clients_changed_ ? "ping client_list_changed\n" : "ping
ok\n");
 clients_changed_ = false;
}
void on_clients() {
 std::string msg;
 { boost::recursive_mutex::scoped_lock lk(cs);
 for(array::const_iterator b = clients.begin(), e = clients.
end() ;
 b != e; ++b)
 msg += (*b)->username() + " ";
 }
 write("clients " + msg + "\n");
}
void write(const std::string & msg) { sock_.write_some(buffer(msg)); }

Take a look at process_request(). After we've read only as much as was available,
we need to know if we read the full message (if found_enter is true). If so, we're
protecting ourselves against maybe reading more than one message (anything after
'\n' is saved in the buffer), and then we interpret the fully read message. The rest
of the code is straightforward.

The asynchronous client/server
And now, for the fun (and hard) part, lets go asynchronous!

When checking out the diagrams, always understand that Boost.Asio means an
asynchronous call performed by Boost.Asio. For instance, do_read(), Boost.Asio,
and on_read() indicates the logical flow from do_read() to on_read(), but you will
never know the time it takes to get to on_read(), you only know that you'll get there.

Client and Server

[78]

Asynchronous client
Things are a bit more complicated now but are definitely manageable. And you'll
have an application that doesn't block!

Chapter 4

[79]

You should already be familiar with the following code:

#define MEM_FN(x) boost::bind(&self_type::x, shared_from_this())
#define MEM_FN1(x,y) boost::bind(&self_type::x, shared_from_
this(),y)
#define MEM_FN2(x,y,z) boost::bind(&self_type::x, shared_from_
this(),y,z)
class talk_to_svr : public boost::enable_shared_from_this<talk_to_svr>
 , boost::noncopyable {
 typedef talk_to_svr self_type;
 talk_to_svr(const std::string & username)
 : sock_(service), started_(true), username_(username), timer_
(service) {}
 void start(ip::tcp::endpoint ep) {
 sock_.async_connect(ep, MEM_FN1(on_connect,_1));
 }
public:
 typedef boost::system::error_code error_code;
 typedef boost::shared_ptr<talk_to_svr> ptr;

 static ptr start(ip::tcp::endpoint ep, const std::string &
username) {
 ptr new_(new talk_to_svr(username));
 new_->start(ep);
 return new_;
 }
 void stop() {
 if (!started_) return;
 started_ = false;
 sock_.close();
 }
 bool started() { return started_; }
 ...
private:
 size_t read_complete(const boost::system::error_code & err, size_t
bytes) {
 if (err) return 0;
 bool found = std::find(read_buffer_, read_buffer_ + bytes,
'\n')
 < read_buffer_ + bytes;
 return found ? 0 : 1;
 }

Client and Server

[80]

private:
 ip::tcp::socket sock_;
 enum { max_msg = 1024 };
 char read_buffer_[max_msg];
 char write_buffer_[max_msg];
 bool started_;
 std::string username_;
 deadline_timer timer_;
};

You'll see an extra deadline_timer timer_ function for pinging the server; again,
as you'll see, we'll ping the server at random times.

Now, the logic of the class is given as follows:

void on_connect(const error_code & err) {
 if (!err) do_write("login " + username_ + "\n");
 else stop();
}
void on_read(const error_code & err, size_t bytes) {
 if (err) stop();
 if (!started()) return;
 // process the msg
 std::string msg(read_buffer_, bytes);
 if (msg.find("login ") == 0) on_login();
 else if (msg.find("ping") == 0) on_ping(msg);
 else if (msg.find("clients ") == 0) on_clients(msg);
}
void on_login() {
 do_ask_clients();
}
void on_ping(const std::string & msg) {
 std::istringstream in(msg);
 std::string answer;
 in >> answer >> answer;
 if (answer == "client_list_changed") do_ask_clients();
 else postpone_ping();
}
void on_clients(const std::string & msg) {
 std::string clients = msg.substr(8);
 std::cout << username_ << ", new client list:" << clients ;
 postpone_ping();
}

Chapter 4

[81]

In on_read(), nice touches are given in the first two lines of code. On the first
line, if there's an error, we stop. On the second line, if we're stopped (as we were
stopped before or just now), we return. Otherwise, if all's well, we process the
incoming message.

And finally, do_* functions the following:

void do_ping() { do_write("ping\n"); }
void postpone_ping() {
 timer_.expires_from_now(boost::posix_time::millisec(rand() %
7000));
 timer_.async_wait(MEM_FN(do_ping));
}
void do_ask_clients() { do_write("ask_clients\n"); }
void on_write(const error_code & err, size_t bytes) { do_read(); }
void do_read() {
 async_read(sock_, buffer(read_buffer_),
 MEM_FN2(read_complete,_1,_2), MEM_FN2(on_read,_1,_2));
}
void do_write(const std::string & msg) {
 if (!started()) return;
 std::copy(msg.begin(), msg.end(), write_buffer_);
 sock_.async_write_some(buffer(write_buffer_, msg.size()),
 MEM_FN2(on_write,_1,_2));
}

Notice that every read operation will trigger a ping:

•	 When the read operation is complete, on_read() gets called
•	 on_read() dispatches to on_login(), on_ping(), or on_clients()
•	 Each of the functions either postpones a ping or asks for clients
•	 If we ask for clients when the read operation receives them, it postpones

a ping

Client and Server

[82]

Asynchronous server
The diagram is pretty complex; from Boost.Asio, you'll see four arrows to
on_accept, on_read, on_write, and on_check_ping. This basically means
that you never know which asynchronous call finishes next, but you know
for sure it's one of the four operations.

Now, we're asynchronous; we can stay single-threaded. Accepting clients is the easy
part, as given in the following code snippet:

ip::tcp::acceptor acceptor(service, ip::tcp::endpoint(ip::tcp::v4(),
8001));
void handle_accept(talk_to_client::ptr client, const error_code & err)
{
 client->start();
 talk_to_client::ptr new_client = talk_to_client::new_();
 acceptor.async_accept(new_client->sock(),
 boost::bind(handle_accept,new_client,_1));
}
int main(int argc, char* argv[]) {
 talk_to_client::ptr client = talk_to_client::new_();
 acceptor.async_accept(client->sock(),
 boost::bind(handle_accept,client,_1));
 service.run();
}

Chapter 4

[83]

The preceding code will asynchronously wait for new clients forever (each new client
connection will then trigger another asynchronous wait).

We need to monitor for the client list changed event (a new client connects or
one client gets disconnected), and notify all clients when this happens. Thus, we
need to keep an array of clients, otherwise, there would be no need for this array
unless you want to know all connected clients at a given time:

class talk_to_client; typedef boost::shared_ptr<talk_to_client>
client_ptr;
typedef std::vector<client_ptr> array;
array clients;

The skeleton of the connection class is as follows:

class talk_to_client : public boost::enable_shared_from_this<talk_to_
client>
 , boost::noncopyable {
 talk_to_client() { ... }
public:
 typedef boost::system::error_code error_code;
 typedef boost::shared_ptr<talk_to_client> ptr;
 void start() {
 started_ = true;
 clients.push_back(shared_from_this());
 last_ping = boost::posix_time::microsec_clock::local_time();
 do_read(); // first, we wait for client to login
 }
 static ptr new_() { ptr new_(new talk_to_client); return new_; }
 void stop() {
 if (!started_) return;
 started_ = false;
 sock_.close();
 ptr self = shared_from_this();
 array::iterator it = std::find(clients.begin(), clients.end(),
self);
 clients.erase(it);
 update_clients_changed();
 }
 bool started() const { return started_; }
 ip::tcp::socket & sock() { return sock_;}
 std::string username() const { return username_; }
 void set_clients_changed() { clients_changed_ = true; }
 ...

Client and Server

[84]

private:
 ip::tcp::socket sock_;
 enum { max_msg = 1024 };
 char read_buffer_[max_msg];
 char write_buffer_[max_msg];
 bool started_;
 std::string username_;
 deadline_timer timer_;
 boost::posix_time::ptime last_ping;
 bool clients_changed_;
};

I'm calling the connection class either talk_to_client or talk_to_server to
make it more clear what I'm talking about.

You should be used to the preceding code by now; it's similar to what we used for
the client application. We do have an extra function, stop(), which removes a client
connection from the client's array.

The server continuously waits for asynchronous read operations:

void on_read(const error_code & err, size_t bytes) {
 if (err) stop();
 if (!started()) return;
 std::string msg(read_buffer_, bytes);
 if (msg.find("login ") == 0) on_login(msg);
 else if (msg.find("ping") == 0) on_ping();
 else if (msg.find("ask_clients") == 0) on_clients();
}
void on_login(const std::string & msg) {
 std::istringstream in(msg);
 in >> username_ >> username_;
 do_write("login ok\n");
 update_clients_changed();
}
void on_ping() {
 do_write(clients_changed_ ? "ping client_list_changed\n" : "ping
ok\n");
 clients_changed_ = false;
}

Chapter 4

[85]

void on_clients() {
 std::string msg;
 for(array::const_iterator b =clients.begin(),e =clients.end(); b
!= e; ++b)
 msg += (*b)->username() + " ";
 do_write("clients " + msg + "\n");
}

The code is straight forward; one thing to notice is that when a new client logs in,
we call update_clients_changed(), which sets clients_changed_ to true for all
clients.

Once it gets a request, it answers it right way, as given in the following code snippet:

void do_ping() { do_write("ping\n"); }
void do_ask_clients() { do_write("ask_clients\n"); }
void on_write(const error_code & err, size_t bytes) { do_read(); }
void do_read() {
 async_read(sock_, buffer(read_buffer_),
 MEM_FN2(read_complete,_1,_2), MEM_FN2(on_read,_1,_2));
 post_check_ping();
}
void do_write(const std::string & msg) {
 if (!started()) return;
 std::copy(msg.begin(), msg.end(), write_buffer_);
 sock_.async_write_some(buffer(write_buffer_, msg.size()),
 MEM_FN2(on_write,_1,_2));
}
size_t read_complete(const boost::system::error_code & err, size_t
bytes) {
 // ... as before
}

At the end of each write operation, on_write() is called, which triggers another
asynchronous read, and so the wait-for-request-and-answer-it cycle continues until
the client disconnects or times out.

Client and Server

[86]

As each read begins, we asynchronously wait 5 seconds to see if the client times out.
If so, we close its connection:

void on_check_ping() {
 ptime now = microsec_clock::local_time();
 if ((now - last_ping).total_milliseconds() > 5000)
 stop();
 last_ping = boost::posix_time::microsec_clock::local_time();
}
void post_check_ping() {
 timer_.expires_from_now(boost::posix_time::millisec(5000));
 timer_.async_wait(MEM_FN(on_check_ping));
}

That's the whole server. You can run it, and put it to work!

