
Horton

Shelve in
Programming Languages/C++

User level:
Beginning–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning C++
Beginning C++ is a tutorial for beginners in C++ and discusses a subset of C++ that
is suitable for beginners. The language syntax corresponds to the C++14 standard.
This book is environment neutral and does not presume any specific operating system
or program development system. There is no assumption of prior programming
knowledge.

All language concepts that are explained in the book are illustrated with working
program examples. Most chapters include exercises for you to test your knowledge.
Code downloads are provided for examples from the text and solutions to the
exercises and there is an additional download for a more substantial project for you to
try when you have finished the book.

This book introduces the elements of the C++ standard library that provide
essential support for the language syntax that is discussed. While the Standard
Template Library (STL) is not discussed to a significant extent, a few elements from the
STL that are important to the notion of modern C++ are introduced and applied.

You’ll learn:

• How to work with fundamental C++ data types and do calculations
• How to build logic into a program using loops, choices, decisions and more
• How to work with arrays, vectors, and strings
• How to use raw pointers and smart pointers
• How to program with functions and deal with program files and

pre-processing directives
• How to define your own data types using classes and class operations
• How to signal and handle errors using exceptions
• How to define and use function templates and class templates
• How to do file input and output with C++

RELATED

9 781484 200087

55999
ISBN 978-1-4842-0008-7

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xxiii

About the Technical Reviewer �� xxv

Introduction �� xxvii

Chapter 1 ■ : Basic Ideas ��1

Chapter 2 ■ : Introducing Fundamental Types of Data ���23

Chapter 3 ■ : Working with Fundamental Data Types ���55

Chapter 4 ■ : Making Decisions ��79

Chapter 5 ■ : Arrays and Loops ���105

Chapter 6 ■ : Pointers and References ��151

Chapter 7 ■ : Working with Strings ���185

Chapter 8 ■ : Defining Functions ���213

Chapter 9 ■ : Lambda Expressions ��271

Chapter 10 ■ : Program Files and Preprocessing Directives ���287

Chapter 11 ■ : Defining Your Own Data Types ���315

Chapter 12 ■ : Operator Overloading ���365

Chapter 13 ■ : Inheritance ��399

Chapter 14 ■ : Polymorphism ��429

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

vi

Chapter 15 ■ : Runtime Errors and Exceptions ���463

Chapter 16 ■ : Class Templates ���495

Chapter 17 ■ : File Input and Output ���533

Index ���593

www.allitebooks.com

http://www.allitebooks.org

xxvii

Introduction

Welcome to Beginning C++. This is a revised and updated version of my previous book, Beginning ANSI C++. The C++
language has been extended and improved considerably since the previous book, so much so that it was no longer
possible to squeeze detailed explanations of all of C++ in a single book. This tutorial will teach enough of the essential
C++ language and Standard Library features to enable you to write your own C++ applications. With the knowledge
from this book you should have no difficulty in extending the depth and scope of your C++ expertise. C++ is much
more accessible than many people assume. I have assumed no prior programming knowledge. If you are keen to
learn and have an aptitude for thinking logically, getting a grip on C++ will be easier than you might imagine. By
developing C++ skills, you’ll be learning a language that is already used by millions, and that provides the capability
for application development in just about any context.

The C++ language in this book corresponds to the latest ISO standard, commonly referred to as C++ 14. C++ 14 is
a minor extension over the previous standard, C++ 11, so there is very little in the book that is C++ 14 specific. All the
examples in the book can be compiled and executed using C++ 11-conforming compilers that are available now.

Using the Book
To learn C++ with this book, you’ll need a compiler that conforms reasonably well to the C++ 11 standard and a text
editor suitable for working with program code. There are several compilers available currently that are reasonably C++
11 compliant, some of which are free.

The GCC compiler that is produced by the GNU Project has comprehensive support for C++ 11 and it is open
source and free to download. Installing GCC and putting it together with a suitable editor can be a little tricky if you
are new to this kind of thing. An easy way to install GCC along with a suitable editor is to download Code::Blocks
from http://www.codeblocks.org. Code::Blocks is a free IDE for Linux, Apple Mac OS X, and Microsoft Windows. It
supports program development using several compilers including compilers for GCC, Clang, and open Watcom. This
implies you get support for C, C++, and Fortran.

Another possibility is to use Microsoft Visual C++ that runs under Microsoft Windows. It is not fully compliant
with C++ 11, but it’s getting there. The free version is available as Microsoft Visual Studio 2013 Express and at the
time of writing this will compile most of the examples, and should compile them all eventually. You can download
it from http://www.microsoft.com/en-us/download/details.aspx?id=43733. While the Microsoft Visual
C++ compiler is more limited than GCC, in terms of the extent to which C++ 11 is supported, you get a professional
editor and support for other languages such as C# and Basic. Of course, you can always install both! There are other
compilers that support C++ 11, which you can find with a quick online search.

I’ve organized the material in this book to be read sequentially, so you should start at the beginning and keep
going until you reach the end. However, no one ever learned programming by just reading a book. You’ll only learn
how to program in C++ by writing code, so make sure you key in all the examples—don’t just copy them from the
download files—and compile and execute the code that you’ve keyed in. This might seem tedious at times, but it’s
surprising how much just typing in C++ statements will help your understanding, especially when you may feel you’re
struggling with some of the ideas. If an example doesn’t work, resist the temptation to go straight back to the book to
see why. Try to figure out from your code what is wrong. This is good practice for what you’ll have to do when you are
developing C++ applications for real.

www.allitebooks.com

http://www.codeblocks.org
http://www.microsoft.com/en-us/download/details.aspx?id=43733
http://www.allitebooks.org

■ IntroduCtIon

xxviii

Making mistakes is a fundamental part of the learning process and the exercises should provide you with
ample opportunity for that. It’s a good idea to dream up a few exercises of your own. If you are not sure about
how to do something, just have a go before looking it up. The more mistakes you make, the greater the insight
you’ll have into what can, and does, go wrong. Make sure you attempt all the exercises, and remember, don’t look
at the solutions until you’re sure that you can’t work it out yourself. Most of these exercises just involve a direct
application of what’s covered in a chapter—they’re just practice, in other words—but some also require a bit of
thought or maybe even inspiration.

I wish you every success with C++. Above all, enjoy it!
—Ivor Horton

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Basic Ideas

I’ll sometimes have to make use of things in examples before I have explained them in detail. This chapter is intended
to help when this occurs by giving you an overview of the major elements of C++ and how they hang together. I’ll also
explain a few concepts relating to the representation of numbers and characters in your computer. In this chapter
you’ll learn:

What is meant by Modern C++•	

The elements of a C++ program•	

How to document your program code•	

How your C++ code becomes an executable program•	

How object-oriented programming differs from procedural programming•	

What binary, hexadecimal, and octal number systems are•	

What Unicode is•	

Modern C++
Modern C++ is programming using of the features of the latest and greatest incarnation of C++. This is the
C++ language defined by the C++ 11 standard, which is being modestly extended and improved by the latest standard,
C++ 14. This book relates to C++ as defined by C++14.

There’s no doubt that C++ is the most widely used and most powerful programming language in the world
today. If you were just going to learn one programing language, C++ is the ideal choice. It is effective for developing
applications across an enormous range of computing devices and environments: for personal computers,
workstations, mainframe computers, tablets, and mobile phones. Just about any kind of program can be written in
C++ from device drivers to operating systems, from payroll and administrative programs to games. C++ compilers
are available widely too. There are up-to-date compilers that run on PCs, workstations, and mainframes, often
with cross-compiling capabilities, where you can develop the code in one environment and compile it to execute
in another.

C++ comes with a very extensive Standard Library. This is a huge collection of routines and definitions that
provide functionality that is required by many programs. Examples are numerical calculations, string processing,
sorting and searching, organizing and managing data, and input and output. The Standard Library is so vast that we
will only scratch the surface of what is available in this book. It really needs several books to fully elaborate all the
capability it provides. Beginning STL is a companion book that is a tutorial on using the Standard Template Library,
which is the subset of the C++ Standard Library for managing and processing data in various ways.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ BasiC ideas

2

Given the scope of the language and the extent of the library, it’s not unusual for a beginner to find C++
somewhat daunting. It is too extensive to learn in its entirety from a single book. However, you don’t need to learn all
of C++ to be able to write substantial programs. You can approach the language step by step, in which case it really
isn’t difficult. An analogy might be learning to drive a car. You can certainly become a very competent and safe driver
without necessarily having the expertise, knowledge, and experience to drive in the Indianapolis 500. With this book
you can learn everything you need to program effectively in C++. By the time you reach the end, you’ll be confidently
writing your own applications. You’ll also be well equipped to explore the full extent of C++ and its Standard Library.

C++ Program Concepts
There will be much more detail on everything I discuss in this section later in the book. I’ll jump straight in with the
complete, fully working, C++ program shown in Figure 1-1, which explains what the various bits of it are. I’ll use
the example as a base for discussing some more general aspects of C++.

// Ex1_01.cpp
// A complete C++ program

#include <iostream>

int main ()
{

int answer {42}; // Defines answer with value 42

std::cout << "The answer to life, the universe, and everything is "
<< answer
<< std::endl;

return 0;

}

These two lines are comments.
Comments begin with //

This line adds input/output capability.

This is the first line of the function main.

This statement is spread over three lines.This statement ends the function main.

All the code in a
function is enclosed
between braces.

This is a statement.
Statements end with a semicolon.
There is also a comment on this line.

Figure 1-1. A complete C++ program

Comments and Whitespace
The first two lines in Figure 1-1 are comments. You add comments that document your program code to make it easier
for someone else to understand how it works. The compiler ignores everything that follows two successive forward
slashes on a line so this kind of comment can follow code on a line. The first line is a comment that indicates the name
of the file containing this code. This file is in the code download for the book. I’ll identify the file for each working
example in the same way. The file extension, .cpp, indicates that this is a C++ source file. Other extensions such as .cc
are also used to identify a C++ source file. All the executable code for a program will be in one or more source files.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ BasiC ideas

3

There’s another form of comment that you can use when you need to spread a comment over several lines.
For example:

/* This comment is
 over two lines. */

Everything between /* and */ will be ignored by the compiler. You can embellish this sort of comment to make it
stand out. For example:

/************************
 * This comment is *
 * over two lines. *
 ************************/

Whitespace is any sequence of spaces, tabs, newlines, form feed characters, and comments. Whitespace
is generally ignored by the compiler, except when it is necessary for syntactic reasons to distinguish one element
from another.

Preprocessing Directives and Header Files
The third line in Figure 1-1 is a preprocessing directive. Preprocessing directives cause the source code to be modified
in some way before it is compiled to executable form. This preprocessing directive adds the contents of the standard
library header file with the name iostream to this source file, Ex1_01.cpp. The header file contents are inserted in
place of the #include directive.

Header files, which are sometimes referred to just as headers, contain definitions to be used in a source file.
iostream contains definitions that are needed to perform input from the keyboard and text output to the screen using
Standard Library routines. In particular, it defines std::cout and std::endl among many other things. You’ll be
including the contents of one or more standard library header files into every program and you’ll also be creating and
using your own header files that contain definitions that you construct later in the book. If the preprocessing directive
to include the iostream header was omitted from Ex1_01.cpp, the source file wouldn’t compile because the compiler
would not know what std::cout or std::endl are. The contents of header files are included into a source file before it
is compiled.

Tip ■ Note that there are no spaces between the angle brackets and the standard header file name. With some compilers,
spaces are significant between the angle brackets, < and >; if you insert spaces here, the program may not compile.

Functions
Every C++ program consists of at least one and usually many more functions. A function is a named block of code
that carries out a well-defined operation such as “read the input data” or “calculate the average value” or “output
the results”. You execute or call a function in a program using its name. All the executable code in a program appears
within functions. There must be one function with the name main, and execution always starts automatically with
this function. The main() function usually calls other functions, which in turn can call other functions, and so on.
Functions provide several important advantages:

A program that is broken down into discrete functions is easier to develop and test.•	

You can reuse a function in several different places in a program, which makes the program •	
smaller than if you coded the operation in each place that it is needed.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ BasiC ideas

4

You can often reuse a function in many different programs, thus saving time and effort.•	

Large programs are typically developed by a team of programmers. Each team member is •	
responsible for programming a set of functions that are a well-defined subset of the whole
program. Without a functional structure, this would be impractical.

The program in Figure 1-1 consists of just the function main(). The first line of the function is:

int main()

This is called the function header, which identifies the function. Here, int is a type name that defines the type of
value that the main() function returns when it finishes execution - an integer. In general, the parentheses following
a name in a function definition enclose the specification for information to be passed to the function when you call
it. There’s nothing between the parentheses in this instance but there could be. You’ll learn how you specify the
type of information to be passed to a function when it is executed in Chapter 5. I’ll always put parentheses after a
function name in the text to distinguish it from other things that are code. The executable code for a function is always
enclosed between braces and the opening brace follows the function header.

Statements
A statement is a basic unit in a C++ program. A statement always ends with a semicolon and it’s the semicolon that
marks the end of a statement, not the end of the line. A statement defines something, such as a computation, or an
action that is to be performed. Everything a program does is specified by statements. Statements are executed in
sequence until there is a statement that causes the sequence to be altered. You’ll learn about statements that can
change the execution sequence in Chapter 4. There are three statements in main() in Figure 1-1. The first defines a
variable, which is a named bit of memory for storing data of some kind. In this case the variable has the name answer
and can store integer values:

int answer {42}; // Defines answer with the value 42

The type, int, appears first, preceding the name. This specifies the kind of data that can be stored - integers.
Note the space between int and answer. One or more whitespace characters is essential here to separate the type
name from the variable name; without the space the compiler would see the name intanswer, which it would not
understand. An initial value for answer appears between the braces following the variable name so it starts out storing 42.
There’s a space between answer and {42} but it’s not essential. A brace cannot be part of a name so the compiler
can distinguish the name from the initial value specification in any event. However, you should use whitespace in a
consistent fashion to make your code more readable. There’s a somewhat superfluous comment at the end of the first
statement explaining what I just described but it does demonstrate that you can add a comments to a statement. The
whitespace preceding the // is also not mandatory but it is desirable.

You can enclose several statements between a pair of curly braces, { }, in which case they’re referred to as a
statement block. The body of a function is an example of a block, as you saw in Figure 1-1 where the statements in
main() function appear between curly braces. A statement block is also referred to as a compound statement because
in most circumstances it can be considered as a single statement, as you’ll see when we look at decision-making
capabilities in Chapter 4. Wherever you can put a single statement, you can equally well put a block of statements
between braces. As a consequence, blocks can be placed inside other blocks—this concept is called nesting. Blocks
can be nested, one within another, to any depth.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ BasiC ideas

5

Data Input and Output
Input and output are performed using streams in C++. To output something, you write it to an output stream, and
to input data you read it from an input stream. A stream is an abstract representation of a source of data, or a data
sink. When your program executes, each stream is tied to a specific device that is the source of data in the case of
an input stream and the destination for data in the case of an output stream. The advantage of having an abstract
representation of a source or sink for data is that the programming is then the same regardless of the device the stream
represents. You can read a disk file in essentially the same way as you read from the keyboard. The standard output
and input streams in C++ are called cout and cin respectively and by default they correspond to your computer’s
screen and keyboard. You’ll be reading input from cin in Chapter 2.

The next statement in main() in Figure 1-1 outputs text to the screen:

std::cout << "The answer to life, the universe, and everything is "
 << answer
 << std::endl;

The statement is spread over three lines, just to show that it’s possible. The names cout and endl are defined in
the iostream header file. I’ll explain about the std:: prefix a little later in this chapter. << is the insertion operator
that transfers data to a stream. In Chapter 2 you’ll meet the extraction operator, >>, that reads data from a stream.
Whatever appears to the right of each << is transferred to cout. Writing endl to std::cout causes a new line to be
written to the stream and the output buffer to be flushed. Flushing the output buffer ensures that the output appears
immediately. The statement will produce the output:

The answer to life, the universe, and everything is 42

You can add comments to each line of a statement. For example:

std::cout << "The answer to life, the universe, and everything is " // This statement
 << answer // occupies
 << std::endl; // three lines

You don’t have to align the double slashes but it’s common to do so because it looks tidier and makes the code
easier to read.

return Statements
The last statement in main() is a return statement. A return statement ends a function and returns control to
where the function was called. In this case it ends the function and returns control to the operating system. A return
statement may or may not return a value. This particular return statement returns 0 to the operating system. Returning
0 to the operating system indicates that the program ended normally. You can return non-zero values such as 1, 2, etc.
to indicate different abnormal end conditions. The return statement in Ex1_01.cpp is optional, so you could omit it.
This is because if execution runs past the last statement in main(), it is equivalent to executing return 0.

Namespaces
A large project will involve several programmers working concurrently. This potentially creates a problem with names.
The same name might be used by different programmers for different things, which could at least cause some confusion
and may cause things to go wrong. The Standard Library defines a lot of names, more than you can possibly remember.
Accidental use of Standard Library names could also cause problems. Namespaces are designed to overcome this difficulty.

Chapter 1 ■ BasiC ideas

6

A namespace is a sort of family name that prefixes all the names declared within the namespace. The names in
the standard library are all defined within a namespace that has the name std. cout and endl are names from the
standard library so the full names are std::cout and std::endl. Those two colons together, ::, have a very fancy
title: the scope resolution operator. I’ll have more to say about it later. Here, it serves to separate the namespace name,
std, from the names in the Standard Library such as cout and endl. Almost all names from the Standard Library are
prefixed with std.

The code for a namespace looks like this:

namespace ih_space {

 // All names declared in here need to be prefixed
 // with ih_space when they are reference from outside.
 // For example, a min() function defined in here
 // would be referred to outside this namespace as ih_space::min()

}

Everything between the braces is within the ih_space namespace.

Caution ■ the main() function must not be defined within a namespace. things that are not defined in a namespace
exist in the global namespace, which has no name.

Names and Keywords
Ex1_01.cpp contains a definition for a variable with the name answer and it uses the names cout and endl that are
defined in the iostream Standard Library header. Lots of things need names in a program and there are precise rules
for defining names:

A name can be any sequence of upper or lowercase letters •	 A to Z or a to z, the digits 0 to 9 and
the underscore character, _.

A name must begin with either a letter or an underscore.•	

Names are case sensitive.•	

Although it’s legal, it’s better not to choose names that begin with an underscore; they may clash with names
from the C++ Standard Library because it defines names in this way extensively. The C++ standard allows names to be
of any length, but typically a particular compiler will impose some sort of limit. However, this is normally sufficiently
large that it doesn’t represent a serious constraint. Most of the time you won’t need to use names of more than 12 to 15
characters.

Here are some valid C++ names:

toe_count shoeSize Box democrat Democrat number1 x2 y2 pValue out_of_range

Uppercase and lowercase are differentiated so democrat is not the same name as Democrat. You can see a couple
of examples of conventions for writing names that consists of two or more words; you can capitalize the second and
subsequent words or just separate them with underscores.

Keywords are reserved words that have a specific meaning in C++ so you must not use them for other purposes.
class, double, throw, and catch are examples of keywords.

Chapter 1 ■ BasiC ideas

7

Classes and Objects
A class is a block of code that defines a data type. A class has a name that is the name for the type. An item of data of
a class type is referred to as an object. You use the class type name when you create variables that can store objects of
your data type. Being able to defined you own data types enables you to specify a solution to a problem in terms of
the problem. If you were writing a program processing information about students for example, you could define a
Student type. Your Student type could incorporate all the characteristic of a student - such as age, gender, or school
record - that was required by the program.

Templates
You sometimes need several similar classes or functions in a program where the code only differs in the kind of data
that is processed. A template is a recipe that you create to be used by the compiler to generate code automatically for a
class or function customized for particular type or types. The compiler uses a class template to generate one or more of
a family of classes. It uses a function template to generate functions. Each template has a name that you use when you
want the compiler to create an instance of it. The Standard Library uses templates extensively.

Program Files
C++ code is stored in two kinds of files. Source files contain functions and thus all the executable code in a program.
The names of source files usually have the extension .cpp, although other extensions such as .cc are also used.
Header files contain definitions for things such as classes and templates that are used by the executable code in
a .cpp file. The names of header files usually have the extension .h although other extensions such as .hpp are also
used. Of course, a real-world program will typically include other kinds of files that contain stuff that has nothing to
do with C++, such as resources that define the appearance of a graphical user interface (GUI) for example.

Standard Libraries
If you had to create everything from scratch every time you wrote a program, it would be tedious indeed. The same
functionality is required in many programs—reading data from the keyboard for example, or calculating a square root,
or sorting data records into a particular sequence. C++ comes with a large amount of prewritten code that provides
facilities such as these, so you don’t have to write the code yourself. All this standard code is defined in the Standard
Library. There is a subset of the standard library that is called the Standard Template Library (STL). The STL contains
a large number of class templates for creating types for organizing and managing data. It also contains many function
templates for operations such as sorting and searching collections of data and for numerical processing. You’ll learn
about a few features of the STL in this book but a complete discussion of it requires a whole book in its own right.
Beginning STL is a follow-on to this book that does exactly that.

Code Presentation Style
The way in which you arrange your code can have a significant effect on how easy it is to understand. There are two
basic aspects to this. First, you can use tabs and/or spaces to indent program statements in a manner that provides
visual cues to their logic, and you can arrange matching braces that define program blocks in a consistent way so that
the relationships between the blocks are apparent. Second, you can spread a single statement over two or more lines
when that will improve the readability of your program. A particular convention for arranging matching braces and
indenting statements is a presentation style.

Chapter 1 ■ BasiC ideas

8

There are many different presentation styles for code. The following table shows three of many possible options
for how a code sample could be arranged:

Style 1 Style 2 Style 3

namespace mine
{
 bool has_factor(int x, int y)
 {
 int f{ hcf(x, y) };
 if (f > 1)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
}

namespace mine{
 bool has_factor(int x, int y)
 {
 int f{ hcf(x, y) };
 if (f > 1) {
 return true;
 }
 else {
 return false;
 }
 }
}

namespace mine{
 bool has_factor(int x, int y) {
 int f{ hcf(x, y) };
 if (f > 1){
 return true;
 }
 else{
 return false;
 }
 }
}

I will use Style 1 for examples in the book.

Creating an Executable
Creating an executable module from your C++ source code is basically a two-step process. In the first step, your
compiler processes each .cpp file to produce an object file that contains the machine code equivalent of the source file.
In the second step, the linker combines the object files for a program into a file containing the complete executable
program. Within this process, the linker will integrate any Standard Library functions that you use.

Figure 1-2 shows three source files being compiled to produce three corresponding object files. The filename
extension that’s used to identify object files varies between different machine environments, so it isn’t shown here.
The source files that make up your program may be compiled independently in separate compiler runs, or most
compilers will allow you to compile them in a single run. Either way, the compiler treats each source file as a separate
entity and produces one object file for each .cpp file. The link step then combines the object files for a program, along
with any library functions that are necessary, into a single executable file.

Chapter 1 ■ BasiC ideas

9

In practice, compilation is an iterative process, because you’re almost certain to have made typographical and
other errors in the code. Once you’ve eliminated these from each source file, you can progress to the link step, where
you may find that yet more errors surface. Even when the link step produces an executable module, your program may
still contain logical errors; that is, it doesn’t produce the results you expect. To fix these, you must go back and modify
the source code and try to compile it once more. You continue this process until your program works as you think
it should. As soon as you declare to the world at large that your program works, someone will discover a number of
obvious errors that you should have found. It hasn’t been proven beyond doubt so far as I know, but it’s widely believed
that any program larger that a given size will always contain errors. It’s best not to dwell on this thought when flying.

Representing Numbers
Numbers are represented in a variety of ways in a C++ program and you need to have an understanding of the
possibilities. If you are comfortable with binary, hexadecimal, and floating-point number representation you can
safely skip this bit.

Binary Numbers
First, let’s consider exactly what a common, everyday decimal number, such as 324 or 911 means. Obviously, what you mean
is “three hundred and twenty-four” or “nine hundred and eleven.” These are shorthand ways of saying “three hundreds” plus
“two tens” plus “four”, and “nine hundred” plus “one ten” plus “one”. Putting this more precisely, you really mean:

324 is 3 × 102 + 2 × 101 + 4 × 100, which is 3 × 10 × 10 + 2 × 10 + 4

911 is 9 × 102 + 1 × 101 + 1 × 100, which is 9 × 10 × 10 + 1 × 10 + 1

Source File
(.cpp file)

Source File
(.cpp file)

Source File
(.cpp file)

Compiler Compiler Compiler

Linker

Executable
(.exe file)

Object File
(machine code)

Object File
(machine code)

Object File
(machine code)

Library

Each .cpp file will result in
one object file.

The linker will combine all
the object files plus

necessary library routines
to produce the executable

file.

The contents of header
files will be included
before compilation.

Figure 1-2. The compile and link process

Chapter 1 ■ BasiC ideas

10

This is called decimal notation because it’s built around powers of 10. We also say that we are representing numbers
to base 10 here because each digit position is a power of 10. Representing numbers in this way is very handy for beings
with ten fingers and/or ten toes, or indeed ten of any kind of appendage that can be used for counting. Your PC is rather
less handy, being built mainly of switches that are either on or off. Your PC is OK for counting in twos, but not spectacular
at counting in tens. I’m sure you’re aware that this is why your computer represents numbers using base 2, rather than
base 10. Representing numbers using base 2 is called the binary system of counting. Numbers in base 10 have digits that
can be from 0 to 9. In general, for numbers in an arbitrary base, n, the digit in each position in a number can be from 0 to
n-1. Thus binary digits can only be 0 or 1. A binary number such as 1101 breaks down like this:

1 × 23 + 1 × 22 + 0 × 21 + 1 × 20, which is 1 × 2 × 2 × 2 + 1 × 2 × 2 + 0 × 2 + 1

This is 13 in the decimal system. In Table 1-1, you can see the decimal equivalents of all the numbers you can
represent using eight binary digits, more commonly known as bits.

Table 1-1. Decimal Equivalents of 8-bit Binary Values

Binary Decimal Binary Decimal

0000 0000 0 1000 0000 128

0000 0001 1 1000 0001 129

0000 0010 2 1000 0010 130

.

0001 0000 16 1001 0000 144

0001 0001 17 1001 0001 145

.

0111 1100 124 1111 1100 252

0111 1101 125 1111 1101 253

0111 1110 126 1111 1110 254

0111 1111 127 1111 1111 255

0001 1101

0010 1011

0100 1000

+
29

43

72

+

Binary Decimal

carries

Figure 1-3. Adding binary values

Using the first seven bits, you can represent positive numbers from 0 to 127, which is a total of 128 different
numbers. Using all eight bits, you get 256 or 28 numbers. In general, if you have n bits available, you can represent 2n
integers, with positive values from 0 to 2n–1.

Adding binary numbers inside your computer is a piece of cake, because the “carry” from adding corresponding
digits can only be 0 or 1. This means that very simple circuitry can handle the process. Figure 1-3 shows how the
addition of two 8-bit binary values would work.

Chapter 1 ■ BasiC ideas

11

The addition operation adds corresponding bits in the operands, starting with the rightmost. Figure 1-3 shows
that there is a “carry” of 1 to the next bit position for each of the first six bit positions. This is because each digit can
only 0 or 1. When you add 1+1 the result cannot be stored in the current bit position and is equivalent to adding 1 in
the next bit position to the left.

Hexadecimal Numbers
When you are dealing with larger binary numbers, a small problem arises with writing them. Look at this:

1111 0101 1011 1001 1110 0001

Binary notation here starts to be more than a little cumbersome for practical use, particularly when you consider
that this in decimal is only 16,103,905—a miserable eight decimal digits. You can sit more angels on the head of a pin
than that! Clearly you need a more economical way of writing this, but decimal isn’t always appropriate. You might
want to specify that the tenth and twenty-fourth bits from the right in a number are 1, for example. To figure out the
decimal integer for this is hard work, and there’s a good chance you’ll get it wrong anyway. An easier solution is to use
hexadecimal notation, in which the numbers are represented using base 16.

Arithmetic to base 16 is a much more convenient option, and it fits rather well with binary. Each hexadecimal
digit can have values from 0 to 15 and the digits from 10 to 15 are represented by the letters A to F (or a to f), as shown
in Table 1-2. Values from 0 to 15 happen to correspond nicely with the range of values that four binary digits can
represent.

Table 1-2. Hexadecimal Digits and their Values in Decimal and Binary

Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A or a 10 1010

B or b 11 1011

C or c 12 1100

D or d 13 1101

E or e 14 1110

F or f 15 1111

Chapter 1 ■ BasiC ideas

12

Because a hexadecimal digit corresponds to four binary digits, you can represent any binary number in
hexadecimal simply by taking groups of four binary digits starting from the right, and writing the equivalent
hexadecimal digit for each group. Look at the following binary number:

1111 0101 1011 1001 1110 0001

Taking each group of four bits and replacing it with the corresponding hexadecimal digit from the table produces:

F 5 B 9 E 1

You have six hexadecimal digits corresponding to the six groups of four binary digits. Just to prove that it all works
out with no cheating, you can convert this number directly from hexadecimal to decimal by again using the analogy
with the meaning of a decimal number. The value of this hexadecimal number therefore works out as follows.

F5B9E1 as a decimal value is given by

15 × 165 + 5 × 164 + 11 × 163 + 9 × 162 + 14 × 161 + 1 × 160

This turns out to be

15,728,640 + 327,680 + 45,056 + 2,304 + 224 + 1

Thankfully, this adds up to the same number you got when converting the equivalent binary number to a decimal
value: 16,103,905. In C++, hexadecimal values are written with 0x or 0X as a prefix, so in code the value would be
written as 0xF5B9E1. Obviously, this means that 99 is not at all the same as 0x99.

The other very handy coincidence with hexadecimal numbers is that modern computers store integers in words
that are an even number of bytes, typically 2, 4, 8, or 16 bytes. A byte is 8 bits, which is exactly two hexadecimal digits
so any binary integer word in memory always corresponds to an exact number of hexadecimal digits.

Negative Binary Numbers
There’s another aspect to binary arithmetic that you need to understand: negative numbers. So far, I’ve assumed that
everything is positive—the optimist’s view—and so the glass is still half full. But you can’t avoid the negative side of
life—the pessimist’s perspective—that the glass is already half empty. How is a negative number represented in a
computer? Well, you have only binary digits at your disposal, so the solution has to be to use at least one of those to
indicate whether the number is negative or positive.:

For numbers that can be negative (referred to as signed numbers), you must first decide on a fixed length (in other
words, the number of binary digits) and then designate the leftmost binary digit as a sign bit. You have to fix the length
to avoid any confusion about which bit is the sign bit.

As you know, your computer’s memory consists of 8-bit bytes, so binary numbers are going to be stored in some
multiple (usually a power of 2) of 8 bits. Thus, you can have numbers with 8 bits, 16 bits, 32 bits, or whatever. As long
as you know what the length is in each case, you can find the sign bit—it’s just the leftmost bit. If the sign bit is 0, the
number is positive, and if it’s 1, the number is negative.

This seems to solve the problem. Each number consists of a sign bit that is 0 for positive values and 1 for negative
values, plus a given number of other bits that specify the absolute value of the number, the value without the sign in
other words. Changing +6 to –6 then just involves flipping the sign bit from 0 to 1. Unfortunately, this representation
carries a lot of overhead in terms of the complexity of the circuits that are needed to perform arithmetic. For this
reason, most computers take a different approach. You can get an idea of how this approach works by considering how
the computer would handle arithmetic with positive and negative values so that operations are as simple as possible.

Ideally, when two integers are added, you don’t want the computer to be messing about, checking whether
either or both of the numbers are negative. You just want to use simple “add” circuitry regardless of the signs of the
operands. The add operation will combine corresponding binary digits to produce the appropriate bit as a result, with
a carry to the next digit along where this is necessary. If you add –8 in binary to +12, you would really like to get the
answer +4 using the same circuitry that would apply if you were adding +3 and +8.

Chapter 1 ■ BasiC ideas

13

If you try this with the simplistic solution, which is just to set the sign bit of the positive value to 1 to make it
negative, and then perform the arithmetic with conventional carries, it doesn’t quite work:

12 in binary is 0000 1100

–8 in binary (you suppose) is 1000 1000

If you now add these together, you get 1001 0100

This seems to be –20, which isn’t what you wanted at all. It’s definitely not +4, which you know is 0000 0100. “Ah,”
I hear you say, “you can’t treat a sign just like another digit.” But that is just what you do want to do.

You can see how the computer would like to represent –8 by subtracting +12 from +4:

+4 in binary is 0000 0100

+12 in binary is 0000 1100

Subtracting 12 from 4 you get 1111 1000

For each digit after the fourth from the right, you had to “borrow” 1 to do the subtraction, just as you would when
performing decimal arithmetic. This result is supposed to be –8, and even though it doesn’t look like it, that’s exactly
what it is. Just try adding it to +12 or +15 in binary, and you’ll see that it works! Of course, if you want to produce –8 you
can always subtract +8 from 0.

What exactly did you get when you subtracted 12 from 4 or +8 from 0? What you have here is called the 2’s
complement representation of a negative binary number. You can produce the negative of any positive binary number
by a simple procedure that you can perform in your head. At this point, I need to ask you to have a little faith because
I’ll avoid getting into explanations of why it works. I’ll show you how you can create the 2’s complement form of a
negative number from a positive value, and you can prove to yourself that it does work. Let’s return to the previous
example, in which you need the 2’s complement representation of –8.

You start with +8 in binary:

0000 1000

You “flip” each binary digit, changing 0s to 1s and vice versa:

1111 0111

This is called the 1’s complement form. If you add 1 to this, you’ll get the 2’s complement form:

1111 1000

This is exactly the same as the representation of –8 you got by subtracting +12 from +4. Just to make absolutely
sure, let’s try the original sum of adding –8 to +12:

+12 in binary is 0000 1100

Your version of –8 is 1111 1000

If you add these together, you get 0000 0100

The answer is 4—magic. It works! The “carry” propagates through all the leftmost 1s, setting them back to 0. One fell
off the end, but you shouldn’t worry about that—it’s probably compensating for the one you borrowed from the end in the
subtraction you did to get –8. In fact, what’s happening is that you’re implicitly assuming that the sign bit, 1 or 0, repeats
forever to the left. Try a few examples of your own; you’ll find it always works, automatically. The great thing about the 2’s
complement representation of negative numbers is that it makes arithmetic very easy (and fast) for your computer.

Chapter 1 ■ BasiC ideas

14

Octal Values
Octal integers :are numbers expressed with base 8. Digits in an octal value can only be from 0 to 7. Octal is used
rarely these days. It was useful in the days when computer memory was measured in terms of 36-bit words because
you could specify a 36-bit binary value by 12 octal digits. Those days are long gone so why am I introducing it? The
potential confusion it can cause is the answer. You can still write octal constants in C++. Octal values are written
with a leading zero, so while 76 is a decimal value, 076 is an octal value that corresponds to 64 in decimal. So, here’s a
golden rule:

Note ■ Never write decimal integers with a leading zero. You’ll get either a value different from what you intended, or
an error message from the compiler.

Big-Endian and Little-Endian Systems
Integers are stored in memory as binary values in a contiguous sequence of bytes, commonly groups of 2, 4, 8, or
16 bytes. The question of the sequence in which the bytes appear can be very important—it’s one of those things that
doesn’t matter until it matters, and then it really matters.

Let’s consider the decimal value 262,657 stored as a 4-byte binary value. I chose this value because in binary it
happens to be

0000 0000 0000 0100 0000 0010 0000 0001

so each byte has a pattern of bits that is easily distinguished from the others. If you’re using a PC with an Intel
processor, the number will be stored as follows:

Byte address: 00 01 02 03

Data bits: 0000 0001 0000 0010 0000 0100 0000 0000

As you can see, the most significant eight bits of the value—the one that’s all 0s—are stored in the byte with the
highest address (last, in other words), and the least significant eight bits are stored in the byte with the lowest address,
which is the leftmost byte. This arrangement is described as little-endian.

If you’re using a machine based on a Motorola processor, the same data is likely to be arranged in memory like this:

Byte address: 00 01 02 03

Data bits: 0000 0000 0000 0100 0000 0010 0000 0001

Now the bytes are in reverse sequence with the most significant eight bits stored in the leftmost byte, which is the
one with the lowest address. This arrangement is described as big-endian. Some recent processors such as SPARC and
Power-PC processors are bi-endian, which means that the byte order for data is switchable between big-endian and
little endian.

Note ■ regardless of whether the byte order is big-endian or little-endian, the bits within each byte are arranged with
the most significant bit on the left and the least significant bit on the right.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ BasiC ideas

15

This is all very interesting, you may say, but when does it matter? Most of the time, it doesn’t. More often than not,
you can happily write a program without knowing whether the computer on which the code will execute is big-endian
or little-endian. It does matter, however, when you’re processing binary data that comes from another machine. You
need to know the endian-ness. Binary data is written to a file or transmitted over a network as a sequence of bytes.
It’s up to you how you interpret it. If the source of the data is a machine with a different endian-ness from the machine
on which your code is running, you must reverse the order of the bytes in each binary value. If you don’t, you have
garbage.

For those who collect curious background information, the terms “big-endian” and “little-endian” are drawn
from the book Gulliver’s Travels by Jonathan Swift. In the story, the emperor of Lilliput commanded all his subjects
to always crack their eggs at the smaller end. This was a consequence of the emperor’s son having cut his finger
following the traditional approach of cracking his egg at the big end. Ordinary, law-abiding Lilliputian subjects who
cracked their eggs at the smaller end were described as Little Endians. The Big Endians were a rebellious group of
traditionalists in the Lilliputian kingdom who insisted on continuing to crack their eggs at the big end. Many were put
to death as a result.

Floating-Point Numbers
We often have to deal with very large numbers—the number of protons in the universe, for example—which need
around 79 decimal digits. Clearly there are lots of situations in which you’ll need more than the ten decimal digits you get
from a 4-byte binary number. Equally, there are lots of very small numbers, for example, the amount of time in minutes it
takes the typical car salesperson to accept your generous offer on a 2001 Honda (and it’s covered only 480,000 miles . . .).
A mechanism for handling both these kinds of numbers is, as you may have guessed, floating-point numbers.

A floating-point representation of a number in decimal notation is a decimal value with two parts. One part is
called the mantissa, which is greater than or equal to 0.9 and less than 1.0 and has a fixed number of digits. The other
part is called the exponent. The value of the number is the mantissa multiplied by 10 to the power of the exponent.
It’s easier to demonstrate this than to describe it, so let’s look at some examples. The number 365 in normal decimal
notation could be written in floating-point form as follows:

0.3650000E03

The E stands for “exponent” and precedes the power of 10 that the 0.3650000 (the mantissa) part is multiplied by
to get the required value. That is:

0.3650000 × 10 × 10 × 10

This is clearly 365.
The mantissa here has seven decimal digits. The number of digits of precision in a floating-point number will

depend on how much memory it is allocated. A single precision floating-point value occupying 4 bytes will typically
provide approximately seven decimal digits accuracy. I say “approximately” because inside your computer these
numbers are in binary floating-point form, and a binary fraction with 23 bits doesn’t exactly correspond to a decimal
fraction with seven decimal digits. A double precision floating-point value will typically correspond to around 15
decimal digits accuracy.

Now let’s look at a small number:

0.3650000E-04

This is evaluated as .365 × 10-4, which is .0000365.
Suppose you have a large number such as 2,134,311,179. As a single precision floating-point number it looks

like this:

0.2134311E10

Chapter 1 ■ BasiC ideas

16

It’s not quite the same. You’ve lost three low-order digits and you’ve approximated your original value as 2,134,311,000.
This is a small price to pay for being able to handle such a vast range of numbers, typically from 10-38 to 10+38 either positive
or negative. They’re called floating-point numbers for the fairly obvious reason that the decimal point “floats” and its
position depends on the exponent value.

Aside from the fixed precision limitation in terms of accuracy, there’s another aspect you may need to be
conscious of. You need to take great care when adding or subtracting numbers of significantly different magnitudes.
A simple example will demonstrate the problem. You can first consider adding .365E-3 to .365E+7. You can write this
as a decimal sum:

0.000365 + 3,650,000.0

This produces this result:

3,650,000.000365

When converted to floating-point with seven digits of precision, this becomes:

0.3650000E+7

Adding .365E-3 to .365E+7 has had no effect whatsoever so you might as well not have bothered. The problem lies
directly with the fact that you carry only six or seven digits precision. The digits of the larger number aren’t affected
by any of the digits of the smaller number because they’re all further to the right. Funnily enough, you must also take
care when the numbers are nearly equal. If you compute the difference between such numbers, you may end up
with a result that has only one or two digits precision. It’s quite easy in such circumstances to end up computing with
numbers that are totally garbage. While floating-point numbers enable you to carry out calculations that would be
impossible without them, you must always keep their limitations in mind if you want to be sure your results are valid.
This means considering the range of values that you are likely to be working with and their relative values.

Representing Characters
Data inside your computer has no intrinsic meaning. Machine code instructions are just numbers, of course numbers
are just numbers, and characters are just numbers. Each character is assigned a unique integer value called its code
or code point. The value 42 can be the number of days in six weeks, the answer to life, the universe and everything, or
it can be an asterisk character. It depends on how you choose to interpret it. You can write a single character in C++
between single quotes, such as 'a' or ‘?’ or ‘*’ and the compiler will generate the code value for these.

ASCII Codes
Way back in the 1960s, the American Standard Code for Information Interchange (ASCII) was defined for representing
characters. This is a 7-bit code so there are 128 different code values. ASCII values 0 to 31 represent various non-printing
control characters such as carriage return (code 15) and line feed (code 12). Code values 65 to 90 inclusive are the
uppercase letters A to Z and 141 to 172 correspond to lowercase a to z. If you look at the binary values corresponding
to the code values for letters, you’ll see that the codes for lowercase and uppercase letters only differ in the sixth bit;
lowercase letters have the sixth bit as 0, and uppercase letters have the sixth bit as 1. Other codes represent digits 0 to 9,
punctuation and other characters. This is fine if you are American or British but if you are French or German you need
things like accents and umlauts in text and these are not included in 7-bit ASCII.

To overcome the limitations imposed by a 7-bit code, extended versions of ASCII were defined with 8-bit codes.
Values from 0 to 127 represent the same characters as 7-bit ASCII and values from 128 to 255 are variable. One variant
of 8-bit ASCII that you have probably met is called Latin-1 which provides characters for most European languages
and there are others for languages such as Russian. Of course, if you are Korean, Japanese, or Arabic, an 8-bit coding is
totally inadequate. To overcome the limitations of extended ASCII the Universal Character Set (UCS) emerged in the
1990s, UCS is defined by the standard ISO 10646 and has codes with up to 32 bits. This provides the potential for over
2 billion unique code values.

Chapter 1 ■ BasiC ideas

17

UCS and Unicode
UCS defines a mapping between characters and integer code values, called code points. It is important to realize that
a code point is not the same as an encoding. A code point is an integer; an encoding specifies a way of representing a
given code point as a series of bytes or words. Code values of less than 256 are very popular and can be represented
in one byte. It would be very inefficient to use four bytes to store code values that require just one byte, just because
there are other codes that require several bytes. Encodings are ways of representing code points that allow them to be
stored more efficiently.

Unicode is a standard that defines a set of characters and their code points identical to those in UCS; the code
point values are from 0 to 0x10ffff. Unicode also defines several different encodings for these code points and includes
additional mechanisms for dealing with such things as right-to-left languages such as Arabic. The range of code points
is more than enough to accommodate the character sets for all the languages in the world, as well as many different
sets of graphical characters such as mathematical symbols. The codes are divided into 17 code planes, each of which
contains 65,536 code values. Code plane 0 contains hexadecimal code values from 0 to 0xffff, code plane 1 contains
codes from 0x10000 to 0x1ffff, code plane 2 contains codes from 0x20000 to 0x2ffff, and so on up to code plane 17
that contains codes from 0x100000 to 0x10ffff. Character codes for most national languages are contained within
code plane 0, which has code values from 0 to 0xffff. Consequently, strings in the majority of languages can be
represented as a sequence of single 16-bit codes.

One aspect of Unicode that can be confusing is that it provides more than one character encoding method. The
most commonly used encodings are referred to as UTF-8 and UTF-16, either of which can represent all the characters
in the Unicode set. The difference between UTF-8 and UTF-16 is in how a given character code point is presented;
the numerical code value for any given character is the same in either representation. Here’s how these encodings
represent characters:

•	 UTF-8 represents a character as a variable length sequence of between 1 and 4 bytes. The
ASCII character set appears in UTF-8 as single byte codes that have the same codes values as
ASCII. Most web pages use UTF-8 to encode text. Code plane 0 is accommodated by one-byte
and two-byte codes in UTF-8.

•	 UTF-16 represents characters as one or two 16-bit values. UTF-16 includes UTF-8. Because
a single 16-bit value accommodates all of code plane 0, UTF-16 covers most situations in
programming for a multilingual context.

You have three integer types that store Unicode characters. These are types wchar_t, char16_t, and char32_t.
You’ll learn more about these in Chapter 2.

C++ Source Characters
You write C++ statements using a basic source character set. This is the set of characters that you’re allowed to use
explicitly in a C++ source file. The character set that you can use to define a name is a subset of this. Of course, the
basic source character set in no way constrains the character data that you work with in your code. Your program can
create strings consisting of characters outside this set in various ways, as you’ll see. The basic source character set
consists of the following characters:

The letters •	 a to z and A to Z

The digits 0 to 9•	

The control characters representing horizontal tab, vertical tab, form-feed, and newline•	

The characters _ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " '•	

Chapter 1 ■ BasiC ideas

18

This is easy and straightforward. You have 96 characters that you can use, and it’s likely that these will
accommodate your needs most of the time. Most of the time the basic source character set will be adequate, but
occasionally you’ll need characters that aren’t in it. You can include Unicode characters in a name. You specify a
Unicode character in the form of a hexadecimal representation of its code point, either as \udddd or \Udddddddd,
where d is a hexadecimal digit. Note the lowercase u in the first case and the uppercase U in the second; either is
acceptable. However, you must not specify any of the characters in the basic source character set in this way. Also, the
characters in a name must not be control characters. Both character and string data can include Unicode characters.

Trigraph Sequences
You’re unlikely to see this in use very often, if ever, but the C++ standard allows you to specify certain characters as
trigraph sequences. A trigraph sequence is a sequence of three characters that identifies another character. This was
necessary way back in the dark ages of computing to accommodate characters that were required by the C language
but were missing from 7-bit ASCII. Table 1-3 shows the characters that may be specified as trigraph sequences in C++.

Table 1-3. Trigraph Sequence Characters

Character Trigraph Sequence

??=

[??(

] ??)

\ ??/

{ ??<

} ??>

^ ??'

| ??!

~ ??-

These are still supported for compatibility reasons. The compiler will replace all trigraph sequences with their
equivalent characters before any other processing of the source code. There are a few instances where you need to be
aware of this, particularly if you are using a feature called regular expressions, which are not covered in this book. This
is because sequences can occur in regular expressions that correspond to trigraph sequences when it is not intended.
Most of the time you can forget about trigraph sequences, though it’s not impossible to specify them by accident.

Escape Sequences
When you want to use character constants such as a single character or a character string in a program, certain
characters are problematic. Obviously, you can’t enter characters such as newline or tab directly as character
constants, as they’ll just do what they’re supposed to do: go to a new line or tab to the next tab position in your source
code file. You can enter these problem characters in character constants by means of an escape sequence. An escape
sequence is an indirect way of specifying a character, and it always begins with a backslash. Table 1-4 shows the
escape sequences that represent control characters.

Chapter 1 ■ BasiC ideas

19

There are some other characters that are a problem to represent directly. Clearly, the backslash character itself
is difficult, because it signals the start of an escape sequence. The single and double quote characters that are used as
delimiters as in the constant ‘A’ or the string “text” are also a problem. Table 1-5 shows the escape sequences for these.

Table 1-4. Escape Sequences That Represent Control Characters

Escape Sequence Control Character

\n Newline

\t Horizontal tab

\v Vertical tab

\b Backspace

\r Carriage return

\f Form feed

\a Alert/bell

Table 1-5. Escape Sequences That Represent “Problem” Characters

Escape Sequence “Problem” Character

\\ Backslash

\' Single quote

\" Double quote

\? Question mark

Because the backslash signals the start of an escape sequence, the only way to enter a backslash as a character
constant is by using two successive backslashes (\\).

This program that uses escape sequences outputs a message to the screen. To see it, you’ll need to enter, compile,
link, and execute the code:

// Ex1_02.cpp
// Using escape sequences
#include <iostream>

int main()
{
 std::cout << "\"Least \'said\' \\\n\t\tsoonest \'mended\'.\"" << std::endl;
}

When you manage to compile, link, and run this program, you should see the following output displayed:

"Least 'said' \
 soonest 'mended'."

Chapter 1 ■ BasiC ideas

20

The output is determined by what’s between the outermost double quotes in the statement:

std::cout << "\"Least \'said\' \\\n\t\tsoonest \'mended\'.\"" << std::endl;

In principle, everything between the outer double quotes in the preceding statement gets sent to cout. A string
of characters between a pair of double quotes is called a string literal. The double quote characters are delimiters that
identify the beginning and end of the string literal; they aren’t part of the string. Each escape sequence in the string
literal will be converted to the character it represents by the compiler, so the character will be sent to cout, not the
escape sequence itself. A backslash in a string literal always indicates the start of an escape sequence, so the first
character that’s sent to cout is a double quote character.

Least follows by a space is output next. This is followed by a single quote character, then said, followed by another
single quote. Next is a space, followed by the backslash specified by \\. Then a newline character corresponding to \n
is written to the stream so the cursor moves to the beginning of the next line. You then send two tab characters to cout
with \t\t, so the cursor will be moved two tab positions to the right. The word soonest is output next followed by a
space, then mended between single quotes. Finally a period is output followed by a double quote.

Procedural and Object-Oriented Programming
Historically, procedural programming is the way almost all programs have been written. To create a procedural
programming solution to a problem, you focus on the process that your program must implement to solve the
problem. A rough outline of what you do, once the requirements have been defined precisely, is as follows:

You create a clear, high-level definition of the overall process that your program will •	
implement.

You segment the overall process into workable units of computation that are, as much as •	
possible, self-contained. These will usually correspond to functions.

You break down the logic and the work that each unit of computation is to do into a detailed •	
sequence of actions. This is likely to be down to a level corresponding to programming
language statements.

You code the functions in terms of processing basic types of data: numerical data, single •	
characters, and character strings.

Apart from the common requirement of starting out with a clear specification of what the problem is, the object-
oriented approach to solving the same problem is quite different:.

From the problem specification, you determine what types of •	 objects the problem is concerned
with. For example, if your program deals with baseball players, you’re likely to identify
BaseballPlayer as one of the types of data your program will work with. If your program
is an accounting package, you may well want to define objects of type Account and type
Transaction. You also identify the set of operations that the program will need to carry out on
each type of object. This will result in a set of application-specific data types that you will use
in writing your program.

You produce a detailed design for each of the new data types that your problem requires, •	
including the operations that can be carried out with each object type.

You express the logic of the program in terms of the new data types you’ve defined and the •	
kinds of operations they allow.

Chapter 1 ■ BasiC ideas

21

The program code for an object-oriented solution to a problem will be completely unlike that for a procedural
solution and almost certainly easier to understand. It will also be a lot easier to maintain. The amount of design time
required for an object-oriented solution tends to be greater than for a procedural solution. However, the coding and
testing phase of an object-oriented program tends to be shorter and less troublesome, so the overall development
time is likely to be roughly the same in either case.

To get an inkling of what an objected-oriented approach implies, suppose you’re implementing a program that
deals with boxes of various kinds. A feasible requirement of such a program would be to package several smaller boxes
inside another, larger box. In a procedural program, you would need to store the length, width, and height of each box
in a separate group of variables. The dimensions of a new box that could contain several other boxes would need to be
calculated explicitly in terms of the dimensions of each of the contained boxes, according to whatever rules you had
defined for packaging a set of boxes.

An object-oriented solution might involve first defining a Box data type. This would enable you to create variables
that can reference objects of type Box and, of course, create Box objects. You could then define an operation that
would add two Box objects together and produce a new Box object that could contain them. Using this operation, you
could write statements like this:

bigBox = box1 + box2 + box3;

In this context the + operation means much more than simple addition. The + operator applied to numerical
values will work exactly as before, but for Box objects it has a special meaning. Each of the variables in this statement
is of type Box. The statement would create a new Box object big enough to contain box1, box2, and box3.

Being able to write statements like this is clearly much easier than having to deal with all the box dimensions
separately, and the more complex the operations on boxes you take on, the greater the advantage is going to be.
This is a trivial illustration, though, and there’s a great deal more to the power of objects than that you can see here.
The purpose of this discussion is just to give you an idea of how readily problems solved using an object-oriented
approach can be understood. Object-oriented programming is essentially about solving problems in terms of the
entities to which the problems relates rather than in terms of the entities that computers are happy with: numbers
and characters.

Summary
This chapter’s content has been broad-brush to give you a feel for some of the general concepts of C++. You’ll
encounter everything discussed in this chapter again, and in much more detail, in subsequent chapters. However,
some of the basics that this chapter covered are as follows:

A C++ program consists of one or more functions, one of which is called •	 main(). Execution
always starts with main().

The executable part of a function is made up of statements contained between braces.•	

A pair of curly braces is used to enclose a statement block.•	

A statement is terminated by a semicolon.•	

Keywords are reserved words that have specific meanings in C++. No entity in your program •	
can have a name that coincides with a keyword.

A C++ program will be contained in one or more files. Source files contain the executable code •	
and header files contains definitions used by the executable code.

The source files that contain the code defining functions typically have the extension •	 .cpp.

Header files that contain definitions that are used by a source file typically have the extension •	 .h.

Chapter 1 ■ BasiC ideas

22

Preprocessor directives specify operations to be performed on the code in a file. All •	
preprocessor directives execute before the code in a file is compiled.

The contents of a header file is added to a source file by a •	 #include preprocessor directive.

The Standard Library provides an extensive range of capabilities that supports and extends the •	
C++ language.

Access to Standard Library functions and definitions is enabled through including Standard •	
Library header files into a source file.

Input and output is performed using streams and involve the use of the insertion and •	
extraction operators, << and >>. std::cin is a standard input stream that corresponds to
the keyboard. std::cout is a standard output stream for writing text to the screen. Both are
defined in the iostream Standard Library header.

Object-oriented programming involves defining new data types that are specific to your •	
problem. Once you’ve defined the data types that you need, a program can be written in terms
of the new data types.

Unicode defines unique integer code values that represents characters for virtually all of the •	
languages in the world as well as many specialized character sets. Code values are referred
to as code points. Unicode also defines how these code points may be encoded as byte
sequences.

eXerCISeS

exercise 1-1. Create, compile, link, and execute a program that will display the text "Hello
World" on your screen.

exercise 1-2. Create and execute a program that outputs your name on one line and your age
on the next line.

exercise 1-3. the following program produces several compiler errors. Find these errors and
correct them so the program can compile cleanly and run.

include <iostream>

Int main()
{
 std:cout << "Hello World" << std:endl
)

Note ■ You’ll find model answers to all exercises in this book on apress website at www.apress.com/source-code/.

www.apress.com/source-code/

23

Chapter 2

Introducing Fundamental Types
of Data

In this chapter, I’ll explain the fundamental data types that are built into C++. You’ll need these in every program.
All of the object-oriented capability is founded on these fundamental data types, because all the data types that
you create are ultimately defined in terms of the basic numerical data your computer works with. By the end of the
chapter, you’ll be able to write a simple C++ program of the traditional form: input–process–output.

In this chapter, you’ll learn about

Data types in C++•	

How you declare and initialize variables•	

What literals are and how you define them•	

Binary and hexadecimal integers•	

How calculations work•	

How you can fix the value of a variable•	

How to create variables that store characters•	

What the •	 auto keyword does

What lvalues and rvalues are•	

Variables, Data, and Data Types
A variable is a named piece of memory that you define. Each variable only stores data of a particular type. Every
variable has a type that defines the kind of data it can store. Each fundamental type is identified by a unique type
name that is a keyword. Keywords are reserved words in C++ that you must not use for anything else.

The compiler makes extensive checks to ensure that you use the right data type in any given context. It will also
ensure that when you combine different types in an operation such as adding two values for example, they are either
of the same type, or they can be made to be compatible by converting one value to the type of the other. The compiler
detects and reports attempts to combine data of different types that are incompatible.

Numerical values fall into two broad categories: integers-whole numbers in other words, and floating-point
values, which can be non-integral. There are several fundamental C++ types in each category, each of which can store
a specific range of values. I’ll start with integer types.

Chapter 2 ■ IntroduCIng Fundamental types oF data

24

Defining Integer Variables
Here’s a statement that defines an integer variable:

int apple_count;

This defines a variable of type int with the name apple_count. The variable will contain some arbitrary junk
value. You can and should specify an initial value when you define the variable, like this:

int apple_count {15}; // Number of apples

The initial value for apple_count appears between the braces following the name so it has the value 15. The
braces enclosing the initial value is called an initializer list. You’ll meet situations later in the book where an initializer
list will have several values between the braces. You don’t have to initialize variables when you define them but it’s a
good idea to do so. Ensuring variables start out with known values makes it easier to work out what is wrong when the
code doesn’t work as you expect.

Type int is typically 4 bytes, which can store integers from -2,147,483,648 to +2,147,483,647. This covers most
situations, which is why int is the integer type that is used most frequently.

Here are definitions for three variables of type int:

int apple_count {15}; // Number of apples
int orange_count {5}; // Number of oranges
int total_fruit {apple_count + orange_count}; // Total number of fruit

The initial value for total_fruit is the sum of the values of two variables defined previously. This demonstrates
that the initial value for a variable can be an expression. The statements that define the two variables in the expression
for the initial value for total_fruit must appear earlier in the source file, otherwise the definition for total_fruit
won’t compile.

The initial value between the braces should be of the same type as the variable you are defining. If it isn’t, the
compiler will have to convert it to the required type. If the conversion is to a type with a more limited range of values,
the conversion has the potential to lose information so the compiler won’t convert the value but just flag it as an error.
An example would be if you specified the initial value for an integer variable that is not an integer—1.5 for example.
You might do this by accident when entering the value 15 for apple_count. A conversion to a type with a more limited
range of values is called a narrowing conversion.

There are two other ways for initializing a variable. Functional notation looks like this:

int orange_count(5);
int total_fruit(apple_count + orange_count);

Alternatively you could write this:

int orange_count = 5;
int total_fruit = apple_count + orange_count;

While both of these possibilities are valid, I recommend that you adopt the initializer list form. This is the most
recent syntax that was introduced in C++ 11 to standardize initialization. It is preferred because it enables you to
initialize just about everything in the same way. There’s one exception that I’ll explain later in this chapter. I’ll use
initializer lists throughout all the examples in the book except in the instances where it is not appropriate.

You can define and initialize more than one variable of a given type in a single statement. For example:

int foot_count {2}, toe_count {10}, head_count {1};

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ IntroduCIng Fundamental types oF data

25

While this is legal, most of the time it’s better to define each variable in a separate statement. This makes the code
more readable and you can explain the purpose of each of them in a comment.

You can write the value of any variable of a fundamental type to the standard output stream. Here’s a program
that does that:

// Ex2_01.cpp
// Writing values of variables to cout
#include <iostream>

int main()
{
 int apple_count {15}; // Number of apples
 int orange_count {5}; // Number of oranges
 int total_fruit {apple_count + orange_count}; // Total number of fruit

 std::cout << "The value of apple_count is " << apple_count << std::endl;
 std::cout << "The value of orange_count is " << orange_count << std::endl;
 std::cout << "The value of total_fruit is " << total_fruit << std::endl;
}

If you compile and execute this, you’ll see that it outputs the values of the three variables following some text
explaining what they are. The binary values are automatically converted to a character representation for output by
the insertion operator, <<. This works for values of any of the fundamental types.

 Signed Integer Types
Table 2-1 shows the complete set of fundamental types that store signed integers — that is both positive and
negative values. The memory allocated for each type, and hence the range of values it can store, may vary between
different compilers.

Table 2-1. Signed Integer types

Type Name Typical Size (bytes) Range of Values

signed char 1 -128 to 127

short
short int

2 -256 to 255

int 4 -2,147,483,648
to
+2,147,483,647

long
long int

4 -2,147,483,648
to
+2,147,483,647

long long
long long int

8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Type signed char is typically 1 byte; the number of bytes occupied by the others depends on the compiler. Where
two type names appear in the left column, the abbreviated name that comes first is commonly used so you will usually
see long used rather than long int. Each type will have at least as much memory as the one that precedes it in the list.

Chapter 2 ■ IntroduCIng Fundamental types oF data

26

Unsigned Integer Types
Of course, there are circumstances where you don’t need to store negative numbers. The number of students in a class
or the number of parts in an assembly are always positive integers. You can specify integer types that only store
non-negative values by prefixing any of the names of the signed integer types with the unsigned keyword - types
unsigned char or unsigned short or unsigned long for example. Each unsigned type is a different type from the
signed type but occupies the same amount of memory.

Type char is a different integer type from both signed char and unsigned char. Type char stores a character
code and can be a signed or unsigned type depending on your compiler. If the constant CHAR_MIN in the climits
header is 0, then char is an unsigned type with your compiler. I’ll have more to say about types that store characters
later in this chapter.

Here are some examples of variables of some of these types:

signed char ch {20};
long temperature {-50L};
long width {500L};
long long height {250LL};
unsigned int toe_count {10U};
unsigned long angel_count {1000000UL};

Note how you write constants of type long and type long long. You must append L to the first and LL to the
second. If there is no suffix, an integer constant is of type int. You can use lowercase for the L and LL suffixes but I
recommend that you don’t because lowercase L is easily confused with the digit 1. Unsigned integer constants have u
or U appended.

Defining Variables with Fixed Values
Sometimes you’ll want to define variables with values that are fixed and must not be changed. You use the const
keyword in the definition of a variable that must not be changed. For example:

const unsigned int toe_count {2U};

The const keyword tells the compiler that the value of toe_count must not be changed. A statement that attempts
to modify the value of toe_count will be flagged as an error during compilation. You can use the const keyword to fix
the value of variables of any type.

Integer Literals
Constants of any kind, such as 42, or 2.71828, 'Z', or "Mark Twain", are referred to as literals. These examples are, in
sequence, an integer literal, a floating-point literal, a character literal, and a string literal. Every literal will be of some
type. I’ll first explain integer literals, and introduce the other kinds of literals in context later.

Decimal Integer Literals
You can write integer literals in a very straightforward way. Here are some examples of decimal integers:

-123L +123 123 22333 98U -1234LL 12345ULL

Chapter 2 ■ IntroduCIng Fundamental types oF data

27

You have seen that unsigned integer literals have u or U appended. Literals of types long and type long long have
L or LL appended respectively, and if they are unsigned, they also have u or U appended. The U and L or LL can be in
either sequence. You could omit the + in the second example, as it’s implied by default, but if you think putting it in
makes things clearer, that’s not a problem. The literal +123 is the same as 123 and is of type int because there is no
suffix. The fourth example is the number that you would normally write as 22,333, but you must not use commas in an
integer literal. Here are some statements using some of these literals:

unsigned long age {99UL}; // 99uL would be OK too
unsigned short {10u}; // There is no specific literal type for short
long long distance {1234567LL};

You can’t write just any old integer value as an initial value for a variable. An initializing value must be within the
permitted range for the type of variable as well as match the type. A literal in an expression must be within the range
of some type.

Hexadecimal Literals
You can write integer literals as hexadecimal values. You prefix a hexadecimal literal with 0x or 0X, so 0x999 is a
hexadecimal number of type int with three hexadecimal digits. Plain old 999, on the other hand, is a decimal value of type
int with decimal digits, so the value will be completely different. Here are some more examples of hexadecimal literals:

Hexadecimal literals: 0x1AF 0x123U 0xAL 0xcad 0xFF

Decimal literals: 431 291U 10L 3245 255

A major use for hexadecimal literals is to define particular patterns of bits. Each hexadecimal digit corresponds
to 4 bits so it’s easy to express a pattern of bits as a hexadecimal literal. The red, blue, and green components (RGB
values) of a pixel color are often expressed as three bytes packed into a 32-bit word. The color white can be specified
as 0xFFFFFF, because the intensity of each of the three components in white have the same maximum value of 255,
which is 0xFF. The color red would be 0xff0000. Here are some examples:

unsigned int color {0x0f0d0eU}; // Unsigned int hexadecimal constant - decimal 986,382
int mask {0XFF00FF00}; // Four bytes specified as FF, 00, FF, 00
unsigned long value {0xdeadLU}; // Unsigned long hexadecimal literal - decimal 57,005

Octal Literals
You can also write integer literals as octal values—that is, using base 8. You identify a number as octal by writing it
with a leading zero.

Octal literals: 0657 0443U 012L 06255 0377

Decimal literals: 431 291U 10L 3245 255

Chapter 2 ■ IntroduCIng Fundamental types oF data

28

Caution ■ don’t write decimal integer values with a leading zero. the compiler will interpret such values as octal
(base 8), so a value written as 065 will be the equivalent of 53 in decimal notation.

Binary Literals
You write a binary integer literal as a sequence of binary digits (0 or 1) prefixed by 0b or 0B. A binary literal can have L
or LL as a suffix to indicate it is type long or long long, and u or U if it is an unsigned literal. For example:

Binary literals: 0B110101111 0b100100011U 0b1010L 0B11001101 0b11111111

Decimal literals: 431 291U 10L 3245 255

Binary literals were introduced by the C++ 14 standard so at the time of writing there are not many compilers that
support them. Here are some examples of their use:

int color {0b000011110000110100001110};

int mask {0B11111111000000001111111100000000}; // 4 bytes

unsigned long value {0B1101111010101101UL};

I have illustrated in the code fragments how you can write various combinations for the prefixes and suffixes such
as 0x or 0X, and UL, LU, or Lu, but it’s best to stick to a consistent way of writing integer literals.

As far as your compiler is concerned, it doesn’t matter which number base you choose when you write an integer
value. Ultimately it will be stored as a binary number. The different ways for writing an integer are there just for your
convenience. You choose one or other of the possible representations to suit the context.

Note ■ you can use a single quote as a separator in an integer literal to make the literal easier to read. For example,
0B1111'1010 or 23'568'987ul. Few compilers support this at the time of writing, though, so it may not work for you.

Calculations with Integers
To begin with, let’s get some bits of terminology out of the way. An operation such as addition or multiplication is
defined by an operator—+ for addition; for example, or * for multiplication. The values that an operator acts upon
are called operands, so in an expression such as 2*3, the operands are 2 and 3. Operators such as multiplication that
require two operands are called binary operators. Operators that require one operand are called unary operators. An
example of a unary operator is the minus sign in the expression-width. The minus sign negates the value of width
so the result of the expression is a value with the opposite sign to that of its operand. This contrasts with the binary
multiplication operator in expressions such as width*height, which acts on two operands, width and height.

The basic arithmetic operations that you can carry out on integers are shown in Table 2-2.

Chapter 2 ■ IntroduCIng Fundamental types oF data

29

The operators in Table 2-2 are all binary operators and work largely in the way you would expect. Multiplication,
division, and modulus operations in an expression execute before addition and subtraction. Here’s an example of
their use:

long width {4L};
long length {5L};
long area {0L};
long perimeter {0L};
area = width*length; // Result is 20
perimeter = 2L*width + 2L*length; // Result is 28

The last two lines are assignment statements and the = is the assignment operator. The arithmetic expression
on the right of the assignment operator is evaluated and the result is stored in the variable on the left. There are two
variables initialized with 0L. You could omit the 0L in the initializer list here and the effect would be the same because
an empty initializer list is assumed to contain zero. The second and third statements that define area and perimeter
could be written:

long area {};
long perimeter {};

It’s important to appreciate that an assignment operator is quite different from an = in an algebraic equation. The
latter implies equality whereas the former is specifying an action. Consider the assignment statement in the following:

int y {5};
y = y + 1;

The variable y is initialized with 5 so the expression y+1 produces 6. This result is stored back in y so the effect is
to increment y by 1.

You can control the order in which more complicated expressions are executed using parentheses. You could
write the statement that calculates a value for perimeter as:

perimeter = 2L*(width + length);

The sub-expression within the parentheses is evaluated first. The result is multiplied by two, which produces the
same result as before. This is more efficient than the original statement because it requires three arithmetic operations
instead of four.

Parentheses can be nested, in which case sub-expressions between parentheses are executed in sequence from
the innermost pair of parentheses to the outermost. An example of an expression with nested parentheses will show
how it works

Table 2-2. Basic Arithmetic Operations

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (the remainder after division)

Chapter 2 ■ IntroduCIng Fundamental types oF data

30

2*(a + 3*(b + 4*(c + 5*d)))

The expression c+5*d is evaluated first and c is added to the result. That result is multiplied by 4 and b is added.
That result is multiplied by 3 and a is added. Finally that result is multiplied by 2 to produce the result of the complete
expression.

The division operation is slightly idiosyncratic. Integer operations always produce an integer result, so
an expression such as 11/4 produces 2 rather than 2.75. Integer division returns the number of times that the
denominator divides into the numerator. Any remainder is discarded. So far as the C++ standard is concerned, the
result of division by zero is undefined, but specific implementations will usually have the behavior defined so check
your product documentation.

Figure 2-1 illustrates the effects of the division and modulus operators.

Integer Divide Operator

Modulus Operator

11/4 2 times 4 remainder 3

Result = 2 Discarded

11%4 2 times 4 remainder 3

Result = 3 Discarded

Figure 2-1. Contrasting the division and modulus operators

The modulus operator, %, complements the division operator in that it produces the remainder after integer
division. When either or both operands of the modulus operator are negative, the sign of the remainder is up to the
particular compiler you’re using, so beware of variations between different systems. Applying the modulus operator
inevitably involves a division so the result is undefined when the right operand is zero.

More on Assignment Operations
You can assign a value to more than one variable in a single statement. For example:

int a {}, b {}, c {5}, d{4};
a = b = c*c - d*d;

The second statement calculates the value of the expression c*c-d*d and stores the result in b, so b will be
set to 9. Next the value of b is stored in a so a will also be set to 9. You can have as many repeated assignments like
this as you want.

The operand on the left of an assignment can be a variable or an expression, but if it is an expression, the result
must be an lvalue. An lvalue represents a persistent memory location so a variable is an lvalue. Every expression in
C++ results in either an lvalue or an rvalue. An rvalue is a result that is not an lvalue, so it is transient. The result of
the expression c*c-d*d in the statement above is an rvalue. The compiler allocates a temporary memory location to
store the result of the expression but once the statement has been executed, the result and the memory it occupies is
discarded. The difference between lvalues and rvalues is not important now, but it will become very important when
you delve into functions and classes.

Chapter 2 ■ IntroduCIng Fundamental types oF data

31

Let’s see some of the arithmetic operators in action in an example. This program converts distances that you
enter from the keyboard and in the process illustrates using the arithmetic operators:

// Ex2_02.cpp
// Converting distances
#include <iostream> // For output to the screen

int main()
{
 unsigned int yards {}, feet {}, inches {};

 // Convert a distance in yards, feet, and inches to inches
 std::cout << "Enter a distance as yards, feet, and inches "
 << "with the three values separated by spaces:"
 << std::endl;
 std::cin >> yards >> feet >> inches;

 const unsigned int feet_per_yard {3U};
 const unsigned int inches_per_foot {12U};
 unsigned int total_inches {};
 total_inches = inches + inches_per_foot*(yards*feet_per_yard + feet);
 std::cout << "The distances corresponds to " << total_inches << " inches.\n";

 // Convert a distances in inches to yards feet and inches
 std::cout << "Enter a distance in inches: ";
 std::cin >> total_inches;
 feet = total_inches/inches_per_foot;
 inches = total_inches%inches_per_foot;
 yards = feet/feet_per_yard;
 feet = feet%feet_per_yard;
 std::cout << "The distances corresponds to "
 << yards << " yards "
 << feet << " feet "
 << inches << " inches." << std::endl;
}

An example of typical output from this example is:

Enter a distance as yards, feet, and inches with the three values separated by spaces:
9 2 11
The distances corresponds to 359 inches.
Enter a distance in inches: 359
The distances corresponds to 9 yards 2 feet 11 inches.

The first statement in main() defines three integer variables and initializes them with zero. They are type
unsigned int because in this example the distances values cannot be negative. This is an instance where defining
three variables in a single statement is reasonable because they are closely related.

The next statement outputs a prompt to std::cout for the input. The statement is spread over three lines but it
could be written as three separate statements:

std::cout << "Enter a distance as yards, feet, and inches ";
std::cout << "with the three values separated by spaces:";
std::cout << std::endl;

Chapter 2 ■ IntroduCIng Fundamental types oF data

32

When you have a sequence of << operators as in the original statement they execute from left to right so the
output from the three statements above will be exactly the same as the original.

The next statement reads values from cin and stores them in the variables yards, feet, and inches. The type of
value that the >> operator expects to read is determined by the type of variable in which the value is to be stored so
unsigned integers are expected to be entered. The << operator ignores spaces and the first space following a value
terminates the operation. This implies than you cannot read and store spaces using the << operator for a stream, even
when you store them in variables that store characters. The input statement in the example could also be written as
three separate statements:

std::cin >> yards;
std::cin >> feet;
std::cin >> inches;

The effect of these statements is the same as the original.
You define two variables, inches_per_foot and feet_per_yard that you need to convert from yards, feet, and

inches to inches and vice versa. The values for these are fixed so you specify the variables as const. You could use
explicit values for conversion factors in the code but using const variables is much better because it is clear what you
are doing. The const variables are also positive values so you define them as type unsigned int. The conversion to
inches is done is a single statement:

total_inches = inches + inches_per_foot*(yards*feet_per_yard + feet);

The expression between parentheses executes first. This converts the yards value to feet and adds the feet value
to produce the total number of feet. Multiplying this result by inches_per_foot obtains the total number of inches for
the values of yards and feet. Adding inches to that produces the final total number of inches, which you output using
this statement:

std::cout << "The distances corresponds to " << total_inches << " inches.\n";

The first string is transferred to the standard output stream, cout, followed by the value of total_inches. The string
that is transferred to cout next has \n as the last character, which will cause the next output to start on the next line.

Converting a value from inches to yards, feet and inches requires four statements:

feet = total_inches/inches_per_foot;
inches = total_inches%inches_per_foot;
yards = feet/feet_per_yard;
feet = feet%feet_per_yard;

You reuse the variables that stored the input for the previous conversion to store the results of this conversion.
Dividing the value of total_inches by inches_per_foot produces the number of whole feet, which you store in feet.
The % operator produces the remainder after division so the next statement calculates the number of residual inches,
which is stored in inches. The same process is used to calculate the number of yards and the final number of feet.

There’s no return statement after the final output statement because it isn’t necessary. When the execution
sequence runs beyond the end of main(), it is equivalent to executing return 0.

The op= Assignment Operators
In Ex2_01.cpp, there was a statement that you could write more economically:

feet = feet%feet_per_yard;

Chapter 2 ■ IntroduCIng Fundamental types oF data

33

This statement could be written using an op= assignment operator. The op= assignment operators are so called
because they’re composed of an operator and an assignment operator =. You could write the previous statement as:

feet %= feet_per_yard;

This is exactly the same operation as the previous statement.
In general, an op= assignment is of the form:

lhs op= rhs;

lhs represents a variable of some kind that is the destination for the result of the operator. rhs is any expression.
This is equivalent to the statement:

lhs = lhs op (rhs);

The parentheses are important because you can write statements such as:

x *= y + 1;

This is equivalent to:

x = x*(y + 1);

Without the implied parentheses, the value stored in x would be the result of x*y+1, which is quite different.
You can use a range of operators for op in the op= form of assignment. Table 2-3 shows the complete set,

including some operators you’ll meet in Chapter 3.

Table 2-3. op= Assignment Operators

Operation Operator Operation Operator

Addition += Bitwise AND &=

Subtraction -= Bitwise OR |=

Multiplication *= Bitwise exclusive OR ^=

Division /= Shift left <<=

Modulus %= Shift right >>=

Note that there can be no spaces between op and the =. If you include a space, it will be flagged as an error. You
can use += when you want to increment a variable by some amount. For example, the following two statements have
the same effect:

y = y + 1;
y += 1;

The shift operators that appear in the table, << and >>, look the same as the insertion and extraction operators
that you have been using with streams. The compiler can figure out what << or >> means in a statement from the
context. You’ll understand how it is possible that the same operator can mean different things in different situations
later in the book.

Chapter 2 ■ IntroduCIng Fundamental types oF data

34

using Declarations and Directives
There were a lot of occurrences of std::cin and std::cout in Ex2_01.cpp. You can eliminate the need to qualify a
name with the namespace name in a source file with a using declaration. Here’s an example:

using std::cout;

This tells the compiler that when you write cout, it should be interpreted as std::cout. With this declaration
before the main() function definition, you can write cout instead of std::cout, which saves typing and makes the
code look a little less cluttered.

You could include two using declarations at the beginning of Ex2_01.cpp and avoid the need to qualify cin and cout:

using std::cin;
using std::cout;

Of course, you still have to qualify endl with std, although you could add a using declaration for that too. You can
apply using declarations to names from any namespace, not just std.

A using directive imports all the names from a namespace. Here’s how you could use any name from the std
namespace without the need to qualify it:

using namespace std; // Make all the names in std available without qualification

With this at the beginning of a source file, you don’t have to qualify any name that is defined in the std
namespace. At first sight this seems an attractive idea. The problem is it defeats a major reason for having
namespaces. It is unlikely that you know all the names that are defined in std and with this using directive you have
increased the probability of accidentally using a name from std.

I’ll use a using directive for the std namespace occasionally in examples in the book where the number of using
declarations that would otherwise be required is excessive. I recommend that you only make use of using directives
when there’s a very good reason to do so.

The sizeof Operator
You use the sizeof operator to obtain the number of bytes occupied by a type, or by a variable, or by the result of an
expression. Here are some examples of its use:

int height {74};
std::cout << "The height variable occupies " << sizeof height << " bytes." << std::endl;
std::cout << "Type \"long long\" occupies " << sizeof (long long) << " bytes." << std::endl;
std::cout << "The expression height*height/2 occupies "
 << sizeof (height*height/2) << " bytes." << std::endl;

These statements show how you can output the size of a variable, the size of a type, and the size of the result of an
expression. To use sizeof to obtain the memory occupied by a type, the type name must be between parentheses. You
also need parentheses around an expression with sizeof. You don’t need parentheses around a variable name, but
there’s no harm in putting them in. Thus if you always use parentheses with sizeof, you can’t go wrong.

You can apply sizeof to any fundamental type, class type, or pointer type (you’ll learn about pointers in Chapter 5).
The result that sizeof produces is of type size_t, which is an unsigned integer type that is defined in the Standard
Library header cstddef. Type size_t is implementation defined, but don’t bother to look it up for your compiler. If
you use size_t, your code will work with any compiler.

Now you should be able to create your own program to list the sizes of the fundamental integer types with your
compiler.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ IntroduCIng Fundamental types oF data

35

Incrementing and Decrementing Integers
You’ve seen how you can increment a variable with the += operator and I’m sure you’ve deduced that you can
decrement a variable with -=. There are two other operators that can perform the same tasks. They’re called the
increment operator and the decrement operators, ++ and -- respectively.

These operators are more than just other options. You’ll see a lot more of them and you’ll find them to be quite an
asset once you get further into C++. These are unary operators that you can apply to an integer variable. The following
statements that modify count have exactly the same effect:

int count {5};
count = count + 1;
count += 1;
++count;

Each statement increments count by 1. Using the increment operator is clearly the most concise. The action of
this operator is different from other operators that you’ve seen in that it directly modifies the value of its operand.
The effect in an expression is to increment the value of the variable and then to use the incremented value in the
expression. For example, suppose count has the value 5, and you execute this statement:

total = ++count + 6;

The increment and decrement operators execute before any other binary arithmetic operators in an expression.
Thus, count will be incremented to 6, and this value will be used in the evaluation of the expression on the right of the
assignment. total will therefore be assigned the value 12.

You use the decrement operator in the same way:

total = --count + 6;

Assuming count is 6 before this statement, the -- operator will decrement it to 5, and this value will be used to
calculate the value to be stored in total, which will be 11.

You’ve seen how you place a ++ and -- operator before the variable to which it applies. This is called the prefix
form of these operators. You can also place them after a variable, which is called the postfix form. The effect is a little
different.

Postfix Increment and Decrement Operations
The postfix form of ++ increments the variable to which it applies after its value is used in context. For example, you
can rewrite the earlier example as follows:

total = count++ + 6;

With an initial value of 5 for count, total is assigned the value 11. count will then be incremented to 6. The
preceding statement is equivalent to the following statements:

total = count + 6;
++count;

Chapter 2 ■ IntroduCIng Fundamental types oF data

36

In an expression such as a++ + b, or even a+++b, it’s less than obvious what you mean, or indeed what the
compiler will do. These two expressions are actually the same, but in the second case you might have meant a + ++b,
which is different—it evaluates to one more than the other two expressions. It would be clearer to write the preceding
statement as follows:

total = 6 + count++;

Alternatively, you can use parentheses:

total = (count++) + 6;

The rules that I’ve discussed in relation to the increment operator also apply to the decrement operator. For
example, suppose count has the initial value 5, and you write this statement:

total = --count + 6;

This results in total having the value 10 assigned. However, consider this statement:

total = 6 + count-- ;

In this instance total is set to 11.
You must not apply the prefix form of these operators to a given variable more than once in an expression.

Suppose count has the value 5, and you write this:

total = ++count * 3 + ++count * 5;

Because the statement modifies the value of count more than once, the result is undefined. You should get an
error message from the compiler with this statement.

Note also that the effects of statements such as the following are undefined:

k = ++k + 1;

Here you’re incrementing the value of the variable that appears on the left of the assignment operator in the
expression on the right, so you’re attempting to modify the value of k twice. A variable can be modified only once as
a result of evaluating a single expression, and the prior value of the variable may only be accessed to determine the
value to be stored. Although such expressions are undefined according to the C++ standard, this doesn’t mean that
your compiler won’t compile them. It just means that there is no guarantee of consistency in the results.

The increment and decrement operators are usually applied to integers, particularly in the context of loops, as
you’ll see in Chapter 5. You’ll see later in this chapter that you can apply them to floating-point variables too. In later
chapters, you’ll explore how they can also be applied to certain other data types, in some cases with rather specialized
(but very useful) effects.

Defining Floating-Point Variables
You use floating-point variables whenever you want to work with values that are not integral. There are three
floating-point data types, as shown in Table 2-4.

Chapter 2 ■ IntroduCIng Fundamental types oF data

37

The term “precision” refers to the number of significant digits in the mantissa. The types are in order of increasing
precision, with float providing the lowest number of digits in the mantissa and long double the highest. Note that
the precision only determines the number of digits in the mantissa. The range of numbers that can be represented by
a particular type is determined by the range of possible exponents.

The precision and range of values aren’t prescribed by the C++ standard so what you get with each type depends
on your compiler. This will depend on what kind of processor is used by your computer and the floating-point
representation it uses. Type long double will provide a precision that’s no less than that of type double, and type
double will provide a precision that is no less than that of type float.

Typically, float provides 7 digits precision, double provides 15 digits, and long double provides 19 digits
precision; double and long double have the same precision with some compilers. Typical ranges of values that you
can represent with the floating-point types on an Intel processor are shown in Table 2-5.

Table 2-4. Floating-Point Data Types

Data Type Description

float Single precision floating-point values

double Double precision floating-point values

long double Double-extended precision floating-point values

Table 2-5. Floating-Point Type Ranges

Type Precision (Decimal Digits) Range (+or –)

float 7 1.2x10-38 to 3.4x1038

double 15 2.2x10-308 to 1.8x10308

long double 19 3.3x10-4932 to 1.2x104932

The numbers of digits of precision in Table 2-5 are approximate. Zero can be represented exactly with each type,
but values between zero and the lower limit in the positive or negative range can’t be represented, so the lower limits
are the smallest possible nonzero values.

Here are some statements that define floating point variables:

float inches_to_mm {25.4f};
double pi {3.1415926}; // Ratio of circle circumference to diameter
long double root2 {1.4142135623730950488L}; // Square root of 2

As you see, you define floating-point variables just like integer variables. Type double is more than adequate in
the majority of circumstances.

Floating-Point Literals
You can see from the code fragment in the previous section that float literals have f (or F) appended and
long double literals have L (or l) appended. Floating point literals without a suffix are of type double. A floating-point
literal includes either a decimal point, or an exponent, or both; a numeric literal with neither is an integer.

Chapter 2 ■ IntroduCIng Fundamental types oF data

38

An exponent is optional in a floating-point literal and represents a power of 10 that multiplies the value. An
exponent must be prefixed with e or E and follows the value. Here are some floating-point literals that include an
exponent:

5E3 (5000.0) 100.5E2 (10050.0) 2.5e-3 (0.0025) -0.1E-3L (-0.0001L) .345e1F (3.45F)

The value between parentheses following each literal with an exponent is the equivalent literal without the
exponent. Exponents are particularly useful when you need to express very small or very large values.

Floating-Point Calculations
You write floating-point calculations in the same way as integer calculations. For example:

const double pi {3.1414926}; // Circumference of a circle divided by its diameter
double a {0.75}; // Thickness of a pizza
double z {5.5}; // Radius of a pizza
double volume {}; // Volume of pizza - to be calculated
volume = pi*z*z*a;

The modulus operator, %, can’t be used with floating-point operands, but all the other binary arithmetic
operators that you have seen, +, -, *, and /, can be. You can also apply the prefix and postfix increment and decrement
operators, ++ and --, to a floating-point variable with essentially the same effect as for an integer: the variable will be
incremented or decremented by 1.0.

 Pitfalls
You need to be aware of the limitations of working with floating-point values. It’s not difficult for the unwary to
produce results that may be inaccurate, or even incorrect. Common sources of errors when using floating-point
values are:

Many decimal values don’t convert exactly to binary floating-point values. The small errors •	
that occur can easily be amplified in your calculations to produce large errors.

Taking the difference between two nearly identical values will lose precision. If you take the •	
difference between two values of type float that differ in the sixth significant digit, you’ll
produce a result that will have only one or two digits of accuracy. The other digits in the
mantissa will be garbage.

Working with values that differ by several orders of magnitude can lead to errors. An •	
elementary example of this is adding two values stored as type float with 7 digits of precision
where one value is 108 times larger than the other. You can add the smaller value to the larger
as many times as you like, and the larger value will be unchanged.

The •	 cfloat Standard Library header contains information relating to floating-point operations
with your compiler. Among many other things, it defines the following values, where the
prefixes FLT_, DBL_, and LDBL_ identify constants relating to the types float, double, and
long double respectively:

•	 FLT_MANT_DIG, DBL_MANT_DIG, and LDBL_MANT_DIG are the number of bits in the mantissa.

•	 FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON are the smallest values that you can add to 1.0
and get a different result.

Chapter 2 ■ IntroduCIng Fundamental types oF data

39

•	 FLT_MAX, DBL_MAX, and LDBL_MAX are the maximum floating-point numbers that can be
represented.

•	 FLT_MIN, DBL_MIN, and LDBL_MIN are the minimum non-zero floating-point numbers that can
be represented.

It’s very easy to output these constants. Here’s a complete program that illustrates how:

// Ex2_03.cpp
// Writing floating-point properties to cout
#include <iostream> // For output to the screen
#include <cfloat>

int main()
{
 std::cout << "The mantissa for type float has " << FLT_MANT_DIG << " bits." << std::endl;
 std::cout << "The maximum value of type float is " << FLT_MAX << std::endl;
 std::cout << "The minimum non-zero value of type float is " << FLT_MIN << std::endl;
}

This example in the code download outputs more constants than shown here.

Invalid Floating-Point Results
The result of division by zero is undefined so far as the C++ standard is concerned, but specific compilers have their
own way of dealing with this, so consult your product documentation. Hardware floating-point operations in most
computers are implemented according to the IEEE 754 standard (also known as IEC 559). The floating-point standard
defines special values having a binary mantissa of all zeroes and an exponent of all ones to represent +infinity or
-infinity, depending on the sign. When you divide a positive non-zero value by zero, the result will be +infinity,
and dividing a negative value by zero will result in -infinity. Another special floating-point value is called Not a
Number, usually abbreviated to NaN. This represents a result that isn’t mathematically defined, such as when you
divide zero by zero or infinity by infinity.

Any operation in which either or both operands are NaN results in NaN. Once an operation results in ±infinity,
this will pollute all subsequent operations in which it participates. Table 2-6 summarizes all the possibilities.

value in the table is any non-zero value. You can discover how your compiler presents these values by plugging
the following code into main():

double a{ 1.5 }, b{}, c{}, result{};
result = a / b;
std::cout << a << "/" << b << " = " << result << std::endl;
std::cout << result << " + " << a << " = " << result + a << std::endl;
result = b / c;
std::cout << b << "/" << c << " = " << result << std::endl;

Chapter 2 ■ IntroduCIng Fundamental types oF data

40

You’ll see from the output when you run this how ±infinity and NaN look.

Mathematical Functions
The cmath Standard Library header file defines a range of trigonometric and numerical functions that you can use in
your programs. All the function names are in the std namespace. Table 2-7 presents some of the most useful functions
from this header.

Table 2-7. Numerical Functions in the cmath header

Function Description

abs(arg) Returns the absolute value of arg as the same type as arg, where arg can be of any
floating-point type. There are versions of abs() in the cstdlib header file for arguments of
any integer type that will return the result as an integer type.

fabs(arg) Returns the absolute value of arg as the same type as the argument. The argument can be
int, long, float, double, or long double.

ceil(arg) Returns a floating-point value of the same type as arg that is the smallest integer greater than
or equal to arg, so std::ceil(2.5) produces 3.0 and std::ceil(-2.5) produces -2.0. arg
can be of any floating-point type.

floor(arg) Returns a floating-point value of the same type as arg that is the largest integer less than or
equal to arg so std::floor(2.5) results in 2.0 and std::floor(-2.5) results in -3.0. arg
can be any floating-point type.

exp(arg) Returns the value of earg as the same type as arg. arg can be of any floating-point type.

log(arg) Returns the natural logarithm (to base e) of arg as the same type as arg. arg can be any
floating-point type.

log10(arg) Returns the logarithm to base 10 of arg as the same type as arg. arg can be any
floating-point type.

pow(arg1, arg2) Returns the value of arg1 raised to the power arg2, which is arg1arg2. arg1 and arg2 can be
integer or floating-point types. Thus the result of std::pow(2, 3) will be 8, and the result of
std::pow(1.5,3) will be 3.375.

Table 2-6. Floating-Point Operations with NaN and ±infinity Operands

Operation Result Operation Result

±value/0 ±infinity 0/0 NaN

±infinity ± value ±infinity ±infinity/±infinity NaN

±infinity*value ±infinity infinity-infinity NaN

±infinity/value ±infinity infinity*0 NaN

Table 2-8 shows some of the trigonometric functions provided by the cmath header.

Chapter 2 ■ IntroduCIng Fundamental types oF data

41

The arguments to these functions can be of any floating-point type and the result will be returned as the same
type as the argument(s).

Let’s look at some examples of how these are used. Here’s how you can calculate the sine of an angle in radians:

double angle {1.5}; // In radians
double sine_value {std::sin(angle)};

If the angle is in degrees, you can calculate the tangent by using a value for p to convert to radians:

float angle_deg {60.0f}; // Angle in degrees
const float pi {3.14159f};
const float pi_degrees {180.0f};
float tangent {std::tan(pi*angle_deg/pi_degrees)};

If you know the height of a church steeple is 100 feet and you’re standing 50 feet from its base, you can calculate
the angle in radians of the top of the steeple like this:

double height {100.0} // Steeple height- feet
double distance {50.0} // Distance from base
angle = std::atan2(height, distance); // Result in radians

Table 2-8. Trigonometric Functions in the cmath Header

Function Description

cos(angle) Returns the cosine of angle expressed in radians.

sin(angle) Returns the sine of the angle expressed in radians.

tan(angle) Returns the tangent of angle expressed in radians.

cosh(angle) Returns the hyperbolic cosine of angle expressed in radians. The hyperbolic cosine of a
variable x is given by the formula (ex-e-x)/2.

sinh(angle) Returns the hyperbolic sine of angle expressed in radians. The hyperbolic sine of a
variable x is given by the formula (ex+e-x)/2.

tanh(angle) Returns the hyperbolic tangent of angle expressed in radians. The hyperbolic tangent of
a variable x is given by the hyperbolic sine of x divided by the hyperbolic cosine of x.

acos(arg) Returns the inverse cosine (arccosine) of arg. arg must be between –1 and +1. The
result is in radians and will be from 0 to p.

asin(arg) Returns the inverse sine (arcsine) of arg. The argument must be between –1 and +1. The
result is in radians and will be from –p/2 to +p/2.

atan(arg) Returns the inverse tangent (arctangent) of arg. The result is in radians and will be from
–p/2 to +p/2.

atan2(arg1, arg2) This requires two arguments of the same floating-point type. The function returns the
inverse tangent of arg1/arg2. The result will be in the range from –p to +p radians and of
the same type as the arguments.

Chapter 2 ■ IntroduCIng Fundamental types oF data

42

You can use this value in angle and the value of distance to calculate the distance from your toe to the top of
the steeple:

double toe_to_tip {distance*std::cos(angle)};

Of course, fans of Pythagoras of Samos could obtain the result much more easily, like this:

double toe_to_tip {std::sqrt(std::pow(distance,2) + std::pow(height, 2)};

Let’s try a floating-point example. Suppose that you want to construct a circular pond in which you will keep fish.
Having looked into the matter, you know that you must allow 2 square feet of pond surface area for every 6 inches of
fish length. You need to figure out the diameter of the pond that will keep the fish happy. Here’s how you can do it:

// Ex2_04.cpp
// Sizing a pond for happy fish
#include <iostream>
#include <cmath> // For square root function
using std::cout;
using std::cin;
using std::sqrt;

int main()
{
 // 2 square feet pond surface for every 6 inches of fish
 const double fish_factor {2.0/0.5}; // Area per unit length of fish
 const double inches_per_foot {12.0};
 const double pi {3.14159265};

 double fish_count {}; // Number of fish
 double fish_length {}; // Average length of fish

 cout << "Enter the number of fish you want to keep: ";
 cin >> fish_count;
 cout << "Enter the average fish length in inches: ";
 cin >> fish_length;
 fish_length /=inches_per_foot; // Convert to feet

 // Calculate the required surface area
 double pond_area {fish_count * fish_length * fish_factor};

 // Calculate the pond diameter from the area
 double pond_diameter {2.0 * sqrt(pond_area/pi)};

 cout << "\nPond diameter required for " << fish_count << " fish is "
 << pond_diameter << " feet.\n";
}

Chapter 2 ■ IntroduCIng Fundamental types oF data

43

With input values of 20 fish with an average length of 9 inches, this example produces the following output:

Enter the number of fish you want to keep: 20
Enter the average fish length in inches: 9
Pond diameter required for 20 fish is 8.74039 feet.

The three using declarations allow the stream names and the sqrt() function name to be used without qualifying
them with the namespace name. You first define three const variables in main() that you’ll use in the calculation.
Notice the use of a constant expression to specify the initial value for fish_factor. You can use any expression for
an initial value that produces a result of the appropriate type. You specify fish_factor, inches_per_foot, and pi as
const because their values are fixed and should not be altered.

Next, you define the fish_count and fish_length variables in which you’ll store the user input. Both have an
initial value of zero.

The input for the fish length is in inches so you convert it to feet before you use it in the calculation for the pond.
You use the /=operator to convert the original value to feet.

You define a variable for the area for the pond and initialize it with an expression that produces the required
value:

double pond_area {fish_count * fish_length * fish_factor};

The product of fish_count and fish_length gives the total length of all the fish in feet, and multiplying this by
fish_factor gives the required area for the pond in square feet.

The area of a circle is given by the formula pr2, where r is the radius. You can therefore calculate the radius of the
circular pond by dividing the area by p and calculating the square root of the result. The diameter is twice the radius
so the whole calculation is carried out by this statement:

double pond_diameter {2.0 * sqrt(pond_area / pi)};

You obtain the square root using the sqrt() function from the cmath header.
Of course, you could calculate the pond diameter in a single statement like this:

double pond_diameter {2.0 * sqrt(fish_count * fish_length * fish_factor/ pi)};

This eliminates the need for the pond_area variable so the program will be smaller and shorter. It’s debatable
whether this is better than the original though because it’s not so obvious what is going on.

The last statement in main() outputs the result. The pond diameter has more decimal places than you need. Let’s
look into how you can fix that.

Formatting Stream Output
You can change how data is formatted when it is written to an output stream using stream manipulators, which are
functions declared in the iomanip Standard Library header. You apply a stream manipulator to an output stream
with the insert operator, <<. Stream manipulators require you to supply a parameter value. There are also predefined
constants in the iostream header that affect how data is presented when you insert them in an output stream. I’ll just
introduce the most useful manipulators and streams constants.

Chapter 2 ■ IntroduCIng Fundamental types oF data

44

The iomanip header provides these useful parametric manipulators:

std::setprecision(n) Sets the floating-point precision or the number of decimal places to n digits. If the
default floating-point output presentation is in effect, n specifies the number of digits
in the output value. If fixed or scientific format has been set, n is the number of
digits following the decimal point. The value set by setprecision() remains in effect
for subsequent output unless you change it.

std::setw(n) Sets the output field width to n characters, but only for the next output data item.
Subsequent output reverts to the default where the field width is set to the number of
output character needed to accommodate the data.

std::setfill(ch) When the field width has more characters than the output value, excess characters in
the field will be the default fill character, which is a space. This sets the fill character to
be ch for all subsequent output.

The iostream header defines the following stream constants:

std::fixed Output floating-point data in fixed point notation.

std::scientific Output all subsequent floating-point data in scientific notation, which always includes an
exponent and one digit before the decimal point.

std::defaultfloat Revert to the default floating-point data presentation.

std::dec All subsequent integer output is decimal.

std::hex All subsequent integer output is hexadecimal.

std::oct All subsequent integer output is octal.

std::showbase Outputs the base prefix for hexadecimal and octal integer values. Inserting
std::noshowbase in a stream will switch this off.

std::left Output is left-justified in the field.

std::right Output is right-justified in the field. This is the default.

std::internal Causes the fill character to be internal to an integer or floating-point output value.

When you insert any of these constants in an output stream, they remain in effect until you change it. Let’s see
how some of these work in practice. Consider this output statement:

cout << "\nPond diameter required for " << fish_count << " fish is "
 << std::setprecision(2) // Output value is 8.7
 << pond_diameter << " feet.\n";

If you replace the output statement at the end of Ex2_04.cpp with this, you’ll get the floating-point value
presented with 2 digits precision, which will correspond to 1 decimal place in this case. Because default handling
of floating-point output is in effect, the integer between the parentheses in setprecision() specifies the output

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ IntroduCIng Fundamental types oF data

45

precision for floating-point values, which is the total number of digits before and after the decimal point. You can
make the parameter specify the number of digits after the decimal point - the number of decimal places in other
words, by setting the mode as fixed. For example, try this in Ex2_04.cpp:

cout << "\nPond diameter required for " << fish_count << " fish is "
 << std::fixed << std::setprecision(2)
 << pond_diameter << " feet.\n"; // Output value is 8.74

Setting the mode as fixed or as scientific causes the setprecision() parameter to be interpreted as the
number of decimal places in the output value. Setting scientific mode causes floating-point output to be in
scientific notation, which is with an exponent:

cout << "\nPond diameter required for " << fish_count << " fish is "
 << std::scientific << std::setprecision(2)
 << pond_diameter << " feet.\n"; // Output value is 8.74e+000

In scientific notation there is always one digit before the decimal point. The value set by setprecision() is
still the number of digits following the decimal point. There’s always a three-digit exponent value, even when the
exponent is zero.

The following statement illustrates some of the formatting possible with integer values:

int a{16}, b{66};
cout << std::setw(5) << a << std::setw(5) << b << std::endl;
cout << std::left << std::setw(5) << a << std::setw(5) << b << std::endl;
cout << " a = " << std::setbase(16) << std::setw(6) << std::showbase << a
 << " b = " << std::setw(6) << b << std::endl;
cout << std::setw(10) << a << std::setw(10) << b << std::endl;

The output from these statements is:

 16 66
6 66
a = 0x10 b = 0x42
x10 0x42

It’s a good idea to insert showbase in in the stream when you output integers as hexadecimal or octal so
the output won’t be misinterpreted as decimal values. I recommend that you try various combinations of these
manipulators and stream constants to get a feel for how they all work.

Mixed Expressions and Type Conversion
You can write expressions involving operands of different types. For example, you could have defined the variable to
store the number of fish, like this:

 unsigned int fish_count {}; // Number of fish

Chapter 2 ■ IntroduCIng Fundamental types oF data

46

The number of fish is certainly an integer so this makes sense. The number of inches in a foot is also integral so
you would want to define the variable like this:

const unsigned int inches_per_foot {12};

The calculation would still work OK in spite of the variables now being of differing types. For example:

fish_length /=inches_per_foot; // Convert to feet
double pond_area {fish_count * fish_length * fish_factor};

The binary arithmetic operands require both operands to be of the same type. Where this is not the case, the
compiler will arrange to convert one of the operand values to the same type as the other. These are called implicit
conversions. The way this works is that the variable of a type with the more limited range is converted to the type of
the other. The fish_length variable in the first statement is of type double. Type double has a greater range than type
unsigned int so the compiler will insert a conversion for the value of inches_per_foot to type double to allow the
division to be carried out. In the second statement, the value of fish_length will be converted to type double to make
it the same type as fish_length before the multiply operation executes.

With each operation with operands of different types, the compiler chooses the operand with the type that has
the more limited range of values as the one to be converted to the type of the other. In effect, it ranks the types in the
following sequence, from high to low:

1. long double 2. double 3. float

4. unsigned long long 5. long long

6. unsigned long 7. long

8. unsigned int 9. int

The operand to be converted will be the one with the lower rank. Thus, in an operation with operands of type
long long and type unsigned int, the latter will be converted to type long long. An operand of type char, signed
char, unsigned char, short, or unsigned short is always converted to at least type int.

Implicit conversions can produce unexpected results. Consider these statements:

unsigned int x {20u};
int y {30};
std::cout << x - y << std::endl;

You might expect the output to be -10, but it isn’t. The output will be 4294967286. This is because the value of y is
converted to unsigned int to match the type of a so the result of the subtraction is an unsigned integer value.

The compiler will also insert an implicit conversion when the expression on the right of an assignment produces
a value that is of a different type from the variable on the left. For example:

int y {};
double z {5.0};
y = z; // Requires implicit conversion

The last statement requires a conversion of the value of the expression on the right of the assignment to allow it
to be stored as type int. The compiler will insert a conversion to do this but in most cases it will also issue a warning
message about possible loss of data.

Chapter 2 ■ IntroduCIng Fundamental types oF data

47

You need to take care when writing integer operations with operands of different types. Don’t rely on implicit
type conversion to produce the result you want unless you are certain it will do so. If you are not sure, what you need is
an explicit type conversion, also call an explicit cast.

Explicit Type Conversion
To convert the value of an expression to a given type, you write the following:

static_cast<type_to_convert_to>(expression)

The static_cast keyword reflects the fact that the cast is checked statically; that is, when the code is compiled.
Later, when you get to deal with classes, you’ll meet dynamic casts, where the conversion is checked dynamically; that
is, when the program is executing. The effect of the cast is to convert the value that results from evaluating expression
to the type that you specify between the angle brackets. The expression can be anything from a single variable to
a complex expression involving lots of nested parentheses. You could eliminate the warning that arises from the
assignment in the previous section by writing it as:

y = static_cast<int>(z); // No compiler warning this time...

Here’s another example of the use of static_cast<>():

double value1 {10.5};
double value2 {15.5};
int whole_number {static_cast<int>(value1) + static_cast<int>(value2)};

The initializing value for whole_number is the sum of the integral parts of value1 and value2, so they’re each
explicitly cast to type int. whole_number will therefore have the initial value 25. The casts do not affect the values
stored in value1 and value2, which will remain as 10.5 and 15.5, respectively. The values 10 and 15 produced by
the casts are just stored temporarily for use in the calculation and then discarded. Although both casts cause a loss of
information, the compiler always assumes that you know what you’re doing when you explicitly specify a cast.

Of course, the value of whole_number would be different if you wrote:

int whole_number {static_cast<int>(value1 + value2)};

The result of adding value1 and value2 will be 26.0, which results in 26 when converted to type int. The
compiler will not insert implicit narrowing conversions for values in an initializer list so the statement will not
compile without the explicit type conversion.

Generally, the need for explicit casts should be rare, particularly with basic types of data. If you have to include a
lot of explicit conversions in your code, it’s often a sign that you could choose more suitable types for your variables.
Still, there are circumstances when casting is necessary, so let’s look at a simple example. This example converts a
length in yards as a decimal value to yards, feet, and inches.

// Ex2_05.cpp
// Using Explicit Type
#include <iostream>

int main()
{
 const unsigned int feet_per_yard {3};
 const unsigned inches_per_foot {12};

Chapter 2 ■ IntroduCIng Fundamental types oF data

48

 double length {}; // Length as decimal yards
 unsigned int yards{}; // Whole yards
 unsigned int feet {}; // Whole feet
 unsigned int inches {}; // Whole inches

 std::cout << "Enter a length in yards as a decimal: ";
 std::cin >> length;

 // Get the length as yards, feet, and inches
 yards = static_cast<unsigned int>(length);
 feet = static_cast<unsigned int>((length - yards)*feet_per_yard);
 inches = static_cast<unsigned int>
 (length*feet_per_yard *inches_per_foot) % inches_per_foot;

 std::cout << length << " yards converts to "
 << yards << " yards "
 << feet << " feet "
 << inches << " inches." << std:: endl;
}

Typical output from this program will be:

Enter a length in yards as a decimal: 2.75
2.75 yards converts to 2 yards 2 feet 3 inches.

The first two statements in main() define conversion constants feet_per_yard and inches_per_foot as integers.
You declare these as const to prevent them from being modified accidentally. The variables that will store the results
of converting the input to yards, feet, and inches are of type unsigned int and initialized with zero.

The statement that computes the whole number of yards from the input value is:

yards = static_cast<unsigned int>(length);

The cast discards the fractional part of the value in length and stores the integral result in yards. You could omit
the explicit cast here and leave it to the compiler to take care of but it’s always better to write an explicit cast in such
cases. If you don’t, it’s not obvious that you realized the need for the conversion and the potential loss of data.

You obtain the number of whole feet with this statement:

feet = static_cast<unsigned int>((length - yards)*feet_per_yard);

Subtracting yards from length produces the fraction of a yard in the length as a double value. The compiler will
arrange for the value in yards to be converted to type double for the subtraction. The value of feet_per_yard will
then be converted to double to allow the multiplication to take place, and finally the explicit cast converts the result
from type double to type unsigned int.

The final part of the calculation obtains the residual number of whole inches:

inches = static_cast<unsigned int>
 (length*feet_per_yard *inches_per_foot) % inches_per_foot;

The explicit cast applies to the total number of inches in length, which results from the product of length,
feet_per_yard, and inches_per_foot. Because length is type double, both const values will be converted implicitly
to type double to allow the product to be calculated. The remainder after dividing the integral number of inches in
length by the number of inches in a foot is the number of residual inches.

Chapter 2 ■ IntroduCIng Fundamental types oF data

49

Old-Style Casts
Prior to the introduction of static_cast into C++, an explicit cast of the result of an expression was written like this:

(type_to_convert_to)expression

The result of expression is cast to the type between the parentheses. For example, the statement to calculate
inches in the previous example could be written like this:

inches = (unsigned int)(length*feet_per_yard *inches_per_foot) % inches_per_foot;

There are several kinds of casts in C++ that are now differentiated, but the old-style casting syntax covers them all.
Because of this, code using the old-style casts is more prone to error. It isn’t always clear what you intended, and you
may not get the result you expected. You’ll still see old-style casting used because it’s still part of the language but I
strongly recommend that you use only the new casts in your code.

Finding the Limits
You have seen typical examples of the upper and lower limits for various types. The limits Standard Library header
makes this information available for all the fundamental data types so you can access this for your compiler. Let’s look
at an example. To display the maximum value you can store in a variable of type double, you could write this:

std::cout << "Maximum value of type double is " << std::numeric_limits<double>::max();

The expression std::numeric_limits<double>::max() produces the value you want. By putting different type
names between the angled brackets, you can obtain the maximum values for other data types. You can also replace
max() with min() to get the minimum value that can be stored, but the meaning of minimum is different for integer
and floating-point types. For an integer type, min() results in the true minimum, which will be a negative number for a
signed integer type. For a floating-point type, min() returns the minimum positive value that can be stored.

You can retrieve many other items of information about various types. The number of binary digits, for example,
is returned by this expression:

std::numeric_limits<type_name>::digits

type_name is the type in which you’re interested. For floating-point types, you’ll get the number of binary digits in
the mantissa. For signed integer types, you’ll get the number of binary digits in the value; that is, excluding the sign bit.
The following program will display the maximums and minimums for some of the numerical data types.

// Ex2_06.cpp
// Finding maximum and minimum values for data types
#include <limits>
#include <iostream>

int main()
{
 std::cout << "The range for type short is from "
 << std::numeric_limits<short>::min() << " to "
 << std::numeric_limits<short>::max() << std::endl;
 std::cout << "The range for type int is from "
 << std::numeric_limits<int>::min() << " to "
 << std::numeric_limits<int>::max() << std::endl;

Chapter 2 ■ IntroduCIng Fundamental types oF data

50

 std::cout << "The range for type long is from "
 << std::numeric_limits<long>::min() << " to "
 << std::numeric_limits<long>::max() << std::endl;
 std::cout << "The range for type float is from "
 << std::numeric_limits<float>::min() << " to "
 << std::numeric_limits<float>::max() << std::endl;
 std::cout << "The range for type double is from "
 << std::numeric_limits<double>::min() << " to "
 << std::numeric_limits<double>::max() << std::endl;
 std::cout << "The range for type long double is from "
 << std::numeric_limits<long double>::min() << " to "
 << std::numeric_limits<long double>::max() << std::endl;
}

You can easily extend this to include unsigned integer types and types that store characters.

Working with Character Variables
Variables of type char are used primarily to store a code for a single character and occupy 1 byte. The C++ standard
doesn’t specify the character encoding to be used for the basic character set, so in principle this is down to the
particular compiler but it’s usually ASCII.

You define variables of type char in the same way as variables of the other types that you’ve seen, for example:

char letter; // Uninitialized - so junk value
char yes {'Y'}, no {'N'}; // Initialized with character literals
char ch {33}; // Integer initializer equivalent to '!'

You can initialize a variable of type char with a character literal between single quotes or by an integer. An integer
initializer must be within the range of type char - remember it depends on the compiler whether it is a signed or
unsigned type. Of course, you can specify a character as one of the escape sequences you saw in Chapter 1. There are
also escape sequences that specify a character by its code expressed as either an octal or a hexadecimal value. The
escape sequence for an octal character code is one to three octal digits preceded by a backslash. The escape sequence
for a hexadecimal character code is one or more hexadecimal digits preceded by \x. You write either form between
single quotes when you want to define a character literal. For example, the letter 'A' could be written as hexadecimal
'\x41' or octal '\81' in ASCII. Obviously, you could write codes that won’t fit within a single byte, in which case the
result is implementation defined.

Variables of type char are numeric; after all, they store integer codes that represent characters. They can therefore
participate in arithmetic expressions, just like variables of type int or long. For example:

char ch {'A'};
char letter {ch + 5}; // letter is 'F'
++ch; // ch is now 'B'
ch += 3; // ch is now 'E'

When you write a char variable to cout, it is output as a character, not as an integer. If you want to see it as a
numerical value, you can cast it to another integer type. For example:

std::cout << "ch is '" << ch
 << "' which is code " << std::hex << std::showbase
 << static_cast<int>(ch) << std::endl;

Chapter 2 ■ IntroduCIng Fundamental types oF data

51

This produces the output:

ch is 'E' which is code 0x45

When you read from a stream into a variable of type char, the first non-whitespace character will be stored.
This means that you can’t read whitespace characters in this way; they’re simply ignored. Further, you can’t read a
numerical value into a variable of type char; if you try, the character code for the first digit will be stored.

Working with Unicode Characters
ASCII is generally adequate for national language character sets that use Latin characters. However, if you want
to work with characters for multiple languages simultaneously, or if you want to handle character sets for Asian
languages, 256 character codes doesn’t go far enough and Unicode is the answer.

Type wchar_t is a fundamental type that can store all members of the largest extended character set that’s
supported by an implementation. The type name derives from wide characters, because the character is “wider”
than the usual single-byte character. By contrast, type char is referred to as “narrow” because of the limited range of
character codes that are available.

You define wide-character literals in a similar way to literals of type char, but you prefix them with L. For example

wchar_t wch {L'Z'};

This defines wch as type wchar_t and initializes it to the wide-character representation for Z.
Your keyboard may not have keys for representing other national language characters, but you can still create

them using hexadecimal notation, for example:

The value between the single quotes is an escape sequence that specifies the hexadecimal representation of the

character code. The backslash indicates the start of the escape sequence, and x or X after the backslash signifies that
the code is hexadecimal.

Type wchar_t does not handle international character sets very well. It’s much better to use type char16_t which
stores characters encoded as UTF-16, or char_32_t, which stores UTF-32 encoded characters. Here’s an example of
defining a variable of type char16_t:

 char16_t letter {u'B'}; // Initialized with UTF-16 code for B

The lowercase u prefix to the literals indicates that are UTF-16. You prefix UTF-32 literals with uppercase U. For

example:

char32_t letter {U'B'}; // Initialized with UTF-32 code for B
char32_t cyr {U'\x044f'}; // Initialized with UTF-32 code for cyrillic я

Of course, if your editor has the capability to accept and display the characters, you can define cyr like this:

char32_t cyr {U'я'};

The Standard Library provides standard input and output streams wcin and wcout for reading and writing
characters of type wchar_t, but there is no provision with the library from handling char16_t and char32_t character
data. Your compiler may have its own facilities for reading and writing these types.

Chapter 2 ■ IntroduCIng Fundamental types oF data

52

Caution ■ you should not mix output operations on wcout with output operations on cout. the first output operation on
either stream sets an orientation for the standard output stream that is either narrow or wide, depending on whether the
operation is to cout or wcout. the orientation will carry forward to subsequent output operations for either cout or wcout.

The auto Keyword
You use the auto keyword to indicate that the compiler should deduce the type. Here are some examples:

auto m = 10; // m is type int
auto n = 200UL; // n is type unsigned long
auto pi = 3.14159; // pi is type double

Note the syntax for initialization here-using =. The compiler will deduce the types for m, n, and pi from the initial
values you supply. Having said that, this is not how the auto keyword is intended to be used. Certainly for defining
variables of fundamental types you should specify the type explicitly so you know for sure what it is. You’ll meet the
auto keyword again later in the book where it is more appropriately and much more usefully applied.

Caution ■ you should not use an initializer list with the auto keyword because the type will be wrong. this is because
an initializer list itself has a type. For example, suppose you write:

 auto m {10};

the type assigned to m will not be int, but will be std::initializer_list<int>, which is the type of this particular
initializer list.

You can use functional notation with auto for the initial value:

auto pi(3.14159); // pi is type double

This is still not the way to use auto - just specify the type as double and use an initializer list.

Lvalues and Rvalues
Every expression results in either an lvalue or an rvalue (sometimes written l-value and r-value and pronounced like
that). An lvalue refers to an address in memory in which something can be stored on an ongoing basis. An rvalue is
a result that is stored transiently. An lvalue is so called because any expression that results in an lvalue can appear
on the left of an assignment operator. If the result of an expression is not an lvalue, it is an rvalue. An expression that
consists of a single named variable is always an lvalue.

Consider the following statements:

int a {}, b {1}, c {2};
a = b + c;
b = ++a;
c = a++;

http://www.cplusplus.com/cout

Chapter 2 ■ IntroduCIng Fundamental types oF data

53

The first statement defines a, b, and c as type int and initializes them to 0, 1, and 2, respectively. In the second
statement, the result of evaluating b+c is stored temporarily and the value is copied to a. When execution of the
statement is complete, the memory holding the result of b+c is discarded. Thus, the result of evaluating b+c is an rvalue.

In the third statement, the expression ++a is an lvalue because its result is a after its value is incremented. The
expression a++ in the fourth statement is an rvalue because it stores the value of a temporarily as the result of the
expression and then increments a.

Note ■ this is by no means all there is to know about lvalues and rvalues. most of the time you don’t need to worry
very much about whether an expression is an lvalue or an rvalue, but sometimes you do. you’ll find out when it’s
important to be able to tell the difference later in the book when you learn about classes.

Summary
In this chapter, I covered the basics of computation in C++. You learned about most of the fundamental types of data
that are provided for in the language. The essentials of what I’ve discussed up to now are as follows:

Constants of any kind are called literals and literals have a type.•	

You can define integer literals as decimal, hexadecimal, binary, or octal values.•	

A floating-point literal must contain a decimal point, or an exponent, or both. If there is •	
neither, you have specified an integer.

The fundamental types that store integers are •	 short, int, long and long long. These store
signed integers but you can also use the type modifier unsigned preceding any of these type
names to produce a type that occupies the same number of bytes but stores unsigned integers.

The floating-point data types are •	 float, double, and long double.

Variables may be given initial values when they’re defined and it’s good programming practice •	
to do so. An initializer list is the preferred way for specifying initial values.

A variable of type •	 char can store a single character and occupies 1 byte. Type char may be
signed or unsigned, depending on your compiler. You can also use variables of the types
signed char and unsigned char to store integers. Types char, signed char, and unsigned
char are different types.

Type •	 wchar_t stores a wide character and occupies either 2 or 4 bytes, depending on your
compiler. Types char16_t and char32_t are better for handling Unicode characters.

You can fix the value of a variable by using the •	 const modifier. The compiler will check for any
attempts within the program source file to modify a variable defined as const.

You can mix different types of variables and constants in an expression. The compiler will •	
arrange for one operand in a binary operation to be automatically converted to the type of the
other operand when they differ.

Chapter 2 ■ IntroduCIng Fundamental types oF data

54

The compiler will automatically convert the type of the result of an expression on the right of •	
an assignment to the type of the variable on the left where these are different. This can cause
loss of information when the left-side type isn’t able to contain the same information as the
right-side type — double converted to int, for example, or long converted to short.

You can explicitly convert a value of one type to another using the •	 static_cast<>() operator.

An lvalue is an object or expression that can appear on the left side of an assignment. Non-•	 const
variables are examples of lvalues. An rvalue is a result of an expression that is transient.

eXerCISeS

exercise 2-1. Write a program that will compute the area of a circle. the program should
prompt for the radius of the circle to be entered from the keyboard, calculate the area using
the formula area = pi * radius * radius, and then display the result.

exercise 2-2. using your solution for exercise 2-1, improve the code so that the user can
control the precision of the output by entering the number of digits required. (hint: use the
setprecision() manipulator.)

exercise 2-3. Create a program that converts inches to feet-and-inches. For example, an
input of 77 inches should produce an output of 6 feet and 5 inches. prompt the user to enter
an integer value corresponding to the number of inches, and then make the conversion and
output the result. (hint: use a const to store the inches-to-feet conversion rate; the modulus
operator will be very helpful.)

exercise 2-4. For your birthday you’ve been given a long tape measure and an instrument
that measures angles (the angle between the horizontal and a line to the top of a tree, for
instance). If you know the distance, d, you are from a tree, and the height, h, of your eye
when peering into your angle-measuring device, you can calculate the height of the tree with
the formula h + d*tan(angle). Create a program to read h in inches, d in feet and inches,
and angle in degrees from the keyboard, and output the height of the tree in feet.

there is no need to chop down any trees to verify the accuracy of your program. Just check
the solutions on the apress website!

exercise 2-5. here’s an exercise for puzzle fans. Write a program that will prompt the user to
enter two different positive integers. Identify in the output the value of the larger integer and
the value of the smaller integer. (this can be done with what you’ve learned in this chapter!)

exercise 2-6. your Body mass Index (BmI) is your weight w in kilograms divided by the square
of your height h in meters (w/(h*h)). Write a program to calculate the BmI from a weight
entered in pounds and a height entered in feet and inches. a kilogram is 2.2 lbs. and one foot
is 0.3048 meters.

www.allitebooks.com

http://www.allitebooks.org

55

Chapter 3

Working with Fundamental Data Types

In this chapter, I expand on the types that I discussed in the previous chapter and explain how variables of the basic
types interact in more complicated situations. I also introduce some new features of C++ and discuss some of the ways
that these are used. In this chapter you’ll learn

How the execution order in an expression is determined•	

What the bitwise operators are and how you use them•	

How you can define a new type that limits variables to a fixed range of possible values•	

How you can define alternative names for existing data types•	

What the storage duration of a variable is and what determines it•	

What variable scope is and what its effects are•	

Operator Precedence and Associativity
You already know that there is a priority sequence for executing arithmetic operators in an expression. You’ll meet
many more operators throughout the book, including a few in this chapter. In general, the sequence in which
operators in an expression are executed is determined by the precedence of the operators. Operator precedence is just
a fancy term for the priority of an operator.

Some operators, such as addition and subtraction, have the same precedence. That raises the question of how an
expression such as a+b-c+d is evaluated. When several operators from a group with the same precedence appear in an
expression, in the absence of parentheses, the execution order is determined by the associativity of the group. A group
of operators can be left-associative which means operators execute from left to right, or they can be right-associative
which means they execute from right-to-left.

Nearly all operator groups are left-associative so most expressions involving operators of equal precedence are
evaluated from left to right. The only right associative operators are the unary operators and assignment operators,
which you’ll meet later. The precedence and associativity of all the operators in C++ is shown in Table 3-1.

Chapter 3 ■ Working With Fundamental data types

56

You haven’t met most of these operators yet but when you need to know the precedence and associativity of any
operator, you’ll know where to find it. Each row in Table 3-1 is a group of operators of equal precedence and the rows
are in precedence sequence, from highest to lowest. Let’s take a simple example to make sure that it’s clear how all
this works. Consider this expression:

x*y/z - b + c - d

Table 3-1. The Precedence and Associativity of C++ Operators

Precedence Operators Associativity

1 :: None

2 () [] -> .

postfix ++ postfix --

typeid

const_cast dynamic_cast static_cast reinterpret_cast

Left

3 logical not ! one’s complement ~

unary + unary -

prefix ++ prefix --

address-of & indirection *

type cast (type)

sizeof decltype

new new[] delete delete[]

Right

4 .*
->*

Left

5 * / % Left

6 + - Left

7 << >> Left

8 == != Left

9 & Left

10 ^ Left

11 | Left

12 && Left

13 || Left

14 ?: (conditional operator) Right

15 = *= /= %= += -= &= ^= |= <<= >>= Right

16 throw Right

17 , Left

Chapter 3 ■ Working With Fundamental data types

57

The * and / operators are in the same group with precedence that is higher than the group containing + and -
so the expression x*y/z is evaluated first, with a result, r, say. The operators in the group containing * and / are
left-associative, so the expression is evaluated as though it was (x*y)/z. The next step is the evaluation of r-b+c-d.
The group containing the + and - operators is also left associative, so this will be evaluated as ((r-b)+c)-d. Thus the
whole expression is evaluated as though it was written as:

((((x*y)/z) - b) + c) - d

Remember, nested parentheses are evaluated in sequence from the innermost to the outermost. You probably
won’t be able to remember the precedence and associativity of every operator, at least not until you have spent a lot of
time writing C++ code. Whenever you are uncertain, you can always add parentheses to make sure things execute in
the sequence you want.

Note ■ the C++ standard doesn’t define the precedence of the operators directly, but it is determined by the syntax
rules that are defined within the standard. in most instances it’s easier to work out how a given expression will execute
from operator precedence than from the syntax rules.

Bitwise Operators
As their name suggests, bitwise operators enable you to operate on an integer variable at the bit level. You can apply
the bitwise operators to any type of integer, both signed and unsigned, including type char. However, they’re usually
applied to unsigned integer types. A typical application is to set individual bits in an integer variable. Individual bits
are often used as flags, which is the term used to describe binary state indicators. You can use a single bit to store any
value that has two states: on or off, male or female, true or false.

You can also use the bitwise operators to work with several items of information stored in a single variable.
For instance, color values are usually recorded as three 8-bit values for the intensities of the red, green, and blue
components in the color. These are typically packed into 3 bytes of a 4-byte word. The fourth byte is not wasted either;
it usually contains a value for the transparency of the color. Obviously, to work with individual color components, you
need to be able to separate out the individual bytes from a word, and the bitwise operators are just the tool for this.

Let’s consider another example. Suppose you need to record information about fonts. You might want to store the
style and the size of each font and whether it’s bold or italic. You could pack all of this information into a 2-byte integer
variable, as shown in Figure 3-1.

Chapter 3 ■ Working With Fundamental data types

58

Here one bit records whether or not the font is italic—1 signifies italic and 0 signifies normal. Another bit
specifies whether or not the font is bold. One byte selects one of up to 256 different styles. Five bits could record the
point size up to 32. Thus, in one 16-bit word you have four separate pieces of data. The bitwise operators provide you
with the means of accessing and modifying the individual bits and groups of bits from an integer very easily so they
provide you with the means of assembling and disassembling the 16-bit word.

The Bitwise Shift Operators
The bitwise shift operators shift the contents of an integer variable by a specified number of bits to the left or right.
These are used in combination with the other bitwise operators to achieve the kind of operations I described in the
previous section. The >> operator shifts bits to the right, and the << operator shifts bits to the left. Bits that fall off either
end of the variable are lost.

All the bitwise operations work with integers of any type, but I’ll use type short, which is usually 2 bytes, to keep
the illustrations simple. Suppose you define and initialize a variable, number, with this statement:

 unsigned short number {16387U};

As you saw in the previous chapter, you write unsigned literals with a letter U or u appended. You can shift the
contents of this variable and store the result back in number with this statement:

unsigned short result {number << 2}; // Shift left two bit positions

The left operand of the left shift operator, <<, is the value to be shifted and the right operand specifies the number
of bit positions by which the value is to be shifted. Figure 3-2 shows the effect.

001100000 1 0 0011

Style = 6 Point Size = 12

Not BoldItalic

Using Bits to Store Font Data

Not Used

Figure 3-1. Packing font data into 2 bytes

Chapter 3 ■ Working With Fundamental data types

59

As you can see from Figure 3-2, shifting 16,387 two positions to the left produces the value 12. The rather drastic
change in the value is the result of losing the high order bit. This statement shifts the value right 2 bit positions:

 result = number >> 2; // Shift right two bit positions

The result is 4,096 so shifting right two bits effectively divides the value by 4. As long as bits aren’t lost, shifting n
bits to the left is equivalent to multiplying by 2, n times. In other words, it’s equivalent to multiplying by 2n. Similarly,
shifting right n bits is equivalent to dividing by 2n. But beware: As you saw with the left shift of number, if significant
bits are lost, the result is nothing like what you would expect. However, this is no different from the “real” multiply
operation. If you multiplied the 2-byte number by 4 you would get the same result, so shifting left and multiplying
are still equivalent. The incorrect result arises because the result of the multiplication is outside the range of a
2-byte integer.

When you want to modify the original value of a variable using a shift operation, you can do so by using a >>= or
<<= operator. For example:

number >>= 2; // Shift right two positions

This is equivalent to:

number = number >> 2; // Shift right two positions

There’s no confusion between these shift operators and the insertion and extraction operators for input and
output. As far as the compiler is concerned, the meaning is clear from the context. If it isn’t, the compiler will generate
a message in most cases, but you do need to be careful. For example, to output the result of shifting number left by two
bits, you could write:

std::cout << (number << 2);

These two bits are
shifted out and lost.

These two bits are
shifted out and lost.

Zeroes are shifted in
from the left.

Zeroes are shifted in
from the right.

Decimal 16,387 in binary is:

Shift left 2:

Shift right 2:

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Figure 3-2. Shift operations

Chapter 3 ■ Working With Fundamental data types

60

The parentheses are essential here. Without them, the compiler will interpret the shift operator as a stream
insertion operator so you won’t get the result that you intended.

Shifting Signed Integers
You can apply the bitwise shift operators to signed and unsigned integers. However, the effect of the right shift
operator on signed integer types depends on your compiler. In some cases, a right shift will introduce “0” bits at the
left to fill vacated bit positions. In other cases, the sign bit is propagated so “1” bits fill the vacated bit positions to
the left.

The reason for propagating the sign bit, where this occurs, is to maintain consistency between a right shift and
a divide operation. I can illustrate this with a variable of type signed char, just to show how it works. Suppose you
define value like this:

signed char value {-104};

Its binary value is 10011000. You can shift it two bits to the right with this operation:

 value >>= 2; // Result is 1110 0110

The binary result when the sign is propagated is shown in the comment. Two 0s are shifted out at the right end,
and because the sign bit is 1, further 1s are inserted on the left. The decimal value of the result is –26, which is the
same as if you had divided by 4, as you would expect. With operations on unsigned integer types, of course, the sign
bit isn’t propagated and 0s are inserted on the left.

As I said, what actually happens when you right-shift negative integers is implementation defined. Because for
the most part you’ll be using these operators for operating at the bit level — where maintaining the integrity of the
bit pattern is important — you should always use unsigned integers to ensure that you avoid the high-order bit being
propagated.

Logical Operations on Bit Patterns
The four bitwise operators that modify bits in an integer value are shown in Table 3-2.

Table 3-2. Bitwise Operators

Operator Description

~ The bitwise complement operator is a unary operator that inverts the bits in its operand, so 1 becomes 0
and 0 becomes 1.

& The bitwise AND operator ANDs corresponding bits in its operands. If the corresponding bits are both 1,
then the resulting bit is 1, otherwise, it’s 0.

^ The bitwise exclusive OR operator exclusive-ORs corresponding bits in its operands. If the corresponding
bits are different, then the result is 1. If the corresponding bits are the same, the result is 0.

| The bitwise OR operator ORs corresponding bits in its operands. If either bit is 1, then the result is 1. If
both bits are 0, then the result is 0.

Chapter 3 ■ Working With Fundamental data types

61

The operators appear in Table 3-1 in order of precedence, so the bitwise complement operator has the highest
precedence, and the bitwise OR operator the lowest. The shift operators << and >> are of equal precedence, and
they’re below the ~ operator but above the & operator.

Using the Bitwise AND
You’ll typically use the bitwise AND operator to select particular bits or groups of bits in an integer value. Suppose
you are using a 16-bit integer to store the point size, and the style of a font, and whether it is bold and/or italic, as I
illustrated earlier in Figure 3-1. Suppose further that you want to define and initialize a variable to specify a 12-point,
italic, style 6 font. In fact, the very same one illustrated in Figure 3-1. In binary, the style will be 00000110, the italic
bit will be 1, the bold bit will be 0, and the size will be 01100. Remembering that there’s an unused bit as well, you
need to initialize the value of the font variable to the binary number 0000 0110 0100 1100. Because groups of four bits
correspond to a hexadecimal digit, the easiest way to do this is to specify the initial value in hexadecimal notation:

unsigned short font {0x064C}; // Style 6, italic, 2 point

To work with the size, you need to extract it from the font variable; the bitwise AND operator will enable you to
do this. Because bitwise AND only produces 1 bit when both bits are 1, you can define a value that will “select” the
bits defining the size when you AND it with font. You need to define a value that contains 1s in the bit positions that
you’re interested in, and 0s in all the others. This kind of value is called a mask, and you can define such a mask with
this statement:

 unsigned short size_mask {0x1F}; // Mask is 0000 0000 0001 1111 to select size

The five low-order bits of font represent its size, so you set these bits to 1. The remaining bits are 0, so they will be
discarded. (Binary 0000 0000 0001 1111 is hexadecimal 1F.)

You can now extract the point size from font with the statement:

unsigned short size {font & size_mask};

Where both corresponding bits are 1 in an & operation, the resultant bit is 1. Any other combination of bits results
in 0. The values therefore combine like this:

font 0000 0110 0100 1100

size_mask 0000 0000 0001 1111

font & size_mask 0000 0000 0000 1100

I have shown the binary values in groups of four bits just to make it easy to identify the hexadecimal equivalent; it
also makes it easier to see how many bits there are in total. The effect of the mask is to separate out the five rightmost
bits, which represent the point size.

You can use the same mechanism to select the font style, but you’ll also need to use a shift operator to move the
style value to the right. You can define a mask to select the left eight bits as follows:

unsigned short style_mask {0XFF00}; // Mask is 1111 1111 0000 0000 for style

You can obtain the style value with this statement

 unsigned short style {(font & style_mask) >> 8};

Chapter 3 ■ Working With Fundamental data types

62

The effect of this statement is:

font 0000 0110 0100 1100

style_mask 1111 1111 0000 0000

font & style_mask 0000 0110 0000 0000

(font & style_mask) >> 8 0000 0000 0000 0110

You should be able to see that you could just as easily isolate the bits indicating italic and bold by defining a mask
for each. Of course, you still need a way to test whether the resulting bit is 1 or 0, and you’ll see how to do that in the
next chapter.

Another use for the bitwise AND operator is to turn bits off. You saw previously that a 0 bit in a mask will produce
0 in the result. To just turn the italic bit off in font for example, you bitwise-AND font with a mask that has the italic
bit as 0 and all other bits as 1. I’ll show you the code to do this in the context of the bitwise OR operator, which is next.

Note ■ i write binary numbers in the text with a space separating groups of 4 bits. this is just to make the numbers
easier to read; binary numbers must not include spaces when you write them in code although you can use a single
quote to separate groups of digits in any integer literal.

Using the Bitwise OR
You can use the bitwise OR operator for setting one or more bits to 1. Continuing with your manipulations of the font
variable, it’s conceivable that you would want to set the italic and bold bits on. You can define masks to select these
bits with these statements:

unsigned short italic {0X40U}; // Seventh bit from the right
unsigned short bold {0X20U}; // Sixth bit from the right

This statement sets the bold bit to 1:

font |= bold; // Set bold

The bits combine like this:

font 0000 0110 0100 1100

bold 0000 0000 0010 0000

font | bold 0000 0110 0110 1100

Now font specifies that the font is bold as well as italic. Note that this operation will set the bit on regardless of its
previous state. If it was on, it remains on.

You can also OR masks together to set multiple bits. The following statement sets both the bold and the italic bit:

font |= bold | italic; // Set bold and italic

It’s easy to fall into the trap of allowing language to make you select the wrong operator. Because you say “Set
italic and bold” there’s a temptation to use the & operator, but this would be wrong. ANDing the two masks would
result in a value with all bits 0, so you wouldn’t change anything.

Chapter 3 ■ Working With Fundamental data types

63

As I said, you can use the & operator to turn bits off — you just need a mask that contains 0 at the bit position you
want to turn off and 1 everywhere else. However, this raises the question of how best to specify such a mask. To specify
it explicitly, you need to know how many bytes there are in the variable you want to change (not exactly convenient if
you want the program to be in any way portable). However, you can obtain the mask that you want using the bitwise
complement operator on the mask that you would use to turn the bit on. You can obtain the mask to turn bold off from
the bold mask that turns it on:

bold 0000 0000 0010 0000

~bold 1111 1111 1101 1111

The effect of the complement operator is to flip each bit, 0 to 1 or 1 to 0. This will produce the result you’re
looking for, regardless of whether bold occupies 2, 4, or 8 bytes.

Note ■ the bitwise complement operator is sometimes called the not operator, because for every bit it operates on,
what you get is not what you started with.

Thus all you need to do to turn bold off is to bitwise-AND the complement of the bold mask with font. The
following statement will do it:

font &= ~bold; // Turn bold off

You can set multiple bits to 0 by combining several inverted masks using the & operator and bitwise-ANDing the
result with the variable you want to modify:

font &= ~bold & ~italic; // Turn bold and italic off

This sets both the italic and bold bits to 0 in font. No parentheses are necessary here because ~ has a higher
precedence than &. However, if you’re ever uncertain about operator precedence, put parentheses in to express what
you want. It certainly does no harm, and it really does good when they’re necessary.

Using the Bitwise Exclusive OR
The bitwise exclusive OR operator is used much less frequently than the & and | operators, and there are few common
examples of its use. An important application though, arises in the context of graphics programming. One way of
creating the illusion of motion on the screen is to draw an object, erase it, and then redraw it in a new position. This
process needs to be repeated very rapidly if you are to get smooth animation, and the erasing is a critical part. You
don’t want to erase and redraw the whole screen, as this is time consuming and the screen may flicker. Ideally you
want to erase only the object or objects onscreen that you’re moving. You can do this and get reasonably smooth
animation by drawing using what is called exclusive OR mode.

Exclusive OR mode is based on the idea that once you’ve drawn an object in a given color, it will disappear if you
redraw it in the background color. This is illustrated by the sequence in Figure 3-3.

Chapter 3 ■ Working With Fundamental data types

64

When you draw in exclusive OR mode, the color automatically alternates between the object color and the
background color each time you draw the object. The key to achieving this is the application of the bitwise exclusive
OR operator to alternate the colors rapidly and automatically. If you choose your color values suitably, you can flip
between two different colors with repeated exclusive-OR operations. That sounds complicated, so let’s see how it
works by looking at an example.

Suppose you want to alternate between a foreground color (you’ll use red), and a white background. As I noted
earlier, color is often represented by three 8-bit values, corresponding to the intensities of red, blue, and green that are
packed in a single 4-byte integer. By altering the proportions of red, blue, and green, you can get around 16 million
different colors in the range from white to black and everything in between. A bright red would be 0xFF0000, where
the red component is set to its maximum and the intensities of the green and blue components are zero. In the same
scheme, green would be 0xFF00 and blue would be 0xFF. White has equal, maximum components of red, blue, and
green, so white is 0xFFFFFF. You can therefore define variables representing red and white with the statements

unsigned int red {0XFF0000U}; // Color red
unsigned int white {0XFFFFFFU}; // Color white – RGB all maximum

You need a mask that you can use to switch the color back and forth between red and white. You’ll also need a
variable to store the drawing color:

unsigned int mask {red ^ white}; // Mask for switching colors
unsigned int draw_color {red}; // Drawing color - starts out red

Draw in original color Redraw in background color
and draw in new position

Redraw in background color
and draw in new position

Redraw in background color and
draw in new position

Redraw in background color
and draw in new position

Redraw in background color and
draw in new position

Drawing Using Exclusive OR Mode

Figure 3-3. Drawing in exclusive OR mode

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Working With Fundamental data types

65

The mask variable is initialized to the bitwise exclusive OR of the colors that you want to alternate, so it will be:

red 1111 1111 0000 0000 0000 0000

white 1111 1111 1111 1111 1111 1111

mask (which is red^white) 0000 0000 1111 1111 1111 1111

If you exclusive-OR mask with red you get white, and if you exclusive-OR mask with white you get red. This is a
very useful result. This means that having drawn an object using the current color in draw_color, you can switch it to
the other color with this statement:

draw_color ^= mask; // Switch the drawing color

The effect of this when draw_color contains red is as follows:

draw_color 1111 1111 0000 0000 0000 0000

mask 0000 0000 1111 1111 1111 1111

draw_color ^ mask 1111 1111 1111 1111 1111 1111

Clearly, you’ve changed draw_color from red to white. Executing the same statement again will flip the color
back to red:

draw_color 1111 1111 1111 1111 1111 1111

mask 0000 0000 1111 1111 1111 1111

draw_color ^ mask 1111 1111 0000 0000 0000 0000

As you can see, draw_color is back to red again. This technique works with any two colors, although of course it
has nothing to do with colors in particular; you can use it to alternate between any pair of integer values.

It’s relatively easy to see why this always works. The ^ operator, like the other binary bitwise operators, is
commutative, which just means that the order of the operands doesn’t matter. This implies that in the previous code
fragments red^mask is the same as red^red^white, and white^mask is the same as white^white^red. Exclusive ORing
two identical values results in all zeroes. Exclusive ORing a value of all zeroes with any value results in the same value.
Thus both red^red and white^white produce all zeroes, so you can see why exclusive ORing mask with either color
process flips the color value.

It’s time we looked at some of this stuff in action. This example exercises bitwise operators:

// Ex3_01.cpp
// Using the bitwise operators
#include <iostream>
#include <iomanip>
using std::setw;

int main()
{
 unsigned int red {0XFF0000U}; // Color red
 unsigned int white {0XFFFFFFU}; // Color white - RGB all maximum

 std::cout << std::hex // Hexadecimal output
 << std::setfill('0'); // Fill character 0

Chapter 3 ■ Working With Fundamental data types

66

 std::cout << "Try out bitwise AND and OR operators:";
 std::cout << "\nInitial value red = " << setw(8) << red;
 std::cout << "\nComplement ~red = " << setw(8) << ~red;

 std::cout << "\nInitial value white = " << setw(8) << white;
 std::cout << "\nComplement ~white = " << setw(8) << ~white;

 std::cout << "\nBitwise AND red & white = " << setw(8) << (red & white);
 std::cout << "\nBitwise OR red | white = " << setw(8) << (red | white);

 std::cout << "\n\nNow try successive exclusive OR operations:";
 unsigned int mask {red ^ white};
 std::cout << "\nmask = red ^ white = " << setw(8) << mask;
 std::cout << "\n mask ^ red = " << setw(8) << (mask ^ red);
 std::cout << "\n mask ^ white = " << setw(8) << (mask ^ white);

 unsigned int flags {0xFF}; // Flags variable
 unsigned int bit1mask {0x1}; // Selects bit 1
 unsigned int bit6mask {0x20}; // Selects bit 6
 unsigned int bit20mask {0x80000}; // Selects bit 20

 std::cout << "\n\nUse masks to select or set a particular flag bit:";
 std::cout << "\nSelect bit 1 from flags : " << setw(8) << (flags & bit1mask);
 std::cout << "\nSelect bit 6 from flags : " << setw(8) << (flags & bit6mask);
 std::cout << "\nSwitch off bit 6 in flags : " << setw(8) << (flags &= ~bit6mask);
 std::cout << "\nSwitch on bit 20 in flags : " << setw(8) << (flags |= bit20mask)
 << std::endl;
}

If you typed the code correctly, the output is:

Try out bitwise AND and OR operators:
Initial value: red = 00ff0000
Complement: ~red = ff00ffff
Initial value: white = 00ffffff
Complement: ~white = ff000000
Bitwise AND: red & white = 00ff0000
Bitwise OR: red | white = 00ffffff

Now try successive exclusive OR operations:
mask: red ^ white = 0000ffff
 mask ^ red = 00ffffff
 mask ^ white = 00ff0000

Use masks to select or set a particular flag bit:
Select bit 1 from flags : 00000001
Select bit 6 from flags : 00000020
Switch off bit 6 in flags: 000000df
Switch on bit 20 in flags: 000800df

Chapter 3 ■ Working With Fundamental data types

67

There’s an #include directive for the iomanip header because the code uses manipulators to control the
formatting of the output. You define variables red and white as unsigned integers and initialize them with
hexadecimal color values.

It will be convenient to display the data as hexadecimal values and inserting std::hex in the output stream does
this. The hex is modal so all subsequent integer output will be in hexadecimal format. It will be easier to compare
output values if they have the same number of digits and leading zeroes. You can arrange for this by setting the
fill character as 0 using the std::setfill() manipulator and ensuring the field width for each output value is the
number of hexadecimal digits, which is 8. The setfill() manipulator is modal so it remains in effect until you reset
it. The std::setw() manipulator is not modal; you have to insert it into the stream before each output value.

You combine red and white using the bitwise AND and OR operators with these statements:

 std::cout << "\nBitwise AND red & white = " << setw(8) << (red & white);
 std::cout << "\nBitwise OR red | white = " << setw(8) << (red | white);

The parentheses around the expressions are necessary here because the precedence of << is higher than & and |.
Without the parentheses, the statements wouldn’t compile. If you check the output, you’ll see that it’s precisely as
discussed. The result of ANDing two bits is 1 if both bits are 1; otherwise the result is 0. When you bitwise-OR two bits,
the result is 1 unless both bits are 0.

Next, you create a mask to use to flip between the values red and white by combining the two values with the
exclusive OR operator. The output for the value of mask shows that the exclusive OR of two bits is 1 when the bits are
different and 0 when they’re the same. By combining mask with either color values using exclusive OR, you obtain the
other.

The last group of statements demonstrates using a mask to select a single bit from a group of flag bits. The mask
to select a particular bit must have that bit as 1 and all other bits as 0. To select a bit from flags, you just bitwise-AND
the appropriate mask with the value of flags. To switch a bit off, you bitwise-AND flags with a mask containing 0 for
the bit to be switched off and 1 everywhere else. You can easily produce this by applying the complement operator to a
mask with the appropriate bit set, and bit6mask is just such a mask. Of course, if the bit to be switched off was already
0, it would remain as 0.

Enumerated Data Types
You’ll sometimes need variables that have a limited set of possible values that can be usefully referred to by name — the
days of the week, for example, or the months of the year. An enumeration provides this capability. When you define an
enumeration, you’re creating a new type, so it’s also referred to as an enumerated data type. Let’s create an example
using one of the ideas I just mentioned — a type for variables that can assume values corresponding to days of the
week. You can define this as follows:

enum class Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

This defines an enumerated data type called Day, and variables of this type can only have values from the set that
appears between the braces, Monday through Sunday. If you try to set a variable of type Day to a value that isn’t one of
these values, the code won’t compile. The symbolic names between the braces are called enumerators.

Each enumerator will be automatically defined to have a fixed integer value of type int by default. The first name
in the list, Monday, will have the value 0, Tuesday will be 1, and so on through to Sunday with the value 6. You can
define today as a variable of the enumeration type Day with the statement:

Day today {Day::Tuesday};

You use type Day just like any of the fundamental types. This definition for today initializes the variable with the
value Day::Tuesday. When you reference an enumerator, it must be qualified by the type name.

Chapter 3 ■ Working With Fundamental data types

68

To output the value of today, you must cast it to a numeric type because the standard output stream will not
recognize the type Day:

std::cout << "today is " << static_cast<int>(today) << std::endl;

This statement will output “today is 1”.
By default, the value of each enumerator is one greater than the previous one, and by default the values begin at

0. You can make the implicit values assigned to enumerators start at a different integer value though. This definition of
type Day has enumerator values to 1 through 7:

enum class Day {Monday = 1, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

Monday is explicitly specified as 1 and subsequent enumerators without explicit value will be 1 greater than the
preceding enumerator. The enumerators don’t need to have unique values. You could define Monday and Mon as both
having the value 1, for example, like this:

enum class Day {Monday = 1, Mon = 1, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

You can now use either Mon or Monday as the first day of the week. A variable, yesterday, that you’ve defined as
type Day could then be set with this statement:

yesterday = Day::Mon;

You can also define the value of an enumerator in terms of a previous enumerator. Throwing everything you’ve
seen so far into a single example, you could define the type Day as follows:

enum class Day { Monday, Mon = Monday,
 Tuesday = Monday + 2, Tues = Tuesday,
 Wednesday = Tuesday + 2, Wed = Wednesday,
 Thursday = Wednesday + 2, Thurs = Thursday,
 Friday = Thursday + 2, Fri = Friday,
 Saturday = Friday + 2, Sat = Saturday,
 Sunday = Saturday + 2, Sun = Sunday
 };

Now variables of type Day can have values from Monday to Sunday and from Mon to Sun, and the matching pairs
of enumerators correspond to the integer values 0, 2, 4, 6, 8, 10, and 12. The implication is that you can assign any
integer values you like to the enumerators. Any enumerator other than the first that doesn’t have an explicit value
assigned will have a value that is one greater than the previous enumerator in sequence. Values for enumerators must
be compile-time constants; that is, constant expressions that the compiler can evaluate. Such expressions can only
include literals, enumerators that have been defined previously, and variables that you’ve specified as const. You
can’t use non-const variables, even if you’ve initialized them.

You can define variables when you define an enumeration type:

enum class Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
 yesterday {Day::Monday}, today{Day::Tuesday}, tomorrow{Day::Wednesday};

This defines and initializes the variables yesterday, today, and tomorrow, each of which are of type Day.
The enumerators can be an integer type that you choose, rather than the default type int. You can also assign

explicit values to all the enumerators. For example, you could define this enumeration:

enum class Punctuation : char {Comma = ',', Exclamation = '!', Question='?'};

Chapter 3 ■ Working With Fundamental data types

69

The type specification for the enumerators goes after the enumeration type name, and separated from it
by a colon. You can specify any integral data type for the enumerators. The possible values for variables of type
Punctuation are defined as char literals, and will correspond to the code values of the symbols. Thus the values of
the enumerators are 44, 33, and 63, respectively in decimal, which also demonstrates that the values don’t have to be
in ascending sequence.

Here’s an example that demonstrates some of the things you can do with enumerations:

// Ex3_02.cpp
// Operations with enumerations
#include <iostream>
#include <iomanip>
using std::setw;

int main()
{
 enum class Day { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday }
 yesterday{ Day::Monday }, today{ Day::Tuesday },
 tomorrow{ Day::Wednesday };
 Day poets_day{ Day::Friday };

 enum class Punctuation : char { Comma = ',', Exclamation = '!', Question = '?' };
 Punctuation ch{ Punctuation::Comma };

 std::cout << "yesterday's value is " << static_cast<int>(yesterday)
 << static_cast<char>(ch) << " but poets_day's is " << static_cast<int>(poets_day)
 << static_cast<char>(Punctuation::Exclamation) << std::endl;

 today = Day::Thursday; // Assign a new ...
 ch = Punctuation::Question; // ... enumerator values
 tomorrow = poets_day; // Copy enumerator value

 std::cout << "Is today's value(" << static_cast<int>(today)
 << ") the same as poets_day(" << static_cast<int>(poets_day)
 << ")" << static_cast<char>(ch) << std::endl;

// ch = tomorrow; // Uncomment ...
// tomorrow = Friday; // ... any of these ...
// today = 6; // ... for an error.
}

The output is:

yesterday's value is 0, but poets_day's is 4!
Is today's value(3) the same as poets_day(4)?

I’ll leave you to figure out why. Note the commented statements at the end of main(). They are all illegal

operations. You should try them to see the compiler messages that result.

Chapter 3 ■ Working With Fundamental data types

70

Old-Style Enumerations
The enumerations I have just described make obsolete the old syntax for enumerations. These are defined without
using the class keyword. For example, the Day enumeration could be defined like this:

enum class Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

With this syntax, the enumerators do not have to be qualified by the type name, so you can write:

Day today {Tuesday};

Although type Day is a distinct type, the value of the today variable is implicitly convertible to an integer so
you can write it to a stream without converting it explicitly. All the enumerators can also be implicitly converted to
type int. At this point you may be thinking that all this is goodness, but it isn’t. The implicit convertibility of these
enumeration types means that using them is not type safe. Your code will be less error prone if you stick to enum class
enumeration types.

Synonyms for Data Types
You’ve seen how enumerations provide one way to define your own data types. The typedef keyword enables you to
specify your own data type name as an alternative to another type name. Using typedef, you can define the type name
BigOnes as being equivalent to the standard type long with the following statement:

typedef long BigOnes; // Defines BigOnes as a type alias

Of course, this isn’t defining a new type. This just defines BigOnes as an alternative name for type long. You could
define a variable mynum as type long with this statement:

BigOnes mynum {}; // Define & initialize as type long

There’s no difference between this definition and using the standard type name. You can still use the standard
type name as well as the alias but it’s hard to come up with a reason for using both.

There’s a newer syntax for defining an alias for a type name that uses the using keyword. For example, you can
define the type alias BigOnes like this:

using BigOnes = long; // Defines BigOnes as a type alias

Because you are just creating a synonym for a type that already exists, this may appear to be a bit superfluous.
This isn’t the case. A major use for this is to simplify code that involves complex type names. For example, a program
might involve a type name such as std::map<std::shared_ptr<Contact>, std::string>. This can make the code
look very obscure when the type is repeated often. You can avoid cluttering the code with this by defining a type alias:

using PhoneBook = std::map<std::shared_ptr<Contact>, std::string>;

Using PhoneBook in the code instead of the full type specification will make the code much more readable.
Another use for a type alias is to provide flexibility in the data types used by a program that may need to be run on a
variety of computers. Defining a type alias and using it throughout the code allows the actual type to be modified by
just changing the definition of the alias.

Chapter 3 ■ Working With Fundamental data types

71

The Lifetime of a Variable
All variables have a finite lifetime. They come into existence from the point at which you define them and at some
point they are destroyed — at the latest, when your program ends. How long a particular variable lasts is determined
by its storage duration. There are three different kinds of storage duration:

Variables defined within a block that are not static have •	 automatic storage duration. They exist
from the point at which they are defined until the end of the block, which is the closing brace.
They are referred to as automatic variables. Automatic variables are said to have local scope or
block scope. All the variables you have created so far have been automatic variables.

Variables defined using the •	 static keyword have static storage duration. They are called
static variables. Static variables exist from the point at which they are defined and continue in
existence until the program ends.

Variables for which you allocate memory at runtime have •	 dynamic storage duration. They exist
from the point at which you create them until you release their memory to destroy them. You’ll
learn how to create variables dynamically in Chapter 5.

Another property that variables have is scope. The scope of a variable is the part of a program in which the
variable name is valid. Within a variable’s scope, you can refer to it, set its value, or use it in an expression. Outside
of its scope, you can’t refer to its name. Any attempt to do so will result in a compiler error message. Note that
a variable may still exist outside of its scope, even though you can’t refer to it. You’ll see examples of this situation a
little later in this discussion.

Note ■ remember that the lifetime and scope of a variable are different things. lifetime is the period of execution
time over which a variable survives. scope is the region of program code over which the variable name can be used. it’s
important not to get these two ideas confused.

Positioning Variable Definitions
You have great flexibility in where you define variables. The most important consideration is what scope the variables
need to have. Beyond that, you should generally place a definition close to where the variable is first used. This makes
your code easier for another programmer to understand. Let’s look at variables where this is not the case.

Global Variables
You can define variables outside all of the functions in a program. Variables defined outside of all blocks and classes
are called globals and have global scope (which is also called global namespace scope). This means that they’re
accessible in all the functions in the source file following the point at which they’re defined. If you define them at the
beginning of a source file, they’ll be accessible throughout the file.

Global variables have static storage duration by default so they exist from the start of the program until execution
of the program ends. If you don’t initialize a global variable, it will be initialized with 0 by default. Initialization of
global variables takes place before the execution of main() begins, so they’re always ready to be used within any code
that’s within the variable’s scope.

Figure 3-4 shows the contents of a source file, Example.cpp and illustrates the extent of the scope of each variable
in the file.

Chapter 3 ■ Working With Fundamental data types

72

The variable value1 at the beginning of the file is defined at global scope, as is value4, which appears after the
definition of main(). They will be initialized with zero by default. Remember, only global variables have default initial
values, not automatic variables. The lifetime of global variables is from the beginning of program execution, to when
the program ends. Global variables have a scope that extends from the point at which they’re defined to the end of the
file. Even though value4 exists when execution starts, it can’t be referred to in main() because main() isn’t within its
scope. For main() to use value4, you would need to move the definition of value4 to the beginning of the file.

The local variable called value1 in function() will hide the global variable of the same name. If you use the
name value1 in the function, you are accessing the local automatic variable of that name. To access the global value1,
you must qualify it with the scope resolution operator, ::. Here’s how you could output the values of the local and
global variables that have the name value1:

 std::cout << "Global value1 = " << ::value1 << std::endl;
 std::cout << "Local value1 = " << value1 << std::endl;

Because global variables continue to exist for as long as the program is running, you might be wondering: “Why
not make all variables global and avoid this messing about with local variables that disappear?” This sounds attractive
at first, but there are serious disadvantages that completely outweigh any advantages. Real programs are composed
of a large number of statements, a significant number of functions, and a great many variables. Declaring all at global

Program file Example.cpp

long value1;

int main()
{
 int value2{ };
 . . .
 {
 int value3{ };
 . . .
 }
}

int value4;

int function(int)
{
 long value5{ };
 int value1{ };
 . . .

 }

value3

value2

value1
value5

value1

The arrows indicate the
scope of each variable
within the source file.

value4

Figure 3-4. Variable scope

Chapter 3 ■ Working With Fundamental data types

73

scope greatly magnifies the possibility of accidental, erroneous modification of a variable. It makes the job of naming
them sensibly quite intractable. Global variables occupy memory for the duration of program execution so the
program will require more memory than if you used local variables where the memory is reused. By keeping variables
local to a function or a block, you can be sure they have almost complete protection from external effects. They’ll only
exist and occupy memory from the point at which they’re defined to the end of the enclosing block, and the whole
development process becomes much easier to manage.

Here’s an example that shows aspects of global and automatic variables:

// Ex3_03.cpp
// Demonstrating scope, lifetime, and global variables
#include <iostream>
long count1 {999L}; // Global count1
double count2 {3.14}; // Global count2
int count3; // Global count3 - default intialization

int main()
{ // Function scope starts here
 int count1 {10}; // Hides global count1
 int count3 {50}; // Hides global count3
 std::cout << "Value of outer count1 = " << count1 << std::endl;
 std::cout << "Value of global count1 = " << ::count1 << std::endl;
 std::cout << "Value of global count2 = " << count1 << std::endl;

 { // New block scope starts here...
 int count1 {20}; // This is a new variable that hides the outer count1
 int count2 {30}; // This hides global count2
 std::cout << "\nValue of inner count1 = " << count1 << std::endl;
 std::cout << "Value of global count1 = " << ::count1 << std::endl;
 std::cout << "Value of inner count2 = " << count2 << std::endl;
 std::cout << "Value of global count2 = " << ::count2 << std::endl;

 count1 = ::count1 + 3; // This sets inner count1 to global count1+3
 ++::count1; // This changes global count1
 std::cout << "\nValue of inner count1 = " << count1 << std::endl;
 std::cout << "Value of global count1 = " << ::count1 << std::endl;
 count3 += count2; // Increments outer count3 by inner count2;
 } // ...and ends here.

 std::cout << "\nValue of outer count1 = " << count1 << std::endl
 << "Value of outer count3 = " << count3 << std::endl;
 std::cout << "Value of global count3 = " << ::count3 << std::endl;

 std::cout << count2 << std::endl; // This is global count2
} // Function scope ends here

Chapter 3 ■ Working With Fundamental data types

74

The output from this example is:

Value of outer count1 = 10
Value of global count1 = 999
Value of global count2 = 3.14

Value of inner count1 = 20
Value of global count1 = 999
Value of inner count2 = 30
Value of global count2 = 3.14

Value of inner count1 = 1002
Value of global count1 = 1000

Value of outer count1 = 10
Value of outer count3 = 80
Value of global count3 = 0
3.14

I’ve duplicated names in this example to illustrate what happens — it’s not a good approach to programming.

Doing this kind of thing in a real program is confusing and unnecessary, and results in code that is error prone.
There are three variables defined at global scope, count1, count2, and count3. These exist as long as the

program continues to execute, but the names will be masked by local variables with the same name. The first two
statements in main() define two integer variables, count1 and count3, with initial values of 10 and 50, respectively.
Both variables exist from this point until the closing brace at the end of main(). The scope of these variables also
extends to the closing brace at the end of main(). Because the local count1 hides the global count1, you must use the
scope resolution operator to access the global count1 in the output statement in the first group of output lines. Global
count2 is accessible just by using its name.

The second opening brace starts a new block. count1 and count2, are defined within this block with values 20
and 30, respectively. count1 here is different from the count1 in the outer block, which still exists, but its name is
masked by the second count1 and is not accessible here; global count1 is also masked but is accessible using the
scope resolution operator. The global count2 is masked by the local variable with that name. Using the name count1
following the definition in the inner block refers to the count1 defined in that block.

The first line of the second block of output is the value of the count1 defined in the inner scope—that is, inside
the inner braces. If it was the outer count1, the value would be 10. The next line of output corresponds to the global
count1. The following line of output contains the value of local count2 because you are using just its name. The last
line in this block outputs global count2 by using the :: operator.

The statement assigning a new value to count1 applies to the variable in the inner scope, because the outer
count1 is hidden. The new value is the global count1 value plus 3. The next statement increments the global count1
and the following two output statements confirm this. The count3 that was defined in the outer scope is incremented
in the inner block without any problem because it is not hidden by a variable with the same name. This shows that
variables defined in an outer scope are still accessible in an inner scope as long as there is no variable with the same
name defined in the inner scope.

After the brace ending the inner scope, count1 and count2 that are defined in the inner scope cease to exist. Their
lifetime has ended. Local count1 and count3 still exist in the outer scope, and their values are displayed in the first two
lines in the last group of output. This demonstrates that count3 was indeed incremented in the inner scope. The last
line of output corresponds to the global count3 value.

Chapter 3 ■ Working With Fundamental data types

75

Static Variables
It’s conceivable that you might want to define a variable that you can access locally within a block, and that continues
to exist after exiting the block in which it is defined. In other words, you need a variable with block scope, but with
static storage duration. The static keyword enables you to do just this, and the value of it will become more apparent
when you learn about functions in Chapter 8.

A variable that you specify as static will continue to exist for the life of a program, even though it’s defined
within a block and is only available from within that block (or its sub-blocks). It still has block scope, but it has static
storage duration. To define a static variable called count, you would write

static int count;

Variables with static storage duration are always initialized to zero by default if you don’t provide an initial value
so count will be initialized with 0. Remember that this is not the case with automatic variables. If you don’t initialize
an automatic variable, it will contain a junk value.

External Variables
You saw in Chapter 1 that programs usually consist of several source files. In a program that consists of more than one
source file, you may need to access a global variable in one source file that is defined in another. The extern keyword
allows you to do this. Suppose you have a program file that contains the following:

// File1.cpp
int shared_value {100}; // Global variable

// Other program code ...

When code in another source file, File2.cpp, needs to access the global shared_value variable that is defined in
File1.cpp, you can arrange for this as follows:

// File2.cpp
extern int shared_value; // Declare variable to be external

int main()
{
 int local_value {shared_value + 10};
 // Plus other code...
}

The first statement in File2.cpp declares shared_value to be external, so this is a declaration of the variable, not
a definition. The reference to shared_value in main() is to the variable defined in the first file, File1.cpp. The linker
establishes the connection between the extern declaration for shared_value in File2.cpp and the global variable
definition in File1.cpp.

You are not defining a variable in an extern statement; you are simply stating that it is defined elsewhere so
you must not specify an initializing value. If you do specify an initial value, the extern keyword will be ignored. For
example, suppose you wrote this statement in File2.cpp:

extern int shared_value {10); // Wrong! Not an external declaration.

The shared_value variable here is a new global variable defined in File2.cpp, because the extern keyword is
ignored as a consequence of the initialization.

Chapter 3 ■ Working With Fundamental data types

76

Summary
This chapter introduced operator precedence and associativity. You don’t need to memorize this for all operators but
you need to be conscious of it when writing code. Always use parentheses if you are unsure about precedence. The
type-safe enumerations type are very useful for representing fixed sets of values, especially those that have names,
such as days of the week or suits in a pack of playing cards. The bitwise operators are necessary when you are working
with flags - single bits that signify a state. These arise surprisingly relatively - when dealing with file input and output
for example. The bitwise operators are also essential when you are working with values packed into a single variable.
The essentials of what you’ve learned in this chapter are:

By default, a variable defined within a block is automatic, which means that it only exists •	
from the point at which it is defined to the end of the block in which its definition appears, as
indicated by the closing brace of the block that encloses its definition.

You can specify a variable as •	 static, in which case it continues to exist for the life of the
program. However, it can only be accessed within the scope in which it was defined. If you
don’t initialize a static variable, it will be initialized to 0 by default.

Variables can be defined outside of all the blocks in a program, in which case they have global •	
namespace scope and static storage duration by default. Variables with global scope are
accessible from anywhere within the program file that contains them, following the point at
which they’re defined, except where a local variable exists with the same name as the global
variable. Even then, they can still be reached by using the scope resolution operator (::).

The •	 typedef keyword allows you to define aliases for other types. You can also use the using
keyword to define type aliases.

The •	 extern keyword enables you to identify the name of a global variable that is defined in
another source file.

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back
over the chapter for help. if you’re still stuck, you can download the solutions from the apress website
(www.apress.com/source-code/), but that really should be a last resort.

exercise 3-1. Create a program that prompts for input of an integer and store it as a
type unsigned int. invert all the bits in the value and store the result. output the original
value, the value with the bits inverted, and the inverted value plus 1, each in hexadecimal
representation on one line, and in decimal representation on the line below. the output values
on the two lines should be right aligned in a suitable field width, hexadecimal values should
have leading zeroes so 8 hexadecimal digits always appear. Corresponding values on the two
output lines should align.

exercise 3-2. Write a program to calculate how many square boxes can be contained in a
single layer on a rectangular shelf, with no overhang. the dimensions of the shelf in feet and
the dimension of a side of the box in inches are read from the keyboard. use variables of type
double for the length and depth of the shelf and type int for the length of the side of a box.
define and initialize an integer constant to convert from feet to inches. Calculate the number
of boxes that the shelf can hold in a single layer type long and output the result.

www.apress.com/source-code/

Chapter 3 ■ Working With Fundamental data types

77

exercise 3-3. Without running it, can you work out what the following code snippet will
produce as output?

unsigned int k {430U};
unsigned int j {(k >> 4) & ~(~0 << 3)};
std::cout << j << std::endl;

exercise 3-4. Write a program to read four characters from the keyboard and pack them into
a single integer variable. display the value of this variable as hexadecimal. unpack the 4
bytes of the variable and output them in reverse order, with the low-order byte first.

exercise 3-5. Write a program that prompts for two integer values to be entered and store
them in integer variables, a and b say. swap the values of a and b without using a third
variable. output the values of a and b.

exercise 3-6. Write a program that defines an enum class of type Color where the enumerators
are Red, Green, Yellow, Purple, Blue, Black, and White. define the type for
enumerators as an unsigned integer type and arrange for the integer value of each
enumerator to be the rgB combination for the color it represents. Create variables of type
Color initialized with enumerators for yellow, purple, and green. access the enumerator value
and extract and output the rgB components as separate values.

79

Chapter 4

Making Decisions

Decision-making is fundamental to any kind of computer programming. It’s one of the things that differentiates a
computer from a calculator. It means altering the sequence of execution depending on the result of a comparison. In
this chapter, you’ll explore how to make choices and decisions. This will allow you to validate program input and write
programs that can adapt their actions depending on the input data. Your programs will be able to handle problems
where logic is fundamental to the solution. By the end of this chapter, you will have learned:

How to compare data values•	

How to alter the sequence of program execution based on the result of a comparison•	

What logical operators and expressions are, and how you apply them•	

How to deal with multiple-choice situations•	

Comparing Data Values
To make decisions, you need a mechanism for comparing things, and there are several kinds of comparisons. For
instance, a decision such as, “If the traffic signal is red, stop the car,” involves a comparison for equality. You compare
the color of the signal with a reference color, red, and if they are equal, you stop the car. On the other hand, a decision
such as, “If the speed of the car exceeds the limit, slow down,” involves a different relationship. Here you check
whether the speed of the car is greater than the current speed limit. Both of these comparisons are similar in that they
result in one of two values: they are either true or false. This is precisely how comparisons work in C++.

You can compare data values using some new operators called relational operators. Table 4-1 lists the six
operators for comparing two values.

Table 4-1. Relational Operators

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

Chapter 4 ■ Making DeCisions

80

Caution ■ the equal to operator, ==, has two successive equal signs. it’s a very common mistake to use one equal
sign instead of two to compare for equality. this will not necessarily result in a warning message from the compiler
because the expression may be valid but just not what you intended, so you need to take particular care to avoid this error.

Each of these operators compares two values and results in a value of type bool; there are only two possible
bool values, true and false. true and false are keywords and are literals of type bool. They are sometimes called
Boolean literals (after George Boole, the father of Boolean algebra).

If you cast true to an integer type, the result will be 1; casting false to an integer results in 0. You can also
convert numerical values to type bool. Zero converts to false, and any nonzero value converts to true. When you
have a numerical value where a bool value is expected, the compiler will insert an implicit conversion to convert the
numerical value to type bool. This is very useful in decision-making code.

You create variables of type bool just like other fundamental types. Here’s an example:

bool isValid {true}; // Define, and initialize a logical variable

This defines the variable isValid as type bool with an initial value of true.

Applying the Comparison Operators
You can see how comparisons work by looking at a few examples. Suppose you have integer variables i and j, with
values 10 and –5 respectively. Consider the following expressions:

i > j i != j j > -8 i <= j + 15

All of these expressions evaluate to true. Note that in the last expression, the addition, j + 15, executes first
because + has a higher precedence than <=.

You could store the result of any of these expressions in a variable of type bool. For example:

isValid = i > j;

If i is greater than j, true is stored in isValid, otherwise false is stored. You can compare values stored in
variables of character types, too. Assume that you define the following variables:

char first {'A'};
char last {'Z'};

You can write comparisons using these variables:

first < last 'E' <= first first != last

Here you are comparing code values. The first expression checks whether the value of first, which is 'A', is less
than the value of last, which is 'Z'. This is always true. The result of the second expression is false, because the
code value for 'E' is greater than the value of first. The last expression is true, because 'A' is definitely not equal
to 'Z'.

Chapter 4 ■ Making DeCisions

81

You can output bool values just as easily as any other type —here’s an example that shows how they look
by default:

// Ex4_01.cpp
// Comparing data values
#include <iostream>

int main()
{
 char first {}; // Stores the first character
 char second {}; // Stores the second character

 std::cout << "Enter a character: ";
 std::cin >> first;

 std::cout << "Enter a second character: ";
 std::cin >> second;

 std::cout << "The value of the expression " << first << '<' << second
 << " is: " << (first < second) << std::endl;
 std::cout << "The value of the expression " << first << "==" << second
 << " is: " << (first == second) << std::endl;
}

Here’s an example of output from this program with my compiler:

Enter a character: ?
Enter a second character: H
The value of the expression ?<H is: 1
The value of the expression ?==H is: 0

The prompting for input and reading of characters from the keyboard is standard stuff that you have seen before.

Note that the parentheses around the comparison expressions in the output statement are necessary here. If you
omit them, the expressions don’t mean what you think they mean and the compiler outputs an error message. The
expressions compare the first and second characters that the user entered. From the output you can see that the value
true is displayed as 1, and the value false as 0. These are the default representations for true and false. You can
make bool values output as true and false using the std::boolalpha manipulator. Just add this statement before any
of the output statements:

std::cout << std::boolalpha;

If you compile and run the example again, you get bool values displayed as true or false. To return output of
bool values to the default setting, insert the std::noboolalpha manipulator into the stream.

Chapter 4 ■ Making DeCisions

82

Comparing Floating Point Values
Of course, you can also compare floating-point values. Let’s consider some slightly more complicated numerical
comparisons. First, define variables with the following statements:

int i {-10};
int j {20};
double x {1.5};
double y {-0.25E-10};

Now consider the following logical expressions:

-1 < y j < (10 - i) 2.0*x >= (3 + y)

The comparison operators are all of lower precedence than the arithmetic operators so none of the parentheses
is strictly necessary but they do help make the expressions clearer. The first comparison evaluates to true, because y
has a very small negative value (–0.000000000025), which is greater than –1. The second comparison results in false,
because the expression 10 - i has the value 20, which is the same as j. The third expression is true, because 3 + y is
slightly less than 3.

You can use relational operators to compare values of any of the fundamental types. When you learn about classes
you’ll see how you can arrange for the comparison operators to work with types that you define, too. All you need now
is a way to use the result of a comparison to modify the behavior of a program. Let’s look into that immediately.

The if Statement
The basic if statement enables you to choose to execute a single statement, or a block of statements when a given
condition is true. Figure 4-1 illustrates how this works.

The statement or block of statements that follows
the if is only executed if condition is true.

condition
is true?

Statement
or Block of
Statements

Next Statement

yes

no
if(condition)
statement;

Next Statement;

if(condition)
{
 statement;
 ...
}
Next Statement;

or

Figure 4-1. Logic of the simple if statement

Chapter 4 ■ Making DeCisions

83

Here is an example of an if statement that tests the value of a char variable, letter:

if(letter == 'A')
 std::cout << "The first capital, alphabetically speaking.\n"; // Only if letter equals 'A'

std::cout << "This statement always executes.\n";

If letter has the value 'A', the condition is true and these statements produce the following output:

The first capital, alphabetically speaking.
This statement always executes.

If the value of letter is not equal to 'A', only the second line appears in the output. You put the condition to be

tested between parentheses immediately following the keyword, if. Notice the position of the semicolon (;) . It goes
after the statement following if and the condition between the parentheses. A semicolon (;) must not appear after
the condition in parentheses, because if and the condition are bound with the statement or block that follows. They
cannot exist by themselves.

The statement following the if is indented to indicate that it only executes as a result of the condition being true.
The indentation is not necessary for the program to compile, but it does help you recognize the relationship between
the if condition and the statement that depends on it. Sometimes, you will see simple if statements written on a
single line:

if(letter == 'A') std::cout << "The first capital, alphabetically speaking\n.";

You could extend code fragment to change the value of letter if it contains the value 'A':

if(letter == 'A')
{
 std::cout << "The first capital, alphabetically speaking.\n";
 letter = 'a';
}

std::cout << "This statement always executes.\n";

All the statements in the block will be executed when the if condition is true. Without the braces, only the
first statement would be the subject of the if, and the statement assigning the value 'a' to letter would always be
executed. Of course, each of the statements in the block are terminated by a semicolon but no semicolon is necessary
after the closing brace of the block. You can have as many statements as you like within the block; you can even have
nested blocks. Because letter has the value 'A', both statements within the block will be executed so its value will be
changed to 'a' after the same message as before is displayed. Neither of these statements execute if the condition is
false. Of course, the statement following the block always executes.

Let’s try out an if statement for real. This program will range check the value of an integer entered from the keyboard:

// Ex4_02.cpp
// Using an if statement
#include <iostream>

int main()
{
 std::cout << "Enter an integer between 50 and 100: ";

Chapter 4 ■ Making DeCisions

84

 int value {};
 std::cin >> value;

 if(value < 50)
 std::cout << "The value is invalid - it is less than 50." << std::endl;

 if(value > 100)
 std::cout << "The value is invalid - it is greater than 100." << std::endl;

 std::cout << "You entered " << value << std::endl;
}

The output depends on the value that you enter. For a value between 50 and 100, the output will be something
like the following:

Enter an integer between 50 and 100: 77
You entered 77

Outside the range 50 to 100, a message indicating that the value is invalid will precede the output showing the

value. If it is below 50, the output will be:

Enter an integer between 50 and 100: 27
The value is invalid - it is less than 50.
You entered 27

If the value is greater than 100, the output will be similar.
After prompting for, and reading a value, the first if statement checks whether the value entered is below 50:

if(value < 50)
 std::cout << "The value is invalid – it is less than 50." << std::endl;

The output statement is executed only when the if condition is true, which is when value is less than 50. The
next if statement checks the upper limit in essentially the same way and outputs a message when it is exceeded.
Finally the last output statement is always executed and this outputs the value. Of course, checking for the upper limit
being exceeded when the value is below the lower limit is superfluous. You could arrange for the program to end
immediately if the value entered is below the lower limit, like this:

if(value < 50)
{
 std::cout << "The value is invalid – it is less than 50." << std::endl;
 return 0; // Ends the program
}

You could do the same with the if statement that checks the upper limit. Then you would only get the last output
statement executed when the value entered is within bounds. You can have as many return statements in a function
as you need although if there are a lot, it may be sign that you could improve the code by doing things differently.

Chapter 4 ■ Making DeCisions

85

Nested if Statements
The statement that executes when the condition in an if statement is true can itself be an if statement. This
arrangement is called a nested if. The condition of the inner if is only tested if the condition for the outer if is true.
An if that is nested inside another can also contain a nested if. You can nest ifs to whatever depth you require.
I’ll demonstrate the nested if with an example that tests whether a character entered is alphabetic. Although this
example is a perfectly reasonable use of a nested if, it has some built-in assumptions that would be best avoided; see
if you can spot the problem:

// Ex4_03.cpp
// Using a nested if
#include <iostream>

int main()
{
 char letter {}; // Store input here
 std::cout << "Enter a letter: "; // Prompt for the input
 std::cin >> letter;

 if(letter >= 'A')
 { // Letter is 'A' or larger
 if(letter <= 'Z')
 { // letter is 'Z' or smaller
 std::cout << "You entered an uppercase letter." << std::endl;
 return 0;
 }
 }

 if(letter >= 'a') // Test for 'a' or larger
 if(letter <= 'z')
 { // letter is >= 'a' and <= 'z'
 std::cout << "You entered a lowercase letter." << std::endl;
 return 0;
 }
 std::cout << "You did not enter a letter." << std::endl;
}

Here’s some typical output:

Enter a letter: H
You entered an uppercase letter.

After creating the char variable letter with initial value zero, the program prompts you to enter a letter. The if

statement that follows checks whether the character entered is 'A' or larger. If letter is greater than or equal to 'A',
the nested if that checks for the input being 'Z' or less executes. If it is 'Z' or less, you conclude that it is an uppercase
letter and display a message. You are done at this point so you execute a return statement to end the program.

The next if, using essentially the same mechanism as the first, checks whether the character entered is
lowercase, displays a message, and returns. You probably noticed that the test for a lowercase character contains only
one pair of braces, whereas the uppercase test has two. The code block between the braces belongs to the inner if
here. In fact, both sets of statements work as they should — remember that if(condition){...} is effectively a single

Chapter 4 ■ Making DeCisions

86

statement and does not need to be enclosed within more braces. However, the extra braces do make the code clearer,
so it’s a good idea to use them. Finally, like the uppercase test, this code contains implicit assumptions about the order
of codes for lowercase letters.

The output statement following the last if block only executes when the character entered is not a letter, and it
displays a message to that effect. You can see that the relationship between the nested ifs and the output statement is
much easier to follow because of the indentation. Indentation is generally used to provide visual cues to the logic of a
program.

These nested ifs have two built-in assumptions about the codes that are used to represent alphabetic characters.
First, they assume that the letters A to Z are represented by a set of codes where the code for 'A' is the minimum
and the code for 'Z' is the maximum. Second, they assume that the codes for the uppercase letters are contiguous,
so no nonalphabetic characters lie between the codes for 'A' and 'Z'. It is not a good idea to build these kinds of
assumptions into your code, because it limits the portability of your program. You’ll see how you can avoid making
these assumptions in a moment.

This program illustrates how a nested if works, but it is not a good way to test for characters. Using the Standard
Library, you can write the program so that it works independently of the character coding.

Code-Neutral Character Handling
The locale Standard Library header provides a wide range of functions for classifying and converting characters.
These functions are listed in Table 4-2. In each case, you pass the function a variable or a literal that is the character
to be tested. The parameter is specified for each function in the table as type int. The compiler will arrange for the
character that you pass to the function to be converted to type int if necessary.

Table 4-2. Functions for Classifying Characters

Function Operation

isupper(int c) Tests whether or not c is an uppercase letter, by default 'A' to 'Z'.

islower(int c) Tests whether or not c is a lowercase letter, by default 'a' to 'z'.

isalpha(int c) Tests whether or not c is an upper- or lowercase letter.

isdigit(int c) Tests whether or not c is a digit, 0 to 9.

isxdigit(int c) Tests whether or not c is a hexadecimal digit, 0 to 9, 'a' to 'f', or 'A' to 'F'.

isalnum(int c) Tests whether or not c is a letter or a digit (i.e., an alphanumeric character).

isspace(int c) Tests whether or not c is whitespace, which can be a space, a newline, a carriage return, a
form feed, or a horizontal or vertical tab.

iscntrl(int c) Tests whether or not c is a control character.

isprint(int c) Tests whether or not c is a printable character, which can be an upper- or lowercase letter,
a digit, a punctuation character, or a space.

isgraph(int c) Tests whether or not c is a graphic character, which is any printable character other than
a space.

ispunct(int c) Tests whether or not c is a punctuation character, which is any printable character that’s not
a letter or a digit. This will be either a space or one of the following:

_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " '.

Chapter 4 ■ Making DeCisions

87

Each of these functions returns a value of type int. The value will be non-zero (true) if the character is of the type
being tested for, and 0 (false) if it isn’t. You may be wondering why these functions don’t return a bool value, which
would make much more sense. The reason they don’t return a bool value is that they originate from the C standard
library and predate type bool in C++.

The locale header provides the two functions shown in Table 4-3 for converting between upper- and lowercase
characters. The result will be returned as type int so you need to explicitly cast it if you want to store it as type char
for instance.

Table 4-3. Functions for Converting Characters

Function Operation

tolower(int c) If c is uppercase, the lowercase equivalent is returned; otherwise c is returned.

toupper(int c) If c is lowercase, the uppercase equivalent is returned; otherwise c is returned.

You could use these functions to implement the previous example without any assumptions about the character
coding. The character codes in different environments are always taken care of by the standard library functions. They
also make the code simpler:

if(isupper(letter))
{
 std::cout << "You entered an uppercase letter." << std::endl;
 return 0;
}

if(islower(letter))
{
 std::cout << "You entered a lowercase letter." << std::endl;
 return 0;
}

Note that all these character testing functions, except for isdigit() and isxdigit(), test the argument in the
context of the current locale. A locale determines the national or cultural character set and data representations such
as currency and dates that are in effect.

The locale header provides for much more extensive capabilities for working with locale-dependent data,
including a set of character classification functions in the std namespace with names the same as the functions I have
described. These functions require a second argument that is a locale object that identifies the local to be in effect for
the function; they also return a bool value. A detailed discussion of locales and the locale type is outside the scope of
this book.

Note ■ the cctype and the cwctype headers that are inherited from C are also part of the C++ standard Library. the
cctype header declares the same classification and conversion functions that i have described for the locale header.
the cwctype header declares an equivalent set of functions with slightly different names that work with characters of
type wchar_t.

Chapter 4 ■ Making DeCisions

88

The if-else Statement
The if statement that you have been using executes a statement or block if the condition specified is true. Program
execution then continues with the next statement in sequence. Of course, you may want to execute one block
of statements when the condition is true, and another set when the condition is false. An extension of the if
statement called an if-else statement allows this.

The if-else combination provides a choice between two options. Figure 4-2 shows its general logic.

if(condition)
{
 // Statements when condition is true
}
else
{
 // Statements when condition is false
}
// Next Statement

condition
is true?

Statement
or Block of

Statements for
true

Statement
or Block of

Statements for
false

yes

no

Next Statement

One of the two blocks in an if-else statement is always executed.

Figure 4-2. The if-else statement logic

The flowchart in Figure 4-2 shows the sequence in which statements execute, depending on whether the if
condition is true or false. You can always use a block of statements wherever you can put a single statement. This
allows any number of statements to be executed for each option in an if-else statement.

You could write an if-else statement that would report whether the character stored in the char variable letter
was alphanumeric:

if(std::isalnum(letter))
{
 std::cout << "It is a letter or a digit." << std::endl;
}
else
{
 std::cout << "It is neither a letter nor a digit." << std::endl;
}

This uses the isalnum() function from the locale header you saw earlier. If letter contains a letter or a digit,
isalnum() returns a positive integer. This will be implicitly converted to a bool value, which will be true, so the first
message is displayed. If letter contains other than a letter or a digit, isalnum() returns 0, which converts to false so
the output statement after else executes. The braces are not mandatory here because they contain single statements
but it’s clearer if you put them in. The block following the else keyword is written without a semicolon appended,

Chapter 4 ■ Making DeCisions

89

just like the if part of the statement. The indentation in the blocks is a visible indicator of the relationship between
various statements. You can clearly see which statement is executed to produce a true result and which is executed
for false. You should always indent the statements in your programs to show their logical structure.

Here’s an example of using if-else with a numerical value:

// Ex4_04.cpp
// Using the if-else
#include <iostream>

int main()
{
 long number {}; // Stores input
 std::cout << "Enter an integer less than 2 billion: ";
 std::cin >> number;

 if(number % 2L) // Test remainder after division by 2
 { // Here if remainder is 1
 std::cout << "Your number is odd." << std::endl;
 }
 else
 { // Here if remainder is 0
 std::cout << "\nYour number is even." << std::endl;
 }
}

Here’s an example of output from this program:

Enter an integer less than 2 billion: 123456
Your number is even.

After reading the input into number, the program tests this value in the if condition. This is an expression that

produces the remainder that results from dividing number by 2. The remainder will be 1 if number is odd, or 0 if it even,
and these values convert to true and false respectively. Thus if the remainder is 1, the if condition is true and the
statement in the block immediately following the if executes. If the remainder is 0, the if condition is false, so the
statement in the block following the else keyword executes.

You could specify the if condition as number % 2L == 0L, in which case the sequence of blocks would need to be
reversed because this expression evaluates to true when number is even.

Nested if-else Statements
You have already seen that you can nest if statements within if statements. You have no doubt anticipated that you
can also nest if-else statements within ifs, ifs within if-else statements, and if-else statements within other
if-else statements. This provides you with plenty of versatility (and considerable room for confusion), so let’s look at
a few examples. Taking the first case first, an example of an if-else nested within an if might look like the following:

if(coffee == 'y')
 if(donuts == 'y')
 std::cout << "We have coffee and donuts." << std::endl;
 else
 std::cout << "We have coffee, but not donuts." << std::endl;

Chapter 4 ■ Making DeCisions

90

This would be better written with braces but it’s easier to make the point I want to make without. coffee and
donuts are variables of type char that can have the value 'y' or 'n'. The test for donuts only executes if the result of
the test for coffee is true, so the messages reflect the correct situation in each case. The else belongs to the if that
tests for donuts. However, it is easy to get this confused.

If you write much the same thing, but with incorrect indentation, you can be trapped into the wrong conclusion
about what happens here:

if(coffee == 'y')
 if(donuts == 'y')
 std::cout << std::endl
 << "We have coffee and donuts.";
else // This is indented incorrectly...
 std::cout << "We have no coffee..." << std::endl; // ...Wrong!

The indentation now misleadingly suggests that this is an if nested within an if-else, which is not the case.
The first message is correct, but the output as a consequence of the else executing is quite wrong. This statement
only executes if the test for coffee is true, because the else belongs to the test for donuts, not the test for coffee.
This mistake is easy to see here, but with larger and more complicated if structures, you need to keep in mind the
following rule about which if owns which else.

An else always belongs to the nearest preceding if that’s not already spoken for by another else.
The potential for confusion here is known as the dangling else problem. Braces will always make the situation

clearer:

if(coffee == 'y')
{
 if(donuts == 'y')
 {
 std::cout << "We have coffee and donuts." << std::endl;
 }
 else
 {
 std::cout << "We have coffee, but not donuts." << std::endl;
 }
}

Now it’s absolutely clear. The else definitely belongs to the if that is checking for donuts.

Understanding Nested ifs
Now that you know the rules, understanding an if nested within an if-else should be easy:

if(coffee == 'y')
{
 if(donuts == 'y')
 std::cout << "We have coffee and donuts." << std::endl;
}
else if(tea == 'y')
{
 std::cout << "We have no coffee, but we have tea." << std::endl;
}

Chapter 4 ■ Making DeCisions

91

Notice the formatting of the code here. When an else block is another if, writing else if on one line is an
accepted convention. The braces enclosing the test for donuts are essential. Without them the else would belong to
the if that’s looking out for donuts. In this kind of situation, it is easy to forget to include the braces and thus create an
error that may be hard to find. A program with this kind of error compiles without a problem, as the code is correct.
It may even produce the right results some of the time. If you removed the braces in this example, you’d get the right
results only as long as coffee and donuts were both 'y' so that the check for tea wouldn’t execute.

Nesting if-else statements in other if-else statements can get very messy, even with just one level of nesting.
Let’s beat the coffee and donuts analysis to death by using it again:

if(coffee == 'y')
 if(donuts == 'y')
 std::cout << "We have coffee and donuts."
 << std::endl;
 else
 std::cout << "We have coffee, but not donuts."
 << std::endl;
 else if(tea == 'y')
 std::cout << "We have no coffee, but we have tea, and maybe donuts..."
 << std::endl;
 else
 std::cout << "No tea or coffee, but maybe donuts..."
 << std::endl;

The logic here doesn’t look quite so obvious, even with the correct indentation. Braces aren’t necessary, as the
rule you saw earlier will verify, but it would look much clearer if you included them:

if(coffee == 'y')
{
 if(donuts == 'y')
 {
 std::cout << "We have coffee and donuts." << std::endl;
 }
 else
 {
 std::cout << "We have coffee, but not donuts." << std::endl;
 }
}
else
{
 if(tea == 'y')
 {
 std::cout << " We have no coffee, but we have tea, and maybe donuts..."
 << std::endl;
 }
 else
 {
 std::cout << "No tea or coffee, but maybe donuts..." << std::endl;
 }
}

There are much better ways of dealing with this kind of logic. If you put enough nested ifs together, you can
almost guarantee a mistake somewhere. The next section will help to simplify things.

Chapter 4 ■ Making DeCisions

92

Logical Operators
As you have seen, using ifs where you have two or more related conditions can be cumbersome. You have tried your
iffy talents on looking for coffee and donuts, but in practice, you may want to check much more complex conditions.
For instance, you could be searching a personnel file for someone who is over 21, under 35, female, has a college
degree, is unmarried, and who speaks Hindi or Urdu. Defining a test for this could involve the mother of all ifs.

The logical operators provide a neat and simple solution. Using logical operators, you can combine a series of
comparisons into a single expression so that you need just one if, almost regardless of the complexity of the set of
conditions. What’s more, you won’t have trouble determining which one to use because there are just the three shown
in Table 4-4.

Table 4-4. Logical Operators

Operator Description

&& Logical AND

|| Logical OR

! Logical negation (NOT)

The first two, && and ||, are binary operators that combine two operands of type bool and produce a result of type
bool. The third operator, !, is unary, so it applies to a single operand of type bool and produces a bool result. In the
following pages I’ll explain first how each of these is used, then I’ll demonstrate them in an example. It’s important not
to confuse these with the bitwise operators that operate on the bits within integer operands. These logical operators
only apply to operands of type bool.

Logical AND
You use the AND operator, &&, where you have two conditions that must both be true for a true result. For example,
you want to be rich and healthy. Earlier, to determine whether a character was an uppercase letter, the value had to
be both greater than or equal to 'A' and less than or equal to 'Z'. The && operator only produces a true result if both
operands are true. If either or both operands are false, then the result is false. Here’s how you could test a char
variable, letter, for an uppercase letter using the && operator:

if(letter >= 'A' && letter <= 'Z')
{

std::cout << "This is an uppercase letter." << std::endl;
}

The output statement executes only if both of the conditions combined by && are true. No parentheses are
necessary in the expression because the precedence of the comparison operators is higher than that of &&. As usual,
you’re free to put parentheses in if you want. You could write the statement as:

if((letter >= 'A') && (letter <= 'Z'))
{
 std::cout << "This is an uppercase letter." << std::endl;
}

Now there’s no doubt that the comparisons will be evaluated first.

Chapter 4 ■ Making DeCisions

93

Logical OR
The OR operator, ||, applies when you want a true result when either or both of the operands are true. The result is
false only when both operands are false.

For example, you might be considered creditworthy enough for a bank loan if your income was at least $100,000 a
year, or if you had $1,000,000 in cash. This could be tested like this:

if(income >= 100000.00 || capital >= 1000000.00)
{
 std::cout << "Of course, how much do you want to borrow?" << std::endl;
}

The response emerges when either or both of the conditions are true. (A better response might be, “Why do you
want to borrow?” It’s strange how banks will only lend you money when you don’t need it.)

Logical Negation
The third logical operator, !, applies to single bool operand and inverts its value. So, if the value of a bool variable,
test, is true, then !test is false; if test is false, then !test results in the value true. For example, suppose x has
the value 10. The expression !(x > 5) evaluates to false, because x>5 is true.

You could also express a well-known assertion of Charles Dickens using the ! operator; if
!(income>expenditure) is true, the result is misery — at least, as soon as the bank starts bouncing your checks.

You can apply all the logical operators to any expressions that evaluate to true or false. Operands can be
anything from a single bool variable to a complex combination of comparisons and bool variables.

You can combine conditional expressions and logical operators to any degree to which you feel comfortable. This
example implements a questionnaire to decide whether a person is a good loan risk:

// Ex4_06.cpp
// Combining logical operators for loan approval
#include <iostream>

int main()
{
 int age {}; // Age of the prospective borrower
 int income {}; // Income of the prospective borrower
 int balance {}; // Current bank balance

// Get the basic data for assessing the loan
 std::cout << "Please enter your age in years: ";
 std::cin >> age;
 std::cout << "Please enter your annual income in dollars: ";
 std::cin >> income;
 std::cout << "What is your current account balance in dollars: ";
 std::cin >> balance;

Chapter 4 ■ Making DeCisions

94

 // We only lend to people who over 21 years of age,
 // who make over $25,000 per year,
 // or have over $100,000 in their account, or both.
 if(age >= 21 && (income > 25000 || balance > 100000))
 {
 // OK, you are good for the loan - but how much?
 // This will be the lesser of twice income and half balance
 int loan {}; // Stores maximum loan amount
 if(2*income < balance/2)
 {
 loan = 2*income;
 }
 else
 {
 loan = balance/2;
 }
 std::cout << "\nYou can borrow up to $" << loan << std::endl;
 }
 else
 { // No loan for you...
 std::cout << "\nUnfortunately, you don't qualify for a loan." << std::endl;
 }
}

Here’s some sample output:

Please enter your age in years: 25
Please enter your annual income in dollars: 28000
What is your current account balance in dollars: 185000

You can borrow up to $56000

The interesting bit is the if statement that determines whether or not a loan will be granted. The if condition is

age >= 21 && (income > 25000 ||balance > 100000)

This condition requires that the applicant’s age be at least 21, and that either their income is than $25,000, or
their account balance is greater than $100,000. The parentheses around the expression (income > 25000 || balance
> 100000) are necessary to ensure that the result of ORing the income and balance conditions together is ANDed with
the result of the age test. Without the parentheses, the age test would be ANDed with the income test, and the result
would be ORed with the balance test. This is because && has a higher precedence than ||, as you can see from the
table back in Chapter 3. Without the parentheses, the condition would have allowed an 8-year-old with a balance over
$100,000 to get a loan. That’s not what was intended. Banks never lend to minors or mynahs.

If the if condition is true, the block of statements that determine the loan amount executes. The loan variable
is defined within this block and therefore ceases to exist at the end of the block. The if statement within the block
determines whether twice the declared income is less than half the account balance. If it is, the loan is twice the
income, otherwise it is half the account balance. This ensures the loan corresponds to the least amount according to
the rules.

Chapter 4 ■ Making DeCisions

95

The Conditional Operator
The conditional operator is sometimes called the ternary operator because it involves three operands — the only
operator to do so. It parallels the if-else statement, in that instead of selecting one of two statement blocks to execute
depending on condition, it selects the value of one of two expressions. Thus the conditional operator enables you to
choose between two values. Let’s consider an example.

Suppose you have two variables, a and b, and you want to assign the value of the greater of the two to a third
variable, c. The following statement will do this:

c = a > b ? a : b; // Set c to the higher of a and b

The conditional operator has a logical expression as its first operand, in this case a > b. If this expression is
true, the second operand — in this case a — is selected as the value resulting from the operation. If the first operand
is false, the third operand — in this case b — is selected as the value. Thus, the result of the conditional expression
is a if a is greater than b, and b otherwise. This value is stored in c. The assignment statement is equivalent to the if
statement:

if(a > b)
{
 c = a;
}
else
{
 c = b;
}

Of course, you can use the conditional operator to select the lower of two values. In the previous program, you
used an if-else to decide the value of the loan; you could use this statement instead:

loan = 2*income < balance/2 ? 2*income : balance/2;

This produces exactly the same result. You don’t need parentheses because the precedence of the conditional
operator is lower than that of the other operators in this statement. The condition is 2*income < balance/2. If this
evaluates to true, then the expression 2*income evaluates and produces the result of the operation. If the condition is
false, the expression balance/2 produces the result of the operation.

Of course, if you think parentheses would make things clearer, you can include them:

loan = (2*income < balance/2) ? (2*income) : (balance/2);

The general form of the conditional operator, which is often represented by ?:, is:

condition ? expression1 : expression2

If condition evaluates to true, the result is the value of expression1; if it evaluates to false, the result is the
value of expression2. If condition is an expression that results in a numerical value, then it is implicitly converted to
type bool. Note that only one of expression1 or expression2 will be evaluated. This has significant implications for
expressions such as the following:

a < b ? ++i+1 : i+1;

Chapter 4 ■ Making DeCisions

96

If a is less than b, i is incremented and the result of the operation is the incremented value of i plus 1. The
variable i is not incremented if a is not less than b - so a < b is false; in this case, the result of the operation is the
current value of i plus 1.

You can use the conditional operator to control output depending on the result of an expression or the value of a
variable. You can vary a message by selecting one text string or another depending on a condition.

// Ex4_07.cpp
// Using the conditional operator to select output.
#include <iostream>

int main()
{
 int mice {}; // Count of all mice
 int brown {}; // Count of brown mice
 int white {}; // Count of white mice

 std::cout << "How many brown mice do you have? ";
 std::cin >> brown;
 std::cout << "How many white mice do you have? ";
 std::cin >> white;

 mice = brown + white;

 std::cout << "You have " << mice
 << (mice == 1 ? " mouse " : " mice ")
 << "in total." << std::endl;
}

The output from this program might be:

How many brown mice do you have? 2
How many white mice do you have? 3
You have 5 mice in total.

The only bit of interest is the output statement that is executed after the numbers of mice have been entered. The

expression using the conditional operator evaluates to " mouse " if the value of mice is 1, or " mice " otherwise. This
allows you to use the same output statement for any number of mice and select singular or plural as appropriate.

There are many other situations in which you can apply this sort of mechanism. For example, selecting between
"is" and "are", or "he" and "she", or indeed any situation in which you have a binary choice. You can even combine
two conditional operators to choose between three options. Here’s an example:

cout << (a < b ? "a is less than b." :
 (a == b ? "a is equal to b." : "a is greater than b."));

This statement outputs one of three messages, depending on the relative values of a and b. The second choice for
the first conditional operator is the result of another conditional operator.

Chapter 4 ■ Making DeCisions

97

The switch Statement
You’re often faced with a multiple-choice situation in which you need to execute a particular set of statements from a
number of choices (that is, more than two), depending on the value of an integer variable or expression. The switch
statement enables you to select from multiple choices. The choices are identified by a set of fixed integer values and
the selection of a particular choice is determined by the value of a given integer expression.

The choices in a switch statement are called cases. A lottery where you win a prize depending on your number
coming up is an example of where it might apply. You buy a numbered ticket, and if you’re lucky, you win a prize. For
instance, if your ticket number is 147, you win first prize; if it’s 387 you can claim second prize; ticket number 29 gets
you third prize; any other ticket number wins nothing. The switch statement to handle this situation would have four
cases: one for each of the winning numbers, plus a “default” case for all the losing numbers. Here’s a switch statement
that selects a message for a given ticket number:

switch(ticket_number)
{
case 147:
 std::cout << "You win first prize!";
 break;
case 387:
 std::cout << "You win second prize!";
 break;
case 29:
 std::cout << "You win third prize!";
 break;
default:
 std::cout << "Sorry, you lose.";
 break;
}

The switch statement is harder to describe than to use. The selection of a particular case is determined by the
value of the integer expression between the parentheses that follow the keyword switch. In this example, it is simply
the variable ticket_number, which must be an integer type; what else could it be?

The possible choices in a switch statement appear in a block, and each choice is identified by a case value.
A case value appears in a case label, which is of the form:

case case_value:

It’s called a case label because it labels the statements or block of statements that it precedes. The statements that
follow a particular case label execute if the value of the selection expression is the same as that of the case value. Each
case value must be unique but case values don’t need to be in any particular order, as the example demonstrates.

Each case value must be an integer constant expression, which is an expression that the compiler can evaluate;
this implies that it can only involve literals, or const variables. Furthermore, any literals must either be of an integer
type or be able to be converted to an integer type.

The default label in the example identifies the default case, which is a catchall that is selected if none of the other
cases is selected. You don’t have to specify a default case, though. If you don’t, and none of the case values is selected,
the switch does nothing.

The break statement that appears after each set of case statements is essential for the logic here. Executing a
break statement breaks out of the switch and causes execution to continue with the statement following the closing
brace. If you omit the break statement for a case, the statements for the following case will execute. Notice that we
don’t need a break after the final case (usually the default case) because execution leaves the switch at this point
anyway. It’s good programming style to include it though because it safeguards against accidentally falling through to
another case that you might add to a switch later. switch, case, default, and break are all keywords.

Chapter 4 ■ Making DeCisions

98

This example demonstrates the switch statement:

// Ex4_07.cpp
// Using the switch statement
#include <iostream>

int main()
{
 int choice {}; // Stores selection value

 std::cout << "Your electronic recipe book is at your service.\n"
 << "You can choose from the following delicious dishes:\n"
 << "1 Boiled eggs\n"
 << "2 Fried eggs\n"
 << "3 Scrambled eggs\n"
 << "4 Coddled eggs\n\n"
 << "Enter your selection number: ";
 std::cin >> choice;

 switch(choice)
 {
 case 1:
 std::cout << "\nBoil some eggs." << std::endl;
 break;
 case 2:
 std::cout << "Fry some eggs." << std::endl;
 break;
 case 3:
 std::cout << "Scramble some eggs." << std::endl;
 break;
 case 4:
 std::cout << "Coddle some eggs." << std::endl;
 break;
 default:
 std::cout << "You entered a wrong number - try raw eggs." << std::endl;
 }
}

After defining your options in the output statement and reading a selection number into the variable choice,
the switch statement executes with the selection expression specified simply as choice in parentheses, immediately
following the keyword switch. The possible choices in the switch are between braces and are each identified by a
case label. If the value of choice corresponds with any of the case values, then the statements following that case label
execute. You only have one statement plus a break statement for each case in this example, but in general you can
have as many statements as you need following a case label, and you don’t need to enclose them between braces.

The break statement at the end of each group of case statements transfers execution to the statement after the
switch. You can demonstrate the essential nature of the break statements here by removing them from the example
and seeing what happens.

If the value of choice doesn’t correspond with any of the case values, the statements following the default label
execute. If you hadn’t included a default case here and the value of choice was different from all the case values,
then the switch would have done nothing and the program would continue with the next statement after the
switch — Effectively executing return 0 because the end of main() has been reached.

Chapter 4 ■ Making DeCisions

99

As I said earlier, each of the case values must be a compile-time constant and must be unique. The reason that
no two case values can be the same is that if they are, the compiler has no way of knowing which statements should
be executed when that particular value comes up. However, different case values don’t need to have unique actions.
Several case values can share the same action, as the following example shows:

// Ex4_08.cpp
// Multiple case actions
#include <iostream>
#include <locale>

int main()
{
 char letter {};
 std::cout << "Enter a letter: ";
 std::cin >> letter;

 if(isalpha(letter))
 {
 switch(tolower(letter))
 {
 case 'a': case 'e': case 'i': case 'o': case 'u':
 std::cout << "You entered a vowel." << std::endl;
 break;
 default:
 std::cout << "You entered a consonant." << std::endl;
 break;
 }
 }
 else
 std::cout << "You did not enter a letter." << std::endl;
}

Here is an example of some output:

Enter a letter: E
You entered a vowel.

The if condition first checks that you really do have a letter and not some other character using the isalpha()

classification function from the Standard Library. The integer returned will be nonzero if the argument is alphabetic
and this will be implicitly converted to true, which causes the switch to be executed. The switch condition converts
the value to lowercase using a Standard Library character conversion routine, tolower(), and uses the result to select
a case. Converting to lowercase avoids the need to have case labels for upper and lowercase letters. All of the cases
that identify a vowel cause the same statements to be executed. You can see that you just write each of the cases in a
series, followed by the statements any of the cases is to select. If the input is not a vowel, it must be a consonant and
the default case deals with this.

If isalpha() returns 0, which converts to false, the switch doesn’t execute because the else clause is selected;
this output a message indicating that the character entered was not a letter.

Chapter 4 ■ Making DeCisions

100

It’s possible to dispense with the if statement by combining the test for a letter with the conversion to lowercase,
but it requires some trickery and does make the code more complicated. For example, you could write the switch as
follows:

switch(tolower(letter) * static_cast<bool>(isalpha(letter)))
{
case 'a': case 'e': case 'i': case 'o': case 'u':
 std::cout << "You entered a vowel." << std::endl;
 break;
case 0:
 std::cout << "You did not enter a letter." << std::endl;
 break;
default:
 std::cout << "You entered a consonant." << std::endl;
}

Casting the value returned by isalpha() to bool produces true when the letter is alphabetic and false
otherwise. The multiplication in the switch condition requires that both operands be numeric, so the compiler will
insert an implicit conversion for the bool value. This will result in 1 when the input is alphabetic and 0 otherwise.
Multiplying the character returned by tolower() by this either leaves it unchanged or results in 0. The latter selects
case 0 and the former selects one of the other cases or the default case.

Another possibility is to write the switch condition as tolower(letter)*(isalpha(letter)!=0). I’ll leave you
to figure out why this also works. These versions of the code require effort to figure out what is going on. In general,
clearer code is better code.

Unconditional Branching
The if statement provides you with the flexibility to choose to execute one set of statements or another, depending
on a specified condition. The switch statement provides a way to choose from a fixed range of options depending
on the value of an integer expression. The goto statement, in contrast, is a blunt instrument. It enables you to
branch to a specified program statement unconditionally. The statement to be branched to must be identified by a
statement label, which is an identifier defined according to the same rules as a variable name. This is placed before the
statement to be referenced and separated from it by a colon. Here’s an example of a labeled statement:

MyLabel: x = 1;

This statement has the label MyLabel, and an unconditional branch to this statement would be written as follows:

goto MyLabel;

Whenever possible, you should avoid using goto statements. They encourage convoluted code that can be
extremely difficult to follow. Note that a goto that branches into the scope of a variable but bypasses its declaration
will cause a compiler error message.

Note ■ Because the goto statement is theoretically unnecessary — you always have an alternative to using goto — a
significant cadre of programmers says that you should never use it. i don’t subscribe to such an extreme view. it is a legal
statement, after all, and there are rare occasions when it can reduce code complexity. however, i do recommend that you
only use it where you can see an obvious advantage over other options that are available.

Chapter 4 ■ Making DeCisions

101

Statement Blocks and Variable Scope
A switch statement has its own block between braces that encloses the case statements. An if statement also often
has braces enclosing the statements to be executed if the condition is true, and the else part may have such braces
too. These statement blocks are no different from any other blocks when it comes to variable scope. Any variable
declared within a block ceases to exist at the end of the block, so you cannot reference it outside the block.

For example, consider the following rather arbitrary calculation:

if(value > 0)
{
 int savit {value - 1}; // This only exists in this block
 value += 10;
}
else
{
 int savit {value + 1}; // This only exists in this block
 value -= 10;
}
std::cout << savit; // This will not compile! savit does not exist

The output statement at the end causes a compiler error message because the savit variable is undefined at
this point. Any variable defined within a block can only be used within that block, so if you want to access data that
originates inside a block from outside it, you must define the variable storing that information in an outer block.

Variable definitions within a switch statement block must be reachable in the course of execution, and it must
not be possible to bypass them; otherwise the code will not compile. The following code illustrates how illegal
declarations can arise in a switch:

int test {3};
switch(test)
{
 int i {1}; // ILLEGAL - cannot be reached

case 1:
{
 int j {2}; // OK - can be reached and is not bypassed
 std::cout << test + j << std::endl;
 break;
}

 int k {3}; // ILLEGAL - cannot be reached

case 3:
 std::cout << test << std::endl;
 int m {4}; // ILLEGAL - can be reached but can be bypassed
 break;

default:
 std::cout << "Default reached." << std::endl;
 break;

 int n {5}; // ILLEGAL - cannot be reached
}
std::cout << j << std::endl; // ILLEGAL - j doesn't exist here

Chapter 4 ■ Making DeCisions

102

Only one of the definitions in this switch statement is legal: the one for j. For a definition to be legal, it must first
be possible for it to be reached and thus executed in the normal course of execution. This is not the case for variables
i, k, and n. Secondly, it must not be possible during execution to enter the scope of a variable while bypassing its
definition, which is the case for the variable m. Variable j, however, is only “in scope” from its declaration to the end of
the enclosing block, so this declaration cannot be bypassed.

Summary
In this chapter, you have added the capability for decision-making to your programs. You now know how all the
decision-making statements in C++ work. The essential elements of decision-making that you have learned about in
this chapter are:

You can compare two values using the comparison operators. This will result in a value of type •	
bool, which can be true or false.

You can convert a •	 bool value to an integer type—true will convert to 1 and false will convert
to 0.

Numerical values can be converted to type •	 bool—a zero value converts to false, and a nonzero
value casts to true. When a numerical value appears where a boll value is expected - such
as in an if condition - the compiler will insert an implicit conversion of the numerical value to
type bool.

The •	 if statement executes a statement or a block of statements depending on the value of a
condition expression. If the condition is true, the statement or block executes. If the condition
is false it doesn’t.

The •	 if-else statement executes a statement or block of statements when the condition is
true, and another statement or block when the condition is false.

•	 if and if-else statements can be nested.

The •	 switch statement provides a way to select one from a fixed set of options, depending on
the value of an integer expression.

The conditional operator selects between two values depending on the value of an expression.•	

You can branch unconditionally to a statement with a specified label by using a •	 goto
statement.

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back over
the chapter for help. if you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code/), but that really should be a last resort.

exercise 4-1. Write a program that prompts for two integers to be entered and then uses an
if-else statement to output a message that states whether or not the integers are the same.

exercise 4-2. Create a program that prompts for input of an integer between 1 and 100. Use
a nested if, first to verify that the integer is within this range, and then, if it is, to determine
whether or not the integer is greater than, less than, or equal to 50. the program should
output information about what was found.

www.apress.com/source-code/

Chapter 4 ■ Making DeCisions

103

exercise 4-3. Design a program that prompts for input of a letter. Use a library function to
determine whether or not the letter is a vowel and whether it is lowercase or not, and
output the result. Finally, output the lowercase letter together with its character code as a
binary value.

exercise 4-4. Write a program that determines, using only the conditional operator, if an
integer that is entered has a value that is 20 or less, is greater than 20 and not greater than
30, is greater than 30 but not exceeding 100, or is greater than 100.

exercise 4-5. Create a program that prompts the user to enter an amount of money between
$0 and $10 (decimal places allowed). Determine how many quarters (25c), dimes (10c),
nickels (5c), and pennies (1c) are needed to make up that amount. output this information to
the screen and ensure that the output makes grammatical sense (for example, if you need
only one dime then the output should be “1 dime” and not “1 dimes”).

105

Chapter 5

Arrays and Loops

An array enables you to work with several data items of the same type using a single name, the array name. The need
for this occurs often — working with a series of temperatures or the ages of a group of people for example. A loop is
another fundamental programming facility. It provides a mechanism for repeating one or more statements as many
times as your application requires. Loops are essential in the majority of programs. Using a computer to calculate the
company payroll, for example, would not be practicable without a loop. There are several kinds of loop, each with
their own particular area of application. In this chapter, you’ll learn:

What an array is and how you create an array•	

How to use a •	 for loop

How the •	 while loop works

What the merits of the •	 do-while loop are

What the •	 break and continue statement do in a loop

What the •	 continue statement does in a loop

How to use nested loops•	

How to create and use an array container•	

How to create and use a vector container•	

Arrays
The variables you have created up to now can store only a single data item of the specified type — an integer, a
floating-point value, a character, or a bool value. An array stores several data items of the same type. You can create
an array of integers or an array of characters — in fact an array of any type of data, and there can be as many as the
available memory will allow.

Suppose you’ve written a program to calculate an average temperature. You now want to extend the program
to calculate how many samples are above the average and how many are below. You’ll need to retain the original
sample data to do this, but storing each data item in a separate variable would be tortuous to code and impractical
for anything more than a very few items. An array provides you with the means of doing this easily, and many other
things besides.

Chapter 5 ■ arrays and Loops

106

Using an Array
An array is a variable that represents a sequence of memory locations; each can store an item of data of the same data
type. For example, you could store 366 temperature samples in an array defined as follows:

double temperatures[366]; // An array of temperatures

This defines an array with the name temperatures to store 366 values of type double. The data values are called
elements. The number of elements specified between the brackets is the size of the array. The array elements are not
initialized in this statement so they contain junk values.

You refer to an array element using an integer called an index. The index of a particular array element is its offset
from the first element. The first element has an offset of 0 and therefore an index of 0; an index value of 3 refers to
the fourth array element — three elements from the first. To reference an element, you put its index between square
brackets after the array name, so to set the fourth element of the temperatures array to 99.0, you would write:

temperatures[3] = 99.0; // Set the fourth array element to 99

Let’s look at another array. The Figure 5-1 shows the structure of an array called height that has six elements of
type double.

26

height [0]

37 47 55 62 75

height [1] height [2] height [3] height [4] height [5]

Figure 5-1. An array with six elements

The array has six elements of type int. Each box in Figure 5-1 represents a memory location holding an array
element. Each element can be referenced using the expression above it. You can define an array that has six elements
of type int using this statement:

unsigned int height[6]; // Define an array of six heights

The compiler will allocate six contiguous storage locations for storing values of type unsigned int as a result of
this definition. If this type is 4 bytes on your computer, this array will occupy 24 bytes. The definition doesn’t specify
any initial values for the array, so the elements contain junk values.

Note ■ the type of the array will determine the amount of memory required for each element. the elements of an
array are stored in one contiguous block of memory.

Each element in the height array in Figure 5-1 contains a different value. These might be the heights of the
members of a family, recorded to the nearest inch. As there are six elements, the index values run from 0 for the
first element through to 5 for the last element. You could define the array with these initial values like this:

unsigned int height[6] {26, 37, 47, 55, 62, 75}; // Define & initialize array of 6 heights

Chapter 5 ■ arrays and Loops

107

The initializer list contains six values separated by commas. Each array element will be assigned an initial value
from the list in sequence, so the elements will have the values shown in Figure 5-1. The initializer list must not have
more values than there are elements in the list, otherwise the statement won’t compile. There can be less values in the
list, in which case the elements for which no initial value has been supplied will be initialized with zero. For example:

unsigned int height[6] {26, 37, 47}; // Element values: 26 37 47 0 0 0

The first three elements will have the values that appear in the list. The last three will be zero. To initialize all the
elements with zero, you can just use an empty initializer list:

unsigned int height[6] {}; // All elements 0

Of course, you could put 0 in the initializer list and get the same effect.
Array elements participate in arithmetic expressions like other variables. You could sum the first three elements

of height like this:

unsigned int sum {};
sum = height[0] + height[1] + height[2]; // The sum of three elements

You use references to individual array elements like ordinary integer variables in an expression. As you saw
earlier, an array element can be on the left of an assignment to set a new value so you can copy the value of one
element to another in an assignment, like this for example:

height[3] = height[2]; // Copy 3rd element value to 4th element

However, you can’t copy all the element values from one array to the elements of another in an assignment. You
can only operate on individual elements. To copy the values of one array to another, you must copy the values one at a
time. What you need is a loop.

Understanding Loops
A loop is a mechanism that enables you to execute a statement or block of statements repeatedly until a particular
condition is met. The statements inside a loop are sometimes called iteration statements. A single execution of the
statement or statement block that is within the loop is an iteration.

Two essential elements make up a loop: the statement or block of statements that forms the body of the loop
that is to be executed repeatedly, and a loop condition of some kind that determines when to stop repeating the
loop. A loop condition can take different forms to provide different ways of controlling the loop. For example, a loop
condition can:

Execute a loop a given number of times.•	

Execute a loop until a given value exceeds another value.•	

Execute the loop until a particular character is entered from the keyboard.•	

Execute a loop for each element in a collection of elements.•	

You choose the loop condition to suit the circumstances. You have the following varieties of loops:

•	 The for loop primarily provides for executing the loop a prescribed number of times but there
is considerable flexibility beyond that.

•	 The range-based for loop executes one iteration for each element in a collection of elements.

Chapter 5 ■ arrays and Loops

108

•	 The while loop continues executing as long as a specified condition is true. The condition
is checked at the beginning of an iteration so if the condition starts out as false, no loop
iterations are executed.

•	 The do-while loop continues to execute as long as a given condition is true. This differs from
the while loop in that the do-while loop checks the condition at the end of an iteration.
This implies that at least one loop iteration always executes.

I’ll start by explaining how the for loop works.

The for Loop
The for loop executes a statement or block of statements a predetermined number of times, but you can use it
in other ways too. You specify how a for loop operates using three expressions separated by semicolons between
parentheses following the for keyword. This is shown in Figure 5-2.

condition
is true?

yes

no

Evaluate
initialization
expression

Loop
Statements

Evaluate
iteration

Expression

Next Statement

for(initialization ; condition ; iteration)
{

 // Loop statements

}
// Next statement

Figure 5-2. The logic of the for loop

You can omit any or all of the expressions controlling a for loop but you must always include the semicolons.
I’ll explain later in this chapter why and when you might omit one or other of the control expressions. The
initialization expression is evaluated only once, at the beginning of the loop. The loop condition is checked
next, and if it is true, the loop statement or statement block executes. If the condition is false, the loop ends and
execution continues with the statement after the loop. After each execution of the loop statement or block, the
iteration expression is evaluated and the condition is checked to decide if the loop should continue.

Chapter 5 ■ arrays and Loops

109

In the most typical usage of the for loop, the first expression initializes a counter, the second expression checks
whether the counter has reached a given limit, and the third expression increments the counter. For example, you
could copy the elements from one array to another like this:

double rainfall[12] {1.1, 2.8, 3.4, 3.7, 2.1, 2.3, 1.8, 0,0, 0.3, 0.9, 0.7, 0.5};
double temp[12] {};
for(size_t i {} ; i<12 ; ++i) // i varies from 0 to 11
{
 temp[i] = rainfall[i]; // Copy ith element of rainfall to ith element of temp
}

The first expression defines i as type size_t with an initial value of 0. You’ll recall that the sizeof operator
returns a value of size_t, which is an unsigned integer type that is used generally for sizes of things as well as counts.
i will be used to index the arrays so using size_t makes sense. Not only is it legal to define variables within a for loop
initialization expression, it is very common. This has some significant implications. A loop defines a scope. The loop
statement or block, including any expressions that control the loop fall within the scope of a loop. Any automatic
variables declared within the scope of a loop do not exist outside it. Because i is defined in the first expression, it is
local to the loop so when the loop ends, i will no longer exist.

The second expression, the loop condition, is true as long as i is less than 12, so the loop continues while i is less
than 12. When i reaches 12, the expression will be false so the loop ends. The third expression increments i at the
end of each loop iteration so the loop block that copies the ith element from rainfall to temp will execute with values
of i from 0 to 11.

When you need to be able to access the loop control variable after the loop ends, you just define it before the
loop, like this:

size_t i {};
for(i = 0 ; i<12 ; ++i) // i varies from 0 to 11
{
 temp[i] = rainfall[i]; // Copy ith element of rainfall to ith element of temp
}
// i still exists here...

Now you can access i after the loop - its value will be 12 in this case. i is initialized to 0 in its definition so the
first loop control expression is superfluous. You can omit any or all of the loop control expressions so the loop can be
written as:

size_t i {};
for(; i<12 ; ++i) // i varies from 0 to 11
{
 temp[i] = rainfall[i]; // Copy ith element of rainfall to ith element of temp
}

The loop works just as before. The first control expression is not necessary because i is defined and initialized to
zero before the loop. I’ll discuss omitting other control expressions a little later in this chapter.

Chapter 5 ■ arrays and Loops

110

Avoiding Magic Numbers
One problem with the preceding code fragment is that it involves the “magic number” 12 for the array sizes. It’s easy
to make a mistake when entering the rainfall array size of 12 in the definition of the temp array and in the for loop. It
would be better to define a const variable for the array size and use that instead of the explicit value:

const size_t size {12};
double rainfall[size] {1.1, 2.8, 3.4, 3.7, 2.1, 2.3, 1.8, 0,0, 0.3, 0.9, 0.7, 0.5};
double temp[size] {};
for(size_t i {} ; i<size ; ++i) // i varies from 0 to size-1
{
 temp[i] = rainfall[i]; // Copy ith element of rainfall to ith element of temp
}

This is much less error prone and it is clear that size is the number of elements in both arrays. Let’s try out a for
loop in a complete example:

// Ex5_01.cpp
// Using a for loop with an array
#include <iostream>

int main()
{
 const size_t size {6}; // Array size
 unsigned int height[size] {26, 37, 47, 55, 62, 75}; // An array of heights
 unsigned int total {}; // Sum of heights

 for(size_t i {} ; i<size ; ++i)
 {
 total += height[i];
 }
 int average {total/size}; // Calculate average height
 std::cout << "The average height is " << average << std::endl;

 unsigned int count {};
 for(size_t i {} ; i < size ; ++i)
 {
 if(height[i] < average) ++count;
 }
 std::cout << count << " people are below average height." << std::endl;
}

The output is:

The average height is 50
3 people are below average height.

The definition of the height array uses a const variable to specify the number of elements. The size variable is

also used as the limit for the control variable in the two for loops. The first for loop iterates over each height element
in turn, adding its value to total. The loop ends when the loop variable i is equal to size, and the statement following
the loop is executed, which defines the average variable with the initial value as total divided by size.

Chapter 5 ■ arrays and Loops

111

After outputting the average height, the second for loop iterates over the elements in the array, comparing each
value with average. The count variable is incremented each time an element is less than average, so when the loop
ends, count will contain the number of elements less than average. You could replace the if statement in the loop
with this statement:

count += height[i] < average;

This works because the bool value that results from the comparison will be implicitly converted to an integer. The
value true converts to 1 and false converts to 0 so count will be incremented only when the comparison results in true.

Caution ■ array index values are not checked to verify that they are valid. It’s up to you to make sure that you don’t
reference elements outside the bounds of the array. If you store data using an index value that’s outside the valid range
for an array, you’ll overwrite something in memory or cause a storage protection violation. either way, your program will
almost certainly come to a sticky end.

Defining the Array Size with the Initializer List
You can omit the size of the array when you supply one or more initial values in its definition. The number of elements
will be the number of initial values. For example:

int values[] {2, 3, 4};

This defines an array with three elements of type int that will have the initial values 2, 3, and 4. It is equivalent to
writing this:

int values[3] {2, 3, 4};

The advantage of omitting the size is that you can’t get the array size wrong; the compiler determines it for you.
You can’t have an array with no elements so the initializer list must always contain at least one initial value if you omit
the array size. An empty initializer list will result in a compilation error if you don’t specify the array size.

Determining the Size of an Array
You saw earlier how you could avoid magic numbers for the number of elements in an array by defining a constant
initialized with the array size. You also don’t want to be specifying a magic number for the array size when you let the
compiler decide the number of elements from the initializer list. You need a foolproof way of determining the size when
necessary. The sizeof operator returns the number of bytes that a variable occupies and this works with an entire array
as well as with a single array element. Thus the sizeof operator provides a way to determine the number of elements in
an array; you just divide the size of the array by the size of the first element. Suppose you’ve defined this array:

int values[] {2, 3, 5, 7, 11, 13, 17, 19};

The expression sizeof(values) evaluates to the number of bytes occupied by the entire array. The expression
sizeof(values[0]) evaluates to the number of bytes occupied by a single element — since there’s always at least one
element the first element is a good choice. The expression sizeof(values)/sizeof(values[0]) divides the number
of bytes occupied by the whole array by the number of bytes for one element so this evaluates to the number of
elements in the array. Let’s try it out.

Chapter 5 ■ arrays and Loops

112

// Ex5_02.cpp
// Obtaining the number of array elements
#include <iostream>

int main()
{
 int values[] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
 std::cout << "There are " << sizeof (values)/sizeof(values[0])
 << " elements in the array." << std::endl;

 int sum {};
 for(size_t i {} ; i < sizeof (values)/sizeof (values[0]) ; ++i)
 {
 sum += values[i];
 }
 std::cout << "The sum of the array elements is " << sum << std::endl;
}

This example produces the following output:

There are 10 elements in the array.
The sum of the array elements is 129

The number of elements in the values array is determined by the compiler from the number of initializing values

in the definition. The first output statement uses the sizeof operator to calculate the number of array elements. This
is repeated in the for loop that calculates the sum of the array elements. You could avoid having to recalculate the size
of the array by initializing a const variable like this:

int values[] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
const size_t size {sizeof(values) / sizeof(values[0])};

Now you can just use size whenever you need the size of the array in the code.
None of the control expressions have to be of a particular form. You have seen that you can omit the first control

expression. In the for loop in the example you could accumulate the sum of the elements within the third loop
control expression. The loop would be like this:

int sum {};
for(size_t i {} ; i < size ; sum += values[i++])
;

The third loop control expression now does two things: it adds the value of the element at index i to sum, then
increments the control variable, i. The single semicolon is an empty statement that is the loop body. Note that before
i was incremented using the prefix ++ operator, whereas now it is incremented using the postfix ++ operator. This is
essential here to ensure the element selected by i is added to sum before i is incremented. If you use the prefix form,
you get the wrong answer for the sum of the elements; you’ll also use an invalid index value that accesses memory
beyond the end of the array.