In the code, I have shown you what we have seen in this chapter, as I have trimmed
the code a bit to make it easier to grasp; for instance, I haven't shown most console
messages, even though they exist in the code accompanying the book. I suggest you
run the examples yourself, as seeing the code from top to bottom will solidify your
understanding of the applications shown in this chapter.

Summary
We've seen how to write a few basic client/server applications. We've avoided
pitfalls such as memory leaks and deadlocks. All the programs are meant to be
skeletons that you can extend and adapt for your needs.

In the following chapter, we'll get a deeper understanding of the synchronous
versus asynchronous differences when using Boost.Asio, and see how you can
plug your own asynchronous operations as well.

Synchronous Versus
Asynchronous

The author of Boost.Asio has done a wonderful job at giving you the option to
choose what suits your application best by going synchronous or asynchronous.

In the previous chapter, we've seen skeletons of each type of application, such as
synchronous client, synchronous server, asynchronous client, and asynchronous
server. You can use each as a base for your applications. In case you need to delve
into more detail about each type of application, read ahead.

Mixing synchronous and asynchronous
programming
The Boost.Asio library allows you to mix synchronous and asynchronous
programming. Personally, I think it's a bad idea, but Boost.Asio, just like C++,
allows you to shoot yourself in the foot, if this is what you want.

You could easily fall into this trap, usually, when you have an asynchronous
application. For instance, in response to an asynchronous write operation, lets
say, you do a synchronous read operation:

io_service service;
ip::tcp::socket sock(service);
ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"), 8001);
void on_write(boost::system::error_code err, size_t bytes) {
 char read_buff[512];
 read(sock, buffer(read_buff));
}
async_write(sock, buffer("echo"), on_write);

Synchronous Versus Asynchronous

[88]

For sure, the synchronous read operation will block the current thread, thus, any
other pending asynchronous operations are put on hold (for this thread). This is
a bad code and can lead to the application being unresponsive or being blocked
altogether (the whole point of going asynchronous is to avoid blocking, thus, by
doing a synchronous operations you negate that).

When you have a synchronous application, it's pretty unlikely that you'll do
asynchronous read or write operations, since thinking synchronously already
means thinking in a linear manner (do A, then B, then C, and so on).

The only scenario I can think of where synchronous and asynchronous might
work together well is when the synchronous operations are completely separated
from the asynchronous operations, for instance, synchronous networking and
asynchronous input from or output to a database.

Passing client to server messages and
vice versa
A very important part of a successful client/server application is passing messages
back and forth (server to client and client to server). You need to specify what
identifies a message. In other words, when reading an incoming message, how do
I know it's been fully read?

It's up to you to identify the end of the message (the start of the message is easy,
as it's the first byte passed at the end of the previous message), but do make sure
it's easy and consistent.

You can:

•	 Have fixed-size messages (it's not such a good idea; what will happen
when you need to send more data?)

•	 Have a specific character that ends the message, such as '\n' or '\0'
•	 Specify the message length as the prefix of the message and so on

Throughout the book, I have chosen to go for "end each message in \n". So,
reading a message will always be like the following code snippet:

char buff_[512];
// synchronous read
read(sock_, buffer(buff_),
 boost::bind(&read_complete, this, _1, _2));
// asynchronous read
async_read(sock_, buffer(buff_),

Chapter 5

[89]

 MEM_FN2(read_complete,_1,_2), MEM_FN2(on_read,_1,_2));
size_t read_complete(const boost::system::error_code & err, size_t
bytes) {
 if (err) return 0;
 already_read_ = bytes;
 bool found = std::find(buff_, buff_ + bytes, '\n') < buff_ +
bytes;
 // we read one-by-one until we get to enter, no buffering
 return found ? 0 : 1;
}

I leave specifying the message length as the prefix of the message as an exercise for
the reader; it's pretty easy.

Synchronous I/O in client applications
A synchronous client will usually fall into one of the two cases:

•	 It requests something from the server, reads answer, and processes it.
Then, ask something else, and so on. This is, in fact, what the synchronous
client in the previous chapter is like.

•	 Read incoming message from the server, process it, then write answer.
Then, read next incoming message, and so on.

Synchronous Versus Asynchronous

[90]

Both scenarios use a make-request-read-answer strategy. In other words, one party
makes a request to which the other party will answer back. This is an easy way to
implement a client/server application, and that's what I highly recommend you do.

You can always create a Mambo Jambo client/server, where each party writes
whenever it pleases, but it will very likely turn into a recipe for disaster (how will
you know what happened when the client or server blocks?).

The preceding scenarios might look alike, but they are very different:

•	 In the former case, the server reacts to requests (the server waits for requests
from clients and answers them). This is a pull-like connection, where the
client pulls what it needs from the server.

•	 In the latter case, the server sends events to the client to which the client
reacts. This is a push-like connection, where the server pushes notifications/
events to the clients.

You'll mostly work on pull-like client/server applications, which are easier to
develop, and also, are usually the norm.

You can also mix up pull requests (client to server) with push requests (server
to client), however, this is very complicated, and you would better avoid it. The
problem with mixing the two is, if you use the make-request-read-answer strategy,
the following can happen:

•	 Client writes (makes request)
•	 Server writes (sends notification to client)
•	 Client reads what server wrote, and interprets it as an answer to its request
•	 Server blocks waiting for an answer from the client, which will come

whenever the client makes a new request
•	 Client writes (makes a new request)
•	 Server will interpret that request as the answer it was waiting for
•	 Client will block (server won't send any reply back, because it interpreted the

client request as the answer to its notification)

Chapter 5

[91]

In a pull-like client/server application, it's easy to avoid the preceding scenario. You
can simulate push-like behaviour by implementing a ping process, where the client
pings the server, lets say, every 5 seconds. The server can answer with something
such as ping ok if there's nothing to report or ping [event_name] if there's an
event to report. Then the client can initiate a new request to handle that event.

To reiterate, the former scenario is the synchronous client application from the
previous chapter. Its main loop is:

void loop() {
 // read answer to our login
 write("login " + username_ + "\n");
 read_answer();
 while (started_) {
 write_request();
 read_answer();
 ...
 }
}

Lets change this to match the latter scenario:

void loop() {
 while (started_) {
 read_notification();
 write_answer();
 }
}
void read_notification() {
 already_read_ = 0;
 read(sock_, buffer(buff_),
 boost::bind(&talk_to_svr::read_complete, this, _1, _2));
 process_notification();
}
void process_notification() {
 // ... see what the notification is, and prepare answer
}

Synchronous Versus Asynchronous

[92]

Synchronous I/O in server applications
Servers, like clients, are divided into two cases; they match scenarios one and
two from the previous section. Again, both scenarios use a make-request-read-
answer strategy.

The first scenario is the synchronous server we've implemented in the previous
chapter. Reading a full request is not easy when you're synchronous, since you
want to avoid blocking (you always read as much as you can):

void read_request() {
 if (sock_.available())
 already_read_ += sock_.read_some(
 buffer(buff_ + already_read_, max_msg - already_read_));
}

Chapter 5

[93]

Once a message has been fully read, just process it and answer the client:

void process_request() {
 bool found_enter = std::find(buff_, buff_ + already_read_, '\n')
 < buff_ + already_read_;
 if (!found_enter)
 return; // message is not full
 size_t pos = std::find(buff_, buff_ + already_read_, '\n') -
buff_;
 std::string msg(buff_, pos);
 ...
 if (msg.find("login ") == 0) on_login(msg);
 else if (msg.find("ping") == 0) on_ping();
 else ...
}

If we wanted to have our server be a push server, we'd modify it as follows:

typedef std::vector<client_ptr> array;
array clients;
array notify;
std::string notify_msg;
void on_new_client() {
 // on a new client, we notify all clients of this event
 notify = clients;
 std::ostringstream msg;
 msg << "client count " << clients.size();
 notify_msg = msg.str();
 notify_clients();
}
void notify_clients() {
 for (array::const_iterator b = notify.begin(), e = notify.end();
 b != e; ++b) {
 (*b)->sock_.write_some(notify_msg);
 }
}

The on_new_client() function is one of the events, where we need to notify all
clients. notify_clients is the function that will notify all clients interested in an
event. It sends the message but does not wait for a reply from each client, since that
would be blocking. When a reply is coming from a client, the client can tell us what
the reply is for (then we can process it correctly).

Synchronous Versus Asynchronous

[94]

Threading in a synchronous server
This is a very important consideration: how many threads do we allocate to
handle clients?

For a synchronous server, we'll need at least one thread that will handle
new connections:

void accept_thread() {
 ip::tcp::acceptor acceptor(service, ip::tcp::endpoint(ip::tcp:
:v4(),8001));
 while (true) {
 client_ptr new_(new talk_to_client);
 acceptor.accept(new_->sock());
 boost::recursive_mutex::scoped_lock lk(cs);
 clients.push_back(new_);
 }
}

For the existing clients:

•	 We can go single-threaded. This is the easiest, and that's what I chose when
I implemented the synchronous server in Chapter 4, Synchronous Server. It
will easily handle 100 to 200 concurrent clients and sometimes maybe more,
which is enough for the vast majority of time.

•	 We can have a thread per client. It's very rarely a good option; it will waste
a lot of threads making debugging sometimes difficult, and while it will
probably handle more than 200 concurrent users, it will reach its limit rather
soon afterwards.

•	 We can have a fixed number of threads to handle existing clients.

The third option is pretty hard to implement in a synchronous server; the whole
talk_to_client class has become thread-safe. Then, you'll need a mechanism to
know which thread handles which clients. For this, you have two options:

•	 Assign specific clients to a specific thread; for instance, thread 1 handles the
first 20 clients, thread 2 handles clients 21 to 40, and so on. When a client is
in use (we're waiting for something that is blocking from that client), take it
out of the array of existing clients. After we've dealt with it, put it back in the
list. Each thread will loop through the existing clients, and take the first client
with a full request (we've read a complete incoming message from the client),
and answer it.

Chapter 5

[95]

•	 The server can become unresponsive:

°° In the former case, several clients handled by the same thread made
requests at the same time, since one thread deals with one request at
a time. There's nothing we can do in this scenario.

°° In the latter case, when we get a number of concurrent requests
higher than the number of threads. In this case, we can simply create
new threads to handle the load.