Chapter 5 ■ arrays and Loops

113

Controlling a for Loop with Floating-Point Values
The for loop examples so far have used an integer variable to control the loop, but you can use anything you like.
The following code fragment uses floating-point values to control the loop:

const double pi {3.14159265};
for(double radius {2.5} ; radius <= 20.0 ; radius += 2.5)
{
 std::cout << "radius = " << std::setw(12) << radius
 << " area = " << std::setw(12)
 << pi * radius * radius << std::endl;
}

This loop is controlled by the radius variable, which is of type double. It has an initial value of 2.5 and is
incremented at the end of each loop iteration until it exceeds 20.0, whereupon the loop ends. The loop statement
calculates the area of a circle for the current value of radius, using the standard formula pr2, where r is the radius of
the circle. The manipulator setw() in the loop statement gives each output value the same field width; this ensures
that the output values line up vertically. Of course, to use the manipulators in a program, you need to include the
iomanip header.

You need to be careful when using a floating-point variable to control a for loop. Fractional values may not be
representable exactly as a binary floating-point number. This can lead to some unwanted side effects, as this complete
example demonstrates.

// Ex5_03.cpp
// Floating-point control in a for loop
#include <iostream>
#include <iomanip>

int main()
{
 const double pi { 3.14159265 }; // The famous pi
 const size_t perline {3}; // Outputs per line
 size_t linecount {}; // Count of output lines
 for (double radius {0.2} ; radius <= 3.0 ; radius += 0.2)
 {
 std::cout << std::fixed << std::setprecision(2) << " radius =" << std::setw(5)
 << radius << " area =" << std::setw(6) << pi * radius * radius;
 if (perline == ++linecount) // When perline outputs have been written...
 {
 std::cout << std::endl; // ...start a new line...
 linecount = 0; // ...and reset the line counter
 }
 }
 std::cout << std::endl;
}

Chapter 5 ■ arrays and Loops

114

On my computer, this produces the following output:

radius = 0.20 area = 0.13 radius = 0.40 area = 0.50 radius = 0.60 area = 1.13
radius = 0.80 area = 2.01 radius = 1.00 area = 3.14 radius = 1.20 area = 4.52
radius = 1.40 area = 6.16 radius = 1.60 area = 8.04 radius = 1.80 area = 10.18
radius = 2.00 area = 12.57 radius = 2.20 area = 15.21 radius = 2.40 area = 18.10
radius = 2.60 area = 21.24 radius = 2.80 area = 24.63

The loop includes an if statement to output three sets of values per line. You would expect to see the area of a

circle with radius 3.0 as the last output. After all, the loop should continue as long as radius is less than or equal to
3.0. But the last value displayed has the radius at 2.8; what’s going wrong?

The loop ends earlier than expected because when 0.2 is added to 2.8, the result is greater than 3.0. This is an
astounding piece of arithmetic at face value, but read on! The reason for this is a very small error in the representation
of 0.2 as a binary floating-point number. 0.2 cannot be represented exactly in binary floating point. The error is in the
last digit of precision, so if your compiler supports 15-digit precision for type double, the error is of the order of 10−15.
Usually, this is of no consequence, but here you depend on adding 0.2 successively to get exactly 3.0—which doesn’t
happen.

You can see what the difference is by changing the loop to output just one circle area per line and to display the
difference between 3.0 and the next value of radius:

for(double radius {0.2} ; radius <= 3.0 ; radius += .2)
{
 std::cout << std::fixed << std::setprecision(2) << " radius =" << std::setw(5)
 << radius << " area =" << std::setw(6) << pi * radius * radius
 << " delta to 3 = " << std::scientific << ((radius + 0.2) - 3.0) << std::endl;
}

On my machine, the last line of output is now this:

radius = 2.80 area = 24.63 delta to 3 = 4.44e-016

As you can see, radius + 0.2 is greater than 3.0 by around 4.44 × 10-16. This causes the loop to terminate before

the next iteration.

Note ■ any number that is a fraction with an odd denominator cannot be represented exactly as a binary
floating-point value.

More Complex for Loop Control Expressions
You can define and initialize more than one variable of a given type in the first for loop control expression. You just
separate each variable from the next with a comma. Here’s a working example that makes use of that:

// Ex5_04.cpp
// Multiple initializations in a loop expression
#include <iostream>
#include <iomanip>

Chapter 5 ■ arrays and Loops

115

int main()
{
 unsigned int limit {};
 std::cout << "This program calculates n! and the sum of the integers"
 << " up to n for values 1 to limit.\n";
 std::cout << "What upper limit for n would you like? ";
 std::cin >> limit;

 // Output column headings
 std::cout << std::setw(8) << "integer" << std::setw(8) << " sum"
 << std::setw(20) << " factorial" << std::endl;

 for (unsigned long long n {1ULL}, sum {}, factorial {1ULL} ; n <= limit ; ++n)
 {
 sum += n; // Accumulate sum to current n
 factorial *= n; // Calculate n! for current n
 std::cout << std::setw(8) << n << std::setw(8) << sum
 << std::setw(20) << factorial << std::endl;
 }
}

The program calculates the sum of the integers from 1 to n for each integer n from 1 to count, where count is
an upper limit that you enter. It also calculates the factorial of each n. (The factorial of an integer n, written n!, is the
product of all the integers from 1 to n; for example, 5! = 1 × 2 × 3 × 4 × 5 = 120.) Don’t enter large values for count.
Factorials grow very rapidly and easily exceed the capacity of even a variable of type unsigned long long. Here’s
some typical output:

This program calculates n! and the sum of the integers up to n for values 1 to limit.
What upper limit for n would you like? 10
 integer sum factorial
 1 1 1
 2 3 2
 3 6 6
 4 10 24
 5 15 120
 6 21 720
 7 28 5040
 8 36 40320
 9 45 362880
 10 55 3628800

First, you read the value for limit from the keyboard after displaying a prompt. The value entered for limit

will not be large so type unsigned int is more than adequate. Using setw() to specify the field width for the column
headings for the output enables the values to be aligned vertically with the headings simply by specifying the same
field widths. The for loop does all the work. The first control expression defines and initializes three variables
of type unsigned long long. n is the loop counter, sum accumulates the sum of integer from 1 to the current n,
and factorial will store n!. Type unsigned long long provides the maximum range of positive integers and so
maximizes the range of factorials that can be calculated. Note that there will be no warning if a factorial value cannot
be accommodated in the memory allocated; the result will just be incorrect.

Chapter 5 ■ arrays and Loops

116

The Comma Operator
Although the comma looks as if it’s just a humble separator, it is actually a binary operator. It combines two
expressions into a single expression, where the value of the operation is the value of its right operand. This means
that anywhere you can put an expression, you can also put a series of expressions separated by commas. For example,
consider the following statements:

int i {1};
int value1 {1};
int value2 {1};
int value3 {1};
std::cout << (value1 += ++i, value2 += ++i, value3 += ++i) << std::endl;

The first four statements define four variables with an initial value 1. The last statement outputs the result of three
assignment expressions that are separated by the comma operator. The comma operator is left associative and has the
lowest precedence of all the operators so the expression evaluates like this:

(((value1 += ++i), (value2 += ++i)), (value3 += ++i));

The effect will be that value1 will be incremented by 2 to produce 3, value2 will be increments by 3 to produce 4,
and value3 will be incremented by 4 to produce 5. The value of the composite expression is the value of the rightmost
expression in the series, so the value that is output is 5. Just to illustrate the possibility, you could use the comma
operator to incorporate the calculations into the second loop control expression in Ex5_04.cpp:

for (unsigned long long n {1ULL}, sum {}, factorial {1ULL} ;
 sum += n, factorial *= n, n <= limit ; ++n)
{
 std::cout << std::setw(8) << n << std::setw(8) << sum
 << std::setw(20) << factorial << std::endl;
}

The second control expression combines three expressions using the comma operator. The first expression
adds the current n to sum, the second multiplies factorial by the current n and the third compares n to limit, as
before. The value of the overall expression will be the value of the rightmost, which is the comparison, so the loop
is controlled exactly as before. If you replace the loop in Ex5_04.cpp by this and run the example again you’ll see
that it works as before. Note that this is just to illustrate that you can put multiple expressions for the second control
expression in a for loop and show the comma operator in action. It is not good practice to code like this. You could
put the calculations in the third control expression but the output would be incorrect because the third control
expression executes at the end of each iteration.

The Ranged-based for Loop
The range-based for loop iterates over all the values in a range of values. This raises the immediate question: what is
a range? An array is a range of elements and a string is a range of characters. The containers provided by the Standard
Library for managing are all ranges. I’ll introduce two Standard Library containers later in this chapter. The general
form of the range-based for loop is:

for(range_declaration : range_expression}
 loop statement or block;

Chapter 5 ■ arrays and Loops

117

The range_declaration identifies a variable that will be assigned each of the values in the range in turn, a new
value being assigned on each iteration. The range_expression identifies the range that is the source of the data. This
will be clearer with an example. Consider these statements:

int values [] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
int total {};
for(int x : values)
 total += x;

The variable x will be assigned a value from the values array on each iteration. It will be assigned values 2, 3, 5,
and so on in succession. Thus the loop will accumulate the sum of all the elements in the values array in total. The
variable x is local to the loop and does not exist outside it.

Of course, the compiler knows the type of the elements in the values array so you could allow the compiler to
determine the type for x by writing the loop as:

for(auto x : values)
 total += x;

Using the auto keyword causes the compiler to deduce the correct type for x. The auto keyword is used very often
with the range-based for loop. This is a very nice way of iterating over all the elements in an array or other kind of
range. You don’t need to be aware of the number of elements. The loop mechanism takes care of that.

Note that the values from the range are assigned to the range variable, x. This means that you cannot modify the
elements of values by modifying the value of x. For example, this doesn’t change the elements in the values array:

for(auto x : values)
 x += 2;

This just adds 2 to the local variable, x, not to the array element. The value stored in x is overwritten by the value
of the next element from values on the next iteration. In the next chapter you’ll learn how you can change the values
in a range using this loop.

The while Loop
The while loop uses a logical expression to control execution of the loop body. The general form of the while loop is
shown in Figure 5-3.

Chapter 5 ■ arrays and Loops

118

The flowchart in Figure 5-3 shows the logic of this loop. You can use any expression to control the loop, as long
as it evaluates to a value of type bool, or can be implicitly converted to type bool. If the loop condition expression
evaluates to a numerical value for example, the loop continues as long as the value is non-zero. A zero value ends the
loop. Of course, while is a keyword, so you can’t use it to name anything else.

You could implement a version of Ex5_04.cpp using a while loop to see how it differs:

// Ex5_05.cpp
// Using a while loop to calculate the sum of integers from 1 to n and n!
#include <iostream>
#include <iomanip>

int main()
{
 unsigned int limit {};
 std::cout << "This program calculates n! and the sum of the integers"
 << " up to n for values 1 to limit.\n";
 std::cout << "What upper limit for n would you like? ";
 std::cin >> limit;

 // Output column headings
 std::cout << std::setw(8) << "integer" << std::setw(8) << " sum"
 << std::setw(20) << " factorial" << std::endl;
 unsigned int n {};
 unsigned int sum {};
 unsigned long long factorial {1ULL};

while (condition)
{
 // Loop statements ...
}
// Next statement

This expression is evaluated at the beginning
of each loop iteration. If it is true the loop

continues, and if it is false execution continues
with the statement after the loop.

condition
is true?

Loop Statements

yes

no

Next Statement

Figure 5-3. How the while loop executes

Chapter 5 ■ arrays and Loops

119

 while (++n <= limit)
 {
 sum += n; // Accumulate sum to current n
 factorial *= n; // Calculate n! for current n
 std::cout << std::setw(8) << n << std::setw(8) << sum
 << std::setw(20) << factorial << std::endl;
 }
}

The output from this program is the same as Ex5_04.cpp if you entered it correctly. The variables n, sum, and
factorial are defined before the loop. Here the types of the variables can be different so n and sum are defined as
unsigned int. The maximum value that can be stored in factorial limits the calculation so this remains as type
unsigned long long. Because of the way the calculation is implemented, the counter n is initialized to zero. The
while loop condition increments n and then compares the new value with limit. The loop continues as long as the
condition is true, so the loop executes with values of n from 1 up to limit. When n reaches limit+1, the loop ends.
The statements within the loop body are the same as in Ex5_04.cpp.

Allocating an Array at Runtime
The C++14 standard does not permit an array dimension to be specified at runtime; the array dimension must be
a constant expression that can be evaluated by the compiler. However, some current C++ compilers do allow array
dimensions at runtime because the current C standard, C99, permits this and a C++ compiler will typically compile
C code too. The view at present is that this feature may be added to C++ in a future standard specification.

Determining the size of an array is a very useful feature so in case your compiler supports this I’ll show how it
works with an example. Keep in mind though that this is not strictly in conformance with the C++ language standard.
Suppose you want to calculate the average height for a group of people, and you want to accommodate as many
people as the user wants to enter heights for. As long as the user can input the number of heights to be processed, you
can create an array that is an exact fit for the data that will be entered, like this:

size_t count {};
std::cout << "How many heights will you enter? ";
std::cin >> count;
unsigned int height[count]; // Create the array of count elements

The height array is created when the code executes and will have count elements. Because the array size is not
known at compile-time, you cannot specify any initial values for the array.

Here’s a working example using this:

// Ex5_06.cpp
// Allocating an array at runtime
#include <iostream>

int main()
{
 size_t count {};
 std::cout << "How many heights will you enter? ";
 std::cin >> count;
 unsigned int height[count]; // Create the array of count elements

Chapter 5 ■ arrays and Loops

120

 // Read the heights
 size_t entered {};
 while(entered < count)
 {
 std::cout <<"Enter a height: ";
 std::cin >> height[entered];
 if(height[entered]) // Make sure value is positive
 {
 ++entered;
 }
 else
 {
 std::cout << "A height must be positive - try again.\n";
 }
 }

 // Calculate the sum of the heights
 unsigned int total {};
 for(size_t i {} ; i<count ; ++i)
 {
 total += height[i];
 }
 std::cout << "The average height is " << total/count << std::endl;
}

Here’s some sample output:

How many heights will you enter? 6
Enter a height: 47
Enter a height: 55
Enter a height: 0
A height must be positive - try again.
Enter a height: 60
Enter a height: 78
Enter a height: 68
Enter a height: 56
The average height is 60

The height array is allocated using the value entered for count. The height values are read into the array in the

while loop. Within the loop, the if statement checks whether the value entered is zero. When it is non-zero, the
entered variable that counts the number of values entered so far is incremented. When the value is zero, a message is
output and the next iteration executes without incrementing entered. Thus the new attempt at entering a value will be
read into the current element of height, which will overwrite the zero value that was read on the previous iteration. A
straightforward for loop aggregates the total of all the heights and this is used to output the average height. You could
have used a range-based for loop here:

for(auto h : height)
{
 total += h;
}

Chapter 5 ■ arrays and Loops

121

Alternatively you could accumulate the total of the heights in the while loop and dispense with the for loop
altogether. This would shorten the program significantly. The while loop would then look like this:

unsigned int total {};
size_t entered {};
while(entered < count)
{
 std::cout <<"Enter a height: ";
 std::cin >> height[entered];
 if(height[entered]) // Make sure value is positive
 {
 total += height[entered++];
 }
 else
 {
 std::cout << "A height must be positive - try again.\n";
 }
}

Using the postfix increment operator in the expression for the index to the height array when adding the most
recent element value to total ensures the current value of entered is used to access the array element before it is
incremented for the next loop iteration.

Note ■ even if you compiler does not allow array dimensions to be determined at runtime, you can still achieve the
same result using a vector, which I discuss later in this chapter.

The do-while Loop
The do-while loop is similar to the while loop in that the loop continues for as long as the specified loop condition
remains true. However, the difference is that the loop condition is checked at the end of the do-while loop, rather
than at the beginning, so the loop statement is always executed at least once.

The logic and general form of the do-while loop are shown in Figure 5-4. Note that the semicolon that comes
after the condition between the parentheses is absolutely necessary. If you leave it out, the program won’t compile.

Chapter 5 ■ arrays and Loops

122

This kind of logic is ideal for situations where you have a block of code that you always want to execute once and
may want to execute more than once. I can tell that you’re not convinced that this is something that you’d ever need to
do, so let’s have another example.

This program will calculate the average of an arbitrary number of input values—temperatures, for example,
without storing them. You have no way of knowing in advance how many values will be entered, but it’s safe to assume
that you’ll always have at least one, because if you didn’t, there’d be no point to running the program. That makes it an
ideal candidate for a do-while loop. Here’s the code:

// Ex5_07.cpp
// Using a do-while loop to manage input
#include <iostream>
#include <locale> // For tolower() function

int main()
{
 char reply {}; // Stores response to prompt for input
 int count {}; // Counts the number of input values
 double temperature {}; // Stores an input value
 double average {}; // Stores the total and average
 do
 {
 std::cout << "Enter a temperature reading: "; // Prompt for input
 std::cin >> temperature; // Read input value

 average += temperature; // Accumulate total of values
 ++count; // Increment count

 std::cout << "Do you want to enter another? (y/n): ";
 std::cin >> reply; // Get response
 } while(tolower(reply) == 'y');
 std::cout << "The average temperature is " << average/count << std::endl;
}

do
{
 // Loop statements ...

}while (condition);

// Next Statement

This expression is evaluated at the end of each
loop iteration. If it is true the loop continues, and

if it is false execution continues with the
statement after the loop. The loop statements are

always executed at least once.

condition
is true?

Next Statement

Loop Statements

yes

no

Figure 5-4. How a do-while loop executes

Chapter 5 ■ arrays and Loops

123

A sample session with this program produces the following output:

Enter a temperature reading: 53
Do you want to enter another? (y/n): Y
Enter a temperature reading: 65.5
Do you want to enter another? (y/n): y
Enter a temperature reading: 74
Do you want to enter another? (y/n): Y
Enter a temperature reading: 69.5
Do you want to enter another? (y/n): n
The average temperature is 65.5

This program deals with any number of input values without prior knowledge of how many will be entered.

After defining defines four variables that are required for the input and the calculation, the data values are read in a
do-while loop. One input value is read on each loop iteration and at least one value will always be read, which is not
unreasonable. The response to the prompt that is stored in reply determines whether or not the loop ends. If the
reply is y or Y, the loop continues; otherwise the loop ends. Using the tolower() function that is declared in the locale
header ensure either upper or lowercase is accepted. You could ensure that the response stored in reply is only upper
or lowercase y or n; I’ll leave that to you as a small exercise.

An alternative to using tolower() in the loop condition is to use a more complex expression for the condition.
You could express the condition as reply == 'y' || reply == 'Y'. This ORs the two bool values that result from the
comparisons so that either upper or lowercase y entered will result in true.

Nested Loops
You can place a loop inside another loop. In fact, you can nest loops within loops to whatever depth you require to
solve your problem. Furthermore, nested loops can be of any kind: you can nest a for loop inside a while loop inside
a do-while loop inside a range-based for loop, if you have the need. They can be mixed in any way that you want.

Nested loops are often applied in the context of arrays but they have many other uses. I’ll illustrate how nesting
works with an example that provides lots of opportunity for nesting loops. Multiplication tables are the bane of many
children’s lives at school, but you can easily use a nested loop to generate one:

// Ex5_08.cpp
// Generating multiplication tables
#include <iostream>
#include <iomanip>
#include <locale>

int main()
{
 size_t table {}; // Table size
 const size_t table_min {2}; // Minimum table size - at least up to the 2-times
 const size_t table_max {12}; // Maximum table size
 char reply {}; // Response to prompt

 do
 {
 std::cout << "What size table would you like ("
 << table_min << " to " << table_max << ")? ";
 std::cin >> table; // Get the table size
 std::cout << std::endl;

Chapter 5 ■ arrays and Loops

124

 // Make sure table size is within the limits
 if(table < table_min || table > table_max)
 {
 std::cout << "Invalid table size entered. Program terminated." << std::endl;
 return 1;
 }

 // Create the top line of the table
 std::cout << std::setw(6) << " |";
 for(size_t i {1} ; i <= table ; ++i)
 {
 std::cout << " " << std::setw(3) << i << " |";
 }
 std::cout << std::endl;

 // Create the separator row
 for(size_t i {} ; i <= table ; ++i)
 {
 std::cout << "------";
 }
 std::cout << std::endl;

 for(size_t i {1} ; i <= table ; ++i)
 { // Iterate over rows
 std::cout << " " << std::setw(3) << i << " |"; // Start the row

 // Output the values in a row
 for(size_t j {1} ; j <= table ; ++j)
 {
 std::cout << " " << std::setw(3) << i*j << " |"; // For each col.
 }
 std::cout << std::endl; // End the row
 }

 // Check if another table is required
 std::cout << "\nDo you want another table (y or n)? ";
 std::cin >> reply;
 } while(tolower(reply) == 'y');
}

Here’s an example of the output:

What size table would you like (2 to 12)? 4

 | 1 | 2 | 3 | 4 |

 1 | 1 | 2 | 3 | 4 |
 2 | 2 | 4 | 6 | 8 |
 3 | 3 | 6 | 9 | 12 |
 4 | 4 | 8 | 12 | 16 |

Chapter 5 ■ arrays and Loops

125

Do you want another table (y or n)? y
What size table would you like (2 to 12)? 10

 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
--
 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |

Do you want another table (y or n)? n

This example includes three standard headers, iostream, iomanip, and locale. Just as a refresher, the first is

for stream input/output, the second is for stream manipulators, and the third provides the tolower() character
conversion function along with many other functions relating to locales.

The input value for the size of the table is stored in table. A table will be output presenting the results of all
products from 1 x 1 up to table x table. The value entered is validated by comparing it with table_min and table_max.
A table less than table_min doesn’t make much sense and table_max represents a size that is the maximum that is
likely to look reasonable when it is output. If table is not within range, the program ends with a return code value of 1
to indicate it’s not a normal end.

The multiplication table is presented in the form of a rectangular table - what else! The values along the left
column and the top row are the operand values in a multiplication. The value at the intersection of a row and column
is the product of the row and columns values. The table variable is used as the iteration limit in the first for loop that
creates the top line of the table. Vertical bars are used to separate columns and the use of the setw() manipulator
makes all the columns the same width.

The next for loop creates a line of dash characters to separate the top row of multipliers from the body of the
table. Each iteration adds six dashes to the row. By starting the count at zero instead of one, you output table + 1
sets, one for the left column of multipliers, and one for each of the columns of table entries.

The final for loop that contains a nested for loop that outputs the left column of multipliers and the products
that are the table entries. The nested loop outputs a complete table row, including the multiplier for the row in the
leftmost column. The nested loop executes once for each iteration of the outer loop, so table rows are generated.

The code that creates a complete table is within a do-while loop. This provides for as many tables to be produced
as required. If y or Y is entered in response to the prompt after a table has been output, another iteration of the do-
while loop executes to allow another table to be created. This example demonstrates three levels of nesting - a for
loop inside a for loop that is inside the do-while loop.

Skipping Loop Iterations
Situations arise where you want to skip one loop iteration and press on with the next. The continue statement
does this:

continue; // Go to the next iteration

When this statement executes within a loop, execution transfers immediately to the end of the current iteration.
As long as the loop control expression allows it, execution continues with the next iteration. This is best understood

Chapter 5 ■ arrays and Loops

126

in an example. Let’s suppose you want to output a table of characters with their character codes in hexadecimal and
decimal format. Of course, you don’t want to output characters that don’t have a graphical representation — some
of these, such as tabs and newline, would mess up the output. So, the program should output just the printable
characters. Here’s the code:

// Ex5_09.cpp
// Using the continue statement to display ASCII character codes
#include <iostream>
#include <iomanip>
#include <cctype>
#include <limits>

int main()
{
 std::cout << std::numeric_limits<unsigned char>::max() << std::endl;
 // Output the column headings
 std::cout << std::setw(11) << "Character " << std::setw(13) << "Hexadecimal "
 << std::setw(9) << "Decimal " << std::endl;
 std::cout << std::uppercase; // Uppercase hex digits

 // Output characters and corresponding codes
 unsigned char ch {};
 do
 {
 if (!std::isprint(ch)) // If it's not printable...
 continue; // ...skip this iteration
 std::cout << std::setw(6) << ch // Character
 << std::hex << std::setw(12) << static_cast<int>(ch) // Hexadecimal
 << std::dec << std::setw(10) << static_cast<int>(ch) // Decimal
 << std::endl;
 } while (ch++ < std::numeric_limits<unsigned char>::max());
}

This outputs all the printable characters with code values from 0 to the maximum unsigned char value so
it displays a handy list of the codes for the printable ASCII characters. The do-while loop is the most interesting
bit. The variable, ch, varies from zero up to the maximum value for its type, unsigned char. You saw the numeric_
limits<>::max() function back in Chapter 2, which returns the maximum value for the type you place between the
angled brackets. Within the loop, you don’t want to output details of any character that does not have a printable
representation and the isprint() function that is declared in the locale header only returns true for printable
characters. Thus the expression in the if statement will be true when ch contains the code for a character that is not
printable. In this case the continue statement executes, which skips the rest of the code in the current loop iteration.

The hex and dec manipulators in the output statements set the output mode for integers to what you require. You
have to cast the value of ch to int in the output statement to display as a numeric value; otherwise it would be output
as a character. The judicious use of the setw() manipulator for the headings and the output in the loop ensures that
everything lines up nicely.

Note that using unsigned char as the type for ch keeps the code simple. If you used char as the type for ch, you
would need to provide for the possibility that it could be a signed or unsigned type. One complication of signed
values is that you cannot cover the range by counting up from 0; adding 1 to the maximum value for signed char,
0111 1111 in binary which is 127, produces the minimum value, 1000 0000, which is -128.

Chapter 5 ■ arrays and Loops

127

You could deal with this by setting the initial value of ch to the minimum for the type using
numeric_limits<char>::min(), but when you cast the negative code values to int, of course you get a negative
result, so the hexadecimal codes would show the leading digits as F.

Note also that a for loop isn’t suitable here with ch as type unsigned char. The condition in a for loop is
checked before the loop block executes so you might be tempted to write the loop as follows:

for(unsigned char ch {}; ch <= std::numeric_limits<unsigned char>::max(); ++ch)
{
 // Output character and code...
}

This loop never ends. After executing the loop block with ch at the maximum value, the next increment of ch gives
it a value of 0 so the second loop control expression is never false. You could make it work by using type int for the
control variable in a for loop, then casting the value to type unsigned char when you want to output it as a character.

I’m sure you noticed when you run the example that the last character code in the output is 126. This is because
the isprint() function is returning false for code values in excess of this. If you want to see character codes greater
than 126 in the output, you could write the if statement in the loop as:

if(iscntrl(ch))
 continue;

This will only execute the continue statement for codes that represent control characters, which are code values
from 0x00 to 0x1F. You’ll now see some weird and wonderful characters in the last 128 characters; what these are
varies by locale.

Breaking Out of a Loop
Sometimes, you need to end a loop prematurely; something might arise within the loop statement that indicates there
is no point in continuing. In this case, you can use the break statement. Its effect in a loop is much the same as it is in
a switch statement; executing a break statement within a loop ends the loop immediately and execution continues
with the statement following the loop. The break statement is used most frequently with an indefinite loop, so let’s
look next at what one of those looks like.

Indefinite Loops
An indefinite loop can potentially run forever. Omitting the second control expression in a for loop results in a loop
that potentially executes an unlimited number of iterations. There has to be some way to end the loop within the loop
block itself; otherwise the loop repeats indefinitely.

Indefinite loops have many practical uses: programs that monitor some kind of alarm indicator for instance or
that collect data from sensors in an industrial plant. An indefinite loop can be useful when you don’t know in advance
how many loop iterations will be required, such as when you are reading a variable quantity of input data. In these
circumstances, you code the exit from the loop within the loop block, not within the loop control expression.

In the most common form of the indefinite for loop, all the control expressions are omitted, as shown here:

for(; ;)
{
 // Statements that do something...
 // ... and include some way of ending the loop
}

Chapter 5 ■ arrays and Loops

128

You still need the semicolons (;), even though no loop control expressions exist. The only way this loop can end is
if some code within the loop terminates it.

You can have an indefinite while loop, too:

while(true)
{
 // Statements that do something...
 // ... and include some way of ending the loop
}

The loop condition is always true, so you have an indefinite loop. This is equivalent to the for loop with no
control expressions. Of course, you can also have a version of the do-while loop that is indefinite, but it is not
normally used because it has no advantages over the other two types of loop.

The obvious way to end an indefinite loop is to use the break statement. You could have used an indefinite loop
in Ex5_08.cpp to allow several tries at entering a valid table size, instead of ending the program immediately. This loop
would do it:

const size_t max_tries {3};
do
{
 for (size_t count {1} ; ; ++count) // Indefinite loop
 {
 std::cout << "What size table would you like ("
 << table_min << " to " << table_max << ")? ";
 std::cin >> table; // Get the table size

 // Make sure table size is within the limits
 if (table >= table_min && table <= table_max)
 {
 break; // Exit the input loop
 }
 else if (count < max_tries)
 {
 std::cout << "Invalid input - try again.\n";
 }
 else
 {
 std::cout << "Invalid table size entered - yet again! " << "\nSorry, only "
 << max_tries << " goes - program terminated." << std::endl;
 return 1;
 }
 }

This indefinite for loop could replace the code at the beginning of the do-while loop in Ex5_08.cpp that handles
input of the table size. This allows up to max_tries attempts to enter a valid table size. A valid entry executes the break
statement, which terminates this loop and continues with the next statement in the do-while loop.

Here’s an example that uses an indefinite while loop to sort the contents of an array in ascending sequence:

// Ex5_10.cpp
// Sorting an array in ascending sequence - using an indefinite while loop
#include <iostream>
#include <iomanip>

Chapter 5 ■ arrays and Loops

129

int main()
{
 const size_t size {1000}; // Array size
 double x[size] {}; // Stores data to be sorted
 double temp {}; // Temporary store for a value
 size_t count {}; // Number of values in array

 while (true)
 {
 std::cout << "Enter a non-zero value, or 0 to end: ";
 std::cin >> temp;
 if (!temp)
 break;

 x[count++] = temp;
 if (count == size)
 {
 std::cout << "Sorry, I can only store " << size << " values.\n";
 break;
 }
 }
 std::cout << "Starting sort." << std::endl;
 bool swapped{ false }; // true when values are not in order
 while (true)
 {
 for (size_t i {} ; i < count - 1 ; ++i)
 {
 if (x[i] > x[i + 1])
 { // Out of order so swap them
 temp = x[i];
 x[i] = x[i+1];
 x[i + 1] = temp;
 swapped = true;
 }
 }
 if (!swapped) // If there were no swaps
 break; // ...they are in order...
 swapped = false; // ...otherwise, go round again.
 }

 std::cout << "Your data in ascending sequence:\n"
 << std::fixed << std::setprecision(1);
 const size_t perline {10}; // Number output per line
 size_t n {}; // Number on current line
 for (size_t i {} ; i < count ; ++i)
 {
 std::cout << std::setw(8) << x[i];
 if (++n == perline) // When perline have been written...
 {

Chapter 5 ■ arrays and Loops

130

 std::cout << std::endl; // Start a new line and...
 n = 0; // ...reset count on this line
 }
 }
 std::cout << std::endl;
}

Typical output looks like this:

Enter a non-zero value, or 0 to end: 44
Enter a non-zero value, or 0 to end: -7.8
Enter a non-zero value, or 0 to end: 56.3
Enter a non-zero value, or 0 to end: 75.2
Enter a non-zero value, or 0 to end: -3
Enter a non-zero value, or 0 to end: -2
Enter a non-zero value, or 0 to end: 66
Enter a non-zero value, or 0 to end: 6.7
Enter a non-zero value, or 0 to end: 8.2
Enter a non-zero value, or 0 to end: -5
Enter a non-zero value, or 0 to end: 0
Starting sort.
Your data in ascending sequence:
 -7.8 -5.0 -3.0 -2.0 6.7 8.2 44.0 56.3 66.0 75.2

The code limits the number of values than can be entered to size, which is set to 1000. Only users with amazing

keyboard skill and persistence will find out about this. Data entry is managed in the first while loop. This loop runs
until either 0 is entered, or the array, x, is full because size values have been entered, in the latter instance, the user
will see a message, indicating the limit. This is rather wasteful with memory but you’ll learn how you can avoid this in
such circumstances later in this chapter.

Each value is read into the variable temp. This allows the value to be tested for zero before it is stored in the array.
The ! operator requires an operand of type bool, so the compiler will insert an implicit conversion of the value of temp
to type bool. You’ll recall that a numerical value of zero converts to the bool value false, and non-zero converts to
true. Thus the if expression will be true when zero is entered. Each value is stored in the element of the array x at
index count. count is incremented after it is used to index the array, so it represents the number of elements in the
array when the following if statement executes.

The elements are sorted in ascending sequence in the next indefinite while loop. Ordering the values of the array
elements is carried out in the nested for loop that iterates over successive pairs of elements, and checking whether
they are in ascending sequence. If a pair of elements contain values that are not in ascending sequence, the values are
swapped to order them correctly. The bool variable, swapped, records whether it was necessary to interchange any
elements in any complete execution of the nested for loop. If it wasn’t, then the elements are in ascending sequence
and the break statement is executed to exit the while loop. If any pair had to be interchanged, swapped will be true so
another iteration of the while loop will execute, and this causes the for loop to run through pairs of elements again.

This sorting method is called the bubble sort because elements gradually “bubble up” to their correct position
in the array. It’s not the most efficient sorting method, but it has the merit that it is very easy to understand and it’s a
good demonstration of yet another use for an indefinite loop.

Chapter 5 ■ arrays and Loops

131

Arrays of Characters
An array of elements of type char can have a dual personality. It can simply be an array of characters, in which each
element stores one character, or it can represent a string. In the latter case, the characters in the string are stored in
successive array elements, followed by a special string termination character called the null character that you write as
'\0'; this marks the end of the string.

A character string that is terminated by '\0' is a C-style string. This contrasts with the string type from the
Standard Library that I’ll explain in detail in Chapter 7. Objects of type string don’t need a string termination
character and are much more flexible and convenient for string manipulation than using arrays of type char. For the
moment, I’ll introduce C-style strings in the context of arrays in general and return to these and to type string in
detail in Chapter 7.

You can define and initialize an array of elements of type char like this:

char vowels[5] {'a', 'e', 'i', 'o', 'u'};

This isn’t a string — it’s just an array of five characters. Each array element is initialized with the corresponding
character from the initializer list. As with numeric arrays, if you provide fewer initializing values than there are array
elements, the elements that don’t have explicit initial values will be initialized with the equivalent of zero, which is the
null character, '\0' in this case. This means that if there are insufficient initial values, the array will effectively contain
s string. For example:

char vowels[6] {'a', 'e', 'i', 'o', 'u'};

The last element will be initialized with '\0'. The presence of the null character means that this can be treated as
a C-style string. Of course, you can still regard it as an array of characters.

You could leave it to the compiler to set the size of the array to the number of initializing values:

char vowels[] {'a', 'e', 'i', 'o', 'u'}; // An array with five elements

This also defines an array of five characters initialized with the vowels in the initializer list.
You can also declare an array of type char and initialize it with a string literal, for example:

char name[10] {"Mae West"};

This creates a C-style string. Because you’re initializing the array with a string literal, the null character will be
stored in the element following the last string character, so the contents of the array will be as shown in Figure 5-5.

'M' 'a' 'e' ' ' 'W' 'e' 's' 't' '\0' '\0'

index : 0 1 2 3 4 5 6 7 8 9

char name[10] {"Mae West"};

This is here to mark the end of the string

This is here because there is no initial value for the element

name

Figure 5-5. An array of elements of type char initialized with a string literal

Chapter 5 ■ arrays and Loops

132

Of course, you can leave the compiler to set the size of the array when you initialize it with a string:

char name[] {"Mae West"};

This time, the array will have nine elements: eight to store the characters in the string, plus an extra element to store
the string termination character. Of course, you could have used this approach when you declared the vowels array:

char vowels[] {"aeiou"}; // An array with six elements

There’s a significant difference between this and the previous definition for vowels without an explicit array
dimension. Here you’re initializing the array with a string literal. This has '\0' appended to it to mark the end of the
string, so the vowels array will contain six elements. The array created with the earlier definition will only have five
elements and can’t be used as a string.

You can output a string stored in an array just by using the array name. The string in the name array, for example,
could be written to cout with this statement:

std::cout << name << std::endl;

This will display the entire string of characters, up to the '\0'. There must be a '\0' at the end. If there isn’t,
you’ll continue to output characters from successive memory locations until a string termination character turns up
or an illegal memory reference occurs.

Caution ■ you can’t output the contents of an array of a numeric type by just using the array name. this only works for
char arrays.

This example analyzes an array of elements of type char to work out how many vowels and consonants are
used in it:

// Ex5_11.cpp
// Classifying the letters in a string
#include <iostream>
#include <locale>

int main()
{
 const int maxlength {100}; // Array size
 char text[maxlength] {}; // Array to hold input string

 std::cout << "Enter a line of text:" << std::endl;

 // Read a line of characters including spaces
 std::cin.getline(text, maxlength);
 std::cout << "You entered:\n" << text << std::endl;
 size_t vowels {}; // Count of vowels
 size_t consonants {}; // Count of consonants
 for(int i {} ; text[i] != '\0' ; i++)
 {
 if(isalpha(text[i])) // If it is a letter...

Chapter 5 ■ arrays and Loops

133

 {
 switch(tolower(text[i]))
 { // ...check lowercase...
 case 'a': case 'e': case 'i': case 'o': case 'u':
 vowels++; // ...it is a vowel
 break;

 default:
 consonants++; // ...it is a consonant
 }
 }
 }
 std::cout << "Your input contained " << vowels << " vowels and "
 << consonants << " consonants." << std::endl;
}

Here’s an example of the output:

Enter a line of text:
A rich man is nothing but a poor man with money.
You entered:
A rich man is nothing but a poor man with money.
Your input contained 14 vowels and 23 consonants.

The text array of type char elements has the size defined by a const variable, max_length. This determines the

maximum length string that can be stored, including the terminating null character, so the longest string can contain
max_length-1 characters.

You can’t use the extraction operator to read the input, because it won’t read a string containing spaces; any
whitespace character terminates the input operation with the >> operator. The getline() function for cin that is
defined in the iostream header reads a sequence characters, including spaces. By default, the input ends when a
newline character, '\n', is read, which will be when you press the Enter key. The getline() function expects two
arguments between the parentheses. The first argument specifies where the input is to be stored, which in this case
is the text array. The second argument specifies the maximum number of characters that you want to store. This
includes the string termination character, '\0', which will be automatically appended to the end of the input.

Although you haven’t done so here, you can optionally supply a third argument to the getline() function. This
specifies an alternative to '\n' to indicate the end of the input. For example, if you want the end of the input string to
be indicated by an asterisk for example, you would use this statement to read the input:

std::cin.getline(text, maxlength, '*');

This would allow multiple lines of text to be entered because the '\n' that results from pressing Enter would
no longer terminate the input operation. Of course, the total number of characters that you can enter in the read
operation is still limited by maxlength.

Just to show that you can, the program output the string that was entered using just the array name, text. The
text string is then analyzed in a straightforward manner in the for loop. The second control expression within
the loop will be false when the character at the current index, i, is the null character, so the loop ends when the
null character is reached. To work out the number of vowels and consonants, you only need to inspect alphabetic
characters, and the if statement selects those; isalpha() only returns true for alphabetic characters. Thus the switch
statement only executes for letters. Converting the switch expression to lowercase avoids having to write cases for
uppercase as well as lowercase letters. Any vowel will select the first case and the default case is selected by anything
that isn’t a vowel, which must be a consonant of course.

Chapter 5 ■ arrays and Loops

134

Multidimensional Arrays
All the arrays so far have required a single index value to select an element. Such an array is called a one-dimensional
array, because varying one index can reference all the elements. You can also define arrays that require two or more
index values to access an element. These are referred to generically as multidimensional arrays. An array that requires
two index values to reference an element is called a two-dimensional array. An array needing three index values is a
three-dimensional array, and so on for as many dimensions as you think you can handle.

Suppose, as an avid gardener, that you want to record the weights of the carrots you grow in your small
vegetable garden. To store the weight of each carrot, which you planted in three rows of four, you could define a
two-dimensional array:

double carrots[3][4] {};

This defines an array with 3 rows of 4 elements and initializes all elements to zero. To reference a particular
element of the carrots array, you need two index values. The first index specifies the row, from 0 to 2, and the second
index specifies a particular carrot in that row, from 0 to 3. To store the weight of the third carrot in the second row, you
could write:

carrots[1][2] = 1.5;

Figure 5-6 shows the arrangement of this array in memory. The rows are stored contiguously in memory. As you
can see, the two-dimensional array is effectively a one-dimensional array of three elements, each of which is a one-
dimensional array with four elements. You have an array of three arrays that each has four elements of type double.
Figure 5-6 also indicates that you can use the array name plus a single index value between square brackets to refer to
an entire row.

carrots [0][0] carrots [0][1] carrots [0][2] carrots [0][3]

carrots [1][0] carrots [1][1] carrots [1][2] carrots [1][3]

carrots [2][0] carrots [2][1] carrots [2][2] carrots [2][3]

You can refer to this row as carrots [0]

You can refer to this row as carrots [1]

You can refer to this row as carrots [2]

You can refer to the whole array as carrots

double carrots [3][4] { }; // Array with 3 rows of 4 elements

Figure 5-6. Elements in a two-dimensional array

You use two index values to refer to an element. The second index selects an element within the row specified by
the first index; the second index varies most rapidly as you progress from one element to the next in memory. You can
also envisage a two-dimensional array as a rectangular arrangement of elements the array from left to right, where
the first index specifies a row and the second index corresponds to a column. Figure 5-7 illustrates this. With arrays
of more than two dimensions, the rightmost index value is always the one that varies most rapidly, and the leftmost
index varies least rapidly.

Chapter 5 ■ arrays and Loops

135

The array name by itself references the entire array. Note that with this array, you can’t display the contents of
either a row or the whole array using this notation. For example:

std::cout << carrots << std::endl; // Not what you may expect!

This statement will output a single hexadecimal value, which happens to be the address in memory of the first
element of the array. You’ll see why this is the case when I discuss pointers in the next chapter. Arrays of type char are
a little different, as you saw earlier.

To display the entire array, one row to a line, you must write something like this:

for(size_t i {} ; i < 3 ; ++i) // Iterate over rows
{
 for(size_t j {} ; j < 4 ; ++j) // Iterate over elements within the row
 {
 std::cout << std::setw(12) << carrots[i][j];
 }
 std::cout << std::endl; // A new line for a new row
}

This uses magic numbers, 3 and 4, which you can avoid by using the sizeof operator:

for(size_t i {} ; i < sizeof(carrots)/sizeof(carrots[0]) ; ++i)
{
 for(size_t j {} ; j < sizeof(carrots[0])/sizeof(double) ; ++j)
 {
 std::cout << std::setw(12) << carrots[i][j];
 }
 std::cout << std::endl;
}

double carrots [3][4] { };

carrots [0][0] carrots [0][1] carrots [0][2] carrots [0][3]

carrots [1][0] carrots [1][1] carrots [1][2] carrots [1][3]

carrots [2][0] carrots [2][1] carrots [2][2] carrots [2][3]

column 0 column 1 column 2 column 3

row 0

row 1

row 2

Figure 5-7. Rows and columns in a two-dimensional array

Chapter 5 ■ arrays and Loops

136

You could use sizeof(carrots[0][0]) in place of sizeof(double) in the nested loop. Of course, it would be
better still not to use magic numbers for the array dimension sizes in the first place, so you should define the array as:

const size_t nrows {3}; // Number of rows in the array
const size_t ncols {4}; // Number of columns, or number of elements per row
double carrots[nrows, ncols] {};

Now you can output elements values like this:

for(size_t i {}; i < nrows ; ++i) // Iterate over rows
{
 for(size_t j {} ; j < ncols ; ++j) // Iterate over elements within the row
 {
 std::cout << std::setw(12) << carrots[i][j];
 }
 std::cout << std::endl; // A new line for a new row
}

Defining an array of three dimensions just adds another set of square brackets. You might want to record three
temperatures per day, seven days a week, for 52 weeks of the year. You could declare the following array to store such
data as type long:

long temperatures[52][7][3] {};

The array stores three values in each row. There are seven such rows for a whole week’s data and 52 sets of these
for all the weeks in the year. This array will have a total of 1,092 elements of type long. They will all be initialized with
zero. To display the middle temperature for day 3 of week 26, you could write this:

std::cout << temperatures[25][2][1] << std::endl;

Remember that all the index values start at 0, so the weeks run from 0 to 51, the days run from 0 to 6, and the
samples in a day run from 0 to 2.

Initializing Multidimensional Arrays
You have seen that an empty initializer list initializes an array with any number of dimensions to zero. It’s gets a little
more complicated when you want initial values other than zero. The way in which you specify initial values for a
multidimensional array derives from the notion that a two-dimensional array is an array of one-dimensional arrays.
The initializing values for a one-dimensional array are written between braces and separated by commas. Following
on from that, you could declare and initialize the two-dimensional carrots array, with this statement:

double carrots[3][4] {
 {2.5, 3.2, 3.7, 4.1}, // First row
 {4.1, 3.9, 1.6, 3.5}, // Second row
 {2.8, 2.3, 0.9, 1.1} // Third row
 };

I used explicit array dimensions to keep the code fragments short and simple. Each row is a one-dimensional
array, so the initializing values for each row are contained within their own set of braces. These three initializer lists
are themselves contained within a set of braces, because the two-dimensional array is a one-dimensional array of
one-dimensional arrays. You can extend this principle to any number of dimensions — each extra dimension requires
another level of nested braces enclosing the initial values.

Chapter 5 ■ arrays and Loops

137

A question that may immediately spring to mind is, “What happens when you omit some of the initializing
values?” The answer is more or less what you might have expected from past experience. Each of the innermost pairs
of braces contains the values for the elements in the rows. The first list corresponds to carrots[0], the second to
carrots[1], and the third to carrots[2]. The values between each pair of braces are assigned to the elements of the
corresponding row. If there aren’t enough to initialize all the elements in the row, then the elements without values
will be initialized to 0.

Let’s look at an example:

double carrots[3][4] {
 {2.5, 3.2 }, // First row
 {4.1 }, // Second row
 {2.8, 2.3, 0.9 } // Third row
 };

The first two elements in the first row have initial values, whereas only one element in the second row has an
initial value, and three elements in the third row have initial values. The elements without initial values in each row
will therefore be initialized with zero, as shown in Figure 5-8.

2.5 3.2 0.0 0.0

4.1 0.0 0.0 0.0

2.8 2.3 0.9 0.0

carrots[0][3]carrots[0][2]carrots[0][1]carrots[1][0]

carrots[1][0] carrots[1][1] carrots[1][2] carrots[1][3]

carrots[2][0] carrots[2][1] carrots[2][2] carrots[2][3]

Figure 5-8. Omitting initial values for a two-dimensional array

If you don’t include sufficient sets of braces to initialize all of the rows in the array, the elements in the rows
without braces enclosing initializing values will all be set to 0. If you include several initial values in the initializer list
but omit the nested braces enclosing values for the rows, values are assigned sequentially to the elements, as they’re
stored in memory — with the rightmost index varying most rapidly. For example, suppose you define the array like this:

double carrots[3][4] {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7};

The first four values in the list will initialize elements in row 0. The last three values in the list will initialize the
first three elements in row 1. The remaining elements will be initialized with zero.

Setting Dimensions by Default
You can let the compiler determine the size of the first (leftmost) dimension of an array with any number of
dimensions from the set of initializing values. Clearly, the compiler can only ever determine one of the dimensions in
a multidimensional array, and it has to be the first. If you were to supply 12 initial values for a two-dimensional array,
for instance, there’s no way for the compiler to know whether the array should be three rows of four elements, six rows
of two elements, or indeed any combination that amounts to 12 elements.

Chapter 5 ■ arrays and Loops

138

You could define the two-dimensional carrots array with this statement:

double carrots[][4] {
 {2.5, 3.2 }, // First row
 {4.1 }, // Second row
 {2.8, 2.3, 0.9 } // Third row
 };

The array will have three rows, as before, because there are three sets of braces within the outer pair. If there were
only two sets, the array would have two rows. The number of inner pairs of braces determines the number of rows.

Here’s an example of defining a three-dimensional array:

int numbers[][3][4] {
 {
 { 2, 4, 6, 8},
 { 3, 5, 7, 9},
 { 5, 8, 11, 14}
 },
 {
 {12, 14, 16, 18},
 {13, 15, 17, 19},
 {15, 18, 21, 24}
 }
 };

This array has three dimensions of sizes 2, 3, and 4. The outer braces enclose two further sets of braces, and each
of these in turn contains three sets, each of which contains the four initial values for the corresponding row. As this
simple example demonstrates, initializing arrays of three dimensions or more gets increasingly complicated, and you
need to take great care when placing the braces enclosing the initial values. The braces are nested to as many levels as
there are dimensions in the array.

Multidimensional Character Arrays
You can define arrays of two or more dimensions to hold any type of data. A two- dimensional array of type char is
interesting, because it can be an array of C-style strings. When you initialize a two-dimensional array of char elements
with string literals, you don’t need the braces around the literal for a row—the double quotes delimiting the literal do
the job of the braces in this case, for example:

char stars[][80] {
 "Robert Redford",
 "Hopalong Cassidy",
 "Lassie",
 "Slim Pickens",
 "Boris Karloff",
 "Oliver Hardy"
 };

Chapter 5 ■ arrays and Loops

139

This array will have six rows because there are six string literals as initial values. Each row stores a string
containing the name of a movie star, and a terminating null character, '\0', will be appended to each string. Each
row will accommodate up to 80 characters according to the row dimension you’ve specified. We can see this applied
in an example:

// Ex5_12.cpp
// Working with strings in an array
#include <iostream>

int main()
{
 const size_t max_str {80}; // Maximum string length including \0
 char stars[][max_str] {
 "Fatty Arbuckle", "Clara Bow",
 "Lassie", "Slim Pickens",
 "Boris Karloff", "Mae West",
 "Oliver Hardy", "Greta Garbo"
 };
 size_t choice {};

 std::cout << "Pick a lucky star! Enter a number between 1 and "
 << sizeof(stars)/sizeof(stars[0]) << ": ";
 std::cin >> choice;

 if(choice >= 1 && choice <= sizeof stars/sizeof stars[0])
 {
 std::cout << "Your lucky star is " << stars[choice - 1] << std::endl;
 }
 else
 {
 std::cout << "Sorry, you haven't got a lucky star." << std::endl;
 }
}

Typical output from this program is:

Pick a lucky star! Enter a number between 1 and 8: 6
Your lucky star is Mae West

Apart from its incredible inherent entertainment value, the main point of interest in the example is the definition

of the array, stars. It’s a two-dimensional array of char elements, which can hold multiple strings, each of which
can contain up to max_str characters, including the terminating null that’s automatically added by the compiler. The
initializing strings for the array are enclosed between braces and separated by commas. Because the size of the first
array dimension is omitted, the compiler creates the array with the number of rows necessary to accommodate all the
initializing strings. As you saw earlier, you can only omit the size of the first dimension; you must specify the sizes of
any other dimensions that are required.

The upper limit on the integer to be entered is given by the expression sizeof(stars)/sizeof(stars[0]).
This results the number of rows in the array because it divides the memory occupied by the entire array by the
memory occupied by a row. Thus the statement automatically adapts to any changes you may make to the number
of literals in the initializing list. You use the same technique in the if statement that arranges for the output to be

Chapter 5 ■ arrays and Loops

140

displayed. The if condition checks that the integer that was entered is within range before attempting to display a
name. When you need to reference a string for output, you only need to specify the first index value. A single index
selects a particular 80-element subarray, and because this contains a string, the operation will output the contents
of each element up to the terminating null character. The index is specified as choice-1 because the choice
values start from 1, whereas the index values need to start from 0. This is quite a common idiom when you’re
programming with arrays.

Note ■ a disadvantage of using arrays as in this example is the memory that is almost invariably left unused. all of
your strings are less than 80 characters, and the surplus elements in each row of the array are wasted. you’ll see a better
way of dealing with situations like this in the next chapter.

Alternatives to Using an Array
The Standard Library provides alternatives to the arrays that are part of the C++ language. The alternatives are defined
in the subset of the Standard Library that is referred to as the Standard Template Library (STL). As its name suggests,
the STL is essentially a collection of templates for classes and functions. In particular, the STL defines templates for
container classes that offer a variety of ways to organize data. Most of the STL is beyond the scope of this book but
I’ll introduce you to the container classes that provide an alternative to standard arrays because they are easy to
work with, much safer to use and provide more flexibility. The discussion won’t be exhaustive; just enough for you
to use them like the array types built-in to the language. I’ll discuss two types of containers, std::array<T,N> and
std::vector<T>. These are class templates that the compiler uses to create a type based on what you specify for the
parameters, T and N. I’ll refer to these container types in the text without the std namespace qualification but it will be
there in the code. I’ll also omit the type parameters when referring to them generically, as array<> and vector<>.

Using array<T,N> Containers
The array<T,N> template is defined in the array header so you must include this in a source file to use the container
type. An array<T,N> container is a fixed sequence of N elements of type T, so it’s just like a regular array except that
you specify the type and size a little differently. Here’s how you create an array<> of 100 elements of type double:

std::array<double, 100> values;

This creates an object that has 100 elements of type double that are initialized to zero by default. The
specification for the parameter N must be a constant expression and the number of elements cannot be changed. Any
array container you create without specifying explicit initial values will have elements set to the equivalent of zero for
the type of element.

Of course, you can initialize the elements in the definition, just like a normal array:

std::array<double, 100> values {0.5, 1.0, 1.5, 2.0}; // 5th and subsequent elements are 0.0

The four values in the initializer list are used to initialize the first four elements; subsequent elements
will be zero.

You can set all the elements to some given value using the fill() function for the array<> object. For example:

values.fill(3.1415926); // Set all element to pi

Chapter 5 ■ arrays and Loops

141

The fill() function belongs to the array object. The function is a member of the class type, array<double,100>,
of the object all array objects will have a fill() member, as well as other members. The period between the name of
the variable, values, that contains the object, and the member function, fill(), is called the direct member selection
operator. This operator is used to access members of a class object. Executing this statement causes all elements to be set
to the value you pass as the argument to the fill() function. Obviously, this must be of a type that can be stored in the
container. You’ll understand the relationship between the fill() function and an array<> object better after Chapter 11.

You can access and use elements using an index in the same way as for a standard array, for example:

values[4] = values[3] + 2.0*values[1];

The fifth element is set to the value of the expression that is the right operand of the assignment.
The size() function for an array<> object returns the number of elements as type size_t, so you could sum the

elements in the values object like this:

double total {};
for(size_t i {} ; i < values.size() ; ++i)
{
 total += values[i];
}

The size() function provides the first advantage over a standard array because it means that an array<> object
knows how many elements there are. This is not true for a standard array. As you’ll learn in Chapter 8, when you pass
a standard array to a function, you must also pass the array size as an additional argument; otherwise the function
cannot determine the number of elements. When you use an array<> object, the object knows its size so there is no
need to supply the size separately.

An array<> object is a range, so you can use the range-based for loop to sum the elements more simply:

double total {};
for(auto value : values)
{
 total += value;
}

Accessing the elements in an array<> object using an index between square brackets doesn’t check for invalid
index values. The at() function for an array<> object does, and therefore will detect attempts to use an index value
outside the legitimate range. The argument to the at() function is an index, the same as when you use square
brackets, so you could write the for loop that totals the elements like this:

double total {};
for(size_t i {} ; i < values.size() ; ++i)
{
 total += values.at(i);
}

The expression values.at(i) is equivalent to values[i], but with the added security that the value of i will be
checked. For example, this code will fail:

double total {};
for(size_t i {} ; i <= values.size() ; ++i)
{
 total += values.at(i);
}

Chapter 5 ■ arrays and Loops

142

The second loop condition now using the <= operator allows i to reference beyond the last element. This will
result in the program terminating at runtime with a message relating to an exception of type std::out_of_range
being thrown. Throwing an exception is a mechanism for signaling exceptional error conditions. You’ll learn more
about exceptions in Chapter 15. If you code this using values[i], the program will silently access the element beyond
the end of the array and add whatever it contains to total. The at() function provides a further advantage over
standard arrays.

You can compare entire array<> containers using any of the comparison operators as long as the containers are
of the same size and store elements of the same type. For example:

std::array<double,4> these {1.0, 2.0, 3.0, 4.0};
std::array<double,4> those {1.0, 2.0, 3.0, 4.0};
std::array<double,4> them {1.0, 3.0, 3.0, 2.0};

if (these == those) std::cout << "these and those are equal." << std::endl;
if (those != them) std::cout << "those and them are not equal." << std::endl;
if (those < them) std::cout << "those are less than them." << std::endl;
if (them > those) std::cout << "them are greater than those." << std::endl;

Containers are compared element by element. For a true result for ==, all pairs of corresponding elements must
be equal. For inequality, at least one pair of corresponding elements must be different for a true result. For all the
other comparisons, the first pair of elements that differ produces the result. This is essentially the way in which words
in a dictionary are ordered where the first pair of corresponding letters that differ in two words determines their order.
All the comparisons in the code fragment are true, so all four messages will be output when this executes.

Unlike standard arrays, you can assign one array<> container to another, as long as they both store the same
number of elements of the same type. For example:

them = those; // Copy all elements of those to them

Using the array<> container carries very little overhead compared to a standard array so there’s every reason
to use a container in preference to a standard array in your code. Here’s an example that demonstrates array<>
containers in action:

// Ex5_13.cpp
// Using array<T,N> to create Body Mass Index (BMI) table
// BMI = weight/(height*height)
// weight in kilograms, height in meters

#include <iostream>
#include <iomanip>
#include <array> // For array<T,N>
using std::cout;
using std::endl;
using std::setw;

int main()
{
 const unsigned int min_wt {100U}; // Minimum weight in table
 const unsigned int max_wt {250U}; // Maximum weight in table
 const unsigned int wt_step {10U};
 const size_t wt_count {1 + (max_wt - min_wt) / wt_step};

Chapter 5 ■ arrays and Loops

143

 const unsigned int min_ht {48U}; // Minimum height in table
 const unsigned int max_ht {84U}; // Maximum height in table
 const unsigned int ht_step {2U};
 const size_t ht_count { 1 + (max_ht - min_ht) / ht_step };

 const double lbs_per_kg {2.2};
 const double ins_per_m {39.37};
 std::array<unsigned int, wt_count> weight_lbs {};
 std::array<unsigned int, ht_count> height_ins {};

 // Create weights from 100lbs in steps of 10lbs
 for (size_t i{}, w{ min_wt } ; i < wt_count ; w += wt_step, ++i)
 {
 weight_lbs[i] = w;
 }
 // Create heights from 48 inches in steps of 2 inches
 size_t i {};
 for (unsigned int h{ min_ht } ; h <= max_ht ; h += ht_step)
 {
 height_ins.at(i++) = h;
 }

 // Output table headings
 cout << setw(7) << " |";
 for (auto w : weight_lbs)
 cout << setw(5) << w << " |";
 cout << endl;

 // Output line below headings
 for (size_t i{1} ; i < wt_count ; ++i)
 cout << "---------";
 cout << endl;

 double bmi {}; // Stores BMI
 unsigned int feet {}; // Whole feet foe output
 unsigned int inches {}; // Whole inches for output
 const unsigned int inches_per_foot {12U};
 for (auto h : height_ins)
 {
 feet = h / inches_per_foot;
 inches = h % inches_per_foot;
 cout << setw(2) << feet << "'" << setw(2) << inches << "\"" << "|";
 cout << std::fixed << std::setprecision(1);
 for (auto w : weight_lbs)
 {
 bmi = h / ins_per_m;
 bmi = (w / lbs_per_kg) / (bmi*bmi);
 cout << setw(2) << " " << bmi << " |";
 }
 cout << endl;
 }

Chapter 5 ■ arrays and Loops

144

 // Output line below table
 for (size_t i {1} ; i < wt_count ; ++i)
 cout << "---------";
 cout << "\nBMI from 18.5 to 24.9 is normal" << endl;
}

I leave you to run the program to see the output because it takes quite a lot of space. The using directives reduce
the line length for the output statements so they fit within the page width. There are two sets of four const variables
defined that relate to the range of weights and heights for the BMI table. The weights and heights are stored in array<>
containers with elements of type unsigned int because all the weights and heights are integral. The containers
are initialized with the appropriate values in for loops. The second loop that initializes height_ins uses a different
approach to setting the values just to demonstrate the at() function. This is appropriate in this loop because the loop
is not controlled by the index limits for the container so it’s possible that a mistake could be made that would use an
index outside the legal range for the container. The program would be terminated if this occurred, which would not be
the case using square brackets to reference an element.

The next two for loops output the table column headings and a line to separate the headings from the rest of the
table. The table is created using nested range-based for loops. The outer loop iterates over the heights and outputs
the height in the leftmost column in feet and inches. The inner loop iterates over the weights and outputs a row of BMI
values for the current height.

Using std::vector<T> Containers
The vector<T> container is a sequence container that is like an array<T,N> container except that the size can grow
automatically to accommodate any number of elements; hence the requirement for only the type parameter T - there’s
no need for the N with a vector<>. Additional space is allocated automatically when required, so a vector<> can grow
as you add more elements. Using the vector<> container needs the vector header to be included in your source file.

Here’s an example of creating a vector<> container to store values of type double:

std::vector<double> values;

This has no space for elements allocated so memory will need to be allocated dynamically when you add the first
data item. You can add an element using the push_back() function for the container object. For example:

values.push_back(3.1415926); // Add an element to the end of the vector

The push_back() function adds the value you pass as the argument — 3.1415926 in this case — as a new element
at the end of the existing elements. Since there are no existing elements here, this will be the first, and this will cause
memory to be allocated.

Allocating memory is relatively expensive in time so you don’t want to it to occur more often than necessary. You
can reduce the likelihood by creating a vector<> with a predefined number of elements, like this:

std::vector<double> values(20); // Capacity is 20 double values

This container starts out with 20 elements that are initialized with zero by default - just like an array<>. If you
don’t like zero as the default value for elements, you can specify a value that will apply for all elements:

std::vector<long> numbers(20, 99L); // Capacity is 20 long values - all 99

Chapter 5 ■ arrays and Loops

145

The second argument between the parentheses specifies the initial value for all elements so all 20 elements
will be 99L. The first argument that specifies the number of elements in the vector does not need to be a constant
expression. It could be the result of an expression executed at runtime or read in from the keyboard. Of course, you
can add new elements to the end of this or any other vector using the push_back() function.

You can use an index between square brackets to set a value for an existing element or just to use its current value
in an expression. For example:

values[0] = 3.1415926; // Pi
values[1] = 5.0; // Radius of a circle
values[2] = 2.0*values[0]*values[1]; // Circumference of a circle

Index values for a vector<> start from 0, just like a standard array. You can always reference existing elements
using an index between square brackets but you cannot create new elements this way — you must use the push_back()
function. The index values are not checked when you index a vector like this. You can access memory outside the
extent of the array and store values in such locations using an index between square brackets. The vector<> object
provides the at() function, just like an array<> container object, so use the at() function to refer to elements
whenever there is the potential for the index to be outside the legal range.

A further option for creating a vector<> is to use an initializer list to specify initial values:

std::vector<unsigned int> primes { 2u, 3u, 5u, 7u, 11u, 13u, 17u, 19u};

The primes vector container will be created with eight elements with the initial values in the initializer list.

The Capacity and Size of a Vector
The capacity of a vector is the number elements that it can store without allocating more memory; these elements
may or may not exist. The size of a vector is the number of elements it actually contains, which is the number of
elements that have values stored. Obviously the size cannot exceed the capacity. When the size equals the capacity,
adding an element will cause more memory to be allocated. You can obtain the size and capacity of a vector by calling
the size() or capacity() function for the vector<> object. These values are returned as integers of an unsigned
integral type that is defined by your implementation. For example:

std::vector<unsigned int> primes { 2u, 3u, 5u, 7u, 11u, 13u, 17u, 19u};
std::cout << "The size is " << primes.size() << std::endl;
std::cout << "The capacity is " << primes.capacity() << std::endl;

The output statements will present the value 8 for the size and the capacity, as determined by the initializer list.
However, if you add an element using the push_back() function and output the size and capacity again, the size will
be 9 and the capacity will be 16. The increment for increasing the capacity when the size is equal to the capacity is
increase by some algorithm based on the existing capacity, typically to double the existing capacity.

You might want to store the size or capacity of a vector in a variable. The type for the size or capacity for a
vector<T> is vector<T>::size_type, which implies that size_type is defined within the vector<T> class that the
compiler generates from the class template. Thus for the primes vector the size value will be type vector<unsigned
int>::size_type. You can avoid worrying about such details most of the time by using the auto keyword when you
define the variable, for example:

auto nElements = primes.size(); // Store the number of elements

Remember, you must use = with auto - not an initializer list, otherwise the type will not be determined correctly.
A common reason for storing the size is to iterate over the elements in a vector using an index. You can also use a
range-based for loop with a vector. There are other ways of iterating over the elements in a container using objects
called iterators. Iterators are defined within the STL and a discussion of iterators is outside the scope of this book.

Chapter 5 ■ arrays and Loops

146

You are now in a position to create a new version of Ex5_10.cpp that only use the memory required for the
current input data:

// Ex5_14.cpp
// Sorting an array in ascending sequence - using a vector<T> container
#include <iostream>
#include <iomanip>
#include <vector>
using std::vector;

int main()
{
 vector<double> x; // Stores data to be sorted
 double temp {}; // Temporary store for a value

 while (true)
 {
 std::cout << "Enter a non-zero value, or 0 to end: ";
 std::cin >> temp;
 if (!temp)
 break;

 x.push_back(temp);
 }

 std::cout << "Starting sort." << std::endl;
 bool swapped {false}; // true when values are not in order
 while (true)
 {
 for (vector<double>::size_type i {} ; i < x.size() - 1 ; ++i)
 {
 if (x.at(i) > x.at(i + 1))
 { // Out of order so swap them
 temp = x.at(i);
 x.at(i) = x.at(i + 1);
 x.at(i + 1) = temp;
 swapped = true;
 }
 }
 if (!swapped) // If there were no swaps
 break; // ...they are in order...
 swapped = false; // ...otherwise, go round again.
 }

 std::cout << "your data in ascending sequence:\n"
 << std::fixed << std::setprecision(1);
 const size_t perline {10}; // Number output per line
 size_t n{}; // Number on current line
 for (vector<double>::size_type i {} ; i < x.size() ; ++i)

Chapter 5 ■ arrays and Loops

147

 {
 std::cout << std::setw(8) << x[i];
 if (++n == perline) // When perline have been written...
 {
 std::cout << std::endl; // Start a new line and...
 n = 0; // ...reset count on this line
 }
 }
 std::cout << std::endl;
}

The output will be exactly the same as Ex5_10.cpp. The only difference in the code is that the data is stored in
a container of type vector<double>. It is no longer necessary to check whether there is space for each value; unless
you fill all the available memory in your PC, it will never happen. Memory is allocated incrementally to accommodate
whatever input data is entered. Most of the code is the same - the only significant change is in the type of the control
variable in the for loops that iterate over the values during sorting and outputting the sorted data. This is now the
type defined in the vector<double> class. This is usually the same as type size_t, the type returned by the sizeof
operator, but it’s best not to assume this is the case. I used the at() function for the vector x in the first for loop that
reorders the elements. This will throw a std::out_of_range exception if the index i is invalid, just like the array
container; this will terminate the program with a message.

The vector is defined with zero capacity. This is a sorting program so there will always be some input. You can set
the capacity by calling the reserve() function for the vector object. For example:

x.reserve(10); // Set capacity to 10 elements

This doesn’t create any elements. It just allocates memory for the number of elements specified as the argument
to reserve().

Deleting Elements from a Vector container
You can remove all the elements from a vector by calling the clear() function for the vector object. For example:

std::vector<int> data(100, 99); // Contains 100 elements initialized to 99
data.clear(); // Remove all elements

The first statement creates a vector<int> object with 100 elements so the size is 100 and the capacity is 100.
The second statement removes all the elements so the size will be 0; the capacity will still be 100.

You can remove the last element from a vector object by calling its pop_back() function. For example:

std::vector<int> data(100, 99); // Contains 100 elements initialized to 99
data.pop_back(); // Remove the last element

The second statement removes the last element so the size of data will be 99 and the capacity left as 100.
This is by no means all there is to using vector<> containers. You’ll learn a little more about working with

array<> and vector<> containers in the next chapter.

Chapter 5 ■ arrays and Loops

148

Summary
You will see further applications of containers and loops in the next chapter. Almost any program of consequence
involves a loop of some kind. Because they are so fundamental to programming, you need to be sure you have a good
grasp of the ideas covered in this chapter. The essential points you have learned in this chapter are:

An array stores a fixed number of values of a given type.•	

You access elements in a one-dimensional array using an index value between square •	
brackets. Index values start at 0 so an index is the offset from the first element in a one-
dimensional array.

An array can have more than one dimension. Each dimension requires a separate index value •	
to reference an element. Accessing elements in an array with two or more dimensions requires
an index between square brackets for each array dimension.

A loop is a mechanism for repeating a block of statements.•	

There are four kinds of loop that you can use: the •	 while loop, the do-while loop, the for loop,
and the range-based for loop.

The •	 while loop repeats for as long as a specified condition is true.

The •	 do-while loop always performs at least one iteration, and continues for as long as a
specified condition is true.

The •	 for loop is typically used to repeat a given number of times and has three control
expressions. The first is an initialization expression, executed once at the beginning of the
loop. The second is a loop condition, executed before each iteration, which must evaluate to
true for the loop to continue. The third is executed at the end of each iteration and is usually
used to increment a loop counter.

The range-based •	 for loop iterates over all elements within a range. An array is a range of
elements and a string is a range of characters. The array and vector containers define a range
so you can use the range-based for loop to iterate over the elements they contain.

Any kind of loop may be nested within any other kind of loop to any depth.•	

Executing a •	 continue statement within a loop skips the remainder of the current iteration and
goes straight to the next iteration, as long as the loop control condition allows it.

Executing a •	 break statement within a loop causes an immediate exit from the loop.

A loop defines a scope so that variables declared within a loop are not accessible outside the •	
loop. In particular, variables declared in the initialization expression of a for loop are not
accessible outside the loop.

The •	 array<T,N> container stores a sequence of N elements of type T. An array<> container
provides an excellent alternative to using the arrays that are built in to the C++ language.

The •	 vector<T> container stores a sequence of elements of type T that increases dynamically in
size as required when you add elements. You can use a vector container as an alternative to a
standard array when the number of elements cannot be determined in advance.

Chapter 5 ■ arrays and Loops

149

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. If you get stuck, look back
over the chapter for help. If you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 5-1. Write a program that outputs the squares of the odd integers from 1 up to a
limit that is entered by the user.

exercise 5-2. Write a program that uses a while loop to accumulate the sum of an arbitrary
number of integers that are entered by the user. the program should output the total of all the
values and the overall average as a floating-point value.

exercise 5-3. Create a program that uses a do-while loop to count the number of non-
whitespace characters entered on a line. the count should end when the first # character is
found.

exercise 5-4. Create a vector<> container with elements containing the integers from 1
to 100 and output the values 6 on a line with the values aligned in columns. output the
elements from the vector that contain values that are not multiple of 7 or 13. 8 on a line
aligned in columns.

exercise 5-5. Write a program that will read and store an arbitrary sequence of records
relating to products. each record includes three items of data - an integer product number, a
quantity, and a unit price, such as for product number 1001 the quantity is 25, and the unit
price is $9.95. the program should output each product on a separate line and include the
total cost. the last line should output the total cost for all products. Columns should align so
output should be something like this:

Product Quantity Unit Price Cost

1001 25 $9.95 $248.75

1003 10 $15.50 $155.00

$403.75

exercise 5-6. the famous Fibonacci series is a sequence of integers with the first two values
as 1 and the subsequent values as the sum of the two preceding values. so it begins 1, 1,
2, 3, 5, 8, 13, and so on. this is not just a mathematical curiosity. It relates to the way shells
grow in a spiral and the number of petals on many flowers is a number from this sequence.
Create an array<> container with 90 elements. store the first 90 numbers in the Fibonacci
series in the array, then output the 5 to a line, aligned in columns.

www.apress.com/source-code

151

Chapter 6

Pointers and References

The concepts of pointers and references have similarities, which is why I have put them together in a single chapter.
Pointers are important because they provide the foundation for allocating memory dynamically. Pointers can also
make your programs more effective and efficient in other ways. Both references and pointers are fundamental to
object oriented programming.

In this chapter you’ll learn

What pointers are and how they are defined•	

How to obtain the address of a variable•	

How to create memory for new variables while your program is executing•	

How to release memory that you’ve allocated dynamically•	

The difference between raw pointers and smart pointers•	

How to create and use smart pointers•	

How you can convert from one type of pointer to another•	

What a reference is and how it differs from a pointer•	

How you can use a reference in a range-based •	 for loop

What Is a Pointer?
Every variable and function in your program is located somewhere in memory so they each have a unique address
that identifies where they are stored. These addresses depend on where your program is loaded into memory when
you run it, so they may vary from one execution to the next. A pointer is a variable that can store an address. The
address stored can be the address of a variable or the address of a function. I’ll discuss pointers that store the address
of a function in Chapter 8. Figure 6-1 shows how a pointer gets its name: it “points to” a location in memory where
something (a variable or a function) is stored. However, a pointer needs to record more than just a memory address
to be useful. A pointer must store what is at the address, as well as where it is. As you know, an integer has a different
representation from a floating-point value, and the number of bytes occupied by an item of data depends on what it is.
To use a data item stored at the address contained in a pointer, you need to know the type of the data.

Chapter 6 ■ pointers and referenCes

152

Thus a pointer isn’t just a pointer to an address; it’s a pointer to a particular type of data item at that address.
This will become clearer when I get down to specifics, so let’s look at how to define a pointer. The definition of a
pointer is similar to that of an ordinary variable except that the type name has an asterisk following it to indicate that
it’s a pointer and not a variable of that type. Here’s how you define a pointer called pnumber that can store the address
of a variable of type long:

long* pnumber {}; // A pointer to type long

The type of pnumber is “pointer to long”, which is written as long*. This pointer can only store an address of
a variable of type long. An attempt to store the address of a variable that is other than type long will not compile.
Because the initializer list is empty, the statement initializes pnumber with the pointer equivalent of zero, which is
an address that doesn’t point to anything. The equivalent of zero for a pointer is written as nullptr, and you could
specify this explicitly as the initial value:

long* pnumber {nullptr};

You are not obliged to initialize a pointer when you define it but it’s reckless not to. Uninitialized pointers are
more dangerous than ordinary variables that aren’t initialized so follow this golden rule:

Note ■ always initialize a pointer when you define it.

I wrote the pointer type with the asterisk next to the type name, but this isn’t the only way to write it. You can
position the asterisk adjacent to the variable name, like this:

long *pnumber {nullptr};

This defines precisely the same variable as before. The compiler accepts either notation. The former is perhaps
more common because it expresses the type, “pointer to long,” more clearly.

1000 1004 1008 100C

301C 3020 3024 3028

1000

Hexadecimal Memory Addresses

Variable of
type long

A pointer variable

12345

A pointer stores the memory
address of another variable

Value stored
the variable

The pointer ‘points’ to the
variable at this location

Figure 6-1. What a pointer is

Chapter 6 ■ pointers and referenCes

153

Note ■ nullptr has a type, std::nullptr_t, that is defined in the cstddef header. the fact that nullptr has a type is
important in function overloading, which you’ll learn about in Chapter 8.

However, there’s potential for confusion if you mix definitions of ordinary variables and pointers in the same
statement. Try to guess what this statement does:

long* pnumber {}, number {};

This defines pnumber of type “pointer to long” initialized with nullptr and number as type long initialized with
0L. The notation that juxtaposes the asterisk and the type name makes this less than clear. It’s a little clearer if you
define the two variables in this form:

long *pnumber {}, number {};

This is less confusing because the asterisk is now clearly associated with the variable pnumber. However, the
real solution is to avoid the problem in the first place. It’s always better to define pointers and ordinary variables in
separate statements:

long number {}; // Variable of type long
long* pnumber {}; // Variable of type 'pointer to long'

There’s no possibility of confusion and there’s the added advantage that you can append comments to explain
how the variables are used.

It’s a common convention to use variable names beginning with p for pointers. This makes it easier to see which
variables in a program are pointers, which in turn can make the code easier to follow. You can define pointers to any
type, including types that you define. Here are definitions for pointer variables of a couple of other types:

double* pvalue {}; // Pointer to a double value
char32_t* pch {}; // Pointer to a 32-bit character

In practice, most of your use of pointers will be with class types that you define.

The Address-Of Operator
The address-of operator, &, is a unary operator that obtains the address of a variable. You could define a variable,
number, and a pointer, pnumber, initialized with the address of number with these statements:

long number {12345L};
long* pnumber {&number};

&number produces the address of number so pnumber has this address as its initial value. pnumber can store the
address of any variable of type long so you can write the following assignment:

long height {1454L}; // Stores the height of a building
pnumber = ′ // Store the address of height in pnumber

The result of the statement is that pnumber contains the address of height. The effect is illustrated in Figure 6-2.

Chapter 6 ■ pointers and referenCes

154

The & operator can be applied to a variable of any type, but you can only store the address in a pointer of the
appropriate type. If you want to store the address of a double variable for example, the pointer must have been
declared as type double*, which is “pointer to double”.

Taking the address of a variable and storing it in a pointer is all very well, but the really interesting thing is how
you can use it. Accessing the data in the memory location to which the pointer points is fundamental and you do this
using the indirection operator.

The Indirection Operator
Applying the indirection operator, *, to a pointer accesses the contents of the memory location to which it points.
The name “indirection operator” stems from the fact that the data is accessed “indirectly.” The operator is sometimes
called the dereference operator, and the process of accessing the data in the memory location pointed to by a pointer
is termed dereferencing the pointer. To access the data at the address contained in the pointer, pnumber, you use the
expression *pnumber. Let’s see how dereferencing works in practice with an example. The example is designed to show
various ways of using pointers. The way it works will be pointless but not pointerless:

// Ex6_01.cpp
// Dereferencing pointers
// Calculates the purchase price for a given quantity of items
#include <iostream>
#include <iomanip>

int main()
{
 int unit_price {295}; // Item unit price in cents
 int count {}; // Number of items ordered
 int discQ {25}; // Quantity threshhold for discount
 double discount {0.07}; // Discount for quantities over discQ

1000 1004 1008 100C

301C 3020 3024 3028

1000

Variable height
 of type long

pnumber
of type

pointer to long''

1454

The address of height is
stored in the pointer

long height {1454L};
pnumber = &number;

&height

pnumber
points to
height

Figure 6-2. Storing an address in a pointer

Chapter 6 ■ pointers and referenCes

155

 int* pcount {&count}; // Pointer to count
 std::cout << "Enter the number of items you want: ";
 std::cin >> *pcount;
 std::cout << "The unit price is " << std::fixed << std::setprecision(2)
 << "$" << unit_price/100.0 << std::endl;

 // Calculate gross price
 int* punit_price{ &unit_price }; // Pointer to unit_price
 int price{ *pcount * *punit_price }; // Gross price via pointers
 int* pprice {&price}; // Pointer to gross price

 // Calculate net price in US$
 double net_price{};
 double* pnet_price {nullptr};
 pnet_price = &net_price;
 if (*pcount > discQ)
 {
 std::cout << "You qualify for a discount of "
 << static_cast<int>(discount*100.0) << " percent.\n";
 pnet_price = price(1.0 - discount) / 100.0;
 }
 else
 {
 net_price = *pprice / 100.0;
 }
 std::cout << "The net price for " << *pcount
 << "items is $" << net_price << std::endl;
}

Here’s some sample output:

Enter the number of items you want: 50
The unit price is $2.95
You qualify for a discount of 7 percent.
The net price for 50 items is $137.17

I’m sure you realize that this arbitrary interchange between using a pointer and using the original variable is not

the right way to code this calculation. However, the example does demonstrate that using a dereferenced pointer is
the same as using the variable to which it points. You can use a dereferenced pointer in an expression in the same way
as the original variable as the expression for the initial value of price shows.

It may seem confusing that you have several different uses for the same symbol, *. It’s the multiplication operator
and the indirection operator, and it’s also used in the declaration of a pointer. The compiler is able to distinguish
the meaning of * by the context. The expression *pcount * *punit_price may look slightly confusing, but the
compiler has no problem determining that it’s the product of two dereferenced pointers. There’s no other meaningful
interpretation of this expression. If there was, it wouldn’t compile. You could add parentheses to make the code easier
to read, (*pcount) * (*punit_price).

Chapter 6 ■ pointers and referenCes

156

Why Use Pointers?
A question that usually springs to mind at this point is “Why use pointers at all?” After all, taking the address of a
variable you already know about and sticking it in a pointer so that you can dereference it later seems like an overhead
you can do without. There are several reasons pointers are important:

 1. You can use pointer notation to operate on data stored in an array, which may execute
faster than if you use array notation.

 2. When you define your own functions in Chapter 8, you’ll see that pointers are used
extensively to enable a function to access large blocks of data, such as arrays, that are
defined outside the function.

 3. You’ll see later in this chapter that you can allocate memory for new variables
dynamically — that is, during program execution. This allows a program to adjust its use
of memory depending on the input. You can create new variables while your program is
executing, as and when you need them. When you allocate new memory, the memory
is identified by its address so you need a pointer to record it.

 4. Pointers are fundamental to enabling polymorphism to work. Polymorphism is perhaps
the most important capability provided by the object-oriented approach to programming.
You’ll learn about polymorphism in Chapter 14.

Pointers to Type char
A variable of type “pointer to char” has the interesting property that it can be initialized with a string literal. For example,
you can declare and initialize such a pointer with this statement:

char* pproverb {"A miss is as good as a mile."}; // Don't do this!

This looks very similar to initializing a char array with a string literal, and indeed it is. The statement creates a
null-terminated string literal (actually, an array of elements of type const char) from the character string between
the quotes and stores the address of the first character in pproverb. This is shown in Figure 6-3.

A m i s s i s a s g o o d a s a m i l e \0

Address: 2000

char* pproverb {"A miss is as good as a mile"};

2000

pproverb

Address is stored

The string literal is stored as a null-terminated string.

Figure 6-3. Initializing a pointer of type char*

Chapter 6 ■ pointers and referenCes

157

Unfortunately, all is not quite as it seems. The type of the string literal is const, but the type of the pointer is not.
The statement doesn’t create a modifiable copy of the string literal; it merely stores the address of the first character.
This means that if you attempt to modify the string, there will be trouble. Look at this statement, which tries to change
the first character of the string to 'X':

*pproverb = 'X';

Some compilers won’t complain, because they see nothing wrong. The pointer, pproverb, wasn’t declared as
const, so the compiler is happy. With other compilers you get a warning that there is a deprecated conversion from
type const char* to type char*. In some environments you’ll get an error when you run the program, resulting in a
program crash. In other environments the statement does nothing, which presumably is not what was required or
expected. The reason for this is that the string literal is still a constant, and you’re not allowed to change it.

You might wonder, with good reason, why the compiler allowed you to assign a const value to a non-const type
in the first place, particularly when it causes these problems. The reason is that string literals only became constants
with the release of the first C++ standard, and there’s a great deal of legacy code that relies on the “incorrect”
assignment. Its use is deprecated and the correct approach is to declare the pointer like this:

const char* pproverb {"A miss is as good as a mile."}; // Do this instead!

This defines pproverb to be of type const char*. Because it is a const pointer type, the pointer can only store an
address of something that is const. Thus the type is consistent with that of the string literal. There’s plenty more to say
about using const with pointers, so I’ll come back to this later in this chapter. For now, let’s see how using variables
of type const char* operates in an example. This is a version of the “lucky stars” example Ex5_12.cpp using pointers
instead of an array:

// Ex6_02.cpp
// Initializing pointers with strings
#include <iostream>

int main()
{
 const char* pstar1 {"Fatty Arbuckle"};
 const char* pstar2 {"Clara Bow"};
 const char* pstar3 {"Lassie"};
 const char* pstar4 {"Slim Pickens"};
 const char* pstar5 {"Boris Karloff"};
 const char* pstar6 {"Mae West"};
 const char* pstar7 {"Oliver Hardy"};
 const char* pstar8 {"Greta Garbo"};
 const char* pstr {"Your lucky star is "};
 size_t choice {};

 std::cout << "Pick a lucky star! Enter a number between 1 and 8: ";
 std::cin >> choice;

 switch (choice)
 {
 case 1:
 std::cout << pstr << pstar1 << std::endl;
 break;

Chapter 6 ■ pointers and referenCes

158

 case 2:
 std::cout << pstr << pstar2 << std::endl;
 break;
 case 3:
 std::cout << pstr << pstar3 << std::endl;
 break;
 case 4:
 std::cout << pstr << pstar4 << std::endl;
 break;
 case 5:
 std::cout << pstr << pstar5 << std::endl;
 break;
 case 6:
 std::cout << pstr << pstar6 << std::endl;
 break;
 case 7:
 std::cout << pstr << pstar7 << std::endl;
 break;
 case 8:
 std::cout << pstr << pstar8 << std::endl;
 break;
 default:
 std::cout << "Sorry, you haven't got a lucky star." << std::endl;
 }
}

Output will be the same as Ex5_12.cpp.
The array of the original example has been replaced by eight pointers, pstar1 to pstar8, each initialized with a

string literal. There’s an additional pointer, pstr, initialized with the phrase to use at the start of a normal output line.
Because these pointers contain addresses of string literals, they are specified as const.

A switch statement is easier to use than an if statement to select the appropriate output message. Incorrect
values entered are taken care of by the default option of the switch.

Outputting a string pointed to by a pointer couldn’t be easier. You just use the pointer name. Clearly, the insertion
operator << for cout treats pointers differently, depending on their type. In Ex6_01.cpp, you had this statement:

std::cout << "The net price for " << *pcount
 << " items is $" << net_price << std::endl;

If pcount wasn’t dereferenced here, the address contained in pcount would be output. Thus a pointer to a
numeric type must be dereferenced to output the value to which it points whereas applying the insertion operator to
a pointer to type char that is not dereferenced, presumes that the pointer contains the address of a null-terminated
string. If you output a dereferenced pointer to type char, the single character at the address will be written to cout.

Arrays of Pointers
So, what have you gained in Ex6_03.cpp? Well, using pointers has eliminated the waste of memory that occurred with the
array in Ex5_12.cpp because each string now occupies just the number of bytes necessary. However, the program is a little
long-winded now. If you were thinking “There must be a better way,” then you’d be right; you could use an array of pointers:

// Ex6_03.cpp
// Using an array of pointers
#include <iostream>

Chapter 6 ■ pointers and referenCes

159

int main()
{
 const char* pstars[] {
 "Fatty Arbuckle", "Clara Bow",
 "Lassie", "Slim Pickens",
 "Boris Karloff", "Mae West",
 "Oliver Hardy", "Greta Garbo"
 };
 size_t choice {};

 std::cout << "Pick a lucky star! Enter a number between 1 and "
 << sizeof(pstars) / sizeof(pstars[0]) << ": ";
 std::cin >> choice;

 if (choice >=1 && choice <= sizeof(pstars)/(sizeof pstars[0]))
 {
 std::cout << "Your lucky star is " << pstars[choice - 1] << std::endl;
 }
 else
 {
 std::cout << "Sorry, you haven't got a lucky star." << std::endl;
 }
}

Now you’re nearly getting the best of all possible worlds. You have a one-dimensional array of pointers defined
such that the compiler works out the array size from the number of initializing strings. The memory usage that results
from this statement is illustrated in Figure 6-4.

O l i v e r H a r d y \0

G r e t a G a r b o \0

S l i m P i c k e n s \0

L a s s i e \0

M a e W e s t \0

address1

address2

address3

address4

address5

address6

 15 bytes

10 bytes

 7 bytes

14 bytes

12 bytes

13 bytes

Array of Pointers

Each array element is the
same size - usually 4 bytes, so
the array will occupy 32 bytes.

Total memory is 125 bytes, including the pointer array.

address7

address8

F a t t y A r b u c k l e \0

C l a r a B o w \0

B o r i s K a r l o f f \0

13 bytes

 9 bytes

Figure 6-4. An array of pointers

Chapter 6 ■ pointers and referenCes

160

In addition to the memory for each null-terminated string, memory is also occupied by the array elements, which are
pointers. The pointer array here requires more memory than a two-dimensional array of char elements containing the
same strings. With the char array, each row must have at least the length of the longest string, and eight rows of 15 bytes is
120 bytes. By using a pointer array you’ll need 12 more bytes but this is data dependent. If Arnie was an option instead
of Fatty, the minimum array dimension would need to accommodate the string “Arnold Schwarzenegger”, which
requires 21 bytes. In this case, the char array would occupy 168 bytes whereas the array of pointers approach would
only need 131 bytes. Generally, the more strings there are, the greater the saving is likely to be. Sometimes with few
strings there won’t be any saving at all, but generally the pointer array is the more efficient choice.

Saving space isn’t the only advantage that you get by using pointers. In many circumstances, you can save time too.
For example, think of what happens if you want to swap "Greta Garbo" with "Mae West" in the array. You’d need to do
this to sort the strings into alphabetical order for example. With the pointer array, you just reorder the pointers — the strings
can stay right where they are. With a char array, a great deal of copying would be necessary. Interchanging the string
would require the string "Greta Garbo" to be copied to a temporary location, after which you would copy "Mae West"
in its place. Then you would need to copy "Greta Garbo" to its new position. All of this would require significantly more
execution time than interchanging two pointers. The code using an array of pointers is very similar to that using a char
array. The number of array elements that is used to check that the selection entered is valid is calculated in the same way.

Constant Pointers and Pointers to Constants
In the “lucky stars” program, Ex6_03.cpp, you made sure that the compiler would pick up any attempts to modify the
strings pointed to by elements of the pstars array by declaring the array using the const keyword:

const char* pstars[] {
 "Fatty Arbuckle", "Clara Bow",
 "Lassie", "Slim Pickens",
 "Boris Karloff", "Mae West",
 "Oliver Hardy", "Greta Garbo"
 };

Here you are specifying that the objects pointed to by elements of the array are constant. The compiler inhibits
any direct attempt to change these, so an assignment statement such as this would be flagged as an error by the
compiler, thus preventing a nasty problem at runtime:

*pstars[0] = 'X'; // Will not compile...

However, you could still legally write the next statement, which would copy the address stored in the element on
the right of the assignment operator to the element on the left:

pstars[5] = pstars[6]; // OK

Those lucky individuals due to be awarded Ms. West would now get Mr. Hardy, because both pointers now
point to the same name. Of course, this hasn’t changed the object pointed to by the sixth array element — it has only
changed the address stored in it, so the const specification hasn’t been contravened.

You really ought to be able to inhibit this kind of change as well, because some people may reckon that good old
Ollie may not have quite the same sex appeal as Mae, and of course you can. Look at this statement:

const char* const pstars[] {
 "Fatty Arbuckle", "Clara Bow",
 "Lassie", "Slim Pickens",
 "Boris Karloff", "Mae West",
 "Oliver Hardy", "Greta Garbo"
 };

Chapter 6 ■ pointers and referenCes

161

The extra const keyword following the element type specification defines the elements as constant so now
the pointers and the strings they point to are defined as constant. Nothing about this array can be changed. To
summarize, you can distinguish three situations that arise using const when applied to pointers and the things to
which they point:

A •	 pointer to a constant. You can’t modify what’s pointed to, but you can set the pointer to point
to something else:

•	 const char* pstring {"Some text that cannot be changed"};

Of course, this also applies to pointers to other types, for example:

•	 const int value {20};

•	 const int* pvalue {&value};

•	 value is a constant and can’t be changed. pvalue is a pointer to a constant, so you can use
it to store the address of value. You couldn’t store the address of value in a non-const
pointer (because that would imply that you can modify a constant through a pointer),
but you could assign the address of a non-const variable to pvalue. In the latter case,
you would be making it illegal to modify the variable through the pointer. In general, it’s
always possible to strengthen const-ness, but weakening it isn’t permitted.

•	 A constant pointer. The address stored in the pointer can’t be changed. A constant pointer can
only ever point to the address that it’s initialized with. However, the contents of that address
aren’t constant and can be changed.

Suppose you define an integer variable •	 data and a constant pointer pdata:

•	 int data {20};

•	 int* const pdata {&data};

•	 pdata is const, so it can only ever point to data. Any attempt to make it point to another
variable will result in an error message from the compiler. The value stored in data isn’t
const though, so you can change it. Again, if data was declared as const, you could not
initialize pdata with &data. pdata can only point to a non-const variable of type int.

A •	 constant pointer to a constant. Here, both the address stored in the pointer and the item
pointed to are constant, so neither can be changed.

Taking a numerical example, you can define a variable •	 value like this:

•	 const int value {20};

•	 value is a constant so you can’t change it. You can still initialize a pointer with the address
of value, though:

•	 const int* const pvalue {&value};

•	 pvalue is a constant pointer to a constant. You can’t change what it points to, and you
can’t change what is stored at that address.

Note ■ this isn’t confined to pointers of types char and int. this discussion applies to pointers of any type.

Chapter 6 ■ pointers and referenCes

162

Pointers and Arrays
There is a close connection between pointers and array names. Indeed, there are many situations in which you
can use an array name as though it were a pointer. An array name by itself can behave like a pointer when it’s used
in an output statement. If you try to output an array by just using its name, unless it’s a char array you’ll get is the
hexadecimal address of the array. Because an array name can be interpreted as an address, you can use an array name
to initialize a pointer:

double values[10];
double* pvalue {values};

This will store the address of the values array in the pointer pvalue. Although an array name represents an
address, it is not a pointer. You can modify the address stored in a pointer, whereas the address that an array name
represents is fixed.

Pointer Arithmetic
You can perform arithmetic operations on a pointer to alter the address it contains. You’re limited to addition and
subtraction for modifying the address contained in a pointer, but you can also compare pointers to produce a logical
result. You can add an integer (or an expression that evaluates to an integer) to a pointer and the result is an address.
You can subtract an integer from a pointer and that also results in an address. You can subtract one pointer from
another and the result is an integer, not an address. No other arithmetic operations on pointers are legal.

Arithmetic with pointers works in a special way. Suppose you add 1 to a pointer with a statement such as this:

++pvalue;

This apparently increments the pointer by 1. Exactly how you increment the pointer by 1 doesn’t matter. You could
use an assignment or the += operator to obtain the same effect so the result would be exactly the same with this
statement:

pvalue += 1;

The address stored in the pointer won’t be incremented by 1 in the normal arithmetic sense. Pointer arithmetic
implicitly assumes that the pointer points to an array. Incrementing a pointer by 1 means incrementing it by one
element of the type to which it points. The compiler knows the number of bytes required to store the data item to
which the pointer points. Adding 1 to the pointer increments the address by that number of bytes. In other words,
adding 1 to a pointer increments the pointer so that it points to the next element in the array. For example, if pvalue
is “pointer to double” and type double is 8 bytes, then the address in pvalue will be incremented by 8. This is
illustrated in Figure 6-5.

Chapter 6 ■ pointers and referenCes

163

As Figure 6-5 shows, pvalue starts out with the address of the first array element. Adding 1 to pvalue increments
the address it contains by 8, so the result is the address of the next array element. It follows that incrementing the
pointer by 2 moves the pointer two elements along. Of course, pvalue need not necessarily point to the beginning of
the values array. You could store the address of the third element of the array in the pointer with this statement:

pvalue = &values[2];

Now the expression pvalue + 1 would evaluate to the address of values[3], the fourth element of the values
array, so you could make the pointer point to this element with this statement:

pvalue += 1;

In general, the expression pvalues + n, in which n can be any expression resulting in an integer, will add
n*sizeof(double) to the address in pvalue, because pvalue is of type “pointer to double.”

The same logic applies to subtracting an integer from a pointer. If pvalue contains the address of values[2], the
expression pvalue - 2 evaluates to the address of the first array element, values[0]. In other words, incrementing
or decrementing a pointer works in terms of the type of the object pointed to. Incrementing a pointer to long by
1 changes its contents to the next long address, and so increments the address by sizeof(long) bytes. Decrementing
it by 1 decrements the address by sizeof(long).

Note ■ the address resulting from an arithmetic operation on a pointer can be in a range from the address of the
first element of the array to which it points to the address that’s one beyond the last element. outside these limits, the
behavior of the pointer is undefined.

Of course you can dereference a pointer on which you have performed arithmetic. (There wouldn’t be much
point to it, otherwise!) For example, consider this statement, assuming pvalue is still pointing to values[2]:

*(pvalue + 1) = *(pvalue + 2);

1000 1008 1010 1018

1000

Array values - memory addresses are hexadecimal

Each element
is 8 bytes

1020

double* pvalue {values};

values[0] values[1] values[2]

pvalue
(1000)

pvalue+1
(1008)

pvalue+2
(1010)

double values[10];

values[3] values[4] and so on ...

pvalue

pvalue+4
(1020)

Figure 6-5. Incrementing a pointer

Chapter 6 ■ pointers and referenCes

164

This statement is equivalent to:

values[3] = values[4];

When you dereference the address resulting from an expression that increments or decrements a pointer,
parentheses around the expression are essential because the precedence of the indirection operator is higher than
that of the arithmetic operators, + and -. The expression *pvalue+1 adds 1 to the value stored at the address contained
in pvalue, so it’s equivalent to executing values[2] + 1. The result of *pvalue+1 is a numerical value, not an address
and therefore not an lvalue; its use in the previous assignment statement would cause the compiler to generate an
error message.

Remember that an expression such as pvalue+1 doesn’t change the address in pvalue. It’s just an expression
that evaluates to a result that is of the same type as pvalue. On the other hand the expression ++pvalue does change
pvalue. Of course, if a pointer contains an invalid address, such an address outside the limits of the array to which it
relates, and you store a value using the pointer, you’ll attempt to overwrite the memory located at that address. This
generally leads to disaster, with your program failing one way or another. It may not be obvious that the cause of the
problem is the misuse of a pointer.

The Difference between Pointers
Subtracting one pointer from another is only meaningful when they are of the same type and point to elements in the
same array. Suppose you have a one-dimensional array, numbers, of type long defined as:

long numbers[] {10L, 20, 30, 40, 50, 60, 70, 80};

Suppose you define and initialize two pointers like this:

long *pnum1 {&numbers[6]}; // Points to 7th array element
long *pnum2 {&numbers[1]}; // Points to 2nd array element

You can calculate the difference between these two pointers:

int difference {pnum1 - pnum2}; // Result is 5

difference will be set to 5 because the difference between two pointers is measured in terms of elements, not in
terms of bytes.

Using Pointer Notation with an Array Name
You can use an array name as though it was a pointer for addressing the array elements. Suppose you define this array:

long data[5] {};

You can refer to the element data[3] using pointer notation as *(data + 3). This notation can be applied
generally, so that corresponding to the elements data[0], data[1], data[2], ..., you can write *data, *(data + 1),
*(data + 2), and so on. The array name by itself refers to the address of the beginning of the array, so an expression
such as data+2 produces the address of the element two elements along from the first.

Chapter 6 ■ pointers and referenCes

165

You can use pointer notation with an array name in the same way as you use an index between square brackets — in
expressions or on the left of an assignment. You could set the values of the data array to even integers with this loop:

for(size_t i {} ; i < sizeof(data)/sizeof(*data) ; ++i)
{
 *(data + i) = 2 * (i + 1);
}

The expression *(data + i) refers to successive elements of the array: *(data + 0), which is the same as *data,
corresponds to data[0], *(data + 1) refers to data[1], and so on. The loop will set the values of the array elements
to 2, 4, 6, 8, and 10. You could sum the elements of the array like this:

long sum {};
for(size_t i {} ; i < sizeof(data)/sizeof(*data) ; ++i)
{
 sum += *(data + i);
}

Let’s try some of this in a practical context that has a little more meat. This example calculates prime numbers
(a prime number is an integer that is divisible only by 1 and itself). Here’s the code:

// Ex6_04.cpp
// Calculating primes using pointer notation
#include <iostream>
#include <iomanip>

int main()
{
 const size_t max {100}; // Number of primes required
 long primes[max] {2L, 3L, 5L}; // First three primes defined
 size_t count {3}; // Count of primes found so far
 long trial {5}; // Candidate prime
 bool isprime {true}; // Indicates when a prime is found

 do
 {
 trial += 2; // Next value for checking
 size_t i {}; // Index to primes array

 // Try dividing the candidate by all the primes we have
 do
 {
 isprime = trial % *(primes + i) > 0; // False for exact division
 } while (++i < count && isprime);

 if (isprime)
 { // We got one...
 *(primes + count++) = trial; // ...so save it in primes array
 }
 } while (count < max);

Chapter 6 ■ pointers and referenCes

166

 // Output primes 10 to a line
 std::cout << "The first " << max << " primes are:" << std::endl;
 for (size_t i{} ; i < max ; ++i)
 {
 std::cout << std::setw(7) << *(primes + i);
 if ((i+1) % 10 == 0) // Newline after every 10th prime
 std::cout << std::endl;
 }
 std::cout << std::endl;
}

The output is:

The first 100 primes are:
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
 73 79 83 89 97 101 103 107 109 113
 127 131 137 139 149 151 157 163 167 173
 179 181 191 193 197 199 211 223 227 229
 233 239 241 251 257 263 269 271 277 281
 283 293 307 311 313 317 331 337 347 349
 353 359 367 373 379 383 389 397 401 409
 419 421 431 433 439 443 449 457 461 463
 467 479 487 491 499 503 509 521 523 541

The constant max defines the number of primes to be produced. The primes array that stores the results has the

first three primes defined to start the process off. The variable count records how many primes have been found, so
it’s initialized to 3.

The trial variable holds the next candidate to be tested. It starts out at 5 because it’s incremented in the loop
that follows. The bool variable isprime is a flag that indicates when the current value in trial is prime.

All the work is done in two loops: the outer do-while loop picks the next candidate to be checked and adds the
candidate to the primes array if it’s prime, and the inner loop checks the current candidate to see whether or not it’s
prime. The outer loop continues until the primes array is full.

The algorithm in the loop that checks for a prime is very simple. It’s based on the fact that any number that isn’t
a prime must be divisible by a smaller number that is a prime. You find the primes in ascending order, so at any point
primes contains all the prime numbers lower than the current candidate. If none of the values in primes is a divisor of
the candidate, then the candidate must be prime.

Note ■ You only need to try dividing by primes that are less than or equal to the square root of the number in question,
so the example isn’t as efficient as it might be.

The inner loop checks whether trial is prime:

do
{
 isprime = trial % *(primes + i) > 0; // False for exact division
} while (++i < count && isprime);

Chapter 6 ■ pointers and referenCes

167

isprime is set to the value of the expression trial % *(primes + i) > 0. This finds the remainder after dividing
trial by the number stored at the address primes + i. If the remainder is positive, the expression is true. The loop
ends if i reaches count or whenever isprime is false. If any of the primes in the primes array divides into trial
exactly, trial isn’t prime, so this ends the loop. If none of the primes divides into trial exactly, isprime will always
be true and the loop will be ended by i reaching count.

After the inner loop ends, either because isprime was set to false or the set of divisors in the primes array has
been exhausted, whether or not the value in trial was prime is indicated by the value in isprime. This is tested in an
if statement:

if (isprime)
{ // We got one...
 *(primes + count++) = trial; // ...so save it in primes array
}

If isprime contains false, then one of the divisions was exact, so trial isn’t prime. If isprime is true, the
assignment statement stores the value from trial in primes[count] and then increments count with the postfix
increment operator. When max primes have been found, the outer do-while loop ends and the primes are output ten
to a line with a field width of ten characters as a result of these statements in a for loop.

Dynamic Memory Allocation
All of the code you’ve written up to now allocates space for data at compile time. You specify the variables and the
arrays that you need in the code, and that’s what will be allocated when the program starts, whether you need it or not.
Working with a fixed set of variables in a program can be very restrictive, and it’s often wasteful.

Dynamic memory allocation is allocating the memory you need to store the data you’re working with at runtime,
rather than having the amount of memory predefined when the program is compiled. You can change the amount of
memory your program has dedicated to it as execution progresses. By definition, dynamically allocated variables can’t
be defined at compile time so they can’t be named in your source program. When you allocate memory dynamically,
the space that is made available is identified by its address. The obvious and only place to store this address is in a
pointer. With the power of pointers and the dynamic memory management tools in C++, writing this kind of flexibility
into your programs is quick and easy. You can add memory to your application when it’s needed, then release the
memory you have acquired when you are done with it. Thus the amount of memory dedicated to an application can
increase and decrease as execution progresses.

Back in Chapter 3, I introduced the three kinds of storage duration that variables can have — automatic, static,
and dynamic — and I discussed how variables of the first two varieties are created. Variables for which memory is
allocated at runtime always have dynamic storage duration.

The Stack and the Heap
You know that an automatic variable is created when its definition is executed. The space for an automatic variable
is allocated in a memory area called the stack. The stack has a fixed size that is determined by your compiler. There’s
usually a compiler option that enables you to change the stack size although this is rarely necessary. At the end of the
block in which an automatic variable is defined, the memory allocated for the variable on the stack is released, and
is thus free to be reused. When you call a function, the arguments you pass to the function will be stored on the stack
along with the address of the location to return to when execution of the function ends.

Memory that is not occupied by the operating system or other programs that are currently loaded is called
the heap or the free store. You can request that space be allocated within the free store at runtime for a new variable
of any type. You do this using the new operator, which returns the address of the space allocated and you store the
address in a pointer. The new operator is complemented by the delete operator, which releases memory that you
previously allocated with new. Both new and delete are keywords, so you must not use them for other purposes.

Chapter 6 ■ pointers and referenCes

168

You can allocate space in the free store for variables in one part of a program, and then release the space and
return it to the free store in another part of the program when you no longer need it. The memory then becomes
available for reuse by other dynamically allocated variables later in the same program or possibly other programs that
are executing concurrently. This uses memory very efficiently, and allows programs to handle much larger problems
involving considerably more data than might otherwise be possible.

When you allocate space for a variable using new, you create the variable in the free store. The variable continues
to exist until the memory it occupies is released by the delete operator. It continues to exist regardless of whether you
still record its address. If you don’t use delete to release the memory, it will be released automatically when program
execution ends.

Using the new and delete Operators
Suppose you need space for a variable of type double. You can define a pointer of type double* and then request that
the memory is allocated at execution time. Here’s one way to do this:

double* pvalue {}; // Pointer initialized with nullptr
pvalue = new double; // Request memory for a double variable

This is a good moment to recall that all pointers should be initialized. Using memory dynamically typically
involves having a lot of pointers floating around, and it’s important that they not contain spurious values. You should
always ensure that a pointer contains nullptr if it doesn’t contain a legal address.

The new operator in the second line of the code returns the address of the memory in the free store allocated to a
double variable, and this is stored in pvalue. You can use this pointer to reference the variable in the free store using
the indirection operator as you’ve seen. For example:

*pvalue = 3.14;

Of course, under extreme circumstances it may not be possible to allocate the memory. The free store could
be completely allocated at the time of the request. The free store can be fragmented by previous usage, which could
result in no area of the free store being available that is large enough to accommodate the space you have requested.
This isn’t likely with the space required to hold a double value, but it might just happen when you’re dealing with
large entities such as arrays or complicated class objects. This is something that you need to consider but for now
you’ll assume that you always get the memory you request. When it does happen, the new operator throws an
exception, which by default will end the program. I’ll come back to this topic in Chapter 17 when I discuss exceptions.

You can initialize a variable that you create in the free store. Let’s reconsider the previous example: the double
variable allocated by new, with its address stored in pvalue. You could have initialized its value to 3.14 as it was
created by using this statement:

pvalue = new double {3.14}; // Allocate a double and initialize it

You can also create and initialize the variable in the free store and use its address to initialize the pointer when
you create it:

double* pvalue {new double {3.14}}; // Pointer initialized with address on the heap

This create the pointer pvalue, allocates space for a double variable in the free store, initializes the variable in the
free store with 3.14 and initializes pvalue with the address of the variable.

When you no longer need a dynamically allocated variable, you free the memory that it occupies using the
delete operator:

delete pvalue; // Release memory pointed to by pvalue

Chapter 6 ■ pointers and referenCes

169

This ensures that the memory can be used subsequently by another variable. If you don’t use delete, and you
store a different address in pvalue, it will be impossible to free up the original memory because access to the address
will have been lost. The memory will be retained for use by your program until the program ends. Of course, you can’t
use it because you no longer have the address. Note that the delete operator frees the memory but does not change
the pointer. After the previous statement has executed, pvalue still contains the address of the memory that was
allocated, but the memory is now free and may be allocated immediately to something else — possibly by another
program. The pointer now contains a spurious address so you should always reset a pointer when you release the
memory to which it points, like this:

delete pvalue; // Release memory pointed to by pvalue
pvalue = nullptr; // Reset the pointer

Now pvalue doesn’t point to anything. The pointer cannot be used to access the memory that was released.
Using a pointer that contains nullptr to store or retrieve data will terminate the program immediately, which is better
than the program staggering on in an unpredictable manner with data that is invalid.

Dynamic Allocation of Arrays
Allocating memory for an array at runtime is straightforward. Assuming that you’ve already declared pstring, of type
“pointer to char,” you could allocate an array of type char in the free store by writing the following:

double* pdata {new double[20]}; // Allocate 100 double values

This allocates space for an array of 100 values of type double and stores its address in pdata.
To remove the array from the free store when you are done with it, you use the delete operator, but a little

differently:

delete [] pdata; // Release array pointed to by pdata

The square brackets are important because they indicate that you’re deleting an array. When removing arrays
from the free store, you must include the square brackets or the results will be unpredictable. Note that you don’t
specify any dimensions, simply [].

Of course, you should also reset the pointer, now that it no longer points to memory that you own:

pdata = nullptr; // Reset the pointer

Let’s see how dynamic memory allocation works in practice. This program calculates the number of primes that
you request:

// Ex6_05.cpp
// Calculating primes using dynamic memory allocation
#include <iostream>
#include <iomanip>
#include <cmath> // For square root function

int main()
{
 size_t max {}; // Number of primes required
 size_t count {3}; // Count of primes found

Chapter 6 ■ pointers and referenCes

170

 std::cout << "How many primes would you like? ";
 std::cin >> max; // Read number required and...
 unsigned long long* primes {new unsigned long long[max]}; // ...allocate memory for them

 *primes = 2uLL; // Insert three seed primes...
 *(primes + 1) = 3uLL;
 *(primes + 2) = 5uLL;
 unsigned long long trial {*(primes + 2)}; // Candidate prime
 bool isprime {false}; // Indicates when a prime is found

 unsigned long long limit {}; // Stores square root of trial
 do
 {
 trial += 2; // Next value for checking
 limit = static_cast<unsigned long long>(std::sqrt(trial));
 size_t i {}; // Index to primes array
 do
 {
 isprime = trial % *(primes + i) > 0; // False for exact division
 } while (primes[++i] <= limit && isprime);

 if (isprime) // We got one...
 *(primes + count++) = trial; // ...so save it in primes array
 } while (count < max);

 // Output primes 10 to a line
 for (size_t i{} ; i < max ; ++i)
 {
 std::cout << std::setw(10) << *(primes + i);
 if ((i + 1) % 10 == 0) // After every 10th prime...
 std::cout << std::endl; // ...start a new line
 }
 std::cout << std::endl;
 delete[] primes; // Free up memory...
 primes = nullptr; // ... and reset the pointer
}

The output is essentially the same as the previous program so I won’t reproduce it here. Overall, the program is
similar but not the same as the previous version. After reading the number of primes required from the keyboard and
storing it in max, you allocate an array of that size in the free store using the new operator. The address that’s returned
by new is stored in the pointer, primes. This will be the address of the first element of an array of max elements of type
unsigned long long; this type maximizes the upper limit for primes the program can find.

The statements that set up the first three prime values use pointer notation but you could equally well use array
notation and write them like this:

primes[0] = 2uLL; // Insert three seed primes...
primes[1] = 3uLL;
primes[2] = 5uLL;

Chapter 6 ■ pointers and referenCes

171

You can’t specify initial values for elements of an array that you allocate dynamically. You have to use explicit
assignment statements to set values for the elements. The determination of whether or not a candidate is prime is
improved compared to Ex6_04.cpp. Dividing the candidate in trial by existing primes ceases when primes up to
the square root of the candidate have been tried so finding a prime will be faster. The sqrt() function from the cmath
header does this. The do while loop condition uses array notation to compare the next prime divisor with limit
because this demonstrates that you can, and also it’s easier to understand than pointer notation here.

When the required number of primes have been output, you remove the array from the free store using the
delete operator, not forgetting to include the square brackets to indicate that it’s an array you’re deleting. The next
statement resets the pointer. It’s not essential here but it’s good to get into the habit of always resetting a pointer after
freeing the memory to which it points; it could be that you add code to the program at a later date. Of course,
if you use a vector<> container that you learned about in Chapter 5 to store the primes, you can forget about memory
allocation for elements and deleting it when you are done; it’s all taken care of by the container.

Member Selection through a Pointer
A pointer can store the address of an object of a class type, such as a vector<T> container. Objects usually have member
functions that operate on the object - you saw that the vector<T> container has an at() function for accessing
elements and a push_back() function for adding an element for example. Suppose you create a vector<T> container
in the free store with this statement:

std::vector<int>* pdata {new std::vector<int>{}};

This defines the pointer pdata of type vector<int>*, which is a "pointer to a vector of int elements". The vector
is created in the free store. To add an element you call the push_back() function for the vector<int> object and you
have seen how you use a period between the variable representing the vector and the member function name. To
access the vector object using the pointer you must use the dereference operator, so the statement to add an element
looks like this:

(*pdata).push_back(66); // Add an element containing 66

The parentheses around *pdata are essential for the statement to compile because the . operator is of higher
precedence that the * operator. This is a clumsy looking expression that occurs very frequently when you are working
with objects so C++ provides an operator that combines dereferencing a pointer to an object, then selecting a member
of the object. You can write the previous statement like this:

pdata->push_back(66); // Add an element containing 66

The -> operator is formed by a minus sign and a greater than character and is referred to as the indirect member
selection operator. The arrow is much more expressive of what is happening here. You’ll be using this operator
extensively later in the book.

Hazards of Dynamic Memory Allocation
There are two kinds of problems that can arise when you allocate memory dynamically. The first is called a memory
leak and is caused by errors in your code. Unfortunately, memory leaks are quite common. The second is called
memory fragmentation and is usually due to poor use of dynamic allocation.

Chapter 6 ■ pointers and referenCes

172

Memory Leaks
A memory leak occurs when you allocate memory using new and fail to release it. If you lose the address of heap
memory you have allocated, by overwriting the address in the pointer you were using to access it for instance, you
have a memory leak. This often occurs in a loop, and it’s easier to create this kind of problem than you might think.
The effect is that your program gradually consumes more and more of the free store, with the program potentially
failing at the point when all of the free store has been allocated.

It’s relatively easy to see where you’ve simply forgotten to use delete to free memory when use of the memory
ceases at a point close to where you allocated it. It becomes more difficult to spot in complex programs, in which
memory may be allocated in one part of a program and should be released in a separate part. A good strategy for
avoiding memory leaks is to add the delete operation at an appropriate place when you use the new operator.

When it comes to scope, pointers are just like any other variable. The lifetime of a pointer extends from the
point at which you define it in a block to the closing brace of the block. After that it no longer exists so the address it
contained is no longer accessible. If a pointer contains the address of a block of memory in the free store goes out of
scope, then it’s no longer possible to delete the memory.

Fragmentation of the Free Store
Memory fragmentation can arise in programs that allocate and release memory blocks frequently. Each time the new
operator is used, it allocates a contiguous block of bytes. If you create and destroy many memory blocks of different
sizes, it’s possible to arrive at a situation in which the allocated memory is interspersed with small blocks of free
memory, none of which is large enough to accommodate a new memory allocation request by your program, or by
another program that’s executing concurrently. The aggregate of the free memory can be quite large, but if all the
individual blocks are small (smaller than a current allocation request), the allocation request will fail. The effect of
memory fragmentation is illustrated in Figure 6-6.

Memory allocated and still in use

Memory blocks that have been released but are smaller
than the next block requested to be allocated. The total
amount of free memory may be large, but all in small

blocks.

Rest of the free store fragmented
in the same way.

A new block of memory is requested that is
much smaller than the total memory that is
free, but cannot be allocated because it’s

larger than any available block.

Figure 6-6. Fragmentation of the free store

The problem arises relatively infrequently these days because virtual memory provides a very large memory
address space even on quite modest computers. The way to avoid fragmentation of the free store is not to allocate
small blocks of memory. Allocate larger blocks and manage the use of the memory yourself.

Chapter 6 ■ pointers and referenCes

173

Raw Pointers and Smart Pointers
All the pointer types I have discussed up to now are part of the C++ language. These are referred to as raw pointers
because variables of these types contain just an address. A raw pointer can store the address of an automatic variable
or a variable allocated in the free store. A smart pointer is an object that mimics a raw pointer in that it contains an
address and you can use it in the same way in many respects. Smart pointers are only used to store the address of
memory allocated in the free store. They are particularly useful for managing class objects that you create dynamically
so smart pointers will be of greater relevance from Chapter 11 on. A smart pointer does much more than a raw pointer
and for dynamically allocated memory, they are much better than raw pointers. The most notable feature of a smart
pointer is that you don’t have to worry about using the delete operator to free the heap memory. It will be released
automatically when it is no longer needed. This means that you avoid the possibility of memory leaks. You can store
smart pointers in an array<T,N> or a vector<T> container, which is very useful when you are working with objects of a
class type. Don’t assume that smart pointers can do everything a raw pointer can. You cannot increment or decrement
a smart pointer, or perform any other arithmetic operations with it.

Smart pointer types are defined by templates that are defined in the memory header so you must include this into
your source file to use them. There are three types of smart pointers that are defined by the following templates in the
std namespace:

A •	 unique_ptr<T> object behaves as a pointer to type T and is unique, which means there
cannot be more than one unique_ptr<T> object containing the same address. A unique_
ptr<T> object owns what it points to exclusively. You cannot assign or copy a unique_ptr<T>
object. You can move the address stored by one unique_ptr<T> object to another using the
std::move() function that is defined in the memory header. After the operation the original
object will be invalid.

A •	 shared_ptr<T> object behaves as a pointer to type T, and in contrast with unique_ptr<T>,
there can be any number of shared_ptr<T> objects containing the same address. Thus
shared_ptr<T> objects allow shared ownership of an object in the free store. The number
of shared_ptr<T> objects that contain a given address is recorded. This is called reference
counting. The reference count for a shared_ptr<T> containing a given heap address is
incremented each time a new shared_ptr<T> object is created containing that address;
the reference count is decremented when a shared_ptr<T> object containing the address
is destroyed or assigned to point to a different address. When there are no shared_ptr<T>
objects containing a given address, the reference count will be zero and the heap memory for
the object at that address will be released automatically. All shared_ptr<T> objects that point
to the same address have access to the count of how many there are. You’ll understand how
this is possible when you learn about classes in Chapter 11.

A •	 weak_ptr<T> is linked to a shared_ptr<T> and contains the same address. Creating a weak_
ptr<T> does not increment the reference count of the linked shared_ptr<T> object so it does
not prevent the object pointed to from being destroyed. Its memory will be released when the
last shared_ptr<T> referencing it is destroyed or reassigned to point to a different address,
even though associated weak_ptr<T> objects may still exist.

The primary reason for having weak_ptr<T> objects is that it’s possible to inadvertently create reference cycles
with shared_ptr<T> objects. Conceptually, a reference cycle is where a shared_ptr<T> object, pA, points to another
shared_ptr<T> object pB, and pB points to pA. With this situation, neither can be destroyed. In practice this occurs
in a way that is a lot more complicated. weak_ptr<T> objects are designed to avoid the problem of reference cycles.
By using weak_ptr<T> objects to point to an object that a single shared_ptr<T> object points to, you avoid reference
cycles. When the single shared_ptr<T> object is destroyed, the object pointed to is also destroyed. Any weak_ptr<T>
objects associated with the shared_ptr<T> will then not point to anything.

Chapter 6 ■ pointers and referenCes

174

Using unique_ptr<T> Pointers
A unique_ptr<T> object stores an address uniquely so the object to which it points is owned exclusively by the
unique_ptr<T> object. When the unique_ptr<T> object is destroyed, the object to which it points is destroyed
too. This type of smart pointer is most useful for working with physical facilities that should not be shared, such as
communications ports, where these are encapsulated in a class object. A multi-threaded application allows different
parts of the program to be executing concurrently. If there is the possibility that one executing thread may try to use a
non-sharable resource that is being used by another thread, using a unique_ptr<T> object to access the resource will
prevent concurrent access. You can create and initialize a unique_ptr<T> object like this:

std::unique_ptr<double> pdata {new double{999.0}};

This creates pdata containing the address of a double variable in the free store that is initialized with 999.0.
You can also use this syntax to define pdata:

std::unique_ptr<double> pdata (new double{999.0});

You can dereference pdata just like an ordinary pointer and you can use the result in the same way:

*pdata = 8888.0;
std::cout << *pdata << std::endl; // Outputs 8888.0

The big difference is that you no longer have to worry about deleting the double variable from the free store.
You can access the address that a smart pointer contains by calling its get() function, for example:

std::cout << std::hex << std::showbase << pdata.get() << std::endl; // 0x32a90 on my PC

This outputs the value of the address contained in pdata as a hexadecimal value. All smart pointers have a get()
function that will return the address that the pointer contains. The need for accessing the address a smart pointer
contains is rare. You should not use raw pointers and smart pointers to point to the same object because this can lead
to problems. If you are allocating memory dynamically, stick to one or the other. Unless you have a very good reason
not to use them, smart pointers are the better choice because they take care of managing heap memory and eliminate
the possibility of memory leaks.

You can create a unique pointer that points to an array:

const size_t n {100}; // Array size
std::unique_ptr< double[]> pvalues {new double[n]} ; // Create array of n elements on the heap

pvalues points to the array of max elements of type double in the free store. Like a raw pointer, you can use array
notation with the smart pointer to access the elements of the array it points to:

for (size_t i {} ; i < max ; ++i)
 pvalues[i] = i + 1;

This sets the array elements to values from 1 to max+1. The compiler will insert an implicit conversion to type double
for the result of the express on the right of the assignment. You can output the values of the elements in a similar way:

for (size_t i {} ; i < max ; ++i)
{
 std::cout << pvalues[i] << " ";
 if((i + 1) % 10 == 0)
 std::cout << std::endl;
}

Chapter 6 ■ pointers and referenCes

175

This just outputs the values 10 on each line. Thus you can use a unique_ptr<T> variable that contains the address
of an array just like an array name. You cannot do this with the other types of smart pointer. Deleting an
array correctly requires the use of delete[], and a unique_ptr<T> has this capability. Other types of smart pointer
do not by default.

You can reset the pointer contained in any type of smart pointer to nullptr by calling its reset() function:

pvalues.reset(); // Address is nullptr

pvalues still exists but it no longer points to anything. This is a unique_ptr<double> object so because there
can be no other unique pointer containing the address of the array, the memory for the array will be released
as a result.

Think about the implications of unique pointers being unique. When you store a raw pointer in a vector<T>
container, the address the pointer contains is copied to the vector element but the pointer variable remains, still
containing the original address. You can still use the pointer to access and work with whatever it points to, with
the address also stored in the vector. You can’t do this with a unique_ptr<T> object. It doesn’t allow assignment
or copying. The only way transfer a unique_ptr<T> object somewhere else is to move it using the std::move()
function. For example:

std::unique_ptr<double> pvalue {new double{999.0}};
std::vector<std::unique_ptr<double>>v; // A vector of unique pointers
v.push_back(std::move(pvalue)); // Transfer pvalue to the vector

The result of executing this is that pdata will cease to point to anything. You can no longer use it. The last
element in the vector now has exclusive ownership of the double variable in the free store. There can never be two
unique_ptr<T> objects with the same address. Most of the time, this is not what you want. shared_ptr<T> objects
don’t have this characteristic so you are likely to be using these most of the time. Let’s consider those next.

Using shared_ptr<T> Pointers
You can define a shared_ptr<T> object in a similar way to a unique_ptr<T> object:

std::shared_ptr<double> pdata {new double{999.0}};

You can also dereference it to access what it points to or to change the value stored at the address:

*pdata = 8888.0;
std::cout << *pdata << std::endl; // Outputs 8888.0
*pdata = 8889.0;
std::cout << *pdata << std::endl; // Outputs 8889.0

Creating a shared_ptr<T> object involves a more complicated process than creating a unique_ptr<T>, not least
because of the need to maintain a reference count. The definition of pdata involves one allocation of heap memory for
the double variable, and another allocation relating to the smart pointer object. Allocating heap memory is expensive
on time. You can make the process more efficient by using the make_shared<T>() function that is defined in the
memory header to create a smart pointer of type shared_ptr<T>:

auto pdata = std::make_shared<double>(999.0); // Points to a double variable

Chapter 6 ■ pointers and referenCes

176

The type of variable to be created in the free store is specified between the angled brackets. This statement
allocates memory for the double variable and memory for the smart pointer in a single step, so it’s faster. The
argument between the parentheses following the function name is used to initialize the double variable it creates.
In general, there can be any number of arguments to the make_shared() function, the actual number depending
of the type of object being created. When you are using make_shared() to create objects in the free store, there will
often be two or more arguments separated by commas. The auto keyword causes the type for pdata to be deduced
automatically from the object returned by make_shared<T>() so it will be shared_ptr<double>. Don’t forget - you
should not use an initializer list when you specify a type as auto.

You can initialize a shared_ptr<T> with another when you define it:

std::shared_ptr<double> pdata2 {pdata};

pdata2 points to the same variable as pdata.
You can also assign one shared_ptr<T> to another:

std::shared_ptr<double> pdata{new double {999.0}};
std::shared_ptr<double> pdata2; // Pointer contains nullptr
pdata2 = pdata; // Copy pointer - both point to the same variable
std::cout << *pd << std::endl; // Outputs 999.0

Of course, copying pdata increases the reference count. Both pointers have to be reset or destroyed for the
memory occupied by the double variable to be released.

You can’t use a shared_ptr<T> to store the address of an array created in the free store by default. However, you can
store the address of an array<T> or vector<T> container object that you create in the free store. Here’s a working example:

// Ex6_06.cpp
// Using smart pointers
#include <iostream>
#include <iomanip>
#include <memory> // For smart pointers
#include <vector> // For vector container
#include <locale> // For toupper()
using std::vector;
using std::shared_ptr;

int main()
{
 vector <shared_ptr<vector<double>>>records; // Temperature records by days
 size_t day {1}; // Day number
 char answer {}; // Response to prompt
 double t {}; // A temperature

 while (true) // Collect temperatures by day
 { // Vector to store current day's temperatures created on the heap
 auto pDay = std::make_shared<vector<double>>();
 records.push_back(pDay); // Save pointer in records vector
 std::cout << "Enter the temperatures for day " << day++
 << " separated by spaces. Enter 1000 to end:\n";
 while (true)
 { // Get temperatures for current day
 std::cin >>t;
 if (t == 1000.0) break;

Chapter 6 ■ pointers and referenCes

177

 pDay->push_back(t);
 }
 std::cout << "Enter another day's temperatures (Y or N)? ";
 std::cin >>answer;
 if (toupper(answer) == 'N') break;
 }
 double total{};
 size_t count{};
 day = 1;
 std::cout << std::fixed << std::setprecision(2) << std::endl;
 for (auto record : records)
 {
 std::cout << "\nTemperatures for day " << day++ << ":\n";
 for (auto temp : *record)
 {
 total += temp;
 std::cout << std::setw(6) << temp;
 if (++count % 5 == 0) std::cout << std::endl;
 }
 std::cout << "\nAverage temperature: " << total / count << std::endl;
 total = 0.0;
 count = 0;
 }
}

Here’s how the output looks with arbitrary input values:

23 34 29 36 1000
Enter another day's temperatures (Y or N)? y
Enter the temperatures for day 2 separated by spaces. Enter 1000 to end:
34 35 45 43 44 40 37 35 1000
Enter another day's temperatures (Y or N)? y
Enter the temperatures for day 3 separated by spaces. Enter 1000 to end:
44 56 57 45 44 32 28 1000
Enter another day's temperatures (Y or N)? n

Temperatures for day 1:
 23.00 34.00 29.00 36.00
Average temperature: 30.50

Temperatures for day 2:
 34.00 35.00 45.00 43.00 44.00
 40.00 37.00 35.00
Average temperature: 39.13

Temperatures for day 3:
 44.00 56.00 57.00 45.00 44.00
 32.00 28.00
Average temperature: 43.71

Chapter 6 ■ pointers and referenCes

178

This program reads an arbitrary number of temperature values recorded during a day, for an arbitrary number of
days. The accumulation of temperature records are stored in the records vector, which has elements of type
shared_ptr<vector<double>>. Thus each element is a smart pointer to a vector of type vector<double>.

The containers for the temperatures for any number of days are created in the outer while loop. The temperature
records for a day are stored in a vector container that is created in the free store by this statement:

 auto pDay = std::make_shared<vector<double>>();

The pDay pointer type is determined by the pointer type returned by the make_shared() function. The function
allocates memory for the vector<double> object in the free store along with the shared_ptr<vector<double>>smart
pointer that is initialized with its address and returned. Thus pDay is type shared_ptr<vector<double>>, which is a
smart pointer to a vector<double> object. This pointer is added to the records container.

The vector pointed to by pDay is populated with data that is read in the inner while loop. Each value is stored
using the push_back() function for the current vector pointed to by pDay. The function is called using the indirect
member selection operator. This loop continues until 1000 is entered, which is an unlikely value for a temperature
during the day so there can be no mistaking it for a real value. When all the data for the current day has been entered,
the inner while loop ends and there’s a prompt asking whether another day’s temperatures are to be entered. If the
answer is affirmative, the outer loop continues and creates another vector in the free store. When the outer loop ends,
the records vector will contains smart pointers to vectors containing each day’s temperatures.

The next loop is a range-based for loop that iterates over the elements in the records vector. The inner range-based
for loop iterates over the temperatures values in the vector that the current records element points to. This inner loop
outputs the data for the day and accumulates to total of the temperatures values. This allows the average temperature
for the current day to be calculated when the inner loop ends. In spite of having a fairly complicated data organization
with a vector of smart pointers to vectors in the free store, accessing and processing the data is very easy using range-based
for loops.

The example illustrates how using containers and smart pointers can be a powerful and flexible combination.
This program deals with any number of sets of input, with each set containing any number of values. Free store
memory is managed by the smart pointers so there no need to worry about using the delete operator, or the possibility
of memory leaks. The records vector could also have been created in the free store too, but I’ll leave that as an
exercise for you to try.

Note ■ it is possible to create a shared_ptr<T> object that points to an array. this involves supplying a definition for
a deleter function that the smart pointer is to use to release the heap memory for the array. the details of how you do this
are outside the scope of this book.

Comparing shared_ptr<T> Objects
You can compare the address contained in one shared_ptr<T> object with another, or with nullptr using any of
the comparison operators. The most useful are comparisons for equality or inequality, which tell you whether two
pointers point to the same object. Given two shared_ptr<T> objects, pA and pB, that point to the same type, T, you can
compare them like this:

if((pA == pB) && (pA != nullptr))
 std::cout << " Both pointers point to the same object.\n";

Chapter 6 ■ pointers and referenCes

179

The pointers could both be nullptr and be equal so a simple comparison is not sufficient to establish that they
both point to the same object. The first expression in the if condition compares the two pointers and evaluates to
true if they contain the same address. The result is ANDed with the second expression that results in true if pA is not
nullptr. When both are true the output statement executes confirming that both point to the same object.
A shared_ptr<T> object can be implicitly converted to type bool so you could write the statement as:

if(pA && (pA == pB))
 std::cout << " Both pointers point to the same object.\n";

weak_ptr<T> Pointers
A weak_ptr<T> pointer is always created from a shared_ptr<T> pointer. weak_ptr<T> pointers are intended for use as
class members that store an address of another member of the same class, when objects of the class are created in the
free store. Using a shared_ptr<T> member to point to another object of the same type in such circumstances has the
potential for creating a reference cycle, which would prevent objects of the class type from being deleted from the free
store automatically. This is not a common situation but it is possible, as Figure 6-7 shows.

shared_ptr<X>
member points to C

Object B of type X

shared_ptr<X>
member points to A

Object D of type X

shared_ptr<X>
member points to D

shared_ptr<X> pA

shared_ptr<X> pB

shared_ptr<X> pC

shared_ptr<X> pD

shared_ptr<X>
member points to B

Object A of type X

Objects created in the free store

Array of smart pointers
to the objects

Object C of type X

Figure 6-7. How a reference cycle prevents objects from being deleted

Deleting all the smart pointers in the array or resetting them to nullptr does not delete the memory for the
objects to which they point. There is still a shared_ptr<X> object containing the address of every object. There are
no external pointers remaining that can access these objects so they cannot be deleted. The problem can be avoided
if the objects used weak_ptr<X> members to refer to other objects. These would not prevent the objects from being
destroyed when the external pointers in the array are destroyed or reset.

You can create a weak_ptr<T> object like this:

auto pData = std::make_shared<X>(); // Create a pointer to an object of type X
std::weak_ptr<X> pwData {pData}; // Create a weak pointer from shared pointer
std::weak_ptr<X> pwData2 {pwData}; // Create a weak pointer from another

Chapter 6 ■ pointers and referenCes

180

Thus you can create a weak_ptr<T> from a shared_ptr<T> or from an existing weak_ptr<T>. You can’t do very
much with a weak point - you can’t dereference it to access the object it points to for example. You can do two things
with a weak_ptr<T> object:

You can test whether the object it points to still exists, which means there’s a •	 shared_ptr<T>
still around that points to it.

You can create a •	 shared_ptr<T> object from a weak_ptr<T> object.

Here’s how you can test for the existence of the object that a weak pointer references:

if(pwData.expired())
 std::cout << "Object no longer exists.\n";

The expired() function for the pwData object returns true if the object no longer exists. You can create a shared
pointer from a weak pointer like this:

std::shared_ptr<X> pNew {wpData.lock()};

The lock() function locks the object if it exists by returning a new shared_ptr<X> object that initializes pNew.
If the object does not exist, the lock() function will return a shared_ptr<X> object containing nullptr. You can test
the result in an if statement:

if(pNew)
 std::cout << "Shared pointer to object created.\n";
else
 std::cout << "Object no longer exists.\n";

Working with weak_ptr<T> pointers is fairly advanced stuff so I won’t be delving into these any further.

Understanding References
A reference appears similar to a pointer in some respects, which is why I’m introducing it here, but it is completely
different. You’ll only get a real appreciation of the value of references when I introduce you to defining functions in
Chapter 8. References become more important in the context of object-oriented programming. Don’t be misled by
their simplicity and what might seem to be a trivial concept here. You’ll see later in the book that references provide
some extraordinarily powerful facilities. There are some things that would be impossible without references.

A reference is a name that you can use as an alias for something. Obviously it must be like a pointer insofar as it
refers to something else in memory but it is quite different. There are two kinds of references: lvalue references and
rvalue references. An lvalue reference is an alias for another variable; it is called an lvalue reference because it refers
to a persistent storage location in which you can store data so it can appear on the left of an assignment operator.
Because an lvalue reference is an alias, the variable for which it is an alias must exist when the reference is defined.
Unlike a pointer, a reference cannot be modified to be an alias for something else. An rvalue reference can be an alias
for a variable, just like an lvalue reference, but it differs from an lvalue reference in that it can also reference an rvalue,
which is a value that is transient. The result of evaluating an expression is an rvalue, so an rvalue reference can be an
alias for such a result. You’ll see in Chapter 8 how having the two types of reference available enables you to determine
whether a value passed to a function is an rvalue or an lvalue.

Chapter 6 ■ pointers and referenCes

181

Defining lvalue References
Suppose you defined this variable:

double data {3.5};

You can define an lvalue reference as an alias for data like this variable:

double& rdata {data}; // Defines a reference to the variable data

The ampersand following the type name indicates that the variable, rdata, defined, is a reference to a variable
of type double. The variable that it represents is specified in the initializer list. Thus rdata is of type ’reference to
double'. You can use the reference as an alternative to the original variable name. For example:

rdata += 2.5;

This increments data by 2.5. None of the dereferencing that you need with a pointer is necessary - you just use
the name of the reference as though it is a variable. Note that you can initialize a reference with a literal as long as you
specify the reference type as const. For example:

const int& rTen {10}; // OK

You can access the literal 10 using the rTen reference. Because rTen is const, it cannot be used to change the
value it references. If you try to define the reference as a non-const type, the statement won’t compile.

Let’s ram home the difference between a reference and a pointer by contrasting the lvalue reference rdata in the
previous code with the pointer. pdata, defined in this statement:

long* pdata {&data}; // A pointer containing the address of data

This defines a pointer, pdata, and initializes it with the address of data. This allows you to increment data
like this:

*pdata += 2.5; // Increment data through a pointer

You must dereference the pointer to access the variable to which it points. With a reference, there is no need for
de-referencing; it just doesn’t apply. In some ways, a reference is like a pointer that has already been dereferenced,
although it can’t be changed to reference something else. An lvalue reference is the complete equivalent of the
variable for which it is a reference.

Using a Reference Variable in a Range-Based for Loop
You know that you can use a range-based for loop to iterate over all the elements in an array:

double temperatures[] {45.5, 50.0. 48.2. 57.0. 63.8};
for(auto t : temperatures)
{
 sum += t;
 ++count;
}

Chapter 6 ■ pointers and referenCes

182

The variable t is initialized to the value of the current array element on each iteration, starting with the first. t
does not access the element itself so you cannot use t to modify the value of an element. However, you can change
the array elements if you use an lvalue reference:

const double F_to_C {5.0/9.0}; // Convert Fahrenheit to Centigrade
for(auto& t : temperatures) // lvalue reference loop variable
 t = (t - 32.0)*FtoC;

The loop variable, t, is now of type double& so it is an alias for each array element. The loop variable is redefined
on each iteration an initialized with the current element, so the reference is not being changed. This loop changes the
values in the temperatures array from Fahrenheit to Centigrade. Using a reference in a range-based for loop is very
efficient when you are working with collections of objects. Copying objects can be expensive on time, so avoiding
copying by using a reference type makes your code more efficient.

When you use an lvalue reference type for the variable in a range-based for loop and you don’t need to modify
the values, you can use const reference type for the loop variable:

for (const auto& t : temperatures)
 std::cout << std::setw(6) << t;
std::cout << std::endl;

You still get the benefits of using an lvalue reference type to make the loop as efficient as possible, and at the
same time you prevent the array elements from being changed by this loop.

Defining rvalue References
rvalue references don’t have any uses with what you have learned so far. I’m explaining them here because the
concept is closely related to lvalue references. You’ll understand how you use them and what they can do for you
starting in Chapter 8. The result of every expression is either an rvalue or an lvalue. A variable is an lvalue when it
represents a persistent memory location. The result of expression that is stored in a temporary memory location is
an rvalue. An rvalue reference is an alias for a temporary memory location that contains the result of evaluating an
expression.

You specify an rvalue reference type using two ampersands following the type name. Here’s an example:

int count {5};
int&& rtemp {count + 3}; // rvalue reference
std::cout << rtemp << std::endl; // Output value of expression
int& rcount {count}; // lvalue reference
std::cout << rcount << std::endl; // Output value of count

This code will compile and execute, but it is definitely NOT the way to use an rvalue reference and you should not
code like this. This is just to illustrate what an rvalue reference is. The rvalue reference is initialized to be an alias for
the result of the expression count+3, which is a temporary value — an rvalue. The output from the next statement will
be 8. You cannot do this with an lvalue reference. Is this useful? In this case, no, indeed it is not recommended at all;
but in a different context, it is very very useful. You see that it can make your code much more efficient.

Chapter 6 ■ pointers and referenCes

183

Summary
You’ve explored some very important concepts in this chapter. You will undoubtedly make extensive use of pointers
and particularly smart pointers in real-world C++ programs, and you’ll see a lot more of them throughout the rest
of the book.

The vital points this chapter covered:

A pointer is a variable that contains an address. A basic pointer is referred to as a raw pointer.•	

You obtain the address of a variable using the address-of operator, •	 &.

A smart pointer is an object that can be used like a raw pointer. A smart pointer is only used to •	
store free store memory addresses.

To refer to the value pointed to by a pointer, you use the indirection operator, *. This is also •	
called the dereference operator.

You access a member of an object through a raw pointer or a smart pointer using the member •	
selection operator, which is a period.

You access a member of an object through a pointer or smart pointer using the indirect •	
member selection operator, ->.

You can add integer values to or subtract integer values from the address stored in a raw •	
pointer. The effect is as though the pointer refers to an array, and the pointer is altered by the
number of array elements specified by the integer value. You cannot perform arithmetic with
a smart pointer.

The •	 new operator allocates a block of memory in the free store and returns the address of the
memory allocated.

You use the •	 delete operator to release a block of memory that you’ve allocated previously
using the new operator. You don’t need to use the delete operator when the address of free
store memory is stored in a smart pointer.

There are three varieties of smart pointers. There can only ever be one type •	 unique_ptr<T>
pointer in existence that points to a given object of type T. There can be multiple shared_
ptr<T> objects containing the address of a given object of type T and the object will be
destroyed when there are no shared_ptr<T> objects containing its address. weak_ptr<T>
pointers are used with shared_ptr<T> pointers to avoid reference cycles.

An lvalue reference is an alias for a variable that represents a permanent storage location. •	
An rvalue reference is an alias for a temporary memory location that contains the result of
evaluating an expression.

You can use a reference type for the loop variable in a range-based •	 for loop to allow the array
element values to be modified.

Chapter 6 ■ pointers and referenCes

184

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back over
the chapter for help. if you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 6-1. Write a program that declares and initializes an array with the first 50 even
numbers. output the numbers from the array ten to a line using pointer notation, and then
output them in reverse order also using pointer notation.

exercise 6-2. Write a program that reads an array size from the keyboard and dynamically
allocates an array of that size to hold floating-point values. Using pointer notation, initialize
all the elements of the array so that the value of the element at index position n is 1.0/(n+1)2.
Calculate the sum of the elements using pointer notation, multiply the sum by 6, and output
the square root of that result.

exercise 6-3. repeat the calculation in exercise 6-2 but using a vector<> container allocated
in the free store. test the program with more than 100,000 elements. do you notice anything
interesting about the result?

exercise 6-4. You know that a two-dimensional array is an “array of arrays.” You also know
that you can create an array dynamically using a pointer. if the elements of the array that you
create dynamically are also pointers, then each element in the array could store the address
of an array. Using this concept, create an array of three pointers to arrays, in which each
array can store six values of type int. set the first array of integers to values 1 to 6, the next
array to the squares (n×n) of the values stored first array, and the next the cubes (n×n×n) of
the values stored in the first array of integers. output the contents of the three arrays, and
then delete the memory you’ve allocated.

exercise 6-5. Write a program that will read an arbitrary number of age values in years for
students in each of an arbitrary number of classes. the number of ages is not known in
advance but there can be up to 50 students in a class. store the student age values for each
class in an vector<T> container that you create in the free store. a shared_ptr<T> for each
vector<T> should be stored in a vector<T> that is also created in the free store. after input
is complete, list the ages of students in each class, 5 to a line, followed by the average age
for the class.

http://www.apress.com/source-code

185

Chapter 7

Working with Strings

This chapter is about handling textual data much more effectively and safely that the mechanism provided by a
C-style string stored in an array of char elements. In this chapter, you’ll learn:

How to create variables of type •	 string

What operations are available with objects of type •	 string, and how you use them

How you can search a string for a specific character or a substring•	

How you can modify an existing string•	

How you can work with strings containing Unicode characters•	

What a raw string literal is•	

A Better Class of String
You’ve seen how you can use an array of elements type char to store a null-terminated (C-style) string. The cstring
header provides a range of functions for working with C-style strings including capability for joining strings, searching
a string, and comparing strings. All these operations depend on the null character being present to mark the end of
a string. If it is missing or gets overwritten, many of these functions will march happily through memory beyond the
end of a string until a null character is found at some point, or some catastrophe stops the process. It often results
in memory being arbitrarily overwritten. Using C-style strings is inherently unsafe and represents a security risk.
Fortunately there’s a better alternative.

The string header defines the string type, which is much easier to use than a null-terminated string.
The string type is defined by a class (or to be more precise, a class template) so it isn’t one of the fundamental types.
Type string is a compound type, which is a type that’s a composite of several data items that are ultimately defined
in terms of fundamental types of data. A string object contains the characters that make up the string it represents,
and other data, such as number of characters in the string. Because the string type is defined in the string header,
you must include this header when you’re using string objects. The string type name is defined within the std
namespace, so you need a using declaration to use the type name in its unqualified form. The string type name is
very often used in its unqualified form because when you are using it, it occurs very frequently in the code. I’ll assume
a using declaration and write it as string rather than std::string in code as well as in the text. I’ll start by explaining
how you create string objects.

Chapter 7 ■ Working With StringS

186

Defining string Objects
An object of type string contains a sequence of characters of type char, which can be empty. This statement defines a
variable of type string that contains an empty string:

string empty; // An empty string

This statement defines a string object that you refer to using the name empty. In this case empty contains a string
that has no characters and so it has zero length.

You can initialize a string object with a string literal when you define it:

string proverb {"Many a mickle makes a muckle."};

proverb is a string object that contains the string literal shown in the initializer list. The string that’s
encapsulated by a string object doesn’t have a string termination character. A string object keeps track of the length
of the string that it represents, so no termination character is necessary.

Warning ■ Don’t use an initializer list containing 0 or nullptr to initialize a string object. if you do, it won’t
contain an empty string or any other kind of string, and it will certainly cause trouble. if you are lucky, you’ll get a runtime
error - if you’re not, the program will crash or otherwise behave incorrectly.

You can obtain the length of the string for a string object using its length() function, which takes no arguments:

std::cout << proverb.length(); // Outputs 29

This statement calls the length() function for the proverb object and outputs the value it returns to cout. The
record of the string length is maintained by the object itself. When you append one or more characters, the length is
increased automatically by the appropriate amount and decreased if you remove characters.

There are some other possibilities for initializing a string object. You can use an initial sequence from a string
literal for instance:

string part_literal {"Least said soonest mended.", 5}; // "Least"

The second initializer in the list specifies the length of the sequence from the first initializer to be used to
initialize the part_literal object.

You can’t initialize a string object with a single character between single quotes — you must use a string literal
between double quotes, even when it’s just one character. However, you can initialize a string with any number of
instances of given character. You can define and initialize a sleepy time string object like this:

string sleeping {6, 'z'};

The string object, sleeping, will contain "zzzzzz". The string length will be 6. If you want to define a string
object that’s more suited to a light sleeper, you could write this:

string light_sleeper {1, 'z'};

Chapter 7 ■ Working With StringS

187

This initialize light_sleeper with the string literal "z". A further option is to use an existing string object to
provide the initial value. Given that you’ve defined proverb previously, you can define another object based on that:

string sentence {proverb};

The sentence object will be initialized with the string literal that proverb contains, so it too will contain
"Many a mickle makes a muckle." and have a length of 29.

You can reference characters within a string object using an index value starting from 0, just like an array.
You can use a pair of index values to identify part of an existing string and use that to initialize a new string object,
for example:

string phrase {proverb, 0, 13}; // Initialize with 13 characters starting at index 0

Figure 7-1 illustrates this process.

Figure 7-1. Creating a new string from part of an existing string

The first initializer in the initializer list is the source of the initializing string. The second is the index of the
character in proverb that begins the initializing substring and the third initializer in the list is the number of
characters in the substring. Thus phrase will contain "Many a mickle". To demonstrate that that is the case you can
insert the phrase object in the output stream, cout:

std::cout << phrase << std::endl;

Thus you can output string objects just like C-style strings. Extraction from cin is also supported for string objects:

string name;
std::cout << "enter your name: ";
std::cin >> name; // Pressing Enter ends input

This reads characters up to the first whitespace character, which ends the input process. Whatever was read is
stored in the string object, name. You cannot enter text with embedded spaces with this process.

Chapter 7 ■ Working With StringS

188

Just to summarize: I have described six options for defining and initializing a string object; the comments below
identify the initializing string in each case.

 1. No initializer list (or an empty list):

string empty; // The string ""

 2. An initializer list containing a string literal:

string proverb {"Many a mickle makes a muckle."}; // The literal

 3. An initializer list containing an existing string object:

string sentence {proverb}; // Duplicates proverb

 4. An initializer list containing two initializers that are a string literal followed by the length of

the sequence in the literal to be used to initialize the string object:

string part_literal {"Least said soonest mended.", 5}; // "Least"

 5. An initializer list containing two initializers that are a repeat count followed by the

character literal that is to be repeated in the string that initializes the string object:

string sleeping {6, 'z'}; // "zzzzzz"

 6. An initializer list containing three initializers that are an existing string object, an index

specifying the start of the substring in the first initializer, and the length of the substring:

string phrase {proverb, 0, 13}; // "many a mickle"

Operations with String Objects
A wide range of operations with string objects are supported. Perhaps the simplest is assignment. You can assign a
string literal or another string object to a string object, for example:

string adjective {"hornswoggling"}; // Defines adjective
string word {"rubbish"}; // Defines word
word = adjective; // Modifies word
adjective = "twotiming"; // Modifies adjective

The third statement assigns the value of adjective, which is "hornswoggling", to word, so "rubbish" is replaced.
The last statement assigns the literal, "twotiming" to adjective, so the original value "hornswoggling" is replaced.
Thus, after executing these statements, word will contain "hornswoggling" and adjective will contain "twotiming".

Concatenating Strings
You can join strings using the addition operator; the technical term for this is concatenation. You can concatenate the
objects defined above:

string description {adjective + " " + word + " whippersnapper"};

Chapter 7 ■ Working With StringS

189

After executing this statement, the description object will contain the string "twotiming hornswoggling
whippersnapper". You can see that you can concatenate string literals with string objects using the + operator. This
is because the + operator has been redefined to have a special meaning with string objects. When one operand is a
string object and the other operand is either another string object or a string literal, the result of the + operation is a
new string object containing the two strings joined together.

Note that you can’t concatenate two string literals using the + operator. One of the operands must always be an
object of type string. The following statement, for example, won’t compile:

string description {" whippersnapper" + " " + word}; // Wrong!!

The problem is that the compiler will try to evaluate the initializer value as ((" whippersnapper"+" ")+word),
and the + operator doesn’t work with both operands as two string literals. However, you have three ways around this.
You can write the first two string literals as a single string literal {" whippersnapper " + word} you can omit the +
between the two literals {" whippersnapper" " " + word}, or you can use parentheses {"whippersnapper" +
(" " + word)}. Two or more string literals in sequence will be concatenated into a single literal by the compiler. The
expression between parentheses that joins " " with word is evaluated first to produce a string object, and that can be
joined to the first literal using the + operator.

That’s enough theory for the moment. It’s time for a bit of practice. This program reads your first and second
names from the keyboard:

// Ex7_01.cpp
// Concatenating strings
#include <iostream>
#include <string>
using std::string;

int main()
{
 string first; // Stores the first name
 string second; // Stores the second name

 std::cout << "Enter your first name: ";
 std::cin >> first; // Read first name

 std::cout << "Enter your second name: ";
 std::cin >> second; // Read second name

 string sentence {"Your full name is "}; // Create basic sentence
 sentence += first + " " + second + "."; // Augment with names

 std::cout << sentence << std::endl; // Output the sentence

 std::cout << "The string contains " // Output its length
 << sentence.length() << " characters." << std::endl;
}

Here’s some sample output:

Enter your first name: Phil
Enter your second name: McCavity
Your full name is Phil McCavity.
The string contains 33 characters.

Chapter 7 ■ Working With StringS

190

After defining two empty string objects, first and second, the program prompts for input of a first name then
a second name. The input operations will read anything up to the first whitespace character. You’ll learn how you can
read a string that includes whitespace later in this chapter.

After getting the names, you create another string object that is initialized with a string literal. The sentence
object is concatenated with the string object that results from the right operand of the += assignment operator:

sentence += first + " " + second + "."; // Augment with names

The right operand concatenates first with the literal " ", then second is appended to that result, and finally
the literal "." is appended to that to produce the final result that is concatenated with the right operand of the +=
operator. This statement demonstrates that the += operator also works with objects of type string in a similar way to
the basic types. The statement is equivalent to this statement:

sentence = sentence + (first + " " + second + "."); // Augment with names

When you use the += operator to append a value to a string object, the right side can be an expression resulting
in a null-terminated string, a single character of type char, or an expression that results in an object of type string.
Finally the program uses the stream insertion operator to output the contents of sentence and the length of the string
it contains.

Accessing Characters in a String
You refer to a particular character in a string by using an index value between square brackets, just as you do with an
array. The first character in a string object has the index value 0. You could refer to the third character in sentence,
for example, as sentence[2]. You can use such an expression on the left of the assignment operator, so you can
replace individual characters as well as access them. The following loop changes all the characters in sentence
to uppercase:

for(size_t i {} ; i < sentence.length() ; ++i)
 sentence[i] = std::toupper(sentence[i]);

This loop applies the toupper() function to each character in the string in turn and stores the result in the same
position in the string. The index value for the first character is 0, and the index value for the last character is one less
than the length of the string, so the loop continues as long as i<sentence.length() is true.

A string object is a range, so you could also do this with the range-based for loop:

for (auto& ch : sentence)
 ch = std::toupper(ch);

Specifying ch as a reference type allows the character in the string to be modified within the loop. This loop and
the previous loop require the locale header to be included to compile.

You can exercise this array-style access method in a version of Ex5_11.cpp that determined the number of vowels
and consonants in a string. The new version will use a string object. It will also demonstrate that you can use the
getline() function to read a line of text that includes spaces:

// Ex7_02.cpp
// Accessing characters in a string
#include <iostream>
#include <string>
#include <locale>
using std::string;

Chapter 7 ■ Working With StringS

191

int main()
{
 string text; // Stores the input
 std::cout << "Enter a line of text:\n";
 std::getline(std::cin, text); // Read a line including spaces

 int vowels {}; // Count of vowels
 int consonants {}; // Count of consonants
 for(size_t i {} ; i<text.length() ; ++i)
 {
 if(std::isalpha(text[i])) // Check for a letter
 switch(std::tolower(text[i])) // Convert to lowercase
 {
 case 'a': case 'e': case 'i': case 'o': case 'u':
 ++vowels;
 break;

 default:
 ++consonants;
 break;
 }
 }

 std::cout << "Your input contained " << vowels << " vowels and "
 << consonants << " consonants." << std::endl;
}

Here’s an example of the output:

Enter a line of text:
A nod is as good as a wink to a blind horse.
Your input contained 14 vowels and 18 consonants.

The text object contains an empty string initially. You read a line from the keyboard into text using the
getline() function. This version of getline() is declared in the string header; the versions of getline() that you
have used previously were declared in the iostream header. This version reads characters from the stream specified
by the first argument, cin in this case, until a newline character is read, and the result is stored in the string object
specified by the second argument, which is text in this case. This time you don’t need to worry about how many
characters are in the input. The string object will automatically accommodate however many characters are entered
and the length will be recorded in the object.

You can change the delimiter that signals the end of the input by a using a version of getline() with a third
argument that specifies the new delimiter for the end of the input:

std::getline(std::cin, text, '#');

This reads characters until a '#' character is read. Because newline doesn’t signal the end of input in this
case, you can enter as many lines of input as you like, and they’ll all be combined into a single string. Any newline
characters that were entered will be present in the string.

Chapter 7 ■ Working With StringS

192

You count the vowels and consonants in much the same way as in Ex5_11.cpp, using a for loop. You could use
the range-based for loop instead:

for (const auto& ch: text)
{
 if (isalpha(ch)) // Check for a letter
 switch (tolower(ch)) // Convert to lowercase
 {
 case 'a': case 'e': case 'i': case 'o': case 'u':
 ++vowels;
 break;

 default:
 ++consonants;
 break;
 }

In my mind this is better. The code is simpler and easier to understand than the original. The major advantage of
using a string object in this example compared to Ex5_11.cpp is that you don’t need to worry about the length of the
string that is entered.

Accessing Substrings
You can extract a substring from a string object using its substr() function. The function requires two arguments.
The first is the index position where the substring starts and the second is the number of characters in the substring.
The function returns the substring as a string object. For example:

string phrase {"The higher the fewer."};
string word1 {phrase.substr(4, 6)}; // "higher"

This extracts the six-character substring from phrase that starts at index position 4, so word1 will contain
"higher" after the second statement executes. If the length you specify for the substring overruns the end of the
string object, then the substr() function just returns an object contains the characters up to the end of the string.
The following statement demonstrates this behavior:

string word2 {phrase.substr(4,100)}; // "higher the fewer."

Of course, there aren’t 100 characters in phrase, let alone in a substring. In this case the result will be that word2
will contain the substring from index position 4 to the end, which is "higher the fewer.". You could obtain the
same result by omitting the length argument and just supplying the first argument that specifies the index of the first
character of the substring:

string word {phrase.substr(4)}; // "higher the fewer."

This version of substr() also returns the substring from index position 4 to the end. If you omit both arguments
to substr(), the whole of phrase will be selected as the substring.

If you specify a starting index for a substring that is outside the valid range for the string object, an exception of
type std::out_of_range will be thrown and your program will terminate abnormally—unless you’ve implemented
some code to handle the exception. You don’t know how to do that yet but I’ll discuss exceptions and how to handle
them in Chapter 15.

Chapter 7 ■ Working With StringS

193

Comparing Strings
You saw in the previous example how you can use an index to access individual characters in a string object
for comparison purposes. When you access a character using an index, the result is of type char, so you can use the
comparison operators to compare individual characters. You can also compare entire string objects using any of
the comparison operators. The comparison operators you can use are:

> >= < <= == !=

You can use these to compare two objects of type string, or to compare a string object with a string literal
or with a C-style string. The operands are compared character by character until either a pair of corresponding
characters are different, or the end of either or both operands is reached. When a pair of characters differ, numerical
comparison of the character codes determines which of the strings has the lesser value. If no differing character pairs
are found and the strings are of different lengths, the shorter string is “less than” the longer string. Two strings are
equal if they contain the same number of characters and all corresponding character codes are equal. Because you’re
comparing character codes, the comparisons are obviously going to be case sensitive.

You could compare two string objects using this if statement:

string word1 {"age"};
string word2 {"beauty"};
if(word1 < word2)
 std::cout << word1 << " comes before " << word2 << "." << std::endl;
else
 std::cout << word2 << " comes before " << word1 << "." << std::endl;

Executing these statements will result in the output:

age comes before beauty.

This shows that the old saying must be true. The preceding code looks like a good candidate for using the
conditional operator. You can produce a similar result with the following statement:

std::cout << word1 << (word1 < word2 ? " comes " : " does not come ")
 << "before " << word2 << "." << std::endl;

Let’s compare strings in a working example. This program reads any number of names and sorts them into
ascending sequence:

// Ex7_03.cpp
// Comparing strings
#include <iostream> // For stream I/O
#include <iomanip> // For stream manipulators
#include <string> // For the string type
#include <locale> // For character conversion
#include <vector> // For the vector container
using std::string;

Chapter 7 ■ Working With StringS

194

int main()
{
 std::vector<string> names; // Vector of names
 string input_name; // Stores a name
 char answer {}; // Response to a prompt

 do
 {
 std::cout << "Enter a name: ";
 std::cin >> input_name; // Read a name and...
 names.push_back(input_name); // ...add it to the vector

 std::cout << "Do you want to enter another name? (y/n): ";
 std::cin >> answer;
 } while(tolower(answer) == 'y');

 // Sort the names in ascending sequence
 string temp;
 bool sorted {false}; // true when names are sorted
 while(!sorted)
 {
 sorted = true;
 for(size_t i {1} ; i < names.size() ; ++i)
 {
 if(names[i-1] > names[i])
 { // Out of order - so swap names
 temp = names[i];
 names[i] = names[i-1];
 names[i-1] = temp;
 sorted = false;
 }
 }
 }

 // Find the length of the longest name
 size_t max_length{};
 for(auto& name : names)
 if(max_length < name.length()) max_length = name.length();

 // Output the sorted names 5 to a line
 std::cout <<"In ascending sequence the names you entered are:\n";
 size_t field_width = max_length + 2;
 size_t count {};
 for(auto& name : names)
 {
 std::cout << std::setw(field_width) << name;
 if(!(++count % 5)) std::cout << std::endl;
 }
 std::cout << std::endl;
}

Chapter 7 ■ Working With StringS

195

Here’s some sample output:

Enter a name: Zebediah
Do you want to enter another name? (y/n): y
Enter a name: Meshak
Do you want to enter another name? (y/n): y
Enter a name: Eshak
Do you want to enter another name? (y/n): y
Enter a name: Abegnego
Do you want to enter another name? (y/n): y
Enter a name: Moses
Do you want to enter another name? (y/n): y
Enter a name: Job
Do you want to enter another name? (y/n): n
In ascending sequence the names you entered are:
 Abegnego Eshak Job Meshak Moses
 Zebediah

The names are stored in a vector of string elements. Using a vector container means that an unlimited number
of names can be accommodated and the container will keep track of how many there are, so there’s no need to count
them independently. The container also acquires heap memory as necessary to store the string objects, and deletes it
when the vector is destroyed.

The sorting process is the bubble sort that you have seen applied to numerical values. Because you need to
compare successive elements in the vector and swap them when necessary, the for loop iterates over the index values
for vector elements; the range-based for loop is not suitable here.

The sorted names are output in a range-based for loop. You can do this because a vector container represents a
range. To align the names vertically using the setw() manipulator, you need to know the maximum name length and
this is found by the range-based for loop that precedes the output loop.

The compare() Function
The compare() function for a string object can compare the object with another string object, or with a string literal,
or with a C-style string. Here’s an example of an expression that calls compare() for a string object, word, to compare
it with a string literal:

word.compare("and")

word is compared with the argument to compare(). The function returns the result of the comparison as a value
of type int. This will be a positive integer if word is greater than "and", zero if word is equal to "and", and a negative
integer if word is less than "and".

In the last example, you could have used the compare() function in place of using the comparison operator:

for(size_t i {1} ; i < names.size() ; ++i)
{
 if(names[i-1].compare(names[i]) > 0)
 { // Out of order - so swap names
 temp = names[i];
 names[i] = names[i-1];
 names[i-1] = temp;
 sorted = false;
 }

Chapter 7 ■ Working With StringS

196

This is less clear than the original code, but you get the idea of how the compare() function can be used. The >
operator is better in this instance but there are circumstances where compare() has the advantage. The function tells
you in a single step the relationship between two objects. If > results in false, you still don’t know whether or not
the operands are equal whereas with compare() you do. The function has another advantage. You can compare() a
substring of a string object with the argument:

string word1 {"A jackhammer"};
string word2 {"jack"};
int result{ word1.compare(2, word2.length(), word2) };
if (!result)
 std::cout << "word1 contains " << word2 << " starting at index 2" << std::endl;

The expression that initializes result compares the four-character substring of word1 that starts at index position
2 with word2. This is illustrated in Figure 7-2.

Figure 7-2. Using compare() with a substring

The first argument to compare() is the index position of the first character in a substring of word1 that is to be
compared with word2. The second argument is the number of characters in the substring, which is sensibly specified
as the length of the third argument, word2. Obviously, if the substring length you specify is not the same as the length
of the third argument, the substring and the third argument are unequal by definition.

You could use the compare function to search for a substring. For example:

string text {"Peter Piper picked a peck of pickled pepper."};
string word {"pick"};
for (size_t i{}; i < text.length() - word.length() + 1; ++i)
 if (!text.compare(i, word.length(), word))
 std::cout << "text contains " << word << " starting at index " << i << std::endl;

This loop finds word at index positions 12 and 29 in text. The upper limit for the loop variable allows the last
word.length() characters in text to be compared with word. This is not the most efficient implementation of the
search. When word is found, it would be more efficient to arrange than the next substring of text that is checked is
word.length() characters further along, but only if there is still word.length() characters before the end of text.
However, there are easier ways to search a string object, as you’ll see very soon.

Chapter 7 ■ Working With StringS

197

You can compare a substring of one string with a substring of another using the compare() function. This
involves passing five arguments to compare()! For example:

string text {"Peter Piper picked a peck of pickled pepper."};
string phrase {"Got to pick a pocket or two."};
for (size_t i{}; i < text.length() - 3 ; ++i)
 if (!text.compare(i, 4, phrase, 7, 4))
 std::cout << "text contains " << phrase << " starting at index " << i << std::endl;

The two additional arguments are the index position of the substring in phrase and its length. The substring of
text is compared with the substring of text.

We’re not done yet! The compare() function can also compare a substring of a string object with a
null-terminated string:

string text{ "Peter Piper picked a peck of pickled pepper." };
for (size_t i{}; i < text.length() - 3 ; ++i)
 if (!text.compare(i, 4, "pick"))
 std::cout << "text contains \"pick\" starting at index " << i << std::endl;

The output from this will be the same as the previous code; "pick" is found at index positions 12 and 29.
Still another option is to select the first n characters from a null-terminated string by specifying the number of

characters. The if statement in the loop could be:

if (!text.compare(i, 4, "picket", 4))
 std::cout << "text contains \"pick\" starting at index " << i << std::endl;

The fourth argument to compare() specifies the number of characters from "picket" that are to be used in
the comparison.

Note ■ You have seen that the compare() function works quite happily with different numbers of arguments of various
types. What you have here are several different functions with the same name. these are called overloaded functions,
and you’ll learn how and why you create them in the next chapter.

Comparisons Using substr()
Of course, if you’re like me you have trouble remembering the sequence of arguments to the more complicated
versions of the compare() function, you can use the substr() function to extract the substring of a string object. You
can then use the result with the comparison operators in many cases. For instance, to compare substrings in word1
and word2 as shown in Figure 6-9 in the previous chapter, you could write the test as follows:

string text {"Peter Piper picked a peck of pickled pepper."};
string phrase {"Got to pick a pocket or two."};
for (size_t i{}; i < text.length() - 3 ; ++i)
 if (text.substr(i, 4) == phrase.substr(7, 4))
 std::cout << "text contains " << phrase.substr(7, 4)
 << " starting at index " << i << std::endl;

This seems to me to be more readily understood than the equivalent operation using the compare() function.

Chapter 7 ■ Working With StringS

198

Searching Strings
Beyond compare(), you have many other alternatives for searching a string object. They all involve functions that
return an index. I’ll start with the simplest sort of search. A string object has a find() function that finds the index of
a substring within it. You can also use it to find the index of a given character. The substring you are searching for can
be another string object or a string literal. Here’s an example:

string sentence {"Manners maketh man"};
string word {"man"};
std::cout << sentence.find(word) << std::endl; // Outputs 15
std::cout << sentence.find("Man") << std::endl; // Outputs 0
std::cout << sentence.find('k') << std::endl; // Outputs 10
std::cout << sentence.find('x') << std::endl; // Outputs string::npos

In each output statement sentence is searched from the beginning by calling its find() function. The function
returns the index of the first character of the first occurrence of whatever is being sought. In the last statement, 'x' is
not found in the string so the value string::npos is returned. This is a constant that is defined in the string header.
It represents an illegal character position in a string and is used to signal a failure in a search. Of course, you can use
string::npos to check for a search failure with a statement such as this:

if(sentence.find('x') == string::npos)
 std::cout << "Character not found" << std::endl;

Another variation on the find() function allows you to search part of a string starting from a specified position.
For example, with sentence defined as before, you could write this:

std::cout << sentence.find("an", 1) << std::endl; // Outputs 1
std::cout << sentence.find("an", 3) << std::endl; // Outputs 16

Each statement searches sentence from the index specified by the second argument, to the end of the string.
The first statement finds the first occurrence of "an" in the string. The second statement finds the second occurrence
because the search starts from index position 3.

You could search for a string object by specifying it as the first argument to find(). For example:

string sentence {"Manners maketh man"};
string word {"an"};
int count {}; // Count of occurrences
size_t position {}; // Stores a string index position
for(size_t i {} ; i <= sentence.length() - word.length() ;)
{
 position = sentence.find(word, i);
 if(position == string::npos)
 break;
 count++;
 i = position + 1;
}
 std::cout << "\"" << word << "\" occurs in \"" << sentence
 << "\" " << count << " times." << std:: endl; // Two times...

A string index is of type size_t, so position that stores values returned by find() is of that type. The loop index,
i, defines the starting position for a find() operation so this is also of type size_t. The last occurrence of word in
sentence has to start at least word.length() positions back from the end of sentence, so the maximum value of i in

Chapter 7 ■ Working With StringS

199

the loop is sentence.length()-word.length(). There’s no loop expression for incrementing i because this is done in
the loop body.

If find() returns string::npos, then word wasn’t found, so the loop ends by executing the break statement.
Otherwise count is incremented and i is set to one position beyond where word was found, ready for the next
iteration. You might think you should set i to be i+word.length, but this wouldn’t allow overlapping occurrences to
be found, such as if you were searching for "anna" in the string "annannanna".

You can also search a string object for a substring of a C-style string or a string literal. In this case, the first
argument to find() is the null-terminated string, the second is the index position at which you want to start
searching, and the third is the number of characters of the null-terminated string that you want to take as the string
you’re looking for. For example:

std::cout << sentence.find("akat", 1, 2) << std::endl; // Outputs 9

This searches for the first two characters of "akat" (that is, "ak") in sentence, starting from position 1. The
following searches would both fail and return string::npos:

std::cout << sentence.find("akat", 1, 3) << std::endl; // Outputs string::npos
std::cout << sentence.find("akat", 10, 2) << std::endl; // Outputs string::npos

The first search fails because "aka" isn’t in sentence. The second is looking for "ak", which is in sentence, but it
fails because it doesn’t occur after position 10.

Here is a program that searches a string object for a given substring and determines how many times the
substring occurs:

// Ex7_04.cpp
// Searching a string
#include <iostream>
#include <string>
using std::string;

int main()
{
 string text{}; // The string to be searched
 string word{}; // Substring to be found
 std::cout << "Enter the string to be searched and press Enter:\n";
 std::getline(std::cin, text);

 std::cout << "Enter the string to be found and press Enter:\n";
 std::getline(std::cin, word);

 size_t count{}; // Count of substring occurrences
 size_t index{}; // String index
 while ((index = text.find(word, index)) != string::npos)
 {
 ++count;
 index += word.length();
 }
 std::cout << "Your text contained " << count << " occurrences of \""
 << word << "\"." << std::endl;
}

Chapter 7 ■ Working With StringS

200

Here’s some sample output:

Enter the string to be searched and press Enter:
Smith, where Jones had had "had had", had had "had". "Had had" had had the examiners' approval.
Enter the string to be found and press Enter:
had
Your text contained 10 occurrences of "had".

There are only 10 occurrences of "had". "Had" doesn’t count because it starts with an uppercase letter. The
program searches text for the string in word, both of which are read from the standard input stream using getline().
Input is terminated by a newline, which occurs when you press Enter. The search is conducted in the while loop,
which continues as long as the find() function for text does not return string::npos. A return value of string::npos
indicates that the search target is not found in text from the specified index to the end of the string, so the search is
finished. On each iteration when a value other than string::npos is returned, the string in word has been found in text
so count is incremented and index is incremented by the length of the string; this assumes that we are not searching for
overlapping occurrences. You could code the search as a for loop with no statements in the body of the loop:

for (size_t index{};
 (index = text.find(word, index)) != string::npos; index += word.length(), ++count)
 ;

I think the while loop is easier to understand. Whichever loop you prefer, the mechanism is essentially the same.
There is quite a lot happening in either loop, so to help you follow the action, the process is shown in Figure 7-3.

Figure 7-3. Searching a string

Searching for any of a Set of Characters
Suppose you have a string — a paragraph of prose, perhaps — that you want to break up into individual words. You
need to find where the separators are, and those could be any of a number of different characters such as spaces,
commas, periods, colons, and so on. A function that can find any of a given set of characters in a string would help.
This is exactly what the find_first_of() function for s string object does:

string text {"Smith, where Jones had had \"had had\", had had \"had\"."
 " \"Had had\" had had the examiners' approval."};
string separators {" ,.\""};
std::cout << text.find_first_of(separators) << std::endl; // Outputs 5

Chapter 7 ■ Working With StringS

201

The set of characters sought are defined by a string object that you pass as the argument to the
find_first_of() function. The first character in text that’s in separators is a comma, so the last statement will
output 5. You can also specify the set of separators as a null-terminated string. If you want to find the first vowel in
text, for example, you could write this:

std::cout << text.find_first_of("AaEeIiOoUu") << std::endl; // Outputs 2

The first vowel in text is 'i', at index position 2.
You can search backwards from the end of a string object to find the last occurrence of a character from a given

set by using the find_last_of() function. For example, to find the last vowel in text, you could write this:

std::cout << text.find_last_of("AaEeIiOoUu") << std::endl; // Outputs 92

The last vowel in text is the second 'a' in approval, at index 92.
You can specify an extra argument to find_first_of() and find_last_of() that specifies the index where the

search process is to begin. If the first argument is a null-terminated string, there’s an optional third argument that
specifies how many characters from the set are to be included.

A further option is to find a character that’s not in a given set. The find_first_not_of() and find_last_not_of()
functions do this. To find the position of the first character in text that isn’t a vowel, you could write:

std::cout << text.find_first_not_of("AaEeIiOoUu") << std::endl; // Outputs 0

The first character that isn’t a vowel is clearly the first, at index 0.
Let’s try some of these functions in a working example. This program extracts the words from a string. This

combines the use of find_first_of() and find_first_not_of(). Here’s the code:

// Ex7_05.cpp
// Searching a string for characters from a set
#include <iostream>
#include <iomanip>
#include <string>
#include <vector>
using std::string;

int main()
{
 string text; // The string to be searched
 std::cout << "Enter some text terminated by *:\n";
 std::getline(std::cin, text, '*');

 const string separators{ " ,;:.\"!?'\n" }; // Word delimiters
 std::vector<string> words; // Words found

 size_t start { text.find_first_not_of(separators) }; // First word start index
 size_t end {}; // Index for end of a word

 while (start != string::npos) // Find the words
 {
 end = text.find_first_of(separators, start + 1); // Find end of word
 if (end == string::npos) // Found a separator?
 end = text.length(); // No, so set to last + 1

Chapter 7 ■ Working With StringS

202

 words.push_back(text.substr(start, end - start)); // Store the word
 start = text.find_first_not_of(separators, end + 1); // Find 1st character of next word
 }

 std::cout << "Your string contains the following " << words.size() << " words:\n";
 size_t count{}; // Number output
 for (const auto& word : words)
 {
 std::cout << std::setw(15) << word;
 if (!(++count % 5))
 std::cout << std::endl;
 }
 std::cout << std::endl;
}

Here’s some sample output:

Enter some text terminated by *:
To be, or not to be, that is the question.
Whether tis nobler in the mind to suffer the slings and
arrows of outrageous fortune, or by opposing, end them.*
Your string contains the following 30 words:
 To be or not to
 be that is the question
 Whether tis nobler in the
 mind to suffer the slings
 and arrows of outrageous fortune
 or by opposing end them

The string variable, text, will contain a string read from the keyboard. The string is read from cin by the
getline() function with an asterisk specified as the termination character, which allows multiple lines to be entered.
The separators variable defines the set of word delimiters. It’s defined as const because these should not be
modified. The interesting part of this example is the analysis of the string.

You record the index of the first character of the first word in start. As long as this is a valid index, which is a
value other than string::npos, you know that start will contain the index of the first character of the first word. The
while loop finds the end of the current word, extracts the word as a substring and stores it in the words vector. It also
records the result of searching for the index of the first character of the next word in start. The loop continues until a
first character is not found, in which case start will contain string::npos to terminate the loop.

It’s possible that the last search in the while loop will fail, leaving end with the value string::npos. This can
occur if text ends with a letter or anything other than one of the specified separators. To deal with this, you check
the value of end in the if statement, and if the search did fail, you set end to the length of text. This will be one
character beyond the end of the string (because indexes start at 0, not 1), because end should correspond to the
position after the last character in a word.

The program could have used a vector<std::shared_ptr<string>> object to store the words. In this case words
would be stored on the heap. There are few changes necessary beyond the definition of the vector. The statement in
the while loop that stores words would need to be:

words.push_back(std::make_shared<string>(text.substr(start, end - start))); // Store word

Chapter 7 ■ Working With StringS

203

Apart from that, only the output loop would need a tiny change:

for (const auto& word : words)
{
 std::cout << std::setw(15) << *word;
 if (!(++count % 5))
 std::cout << std::endl;
}

Dereferencing the word loop variable is the only alteration necessary. Using shared_ptr<T> objects makes using
heap memory very easy.

Searching a String Backwards
The find() function searches forward through a string, either from the beginning or from a given index. The rfind()
function, perhaps named from reverse find, searches a string in reverse. rfind() comes in the same range of varieties
find(). You can search a whole string object for a substring that you can define as another string object or as a
null-terminated string. You can also search for a character. For example:

string sentence {"Manners maketh man"};
string word {"an"};
std::cout << sentence.rfind(word) << std::endl; // Outputs 16
std::cout << sentence.rfind("man") << std::endl; // Outputs 15
std::cout << sentence.rfind('e') << std::endl; // Outputs 11

Each search finds the last occurrence of the argument to rfind() and returns the index of the first character
where it was found. Figure 7-4 illustrates the use of rfind().

Figure 7-4. Searching backwards through a string

Chapter 7 ■ Working With StringS

204

Searching with word as the argument finds the last occurrence of "an" in the string. The rfind() function returns
the index position of the first character in the substring sought.

If the substring isn’t present, string::npos will be returned. For example, the following statement will result
in this:

std::cout << sentence.rfind("miners") << std::endl; // Outputs string::npos

sentence doesn’t contain the substring “miners” so string::npos will be returned and displayed by this
statement. The other two searches illustrated in Figure 7-4 are similar to the first. They both search backward from the
end of the string looking for the first occurrence of the argument.

Just as with find(), you can supply an extra argument to rfind() to specify the starting index for the backward
search, and you can add a third argument when the first argument is a C-style string. The third argument specifies the
number of characters from the C-style string that are to be taken as the substring for which you’re searching.

Modifying a String
When you’ve searched a string and found what you’re looking for, you may well want to change the string in some
way. You’ve already seen how you can use an index between square brackets to select a single character in a string
object. You can also insert a string into a string object at a given index or replace a substring. Unsurprisingly, to insert
a string you use a function called insert(), and to replace a substring in a string you use a function called replace().
I’ll explain inserting a string first.

Inserting a String
Perhaps the simplest sort of insertion involves inserting a string object before a given position in another string
object. Here’s an example of how you do this:

string phrase {"We can insert a string."};
string words {"a string into "};
phrase.insert(14, words);

Figure 7-5 illustrates what happens. The words string is inserted immediately before the character at index 14 in
phrase. After the operation, phrase will contain the string "We can insert a string into a string."

Figure 7-5. Inserting a string into another string

Chapter 7 ■ Working With StringS

205

You can also insert a null-terminated string into a string object. For example, you could achieve the same result
as the previous operation with this statement:

phrase.insert(14, "a string into ");

Of course, the '\0' character is discarded from a null-terminated string before insertion because it’s a delimiter
and not part of the string proper.

The next level of sophistication is the insertion of a substring of a string object into another string object.
You need to supply two extra arguments to insert(): one specifies the index of the first character in the substring to
be inserted, and the other specifies the number of characters in the substring. For example:

phrase.insert(13, words, 8, 5);

This inserts the five-character substring that starts at position 8 in words, into phrase, preceding index
position 13. Given that phrase and words contain the strings as earlier, this inserts " into" into "We can insert a
string.", so that phrase becomes "We can insert into a string."

There is a similar facility for inserting a number of characters from a null-terminated string into a string object.
The following statement produces the same result as the previous one:

phrase.insert(13, " into something", 5);

This inserts the first five characters of " into something" into phrase preceding the character at index 13.
There’s a version of insert() that inserts a sequence of identical characters:

phrase.insert(16, 7, '*');

This inserts five asterisks in phrase immediately before the character at index 13. phrase will then contain the
uninformative sentence "We can insert a *******string."

Replacing a Substring
You can replace any substring of a string object with a different string — even if the inserted string and the substring
to be replaced have different lengths. I’ll return to an old favorite and define text like this:

string text {"Smith, where Jones had had \"had had\", had had \"had\"."};

You can replace "Jones" with a less common name with this statement:

text.replace(13, 5, "Gruntfuttock");

The first argument is the index in text of the first character of the substring to be replaced and the second is the
length of the substring. Thus this replaces the five characters of text that start at index 13 with "Gruntfuttock". If you
now output text, it would be:

Smith, where Gruntfuttock had had "had had" had had "had".

A more realistic application of this is to search for the substring to be replaced first, for example:

const string separators {" ,;:.\"!'\n"}; // Word delimiters
size_t start {text.find("Jones")}; // Find the substring
size_t end {text.find_first_of(separators, start + 1); // Find the end
text.replace(start, end - start, "Gruntfuttock");

Chapter 7 ■ Working With StringS

206

This finds the position of the first character of "Jones" in text and uses it to initialize start. The character following
the last character of "Jones" is found next by searching for a delimiter from separators using the find_first_of()
function. These index positions are used in the replace() operation.

The replacement string can be a string object or a null-terminated string. In the former case, you can specify a
start index and a length to select a substring as the replacement string. For example, the previous replace operation
could have been:

string name {"Amos Gruntfuttock"};
text.replace(start, end - start, name, 5, 12);

These statements have the same effect as the previous use of replace(), because the replacement string starts at
position 5 of name (which is the 'G') and contains 12 characters.

If the first argument is a null-terminated string, you can specify the number of characters that are the
replacement string, for example:

text.replace(start, end - start, "Gruntfuttock, Amos", 12);

This time, the string to be substituted consists of the first 12 characters of "Gruntfuttock, Amos", so the effect is
exactly the same as the previous replace operation.

A further possibility is to specify the replacement string as multiples of a given character. For example, you could
replace "Jones" by three asterisks with this statement:

text.replace(start, end - start, 3, '*');

This assumes that start and end are determined as before. The result is that text will contain:

Smith, where *** had had "had had" had had "had".

Let’s try the replace operation in an example. This program replaces a given word in a string with another word:

// Ex7_06.cpp
// Replacing words in a string
#include <iostream>
#include <string>
using std::string;

int main()
{

 string text; // The string to be modified
 std::cout << "Enter a string terminated by *:\n";
 std::getline(std::cin, text, '*');

 string word; // The word to be replaced
 std::cout << "Enter the word to be replaced: ";
 std::cin >> word;

 string replacement; // The word to be substituted
 std::cout << "Enter the string to be substituted for " << word << ": ";
 std::cin >> replacement;

Chapter 7 ■ Working With StringS

207

 if (word == replacement) // Verify there's something to do
 {
 std::cout << "The word and its replacement are the same.\n"
 << "Operation aborted." << std::endl;
 return 1;
 }

 size_t start {text.find(word)}; // Index of 1st occurrence of word
 while (start != string::npos) // Find and replace all occurrences
 {
 text.replace(start, word.length(), replacement); // Replace word
 start = text.find(word, start + replacement.length());
 }

 std::cout << "\nThe string you entered is now:\n"
 << text << std::endl;
}

Here’s a sample of the output:

Enter a string terminated by *:
A rose is a rose is a rose.*
Enter the word to be replaced: rose
Enter the string to be substituted for rose: dandelion

The string you entered is now:
A dandelion is a dandelion is a dandelion.

The string that is to have words replaced is read into text by getline(). Any number of lines can be entered and
terminated by an asterisk. The word to be replaced and its replacement are read using the extraction operator and therefore
cannot contain whitespace. The program ends immediately if the word to be replaced and its replacement are the same.

The index position of the first occurrence of word is used to initialize start. This is used in the while loop that
finds and replaces successive occurrences of word. After each replacement, the index for the next occurrence of word
in text is stored in start, ready for the next iteration. When there are no further occurrences of word in text, start
will contain string::npos, which ends the loop. The modified string in text is then output.

Removing Characters from a String
You can remove a substring from a string object using the replace() function. You just specify the replacement as an
empty string. There’s also a specific function for this purpose, erase(). You specify the substring to be erased by the index
position of the first character and the length. For example, you could erase the first six characters from text like this:

text.erase(0, 6); // Remove the first 6 characters

You would more typically use erase() to remove a specific substring that you had previously searched for so a
more usual example might be:

string word {"rose"};
size_t index {text.find(word)};
if(index != string::npos)
 text.erase(index, word.length());

Chapter 7 ■ Working With StringS

208

This searches for word in text, and after confirming that it exists, removes it using erase(). The number of
characters in the substring to be removed is obtained by calling the length() function for word.

The clear() function removes all the characters from a string object, for example:

text.clear();

After this statement executes, text will be an empty string.

Strings of International Characters
Supporting multiple national character sets is an advanced topic so I’ll only introduce the basic facilities that C++
offers, without going into detail of how you apply any them. Thus this section is just a pointer to where you should
look when you have to work with more than one national character set. Potentially, you have three options for working
with strings that may contain extended character sets:

You can define •	 wstring objects that contain strings of characters of type wchar_t - the
wide-character type that is built into C++.

You can define •	 u16string objects that store strings of 16-bit Unicode characters, which are of
type char16_t.

You can define •	 u32string objects that contain strings of 32-bit Unicode characters, which are
of type char32_t.

The string header defines all these types; the last two are more useful than the string type that stores
wchar_t characters.

In theory you can use the std::string type you have explored in detail this chapter to store strings of as UTF-8
characters. You define a UTF-8 string by prefixing a regular string literal with u8, for example: u8"This is a UTF-8
string.". However, the string type stores characters as type char, and knows nothing about Unicode encodings.
The UTF-8 encoding uses from 1 to 4 bytes to encode each character and the functions that operate on string objects
will not recognize this. This means for instance that the length() function will return the wrong length if the string
includes any characters that require two or three bytes to represent them.

Strings of wchar_t Characters
The std::wstring type that is defined in the string header stores strings of characters of type wchar_t. You use
objects of type wstring in essentially the same way as objects of type string. You could define a wide string object
with this statement:

wstring quote;

This assumes you have a using declaration for std::wstring in the source file. You write string literals containing
characters of type wchar_t between double quotes, but with L prefixed to distinguish them from string literals
containing char characters. Thus you can define and initialize a wstring variable like this:

wstring saying {L"The tigers of wrath are wiser than the horses of instruction."};

The L preceding the opening double quote specifies the literal consists of characters of type wchar_t. Without it,
you would have a char string literal and the statement would not compile.

To output wide strings you use the wcout stream, for example:

std::wcout << saying << std::endl;

Chapter 7 ■ Working With StringS

209

All the functions I’ve discussed in the context of string objects apply equally well for wstring objects, so I won’t
wade through them again. Just remember to specify the L prefix with string and character literals when you are working
with wstring objects. The problem with type wstring is that the character encoding that applies with type wchar_t is
implementation defined, so it can vary from one compiler to another. If you need to support multi-national character
sets, you are much better off using either types u16string or u32string that are described in the next section.

Objects that contain Unicode Strings
The string header defines two further types that store strings of Unicode characters. Objects of type std::u16string
stores strings of characters of type char16_t and objects of type std::u32string store strings of characters of type
char32_t. Like wstring objects, you must use a literal of the appropriate type to initialize a u16string or u32string
object. For example:

u16string question {u"Whither atrophy?"}; // char16_t characters
u32string sentence {U"This sentance contains three errars."}; // char32_t characters

These statements demonstrate that you prefix a string literal containing char16_t characters with u and a literal
containing char32_t characters with U. Objects of the u16string and u32string types have the same set of functions
as the string type.

Raw String Literals
A regular expression is a string that defines a process for searching and transforming text. Essentially a regular
expression defines patterns that are to be matched in a string, and patterns that are found can be replaced or reordered.
C++ supports regular expressions but I won’t be discussing them in this book for reasons of space as much as anything.
I’m mentioning them here because they influence how string literals can be defined and you may come across the new
type of string literal. If you want to know more about regular expressions, they are supported by the regex header.

Regular expression strings usually contain many backslash characters. In the string literals you have seen so far,
a backslash has a special meaning: it prefixes an escape sequence, so including a backslash character means having
to use \\. Having to use the escape sequence for each backslash character can make a regular expression difficult to
specify correctly and very hard to read. The raw string literal was introduced to solve the problem. A raw string literal
can include any character, including backslashes, tabs, and newlines, so no escape sequences are necessary.
A raw string literal includes an R in the prefix, and any of the types of literal you have seen can also be specified as raw
literals. Here’s an example:

R"(The "\\" escape sequence is a backslash character, \.)"

The R prefix specifies that this is a raw string literal. If you defined this as a standard string literal it would be:

"The \"\\\\\" escape sequence is a backslash character, \\."

Not exactly as readable as the raw version, is it? All characters between the double quotes in a raw string literal
are included in the literal. Escape sequences are not recognized in a raw string literal. So how do you include a double
quote in a raw string literal? It’s covered. The delimiters that mark the start and end of a raw string literal are flexible.
You can use any delimiter of the form "char_sequence(to mark the beginning of the literal as long as you mark the
end with a matching sequence,) char_sequence". char_sequence is any sequence of up to 16 characters, and you
must use the same sequence at both ends. char_sequence must not include parentheses, spaces, control characters,
or backslash characters. Here’s an example:

RU"*(The answer is "a - b" not "(c - d)")*"

Chapter 7 ■ Working With StringS

210

This is a raw string literal that contains char32_t characters. You can specify any type of string literal as raw, just
by including R in the prefix. The delimiter that marks the beginning is "*(and the delimiter at the end is)*". As a
standard literal this would be:

"The answer is \"a - b\" not \"(c - d)\""

Summary
In this chapter you learned how you can use the string type that’s defined in the standard library. The string type
is much easier and safer to use than C-style strings, so it should be your first choice when you need to process
character strings.

The important points from this chapter are:

The •	 std::string type stores a character string without a termination character. The terminating
null is unnecessary because a string object keeps track of the length of the string.

You can access and modify individual characters in a •	 string object using an index between
square brackets. Index values for characters in a string object start at 0.

You can use the •	 + operator to concatenate a string object with a string literal, a character, or
another string object.

Objects of type •	 string have functions to search, modify, and extract substrings.

You can store •	 string objects in an array, or better still, in a sequence container such
as a vector.

Objects of type •	 wstring contain strings of characters of type wchar_t.

Objects of type •	 u16string contain strings of characters of type char16_t.

objects of type u32string contain strings of characters of type char32_t.

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back over
the chapter for help. if you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 7-1. Write a program that reads and stores the first names of any number of students,
along with their grades. Calculate and output the average grade, and output the names and
grades of all the students in a table with the name and grade for three students on each line.

exercise 7-2. Write a program that reads text entered over an arbitrary number of lines. Find and
record each unique word that appears in the text and record the number of occurrences of each
word. output the words and the number of occurrences of each word, three words and their
counts per line. Words and counts should align in columns.

http://www.apress.com/source-code

Chapter 7 ■ Working With StringS

211

exercise 7-3. Write a program that reads a text string of arbitrary length from the keyboard and
prompt for entry of a word that is to be found in the string. the program should find and replace
all occurrences of this word, regardless of case, by as many asterisks as there are characters in
the word. it should then output the new string. only whole words are to be replaced. For example,
if the string is "Our house is at your disposal." and the word that is to be found is “our,”
then the resultant string should be: "*** house is at your disposal." and not "*** house
is at y*** disposal."

exercise 7-4. Write a program that prompts for input of two words and determines whether one
is an anagram of the other.

exercise 7-5. Write a program that reads a text string of arbitrary length from the keyboard
followed by a string containing one or more letters. output a list of all the whole words in the text
that begin with any of the letters, upper or lowercase.

213

Chapter 8

Defining Functions

Segmenting a program into manageable chunks of code is fundamental to programming in every language. A function
is a basic building block in C++ programs. So far every example has had one function, main(), and that has typically
used functions from the Standard Library. This chapter is all about defining your own functions with names that
you choose.

In this chapter you will learn:

What a function is, and why you should segment your programs into functions•	

How to declare and define functions•	

How data is passed to a function and how a function can return a value•	

What “pass-by-value” means•	

How specifying a parameter as a pointer affects the pass-by-value mechanism•	

How using •	 const as a qualifier for a parameter type affects the operation of a function

What “pass-by-reference” means, and how you can declare a reference in your program•	

How to return a value from a function•	

What an inline function is•	

The effect of defining a variable as •	 static within a function

Segmenting Your Programs
All the programs you have written so far have consisted of just one function, main(). A real world C++ application
consists of many functions, each of which provides a distinct well-defined capability. Execution starts in main(),
which must be defined in the global namespace. main() calls other functions, each of which may call other functions,
and so on. The functions other than main() can be defined in a namespace that you create.

When one function calls another that calls another that calls another, you have a situation where several
functions are in action concurrently. Each that has called another that has not yet returned, will be waiting for the
function that was called to end. Obviously something must keep track of from where in memory each function
call was made and where execution should continue when a function returns. This information is recorded and
maintained automatically in the stack. I introduced the stack when I explained heap memory and the stack is often
referred to as the call stack in this context. The call stack records all the outstanding function calls and details of the
data that was passed to each function. The debugging facilities that come with most C++ development systems usually
provide ways for you to view the call stack while your program executes.

Chapter 8 ■ Defining funCtions

214

Functions in Classes
A class defines a new type and each class definition will usually contain functions that represent the operations that
can be carried out with objects of the class type. You have already used functions that belong to a class extensively. In
the previous chapter you used functions that belonged to the string class, such as the length() function that returned
the number of characters in the string object and the find() function for searching a string. The standard input and
output stream, cin and cout are objects, and using the stream insertion and extraction operators calls functions for
those objects. Functions that belong to classes are fundamental in object-oriented programming, which you’ll learn
about from Chapter 11 onwards.

Characteristics of a Function
A function should perform a single, well-defined action and should be relatively short. Most functions do not involve
many lines of code, certainly not hundreds of lines. This applies to all functions, including those that are defined
within a class. Several of the working examples you have seen earlier could easily be divided into functions. If you look
again at Ex7_05.cpp, you can see that what the program does falls naturally into three distinct actions: first, the text
is read from the input stream, second the words are extracted from the text, and finally the words that were extracted
are output. Thus the program could be defined as three functions that perform these actions, plus the main() function
that calls them.

Defining Functions
A function is a self-contained block of code with a specific purpose. Function definitions in general have the same
basic structure as main(). A function definition consists of a function header followed by a block that contains the
code for the function. The function header specifies three things:

The return type, which is the type of value, if any, that the function returns when it finishes •	
execution. A function can return data of any type, including fundamental types, class types,
pointer types, or reference types. It can also return nothing, in which case you specify the
return type as void.

The name of the function. Functions are named according to the same rules as variables.•	

The number and types of data items that can be passed to the function when it is called. This •	
is called the parameter list and it appears between parentheses following the function name.

A general representation of a function looks like this:

return_type function_name (parameter_list)
{
 // Code for the function...
}

Figure 8-1 shows an example of a function definition.

Chapter 8 ■ Defining funCtions

215

If nothing is to be passed to a function when it is called, then nothing appears between the parentheses. If there
is more than one item in the parameter list, they are separated by commas. The power() function in Figure 8-1 has
two parameters, x and n. The parameter names are used in the body of the function to access the corresponding
values that were passed to the function. The term argument is used for a value that corresponds to a parameter in a
function call. The code in the function executes with the argument values initializing the corresponding parameters.
The sequence of the arguments in a function call must correspond to the sequence of the parameters in the parameter
list in the function definition. The data types of the arguments should correspond to those demanded by the
parameter list: the compiler won’t necessarily warn you if it needs to make implicit type conversions, so you run the
risk of losing information.

The combination of the function name and the parameter list is called the signature of a function. The compiler
uses the signature to decide which function is to be called in any particular instance. Thus functions that have the
same name, must have parameter lists that differ in some way to allow them to be distinguished. The return type is
not part of the function signature. A function that returns a value can be called without storing or using the value it
returns. In this case, the compiler cannot distinguish functions with signatures that only differ in the type of value
returned so the return type is not part of the signature.

The void keyword is used to specify that a function does not return a value. void* is also used to specify a pointer
type that is “pointer to an unspecified type”. Thus void can mean “nothing at all” in some contexts or “any type” in
other contexts. void* can be used as a parameter type to allow an argument that is a pointer to any type to be passed
as the value for the parameter. You’ll see later in the book that there are ways to figure out what the type actually is in
this situation.

Note ■ a function with a return type specified as void doesn’t return a value so it can’t be used in an expression.
attempting to use such a function in this way will cause a compiler error message.

double (double x, int n)
{

 double result {1.0};
 if(n >= 0)
 for (int i {1} ; i <= n ; ++i)
 result *= x;
 else
 for (int i {1} ; i <= -n ; ++i)
 result /= x;
 return result;

}

The function body
is everything that is enclosed

between these two braces

The combination of its name
and parameter list must

identify a function uniquely.

The parameter list defines the type and
number of values passed to the function
when it is called. The parameter names

identify these values in the function body.

The function
name

The type of
the return

value

power

Figure 8-1. An example of a function definition

Chapter 8 ■ Defining funCtions

216

The Function Body
Calling a function executes the statements in the function body with the parameters having the values you pass as
arguments. In Figure 8-1, the first line of the function body defines the double variable, result, initialized with 1.0.
result is an automatic variable so only exists within the body of the function. This means that result ceases to exist
after the function finishes executing.

The calculation is performed in one of two for loops, depending on the value of n. If n is greater than or equal to
zero, the first for loop executes. If n is zero, the body of the loop doesn’t execute at all because the loop condition is
immediately false. In this case, result is left at 1.0. Otherwise, the loop variable i assumes successive values from
1 to n, and result is multiplied by x on each iteration. If n is negative, the second for loop executes, which divides
result by x on each loop iteration.

The variables that you define within the body of a function and all the parameters are local to the function. You
can use the same names in other functions for quite different purposes. The scope of each variable you define within
a function is from the point at which it is defined until the end of the block that contains it. The only exceptions to this
rule are variables that you define as static and I’ll discuss these later in the chapter.

Let’s give the power() function a whirl in a complete program.

// Ex8_01.cpp
// Calculating powers
#include <iostream>
#include <iomanip>

// Function to calculate x to the power n
double power(double x, int n)
{
 double result {1.0};
 if(n >= 0)
 for(int i {} ; i < n ; ++i)
 result *= x;
 else
 for(int i {} ; i < -n ; ++i)
 result /= x;
 return result;
}

int main()
{
 // Calculate powers of 8 from -3 to +3
 for(int i {-3} ; i <= 3 ; ++i)
 std::cout << std::setw(10) << power(8.0, i);

 std::cout << std::endl;
}

This program produces the following output:

0.00195313 0.015625 0.125 1 8 64 512

All the action occurs in the for loop in main(). The power() function is called seven times. The first argument

is 8.0 on each occasion, but the second argument has successive values of i, from –3 to +3. Thus, seven values are
outputs that correspond to 8-3, 8-2, 8-1, 80, 81, 82, and 83.

Chapter 8 ■ Defining funCtions

217

Return Values
A function with a return type other than void must return a value of the type specified in the function header.
The return value is calculated within the body of the function and is returned by a return statement, which ends
the function and execution continues from the calling point. There can be several return statements in the body of a
function with each potentially returning a different value. The fact that a function can return only a single value might
appear to be a limitation, but this isn’t the case. The single value that is returned can be a pointer to anything you like:
an array, or a container or even a container with elements that are containers.

How the return Statement Works

The return statement in Program 8.1 returns the value of result to the point where the function was called. result is
local to the function and ceases to exist when the function finishes executing, so how is it returned? The answer is that
a copy of the value being returned is made automatically, and this copy is made available to the calling function.
The general form of the return statement is:

return expression;

expression must evaluate to a value of the type that is specified for the return value in the function header
or must be convertible to that type. The expression can be anything, as long it produces a value of the appropriate
type. It can include function calls and can even include a call of the function in which it appears, as you’ll see later
in this chapter.

If the return type is specified as void, no expression can appear in a return statement. It must be written simply as;

return;

If the last statement in a function body executes so that the closing brace is reached, this is equivalent to
executing a return statement with no expression. Of course, in a function with a return type other than void, this is an
error and the function will not compile. The main() function is an exception to this, where reaching the closing brace
is equivalent to executing return 0.

Function Declarations
Ex8_01.cpp works perfectly well as written, but let’s try rearranging the code so that the definition of main() precedes
the definition of the power() function in the source file. The code in the program file will look like this:

// Ex8_02.cpp
// Calculating powers - rearranged
#include <iostream>
#include <iomanip>

int main()
{
 // Calculate powers of 8 from -3 to +3
 for (int i {-3} ; i <= 3 ; ++i)
 std::cout << std::setw(10) << power(8.0, i);

 std::cout << std::endl;
}

Chapter 8 ■ Defining funCtions

218

// Function to calculate x to the power n
double power(double x, int n)
{
 double result {1.0};
 if (n >= 0)
 for (int i {} ; i < n ; ++i)
 result *= x;
 else
 for (int i {} ; i < -n ; ++i)
 result /= x;
 return result;
}

If you attempt to compile this, you won’t succeed. The compiler has a problem because the power() function that
is called in main() is not defined when it is processing main(). Of course, you could revert to the original version but
in some situations this won’t solve the problem. There are two important issues to consider:

 1. As you’ll see later, a program can consist of several source files. The definition of a function
that is called in one source file may be contained in a separate source file.

 2. Suppose you have a function A() that calls a function B(), which in turn calls A(). If you
put the definition of A() first, it won’t compile because it calls B(); the same problem
arises if you define B() first because it calls A().

Naturally, there is a solution to these difficulties. You can declare a function before you use or define it by means
of a function prototype.

Function Prototypes
A function prototype is a statement that describes a function sufficiently for the compiler to be able to compile calls to
it. It defines the function name, its return type, and its parameter list. A function prototype is sometimes referred to as
a function declaration. A function can only be compiled if the call is preceded by a function declaration in the source
file. The definition of a function is also a declaration, which is why you didn’t need a function prototype for power() in
Ex8_01.cpp.

You could write the function prototype for the power() function as:

double power(double x, int n);

If you place function prototypes at the beginning of a source file, the compiler is able to compile the code
regardless of where the function definitions are. Ex8_02.cpp will compile if you insert the prototype for the power()
function before the definition of main().

The function prototype above is identical to the function header with a semicolon appended. A function
prototype is always terminated by a semicolon, but in general, it doesn’t have to be identical to the function header.
You can use different names for the parameters from those used in the function definition (but not different types, of
course). For instance:

double power(double value, int exponent);

This works just as well. The benefit of the names you have chosen here is marginal, but it does illustrate that you
can use more explanatory names in the prototype when such names would be too cumbersome to use in the function
definition. The compiler only needs to know the type each parameter is, so you can omit the parameter names from
the prototype, like this:

double power(double, int);

Chapter 8 ■ Defining funCtions

219

There is no particular merit in writing function prototypes like this. It is much less informative than the version
with parameter names. If both function parameters were of the same type, then a prototype like this would not give
any clue as to which parameter was which. I recommend that you always include parameter names in function
prototypes.

It’s a good idea to get into the habit of always writing a prototype for each function that you use in a source file — with
the exception of main() of course, which never requires a prototype. Specifying prototypes in the file removes the
possibility of compiler errors arising from functions not being sequenced appropriately. It also allows other programmers
to get an overview of the functionality of your code.

Most of the examples in the book use functions from the Standard Library, so where are the prototypes for these?
The standard headers contain these. A primary use of header files is to collect together the function prototypes for a
related group of functions.

Passing Arguments to a Function
It is very important to understand precisely how arguments are passed to a function. This affects how you write
functions and ultimately how they operate. There are also a number of pitfalls to be avoided. In general, the function
arguments should correspond in type and sequence with the list of parameters in the function definition. You have
no latitude so far as the sequence is concerned, but you do have some flexibility in the argument types. If you specify
a function argument of a type that doesn’t correspond to the parameter type, then the compiler inserts an implicit
conversion of the argument to the type of the parameter where possible. The rules for automatic conversions of this
kind are the same as those for automatic conversions in an assignment statement. If an automatic conversion is not
possible, you’ll get an error message from the compiler.

There are two mechanisms by which arguments are passed to functions, pass-by-value and pass-by-reference.
I’ll explain the pass-by-value mechanism first.

Pass-by-Value
With the pass-by-value mechanism, the values of variables or constants you specify as arguments are not passed to a
function at all. Instead, copies of the arguments are created and these copies are transferred to the function. This is
illustrated in Figure 8-2, using the power() function again.

double power(double x, int n)
{

}

double value {20.0};
int index {3};
double result {power(value, index)};

3

20 .0value

index

20 .0

3
Copy of index

Copy of value

// The code here cannot
// access the original values
// of index and value

Figure 8-2. The pass-by-value mechanism for arguments to a function

Chapter 8 ■ Defining funCtions

220

Each time you call the power() function, the compiler arranges for copies of the arguments to be stored in
a temporary location in the call stack. During execution, all references to the function parameters in the code
are mapped to these temporary copies of the arguments. When execution of the function ends, the copies of the
arguments are discarded.

I can demonstrate the effects of this with a simple example. This calls a function that attempts to modify one of its
arguments and of course, it fails miserably.

// Ex8_03.cpp
// Failing to modify the original value of a function argument
#include <iostream>
#include <iomanip>

double change_it(double value_to_be_changed); // Function prototype

int main()
{
 double it {5.0};
 double result {change_it(it)};

 std::cout << "After function execution, it = " << it
 << "\nResult returned is " << result << std::endl;
}

// Function that attempts to modify an argument and return it
double change_it(double it)
{
 it += 10.0; // This modifies the copy
 std::cout << "Within function, it = " << it << std::endl;
 return it;
}

This example produces the following output:

Within function, it = 15
After function execution, it = 5
Result returned is 15

The output shows that adding 10 to it in the change_it() function has no effect on the variable it in main().

The it variable in change_it() is local to the function, and it refers to a copy of whatever argument value is passed
when the function is called. Of course, when the value of it that is local to change_it() is returned, a copy of its
current value is made, and it’s this copy that’s returned to the calling program.

Pass-by-value is the default mechanism by which arguments are passed to a function. It provides a lot of security
to the calling function by preventing the function from modifying variables that are owned by the calling function.
However, sometimes you do want to modify values in the calling function. Is there a way to do it when you need to?
Sure there is: one way is to use a pointer.

Chapter 8 ■ Defining funCtions

221

Passing a Pointer to a Function
When a function parameter is a pointer type, the pass-by-value mechanism operates just as before. However, a pointer
contains the address of another variable; a copy of the pointer contains the same address and therefore points to the
same variable.

If you modify the definition of the change_it() function to accept an argument of type double*, you can pass the
address of it as the argument. Of course, you must also change the code in the body of change_it() to dereference
the pointer parameter. The code is now like this:

// Ex8_04.cpp
// Modifying the value of a caller variable
#include <iostream>

double change_it(double* pointer_to_it); // Function prototype

int main()
{
 double it {5.0};
 double result {change_it(&it)}; // Now we pass the address

 std::cout << "After function execution, it = " << it
 << "\nResult returned is " << result << std::endl;
}

// Function to modify an argument and return it
double change_it(double* pit)
{
 *pit += 10.0; // This modifies the original it
 std::cout << "Within function, *pit = " << *pit << std::endl;
 return *pit;
}

This version of the program produces the following output:

Within function, *pit = 15
After function execution, it = 15
Result returned is 15

The way this works is illustrated in Figure 8-3.

Chapter 8 ■ Defining funCtions

222

This version of change_it() serves only to illustrate how a pointer parameter can allow a variable in the calling
function to be modified — it is not a model of how a function should be written. Because you are modifying the value
of it directly, returning its value is somewhat superfluous.

Passing an Array to a Function
An array name is essentially an address, so you can pass the address of an array to a function just by using its name.
The address of the array is copied and passed to the function. This provides several advantages. First, passing the
address of an array is a very efficient way of passing an array to a function. Passing all the array elements by value
would be very time consuming because every element would be copied. In fact, you can’t pass all the elements in
an array by value as a single argument because each parameter represents a single item of data. Second, and more
significantly, because the function does not deal with the original array variable, but with a copy, the code in the body
of the function can treat a parameter that represents an array as a pointer in the fullest sense, including modifying
the address that it contains. This means that you can use the power of pointer notation in the body of a function
for parameters that are arrays. Before I get to that, let’s try the most straight-forward case first — handling an array
parameter using array notation. This example includes a function to compute the average of the elements in an array:

// Ex8_05.cpp
// Passing an array to a function
#include <iostream>

double average(double array[], size_t count); // Function prototype

int main()
{
 double values[] {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
 std::cout << "Average = " << average(values, (sizeof values)/(sizeof values[0])) << std::endl;
}

double changeIt (double* pit)
{

 *pit += 10.0;
 std::cout << "Within function, *pit = " << *pit << std::endl;
 return *pit;

}

double result {changeIt(&it)};

64FDECAddress of it in main()

Copy of & it

This will increment the
original variable by 10.

15

A copy of the value to
be returned is made

it has the value 15
when the copy is made

The copy of the value of it in main()
returned is used in main().

The variable pit in change_it() has been
discarded and no longer exists at this

point.
it in main() now has the value 15.

64FDEC

5

&it
A copy is made when the

function is called

it

64FDEC

Figure 8-3. Passing a pointer to a function

Chapter 8 ■ Defining funCtions

223

// Function to compute an average
double average(double array[], size_t count)
{
 double sum {}; // Accumulate total in here
 for (size_t i {} ; i < count ; ++i)
 sum += array[i]; // Sum array elements
 return sum / count; // Return average
}

This produces the following very brief output:

Average = 5.5

The average() function works with an array containing any number of double elements. As you can see from the

prototype, it accepts two arguments: the array address, and a count of the number of elements. The type of the first
parameter is specified as an array of any number of values of type double. You can’t specify the size of the array between
the square brackets. This is because the size of the first dimension of an array is not part of its type. You can pass any
one-dimensional array of elements of type double as an argument to this function so the second parameter that specifies
the number of elements is essential. The function will rely on the correct value for the count parameter being supplied by
the caller. There’s no way to verify that it is correct so the function will quite happily access memory locations outside the
array if the value of count is greater than the array length. It is up to the caller to ensure that this doesn’t happen.

Within the body of average(), the computation is expressed in the way you would expect. There’s no difference
between this and the way you would write the same computation directly in main(). The average() function is called
in main() in the output statement. The first argument is the array name, values, and the second argument is an
expression that evaluates to the number of array elements.

The elements of the array that is passed to average() are accessed using normal array notation. I’ve said that you
can also treat an array passed to a function as a pointer and use pointer notation to access the elements. Here’s how
average() would look in that case:

double average(double* array, size_t count)
{
 double sum {}; // Accumulate total in here
 for(size_t i {} ; i < count ; ++i)
 sum += *array++; // Sum array elements
 return sum/count; // Return average
}

const Pointer Parameters

The average() function only needs to access values of the array elements, it doesn’t need to change them. It would
be a good idea to make sure that the code in the function does not inadvertently modify elements of the array. Specifying
the parameter type as const will do that:

double average(const double* array, size_t count)
{
 double sum {}; // Accumulate total in here
 for(size_t i {} ; i < count ; ++i)
 sum += *array++; // Sum array elements
 return sum/count; // Return average
}

Chapter 8 ■ Defining funCtions

224

Now the compiler will verify that the elements of the array are not modified in the body of the function. Of course,
you must modify the function prototype to reflect the new type for the first parameter; remember that const types are
quite different from non-const types.

Specifying a pointer parameter as const, has two consequences: the compiler checks the code in the body of the
function to ensure that you don’t try to change the value pointed to; and it allows the function to be called with an
argument that points to a constant. Passing a non-const argument for const function parameter will not compile.

Note ■ there is no purpose in specifying a parameter of a basic type such as int or size_t as const. the pass-by-value
mechanism makes a copy of the argument when the function is called, so you can’t modify the original value within
the function.

Passing a Multidimensional Array to a Function

Passing a multidimensional array to a function is quite straightforward. Suppose you have a two-dimensional array
defined as:

double beans[2][4] {};

The prototype of a hypothetical yield() function could look like this:

double yield(double beans[][4], size_t count);

You could specify the first array dimension explicitly in the type specification for the first parameter, but it is
better not to. You have no way to determine the array’s first dimension size other than via the second parameter so
there’s no purpose in specifying it as part of the parameter type. The size of the second array dimension is essential
though because beans is type double[][4]. Any two-dimensional array with a second dimension as 4 can be passed
to this function, but an array with a second dimension of 5 for example could not.

If you do specify both array dimensions, how does the compiler know that the first parameter is an array and not
a single array element? The answer is simple: you can’t specify a parameter as a single array element. Of course you
can pass an array element as an argument to a function as long as the parameter type is the same as that of the array
element. The array context doesn’t apply in this case.

In case you’re wondering, you can’t circumvent the need for the count parameter by using the sizeof operator
to determine the size of the array. Using sizeof on an array parameter name returns the size of the memory location
that contains the address of the array. Let’s try passing a two-dimensional array to a function in a concrete example:

// Ex8_06.cpp
// Passing a two-dimensional array to a function
#include <iostream>

double yield(const double values[][4], size_t n);

int main()
{
 double beans[3][4] {
 { 1.0, 2.0, 3.0, 4.0},
 { 5.0, 6.0, 7.0, 8.0},
 { 9.0, 10.0, 11.0, 12.0}
 };

Chapter 8 ■ Defining funCtions

225

 std::cout << "Yield = " << yield(beans, sizeof(beans)/sizeof(beans[0]))
 << std::endl;
}

// Function to compute total yield
double yield(const double array[][4], size_t size)
{
 double sum {};
 for(size_t i {} ; i < size ; ++i) // Loop through rows
 {
 for(size_t j {} ; j < 4 ; ++j) // Loop through elements in a row
 {
 sum += array[i][j];
 }
 }
 return sum;
}

This produces the following output:

Yield = 78

The first parameter to the yield() function is defined as a const array of an arbitrary number of rows of four elements

of type double. When you call the function, the first argument is the beans array, and the second argument is the total
length of the array in bytes divided by the length of the first row. This evaluates to the number of rows in the array.

Pointer notation doesn’t apply particularly well with a multidimensional array. In pointer notation, the statement
in the nested for loop would be:

sum += *(*(array+i)+j);

I think you’ll agree that the computation is clearer in array notation!

Pass-by-Reference
As you know, a reference is an alias for another variable. You can specify a function parameter as a reference, in which
case the function uses the pass-by-reference mechanism with the argument. When the function is called, an argument
corresponding to a reference parameter is not copied. The reference parameter is initialized with the argument. Thus
it becomes an alias for the argument in the calling program. Wherever the parameter name is used in the body of the
function, it accesses the argument value in the calling function directly.

You’ll no doubt recall that you specify an lvalue reference type by adding & after the type name. To specify a
parameter type as “reference to string” for example, you write the type as string&. Using a reference parameter
improves performance with objects such as type string. The pass-by-value mechanism copy the object, which would
be time consuming with a long string. With a reference parameter, there is no copying. Calling a function that has a
reference parameter is no different from calling a function where the argument is passed by value. A parameter can
be an rvalue reference. This has particular significance for functions that belong to a class so I’ll defer discussion of
rvalue reference parameters until I discuss classes.

Chapter 8 ■ Defining funCtions

226

References Can Be Risky
A reference parameter enables the function to modify the argument within the calling function. However, the syntax
for calling a function that has a reference parameter is no different from calling a function where the argument
is passed by value. If you don’t have the source code for the function, you have no way to know whether or not a
parameter is a reference. This makes it particularly important to use a const reference parameter in a function that
does not change the argument.

There’s a subtle difference in the meaning of const between a const variable and a const parameter. const
applied to a variable is telling the compiler that the variable is a constant and must not be changed. const applied
to a reference parameter is about intent; it tells the compiler that the function will not modify the argument so the
compiler will make sure that it doesn’t. Because the function won’t change a const reference parameter, the compiler
will allow const or non-const arguments. Only non-const arguments can be supplied for a non-const reference
parameter. Let’s investigate the effect of using reference parameters in a new and initially imperfect version of
Ex7_05.cpp that extracts words from text:

// Ex8_07.cpp
// Using a reference parameter
#include <iostream>
#include <iomanip>
#include <string>
#include <vector>
using std::string;
using std::vector;
void find_words(vector<string>& words, string& str, const string& separators);
void list_words(const vector<string>& words);

int main()
{
 string text; // The string to be searched
 std::cout << "Enter some text terminated by *:\n";
 std::getline(std::cin, text, '*');

 const string separators {" ,;:.\"!?'\n"}; // Word delimiters
 vector<string> words; // Words found

 find_words(words, text, separators);
 list_words(words);
}

void find_words(vector<string>& words, string& str, const string& separators)
{
 size_t start {str.find_first_not_of(separators)}; // First word start index
 size_t end {}; // Index for end of a word

 while (start != string::npos) // Find the words
 {
 end = str.find_first_of(separators, start + 1); // Find end of word
 if (end == string::npos) // Found a separator?
 end = str.length(); // No, so set to last + 1

Chapter 8 ■ Defining funCtions

227

 words.push_back(str.substr(start, end - start)); // Store the word
 start = str.find_first_not_of(separators, end + 1); // Find 1st character of next word
 }
}

void list_words(const vector<string>& words)
{
 std::cout << "Your string contains the following " << words.size() << " words:\n";
 size_t count {}; // Number output
 for (const auto& word : words)
 {
 std::cout << std::setw(15) << word;
 if (!(++count % 5))
 std::cout << std::endl;
 }
 std::cout << std::endl;
}

The output is the same as Ex7_05.cpp. Here’s a sample:

Enter some text terminated by *:
Never judge a man until you have walked a mile in his shoes.
Then, who cares? He is a mile away and you have his shoes!*
Your string contains the following 26 words:
 Never judge a man until
 you have walked a mile
 in his shoes Then who
 cares He is a mile
 away and you have his
 shoes

There are now two functions in addition to main(), find_words() and list_words(). The find_words()

function finds all the words in the string identified by the second argument and stores them in the vector specified
by the first argument. The third parameter is a string object containing the word separator characters. The second
and third parameters are references and the third parameter is a const reference. If the third parameter was not
const, the code would not compile because the third argument in the function call in main() is separators, which
is a const string object. You cannot pass a const object as the argument corresponding to a non-const reference
parameter. A const parameter allows a const or non-const argument to be passed to the function. A reference
parameter that is not const only accepts arguments that are not const. It would be better to specify the second
parameter to find_words() as const because the function does not change the argument. The first parameter is a
reference, which avoids copying the vector<string> object. It cannot be specified as const because the function
adds elements to the vector.

The parameter for list_words is a const reference because it only accesses the argument, it doesn’t change it.
Note how the code in both functions is the same as the code that was in main() in Ex7_05.cpp. Dividing the program
into three functions makes it easier to understand and does not increase the number of lines of code significantly.

Chapter 8 ■ Defining funCtions

228

Improving the Program

Apart from making the second parameter to find_words() a const reference, it might improve the program if the
calling function did not have to create the vector to hold the words that are extracted. You could define
find_words() like this:

std::shared_ptr<vector<string>> find_words(const string& str, const string& separators)
{
 auto pWords = std::make_shared<vector<string>>(); // Vector of words
 size_t start {str.find_first_not_of(separators)}; // First word start index
 size_t end {}; // Index for end of a word

 while (start != string::npos) // Find the words
 {
 end = str.find_first_of(separators, start + 1); // Find end of word
 if (end == string::npos) // Found a separator?
 end = str.length(); // No, so set to last + 1
 pWords->push_back(str.substr(start, end - start)); // Store the word
 start = str.find_first_not_of(separators, end + 1); // Find 1st character of next word
 }
 return pWords;
}

The function now allocates space for the vector that stores the words on the heap and returns a smart pointer to
it when all the words have been found. The only change to the code that finds the words is in the statement that stores
each word in the vector. It now uses the -> operator to call the push_back() member of the vector because pWords is a
pointer. Of course, the list_words() function need to be redefined to accept a smart pointer as the argument:

void list_words(const std::shared_ptr<vector<string>> pWords)
{
 std::cout << "Your string contains the following " << pWords->size() << " words:\n";
 size_t count {}; // Number output
 for (const auto& word : *pWords)
 {
 std::cout << std::setw(15) << word;
 if (!(++count % 5))
 std::cout << std::endl;
 }
 std::cout << std::endl;
}

There are minimal changes beyond the parameter specification, which is now a smart pointer to a const vector.
size() is now called using the -> operator and pWords has to be dereferenced in the range-based for loop. The code
in main() to use these functions will be:

int main()
{
 string text; // The string to be searched
 std::cout << "Enter some text terminated by *:\n";
 std::getline(std::cin, text, '*');

Chapter 8 ■ Defining funCtions

229

 const string separators {" ,;:.\"!?'\n"}; // Word delimiters

 auto pWords = find_words(text, separators);
 list_words(pWords);
}

Using the auto keywords causes the compiler to figure out the type for pWords. If you didn’t want to retain the
pointer, pWords, you could replace the last two statements with this:

 list_words(find_words(text, separators));

This calls find_words() in the argument to list_words(). find_words() finds the words, stores them in a vector
that is created on the heap, and returns a smart pointer to the vector. This becomes the argument to the list_words()
function to output them. The complete code for this version of the program is in the download as Ex8_07A.cpp.

Simplifying Code using Type Aliases

You can often make your code easier to follow using type aliases that you learned about back in Chapter 3. You could
define the following type aliases immediately before the function prototypes in the source file:

using Words = vector<string>; // Type for a vector of words
using PWords = std::shared_ptr<Words>; // Type for a smart point to a Words object

The PWords alias is defined using the Words alias that precedes it. You can now use Words and PWords in the code
in place of vector<string> and std::shared_ptr<vector<string>> respectively. The function prototypes can be
written as:

PWords find_words(const string& str, const string& separators);
void list_words(PWords pWords);

That’s a lot easier to read, isn’t it? A complete version of the program using these type aliases is in the download
as Ex8_07B.cpp.

References versus Pointers
In most situations, using a reference parameter is preferable to using a pointer. You should specify reference parameters
as const wherever possible to provide security for the caller arguments and to allow const arguments. Of course,
when you need to modify an argument corresponding to a reference parameter, you can’t specify the parameter as a
const reference but you should consider whether a pointer might be better. With a pointer, it is always apparent to the
caller that the object pointed to can be modified.

An important difference between a pointer and a reference is that a pointer can be nullptr, whereas a reference
always refers to something — as long as it isn’t an alias for a pointer that is nullptr, of course. If you want to allow
the possibility of a null argument, the only option is a pointer parameter. Of course, because a pointer parameter can
be null, you must always test for nullptr before using it. Attempting to dereference a null pointer, will cause your
program to crash.

Chapter 8 ■ Defining funCtions

230

Arguments to main()
You can define main() so that it accept arguments that are entered on the command line when the program executes.
The parameters you can specify for main() are standardized: you can either define main() with no parameters, or you
can define main() in the following form:

int main(int argc, char* argv[])
{
 // Code for main()...
}

The first parameter, argc, is a count of the number of string arguments that were found on the command line.
It is type int for historical reasons, not size_t as you might expect because the count cannot be negative. The second
parameter, argv, is an array of pointers to the command line arguments, including the program name. The array type
implies that all command line arguments are received as C-style strings. The program name is always recorded in the
first element of argv, argv[0]. The last element in argv (argv[argc]) is always nullptr so the number of elements in
argv will be argc+1. I’ll give you a couple of examples to make this clear. Suppose that to run the program, you enter
just the program name on the command line:

Myprog

In this case, argc will be 1 and argv[] contains two elements: the first is the address of the string "Myprog", and
the second will be nullptr.

Suppose you enter this:

Myprog 2 3.5 "Rip Van Winkle"

Now argc will be 4 and argv will have five elements. The first four elements will be pointers to the strings
"Myprog.exe", "2", "3.5", and "Rip Van Winkle". The fifth element, argv[4], will be nullptr.

What you do with the command line arguments is entirely up to you. The following program shows how you
access the command line arguments:

// Ex8_08.cpp
// Program that lists its command line arguments
#include <iostream>

int main(int argc, char* argv[])
{
 for (int i {} ; i < argc ; ++i)
 std::cout << argv[i] << std::endl;
}

This lists the command line arguments, including the program name. Command line arguments can be anything
at all — filenames to a file copy program, for example, or the name of a person to search for in a contact file — anything
that is useful to have entered when program execution is initiated.