The following code snippet, which is similar to the original answer_to_client
function, shows how the latter scenario can be implemented:

struct talk_to_client : boost::enable_shared_from_this<talk_to_client>
{
 ...
 void answer_to_client() {
 try {
 read_request();
 process_request();
 } catch (boost::system::system_error&) {
 stop();
 }
 }
};

We'll modify it like the following code snippet:

struct talk_to_client : boost::enable_shared_from_this<talk_to_client>
{
 boost::recursive_mutex cs;
 boost::recursive_mutex cs_ask;
 bool in_process;
 void answer_to_client() {
 { boost::recursive_mutex::scoped_lock lk(cs_ask);
 if (in_process)
 return;
 in_process = true;
 }
 { boost::recursive_mutex::scoped_lock lk(cs);
 try {
 read_request();
 process_request();

Synchronous Versus Asynchronous

[96]

 } catch (boost::system::system_error&) {
 stop();
 }
 }
 { boost::recursive_mutex::scoped_lock lk(cs_ask);
 in_process = false;
 }
 }
};

As long as we're processing a client, its in_process instance is set to true, and
other threads will ignore that client. The added bonus is that the handle_clients_
thread() function does not need to be modified; you can simply create as many
handle_clients_thread() functions as you wish.

Asynchronous I/O in client applications
The main workflow is somewhat similar to that of the synchronous client
applications, with the difference that Boost.Asio sits in between every async_read
and async_write requests.

Chapter 5

[97]

The first scenario is what I've implemented as asynchronous client in Chapter 4, Client
and Server. Remember that at the end of each asynchronous operation, I start another
asynchronous operation, so that the service.run() function doesn't end.

To change this to the second scenario, you'll use the following code snippet:

void on_connect() {
 do_read();
}
void do_read() {
 async_read(sock_, buffer(read_buffer_),
 MEM_FN2(read_complete,_1,_2), MEM_FN2(on_read,_1,_2));
}
void on_read(const error_code & err, size_t bytes) {
 if (err) stop();
 if (!started()) return;
 std::string msg(read_buffer_, bytes);
 if (msg.find("clients") == 0) on_clients(msg);
 else ...
}
void on_clients(const std::string & msg) {
 std::string clients = msg.substr(8);
 std::cout << username_ << ", new client list:" << clients ;
 do_write("clients ok\n");
}

Note that as soon as you are successfully connected, you start reading from the
server. Each on_[event] function will end with us writing an answer to the server.

The beauty of going asynchronous is that you can mix the I/O networking
operations with any other asynchronous operations, using Boost.Asio to orchestrate
it all. Even though the flow is not as clear as the synchronous flow, you can still
virtually think of it in a synchronous manner.

Synchronous Versus Asynchronous

[98]

Say, you're reading files from a web server and storing them into a database
(asynchronously). You can virtually think about it, as shown in the following
flowchart:

Asynchronous I/O in server applications
Here are the ubiquitous two cases, scenario one (pull) and scenario 2 (push):

Chapter 5

[99]

The first scenario is the asynchronous server I implemented in Chapter 4, Client
and Server again. At the end of each asynchronous operation, I start another
asynchronous operation, so that service.run() doesn't end.

Synchronous Versus Asynchronous

[100]

Here's the skeleton code, which is trimmed down. The following are all members in
talk_to_client class:

void start() {
 ...
 do_read(); // first, we wait for client to login
}
void on_read(const error_code & err, size_t bytes) {
 std::string msg(read_buffer_, bytes);
 if (msg.find("login ") == 0) on_login(msg);
 else if (msg.find("ping") == 0) on_ping();
 else ...
}
void on_login(const std::string & msg) {
 std::istringstream in(msg);
 in >> username_ >> username_;
 do_write("login ok\n");
}
void do_write(const std::string & msg) {
 std::copy(msg.begin(), msg.end(), write_buffer_);
 sock_.async_write_some(buffer(write_buffer_, msg.size()),
 MEM_FN2(on_write,_1,_2));
}
void on_write(const error_code & err, size_t bytes) {
 do_read();
}

In a nutshell, we're always waiting for a read operation, and as soon as that happens,
we process it and answer back to the client.

Lets modify the preceding code into a push server:

void start() {
 ...
 on_new_client_event();
}
void on_new_client_event() {
 std::ostringstream msg;
 msg << "client count " << clients.size();
 for (array::const_iterator b = clients.begin(), e = clients.
end();
 b != e; ++b)
 (*b)->do_write(msg.str());
}

Chapter 5

[101]

void on_read(const error_code & err, size_t bytes) {
 std::string msg(read_buffer_, bytes);
 // basically here, we only acknowledge
 // that our clients received our notifications
}
void do_write(const std::string & msg) {
 std::copy(msg.begin(), msg.end(), write_buffer_);
 sock_.async_write_some(buffer(write_buffer_, msg.size()),
 MEM_FN2(on_write,_1,_2));
}
void on_write(const error_code & err, size_t bytes) {
 do_read();
}

As soon as an event happens, lets say, on_new_client_event, all the clients that
need to be informed of that event are being sent a message. When they reply back,
we simply see that they acknowledged receiving the event. Note that we'll never
run out of asynchronous events to wait for (thus, service.run() doesn't end), since
we're always waiting for new clients:

ip::tcp::acceptor acc(service, ip::tcp::endpoint(ip::tcp::v4(),
8001));
void handle_accept(talk_to_client::ptr client, const error_code & err)
{
 client->start();
 talk_to_client::ptr new_client = talk_to_client::new_();
 acc.async_accept(new_client->sock(), bind(handle_accept,new_
client,_1));
}

Threading in an asynchronous server
The asynchronous server I've shown you in Chapter 4, Client and Server is
single-threaded, as everything happens in main():

int main() {
 talk_to_client::ptr client = talk_to_client::new_();
 acc.async_accept(client->sock(), boost::bind(handle_
accept,client,_1));
 service.run();
}

Synchronous Versus Asynchronous

[102]

The beauty of going asynchronous is the simplicity to move from single-threaded
to multi-threaded. You can always go single-threaded until your concurrent clients
goes over 200 or so. Then, to go from a single thread to 100 threads, you'll use the
following code snippet:

boost::thread_group threads;
void listen_thread() {
 service.run();
}
void start_listen(int thread_count) {
 for (int i = 0; i < thread_count; ++i)
 threads.create_thread(listen_thread);
}
int main(int argc, char* argv[]) {
 talk_to_client::ptr client = talk_to_client::new_();
 acc.async_accept(client->sock(), boost::bind(handle_
accept,client,_1));
 start_listen(100);
 threads.join_all();
}

Of course, once you go multi-threaded, you will have to think about thread safety.
Even though you call async_* in thread A, its completion routine can be called in
thread B (as long as thread B has called service.run()). That is not a problem in
itself. As long as you follow the logical flow, that is, from async_read() to on_
read(), from on_read() to process_request, from process_request to async_
write(), from async_write() to on_write(), from on_write() to async_read(),
and there are no public functions that are called on your talk_to_client class,
even though different functions can be called on different threads, they will still
be called in sequential order. Thus, no need for mutexes.

This, however, means that for a client, there can be only one asynchronous operation
pending. If at some point, for a client, we have two pending asynchronous functions,
you'll need mutexes. This is because the two pending operations might finish
roughly at the same time, and we could end up having their completion handlers
called simultaneously on two different threads. Therefore, there is a need for thread
safety, and thus, mutexes.

Chapter 5

[103]

In our asynchronous server, we actually have two pending operations at the
same time:

void do_read() {
 async_read(sock_, buffer(read_buffer_),
 MEM_FN2(read_complete,_1,_2), MEM_FN2(on_read,_1,_2));
 post_check_ping();
}
void post_check_ping() {
 timer_.expires_from_now(boost::posix_time::millisec(5000));
 timer_.async_wait(MEM_FN(on_check_ping));
}

When doing a read operation, we'll asynchronously wait for the read operation to
complete and for a deadline. Thus, there is a need for thread safety.

My advice is, if you plan to go multi-threaded, make your class thread-safe from the
beginning. It usually won't hurt performance (you can profile-check it, of course).
Also, if you plan to go multi-threaded, go that way from the beginning. This way,
you'll discover possible problems early on. Once you discover a problem, first thing
you need to check is: does it happen when there's a singe thread running? If so, it's
easy; just debug it. Otherwise, you probably forgot to lock (mutex) some function.

Since our example needs thread safety, I've modified talk_to_client to use
mutexes. Also, we have an array of clients, which we reference a few times in the
code that needs its own mutex as well.

Avoiding deadlock and memory corruption is not easy. Here's how I had to modify
the update_clients_changed() function:

void update_clients_changed() {
 array copy;
 { boost::recursive_mutex::scoped_lock lk(clients_cs);
 copy = clients; }
 for(array::iterator b = copy.begin(), e = copy.end(); b != e;
++b)
 (*b)->set_clients_changed();
}

What you want to avoid is having two mutexes locked at the same time (which
can lead to deadlocking). In our case, we don't want clients_cs and a client's
cs_ mutex to be locked at the same time.

You can check out the full application in the code that comes with the book.

Synchronous Versus Asynchronous

[104]

Asynchronous operations
Boost.Asio also allows you to run any of your functions asynchronously. Just use
the following code snippet:

void my_func() {
 ...
}
service.post(my_func);

That will make sure that my_func is called in one of the threads that called service.
run(). You can also run a function asynchronously and have a completion handler,
which will notify you when the function completes. The pseudocode would look like
the following code snippet:

void on_complete() {
 ...
}
void my_func() {
 ...
 service.post(on_complete);
}
async_call(my_func);

There is no async_call function, however, you'll have to create your own.
Fortunately, it's not that hard. Refer to the following code snippet:

struct async_op : boost::enable_shared_from_this<async_op>, ... {
 typedef boost::function<void(boost::system::error_code)>
completion_func;
 typedef boost::function<boost::system::error_code ()> op_func;
 struct operation { ... };
 void start() {
 { boost::recursive_mutex::scoped_lock lk(cs_);
 if (started_) return; started_ = true; }
 boost::thread t(boost::bind(&async_op::run,this));
 }
 void add(op_func op, completion_func completion, io_service
&service) {
 self_ = shared_from_this();
 boost::recursive_mutex::scoped_lock lk(cs_);
 ops_.push_back(operation(service, op, completion));
 if (!started_) start();
 }

Chapter 5

[105]

 void stop() {
 boost::recursive_mutex::scoped_lock lk(cs_);
 started_ = false; ops_.clear();
 }
private:
 boost::recursive_mutex cs_;
 std::vector<operation> ops_; bool started_; ptr self_;
};

The async_op function creates a background thread, which will run (run()) all the
asynchronous operations you add (add()) to it. I kept things easy, as each operation
consists of these things:

•	 A function to call asynchronously.
•	 A completion function to call when the first function has completed.
•	 The io_service instance that will execute the completion function. This is

where you will be notified of the completion. Refer to the following
code snippet:

struct async_op : boost::enable_shared_from_this<async_op>
 , private boost::noncopyable {
 struct operation {
 operation(io_service & service, op_func op, completion_
func completion)
 : service(&service), op(op), completion(completion)
 , work(new io_service::work(service))
 {}
 operation() : service(0) {}
 io_service * service;
 op_func op;
 completion_func completion;
 typedef boost::shared_ptr<io_service::work> work_ptr;
 work_ptr work;
 };
 ...
};

Synchronous Versus Asynchronous

[106]

Internally, they are held in the operation structure. Notice that while an operation
is pending, we construct a io_service::work instance in operation's constructor,
so that service.run() doesn't end until we've completed our asynchronous call
(while the io_service::work instance is alive, service.run() will consider that
it has work to do). Refer to the following code snippet:

struct async_op : ... {
 typedef boost::shared_ptr<async_op> ptr;
 static ptr new_() { return ptr(new async_op); }
 ...
 void run() {
 while (true) {
 { boost::recursive_mutex::scoped_lock lk(cs_);
 if (!started_) break; }
 boost::this_thread::sleep(boost::posix_
time::millisec(10));
 operation cur;
 { boost::recursive_mutex::scoped_lock lk(cs_);
 if (!ops_.empty()) {
 cur = ops_[0]; ops_.erase(ops_.begin());
 }}
 if (cur.service)
 cur.service->post(boost::bind(cur.completion, cur.op()
));
 }
 self_.reset();
 }
};

The run() function is the background thread; it simply sees if there's work to do,
and if so, executes the asynchronous functions one by one. At the end of each call,
it calls the corresponding completion function.