Chapter 8 ■ Defining funCtions

231

Default Argument Values
There are many situations in which it would be useful to have default argument values for one or more function
parameters. This would allow you to specify an argument value only when you want something different from the
default. A simple example is a function that outputs a standard error message. Most of the time, a default message
will suffice, but occasionally an alternative is needed. You can do this by specifying a default parameter value in the
function prototype. You could define a function to output a message like this:

void show_error(const string& message)
{
 std::cout << message << std::endl;
}

You specify the default argument value in the function prototype, not in the function definition, like this:

void show_error(const string& message = "Program Error");

This parameter happens to be a reference. You specify default values for reference and non-reference parameters
in exactly the same way. To output the default message, you call the function without an argument:

show_error(); // Outputs "Program Error"

To output a particular message, you specify the argument:

show_error("Nothing works!");

Specifying default parameter values can make functions simpler to use, and you aren’t limited to just parameter
with a default value.

Multiple Default Parameter Values
All function parameters that have default values must be placed together at the end of the parameter list. When an
argument is omitted in a function call, all subsequent arguments in the list must also be omitted. Thus parameters
with default values should be sequenced from the least likely to be omitted, to the most likely at the end. These rules
are necessary for the compiler to be able to process function calls.

Let’s contrive an example of a function with several default parameter values. Suppose that you wrote a function
to display one or more data values, several to a line, as follows:

void show_data(const int data[], size_t count, const std::string& title,
 size_t width, size_t perLine)
{
 std::cout << title << std::endl; // Display the title

 // Output the data values
 for (size_t i {} ; i < count ; ++i)
 {
 std::cout << std::setw(width) << data[i]; // Display a data item
 if ((i+1) % perLine == 0) // Newline after perline values
 std::cout << std::endl;
 }
 std::cout << std::endl;
}

Chapter 8 ■ Defining funCtions

232

The data parameter is an array of values to be displayed, and count indicates how many there are. The third
parameter of type const string& specifies a title that is to head the output. The fourth parameter determines the field
width for each item, and the last parameter is the number of data items per line. This function has a lot of parameters.
It’s clearly a job for default parameter values! Here’s an example:

// Ex8_09.cpp
// Using multiple default parameter values
#include <iostream>
#include <iomanip>
#include <string>
using std::string;

// The function prototype including defaults for parameters
void show_data(const int data[], size_t count = 1, const string& title = "Data Values",
 size_t width = 10, size_t perLine = 5);

int main()
{
 int samples[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

 int dataItem {-99};
 show_data(&dataItem);

 dataItem = 13;
 show_data(&dataItem, 1, "Unlucky for some!");

 show_data(samples, sizeof (samples)/sizeof (samples[0]));
 show_data(samples, sizeof (samples)/sizeof (samples[0]), "Samples");
 show_data(samples, sizeof (samples)/sizeof (samples[0]), "Samples", 6);
 show_data(samples, sizeof (samples)/sizeof (samples[0]), "Samples", 8, 4);
}

void show_data(const int data[], size_t count, const std::string& title,
 size_t width, size_t perLine)
{
 std::cout << title << std::endl; // Display the title

 // Output the data values
 for (size_t i {} ; i < count ; ++i)
 {
 std::cout << std::setw(width) << data[i]; // Display a data item
 if ((i+1) % perLine == 0) // Newline after perline values
 std::cout << std::endl;
 }
 std::cout << std::endl;
}

Chapter 8 ■ Defining funCtions

233

Here’s the output:

Data Values
 -99
Unlucky for some!
 13
Data Values
 1 2 3 4 5
 6 7 8 9 10
 11 12
Samples
 1 2 3 4 5
 6 7 8 9 10
 11 12
Samples
 1 2 3 4 5
 6 7 8 9 10
 11 12
Samples
 1 2 3 4
 5 6 7 8
 9 10 11 12

The prototype for show_data() specifies default values for all parameters except the first. You have five ways to

call this function: you can specify all five arguments, you can omit the last one, or the last two, or the last three, or the
last four. You can supply just the first to output a single data item, as long as you are happy with the default values for
the remaining parameters.

Remember that you can only omit arguments at the end of the list; you are not allowed to omit the second and
the fifth for example:

 show_data(samples, , "Samples", 15); // Wrong!

Returning Values from a Function
As you know, you can return a value of any type from a function. This is quite straightforward when you’re returning a
value of one of the basic types, but there are some pitfalls when you are returning a pointer.

Returning a Pointer
When you return a pointer from a function, it must contain either nullptr, or an address that is still valid in the calling
function. In other words, the variable pointed to must still be in scope after the return to the calling function. This
implies the following absolute rule:

Golden Rule ■ Never return the address of an automatic local variable from a function.

Chapter 8 ■ Defining funCtions

234

Suppose you define a function that returns the address of the larger of two argument values. This could be
used on the left of an assignment, so that you could change the variable that contains the larger value, perhaps in a
statement such as this:

 *larger(value1, value2) = 100; // Set the larger variable to 100

You can easily be led astray when implementing this. Here’s an implementation that doesn’t work:

 int* larger(int a, int b)
{
 if(a > b)
 return &a; // Wrong!
 else
 return &b; // Wrong!
 }

It’s easy to see what’s wrong with this: a and b are local to the function. The argument values are copied to the
local variables a and b. When you return &a or &b, the variables at these addresses no longer exist back in the calling
function. You should get a warning from your compiler when you compile this code.

You can specify the parameters as pointers:

int* larger(int* a, int* b)
{
 if(*a > *b)
 return a; // OK
 else
 return b; // OK
}

You could call the function with this statement:

*larger(&value1, &value2) = 100; // Set the larger variable to 100

A function to return the address of the larger of two values is not particularly useful, but let’s consider something
more practical. Suppose we need a program to normalize a set of values of type double so that they all lie between 0.0
and 1.0 inclusive. To normalize the values, we can first subtract the minimum sample value from them to make them
all non-negative. Two functions will help with that, one to find the minimum and another to adjust the values by any
given amount. Here’s a definition for the first function:

const double* smallest(const double data[], size_t count)
{
 size_t index_min {};
 for (size_t i {1} ; i < count ; ++i)
 if (data[index_min] > data[i])
 index_min = i;

 return &data[index_min];
}

Chapter 8 ■ Defining funCtions

235

You shouldn’t have any trouble seeing what’s going on here. The index of the minimum value is stored in
index_min, which is initialized arbitrarily to refer to the first array element. The loop compares the value of the
element at index_min with each of the others, and when one is less, its index is recorded in index_min. The function
returns the address of the minimum value in the array. It probably would be more sensible to return the index but I’m
demonstrating pointer return values among other things. The first parameter is const because the function doesn’t
change the array. With this parameter const you must specify the return type as const. The compiler will not allow
you to return a non-const pointer to an element of a const array.

A function to adjust the values of array elements by a given amount looks like this:

double* shift_range(double data[], size_t count, double delta)
{
 for (size_t i {} ; i < count ; ++i)
 data[i] += delta;
 return data;
}

This function adds the value of the third argument to each array element. The return type could be void so it
returns nothing, but returning the address of data allows the function to be used as an argument to another function
that accepts an array. Of course, the function can still be called without storing or otherwise using the return value.

You could combine using this with the previous function to adjust the values in an array, samples, so that all the
elements are non-negative:

const size_t count {sizeof(samples)/sizeof(samples[0])}; // Element count
shift_range(samples, count, -(*smallest(samples, count)); // Subtract min from elements

The third argument to shift_range() calls smallest() which returns a pointer to the minimum element.
The expression negates the value, so shift_range() will subtract the minimum from each element to achieve what we
want. The elements in data are now from zero to some positive upper limit. To map these into the range from 0 to 1,
we need to divide each element by the maximum element. We first need a function to find the maximum:

const double* largest(const double data[], size_t count)
{
 size_t index_max {};
 for (size_t i {1} ; i < count ; ++i)
 if (data[index_max] < data[i])
 index_max = i;
 return &data[index_max];
}

This works in essentially the same way as smallest(). We could use a function that scales the array elements by
dividing by a given value:

double* scale_range(double data[], size_t count, double divisor)
{
 if(!divisor) return data; // Do nothing for a zero divisor

 for (size_t i {} ; i < count ; ++i)
 data[i] /= divisor;
 return data;
}

Chapter 8 ■ Defining funCtions

236

Dividing by zero would be a disaster so when the third argument is zero, the function just returns the original
array. We can use this function in combination with largest() to scale the elements that are now from 0 to some
maximum to the range 0 to 1:

scale_range(data, count, *largest(data, count));

Of course, what the user would probably prefer is a function that will normalize an array of values, thus avoiding
the need to get into the gory details:

double[] normalize_range(double data[], size_t count)
{
 return scale_range(shift_range(data, count, -(*smallest(data, count))),
 count, *largest(data, count));
}

Remarkably this function only requires one statement. Let’s see if it all works in practice:

// Ex8_10.cpp
// Returning a pointer
#include <iostream>
#include <iomanip>
#include <string>
using std::string;

void show_data(const double data[], size_t count = 1, const string& title = "Data Values",
 size_t width = 10, size_t perLine = 5);
const double* largest(const double data[], size_t count);
const double* smallest(const double data[], size_t count);
double* shift_range(double data[], size_t count, double delta);
double* scale_range(double data[], size_t count, double divisor);
double* normalize_range(double data[], size_t count);

int main()
{
 double samples[] {
 11.0, 23.0, 13.0, 4.0,
 57.0, 36.0, 317.0, 88.0,
 9.0, 100.0, 121.0, 12.0
 };

 const size_t count{sizeof (samples) / sizeof (samples[0])}; // Number of samples
 show_data(samples, count, "Original Values"); // Output original values
 normalize_range(samples, count); // Normalize the values
 show_data(samples, count, "Normalized Values", 12); // Output normalized values
}

// Finds the largest of an array of double values
const double* largest(const double data[], size_t count)
{
 size_t index_max {};
 for (size_t i {1} ; i < count ; ++i)
 if (data[index_max] < data[i])

Chapter 8 ■ Defining funCtions

237

 index_max = i;
 return &data[index_max];
}

// Finds the smallest of an array of double values
const double* smallest(const double data[], size_t count)
{
 size_t index_min{};
 for (size_t i {1} ; i < count ; ++i)
 if (data[index_min] > data[i])
 index_min = i;

 return &data[index_min];
}

// Modify a range of value by delta
double* shift_range(double data[], size_t count, double delta)
{
 for (size_t i {} ; i < count ; ++i)
 data[i] += delta;
 return data;
}

// Scale an array of values by divisor
double* scale_range(double data[], size_t count, double divisor)
{
 if (!divisor) return data; // Do nothing for a zero divisor

 for (size_t i {} ; i < count ; ++i)
 data[i] /=divisor;
 return data;
}

// Normalize an array of values to the range 0 to 1
double* normalize_range(double data[], size_t count)
{
 return scale_range(shift_range(data, count, -(*smallest(data, count))),
 count, *largest(data, count));
}

// Outputs an array of double values
void show_data(const double data[], size_t count, const string& title, size_t width, size_t perLine)
{
 std::cout << title << std::endl; // Display the title

 // Output the data values
 for (size_t i {} ; i < count ; ++i)
 {
 std::cout << std::setw(width) << data[i]; // Display a data item
 if ((i + 1) % perLine == 0) // Newline after perline values

Chapter 8 ■ Defining funCtions

238

 std::cout << std::endl;
 }
 std::cout << std::endl;
}

I got the following output:

Original Values
 11 23 13 4 57
 36 317 88 9 100
 121 12
Normalized Values
 0.0223642 0.0607029 0.028754 0 0.169329
 0.102236 1 0.268371 0.0159744 0.306709
 0.373802 0.0255591

The output demonstrates that the results are what was required. The last two statements in main() could be

condensed into one by passing the address returned by normalize_range() as the first argument to show_data():

show_data(normalize_range(samples, count), count, "Normalized Values", 12);

This is more concise, but not necessarily clearer.

Returning a Reference
Returning a pointer from a function is useful, but it can be problematic. Pointers can be null, and attempting to
dereference nullptr pointer results in the failure of your program. The solution, as you will surely have guessed from
the title of this section, is to return a reference. A reference is an alias for another variable so I can state an absolute
rule for references:

Golden Rule ■ Never return a reference to an automatic local variable in a function.

By returning an lvalue reference, you allow a function call to the function to be used on the left of an assignment.
In fact, returning an lvalue reference from a function is the only way you can enable a function to be used (without
dereferencing) on the left of an assignment operation.

Suppose you code a larger() function like this:

string& larger(string& s1, string& s2)
{
 return s1 > s2 ? s1 : s2; // Return a reference to the larger string
}

The return type is “reference to string” and the parameters are non-const references. Because you want to
return a non-const reference to one or other of the arguments, you must not specify the parameters as const.

You could use the function to change the larger of the two arguments, like this:

string str1 {"abcx"};
string str2 {"adcf"};
larger(str1, str2) = "defg";

Chapter 8 ■ Defining funCtions

239

Because the parameters are not const, you can’t use string literals as arguments; the compiler won’t allow it.
A reference parameter permits the value to be changed, and changing a constant is not something the compiler will
knowingly go along with. If you make the parameters const, you can’t use a non-const reference as the return type.

You’re not going to examine an extended example of using reference return types at this moment, but you can be
sure that you’ll meet them again before long. As you’ll discover, reference return types become essential when you are
creating your own data types using classes.

Inline Functions
With functions that are very short, the overhead of the code the compiler generates to deal with passing arguments
and returning a result is significant compared to the code involved in doing the actual calculation. The execution
times of the two types of code may be similarly related. In extreme cases, the code for calling the function may occupy
more memory than the code in the body of the function. In such circumstances, you can suggest to the compiler that
it replace a function call with the code from the body of the function, suitably adjusted to deal with local names.
This could make the program shorter, faster, or possibly both.

You do this using the inline keyword in the function definition. For example:

inline int larger(int m, int n)
{
 return m > n ? m : n;
}

This definition indicates that the compiler can replace calls with inline code. However, it is only a suggestion,
and it’s down to the compiler as to whether your suggestion is taken up. When a function is specified as inline, the
definition must be available in every source file that calls the function. For this reason, the definition of an inline
function usually appears in a header file rather than in a source file, and the header is included in each source file that
uses the function. Most if not all modern compilers will make short functions inline, even when you don’t use the
inline keyword in the definition. If a function you specify as inline is used in more than one source file, you should
place the definition in a header file that you include in each source file that uses the function. If you don’t, you’ll get
“unresolved external” messages when the code is linked.

Static Variables
In the functions you have seen so far, nothing is retained within the body of the function from one execution to the
next. Suppose you want to count how many times a function has been called. How can you do that? One way is to
define a variable at file scope and increment it from within the function. A potential problem with this is that any
function in the file can modify the variable, so you can’t be sure that it’s only being incremented when it should be.

A better solution is to define a variable in the function body as static. A static variable that you define within a
function is created the first time its definition is executed. It then continues to exist until the program terminates.
This means that you can carry over a value from one call of a function to the next. To specify a variable as static, you
prefix the type name in the definition with the static keyword. Here’s an example:

static int count {1};

The first time this statement executes, count is created and initialized to 1. Subsequent executions of the
statement have no further effect. count continues to exist until the program terminates. If you don’t initialize a static
variable, it will be initialized to 0 by default.

Chapter 8 ■ Defining funCtions

240

Let’s consider a very simple example:

void nextInteger()
{
 static int count {1};
 std::cout << count++ << std::endl;
}

This function increments the static variable count after outputting its current value. The first time the function
is called, it outputs 1. The second time, it outputs 2. Each time the function is called, it displays an integer that is
one larger than the previous value. count is created and initialized only once, the first time the function is called.
Subsequent calls output the current value of count and increment it. count survives for as long as the program is
executing.

You can specify any type of variable as static, and you can use a static variable for anything that you want to
remember from one function call to the next. You might want to hold on to the number of the previous file record that
was read for example, or the highest value of previous arguments.

Here is an example that demonstrates using a static variable in generating the Fibonacci sequence. This is a
sequence of integers in which each number is the sum of the two that precede it. Here’s the code:

// Ex8_11.cpp
// Using static variables
#include <iostream>
#include <iomanip>

long next_Fibonacci();

int main()
{
 size_t count {};
 std::cout << "Enter the number of Fibonacci values to be generated: ";
 std::cin >>count;
 std::cout << "The Fibonacci Series:\n";
 for (size_t i {} ; i < count ; ++i)
 {
 std::cout << std::setw(10) << next_Fibonacci();
 if (!((i + 1) % 8)) // After every 8th output...
 std::cout << std::endl; // ...start a new line
 }
 std::cout << std::endl;
}

// Generate the next number in the Fibonacci series
long next_Fibonacci()
{
 static long last; // Last number in sequence
 static long last_but_one {1L}; // Last but one in sequence

 long next {last + last_but_one}; // Next is sum of the last two
 last_but_one = last; // Update last but one
 last = next; // Last is new one
 return last; // Return the new value
}

Chapter 8 ■ Defining funCtions

241

This produces the following output:

Enter the number of Fibonacci values to be generated: 30
The Fibonacci Series:
 1 1 2 3 5 8 13 21
 34 55 89 144 233 377 610 987
 1597 2584 4181 6765 10946 17711 28657 46368
 75025 121393 196418 317811 514229 832040

The main() function calls the nextFibonacci() function count times in a loop. No arguments are passed to

nextFibonacci(); the values returned are generated inside the function. Two static variables defined in the function
hold the most recent generated number in the sequence and its predecessor.

Judiciously initializing last to 0 by default and last_but_one to 1, makes the sequence begin with two 1s. At each
call of nextFibonacci(), the next number is calculated by summing the previous two numbers. The result is stored
in the automatic variable next. You can do this because last and last_but_one are static variables, which retain the
values assigned to them in the previous call of nextFibonacci(). Before returning next, you transfer the previous
value in last to last_but_one, and the new value to last.

Although static variables survive as long as the program does, they are only accessible within the block in which
they are defined, so last and last_but_one are only accessible from within the body of the nextFibonacci()
function.

Function Overloading
You’ll often find that you need two or more functions that do essentially the same thing, but with parameters of
different types. The largest() and smallest() functions in Ex8_10.cpp are likely candidates. You would want these
operations to work with arrays of different types such as int[], double[], float[] or even string[]. Ideally, all such
functions would have the same name, smallest() or largest(). Function overloading makes that possible.

Function overloading allows several functions in a program with the same name as long as they each have
a parameter list that is different from the others. You learned earlier in this chapter that the compiler identifies a
function by its signature, which is a combination of the function name and the parameter list. Overloaded functions
have the same name so the signature of each overloaded function must be differentiated by the parameter list alone.
That allows the compiler to select the correct function for each function call based on the argument list. Two functions
with the same name are different if at least one of the following is true:

The functions have different numbers of parameters.•	

At least one pair of corresponding parameters are of different types.•	

A program that has two or more functions with the same signature will not compile. Here’s an example that uses
overloaded versions of the largest() function:

// Ex8_12.cpp
// Overloading a function
#include <iostream>
#include <string>
#include <vector>
using std::string;
using std::vector;

Chapter 8 ■ Defining funCtions

242

// Function prototypes
double largest(const double data[], size_t count);
double largest(const vector<double>& data);
int largest(const vector<int>& data);
string largest(const vector<string>& words);

int main()
{
 double values[] {1.5, 44.6, 13.7, 21.2, 6.7};
 vector<int> numbers {15, 44, 13, 21, 6, 8, 5, 2};
 vector<double> data {3.5, 5, 6, -1.2, 8.7, 6.4};
 vector<string> names {"Charles Dickens", "Emily Bronte", "Jane Austen",
 "Henry James", "Arthur Miller"};
 std::cout << "The largest of values is "
 << largest(values, sizeof(values)/sizeof(values[0])) << std::endl;
 std::cout << "The largest of numbers is " << largest(numbers) << std::endl;
 std::cout << "The largest of data is " << largest(data) << std::endl;
 std::cout << "The largest of names is " << largest(names) << std::endl;
}

// Finds the largest of an array of double values
double largest(const double data[], size_t count)
{
 size_t index_max {};
 for (size_t i {1} ; i < count ; ++i)
 if (data[index_max] < data[i])
 index_max = i;
 return data[index_max];
}

// Finds the largest of a vector of double values
double largest(const vector<double>& data)
{
 double max {data[0]};
 for (auto value : data)
 if (max < value) max = value;

 return max;
}

// Finds the largest of a vector of int values
int largest(const vector<int>& data)
{
 int max {data[0]};
 for (auto value : data)
 if (max < value) max = value;

 return max;
}

Chapter 8 ■ Defining funCtions

243

// Finds the largest of a vector of string objects
string largest(const vector<string>& words)
{
 string max_word {words[0]};
 for (auto& word : words)
 if (max_word < word) max_word = word;

 return max_word;
}

This produces the following output:

The largest of values is 44.6
The largest of numbers is 44
The largest of data is 8.7
The largest of names is Jane Austen

The compiler selects the version of largest() to be called in main() based on the argument list. Each version

of the function has a unique signature because the parameter lists are different. This example illustrates quite nicely
how much easier it is to use a vector<T> than a standard array. It’s important to note that the parameters that accept
vector<T> arguments are references. If they are not specified as references the vector object will be passed by value
and thus copied. This could be expensive for a vector with a lot of elements. Parameters of array types are different.
Only the address of an array is passed in this case so they do not need to be reference types.

Overloading and Pointer Parameters
Pointers to different types are different, so the following prototypes declare different overloaded functions:

int largest(int* pValues, size_t count); // Prototype 1
int largest(float* pValues, size_t count); // Prototype 2

Note that a parameter of type int* is treated in the same way as a parameter type of int[]. Hence the following
prototype declares the same function as Prototype 1 above:

int largest(int values[], int count); // Identical signature to prototype 1

With either parameter type, the argument is an address and therefore not differentiated. You can implement the
function using array notation or pointer notation with either parameter type.

If you pass nullptr explicitly as the first argument to the overloaded largest() function, the compiler cannot
determine which of the two functions to call. If you want to allow nullptr as an explicit argument value, you must add
a third function overload where the first parameter is of type std::nullptr_t. This function will be called whenever
the argument is specified as nullptr. Of course, if largest() is called with an argument that is a pointer variable, p, of
type int*, the first version of the function will be called, even if p contains nullptr.

Overloading and Reference Parameters
You need to be careful when you are overloading functions with reference parameters. You can’t overload a function
with a parameter type data_type with a function that has a parameter type data_type&. The compiler cannot
determine which function you want from the argument. These prototypes illustrate the problem:

void do_it(string number); // These are not distinguishable...
void do_it(string& number); // ...from the argument type

Chapter 8 ■ Defining funCtions

244

Suppose you write the following statements:

string word {"egg"};
do_it(word); // Calls which???

The second statement could call either function. The compiler cannot determine which version of do_it()
should be called. Thus you can’t distinguish overloaded functions based on a parameter for one version being of a
given type, and the other being a reference to that type.

You should also be wary when you have overloaded a function where one version has a parameter of type type1&
and another with a parameter reference to type2&. The function called depends on the sort of arguments you use, but
you may get some surprising results. Let’s explore this a little with an example:

// Ex8_13.cpp
// Overloading a function with reference parameters
#include <iostream>

double larger(double a, double b); // Non-reference parameters
long& larger(long& a, long& b); // lvalue reference parameters

int main()
{
 double a_double {1.5}, b_double {2.5};
 std::cout << "The larger of double values "
 << a_double << " and " << b_double << " is "
 << larger(a_double, b_double) << std::endl;

 int a_int {15}, b_int {25};
 std::cout << "The larger of int values "
 << a_int << " and " << b_int << " is "
 << larger(static_cast<long>(a_int), static_cast<long>(b_int))
 << std::endl;
}

// Returns the larger of two floating point values
double larger(double a, double b)
{
 std::cout << "double larger() called." << std::endl;
 return a > b ? a : b;
}

// Returns the larger of two long references
long& larger(long& a, long& b)
{
 std::cout << "long ref larger() called" << std::endl;
 return a>b ? a : b;
}

This produces the following output:

double larger() called.
The larger of double values 1.5 and 2.5 is 2.5
double larger() called.
The larger of int values 15 and 25 is 25

Chapter 8 ■ Defining funCtions

245

The third line of output may not be what you were anticipating. You might expect the second output statement
in main() to call the version of larger() with long& parameters. This statement has called the version with double
parameters — but why? After all, you did cast both arguments to long.

That is exactly where the problem lies. The arguments are not a_int and b_int, but temporary locations that
contain the same values after conversion to type long. The compiler will not use a temporary address, an rvalue, to
initialize a reference — it’s just too risky. The code in larger() has free rein on what it does with the parameters,
so either parameter could be modified and/or returned. Allowing the use of a temporary location in this way is not
sensible, so the compiler won’t do it.

What can you do about this? You have a couple of choices. If a_int and b_int were type long the compiler will
call the version of larger() with parameters of type long&. If the variables can’t be type long you could specify the
parameters as const references like this:

long larger(const long& a, const long& b);

Clearly you must change the function prototype too. The function works with either const or non-const
arguments. The compiler knows that the function won’t modify the arguments so it will call this version for arguments
that are rvalues instead of the version with double parameters. Note that you return type long now. If you insist on
returning a reference, the return type must be const because the compiler cannot convert from a const reference to
a non-const reference. A const reference is never an lvalue, so you can’t use it on the left of an assignment. Thus, you
have nothing to lose by returning a value of type long in this instance.

Overloading and const Parameters
A const parameter is only distinguished from a non-const parameter for references and pointers. For a fundamental
type such as int for example, const int is identical to int. Hence, the following prototypes are not distinguishable:

long& larger(long a, long b);
long& larger(const long a, const long b);

The compiler ignores the const attribute of the parameters in the second declaration. This is because the
arguments are passed by value, meaning that a copy of each argument is passed into the function, and thus the
original is protected from modification by the function. There is no point to specifying parameters as const when the
arguments are passed by value.

Overloading with const Pointer Parameters
Overloaded functions are different if one has a parameter of type type* and the other has a parameter of const type*.
The parameters are pointers to different things — so they are different types. For example, these prototypes have
different function signatures:

long* larger(long* a, long* b); // Pointer parameters
const long* larger(const long* a, const long* b); // Pointer to const parameter

Applying the const modifier to a pointer prevents the value at the address from being modified. Without the
const modifier, the value can be modified through the pointer; the pass-by-value mechanism does not inhibit this in
any way. In this example, the first function above is called with these statements:

long num1 {1L};
long num2 {2L};
long num3 {*larger(&num1, &num2)}; // Calls larger() that has non-const parameters

Chapter 8 ■ Defining funCtions

246

The latter version of larger() with const parameters is called by the following code:

const long num4 {1L};
const long num5 {2L};
const long num6 {*larger(&num10, &num20)}; // Calls larger() that has const parameters

The compiler won’t pass a const value to a function in which the parameter is a non-const pointer. Allowing
a const value to be passed through a non-const pointer would violate the const-ness of the variable. Thus, the
compiler selects the version of larger() for this case with const pointer parameters in this case.

In contrast to the previous example, two overloaded functions are the same if one of them has a parameter of type
“pointer to type” and the other has a parameter “const pointer to type”. For example:

long* larger(long* a, long* b); // These are...
long* const larger(long* const a, long* const b); // ...identical

These two functions are not differentiated and won’t compile. The reason is clear when you consider that the
first prototype has a parameter of type “pointer to long”, and the second has parameter of type “const pointer to long”.
If you think of “pointer to long” as type T, then the parameter types are T and const T—which are not differentiated.

Overloading and const Reference Parameters
Reference parameters are more straightforward when it comes to const. Type T& and type const T& are always
differentiated, so type const int& is always different from type int& for example. This means that you can overload
functions in the manner implied by these prototypes:

long& larger(long& a, long& b);
long larger(const long& a, const long& b);

Each function will have the same function body, which returns the larger of the two arguments, but the functions
behave differently. The first prototype declares a function that doesn’t accept constants as arguments, but you can
use the function on the left of an assignment to modify one or the other of the reference parameters. The second
prototype declares a function that accepts constants and non-constants as arguments, but the return type is not an
lvalue so you can’t use the function on the left of an assignment.

Overloading and Default Argument Values
You know that you can specify default parameter values for a function. However, default parameter values for
overloaded functions can sometimes affect the compiler’s ability to distinguish one call from another. For example,
suppose you have two versions of a show_error() function that outputs an error message. Here’s a version that has a
C-style string parameter:

void show_error(const char* message)
{
 std::cout << message << std::endl;
}

This version accepts a string argument:

void show_error(const string& message)
{
 std::cout << message << std::endl;
}

Chapter 8 ■ Defining funCtions

247

You cannot specify a default argument for both functions because it would create an ambiguity. The statement to
output the default message in either case would be:

show_error();

The compiler has no way of knowing which function is required. Of course, this is a silly example: you have
no reason to specify defaults for both functions. A default for just one does everything that you need. However,
circumstances can arise where it is not so silly, and overall, you must ensure that all function calls uniquely identify
the function that should be called.

A Sausage Machine for Functions
Overloaded functions sometimes contain exactly the same code. The only difference is in the parameter list. It seems
an unnecessary overhead to have to write the same code over and over, and indeed it is. In such situations, you can
write the code just once, as a function template.

A function template is a blueprint or a recipe for defining a family of functions; it is not a definition of a function.
The compiler uses a function template to generate a function definition when necessary. If it is never necessary,
no code results from the template. A function definition that is generated from a template is an instance or an
instantiation of the template. A function template is a parametric function definition, where a particular function
instance is created by one or more parameter values. The parameter values are usually data types, where a function
definition can be generated for a parameter value of type int for example, and another with a parameter value of
type string. Parameters are not necessarily types. They can be other things such as a dimension for example. Let’s
consider a specific example.

The larger() function is a good candidate for a template. A template for this function is shown in Figure 8-4.

template <typename T> T larger(T a, T b)
{
 return a > b ? a : b;
}

The template keyword identifies
this code as a template

Every occurrence of T is replaced by an actual
type when an instance of the template is created.
Wherever T appears in the template definition, it
will be replaced by a specific type.

The typename keyword identifies T as a type. You
put the template parameters between angled
brackets after the templatekeyword They are
separated by commas if there is more than one.

This T is a parameter for the template. It identifies
where the type for a particular instance has to be
substituted in the code. In this case the return
type and both parameter types are to be replaced.

Figure 8-4. A simple function template

The function template starts with the template keyword to identify it as such. This is followed by a pair of angled
brackets that contains a list of one or more template parameters. In this case, there’s one, the parameter T. T is
commonly used as a name for a parameter because most parameters are types but you can use whatever name you
like for a parameter; names such as replace_it or my_type are equally valid.

Chapter 8 ■ Defining funCtions

248

The typename is a keyword that identifies that T is a type. You can also use the keyword class here, but I prefer
typename because the type argument can be a fundamental type, not just a class type.

The rest of the definition is similar to a normal function except that the parameter T is sprinkled around. The
compiler creates an instance of the template by replacing T throughout the definition with a specific type.

You can position the template in a source file in the same way as a normal function definition; you can also
specify a prototype for a function template. In this case, it would be:

template <typename T> T larger(T a, T b); // Prototype for function template

Either the prototype or the definition of the template must appears in the source file before any statement that
results in an instance of the template.

Creating Instances of a Function Template
The compiler creates instances of the template from any statement that uses the larger() function. Here’s an
example:

std::cout << "Larger of 1.5 and 2.5 is " << larger(1.5, 2.5) << std::endl;

You just use the function in the normal way. You don’t need to specify a value for the template parameter T — the
compiler deduces the type that is to replace T from the arguments in the larger() function call. The arguments to
larger() are literals of type double, so this call causes the compiler to search for an existing definition of larger()
with double parameters. If it doesn’t find one, the compiler creates this version of larger() from the template by
substituting double for T in the template definition.

The resulting function definition accepts arguments of type double and returns a double value. With double
plugged into the template in place of T, the template instance will effectively be as follows:

double larger(double a, double b)
{
 return a > b ? a : b;
}

The compiler generates each template instance once. If a subsequent function call requires the same instance,
then it calls the instance that exists. Your program only ever includes a single copy of the definition of each instance,
even if the same instance is generated in different source files. Now that you are familiar with the concepts, let’s road
test a function template:

// Ex8_14.cpp
// Using a function template
#include <iostream>

template <typename T> T larger(T a, T b); // Function template prototype

int main()
{
 std::cout << "Larger of 1.5 and 2.5 is " << larger(1.5, 2.5) << std::endl;
 std::cout << "Larger of 3.5 and 4.5 is " << larger(3.5, 4.5) << std::endl;

 int a_int {35}, b_int {45};
 std::cout << "Larger of " << a_int << " and " << b_int << " is "
 << larger(a_int, b_int) << std::endl;

Chapter 8 ■ Defining funCtions

249

 long a_long {9L}, b_long {8L};
 std::cout << "Larger of " << a_long << " and " << b_long << " is "
 << larger(a_long, b_long) << std::endl;
}

// Template for functions to return the larger of two values
template <typename T>
T larger(T a, T b)
{
 return a > b ? a : b;
}

This produces the following output:

Larger of 1.5 and 2.5 is 2.5
Larger of 3.5 and 4.5 is 4.5
Larger of 35 and 45 is 45
Larger of 9 and 8 is 9

The compiler creates a definition of larger() that accepts arguments of type double as a result of the first

statement in main(). The same instance will be called in the next statement. The third statement requires a version of
larger() that accepts an argument of type int so a new template instance is created. The last statement results in yet
another template instance being created that has parameters of type long and returns a value of type long.

Note that if you add the following statement to main(), it will not compile:

std::cout << "Larger of " << a_long << " and 9.5 is "
 << larger(a_long, 9.5) << std::endl;

The arguments to larger() are of different types whereas the parameters for larger() in the template are of
the same type. The compiler cannot create a template instance that has different parameter types. Obviously, one
argument could be converted to the type of the other but you have to code this explicitly; the compiler won’t do it. You
could define the template to allow the parameters for larger() to be different types, but this adds a complication that
I’ll discuss later in this chapter.

Explicit Template Argument
You can specify the argument for a template parameter explicitly when you call the function. This allows you to
control which version of the function is used. The compiler no longer deduces the type to replace T; it accepts what
you specify. There are several situations in which this can be useful:

Where the function call is ambiguous so the compilation fails.•	

When the compiler is unable to deduce the template arguments.•	

Where the compiler would generate too many instances of the function template.•	

You can resolve the problem of using different arguments types with larger() with an explicit instantiation of
the template:

std::cout << "Larger of " << a_long << " and 9.5 is "
 << larger<double>(a_long, 9.5) << std::endl; // Outputs 9.5

Chapter 8 ■ Defining funCtions

250

You put the explicit type argument for the function template between angled brackets after the function name.
This generates an instance with T as type double. When you use explicit template arguments, the compiler has
complete faith that you know what you are doing. It will insert an implicit type conversion for the first argument to
type double. It will provide implicit conversions, even when this may not be what you want. For example:

std::cout << "Larger of " << a_long << " and 9.5 is "
 << larger<long>(a_long, 9.5) << std::endl; // Outputs 9

You are telling the compiler to use a template instance with T as type long. This necessitates an implicit
conversion of the second argument to long, so the result is 9, which is maybe not what you really want.

The compiler creates three instances of larger() from the template in Ex8_14.cpp. Each instance that is
generated increases the size of the executable so if you can reduce the number of instances, the executable will
be smaller. You could compare values of type int using the instance with T as type long. An explicit template
instantiation would do it:

std::cout << "Larger of " << a_int << " and " << b_int << " is "
 << larger<long>(a_int, b_int) << std::endl;

Now there will be only two template instances. Of course, you have added implicit type conversions for the
arguments so the gain might be marginal in this case. With a more complex function template, the gain could be
very significant.

Function Template Specialization
Suppose that you extended Ex8_14.cpp to call larger() with arguments that are pointers:

std::cout << "Larger of " << a_long << " and " << b_long << " is "
 << *larger(&a_long, &b_long) << std::endl; // Outputs 8

The compiler instantiates the template with the parameter as type long*. This prototype of this version is:

long* larger(long*, long*);

The return value is an address, and you have to dereference it to output the value. However, the result, 8,
is incorrect. This is because the comparison is between addresses passed as arguments, not the values at those
addresses. This illustrates how easy it is to create hidden errors using templates. You need to be particularly careful
when using pointer types as template arguments.

You can define a specialization of the template to accommodate a template argument that is a pointer type. For a
specific parameter value, or set of values in the case of a template with multiple parameters, a template specialization
defines a behavior that is different from the standard template. The definition of a template specialization must come
after a declaration or definition of the original template. If you put a specialization first, then the program won’t
compile. The specialization must also appear before its first use.

The definition of a specialization starts with the template keyword but the parameter is omitted, so the angled
brackets following the keyword are empty. You must still define the type of argument for the specialization and
you place this between angled brackets immediately following the template function name. The definition for a
specialization of larger() for type long* is:

template <> long* larger<long*>(long* a, long* b)
{
 return *a > *b ? a : b;
}

Chapter 8 ■ Defining funCtions

251

The only change to the body of the function is to dereference the arguments a and b so that you compare values
rather than addresses. To use this in Ex8_14.cpp, the specialization would need to be placed after the prototype for
the template, and before main().

Function Templates and Overloading
You can overload a function template by defining other functions with the same name. Thus you can define
“overrides” for specific cases, which will always be used by the compiler in preference to a template instance.
As always, each overloaded function must have a unique signature.

Let’s reconsider the previous situation in which you need to overload the larger() function to take pointer
arguments. Instead of using a template specialization for larger(), you could define an overloaded function.
The following overloaded function prototype would do it:

long* larger(long* a, long* b); // Function overloading the larger template

In place of the specialization definition you’d use this function definition:

long* larger(long* a, long* b)
{
 return *a > *b ? a : b;
}

It’s also possible to overload an existing template with another template. For example, you could define a
template that overloads the larger() template in Ex8_14.cpp to find the largest value contained in an array:

template <typename T>
T larger (const T data[], size_t count)
{
 T result {data[0]};
 for(size_t i {1} ; i < count ; ++i)
 if(data[i] > result) result = data[i];

 return result;
}

The parameter list differentiates functions produced from this template from instances of the original template.
You could define another template overload for vectors:

template <typename T>
T larger (const std::vector<T>& data)
{
 T result {data[0]};
 for(auto& value : data)
 if(value > result) result = value;

 return result;
}

Chapter 8 ■ Defining funCtions

252

You could extend Ex8_14.cpp to demonstrate this. Add the templates above to the end of the source file and these
prototypes at the beginning:

template <typename T> T larger(const T data[], size_t count);
template <typename T> T larger(const std::vector<T>& data);

You’ll need #include directives for the vector and string headers. The code in main() can be changed to:

int a_int {35}, b_int {45};
std::cout << "Larger of " << a_int << " and " << b_int << " is "
 << larger(a_int, b_int) << std::endl;

const char text[] {"A nod is as good as a wink to a blind horse."};
std::cout << "Largest character in \"" << text << "\" is '"
 << larger(text, sizeof(text)) << "'" << std::endl;

std::vector<std::string> words {"The", "higher", "the", "fewer"};
std::cout << "The largest word in words is \"" << larger(words)
 << "\"" << std::endl;

std::vector<double> data {-1.4, 7.3,-100.0, 54.1, 16.3};
std::cout << "The largest value in data is " << larger(data) << std::endl;

The complete example is in the code download as Ex8_15.cpp. This generates instances of all three overloaded
templates. If you compile and execute it, the output will be:

Larger of 35 and 45 is 45
Largest character in "A nod is as good as a wink to a blind horse." is 'w'
The largest word in words is "the"
The largest value in data is 54.1

Function Templates with Multiple Parameters
You’ve been using function templates with a single parameter, but there can be several parameters. A classic application
for a second template type argument is to provide a way of controlling the return type. You could define yet another
template for larger() that allows the return type to be specified independently of the function parameter type:

template <typename TReturn, typename TArg>
TReturn larger(TArg a, TArg b)
{
 return a > b ? a : b;
}

The compiler can’t deduce the return type, TReturn, so you must always specify it. However, the compiler can
deduce the type for the arguments, so you can get away with specifying just the return type. Here’s an example:

std::cout << "Larger of 1.5 and 2.5 is " << larger<int>(1.5, 2.5) << std::endl;

Chapter 8 ■ Defining funCtions

253

The return type is specified as int between the angled brackets following the function name. The type for the
function parameters is deduced from the arguments to be double. The result of the function call is 2. You can specify
both TReturn and TArg:

std::cout << "Larger of 1.5 and 2.5 is " << larger<double, double>(1.5, 2.5) << std::endl;

The compiler creates the function that accepts arguments of type double and returns a result of type double.
Clearly, the sequence of parameters in the template definition is important here. If you had the return type as the
second parameter, you’d always have to specify both parameters in a call: if you specify only one parameter, it would
be interpreted as the argument type, leaving the return type undefined.

You can specify default values for function template parameters. For example you could specify double as the
default return type in the prototype for the template above like this:

template <typename TReturn=double, typename TArg> TReturn larger(TArg a, TArg b);

If you don’t specify any template parameter values, the return type will be double.

std::cout << "Larger of 15 and 25 is " << larger(15, 25) << std::endl;

The larger() template instance resulting from this statement accepts arguments of type int and returns the
result as type double. Of course, if the template definition appears at the beginning of the source file, the default
template parameter value would appear in that.

Non-Type Template Parameters
All the template parameters you have seen so far have been types. Function templates can also have non-type
parameters in this case that require non-type arguments. Arguments corresponding to non-type parameters must be
either integral compile-time constants, or references to pointers to objects with external linkage.

You include any non-type template parameters in the parameter list along with any other type parameters when
you define the template. You’ll see an example in a moment. The type of a non-type template parameter can be one of
the following:

An integral type, such as int or long

An enumeration type

A pointer or reference to an object type

A pointer or a reference to a function

A pointer to a class member

You haven’t met the last two. I’ll introduce pointers to functions later in this chapter and I’ll discuss references
to functions and pointers to class members when I cover classes. The application of non-type template parameters to
these types is beyond the scope of this book. You’ll only consider an elementary example with parameters of type int,
just to see how it works.

Suppose you need a function to perform range checking on a value. You could define a template to handle a
variety of types:

template <typename T, int upper, int lower>
bool is_in_range(T value)
{
 return (value <= upper) && (value >= lower);
}

Chapter 8 ■ Defining funCtions

254

This template has a type parameter, T, and two non-type parameters, upper and lower, that are both of type int.
The compiler can’t deduce all of the template parameters from the use of the function. The following function call
won’t compile:

double value {100.0};
std::cout << is_in_range(value); // Won't compile – incorrect usage

Compilation fails because upper and lower are unspecified. To use this template, you must specify the template
parameter values. The correct way to use this is:

std::cout << is_in_range<double, 0, 500>(value); // OK – checks 0 to 500

It would be better to use function parameters for the limits in this case. Function parameters give you the
flexibility of being able to pass values that are calculated at runtime, whereas here you must supply the limits at
compile time.

Trailing Return Types
The return type of a template function with multiple type parameters may depend on the types used to instantiate the
template. Suppose you need a template function to generate the sum of the products of corresponding elements in
two vectors of the same size. You might consider defining the template like this:

template <typename Treturn, typename T1, typename T2>
Treturn vector_product(const std::vector<T2>& data1, const std::vector<T3>& data2)
{
 if(data1.size() != data2.size()) return 0; // Guard against unequal vectors

 Treturn sum {};
 for(size_t i {} ; i<count ; ++i) sum += v1[i]*v2[i];

 return sum;
}

This will work, but leaves it to the user to specify the return type. It might be better if the return was automatically
the type of the result of multiplying two corresponding vector elements but how can you specify that? The decltype
keyword provides the solution, at least in part. decltype(expression) produces the type of the result of evaluating
expression. You could use this to rewrite the template as:

template<typename T1, typename T2> // Won't compile!
decltype(data1[0]*data2[0])
 vector_product(const std::vector<T1>& data1, const std::vector<T2>& data2)
{
 if(data1.size() != data2.size()) return 0; // Guard against unequal vectors

 decltype(data1[0]*data2[0]) sum {};
 for(size_t i {} ; i<count ; ++i) sum += v1[i]*v2[i];

 return sum;
}

Chapter 8 ■ Defining funCtions

255

The return type is now specified to be the type of value produced by the product of the first two vector elements
and the type for sum is expressed in the same way. This template definition expresses what you want but it won’t
compile. The compiler processes the template from left to right so when the return type specification is processed,
the compiler does not know the types of data1[0] and data2[0]. To overcome this the trailing return type syntax was
introduced that permits the return type specification to appear after the parameter list, like this:

template <typename T1, typename T2>
auto vector_product(const std::vector<T1>& data1, const std::vector<T2>& data2)
 -> decltype(data1[0]*data2[0])
{
 if(data1.size() != data2.size()) return 0; // Gaurd against unequal vectors

 decltype(data1[0]*data2[0]) sum {};
 for(size_t i {} ; i<count ; ++i) sum += v1[i]*v2[i];

 return sum;
}

The auto keyword before the function name indicates to the compiler that the return type specification is at
the end of the function template header. You write the type specification following the indirect member selection
operator, ->, after the parameter list.

This syntax is primarily for use in function templates, and in lambda expressions which you’ll meet in the next
chapter but you can also use it to define ordinary non-template functions. For example, you could define a larger()
function like this:

auto larger(double a, double b) -> double
{
 return a > b ? a : b;
}

If you use the trailing return type syntax in a function definition, you must use the same syntax in the function
prototype; the prototype would be:

auto larger(double a, double b) -> double; // Function prototype

Pointers to Functions
A “pointer to a function” is a variable that can store the address of a function and therefore can point to different
functions at different times during execution. You use a pointer to a function to call the function at the address it
contains. An address is not sufficient to call a function though. To work properly, a pointer to a function must also
store the type of each parameter as well as the return type. Clearly, the information required to define a pointer
to a function will restrict the range of functions to which the pointer can point. It can only store the address of a
function with a given number of parameters of specific types and with a given return type. This is analogous to a
pointer that stores the address of a data item. A pointer to type int can only point to a location that contains a value
of type int.

Chapter 8 ■ Defining funCtions

256

Defining Pointers to Functions
Here’s a definition of a pointer that can store the address of functions that have parameters of type long* and int, and
return a value of type long:

long (*pfun)(long*, int);

This may look a little weird at first because of all the parentheses. The name of the pointer variable is pfun.
It doesn’t point to anything because it is not initialized. Ideally it would be initialized to nullptr or with the address
of a specific function. The parentheses around the pointer name and the asterisk are essential — without them, this
statement would declare a function rather than define a pointer variable because the * will bind to the type long.

The general form of a pointer to a function definition is:

return_type (*pointer_name)(list_of_parameter_types);

The pointer can only point to functions with the same return_type and list_of_parameter_types as those
specified in its definition.

Of course, you should always initialize a pointer when you declare it. You can initialize a pointer to a function to
nullptr or with the name of a function. Suppose you have a function with the following prototype:

long max_element(const long* array, size_t count); // Function prototype

You can define and initialize a pointer to this function with this statement:

long (*pfun)(long*, size_t) {max_element};

The pointer is initialized with the address of max_element(). Using auto will make this simpler:

auto pfun = max_element;

This defines pfun as a pointer to any function with the same parameter list and return type as max_element()
and initializes it with the address of max_element(). You can store the address of any function with the same
parameter list and return type in an assignment. Given that min_element() has the same parameter list and return
type as max_element(), you can make pfun point to it like this:

pfun = min_element;

As with pointers to variables, you should ensure that a pointer to a function contains the address of a function
before you use it to call a function. Without initialization, catastrophic failure of your program is guaranteed.

To call min_element() using pfun you just use the pointer name as though it were a function name. For example:

long data[] {23, 34, 22, 56, 87, 12, 57, 76};
std::cout << "value of minimum is " << pfun(data, sizeof (data)/sizeof (data[0]);

This outputs the minimum value in the data array. To get a feel for these newfangled pointers to functions and
how they perform in action, let’s try one out in a working program:

// Ex8_16.cpp
// Exercising pointers to functions
#include <iostream>
long sum(long a, long b); // Function prototype
long product(long a, long b); // Function prototype

Chapter 8 ■ Defining funCtions

257

int main()
{
 long(*pDo_it)(long, long) {}; // Pointer to function

 pDo_it = product;
 std::cout << "3*5 = " << pDo_it(3, 5) << std::endl; // Call product thru a pointer

 pDo_it = sum; // Reassign pointer to sum()
 std::cout << "3 * (4+5) + 6 = "
 << pDo_it(product(3, pDo_it(4, 5)), 6) << std::endl; // Call thru a pointer twice
}

// Function to multiply two values
long product(long a, long b)
{
 return a*b;
}

// Function to add two values
long sum(long a, long b)
{
 return a + b;
}

This example produces the following output:

3*5 = 15
3 * (4+5) + 6 = 33

This is hardly a useful program but it does show how a pointer to a function is defined, assigned a value, and

used to call a function. After the usual preamble, you define and initialize pDo_it as a pointer to a function, which
can point to either of the functions sum() or product().

pDo_it is initialized to nullptr, so before using it the address of the function product() is stored in pDo_it. product()
is then called indirectly through the pointer pDo_it in the output statement. The name of the pointer is used just as if
it were a function name and is followed by the function arguments between parentheses, exactly as they would appear
if the original function name were being used. It would save a lot of complication if the pointer were defined and
initialized like this:

auto pDo_it = product;

Just to show that you can, the pointer is changed to point to sum(). It is then used again in a ludicrously
convoluted expression to do some simple arithmetic. This shows that you can use a pointer to a function in exactly
the same way as the function to which it points. Figure 8-5 illustrates what happens.

Chapter 8 ■ Defining funCtions

258

pDo_it(product(3 , pDo_it(4, 5)), 6)

sum(4, 5)

pDo_it points to sum() so this is
equivalent to

returns

pDo_it(product(3, 9), 6)

returns

pDo_it(27, 6)

equivalent to

sum(27, 6) which returns 33

Figure 8-5. Execution of an expression using a function pointer

“pointer to function” is a perfectly reasonable type so a function can have a parameter of this type. The function
can then use its pointer to function parameter to call the function to which the argument points when the function is
called. You can specify just a function name as the argument for a parameter that is a “pointer to function” type.
A function passed to another function as an argument is referred to as a callback function.

Recursion
A function can call itself and a function that contains a call to itself is referred to as a recursive function. A recursive
function call can be indirect — for example, where a function fun1() calls another function fun2(), which in turn
calls fun1(). Recursion may seem to be a recipe for a loop that executes indefinitely, and if you are not careful it
certainly can be. A prerequisite for avoiding a loop of unlimited duration is that the function must contain some
means of stopping the process.

Recursion can be used in the solution of many different problems. Compilers are sometimes implemented
using recursion because language syntax is usually defined in a way that lends itself to recursive analysis. Data
that is organized in a tree structure is another example. Figure 8-6 illustrates a tree structure. This shows a tree that
contains structures that can be regarded as subtrees. Data that describes a mechanical assembly such as a car is
often organized as a tree. A car consists of subassemblies such as the body, the engine, the transmission, and the
suspension. Each of these consists of further subassemblies and components until ultimately, the leaves of the tree
are reached, which are all components with no further internal structure.

Chapter 8 ■ Defining funCtions

259

Data that is organized as a tree can be traversed very effectively using recursion. Each branch of a tree can be
regarded as a subtree, so a function for accessing the items in a tree can simply call itself when a branch node is
encountered. When a data item is encountered, the function does what is required with the item and returns to the
calling point. Thus, finding the leaf nodes of the tree — the data items — provides the means by which the function
stops the recursive calls of itself.

There are many things in physics and mathematics that you can think of as involving recursion. A simple example
is the factorial of a positive integer n (written as n!), which is the number of different ways in which n things can be
arranged. For a given positive integer, n, the factorial of n is the product 1×2×3×. . . ×n. The following recursive function
calculates this:

long factorial(long n)
{
 if(n == 1L) return 1L;

 return n*factorial(n - 1);
}

If this function is called with an argument value of 4, the return statement that calls the function with a value
of 3 in the expression executes. This will execute the return to call the function with an argument of 2, which will
call factorial() with an argument of 1. The if expression will be true in this case so 1 will be returned, which will
be multiplied by 2 in the next level up, and so on until the first call returns the value 4×3×2×1. This is very often the
example given to show recursion but it is a very inefficient process. It would certainly be much faster to use a loop.

Here’s another recursive function in a working example:

// Ex8_17.cpp
// Recursive version of function for x to the power n, n positive or negative
#include <iostream>
#include <iomanip>

Node

Node

Node

Node

data data data

data datadata

Node Node

data data data datadata

subtree 1

subtree 2

subtree 3

subtree 4 subtree 5

Figure 8-6. An example of a tree structure

Chapter 8 ■ Defining funCtions

260

double power(double x, int n);

int main()
{
 for (int i {-3} ; i <= 3 ; ++i) // Calculate powers of 8 from -3 to +3
 std::cout << std::setw(10) << power(8.0, i);

 std::cout << std::endl;
}

 // Recursive function to calculate x to the power n
 double power(double x, int n)
 {
 if (!n) return 1.0; // n zero
 if (n > 0) return x*power(x, n - 1); // n positive

 return 1.0 / power(x, -n); // n negative
 }

The output is:

0.00195313 0.015625 0.125 1 8 64 512

The first if statement in power() returns 1.0 if n is 0. For positive n, the next if statement returns the result of

the expression, x*power(x, n-1). This causes a further call of power() with the index value reduced by 1. If, in this
recursive function execution, n is still positive, then power() is called again with n reduced by 1. Each recursive call
is recorded in the call stack, along with the arguments and return location. This repeats until n is 0, whereupon 1 is
returned and the successive outstanding calls unwind, multiplying by x after each return. For a given value of n greater
than 0, the function calls itself n times.

For negative powers of n, the reciprocal of xn is calculated so this uses the same process. You could shorten the
code for the power() function by using the conditional operator. The function body comes down to a single line:

double power(double x, int n)
{
 return n ? (0 > n ? 1.0/power(x, -n) : x*power(x, n - 1)) : 1.0;
}

This doesn’t improve the operation particularly, and it’s not easier to understand what is happening. With this
example too, the recursive call process is very inefficient compared to a loop. Every function call involves a lot of
housekeeping. Implementing the power() function using a loop would make it execute a lot faster:

double power(double x, int n)
{
 if(!n) return 1.0;
 if(n < 0)
 {
 x = 1.0/x;
 n = -n;
 }

Chapter 8 ■ Defining funCtions

261

 double result {x};
 for(int i {1} ; i < n ; ++i)
 result *= x;

 return result;
}

Unless you have a problem that particularly lends itself to using recursion or you have no obvious alternative,
it is generally better to use a different approach, such as a loop. You need to make sure that the depth of recursion
necessary to solve a problem is not itself a problem. For instance, if a function calls itself a million times, a large
amount of stack memory will be needed to store copies of argument values and the return address for each call.
However, in spite of the overhead, using recursion can often simplify the coding considerably. Sometimes this gain in
simplicity can be well worth the loss in efficiency that you get with recursion.

Applying Recursion
Recursion is often favored in sorting and merging operations. Sorting data can be a recursive process in which the
same algorithm is applied to smaller and smaller subsets of the original data. We can develop an example that uses
recursion with a well-known sorting algorithm called Quicksort. The example will sort a sequence of words. I have
chosen this because it demonstrates a lot of different coding techniques and it’s sufficiently complicated to tax a few
brain cells more than the examples you’ve seen up to now. The example involves more than 100 lines of code, so
I’ll show and discuss each of the functions in the book separately and leave you to assemble them into a complete
working program. The complete program is available in the code download as Ex8_18.cpp.

The Quicksort Algorithm
Applying the Quicksort algorithm to a sequence of words involves choosing an arbitrary word in the sequence, and
arranging the other words so that all those “less than” the chosen word precede it and all those “greater than” the
chosen word follow it. Of course, the words on either side of the chosen word in the sequence will not necessarily be
in sequence themselves. Figure 8-7 illustrates this process.

Choose an arbitrary word in the sequence

Place all words less than the chosen word to the left Place all words greater than the chosen word to the right

Repeat the process for the left set Repeat the process for the right set

Continue until each word is in a separate set. The words are then in order.

Sorting Words Using the Quicksort Method

Repeat Repeat Repeat Repeat

Figure 8-7. How the Quicksort algorithm works

Chapter 8 ■ Defining funCtions

262

The same process is repeated for smaller and smaller sets of words until each word is in a separate set. When that
is the case, the process ends and the words are in ascending sequence. Of course, you’ll rearrange addresses in the
code, not move words around. The address of each word can be stored as a smart pointer to a string object and the
pointers can be stored in a vector container.

The type of a vector of smart pointers to string objects is going to look a bit messy so won’t help the readability
of the code. Two type aliases will help to make the code easier to read:

using PWord = std::shared_ptr<string>;
using PWords = std::vector<PWord>;

PWord is a type alias for a smart pointer to a string object containing a word. PWords is a vector of such smart
pointers so the full type of PWords in all its glory is std::vector<std::shared_ptr<std::string>>.

The main() Function
The definition of main() will be simple because all the work will be done by other functions. There will be several
#include directives and prototypes for the other functions in the application preceding the definition of main():

#include <iostream>
#include <iomanip>
#include <memory>
#include <string>
#include <vector>
using std::string;
using PWord = std::shared_ptr<string>;
using PWords = std::vector<PWord>;

void swap(PWords& pwords, size_t first, size_t second);
void sort(PWords& pwords, size_t start, size_t end);
void extract_words(PWords& pwords, const string& text, const string& separators);
void show_words(const PWords& pwords);
size_t max_word_length(const PWords& pwords);

I think by now you know why all these Standard Library headers are needed. memory is for smart pointer template
definitions and vector contains the templates for vector containers. The using declaration for std::string will make
the code less cluttered, as will the two type aliases.

There are five function prototypes:

•	 swap() is a helper function that interchanges the elements at indexes first and second in the
words vector.

•	 sort() will use the Quicksort algorithm to sort a contiguous sequence elements in words
from index start to index end inclusive. Indexes specifying a range are needed because the
Quicksort algorithm involves sorting subsets of a sequence, as you saw earlier.

•	 extract() extracts words from text and stores smart pointers to the words in the
words vector.

•	 show_words() outputs the words in words.

•	 max_word_length() determines the length of the longest word in words and is just to help
make the output pretty.

Chapter 8 ■ Defining funCtions

263

The last two functions have const reference parameters for the words vector because they don’t need to change
it. The others have non-const reference parameters because they do. Here’s the code for main():

int main()
{
 PWords pwords;
 string text; // The string to be sorted
 const string separators{" ,.!?\"\n"}; // Word delimiters

 // Read the string to be searched from the keyboard
 std::cout << "Enter a string terminated by *:" << std::endl;
 getline(std::cin, text, '*');

 extract_words(pwords, text, separators);
 if (pwords.size() == 0)
 {
 std::cout << "No words in text." << std::endl;
 return 0;
 }

 sort(pwords, 0, pwords.size() - 1); // Sort the words
 show_words(pwords); // Output the words
}

The vector of smart pointers is defined using the type alias, PWords. The vector will be passed by reference to
each function to avoid copying the vector and to allow it to be updated when necessary. Forgetting the & in the type
parameter can lead to a mystifying error. If the parameter to a function that changes words is not a reference, then
words is passed by value and the changes will be applied to the copy of words that is created when the function is
called. The copy is discarded when the function returns and the original vector will be unchanged.

The process in main() is straightforward. After reading some text into the string object text, the text is passed
to the extract_words() function that stores pointers to the words in words. After a check to verify that words is not
empty, sort() is called to sort the contents of words, and show_words() is called to output the words.

The extract_words() Function
You have seen a function similar to this. Here’s the code:

void extract_words(PWords& pwords, const string& text, const string& separators)
{
 size_t start {text.find_first_not_of(separators)}; // Start 1st word
 size_t end {}; // Index for the end of a word

 while (start != string::npos)
 {
 end = text.find_first_of(separators, start + 1); // Find end separator
 if (end == string::npos) // End of text?
 end = text.length(); // Yes, so set to last+1
 pwords.push_back(std::make_shared<string>(text.substr(start, end - start)));
 start = text.find_first_not_of(separators, end + 1); // Find next word
 }
}

Chapter 8 ■ Defining funCtions

264

The last two parameters are const because the function won’t change the arguments corresponding to these.
The separators object could conceivably be defined as a static variable within the function, but passing it as an
argument makes the function more flexible. The process is essentially the same as you have seen previously.
Each substring that represents a word is passed to the make_shared() function that is defined in the memory header.
The substring is used by make_shared() to create a string object in the free store along with a smart pointer to it.
The smart pointer that make_shared() returns is passed to the push_back() function for the words vector to append it
as a new element in the sequence.

The swap() Function
There’ll be a need to swap pairs of addresses in the vector in several places, so it’s a good idea to define a helper
function to do this:

void swap(PWords& pwords, size_t first, size_t second)
{
 PWord temp{pwords[first]};
 pwords[first] = pwords[second];
 pwords[second] = temp;
}

This just swaps the addresses in words at indexes first and second.

The sort() function
You can use swap() in the implementation of the Quicksort method because it involves rearranging the elements in
the vector. The code for the sorting algorithm looks like this:

void sort(PWords& pwords, size_t start, size_t end)
{
 // start index must be less than end index for 2 or more elements
 if (!(start < end))
 return;

 // Choose middle address to partition set
 swap(pwords, start, (start + end) / 2); // Swap middle address with start

 // Check words against chosen word
 size_t current {start};
 for (size_t i {start + 1} ; i <= end ; i++)
 {
 if (*(pwords[i]) < *(pwords[start])) // Is word less than chosen word?
 swap(pwords, ++current, i); // Yes, so swap to the left
 }

 swap(pwords, start, current); // Swap the chosen word with last in

 if (current > start) sort(pwords, start, current - 1); // Sort left subset if exists
 if (end > current + 1) sort(pwords, current + 1, end); // Sort right subset if exists
}

Chapter 8 ■ Defining funCtions

265

The parameters are the vector of addresses and the index positions of the first and last addresses in the subset
to be sorted. The first time the function is called, start will be 0 and end will be the index of the last element.
In subsequent recursive calls, a subsequence of the vector elements are to be sorted so start and/or end will be
interior index positions in many cases.

The steps in the sort() function code are:

The check for •	 start not being less than end stops the recursive function calls. If there’s one
element in a set, the function returns. In each execution of sort() the current sequence is
partitioned into two smaller sequences in the last two statements that call sort() recursively
— so eventually you must end up with a sequence that has only one element.

After the initial check, an address in the middle of the sequence is chosen arbitrarily as the •	
pivot element for the sort. This is swapped with the address at index start, just to get it out of
the way-you could also put it at the end of the sequence.

The •	 for loop compares the chosen word with the words pointed to by elements following
start. If a word is less than the chosen word, its address is swapped into a position following
start: the first into start+1, the second into start+2, and so on. The effect of this process is
to position all the words less than the chosen word before all the words that are greater than
or equal to it. When the loop ends, current contains the index of the address of the last word
found to be less than the chosen word. The address of the chosen word at start is swapped
with the address at current so the addresses of words less than the chosen word are now to
the left of current and the addresses of words that are greater or equal are to the right.

The last step sorts the subsets on either side of •	 current by calling sort() for each subset.
The indexes of words less than the chosen word run from start to current-1 and the indexes
of those greater run from current+1 to end.

With recursion the code for the sort is relatively easy to follow, and it is shorter and less convoluted than if you
implemented it as a loop. A loop is still faster, though.

The max_word_length() Function
This is a helper function that is used by the show_words() function:

size_t max_word_length(const PWords& pwords)
{
 size_t max {};
 for (auto& pword : pwords)
 if (max < pword->length()) max = pword->length();
 return max;
}

This steps through the words that the vector elements point to and finds and returns the length of the longest
word. You could put the code in the body of this function directly in the show_words() function. However, code is
easier to follow if you break it into small well-defined chunks. The operation that this function performs is
self-contained and makes a sensible unit for a separate function.

Chapter 8 ■ Defining funCtions

266

The show_words() Function
This function outputs the words pointed to by the vector elements. It’s quite long because it lists all words beginning
with the same letter on the same line, with up to 10 words per line. Here’s the code:

void show_words(const PWords& pwords)
{
 const size_t field_width {max_word_length(pwords) + 2};
 const size_t words_per_line {8}; // Word_per_line
 std::cout << std::left << std::setw(field_width) << *pwords[0]; // Output the first word

 size_t words_in_line {}; // Words in current line
 for (size_t i {1} ; i < pwords.size() ; ++i)
 { // Output - words newline when initial letter changes or after 10 per line
 if ((*pwords[i])[0] != (*pwords[i - 1])[0] || ++words_in_line == words_per_line)
 {
 words_in_line = 0;
 std::cout << std::endl;
 }
 std::cout << std::setw(field_width) << *pwords[i]; // Output a word
 }
 std::cout << std::endl;
}

The field_width variable is initialized to 2 more than the number of characters in the longest word. The variable
is used for the field width for each word, so they will be aligned neatly in columns. There’s also words_per_line,
which is the maximum number of words on a line. The first word in output before the for loop. This is because the
loop compare the initial character in the current word with that of the previous word to decide whether or not it
should be on a new line. Outputting the first word separately ensures we have a previous word at the start.
The std::left manipulator that is defined in the iostream header causes data to be left aligned in the output field.
There’s a complementary std::right manipulator. The rest of the words are output within the for loop. This output a
newline character when 8 words have been written on a line or when a word with an initial letter that is different from
the preceding word is encountered.

If you assemble the functions into a complete program, you’ll have a good-sized example of a program split into
several functions. Here’s an example of the output:

Enter a string terminated by *:
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of
Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we
had everything before us, we had nothing before us, we were all going direct to Heaven, we were all
going direct the other way—in short, the period was so far like the present period, that some of its
noisiest authorities insisted on its being received, for good or for evil, in the superlative degree
of comparison only.*

Chapter 8 ■ Defining funCtions

267

Darkness
Heaven
It
Light
age age all all authorities
before before being belief best
comparison
degree despair direct direct
epoch epoch everything evil
far foolishness for for
going going good
had had hope
in incredulity insisted it it it it it
it it it it its its
like
noisiest nothing
of of of of of of of of
of of of of on only or other
period period present
received
season season short so some spring superlative
that the the the the the the the
the the the the the the the times
times to
us us
was was was was was was was was
was was was way-in we we we we
were were winter wisdom worst

Of course, words beginning with an uppercase letter precede all words beginning with lowercase letters.

Summary
This marathon chapter has introduced you to writing and using functions but this isn’t everything relating to
functions. You’ll see more about functions in the context of user-defined types, starting in Chapter 11. The important
bits that you should take away from this chapter are:

Functions are self-contained compact units of code with a well-defined purpose. •	
A well-written program consists of a large number of small functions, not a small number
of large functions.

A function definition consists of the function header that specifies the function name, the •	
parameters, and the return type, followed by the function body containing the executable
code for the function.

A function prototype enables the compiler to process calls to a function even though the •	
function definition has not been processed.

The pass-by-value mechanism for arguments to a function passes copies of the original •	
argument values, so the original argument values are not accessible from within the function.

Chapter 8 ■ Defining funCtions

268

Passing a pointer to a function allows the function to change the value that is pointed to, even •	
though the pointer itself is passed by value.

Declaring a pointer parameter as •	 const prevents modification of the original value.

You can pass the address of an array to a function as a pointer.•	

Specifying a function parameter as a reference avoids the copying that is implicit in the •	
pass-by-value mechanism. A reference parameter that is not modified within a function
should be specified as const.

Specifying default values for function parameters allows arguments to be optionally omitted.•	

Returning a reference from a function allows the function to be used on the left of an •	
assignment operator. Specifying the return type as a const reference prevents this.

The signature of a function is defined by the function name together with the number and •	
types of its parameters.

Overloaded functions are functions with the same name but with different signatures and •	
therefore different parameter lists. Overloaded functions cannot be differentiated by the
return type.

A function template is a parameterized recipe used by the compiler to generate overloaded •	
functions.

The parameters in a function template can be type variables or non-type variables. •	
The compiler creates an instance of a function template for each function call that
corresponds to a unique set of template parameter arguments.

A function template can be overloaded with other functions or function templates.•	

The trailing return type syntax is used in the definition of a function template that has two or •	
more parameters and where the return type in an instance of the template depends on the
type arguments.

A pointer to a function stores the address of a function, plus information about the number •	
and types of parameters and the return type for a function. A pointer to a function can
store the address of any function with the specified return type, and number and types of
parameters.

You can use a pointer to a function to call the function at the address it contains. You can also •	
pass a pointer to a function as a function argument.

A recursive function is a function that calls itself. Implementing an algorithm recursively can •	
sometimes result in very elegant and concise code, but usually at the expense of execution
time when compared to other methods of implementing the same algorithm.

Chapter 8 ■ Defining funCtions

269

eXerCISeS

these exercises enable you to try out some of what you’ve learned in this chapter. if you get stuck, look back
over the chapter for help. if you’re still stuck, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 8-1. Write a function, validate_input(), that accepts two integer arguments that
represent the upper and lower limits for an integer that is to be entered. it should accept
a third argument that is a string describing the input, the string being used in the prompt
for input to be entered. the function should prompt for input of the value within the range
specified by the first two arguments and include the string identifying the type of value to be
entered. the function should check the input and continue to prompt for input until the value
entered by the user is valid. use the validate_input() function in a program that obtains a
user’s date of birth and outputs it in the form of this example:

November 21, 2012

the program should be implemented so that separate functions, month(), year(), and day()
manage the input of the corresponding numerical values. Don’t forget leap years -
february 29, 2013 is not allowed!

exercise 8-2. Write a function that reads a string or array of characters as input and reverses
it. Justify your choice of parameter type? provide a main() function to test your function that
prompts for a string of characters, reverses them, and outputs the reversed string.

exercise 8-3. Write a program that accepts from two to four command line arguments. if it
is called with less than two, or more than four arguments, output a message telling the user
what they should do, and then exit. if the number of arguments is correct, output them, each
on a separate line.

exercise 8-4. Create a function, plus(), that adds two values and returns their sum. provide
overloaded versions to work with int, double, and string types, and test that they work
with the following calls:

int n {plus(3, 4)};

double d {plus(3.2, 4.2)};

string s {plus("he", "llo")};

string s1 {"aaa"};

string s2 {"bbb"};

string s3 {plus(s1, s2)};

Can you explain why the following doesn’t work?

int d {plus(3, 4.2)};

http://www.apress.com/source-code

Chapter 8 ■ Defining funCtions

270

exercise 8-5. Write a function that returns a reference to the smaller of two arguments of
type long. Write another function that returns a reference to the larger of two arguments of
type long. use these functions to generate as many numbers of the fibonacci sequence as
the user requests. You will recall from this chapter that each number in the sequence is the
sum of the two preceding it. (hint: You can start with two numbers n1 and n2 that start out
as 1. if you store the sum of the two in the smaller of the two and then output the larger, you
should get what you want. the hard bit may be figuring out why this works!)

exercise 8-6. Define the plus() function from exercise 8-4 as a template, and test that it
works for numeric types. Does your template work for the statement plus("he", "llo")?
Can you explain this behavior? suggest a solution to the problem.

exercise 8-7. a recursive function called ackerman’s function is popular with some lecturers
in computer science and mathematics. the function can be defined like this:

if m and n are integers, where n >=0 and m >=0,

then ack(m,n) = n+1, if m == 0;

ack(m,n) = ack(m–1, 1), if m > 0 and n == 0;

ack(m,n) = ack(m–1, ack(m, n–1)), if m > 0 and n > 0.

Define a function to compute ackerman’s function recursively. test the function for values of
n between 0 and 5, and m between 0 and 3. one particular property of this function is that
the depth of recursion increases dramatically for small increases in m and n. for instance,
calculating ackerman’s function recursively for quite modest values such as n > 9 and m > 3
is extremely difficult if not impossible on most computers.

exercise 8-8. Define a function template to Quicksort a vector of numerical values of any
type. Demonstrate its typical use for types float and long long.

271

Chapter 9

Lambda Expressions

This chapter is dedicated to lambda expressions that provide a capability similar to that of a function. In this chapter
you will learn:

What a lambda expression is and what you use it for•	

How you define a lambda expression•	

How you pass a lambda expression as an argument to a function•	

What options you have for specifying a function parameter that accepts a lambda expression •	
as an argument

What a capture clause is and how you use it•	

How you can define recursive lambda expressions•	

Introducing Lambda Expressions
A lambda expression has a lot in common with the functions you learned about in the previous chapter, which is
why the topic appears in this chapter. A lambda expression provides a way to define a function with no name—an
anonymous function. More precisely, a lambda expression defines an object that encapsulates a function—usually
referred to as a function object. At first sight you may find it difficult to imagine the applicability of this but it is
immensely useful - and powerful. The primary use for lambda expressions is to pass a function as an argument to
another function. Lambda expressions can be applied extensively in the Standard Template Library, although I won’t
be delving very far into that in this book.

A lambda expression is different from a regular function in that it can access variables that exist in the enclosing
scope where it is defined. Because you can pass a lambda expression as an argument to another function, it provides
an alternative to using function pointers. A lambda expression defines an anonymous object that represents a
function. There’s no need for an explicit definition of the type of the object. There’s no generic “lambda expression
type.” Since I have said that you typically use a lambda expression to pass a function as an argument to another
function, this immediately raises the question of how you define a function parameter where the argument is to be
an arbitrary lambda expression. There is more than one possibility. A simple answer is to define a function template
where the type parameter is the type of a lambda expression. When a lambda expression is passed as an argument to
the function, the compiler deduces the parameter type to be used in the template instance.

Chapter 9 ■ Lambda expressions

272

Defining a Lambda Expression
Let’s consider an example of a lambda expression. Suppose you want to calculate the cubes (x3) of numerical values of
type double. You can easily define a lambda expression to do this:

[] (double value) { return value*value*value; }

The opening square brackets are called the lambda introducer. They mark the beginning of the lambda
expression. There’s more to the lambda introducer than there is here—the brackets are not always empty—but I’ll
explain this in more depth a little later in this chapter. The lambda introducer is followed by the lambda parameter
list between parentheses. This is just like a regular function parameter list. In this case, there’s just a single parameter,
value, but there could be more. There are restrictions on the parameter list for a lambda expression compared to
normal functions. You cannot specify default parameter values for the parameters for one thing.

The body of the lambda expression between braces follows the parameter list, again just like a normal function.
The body for this lambda contains just one statement, a return statement that also calculates the value that is
returned. In general the body of a lambda can contain any number of statements. Note that there’s no return type
specification here. The return type defaults to that of the value returned. If nothing is returned, the return type is void.
You can specify the return type. You use the trailing return type syntax that you met in the previous chapter to do this.
You could supply it for the lambda above like this:

[] (double value) -> double { return value*value*value; }

The return type is specified following the -> operator that comes after the parameter list and is type double here.
You can execute a lambda expression when you define it. Here’s a somewhat useless demonstration of this:

double cube {};
cube = [] (double value) -> double { return value*value*value; }(3.5); // 42.875

You could even define and execute a lambda in an initializer list:

cube {[] (double value) -> double { return value*value*value; }(3.5)}; // 42.875

It’s obviously easier to just write an arithmetic expression here but there could be circumstances where this is
useful - where the initial value is to be the maximum or minimum of a set of values in a sequence for example.

Naming a Lambda Expression
Although a lambda expression is an anonymous object, you can still store its address in a variable. You don’t know
what its type is, but the compiler does:

auto cube = [] (double value) -> double { return value*value*value; };

The auto keywords tells the compiler to figure out the type that the variable cube should have from whatever
appears on the right of the assignment, so it will have the type necessary to store the address of the lambda expression.
You can always do this if there is nothing between the square brackets - the lambda introducer. You’ll see later that
sometimes things between the square brackets will prevent you from using auto in this way. You can use cube just like
the function pointers you learned about in the previous chapter. For example:

 double x{2.5};
 std::cout << x << " cubed is " << cube(x) << std::endl;

Chapter 9 ■ Lambda expressions

273

The output statement will present the cube of 2.5. To convince you that this all really works, I’ll put together a
complete example:

// Ex9_01.cpp
// Using lambda expressions
#include <iostream>
#include <vector>
#include <string>
using std::string;

int main()
{
 auto cube = [](double value) -> double { return value*value*value; };
 double x {2.5};
 std::cout << x << " cubed is " << cube(x) << std::endl;

 auto average = [](const std::vector<double>& v) -> double
 {
 double sum{};
 for (const auto& x : v)
 sum += x;
 return sum / v.size();
 };
 std::vector<double> data {1.5, 2.5, 3.5, 4.5, 5.5};
 std::cout << "Average of values in data is " << average(data) << std::endl;

 string original {"ma is as selfless as I am"};
 string copy{original};
 reverse(copy);
 std::cout << "\"" << original << "\" reversed is \"" << copy << "\"" << std::endl;
}

The output is:

2.5 cubed is 15.625
Average of values in data is 3.5
"ma is as selfless as I am" reversed is "ma I sa sselfles sa si am"

There are three lambdas defined. The first contains a single statement and returns the cube of the argument as

type double. The auto keyword for the type of cube causes the compiler to specify its type to store the address of the
lambda. The address of the second lambda stored is average. Its definition is more complex in that its body consists of
several statements to compute the average of the elements in the vector that it passes as the argument. The parameter is
a const reference type, which allows elements values to be accessed but not modified; it also avoids copying the vector
argument. The third lambda has a non-const parameter to allow the string argument to be modified. It reverses the
sequence of characters in the string. There’s no return value but you could return a reference to the argument, which
would allow a call of the lambda to be used as a function argument. This would allow you to omit the statement that
calls reverse() to reverse the characters in copy, and put the call directly in the output statement, like this:

std::cout << "\"" << original << "\" reversed is \"" << reverse(copy) << "\"" << std::endl;

Chapter 9 ■ Lambda expressions

274

The reference that reverse() returns is now passed to the insertion operator for cout. copy still exists in this
scope with its characters reversed.

The example demonstrates that when you store the address of a lambda in a variable, you can use the variable to
call the lambda in the same way that you would call a regular function.

Passing a Lambda Expression to a Function
As I’ve said, a lambda expression defines an anonymous object that represents a function. There’s no need for an
explicit definition of the type of the object. In general, you don’t know the type of a lambda expression. There’s no
generic “lambda expression type.” Since I have also said that you typically use a lambda expression to pass a function
as an argument to another function, this immediately raises the question of how you define the type of a function
parameter where the argument is to be a lambda expression. There is more than one possibility. A simple answer is to
define a function template where the type parameter is the type of a lambda expression. When a lambda expression is
passed as an argument in a function call, the compiler can deduce the parameter type for the template instance.

Function Templates that Accept Lambda Expression Arguments
The compiler always knows the type of a lambda expression so it can instantiate a function template with a parameter
that will accept a given lambda expression as an argument. It’s easy to see how this works with an example.

Suppose that you have a number of double values stored in a vector container that you want to be able to
transform in arbitrary ways; sometimes you want to replace the values by their squares, or their square roots, or some
more complex transformation that depends on whether or not the values lie within a particular range. You can define
a template that allows the transformation of the vector elements to be specified by a lambda expression. Here’s how
the template looks:

template <typename F>
std::vector<double>& change(std::vector<double>& vec, F fun)
{
 for(auto& x : vec)
 x = fun(x);

 return vec;
}

The fun parameter will accept any suitable lambda expression that has a parameter of type double and returns
a value of type double. You may wonder how the compiler deals with this template, bearing in mind that there’s no
information as to what fun does. The answer is that the compiler doesn’t deal with it. The compiler doesn’t process
a template in any way until it needs instantiating. A template can contain any number of coding errors that won’t be
detected until the compiler meets a statement that uses the template. As soon as you write a statement that makes
use of the template, an instance is created that is then compiled, which reveals any coding errors. In the case of the
template above, all the information about the lambda is available to the compiler when you use it. Here’s a program
that uses this template:

// Ex9_02.cpp
// Passing lambda expressions as function arguments
#include <iostream>
#include <vector>

// Put the change<F>() template definition here...

Chapter 9 ■ Lambda expressions

275

int main()
{
 auto cube = [](double value) -> double { return value*value*value; };
 auto average = [](const std::vector<double>& v) -> double
 {
 double sum{};
 for (auto x : v)
 sum += x;
 return sum / v.size();
 };

 std::vector<double> data {1.5, 2.5, 3.5, 4.5, 5.5};
 std::cout << "Average of values in data is " << average(data) << std::endl;

 change(data, [](double x){ return (x + 1.0)*(x + 2.0); }); // Direct lambda argument
 std::cout << "Average of changed values in data is " << average(data) << std::endl;
 std::cout << "Average of cubes of values in data is " << average(change(data, cube))
 << std::endl;
}

The output is:

Average of values in data is 3.5
Average of changed values in data is 26.75
Average of cubes of values in data is 36257.2

This uses the cube and average lambdas from the previous example. The code in main() demonstrates that

you can pass a variable containing the address of a lambda as the second argument to change<F>(), or you can pass
an anonymous lambda explicitly as the second argument. The compiler determines the type F for fun to create an
instance of the function template from the lambda that is passed as the second argument.

The last output statement passes the vector returned by change<F>() after the element values have been
transformed by the cube lambda as the argument to the average() lambda.

A Function Parameter Type for Lambda Arguments
In the previous example, the fun parameter implies that the argument must represent a function that accepts a single
parameter of type double. It also returns a result that can be stored as type double. You could replace the change()
template definition in the previous example, Ex9_02.cpp, with a function definition, where the type for the
fun parameter is a pointer to a function:

std::vector<double>& change(std::vector<double>& vec, double(*fun)(double))
{
 for (auto& x : vec)
 x = fun(x);

 return vec;
}

Chapter 9 ■ Lambda expressions

276

This specifies the fun parameter as a pointer to a function with a parameter of type double that returns a
double value. The change() function will accept any function pointer that conforms to this type, including lambda
expressions.

Only lambda expressions that have nothing between the lambda introducer will be accepted as arguments though.
Stuff that does appear within the lambda introducer not only changes the type, it changes what the lambda can do very
significantly. Before I get to that, let’s look at another possibility for specifying a function parameter type to accept a
lambda expression as the argument. This option will work when you do include stuff within the lambda introducer.

Using the std::function Template Type
The functional header in the Standard Library defines a template type, std::function<>, that is a wrapper for
any kind of pointer to a function with a given set of return and parameter types; of course, this includes lambda
expressions. The type argument for the std::function template is of the form Return_Type(Param_Types).
Return_Type is the type of value returned by the lambda expression (or function pointed to). Param_Types is a list of
the parameter types for the lambda expression separated by commas. You can use the std::function type template
to specify the type of any lambda expression, regardless of whether or not anything appears in the lambda introducer.

I can demonstrate how you use std::function with a revised version of the example from the previous section:

std::vector<double>& change(std::vector<double>& vec, std::function<double(double)> fun)
{
 for (auto& x : vec)
 x = fun(x);

 return vec;
}

The second parameter to the change() function uses the std::function template to specify the type. The
lambda expressions that are acceptable arguments in a change() function call have a parameter of type double
and return a double value so the type argument for the std::function template is double(double). This version of
change() will accept any lambda expression or pointer to function as an argument that has the specified combination
of return and parameter types. You can plug it into Ex9_02.cpp to see it working.

A lambda expression is frequently used as a way of passing a comparison mechanism to a function. A new
version of the sort() function from Ex8_18.cpp provides a more substantial demonstration of this:

void mysort(PWords& data, size_t start, size_t end,
 std::function<bool(const PWord, const PWord)> compare)
{
 // start index must be less than end index for 2 or more elements
 if (!(start < end))
 return;

 // Choose middle address to partition set
 std::swap(data[start], data[(start + end) / 2]); // Swap middle address with start

 // Check words against chosen word
 size_t current{start};
 for (size_t i{start + 1}; i <= end; i++)
 {
 if (compare(data[i], data[start])) // Is word less than chosen word?
 std::swap(data[++current], data[i]); // Yes, so swap to the left
 }

Chapter 9 ■ Lambda expressions

277

 std::swap(data[start], data[current]); // Swap the chosen word with last in

 if (current > start) mysort(data, start, current - 1, compare); // Sort left subset if exists
 if (end > current + 1) mysort(data, current + 1, end, compare); // Sort right subset if exists
}

The first three parameters are the same as the sort() function in Ex8_18.cpp. The additional parameter allows
a lambda expression to be passed that compares elements in the vector, which are of type PWord. A lambda argument
must return a value of type bool.

The code in the body of mysort() is very similar to the original sort() function except for two differences; it
uses the function pointed to by the fourth argument to compare vector elements and it uses a swap() function that
is an instance of a template in the utility Standard Library header. Instances of this template can interchange two
data items of any type. Using a lambda expression to compare elements will provide a great deal of flexibility in how
the function can be used. You can now sort in ascending or descending sequence. Here’s a complete example to
demonstrate that:

// Ex9_03.cpp
// Sorting words in ascending or descending sequence
#include <iostream>
#include <iomanip> // For stream manipulators
#include <memory> // For smart pointers
#include <string> // for type string
#include <vector> // For vector<T> container
#include <functional> // For function<> type
#include <utility> // For swap() function template
using std::string;
using PWord = std::shared_ptr<string>;
using PWords = std::vector<PWord>;

// Function prototypes
void mysort(PWords& data, size_t start, size_t end,
 std::function<bool(const PWord, const PWord)> compare);
void extract_words(std::vector<std::shared_ptr<string>>& pwords, const string& text,
 const string& separators);
void show_words(const std::vector<std::shared_ptr<string>>& pwords);
size_t max_word_length(const std::vector<std::shared_ptr<string>>& pwords);

int main()
{
 PWords pwords;
 string text; // The string to be sorted
 const string separators {" ,.!?\"\n"}; // Word delimiters

 // Read the string to be searched from the keyboard
 std::cout << "Enter a string terminated by *:" << std::endl;
 getline(std::cin, text, '*');

Chapter 9 ■ Lambda expressions

278

 extract_words(pwords, text, separators);
 if (pwords.size() == 0)
 {
 std::cout << "No words in text." << std::endl;
 return 0;
 }
 size_t start {}, end {pwords.size() - 1};
 std::cout << "\nWords in ascending sequence:\n";

 // Sort the words
 mysort(pwords, start, end, [](const PWord p1, const PWord p2) { return *p1 < *p2; });

 show_words(pwords); // Output the words
 std::cout << "\nWords in descending sequence:\n";
 mysort(pwords, start, end, [](const PWord p1, const PWord p2) {return *p1 > *p2; });
// Sort the words
 show_words(pwords); // Output the words
}

// Put definition of mysort() here...
// Put definitions from Ex8_18.cpp for extract_words(), show_words() and max_word_length() here...

The complete code is in the download for Ex9_03.cpp. Here’s an example of the output:

Enter a string terminated by *:
To be, or not to be, that is the question.*

Words in ascending sequence:
To
be be
is
not
or
question
that the to

Words in descending sequence:
to the that
question
or
not
is
be be
To

Chapter 9 ■ Lambda expressions

279

The mysort() function uses the lambda that is passed as the fourth argument to compare elements in the vector.
To sort in ascending sequence, you pass a lambda that defines a “less-than” comparison. For descending sequence
you pass a lambda that defines a “greater-than” comparison. A further refinement would be to specify a default value
for the compare parameter to mysort(). You just specify the default parameter value in the prototype:

void mysort(PWords& data, size_t start, size_t end,
 std::function<bool(const PWord, const PWord)> compare =
 [](const PWord p1, const PWord p2) {return *p1 < *p2; });

The default specification provides for sorting in ascending sequence so you omit the fourth argument in a
mysort() function call to get this. When you want words sorted in descending sequence, you specify the fourth
argument with the appropriate lambda expression.

Note ■ Writing your own sort function is educational but not necessary. the algorithm standard Library header
defines an excellent function template std::sort<>() that will sort just about any sequence of elements. it provides for
passing a lambda expression to specify the comparison, too.

The Capture Clause
As I’ve said, the lambda introducer, [], is not necessarily empty. It can contain a capture clause that specifies
how variables in the enclosing scope can be accessed from within the body of the lambda. The body of a lambda
expression with nothing between the square brackets can only work with the arguments and with variables that are
defined locally within the lambda. A lambda with no capture clause is called a stateless lambda expression because it
cannot access anything in its enclosing scope.

A default capture clause applies to all variables in the scope enclosing the definition of the lambda. If you put
= between the square brackets, the body of the lambda can access all automatic variables in the enclosing scope by
value — that is, the values of the variables are made available within the lambda expression, but the values stored in
the original variables cannot be changed. If you put & between the square brackets, all variables in the enclosing scope
are accessible by reference, so their values can be changed by the code in the body of the lambda. To be accessible,
variables must be defined preceding the definition of the lambda expression. You cannot use auto to specify the type
of a variable to store the address of a lambda that accesses the variable containing its address. This implies you are
trying to initialize the variable with an expression that uses the variable. You cannot use auto with any lambda that
refers to the variable being defined—self-reference is not allowed with auto.

Here’s an example that uses the change() function template from the previous section:

std::vector<double> data {1.5, 2.5, 3.5, 4.5, 5.5};
double factor {10.0};
change(data, [=](double x){ return factor*x; });
std::cout << "The values in data are now:\n"
for(const auto& x : data)
 std::cout << " " << x;
std::cout << std::endl;

Chapter 9 ■ Lambda expressions

280

The = capture clause allows all the variables that are in scope where the definition of the lambda appears to
be accessed by value from within the body of the lambda expression that is the second argument to the template
function, change(). The effect is rather different from passing arguments by value. First, the value factor is available
within the lambda, but you cannot update the temporary memory location that contains the value of factor because
it is const. The following statement will not compile, for example:

change(data, [=](double x){ factor += 2.0;
 return factor*x; });

If you want to modify the copy of a variable in the enclosing scope from within the lambda, you must add the
mutable keyword to the lambda definition following the parentheses enclosing the parameter list, like this:

change(data, [=](double x) mutable { factor += 2.0;
 return factor*x; });

Adding the mutable keyword enables you to modify the copy of any variable within the enclosing scope,
which doesn’t change the original variable of course. After executing this statement, the value of factor will
still be 10.0.

There’s another significant difference from accessing arguments passed by value to a function. The lambda
remembers the local value of factor from one call to the next, so the copy is effectively static. The change() function
applies the lambda that is passed as the second argument to successive elements in data. For the first element in
data, the local factor copy will be 10.0 + 2.0 = 12.0, for the second element, it will be 12.0 + 2.0 = 14.0, and so
on. After change() finishes executing, factor in the outer scope will still be 10.0.

Warning ■ Capturing all the variables in the enclosing scope by value can add a lot of overhead because they will each
have a copy created, whether or not you refer to them.

Using & as the capture clause allows access to factor and any other variables in the enclosing scope by reference,
so the original value of factor will be modified by the lambda:

change(data, [&](double x) { factor += 2.0;
 return factor*x; });

The mutable keyword is not necessary in this case. All variables within the outer scope are available by reference,
so the lambda can use and alter their values. The result of executing this will be that the value of factor will be 20.0.
The lambda expression executes once for each element in data, and the elements will be multiplied by successive
values of factor from 12.0 to 20.0. Although the & capture clause is legal, capturing all variables in the outer scope by
reference is not usually a good idea because of the potential for accidentally modifying one of them. It’s much better
to capture only the variables you need. I’ll explain how you do this next.

Capturing Specific Variables
You can identify specific variables in the enclosing scope that you want to access by reference by listing them in the
capture clause, with each name prefixed with &. You could rewrite the previous statement as:

change(data, [&factor](double x) { factor += 2.0;
 return factor*x; });

Chapter 9 ■ Lambda expressions

281

Here, factor is the only variable in the enclosing scope that can be accessed from within the body of the lambda
and the &factor specification makes it available by reference. Without the &, the factor variable in the outer scope
would be available by value and not updatable. When you put several variables in the capture clause, you separate
them with commas. You can include = in the capture clause along with specific variable names that are to be captured.
The capture clause [=, &factor] would allow access to factor by reference and any other variables in the enclosing
scope by value. Alternatively, you could write the capture clause as [&, factor] which would capture factor by value
and all other variables by reference. You would also need to specify the mutable keyword to modify the copy of factor.

Using Lambda Expressions in a Template
You can define and use a lambda expression inside a function template definition. The next example will show this as
well as passing a lambda to a function template instance. Here’s the code:

// Ex9_04.cpp
// Using lambda expressions in function templates
#include <iostream>
#include <iomanip>
#include <vector>
#include <functional>
#include <cmath> // For pow()
using std::vector;

// Template function to set a vector to values determined by a lambda expression
template <typename T> void setValues(vector<T>& vec, std::function<void(T&)> fun)
{
 for (size_t i {} ; i < vec.size() ; ++i)
 fun(vec[i]);
}

// Template function to list the values in a vector
template<class T> void listVector(const vector<T>& vec)
{
 int count {}; // Counts number of outputs
 const int valuesPerLine {5};
 auto print = [&count, valuesPerLine](T value) {
 std::cout << std::setw(10) << value << " ";
 if (++count % valuesPerLine == 0) std::cout << std::endl; };
 for (size_t i {} ; i < vec.size() ; ++i)
 print(vec[i]);
}

int main()
{
 // Populate vector with values 1+1=2, 2+2=4, 4+3=7, 7+4=11, ...
 vector<int> integerData(50);
 int current {1};
 int increment {1};
 setValues<int>(integerData, [increment, ¤t](int& v) mutable{ v = current + increment++;
 current = v; });
 std::cout << "Integer vector contains :" << std::endl;
 listVector(integerData);

Chapter 9 ■ Lambda expressions

282

 // Populate vector with x to nth power, x = 2.5
 vector<double> values(10);
 size_t power {};
 double x {2.5};
 setValues<double>(values, [power, x](double& v) mutable{ v = std::pow(x, power++); });
 std::cout << "\nDouble vector contains:" << std::endl;
 listVector(values);
}

This example produces the following output:

Integer vector contains :
 2 4 7 11 16
 22 29 37 46 56
 67 79 92 106 121
 137 154 172 191 211
 232 254 277 301 326
 352 379 407 436 466
 497 529 562 596 631
 667 704 742 781 821
 862 904 947 991 1036
 1082 1129 1177 1226 1276

Double vector contains:
 1 2.5 6.25 15.625 39.0625
 97.6563 244.141 610.352 1525.88 3814.7

The first function template, setValues<T>(), sets the elements of the vector passed as the first argument using

the lambda expression that is passed as the second argument. The lambda has a parameter of type T and has no
return value. The code in the body of the template is just a for loop that iterates over the elements in the vector,
applying the lambda to each in turn.

The second function template, listVector<T>(), lists the elements in a vector of elements of type T. Each element
is output in a for loop by the lambda that initializes the print variable. You can see that the lambda parameter is of
type T, which is the template type parameter, so the lambda will be defined for each specific instance of the function
template. The count variable in the enclosing scope is captured by reference so the lambda can increment it for each
value that is written to cout. values_per_line is captured by value so the lambda only has access to a copy.

The main() function applies these template functions first to a vector of 50 integer elements. The lambda that
is passed to setValues<T>() captures increment by value and current by reference. The mutable keyword allows
the lambda to modify the copy of increment and carry its value forward from one call of the lambda to the next.
The original value of increment in the enclosing scope will be unchanged. Note the explicit type argument for the
function template instance; this is essential to allow a call of setValues<T>() to compile because the compiler cannot
otherwise deduce the type of the lambda parameter. Outputting the values of the vector elements just requires calling
listVector() with vec as the argument. There’s no need to specify the template type argument explicitly, although
you can if you want to.

The second block of code in main() applies the function templates to a vector of double elements. The lambda
that is passed to setValues<T>() is designed to set the element values to x0, x, x2, x3, and so on, with x having the value
2.5. The lambda captures power and x from the enclosing scope by value. The mutable keyword enables the copy of
power to be updated on each call, and its value retained from one call to the next. Obviously, the copy of x could also
be updated if this was necessary. The reference parameter for the lambda allows the element that is passed to be
updated in the lambda. I hope this little examples shows you a little of the potential of lambda expressions.

Chapter 9 ■ Lambda expressions

283

Recursion in Lambda Expressions
When you store the address of a lambda expression in a variable, you make it possible for the lambda to be called
from within another lambda expression; this can include the same lambda expression if you define the variable in
the right way. Of course, the variable that points to the lambda is defined in the enclosing scope. A lambda that calls
another lambda must capture the variable in the enclosing scope that contains its address. Recursion is evidently self-
referential, so using auto for the type of the variable that stores the address of the lambda is not allowed. You must use
std::function in this case.

I’ll demonstrate this in action with an example that finds the highest common factor (HCF) for a pair of integer
values. The HCF is the largest number that divides into both integers with zero remainder. The HCF is also referred
to as the greatest common divisor (GCD). The program uses Euclid’s method for finding the highest common factor
for two integer values. The process is to first divide the larger number by the smaller number. If the remainder is zero,
the HCF is the smaller number. If the remainder is non-zero, the process continues by dividing the previous smaller
number by the remainder, and a zero remainder indicates the remainder is the HCF. If the remainder is non-zero, the
process is repeated until the remainder is zero. Here’s the code to implement Euclid’s method:

// Ex9_05.cpp
// Recursive calls in a lambda expression
#include <iostream>
#include <functional> // For function<>

int main()
{
 // A lambda expression that returns the HCF of its arguments
 std::function<long long(long long, long long)> hcf =
 [&hcf](long long i, long long j) mutable ->long long {
 if (i < j) return hcf(j, i);
 long long remainder{i%j};
 if (!remainder) return j;
 return hcf(j, remainder); };

 // A lambda expression that outputs the HCF of the arguments
 auto showHCF = [&hcf](long long a, long long b) {
 std::cout << "The highest common factor of " << a << " and " << b
 << " is " << hcf(a, b) << std::endl;
 };
 long long a {}, b {};
 while (true)
 {
 std::cout << "\nEnter two integers to find their HCF, or 0 to end: ";
 std::cin >> a;
 if (!a) break;
 std::cin >> b;

 showHCF(a, b);
 }
}

Chapter 9 ■ Lambda expressions

284

This produces the output:

Enter two integers to find their HCF, or 0 to end: 8961 9001891
The highest common factor of 8961 and 9001891 is 103

Enter two integers to find their HCF, or 0 to end: 7932729108943 483489887381237
The highest common factor of 7932729108943 and 483489887381237 is 941

Enter two integers to find their HCF, or 0 to end: 0

The variable hcf stores the address of the lambda expression that determines the HCF of it arguments. The type

of hcf is specified using the std::function template type. The lambda calls itself recursively using hcf in order to
work, and because this is defined outside the scope of the lambda, you cannot use a regular function pointer type for
hcf. You cannot use auto either because self-reference is prohibited with auto. However, std::function can always
hack it. The lambda expression has two parameters of type long long and returns a value of type long long, so hcf is
of type:

function<long long(long long, long long)>

The code for the lambda expression assumes m is the larger of the two arguments, so if it isn’t, it calls hcf() with
the arguments reversed. If m is the larger number, the remainder after dividing m by n is calculated. If the remainder is
zero, then n is the highest common factor and is returned. If the remainder is not zero, hcf() is called with n and the
remainder.

The next statement in main() initializes showHCF with a lambda to find the HCF and output it. auto is fine here
because the capture clause only captures hcf and it does not reference itself. The rest of main() calls this lambda
through the showHCF function pointer in a loop.

Summary
This chapter introduced the basics of how you define and use lambda expressions. Lambda expressions are a
powerful tool when applied in general. They come into their own in the context of the Standard Template Library
where many of the template functions have a parameter for which you can supply a lambda expression as the
argument. The most important points covered in this chapter are:

A lambda expression defines an anonymous function. Lambda expressions are typically used •	
to pass a function as an argument to another function.

A lambda expression always begins with a lambda introducer that consists of a pair of square •	
brackets that can be empty.

The lambda introducer can contain a capture clause that specifies which variables in the •	
enclosing scope can be accessed from the body of the lambda expression. Variables can be
captured by value or by reference.

There are two default capture clauses: •	 & specifies that all variables in the enclosing scope are
capture by reference, = specifies that all variables in the enclosing scope are to be captured by
value.

A capture clause can specify specific variables to be captured by value or by reference.•	

Chapter 9 ■ Lambda expressions

285

Variables captured by value will have a local copy created. The copy is not modifiable by •	
default. Adding the mutable keyword following the parameter list allows local copies of
variables captured by value to be modified.

When the •	 mutable keyword is specified, copies of variables from the enclosing scope are
essentially static so their values are carried forward from one call of the lambda to the next.

You can specify the return type for a lambda expression using the trailing return type syntax. •	
If you don’t specify a return type, the compiler deduces the return type from the first return
statement in the body of the lambda.

You can use the •	 std::function<> template type that is defined in the functional header to
specify the type of a function parameter that will accept a lambda expression as an argument.

eXerCISeS

exercise 9-1. define a lambda expression to find the largest even number in a vector of non-zero elements of type
int. demonstrate its use in a suitable test program.

exercise 9-2. define a lambda expression that will multiply the value of a double variable that is passed by
reference by a scale factor that is defined in the enclosing scope. demonstrate that the lambda works by applying
it to the elements of a vector.

exercise 9-3. define and test a lambda expression that returns the count of the number of elements in a
vector<string> container that begin with a given letter.

exercise 9-4. define and demonstrate a recursive lambda expression that accepts an unsigned integer as an
argument and returns an integer that corresponds to the argument with its decimal digits reversed.

287

Chapter 10

Program Files and Preprocessing
Directives

This chapter is more about managing code than writing code. I'll discuss how multiple program files and header files
interact, and how you manage and control their contents. The material in this chapter has implications for how you
define your data types, which you'll learn about starting in the next chapter.

In this chapter you will learn:

How header files and source files interrelate•	

What a translation unit is•	

What linkage is and why it is important•	

More detail on how you use namespaces•	

What preprocessing is, and how to use the preprocessing directives to manage code•	

The basic ideas in debugging, and the debugging help you can get from preprocessing and the •	
Standard Library

How you use the •	 static_assert keyword

Understanding Translation Units
You know that header files primarily contain definitions that are used by source files that contain the executable code.
The contents of a header file are made available in a source file by using an #include preprocessing directive. So far
you have only used header files that provide the information necessary for using Standard Library capabilities. The
program examples have been short and simple; consequently, they have not warranted the use of separate header
files containing your own definitions. In the next chapter, when you learn how to define your own data types, the need
for header files will become apparent. A typical practical C++ program involves many header files that are included
into many source files.

Each source file along with the contents of the header files that you include into it is called a translation unit. The
term "translation unit" is a somewhat abstract term because this isn't necessarily a file in general, although it will be
with the majority of C++ implementations. The compiler processes each translation unit in a program independently
to generate an object file. The object file contains machine code and information about references to entities such
as functions that were not defined in the translation unit - external entities in other words. The set of object files for a
complete program are processed by the linker, which establishes all necessary connections between the object files to
produce the executable program module. If an object file contains references to an external entity that is not found in any
of the other object files, no executable module will result and there will be one or more error messages from the linker.

Chapter 10 ■ program Files and preproCessing direCtives

288

The “One Definition” Rule
Each variable, function, class type, enumeration type, or template in a translation unit must only be defined once. You
can have more than one declaration for a variable or function for example, but there must be only one definition that
determines what it is and causes it to be created. If there's more than one definition, the code will not compile.

Inline functions are an exception. The definition of an inline function must appear in every translation unit that
calls the function, but all definitions of a given inline function in all translation units must be identical. For this reason,
you should always define inline functions in a header file that you include in a source file when one is required.

You have seen that you can define variables in different blocks to have the same name but this does not violate
the one definition rule; the variables may have the same name but they are distinct.

Of course, you will usually use a given data type in more than one translation unit so several translation units in a
program can each include a definition for the type; this is legal only as long as the definitions are identical. In practice
you achieve this by placing the definition for a type in a header file and use an #include directive to add the header
file to any source file that requires the type definition. However, duplicate definitions for a given type are illegal within
a single translation unit, so you need to be careful how you define the contents of header files. You must make sure
that duplicate type definitions within a translation unit cannot occur. You’ll see how you do this later in this chapter.

Program Files and Linkage
Entities in one translation unit often need to be accessed from code in another translation unit. Functions are obvious
examples of where this is the case, but you can have others — variables defined at global scope that are shared across
several translation units, for instance. Because the compiler processes one translation unit at a time, such references
can’t be resolved by the compiler. Only the linker can do this when all the object files from the translation units in the
program are available.

The way that names in a translation unit are handled in the compile/link process is determined by a property that
a name can have called linkage. Linkage expresses where in the program code the entity that is represented by a name
can be. Every name that you use in a program either has linkage, or doesn’t. A name has linkage when you can use it
to access something in your program that is outside the scope in which the name is declared. If this isn’t the case, it
has no linkage. If a name has linkage, then it can have internal linkage or external linkage. Therefore, every name in a
translation unit has internal linkage, external linkage, or no linkage.

Determining Linkage for a Name
The linkage that applies to a name is not affected by whether its declaration appears in a header file or a source file.
The linkage for each name in a translation unit is determined after the contents of any header files have been inserted
into the .cpp file that is the basis for the translation unit. The linkage possibilities have the following meanings:

Internal linkage: The entity that the name represents can be accessed from anywhere
within the same translation unit. For example, the names of variables defined at global
scope that are specified as const have internal linkage by default.

External linkage: A name with external linkage can be accessed from another translation
unit in addition to the one in which it is defined. In other words, the entity that the name
represents can be shared and accessed throughout the entire program. All the functions
that you have written so far have external linkage and so do non-const variables that are
defined at global scope.

No linkage: When a name has no linkage, the entity it refers to can only be accessed from
within the scope that applies to the name. All names that are defined within a block — local
names, in other words — have no linkage.

Now, the interesting question is this: From within a function, how do you access a variable that is defined in
another translation unit? This comes down to how you declare a variable to be external.

Chapter 10 ■ program Files and preproCessing direCtives

289

External Names
In a program made up of several files, the linker establishes (or resolves) the connection between a function call in one
source file and the function definition in another. When the compiler compiles a call to the function, it only needs the
information contained in a function prototype to create the call. The compiler doesn’t mind whether the function’s
definition occurs in the same file or elsewhere. This is because function names have external linkage by default. If
a function is not defined within the translation unit in which it is called, the compiler flags the call as external and
leaves it for the linker to sort out.

Variables are different. The compiler needs to know if the definition for a variable name is external to the current
translation unit. If you want to access a variable that is defined outside the current translation unit, then you must
declare the variable name using the extern keyword, as you saw in Chapter 3:

extern double pi;

This statement is a declaration that pi is a name that is defined outside of the current block. The type must
correspond exactly to the type that appears in the definition. You can’t specify an initial value in an extern declaration
because it's a declaration of the name, not a definition of a variable. Declaring a variable as extern implies that it is
defined in another translation unit. This causes the compiler to mark the variable as having external linkage. It is the
linker that makes the connection between the name and the variable to which it refers.

const Variables with External Linkage
Suppose that a source file defines the following at global scope:

const double pi {3.14159265};

A const variable has internal linkage by default, which makes it unavailable in other translation units. You can
override this by using the extern keyword in the definition:

extern const double pi {3.14159265}; // Has external linkage

The extern keyword tells the compiler that the name should have external linkage, even though it is const. When
you want to access pi in another source file, you must declare it as const and external:

extern const double pi; // Variable is defined in another file

Within any block in which this declaration appears, the name pi refers to the constant defined in another file.
The declaration can appear in any translation unit that needs access to pi. You can place the declaration either at
global scope in a translation unit so that it’s available throughout the code in the source file, or within a block in which
case it is only available within that local scope.

Global variables can be useful for constant values that you want to share because they are accessible in any
translation unit. By sharing constant values across all of the program files that need access to them, you can ensure
that the same values are being used for the constants throughout your program. However, although up to now I have
shown constants defined in source files, the best place for them is in a header file.

Preprocessing Your Source Code
Preprocessing is a process executed by the compiler before a source file is compiled into machine instructions.
Preprocessing prepares and modifies the source code for the compile phase according to instructions that you specify
by preprocessing directives. All preprocessing directives begin with the symbol #, so they are easy to distinguish from
C++ language statements. Table 10-1 shows the complete set.

Chapter 10 ■ program Files and preproCessing direCtives

290

Note ■ all preprocessing directives begin with #.

The preprocessing phase analyzes, executes, and then removes all preprocessing directives from a source file.
This generates the translation unit that consists purely of C++ statements that is then compiled. The linker must
then process the object file that results along with any other object files that are part of the program to produce the
executable module.

Several of these directives are primarily applicable in C and are not so relevant with current C++. The language
capabilities of C++ provide much more effective and safer ways of achieving the same result as some of the
preprocessing directives. I’ll only discuss the preprocessing directives that are important in C++. You are already
familiar with the #include directive. There are other directives that can provide considerable flexibility in the way in
which you specify your programs. Keep in mind that preprocessing operations occur before your program is compiled.
Preprocessing modifies the set of statements that constitute your program and the preprocessing directives no longer
exist in the source file that is compiled and thus they are not involved in the execution of your program at all.

You may wonder why you would want to use of the #line directive to change the line number. The need for this is
rare, but one example is a program that maps some other language into C or C++. An original language statement may
generate several C++ statements and by using the #line directive you can ensure that C++ compiler error messages
identify the line number in the original code, rather than the C++ that results. This makes it easier to identify the
statement in the original code that is the source of the error.

Table 10-1. Preprocessing Directives

Directive Description

#include Supports header file inclusion

#if Enables conditional compilation

#else else for #if

#elif Equivalent to #else #if

#endif Marks the end of an #if directive

#define Defines an identifier

#undef Deletes an identifier

#if defined (or #ifdef) Does something if an identifier defined

#if !defined (or #ifndef) Does something if an identifier is not defined

#line Redefines the current line number and/or filename

#error Outputs a compile-time error message and stop the compilation. This is typically
part of a conditional preprocessing directive sequence.

#pragma Offers machine-specific features while retaining overall C++ compatibility

Chapter 10 ■ program Files and preproCessing direCtives

291

Defining Preprocessing Identifiers
The general form of the #define preprocessing directive is:

#define identifier sequence_of_characters

This defines identifier as an alias for sequence_of_characters. identifier must conform to the usual
definition of an identifier in C++ — any sequence of letters and digits, the first of which is a letter, and where the
underline character counts as a letter. sequence_of_characters can be any sequence of characters, including an
empty sequence.

One use for #define is to define an identifier that is to be replaced in the source code by a substitute string
during preprocessing. Here's how you could define PI to be an alias for a sequence of characters that represents a
numerical value:

#define PI 3.14159265

PI looks like a variable but this has nothing to do with variables. PI is a symbol or token, which is exchanged for
the specified sequence of characters by the preprocessor before the code is compiled. 3.14159265 is not a numerical
value in the sense that no validation is taking place; it is merely a string of characters. The string PI will be replaced
during preprocessing by its definition, the sequence of characters 3.14159265, wherever the preprocessing operation
deems that the substitution makes sense. If you wrote 3,!4!5 as the replacement character sequence, the substitution
would still occur. The #define directive is often used to define symbolic constants in C but don't do this in C++. It is
much better to define a constant variable, like this:

const long double pi {3.14159265L};

pi is a constant value of a particular type. The compiler ensures that the value for pi is consistent with its type.
You could place this definition in a header file for inclusion in any source file where the value is required, or define it
with external linkage:

extern const long double pi {3.14159265L};

Now you may access pi from any translation unit just by adding an extern declaration for it wherever it is
required.

Here's another example:

#define BLACK WHITE

Any occurrence of BLACK in the file will be replaced by WHITE. The identifier will only be replaced when it is a
token. It will not be replaced if it forms part of an identifier or appears in a string literal or a comment. There’s no
restriction on the sequence of characters that is to replace the identifier. It can even be absent in which case the
identifier exists but with no predefined substitution string - the substitution string is empty. If you don’t specify a
substitution string for an identifier, then occurrences of the identifier in the code will be replaced by an empty
string — in other words, the identifier will be removed. For example:

#define VALUE

The effect is that all occurrences of VALUE that follow the directive will be removed. The directive also defines
VALUE as an identifier and its existence can be tested by other directives, as you'll see.

The major use for the #define directive with C++ is in the management of header files, as you'll see later
in this chapter.

Chapter 10 ■ program Files and preproCessing direCtives

292

Caution ■ Using a #define directive to define an identifier that you use to specify a value in C++ code has three
major disadvantages: there's no type checking support, it doesn’t respect scope, and the identifier name cannot be bound
within a namespace.