To test it, we'll create a function compute_file_checksum to be asynchronously
executed:

size_t checksum = 0;
boost::system::error_code compute_file_checksum(std::string file_name)
{

Chapter 5

[107]

 HANDLE file = ::CreateFile(file_name.c_str(), GENERIC_READ, 0, 0,
 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, 0);
 windows::random_access_handle h(service, file);
 long buff[1024];
 checksum = 0;
 size_t bytes = 0, at = 0;
 boost::system::error_code ec;
 while ((bytes = read_at(h, at, buffer(buff), ec)) > 0) {
 at += bytes; bytes /= sizeof(long);
 for (size_t i = 0; i < bytes; ++i)
 checksum += buff[i];
 }
 return boost::system::error_code(0, boost::system::generic_
category());
}
void on_checksum(std::string file_name, boost::system::error_code) {
 std::cout << "checksum for " << file_name << "=" << checksum <<
std::endl;
}
int main(int argc, char* argv[]) {
 std::string fn = "readme.txt";
 async_op::new_()->add(service, boost::bind(compute_file_
checksum,fn),
 boost::bind(on_checksum,fn,_1));
 service.run();
}

Note that what I've shown you is just a possible implementation of calling a function
asynchronously. Instead of implementing the background thread, like I did, you
can use an internal io_service instance to which you would post (post()) the
asynchronous functions to call. This is an exercise for the reader.

You can also extend the class to allow showing progress of an asynchronous
operation (for example, in percent). In such a case, you could show that progress
in a progress bar, in the main thread.

Synchronous Versus Asynchronous

[108]

Implementing proxies
A proxy usually sits between a client and a server. It takes a request from a client,
might modify it, and forwards it to the server. It then takes the answer from the
server, might modify it, and forwards it to the client.

What's special about a proxy, for our purposes, is that for each connection, you'll
have two sockets, one to the client and the other to the server. This complicates
implementing a proxy quite a bit.

Implementing the proxy as a synchronous application will be more complicated than
to have it asynchronous; data could be coming from both ends (client and server) at
the same time, and data might be going to both ends (client and server) at the same
time. That means if we were to go synchronous, we could end up being blocked in a
read() from or write() to a party while we need to read() from or write() to
the other party, which means we'll be unresponsive on one end.

Chapter 5

[109]

Consider the following items as a simple example of an asynchronous proxy:

•	 In our scenario, we know both connections at construction. This is not
always the case, for a web proxy, for instance, the client tells us the
address of the server.

•	 For the sake of simplicity, it's not thread-safe. Refer to the following
code snippet:
class proxy : public boost::enable_shared_from_this<proxy> {
 proxy(ip::tcp::endpoint ep_client, ip::tcp::endpoint ep_
server) : ... {}
public:
 static ptr start(ip::tcp::endpoint ep_client,
ip::tcp::endpoint ep_svr) {
 ptr new_(new proxy(ep_client, ep_svr));
 // ... connect to both endpoints
 return new_;
 }
 void stop() {
 // ... stop both connections
 }
 bool started() { return started_ == 2; }
private:
 void on_connect(const error_code & err) {
 if (!err) {
 if (++started_ == 2) on_start();
 } else stop();
 }
 void on_start() {
 do_read(client_, buff_client_);
 do_read(server_, buff_server_);
 }
 ...
private:
 ip::tcp::socket client_, server_;
 enum { max_msg = 1024 };
 char buff_client_[max_msg], buff_server_[max_msg];
 int started_;
};

Synchronous Versus Asynchronous

[110]

It's a very simple proxy. When connected on both ends, it starts reading on both
connections (function on_start()):

class proxy : public boost::enable_shared_from_this<proxy> {
 ...
 void on_read(ip::tcp::socket & sock, const error_code& err, size_t
bytes) {
 char * buff = &sock == &client_ ? buff_client_ : buff_server_;
 do_write(&sock == &client_ ? server_ : client_, buff, bytes);
 }
 void on_write(ip::tcp::socket & sock, const error_code &err,
size_t bytes){
 if (&sock == &client_) do_read(server_, buff_server_);
 else do_read(client_, buff_client_);
 }
 void do_read(ip::tcp::socket & sock, char* buff) {
 async_read(sock, buffer(buff, max_msg),
 MEM_FN3(read_complete,ref(sock),_1,_2),
 MEM_FN3(on_read,ref(sock),_1,_2));
 }
 void do_write(ip::tcp::socket & sock, char * buff, size_t size) {
 sock.async_write_some(buffer(buff,size),
 MEM_FN3(on_write,ref(sock),_1,_2));
 }
 size_t read_complete(ip::tcp::socket & sock,
 const error_code & err, size_t bytes) {
 if (sock.available() > 0) return sock.available();
 return bytes > 0 ? 0 : 1;
 }
};

On each successful read (on_read), it forwards the message to the other party. Once
the message has been forwarded successfully (on_write), we read it again from the
original party.

To put this to work, use the following code snippet:

int main(int argc, char* argv[]) {
 ip::tcp::endpoint ep_c(ip::address::from_string("127.0.0.1"),
8001);
 ip::tcp::endpoint ep_s(ip::address::from_string("127.0.0.1"),
8002);
 proxy::start(ep_c, ep_s);
 service.run();
}

Chapter 5

[111]

You will notice that I'm reusing the buffers (buff_client_ and buff_server_) for
both reading and writing. This re-usage is okay, because a read message from a client
is written to server before a new message is read from a client and vice versa. This
also means that this particular implementation suffers from a responsiveness problem.
While we're in the process of writing to party B, we're not reading from party A
(we will restart reading from party A once the writing to party B is complete). You
can modify the implementation to overcome this by doing the following:

•	 You should use multiple read buffers
•	 On each successful read operation, besides asynchronously writing

to the other party, do an extra asynchronous read (into a new buffer)
•	 On each successful write operation, destroy (or reuse) the buffer

I will leave this exercise to you.

Summary
There are many things to consider when choosing to go synchronous
or asynchronous. First off, avoid mixing them.

In this chapter, we've seen:

•	 How easy it is to implement, test, and debug each type of application
•	 How threading affects your application
•	 How the application behavior (pull-like or push-like) affects

its implementation
•	 How you can plug in your own asynchronous operations when you

go asynchronous

Following, we're about to see a few not-so-well-known features of Boost.Asio,
and my Boost.Asio favorite feature, co-routines, which allows you to grab the
pros of going asynchronous with close to none of its cons!

Boost.Asio – Other Features
Here we'll see some of the not-so-well-known features of Boost.Asio. The std
streams and streambuf objects are sometimes a bit more complicated to use, but
as you'll see, they bring their own benefits to the table. Finally, you'll see a rather late
entry to Boost.Asio's co-routines, which allow you to have a code that is asynchronous
but is easy to read (as if it was synchronous). It's quite an amazing feature!

std streams and std buffer I/O
You should be familiar with STL streams and STL streambuf objects in order to read
this section.

Boost.Asio allows for two types of buffers when dealing with I/O:

•	 boost::asio::buffer(): This buffer surrounds a Boost.Asio operation
(the buffers we use are passed to the Boos.Asio operation)

•	 boost::asio::streambuf: This buffer is derived from std::streambuf,
and allows you to use STL streams together with networking

Throughout the book, you've mostly seen examples of the former case:

size_t read_complete(boost::system::error_code, size_t bytes){ ... }
char buff[1024];
read(sock, buffer(buff), read_complete);
write(sock, buffer("echo\n"));

You'll usually be happy with this. If you need more flexibility, you can go
with streambuf.

Boost.Asio Other Features

[114]

Here's the easiest and the worst thing you can do with a streambuf object:

streambuf buf;
read(sock, buf);

This will read until the streambuf object is full, and since the streambuf object
can reallocate itself to accommodate more room, it will basically read until the
connection is closed.

You can use read_until to read up to a sequence of characters:

streambuf buf;
read_until(sock, buf, "\n");

This will read until '\n' is being read, then append that to the buffer, and exit the
read function.

To write something from a streambuf object, you'll do something similar to
the following:

streambuf buf;
std::ostream out(&buf);
out << "echo" << std::endl;
write(sock, buf);

It's pretty straightforward; you construct an STL stream passing your streambuf
object at construction, write to it the message you want to send, and then use write
to send the contents of the buffer.

Boost.Asio and the STL streams
Boost.Asio has done a great job at integrating STL streams and networking. Namely,
if you're already using the STL extensively, you already must have a lot of classes
with overloaded operators, >> and <<. Reading and writing them to sockets will like
be a walk in the park.

Say you have the following code snippet:

struct person {
 std::string first_name, last_name;
 int age;
};
std::ostream& operator<<(std::ostream & out, const person & p) {
 return out << p.first_name << " " << p.last_name << " " << p.age;
}

Chapter 6

[115]

std::istream& operator>>(std::istream & in, person & p) {
 return in >> p.first_name >> p.last_name >> p.age;
}

Sending a person across the network is as easy as the following code snippet:

streambuf buf;
std::ostream out(&buf);
person p;
// ... initialize p
out << p << std::endl;
write(sock, buf);

The other party can read it quite easily as well:

read_until(sock, buf, "\n");
std::istream in(&buf);
person p;
in >> p;

The really good part when using a streambuf object, and of course, its
corresponding std::ostream for writing or std::istream for reading, is that you
end up writing code that feels natural:

•	 When writing something to be sent across the network, it's very likely that
you'll have more than one piece of data. Thus, you'll end up appending data
into the buffer. If that data is not a string, you'll need to convert it to a string
first. All this happens by default when using the << operator.

•	 Similarly, on the other party, when reading a message, you'll need to parse it,
that is, read one piece of data at a time, and if the data is not a string, you'll
need to convert it from a string. All this happens by default when you use the
>> operator to read something.

Finally, here's a well-known, pretty cool trick; to dump the contents of the
streambuf object to the console, use the following code snippet:

streambuf buf;
...
std::cout << &buf << std::endl; // dumps all content to the console

Similarly, to convert its contents to a string, use the following code snippet:

std::string to_string(streambuf &buf) {
 std::ostringstream out;
 out << &buf;
 return out.str();
}

Boost.Asio Other Features

[116]

The streambuf class
As I've said, streambuf derives from std::streambuf. Like std::streambuf itself,
it's not copy-constructable.

In addition, it has a few extra functions, such as:

•	 streambuf ([max_size,] [allocator]): This function constructs a
streambuf object. You can optionally specify a maximum buffer size and an
allocator, which is used to allocate/deallocate memory when needed.

•	 prepare(n): This function returns a sub-buffer, used to accommodate a
contiguous sequence of n number of characters. It can be used for reading or
writing. The result of this function can be used with any free function from
Boost.Asio dealing with read/write, not just those dealing with streambuf
objects.

•	 data(): This function returns the whole buffer as a contiguous sequence of
characters and is used for writing. The result of this function can be used
with any free function from Boost.Asio dealing with writing, not just those
dealing with streambuf objects.

•	 consume(n): In this function, data is removed from the input sequence
(from read operation).

•	 commit(n): In this function, data is removed from the output sequence
(from write operation) and added to the input sequence (for read operation).

•	 size(): This function returns the size in characters, of the whole streambuf
object.

•	 max_size(): This function returns how many characters it can hold, at most.

Except for the last two functions, the other functions are not that easy to understand.
First of all, most of the time, you'll send the streambuf instance as an argument to
the read/write free functions, as shown in the following code snippet:

read_until(sock, buf, "\n"); // reads into buf
write(sock, buf); // writes from buf

If you send the whole buffer to a free function, as shown in the preceding snippet,
the function will make sure it will increment the buffer's seek input and output
pointers. In other words, if there's data to be read, you'll be able to read it.
For example:

read_until(sock, buf, '\n');
std::cout << &buf << std::endl;

Chapter 6

[117]

The preceding code snippet will dump what you just wrote from the socket.
The following code snippet will not dump anything:

read(sock, buf.prepare(16), transfer_exactly(16));
std::cout << &buf << std::endl;

The bytes are read, but the seek input pointer hasn't moved. You have to move it
yourself, as given in the following code snippet:

read(sock, buf.prepare(16), transfer_exactly(16));
buf.commit(16);
std::cout << &buf << std::endl;

Similarly, if you want to write from the streambuf object, if you use the free function
write, use the following code snippet:

streambuf buf;
std::ostream out(&buf);
out << "hi there" << std::endl;
write(sock, buf);

The following code will send hi there three times:

streambuf buf;
std::ostream out(&buf);
out << "hi there" << std::endl;
for (int i = 0; i < 3; ++i)
 write(sock, buf.data());

This happens because the buffer never consumes, as data still remains there.
If you want to consume it, use the following code snippet:

streambuf buf;
std::ostream out(&buf);
out << "hi there" << std::endl;
write(sock, buf.data());
buf.consume(9);

In conclusion, you should prefer dealing with the whole streambuf instance.
Use the preceding functions when you want fine-tuning.

Even though you can use the same streambuf instance for reading and writing,
I recommend you use two separate ones, one for reading and one for writing.
It will keep things simpler, clearer, and you'll avoid a lot of possible bugs.

Boost.Asio Other Features

[118]

The free functions that deal with streambuf
objects
The following list shows what Boost.Asio free functions deal with streambuf objects
as well:

•	 read(sock, buf [, completion_function]): This function reads from
the socket into the streambuf object. The completion function is optional.
If present, it's called after each successful read operation, and tells Boost.
Asio if the operation is complete (if not, it continues to read). It's signature
is size_t completion(const boost::system::error_code & err, size_t
bytes_transfered);. When the completion function returns 0, we consider
the read operation complete; if it returns a non-zero value, it indicates that
it has maximum number of bytes to be read on the next call to the stream's
read_some.

•	 read_at(radom_stream, offset, buf [, completion_function]): This
function reads from a random stream. Note that this does not apply to sockets
(since they don't model the random stream concept, they are forward only).

•	 read_until(sock, buf, char | string | regex | match_condition): This
function reads until a given condition matches. Either a char datatype has
been read, or a string has been read, or a regex expression has matched in
the read string so far, or the match_condition function says we should exit
the function. The signature of match_condition is pair<iterator,bool>
match(iterator begin, iterator end);, where iterator means buffers_
iterator<streambuf::const_buffers_type>. If a match is found, you
should return a pair (passed-end-of-match is set to true). If a match is not
found, you should return pair (begin is set to false).

•	 write(sock, buf [, completion_function]): This function writes all
contents of the streambuf object. The completion function is optional and its
behavior is similar to the completion function for read(): return 0 when
the write operation is complete, or return non-zero to indicate the number of
bytes to be written on the next call to the stream's write_some function.

Chapter 6

[119]

•	 write_at(random_stream,offset, buf [, completion_function]): This
function writes to a random stream. Again, this does not apply to sockets.

•	 async_read(sock, buf [, competion_function], handler): This function
asynchronously counterparts to read(). The handler's signature is void
handler(const boost::system::error_code, size_t bytes).

•	 async_read_at(radom_stream, offset, buf [, completion_function] ,
handler): This function asynchronously counterparts to read_at().

•	 async_read_until (sock, buf, char | string | regex | match_
condition, handler): This function asynchronously counterparts to read_
until().

•	 async_write(sock, buf [, completion_function] , handler): This
function asynchronously counterparts to write().

•	 async_write_at(random_stream,offset, buf [, completion_function]
, handler): This function asynchronously counterparts to write_at().

Lets say you want to read up to a vowel:

streambuf buf;
bool is_vowel(char c) {
 return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u';
}
size_t read_complete(boost::system::error_code, size_t bytes) {
 const char * begin = buffer_cast<const char*>(buf.data());
 if (bytes == 0) return 1;
 while (bytes > 0)
 if (is_vowel(*begin++)) return 0;
 else --bytes;
 return 1;
}
...
read(sock, buf, read_complete);

The thing to note here is accessing the buffer inside read_complete(), namely
buffer_cast<> and buf.data().

Boost.Asio Other Features

[120]

If you want to use regex, the example becomes much simpler:

read_until(sock, buf, boost::regex("^[aeiou]+"));

Or lets modify the example and you put the match_condition function to work:

streambuf buf;
bool is_vowel(char c) {
 return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u';
}
typedef buffers_iterator<streambuf::const_buffers_type> iterator;
std::pair<iterator,bool> match_vowel(iterator b, iterator e) {
 while (b != e)
 if (is_vowel(*b++)) return std::make_pair(b, true);
 return std::make_pair(e, false);
}
...
size_t bytes = read_until(sock, buf, match_vowel);

When using read_util, there's a twist; you need to consider the number of
bytes you've read, because the underlying buffer might have read more bytes
(unlike when using read()). For example:

std::cout << &buf << std::endl;

The previous code snippet might dump more than the number of bytes read
by read_until.

Co-routines
The author of Boost.Asio, around 2009-2010, implemented a very cool concept,
co-routines, to help you design asynchronous applications even easier.

They allow you to have the best of both worlds, that is, write asynchronous
applications and easily follow the flow of control, almost as if the application
was written sequentially.

Chapter 6

[121]

The normal flow is shown in case 1. Using co-routines, you'll get as close to case two
as possible.

Simply put, a co-routine allows multiple entry points for suspending and resuming
execution at certain locations within a function.

Boost.Asio Other Features

[122]

If you are to use co-routines, you'll need two header files that are only found in
boost/libs/asio/example/http/server4: yield.hpp and coroutine.hpp.
Here, Boost.Asio defines two pseudo-keywords (macros) and a class:

•	 coroutine: This class is to derive or use in your connection class in order
to implement co-routines.

•	 reenter(entry): This is the body of the co-routine. The argument
entry is a pointer to a coroutine instance to be used as a block within
the whole function.

•	 yield code: This executes a statement as part of the co-routine.
Next time the function is entered, execution will start after this code.

To understand better, lets go for an example. We'll re-implement the application
from Chapter 4, Asynchronous Client, which is a simple client that logs in, pings, and
can tell you which other clients are logged.

The core code looks similar to the following code snippet:

class talk_to_svr : public boost::enable_shared_from_this<talk_to_svr>
 , public coroutine, boost::noncopyable {
...
void step(const error_code & err = error_code(), size_t bytes = 0) {
 reenter(this) { for (;;) {
 yield async_write(sock_, write_buffer_, MEM_FN2(step,_1,_2));
 yield async_read_until(sock_, read_buffer_,"\n", MEM_
FN2(step,_1,_2));
 yield service.post(MEM_FN(on_answer_from_server));
 }}
}
};

The first thing that's changed, instead of having lots of member functions, such as
connect(), on_connect(), on_read(),do_read(), on_write(), do_write(), and
so on, we have a single function called step().

The body of the function is within reenter(this) { for (;;) { }}. You can think
of reenter(this) as the code we executed last time, so we can execute the next
code this time.

Within the reenter block, you'll see several yield statements. The first time
you enter the function, the async_write function gets executed, second time the
async_read_until function gets executed, third time the service.post function
gets executed, and fourth time the async_write function gets executed, and so on.