Undefining an Identifier
You may want to have the identifier resulting from a #define directive only to exist in part of a program file. You can
nullify a definition for an identifier using the #undef directive. You can negate a previously defined VALUE identifier
with this directive:

#undef VALUE

VALUE is no longer defined following this directive so no substitutions for VALUE can occur. The following code
fragment illustrates this:

#define PI 3.142
// All occurrences of PI in code from this point will be replaced by 3.142
// ...
#undef PI
// PI is no longer defined from here on so no substitutions occur.
// Any references to PI will be left in the code.

Between the #define and #undef directives, preprocessing replaces appropriate occurrences of PI in the code
with 3.142. Elsewhere, occurrences of PI are left as they are. The combination of #define and #undef directives has
another use, which I'll explain when I deal with decision-making preprocessing directives later in this chapter.

Including Header Files
A header file is an external file contents are included in a source file using the #include preprocessing directive.
Header files contain primarily type definitions, template definitions, function prototypes, and constants. You are
already completely familiar with statements such as this:

#include <iostream>

The contents of the iostream standard library header replaces the #include directive. This will be the definitions
required to support input and output with the standard streams. Any Standard Library header name can appear
between the angled brackets. If you #include a header that you don’t need, the primary effect is to extend the
compilation time and the executable may occupy more memory than necessary. It may also be confusing for anyone
who reads the program.

You include your own header files into a source file with a slightly different syntax where you enclose the header
file name between double quotes. Here's an example:

#include "myheader.h"

Chapter 10 ■ program Files and preproCessing direCtives

293

The contents of the file named myheader.h are introduced into the program in place of the #include directive. The
contents of any file can be included into your program in this way. You simply specify the file name of the file between
quotes as in the example. With the majority of compilers, you the file name can use upper- and lowercase characters.
In theory, you can assign any name and extension you like to your header files — you don’t have to use the extension .h.
However, it is a convention adhered to by most C++ programmers, and I’d recommend that you follow it too.

The process used to find a header file depends on whether you specify the file name between double quotes
or between angled brackets. The precise operation is implementation-dependent and should be described in your
compiler documentation. Usually, the compiler only searches the default directories that contain the Standard Library
headers for the file when the name is between angled brackets. This implies that your header files will not be found if
you put the name between angled brackets. If the header name is between double quotes, the compiler searches the
current directory (typically the directory containing the source file that is being compiled) followed by the directories
containing the standard headers. If the header file is in some other directory, you may need to put the complete path
for the header file or the path relative to the directory containing the source file between the double quotes.

Note ■ a file introduced into a source file by an #include directive can contain #include directives. the #include
directives in an included header are preprocessed in the same way. this continues until there are no #include directives
in the source file.

Preventing Duplication of Header File Contents
You have already seen that you don't have to specify a value when you define an identifier:

#define MYHEADER_H

This creates MYHEADER_H so it exists from here on and represents an empty character sequence. You can use
the #if defined directive to test whether a given identifier has been defined and include code or not in the file
depending on the result:

#if defined MYHEADER_H
 // The code here will be placed in the source file...
 // ...if MYHEADER_H has been defined. Otherwise it will be omitted.
#endif

All the lines following #if defined up to the #endif directive will be kept in the file if the identifier, MYHEADER_H,
has been defined previously and omitted if it has not. The #endif directive marks the end of the text that is controlled
by the #if defined directive. You can use the abbreviated form, #ifdef, if you prefer:

#ifdef MYHEADER_H
 // The code down to #endif will be placed in the source file...
 // ...if MYHEADER_H has been defined...
 // ...otherwise it will be omitted.
#endif

You can use the #if !defined, or its equivalent, #ifndef, to test for an identifier not having been defined:

#if !defined MYHEADER_H

Chapter 10 ■ program Files and preproCessing direCtives

294

 // The code down to #endif will be placed in the source file...
 // ...if MYHEADER_H has NOT been defined...
 // ...otherwise, the code will be omitted.
#endif

Here, the lines following #if !defined down to the #endif are included in the file to be compiled provided the
identifier has not been defined previously. This pattern is the basis for the mechanism that is used to ensure that the
contents of a header file are not duplicated in a source file:

// Header file myheader.h
#ifndef MYHEADER_H
 // If MYHEADER_H has NOT been defined...
 // ...everything down to #endif will be included in the source file...
 // ...including the next directive that defines MYHEADER_H
#define MYHEADER_H
 // The entire code for myheader.h is placed here.
 // This code will be placed in the source file...
 // ...only if MYHEADER_H has NOT been defined previously.
#endif

If a header file, myheader.h, that has contents like this is included into a source file more than once, the first
#include directive will include the code because MYHEADER_H has not been defined. In the process it will define
MYHEADER_H. Any subsequent #include directives for myheader.h in the source file or in other header files that are
included into the source file will not include the code because MYHEADER_H will have been defined previously.

This is an important mechanism that you should put in all your header files. All the code in every header should
be between an #ifndef - #endif pair of directives in the pattern above. As I noted earlier, a header file that you
include into a source file can contain #include directives; this feature is used extensively in large programs and in the
Standard Library headers. With a complex program involving many header files, there’s a good chance that a
header file may potentially be #included more than once in a source file and in some situations it is unavoidable.
By using the #ifndef - #endif pattern above in your header files, you eliminate the potential for violations of the
“one definition” rule.

Tip ■ some compilers use the #pragma directive to achieve the same effect as the pattern i have described. For
example, #pragma once at the beginning of a header file may be all that is necessary to prevent duplication of the contents.

Namespaces
I introduce namespaces back in Chapter 1 but there's a bit more to it than I explained then. With large programs,
choosing unique names for all the entities that have external linkage can become difficult. When an application
is developed by several programmers working in parallel, using namespaces to prevent name clashes becomes
essential. Name clashes are perhaps most likely in the context of user-defined types, or classes, which you will meet in
the next few chapters.

A namespace is a block that attaches an extra name—the namespace name—to every entity name that is declared
or defined within it. The full name of each entity is the namespace name followed by the scope resolution operator,
::, followed by the basic entity name. Different namespaces can contain entities with the same name, but the entities
are differentiated because they are qualified by different namespace names.

Chapter 10 ■ program Files and preproCessing direCtives

295

Note ■ a declaration introduces a name into a scope. a definition introduces the name and defines what it is so a
definition is also a declaration.

You typically use a separate namespace within a single program for each collection of code that encompasses a
common purpose. Each namespace would represent some logical grouping of functions, together with any related
global variables and declarations. A namespace would also be used to contain a unit of release, such as a library.

You are already aware that Standard Library names are declared within the std namespace. You also know that
you can reference any name from a namespace without qualifying it with the namespace name by using a blanket
using directive:

using namespace std;

However, this defeats the purpose of using namespaces in the first place and increases the likelihood of errors
due to the accidental use of a name in the std namespace. It is much better to use qualified names or add using
declarations for the names from another namespace that you are referencing.

The Global Namespace
All the programs that you’ve written so far have used names that you defined in the global namespace. The global
namespace applies by default if a namespace hasn’t been defined. All names within the global namespace are just as
you declare them, without a namespace name being attached. In a program with multiple source files, all the names
with linkages are within the global namespace.

With small programs, you can define your names within the global namespace without running into any
problems. With larger applications, the potential for name clashes increases, so you should use namespaces to
partition your code into logical groupings. That way, each code segment is self-contained from a naming perspective,
and name clashes are prevented.

Defining a Namespace
You can define a namespace with these statements:

namespace myRegion
{
 // Code you want to have in the namespace, including
 // function definitions and declarations, global variables,
 // templates, etc.
}

Note that no semicolon is required after the closing brace in a namespace definition. The namespace name here
is myRegion. This uniquely identifies the namespace, and this name will be attached to all the entities defined within
it. The braces enclose the scope for the namespace myRegion, and every name declared within the namespace scope
has the name myRegion attached to it.

Caution ■ You must not include the main() function within a namespace. the runtime environment expects main() to
be defined in the global namespace.

Chapter 10 ■ program Files and preproCessing direCtives

296

You can extend a namespace scope by adding a second namespace block with the same name. For example,
a program file might contain the following:

namespace calc
{
 // This defines namespace calc
 // The initial code in the namespace goes here
}
namespace sort
{
 // Code in a new namespace, sort
}
namespace calc
{
 /* This extends the calc namespace
 Code in here can refer to names in the previous
 calc namespace block without qualification */
}

There are two blocks defined as namespace calc, separated by a namespace sort. The second calc block
is treated as a continuation of the first, so functions declared within each of the calc blocks belong to the same
namespace. The second block is called an extension namespace definition because it extends the original namespace
definition. You can have several extension namespace definitions in a translation unit.

Of course, you wouldn’t choose to organize a source file so that it contains multiple namespace blocks in this way
but it can occur anyway. If you include several header files into a source file then you may effectively end up with the
sort of situation I just described. An example of this is when you include several Standard Library headers (each of
which contributes to the namespace std), interspersed with your own header files:

#include <iostream> // In namespace std
#include "mystuff.h" // In namespace calc
#include <string> // In namespace std – extension namespace
#include "morestuff.h" // In namespace calc – extension namespace

Note that references to names from inside the same namespace do not need to be qualified. For example, names
that are defined in the namespace calc can be referenced from within calc without the qualifying them with the
namespace name.

Let’s look at an example that illustrates the mechanics of declaring and using a namespace. The program will
consist of two source .cpp files. The first containing definitions of some const variables:

// Ex10_01_data.cpp
// Using a namespace
#include <string>
namespace data
{
 extern const double pi {3.14159265};
 extern const std::string days[]
 {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"};
}

Chapter 10 ■ program Files and preproCessing direCtives

297

I organized the program as two source files to show how you access definitions in one translation unit from
another but it would be better to put definitions in a header file as I'll explain shortly. pi and days[] are defined
within the data namespace. The days[] array is of type string, which is defined in the Standard Library, so the type
name is qualified with std.

The second source file contains main():

// Ex10_01_code.cpp
// Using a namespace
#include <iostream>
#include <string>

namespace data
{
 extern const double pi; // Variable is defined in another file
 extern const std::string days[]; // Array is defined in another file
}

int main()
{
 std::cout << "pi has the value " << data::pi << std::endl;
 std::cout << "The second day of the week is " << data::days[1] << std::endl;
}

The two source files are separate translation units that are compiled independently to produce object files. These
are linked to produce the executable module. This example produces the following output:

pi has the value 3.14159
The second day of the week is Monday

You must declare pi and days[] as external in the file containing main() because they are defined in a separate
translation unit. The declarations for the external variables are within the data namespace because the variables
are defined within this namespace in the first .cpp file. This demonstrates the point that I discussed earlier — a
namespace can be defined piecemeal. A single file can contain several namespace blocks with the same namespace
name, and their contents will be in the same namespace. Type string is defined within the standard library
namespace so you have to supply the qualified name std::string in the declaration.

As I said, this is not the best way to organize the code for this program. The definitions for pi and days should be
in a header file, data.h, for example. The contents of this header file would be:

// Ex10_01.h
// Definitions for globals in namespace data
#include <string>
#ifndef EX10_01_H
#define EX10_01_H
namespace data
{
 extern const double pi {3.14159265};
 extern const std::string days[] {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
 };
}
#endif

Chapter 10 ■ program Files and preproCessing direCtives

298

To make the definitions available in the file containing main() or any other file that needs access to these
constants, you would add an #include directive at the beginning:

#include "Ex10_01.h"

There is now only one translation unit. The preprocessing directives in the header ensure that its contents cannot
appear more than once in a translation unit.

Applying using Declarations
Just to formalize what I have been doing in previous examples I'll remind you of the using declaration for a single
name from a namespace:

using namespace_name::identifier;

using is a keyword, namespace_name is the name of the namespace, and identifier is the name that you want to
use unqualified. This declaration introduces a single name from the namespace, which could represent anything that
has a name. For instance, a set of overloaded functions defined within a namespace can be introduced with a single
using declaration.

Although I’ve placed using declarations and directives at global scope in the examples, you can also place them
within a namespace, or within a function, or even within a statement block. In each case, the declaration or directive
applies until the end of the block that contains it.

Note ■ When you use an unqualified name, the compiler first tries to find the definition in the current scope, prior to
the point at which it is used. if the definition is not found, the compiler looks in the immediately enclosing scope. this
continues until the global scope is reached. if a definition for the name is not found at global scope (which could be an
extern declaration), the compiler concludes that the variable is not defined.

Functions and Namespaces
For a function to exist within a namespace, it is sufficient for the function prototype to appear in the namespace. You
can define the function elsewhere using the qualified name for the function; in other words, the function definition
doesn’t have to be enclosed in a namespace block. Let’s explore an example. Suppose you write two functions,
max() and min(), that return the maximum and minimum of a vector of values. You can put the declarations for the
functions in a namespace as follows:

// compare.h
// For Ex10_02.cpp
#include <vector>
#ifndef COMPARE_H
#define COMPARE_H

namespace compare
{
 using std::vector;
 double max(const vector<double>& data);
 double min(const vector<double>& data);
}
#endif

Chapter 10 ■ program Files and preproCessing direCtives

299

This code would be in a header file, compare.h, which can be included by any source file that used the functions.
The definitions for the functions can now appear in a .cpp file. You can write the definitions without enclosing them
in a namespace block, as long as the name of each function is qualified with the namespace name. The contents of the
file would be:

// compare.cpp
// For Ex10_02.cpp
#include <vector>
#include "compare.h"

// Function to find the maximum
double compare::max(const std::vector<double>& data)
{
 double result {data[0]};
 for(const auto value : data)
 if(result < value) result = value;
 return result;
}

// Function to find the minimum
double compare::min(const std::vector<double>& data)
{
 double result {data[0]};
 for(const auto value : data)
 if(result > value) result = value;
 return result;
}

You need the compare.h header file to be included so that the namespace is identified. This tells the compiler to
deduce that the functions are declared within the namespace. There's an #include directive for the vector header
that is also included into compare.h. The contents of the vector header will only appear once in this file because all
the Standard Library headers have preprocessing directives to prevent duplication. It's a good idea in general to have
#include directives for every header that a file uses, even when one header may include another header that you use.
This makes the file independent of potential changes to the header files.

Of course you could place the code for the function definitions within the compare namespace directly. In this
case, the contents of compare.cpp would be:

#include <vector>

namespace compare
{
double max(const std::vector<double>& data)
{
 // Code for max() as above...
}

double min(const std::vector<double>& data)
{
 // Code for min() as above...
}
}

Chapter 10 ■ program Files and preproCessing direCtives

300

If you write the function definitions in this way, then you don’t need to #include compare.h into this file. This is
because the definitions are within the namespace. Using the functions is the same, however you have defined them.
To confirm how easy it is, let’s try it out with the functions that you’ve just defined. Create the compare.h header file
with the contents I discussed earlier. Create the first version of compare.cpp where the definitions are not defined in a
namespace block. All you need now is a .cpp file containing the definition of main() to try the functions out:

// Ex10_02.cpp
// Using functions in a namespace
#include <iostream>
#include <vector>
#include "compare.h"

using compare::max; // Using declaration for max
using compare::min; // Using declaration for min

int main()
{
 std::vector<double> data {1.5, 4.6, 3.1, 1.1, 3.8, 2.1};
 std::cout << "Minimum value is " << min(data) << std::endl;
 std::cout << "Maximum double is " << max(data) << std::endl;
}

All the files for examples with more than one file will be in a separate folder in the code download so the files
for this example will be in the Ex10_02 folder. If you compile the two .cpp files and link them, executing the program
produces the following output:

Minimum double is 1.1
Maximum double is 4.6

Caution ■ the example assumes that compare.h is in the same directory as the source file. if compare.h is in a
different folder from the source files, then the #include directive must contain the full path to compare.h or the path
relative to the folder containing the source file.

There is a using declaration for each function in compare.h so you can use the names without having to add the
namespace name. You could equally well have used a using directive for the compare namespace in this case:

using namespace compare;

The namespace only contains the functions max() and min() so this would have been just as good and one less
line of code. Without the using declarations for the function names (or a using directive for the compare namespace),
you would have to qualify the functions like this:

std::cout << "Minimum value is " << compare::min(data) << std::endl;
std::cout << "Maximum double is " << compare::max(data) << std::endl;

Chapter 10 ■ program Files and preproCessing direCtives

301

Unnamed Namespaces
You don’t have to assign a name to a namespace, but this doesn’t mean it doesn’t have a name. You can declare an
unnamed namespace with the following code:

namespace
{
 // Code in the namespace, functions, etc.
}

This creates a namespace that has an internal name that is generated by the compiler. Only one “unnamed”
namespace exists in a file, so additional namespace declarations without a name will be extensions of the first.
However, unnamed namespaces within distinct translation units are distinct unnamed namespaces.

Note that an unnamed namespace is not within the global namespace. This fact, combined with the fact that an
unnamed namespace is unique to a translation unit, has significant consequences. It means that functions, variables,
and anything else declared within an unnamed namespace are local to the translation unit in which they are
defined. They can’t be accessed from another translation unit. Placement of function definitions within an unnamed
namespace has the same effect as declaring the functions as static in the global namespace. Declaring functions and
variables as static at global scope was a common way of ensuring they weren’t accessible outside their translation
unit. An unnamed namespace is a much better way of restricting accessibility where necessary, and using static for
this is deprecated.

Namespace Aliases
In a large program with multiple development groups, long namespace names may be necessary to ensure that you
don’t have accidental name clashes. Such long names may be unduly cumbersome to use; having to attach names
such as System_Group5_Process3_Subsection2 to every function call would be more than a nuisance. To get over
this, you can define an alias for a namespace name on a local basis. The general form of the statement you’d use to
define an alias for a namespace name is as follows:

namespace alias_name = original_namespace_name;

You can then use alias_name in place of original_namespace_name to access names within the namespace. For
example, to define an alias for the namespace name in the previous paragraph, you could write this:

namespace SG5P3S2 = SystemGroup5_Process3_Subsection2;

Now you can call a function within the original namespace with a statement such as this:

int maxValue {SG5P3S2::max(data)};

Chapter 10 ■ program Files and preproCessing direCtives

302

Nested Namespaces
You can define one namespace inside another. The mechanics of this are easiest to understand if I take a specific
context. For instance, suppose you have the following nested namespaces:

// outin.h
namespace outer
{
 double max(const std::vector<double>& data)
 {
 // body code..
 }

 double min(const std::vector<double>& data)
 {
 // body code..
 }

 namespace inner
 {
 void normalize(std::vector<double>& data)
 {
 // ...
 double minValue {min(data, size)}; // Calls max() in outer namespace
 // ...
 }
 }
}

From within the inner namespace, the normalize() function can call the function min() in the namespace outer
without qualifying the name. This is because the declaration of normalize() in the inner namespace is also within
the outer namespace.

To call min() from the global namespace, you qualify the function name in the usual way:

double result{outer::min(data)};

Of course, you could use a using declaration for the function name or specify a using directive for the
namespace. To call normalize() from the global namespace, you must qualify the function name with both
namespace names:

outer::inner::normalize(data);

The same applies if you include the function prototype within the namespace and supply the definition
separately. You could write just the prototype of normalize() within the inner namespace and place the definition of
normalize() in the file outin.cpp:

// outin.cpp
#include "outin.h"
void outer::inner::normalize(std::vector<double>& data)

Chapter 10 ■ program Files and preproCessing direCtives

303

{
 // ...
 double minValue{min(data)}; // Calls min() in outer
 // ...
}

Of course, to compile this successfully, the compiler needs to know about the namespaces. Therefore outin.h,
which I #include here prior to the function definition, needs to contain the namespace declarations.

Logical Preprocessing Directives
The logical #if works in essentially the same way as an if statement in C++. Among other things this allows
conditional inclusion of code and/or further preprocessing directives in a file, depending on whether or not
preprocessing identifiers have been defined, or based on identifiers having specific values. This is particularly useful
when you want to maintain one set of code for an application that may be compiled and linked to run in different
hardware or operating system environments. You can define preprocessing identifiers that specify the environment
for which the code is to be compiled and select code and or #include directives accordingly.

The Logical #if Directive
You have seen in the context of managing the contents of a header file that a logical #if directive can test whether or
not a symbol has been previously defined. You can also use the directive test whether or not a constant expression
is true. Of course, you can use the technique that protects the contents of a header file from multiple inclusions to
selectively include code in a source file. Suppose you put the following code in your program file:

// code that sets up the array data[]...

 #ifdef CALCAVERAGE
 double average {};
 size_t count {sizeof data/sizeof data[0]};
 for(size_t i {} ; i < count ; ++i)
 average += data[i];
 average /= count;
 std::cout << "Average of data array is " << average << std::endl;
 #endif

 // rest of the program...

If the identifier CALCAVERAGE has been defined by a previous preprocessing directive, the code between the #if
and #endif directives is compiled as part of the program. If CALCAVERAGE has not been defined, the code won’t be
included.

Testing for Specific Identifier Values
The general form of the #if directive is:

#if constant_expression

Chapter 10 ■ program Files and preproCessing direCtives

304

The constant_expression must be an integral constant expression that does not contain casts. All arithmetic
operations are executed with the values treated as type long or unsigned long. If the value of constant_expression
is nonzero, then lines following the #if down to the #endif will be included in the code to be compiled. The most
common application of this uses simple comparisons to check for a particular identifier value. For example, you might
have the following sequence of statements:

#if ADDR == 64
 // Code taking advantage of 64-bit addressing...
#endif

The statements between the #if directive and #endif are only included in the program here if the identifier ADDR
has been defined as 64 in a previous #define directive.

Multiple Choice Code Selection
The #else directive works in the same way as the C++ else statement, in that it identifies a sequence of lines to be
included in the file if the #if condition fails. This provides a choice of two blocks, one of which will be incorporated
into the final source. Here’s an example:

#if ADDR == 64
 std::cout << "64-bit addressing version." << std::endl;
 // Code taking advantage of 64-bit addressing...
#else
 std::cout << "Standard 32-bit addressing version." << std::endl;
 // code for standard processors...
#endif

One or other the sequences of statements will be included in the file, depending on whether or not ADDR has been
defined as 64.

There is a special form of #if for multiple choice selections. This is the #elif directive, which has the following
general form:

#elif constant_expression

Here is an example of how you might use this:

#if LANGUAGE == ENGLISH
 #define Greeting "Good Morning."
#elif LANGUAGE == GERMAN
 #define Greeting "Guten Tag."
#elif LANGUAGE == FRENCH
 #define Greeting "Bonjour."
#else
 #define Greeting "Hi."
#endif
 std::cout << Greeting << std::endl;

With this sequence of directives, the output statement will display one of a number of different greetings,
depending on the value assigned to LANGUAGE in a previous #define directive.

Chapter 10 ■ program Files and preproCessing direCtives

305

Another possible use is to include different code depending on an identifier that represents a version number:

#if VERSION == 3
 // Code for version 3 here...
#elif VERSION == 2
 // Code for version 2 here...
#else
 // Code for original version 1 here...
#endif

This allows you to maintain a single source file that compiles to produce different versions of the program
depending on how VERSION has been set in a #define directive.

Standard Preprocessing Macros
There are several standard predefined preprocessing macros and the most useful are listed in Table 10-2.

Table 10-2. Predefined Preprocessing Macros

Macro Description

– –LINE– – The line number of the current source line as a decimal integer literal.

– –FILE– – The name of the source file as a character string literal.

– –DATE– – The date when the source file was processed as a character string literal in the form Mmm dd yyyy. Here,
Mmm is the month in characters, (Jan, Feb, etc.); dd is the day in the form of a pair of characters 1 to 31,
where single digit days are preceded by a blank; and yyyy is the year as four digits (such as 2014).

– –TIME– – The time at which the source file was compiled, as a character string literal in the form hh:mm:ss,
which is a string containing the pairs of digits for hours, minutes, and seconds separated by colons.

Note that each of the macro names in Table 10-2 start and end with two underscore characters. The – –LINE– –
and – –FILE– – macros cause reference information relating to the source file to be displayed. You can modify the
current line number using the #line directive and subsequent line numbers will increment from that. For example,
to start line numbering at 1000 you would add this directive:

#line 1000

You can use the #line directive to change the string returned by the – –FILE– – macro. It usually produces the
fully qualified file name, but you can change it to whatever you like. Here’s an example:

#line 1000 "The program file"

This directive changes the line number of the next line to 1000, and alters the string returned by the – –FILE– –
macro to "The program file". This doesn’t alter the file name, just the string returned by the macro. Of course, if you
just wanted to alter the apparent file name and leave the line numbers unaltered, you could use the – –LINE– – macro
in the #line directive:

#line – –LINE– – "The program file"

Chapter 10 ■ program Files and preproCessing direCtives

306

You can use the date and time macros to record when your program was last compiled with a statement such
as this:

std::cout << "Program last compiled at " << _ _TIME_ _ << " on "<< _ _DATE_ _ << std::endl;

When this statement is compiled, the values displayed by the statement are fixed until you compile it again.
Thus the program outputs the time and date of its last compilation.

Debugging Methods
Most of your programs will contain errors, or bugs, when you first complete them. There are many ways in which
bugs can arise. Most simple typos will be caught by the compiler so you'll find these immediately. Logical errors or
failing to consider all possible variations in input data will take longer to find. Debugging is the process of eliminating
these errors. Debugging a program represents a substantial proportion of the total time required to develop it. The
larger and more complex the program, the more bugs it’s likely to contain, and the more time and effort you’ll need
to make it run properly. Very large programs — operating systems, for example, or complex applications such as word
processing systems, or even the C++ program development system that you may be using at this moment — can be so
complex that the system will never be completely bug free. You will already have some experience with this through
the regular patches and updates to the operating system and some of the applications on your computer. Most bugs
in this context are relatively minor and don't limit the usability of the product greatly. The most serious bugs in
commercial products tend to be security issues.

Your approach to writing a program can significantly affect how difficult it will be to test and debug. A well-structured
program that consists of compact functions, each with a well-defined purpose, is much easier to test than one without
these attributes. Finding bugs will also be easier with a program that has well-chosen variable and function names,
and comments that document the operation and purpose of its component functions. Good use of indentation and
statement layout can also make testing and fault-finding simpler.

It is beyond the scope of this book to deal with debugging comprehensively. The book concentrates on the
standard C++ language and library, independent of any particular C++ development system and it's more than likely
you’ll be debugging your programs using tools that are specific to the development system you have. Nevertheless,
I’ll explain some basic ideas that are general and common to most debugging systems. I’ll also introduce the rather
elementary debugging aids within the Standard Library.

Integrated Debuggers
Many C++ compilers come with a program development environment that has extensive debugging tools built in.
These potentially powerful facilities can dramatically reduce the time needed to get a program working and if you
have such a development environment, familiarizing yourself with how you use it for debugging will pay substantial
dividends. Common tools include the following:

Tracing Program Flow: This allows you to execute a program by stepping through the source code one statement
at a time. A program has to be compiled in "debug mode" to make this possible. It depends on the presence of
additional machine instructions that allow you to pause execution after each statement has been executed; it
continues with the next statement when you press a designated key. Other provisions of the debug environment
usually allow you to display information about the variables at each pause.

Setting Breakpoints: Stepping through a large program one statement at a time can be very tedious. It may even
be impossible to step through the program in a reasonable period of time. Stepping through a loop that executes 10,000
times is an unrealistic proposition. Breakpoints identify specific statements in program at which execution pauses to
allow you to check the program state. Execution continues to the next breakpoint when you press a specified key.

Setting Watches: A watch identifies a specify variable whose value you wish to track as execution progresses.
The values of variables identified by watches you have set are displayed at each pause point. If you step through your
program statement by statement, you can see the exact point at which values are changed, and sometimes when they
unexpectedly don’t change.

Chapter 10 ■ program Files and preproCessing direCtives

307

Inspecting Program Elements: You can usually examine a variety of program components when execution is
paused. For example, at breakpoints you can examine details of a function, such as its return type and its arguments,
or information relating to a pointer, such as its location, the address it contains, and the data at that address. It is
sometimes possible to access to the values of expressions and to modify variables. Modifying variables can often allow
problem areas to be bypassed, allowing subsequent code to be executed with correct data.

Preprocessing Directives in Debugging
Although many C++ development systems provide powerful debug facilities, adding your own tracing code can still
be useful. You can use conditional preprocessing directives to include blocks of code to assist during testing, and
omit the code when testing is complete. You can control the formatting of data that will be displayed for debugging
purposes, and you can arrange for the output to vary according to conditions or relationships within the program.

I’ll illustrate how you can use preprocessing directive to help with debugging through a somewhat contrived
program that calls functions at random through an array of function pointers. This example also gives you a chance
to review a few of the techniques that you should be familiar with by now. Just for this exercise you’ll declare three
functions that you’ll use in the example within a namespace, fun. First, you’ll put the namespace declaration in a
header file:

// functions.h
#if !defined FUNCTIONS_H
#define FUNCTIONS_H
namespace fun
{
 // Function prototypes
 int sum(int, int); // Sum arguments
 int product(int, int); // Product of arguments
 int difference(int, int); // Difference between arguments
}
#endif

Enclosing the contents of the header file between an #if/#endif directive combination prevents the contents
from being #included into a translation unit more than once. The prototypes are defined within the namespace, fun,
so the function names are qualified with fun and the function definitions must appear in the same namespace.

You can put the functions definitions in the file functions.cpp:

// functions.cpp

//#define TESTFUNCTION // Uncomment to get trace output

#ifdef TESTFUNCTION
#include <iostream> // Only required for trace output...
#endif

#include "functions.h"

// Definition of the function sum
int fun::sum(int x, int y)
{
 #ifdef TESTFUNCTION
 std::cout << "Function sum called." << std::endl;
 #endif

Chapter 10 ■ program Files and preproCessing direCtives

308

 return x+y;
}

// Definition of the function product
int fun::product(int x, int y)
{
 #ifdef TESTFUNCTION
 std::cout << "Function product called." << std::endl;
 #endif

 return x*y;
}

// Definition of the function difference
int fun::difference(int x, int y)
{
 #ifdef TESTFUNCTION
 std::cout << "Function difference called." << std::endl;
 #endif

 return x-y;
}

You only need the iostream header because you use stream output statements to provide trace information
in each function. The iostream header will only be included, and the output statements compiled, if the identifier
TESTFUNCTION is defined in the file. TESTFUNCTION isn’t defined at present because the directive is commented out.

The main() function is in a separate .cpp file:

// Ex10_03.cpp
// Debugging using preprocessing directives
#include <iostream>
#include <cstdlib> // For random number generator
#include <ctime> // For time function

#include "functions.h"
using std::cout;
using std::endl;

#define TESTINDEX

// Function to generate a random integer 0 to count-1
size_t random(size_t count)
{
 return static_cast<size_t>(
 count*static_cast<unsigned long>(std::rand())/(RAND_MAX+1UL));
}

int main()
{
 int a {10}, b {5}; // Starting values
 int result {}; // Storage for results

Chapter 10 ■ program Files and preproCessing direCtives

309

 // Declaration for an array of function pointers
 int (*pfun[])(int, int) {fun::sum, fun::product, fun::difference};

 size_t fcount {sizeof pfun/sizeof pfun[0]};
 size_t select {}; // Index for function selection
 srand(static_cast<unsigned>(time(0))); // Seed random generator

 // Select function from the pointer array at random
 for(size_t i {} ; i < 10 ; ++i)
{
 select = random(fcount); // Generate random index 0 to fcount-1

 #ifdef TESTINDEX
 std::cout << "Random number = " << select << std::endl;
 if((select >= fcount) || (select < 0))
 {
 std::cout << "Invalid array index = " << select << std::endl;
 return 1;
 }
 #endif

 result = pfun[select](a, b); // Call random function
 cout << "result = " << result << endl;
 }
 result = pfun[1](pfun[0](a, b), pfun[2](a, b));
 std::cout <<"The product of the sum and the difference = " << result
 << std::endl;
}

Here's an example of the output:

Random number = 2 result = 5
Random number = 2 result = 5
Random number = 1 result = 50
Random number = 0 result = 15
Random number = 1 result = 50
Random number = 1 result = 50
Random number = 0 result = 15
Random number = 1 result = 50
Random number = 2 result = 5
Random number = 1 result = 50
The product of the sum and the difference = 75

In general, you should get something different. If you want to get the trace output for the functions in the
namespace fun, you must uncomment the #define directive at the beginning of functions.cpp.

The #include directive for functions.h adds the prototypes for sum(), product(), and difference(). The
functions are defined within the namespace fun. These functions are called in main() using a random index to select
from the array of pointers to them. The index to the array of function pointers is produced by the random(). The
Standard Library function rand() from stdlib that is called in random() generates a sequence of pseudo-random
numbers of type int in the range 0 to RAND_MAX, where RAND_MAX is a symbol defined as an integer in the cstdlib
header. You must initialize the sequence that rand() produces before the first rand() call by passing an unsigned

Chapter 10 ■ program Files and preproCessing direCtives

310

integer seed value to srand(). Each different seed value will typically result in a different integer sequence from
successive rand() calls. The time() function that is declared in the ctime header returns the number of seconds
since January 1, 1970 as an integer, so using this as the argument to srand() ensures that you get a different random
sequence each time the program executes.

The range of values returned by rand() needs to be scaled to the range of index values you need.
However, you cannot rely on RAND_MAX being a value that you can increment as type int. An expression such as
(count*rand())/(RAND_MAX+1) to scale the values will not produce the correct result if RAND_MAX is the maximum
in the range for type int. Adding 1 to the maximum in a signed integer range results in the minimum - the
largest negative integer in the range. Even using the expression (count*rand())/(RAND_MAX+1L) may fail with
implementations where type long has the same range as type int. Using unsigned long ensures that the result of
adding 1 to RAND_MAX will always produce the correct result.

Defining the identifier TESTINDEX in Ex10_03.cpp switches on diagnostic output in main(). With TESTINDEX
defined, the code to output diagnostic information in main() will be included in the source that is compiled. If you
remove the #define directive, the trace code will not be included. The trace code checks to make sure you use a valid
index for the array, pfun. Because you don’t expect to generate invalid index values, you shouldn’t get this output!

Tip ■ it’s easy to generate invalid index values and verify the diagnostic code works. to do this, the random() function
must generate a number other than 0, 1, or 2. if you add 1 to the value produced in the return statement, you should get
an illegal index value roughly 25 percent of the time.

If you define the TESTFUNCTION identifier in functions.cpp, you’ll get trace output from each function. This is a
convenient way of controlling whether or not the trace statements are compiled into the program. You can see how
this works by looking at one of the functions that may be called, product():

int fun::product(int x, int y)
{
 #ifdef TESTFUNCTION
 std::cout << "Function product called." << std::endl;
 #endif

 return x*y;
}

The output statement simply displays a message, each time the function is called, but the output statement
will only be compiled if TESTFUNCTION has been defined. A #define directive for a preprocessing symbol such as
TESTFUNCTION is local to the source file in which it appears, so each source file that requires TESTFUNCTION to be
defined needs to have its own #define directive. One way to manage this is to put all your directives that control trace
and other debug output into a separate header file. You can then include this into all your .cpp files. In this way, you
can alter the kind of debug output you get by making adjustments to this one header file.

Of course, diagnostic code is only included while you are testing the program. Once you think the program works,
you quite sensibly leave it out. Therefore, you need to be clear that this sort of code is no substitute for error detection
and recovery code that deals with unfortunate situations arising in your fully tested program (as they most certainly will).

Note ■ the rand() function in the stdlib header does not generate random numbers that have satisfactory properties
for general use. i recommend that you investigate the functions provided by the random standard library header when
you need random numbers in an application. the details of the extensive random number generation capabilities provided
by the random header are outside the scope of this book.

Chapter 10 ■ program Files and preproCessing direCtives

311

Using the assert() Macro
The assert() preprocessor macro is defined in the library header cassert. This enables you to test logical
expressions in your program. Including a line of the form assert(expression) results in code that causes the
program to be terminated with a diagnostic message if expression evaluates to false. I can demonstrate this with a
simple example:

// Ex10_04.cpp
// Demonstrating assertions
#include <iostream>
#include <cassert>
int main()
{
 int y {5};

 for(int x {} ; x < 20 ; ++x)
 {
 std::cout << "x = " << x << " y = " << y << std::endl;
 assert(x<y);
 }
}

You should see an assertion message in the output when the value of x reaches 5. The program is terminated
by the assert() macro by calling abort() when x<y evaluates to false. The abort() function is from the Standard
Library, and its effect is to terminate the program immediately. As you can see from the output, this happens when x
reaches the value 5. The macro displays the output on the standard error stream, cerr, which is always the command
line. The message contains the condition that failed, and also the file name and line number in which the failure
occurred. This is particularly useful with multi-file programs, where the source of the error is pinpointed exactly.

Assertions are often used for critical conditions in a program where, if certain conditions are not met, disaster
will surely ensue. You would want to be sure that the program wouldn’t continue if such errors arise. You can use any
logical expression as the argument to the assert() macro, so you have a lot of flexibility.

Ex10_03 generates index values using a random number generator so it contains exactly this kind of situation.
With this technique, you always have the possibility of a bug resulting in an invalid index and if the index is outside the
limits of the pfun array, the result is pretty much guaranteed to be catastrophic. You could use the assert() statement
to verify the validity of the index value instead of the #ifdef block, you can simply write this statement:

assert((select >= 0) && (select < fcount));

Using assert() is simple and effective and when things go wrong, it provides sufficient information to pin down
where the program has terminated.

Switching Off assert() Macros
You can switch off the preprocessor assertion mechanism when you recompile the program by defining NDEBUG at the
beginning of the program file:

#define NDEBUG

This causes all assertions in the translation unit to be ignored. If you add this #define at the beginning of
Ex10_04.cpp, you’ll get output for all values of x from 0 to 19, and no diagnostic message. Note that this directive is
only effective if it’s placed before the #include statement for cassert.

Chapter 10 ■ program Files and preproCessing direCtives

312

Caution ■ assert() is for detecting programming errors, not for handling errors at runtime. evaluation of the logical
expression shouldn’t cause side effects or be based on something beyond the programmer’s control (such as whether or
not opening a file succeeds). Your program should include code to handle all error conditions that might be expected to
occur occasionally.

Static Assertions
Static assertions are part of the C++ language, and are nothing to do with the preprocessor and the assert() macro,
which is why I'm introducing them here! Static assertions are for checking conditions at compile time. A static
assertion is a statement of the form:

static_assert(constant_expression, error_message);

static_assert is a keyword. constant_expression must produce a result at compile time that can be
converted to type bool. error_message is a string literal that is output as an error message by the compiler when
constant_expression is false. When constant_expression is true, the statement does nothing.

A common use for static assertions is in template definitions to verify the characteristics of a type parameter.
A static assertion typically uses a template that is defined in the type_traits Standard Library header for testing for a
type or class of types. Suppose that you define a function template for computing the average of a vector of elements
of type T. Clearly, this is an arithmetic operation so you want to be sure the template cannot be used with vectors of
non-numeric types. A static assertion can do that:

// average.h
#ifndef AVERAGE_H
#define AVERAGE_H

#include <type_traits>
#include <vector>

template<class T>
T average(const std::vector<T>& values)
{
 static_assert(std::is_arithmetic<T>::value,
 "Type parameter for average() must be arithmetic.");
 T sum {};
 for(auto& value : values)
 sum += value;
 return sum/values.size();
}
#endif

The function template sums the elements in the vector that is the argument and divides by the number of
elements. The static assertion uses the is_arithmetic<T> template from the type_traits header, The value member
of the is_arithmetic<T> template will be true if T is an arithmetic type and false otherwise. It will be false when
the compiler processes the average<T>() template used with a non-arithmetic type; in this case compilation will

Chapter 10 ■ program Files and preproCessing direCtives

313

fail and the error message will be displayed. An arithmetic type is any floating-point type or any integral type. The
following will demonstrate this:

// Ex10_05.cpp
// Using a static assertion
#include <vector>
#include <iostream>
#include <string>
#include "average.h"

int main()
{
 std::vector<double> data {1.5, 2.5, 3.5, 4.5};
 std::cout << "The average of data values is " << average(data) << std::endl;

// Uncomment the next two lines for a compiler error...
// std::vector<std::string> words {"this", "that", "them", "those"};
// std::cout << "The average of words values is " << average(words) << std::endl;
}

The type_traits header contains a large number of type testing templates including is_integral<T>,
is_signed<T>, is_unsigned<T>, is_floating_point<T>, and is_enum<T>. Each of these has a value member that
will be true it T conforms to the type and false otherwise. There are many other useful templates in the type_traits
header and it is well worth exploring the contents further, especially once you have learned about classes.

Summary
This chapter has discussed capabilities that operate between, within, and across program files. C++ programs typically
consist of many files, and the larger the program, the more files you have to contend with. It’s vital that you really
understand namespaces, preprocessing, and debugging techniques if you are to develop real-world C++ programs.

The important points from this chapter include:

Each entity in a program must have only one definition.•	

A name can have internal linkage, meaning that the name is accessible throughout a translation •	
unit; external linkage, meaning that the name is accessible from any translation unit; or it can
have no linkage, meaning that the name is only accessible in the block in which it is defined.

You use header files to contain definitions and declarations required by your source files. •	
A header file can contain template and type definitions, enumerations, constants, function
declarations, inline function definitions, and named namespaces. By convention, header
files use file names with the extension .h.

Your source files will contain function definitions and global variables. A C++ source file •	
usually has the file name extension .cpp.

You insert the contents of a header file into a •	 .cpp files by using an #include directive.

A •	 .cpp file is the basis for a translation unit that is processed by the compiler to generate an
object file.

A namespace defines a scope; all names declared within this scope have the namespace name •	
attached to them. All declarations of names that are not in an explicit namespace scope are in
the global namespace.

Chapter 10 ■ program Files and preproCessing direCtives

314

A single namespace can be made up of several separate namespace declarations with the •	
same name.

Identical names that are declared within different namespaces are distinct.•	

To refer to an identifier that is declared within a namespace from outside the namespace, you need •	
to specify the namespace name and the identifier, separated by the scope resolution operator, ::.

Names declared within a namespace can be used without qualification from inside the •	
namespace.

The preprocessing phase executes directives to transform the source code in a translation unit •	
prior to compilation. When all directives have been processed, the translation unit will only
contain C++ code, with no preprocessing directives remaining.

You can use conditional preprocessing directives to ensure that the contents of a header file •	
are never duplicated within a translation unit.

You can use conditional preprocessing directives to control whether trace or other diagnostic •	
debug code is included in your program.

The •	 assert() macro enables you to test logical conditions during execution and issue a
message and abort the program if the logical condition is false.

You can use •	 static_assert to check type arguments for template parameters in a template
instance to ensure that a type argument is consistent with the template definition.

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back over
the chapter for help. if you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 10-1. Write a program that calls two functions, print_this(const string& s) and
print_that(const string& s), each of which calls a third function, print(const string& s),
to print the string that is passed to it. define each function and main() in separate source files,
and create three header files to contain the prototypes for print_this(), print_that(), and
print(). make sure that the header files are guarded against being included more than once.

exercise 10-2. modify the program from exercise 10-1 so that print() uses a global integer variable
to count the number of times it has been called. output the value of this variable in main() after calls to
print_this() and print_that().

exercise 10-3. in the print.h header file from exercise 10-2, delete the existing prototype for
print(), and instead create two namespaces, print1 and print2, each of which contains a
print(const string& s) function. implement both functions in the print.cpp file so that
they print the namespace name and the string. Change print_this() so that it calls print()
defined in the print1 namespace , and change print_that() to call the version in the print2
namespace . run the program, and verify that the correct functions are called.

exercise 10-4. modify the main() function from the previous exercise so that print_this()
is only called if a DO_THIS preprocessing identifier is defined. When this is not the case,
print_that() should be called.

http://www.apress.com/source-code

315

Chapter 11

Defining Your Own Data Types

In this chapter, I’ll introduce one of the most fundamental tools in the C++ programmer’s toolbox: classes.
I’ll also present some ideas that are implicit in object-oriented programming and show how these are applied.

In this chapter you’ll learn:

What the basic principles in objected-oriented programming are•	

How you define a new data type as a class, and how you can create and use objects of a class type•	

What class constructors are, and how you define them•	

What the default constructor is, and how you can supply your own version•	

What the default copy constructor is•	

What a •	 friend function is

What privileges a •	 friend class has

What the pointer •	 this is, and how and when you use it

What •	 const functions in a class are and how they are used

What a class destructor is and when you should define it•	

Classes and Object-Oriented Programming
You define a new data type by defining a class, but before I get into the language, syntax, and programming techniques
of classes, I’ll explain how your existing knowledge relates to the concept of object-oriented programming. Almost
everything you have seen up to now has been procedural programming, which involves programming a solution in
terms of fundamental data types. The essence of object-oriented programming (commonly abbreviated to OOP) is that
you write programs in terms of objects in the domain of the problem you are trying to solve, so part of the program
development process involves designing a set of types to suit the problem context. If you’re writing a program to keep
track of your bank account, you’ll probably need to have data types such as Account and Transaction. For a program
to analyze baseball scores, you may have types such as Player and Team. The variables of the fundamental types don’t
allow you to model real-world objects (or even imaginary objects) very well. It’s not possible to model a baseball
player realistically in terms of just an int or double, value or any other fundamental data type. You need several values
of a variety of types for any meaningful representation of a baseball player.

Classes provide a solution. A class type can be a composite of variables of other types—of fundamental types or
of other class types. A class can also have functions as an integral part of its definition. You could define a class type
called Box that contains variables that store a length, a width, and a height to represent boxes. You could then define
variables of type Box, just as you define variables of fundamental types. Each Box object would contain its own length,
width and height dimensions and you could create and manipulate as many Box objects as you need in a program.

Chapter 11 ■ Defining Your own Data tYpes

316

This goes quite a long way toward making programming in terms of real-world objects possible. Obviously, you
can apply this idea of a class to represent a baseball player, or a bank account, or anything else. You can use classes
to model whatever kinds of objects you want and write your programs around them. So, that’s object-oriented
programming all wrapped up then?

Well, not quite. A class as I’ve defined it up to now is a big step forward, but there’s more to it than that. As well
as the notion of user-defined types, object-oriented programming incorporates some additional important ideas
(famously encapsulation and data hiding, inheritance, and polymorphism). I’ll give you a rough, intuitive idea of what
these additional OOP concepts mean right now. This will provide a reference frame for the detailed programming
you’ll be getting into in this and the next three chapters.

Encapsulation
In general, the definition of an object of a given type requires a combination of a specific number of different
properties—the properties that make the object what it is. An object contains a precise set of data values that
describe the object in sufficient detail for your needs. For a box, it could be just the three dimensions: length, width,
and height. For an aircraft carrier, it is likely to be much more. An object can also contain a set of functions that
operate on it—functions that use or change the properties for example or provide further characteristics of an object
such as the volume of a box. The functions in a class define the set of operations that can be applied to an object of the
class type: what you can do with it—or to it. Every object of a given type incorporates the same combination of things:
the set of data values as data members of the class that characterize an object, and the set of operations as function
members of the class. This packaging of data values and functions within an object is referred to as encapsulation.
Figure 11-1 illustrates this with the example of an object that represents a loan account with a bank.

balance: $50000
interestRate: 22%

calcInterest()
credit()
debit()

A LoanAccount object

Encapsulation

An object contains
everything necessary to
define its properties and

the operations on it.

The data members define
the properties that

characterize the object.

The function members of the
object define what you can

do with it.

Figure 11-1. An example of encapsulation

Every LoanAccount object has its properties defined by the same set of data members; in this case, one holds the
outstanding balance and the other holds the interest rate. Each object also contains a set of function members that define
operations on the object; the one shown in Figure 12-1 calculates interest and adds it to the balance. The properties
and operations are all encapsulated in every object of the type LoanAccount. Of course, this choice of what makes up
a LoanAccount object is arbitrary. You might define it quite differently for your purposes, but however you define the
LoanAccount type, all the properties and operations that you specify are encapsulated within every object of the type.

Note that I said earlier that the data values defining an object needed to be “sufficient for your needs,” not
“sufficient to define the object in general.” A person could be defined very simply—perhaps just by the name, address,
and phone number if you were writing an address-book application. A person as a company employee or
as a medical patient is likely to be defined by many more properties and many more operations would be required.
You just decide what you need in the contexts in which you intend to use the object.

Chapter 11 ■ Defining Your own Data tYpes

317

Data Hiding
Of course, the bank wouldn’t want the balance for a loan account (or the interest rate for that matter) changed
arbitrarily from outside an object, as you were able to do with your structure objects in the Chapter 11. To permit this
would be a recipe for chaos. Ideally, the data members of a LoanAccount object are protected from direct outside
interference, and are only modifiable in a controlled way. The ability to make the data values for an object generally
inaccessible is called data hiding. Figure 11-2 shows data hiding applied to a LoanAccount object.

balance: $50000
interestRate: 22%

calcInterest()
credit()
debit()

A LoanAccount object

Data Hiding

The data members of an object
should normally be hidden.

The function members of the
object provide the tools to access
and alter the data members in a

controlled way.

Generally, the data
members should not
be accessible from

outside.

The function members
can provide the means to
alter data members when

necessary.

act on

Figure 11-2. An example of data hiding

With a LoanAccount object, the function members of the object can provide a mechanism that ensures any changes
to the data members follow a particular policy, and that the values set are appropriate. Interest shouldn’t be negative,
for instance, and generally, the balance should reflect the fact that money is owed to the bank, and not the reverse.

Data hiding is important because it is necessary if you are to maintain the integrity of an object. If an object
is supposed to represent a duck, it should not have four legs; the way to enforce this is to make the leg count
inaccessible—to “hide” the data. Of course, an object may have data values that can legitimately vary, but even then
you often want to control the range; after all, a duck doesn’t usually weigh 300 pounds. Hiding the data belonging to
an object prevents it from being accessed directly, but you can provide access through functions that are members of
the object, either to alter a data value in a controlled way, or simply to obtain its value. Such functions can check that
the change they’re being asked to make is legal and within prescribed limits where necessary.

Hiding the data within an object is not mandatory, but it’s generally a good idea for at least a couple of reasons.
First, as I said, maintaining the integrity of an object requires control of how changes are made. Second, direct access
to the values that define an object undermines the whole idea of object-oriented programming. Object-oriented
programming is supposed to be programming in terms of objects, not in terms of the bits that make up an object.

You can think of the data members as representing the state of the object, and the function members’ functions
that manipulate them as representing the object’s interface to the outside world. Using the class then involves
programming using the functions declared as the interface. A program using the class interface is only dependent on
the function names, parameter types, and return types specified for the interface. The internal mechanics of these
functions don’t affect the program that is creating and using objects of the class. That means it’s important to get the
class interface right at the design stage—you can subsequently change the implementation to your heart’s content
without necessitating any changes to programs that use the class.

Inheritance
Inheritance is the ability to define one type in terms of another. For example, suppose you have defined a BankAccount
type that contains members that deal with the broad issues of bank accounts. Inheritance allows you to create the
LoanAccount type as a specialized kind of BankAccount. You could define a LoanAccount as being like a BankAccount,
but with a few extra properties and functions of its own. The LoanAccount type inherits all the members of BankAccount,
which is referred to as its base class. In this case, you’d say that LoanAccount is derived from BankAccount.

Chapter 11 ■ Defining Your own Data tYpes

318

Each LoanAccount object contains all the members that a BankAccount object does, but it has the option of
defining new members of its own, or of redefining the functions it inherits so that they are more meaningful in its
context. This last ability is very powerful, as you’ll see.

Extending the current example, you might also want to create a new CheckingAccount type by adding different
characteristics to BankAccount. This situation is illustrated in Figure 11-3.

Inheritance

balance
interestRate
overdraftFacility

calcInterest()
debit()
credit()

CheckingAccount

balance
interestRate

calcInterest()
debit()
credit()

LoanAccount

balance
interestRate

calcInterest()
debit()
credit()

BankAccount

The LoanAccount and
CheckingAccount types are

both derived from
BankAccount, so they inherit

the members of that type.

Figure 11-3. An example of inheritance

Both of the LoanAccount and CheckingAccount types are defined so that they are derived from the type
BankAccount. They inherit the data members and function members of BankAccount, but they are free to define new
characteristics that are specific to their own type.

In this example, CheckingAccount has added a data member called overdraftFacility that is unique to itself,
and both the derived classes can redefine any of the function member that they inherit from the base class. It’s likely
they would redefine calcInterest() for example because calculating and dealing with the interest for a checking
account involves something rather different than doing it for a loan account.

Polymorphism
Polymorphism means the ability to assume different forms at different times. Polymorphism in C++ always involves
calling a function member of an object, using either a pointer or a reference. Such function calls can have different
effects at different times—sort of Jekyll and Hyde function calls. The mechanism only works for objects of types that
are derived from a common base type, such as the BankAccount type. Polymorphism means that objects belonging to a
“family” of inheritance-related classes can be passed around and operated on using base class pointers and references.

The LoanAccount and CheckingAccount objects can both be passed around using a pointer or reference to
BankAccount. The pointer or reference can be used to call the inherited function members of whatever object it refers
to. The idea and implications of this will be easier to appreciate if I take a specific case.

Suppose you have the LoanAccount and CheckingAccount types defined as before, based on the BankAccount
type. Suppose further that you have defined objects of these types, debt and cash respectively, as illustrated in
Figure 11-4. Because both types are based on the BankAccount type, a variable of type pointer to BankAccount, such as
pAcc in Figure 11-4, can store the address of either of these objects.

Chapter 11 ■ Defining Your own Data tYpes

319

The beauty of polymorphism is that the function called by pAcc->calcInterest() varies depending on what pAcc
points to. If it points to a LoanAccount object, then the calcInterest() function for that object is called and interest is
debited from the account. If it points to a CheckingAccount object, the result is different because the calcInterest()
function for that object is called and interest is credited to the account. The particular function that is called through
the pointer is decided at runtime, not when the program is compiled, but when it executes. Thus, the same function
call can do different things depending on what kind of object the pointer points to. Figure 11-4 shows just two different
types, but in general, you can get polymorphic behavior with as many different types derived from a common base class
as your application requires. You need quite a bit of C++ language know-how to accomplish what I’ve described, and
that’s exactly what you’ll be exploring in the rest of this chapter and throughout the next three chapters.

Terminology
Here’s a summary of the terminology that I’ll be using when I’m discussing classes. It includes some terms that you’ve
come across already:

A •	 class is a user-defined data type.

The variables and functions defined within a class are •	 members of the class. The variables are
data members and the functions are function members. The function members of a class are
sometimes referred to as methods.

Variables of a class type store •	 objects. Objects are sometimes called instances of the class.

Defining an instance of a class is referred to as •	 instantiation.

•	 Object-oriented programming is a programming style based on the idea of defining your own
data types as classes. It involves the ideas of encapsulation of data, class inheritance, and
polymorphism, which I’ve just discussed.

Polymorphism

balance
interestRate
overdraftFacility
calcInterest()
debit()
credit()

CheckingAccount

balance
interestRate
calcInterest()
debit()
credit()

 BankAccount

balance
interestRate

calcInterest()
debit()
credit()

LoanAccount

BankAccount* pAcc; // Pointer to base class
LoanAccount debt;
CheckingAccount cash;

pAcc = &cash; // Points to check a/c
pAcc->calcInterest(); // Adds interest

pAcc = &debt; // Points to loan a/c
pAcc->calcInterest(); // Debits interest

Figure 11-4. An example of polymorphism

Chapter 11 ■ Defining Your own Data tYpes

320

When you get into the detail of object-oriented programming, it may seem a little complicated in places. Getting
back to the basics can often help make things clearer; so use this list to always keep in mind what objects are really
about. Object-oriented programming is about writing programs in terms of the objects that are specific to the domain
of your problem. All the facilities around classes are there to make this as comprehensive and flexible as possible.

Defining a Class
A class is a user-defined type. The definition of a type uses the class keyword. The basic organization of a class
definition looks like this:

class ClassName
{
 // Code that defines the members of the class...
};

The name of this class type is ClassName. It’s a common convention to use the uppercase name for user-defined
classes to distinguish class types from variable names. I’ll adopt this convention in the examples. The members of
the class are all specified between the braces. The definitions for function members can be inside or outside the class
definition. If the definition of a function member is outside the class, the member name in the definition must be
qualified by the class name. Note that the semicolon after the closing brace for the class definition must be present.

All the members of a class are private by default, which means they cannot be accessed from outside the class.
This is obviously not acceptable for the function members that form the interface. You use the public keyword
followed by a colon to make all subsequent members accessible from outside the class. Members specified after
the private keyword are not accessible from outside the class. public and private are access specifiers for the class
members. There’s another access specifier, protected, that you’ll meet later. Here’s how an outline class looks with
access specifiers:

 class ClassName
{
 private:
 // Code that specifies members that are not accessible from outside the class...

 public:
 // Code that specifies members that are accessible from outside the class...
};

public and private precede a sequence of members that are or are not accessible outside the class. The specification
of public or private applies to all members that follow until there is a different specification. You could omit the
first private specification here and get the default status of private, but it’s better to make it explicit. Members in a
private section of a class can only be accessed from functions that are members of the same class. Data members
or function members that need to be accessed by a function that is not a member of the class must be specified as
public. A function member can reference any other member of the same class, regardless of the access specification,
by just using its name. To make all this generality clearer, let’s start with an example of defining a class to represent
a box:

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

Chapter 11 ■ Defining Your own Data tYpes

321

public:
 // Function to calculate the volume of a box
 double volume()
 {
 return length*width*height;
 }
};

length, width, and height are data members of the Box class and are all of type double. They are also private
because they are preceded by the private access specification and therefore cannot be accessed from outside the
class. Only the public volume() function member can refer to these private members. Each of the data members is
initialized to 1 because a zero dimension for a box would not make sense. You don’t have to initialize data members
in this way—there are other ways of setting their values as you’ll see in the next section. If their values are not set by
some mechanism though, they will contain junk values.

In general, you can repeat any of the access specifiers in a class definition as many times as you want. This
enables you to place data members and function members in separate groups within the class definition, each with
their own access specifier. It can be easier to see the internal structure of a class definition if you arrange to group the
data members and the function members separately, according to their access specifiers.

Every Box object will have its own set of data members. This is obvious really—if they didn’t have their own data
members, all objects would be identical. You could create a variable of type Box like this:

Box myBox; // A Box object with all dimensions 1

The myBox variable refers to a Box object with the default data member values. You could call the volume()
member for the object to calculate the volume:

std::cout << "Volume of myBox is" << myBox.volume() << std::endl; // Volume is 1.0

Of course the volume will be 1 because the initial values for the three dimensions are 1. The fact that the data
members of the Box class are private means that we have no way to set these members. You could specify the data
members as public, in which case you can set them explicitly from outside the class, like this:

myBox.length = 1.5;
myBox.width = 2.0;
myBox.height = 4.0;
std::cout << "Volume of myBox is" << myBox.volume() << std::endl; // Volume is 12.0

I said earlier that it’s not good practice in general to make data members public. To set the values of private
data members when an object is created, you must add a public function member of a special kind to the class, called
a constructor. Objects of a class type can only be created using a constructor.

Note ■ C++ also includes the ability to define a structure that is similar to a class and defines a type. the structure
originated in C. You define a structure in essentially the same way as a class but using the struct keyword instead of the
class keyword. in contrast to members of a class, the members of a structure are public by default. structures are still
used frequently in C++ programs to define types that represent simple aggregates of several variables of different
types—the margin sizes and dimensions of a printed page for example. i won’t discuss structures as a separate topic
because aside from the default access specification and the use of the struct keyword, you define a structure in exactly
the same way as a class.

Chapter 11 ■ Defining Your own Data tYpes

322

Constructors
A class constructor is a special kind of function in a class that differs in significant respects from an ordinary function
member. A constructor is called whenever a new instance of the class is defined. It provides the opportunity to
initialize the new object as it is created and to ensure that data members contain valid values. A class constructor
always has the same name as the class. Box(), for example, is a constructor for the Box class. A constructor does not
return a value and therefore has no return type. It is an error to specify a return type for a constructor.

Just a moment! I hear you cry. We created a Box object in the previous section—and calculated its volume. How
did that happen when there was no constructor defined? Well, there’s no such thing as a class with no constructors.
If you don’t define a constructor for a class, the compiler will supply a default constructor. The Box class really looks
like this:

class Box
{
private:
 double length {1};
 double width {1};
 double height {1};

public:
 // The default constructor that is supplied by the compiler...
 Box()
 {
 // Empty body so it does nothing...
 }

 // Function to calculate the volume of a box
 double volume()
 {
 return length*width*height;
 }
};

The default constructor has no parameters and its sole purpose is to allow an object to be created. It does nothing
else so the data members will have their default values. If there are no initial values specified for data members, they
will contain junk values. Note that when you do define a constructor, the default constructor is not supplied. There are
circumstances in which you need a constructor with no parameters in addition to a constructor that you define that
has parameters. In this case you must ensure that there is a definition for the no-arg constructor in the class.

Note ■ You’ll see later that there is even more to the Box class that is provided by default than i’ve shown here.

Chapter 11 ■ Defining Your own Data tYpes

323

Let’s extend the Box class from the previous example to incorporate a constructor and then check that it works:

// Ex11_01.cpp
// Defining a class constructor
#include <iostream>

// Class to represent a box
class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructor
 Box(double lengthValue, double widthValue, double heightValue)
 {
 std::cout << "Box constructor called." << std::endl;
 length = lengthValue;
 width = widthValue;
 height = heightValue;
 }

 // Function to calculate the volume of a box
 double volume()
 {
 return length*width*height;
 }
};

int main()
{
 Box firstBox {80.0, 50.0, 40.0}; // Create a box
 double firstBoxVolume {firstBox.volume()}; // Calculate the box volume
 std::cout << "Volume of Box object is" << firstBoxVolume << std::endl;
}

This produces the following output:

Box constructor called.
Volume of Box object is 160000

The constructor for the Box class has three parameters of type double, corresponding to the initial values for the
length, width, and height members of an object. No return type is allowed and the name of the constructor must
be the same as the class name, Box. The first statement in the constructor body outputs a message to show when it’s
called. You wouldn’t do this in production programs but it’s helpful when you’re testing a program and to understand
what’s happening and when. I’ll use it regularly to trace what is happening in the examples. The rest of the code in
the body of the constructor assigns the arguments to the corresponding data members. You could include checks
that look for valid, nonnegative arguments that are the dimensions of a box. In the context of a real application, you’d
probably want to do this, but here you only need to learn how a constructor works so I’ll keep it simple for now.

Chapter 11 ■ Defining Your own Data tYpes

324

The firstBox object is created with this statement:

Box firstBox {80.0, 50.0, 40.0};

The initial values for the data members, length, width, and height, appear in the initializer list and are passed as
arguments to the constructor. Because there are three values in the list, the compiler looks for a Box constructor with
three parameters. When the constructor is called, it displays the message that appears as the first line of output, so you
know that the constructor that you have added to the class is called.

I said earlier that if you define a constructor, the compiler won’t supply a default constructor. This means that this
statement won’t compile:

Box box1; // Causes a compiler error message

This object would have the default dimensions. If you want to allow Box objects to be defined like this, you must
add a definition for a constructor without arguments:

Defining Constructors Outside the Class
I said earlier that the definition of a function member can be placed outside the class definition. This is also true for
class constructors. I can define the Box class in a header file like this:

// Box.h
#ifndef BOX_H
#define BOX_H

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lengthValue, double widthValue, double heightValue);
 Box(); // No-arg constructor

 double volume(); // Function to calculate the volume of a box
};

#endif

The definitions for the volume() member and the constructor must go in a .cpp file. The name of each function
member and constructor in the source must be qualified with the class name so the compiler knows to which class
they belong:

// Box.cpp
#include <iostream>
#include "Box.h"

Chapter 11 ■ Defining Your own Data tYpes

325

// Constructor definition
Box::Box(double lengthValue, double widthValue, double heightValue)
{
 std::cout << "Box constructor called." << std::endl;
 length = lengthValue;
 width = widthValue;
 height = heightValue;
}

Box::Box() {} // No-arg constructor

// Function to calculate the volume of a box
double Box::volume()
{
 return length*width*height;
}

If Box.h was not included into Box.cpp, the compiler would not know that Box is a class so the code would not
compile. Separating the definitions of classes from the definitions of their function members makes the code easier
to manage. Large class with lots of function members and constructors would be very cumbersome if all the function
definitions appeared within the class. Any source file that creates objects of type Box just needs to include the header
file Box.h. A programmer using this class doesn’t need access to the source code definitions of the function members,
only to the class definition in the header file. As long as the class definition remains fixed, you’re free to change the
implementations of the function members without affecting the operation of programs that use the class.

Defining a function member outside a class is not quite the same as placing the definition inside the class.
Function definitions within a class definition are implicitly inline. (This doesn’t necessarily mean that they will be
implemented as inline functions—the compiler still decides that, as I discussed in Chapter 8).

The previous example would look like this with the Box class split into .h and .cpp files:

// Ex11_01A.cpp
// Defining a class constructor
#include <iostream>
#include "Box.h"

int main()
{
 Box firstBox {80.0, 50.0, 40.0}; // Create a box
 double firstBoxVolume{firstBox.volume()}; // Calculate the box volume
 std::cout << "Volume of Box object is" << firstBoxVolume << std::endl;
}

This is the same version of main() as in the previous example. The only difference is the #include directive for
the Box.h header file that contains the definition of the Box class.

Chapter 11 ■ Defining Your own Data tYpes

326

Default Constructor Parameter Values
When I discussed “ordinary” functions, you saw that you can specify default values for the parameters in the
function prototype. You can do this for class function members, including constructors. Default parameter values for
constructors and function members always go inside the class, not in an external constructor or function definition.
I can change the class definition in the previous example to the following:

class Box
{
private:
 double length;
 double width;
 double height;

public:
 // Constructors
 Box(double lv = 1.0, double wv = 1.0, double hv = 1.0);
 Box(); // No-arg constructor

 double volume(); // Function to calculate the volume of a box
};

If you make this change to the last example, what happens? You get an error message from the compiler of
course! The message basically says that you have multiple default constructors defined. The reason for the confusion
is the constructor with three parameters allows all three arguments to be omitted, which is indistinguishable from a
call to the no-arg constructor. The obvious solution is to get rid of the constructor that accepts no parameters in this
instance. If you do so, everything compiles and executes OK. However, don’t assume that this is always the best way to
implement the default constructor.

Using a Constructor Initialization List
So far, you’ve set values for data members the body of a constructor using explicit assignment. You can use an
alternative and more efficient technique that uses a constructor initialization list. I’ll illustrate this with an alternative
version of the Box class constructor:

// Constructor definition using an initializer list
Box::Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv}
{
 std::cout << "Box constructor called." << std::endl;
}

The values of the data members are specified as initializing values in the initialization list that is part of the
constructor header. length is initialized with lv, for example. The initialization list is separated from the parameter
list by a colon (:), and each initializer is separated from the next by a comma (,). This is more than just a different
notation. When you initialize a data member using an assignment statement in the body of the constructor, the data
member is first created (using a constructor call if it is an instance of a class) after which the assignment is carried
out as a separate operation. When you use an initialization list, the initial value is used to initialize the data member
as it is created. This can be a much more efficient process, particularly if the data member is a class instance. If you
substitute this version of the constructor in the previous example, you’ll see that it works just as well. This technique
for initializing parameters in a constructor is important for another reason. As you’ll see, it is the only way of setting
values for certain types of data members.

Chapter 11 ■ Defining Your own Data tYpes

327

Use of the explicit Keyword
A problem with class constructors that have a single parameter is that the compiler can use such a constructor as an
implicit conversion from the type of the parameter to the class type. This can produce undesirable results in some
circumstances. Let’s consider a particular situation. Suppose that you define a class that defines boxes that are cubes
with all the sides have the same length:

// Cube.h
#ifndef CUBE_H
#define CUBE_H
class Cube
{
public:
 double side;

 Cube(double side); // Constructor
 double volume(); // Calculate volume of a cube
 bool compareVolume(Cube aCube); // Compare volume of a cube with another
};
#endif

You can define the constructor in Cube.cpp as:

Cube::Cube(double len) : side {len} { std::cout << "Cube constructor called." << std::endl; }

The definition of function that calculates the volume will be:

double Cube::volume() { return side*side*side; }

The compareVolume() member can be defined as:

bool Cube::compareVolume(Cube aCube) { return volume() > aCube.volume(); }

One Cube object is greater than another if its volume is the greater of the two.
The constructor requires only one argument of type double. Clearly, the compiler could use the constructor to

convert a double value to a Cube object, but under what circumstances is that likely to happen?
The class defines a volume() function and a function to compare the current object with another Cube object

passed as an argument, which returns true if the current object has the greater volume. You might use the Cube class
in the following way:

// Ex11_02.cpp
// Problems of implicit object conversions
#include <iostream>
#include "Cube.h"

int main()
{
 Cube box1 {7.0};
 Cube box2 {3.0};
 if(box1.compareVolume(box2))
 std::cout << "box1 is larger than box2." << std::endl;

Chapter 11 ■ Defining Your own Data tYpes

328

 else
 std::cout << "box1 is less than or equal to box2." << std::endl;

 std::cout << "volume of box1 is" << box1.volume() << std::endl;
 if(box1.compareVolume(50.0))
 std::cout << "Volume of box1 is greater than 50" << std::endl;
 else
 std::cout << "Volume of box1 is less than or equal to 50" << std::endl;
}

Here’s the output:

Cube constructor called.
Cube constructor called.
box1 is larger than box2.
volume of box1 is 343
Cube constructor called.
Volume of box1 is less than or equal to 50

The output shows that the volume of box1 is definitely not less than 50 but the last line of output indicates the
opposite. The code presumes that compareVolume() compares the volume of the current object with 50.0. In reality
the function compares two Cube objects. The compiler knows that the argument to the compareVolume() function
should be a Cube object, but it compiles this quite happily because a constructor is available that converts the
argument 50.0 to a Cube object. The code the compiler produces is equivalent to:

if(box1.compareVolume(Cube {50.0}))
 std::cout << "Volume of box1 is greater than 50" << std::endl;
else
 std::cout << "Volume of box1 is less than or equal to 50" << std::endl;

The function is not comparing the volume of the box1 object with 50.0, but with 125000.0, the volume of a Cube
object with a side of length 50.0! The result is very different from what was expected.

Happily, you can prevent this nightmare from happening by declaring the constructor as explicit:

class Cube
{
public:
 double side;

 explicit Cube(double side); // Constructor
 double volume(); // Calculate volume of a cube
 bool compareVolume(Cube aCube); // Compare volume of a cube with another
};

With this definition for Cube, Ex11_02.cpp will not compile. The compiler never uses a constructor declared as
explicit for an implicit conversion; it can only be used explicitly in the program. By using the explicit keyword with
constructors that have a single parameter you prevent implicit conversions from the parameter type to the class type.
The compareVolume() member only accepts a Cube object as an argument so calling it will an argument of type double
does not compile.

Chapter 11 ■ Defining Your own Data tYpes

329

Delegating Constructors
A class can have several constructors that provide different ways of creating an object. The code for one constructor
can call another of the same class in the initialization list. This can avoid repeating the same code in several
constructors. Here’s a simple illustration of this using the Box class:

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv);
 Box(double side); // Constructor for a cube
 Box() {} // No-arg constructor

 double volume(); // Function to calculate the volume of a box
};

Notice that I have restored the initial values for the data members and removed the default values for the
constructor parameters. This is because the compiler would not be able to distinguish between a call of the
constructor with a single parameter and a call of the constructor with three parameters with the last two arguments
omitted. This removes the capability for creating an object with no arguments and the compiler will not supply the
default so I have added the definition of the no-arg constructor to the class.

The implementation of the first constructor can be:

Box::Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv}
{
 std::cout << "Box constructor 1 called." << std::endl;
}

The second constructor creates a Box object with all sides equal and we can implement it like this:

Box::Box(double side) : Box {side, side, side}
{
 std::cout << "Box constructor 2 called." << std::endl;
}

This constructor just calls the previous constructor in the initialization list. The side argument is used as all three
values in the initializer list for the previous constructor. This is called a delegating constructor because it delegates the
construction work to the other constructor. Delegating constructors help to shorten and simplify constructor code
and can make the class definition easier to understand. Here’s an example that exercises this:

// Ex11_03.cpp
// Using a delegating constructor
#include <iostream>
#include "Box.h"

Chapter 11 ■ Defining Your own Data tYpes

330

int main()
{
 Box box1 {2.0, 3.0, 4.0}; // An arbitrary box
 Box box2 {5.0}; // A box that is a cube
 std::cout << "box1 volume = " << box1.volume() << std::endl;
 std::cout << "box2 volume = " << box2.volume() << std::endl;
}

The complete code is in the download. The output is:

Box constructor 1 called.
Box constructor 1 called.
Box constructor 2 called.
box1 volume = 24
box2 volume = 125

You can see from the output that creating the first object just calls constructor 1. Creating the second object calls
constructor 1 followed by constructor 2. This also shows that execution of the initialization list for a constructor occurs
before the code in the body of the constructor. The volumes are as you would expect.

You should only call a constructor for the same class in the initialization list for a constructor. Calling a
constructor of the same class in the body of a delegating constructor is not the same. Further you must not initialize
data members in the initialization list of a delegating constructor. The code will not compile if you do. You can set
values for data members in the body of a delegating constructor but in this case you should consider whether the
constructor should really be implemented as a delegating constructor.

The Copy Constructor
Suppose you add the following statement to main() in Ex11_03.cpp:

Box box3 {box2};
std::cout << "box3 volume = " << box3.volume() << std::endl; // Volume = 125

The output shows that box3 does indeed have the dimensions of box2 but there’s no constructor defined with a
parameter of type Box so how was box3 created? The answer is that the compiler supplied a default copy constructor,
which is a constructor that creates an object by copying an existing object. The default copy constructor copies the
values of the data members of the object that is the argument to the new object. This is fine in the case of Box objects
but it can cause problems when one or more data members are pointers. Just copying a pointer does not duplicate
what it points to, which means that when an object is created by the copy constructor, it is interlinked with the original
object. Both objects will contain a member pointing to the same thing. A simple example is if an object contains a
pointer to a string. A duplicate object will have a member pointing to the same string so if the string is changed for
one object, it will be changed for the other. This is not usually what you want. In this case you must define a copy
constructor.

Chapter 11 ■ Defining Your own Data tYpes

331

Implementing the Copy Constructor
The copy constructor must accept an argument of the same class type and create a duplicate in an appropriate
manner. This poses an immediate problem that you must overcome; you can see it clearly if you try to define the copy
constructor for the Box class like this:

Box::Box(Box box) : length {box.length}, width {box.width}, height {box.height} // Wrong!!
{}

Each data member of the new object is initialized with the value of the object that is the argument. No code
is needed in the body of the copy constructor in this instance. This looks OK but consider what happens when the
constructor is called. The argument is passed by value, but because the argument is a Box object the compiler arranges
to call the copy constructor for the Box class to make a copy of the argument. Of course, the argument to this call of
the copy constructor is passed by value, so another call to the copy constructor is required, and so on. In short, you’ve
created a situation where an unlimited number of recursive calls to the copy constructor will occur. Your compiler
won’t allow this code to compile. To avoid the problem the parameter for the copy constructor must be a reference.

Reference Parameters
A copy constructor should be defined with a const reference parameter, so for the Box class it looks like this:

Box::Box(const Box& box) : length {box.length}, width {box.width}, height {box.height}
{}

Now the argument is no longer passed by value, so recursive calls of the copy constructor are avoided. The
compiler initializes the parameter box with the object that is passed to it. The parameter should be const because a
copy constructor is only in the business of creating duplicates; it should not modify the original. A const reference
parameter allows const and non-const objects to be copied; if the parameter was not const, the constructor would
not accept a const object as the argument. You can conclude from this that the parameter type for a copy constructor
is always a const reference to an object of the same class type. In other words, the form of the copy constructor is the
same for any class:

Type::Type(const Type& object)
{
 // Code to duplicate of object...
}

Of course the copy constructor may also have an initialization list. I’ll return to the question of defining a copy
constructor in the next chapter.

Accessing Private Class Members
Inhibiting all external access to the values of private data members of a class is rather extreme. It’s a good idea to
protect them from unauthorized modification, but if you don’t know what the dimensions of a particular Box object
are, you have no way to find out. Surely it doesn’t need to be that secret?

Chapter 11 ■ Defining Your own Data tYpes

332

It doesn’t, and you don’t need to expose the data members by using the public keyword. You can provide access
to the values of private data members by adding function members to return their values. To provide access to the
dimensions of a Box object from outside the class, you just need to add three functions to the class definition:

class Box
{
private:
 double length;
 double width;
 double height;

public:
 // Constructors
 Box(double lv = 1.0, double wv = 1.0, double hv = 1.0);

 double volume(); // Function to calculate the volume of a box

 // Functions to provide access to the values of data members
 double getLength() {return length;}
 double getWidth() {return width;}
 double getHeight() {return height;}
};

The values of the data members are fully accessible, but they can’t be changed from outside the class so the
integrity of the class is preserved without the secrecy. Functions of this kind usually have their definitions within
the class because they are short, and this makes them inline by default. Consequently the overhead involved in
accessing the value of a data member is minimal. Functions that retrieve the values of data members are often
referred to as accessor functions.

Using these accessor functions is simple:

Box myBox {3.0, 4.0, 5.0};
std::cout << "myBox dimensions are" << myBox->getLength() << " by "
 << myBox->getWidth() << " by " << myBox->getHeight() << std::endl;

You can use this approach for any class. You just write an accessor function for each data member that you want
to make available to the outside world.

There will be situations in which you do want to allow data members to be changed from outside the class.
If you supply a function member to do this rather than exposing the data member directly, you have the opportunity
to perform integrity checks on the value. For example, you could add a function to allow the height of a Box object to
be changed:

class Box
{
private:
 double length;
 double width;
 double height;

Chapter 11 ■ Defining Your own Data tYpes

333

public:
 // Constructors
 Box(double lv = 1.0, double wv = 1.0, double hv = 1.0);

 double volume(); // Function to calculate the volume of a box

 // Functions to provide access to the values of data members
 double getLength() {return length;}
 double getWidth() {return width;}
 double getHeight() {return height;}

 // Functions to set data member values
 void setLength(double lv) { if(lv > 0) length = lv;}
 void setWidth(double wv) { if(wv > 0) width = wv;}
 void setHeight(double hv) { if(hv > 0) height = hv; }
};

The if statement in each set function ensures that you only accept new values that are positive. If a new value is
supplied for a data member that is zero or negative, it will be ignored. Member functions that allow data members to
be modified are often referred to as mutators.

Friends
Under normal circumstances, you’ll hide the data members of your classes by declaring them as private.
You may well have private function members of the class too. In spite of this, it is sometimes useful to treat selected
functions that are not members of the class as “honorary members” and allow them to access non-public members
of a class object. Such functions are called friends of the class. A friend can access any of the members of a class
object, regardless of their access specification. The need for friend functions does not arise often, but you’ll meet one
circumstance where it can be necessary in the next chapter when you learn about operator overloading.

You need to consider two situations that involve friends: an individual function can be specified as a friend of
a class, or a whole class can be specified as a friend of another class. In the latter case, all the function members of
the friend class have the same access privileges as a normal member of the class. I’ll consider individual functions as
friends first.

The Friend Functions of a Class
To make a function a friend of a class, you must declare it as such within the class definition using the friend
keyword. It’s the class that determines its friends; there’s no way to make a function a friend of a class from outside
the class definition. A friend function can be a global function or it can be a member of another class. By definition a
function can’t be a friend of the class of which it is a member so access specifiers don’t apply to the friends of a class.

The need for friend functions in practice is limited. They are useful in situations where a function needs access
to the internals of two different kinds of objects; making the function a friend of both classes makes that possible.
I will demonstrate how they work in simpler contexts that don’t necessarily reflect a situation where they are required.

Chapter 11 ■ Defining Your own Data tYpes

334

Suppose that you want to implement a friend function in the Box class to compute the surface area of a Box object. To
make the function a friend, you must declare it as such within the Box class definition. Here’s a version that does that:

class Box
{
private:
 double length;
 double width;
 double height;

public:
 // Constructors
 Box(double lv = 1.0, double wv = 1.0, double hv = 1.0);

 double volume(); // Function to calculate the volume of a box

 friend double surfaceArea(const Box& aBox); // Friend function for the surface area
};

Box.cpp will contain the following code:

// Box.cpp
#include <iostream>
#include "Box.h"

// Constructor definition
Box::Box(double lv, double wv, double hv) : length(lv), width(wv), height(hv)
{
 std::cout << "Box constructor called." << std::endl;
}

// Function to calculate the volume of a box
double Box::volume()
{
 return length*width*height;
}

Here the code to try out the friend:

// Ex11_04.cpp
// Using a friend function of a class
#include <iostream>
#include <memory>
#include "Box.h"

int main()
{
 Box box1 {2.2, 1.1, 0.5}; // An arbitrary box
 Box box2; // A default box
 auto pBox3 = std::make_shared<Box>(15.0, 20.0, 8.0); // Box on the heap

Chapter 11 ■ Defining Your own Data tYpes

335

 std::cout << "Volume of box1 = " << box1.volume() << std::endl;
 std::cout << "Surface area of box1 = " << surfaceArea(box1) << std::endl;

 std::cout << "Volume of box2 = "<< box2.volume() << std::endl;
 std::cout << "Surface area of box2 = " << surfaceArea(box2) << std::endl;

 std::cout << "Volume of box3 = " << box3->volume() << std::endl;
 std::cout << "Surface area of box3 = " << surfaceArea(*pBox3) << std::endl;
}

// friend function to calculate the surface area of a Box object
double surfaceArea(const Box& aBox)
{
 return 2.0*(aBox.length*aBox.width + aBox.length*aBox.height +aBox.height*aBox.width);
}

Here’s the output:

Box constructor called.
Box constructor called.
Box constructor called.
Volume of box1 = 1.21
Surface area of box1 = 8.14
Volume of box2 = 1
Surface area of box2 = 6
Volume of box3 = 2400
Surface area of box3 = 1160

You declare the boxSurface() function as a friend of the Box class by writing the function prototype within
the Box class definition preceded by the friend keyword. The function doesn’t alter the Box object that is passed as
the argument so it’s sensible to use a const reference parameter specification. It’s also a good idea to be consistent
when placing the friend declaration within the definition of the class. You can see that I’ve chosen to position this
declaration at the end of all the public members of the class. The rationale for this is that the function is part of the
class interface because it has full access to all class members.

boxSurface() is a global function and its definition follows that of main(). You could put it in Box.cpp because it
is related to the Box class, but placing it in the main file helps indicate that it’s a global function.

Notice that you access the data members of the object within the definition of boxSurface() by using the Box
object that is passed to the function as a parameter. A friend function is not a class member so the data members can’t
be referenced by their names alone. They each have to be qualified by an object name in exactly the same way as they
would be in an ordinary function that accesses public members of a class. A friend function is the same as an ordinary
function, except that it can access all the members of a class without restriction.

The main() function creates a Box object by specifying the dimensions, an object with no dimensions specified
so the defaults will apply, and a Box object created on the heap. This shows that you can create a smart pointer to a
Box object on the heap in the way that you have seen with std::string objects. From the output you can see that
everything works as expected with all three objects.

Although this example demonstrates how you write a friend function, it is not very realistic. You could have used
accessor function members to return the values of the data members. Then surfaceArea() wouldn’t need to be a
friend function. Perhaps the best option would have been to make surfaceArea() a public function member of the
class so that the capability for computing the surface area of a box becomes part of the class interface.

Chapter 11 ■ Defining Your own Data tYpes

336

Friend functions are part of the interface to a class, but it is better programming practice to define the interface
to a class entirely in terms of function members if you can. As I explained at the beginning of this discussion, the only
circumstances in which they are really necessary is when you need to access the non-public members of two different
classes; even then, you may be able to do what you want without involving friend functions.

Friend Classes
You can declare a whole class to be a friend of another class. All the function members of a friend class have
unrestricted access to all the members of the class of which it has been declared a friend.

For example, suppose you have defined a Carton class and want to allow the function members of the Carton
class to have access to the members of the Box class. Including a statement in the Box class definition that declares
Carton to be a friend will enable this:

class Box {
 // Public members of the class...

 friend class Carton;

 // Private members of the class...
};

Friendship is not a reciprocal arrangement. Functions in the Carton class can access all the members of the Box
class, but functions in the Box class have no access to the private members of the Carton class. Friendship amongst
classes is not transitive either; just because class A is a friend of class B, and class B is a friend of class C, it doesn’t
follow that class A is a friend of class C.

A typical use for a friend class is where the functioning of one class is highly intertwined with that of another.
A linked list basically involves two class types: a List class that maintains a list of objects (usually called nodes), and
a Node class that defines what a node is. The List class needs to stitch the Node objects together by setting a pointer in
each Node object so that it points to the next Node object. Making the List class a friend of the class that defines a node
would enable members of the List class to access the members of the Node class directly.

The this Pointer
The volume() function in the Box class was implemented in terms of the unqualified class member names. Every
object of type Box contains these members so there must be a way for the function to refer to the members of the
particular object for which it has been called. In other words, when the code in volume() accesses the length
member, there has to be a way for length to refer to the member of the object for which the function is called, and not
some other object.

When a class function member executes, it automatically contains a hidden pointer with the name this, which
contains the address of the object for which the function was called. For example, suppose you write this statement:

std::cout << box1.volume() << std::endl;

Chapter 11 ■ Defining Your own Data tYpes

337

The this pointer in the volume() function contains the address of box1. When you call the function for a different
Box object, this will contain the address of that object. This means that when the data member length is accessed in
the volume() function during execution, it is actually referring to this->length, which is the fully specified reference
to the object member that is being used. The compiler takes care of adding the this pointer name to the member
names in the function. In other words, the compiler implements the function as:

double Box::volume()
{
 return this->length * this->width * this->height;
}

You could write the function explicitly using the pointer this if you wanted to, but it isn’t necessary. However,
there are situations where you do need to use this explicitly. For example, when you need to return the address of the
current object.

Note ■ You'll learn about static function members of a class later in this chapter that do not contain the this pointer.

Returning this from a Function
If the return type for a function member is a pointer to the class type, you can return this. You can then use the
pointer returned by one function member to call another. Let’s consider an example of where this would be useful.

Suppose you add mutator functions to the Box class to set the length, width, and height of a box, and you define
these functions so they return this:

class Box
{
private:
 double length;
 double width;
 double height;

public:
 // Constructors
 Box(double lv = 1.0, double wv = 1.0, double hv = 1.0);

 double volume(); // Function to calculate the volume of a box

 // Mutator functions
 Box* setLength(double lv);
 Box* setWidth(double wv);
 Box* setHeight(double hv);
};

Chapter 11 ■ Defining Your own Data tYpes

338

You can implement these in Box.cpp as follows:

Box* Box::setLength(double lvalue)
{
 if(lv > 0) length = lv;
 return this;
}

Box* Box::setWidth(double wv)
{
 if(wv > 0) width = wv;
 return this;
}

Box* Box::setHeight(double hv)
{
 if(hv > 0) height = hv;
 return this;
}

Now you can modify all the dimensions of a Box object in a single statement:

Box aBox {10.0,15.0,25.0}; // Create a box
aBox.setLength(20.0)->setWidth(40.0)->setHeight(10.0); // Set all dimensions of aBox

Because the mutator functions return the this pointer, you can use the value returned by one function to call the
next. Thus the pointer returned by setLength() is used to call setWidth(), which returns a pointer you can use to call
setHeight(). Isn’t that nice?

const Objects and const Member Functions
Let’s look again at the volume() function member of the Box class in Ex11_03. Suppose you change the code in main()
so that box1 is const:

const Box box1 {2.0, 3.0, 4.0}; // A box that is a constant
Box box2 {5.0}; // A box that is a cube
std::cout << "box1 volume = " << box1.volume() << std::endl; // Won't compile!
std::cout << "box2 volume = " << box2.volume() << std::endl;

You can specify any variable as const, including variables that are of class types. Now the example will no longer
compile. The compiler will not allow you to call the volume() function member for a const object because there’s the
risk that it could change the object. volume() doesn’t alter the object for which it is called so you need a way to tell the
compiler this. First, you specify the function as const in the class definition:

class Box
{
 // Rest of the class as before...
 double volume() const; // Function to calculate the volume of a box
};

Chapter 11 ■ Defining Your own Data tYpes

339

You must also change the function definition in Box.cpp the same way:

double Box::volume() const
{
 return length*width*height;
}

With these changes the modified version of Ex11_03 will work. You can only call const function members for
const objects so you should specify all function members that do not change the object for which they are called as const.
Specifying a function member as const makes the this pointer const for the function. Thus you can call a const
function member for const or non-const objects. Non-const function members can only be called for
non-const objects because the this pointer in a non-const function member is not const.

Declaring a function member as const affects the function signature. This means that you can overload a
non-const function member with a const version. However, you should be careful about overloading a function
member on the basis of const-ness, as it can be confusing to someone using the class.

Ordinarily the data members of a const object cannot be modified. Sometimes you want to allow particular
class members to be modifiable even for a const object. You can do this by specifying such members as mutable. For
example:

class Box
{
private:
 double length;
 double width;
 double height;
 mutable std::string name; // Name of a box

 // Rest of the class definition...
};

The mutable keyword indicates that the name member can be changed, even when the object is const.
const or non-const functions can always make changes to data members specified as mutable.

Casting Away const
Very rarely, circumstances can arise where a function is dealing with a const object, either passed as an argument
or the object pointed to by this, and it is necessary to make it non-const. This could be because you want to pass
it as an argument to another function—perhaps written by someone else—that has a non-const parameter. The
const_cast<>() operator enables you to do this. The general form of using the const_cast<>() operator is

const_cast<Type>(expression)

Here, the type of expression must be either const Type or the same as Type. You should not use this operator to
undermine the const-ness of an object. The only situations in which you should use it are those where you are sure
the const nature of the object won’t be violated as a result.

Chapter 11 ■ Defining Your own Data tYpes

340

Arrays of Class Objects
You can create an array of objects of a class type in exactly the same way as you create an array of elements of any
other type. Each array element has to be created by a constructor and for each element that does not have an initial
value specified, the compiler arranges for the no-arg constructor to be called. You can see this happening with an
example. The Box class definition in Box.h is:

// Box.h
#ifndef BOX_H
#define BOX_H
#include <iostream>

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv);

 Box(double side) : Box{side, side, side} // Constructor for a cube
 { std::cout << "Box constructor 2 called." << std::endl; }

 Box() // No-arg constructor
 { std::cout << "No-arg Box constructor called." << std::endl; }

 Box(const Box& box) // Copy constructor
 : length {box.length}, width {box.width}, height {box.height}
 { std::cout << "Box copy constructor called." << std::endl; }

 double volume() const; // Function to calculate the volume of a box
};
#endif

The contents of Box.cpp is:

#include <iostream>
#include "Box.h"

// Constructor definition
Box::Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv}
{ std::cout << "Box constructor 1 called." << std::endl; }

// Function to calculate the volume of a box
double Box::volume() const
{ return length*width*height; }

Chapter 11 ■ Defining Your own Data tYpes

341

The Ex11_05.cpp defining main() will contain:

// Ex11_05.cpp
// Creating an array of objects
#include <iostream>
#include "Box.h"

int main()
{
 const Box box1 {2.0, 3.0, 4.0}; // An arbitrary box
 Box box2 {5.0}; // A box that is a cube
 std::cout << "box1 volume = " << box1.volume() << std::endl;
 std::cout << "box2 volume = " << box2.volume() << std::endl;
 Box box3 {box2};
 std::cout << "box3 volume = " << box3.volume() << std::endl; // Volume = 125
 Box boxes[6] {box1, box2, box3, Box {2.0}};
}

The output is:

Box constructor 1 called.
Box constructor 1 called.
Box constructor 2 called.
box1 volume = 24
box2 volume = 125
Box copy constructor called.
box3 volume = 125
Box copy constructor called.
Box copy constructor called.
Box copy constructor called.
Box constructor 1 called.
Box constructor 2 called.
No-arg Box constructor called.
No-arg Box constructor called.

The interesting bit is the last seven lines, which result from the creation of the array of Box objects. The initial
values for the first three array elements are existing objects so the compiler calls the copy constructor to duplicate
box1, box2, and box3. The fourth element is initialized with an object that is created in the initializer list for the array
by the constructor 2, which calls constructor 1 in its initialization list. The last two array elements have no initial
values specified so the compiler calls the no-arg constructor to create these.

The Size of a Class Object
You obtain the size of a class object by using the sizeof operator in exactly the way you have previously with
fundamental data types. You can apply the operator to a particular object, or to the class type. The size of a class object
is generally the sum of the sizes of the data members of the class, although on some machines, it may turn out to be
greater than this occasionally. This isn’t something that should bother you, but it’s nice to know why.

On some computers, for performance reasons, two-byte variables must be placed at an address that is a
multiple of two, four byte variables must be placed at an address that is a multiple of four, and so on. This is called
boundary alignment. A consequence of this is that sometimes, the compiler must leave gaps between the memory for

Chapter 11 ■ Defining Your own Data tYpes

342

one value and the next. If, on such a machine, you have three variables that occupy two bytes, followed by a variable
that requires four bytes, a gap of two bytes may be left in order to place the fourth variable on the correct boundary.
In this case, the total space required by all four is greater than the sum of the individual sizes.

Static Members of a Class
You can declare members of a class as static. Static data members of a class are used to provide class-wide storage
of data that is independent of any particular object of the class type, but is accessible by any of them. They record
properties of the class as a whole, rather than of individual objects. You can use static data members to store constants
that are specific to a class, or you could store information about the objects of a class in general, such as how many
there are in existence.

A static function member is independent of any individual class object, but can be invoked by any class object
if necessary. It can also be invoked from outside the class if it is a public member. A common use of static function
members is to operate on static data members, regardless of whether any objects of the class have been defined.

Because the context is a class, there is a little more to this topic than the effect of the static keyword outside a
class, so I’ll go into it in a little more detail.

Static Data Members
Static data members of a class are associated with the class as a whole, not with any particular object of the class.
When you declare a data member of a class as static, the static data member is defined only once, and will exist even
if no class objects have been created. Each static data member is accessible in any object of the class and is shared
among however many objects there are. An object gets its own independent copies of the ordinary data members but
only one instance of each static data member exists, regardless of how many class objects have been defined.

One use for a static data member is to count how many objects of a class exist. You could add a static data
member to the Box class by adding the following statement to your class definition:

static size_t objectCount; // Count of objects in existence

Figure 11-5 shows how this member exists outside of any objects but is available to all of them. Now you have
a problem. How do you initialize the static data member? A static data member is not part of an object so in general
you can’t initialize a static data member in the class definition—the class is simply a blueprint for an object, and the
initialization of non-static data members occurs for each object when it is created. The one exception is if the static
member is const and is an integral or enumeration type, in which you can specify the initial value in the class. You
don’t want to initialize it in a constructor, because you want to increment it each time a constructor is called; and
anyway, it exists even if no objects exist (and therefore no constructors have been called).

Chapter 11 ■ Defining Your own Data tYpes

343

The answer is to initialize each static member outside the class with a statement such as this:

size_t Box::objectCount {}; // Initialize static member of Box class to 0

This defines objectCount. The line in the class definition declares that it is a static member of the class. Even
though the static data member is specified as private, you can still initialize it in this fashion. Indeed, this is the only
way you can initialize it. Of course, because it’s private, you can’t access objectCount from outside the class. Because
this statement defines the class static member, it must occur only once in a program. The logical place to put it is the
Box.cpp file. Note that the static keyword is not included in the definition—indeed, you must not include it here. You
do need to qualify the member name with the class name so that the compiler understands that you are referring to a
static member of the class. Otherwise, you’d simply create a global variable that has nothing to do with the class.

Let’s add the static data member and the object counting capability to Ex11_05. You need two extra statements
in the class definition: one to declare the new static data member, and another to define a function that will retrieve
its value. The constructors also need to increment objectCount:

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};
 static size_t objectCount; // Count of objects in existence

public:
 // Constructors
 Box(double lv, double wv, double hv);

length
breadth
height

10.0
15.0
5.0

length
breadth
height

20.0
20.0
20.0

length
breadth
height

15.0
25.0
5.0

objectCount

One copy of each static data member is
shared between all objects of a class

class Box
{
 private:
 static size_t objectCount;
 double length;
 double breadth;
 double height;
 ...
}

box2box1 box3

Figure 11-5. Static class members are shared between objects

Chapter 11 ■ Defining Your own Data tYpes

344

 Box(double side) : Box {side, side, side} // Constructor for a cube
 {
 std::cout << "Box constructor 2 called." << std::endl;
 }

 Box() // No-arg constructor
 {
 ++objectCount;
 std::cout << "No-arg Box constructor called." << std::endl;
 }

 Box(const Box& box) : // Copy constructor
 length {box.length}, width {box.width}, height {box.height}
 {
 ++objectCount;
 std::cout << "Box copy constructor called." << std::endl;
 }

 double volume() const; // Function to calculate the volume of a box
 size_t getObjectCount() const { return objectCount; }
};

The getObjectCount() function has been declared as const because it doesn’t modify any of the data members
of the class and you might want to call it for const or non-const objects. You can add the statement to initialize the
static member objectCount in the Box.cpp file:

#include <iostream>
#include "Box.h"

size_t Box::objectCount {}; // Initialize static member of Box class to 0

// Constructor definition
Box::Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv}
{
 ++objectCount;
 std::cout << "Box constructor 1 called." << std::endl;
}

// Function to calculate the volume of a box
double Box::volume() const
{
 return length*width*height;
}

This constructor definition now updates the count when an object is created. You can modify the version of main()
from Ex11_05 to output the object count:

// Ex11_06.cpp
// Using a static data member
#include <iostream>
#include "Box.h"

Chapter 11 ■ Defining Your own Data tYpes

345

int main()
{
 const Box box1 {2.0, 3.0, 4.0}; // An arbitrary box
 Box box2 {5.0}; // A box that is a cube
 std::cout << "box1 volume = " << box1.volume() << std::endl;
 std::cout << "box2 volume = " << box2.volume() << std::endl;
 Box box3 {box2};
 std::cout << "box3 volume = " << box3.volume() << std::endl; // Volume = 125
 Box boxes[6] {box1, box2, box3, Box {2.0}};
 std::cout << "There are now " << box1.getObjectCount() << " objects." << std::endl;
}

This program will produce the following output:

Box constructor 1 called.
Box constructor 1 called.
Box constructor 2 called.
box1 volume = 24
box2 volume = 125
Box copy constructor called.
box3 volume = 125
Box copy constructor called.
Box copy constructor called.
Box copy constructor called.
Box constructor 1 called.
Box constructor 2 called.
No-arg Box constructor called.
No-arg Box constructor called.
There are now 9 objects.

This code shows that, indeed, only one copy of the static member objectCount exists, and all the constructors are
updating it. The getObjectCount() function is called for the box1 object but you could use any object including any of
the array elements to get the same result. Of course, you’re only counting the number of objects that get created. The
count that is output corresponds to the number of objects created here. In general though you have no way to know
when objects are destroyed, so the count won’t necessarily reflect the number of objects that are around at any point.
You’ll find out later in this chapter how to account for objects that get destroyed.

Note that the size of a Box object will be unchanged by the addition of objectCount to the class definition. This
is because static data members are not part of any object—they belong to the class. Because static data members are
not part of a class object, a const function member can modify non-const static data members without violating the
const nature of the function.

Accessing Static Data Members
Suppose that in a reckless moment, you declared objectCount as a public class member. You no longer need the
getObjectCount() function to access it. To output the number of objects in main(), just write this:

std::cout << "Object count is " << firstBox.objectCount << std::endl;

Chapter 11 ■ Defining Your own Data tYpes

346

There’s more: I claimed that a static data member exists even if no objects have been created. This means that
you should be able to get the count before you create the first Box object, but how do you refer to the data member?
The answer is that you use the class name, Box, as a qualifier:

std::cout << "Object count is " << Box::objectCount << std::endl;

You can always use the class name to access a public static member of a class. It doesn’t matter whether any
objects exist or not. Try it out by modifying the last example; you’ll see that it works as described.

A Static Data Member of the Class Type
A static data member is not part of a class object so it can be of the same type as the class. The Box class can contain
a static data member of type Box, for example. This might seem a little strange at first, but it can be useful. I’ll use the
Box class to illustrate just how. Suppose you need a standard “reference” box for some purpose; you might want to
relate Box objects in various ways to a standard box for example. Of course, you could define a standard Box object
outside the class, but if you are going to use it within function members of the class, it creates an external dependency
that it would be better to lose.

class Box
{
private:
 const static Box refBox; // Standard reference box

 // Rest of the class as before...
};

refBox is const because it is a standard Box object that should not be changed. However, you must still define
and initialize it outside the class. You could put a statement in Box.cpp to define refBox:

const Box Box::refBox {10.0, 10.0, 10.0};

This calls the Box class constructor to create refBox. Because static data members of a class are created before
any objects are created, at least one Box object will always exist. Any of the static or non-static function members
can access refBox. It isn’t accessible from outside the class because it is a private member. A class constant is one
situation where you might want to make the data member public if it has a useful role outside the class. As long as it is
declared as const, it can’t be modified.

Static Function Members
A static function member is independent of any class object. A public static function member can be called even if
no class objects have been created. Declaring a static function in a class is easy: you simply use the static keyword
as you did with objectCount. You could have declared the getObjectCount() function as static in the previous
example. You call a static function member using the class name as a qualifier. Here’s how you could call the static
getObjectCount() function:

std::cout << "Object count is" << Box::getObjectCount() << std::endl;

Chapter 11 ■ Defining Your own Data tYpes

347

Of course, if you have created class objects, you can call a static function member through an object of the class in
the same way as you call any other function member. For instance:

std::cout << "Object count is" << box1.getObjectCount() << std::endl;

A static function member has no access to the object for which it is called. In order for a static function member
to access an object of the class, it would need to be passed as an argument to the function. Referencing members of
a class object from within a static function must then be done using qualified names (as you would with an ordinary
global function accessing a public data member).

Of course, a static function member is a full member of the class in terms of access privileges. If an object of the
same class is passed as an argument to a static function member, it can access private as well as public members
of the object. It wouldn’t make sense to do so, but just to illustrate the point, you could include a definition of a static
function in the Box class as shown here:

static double edgeLength(Box aBox)
{
return 4.0*(aBox.length + aBox.width + aBox.height);
}

Even though you are passing the Box object as an argument, the private data members can be accessed.
Of course, it would make more sense to do this with an ordinary function member.

Caution ■ static function members can’t be const. Because a static function member isn’t associated with any class
object, it has no this pointer, so const-ness doesn’t apply.

Destructors
At the end of a block in which a class object is created, the object is destroyed, just like a variable of a fundamental
type. When an object is destroyed, a special member of the class called a destructor is executed to deal with any
clean-up that may be necessary. A class can have only one destructor. The compiler provides a default version of the
destructor that does nothing if you don’t define one. The definition of the default constructor looks like this:

~ClassName() {}

The name of the destructor for a class is always the class name prefixed with a tilde, ~. The destructor cannot have
parameters or a return type. The default destructor in the Box class is:

~Box() {}

Of course, if the definition is placed outside the class, the name of the destructor would be prefixed with the
class name:

Box::~Box() {}

The destructor for a class is always called automatically when an object is destroyed. The circumstances where
you need to call a destructor explicitly are so rare you can ignore the possibility. Calling a destructor when it is not
necessary can cause problems. You only need to define a class destructor when something needs to be done when an
object is destroyed. A class that deals with physical resources such as a file then needs to be closed is one example

Chapter 11 ■ Defining Your own Data tYpes

348

and of course if memory is allocated by a constructor using new, the destructor is the place to release the memory.
I’ll go into an example where you must define a destructor in Chapter 12. The Box class in Ex11_06 would benefit from
a destructor implementation that decremented objectCount:

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};
 static size_t objectCount; // Count of objects in existence

public:
 // Constructors
 Box(double lv, double wv, double hv);

 Box(double side) : Box {side, side, side} // Constructor for a cube
 {
 std::cout << "Box constructor 2 called." << std::endl;
 }

 Box() // No-arg constructor
 {
 ++objectCount;
 std::cout << "No-arg Box constructor called." << std::endl;
 }

 Box(const Box& box) // Copy constructor
 : length {box.length}, width {box.width}, height {box.height}
 {
 ++objectCount;
 std::cout << "Box copy constructor called." << std::endl;
 }

 double volume() const; // Function to calculate the volume of a box

 static size_t getObjectCount() { return objectCount; }

 ~Box() // Destructor
 {
 std::cout << "Box destructor called." << std::endl;
 --objectCount;
 }
};

Chapter 11 ■ Defining Your own Data tYpes

349

The destructor has been added to decrement objectCount, and getObjectCount() is now a static function
member. The destructor outputs a message when it is called so you can see when this occurs. If Box.cpp is the same
as in Ex11_05, the following code will check the destructor operation out:

// Ex11_07.cpp
// Implementing a destructor
#include <iostream>
#include <memory>
#include "Box.h"

int main()
{
 std::cout << "There are now" << Box::getObjectCount() << "objects." << std::endl;
 const Box box1 {2.0, 3.0, 4.0}; // An arbitrary box
 Box box2 {5.0}; // A box that is a cube
 std::cout << "There are now" << Box::getObjectCount() << "objects." << std::endl;
 for (double d {} ; d < 3.0 ; ++d)
 {
 Box box {d, d + 1.0, d + 2.0};
 std::cout << "Box volume is" << box.volume() << std::endl;
 }
 std::cout << "There are now" << Box::getObjectCount() << "objects." << std::endl;

 auto pBox = std::make_shared<Box>(1.5, 2.5, 3.5);
 std::cout << "Box volume is" << pBox->volume() << std::endl;
 std::cout << "There are now" << pBox->getObjectCount() << "objects." << std::endl;
}

The output from this example is:

There are now 0 objects.
Box constructor 1 called.
Box constructor 1 called.
Box constructor 2 called.
There are now 2 objects.
Box constructor 1 called.
Box volume is 0
Box destructor called.
Box constructor 1 called.
Box volume is 6
Box destructor called.
Box constructor 1 called.
Box volume is 24
Box destructor called.
There are now 2 objects.
Box constructor 1 called.
Box volume is 13.125
There are now 3 objects.
Box destructor called.
Box destructor called.
Box destructor called.

Chapter 11 ■ Defining Your own Data tYpes

350

This example shows when constructors and the destructor are called and how many object exist at various
points during execution. The first line of output shows there are no Box objects at the outset. objectCount clearly
exists without any objects because we retrieve its value using the static getObjectCount() member. box1 and box2
are created in the way you saw in the previous example and the output shows that there are indeed two objects in
existence. The for loop created a new object on each iteration and the output shows that the new object is destroyed
at the end of the current iteration, after its volume has been output. After the loop ends, there are just the original two
objects in existence. The last object is created on the heap by calling the make_shared<Box>() function the template
for which is defined in the memory header. This calls the Box constructor that has three parameters to create the object
on the heap. Just to show that you can, getObjectCount() is called using the smart pointer, pBox. You can see the
output from the three destructor calls that occur when main() ends and that destroy the remaining three Box objects.

You now know that the compiler will add a default constructor, a default copy constructor, and a destructor to
each class when you don’t define these. There are other members that the compiler can add to a class and you’ll learn
about those in Chapter 12.

Pointers and References to Class Objects
You can define and use pointers and references to class objects in the same way as for fundamental types of data.
Pointers and references to class objects are essential in object-oriented programming and they each provide
particular advantages. You can use a pointer to a class object in three ways:

 1. As a means of invoking operations on an object—that is, calling functions using
the -> operator.

 2. As an argument to a function.

 3. As a data member of a class.

The first of these enables you to call a function polymorphically, where the function called depends on the type of
object pointed to. You’ll learn about this in detail in Chapter 14. When you use a pointer as an argument to a function,
you avoid the copying that is implicit in the pass-by-value mechanism. This can vastly improve the efficiency of a
program, especially for large objects because copying large objects can be time consuming.

A class member that is a pointer can store the address of a data item on the heap. A pointer can also store the
address of another object of the same type as the class for which it is a member which allows a series of objects to
be linked. It can even allow objects of different types to be linked. Pointers as class members enables objects to
be organized into structures such as linked lists, graphs, or trees. Returning a pointer to an object from a function
member also has advantages.

References to objects have great importance as parameter types for functions. Passing an object by reference
also avoids the copying that is inherent in the pass-by-value mechanism. A reference parameter is essential to
implementing a copy constructor, as you’ll see.

Using Pointers As Class Members
I’ll define a class with a data member that is a pointer and use instances of the class to create a linked list of objects.

Note ■ You don’t need to create your own classes for linked lists. Very flexible versions are already defined in the list
standard library header. Defining your own class for a linked list is very educational though.

Chapter 11 ■ Defining Your own Data tYpes

351

I’ll define a class that represents a collection of any number of Box objects—the contents of the header file for the
Box class definition will be:

// Box.h
#ifndef BOX_H
#define BOX_H
#include <iostream>
#include <iomanip>

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {};

 Box() {} // No-arg constructor

 Box(const Box& box) : // Copy constructor
 length {box.length}, width {box.width}, height {box.height} {}

 double volume() const // Volume of a box
 {
 return length*width*height;
 }

 int compare(const Box& box)
 {
 if (volume() < box.volume()) return -1;
 if (volume() == box.volume()) return 0;
 return 1;
 }

 void listBox()
 {
 std::cout << " Box(" << std::setw(2) << length << ","
 << std::setw(2) << width << ","
 << std::setw(2) << height << ")";
 }
};
#endif

I have omitted the accessor function members because they are not required here, but I have added a listBox()
member to output a Box object. In this case, a Box object represents a unit of a product to be delivered, and a
collection of Box objects represents a truckload of boxes, so I’ll call the class Truckload; the collection of Box objects
will a linked list. A linked list can be as long or as short as you need and you can add objects anywhere in the list. The
class will allow a Truckload object to be created from a single Box object or from a vector of Box objects. It will provide
for adding and deleting a Box object, and for retrieving all the Box objects in the Truckload.

Chapter 11 ■ Defining Your own Data tYpes

352

A Box object has no built-in facility for linking it with another Box object. Changing the definition of the Box
class to incorporate this capability would be inconsistent with the idea of a box—boxes aren’t like that. One way to
collect Box objects into a list is to define another type of object, which I’ll call Package. A Package object will have two
members: a pointer to a Box object, and a pointer to another Package object. Thus it will be possible to create a chain
of Package objects.

Figure 11-6 shows how each Package object points to a Box object and also forms a link in a chain of Package
objects that are connected by pointers—a linked list. The list of Package objects can be of unlimited length. As long
as you can access the first Package object, you can access the next Package through the pNext pointer it contains,
which allows you to reach the next through the pNext pointer that contains, and so on through all objects in the list.
Each Package object can provide access to the Box object through its pBox member. This arrangement is superior to
the Package class having a member that is of type Box, which would require a new Box object to be created for each
Package object. The Package class is just a means of tying Box objects together in a linked list and each Box object
should exist independently from the Package objects.

Package object

std::shared_ptr<Package> pNext;

std::shared_ptr<Box> pBox;

Package object

std::shared_ptr<Package> pNext;

std::shared_ptr<Box> pBox;

Box
object

Box
object

Figure 11-6. Linked Package objects

Box
object

Package
object

pNext

pBox

Package
object

pNext

pBox

Package
object

pNext

pBox

Box
object

Box
object

nullptr

Truckload object

std::shared_ptr<Package> pHead;

Figure 11-7. A Truckload object managing a linked list of three Package objects

A Truckload object will create and manage a list of Package objects. A Truckload object represents an instance of
a truckload of boxes. There can be any number of boxes in a truckload and each box will be referenced from within a
package. A Package object provides the mechanism for the Truckload object to access the pointer to the Box object it
contains. The relationship between these objects is illustrated in Figure 11-7.

Chapter 11 ■ Defining Your own Data tYpes

353

Figure 11-7 shows a Truckload object that manages a list of Package objects; each Package object contains
a Box object and a pointer to the next Package object. The Truckload object only needs to keep track of the first
Package object in the list; the pHead member contains its address. By following the pNext pointer links you can find
any of the objects in the list. In this elementary implementation the list can only be traversed from the start. A more
sophisticated implementation could provide each Package object with a pointer to the previous object in the list
which would allow the list to be traversed backwards as well as forwards. Let’s put the ideas into code.