Chapter 6

[123]

You should never forget the for(;;) {} instance. Refer to the following
code snippet:

void step(const error_code & err = error_code(), size_t bytes = 0) {
 reenter(this) {
 yield async_write(sock_, write_buffer_, MEM_FN2(step,_1,_2));
 yield async_read_until(sock_, read_buffer_, "\n",MEM_
FN2(step,_1,_2));
 yield service.post(MEM_FN(on_answer_from_server));
 }
}

If we were to use the preceding code snippet the third time, we would have entered
the function and would have executed service.post. Fourth time, when we enter
the function, we go past service.post and execute nothing. Follow the same thing
when executing for the fifth time and so on:

class talk_to_svr : public boost::enable_shared_from_this<talk_to_svr>
 , public coroutine, boost::noncopyable {
 talk_to_svr(const std::string & username) : ... {}
 void start(ip::tcp::endpoint ep) {
 sock_.async_connect(ep, MEM_FN2(step,_1,0));
 }
 static ptr start(ip::tcp::endpoint ep, const std::string &
username) {
 ptr new_(new talk_to_svr(username)); new_->start(ep); return
new_;
 }
 void step(const error_code & err = error_code(), size_t bytes = 0)
{
 reenter(this) { for (;;) {
 if (!started_) {
 started_ = true; std::ostream out(&write_buf_);
 out << "login " << username_ << "\n";
 }
 yield async_write(sock_, write_buf_, MEM_FN2(step,_1,_2)
);
 yield async_read_until(sock_,read_buf_,"\n", MEM_
FN2(step,_1,_2));
 yield service.post(MEM_FN(on_answer_from_server));
 }}
 }
 void on_answer_from_server() {
 std::istream in(&read_buf_); std::string word; in >> word;

Boost.Asio Other Features

[124]

 if (word == "login") on_login();
 else if (word == "ping") on_ping();
 else if (word == "clients") on_clients();
 read_buf_.consume(read_buf_.size());
 if (write_buf_.size() > 0) service.post(MEM_FN2(step,error_
code(),0));
 }
 ...
private:
 ip::tcp::socket sock_; streambuf read_buf_, write_buf_;
 bool started_; std::string username_; deadline_timer timer_;
};

When we start the connection, start() gets called, which asynchronously connects
to the server. When connection is completed, we enter step() for the first time.
This is when we'll send our login message.

After that, we use async_write, then async_read_until, and process the message
(on_answer_from_server).

In on_answer_from_server, we process the incoming message; we read the first
word, and dispatch to the proper function. Then, ignore the remainder of the
message (in case there was any):

class talk_to_svr : ... {
 ...
 void on_login() { do_ask_clients(); }
 void on_ping() {
 std::istream in(&read_buf_);
 std::string answer; in >> answer;
 if (answer == "client_list_changed") do_ask_clients();
 else postpone_ping();
 }
 void on_clients() {
 std::ostringstream clients; clients << &read_buf_;
 std::cout << username_ << ", new client list:" << clients.
str();
 postpone_ping();
 }
 void do_ping() {
 std::ostream out(&write_buf_); out << "ping\n";
 service.post(MEM_FN2(step,error_code(),0));
 }

Chapter 6

[125]

 void postpone_ping() {
 timer_.expires_from_now(boost::posix_time::millisec(rand() %
7000));
 timer_.async_wait(MEM_FN(do_ping));
 }
 void do_ask_clients() {
 std::ostream out(&write_buf_); out << "ask_clients\n";
 }
};

The example is a bit more complex, since we need to ping the server at random
times. To do this, we postpone a ping operation after we successfully ask for the list
of clients for the first time. Then, on each ping answer from the server, we postpone
another ping operation.

To run it all, use the following code snippet:

int main(int argc, char* argv[]) {
 ip::tcp::endpoint ep(ip::address::from_string("127.0.0.1"),
8001);
 talk_to_svr::start(ep, "John");
 service.run();
}

Going with co-routines, we saved 15 lines of code, and the code became much easier
to read.

We've barely touched the subject of co-routines here. If you want more
information, please check out the author's web page, http://blog.think-async.
com/2010_03_01_archive.html.

Summary
We've seen how Boost.Asio plays nice with STL streams and streambuf objects.
We've seen how co-routines make our code more compact and easier to read.

Time to bring the big guns, such as Asio versus Boost.Asio, advanced debugging,
SSL, and some platform-dependent features.

Boost.Asio – Advanced
Topics

This chapter deals with some of the advanced topics of Boost.Asio. It's unlikely that
you'll need to delve into these for day-to-day programming, but they are definitely
good to know:

•	 If debugging fails, you'll see what Boost.Asio can do to help
•	 If you need to deal with SSL, see how much Boost.Asio can help you
•	 If you target a specific OS, see what extra features Boost.Asio has in store

for you

Asio versus Boost.Asio
The author of Boost.Asio also maintains Asio. You can think of it as Asio, as it
comes in two flavours, Asio (non-Boost) and Boost.Asio. The author claims that
the updates will always appear in non-Boost Asio first, and periodically, they will
be incorporated into the Boost distribution.

The differences in a nutshell are as follows:

•	 Asio definitions are in namespace asio:: while Boost.Asio definitions are
in boost::asio::

•	 Main header in Asio is asio.hpp and boost/asio.hpp for Boost.Asio
•	 Asio has a class for launching threads (the equivalent for boost::thread)
•	 Asio provides its own error code classes (asio::error_code instead

of boost::system::error_code and asio::system_error instead of
boost::system::system_error)

You can find more details about Asio at, http://think-async.com.

Boost.Asio Advanced Topics

[128]

You should decide for yourself which version you prefer; personally, I prefer Boost.
Asio. Here are a few things to consider when making your choice:

•	 New versions of Asio are released faster than new versions of Boost.Asio
(since new versions of Boost occur quite seldomly)

•	 Asio is header-only (while some parts of Boost.Asio depend on other Boost
libraries, which might need to be compiled)

•	 Both Asio and Boost.Asio are quite mature, so unless you're longing for some
Asio features about to be released, Boost.Asio is quite a safe bet, and you'll
have the other Boost libraries at your disposal as well

You can use Asio and Boost.Asio in the same application, although, I would not
recommend it. This can happen silently, in which case it's ok, for instance, if you're
using Asio, and some third party library is using Boost.Asio or vice versa.

Debugging
Debugging synchronous applications is usually easier than debugging asynchronous
applications. For a synchronous application, if it gets blocked, you'll just break into
debug, and you'll get a picture of where you are (synchronous means sequential).
However, when going asynchronous, events don't happen sequentially, so in case
of a bug, it's really hard to track what happened.

To avoid this, first, you should delve deeply into co-routines. If implemented
correctly, you should virtually have no problems at all.

Just in case you do, when it comes to asynchronous programming, Boost.Asio
lends you a helping hand; Boost.Asio allows for handler tracking, when the macro
BOOST_ASIO_ENABLE_HANDLER_TRACKING is defined. If so, Boost.Asio writes a lot
of aiding output to the standard error stream, recording the time, the asynchronous
operation, and the relationship to its completion handler.

Handler tracking information
The information is not that easy to grasp, but it's very useful nonetheless.
The Boost.Asio's output is @asio|<timestamp>|<action>|<description>.

The first tag is always @asio, and you can use that to easily filter the messages
coming from Boost.Asio, in case other sources dump to the standard error stream
(the equivalent of std::cerr) as well. The timestamp instance is in seconds and
microseconds since 1st January, 1970 UTC. The action instance can be any of
the following:

Chapter 7

[129]

•	 >n: This is used when we enter the handler number n. The description
instance contains the arguments that were sent to the handler.

•	 <n: This is used when we exit the handler number n.
•	 !n: This is used when we exited the handler number n due to an exception.
•	 ~n: This is used when the handler with number n is destroyed without being

called; probably, because the io_service instance is destroyed too soon
(before n gets a chance to be called).

•	 n*m: This is used when the handler number n creates a new asynchronous
operation with completion handler with number m. This is the start of
the asynchronous operation, as the description instance shows. The
completion handler is called when you see >m (start) and <m (end).

•	 n: This is used when the handler number n performs an operation, as shown
in description (which can be a close or a cancel operation). You usually
can safely ignore these messages.

Whenever n is 0, the operation is performed outside of any (asynchronous) handler;
you'll usually see this as the first operation(s), or in case you're working with signals,
whenever a signal is triggered.

You should pay close attention to messages of type !n and ~n, which are most
likely errors in your code. In the former case, the asynchronous functions don't
throw exceptions, thus, the exception must have been generated by you; you
should not allow exceptions to exit your completion handlers. In the latter case,
you probably destroyed the io_service instance too soon, before all completion
handlers were called.

An example
To show you an example of this aiding output, lets modify the example used in
Chapter 6, Boost.Asio Other Features. All you need to do is add an extra #define
before including boost/asio.hpp:

#define BOOST_ASIO_ENABLE_HANDLER_TRACKING
#include <boost/asio.hpp>
...

Boost.Asio Advanced Topics

[130]

Also, we're dumping to console when the user logs in and when he receives the first
list of clients. The output will be:

@asio|1355603116.602867|0*1|socket@008D4EF8.async_connect
@asio|1355603116.604867|>1|ec=system:0
@asio|1355603116.604867|1*2|socket@008D4EF8.async_send
@asio|1355603116.604867|<1|
@asio|1355603116.604867|>2|ec=system:0,bytes_transferred=11
@asio|1355603116.604867|2*3|socket@008D4EF8.async_receive
@asio|1355603116.604867|<2|
@asio|1355603116.605867|>3|ec=system:0,bytes_transferred=9
@asio|1355603116.605867|3*4|io_service@008D4BC8.post
@asio|1355603116.605867|<3|
@asio|1355603116.605867|>4|
John logged in
@asio|1355603116.606867|4*5|io_service@008D4BC8.post
@asio|1355603116.606867|<4|
@asio|1355603116.606867|>5|
@asio|1355603116.606867|5*6|socket@008D4EF8.async_send
@asio|1355603116.606867|<5|
@asio|1355603116.606867|>6|ec=system:0,bytes_transferred=12
@asio|1355603116.606867|6*7|socket@008D4EF8.async_receive
@asio|1355603116.606867|<6|
@asio|1355603116.606867|>7|ec=system:0,bytes_transferred=14
@asio|1355603116.606867|7*8|io_service@008D4BC8.post
@asio|1355603116.607867|<7|
@asio|1355603116.607867|>8|
John, new client list: John

Lets analyse this line by line:

•	 We enter async_connect, which creates handler 1 (in our case, all handlers
are talk_to_svr::step)

•	 Handler 1 is called (on successful connection to server)
•	 Handler 1 calls async_send, which creates handler 2 (here, we're sending the

login message to the server)
•	 Handler 1 exits
•	 Handler 2 is called, and 11 bytes are sent (login John)
•	 Handler 2 calls async_receive, which creates handler 3 (we're waiting

for server to answer to our login)

Chapter 7

[131]

•	 Handler 2 exits
•	 Handler 3 is called, and we received 9 bytes (login ok)
•	 Handler 3 posts on_answer_from_server (which creates handler 4)
•	 Handler 3 exits
•	 Handler 4 is called, which then dumps John logged in
•	 Handler 4 posts another step (handler 5), which will write ask_clients
•	 Handler 4 exits
•	 Handler 5 enters
•	 Handler 5, async_send ask_clients, creates handler 6
•	 Handler 5 exits
•	 Handler 6 enters (we successfully send ask_clients to server)
•	 Handler 6 calls async_receive, which creates handler 7 (we're waiting for

the server to send us the list of existing clients)
•	 Handler 6 exits
•	 Handler 7 is called, and we received the client list
•	 Handler 7 posts on_answer_from_server (which creates handler 8)
•	 Handler 7 exits
•	 Handler 8 enters, and dumps the client list (on_clients)

It will take a while to get used to, but once you grasp it, you'll isolate the output
that contains the problem, and find the actual piece of code that needs to be fixed.

Handler tracking to file
By default, the handler tracking information is dumped to the standard error stream
(the equivalent of std::cerr). It's very likely that you'll want to redirect this output
somewhere else. For one thing, by default, for a console application, the output and
error output dump to the same place, that is, the console. But for a Windows
(non-console) application, the default error stream is null.

You can redirect the error output via the command line, such as:

some_application 2>err.txt

Boost.Asio Advanced Topics

[132]

Or, if you're not too lazy, you can do it programmatically, as given in the following
code snippet:

// for Windows
HANDLE h = CreateFile("err.txt", GENERIC_WRITE, 0, 0, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL , 0);
SetStdHandle(STD_ERROR_HANDLE, h);
// for Unix
int err_file = open("err.txt", O_WRONLY);
dup2(err_file, STDERR_FILENO);

SSL
Boost.Asio provides classes for some basic SSL support. Behind the scenes, it uses
OpenSSL. So, if you want to use SSL, first download OpenSSL from www.openssl.
org and build it. You should note that, usually, building OpenSSL is no easy task,
especially if you don't have a popular compiler, such as Visual Studio.

Assuming you have OpenSSL built successfully, Boost.Asio has some wrapper
classes around it:

•	 ssl::stream: It guides you to what to use instead of the
ip::<protocol>::socket class

•	 ssl::context: This is the context for initial handshake
•	 ssl::rfc2818_verification: This class is the easy way to verify a

certificate against a hostname according to the rules from RFC 2818

First, you create and initialize the SSL context, then open a socket using the given
context and the given remote host, connect to the remote host, and do the SSL
handshake. Once the handshake is over, you can use the Boost.Asio's read*/write*
free functions.

Here's a simple example of an HTTPS client that connects to Yahoo!:

#include <boost/asio.hpp>
#include <boost/asio/ssl.hpp>
using namespace boost::asio;
io_service service;
int main(int argc, char* argv[]) {

Chapter 7

[133]

 typedef ssl::stream<ip::tcp::socket> ssl_socket;
 ssl::context ctx(ssl::context::sslv23);
 ctx.set_default_verify_paths();
 // Open an SSL socket to the given host
 io_service service;
 ssl_socket sock(service, ctx);
 ip::tcp::resolver resolver(service);
 std::string host = "www.yahoo.com";
 ip::tcp::resolver::query query(host, "https");
 connect(sock.lowest_layer(), resolver.resolve(query));
 // The SSL handshake
 sock.set_verify_mode(ssl::verify_none);
 sock.set_verify_callback(ssl::rfc2818_verification(host));
 sock.handshake(ssl_socket::client);
 std::string req = "GET /index.html HTTP/1.0\r\nHost: "
 + host + "\r\nAccept: */*\r\nConnection: close\r\n\r\n";
 write(sock, buffer(req.c_str(), req.length()));
 char buff[512];
 boost::system::error_code ec;
 while (!ec) {
 int bytes = read(sock, buffer(buff), ec);
 std::cout << std::string(buff, bytes);
 }
}

The first lines are pretty self-explanatory. When you connect to the remote host,
you use sock.lowest_layer(), in other words, you use the underlying socket
(since ssl::stream is just a wrapper). The next three lines perform the handshake.
Once that is done, you make the HTTP request with the Boost.Asio's write()
function, and read (read()) all incoming bytes.

When implementing SSL servers, things get a bit more complicated. Boost.Asio
comes with an example of an SSL server, which you'll find in boost/libs/asio/
example/ssl/server.cpp.

Boost.Asio Windows features
The features that follow apply only to the Windows operating system.

Boost.Asio Advanced Topics

[134]

Stream Handles
Boost.Asio allows you to create a wrapper over a Windows Handle, after which you
can use most of the free functions, such as read(), read_until(), write(), async_
read(), async_read_until(), and async_write(). Here's how to read a line from
a file:

HANDLE file = ::CreateFile("readme.txt", GENERIC_READ, 0, 0,
 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, 0);
windows::stream_handle h(service, file);
streambuf buf;
int bytes = read_until(h, buf, '\n');
std::istream in(&buf);
std::string line;
std::getline(in, line);
std::cout << line << std::endl;

The stream_handle class is available only when the I/O completion port backend
is used (which is the default). If this is the case, BOOST_ASIO_HAS_WINDOWS_STREAM_
HANDLE is defined.

Random access Handles
Boost.Asio allows you to do random-access read and write operations on Handles
that refer to regular files. Again, you create a wrapper over a Hanlde, and then use
the free functions, such as read_at(), write_at(), async_read_at(), or async_
write_at(). To read 50 characters starting at offset 1,000, you'll use the following
code snippet:

HANDLE file = ::CreateFile("readme.txt", GENERIC_READ, 0, 0,
 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, 0);
windows::random_access_handle h(service, file);
char buf[50];
int bytes = read_at(h, 1000, buffer(buf));
std::string msg(buf, bytes);
std::cout << msg << std::endl;

For Boost.Asio, the random access Handlers only provide random access, you cannot
use them as Stream Handles. In other words, the free functions, such as read(),
read_until(), write(), and their asynchronous counterparts cannot be used with
a random access Handle.

The random_access_handle class is available only when the I/O completion port
backend is used (which is the default). If this is the case, BOOST_ASIO_HAS_WINDOWS_
RANDOM_ACCESS_HANDLE is defined.

Chapter 7

[135]

Object Handles
You can wait on Windows Handles to kernel objects, such as change notification,
console input, event, memory resource notification, process, semaphore, thread, or
waitable timer. Or simply put, anything you can call WaitForSingleObject on. For
them, you can create a object_handle wrapper, and use wait() or async_wait()
on it:

void on_wait_complete(boost::system::error_code err) {}
...
HANDLE evt = ::CreateEvent(0, true, true, 0);
windows::object_handle h(service, evt);
// synchronous wait
h.wait();
// asynchronous wait
h.async_wait(on_wait_complete);

Boost.Asio POSIX features
The features that follow apply only on Unix operating systems.

Local sockets
Boost.Asio provides basic support for local sockets (also known as Unix
domain sockets).

A local socket is a socket that can only be accessed from the applications that run on
the host machine. You can use local sockets for easy inter-process communication.
You can connect both as a client socket or as a server socket. For local sockets, the
endpoint is a filename, such as /tmp/whatever. One cool thing is that you can assign
rights to that given file, and therefore, disallow certain users on your machine from
creating a socket to the file.

You can connect as a client socket, as given in the following code snippet:

local::stream_protocol::endpoint ep("/tmp/my_cool_app");
local::stream_protocol::socket sock(service);
sock.connect(ep);

Boost.Asio Advanced Topics

[136]

You can create a server socket, as given in the following code snippet:

::unlink("/tmp/my_cool_app");
local::stream_protocol::endpoint ep("/tmp/my_cool_app");
local::stream_protocol::acceptor acceptor(service, ep);
local::stream_protocol::socket sock(service);
acceptor.accept(sock);

Once the socket is successfully created, you can use it just like a regular socket; it
has the same member functions as the other socket classes, and you can use the
free functions that use sockets as well.

Note that local sockets are available only if the target operating system supports
them, namely, BOOST_ASIO_HAS_LOCAL_SOCKETS (if it is defined).

Connecting local sockets
Finally, you can connect two sockets, either connectionless (datagram), or connection
oriented (streams):

// connection oriented
local::stream_protocol::socket s1(service);
local::stream_protocol::socket s2(service);
local::connect_pair(s1, s2);
// connection-less
local::datagram_protocol::socket s1(service);
local::datagram_protocol::socket s2(service);
local::connect_pair(s1, s2);

Internally, connect_pair uses the infamous POSIX socketpair() function.
What this basically does is connect two sockets without the complicated socket
creation process; just one line of code, and you're done. This used to be an easy
way for inter-thread communication. While in modern programming, you can avoid
it, and you could find it useful when dealing with legacy code that uses sockets.

POSIX file descriptors
Boost.Asio allows synchronous and asynchronous operations on some POSIX file
descriptors, such as pipes, standard I/O, and other devices (but not on regular files).

Chapter 7

[137]

Once you create a stream_descriptor instance for such a POSIX file descriptor, you
can use some of the free functions provided by Boost.Asio, such as read(), read_
until(), write(), async_read(), async_read_until(), and async_write().

Here's how you read one line from stdin and dump it to stdout:

size_t read_up_to_enter(error_code err, size_t bytes) { ... }
posix::stream_descriptor in(service, ::dup(STDIN_FILENO));
posix::stream_descriptor out(service, ::dup(STDOUT_FILENO));
char buff[512];
int bytes = read(in, buffer(buff), read_up_to_enter);
write(out, buffer(buff, bytes));

The stream_descriptor class is available only if the target operating system
supports it, namely, BOOST_ASIO_HAS_POSIX_STREAM_DESCRIPTOR (if it is defined).

Fork
Boost.Asio supports programs that make use of the fork() system call. You need
to tell the io_service instance when the fork() function is about to happen and
when it has happened. Refer to the following code snippet:

service.notify_fork(io_service::fork_prepare);
if (fork() == 0) {
 // child
 service.notify_fork(io_service::fork_child);
 ...
} else {
 // parent
 service.notify_fork(io_service::fork_parent);
 ...
}

This advises to use service that it's about to be called on a different thread. Even
though Boost.Asio allows for this, I strongly recommend you use threads, as using
boost::thread is a piece of cake.

Boost.Asio Advanced Topics

[138]

Summary
Strive for your code to be simple and easy to understand. Learn and use co-routines.
This will minimize the debugging you need to do, but just in case there are still
some bugs lurking in the code, Boost.Asio lends a helping hand, as we've seen in
the Debugging section.

In case you need to deal with SSL, Boost.Asio allows for basic SSL programming.

Finally, if you know your application is targeted at a given OS, you can take
advantage of the features Boost.Asio provides for that specific operating system.

Network programming is crucial nowadays. Boost.Asio is a must for any C++
programmer of the 21st century. We've also delved into theory, then into practice;
use this as both a reference and a hands-on collection of Boost.Asio examples, as you
can easily read, test, understand, and extend. Hope it's been a fun to read. And it's
definitely been a fun to write!