Defining the Package Class
Based on the preceding discussion, the Package class can be defined in Package.h like this:

// Package.h
#ifndef PACKAGE_H
#define PACKAGE_H
#include <memory>
#include "Box.h"
template <typename T> using ptr = std::shared_ptr<T>;

class Package
{
private:
 ptr<Box> pBox; // Pointer to the Box object
 ptr<Package> pNext; // Pointer to the next Package

public:
 Package(ptr<Box> pb) : pBox {pb}, pNext {} {} // Constructor

 ptr<Box>& getBox() { return pBox; } // Retrieve the Box pointer
 ptr<Package>& getNext() { return pNext; } // Get next Package address

 void setNext(ptr<Package>& pPackage) // Point to next object
 {
 pNext = pPackage;
 }
};
#endif

This uses a template for a using statement that defines an alias for a templatized type. Thus you can use ptr<T>
as the type for a smart pointer to an object of type T so ptr<Box> is an alias for std::shared_ptr<Box>. This template
makes the code a little less cluttered. The ptr<Box> member of the Package class will store the address of a Box object
and the ptr<Package> member will point to the next Package object in the list. The pNext member for the last Package
object in a list will contain nullptr.

The constructor allows a Package object to be created that contains the address of the Box argument. The pNext
member will be nullptr by default but it can be set to point to a Package object by calling the setNext() member.
The setNext() function updates pNext to the next Package in the list. To add a new Package object to end of the list,
you pass its address to the setNext() function for the last Package object in a list.

Chapter 11 ■ Defining Your own Data tYpes

354

Defining the Truckload Class
A Truckload object will encapsulate a list of Package objects. The class must provide everything necessary to create
and extend and delete from the list and also the means by which Box objects can be retrieved. A pointer to the first
Package object in the list as a data member will allow you can get to any Package object in the list by stepping through
the chain of pNext pointers, using the getNext() function from the Package class. The getNext() function will be
called repeatedly to step through the list one Package object at a time, so the Truckload object will need to track the
object that was retrieved most recently. It’s also useful to store the address of the last Package object, as this makes it
easy to add a new object to the end of the list. Figure 11-8 shows this.

nullptr

ptr<Package> pHead;
ptr<Package> pCurrent;
ptr<Package> pTail;

Truckload Object

The first package in
the list

The most recently
retrieved package

The last package in
the list

The list of packages

Figure 11-8. Information needed in a Truckload object to manage the list

Consider how retrieving Box objects from a Truckload object could work. This inevitably involves stepping
through the list so the starting point is the first object in the list. You could define a getFirstBox() function member
in the Truckload class to retrieve the pointer to the first Box object and record the address of the Package object that
contained it in pCurrent. You can then implement a getNextBox() function member that will retrieve the pointer
to the Box object from the next Package object in the list and then update pCurrent to reflect that. Another essential
capability is the ability to add a Box to the list and delete a Box from the list, so you’ll need function members to do
that; addBox() and deleteBox() would be suitable names for these. A function member to list all the Box objects in
the list will also be handy.

Here’s a definition for the Truckload class based on these ideas:

#include "Package.h"

class Truckload
{
private:
 ptr<Package> pHead; // First in the list
 ptr<Package> pTail; // Last in the list
 ptr<Package> pCurrent; // Last retrieved from the list

Chapter 11 ■ Defining Your own Data tYpes

355

public:
 Truckload() {} // No-arg constructor empty truckload

 Truckload(ptr<Box> pBox) // Constructor - one Box
 { pHead = pTail = std::make_shared<Package>(pBox); }

 Truckload(const std::vector< ptr<Box> >& boxes); // Constructor - vector of Boxes

 ptr<Box> getFirstBox(); // Get the first Box
 ptr<Box> getNextBox(); // Get the next Box
 void addBox(ptr<Box> pBox); // Add a new Box
 bool deleteBox(ptr<Box> pBox); // Delete a Box
 void listBoxes(); // Output the Boxes
};
#endif

The data members are private because they don’t need to be accessible outside the class. There are three
constructors. The no-arg constructor defines an object containing an empty list. You can also create an object from
a single pointer to a Box object or from a vector of pointers. The getFirstBox() and getNextBox() members provide
the mechanism for retrieving Box objects. Each of these needs to modify the pCurrent pointer, so they cannot be
const. The addBox() and deleteBox() functions also change the list so they cannot be const either.

The constructor that accepts a vector of pointers to Box objects and the other function members of the class
require external definitions, which I’ll put in a Truckload.cpp file so they will not be inline. You could define them as
inline and include the definitions in Truckload.h.

Implementing the Truckload Class
The Truckload.cpp file will need the following #include directives:

#include <memory> // For smart pointers
#include <vector> // For vector<T>
#include "Box.h"
#include "Package.h"
#include "Truckload.h"

I’ll start with the constructor definition. This creates a list of one or more Package objects from a vector of smart
pointers to Box objects:

Truckload::Truckload(const std::vector< ptr<Box> >& boxes)
{
 for (auto pBox : boxes)
 {
 addBox(pBox);
 }
}

The parameter is a const reference to avoid copying of the argument. The vector elements are of type
std::shared_ptr<Box>. The loop iterates through the vector elements passing each one to the addBox() member of
the Truckload class, which will create and add a Package object on each call.

Chapter 11 ■ Defining Your own Data tYpes

356

The addBox() member definition will be:

void Truckload::addBox(ptr<Box> pBox)
{
 auto pPackage = std::make_shared<Package>(pBox); // Create a Package

 if (pHead) // Check list is not empty
 pTail->setNext(pPackage); // Add the new object to the tail
 else // List is empty
 pHead = pPackage; // so new object is the head

 pTail = pPackage; // Store its address as tail
}

The function creates a new Package object from the pBox pointer in the free store and stores its address in the
local smart pointer, pPackage. If pHead is non-null, then the list is not empty, in which case the new object is added to
the end of the list by storing its address in the pNext member of the last member that is pointed to by pTail. If pHead
is nullptr, then the list is empty so the address of the new object is the first member of the list. In either case the new
Package object is at the end of the list, so pTail is updated to reflect this.

The getFirstBox() function definition is a piece of cake—just two statements:

ptr<Box> Truckload::getFirstBox()
{
 pCurrent = pHead->getNext();
 return pHead->getBox();
}

The address of the first Package object in the list is in pHead. Calling the getBox() function for this Package object
obtains the address of the Box object, which is returned from getFirstBox(). Before that occurs, the address of the
next Package object, which may be nullptr of course, is stored in pCurrent.

The getNextBox() function can access the Package object that follows that pointed to by pCurrent by calling
its getNext() function and then calling getBox(). It’s possible that pCurrent may be nullptr so getNextBox() must
verify that is not the case before calling getNext(). The code for getNextBox() is:

ptr<Box> Truckload::getNextBox()
{
 if (!pCurrent) // If there's no current...
 return getFirstBox(); // ...return the 1st

 auto pPackage = pCurrent->getNext(); // Save the next package
 if (pPackage) // If there is one...
 {
 pCurrent = pPackage; // Update current to the next
 return pPackage->getBox();
 }
 pCurrent = nullptr; // If we get to here...
 return nullptr; // ...there was no next
}

Chapter 11 ■ Defining Your own Data tYpes

357

When pCurrent contains the address of a Package object, you call its getNext() member to obtain the address
of the next Package object and save it in pPackage. If pCurrent is nullptr, then the first in the list is obtained and
returned by calling getFirstBox(). If the pointer to the next Package object, pPackage, is not nullptr, it is stored in
pCurrent and the Box pointer it contains is returned. If pPackage is nullptr, the end of the list has been reached so
pCurrent is reset to nullptr and nullptr is returned. Because nullptr is returned to signal there is no next pointer to a
Box, we cannot return a reference.

The member to list the contents of the Truckload object can be implemented like this:

void Truckload::listBoxes()
{
 pCurrent = pHead;
 size_t count {};
 while (pCurrent)
 {
 pCurrent->getBox()->listBox();
 pCurrent = pCurrent->getNext();
 if(! (++count % 5)) std::cout << std::endl;
 }
 if (count % 5) std::cout << std::endl;
}

This steps through the Package objects in the linked list and outputs the Box object that each contains by calling
getBox() for the Package object to access the pointer to the Box and using that to call listBox() for the Box object.
Box objects are output five on a line. The last statement outputs a newline when the last line contains output for less
than five Box objects.

We now need some code to try out the Truckload class:

// Ex11_08.cpp
// Using a linked list
#include <iostream>
#include <memory>
#include <vector>
#include <cstdlib> // For random number generator
#include <ctime> // For time function
#include "Box.h"
#include "Truckload.h"

// Function to generate a random integer 1 to count
inline size_t random(size_t count)
{
 return 1 + static_cast<size_t> (count*static_cast<double>(std::rand())/(RAND_MAX + 1.0));
}

int main()
{
 const size_t dimLimit {99}; // Upper limit on Box dimensions
 std::srand((unsigned)std::time(0)); // Initialize the random number generator

 Truckload load1; // Create an empty list

Chapter 11 ■ Defining Your own Data tYpes

358

 // Add 12 random Box objects to the list
 const size_t boxCount {12};
 for (size_t i {} ; i < boxCount ; ++i)
 load1.addBox(std::make_shared<Box>(random(dimLimit), random(dimLimit), random(dimLimit)));

 std::cout << "The first list:\n";
 load1.listBoxes();

 // Find the largest Box in the list
 ptr<Box> pBox {load1.getFirstBox()};
 ptr<Box> pNextBox {};
 while (pNextBox = load1.getNextBox()) // Assign & then test pointer to next Box
 if (pBox->compare(*pNextBox) < 0)
 pBox = pNextBox;

 std::cout << "\nThe largest box in the first list is:";
 pBox->listBox();
 std::cout << std::endl;
 load1.deleteBox(pBox);
 std::cout << "\nAfter deleting the largest box, the list contains:\n";
 load1.listBoxes();

 const size_t nBoxes {20}; // Number of vector elements
 std::vector< ptr<Box> > boxes; // Array of Box objects

 for (size_t i {} ; i < nBoxes ; ++i)
 boxes.push_back(std::make_shared<Box>(
 random(dimLimit), random(dimLimit), random(dimLimit)));

 Truckload load2(boxes);
 std::cout << "\nThe second list:\n";
 load2.listBoxes();

 pBox = load2.getFirstBox();
 while (pNextBox = load2.getNextBox())
 if (pBox->compare(*pNextBox) > 0)
 pBox = pNextBox;

 std::cout << "\nThe smallest box in the second list is";
 pBox->listBox();
 std::cout << std::endl;
}

Chapter 11 ■ Defining Your own Data tYpes

359

Here’s some sample output from this program:

The first list:
 Box(69,78,42) Box(42,85,57) Box(91,16,41) Box(20,91,78) Box(89,66,17)
 Box(19,72,90) Box(82,68,98) Box(88,11,79) Box(21,93,75) Box(49,65,93)
 Box(92,90,39) Box(99,21, 3)

The largest box in the first list is: Box(82,68,98)

After deleting the largest box, the list contains:
 Box(69,78,42) Box(42,85,57) Box(91,16,41) Box(20,91,78) Box(89,66,17)
 Box(19,72,90) Box(88,11,79) Box(21,93,75) Box(49,65,93) Box(92,90,39)
 Box(99,21, 3)

The second list:
 Box(6,66,81) Box(98, 2, 7) Box(67,67,72) Box(68,69,64) Box(50,89,69)
 Box(8,87,92) Box(57,99,64) Box(74,31, 2) Box(56,37,52) Box(9,50,35)
 Box(46,74, 9) Box(13,18,78) Box(20,27,88) Box(17,74,37) Box(21,21, 5)
 Box(70,85,64) Box(57,32,13) Box(38,62,15) Box(79,86,59) Box(88, 6,91)

The smallest box in the second list is Box(21,21, 5)

The main() function first creates an empty Truckload object, then adds Box objects in the for loop. It then finds
the largest Box object in the list and deletes it. The output demonstrates that all these operations are working correctly.
Just to show it works, main() creates a Truckload object from a vector of pointers to Box objects. It then finds the
smallest Box object and outputs it. Clearly, the capability to list the contents of a Truckload object is also working well.
Note that the template for the ptr<T> type alias can be used in main() because it is defined in Package.h and therefore
available in this source file. Using smart pointers through has saved a considerable amount of work and made the
code much safer. If the classes used raw pointers as members, it would be necessary to manage deleting objects from
the free store so at the very least it would be necessary to define destructors. With smart pointers, as soon as there are
no pointers to a given object, the object is deleted from the free store automatically.

Nested Classes
It’s sometimes desirable to limit the accessibility of a class. The Package class was designed to be used specifically
within the TruckLoad class. It would make sense to ensure that Package objects can only be created by function
members of the TruckLoad class. What you need is a mechanism where Package objects are private to Truckload class
members and not available to the rest of the world. You can do this by using a nested class.

A nested class is a class that has its definition inside another class definition. The name of the nested class is
within the scope of the enclosing class and is subject to the member access specification in the enclosing class.
We could put the definition of the Package class inside the definition of the TruckLoad class, like this:

#include <memory>
#include <vector>
template <typename T> using ptr = std::shared_ptr<T>;

Chapter 11 ■ Defining Your own Data tYpes

360

class Truckload
{
private:
 // Package is private to the Truckload class
 class Package
 {
 public:
 ptr<Box> pBox; // Pointer to the Box object
 ptr<Package> pNext; // Pointer to the next Package

 Package(ptr<Box> pb) : pBox {pb}, pNext {} {} // Constructor
 };

 ptr<Package> pHead; // First in the list
 ptr<Package> pTail; // Last in the list
 ptr<Package> pCurrent; // Last retrieved from the list

public:
 Truckload() {} // No-arg constructor empty truckload

 Truckload(ptr<Box> pBox) // Constructor - one Box
 {
 pHead = pTail = std::make_shared<Package>(pBox);
 }

 Truckload(const std::vector< ptr<Box> >& boxes); // Constructor - vector of Boxes

 ptr<Box> getFirstBox(); // Get the first Box
 ptr<Box> getNextBox(); // Get the next Box
 void addBox(ptr<Box> pBox); // Add a new Box
 bool deleteBox(ptr<Box> pBox); // Delete a Box
 void listBoxes(); // Output the Boxes
};

The Package type is now local to the scope of the TruckLoad class definition. Because the definition of the
Package class is in the private section of the TruckLoad class, Package objects cannot be created from outside the
TruckLoad class.

Because the Package class is entirely private to the TruckLoad class, you can make the Package members public.
Hence, they’re directly accessible to function members of a TruckLoad object. The getBox() and getNext() members
of the original Package class are no longer needed. All of the Package members are directly accessible from Truckload
objects, but inaccessible outside the class.

The definitions of the member functions of the TruckLoad class need to be changed to access the data members
of the Package class directly. The addBox() function can add a new object to the end of the list by accessing the pNext
member of the last object directly:

void Truckload::addBox(ptr<Box> pBox)
{
 auto pPackage = std::make_shared<Package>(pBox); // Create a Package

 if (pHead) // Check list is not empty
 pTail->pNext = pPackage; // Add the new object to the tail

Chapter 11 ■ Defining Your own Data tYpes

361

 else // List is empty
 pHead = pPackage; // so new object is the head

 pTail = pPackage; // Store its address as tail
}

The function to retrieve the first Box object can access the pointer to the Box object directly, so the definition
now becomes:

ptr<Box> Truckload::getFirstBox()
{
 pCurrent = pHead->pNext;
 return pHead->pBox;
}

The function to obtain the address of the next Box object in the list can now be defined as:

ptr<Box> Truckload::getNextBox()
{
 if (!pCurrent) // If there's no current...
 return getFirstBox(); // ...return the 1st

 auto pPackage = pCurrent->pNext; // Save the next package
 if (pPackage) // If there is one...
 {
 pCurrent = pPackage; // Update current to the next
 return pPackage->pBox;
 }
 pCurrent = nullptr; // If we get to here...
 return nullptr; // ...there was no next
}

Finally the listBoxes() member of Truckload will be:

void Truckload::listBoxes()
{
 pCurrent = pHead;
 size_t count {};
 while (pCurrent)
 {
 pCurrent->pBox->listBox();
 pCurrent = pCurrent->pNext;
 if(! (++count % 5)) std::cout << std::endl;
 }
 if (count % 5) std::cout << std::endl;
}

The Truckload class definition with Package as a nested class will work with the Ex11_08.cpp source file.
A complete example is in the code download as Ex11_09.

Chapter 11 ■ Defining Your own Data tYpes

362

Note ■ nesting the Package class inside the TruckLoad class simply defines the Package type in the context of the
TruckLoad class. objects of type TruckLoad aren’t affected in any way—they’ll have exactly the same members as before.

Function members of a nested class can directly reference static members of the enclosing class, as well as any
other types or enumerators defined in the enclosing class. Other members of the enclosing class can only be accessed
from the nested class in the normal ways: via a class object, or a pointer, or a reference to a class object.

Nested Classes with Public Access
Of course, you could put the Package class definition in the public section of the TruckLoad class. This would mean
that the Package class definition was part of the public interface so it would be possible to create Package objects
externally. Because the Package class name is within the scope of the TruckLoad class, you can’t use it by itself. You
must qualify the Package class name with the name of the class in which it is nested. Here’s an example:

TruckLoad::Package aPackage(aBox); // Define a Package object

Of course, making the Package type public in the example would defeat the rationale for making it a nested class
in the first place! Of course, there can be other circumstances where a public nested class makes sense.

Summary
In this chapter you have learned the basic ideas involved with defining and using class types. However, although you
have covered a lot of ground, this is just the start. There’s a great deal more to implementing the operations applicable
to class objects and there are subtleties in this too. In subsequent chapters, you’ll be building on what you have
learned here, and you’ll see more about how you can extend the capabilities of your classes. In addition, you’ll explore
more sophisticated ways to use classes in practice. The key points to keep in mind from this chapter are as follows:

A •	 class provides a way to define your own data types. Classes can represent whatever types of
objects your particular problem requires.

A class can contain •	 data members and function members. The function members of a class
always have free access to the data members of the same class.

Objects of a class are created and initialized using function members called •	 constructors. A
constructor is called automatically when an object declaration is encountered. Constructors
can be overloaded to provide different ways of initializing an object.

Members of a class can be specified as •	 public, in which case they are freely accessible from
any function in a program. Alternatively, they can be specified as private, in which case they
may only be accessed by function members or friend functions of the class.

Data members of a class can be •	 static. Only one instance of each static data member of a
class exists, no matter how many objects of the class are created.

Although •	 static data members of a class are accessible in a function member of an object,
they aren’t part of the object and don’t contribute to its size.

•	 static function members can be called even if no objects of the class have been created.

Every non-•	 static function member contains the pointer this, which points to the current
object for which the function is called.

Chapter 11 ■ Defining Your own Data tYpes

363

A static function member of a class doesn’t contain the pointer •	 this.

•	 const function members can’t modify the data members of a class object unless the data
members have been declared as mutable.

Data members that have been specified as •	 mutable can always be modified, even when the
object is const.

Using references to class objects as arguments to function calls can avoid substantial •	
overheads in passing complex objects to a function.

A copy constructor is a constructor for an object that is initialized with an existing object of the •	
same class. The compiler generates a default copy constructor for a class if you don’t define one.

A •	 destructor is a function member that called for a class object when it is destroyed. If you
don’t define a class destructor the compiler supplies a default destructor. #A class has only one
destructor and the destructor has no parameters and does not return a value.

A nested class is a class that is defined inside another class definition.•	

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter.

if you get stuck, look back over the chapter for help. if you’re still stuck after that, you can download the solutions
from the apress website (www.apress.com/source-code), but that really should be a last resort.

exercise 11-1. Create a class called Integer that has a single, private data member of type
int. provide a class constructor that outputs a message when an object is created. Define
function members to get and set the data member, and to output its value. write a test program
to create and manipulate at least three Integer objects, and verify that you can’t assign a value
directly to the data member. exercise all the class function members by getting, setting, and
outputting the value of the data member of each object.

exercise 11-2. Modify the constructor for the Integer class in the previous exercise so that
the data member is initialized to zero in the constructor initialization list and implement a
copy constructor. add a function member that compares the current object with an Integer
object passed as an argument. the function should return –1 if the current object is less than
the argument, 0 if they = objects are equal, and +1 if the current object is greater than the
argument. try two versions of the Integer class, one where the compare() function argument is
passed by value and the other where it is passed by reference. what do you see output from the
constructors when the function is called? Make sure that you understand why this is so.

You can’t have both functions present in the class as overloaded functions. why not?

exercise 11-3. implement function members add(), subtract(), and multiply() for the
Integer class that will add, subtract, and multiply the current object by the value represented
by the argument of type Integer. Demonstrate the operation of these functions in your class
with a version of main() that creates Integer objects encapsulating values 4, 5, 6, 7, and 8, and
then uses these to calculate the value of 4×53+6×52+7×5+8. implement the functions so that the
calculation and the output of the result can be performed in a single statement.

www.apress.com/source-code

Chapter 11 ■ Defining Your own Data tYpes

364

exercise 11-4. Change your solution for exercise 11-2 so that it implements the compare()
function as a friend of the Integer class.

exercise 11-5. Modify the Package class in ex11_08 so that it contains a smart pointer to the
previous object in the list. Modify the Package and Truckload classes to make use of this,
including providing the ability to iterate through Box objects in the list in reverse order and to list
the objects in a Truckload object in reverse sequence. Devise a main() program to demonstrate
the new capabilities.

365

Chapter 12

Operator Overloading

In this chapter, you’ll learn how to add support for operators such as add and subtract to your classes so that they can
be applied to objects. This will make the types that you define behave more like fundamental data types and offer
a more natural way to express some of the operations between objects. You’ve already seen how classes can have
function members that operate on the data members of an object. Operator overloading enables you to write function
members that enable the basic operators to be applied to class objects.

In this chapter you will learn:

What operator overloading is•	

Which operators you can implement for your own data types•	

What function members the compiler can supply by default•	

How to implement function members that overload operators•	

How to implement operator functions as ordinary functions•	

How to implement the assignment operator and when you •	 must implement it

When you must implement the assignment operator•	

How to implement comparison operators for a class•	

How to define type conversions as operator functions•	

What a function object is and how you create and use it•	

Implementing Operators for a Class
The Box class in the previous chapter could be applied in an application that is primarily concerned with the volume
of a box. For such an application, you obviously need the ability to compare box volumes so that you can determine
the relative sizes of the boxes. In Ex11_08, there was this code:

if (pBox->compare(*pNextBox) < 0)
 pBox = pNextBox;

Wouldn’t it be nice if you could write the following instead?

if(*pBox < *pNextBox)
 pBox = pNextBox;

Chapter 12 ■ OperatOr OverlOading

366

Using the less-than operator is much clearer and easier to understand than the original. You might also like
to add the volumes of two Box objects with an expression such as Box1 + Box2, or multiply Box as 10*box1 to
obtain a new Box object that has the capacity to hold ten box1 boxes. I’ll explain how you can do all this and more by
implementing functions that overload the basic operators for objects of a class type.

Operator Overloading
Operator overloading enables you to apply standard operators such as +, –, *, <, and so on, to objects of your own
class types. To do this, you write a function that redefines each operator that you want to use with your class. In
general, the name of a function that overloads a given operator is composed of the operator keyword followed by the
operator that you are overloading. In the case of operators that use alphabetic characters, such as new and delete,
there must be at least one space between operator and the operator itself. For operators that are not alphabetic, the
space is optional.

Operators That Can Be Overloaded
You can’t invent new operators or change operator precedence. You can’t change the number of operands.
An overloaded version of an operator will have the same precedence and associativity as the original. Although you
can’t overload all the operators, the restrictions aren’t particularly oppressive. Table 12-1 lists the operators that you
can’t overload.

Table 12-1. Operators that Cannot be Overloaded

Operator Symbol

The scope resolution operator ::

The conditional operator ?:

The direct member access operator .

The dereference pointer to class member operator .*

The sizeof operator sizeof

Anything else is fair game, which gives you quite a bit of scope. You can only overload the -> operator, the
assignment operator, =, and the array subscript operator, [], for a class by function members. A function that
overloads any of the other operators for a class doesn’t have to be a member; it can be an ordinary function. I’ll show
examples of both.

Obviously, it’s a good idea to make your version of a standard operator reasonably consistent with its normal
usage, or at least intuitive in its meaning and operation. It wouldn’t be sensible to produce an overloaded + operator
for a class that performed the equivalent of a multiply. The best way to understand how operator overloading works is
to step through an example, so I’ll start by explaining how you implement the less-than operator, <, for the Box class.

Chapter 12 ■ OperatOr OverlOading

367

Implementing an Overloaded Operator
A binary operator that is implemented as a class member has one parameter, which I’ll explain in a moment.
Here’s the function member to overload the < operator in the Box class definition:

class Box
{
private:
 // Members as before...

public:
 bool operator<(const Box& aBox) const; // Overloaded 'less-than' operator

// The rest of the Box class as before...
};

Because you’re implementing a comparison, the return type is bool. The operator<() function will be called
as a result of comparing two Box objects using <. The function will be called as a member of the object that is the
left operand and the argument will be the right operand so this will point to the left operand. Because the function
doesn’t change either operand, the parameter and the function are specified as const. To see how this works, consider
the following statement:

if(box1 < box2)
 std::cout << "box1 is less than box2" << std::endl;

The if expression will result in the operator function being called. The expression is equivalent to the function
call box1.operator<(box2). If you were so inclined, you could write it like this in the if statement:

if(box1.operator<(box2))
 cout << "box1 is less than box2" << endl;

Knowing how the operands in the expression box1 < box2 map to the function call makes implementing the
overloaded operator very easy. The definition is shown in Figure 12-1.

if(box1 < box2)

bool Box::operator<(const Box& aBox) const
{
 return this->volume() < aBox.volume();
}

The object pointed
to by this

The argument to the
operator function

Figure 12-1. Overloading the less-than operator

The reference function parameter avoids unnecessary copying of the argument. The return expression calls the
volume() member to calculate the volume of the object pointed to by this and compares that with the volume of aBox
using the basic < operator. Thus, true is returned if the object pointed to by this has a smaller volume than the object
passed as the argument—and false otherwise.

Chapter 12 ■ OperatOr OverlOading

368

Note ■ i used the this pointer in Figure 12-1 just to show the association with the first operand. it isn’t necessary to
use this explicitly here.

Let’s see if this works in an example. Here’s how Box.h looks:

// Box.h
#ifndef BOX_H
#define BOX_H
#include <iostream>

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) : length{lv}, width{wv}, height{hv} {}

 Box() {} // No-arg constructor

 Box(const Box& box) : // Copy constructor
 length {box.length}, width {box.width}, height {box.height} {}

 double volume() const // Function to calculate the volume
 { return length*width*height; }

 // Accessors
 double getLength() const { return length; }
 double getWidth() const { return width; }
 double getHeight() const { return height; }

 bool operator<(const Box& aBox) const // Less-than operator
 { return volume() < aBox.volume(); }
};
#endif

All function members are defined inside the class so they are all inline and Box.cpp is not needed. It’s important
to ensure operator functions are inline to maximize efficiency. A program to exercise this is:

// Ex12_01.cpp
// Implementing a less-than operator
#include <iostream>
#include <vector>
#include "Box.h"

Chapter 12 ■ OperatOr OverlOading

369

int main()
{
 std::vector<Box> boxes {Box {2.0, 2.0, 3.0}, Box {1.0, 3.0, 2.0},
 Box {1.0, 2.0, 1.0}, Box {2.0, 3.0, 3.0}};
 Box smallBox {boxes[0]};
 for (auto& box : boxes)
 {
 if (box < smallBox) smallBox = box;
 }

 std::cout << "The smallest box has dimensions :"
 << smallBox.getLength() << "x" << smallBox.getWidth() << "x"
 << smallBox.getHeight() << std::endl;
}

This produces the following output:

The smallest box has dimensions : 1x2x1

The main() function first creates a vector initialized with four Box objects. You arbitrarily assume that the first
array element is the smallest, and use it to initialize smallBox, which will involve the copy constructor of course.
The ranged-based for loop compares each element of boxes with smallBox and a smaller element is stored in
smallBox in an assignment statement. When the loop ends, smallBox contains the Box object with the smallest
volume. If you want to track calls of the operator<() function, add an output statement to it.

Notice that the assignment operator works with Box objects. This is because the compiler supplies a default
version of operator=() in the class that copies the values of members of the right operand to the members of the left
operand. This is not always satisfactory and you’ll see later in this chapter how you can define your own version of the
assignment operator.

Global Operator Functions
The volume() function is a public member of the Box class, so you could implement operator<() as an ordinary
function, not a member of the class. In this case the definition would be:

inline bool operator<(const Box& box1, const Box& box2)
{
 return Box1.Volume()<Box2.Volume();
}

The operator<() function is specified as inline because you want it to be compiled as such if possible. With
the operator defined in this way, the previous example would work in exactly the same way. Of course, you must not
declare this version of the operator function as const; const only applies to functions that are members of a class.
Because this is specified as inline, you would put the definition in Box.h. This ensures that it’s available to any source
file that uses the Box class.

Even if an operator function needed access to private members of the class, it’s still possible to implement it
as an ordinary function by declaring it as a friend of the class. Generally though, if a function must access private
members of a class, it is better practice to define it as a class member.

Chapter 12 ■ OperatOr OverlOading

370

Implementing Full Support for an Operator
Implementing an operator such as < for a class creates an expectation. You can write expressions like box1<box2
but what about box1<25.0, or 10.0<box2? The current operator<() won’t handle either of these. When you
implement overloaded operators for a class, you need to consider the likely range of circumstances in which the
operator might be used.

You can easily support these possibilities for comparing Box objects by adding overloads for operator<(). I’ll first
add a function for < where the first operand is a Box object and the second operand is of type double. I ’ll define it as
an inline function with the definition outside the class in this instance, just to show how it’s done. You need to add
the following member specification to the public section of Box class definition:

bool operator<(double aValue) const; // Compare Box volume < double value

The Box object that is the left operand will be accessed in the function via the implicit pointer this, and the
right operand is aValue. Implementing this is as easy as the first operator function—there’s just one statement in
the function body:

// Compare the volume of a Box object with a constant
inline bool Box::operator<(double aValue) const
{
 return volume() < aValue;
}

This definition can follow the class definition in Box.h. An inline function should not be defined in a .cpp file
because the definition of an inline function must appear in every source file that uses it. Putting it together with the
class definition ensures this will always be so. If you put the definition of an inline member in a separate source file, it
will be in a separate translation unit and you will get linker errors. For consistency I’ll define the existing operator<()
function in the same way in Box.h.

Dealing with an expression such as 10.0<box2 isn’t harder—it’s just different. A member operator function always
provides the this pointer as the left operand. In this case the left operand is type double so you can’t implement the
operator as a function member. That leaves you with two choices: to implement it as an ordinary global operator
function, or to implement it as a friend function. Because you don’t need to access private members of the class,
you can implement it as an ordinary function:

// Function comparing a constant with volume of a Box object
inline bool operator<(double aValue, const Box& aBox)
{
 return aValue < aBox.volume();
}

This is an inline function so you can put it in Box.h. You now have three overloaded versions of the < operator
for Box objects to support all three less-than comparison possibilities. Let’s see that in action. I’ll assume you have
modified Box.h as described.

Here’s a program that uses the new comparison operator functions for Box objects:

// Ex12_02.cpp
// Using the overloaded 'less-than' operators for Box objects
#include <iostream>
#include <vector>
#include "Box.h"

Chapter 12 ■ OperatOr OverlOading

371

// Display box dimensions
void show(const Box& box)
{
 std::cout << "Box" << box.getLength() << "x"
 << box.getWidth() << "x" << box.getHeight() << std::endl;
}

int main()
{
 std::vector<Box> boxes {Box {2.0, 2.0, 3.0}, Box {1.0, 3.0, 2.0},
 Box {1.0, 2.0, 1.0}, Box {2.0, 3.0, 3.0}};
 double minVol {6.0};
 std::cout << "Objects with volumes less than" << minVol << "are:\n";
 for (auto& box : boxes)
 if (box < minVol) show(box);

 std::cout << "Objects with volumes greater than" << minVol << "are:\n";
 for (auto& box : boxes)
 if (minVol < box) show(box);
}

You should get this output:

Objects with volumes less than 6 are:
Box 1x2x1
Objects with volumes greater than 6 are:
Box 2x2x3
Box 2x3x3

The show() function that is defined preceding main() outputs the details of the Box object that is passed as an
argument. This is just a helper function for use in main(). The output shows the overloaded operators are working.
Again, if you want to see when they are called, put an output statement in each definition. Of course, you don’t need
separate functions to compare Box objects with integers. When this occurs the compiler will insert an implicit cast to
type double before calling one of the existing functions.

Implementing All Comparison Operators in a Class
We have implemented < for the Box class but there’s still ==, <=, >, >=, and !=. It’s a lot, but it’s going to be easier than
you think. The test for equality for Box objects can be defined in the class as:

bool operator==(const Box& aBox) const
{ return volume() == aBox.volume(); }

Of course, I could plow on and define all the others in the class but I can get some help from the Standard
Library. The utility header defines templates for operator functions <=, >, >=, and != for comparing two objects of
type T. The templates define these operators in terms of the less-than and equality operators, so they must already be
defined in a class for the templates to work. Once you have defined the less-than and equality operators, the templates
will be used by the compiler to generate the others when required. One advantage of this is that the functions won’t be
generated in a program that doesn’t use them, so memory is not occupied by functions that are not used.

Chapter 12 ■ OperatOr OverlOading

372

The templates for comparison functions are defined in the rel_ops namespace that is named from ‘relational
operators’. This namespace is nested within the std namespace so the function template names are qualified by
std::rel_ops. This isn’t a problem though. If you add the definition for operator==() to the version of the Box class
from Ex12_02, you can use it to try out some of the templates in the rel_ops namespace with the following program;

// Ex12_03.cpp
// Using the templates for overloaded comparison operators for Box objects
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include "Box.h"

using namespace std::rel_ops;

void show(const Box& box1, const std::string relationship, const Box& box2)
{
 std::cout << "Box" << box1.getLength() << "x" << box1.getWidth() << "x" << box1.getHeight()
 << relationship
 << "Box" << box2.getLength() << "x" << box2.getWidth() << "x" << box2.getHeight()
 << std::endl;
}

int main()
{
 std::vector<Box> boxes {Box {2.0, 2.0, 3.0}, Box {1.0, 3.0, 2.0},
 Box {1.0, 2.0, 1.0}, Box {2.0, 3.0, 3.0}};

 Box theBox {3.0, 1.0, 3.0};

 for (auto& box : boxes)
 if (theBox > box) show(theBox, " is greater than ", box);

 std::cout << std::endl;
 for (auto& box : boxes)
 if (theBox != box) show(theBox, " is not equal to ", box);

 std::cout << std::endl;
 for (size_t i {}; i < boxes.size() - 1; ++i)
 for (size_t j {i+1}; j < boxes.size(); ++j)
 {
 if (boxes[i] <= boxes[j])
 show(boxes[i], " less than or equal to ", boxes[j]);
 }
}

Chapter 12 ■ OperatOr OverlOading

373

The output from this program is:

Box 3x1x3 is greater than Box 1x3x2
Box 3x1x3 is greater than Box 1x2x1

Box 3x1x3 is not equal to Box 2x2x3
Box 3x1x3 is not equal to Box 1x3x2
Box 3x1x3 is not equal to Box 1x2x1
Box 3x1x3 is not equal to Box 2x3x3

Box 2x2x3 less than or equal to Box 2x3x3
Box 1x3x2 less than or equal to Box 2x3x3
Box 1x2x1 less than or equal to Box 2x3x3

There’s a different version of the show() helper function; it now outputs a statement about two Box objects.
You can see that main() makes use of the >, !=, and <= operators with Box objects. All these are created from the
templates that are defined in the utility header. The using statement before main() is necessary because without
it the compiler would not be able to match the operator function names it deduces, such as operator>(), with the
names of the templates. The using statement is in effect from the point at which is appears to the end of the source
file. You could put the using statement in the body of main(), in which case its effect would be restricted to main().
The output shows that the three operators are working. Of course, if you need to compare Box objects in various ways
with other types, you must still implement those.

You could put the #include directive for the utility header and the using statement for the std::rel_ops
namespace name in Box.h. The disadvantage would be that the utility header would be included into every source
file that included Box.h and compiled, even when the templates were not used. Also, the names in the std::rel_ops
namespace would be available without qualification throughout the source file, which could be undesirable in some
situations. Of course, if you define one or more of the operator functions in a class for which there are templates in the
std::rel_ops namespace, the compiler will always call the existing function rather than create a template instance.

Operator Function Idioms
All the binary operators that can be overloaded always have operator functions of the form that you’ve seen in the
previous section. When an operator, Op, is overloaded and the left operand is an object of the class for which Op is
being overloaded, the function member defining the overload is of the form:

Return_Type operator Op(Type right_operand);

Return_Type depends on what the operator does. For comparison and logical operators, it is typically bool
(although you could use int). Operators such as + and * need to return an object in some form—you’ll see how later
in this chapter.

You implement a binary operator as a non-function member using this form:

Return_Type operator Op(Class_Type left_operand, Type right_operand);

Class_Type is the class for which you are overloading the operator. Type can be any type, including Class_Type.
If the left operand for a binary operator is of class Type, and Type is not the class for which the operator function

is being defined, then the function must be implemented as a global operator function of this form:

Return_Type operator Op(Type left_operand, Class_Type right_operand);

Chapter 12 ■ OperatOr OverlOading

374

Unary operators defined as function members don’t usually require a parameter. The increment and decrement
operators are exceptions, as you’ll see. The general form of a unary operator function for the operation Op as a
member of the Class_Type class is:

Class_Type& operator Op();

Unary operators defined as global functions have a single parameter that is the operand. The prototype for a
global operator function for a unary operator Op is:

Class_Type& operator Op(Class_Type& obj);

You have no flexibility in the number of parameters for operator functions—either as class members or as global
functions. You must use the number of parameters specified for the particular operator. I won’t go through examples
of overloading every operator, as most of them are similar to the ones you’ve seen. However, I will explain the details
of operators that have particular idiosyncrasies when you overload them.

Default Class Members
You know that the compiler can sometimes supply a default constructor and copy constructor. It’s interesting to note
what the compiler may provide with a very simple class, beyond what you have seen so far. Here’s a class with just a
single data member:

class Data
{
public:
 int value;
};

You actually may get the following, assuming your compiler conforms to the current language standard:

class Data
{
 public:
 int value;

 Data(); // No-arg constructor
 Data(const Data& aData); // Copy constructor
 Data(Data&& aData); // Move constructor

 ~Data(); // Destructor

 Data& operator=(const Data& aData); // Assignment operator
 Data& operator=(const Data&& aData); // Move assignment operator
};

As you see, the compiler supplies up to six function members when required. The default copy constructor does
member by member copy from the argument object to the members of the new object. This is called a shallow copy
because the process does not take account of the possibility that the data being copied may refer to other data. If
a data member is a pointer, a shallow copy creates an interdependence between objects because two objects will

Chapter 12 ■ OperatOr OverlOading

375

contain pointers to the same thing. This can result in a lot of problems. The default assignment operator provides the
same member-by-member copying process from the right operand to the left operand and therefore can potentially
cause the same problems.

Don’t confuse the copy constructor with the assignment operator function; they are definitely not the same.
The copy constructor is called when a class object is created from an existing object of the same type, or when an object
is passed to a function by value. The assignment operator function is called when the left and right operands of an
assignment operator are objects of the same class type.

The move constructor and move assignment operator have r-value reference parameters so these will be called
when the argument is a temporary object. The idea of move operations is that since the argument is temporary, the
function doesn’t necessarily need to copy data members; it can steal the data from the object that is the argument. If
members of the argument object are pointers for example, the pointers can be transferred without copying what they
point to because the argument object will be destroyed and so doesn’t need them. I’ll show you concrete examples of
later in this chapter.

The compiler only supplies the default function members if you use them, and of course, if you implement
any of these, the default will not be supplied. There are other circumstances where you won’t get the defaults. You
won’t get a default copy constructor and copy assignment operator if you implement a move constructor and a
move assignment operator. You won’t get a default move constructor and move assignment operator if you define a
destructor, a copy constructor, and a copy assignment operator. You can specify that you do want a default function
member to be supplied by using the default keyword, and you can express that you don’t want a default member by
using the delete keyword—for example:

class Data
{
 public:
 int value;

 Data(int n) : value{n}{}
 Data() = default; // Supply default no-arg constructor

 Data(const Data& aData)=delete; // No default copy constructor
 Data& operator=(const Data& aData)=delete; // No assignment operator
};

In this case the default no-arg constructor will be supplied by the compiler but the copy constructor and copy
assignment operator will not. This is often useful. There are situations where you don’t want to allow the duplication
of existing objects for example.

Defining the Destructor
You saw in the previous chapter that every class has a destructor and there can only be one. The role of the destructor
is to do any necessary clean up when an object is destroyed. You should always define a destructor if a class allocates
memory on the heap using the new operator. Look at this class definition:

#ifndef MESSAGE_H
#define MESSAGE_H
#include <iostream>
#include <string>

Chapter 12 ■ OperatOr OverlOading

376

class Message
{
private:
 std::string* ptext; // Pointer to object text string

public:

 // Function to display a message
 void show() const
 {
 std::cout << "Message is:" << *ptext << std::endl;
 }

 // Constructor
 Message(const char* text = "No message")
 {
 ptext = new std::string {text}; // Allocate space for text
 }

 // Destructor
 ~Message()
 {
 delete ptext;
 }
};
#endif

Of course, this is not a sensible way to define the Message class but I’m using a raw pointer to a string object here
to illustrate a point. A smart pointer would remove the need to implement a destructor. The ptext member points to
an object that is created on the heap using new in the constructor so a destructor that releases the memory when an
object is destroyed is essential. Without it, you have a memory leak. The more objects a program creates and destroys,
the more memory will be allocated and not released. Even with the destructor defined, the class still has a problem.
The following code shows what can happen:

// Ex12_04.cpp
// Warning this example will crash!
// Defining a destructor
#include "Message.h"

// Output a copy of a Message object
void print(Message message)
{
 message.show();
}

int main()
{
 Message beware {"Careful"};
 print(beware);
 std::cout << "After print() call, output the beware directly:\n";
 beware.show();
}

Chapter 12 ■ OperatOr OverlOading

377

If you compile and run this, the program crashes when trying to output beware. The crash is caused by passing
beware by value to print(). Passing an object by value results in the copy constructor being called to provide a copy
to the function. In this case it’s the default copy constructor because there is no copy constructor defined. The default
copy constructor copies the address from ptext in the original object to ptext in the new object. When the print()
function returns, the copy of the argument is destroyed so the Message class destructor is called. This deletes the
memory pointed to by the ptext member of the copy. Unfortunately the ptext member of the original object points
to the same memory that has been released—hence the crash. If you need to write a destructor for a class, you will
usually need to implement a copy constructor and the assignment operator for the class too.

When to Define a Copy Constructor
If a class has data members that are pointers—and this includes smart pointers, you should implement the copy
constructor. If you don’t, the default copy constructor will copy an object by copying the values of the data members,
which means just the addresses for pointers will be copied—not what they point to. The result will be two or more
objects with members pointing to the same object. A change to an object that is pointed to by a data member of
one object will affect all the duplicate objects. With members that are smart pointers, the interdependence between
objects will be a problem. With members that are raw pointers it is likely to be disastrous, and Ex12_04 illustrates
how catastrophic this can be. Interdependence between objects is not what you want most of the time. You must
implement the copy constructor so that it duplicates the object that a data member points to. If you add the following
definition to the Message class in Ex12_04, you’ll see that the example then works OK:

Message(const Message& message)
{
 ptext = new std::string(*message.ptext); // Duplicate the object in the heap
}

The copy constructor duplicates the string object to which the ptext member of the argument to the copy
constructor points, so the new object is independent of the original. When the original object is destroyed, its memory
is released without resulting in any problems for the duplicate.

Implementing the Assignment Operator
As you’ve seen, the default assignment operator copies the members of the object on the right of an assignment
to the members of the object of the same type on the left, which can cause the same problems as the default copy
constructor. You call the assignment operator when you write the following:

Message message;
 Message beware {"Careful"};
message = beware; // Call the assignment operator

The default assignment operator for the Message class will cause exactly the same problem as the default copy
constructor. Any class that has problems with the default copy constructor will also have problems with the default
assignment operator and vice versa. If you need to implement one, you also need to implement the other.

You saw earlier that the assignment operator returns a reference, so in the Message class it would look like this:

Message& operator=(const Message& message); // Assignment operator

Chapter 12 ■ OperatOr OverlOading

378

The parameter is a const reference and the return type is a non-const reference. The code for the assignment
operator will transfer data from the members of the right operand to the members of the left operand, so you may
wonder why it has to return a reference—or indeed, why it needs to return anything. Consider how the assignment
operator is applied in practice. With normal usage you can write this:

message1 = message2 = message3;

These are three objects of the same type so this statement makes message1 and message2 copies of message3.
Because the assignment operator is right associative, this is equivalent to:

message1 = (message2 = message3);

The result of executing the rightmost assignment is evidently the right operand for the leftmost assignment so
you definitely need to return something. In terms of operator=(), this statement is equivalent to:

message1.operator=(message2.operator=(message3));

It’s clear from this that whatever you return from operator=() can end up as the argument to another
operator=() call. The parameter for operator=() is a reference to an object so the operator function must return the
left operand, which is the object that is pointed to by this. Further, to avoid unnecessary copying of the object that is
returned, the return type must be a reference.

The process for duplicating the right operand is the same as the one you used for the copy constructor, and
because you now know what the return type should be, you can have a first stab at defining the assignment operator
function for the Message class. First consider the following, and then I’ll explain what’s wrong with it:

Message& operator=(const Message& message)
{
 ptext = new std::string(*message.ptext); // Duplicate the object in the heap
 return *this; // Return the left operand
}

The this pointer contains the address of the left argument, so returning *this returns the object. Apart from that,
this code is the same as the copy constructor. The function looks OK, and it appears to work most of the time,
but there is a problem with it. Suppose someone writes:

message1 = message1;

The likelihood of someone writing this explicitly is very low, but it could occur indirectly. The result of this
statement is that you replace the current address in ptext with the address of a copy of the original string object.
The original string object has been cast adrift and its memory cannot be released. In other words, you have a
memory leak. The solution is to check for identical left and right operands:

Message& operator=(const Message& message)
{
 if(this != &message)
 ptext = new std::string(*message.ptext); // Duplicate the object in the heap

 return *this; // Return the left operand
}

Chapter 12 ■ OperatOr OverlOading

379

Now if this contains the address of the argument object, the function does nothing and just returns the same
object. If you put this in the Message class definition, the following code will show it working:

// Ex12_05.cpp
// Defining a destructor and the copy constructor
#include "Message.h"

// Output a copy of a Message object
void print(Message message)
{
 message.show();
}
int main()
{
 Message beware {"Careful"};
 Message warning;

 warning = beware; // Call assignment operator
 std::cout << "After assignment beware is:\n";
 beware.show();
 std::cout << "After assignment warning is:\n";
 warning.show();
}

The output will demonstrate that everything works as it should. You’re not limited to overloading the copy
assignment operator just to copy an object. You can have several overloaded versions of the assignment operator
for a class. Additional versions can have a parameter type that is different from the class type, so they are effectively
conversions. In any event, the return type should be a reference to the left operand. Of course, you can also overload
the op= operators too.

Golden Rule ■ if a class has members that are pointers, always implement a copy constructor and an assignment
operator; if it has members that are raw pointers, always define a destructor too.

Implementing Move Operations
Implementing move operations is an advanced subject so I’ll just introduce it briefly. The value of a move constructor
and a move assignment operator in a class is the improved efficiency that results from stealing resources from a
temporary object rather than copying them when copying is expensive on time. This typically applies when there
are members that are pointers—yet again! If the members are raw pointers, particular care is necessary because the
destructor for the argument object that is being cannibalized can cause problems. The Message class will show this.
Here’s a definition of a move constructor for the Message class:

Message(Message&& message)
{
 ptext = message.ptest; // Steal the string object - no need to copy it
 message.ptext = nullptr; // A most important operation!
}

Chapter 12 ■ OperatOr OverlOading

380

The parameter is an rvalue reference so this constructor will only be called when the argument is a temporary
object. This means that the message object will be destroyed when the execution of the constructor ends. It is
therefore possible to steal the message that the message.ptext member points to just by copying the address. The
second statement in the body of the constructor is of the utmost importance. If message.ptext is not set to nullptr,
the destructor for the message object will delete the string object from the heap so the ptext member of the new
object will contain an invalid address, which will surely cause the program to crash.

The circumstances under which the move constructor for the Message class is called are rather unlikely. This
statement would do it:

Message message { Message {"Tell it to them."} };

A Message object is created in the initializer list for message so this will cause the move constructor to be called.
This is not a sensible statement though because just putting the literal in the initializer list will produce the same
result. The move assignment operator is even less likely to be required for the Message class. However, there are
classes where both can be used frequently, and the std::string class is an excellent example. Here’s how the move
constructor and the move assignment operator for the string class gets called:

string word1{"move"};
string word2{"assignment"};
string combined {word1 + " " + word2 }; // Calls move constructor
combined = combined + "operator"; // Calls move assignment operator

The value in the initializer list in the third statement will be the temporary string object that results from the
expression between the braces, which happens to use the overloaded operator+() member of the string class.
The right operand of the assignment in the fourth statement is also a temporary string object, so this will call the
move assignment operator for the class.

Implementing the move assignment operator for a class is similar to implementing the copy assignment operator
but with two differences: there’s no need to check for identical left and right operands because that cannot arise, and
pointer members are just copied without duplicating what they point to. It’s still essential that any raw pointer members
of the argument object are reset to nullptr after copying and the function should still return the left operand.

Overloading the Arithmetic Operators
I’ll explain how you overload the arithmetic operators by looking at how you might overload the addition operator
for the Box class. This is an interesting example, because addition is a binary operation that involves creating and
returning a new object. The new object will be the sum (whatever you define that to mean) of the two Box objects that
are its operands.

What might the sum of two Box objects mean? There are several possibilities we could consider, but because the
primary purpose of a box is to hold something, its volumetric capacity is of primary interest so we might reasonably
presume that the sum of two boxes was a new box that could hold both. Using this assumption, I’ll define the sum of
two Box objects to be a Box object that’s large enough to contain the two original boxes stacked on top of each other.
This is consistent with the notion that the class might be used for packaging, because adding several Box objects
together results in a Box object that can contain all of them.

You can implement the addition operator in a simple way, as follows. The length member of the new object
will be the larger of the length members of the objects being summed and a width member will be determined in a
similar way. If the height member is the sum of the height members of the operands, the resultant Box object can
contain the two Box objects. By modifying the constructor, I’ll arrange that the length member of an object is always
greater than or equal to the width member.

Chapter 12 ■ OperatOr OverlOading

381

Figure 12-2 illustrates the Box object that will be produced by adding two Box objects. Because the result of this
addition is a new Box object, the function implementing addition must return a Box object. If the function that overloads
the + operator is to be a function member, then the declaration of the function in the Box class definition can be:

Box operator+(const Box& aBox) const; // Adding two Box objects

length = 25length = 20

breadth = 10breadth = 15

height = 7
height = 14

box1 box2
length = 25

breadth = 15

height = 21

box1 + box2

Box1

Box2

Figure 12-2. The object that results from adding two Box objects

The parameter is const because the function won’t modify the argument, which is the right operand. It’s a const
reference to avoid unnecessary copying of the right operand. The function is specified as const because it doesn’t alter
the left operand. The definition of the function member in Box.h will be:

// Operator function to add two Box objects
inline Box Box::operator+(const Box& aBox) const
{
 // New object has larger length and width, and sum of heights
 return Box{ length > aBox.length ? length : aBox.length,
 width > aBox.width ? width : aBox.width,
 height + aBox.height };
}

Notice that you don’t create a Box object in the free store to return to the caller. This would be a very poor way of
implementing the function because it’s difficult to ensure that the memory is released when the object is destroyed.
Returning a pointer would also affect how other operators, such as operator=(), are written. Here, a local Box object
is created and a copy of that is returned to the calling program. Because these are automatic variables, the memory
management is taken care of automatically.

Chapter 12 ■ OperatOr OverlOading

382

We can see how the addition operator works in an example. I’ll modify the Box class from Ex12_03:

// Box.h
#ifndef BOX_H
#define BOX_H
#include <iostream>
#include <iomanip>
#include <algorithm> // For max() and min() functions

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) :
 length {std::max(lv,wv)}, width {std::min(lv,wv)}, height {hv} {}
 Box()=default;

 Box(const Box& box) : // Copy constructor
 length {box.length}, width {box.width}, height {box.height} {}

 double volume() const // Function to calculate the volume
 {
 return length*width*height;
 }

 // Accessors
 double getLength() const { return length; }
 double getWidth() const { return width; }
 double getHeight() const { return height; }

 bool operator<(const Box& aBox) const; // Less-than operator
 bool operator<(double aValue) const; // Compare Box volume < double value
 Box operator+(const Box& aBox) const; // Function to add two Box objects
 void listBox(); // Output the Box
};

The new constructor definition uses the max() and min() functions that are defined by templates in the
algorithm header. They return the maximum and minimum respectively of the two arguments. These functions
work with any argument types that support operator<(). The Box class uses the default keyword to get the default
constructor supplied by the compiler when necessary. The inline definition of the operator+() function you saw
earlier also goes in Box.h. I added the listBox() member from Ex11_08 to output a Box object. This is defined
immediate following the class definition as:

inline void Box::listBox()
{
 std::cout << " Box(" << std::setw(2) << length << ","
 << std::setw(2) << width << ","
 << std::setw(2) << height << ")";
}

Chapter 12 ■ OperatOr OverlOading

383

Here’s the code to try it out:

// Ex12_06.cpp
// Using the addition operator for Box objects
#include <iostream>
#include <vector>
#include <cstdlib> // For random number generator
#include <ctime> // For time function
#include "Box.h"

using namespace std::rel_ops;

// Function to generate integral random box dimensions from 1 to max_size
inline double random(double max_size)
{
 return 1 + static_cast<int>(max_size* static_cast<double>(std::rand())/(RAND_MAX + 1.0));
}

int main()
{
 const double dimLimit {99.0}; // Upper limit on Box dimensions
 std::srand((unsigned)std::time(0)); // Initialize the random number generator

 const size_t boxCount {20}; // Number of Box object to be created
 std::vector<Box> boxes; // Vector of Box objects

 // Create 20 Box objects
 for (size_t i {}; i < boxCount; ++i)
 boxes.push_back(Box {random(dimLimit), random(dimLimit), random(dimLimit)});

 size_t first {}; // Index of first Box object of pair
 size_t second {1}; // Index of second Box object of pair
 double minVolume {(boxes[first] + boxes[second]).volume()};

 for (size_t i {}; i < boxCount - 1; ++i)
 for (size_t j {i + 1}; j < boxCount; j++)
 if (boxes[i] + boxes[j] < minVolume)
 {
 first = i;
 second = j;
 minVolume = (boxes[i] + boxes[j]).volume();
 }

 std::cout << "The two boxes that sum to the smallest volume are:";
 boxes[first].listBox();
 boxes[second].listBox();
 std::cout << "\nThe volume of the first box is" << boxes[first].volume();
 std::cout << "\nThe volume of the second box is" << boxes[second].volume();
 std::cout << "\nThe box that the sum of these boxes is";
 (boxes[first] + boxes[second]).listBox();
 std::cout << "\nThe volume of the sum is" << minVolume << std::endl;
}

Chapter 12 ■ OperatOr OverlOading

384

I got the following output:

The two boxes that sum to the smallest volume are: Box(4,87, 5) Box(28,22,10)
The volume of the first box is 1740
The volume of the second box is 6160
The box that the sum of these boxes is Box(28,87,15)
The volume of the sum is 36540

You should get a different result each time you run the program. Just to emphasize what I have said previously—the
rand() function is OK when you don’t care about the quality of the random number sequence but when you need
something better, use the pseudo-random number generation facilities provided by the random Standard Library header.

The main() function generates a vector of twenty Box objects that have arbitrary integral dimensions from 1.0
to 99.0. The nested for loops then test all possible pairs of Box objects to find the pair that combines to the minimum
volume. The if statement in the inner loop uses the operator+() member to produce a Box object that is the sum of
the current pair of objects. The operator<() member is then used to compare this resultant Box object with the value
of minVolume. The output shows that everything works at it should. I suggest you instrument the operator functions
and the Box constructors just to see when and how often they are called.

Of course, you can use the overloaded addition operator in more complex expressions to sum Box objects. For
example, you could write this:

Box box4 {box1 + box2 + box3};

This calls the operator+() member twice to create a Box object that is the sum of the three, and this is passed to
the copy constructor for the Box class to create box4. The result is a Box object box4 that can contain the other three
Box objects stacked on top of each other.

You could implement the addition operation for the class as a non-function member, because the dimensions of
a Box object are accessible through public function members. Here’s the prototype of such a function:

Box operator+(const Box& aBox, const Box& bBox);

If the values of the data members were inaccessible, you can still write it as a normal function that you declared
as a friend function within the Box class. Of these choices, the friend function is always the least desirable. Operator
functions are fundamental to class capability, so I prefer to implement them as class members, which makes the
operations integral to the type.

Improving Output Operations
Now we know how to overload operators we could make the output statements for Box objects better by overloading
the << operator for output streams. The standard output stream, cout, is of type std::ostream, as are other output
streams that you’ll meet later in the book. The dimensions of a Box object are available through accessor functions so
we can define operator<<() as an ordinary function, like this:

std::ostream& operator<<(std::ostream& stream, const Box& box)
{
 stream << " Box(" << std::setw(2) << box.getLength() << ","
 << std::setw(2) << box.getWidth() << ","
 << std::setw(2) << box.getHeight() << ")";

 return stream;
}

Chapter 12 ■ OperatOr OverlOading

385

The first parameter identifies the left operand as an ostream object and the second specifies the right operand as
a Box object. The return type is a reference so the stream object can be used in further output operations using the <<
operator. Here’s a variation on the previous example that uses this:

// Ex12_06.cpp
// Using the addition operator for Box objects
#include <iostream>
#include <vector>
#include <cstdlib> // For random number generator
#include <ctime> // For time function
#include "Box.h"

// Stream output for Box objects
std::ostream& operator<<(std::ostream& stream, const Box& box)
{
 stream << " Box(" << std::setw(2) << box.getLength() << ","
 << std::setw(2) << box.getWidth() << ","
 << std::setw(2) << box.getHeight() << ")";
 return stream;
}

// Function to generate integral random box dimensions from 1 to max_size
inline double random(double max_size)
{
 return 1 + static_cast<int>(max_size* static_cast<double>(std::rand())/(RAND_MAX + 1.0));
}

int main()
{
 const double dimLimit {99.0}; // Upper limit on Box dimensions
 std::srand((unsigned) std::time(0)); // Initialize the random number generator

 const size_t boxCount {20}; // Number of Box object to be created
 std::vector<Box> boxes; // Vector of Box objects

 // Create 20 Box objects
 for (size_t i {}; i < boxCount; ++i)
 boxes.push_back(Box {random(dimLimit), random(dimLimit), random(dimLimit)});

 size_t first {}; // Index of first Box object of pair
 size_t second {1}; // Index of second Box object of pair
 double minVolume {(boxes[first] + boxes[second]).volume()};

 for (size_t i {}; i < boxCount - 1; ++i)
 for (size_t j {i + 1}; j < boxCount; j++)
 if (boxes[i] + boxes[j] < minVolume)
 {
 first = i;
 second = j;
 minVolume = (boxes[i] + boxes[j]).volume();
 }

Chapter 12 ■ OperatOr OverlOading

386

 std::cout << "The two boxes that sum to the smallest volume are:"
 << boxes[first] << boxes[second];
 std::cout << "\nThe volume of the first box is" << boxes[first].volume();
 std::cout << "\nThe volume of the second box is" << boxes[second].volume();
 std::cout << "\nThe box that the sum of these boxes is" << boxes[first] + boxes[second];
 std::cout << "\nThe volume of the sum is" << minVolume << std::endl;
}

Now the output statements are more natural. You can output a Box object to cout just like a variable of a
fundamental type. It should be apparent now that using the << operator for output to the standard stream is achieved
by overloading the operator for the ostream class. You also should be able to figure out how it comes about that
outputting a pointer of type char* writes a C-style string whereas outputting any other pointer, including a smart
pointer, writes the address it contains. The fact that type char* is treated as a special case implies that there must be
a specific implementation of operator<<() to do this. On the other hand, the fact that outputting any other type of
pointer, including pointers to any class that you define, outputs the address the pointer contains means that this must
be the result of a function template for operator<<().

Note ■ Overloading << to allow outputting objects of your own class types to a stream has to be an ordinary function.
in the example, the function can access data members of the Box class through accessor function members. if this was
not the case, this would be an example of where a friend function declaration in the Box class would be necessary.

Implementing One Operator in Terms of Another
One thing always leads to another. If you implement the addition operator for a class, you inevitably create the
expectation that the += operator will work too. If you are going to implement both, it’s worth noting that you can
implement + in terms of += very economically.

First, I’ll define += for the Box class. Because assignment is involved, the operator function needs to return a
reference:

// Overloaded += operator
inline Box& Box::operator+=(const Box& right)
{
 length = length > right.length ? length : right.length;
 width = width > right.width ? width : right.width;
 height += right.height;
 return *this;
}

This is very straightforward. You simply modify the left operand, which is *this, by adding the right operand
according to the definition of addition for Box objects. You can now implement operator+() using operator+=(),
so the definition of operator+() simplifies to:

// Function to add two Box objects
inline Box Box::operator+(const Box& aBox) const
{
 return Box(*this) += aBox;
}

Chapter 12 ■ OperatOr OverlOading

387

The expression Box(*this) calls the copy constructor to create a copy of the left operand to use in the addition.
The operator+=() function is then called to add the right operand object, right, to the new Box object. This object is
then returned.

Overloading the Subscript Operator
The subscript operator [] provides very interesting possibilities for certain kinds of classes. Clearly, this operator is
aimed primarily at selecting one of a number of objects that you can interpret as an array; but where the objects could
be contained in any one of a number of different containers. You can overload the subscript operator to access the
elements of a sparse array (where many of the elements are empty), or an associative array, or even a linked list. The
data might even be stored in a file, and you could use the subscript operator to hide the complications of file input and
output operations.

The Truckload class from Ex11_09 in Chapter 11 is an example of a class that could support the subscript
operator. A Truckload object contains an ordered set of objects, so the subscript operator could provide a means of
accessing these objects through an index value. An index of 0 would return the first object in the list, an index of 1
would return the second; and so on. The inner workings of the subscript operator would take care of iterating through
the list to find the object required.

The operator[]() function for the Truckload class needs to accept an index value as an argument that is a
position in the list and to return the pointer to the Box object at that position. The declaration for the function member
in the TruckLoad class is:

class Truckload
{
private:
 // Members as before...

 public:
 ptr<Box> operator[](size_t index) const; // Overloaded subscript operator
// Rest of the class as before...
};

You could implement the function like this:

inline ptr<Box> Truckload::operator[](size_t index) const
{
 ptr<Package> p {pHead}; // Pointer to first Package
 size_t count {}; // Package count
 do {
 if (index == count++) // Up to index yet?
 return p->pBox; // If so return the pointer to Box
 } while (p = p->pNext);
 return nullptr;
}

The do-while loop traverses the list, incrementing the count on each iteration. When the value of count is the
same as index, the loop has reached the Package object at position index, so the smart pointer to the Box object in that
Package object is returned. If the entire list is traversed without count reaching the value of index, then index must be
out of range, so nullptr is returned. Let’s see how this pans out in practice by trying another example.

Chapter 12 ■ OperatOr OverlOading

388

This example will use the Box class from Ex12_06, but with operator<<() implemented to allow Box objects to be
written to an output stream. Add the following friend declaration to the Box class definition:

friend std::ostream& operator<<(std::ostream& stream, const Box& box);

The friend function can be inline so you can put it in Box.h following the class definition:

inline std::ostream& operator<<(std::ostream& stream, const Box& box)
{
 stream << " Box(" << std::setw(2) << box.length << ","
 << std::setw(2) << box.width << ","
 << std::setw(2) << box.height << ")";
 return stream;
}

Because it’s an inline friend function, operator<<() comes along with the Box class automatically when the class
is included into a source file. The implementation as a friend allows access to the private members of the Box class
directly so it does not require accessor functions for the data members to be present in the class.

We can remove the listBoxes() member of Truckload and add an overload for the << operator for outputting
Truckload objects to a stream as a friend, analogous to the Box class. The definition for it as an inline function is:

inline std::ostream& operator<<(std::ostream& stream, Truckload& load)
{
 load.pCurrent = load.pHead;
 size_t count {};
 while (load.pCurrent)
 {
 std::cout << *(load.pCurrent->pBox);
 load.pCurrent = load.pCurrent->pNext;
 if (!(++count % 5)) std::cout << std::endl;
 }
 if (count % 5) std::cout << std::endl;
 return stream;
}

The code is similar to that for listBoxes() except that now the members are identified as belonging to the load
parameter and members of Package objects are accessed directly. The function makes use of the operator<<()
function that is a friend of the Box class. Outputting a Truckload object will now be very simple—you just use
<< to write it to cout. With the subscript operator and the stream output operator added to the Truckload class,
Truckload.h will contain:

// Truckload.h
#ifndef TRUCKLOAD_H
#define TRUCKLOAD_H

#include <memory>
#include <vector>
#include "Box.h"
template <typename T> using ptr = std::shared_ptr<T>;

Chapter 12 ■ OperatOr OverlOading

389

class Truckload
{
private:
 class Package
 {
 public:
 ptr<Box> pBox; // Pointer to the Box object
 ptr<Package> pNext; // Pointer to the next Package

 Package(ptr<Box> pb) : pBox {pb}, pNext {} {} // Constructor
 };

 ptr<Package> pHead; // First in the list
 ptr<Package> pTail; // Last in the list
 ptr<Package> pCurrent; // Last retrieved from the list

public:
 Truckload() {} // No-arg constructor empty truckload

 Truckload(ptr<Box> pBox) // Constructor - one Box
 {
 pHead = pTail = std::make_shared<Package>(pBox);
 }

 Truckload(const std::vector< ptr<Box> >& boxes); // Constructor - vector of Boxes

 ptr<Box> getFirstBox(); // Get the first Box
 ptr<Box> getNextBox(); // Get the next Box
 void addBox(ptr<Box> pBox); // Add a new Box
 bool deleteBox(ptr<Box> pBox); // Delete a Box
 ptr<Box> operator[](size_t index) const; // Overloaded subscript operator

 friend std::ostream& operator<<(std::ostream& stream, Truckload& load);
};

// Subscript operator
inline ptr<Box> Truckload::operator[](size_t index) const
{
 ptr<Package> p {pHead}; // Pointer to first Package
 size_t count {}; // Package count
 do {
 if (index == count++) // Up to index yet?
 return p->pBox; // If so return the pointer to Box
 } while (p = p->pNext);
 return nullptr;
}

Chapter 12 ■ OperatOr OverlOading

390

// >> operator for output to a stream
inline std::ostream& operator<<(std::ostream& stream, Truckload& load)
{
 load.pCurrent = load.pHead;
 size_t count {};
 while (load.pCurrent)
 {
 std::cout << *(load.pCurrent->pBox);
 load.pCurrent = load.pCurrent->pNext;
 if (!(++count % 5)) std::cout << std::endl;
 }
 if (count % 5) std::cout << std::endl;
 return stream;
}
#endif

listBoxes() is no longer a member of the Truckload class so you must remove its definition from Truckload.
cpp. The code to exercise The Truckload class with its subscript operator is:

// Ex12_07.cpp
// Using the subscript operator
#include <iostream>
#include <memory>
#include <cstdlib> // For random number generator
#include <ctime> // For time function
#include "Truckload.h"

// Function to generate integral random box dimensions from 1 to max_size
inline double random(double max_size)
{
 return 1 + static_cast<int>(max_size* static_cast<double>(std::rand()) / (RAND_MAX + 1.0));
}

int main()
{
 const double dimLimit {99.0}; // Upper limit on Box dimensions
 std::srand((unsigned) std::time(0)); // Initialize the random number generator
 Truckload load;
 const size_t boxCount {20}; // Number of Box object to be created

 // Create boxCount Box objects
 for (size_t i {}; i < boxCount; ++i)
 load.addBox(std::make_shared<Box>(random(dimLimit), random(dimLimit), random(dimLimit)));

 std::cout << "The boxes are:\n";
 std::cout << load;

Chapter 12 ■ OperatOr OverlOading

391

 // Find the largest Box in the list
 double maxVolume {};
 size_t maxIndex {};
 size_t i {};
 while (load[i])
 {
 if (load[i]->volume() > maxVolume)
 {
 maxIndex = i;
 maxVolume = load[i]->volume();
 }
 ++i;
 }

 std::cout << "\nThe largest box is:";
 std::cout << *load[maxIndex] << std::endl;

 load.deleteBox(load[maxIndex]);
 std::cout << "\nAfter deleting the largest box, the list contains:\n";
 std::cout << load;
}

When I ran this example, it produced the following output:

The largest box in the list is
90 by 79 by 77The boxes are:
 Box(26,68,23) Box(89,60,94) Box(46,82,27) Box(22, 2,29) Box(98,23,90)
 Box(25,81,55) Box(52,64,28) Box(98,33,40) Box(83,14,80) Box(91,78,94)
 Box(28,54,50) Box(57,79,18) Box(91,89,99) Box(26,39,57) Box(26,42,35)
 Box(15,29,74) Box(10,17,21) Box(91,86,68) Box(94, 5,30) Box(87,10,94)

The largest box is: Box(91,89,99)

After deleting the largest box, the list contains:
 Box(26,68,23) Box(89,60,94) Box(46,82,27) Box(22, 2,29) Box(98,23,90)
 Box(25,81,55) Box(52,64,28) Box(98,33,40) Box(83,14,80) Box(91,78,94)
 Box(28,54,50) Box(57,79,18) Box(26,39,57) Box(26,42,35) Box(15,29,74)
 Box(10,17,21) Box(91,86,68) Box(94, 5,30) Box(87,10,94)

The main() function now uses the subscript operator to access pointers to Box objects from the Truckload object.
You can see from the output that the subscript operator works and the result of finding and deleting the largest Box
object is correct. The subscript operator masks an inefficient process in this case though. It’s easy to forget that each
use of the subscript operator involves traversing at least part of the list from the beginning. More than one access
to an entry at a given index would be best avoided, especially if the Truckload object contains a large number of
pointers to Box objects. Output of Truckload and Box objects to the standard output stream now works the same as for
fundamental types.

Chapter 12 ■ OperatOr OverlOading

392

Lvalues and the Overloaded Subscript Operator
You’ll encounter circumstances under which you might want to overload the subscript operator and use the object it
returns as an lvalue—that is, on the left of an assignment. With your present implementation of operator[]() in the
Truckload class, a program compiles but won’t work correctly if you write this:

load[0] = load[1];

This will compile and execute but it won’t affect the items in the list. What you want is that the first pointer in
the list is replaced by the second, but this doesn’t happen. One problem is the return value from operator[](). The
function returns a temporary copy of a smart pointer object that points to the same Box object as the original pointer
in the list, but is a different pointer. The assignment operates, but is changing just a copy of the first pointer in the list,
which won’t be around for very long. Of course, each time you use load[0] on the left of an assignment, you get a
different copy of the first pointer in the list.

To allow the subscript operator to be used on the left of an assignment you must define the operator so that it
returns a reference that can be used as an lvalue. Obviously, you must not return a reference to a local object in this
situation. Doing this for the Truckload class has significant ramifications.

First, you cannot return nullptr from operator[]() in the Truckload class because you cannot return a
reference to nullptr. You need to devise another way to deal with an invalid index. One possibility is to return a
ptr<Box> object that doesn’t point to anything, but this cannot be a local object. Second, the getBox() member of the
Package class also must return a reference, which means the function member cannot be const.

You could define a ptr<Box> object as a static member of the Truckload class by adding the following declaration
to the private section of the class:

static ptr<Box> nullBox; // Pointer to nullptr

As you saw in Chapter 11, you initialize static class members outside the class. The following statement in
Truckload.cpp will do it:

ptr<Box> Truckload::nullBox {}; // Initialize static class member

Now we can change the definition of the subscript operator to:

inline ptr<Box>& Truckload::operator[](size_t index) const
{
 ptr<Package> p {pHead}; // Pointer to first Package
 size_t count {}; // Package count
 do {
 if (index == count++) // Up to index yet?
 return p->pBox; // If so return the pointer to Box
 } while (p = p->pNext);
 return nullBox;
}

Chapter 12 ■ OperatOr OverlOading

393

This allows stepping through the elements in the list. It now returns a reference to the pointer and the function
member is no longer const. Here’s an extension of Ex12_07 to try out the subscript operator on the left of an
assignment. I have simply extended main() from Ex12_07 to show that iterating through the elements in a Truckload
list still works:

// Ex12_08.cpp
// Using the subscript operator on the left of an assignment
#include <iostream>
#include <memory>
#include <cstdlib> // For random number generator
#include <ctime> // For time function
#include "Truckload.h"

// Function to generate integral random box dimensions from 1 to max_size
inline double random(double max_size)
{
 return 1 + static_cast<int>(max_size* static_cast<double>(std::rand()) / (RAND_MAX + 1.0));
}

int main()
{
 // All the code from main() in Ex12_07 here...

 load[0] = load[1]; // Copy 2nd element to 1st
 std::cout << "\nAfter copying the 2nd element to the 1st, the list contains:\n";
 std::cout << load;

 load[1] = std::make_shared<Box>(*load[2] + *load[3]);
 std::cout << "\nAfter making the 2nd element a pointer to the 3rd plus 4th,"
 " the list contains:\n";
 std::cout << load;
}

The first part of the output is similar to the previous example, after which the output is:

After copying the 2nd element to the 1st, the list contains:
 Box(65,31, 6) Box(65,31, 6) Box(75, 4, 4) Box(40,18,48) Box(32,67,21)
 Box(78,48,72) Box(22,71,41) Box(36,37,91) Box(19, 9,71) Box(98,78,30)
 Box(85,54,53) Box(98,13,66) Box(50,57,39) Box(56,80,88) Box(17,60,23)
 Box(85,42,41) Box(51,31,61) Box(41, 9, 8) Box(75,79,43)

After making the 2nd element a pointer to the sum of 3rd and 4th, the list contains:
 Box(65,31, 6) Box(75,18,52) Box(75, 4, 4) Box(40,18,48) Box(32,67,21)
 Box(78,48,72) Box(22,71,41) Box(36,37,91) Box(19, 9,71) Box(98,78,30)
 Box(85,54,53) Box(98,13,66) Box(50,57,39) Box(56,80,88) Box(17,60,23)
 Box(85,42,41) Box(51,31,61) Box(41, 9, 8) Box(75,79,43)

Chapter 12 ■ OperatOr OverlOading

394

The first block of output shows that the first two elements point to the same Box object so the assignment worked
as expected. The second block of output results from assigning a new value to the second element in the Truckload
object; the new value is a pointer to the Box object produced by summing the third and fourth Box objects. The output
shows that the second element points to a new object that is the sum of the next two. Just to make it clear what is
happening, the statement that does this is equivalent to:

load.operator[](1).operator=(*(load.operator[](2)).operator+(*(load.operator[](3))));

That’s much much clearer, isn’t it?

Overloading Type Conversions
You can define an operator function as a class member to convert from the class type to another type. The type you’re
converting to can be a fundamental type or a class type. Operator functions that are conversions for objects of an
arbitrary class, Object, are of this form:

class Object
{
 public:
 operator Type(); // Conversion from Object to Type
// Rest of Object class definition...
};

Type is the destination type for the conversion. Note that no return type is specified because the target type is
always implicit in the function name, so here the function must return a Type object.

As an example, you might want to define a conversion from type Box to type double. For application reasons, you
could decide that the result of this conversion would be the volume of the Box object. You could define this as follows:

class Box
{
public:
 operator double() const { return volume(); }

// Rest of Box class definition...
};

The operator function would be called if you wrote this:

Box box {1.0, 2.0, 3,0};
double boxVolume {};
boxVolume = box; // Calls conversion operator

This causes an implicit conversion to be inserted by the compiler. You could call the operator function explicitly
with this statement:

double total { 10.0 + static_cast<double>(box) };

Chapter 12 ■ OperatOr OverlOading

395

You can prevent implicit calls of a conversion operator function by specifying it as explicit in the class. In the
Box class you could write:

explicit operator double() const { return volume(); }

Now the compiler will not use this member for implicit conversions to type double.

Potential Ambiguities with Conversions
When you implement conversion operators for a class, it is possible to create ambiguities that will cause compiler
errors. You have seen that a constructors can also effectively implement a conversion—a conversion from type Type1
to type Type2 can be implemented by including a constructor in class Type2 with this declaration:

Type2(const Type1& theObject); // Constructor converting Type1 to Type2

This can conflict with this conversion operator in the Type2 class:

operator Type1(); // Conversion from type Type1 to Type2

The compiler will not be able to decide which of the constructor or the conversion operator function to use when
an implicit conversion is required. To remove the ambiguity, declare either or both members as explicit.

Overloading the Increment and Decrement Operators
The ++ and -- operators present a new problem for the functions that implement them for a class because they behave
differently depending on whether or not they prefix the operand. You need two functions for each operator: one to be
called in the prefix case and the other for the postfix case. The postfix form of the operator function for either operator is
distinguished from the prefix form by the presence of a parameter of type int. This parameter only serves to distinguish the
two cases and is not otherwise used. The declarations for the functions to overload ++ for an arbitrary class, Object, will be

class Object
{
public:
 Object& operator++(); // Overloaded prefix increment operator

 const Object operator++(int); // Overloaded postfix increment operator

// Rest of Object class definition...
};

The return type for the prefix form normally needs to be a reference to the current object, *this, after the increment
operation has been applied to it. Here’s how an implementation of the prefix form for the Box class might look:

Box& Box::operator++()
{
 ++length;
 ++width;
 ++height;
 return *this;
}

Chapter 12 ■ OperatOr OverlOading

396

This just increments each of the dimensions by 1 then returns the current object.
For the postfix form of the operator, you must create a copy of the original object before you modify it; then return

the copy of the original after the increment operation has been performed on the object. Here’s how that might be
implemented for the Box class:

const Box Box::operator++(int)
{
 Box box {*this}; // Create a copy of the current object
 ++length; // Increment the current object...
 ++width;
 ++height;
 return box; // Return the unincremented copy
}

The return value for the postfix operator is const to prevent expressions such as theObject++++ from compiling.
Such expressions are inelegant, confusing, and inconsistent with the normal behavior of the operator. However, if you
don’t declare the return type as const, such usage is possible.

Note ■ For any class implementation that overloads the increment and decrement operators, the return type for the
prefix form will always be a reference to the current object, and the return type for the postfix form will always be a copy
of the original object before it has been incremented.

Function Objects
A function object is an object of a class that overloads the function call operator, which is (). A function object
is also called a functor. The operator function in a class looks like a misprint—it is operator()(). A function object
can be passed as an argument to a function so it provides yet another way to pass functions around. The Standard
Template Library uses function objects quite extensively, particularly in the functional header. I’ll show you how
function objects work with an example.

Suppose I define a Volume class like this:

class Volume
{
public:
 double operator()(double x, double y, double z) {return x*y*z;}
};

I can use a Volume object to calculate a volume:

Volume volume; // Create a functor
double room { volume(16, 12, 8.5) }; // Room volume in cubic feet

Chapter 12 ■ OperatOr OverlOading

397

The value in the initializer list for room is the result of calling operator()() for the volume object so the
expression is equivalent to volume.operator()(16, 12, 8.5). Of course you can define more than one version of the
operator()() function in a class:

class Volume
{
public:
 double operator()(double x, double y, double z) {return x*y*z;}

 double operator()(const Box& box)
 { return getLength()*getWidth()*getHeight(); }
};

Now a Volume object can return the volume of a Box object:

Box box{1.0, 2.0, 3.0};
std::cout << "The volume of the box is" << volume(box) << std::endl;

To enable a Volume object to be passed as an argument to a function, you just specify the parameter as type Volume&.

Summary
In this chapter, you learned how to add functions to make objects of your own data types work with the basic
operators. What you need to implement in a particular class is up to you. You need to decide the nature and scope of
the facilities each class should provide. Always keep in mind that you are defining a data type—a coherent entity—and
that the class needs to reflect its nature and characteristics. You should also make sure that your implementation of an
overloaded operator doesn’t conflict with what the operator does in its standard form.

The important points from in this chapter include:

You can overload any operator within a class to provide class-specific behavior—except for the •	
scope resolution operator (::), the conditional operator (?:), the member access operator (.),
the dereference pointer to class member operator (.*), and the sizeof operator.

Operator functions can be defined as members of a class or as global operator functions.•	

For a unary operator defined as a class function member, the operand is the class object.•	

For a unary operator defined as a global operator function, the operand is the function parameter.•	

For a binary operator function declared as a member of a class, the left operand is the class •	
object and the right operand is the function parameter.

For a binary operator defined by a global operator function, the first parameter specifies the •	
left operand, and the second parameter specifies the right operand.

To overload the increment or the decrement operator, you need two functions that provide the •	
prefix and postfix form of the operator. The function to implement a postfix operator has an
extra parameter of type int that serves only to distinguish the function from the prefix version.

Functions that implement the overloading of the •	 += operator can be used in the
implementation of the + function. This is true for all op= operators.

Chapter 12 ■ OperatOr OverlOading

398

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back over
the chapter for help. if you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 12-1. define an operator function in the Box class from Ex12_08 that allows a Box
object to be multiplied by an integer, n, to produce a new object that has a height that is n times
to original object. demonstrate that your operator function works as it should.

exercise 12-2. define an operator function that will allow a Box object to be premultiplied by
an integer n to produce the same result as the operator in exercise 12-1. demonstrate that this
operator works.

exercise 12-3. define division for Box objects so that box1/box2 results in an integer that is
the number of times box2 can be contained in box1. all instances of box2 in box1 must have
the same orientation (i.e. all box2 lengths, widths and heights parallel) but box2 can be in any
orientation relative to box1 (e.g. the box2 width does not have to be parallel to the box1 width).

exercise 12-4. define the remainder operator for Box objects so that box1 % box2 results in the
volume left unoccupied when the maximum number of box2 objects are placed in box1.

www.apress.com/source-code

399

Chapter 13

Inheritance

In this chapter, you’re going to look into a topic that lies at the heart of object-oriented programming: inheritance.
Inheritance is the means by which you can create new classes by reusing and expanding on existing class definitions.
Inheritance is also fundamental to making polymorphism possible, and polymorphism is a basic feature of object-
oriented programming. I’ll discuss polymorphism in the next chapter, so you what you’ll learn there is an integral part
of what inheritance is all about. There are subtleties in inheritance that I’ll tease out using code that shows what is
happening.

In this chapter you’ll learn:

How inheritance fits into the idea of object-oriented programming•	

What base classes and derived classes are, and how they’re related•	

How to define a new class in terms of an existing class•	

The use of the •	 protected keyword as an access specification for class members

How constructors behave in a derived class and what happens when they’re called•	

What happens with destructors in a class hierarchy•	

The use of •	 using declarations within a class definition

What multiple inheritance is•	

How to convert between types in a class hierarchy•	

Classes and Object-Oriented Programming
I’ll begin by reviewing what you’ve learned so far about classes and explain how that leads to the ideas I’ll introduce in
this chapter. In Chapter 11, I explained the concept of a class and that a class is a type that you define to suit your own
application requirements. In Chapter 12 you learned how you can overload the basic operators so that they work with
objects of your class types. The first step in applying object-oriented programming to solve a problem is to identify the
types of entities to which the problem relates and to determine the characteristics for each type and the operations
that will be needed to solve the problem. Then you can define the classes and their operations, which will provide
what you need to program the solution to the problem in terms of instances of the classes.

Any type of entity can be represented by a class — from the completely abstract such as the mathematical
concept of a complex number to something as decidedly physical as a tree or a truck. A class definition characterizes a
set of entities, which share a common set of properties. So as well as being a data type, a class can also be a definition
of a set of real-world objects, or at least an approximation that is sufficient for solving a given problem.

Chapter 13 ■ InherItanCe

400

In many real-world problems, the types of the entities involved are related. For example, a dog is a special kind of
animal. A dog has all the properties of an animal plus a few more that characterize a dog. Consequently, classes that
define the Animal and Dog types should be related in some way. A dog is a specialized kind of animal so you can say a
Dog is an Animal so you would expect the class definitions to reflect this. A different sort relationship is illustrated by
an automobile and an engine. You can’t say that an Automobile is an Engine or vice versa. What you can say is that an
Automobile has an Engine. In this chapter you’ll see how the “is a” and “has a” relationships are expressed by classes.

Hierarchies
In previous chapters, I defined the Box class to represent a rectilinear box. The defining properties of a Box object were
just the three orthogonal dimensions. You can apply this basic definition to the many different kinds of rectangular
boxes that you find in the real world: cardboard cartons, wooden crates, candy boxes, cereal boxes, and so on. All
these have three orthogonal dimensions, and in this way they’re just like generic Box objects. However, each of them
has other properties such as the things they’re designed to hold, or the material from which they’re made. You could
describe them as specialized kinds of Box objects.

For example, a Carton class could have the same properties as a Box object — namely the three dimensions —
plus the additional property of its composite material. You could then specialize even further by using the Carton
definition to describe a FoodCarton class, which is a special kind of Carton that is designed to hold food. A FoodCarton
object will have all the properties of a Carton object and an additional member to model the contents. Of course, a
Carton object has the properties of a Box object so a FoodCarton object will have those too. The connections between
classes that express these relationships are shown in Figure 13-1.

The Carton class is an extension of the Box class. You might say that the Carton class is derived from the Box
class. In a similar way, the FoodCarton class has been derived from the Carton class. It’s common to indicate this
relationship diagrammatically by using an arrow pointing toward the more general class in the hierarchy. This
notation is called UML (Universal Modelling Language) and I’ve used UML in Figure 13-1.

Figure 13-1. Classes in a hierarchy

Chapter 13 ■ InherItanCe

401

In specifying one class in terms of another, you’re developing a hierarchy of interrelated classes. One class
is derived from another by adding extra properties — in other words, by specialization — making the new class a
specialized version of the more general class. In Figure 13-1, each class in the hierarchy has all the properties of
the Box class, which illustrates precisely the mechanism of class inheritance. You could define the Box, Carton, and
FoodCarton classes quite independently of each other, but by defining them as related classes, you gain a tremendous
amount. Let’s look at how this works in practice.

Inheritance in Classes
To begin with, I’ll introduce the terminology that is used for related classes. Given a class A, suppose you create a
new class B that is a specialized version of A. Class A is the base class, and class B is the derived class. You can think of
A as being the “parent” and B as being the “child.” A base class is sometimes referred to as a superclass of a class that
is derived from it and the derived class is a subclass of its base. A derived class automatically contains all the data
members of its base class, and (with some restrictions that I’ll discuss) all the function members. A derived class
inherits the data members and function members of its base class.

If class B is a derived class defined directly in terms of class A, then class A is a direct base class of B. Class B is
derived from A. In the preceding example, the Carton class is a direct base class of FoodCarton. Because Carton
is defined in terms of the Box class, the Box class is an indirect base class of the FoodCarton class. An object of the
FoodCarton class will have inherited members from Carton, including the members that the Carton class inherits
from the Box class. Figure 13-2 illustrates the way in which a derived class inherits members from a base class.

Figure 13-2. Derived class members inherited from a base class

As you can see, the derived class has a complete set of data and function members from the base class, plus its
own data and function members. Thus each derived class object contains a complete base class sub-object, plus its
own members.

Inheritance vs. Aggregation
Class inheritance isn’t just a means of getting members of one class to appear in another. There’s a very important
idea that underpins the whole concept: derived class objects should be sensible specializations of base class objects.
To decide whether this is the case in a specific instance you can apply the “is a” test: any derived class object is a base
class object. In other words, a derived class should define a subset of the objects that are represented by the base class.
I explained earlier that a Dog class might be derived from an Animal class because a dog is an animal; more precisely,
a Dog object is a reasonable representation of a particular kind of Animal object. On the other hand, a Table class
shouldn’t be derived from the Dog class. Although Table and Dog objects share a common attribute in that they both
usually have four legs, a Table object can’t really be considered to be a Dog in any way or vice versa.

Chapter 13 ■ InherItanCe

402

The “is a” test is an excellent first check, but it’s not infallible. For example, suppose you define a Bird class that
among other things reflects the fact that most birds can fly. Now, an ostrich is a bird, but it’s nonsense to derive a
class Ostrich from the Bird class, because ostriches can’t fly! The problem arises because of a poor definition for
Bird objects. You really need a base class that doesn’t have the ability to fly as a property. You can then derive two
subclasses, one for birds that can fly and the other for birds that can’t. If your classes pass the “is a” test, you should
double-check by asking: Is there anything I can say about (or demand of) the base class that’s inapplicable to the
derived class? If there is, then the derivation probably isn’t safe. Deriving Dog from Animal is sensible, but deriving
Ostrich from Bird as I described it, isn’t.

If classes fail the “is a” test, then you almost certainly shouldn’t use class derivation. In this case, you could check
the has a test. A class object passes the “has a” test if it contains an instance of another class. You can accommodate
this by including an object of the second class as a data member of the first. The Automobile and Engine classes that
I mentioned earlier are an example; an Automobile object would have an Engine object as a data member; it may
well have other major subassemblies as data members of types such as Transmission and Differential. This type of
relationship is called aggregation.

Of course, what is appropriate to include in the definition of a class depends on the application. Sometimes, class
derivation is used simply to assemble a set of capabilities, so that the derived class is an envelope for packaging a
given set of functions. Even then, the derived class generally represents a set of functions that are related in some way.
Let’s see what the code to derive one class from another looks like.

Deriving Classes
Here’s a simplified version of the Box class from Chapter 12:

// Box.h - defines Box class
#ifndef BOX_H
#define BOX_H
#include <iostream> // For standard streams
#include <iomanip> // For stream manipulators

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}
 Box()=default; // No-arg constructor

 double volume() const // Function to calculate the volume
 { return length*width*height; }

 // Accessors
 double getLength() const { return length; }
 double getWidth() const { return width; }
 double getHeight() const { return height; }

 friend std::ostream& operator<<(std::ostream& stream, const Box& box);
};

Chapter 13 ■ InherItanCe

403

// Stream output for Box objects
inline std::ostream& operator<<(std::ostream& stream, const Box& box)
{
 stream << " Box(" << std::setw(2) << box.length << ","
 << std::setw(2) << box.width << ","
 << std::setw(2) << box.height << ")";
 return stream;
}
#endif

I can define a Carton class based on the Box class. A Carton object will be similar to a Box object but with an extra
data member that indicates the material from which it’s made. I’ll define Carton as a derived class, using the Box class
as the base class:

// Carton.h - defines the Carton class with the Box class as base
#ifndef CARTON_H
#define CARTON_H
#include <string> // For the string class
#include "Box.h" // For Box class definition
using std::string;

class Carton : public Box
{
private:
 string material;

public:
 Carton(const string desc = "Cardboard") : material{desc} {} // Constructor
};
#endif

The #include directive for the Box class definition is necessary because it is the base class for Carton. The first
line of the Carton class definition indicates that Carton is derived from Box. The base class name follows a colon that
separates it from the derived class name, Carton in this case. The public keyword is a base class access specifier
that determines how the members of Box can be accessed from within the Carton class. I’ll discuss this further in a
moment.

In all other respects, the Carton class definition looks like any other. It contains a new member, material,
which is initialized, by the constructor. The constructor defines a default value for the string describing the
material of a Carton object, so that this is also the no-arg constructor for the Carton class. Carton objects contain
all the data members of the base class, Box, plus the additional data member, material. Because they inherit all the
characteristics of a Box object, Carton objects are also Box objects. There’s a glaring inadequacy in the Carton class in
that it doesn’t have a constructor defined that permits the values of inherited members to be set, but I’ll return to that
later. Let’s see how these class definitions work in an example:

Here’s the code for your first example using a derived class:

// Ex13_01.cpp
// Defining and using a derived class
#include <iostream>
#include "Box.h" // For the Box class
#include "Carton.h" // For the Carton class

Chapter 13 ■ InherItanCe

404

int main()
{
 // Create a Box object and two Carton objects
 Box box {40.0, 30.0, 20.0};
 Carton carton;
 Carton candyCarton {"Thin cardboard"};
 // Check them out - sizes first of all
 std::cout << "box occupies " << sizeof box << " bytes" << std::endl;
 std::cout << "carton occupies " << sizeof carton << " bytes" << std::endl;
 std::cout << "candyCarton occupies " << sizeof candyCarton << " bytes" << std::endl;

 // Now volumes...
 std::cout << "box volume is " << box.volume() << std::endl;
 std::cout << "carton volume is " << carton.volume() << std::endl;
 std::cout << "candyCarton volume is " << candyCarton.volume() << std::endl;

 std::cout << "candyCarton length is " << candyCarton.getLength() << std::endl;

 // Uncomment any of the following for an error...
 // box.length = 10.0;
 // candyCarton.length = 10.0;
}
I get the following output:

box occupies 24 bytes
carton occupies 56 bytes
candyCarton occupies 56 bytes
box volume is 24000
carton volume is 1
candyCarton volume is 1
candyCarton length is 1

The main() function creates a Box object and two Carton objects and outputs the number of bytes occupied by

each object. The output shows what you would expect — that a Carton object is larger than a Box object. A Box object
has three data members of type double; each of these occupies 8 bytes on my machine, so that’s 24 bytes in all. Both of
the Carton objects are the same size: 56 bytes. The additional memory occupied by each Carton object is down to the
data member material, so it’s the size of a string object that contains the description of the material. The output of
the volumes for the Carton objects shows that the volume() function is indeed inherited in the Carton class and that
the dimensions have the default values of 1.0. The next statement shows that the accessor functions are inherited too,
and can be called for a derived class object.

Uncommenting either of the last two statements results in an error message from the compiler. The data
members that are inherited by the Carton class were private in the base class and they are still private in the derived
class, Carton, so they cannot be accessed from outside the class. There’s more though. Try adding this function to the
Carton class definition as a public member:

double carton_volume() { return length*width*height; }

Chapter 13 ■ InherItanCe

405

This won’t compile. The reason is that although the data members of Box are inherited, they are inherited as
private members of the Box class. The private access specifier determines that members are totally private to the
class. Not only can they not be accessed from outside the Box class, they also cannot be accessed from inside a class
that inherits them.

Access to inherited members of a derived class object is not only determined by their access specification in the
base class but by both the access specifier in the base class and the access specifier of the base class in the derived
class. I’ll go into that a bit more next.

protected Members of a Class
The private members of a base class being only accessible to member functions of the base class is, to say the least,
inconvenient. Most of the time you want the members of a base class to be accessible from within the derived class,
but nonetheless protected from outside interference. In addition to the public and private access specifiers for class
members, you can declare members as protected. Within the class the protected keyword has exactly the same
effect as the private keyword. protected members cannot be accessed from outside the class except from functions
that have been specified as friend functions. Things change in a derived class though. Members of a base class that
are declared as protected are freely accessible in function members of a derived class, whereas the private members
of the base class are not.

I can modify the Box class to have protected data members:

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Rest of the class as before...
};

Now the data members of Box are still effectively private in that they can’t be accessed by ordinary global
functions, but they’re now accessible within member functions of a derived class. If you now try compiling Carton
with the carton_volume() member uncommented and the Box class members specified as protected, you’ll find that
it compiles without a problem.

The Access Level of Inherited Class Members
In the Carton class definition, I specified the Box base class as public. In general there are three possibilities for the
base class access specifier: public, protected, or private. If you omit the base class access specifier, the default is
private. So if you omit the specifier altogether — for example, by writing class Carton:Box at the top of the Carton
class definition in Ex13_01 — then the private access specifier for Box is assumed. You also know that the access
specifiers for class members come in three flavors. Again, the choice is the same: public, protected, or private.
The base class access specifier affects the access status of the inherited members in a derived class. There are nine
possible combinations. I’ll cover all possible combinations in the following paragraphs, although the usefulness of
some of these will only become apparent in the next chapter when you learn about polymorphism.

Chapter 13 ■ InherItanCe

406

First let’s consider how private members of a base class are inherited in a derived class. Regardless of the base
class access specifier (public, protected, or private), a private base class member always remains private to
the base class. As you have seen, inherited private members are private members of the derived class, so they’re
inaccessible outside the derived class. They’re also inaccessible to member functions of the derived class because
they’re private to the base class.

Now, let’s look into how public and protected base class members are inherited. In all the remaining cases,
inherited members can be accessed by member functions of the derived class. The inheritance of public and
protected base class members works like this:

 1. When the base class specifier is public, the access status of the inherited members
is unchanged. Thus, inherited public members are public, and inherited protected
members are protected in a derived class.

 2. When the base class specifier is protected, both public and protected members of a base
class are inherited as protected members.

 3. When the base class specifier is private, inherited public and protected members
become private to the derived class, so they’re accessible by member functions of the
derived class but cannot be accessed if they’re inherited in another derived class.

This is summarized in Figure 13-3. Being able to change the access level of inherited members in a derived class
gives you a degree of flexibility, but remember that you can only make the access level more stringent; you can’t relax
the access level that is specified in the base class.

Figure 13-3. The effect of the base class specifier on the accessibility of inherited members

Chapter 13 ■ InherItanCe

407

Choosing Access Specifiers in Class Hierarchies
You have two aspects to consider when defining a hierarchy of classes: the access specifiers for the members of each
class, and the base class access specifier in each derived class. The public members of a class define the external
interface to the class and this shouldn’t normally include data members. Class members that aren’t part of the
class interface should not be directly accessible from outside the class, which means that they should be private or
protected. Which access specification you choose for a particular member depends on whether or not you want to
allow access in a derived class. If you do, use protected; otherwise, use private.

Figure 13-4 shows how the accessibility of inherited members is only affected by the access specifiers of the
members in the base class. Within a derived class, public and protected base class members are always accessible,
and private base class members are never accessible. From outside the derived class, only public base class
members may be accessed — and this is only the case when the base class is declared as public.

Figure 13-4. The effect of access specifiers on base class members

If the base class access specifier is public, then the access status of inherited members remains unchanged.
By using the protected and private base class access specifiers, you are able to do two things:

 1. You can prevent access to public base class members from outside the derived class —
either specifier will do this. If the base class has public function members, then this is a
serious step because the class interface for the base class is being removed from public
view in the derived class.

 2. You can affect how the inherited members of the derived class are inherited in another
class that uses the derived class as its base.

Figure 13-5 shows how the public and protected members of a base class can be passed on as protected
members of another derived class. Members of a privately inherited base class won’t be accessible in any further
derived class. In the majority of instances, the public base class access specifier is most appropriate with the base
class data members declared as either private or protected. In this case the internals of the base class sub-object
is internal to the derived class object and is therefore not part of the public interface for the derived class object. In
practice, because the derived class object is a base class object, you’ll want the base class interface to be inherited in
the derived class, and this implies that the base class must be specified as public.

Chapter 13 ■ InherItanCe

408

Constructors are not normally inherited for very good reasons but you’ll see later in this chapter how you can
cause constructors to be inherited in a derived class.

Changing the Access Specification of Inherited Members
You might want to exempt a particular base class member from the effects of a protected or private base class access
specification. This is easy to understand with an example. Suppose you derive the Carton class from the Box class
in Ex13_01 but with Box as a private base class. All members inherited from Box will now be private in Carton but
you’d like the volume() function to remain public in the derived class, as it is in the base class. You can restore the
public status for a particular inherited member that was public in the base class with a using declaration.

This is essentially the same as the using declaration for namespaces. You can force the volume() function to be
public in the derived class by defining the Carton class like this:

class Carton : private Box
{
private:
 string material;

public:
 using Box::volume; // Inherit as public
 Carton(const string desc = "Cardboard") : material {desc} {} // Constructor
};

The class definition defines a scope, and the using declaration within the class definition introduces a name into
that class scope. The member access specification applies to the using declaration so the volume name is introduced
into the public section of the Carton class so it overrides the private base class access specification for the volume()
member of the base class, The function will be inherited as public in the Carton class, not as private. Ex13_01A in
the code download shows this working.

There are several points to note here. First, when you apply a using declaration to the name of a member of a
base class, you must qualify the name with the base class name, because this specifies the context for the member
name. Second, note that you don’t supply a parameter list or a return type for a function member — just the qualified
name. Third, the using declaration works with inherited data members in a derived class.

Figure 13-5. Affecting the access specification of inherited members

Chapter 13 ■ InherItanCe

409

You can use a using declaration to override an original public or protected base class access specifier in a
base class. Hence, you can allow a base class member more or less accessibility in the derived class in this way. For
example, if the volume() function was protected in the Box base class, you could make it public in the derived
Carton class with the same using declaration in a public section of Carton. However, you can’t apply a using
declaration to relax the specification of a private member of a base class because private members cannot be
accessed in a derived class.

Constructor Operation in a Derived Class
If you put output statements in the constructors for the Carton class and the Box class and rerun the example, you’ll
see what happens when a Carton object is created. You’ll need to define the default Box and Carton class constructors
to include the output statements. Creating each Carton object always results in the default no-arg Box constructor
being called first, followed by the Carton class constructor.

Derived class objects are always created in the same way, even when there are several levels of derivation. The
most base class constructor is called first, followed by the constructor for the class derived from that, followed by the
constructor for the class derived from that, and so on until the constructor for the most derived class is called. This
makes sense if you think about it. A derived class object has a complete base class object inside it, and this needs to be
created before the rest of the derived class object. If that base class is derived from another class, the same applies.

Although in Ex13_01 the default base class constructor was called automatically, this doesn’t have to be the case.
You can call a particular base class constructor in the initialization list for the derived class constructor. This will
enable you to initialize the base class data members with a constructor other than the default. It will also allow you to
choose a particular base class constructor, depending on the data supplied to the derived class constructor. Let’s see it
working in another example:

Here’s a new version of the Box class:

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv}
 { std::cout << "Box(double, double, double) called.\n"; }

 Box(double side) : Box {side, side, side} { std::cout << "Box(double) called.\n"; }

 Box() { std::cout << "Box() called.\n"; } // No-arg constructor

 double volume() const // Function to calculate the volume
 {
 return length*width*height;
 }

Chapter 13 ■ InherItanCe

410

 // Accessors
 double getLength() const { return length; }
 double getWidth() const { return width; }
 double getHeight() const { return height; }

 friend std::ostream& operator<<(std::ostream& stream, const Box& box);
};

There are now three Box constructors and they all output a message when they are called. operator<<() is
defined as in Ex13_01.

The Carton class looks like this:

class Carton : public Box
{
private:
 string material {"Cardboard"};

public:
 Carton(double lv, double wv, double hv, const string desc) : Box {lv, wv, hv}, material {desc}
 { std::cout << "Carton(double,double,double,string) called.\n"; }

 Carton(const string desc) : material {desc}
 { std::cout << "Carton(string) called.\n"; }

 Carton(double side, const string desc) : Box {side}, material {desc}
 { std::cout << "Carton(double,string) called.\n"; }

 Carton() { std::cout << "Carton() called.\n"; }
};

This also has three constructors, including a no-arg constructor. You must define this here because if you define
any constructor, the compiler will not supply a default no-arg constructor.

Here’s the code to exercise this class:

// Ex13_02.cpp
// Calling base class constructors in a derived class constructor
#include <iostream>
#include "Box.h" // For the Box class
#include "Carton.h" // For the Carton class

int main()
{
 // Create four Carton objects
 Carton carton1;
 Carton carton2 {"Thin cardboard"};
 Carton carton3 {4.0, 5.0, 6.0, "Plastic"};
 Carton carton4 {2.0, "paper"};

Chapter 13 ■ InherItanCe

411

 std::cout << "carton1 volume is " << carton1.volume() << std::endl;
 std::cout << "carton2 volume is " << carton2.volume() << std::endl;
 std::cout << "carton3 volume is " << carton3.volume() << std::endl;
 std::cout << "carton4 volume is " << carton4.volume() << std::endl;
}

The output is:

Box(double, double, double) called.
Box() called.
Carton() called.
Box() called.
Carton(string) called.
Box(double, double, double) called.
Carton(double,double,double,string) called.
Box(double, double, double) called.
Box(double) called.
Carton(double,string) called.
carton1 volume is 1
carton2 volume is 1
carton3 volume is 120
carton4 volume is 8

The output shows which constructors are called for each of the four Carton objects that are created in main().

Creating the first Carton object, carton1, results in the no-arg constructor for the Box class being called first,
followed by the no-arg constructor for the Carton class. Creating carton2 calls the no-arg Box constructor followed
by the Carton constructor with a string parameter. Creating carton3 calls the no-arg Box constructor followed by
the Carton constructor. Creating the carton3 object calls the Box constructor with three parameters followed by the
Carton constructor with four parameters. Creating carton4 causes two Box constructors to be called because the Box
constructor with a single parameter of type double that is called by the Carton constructor calls the Box constructor
with three parameters in its initialization list. This is all consistent with constructors being called in sequence from the
most base to the most derived.

Note ■ the notation for calling the base class constructor is exactly the same as that used for initializing data
members in a constructor. this is perfectly consistent with what you’re doing here, because essentially you’re initializing
the Box sub-object of the Carton object using the arguments passed to the Carton constructor.

Although inherited data members that are not private to the base class can be accessed from a derived class, they
can’t be initialized in the initialization list for a derived class constructor. For example, try replacing the first Carton
class constructor in Ex13_02 with the following:

// Constructor that won't compile!
Carton::Carton(double lv, double wv, double hv, const string desc):
 length {lv}, width {wv}, height {hv}, material{desc}
 { std::cout << "Carton(double,double,double,string) called.\n"; }

Chapter 13 ■ InherItanCe

412

You might expect this to work, because length, width, and height are protected base class members that are
inherited publicly, so the Carton class constructor should be able to access them. However, the compiler complains
that length, width, and height are not members of the Carton class. This will be the case even if you make the data
members of the Box class public. So what’s really happening here?

The answer is that a derived class constructor can refer to protected base class members in the body of the
function, but not in the initialization list because at that stage they don’t exist. The initialization list is processed
before the base class constructor is called and before the base part of the object has been created. If you want to
initialize the inherited data members explicitly, you must do it in the body of the derived class constructor. The
following constructor definition would work:

// Constructor that will compile!
Carton::Carton(double lv, double wv, double hv, const string desc) : material{desc}
{
 length = lv;
 width = wv;
 height = hv;
 std::cout << "Carton(double,double,double,string) called.\n";
}

By the time the body of the Carton constructor begins executing, the base part of the object has been created. In
this case, the base part of the Carton object is created by an implicit call of the no-arg Box class constructor. You can
subsequently refer to the names of the non-private base class members without a problem.

The Copy Constructor in a Derived Class
You already know that the copy constructor is called when an object is created and initialized with another object of
the same class type. The compiler will supply a default copy constructor that creates the new object by copying the
original object member by member if you haven’t defined your own version. Now let’s examine the copy constructor
in a derived class. To do this, I’ll add to the class definitions in Ex13_02. First, I’ll add a copy constructor to the base
class, Box, by inserting the following code in the public section of the class definition:

// Copy constructor
Box(const Box& box) : length{box.length}, width{box.width}, height{box.height}
{ std::cout << "Box copy constructor" << std::endl; }

Note ■ You saw in Chapter 12 that the parameter for the copy constructor must be a reference.

This initializes the data members by copying the original values and generates some output to track when the
copy constructor is called.

Here’s a first attempt at a copy constructor for the Carton class:

// Copy constructor
Carton(const Carton& carton) : material {carton.material}
{ std::cout << "Carton copy constructor" << std::endl; }

Chapter 13 ■ InherItanCe

413

Let’s see if this works (it won’t!):

// Ex13_03
// Using a derived class copy constructor
#include <iostream>
#include "Box.h" // For the Box class
#include "Carton.h" // For the Carton class

int main() {
 // Declare and initialize a Carton object
 Carton carton(20.0, 30.0, 40.0, "Glassine board");

 Carton cartonCopy(carton); // Use copy constructor

 std::cout << "Volume of carton is " << carton.volume() << std::endl
 << "Volume of cartonCopy is " << cartonCopy.volume() << std::endl;
}

This produces the following output:

Box() called.
Carton(double,double,double,string) called.
Box() called.
Carton copy constructor
Volume of carton is 1
Volume of cartonCopy is 1

All is not as it should be. Clearly the volume of cartonCopy isn’t the same as carton, but the output also shows

the reason for this. To copy the carton object you call the copy constructor for the Carton class. The Carton copy
constructor should make a copy of the Box sub-object of carton, and to do this it should call the Box copy constructor.
However, the output clearly shows that the default Box constructor is being called instead.

The Carton copy constructor won’t call the Box copy constructor if you don’t tell it to. The compiler knows that
it has to create a Box sub-object for the object carton but if you don’t specify how, the compiler won’t second-guess
your intentions - it will just create a default base object.

Caution ■ When you define a constructor for a derived class, you are responsible for ensuring that the members of
the derived class object are properly initialized. this includes all the directly inherited data members, as well as the data
members that are specific to the derived class.

The obvious fix for this is to call the Box copy constructor in the initialization list of the Carton copy constructor.
Simply change the copy constructor definition to this:

 Carton(const Carton& carton) : Box {carton}, material {carton.material}
 { std::cout << "Carton copy constructor" << std::endl; }

Chapter 13 ■ InherItanCe

414

The Box copy constructor is called with the carton object as an argument. The carton object is of type Carton,
but it is also a perfectly good Box object. The parameter for the Box class copy constructor is a reference to a Box object
so the compiler will pass carton as type Box&, which will result in only the base part of carton being passed to the
Box copy constructor. This effect is called object slicing, and is something to beware of in general, because it can occur
when you don’t want a derived class object to have its derived member sliced off. If you compile and run the example
again, the output will be:

Box(double, double, double) called.
Carton(double,double,double,string) called.
Box copy constructor
Carton copy constructor
Volume of carton is 24000
Volume of cartonCopy is 24000

The output shows that the constructors are called in the correct order. In particular, the Box copy constructor is

called to create the Box sub-object of carton before the Carton copy constructor. By way of a check, you can see that
the volumes of the candyCarton and copyCarton objects are now identical.

The Default Constructor in a Derived Class
You know that the compiler will not supply a default no-arg constructor if you define one or more constructors for
a class. You also know that you can tell the compiler to insert a default constructor in any event using the default
keyword. You could replace the definition of the no-arg constructor in the Carton class definition in Ex13_02 with this
statement:

 Carton()=default;

Now the compiler will supply a definition, even though you have defined other constructors. The definition that
the compiler supplies for a derived class calls the base class constructor, so it looks like this:

Carton() : Box() {};

This implies that if the compiler supplies the no-arg constructor in a derived class, the no-arg constructor must
be defined in the base class. If it isn’t, the code will not compile. You can easily demonstrate this by removing the no-
arg constructor from the Box class in Ex13_02. With the compiler-supplied default constructor specified for the Carton
class, the code will no longer compile. It’s easy to forget to define the default constructor in a base class when the code
does not call it explicitly. Remember though, every derived class constructor calls a base class constructor. If a derived
class constructor does not explicitly call a base constructor in its initialization list, the no-arg constructor will be
called, so most of the time you need the no-arg constructor to be defined in a base class, either explicitly, or by making
the compiler supply it.

Chapter 13 ■ InherItanCe

415

Inheriting Constructors
Base class constructors are not normally inherited in a derived class. This is because a derived class typically has
additional data members that need to be initialized and a base class constructor would have no knowledge of
these. However, you can cause constructors to be inherited from a direct base class by putting a using declaration
in the derived class. Here’s how a version of the Carton class from Ex13_02 could be made to inherit the Box class
constructors:

class Carton : public Box
{
using Box::Box; // Inherit Box class constructors

private:
 string material {"Cardboard"};

public:
 Carton(double lv, double wv, double hv, const string desc) : Box {lv, wv, hv}, material {desc}
 { std::cout << "Carton(double,double,double,string) called.\n"; }
};

If the Box class definition is the same as in Ex13_02, the Carton class will inherit three constructors:
Box(double, double, double), Box(double), and the no-arg constructor Box(). The constructors in the derived
class will look like this:

Carton(double lv, double, wv, double hv) : Box {lv, wv, hv} {}
Carton(double side) : Box {side} {}
Carton() : Box {} {}

Each inherited constructor has the same parameter list as the base constructor and calls the base constructor in
its initialization list. The body of each constructor is empty. You can add further constructors to a derived class that
inherits from its direct base, as the Carton class example illustrates. You could try this out by modifying Ex13_02 to
create the following objects in main():

 Carton cart; // Calls inherited no-arg constructor
 Carton cartcopy {cart}; // Calls inherited copy constructor
 Carton carton {1.0, 2.0, 3.0}; // Calls inherited constructor
 Carton candyCarton (50.0, 30.0, 20.0, "Thin cardboard"); // Calls Carton class constructor

The output statements in the Box constructors will show that they are indeed called to create the first three
objects.