Index
Symbols
*_at functions

about 39
async_read_at() 39
async_write_at() 39
read_at() 39
write_at() 39

A
Asio

about 127
versus Boost.Asio 127, 128

assign(protocol,socket) function 25
async_call function 104
async_connect(endpoint) function 25
async_connect(socket, begin [, end]

[, condition],handler function 35
asynchronous client 78-81
asynchronous I/O

client applications 96, 97
server applications 98-101

asynchronous operations 104-107
asynchronous programming

about 8, 9, 11 40
asynchronous work 47, 48
mixing, with synchronous programming

87, 88
need for 40-44
poll() 44
poll_one() 44, 46
run() 44
run() function 44, 45
run_one() 44
run_one() function 45

service.dispatch(handler) 50
service.post(handler) 50
service.wrap(handler) 50

asynchronous server 82-86
threading 101-103

async_op function 105
async_read_at() function 39
async_read_until(stream, stream_buffer,

completion, handler) function 38
async_read_until(stream, stream_buffer,

delim, handler function 38
async_write_at() function 39
async_write function 122
at_mark() function 30

B
Berkeley Software Distribution. See BSD
bind(endpoint) function 25
Boost.Asio

about 5
Boost:: asio::buffer() 113
Boost::asio:: streambuf 113
building 7
co-routines 120-125
features 113
input/output facilities 13
io_service class 15-18
macros 8
POSIX features 135
STL streams 114, 115
threading 12
timers 14, 15
versus Asio 127, 128
Windows features 133
wrapper classes 132

[140]

Boost.Asio namespaces
boost::asio 21
Boost::asio::error 21
Boost::asio::ip 21
Boost::asio::local 21
Boost::asio::sslr 21
Boost::asio::windows 21

boost::bind functor 53
Boost.DateTime 7
Boost.Regex 7
Boost.System 7
Borland C++ 5.9.2+ 6
BSD 6
buffer() function 34
buffer function wrapper 33

C
cancel() function 25
client

passing, to server messages 88, 89
requests 69

client applications
asynchronous I/O 96, 97
synchronous I/O 89, 90

client list changed event 83
close() function 25
commit(n) function 116
completion function 106
connect(endpoint) function 25
connect functions 35
connection::ptr(new connection)->start(ep)

54
connect(socket, begin [, end] [, condition 35
consume(n) function 116
co-routines 120-125

D
data() function 116
deadline_timer timer_ function 80
debugging

about 128
example 129-131
handler tracking 128, 129
handler tracking, to file 131

dispatch() 51
do_complete() function 65
do_read() function 63, 65
do_write() 55
do_write() function 63, 65

E
Echo client 57, 58
Echo server 58
endpoints 22
error codes 11, 12
exceptions 11, 12

F
fork() function 137

G
get_io_service() function 28
get_option(option) function 28

H
handle_clients() function 41
handler tracking 128

I
IMCP 6
Instant Private Network. See IPN
Internet Control Message Protocol. See

IMCP
io_control(cmd) function 28
io_service class 15
io_service**strand class 52
ip::address

from_string(str) function 22
ip::address**to_string() function 22
ip::address_v4

any() function 22
broadcast([addr, mask]) function 22

ip::address(v4_or_v6_address) function 22
ip::host_name() function 22
IPN 5
is_open() function 25

[141]

L
libtorrent 5
local_endpoint() function 30
local sockets

about 135
connecting 136

M
max_size()function 116

N
native_handle() function 30
native_non_blocking() function 30
Network API

about 21
Boost.Asio namespaces 21
connect functions 35
endpoints 22, 23
IP addresses 22
read/write functions 36
sockets 23, 24

non_blocking() function 30
non-Boost. See Asio

O
on_new_client() function 93
on_read_msg() function 42
open(protocol) function 25
OpenSSL 7
out-of-band (OOB) 27

P
PokerTH 5
poll() function 47
poll_one function 46
POSIX features, Boost.Asio

file descriptors 136
Fork 137
local sockets 135
local sockets, connecting 136

prepare(n) function 116

proxies
asynchronous proxy example 109-111
implementing 108

R
read_at() functions 39
read operation 111
read_request() function 76
read_until(stream, stream_buffer, comple-

tion) function 38
read_until(stream, stream_buffer, delim)

function 38
read/write functions 25

about 36
async_read() 36
async_read_until() functions 38
async_write() 36
*_at functions 39, 40
end conditions 36-38
read() 36
write() 36

reenter(entry) class 122
Remobo 5
remote_endpoint() function 30
run() function 106
run_one() function 45

S
server applications

asynchronous I/O 98-101
synchronous I/O 92, 93

server messages
passing, to client 88, 89

service.dispatch(handler) 50
service.post(handler) 50
service.run() function 97
service.run() loop 10
service.wrap(handler) handler 50
set_option(option) function 28
set_reading() function 43
shared_buffer class 33, 34
shared_ptr_from_this() function 62
shutdown(type_of_shutdown) function 25
size()function 116

[142]

socket member functions
Read/write functions 25-28
related functions, connecting 25
socket control 28, 29
TCP versus UDP 30
UDP versus ICMP 30

socketpair() function 136
sockets

about 23, 24
buffer function wrapper 33, 34
considerations 31
member functions 24
socket buffers 31, 32
synchronous error codes 24

some_function 48
SSL 132, 133
STL streams

Boost.Asio 114, 115
streambuf class 116
streambuf() function 116
streambuf objects

async_read_at() function 119
async_read() function 119
async_read_until() function 119
async_write_at() function 119
async_write() function 119
read_at() function 118
read() function 118
read_until() function 118
write_at() function 119
write() function 118

synchronous client 70-72
synchronous I/O

client applications 89, 90
server applications 92, 93

synchronous programming
about 8, 9
mixing, with asynchronous programming

87, 88
synchronous server

about 73-77
threading 94-96

T
TCP 6
TCP asynchronous client 61-64

TCP asynchronous server 64-66
TCP Echo server/clients

about 58
asynchronous client 61-64
asynchronous server 64-66
code 66
synchronous client 59, 60
synchronous server 60, 61

TCP synchronous client 59, 60
TCP synchronous server 60, 61
threading

asynchronous server 101-103
in synchronous server 94-96

threading, Boost.Asio
io_service class 12
socket class 13
utility class 13

timers 14
Transmission Control Protocol. See TCP
typedef keyword 24

U
UDP 6
UDP Echo server/clients

about 66
synchronous Echo client 67
synchronous Echo server 68

UDP synchronous Echo client 67
UDP synchronous Echo server 68
update_clients_changed() function 103
User Datagram Protocol. See UDP

W
Windows features, Boost.Asio

object handles 135
random access handles 134
stream handles 134

write_at() function 39

Y
yield code class 122

Thank you for buying
Boost.Asio C++ Network Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenStack Cloud Computing
Cookbook
ISBN: 978-1-849517-32-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environment with complete
coverage of Nova, Swift, Keystone, Glance, and
Horizon

1.	 Learn how to install and configure all the
core components of OpenStack to run an
environment that can be managed and operated
just like AWS or Rackspace

2.	 Master the complete private cloud stack from
scaling out compute resources to managing
swift services for highly redundant, highly
available storage

SSL VPN
ISBN: 978-1-904811-07-7 Paperback: 212 pages

Understanding, evaluating, and planning secure,
web-based remote access

1.	 Understand how SSL VPN technology works

2.	 Evaluate how SSL VPN could fit into your
organisation?s security strategy

3.	 Practical advice on educating users, integrating
legacy systems, and eliminating security
loopholes

Please check www.PacktPub.com for information on our titles

Tcl 8.5 Network Programming
ISBN: 978-1-849510-96-7 Paperback: 588 pages

Bulid network-aware applications using Tcl, a
powerful dynamic programming language

1.	 Develop network-aware applications with Tcl

2.	 Implement the most important network
protocols in Tcl

3.	 Packed with hands-on-examples, case studies,
and clear explanations for better understanding

Beginning OpenVPN 2.0.9
ISBN: 978-1-847197-06-1 Paperback: 356 pages

Build and integrate Virtual Private Networks using
OpenVPN

1.	 A practical guide to using OpenVPN for
building both basic and complex Virtual Private
Networks (VPNs)

2.	 Learn how to make use of OpenVPNs modules,
high-end-encryption and how to combine it
with servers for your individual privacy

3.	 Advanced management of security certificates

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Boost.Asio
	What is Boost.Asio
	History
	Dependencies
	Building Boost.Asio
	Important macros

	Synchronous versus asynchronous
	Exceptions versus error codes
	Threading in Boost.Asio
	Not just networking
	Timers
	The io_service class
	Summary

	Chapter 2: Boost.Asio Fundamentals
	The Network API
	Boost.Asio namespaces
	IP addresses
	Endpoints
	Sockets
	Synchronous error codes
	Socket member functions
	Other considerations

	The read/write/connect free functions
	The connect functions
	The read/write functions

	Asynchronous programming
	The need for going asynchronous
	Asynchronous run(), run_one(), poll(), poll_one()
	Running forever
	The run_one(), poll(), poll_one() functions

	Asynchronous work
	Asynchronous post() versus dispatch() versus wrap()

	Staying alive
	Summary

	Chapter 3: Echo Server/Clients
	TCP Echo server/clients
	TCP synchronous client
	TCP synchronous server
	TCP asynchronous client
	TCP asynchronous server
	The code

	UDP Echo server/clients
	UDP synchronous Echo client
	UDP synchronous Echo server

	Summary

	Chapter 4: Client and Server
	The synchronous client/server
	Synchronous client
	Synchronous server

	The asynchronous client/server
	Asynchronous client
	Asynchronous server

	Summary

	Chapter 5: Synchronous Versus Asynchronous
	Mixing synchronous and asynchronous programming
	Passing client to server messages and vice versa
	Synchronous I/O in client applications
	Synchronous I/O in server applications
	Threading in a synchronous server

	Asynchronous I/O in client applications
	Asynchronous I/O in server applications
	Threading in an asynchronous server

	Asynchronous operations
	Implementing proxies
	Summary

	Chapter 6: Boost.Asio – Other Features
	std streams and std buffer I/O
	Boost.Asio and the STL streams
	The streambuf class
	The free functions that deal with streambuf objects

	Co-routines
	Summary

	Chapter 7: Boost.Asio – Advanced Topics
	Asio versus Boost.Asio
	Debugging
	Handler tracking information
	An example
	Handler tracking to file

	SSL
	Boost.Asio Windows features
	Stream Handles
	Random access Handles
	Object Handles

	Boost.Asio POSIX features
	Local sockets
	Connecting local sockets
	POSIX file descriptors
	Fork

	Summary

	Index