Inherited constructors are most useful when you are deriving a class without adding additional data members.
I prefer not to use constructor inheritance for the simple reason that it makes it necessary to look at the base class
definition in order to determine what constructors are available in the derived class. It’s also not a huge effort to define
the constructors in the derived class to call base class constructors as in the previous code fragment.

Chapter 13 ■ InherItanCe

416

Destructors Under Inheritance
Destroying a derived class object involves both the derived class destructor and the base class destructor. You can
demonstrate this by adding destructors with output statements in the Box and Carton class definitions. You can
amend the class definitions in the correct version of Ex13_03. Add the destructor definition to the Box class:

// Destructor
~Box() { std::cout << "Box destructor" << std::endl; }

And for the Carton class:

// Destructor
~Carton()
{
 std::cout << "Carton destructor. Material = " << material << std::endl;
}

Of course, if the classes allocated heap memory and stored the address in a raw pointer, defining the class
destructor would be essential to avoid memory leaks. The Carton destructor outputs the material so you can tell
which Carton object is being destroyed by assigning a different material to each. Let’s see how these classes behave in
practice:

// Ex13_04.cpp
// Destructors in a class hierarchy
#include <iostream>
#include "Box.h" // For the Box class
#include "Carton.h" // For the Carton class

int main()
{
 Carton carton;
 Carton candyCarton {50.0, 30.0, 20.0, "Thin cardboard"};

 std::cout << "carton volume is " << carton.volume() << std::endl;
 std::cout << "candyCarton volume is " << candyCarton.volume() << std::endl ;
}

Here’s the output:

Box() called.
Carton() called.
Box(double, double, double) called.
Carton(double,double,double,string) called.
carton volume is 1
candyCarton volume is 30000
Carton destructor. Material = Thin cardboard
Box destructor
Carton destructor. Material = Cardboard
Box destructor

Chapter 13 ■ InherItanCe

417

The point of this exercise is to see how the destructors behave. The output from the destructor calls indicates
two aspects of how objects are destroyed. First, you can see the order in which destructors are called for a particular
object, and second, you can see the order in which the objects are destroyed. The destructor calls recorded by the
output correspond to the following actions:

Destructor Output Object Destroyed

Carton destructor Material = Thin cardboard candyCarton object

Box destructor Box subobject of candyCarton

Carton destructor Material = Cardboard carton object

Box destructor Box subobject of carton

This shows that the objects that make up a derived class object are destroyed in the reverse order from which they
were created. The carton object was created first and destroyed last; the candyCarton object was created last and
destroyed first. This order is chosen to ensure that you never end up with an object in an illegal state. An object can
only be used after it has been defined — this means that any given object can only contain pointers (or references)
that point (or refer) to objects that have already been created. By destroying a given object before any objects that it
might point (or refer) to, you ensure that the execution of a destructor can’t result in any invalid pointers or references.

The Order in Which Destructors Are Called
The order of destructor calls for a derived class object is the reverse of the constructor call sequence for the object.
The derived class destructor is called first, and then the base class destructor, just as in the example. The case of a
three-level class hierarchy is illustrated in Figure 13-6.

Figure 13-6. The order of destructor calls for derived class objects

For an object with several levels of derivation class, this order of destructor calls runs through the hierarchy of
classes, starting with the most derived class destructor and ending with the destructor for the most base class.

Chapter 13 ■ InherItanCe

418

Duplicate Data Member Names
It’s possible that a base class and a derived class each have a data member with the same name. If you’re really
unlucky, you might even have names duplicated in the base class and in an indirect base. Of course, this is confusing,
and you should never deliberately set out to create such an arrangement in your own classes. However, circumstances
may dictate that this is how things turn out. For example, if you’re deriving your class from a base class designed by
another programmer, you would almost certainly know nothing about the private data members of his class; you
would only know about the base class interface. What happens if data members in the base and derived classes have
the same names?

Duplication of names is no bar to inheritance and you can differentiate between identically named base and
derived class members. Suppose you have a class Base, defined as follows:

class Base
{
public:
 Base(int number = 10) : value {number} {} // Constructor

protected:
 int value;
};

This just contains a single data member, value, and a constructor. You can derive a class Derived from
Base as follows:

class Derived: public Base
{
public:
 Derived(int number = 20) : value {number} {} // Constructor
 int total() const; // Total value of data members

protected:
 int value;
};

The derived class has a data member called value, and it will also inherit the value member of the base class.
You can see that it’s already starting to look confusing! I’ll show how you can distinguish the two members with the
name value in the derived class by writing a definition for the total() function. Within the derived class function
member, value by itself refers to the member declared within that scope; that is, the derived class member. The base
class member is declared within a different scope, and to access it from a derived class function member, you must
qualify the member name with the base class name. Thus, you can write the total() function as:

int Derived::total() const
{
 return value + Base::value;
}

The expression Base::value refers to the base class member, and value by itself refers to the member declared in
the Derived class.

Chapter 13 ■ InherItanCe

419

Figure 13-7. Inheriting a function with the same name as a function member

Duplicate Function Member Names
What happens when base class and derived class function members share the same name? There are two situations
that can arise in relation to this. The first is when the functions have the same name but different parameter lists.
Although the function signatures are different, this is not a case of function overloading. This is because overloaded
functions must be defined within the same scope, and each class, base or derived, defines a separate scope. In fact,
scope is the key to the situation. A derived class function member will hide an inherited function member with the
same name. Thus, when base and derived function members have the same name, you must introduce the qualified
name of the base class member function into the scope of the derived class with a using declaration if you want to
access it. Either function can then be called for a derived class object, as illustrated in Figure 13-7.

The second possibility is that both functions have the same function signature. You can still differentiate the
inherited function from the derived class function by using the class name as a qualifier for the base class function:

Derived object; // Object declaration
object.Base::doThat(3); // Call base version of the function

However, there’s a lot more to it than I can discuss at this point. This subject is closely related to polymorphism,
which is explored in much more depth in the next chapter.

Multiple Inheritance
So far, your derived classes have all been derived from a single direct base class. However, you’re not limited to
this structure. A derived class can have as many direct base classes as an application requires. This is referred to
as multiple inheritance as opposed to single inheritance, in which a single base class is used. This opens vast new
dimensions of potential complexity in inheritance which is perhaps why multiple inheritance is used much less
frequently than single inheritance. Because of the complexity, multiple inheritance is best avoided as much as
possible. I’ll just explain the basic ideas behind how multiple inheritance works.

Chapter 13 ■ InherItanCe

420

Multiple Base Classes
Multiple inheritance involves two or more base classes being used to derive a new class, so things are immediately
more complicated. The idea of a derived class being a specialization of its base leads in this case to the notion that
the derived class defines an object that is a specialization of two or more different and independent class types
concurrently. In practice, multiple inheritance is rarely used in this way. More often, multiple base classes are used to
add the features of the base classes together to form a composite object containing the capabilities of its base classes,
sometimes referred to as “mix-in” programming. This is usually for convenience in an implementation rather than
to reflect any particular relationships between objects. For example, you might consider a programming interface of
some kind — for graphics programming, perhaps. A comprehensive interface could be packaged in a set of classes,
each of which defines a self-contained interface that provides some specific capability, such as drawing two-
dimensional shapes. You can then use several of these classes as bases for a new class that provides precisely the set of
capabilities you need for an application.

To explore some of the implications of multiple inheritance, I’ll start with a hierarchy that includes the Box and
Carton classes. Suppose you need a class that represents a package containing dry contents, such as a carton of
cereal. It’s possible to do this by using single inheritance, deriving a new class from the Carton class and adding a data
member to represent contents, but you could also do it using the hierarchy illustrated in Figure 13-8.

Figure 13-8. An example of multiple inheritance

The definition of the CerealPack class would look like this:

class CerealPack : public Carton, public Contents
{
 // Details of the class...
};

Each base class is specified after the colon in the class header, and the base classes are separated by commas.
Each base class has its own access specifier and if you omit the access specifier, private is assumed, the same as with
single inheritance. The CerealPack class will inherit all the members of both base classes, so this will include the
members of the indirect base, Box. As in the case of single inheritance, the access level of each inherited member is
determined by two factors: the access specifier of the member in the base class and the base class access specifier.
A CerealPack object contains two sub-objects, a Contents sub-object and a Carton sub-object that has a further
sub-object of type Box.

Chapter 13 ■ InherItanCe

421

Inherited Member Ambiguity
Multiple inheritance can create problems. I’ll put together an example that will show the sort of complications you
can run into. The Box class is the same as in Ex13_04 but I’ll extend the Carton class from that example a little:

class Carton : public Box
{
protected:
 string material {"Cardboard"};
 double thickness {0.125}; // Material thickness inches
 double density {0.2}; // Material density in pounds/cubic inch

public:
 // Constructors
 Carton(double lv, double wv, double hv, const string desc) : Box {lv, wv, hv}, material {desc}
 {
 std::cout << "Carton(double,double,double,string) called.\n";
 }

 Carton(const string desc) : material {desc}
 { std::cout << "Carton(string) called.\n"; }
 Carton(double side, const string desc) : Box {side}, material {desc}
 {
 std::cout << "Carton(double,string) called.\n";
 }

 Carton()
 {
 std::cout << "Carton() called.\n";
 }

 Carton(double lv, double wv, double hv, string desc, double dense, double thick) :
 Carton {lv, wv, hv, desc}
 {
 density = dense;
 thickness = thick;
 std::cout << "Carton(double,double,double,string, double,double) called.\n";
 }

 // Copy constructor
 Carton(const Carton& carton) : Box {carton}, material {carton.material}
 {
 std::cout << "Carton copy constructor" << std::endl;
 }

 // Destructor
 ~Carton()
 {
 std::cout << "Carton destructor. Material = " << material << std::endl;
 }

Chapter 13 ■ InherItanCe

422

 // "Get carton weight" function
 double getWeight() const
 {
 return 2.0*(length*width + width*height + height*length)*thickness*density;
 }
};

I’ve added two data members that record the thickness and density of the material from which the Carton object
is made, a new constructor that allows all data members to be set, and a new function member, getWeight(), which
calculates the weight of an empty Carton object. The new constructor calls another Carton class constructor in its
initialization list so it is a delegating constructor, as you saw in Chapter 11. A delegating constructor cannot have
further initializers in the list so the values for density and thickness have to be set in the constructor body.

The Contents class will describe an amount of a dry product, such as breakfast cereal, which can be contained in
a carton. The class will have three data members: name, volume, and density (in pounds per cubic inch). In practice,
you would probably include a set of possible cereal types, complete with their densities, so that you could validate the
data in the constructor, but I’ll ignore such niceties in the interest of keeping things simple. Here’s the class definition
along with the preprocessing directives that you need in the header file, Contents.h:

// Contents.h - Dry contents
#ifndef CONTENTS_H
#define CONTENTS_H
#include <iostream>

class Contents
{
protected:
 string name {"cereal"}; // Contents type
 double volume {}; // Cubic inches
 double unitWeight {0.03}; // Pounds per cubic inch

public:
 Contents(const string name, double wt, double vol) :
 name {name}, unitWeight {wt}, volume {vol}
 { std::cout << "Contents(string,double,double) called.\n"; }

 Contents(const string name) : name {name} { std::cout << "Contents(string) called.\n"; }

 Contents() { std::cout << "Contents() called.\n"; }

 // Destructor
 ~Contents()
 {
 std::cout << "Contents destructor" << std::endl;
 }

 // "Get contents weight" function
 double getWeight() const
 {
 return volume*unitWeight;
 }
};
#endif

Chapter 13 ■ InherItanCe

423

In addition to the constructors and the destructor, the class has a public function member, getWeight(), to
calculate the weight of the contents. Note how the name member is initialized in the constructor initializer list with the
parameter value that has the same name. This is just to illustrate that this is possible - not a recommended approach.
I’ll define the CerealPack class with the Carton and Contents classes as public base classes:

// Cerealpack.h - Class defining a carton of cereal
#ifndef CEREALPACK_H
#define CEREALPACK_H
#include <iostream>
#include "Carton.h"
#include "Contents.h"

class CerealPack : public Carton, public Contents
{
public:
 CerealPack::CerealPack(double length, double width, double height, const string cerealType) :
 Carton {length, width, height, "cardboard"}, Contents {cerealType}
 {
 std::cout << "CerealPack constructor" << std::endl;
 Contents::volume = 0.9*Carton::volume(); // Set contents volume
 }

 // Destructor
 ~CerealPack()
 {
 std::cout << "CerealPack destructor" << std::endl;
 }
};
#endif

This class inherits from both the Carton and Contents classes. The constructor requires only the external
dimensions and the cereal type. The material for the Carton object is set in the Carton constructor call, in the
initialization list. A CerealPack object will contain two sub-objects corresponding to the two base classes. Each sub-
object is initialized through constructor calls in the initialization list for the CerealPack constructor. Note that the
volume data member of the Contents class is zero by default so, in the body of the CerealPack constructor, the value
is calculated from the size of the carton. The reference to the volume data member inherited from the Contents class
must be qualified here because it’s the same as the name of the function inherited from Box via Carton. You’ll be able
to trace the order of constructor and destructor calls from the output statements here and in the other classes.

Let’s try creating a CerealPack object and calculate its volume and weight with the following very simple program:

// Ex13_05 - doesn't compile!
// Using multiple inheritance
#include <iostream>
#include "CerealPack.h" // For the CerealPack class

int main()
{
 CerealPack cornflakes {8.0, 3.0, 10.0, "Cornflakes"};

 std::cout << "cornflakes volume is " << cornflakes.volume() << std::endl
 << "cornflakes weight is " << cornflakes.getWeight() << std::endl;
}

Chapter 13 ■ InherItanCe

424

Unfortunately, there’s a problem. The program won’t compile. The difficulty is that I have foolishly used some
non-unique function names in the base classes. The name volume is inherited as a function from Box and as a data
member from Contents and the getWeight() function is inherited from Carton and from Contents in the CerealPack
class. There’s more than one ambiguity problem.

Of course, when writing classes for use in inheritance, you should avoid duplicating member names in the first
instance. The ideal solution to this problem is to rewrite your classes. If you are unable to rewrite the classes — if the
base classes are from a library of some sort for example — then you would be forced to qualify the function names in
main(). You could amend the output statement in main() to get the code to work:

 std::cout << "cornflakes volume is " << cornflakes.Carton::volume() << std::endl
 << "cornflakes weight is " << cornflakes.Contents::getWeight() << std::endl;

With this change the program will compile and run, and it will produce the following output:

Box(double, double, double) called.
Carton(double,double,double,string) called.
Contents(string) called.
CerealPack constructor
cornflakes volume is 240
cornflakes weight is 6.48
CerealPack destructor
Contents destructor
Carton destructor. Material = cardboard
Box destructor

The working version is in the code download as Ex13_05A. You can see from the output that this cereal will

give you a solid start to the day — a single packet weighs over 6 pounds. You can also see that the constructor and
destructor call sequences follow the same pattern as in the single inheritance context: the constructors run down the
hierarchy from most base to most derived, and the destructors run in the opposite order. The CerealPack object has
sub-objects from both legs of its inheritance chain, and all the constructors for these subobjects are involved in the
creation of a CerealPack object.

Repeated Inheritance
The previous example demonstrated how ambiguities can occur when member names of base classes are duplicated.
Another ambiguity can arise in multiple inheritances when a derived object contains multiple versions of a sub-object
of one of the base classes. You must not use a class more than once as a direct base class but it’s possible to end up
with duplication of an indirect base class. Suppose the Box and Contents classes in Ex13_05 were themselves derived
from a class Common. Figure 13-9 shows the class hierarchy that is created.

Chapter 13 ■ InherItanCe

425

The CerealPack class inherits all the members of both the Contents and Carton classes. The Carton class inherits
all the members of the Box class, and both the Box and Contents classes inherit the members of the Common class.
Thus, as Figure 13-9 shows, the Common class is duplicated in the CerealPack class. The effect of this on objects of type
CerealPack is that every CerealPack object will have two sub-objects of type Common.

It is conceivable — just — that you actually want to allow the duplication of the Common class. In this case, you
must qualify each reference to the Common class member so that the compiler can tell which inherited member you’re
referring to in any particular instance. In this case, you can do this by using the Carton and Contents class names as
qualifiers because each of these classes contains a unique subobject of type Common. Of course, to call the Common class
constructors when you’re creating a CerealPack object, you would also need qualifiers to specify which of the two
base objects you were initializing. More typically, though, you would want to prevent the duplication of a base class, so
let’s see how to do that.

Virtual Base Classes
To avoid duplication of a base class, you must identify to the compiler that the base class should only appear once
within a derived class. You do this by specifying the class as a virtual base class using the virtual keyword. The
Contents class would be defined like this:

class Contents: public virtual Common
{
 ...
};

Figure 13-9. Duplicate base classes in a derived class

Chapter 13 ■ InherItanCe

426

The Box class would also be defined with a virtual base class:

class Box : public virtual Common
{
 ...
};

Now any class that uses the Contents and Box classes as direct or indirect bases will inherit the other members
of the base classes as usual but will inherit only one instance of the Common class. The derived CerealPack class would
inherit only a single instance of the Common base class. Because there is no duplication of the members of Common in the
CerealPack class, no qualification of the member names is needed when referring to them in the derived class.

Converting Between Related Class Types
Every derived class object has a base class object inside it waiting to get out. Conversions from a derived type to its
base are always legal and automatic. Here’s a definition of a Carton object:

Carton carton {40, 50, 60, "fiberboard"};

You can convert this object to a base class object of type Box and store the result like this:

Box box;
box = carton;

The assignment statement converts the carton object to a new automatic object of type Box and stores a copy
of it in box. Of course, only the Box sub-object part of carton is used — the Carton specific portion is sliced off and
discarded. The assignment operator that is used is the default assignment operator for the Box class. Conversions up
a class hierarchy (that is, toward the base class) are legal and automatic as long as there is no ambiguity. Ambiguity
can arise when two base classes each have the same type of sub-object. For example, if you use the definition of
the CerealPack class that contains two Common subobjects (as you saw in the previous section), and you initialize a
CerealPack object, cornflakes, then the following will be ambiguous:

Common common {cornflakes};

The compiler won’t be able to determine whether the conversion of cornflakes should be to the Common
sub-object of Carton or to the Common sub-object of Contents.

You can’t obtain automatic conversions for objects down a class hierarchy - that is, toward a more specialized
class. A Box object contains no information about any class type that may be derived from Box, so the conversion
doesn’t have a sensible interpretation. In the next chapter you’ll see that pointers are different. A pointer of a base
class type can store the address of a derived class object, in which case you can cast the pointer to a derived class type.

Summary
In this chapter, you learned how to define a class based on one or more existing classes and how class inheritance
determines the makeup of a derived class. Inheritance is a fundamental characteristic of object-oriented
programming and it makes polymorphism possible. The important points to take from this chapter include:

A class may be derived from one or more base classes, in which case the derived class inherits •	
members from all of its bases.

Single inheritance involves deriving a class from a single base class. Multiple inheritance involves •	
deriving a class from two or more base classes; multiple inheritance is best avoided in general.

Access to the inherited members of a derived class is controlled by two factors: the access •	
specifier of the member in the base class and the access specifier of the base class in the
derived class declaration.

Chapter 13 ■ InherItanCe

427

A constructor for a derived class is responsible for initializing all members of the class, •	
including the inherited members.

Creation of a derived class object always involves the constructors of all of the direct and •	
indirect base classes, which are called in sequence (from the most base through to the most
direct) prior to the execution of the derived class constructor.

A derived class constructor can explicitly call constructors for its direct bases in the •	
initialization list for the constructor.

A member name declared in a derived class, which is the same as an inherited member name, •	
will hide the inherited member. To access the hidden member, use the scope resolution
operator to qualify the member name with its class name.

When a derived class with two or more direct base classes contains two or more inherited •	
subobjects of the same class, the duplication can be prevented by declaring the duplicated
class as a virtual base class.

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. If you get stuck, look back
over the chapter for help. If you’re still stuck, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 13-1. Define a base class called Animal that contains two private data members: a
string to store the name of the animal (e.g., “Fido” or “Yogi”) and an integer member called
weight that will contain the weight of the animal in pounds. also include a public function
member, who(), that outputs a message giving the name and weight of the Animal object.
Derive two classes named Lion and Aardvark, with Animal as a public base class. Write a
main() function to create Lion and Aardvark objects (“Leo” at 400 pounds and “algernon”
at 50 pounds, say) and demonstrate that the who() member is inherited in both derived
classes by calling it for the derived class objects.

exercise 13-2. Change the access specifier for the who() function in the Animal class to
protected, but leave the rest of the class as before. now modify the derived classes so that
the original version of main() still works without alteration.

exercise 13-3. In the solution to the previous exercise, change the access specifier for the
who() member of the base class back to public, and implement the who() function as a
member of each derived class so that the output message also identifies the name of the
class. Change main() to call the base class and derived class versions of who() for each of
the derived class objects.

exercise 13-4. Define a Person class containing data members for age, name, and gender.
Derive an Employee class from Person that adds a data member to store a personnel number.
Derive an Executive class from Employee. each derived class should define a function member
that displays information about what it is. (name and type will do — something like “Fred Smith
is an employee.”) Write a main() function to generate a vector of five executives and a vector of
five ordinary employees, and display information about them. In addition, display the information
on the executives by calling the member function inherited from the Employee class.

www.apress.com/source-code

429

Chapter 14

Polymorphism

Polymorphism is such a powerful feature of object-oriented programming that you’ll use it in the majority of your
C++ programs. Polymorphism requires you to use derived classes, and the content of this chapter relies heavily on the
concepts related to inheritance in derived classes that I introduced in the previous chapter.

In this chapter you’ll learn:

What polymorphism is and how you get polymorphic behavior with your classes•	

What a virtual function is•	

When and why you need virtual destructors•	

How default parameter values for virtual functions are used•	

What a pure virtual function is•	

What an abstract class is•	

How you cast between class types in a hierarchy•	

How you determine the type of an object passed to a function as the argument for a parameter •	
that is a reference to a base class

What pointers to members are, and how you use them•	

Understanding Polymorphism
Polymorphism is a capability provided by many object-oriented languages. In C++ polymorphism always involves the
use of a pointer or a reference to an object to call a function member. Polymorphism only operates with classes that
share a common base class. I’ll show how polymorphism works by considering an example with more boxes, but first
I’ll explain the role of a pointer to a base class because it’s fundamental to the process.

Using a Base Class Pointer
In the previous chapter, you saw how an object of a derived class type contains a sub-object of the base class type.
In other words, you can regard every derived class object as a base class object. Because of this, you can always use
a pointer to base class to store the address of a derived class object; in fact, you can use a pointer to any direct or
indirect base class to store the address of a derived class object. Figure 14-1 shows how the Carton class is derived
from the Box base class by single inheritance and the CerealPack class is derived by multiple inheritances from the
Carton and Contents base classes. It illustrates how pointers to base classes can be used to store addresses of derived
class objects.

Chapter 14 ■ polymorphism

430

The reverse is not true. For instance you can’t use a pointer of type Carton* to store the address of an object
of type Box. This is logical because a pointer type incorporates the type of object to which it can point. A derived
class object is a specialization of its base - it is a base class object - so using a pointer to base to store its address is
reasonable. However, a base class object is definitely not a derived class object so a pointer to a derived class type
cannot point to it. A derived class always contains a complete sub-object of each of its bases, but each base class only
represents a part of a derived class object.

I’ll take a specific example. Suppose you derive two classes from the Box class to represent different kinds of
containers, Carton and ToughPack. Suppose further that the volume of each of these derived types is calculated
differently. For a Carton made of cardboard, you might just reduce the volume slightly to take the thickness of the
material into account. For a ToughPack object you might have to reduce the usable volume by a considerable amount
to allow for protective packaging. The Carton class definition could be of the form:

class Carton : public Box
{
 // Details of the class...

public:
 double volume() const;
};

The ToughPack class could have a similar definition:

class ToughPack : public Box
{
 // Details of the class...

public:
 double volume() const;
};

Figure 14-1. Storing the address of a derived class object in a base class pointer

Chapter 14 ■ polymorphism

431

Given these definitions, you can declare and initialize a pointer as follows:

Carton carton {10.0, 10.0, 5.0};
Box* pBox {&carton};

The pointer pBox, of type pointer to Box, has been initialized with the address of carton. This is possible because
Carton is derived from Box, and therefore contains a sub-object of type Box. You could use the same pointer to store
the address of a ToughPack object, because the ToughPack class is also derived from Box:

ToughPack hardcase {12.0, 8.0, 4.0};
pBox = &hardcase;

The pBox pointer can contain the address of any object of any class that has Box as a base. The type of the
pointer, Box*, is called its static type. Because pBox is a pointer to a base class, it also has a dynamic type, which varies
according to the type of object to which it points. When pBox is pointing to a Carton object, its dynamic type is pointer
to Carton. When pBox is pointing to a ToughPack object, its dynamic type is pointer to ToughPack. When pBox points
to an object of type Box, its dynamic type is the same as its static type. The magic of polymorphism springs from this.
Under conditions that I’ll explain shortly, you can use pBox to call a function that’s defined in the base class and in
each derived class, and have the function that is actually called selected at runtime on the basis of the dynamic type of
pBox. Consider these statements:

double vol {};
vol = pBox->volume(); // Store volume of the object pointed to

If pBox contains the address of a Carton object, then this statement calls volume() for the Carton object. If it
points to a ToughPack object, then this statement calls volume() for ToughPack. This works for any classes derived
from Box. Thus the expression pBox->volume() can result in different behavior depending on what pBox is pointing to.
Perhaps more importantly, the behavior that is appropriate to the object pointed to by pBox is selected automatically
at runtime.

Polymorphism is a very powerful mechanism. Situations arise frequently in which the specific type of an object
cannot be determined in advance — not at design time or at compile time; only at runtime. This can be handled
easily using polymorphism. Polymorphism is commonly used with interactive applications, where the type of input
is up to the whim of the user. For instance, a graphics application that allows different shapes to be drawn — circles,
lines, curves, and so on — may define a derived class for each shape type, and these classes all have a common base
class called Shape. A program can store the address of an object the user creates in a pointer, pShape, of type Shape*
and draw the shape with a statement such as pShape->draw(). This will call the draw() function for the shape that is
pointed to, so this one expression can draw any kind of shape. In order for function calls to operate in this way, the
function must be a member of the base class as well as a member of the derived class. Let’s take a more in-depth look
at how inherited functions behave.

Calling Inherited Functions
Before I get to the specifics of polymorphism, I need to explain the behavior of inherited function members a bit further.
To help with this, I’ll revise the Box class to include a function that calculates the volume of a Box object, and another
function that displays the resulting volume. The new version of the class definition in Box.h and Box.cpp will be:

// Box.h
#ifndef BOX_H
#define BOX_H
#include <iostream>

Chapter 14 ■ polymorphism

432

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}

 // Function to show the volume of an object
 void showVolume() const
 { std::cout << "Box usable volume is " << volume() << std::endl; }

 // Function to calculate the volume of a Box object
 double volume() const { return length*width*height; }
};
#endif

We can display the usable volume of a Box object by calling the showVolume() function for the object. The data
members are specified as protected so they can be accessed by the function members of any derived class.

I’ll also define the ToughPack class with Box as a base. A ToughPack object incorporates packing material to
protect its contents, so its capacity is only 85 percent of a basic Box object. Therefore, a different volume() function is
needed in the derived class to account for this:

// ToughPack.h
#ifndef TOUGHPACK_H
#define TOUGHPACK_H

#include "Box.h"

class ToughPack : public Box
{
public:
 // Constructor
 ToughPack(double lv, double wv, double hv) : Box {lv, wv, hv} {}

 // Function to calculate volume of a ToughPack allowing 15% for packing
 double volume() const { return 0.85*length*width*height; }
};
#endif

Conceivably, you could have additional members in this derived class, but for the moment, I’ll keep it simple,
concentrating on how the inherited functions work. The derived class constructor just calls the base class constructor
in its initializer list to set the data member values. You don’t need any statements in the body of the derived class

Chapter 14 ■ polymorphism

433

constructor. You also have a new version of the volume() function to replace the version from the base class. The idea
here is that you can get the inherited function showVolume() to call the derived class version of volume() when you
call it for an object of the ToughPack class. Let’s see if it works:

// Ex14_01.cpp
// Behavior of inherited functions in a derived class
#include "Box.h" // For the Box class
#include "ToughPack.h" // For the ToughPack class

int main()
{
 Box box {20.0, 30.0, 40.0}; // Define a box
 ToughPack hardcase {20.0, 30.0, 40.0}; // Declare tough box - same size

 box.showVolume(); // Display volume of base box
 hardcase.showVolume(); // Display volume of derived box
}

When I run the program, I get this rather disappointing output:

Box usable volume is 24000
Box usable volume is 24000

The derived class object is supposed to have a smaller capacity than the base class object, so the program is

obviously not working as intended. Let’s try to establish what’s going wrong. The second call to showVolume() in
main() is for an object of the derived class, ToughPack, but evidently this is not being taken into account. The volume
of a ToughPack object should be 85 percent of that of a basic Box object with the same dimensions.

The trouble is that when the volume() function is called by the showVolume() function, the compiler sets it once
and for all as the version of volume() defined in the base class. No matter how you call showVolume(), it will never
call the ToughPack version of the volume() function. When function calls are fixed in this way before the program is
executed, it is called static resolution of the function call, or static binding. The term early binding is also commonly
used. In this example, a particular volume() function is bound to the call from the function showVolume() when the
program is compiled and linked. Every time showVolume() is called, it uses the base class volume() function that’s
bound to it.

Note ■ the same kind of resolution would occur in the derived class ToughPack. if you add a showVolume() function
that calls volume() to the ToughPack class, the volume() call resolves statically to the derived class function.

What if you call the volume() function for the ToughPack object directly? As a further experiment, let’s add
statements in main() to call the volume() function of a ToughPack object directly and also through a pointer to the
base class:

std::cout << "hardcase volume is " << hardcase.volume() << std::endl;
Box *pBox {&hardcase};
std::cout << "hardcase volume through pBox is " << pBox->volume() << std::endl;

Chapter 14 ■ polymorphism

434

Place these statements at the end of main(). Now when you run the program, you’ll get this output:

Box usable volume is 24000
Box usable volume is 24000
hardcase volume is 20400
hardcase volume through pBox is 24000

This is quite informative. You can see that a call to volume() for the derived class object, hardcase, calls the

derived class volume() function, which is what you want. The call through the base class pointer pBox, however, is
resolved to the base class version of volume(), even though pBox contains the address of hardcase. In other words,
both calls are resolved statically. The compiler implements these calls as follows:

std::cout << "hardcase volume is " << hardcase.ToughPack::volume() << std::endl;
Box *pBox {&hardcase};
std::cout << "hardcase volume through pBox is " << pBox->Box::volume() << endl;

A static function call through a pointer is determined solely by the pointer type and not by the object to which it
points. The pointer pBox is of type pointer to Box, so any static call using pBox can only call a function member of Box.

Note ■ any call to a function through a base class pointer that is resolved statically calls a base class function.

What we want is for the volume() function that is to be called in any given instance to be resolved when the
program executes. So, if showVolume() is called for a derived class object, we want the derived class volume() function
to be called, not the base class version. When the volume() function is called through a base class pointer, we want
the volume() function that is appropriate to the object pointed to to be called. This sort of operation is referred to as
dynamic binding, or late binding. To make this work we have to tell the compiler that the volume() function in Box
and any overrides in the classes derived from Box are special, and calls to them are to be resolved dynamically.
We can obtain this effect by specifying that volume() in the base class is a virtual function, which will result in a
virtual function call for volume().

Virtual Functions
When you specify a function as virtual in a base class, you indicate to the compiler that you want dynamic binding for
function calls in any class that’s derived from this base class. A virtual function is declared in a base class by using the
keyword virtual, as shown in Figure 14-2.

Chapter 14 ■ polymorphism

435

A function that you specify as virtual in a base class will be virtual in all classes that are directly or indirectly
derived from the base. This is the case whether or not you specify the function as virtual in a derived class. To obtain
polymorphic behavior, each derived class may implement its own version of the virtual function (although it’s not
obliged to — we’ll look into that later). You make virtual function calls using a variable whose type is a pointer or a
reference to a base class object. Figure 14-2 illustrates how a call to a virtual function through a pointer is resolved
dynamically. The pointer to the base class type is used to store the address of an object with a type corresponding to
one of the derived classes. It could point to an object of any of the three derived classes shown or, of course, to a base
class object. The type of the object to which the pointer points when the call executes determines which volume()
function is called. Describing a class as polymorphic means that it is a derived class that contains at least one virtual
function.

Note that a call to a virtual function using an object is always resolved statically. You only get dynamic resolution
of calls to virtual functions through a pointer or a reference. Storing an object of a derived class type in a variable of a
base type will result in the derived class object being sliced, so it has not derived class characteristics. With that said,

Figure 14-2. Calling a virtual function

Chapter 14 ■ polymorphism

436

let’s give virtual functions a whirl. To make the previous example work as it should, a very small change to the Box
class is required. I just need to add the virtual keyword to the definition of the volume() function

class Box
{
 // Rest of the class as before...

public:
 // Function to calculate the volume of a Box object
 virtual double volume() const { return length*width*height; }
};

Caution ■ if a function member definition is outside the class definition, you must not add the virtual keyword to the
function definition; it would be an error to do so.

To make it more interesting, let’s implement the volume() function in a new class called Carton a little differently.
Here is the class definition:

// Carton.h
#ifndef CARTON_H
#define CARTON_H
#include <string>
#include "Box.h"
using std::string;

class Carton : public Box
{
private:
 string material;

public:
 // Constructor explicitly calling the base constructor
 Carton(double lv, double wv, double hv, string str="cardboard") : Box {lv,wv,hv}
 { material = str; }

 // Function to calculate the volume of a Carton object
 double volume() const
 {
 double vol {(length - 0.5)*(width - 0.5)*(height - 0.5)};
 return vol > 0.0 ? vol : 0.0;
 }
};
#endif

The volume() function for a Carton object assumes the thickness of the material is 0.25, so 0.5 is subtracted from
each dimension to account for the sides of the carton. If a Carton object has been created with any of its dimensions
less than 0.5 for some reason, then this will result in a negative value for the volume, so in such a case, the carton’s
volume will be set to zero.

Chapter 14 ■ polymorphism

437

I’ll also use the ToughPack class from Ex14_01. Here’s the code for the source file containing main():

// Ex14_02.cpp
// Using virtual functions
#include <iostream>
#include "Box.h" // For the Box class
#include "ToughPack.h" // For the ToughPack class
#include "Carton.h" // For the Carton class

int main()
{
 Box box {20.0, 30.0, 40.0};
 ToughPack hardcase {20.0, 30.0, 40.0}; // A derived box - same size
 Carton carton {20.0, 30.0, 40.0, "plastic"}; // A different derived box

 box.showVolume(); // Volume of Box
 hardcase.showVolume(); // Volume of ToughPack
 carton.showVolume(); // Volume of Carton

 // Now using a base pointer...
 Box* pBox {&box}; // Points to type Box
 std::cout << "\nbox volume through pBox is " << pBox->volume() << std::endl;
 pBox->showVolume();

 pBox = &hardcase; // Points to type ToughPack
 std::cout << "hardcase volume through pBox is "<< pBox->volume() << std::endl;
 pBox->showVolume();

 pBox = &carton; // Points to type Carton
 std::cout << "carton volume through pBox is " << pBox->volume() << std::endl;
 pBox->showVolume();
}

The output that is produced should be as follows:

Box usable volume is 24000
Box usable volume is 20400
Box usable volume is 22722.4

box volume through pBox is 24000
Box usable volume is 24000
hardcase volume through pBox is 20400
Box usable volume is 20400
carton volume through pBox is 22722.4
Box usable volume is 22722.4

The virtual keyword applied to the function volume() in the base class is sufficient to determine that all

definitions of the function in derived classes will also be virtual. You can optionally use the virtual keyword for
your derived class functions as well, as illustrated in Figure 14-2. However, it’s better not to, as I’ll explain later in this
chapter.

Chapter 14 ■ polymorphism

438

The program is now clearly doing what was wanted. The call to showVolume() for the box object calls the
base class version of volume(), because box is of type Box. The next call to showVolume() for the ToughPack object,
hardcase calls the showVolume() function inherited from the Box class but the call to volume() in showVolume() is
resolved to the version defined in the ToughPack class because volume() is a virtual function. Therefore you get the
volume calculated appropriately for a ToughPack object. The third call of showVolume() for the carton object calls the
Carton class version of volume() so you get the correct result for that too.

Next, you use the pointer pBox to call the volume() function directly and also indirectly through the
showVolume() function. The pointer first contains the address of the Box object myBox, then the addresses of the two
derived class objects in turn. The resulting output for each object shows that the appropriate version of the volume()
function is selected automatically in each case, so you have a clear demonstration of polymorphism in action.

Requirements for Virtual Function Operation
For a function to behave “virtually,” its definition in a derived class must have the same signature as it has in the base
class. If the base class function is const, then the derived class function must also be const. Generally, the return
type of a virtual function in a derived class must be the same as that in the base class, but there’s an exception when
the return type in the base class is a pointer or a reference to a class type. In this case, the derived class version of a
virtual function may return a pointer or a reference to a more specialized type than that of the base. I won’t be going
into this further, but in case you come across it elsewhere, the technical term used in relation to these return types is
covariance.

The rules for defining virtual functions imply that if you try to use different parameters for a virtual function in
a derived class from those in the base class, then the virtual function mechanism won’t work. The function in the
derived class will operate with static binding that is established and fixed at compile time. This is also the case if you
forget to declare a derived class function as const when the base class function is const.

You can test this out by deleting the const keyword from the definition of volume() in the Carton class and
running Ex14_02 again. The volume() function signature in Carton no longer matches the virtual function in Box so
the derived class volume() function is not virtual. Consequently, the resolution is static so that the function called for
Carton objects through a base pointer, or even indirectly through the showVolume() function, is the base class version.

If the function name and parameter list of a function in a derived class are the same as those of a virtual function
declared in the base class, then the return type must be consistent with the rules for a virtual function. If it isn’t, the
derived class function won’t compile. Another restriction is that a virtual function can’t be a template function.

Virtual Functions and Class Hierarchies
If you want your function to be treated as virtual when it is called using a base class pointer, then you must declare
it as virtual in the base class. You can have as many virtual functions as you want in a base class, but not all virtual
functions need to be declared within the most basic base class in a hierarchy. This is illustrated in Figure 14-3.

Chapter 14 ■ polymorphism

439

Figure 14-3. Virtual functions in a hierarchy

When you specify a function as virtual in a class, the function is virtual in all classes derived directly or indirectly
from that class. All of the classes derived from the Box class in Figure 14-3 inherit the virtual nature of the volume()
function. You can call volume() for objects any of these class types through a pointer of type Box* because the pointer
can contain the address of an object of any class in the hierarchy:

The Crate class doesn’t define volume(), so the version inherited from Carton would be called for Crate objects.
It is inherited as a virtual function and therefore can be called polymorphically.

A pointer pCarton, of type Carton*, could also be used to call volume(), but only for objects of the Carton class
and the two classes that have Carton as a base: Crate and Packet.

The Carton class and the classes derived from it also contain the virtual function doThat(). This function can also
be called polymorphically using a pointer of type Carton*. Of course you cannot call doThat() for these classes using
a pointer of type Box* because the Box class doesn’t define the function doThat().

Similarly, the virtual function doThis() could be called for objects of type ToughPack, BigPack, and TinyPack
using a pointer of type ToughPack*. Of course, the same pointer could also be used to call the volume() function for
objects of these class types.

Chapter 14 ■ polymorphism

440

Using override
It’s easy to make a mistake in the specification of a virtual function in a derived class. If you define Volume() in a class
derived from Box it will not be virtual because the virtual function in the base class is volume(). This means that calls to
Volume() will be resolved statically and the virtual volume() function in the class will be inherited from the base class.
The code may still compile and execute, but not correctly. This kind of error can be difficult to spot. You can protect
against such errors by using the override specifier for every virtual function declaration in a derived class, like this:

class Carton : public Box
{
 // Details of the class as in Ex14_02...

public:
 double volume() const override
 {
 // Function body as before...
 }
};

The override specification causes the compiler to verify that the base class declares a class member with the
same signature. If it doesn’t the compiler flags the definition here as an error. The override specification only appears
within the class definition. It must not be applied to an external definition of a member function. If you always specify
a virtual function override in a derived class using override, it’s clear to anyone reading the class definition that this
is a virtual function so there’s no need to apply the virtual keyword in addition. It’s a good idea to limit the use of
the virtual keyword to base class functions and apply the override specification to all virtual function overrides in
derived classes.

Using final
Sometimes you may want to prevent a function member from being overridden in a derived class. This could be
because you want to limit how a derived class can modify the behavior of the class interface for example. You can do
this by specifying that a function is final. You could prevent the volume() function in the in the Carton class from
being overridden by definitions in classes derived from Carton by specifying it like this:

class Carton : public Box
{
 // Details of the class as in Ex14_02...

public:
 double volume() const override final
 {
 // Function body as before...
 }
};

Attempts to override volume() in classes that have Carton as a base will result in a compiler error. This ensures
that only the Carton version can be used for derived class objects.

Chapter 14 ■ polymorphism

441

You can also specify a class as final, like this for example:

class Carton final : public Box
{
 // Details of the class as in Ex14_02...

public:
 double volume() const override
 {
 // Function body as before...
 }
};

Now the compiler will not allow Carton to be used as a base class. No further derivation from the Carton class
is possible.

Note ■ final and override are not keywords because making them keywords could break code that was written
before they were introduced. this means that you could use final and override as names in your code, but don’t; it
only creates confusion.

Access Specifiers and Virtual Functions
The access specification of a virtual function in a derived class can be different from the specification in the base class.
When you call the virtual function through a base class pointer, the access specification in the base class determines
whether the function is accessible, regardless of the type of object pointed to. If the virtual function is public in the
base class, it can be called for any derived class through a pointer (or a reference) to the base class, regardless of
the access specification in the derived class. I can demonstrate this by modifying the previous example. Modify the
ToughPack class definition from the to make the volume() function protected, and add the virtual keyword to its
declaration:

class ToughPack : public Box
{
public:
 // Constructor
 ToughPack(double lv, double wv, double hv) : Box {lv, wv, hv} {}

protected:
 // Function to calculate volume of a ToughPack allowing 15% for packing
 double volume() const override { return 0.85*length*width*height; }
};

The main() function changes very slightly with a commented out statement added:

// Ex14_03.cpp
// Access specifiers and virtual functions
#include <iostream>
#include "Box.h" // For the Box class
#include "ToughPack.h" // For the ToughPack class
#include "Carton.h" // For the Carton class

Chapter 14 ■ polymorphism

442

int main()
{
 Box box {20.0, 30.0, 40.0};
 ToughPack hardcase {20.0, 30.0, 40.0}; // A derived box - same size
 Carton carton {20.0, 30.0, 40.0, "plastic"}; // A different derived box

 box.showVolume(); // Volume of Box
 hardcase.showVolume(); // Volume of ToughPack
 carton.showVolume(); // Volume of Carton

// Uncomment the following statement for an error
// std::cout << "hardcase volume is " << hardcase.volume() << std::endl;

 // Now using a base pointer...
 Box* pBox {&box}; // Points to type Box
 std::cout << "\nbox volume through pBox is " << pBox->volume() << std::endl;
 pBox->showVolume();

 pBox = &hardcase; // Points to type ToughPack
 std::cout << "hardcase volume through pBox is " << pBox->volume() << std::endl;
 pBox->showVolume();

 pBox = &carton; // Points to type Carton
 std::cout << "carton volume through pBox is " << pBox->volume() << std::endl;
 pBox->showVolume();
}

It should come as no surprise that this code produces exactly the same output as the last example. Even though
volume() is declared as protected in the ToughPack class, you can still call it for the hardcase object through the
showVolume() function that is inherited from the Box class. You can also call it directly through a pointer to the base
class, pBox. However, if you uncomment the line that calls the volume() function directly using the hardcase object,
the code won’t compile.

What matters here is whether the call is resolved dynamically or statically. When you use a class object, the call is
determined statically by the compiler. Calling volume() for a ToughPack object calls the function defined in that class.
Because the volume() function is protected in ToughPack, the call for the hardcase object won’t compile. All the
other calls are resolved when the program executes; they are polymorphic calls. In this case, the access specification
for a virtual function in the base class is inherited in all the derived classes. This is regardless of the explicit
specification in the derived class; the explicit specification only affects calls that are resolved statically.

Default Argument Values in Virtual Functions
Default argument values are dealt with at compile time so you can get unexpected results when you use default
argument values with virtual function parameters. If the base class declaration of a virtual function has a default
argument value and you call the function through a base pointer, you’ll always get the default argument value from

Chapter 14 ■ polymorphism

443

the base class version of the function. Any default argument values in derived class versions of the function will have
no effect. I can demonstrate this by altering the previous example to include a parameter with a default argument
value for the volume() function in all three classes. Change the definition of the volume() function in the Box class to:

 virtual double volume(int i = 5) const
 {
 std::cout << "Box parameter = " << i << std::endl;
 return length*width*height;
 }

In the Carton class it should be:
 double volume(int i = 50) const override
 {
 std::cout << "Carton parameter = " << i << std::endl;
 double vol {(length - 0.5)*(width - 0.5)*(height - 0.5)};
 return vol > 0.0 ? vol : 0.0;
 }

Finally in the ToughPack class you can define volume() as follows, and make it public once more:

public:
 double volume(int i = 500) const override
 {
 std::cout << "ToughPack parameter = " << i << std::endl;
 return 0.85*length*width*height;
 }

The parameter serves no purpose here other than to demonstrate how default values are assigned.
Once you’ve made these changes to the class definitions, you can try out the default parameter values with the

main() function from the previous example, in which you uncomment the line that calls the volume() member for the
hardcase object directly. The complete program is in the download as Ex14_04. You’ll get this output:

Box parameter = 5
Box usable volume is 24000
ToughPack parameter = 5
Box usable volume is 20400
Carton parameter = 5
Box usable volume is 22722.4
ToughPack parameter = 500
hardcase volume is 20400
Box parameter = 5

box volume through pBox is 24000
Box parameter = 5
Box usable volume is 24000
ToughPack parameter = 5
hardcase volume through pBox is 20400
ToughPack parameter = 5
Box usable volume is 20400
Carton parameter = 5
carton volume through pBox is 22722.4
Carton parameter = 5
Box usable volume is 22722.4

Chapter 14 ■ polymorphism

444

In every instance of when volume() is called except one, the default parameter value output is that specified for
the base class function. The exception is when you call volume() using the hardcase object. This is resolved statically
to volume() in the ToughPack class so the default parameter value specified in the ToughPack class is used. All the
other calls are resolved dynamically so the default parameter value specified in the base class applies, even though the
function executing is in a derived class.

Virtual Function Calls with Smart Pointers
Polymorphism works equally well with smart pointers. I’ll demonstrate this using the Box, Carton, and ToughPack
classes from Ex14_03 and revise main() to use smart pointers:

// Ex14_05.cpp
// Virtual functions using smart pointers
#include <iostream>
#include <memory> // For smart pointers
#include <vector> // For vector
#include "Box.h" // For the Box class
#include "ToughPack.h" // For the ToughPack class
#include "Carton.h" // For the Carton class

int main()
{
 std::vector<std::shared_ptr<Box>>boxes;
 boxes.push_back(std::make_shared<Box>(20.0, 30.0, 40.0));
 boxes.push_back(std::make_shared<ToughPack>(20.0, 30.0, 40.0));
 boxes.push_back(std::make_shared<Carton>(20.0, 30.0, 40.0, "plastic"));

 for (auto& p : boxes)
 p->showVolume();
}

The output from this example is:

Box usable volume is 24000
Box usable volume is 20400
Box usable volume is 22722.4

The output shows that polymorphism is alive and well with smart pointers. The elements in the boxes vector are

of type std::shared_ptr<Box>, which are smart pointers to Box objects. The elements can store addresses for objects
of Box or any class derived from Box, so there’s an exact parallel with the raw pointers you have seen up to now. When
you are creating objects on the heap, using smart pointers still gives you polymorphic behavior and removes the
potential for memory leaks.

Using References to Call Virtual Functions
You can call a virtual function through a reference; reference parameters are particularly powerful tools for applying
polymorphism. Calling a virtual function through a variable that is a reference doesn’t have the same magic as calling
through a pointer because a reference is initialized once and only once so it can only ever call functions for that
object. Calling a function that has a reference parameter is a different matter.

Chapter 14 ■ polymorphism

445

You can pass a base class object or any derived class object to a function with a parameter that’s a reference to
the base class. You can use the reference parameter within the function body to call a virtual function in the base class
and get polymorphic behavior. When the function executes, the virtual function for the object that was passed as the
argument is selected automatically at runtime. I can show this in action by modifying Ex14_02 to call a function that
has a parameter of type reference to Box:

// Ex14_06.cpp
// Using a reference parameter to call virtual function
#include <iostream>
#include "Box.h" // For the Box class
#include "ToughPack.h" // For the ToughPack class
#include "Carton.h" // For the Carton class

// Global function to display the volume of a box
void showVolume(const Box& rBox)
{
 std::cout << "Box usable volume is " << rBox.volume() << std::endl;
}

int main()
{
 Box box {20.0, 30.0, 40.0}; // A base box
 ToughPack hardcase {20.0, 30.0, 40.0}; // A derived box - same size
 Carton carton {20.0, 30.0, 40.0, "plastic"}; // A different derived box

 showVolume(box); // Display volume of base box
 showVolume(hardcase); // Display volume of derived box
 showVolume(carton); // Display volume of derived box
}

Running this program should produce this output:

Box usable volume is 24000
Box usable volume is 20400
Box usable volume is 22722.4

The class definitions are the same as in Ex14_02. There’s a new global function that calls volume() using its

reference parameter to call the volume() member of an object. main() defines the same objects as in Ex14_02 but
calls the global showVolume() function with each of the objects to output their volumes. As you see from the output,
the correct volume() function is being used in each case, confirming that polymorphism works through a reference
parameter.

Each time the showVolume() function is called, the reference parameter is initialized with the object that is
passed as an argument. Because the parameter is a reference to a base class, the compiler arranges for dynamic
binding to the virtual volume() function.

Calling the Base Class Version of a Virtual Function
You’ve seen that it’s easy to call the derived class version of a virtual function though a pointer or reference to a
derived class object — the call is made dynamically. However, what do you do when you actually want to call the base
class function for a derived class object?

Chapter 14 ■ polymorphism

446

The Box class provides an opportunity to see why such a call might be required. It could be useful to calculate
the loss of volume in a Carton or ToughPack object; one way to do this would be to calculate the difference between
the volumes returned from the base and derived class versions of the volume() function. You can force the virtual
function for a base class to be called statically by qualifying it with the class name. Suppose you have a pointer pBox
that’s defined like this:

Carton carton {40.0, 30.0, 20.0};
Box* pBox {&carton};

You can calculate the loss in total volume for a Carton object with this statement:

double difference {pBox->Box::volume() - pBox->volume()};

The expression pBox->Box::volume() calls the base class version of the volume() function. The class name,
together with the scope resolution operator, identifies a particular volume() function, so this will be a static call
resolved at compile time.

Note ■ you can call the base class implementation of any member function using the scope resolution operator,
provided the access specifier for the function allows it.

You can’t use a class name qualifier to force the selection of a particular derived class function in a call through a
pointer to the base class. The expression pBox->Carton::volume() won’t compile because Carton::volume() is not a
member of the Box class. A call of a function through a pointer is either a static call to a function member of the class
type for the pointer, or it is a dynamic call to a virtual function.

Calling the base class version of a virtual function through an object of a derived class is also simple. You can
use a static cast to convert the derived class object to the base class; then you can use the result to call the base class
function. You can calculate the loss in volume for the carton object with this statement:

double difference {static_cast<Box>(carton).volume() - carton.volume()};

Both calls in this statement are resolved statically. Casting carton to type Box results in an object of type Box, so
the function call will be to the Box version of volume(). Calls to virtual functions using an object are always resolved
statically.

Converting Between Pointers to Class Objects
You can implicitly convert a pointer to a derived class to a pointer to a base class, and you can do this for both direct
and indirect base classes. For example, let’s first define a pointer to a Carton object:

Carton* pCarton {new Carton {30, 40, 10}};

You can convert this pointer implicitly to a pointer to a direct base class of Carton:

Box* pBox {pCarton};

The result is a pointer to Box, which is initialized to point to the new Carton object. You know from Ex14_05 that
this also works with smart pointers. That example stored derived class smart pointers as base class smart pointers in
the vector container.

Chapter 14 ■ polymorphism

447

Figure 14-4. Casting pointers up a class hierarchy

Let’s look at converting a pointer to a derived class type to a pointer to an indirect base. Suppose you define
a CerealPack class with Carton as the public base class. Box is a direct base of Carton so it is an indirect base of
CerealPack. Therefore you can write the following:

Box* pBox {pCerealPack};

This statement converts the address in pCerealPack from type pointer to CerealPack to type pointer to Box. If you
need to specify the conversion explicitly, you can use the static_cast<>() operator:

Box* pBox {static_cast<Box*>(pCerealPack)};

The compiler can usually expedite this cast because Box is a base class of CerealPack. This would not be legal if
the Box class was inaccessible or was a virtual base class.

The result of casting a derived class pointer to a base pointer type is a pointer to the sub-object of the destination
type. It’s easy to get confused when thinking about casting pointers to class types. Don’t forget that a pointer to a class
type can only point to objects of that type, or to objects of a derived class type, and not the other way round. To be
specific, the pointer pCarton could contain the address of an object of type Carton (which could be a subobject of a
CerealPack object), or an object of type CerealPack. It could not contain the address of an object of type Box, because
a CerealPack object is a specialized kind of Carton, but a Box object isn’t. Figure 14-4 illustrates the possibilities
between pointers to Box, Carton, and CerealPack objects.

Despite what I have said so far about casting pointers up a class hierarchy, it’s sometimes possible to make casts
in the opposite direction. Casting a pointer down a hierarchy from a base to a derived class is different; whether or
not a cast works depends on the type of object to which the base pointer is pointing. For a static cast from a base class
pointer such as pBox to a derived class pointer such as pCarton to be legal, the base class pointer must be pointing to a
Box sub-object of a Carton object. If that’s not the case, the result of the cast is undefined.

Chapter 14 ■ polymorphism

448

Figure 14-5 shows static casts from a pointer, pBox, that contains the address of a Carton object. The cast to type
Carton* will work because the object is of type Carton. The result of the cast to type CerealPack* on the other hand, is
undefined because no object of this type exists.

Figure 14-5. Casting pointers down a class hierarchy

If you’re in any doubt about the legitimacy of a static cast, you shouldn’t use it. The success of an attempt to cast
a pointer down a class hierarchy depends on the pointer containing the address of an object of the destination type. A
static cast doesn’t check whether this is the case so if you attempt it in circumstances where you don’t know what the
pointer points to, you risk an undefined result. Therefore, when you want to cast down a hierarchy, you need to do it
differently — in a way in which the cast can be checked at runtime.

Dynamic Casts
A dynamic cast is a conversion that’s performed at runtime. The dynamic_cast<>() operator performs a dynamic
cast. You can only apply this operator to pointers and references to polymorphic class types, which are class types
that contain at least one virtual function. The reason is that only pointers to polymorphic class types contain the
information that the dynamic_cast<>() operator needs to check the validity of the conversion. This operator is
specifically for the purpose of converting between pointers or references to class types in a hierarchy. Of course, the
types you are casting between must be pointers or references to classes within the same class hierarchy. You can’t use
dynamic_cast<>() for anything else. I’ll first discuss casting pointers dynamically.

Casting Pointers Dynamically
There are two kinds of dynamic cast. The first is a “cast down a hierarchy,” from a pointer to a direct or indirect base
type to a pointer to a derived type. This is called a downcast. The second possibility is a cast across a hierarchy; this is
referred to as a crosscast. Figure 14-6 illustrates these.

Chapter 14 ■ polymorphism

449

Figure 14-6. Downcasts and crosscasts

For a pointer, pBox, of type Box* that contains the address of a CerealPack object, you could write the downcast
shown in Figure 14-6 as:

Carton* pCarton {dynamic_cast<Carton*>(pBox)};

The dynamic_cast<>() operator is written in the same way as the static_cast<>() operator. The destination
type goes between the angled brackets following dynamic_cast, and the expression to be converted to the new type
goes between the parentheses. For this cast to be legal, the Box and Carton classes must contain virtual functions,
either as declared or inherited members. For the cast above to work, pBox must point to either a Carton object or a
CerealPack object, because only objects of these types contain a Carton sub-object. If the cast doesn’t succeed, the
pointer pCarton will be set to nullptr.

The crosscast in Figure 14-6 could be written as:

Contents* pContents {dynamic_cast<Contents*>(pBox)};

As in the previous case, both the Contents class and the Box class must be polymorphic for the cast to be legal.
The cast can only succeed if pBox contains the address of a CerealPack object because this is the only type that
contains a Contents object and can be referred to using a pointer of type Box*. Again, if the cast doesn’t succeed,
nullptr will be stored in pContents.

Using dynamic_cast<>() to cast down a class hierarchy may fail, but in contrast to the static cast, the result will
be nullptr rather than just “undefined.” This provides a clue as to how you can use this. Suppose you have some kind
of object pointed to by a pointer to Box, and you want to call a non-virtual function member of the Carton class. A
base class pointer only allows you to call the virtual function members of a derived class, but the dynamic_cast<>()
operator can enable you to call a non-virtual function. If surface() is a non-virtual function member of the Carton
class, you could call it with this statement:

dynamic_cast<Carton*>(pBox)->surface();

Chapter 14 ■ polymorphism

450

This is obviously hazardous. You need to be sure that pBox is pointing to a Carton object, or to an object of a class
that has the Carton class as a base. If this is not the case, the dynamic_cast<>() operator returns nullptr, and the call
fails. To fix this, you can use the dynamic_cast<>() operator to determine whether what you intend to do is valid;
for example:

Carton* pCarton {dynamic_cast<Carton*>(pBox)}
if(pCarton)
 pCarton->surface();

Now you’ll only call the surface() function member if the result of the cast is not nullptr. Note that you can’t
remove const-ness with dynamic_cast<>(). If the pointer type you’re casting from is const, then the pointer type you
are casting to must also be const. If you want to cast from a const pointer to a non-const pointer, you must first cast to
a non-const pointer of the same type as the original using the const_cast<>() operator.

Converting References
You can apply the dynamic_cast<>() operator to a reference parameter in a function to cast down a class hierarchy to
produce another reference. In the following example, the parameter to the function doThat() is a reference to a base
class Box object. In the body of the function, you can cast the parameter to a reference to a derived type:

double doThat(Box& rBox)
{
 ...
 Carton& rCarton {dynamic_cast<Carton&>(rBox)};
 ...
}

This statement casts from type reference to Box to type reference to Carton. Of course, it’s possible that the object
passed as an argument may not be a Carton object and if this is the case, the cast won’t succeed. There is no such
thing as a null reference, so this fails in a different way from a failed pointer cast: execution of the function stops and
an exception of type bad_cast is thrown. You haven’t met exceptions yet, but you’ll find out what this means in the
next chapter.

Determining the Polymorphic Type
Applying a dynamic cast to a reference blind is obviously risky but there’s an alternative. You can check the dynamic
type of a pointer or reference at runtime using the typeid operator. You can apply typeid to a type or to an expression.
The operator returns a std::type_info object that encapsulates the actual type; the std::type_info class is declared
in the typeinfo Standard Library header. You can use typeid to determine whether an object passed as an argument

Chapter 14 ■ polymorphism

451

for a function parameter that is a reference is of a given type and avoid the risk of an illegal dynamic cast of the
reference parameter. You could improve the example from the preceding section like this:

double doThat(Box& rBox)
{
 ...
 double area {};
 if(typeid(rBox) == typeid(Carton))
 { // rBox does reference a Carton object so the cast is legal
 Carton& rCarton {dynamic_cast<Carton&>(rBox)};
 area {rCarton.surface()}; // Call non-virtual function member
 }
 ...
}

The std::type_info class supports comparisons for equality so you can compare the type_info object for the
Carton class with that produced by applying type_id to the parameter, rBox. If the type_info objects are equal, then
calling the non-virtual member of the Carton class using rBox will work because rBox definitely references a Carton
object.

The std::type_info class defines a name() member that returns the type name as a C-style string. The following
statement would output the type name for the object referenced by rBox:

std::cout << "Object referenced is of type " << typid(rBox).name() << std::endl;

The Cost of Polymorphism
As you know, there’s no such thing as a free lunch — this certainly applies to polymorphism. You pay for
polymorphism in two ways: it requires more memory, and virtual function calls result in additional overhead. These
consequences arise because of the way that virtual function calls are typically implemented in practice.

For instance, suppose two classes, A and B, contain identical data members, but A contains virtual functions,
whereas B’s functions are non-virtual. In this case, an object of type A requires more memory than an object of type B.

Note ■ you can create a simple program with two such class objects and use the sizeof operator to see the difference
in memory occupied by objects with and without virtual functions.

The reason for the increase in memory is that when you create an object of a polymorphic class type, a special
pointer is created in the object. This pointer is used to call any of the virtual functions in the object. The special
pointer points to a table of function pointers that gets created for the class. This table, usually called a vtable, has one
entry for each virtual function in the class. Figure 14-7 illustrates this.

Chapter 14 ■ polymorphism

452

When a function is called through a pointer to a base class object, the following sequence of events occurs:

 1. The pointer to the vtable in the object pointed to is used to find the beginning of the vtable
for the class.

 2. The entry for the function to be called is found in the vtable, usually by using an offset.

 3. The function is called indirectly through the function pointer in the vtable. This indirect
call is a little slower than a direct call of a non-virtual function, so each virtual function call
carries some overhead.

However, the overhead in calling a virtual function is small, and shouldn’t give you cause for concern. A few
extra bytes per object and slightly slower function calls are small prices to pay for the power and flexibility that
polymorphism offers. This explanation is just so you’ll know why the size of an object that has virtual functions is
larger than that of an equivalent object that doesn’t.

Pure Virtual Functions
There are situations that require a base class with a number of classes derived from it, and a virtual function that’s
redefined in each of the derived classes, but where there’s no meaningful definition for the function in the base class.
For example, you might define a base class, Shape, from which you derive classes defining specific shapes, such as
Circle, Ellipse, Rectangle, Curve, and so on. The Shape class could include a virtual function draw() that you’d call
for a derived class object to draw a particular shape, but the Shape class itself has no meaningful implementation of
the draw() function because it doesn’t define anything that can be drawn. This is a job for a pure virtual function.

The purpose of a pure virtual function is to enable the derived class versions of the function to be called
polymorphically. To declare a pure virtual function rather than an “ordinary” virtual function that has a definition, you
use the same syntax, but add = 0 to its declaration within the class.

Figure 14-7. How polymorphic function calls work

Chapter 14 ■ polymorphism

453

If all this sounds confusing in abstract terms, you can see how to declare a pure virtual function by taking the
concrete example of defining the Shape class I just alluded to:

// Generic base class for shapes
class Shape
{
protected:
 Point position; // Position of a shape

 // Constructor
 Shape(const Point& shapePosition) : position {shapePosition} {}

public:

 virtual void draw() const = 0; // Pure virtual function to draw a shape

 virtual void move(const Point& newPosition) = 0; // Pure virtual function to move a shape
};

The Shape class contains a data member of type Point (which is another class type) that stores the position of a
shape. It’s a base class member because every shape must have a position, and the Shape constructor initializes it. The
draw() function is virtual because it’s qualified with the virtual keyword and it’s pure because the = 0 following the
parameter list specifies that there’s no definition for the function in this class. The draw() function is a pure virtual
function in the Shape class. The move() function is also a pure virtual function.

A class that contains a pure virtual function is called an abstract class. The Shape class contains two pure
virtual functions — draw() and move() — so it is most definitely an abstract class. Let’s look a little more at exactly
what this means.

Abstract Classes
Even though it has a data member and a constructor, the Shape class is an incomplete description of an object,
because the draw() and move() functions are not defined. Therefore you’re not allowed to create instances of the
Shape class; the class exists purely for the purpose of deriving classes from it. Because you can’t create objects of an
abstract class, you can’t use it as a function parameter type or as a return type; a parameter of type Shape will not
compile. However, pointers or references to an abstract class can be used as parameter or return types so function
parameters of type Shape* and Shape& are fine. It is essential that this should be the case to get polymorphic behavior
for derived class objects.

This raises the question, “If you can’t create an instance of an abstract class, then why does the abstract class
contain a constructor?” The answer is that the constructor for an abstract class is there to initialize its data members.
The constructor for an abstract class will be called by a derived class constructor, implicitly or from the constructor
initialization list. If you try to call the constructor for an abstract class from anywhere else, you’ll get an error message
from the compiler.

Because the constructor for an abstract class can’t be used generally, it’s a good idea to declare it as a protected
member of the class, as I have done for the Shape class. This allows it to be called in the initialization list for a derived
class constructor but prevents access to it from anywhere else. Note that a constructor for an abstract class must not
call a pure virtual function; the effect of doing so is undefined.

Any class that derives from the Shape class must define both the draw() function and the move() function if it
is not also to be an abstract class. More specifically, if any pure virtual function of an abstract base class isn’t defined
in a derived class, then the pure virtual function will be inherited as such, and the derived class will also be an
abstract class.

Chapter 14 ■ polymorphism

454

To illustrate this, you could define a new class called Circle, which has the Shape class as a base:

// Class defining a circle
class Circle : public Shape
{
protected:
 double radius; // Radius of a circle

public:
 Circle(Point center, double circleRadius) : Shape(center), radius(circleRadius) {}

 virtual void draw() const
 {
 // Circle center is at point 'position', inherited from the base class
 std::cout << "Circle center " << position << " radius " << radius << std::endl;
 }

 virtual void move(const Point& newCenter) { position = newCenter; }
};

The draw() and move() functions are defined, so this class is not abstract. If either function were not defined,
then the Circle class would be abstract. The class includes a constructor, which initializes the base class sub-object
by calling the base class constructor.

Note ■ you can only call the constructor of an abstract base class in the initialization list of a derived class constructor.

Of course, an abstract class can contain virtual functions that it does define and functions that are not virtual. It
can also contain any number of pure virtual functions. The presence of at least one pure virtual function will make a
class abstract. A derived class must have definitions for every pure virtual function in its base; otherwise, it will also be
an abstract class. Let’s look at a working example that uses an abstract class.

I’ll define a new version of the Box class with the volume() function declared as a pure virtual function:

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}

public:
 virtual double volume() const = 0; // Function to calculate the volume
};

Chapter 14 ■ polymorphism

455

Because Box is now an abstract class, you can no longer create objects of this type. The Carton and ToughPack
classes in this example are the same as in Ex14_06. They both define the volume() function, so they aren’t abstract
and I can use objects of these classes to show that the virtual volume() functions are still working as before:

// Ex14_07.cpp
// Using an abstract class
#include <iostream>
#include "Box.h" // For the Box class
#include "ToughPack.h" // For the ToughPack class
#include "Carton.h" // For the Carton class

int main()
{
 ToughPack hardcase {20.0, 30.0, 40.0}; // A derived box - same size
 Carton carton {20.0, 30.0, 40.0, "plastic"}; // A different derived box

 Box*pBox {&hardcase}; // Base pointer - derived address
 std::cout << "hardcase volume is " << pBox->volume() << std::endl;

 pBox = &carton; // New derived address
 std::cout << "carton volume is " << pBox->volume() << std::endl;
}

This generates the following output:

hardcase volume is 20400
carton volume is 22722.4

Declaring volume() to be a pure virtual function in the Box class ensures that the volume() function members

of the Carton and ToughPack classes are also virtual. Therefore you can call them through a pointer to the base class,
and the calls will be resolved dynamically. The output for the ToughPack and Carton objects shows that everything
is working as expected. The Carton and ToughPack class constructors still call the Box class constructor that is now
protected in their initialization lists.

Abstract Classes As Interfaces
Sometimes, an abstract class arises simply because a function has no sensible definition in the context of the class
and only has a meaningful interpretation in a derived class. However, there is another way of using an abstract class.
An abstract class that contains only pure virtual functions can be used to define a standard class interface. It would
typically represent a declaration of a set of related functions that supported a particular capability — a set of functions
for communications through a modem, for example. As I’ve discussed, a class that derives from such an abstract
base class must define an implementation for each virtual function, but the way in which each virtual function is
implemented is specified by whoever is implementing the derived class. The abstract class fixes the interface, but the
implementation in the derived class is flexible.

Chapter 14 ■ polymorphism

456

Indirect Abstract Base Classes
Given a base class and a derived class, it may be that the base itself is derived from a more general base class. In
this situation, the most derived class inherits indirectly from the most base class. You can create as many levels of
derivation as you need. An extension of the previous example will demonstrate indirect inheritance involving an
abstract class, and also illustrate the use of a virtual function across a second level of inheritance. The Carton and
ToughPack classes will be the same as in Ex14_07.

You can define a Vessel class to represent a generic container that will be an abstract base class for the Box
class. This will allow classes representing other types of storage containers to be derived from Vessel so that you can
calculate volumes of these types of objects polymorphically. You could put a definition for the Vessel class in a new
header file called Vessel.h:

// Vessel.h Abstract class defining a vessel
#ifndef VESSEL_H
#define VESSEL_H

class Vessel
{
public:
 virtual double volume() const = 0;
};
#endif

This is an abstract class because it contains the pure virtual function, volume(). You can now modify the Box class
to use the Vessel class as a base:

// Box.h
#ifndef BOX_H
#define BOX_H

#include "Vessel.h"

class Box : public Vessel
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}

 double volume() const override { return length*width*height; }
};
#endif

Chapter 14 ■ polymorphism

457

You can add another class derived from Vessel that defines a can, placing the definition in Can.h and the
implementation in Can.cpp. Here is the class definition:

// Can.h Class defining a cylindrical can of a given height and diameter
#ifndef CAN_H
#define CAN_H
#include "Vessel.h"

class Can : public Vessel
{
protected:
 double diameter {1.0};
 double height {1.0};
 constexpr static double pi {3.14159265};

public:
 Can(double d, double h) : diameter {d}, height {h} {}

 double volume() const override { return pi*diameter*diameter*height/ 4.0; }
};
#endif

This defines Can objects that represent regular cylindrical cans, such as a beer can. The class defines pi as a static
member because it’s required within a function member of the class. Qualifying the declaration of a data member
with constexpr specifies that it is constant and that its value can be set at compile time. This allows the initial value
of a static data member to be specified within the class definition. A data member that is qualified by constexpr is
by definition const and can be used as a constant expression. You could replace constexpr by const and put the
definition and initialization for pi outside the class definition.

// Ex14_08.cpp
// Using an indirect base class
#include <iostream>
#include <vector> // For the vector container
#include "Box.h" // For the Box class
#include "ToughPack.h" // For the ToughPack class
#include "Carton.h" // For the Carton class
#include "Can.h" // for the Can class

int main()
{
 Box box {40, 30, 20};
 Can can {10, 3};
 Carton carton {40, 30, 20, "Plastic"};
 ToughPack hardcase {40, 30, 20};

 std::vector<Vessel*> pVessels {&box, &can, &carton, &hardcase};

 for (auto p : pVessels)
 std::cout << "Volume is " << p->volume() << std::endl;
}

Chapter 14 ■ polymorphism

458

This generates the following output:

Volume is 24000
Volume is 235.619
Volume is 22722.4
Volume is 20400

You have a three-level class hierarchy in this example, as shown in Figure 14-8.

Figure 14-8. A three-level class hierarchy

If a derived class fails to define a function that’s declared as a pure virtual function in the base class, then the
function will be inherited as a pure virtual function, and this will make the derived class an abstract class. You can
demonstrate this effect by removing the const declaration from either the Can or the Box class. This makes the
function different from the pure virtual function in the base class, so the derived class inherits the base class version,
and the program won’t compile.

This time around, I used a vector of raw pointers to Vessel objects to exercise the virtual functions. The output
shows that all the polymorphic calls of the volume() function work as expected.

Destroying Objects Through a Pointer
The use of pointers to a base class when you are working with derived class objects is very common, because that’s
how you can take advantage of virtual functions. If you use pointers to objects created on the heap, a problem can
arise when derived class objects are destroyed. You can see the problem if you implement the classes in the previous

Chapter 14 ■ polymorphism

459

example with destructors that display a message and change main() to create objects in the free store. To begin, add a
destructor to the Vessel class that just displays a message when it gets called:

#include <iostream>
class Vessel
{
 public:
 virtual double volume() const = 0;

 ~Vessel() { std::cout << "Vessel destructor" << std::endl; }
};

Do the same for the Can, Box, and ToughPack classes, and add an output statement to the destructor for the
Carton class. You’ll need to include the <iostream> header into files where it’s not already included.

You now need to modify main() from the previous example to this:

int main()
{
 std::vector<Vessel*> pVessels {new Box {40, 30, 20}, new Can {10, 3},
 new Carton {40, 30, 20, "Plastic"}, new ToughPack {40, 30, 20}};

 for (auto p : pVessels)
 std::cout << "Volume is " << p->volume() << std::endl;

 // Free the memory
 for (auto p : pVessels)
 delete p;
}

The complete program is in the code download as Ex14_09. It produces the following output:

Volume is 24000
Volume is 235.619
Volume is 22722.4
Volume is 20400
Vessel destructor
Vessel destructor
Vessel destructor
Vessel destructor

Clearly we have a failure on our hands: the wrong destructors are being called in each case. The problem occurs

because the binding to the destructor is being set at compile time and because the delete operator is being applied
to an object pointed to by a pointer of type Vessel*, the Vessel class destructor is called every time. This is not a
problem for the classes here because the classes do not contain members that are raw pointers to objects in the free
store. If they did, it would represent a memory leak, because free store memory allocated for members of derived class
objects would not be released. To get the correct destructor called for a derived class, we need dynamic binding for
the destructors.

Chapter 14 ■ polymorphism

460

Virtual Destructors
To ensure that the correct destructor is always called for objects of derived classes that are allocated in the free store,
you need virtual class destructors. To implement a virtual destructor in a derived class, you just add the keyword
virtual to the destructor declaration in the base class. This signals to the compiler that destructor calls through a
pointer or a reference parameter should have dynamic binding, and so the destructor that is called will be selected
at runtime. This makes the destructor in every class derived from the base class virtual, in spite of the derived class
destructors having different names; destructors are treated as a special case for this purpose.

You can show this effect by adding the virtual keyword to the destructor declaration in the Vessel class:

class Vessel
{
public:
 virtual double volume() const = 0;

 virtual ~Vessel() { std::cout << "Vessel destructor" << std::endl; }
};

The destructors of all the derived classes will automatically be virtual as a result of declaring a virtual base class
destructor. If you run the example again, the output will confirm that this is so.

Tip ■ When you are using inheritance and a class that has a destructor defined contains at least one virtual function,
you should declare the base class destructor as virtual. a small overhead in the execution of the class destructors does
exist, but you won’t notice it in the majority of circumstances. Using virtual destructors ensures that your objects are
always properly destroyed and avoids problems that might otherwise occur.

Summary
In this chapter, I’ve covered the principal ideas involved in using inheritance. The fundamentals that you should keep
in mind are these:

Polymorphism involves calling a function member of a class through a pointer or a reference •	
and having the call resolved dynamically — that is, the function to be called is determined by
what is referenced or pointed to when the program is executing.

You can call function members polymorphically using raw pointers or smart pointers.•	

A function in a base class can be declared as •	 virtual. All occurrences of the function in
classes that are derived from the base will then be virtual too. When you call a virtual function
through a pointer or a reference, the function call is resolved dynamically and the type of
object for which the function call is made will determine the particular function that is used.

A call of a virtual function using an object and the direct member selection operator is •	
resolved statically — that is, at compile time.

If a base class contains a virtual function and any derived classes need to define a destructor, •	
then you should always declare the base class destructor as virtual. This will ensure correct
selection of a destructor for dynamically created derived class objects.

Chapter 14 ■ polymorphism

461

A pure virtual function has no definition. A virtual function in a base class can be specified as •	
pure by placing =0 at the end of the function member declaration.

A class with one or more pure virtual functions is called an abstract class, for which no objects •	
can be created. In any class derived from an abstract class, all the inherited pure virtual
functions must be defined. If they’re not, it too becomes an abstract class, and no objects of
the class can be created.

You should use the •	 override qualifier with function members of a derived class that override
a virtual base class member. This causes the compiler to verify that the functions signatures in
the base and derived classes are the same.

Default argument values for parameters in virtual functions are assigned statically, so if default •	
values for a base version of a virtual function exist, default values specified in a derived class
will be ignored for dynamically resolved function calls.

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back
over the chapter for help. if you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code), but that really should be a last resort.

exercise 14-1. Define a base class called Animal that contains two protected data members: a string member
to store the name of the animal (e.g., "Fido"), and an integer member, weight, that will contain the weight of the
Animal in pounds. also include a virtual public function member, who(), that returns a string object containing
the name and weight of the Animal object, and a pure virtual function called sound() that in a derived class
should return a string representing the sound the animal makes. Derive at least three classes — Sheep, Dog,
and Cow — with the class Animal as a public base, and implement the sound() function appropriately in
each class.

Define a class called Zoo that can store the addresses of any number of Animal objects of various types in a
vector container. Write a main() function to create a random sequence of an arbitrary number of objects of
classes derived from animal and store pointers to them in a Zoo object. the number of objects should be entered
from the keyboard. Define and use function members of the Zoo class, one to output information about each
animal in the Zoo, and the other to output as text the sound that it makes.

exercise 14-2. Define a class called BaseLength that stores a length as an integral number of millimeters, and
which has a member function length() that returns a double value specifying the length. Derive classes called
Inches, Meters, Yards, and Perches from the BaseLength class that override the base class length()
function to return the length as a double value in the appropriate units. (1 inch is 25.4 millimeters; 1 meter is
1000 millimeters; 1 yard is 36 inches; 1 perch [Us] is 5.5 yards.). Define a main() function to read a series of
lengths in various units and create the appropriate derived class objects, storing their addresses in a vector of
pointers of an appropriate type. output each of the lengths in millimeters as well as the original units.

exercise 14-3. Define conversion operator functions to convert each of the derived types in the previous example
to any other derived type. For example, in the Inches class, define members operator Meters(), operator
Perches(), and operator Yards(). extend main() from the previous exercise to output each measurement in
the four different units.

exercise 14-4. repeat the previous exercise using constructors for the conversions instead of conversion
operators.

www.apress.com/source-code

463

Chapter 15

Runtime Errors and Exceptions

EXCEPTIONS are used to signal errors or unexpected conditions in a program. Using exceptions to signal errors is not
mandatory, and you’ll sometimes find it more convenient to handle them in other ways. However, it is important to
understand how exceptions work, because they can arise out of the use of standard language features such as the
new operator and the dynamic_cast operator and exceptions are used extensively within the standard library.

In this chapter you’ll learn:

What an exception is and when you should use exceptions•	

How you use exceptions to signal error conditions•	

How you handle exceptions in your code•	

The types of exceptions defined in the Standard Library•	

How to deal with exceptions that are thrown in a constructor•	

How an exception being thrown can affect a destructor•	

Handling Errors
Error handling is a fundamental element of successful programming. You need to equip your program to deal with
potential errors and abnormal events, and this can often require more effort than writing the code that executes when
things work the way they should. The quality of the error-handling code determines how robust a program is and it is
usually a major factor in making a program user-friendly. It also has a substantial impact on how easy it is to correct
errors in the code or to add functionality to an application.

Not all errors are equal though and the nature of the error determines how best to deal with it. You don’t use
exceptions for errors that occur in the normal use of a program. In many cases, you’ll deal with such errors directly
where they occur. For example, when data is entered by the user, mistakes can result in erroneous input but this isn’t
really a serious problem. It’s usually quite easy to detect such errors and the most appropriate course of action is
often simply to discard the input and prompt the user to enter the data again. In this case, the error-handling code is
integrated with the code that handles the overall input process.

More serious errors are often recoverable and can be dealt with in a manner that doesn’t prejudice other activity
within a program. When an error is discovered within a function, it’s often convenient to return an error code of some
kind to tell the caller about the error so that the caller can decide how best to proceed.

Exceptions provide you with an additional approach to handling errors. They don’t replace the kinds of
mechanisms I have just described. Exceptions are to deal with error conditions that you don’t expect to occur in the
normal course of events. A primary advantage of using exceptions to signal these errors is that the error-handling code
is separated completely from the code that caused the error. Of course, the examples in this chapter will be atypical in
that they are designed to cause an exception to show how things work. This means that they will not reflect the normal
context for using exceptions.

Chapter 15 ■ runtime errors and exCeptions

464

Understanding Exceptions
An exception is a temporary object, of any type, that is used to signal an error. An exception can be of a fundamental
type, such as int or const char*, but it’s usually and more appropriately an object of a class type. The purpose of an
exception object is to carry information from the point at which the error occurred to the code that is to handle the error.
In many situations more than one piece of information is involved so this is best done with an object of a class type.

When you recognize that something has gone wrong in the code, you can signal the error by throwing an
exception. The term “throwing” effectively indicates what happens. The exception object is tossed to another block
of code that catches the exception and deals with it. Code that may throw exceptions must be within a special block
called a try block if an exception is to be caught. If a statement that is not within a try block throws an exception, or a
statement within a try block throws an exception that is not caught, the program terminates. I’ll discuss this further a
little later in this chapter.

A try block is followed immediately by one or more catch blocks. Each catch block contains code to handle
a particular kind of exception; for this reason, a catch block is sometimes referred to as a handler. All the code that
deals with errors that cause exceptions to be thrown is within catch blocks that are completely separate from the code
that is executed when everything works as it should.

Figure 15-1 shows a try block, which is a normal block between braces that is preceded by the try keyword. Each
time the try block executes, it may throw any one of several different types of exception. Therefore, a try block can
be followed by several catch blocks, each of which handles an exception of a different type. A catch block is a normal
block between braces preceded by the catch keyword. The type of exception that a catch block deals with is identified
by a single parameter between parentheses following the catch keyword.

Figure 15-1. A try block and its catch blocks

The code in a catch block only executes when an exception of a matching type is thrown. If a try block doesn’t
throw an exception, then none of the catch blocks following the try block is executed. You can’t branch into a
try block, by using a goto, for instance. A try block always executes beginning with the first statement following the
opening brace.

Chapter 15 ■ runtime errors and exCeptions

465

Throwing an Exception
It’s high time you threw an exception to find out what happens when you do. Although you should always use class
objects for exceptions (as you’ll do later in the chapter), I’ll begin by using basic types, because this will keep the code
very simple while I explain what’s going on. You throw an exception using a throw expression, which you write using
the throw keyword. Here’s an example:

try
{
 // Code that may throw exceptions must be in a try block...

 if(test > 5)
 throw "test is greater than 5"; // Throws an exception of type const char*

 // This code only executes if the exception is not thrown...
}
 catch(const char* message)
{
 // Code to handle the exception...
 // ...which executes if an exception of type 'char*' or 'const char*' is thrown
 std::cout << message << std::endl;
}

If the value of test is greater than 5, the throw statement throws an exception. In this case, the exception is the
literal, "test is greater than 5". Control is immediately transferred out of the try block to the first handler for the
type of the exception that was thrown: const char*. There’s just one handler here, which happens to catch exceptions
of type const char*, so the statement in the catch block executes, and this displays the exception.

Note ■ the compiler ignores the const keyword when matching the type of an exception that was thrown with the
catch parameter type. i’ll examine this more thoroughly later.

Let’s try exceptions out in a working example which will throw exceptions of type int and const char*.
The output statements help you see the flow of control:

// Ex15_01.cpp
// Throwing and catching exceptions
#include <iostream>

int main()
{
 for(size_t i {} ; i < 7 ; ++i)
 {
 try
 {
 if(i < 3)
 throw i;

 std::cout << " i not thrown - value is " << i << std::endl;

Chapter 15 ■ runtime errors and exCeptions

466

 if(i > 5)
 throw "Here is another!";

 std::cout << " End of the try block." << std::endl;
 }
 catch(size_t i)
 { // Catch exceptions of type size_t
 std::cout << " i caught - value is " << i << std::endl;
 }
 catch(const char* message)
 { // Catch exceptions of type char*
 std::cout << " \"" << message << "\" caught" << std::endl;
 }
 std::cout << "End of the for loop body (after the catch blocks) - i is "
 << i << std::endl;
 }
}

This example produces the following output:

i caught - value is 0
End of the for loop body (after the catch blocks) - i is 0
i caught - value is 1
End of the for loop body (after the catch blocks) - i is 1
i caught - value is 2
End of the for loop body (after the catch blocks) - i is 2
i not thrown - value is 3
End of the try block.
End of the for loop body (after the catch blocks) - i is 3
i not thrown - value is 4
End of the try block.
End of the for loop body (after the catch blocks) - i is 4
i not thrown - value is 5
End of the try block.
End of the for loop body (after the catch blocks) - i is 5
i not thrown - value is 6
"Here is another!" caught
End of the for loop body (after the catch blocks) - i is 6

The try block within the for loop contains code that will throw an exception of type size_t if i (the loop

counter) is less than 3, and an exception of type const char* if i is greater than 5. Throwing an exception transfers
control out of the try block immediately so the output statement at the end of the try block only executes if no
exception is thrown. The output shows that this is the case. You only get output from the last statement when i has the
value 3, 4, or 5. For all other values of i, an exception is thrown, so the output statement is not executed.

The first catch block immediately follows the try block. All the exception handlers for a try block must
immediately follow the try block. If you place any code between the try block and the first catch block, or between
successive catch blocks, the program won’t compile. The first catch block handles exceptions of type size_t, and
you can see from the output that it executes when the first throw statement is executed. You can also see that the next
catch block is not executed in this case. After this handler executes, control passes directly to the last statement at the
end of the loop.

Chapter 15 ■ runtime errors and exCeptions

467

The second handler deals with exceptions of type char*. When the exception “Here is another!” is thrown,
control passes from the throw statement directly to this handler, skipping the previous catch block. If no exception
is thrown, neither the catch block is executed. You could put this catch block before the previous handler, and the
program would work just as well. On this occasion, the sequence of the handlers doesn’t matter, but that’s not always
the case. You’ll see examples of when the order of the handlers is important later in this chapter.

The statement that identifies the end of a loop iteration in the output is executed whether or not a handler is
executed. Throwing an exception that is caught doesn’t end the program — unless you want it to of course — in which
case you terminate the program in the catch block. If the problem that caused the exception can be fixed within the
handler, then the program can continue.

The Exception Handling Process
From the example, you should have a fairly clear idea of the sequence of events when an exception is thrown.
Some other things happen in the background though; you might be able to guess some of them if you think about
how control is transferred from the try block to the catch block. The throw/catch sequence of events is illustrated
conceptually in Figure 15-2.

Figure 15-2. The mechanism behind throwing and catching an exception

Of course a try block is a statement block, and you know that a statement block defines a scope. Throwing an
exception leaves the try block immediately, so at that point all the automatic objects that have been defined within
the try block prior to the exception being thrown are destroyed. The fact that none of the automatic objects created in
the try block exists by the time the handler code is executed is most important — it implies that you must not throw
an exception object that’s a pointer to an object that is local to the try block. It's also the reason why the exception
object is copied in the throw process.

 Caution ■ an exception object must be of a type that can be copied. an object of a class type that has a private copy
constructor can’t be used as an exception.

Chapter 15 ■ runtime errors and exCeptions

468

Because the throw expression is used to initialize a temporary object — and therefore creates a copy of the
exception — you can throw objects that are local to the try block, but not pointers to local objects. The copy of the
object is used to initialize the parameter for the catch block that is selected to handle the exception.

A catch block is also a statement block, so when a catch block has finished executing, all automatic objects that
are local to it (including the parameter) will be destroyed. Unless you transfer control out of the catch block using a
goto or a return statement, execution continues with the statement immediately following the last catch block for
the try block. Once a handler has been selected for an exception and control has been passed to it, the exception is
considered handled. This is true even if the catch block is empty and does nothing.

Unhandled Exceptions
If an exception is thrown in a try block and is not handled by any of its catch blocks, then (subject to the possibility
of nested try blocks, which I’ll discuss shortly) the Standard Library function std:: terminate() is called. This
function is declared in the exception header and calls a predefined default terminate handler function, which in turn
calls the Standard Library function std::abort() that is declared in the cstdlib header. The sequence of events
for an uncaught exception is shown in Figure 15-3.

Figure 15-3. Uncaught exceptions

 Note ■ the std::abort() function terminates the entire program immediately; it doesn’t call destructors for any
automatic or static objects. std::exit() also terminates a program but does carry out cleanup operations, including
calling destructors. When you want to terminate a program, it’s better to call std::exit().

The action provided by the default terminate handler can be disastrous in some situations. For example, it may
leave files in an unsatisfactory state, or connection to a communications line may be left open. In such cases, you’d
want to make sure that things are tidied up properly before the program ends. You can do this by replacing the default
terminate handler function with your own version by calling the Standard Library function std::set_terminate(),
as illustrated in Figure 15-3. The set_terminate() function accepts an argument of type terminate_handler, and
returns a value of the same type. This type is defined in the exception header file as:

typedef void (*terminate_handler)();

Chapter 15 ■ runtime errors and exCeptions

469

terminate_handler is a pointer to a function that has no parameters and doesn’t return a value, so your replacement
function must be of this form. You can do what you want within your version of the terminate handler, but it must not
return; it must ultimately terminate the program. Your definition of the function could take this form:

void myHandler()
{
 // Do necessary clean-up to leave things in an orderly state...
 std::exit(1);
}

Calling std::exit() is a more satisfactory way of terminating a program than calling std::abort(). Calling
exit() ensures that destructors for global objects are called, and any open input/output streams are flushed if
necessary and closed. Any temporary files that were created using standard library functions will be deleted.
The integer argument that you pass to exit() is returned to the operating system as a status code. A non-zero value
indicates abnormal program termination.

To set up the myHandler() function as the terminate handler, you could write this:

terminate_handler pOldHandler { std::set_terminate(myHandler)};

The return value is a pointer to the previous handler that was set, so by saving it, you’ll be able to restore it later
if necessary. The first time you call set_terminate(), the return value will be a pointer to the default handler. Each
subsequent call to set a new handler will return a pointer to whatever handler is in effect. This means that you can
have your handler in effect for a particular part of your program, and then restore the default handler when your
handler no longer applies.

Of course, you can set different terminate handlers at various points in your program to provide shutdown
actions that suit the particular conditions that apply at any given time. For example, if your program involves database
operations, you might need to make sure that the database shuts down in an orderly fashion when a fatal error occurs.
You would define a terminate handler to take care of this. Different terminate handlers accommodating different
shutdown requirements can be used whenever you need them. You can obtain a pointer to the current terminate
handler by calling std::get_terminate().

Code That Causes an Exception to Be Thrown
I said at the beginning of this discussion that try blocks enclose code that may throw an exception. However, this
doesn’t mean that the code that throws an exception must be physically between the braces bounding the try block.
It only needs to be logically within the try block. If a function is called within a try block, any exception that is thrown
and not caught within that function can be caught by one of catch blocks for the try block. An example of this is
illustrated in Figure 15-4. Two function calls are shown within the try block: fun1() and fun2(). Exceptions of type
ExceptionType that that are thrown within either function can be caught by the catch block following the try block.
An exception that is thrown but not caught within a function may be passed on to the calling function the next level
up. If it isn’t caught there, it can be passed on up to the next level; this is illustrated in Figure 15-4 by the exception
thrown in fun3() when it is called by fun1(). There's no try block in fun1() so exceptions thrown by fun3() will be
passed to the function that called fun1(). If an exception reaches a level where no further catch handlers exist and it
is still uncaught, then the terminate handler is called to end the program.

Chapter 15 ■ runtime errors and exCeptions

470

Of course, if the same function is called from different points in a program, the exceptions that the code in the
body of the function may throw can be handled by different catch blocks at different times. You can see an example of
this situation in Figure 15-5.

Figure 15-5. Calling the same function from within different try blocks

Figure 15-4. Exception thrown by functions called within a try block

Chapter 15 ■ runtime errors and exCeptions

471

As a consequence of the call in the first try block, the catch block for that try block handles any exceptions of
type ExceptionType thrown by fun1(). When fun1() is called in the second try block, the catch handler for that
try block deals with any exception of type ExceptionType that is thrown. From this you should be able to see that
you can choose to handle exceptions at the level that is most convenient to your program structure and operation. In
an extreme case, you could catch all the exceptions that arose anywhere in a program in main() just by enclosing the
code in main() in a try block and appending a suitable variety of catch blocks.

Nested try Blocks
You can nest a try block inside another try block. Each try block has its own set of catch blocks to handle exceptions
that may be thrown within it, and the catch blocks for a try block are only invoked for exceptions thrown within that
try block. This process is shown in Figure 15-6.

Figure 15-6. Nested try blocks

Figure 15-6 shows one handler for each try block, but in general there may be several. The catch blocks catch
exceptions of different types, but they could catch exceptions of the same type. When the code in an inner try block
throws an exception, its handlers get the first chance to deal with it. Each handler for the try block is checked for
a matching parameter type, and if none match, the handlers for the outer try block have a chance to catch the
exception. You can nest try blocks in this way to whatever depth is appropriate for your application.

When an exception is thrown by the code in the outer try block, that block’s catch handlers handle it, even if
the statement originating the exception precedes the inner try block. The catch handlers for the inner try block can
never be involved in dealing with exceptions thrown by code within the outer try block. The code within both try
blocks may call functions, in which case the code within the body of the function is logically within the try block that
called it. Any or all of the code within the body of the function could also be within its own try block, in which case
this try block would be nested within the try block that called the function.

It all sounds rather complicated in words, but it’s much easier in practice. I’ll put together a simple example in
which an exception is thrown and then see where it ends up. Once again, I’m going for explanation rather than gritty
realism so I’ll throw exceptions of type int and type long rather than objects of a class type. The code for this example
demonstrates nested try blocks and throwing an exception within a function:

Chapter 15 ■ runtime errors and exCeptions

472

// Ex15_02.cpp
// Throwing exceptions in nested try blocks
#include <iostream>

void throwIt(int i)
{
 throw i; // Throws the parameter value
}

int main()
{
 for(int i {} ; i <= 5 ; ++i)
 {
 try
 {
 std::cout << "outer try:\n";
 if(i == 0)
 throw i; // Throw int exception

 if(i == 1)
 throwIt(i); // Call the function that throws int

 try
 { // Nested try block
 std::cout << " inner try:\n";
 if(i == 2)
 throw static_cast<long>(i); // Throw long exception

 if(i == 3)
 throwIt(i); // Call the function that throws int
 } // End nested try block
 catch(int n)
 {
 std::cout << " Catch int for inner try. " << "Exception " << n << std::endl;
 }

 std::cout << "outer try:\n";
 if(i == 4)
 throw i; // Throw int
 throwIt(i); // Call the function that throws int
 }
 catch(int n)
 {
 std::cout << "Catch int for outer try. " << "Exception " << n << std::endl;
 }
 catch(long n)
 {
 std::cout << "Catch long for outer try. " << "Exception " << n << std::endl;
 }
 }
}

Chapter 15 ■ runtime errors and exCeptions

473

This produces the following output:

outer try:
Catch int for outer try. Exception 0
outer try:
Catch int for outer try. Exception 1
outer try:
inner try:
Catch long for outer try. Exception 2
outer try:
inner try:
Catch int for inner try. Exception 3
outer try:
Catch int for outer try. Exception 3
outer try:
inner try:
outer try:
Catch int for outer try. Exception 4
outer try:
inner try:
outer try:
Catch int for outer try. Exception 5

How It Works
The throwIt() function throws its parameter value. If you were to call this function from outside a try block, it would
immediately cause the program to end, because the exception would go uncaught and the default terminate handler
would be called. All the exceptions are thrown within the for loop. Within the loop, you determine when to throw an
exception and what kind of exception to throw by testing the value of the loop variable, i, in successive if statements.
At least one exception is thrown on each iteration. Entry to each try block is recorded in the output and because each
exception has a unique value, you can easily see where each exception is thrown and caught.

The first exception is thrown from the outer try block when the loop variable, i, is 0. You can see from the output
that the catch block for exceptions of type int that follows the outer try block catches this exception. The catch block
for the inner try block has no relevance because it can only catch exceptions thrown in the inner try block.

The next exception is thrown in the outer try block when i is 1 as a result of calling throwIt(). This is also caught
by the catch block for int exceptions that follows the outer try block. The next two exceptions, however, are thrown
in the inner try block. The first is an exception of type long. No catch block for the inner try block for this type of
exception exists, so it propagates to the outer try block. Here, the catch block for type long handles it, as you can
see from the output. The second exception is of type int and is thrown in the body of the throwIt() function.
No try block exists in this function, so the exception propagates to the point where the function was called in the
inner try block. The exception is then caught by the catch block for exceptions of type int that follows the inner
try block.

When a handler for the inner try block catches an exception, execution continues with the remainder of the
outer try block. Thus, when i is 3, you get output from the catch block for the inner try block, plus output from the
handler for int exceptions for the outer try block. The latter exception is thrown as a result of the throwIt() function
call at the end of the inner try block. Finally, two more exceptions are thrown in the outer try block. The handler for
int exceptions for the outer try block catches both. The second exception is thrown within the body of throwIt()
and because it is called in the outer try block, the catch block following the outer try block handles it.

Although none of these was a realistic exception — exceptions in real programs are invariably class objects — they
did show the mechanics of throwing and catching exceptions and what happens with nested try blocks. Let’s move
on to take a closer look at exceptions that are objects.

Chapter 15 ■ runtime errors and exCeptions

474

Class Objects as Exceptions
You can throw any type of class object as an exception. However, keep in mind that the idea of an exception object is to
communicate information to the handler about what went wrong. Therefore it’s usually appropriate to define a specific
exception class that is designed to represent a particular kind of problem. This is likely to be application-specific, but
your exception class objects almost invariably contain a message of some kind explaining the problem, and possibly
some sort of error code. You can also arrange for an exception object to provide additional information about the
source of the error in whatever form is appropriate.

Let,s define a simple exception class. I’ll it in a header file with a fairly generic name, MyTroubles.h, because I’ll
be adding to this file later:

// MyTroubles.h Exception class definition
#ifndef MYTROUBLES_H
#define MYTROUBLES_H
#include <string>
using std::string;

class Trouble
{
private:
 string message;
public:
 Trouble(string str = "There's a problem") : message {str} {}
 string what() const {return message;}
};
#endif

This class just defines an object representing an exception that stores a message indicating a problem. A default
message is defined in the parameter list for the constructor, so you can use the default constructor to get an object
that contains the default message. The what() function member returns the current message. To keep the logic of
exception handling manageable, you functions need to ensure that function members of an exception class don’t
throw exceptions. Later in this chapter, you’ll see how you can explicitly prevent a member function from doing so.

Let’s find out what happens when a class object is thrown by throwing a few. As in the previous examples, I won’t
bother to create errors. I’ll just throw exception objects so that you can follow what happens to them under various
circumstances. I’ll exercise the exception class with a very simple example that throws some exception objects in a loop:

// Ex15_03.cpp
// Throw an exception object
#include <iostream>
#include "MyTroubles.h"

int main()
{
 for(int i {}; i < 2 ; ++i)
 {
 try
 {
 if(i == 0)
 throw Trouble {};
 else
 throw Trouble {"Nobody knows the trouble I've seen..."};
 }

Chapter 15 ■ runtime errors and exCeptions

475

 catch(const Trouble& t)
 {
 std::cout << "Exception: " << t.what() << std::endl;
 }
 }
}

This produces the following output:

Exception: There's a problem
Exception: Nobody knows the trouble I've seen...

Two exception objects are thrown in the for loop. The first is created by the default constructor for the Trouble

class, and therefore contains the default message string. The second exception object is thrown in the else clause of
the if statement and contains a message that is passed as the argument to the constructor. The catch block catches
both exception objects.

The parameter for the catch block is a reference. Remember that an exception object is always copied when it
is thrown, so if you don’t specify the parameter for a catch block as a reference, it’ll be copied a second time — quite
unnecessarily. The sequence of events when an exception object is thrown is that first the object is copied to create a
temporary object and the original is destroyed because the try block is exited and the object goes out of scope. The
copy is passed to the catch handler — by reference if the parameter is a reference. If you want to observe these events
taking place, just add a copy constructor and a destructor containing some output statements to the Trouble class.

Matching a Catch Handler to an Exception
I said earlier that the handlers following a try block are examined in the sequence in which they appear in the code,
and the first handler whose parameter type matches the type of the exception will be executed. With exceptions that
are basic types (rather than class types), an exact type match with the parameter in the catch block is necessary. With
exceptions that are class objects, implicit conversions may be applied to match the exception type with the parameter
type of a handler. When the parameter type is being matched to the type of the exception that was thrown, the
following are considered to be a match:

The parameter type is the same as the exception type, ignoring •	 const.

The type of the parameter is a direct or indirect base class of the exception class type, or a •	
reference to a direct or indirect base class of the exception class, ignoring const.

The exception and the parameter are pointers, and the exception type can be converted •	
implicitly to the parameter type, ignoring const.

The possible type conversions listed here have implications for how you sequence the catch blocks for a
try block. If you have several handlers for exception types within the same class hierarchy, then the most derived
class type must appear first and the most base class type last. If a handler for a base type appears before a handler for
a type derived from that base, then the base type is always selected to handle the derived class exceptions. In other
words, the handler for the derived type is never executed.

Chapter 15 ■ runtime errors and exCeptions

476

Let’s add a couple more exception classes to the header containing the Trouble class, and use Trouble as a base
class for them. Here’s how the contents of the header file MyTroubles.h will look with the extra classes defined:

// MyTroubles.h Exception classes
#ifndef MYTROUBLES_H
#define MYTROUBLES_H
#include <string>
using std::string;

class Trouble
{
private:
 string message;
public:
 Trouble(string str = "There's a problem") : message {str} {}

 virtual ~Trouble(){} // Virtual destructor
 virtual string what() const { return message; }
};

// Derived exception class
class MoreTrouble : public Trouble
{
public:
 MoreTrouble(string str = "There's more trouble...") : Trouble {str} {}
};

// Derived exception class
class BigTrouble : public MoreTrouble
{
public:
 BigTrouble(string str = "Really big trouble...") : MoreTrouble {str} {}
};

#endif

Note that the what() member and the destructor of the base class have been declared as virtual. Therefore,
the what() function is also virtual in the classes derived from Trouble. It doesn’t make much of a difference here,
but remembering to declare a virtual destructor in a base class is a good habit to get into. Other than different default
strings for the message, the derived classes don’t add anything to the base class. Often, just having a different class
name can differentiate one kind of problem from another. You just throw an exception of a particular type when that
kind of problem arises; the internals of the classes don’t have to be different. Using a different catch block to catch
each class type provides the means to distinguish different problems. Here’s the code to throw exceptions of the
Trouble, MoreTrouble, and BigTrouble types, and the handlers to catch them:

// Ex15_04.cpp
// Throwing and catching objects in a hierarchy
#include <iostream>
#include "MyTroubles.h"

int main()
{
 Trouble trouble;
 MoreTrouble moreTrouble;
 BigTrouble bigTrouble;

Chapter 15 ■ runtime errors and exCeptions

477

 for (int i {}; i < 7; ++i)
 {
 try
 {
 if (i == 3)
 throw trouble;
 else if (i == 5)
 throw moreTrouble;
 else if(i == 6)
 throw bigTrouble;
 }
 catch (const BigTrouble& t)
 {
 std::cout << "BigTrouble object caught: " << t.what() << std::endl;
 }
 catch (const MoreTrouble& t)
 {
 std::cout << "MoreTrouble object caught: " << t.what() << std::endl;
 }
 catch (const Trouble& t)
 {
 std::cout << "Trouble object caught: " << t.what() << std::endl;
 }
 std::cout << "End of the for loop (after the catch blocks) - i is " << i << std::endl;
 }
}

Here’s the output:

End of the for loop (after the catch blocks) - i is 0
End of the for loop (after the catch blocks) - i is 1
End of the for loop (after the catch blocks) - i is 2
Trouble object caught: There's a problem
End of the for loop (after the catch blocks) - i is 3
End of the for loop (after the catch blocks) - i is 4
MoreTrouble object caught: There's more trouble...
End of the for loop (after the catch blocks) - i is 5
BigTrouble object caught: Really big trouble...
End of the for loop (after the catch blocks) - i is 6

How It Works
After creating one object of each class type, the for loop throws one or other of the exceptions for selected values of
the loop variable, i. Each of the catch blocks contains a different message so the output shows which catch handler
is selected when an exception is thrown. In the handlers for the two derived types, the inherited what() function
still returns the message. Note that the parameter type for each of the catch blocks is a reference, as in the previous
example. One reason for using a reference is to avoid making another copy of the exception object. In the next
example, you’ll see another good reason why you should always use a reference parameter in a handler.

Chapter 15 ■ runtime errors and exCeptions

478

Each handler displays the message contained in the object thrown, and you can see from the output that each
handler is called to correspond with the type of the exception thrown. The ordering of the handlers is important
because of the way the exception is matched to a handler, and because the types of your exception classes are related.
Let’s explore that in a little more depth.

Catching Derived Class Exceptions with a Base Class Handler
Exceptions of derived class types are implicitly converted to a base class type for the purpose of matching a catch
block parameter so you could catch all the exceptions thrown in the previous example with a single handler. You can
modify the previous example to see this happening. Just delete or comment out the two derived class handlers from
main() in the previous example:

// Ex15_05.cpp
// Catching exceptions with a base class handler
#include <iostream>
#include "MyTroubles.h"

int main()
{
 Trouble trouble;
 MoreTrouble moreTrouble;
 BigTrouble bigTrouble;

 for (int i {}; i < 7; ++i)
 {
 try
 {
 if (i == 3)
 throw trouble;
 else if (i == 5)
 throw moreTrouble;
 else if(i == 6)
 throw bigTrouble;
 }
 catch (const Trouble& t)
 {
 std::cout << "Trouble object caught: " << t.what() << std::endl;
 }
 std::cout << "End of the for loop (after the catch blocks) - i is " << i << std::endl;
 }
}

Chapter 15 ■ runtime errors and exCeptions

479

The program now produces this output:

End of the for loop (after the catch blocks) - i is 0
End of the for loop (after the catch blocks) - i is 1
End of the for loop (after the catch blocks) - i is 2
Trouble object caught: There's a problem
End of the for loop (after the catch blocks) - i is 3
End of the for loop (after the catch blocks) - i is 4
Trouble object caught: There's more trouble...
End of the for loop (after the catch blocks) - i is 5
Trouble object caught: Really big trouble...
End of the for loop (after the catch blocks) - i is 6

The catch block with the parameter of type const Trouble& now catches all the exceptions thrown in the try

block. If the parameter in a catch block is a reference to a base class, then it matches any derived class exception. So,
although the output proclaims “Trouble object caught” for each exception, the output for exceptions that are caught
after they first correspond to objects of classes derived from Trouble.

The dynamic type is retained when the exception is passed by reference so you could also obtain the dynamic
type and display it using the typeid() operator. Just modify the code for the handler to:

catch(const Trouble& t)
{
 std::cout << typeid(t).name() << " object caught: " << t.what() << std::endl;
}

Some compilers don’t enable runtime type identification by default so if this doesn’t work, check for a compiler
option to switch it on. With this modification to the code, the output shows that the derived class exceptions still
retain their dynamic types, even though a reference to the base class is being used. Remember, the typeid() operator
returns an object of the type_info class and calling its name() member returns the class name as type const char*.
For the record, the output from this version of the program should look like this:

End of the for loop (after the catch blocks) - i is 0
End of the for loop (after the catch blocks) - i is 1
End of the for loop (after the catch blocks) - i is 2
class Trouble object caught: There's a problem
End of the for loop (after the catch blocks) - i is 3
End of the for loop (after the catch blocks) - i is 4
class MoreTrouble object caught: There's more trouble...
End of the for loop (after the catch blocks) - i is 5
class BigTrouble object caught: Really big trouble...
End of the for loop (after the catch blocks) - i is 6

Try changing the parameter type for the handler to Trouble so that the exception is passed by value rather than

by reference:

catch(Trouble t)
{
 cout << typeid(t).name() << " object caught: " << t.what() << endl;
}

Chapter 15 ■ runtime errors and exCeptions

480

This version of the program produces the output:

End of the for loop (after the catch blocks) - i is 0
End of the for loop (after the catch blocks) - i is 1
End of the for loop (after the catch blocks) - i is 2
class Trouble object caught: There's a problem
End of the for loop (after the catch blocks) - i is 3
End of the for loop (after the catch blocks) - i is 4
class Trouble object caught: There's more trouble...
End of the for loop (after the catch blocks) - i is 5
class Trouble object caught: Really big trouble...
End of the for loop (after the catch blocks) - i is 6

Here, the Trouble handler is still selected for the derived class objects, but the dynamic type is not preserved.

This is because the parameter is initialized using the base class copy constructor, so any properties associated with the
derived class are lost. Only the base class sub-object of the original derived class object is retained. This is an example
of object slicing, which results because the base class copy constructor knows nothing about derived objects. Object
slicing is a common source of error when passing objects by value. That leads to the inevitable conclusion that you
should always use reference parameters in catch blocks.

Rethrowing Exceptions
When a handler catches an exception, it can rethrow it to allow a handler for an outer try block to catch it. You
rethrow the current exception with a statement consisting of just the throw keyword:

throw; // Rethrow the exception

This rethrows the existing exception object without copying it. You might rethrow an exception if a handler that
catches exceptions of more than one derived class type discovers that the type of the exception requires it to be passed
on to another level of try block. You might also want to register the point in the program where an exception was
thrown, and then rethrow it for handling in a caller function.

Note that rethrowing an exception from the inner try block doesn’t make the exception available to other
handlers for the inner try block. When a handler is executing, any exception that is thrown (including the current
exception) needs to be caught by a handler for a try block that encloses the current handler, as illustrated in
Figure 15-7. The fact that a rethrown exception is not copied is important, especially when the exception is a derived
class object that initialized a base class reference parameter. I'll demonstrate this with an example.

Chapter 15 ■ runtime errors and exCeptions

481

This example throws Trouble, MoreTrouble, and BigTrouble exception objects and then rethrows some of them
to show how the mechanism works:

// Ex15_06.cpp
// Rethrowing exceptions
#include <iostream>
#include "MyTroubles.h"

int main()
{
 Trouble trouble;
 MoreTrouble moreTrouble;
 BigTrouble bigTrouble;

 for (int i {}; i < 7; ++i)
 {
 try
 {
 try
 {
 if (i == 3)
 throw trouble;
 else if (i == 5)
 throw moreTrouble;
 else if(i == 6)
 throw bigTrouble;

Figure 15-7. Rethrowing an exception

Chapter 15 ■ runtime errors and exCeptions

482

 }
 catch (const Trouble& t)
 {
 if (typeid(t) == typeid(Trouble))
 std::cout << "Trouble object caught in inner block: " << t.what() << std::endl;
 else
 throw; // Rethrow current exception
 }
 }
 catch (const Trouble& t)
 {
 std::cout << typeid(t).name() << " object caught in outer block: "
 << t.what() << std::endl;
 }
 std::cout << "End of the for loop (after the catch blocks) - i is " << i << std::endl;
 }

This example displays the following output:

End of the for loop (after the catch blocks) - i is 0
End of the for loop (after the catch blocks) - i is 1
End of the for loop (after the catch blocks) - i is 2
Trouble object caught in inner block: There's a problem
End of the for loop (after the catch blocks) - i is 3
End of the for loop (after the catch blocks) - i is 4
class MoreTrouble object caught in outer block: There's more trouble...
End of the for loop (after the catch blocks) - i is 5
class BigTrouble object caught in outer block: Really big trouble...
End of the for loop (after the catch blocks) - i is 6

The for loop works as in the previous example, but this time there is one try block nested inside another. The

same sequence of exception objects as the previous example objects are thrown in the inner try block and they are all
caught by the matching catch block because the parameter is a reference to the base class, Trouble. The if statement
in the catch block tests the class type of the object passed and executes the output statement if it is of type Trouble.
For any other type of exception the exception is rethrown and therefore available to be caught by the catch block for
the outer try block. The parameter is also a reference to Trouble so it catches all the derived class objects. The output
shows that it catches the rethrown objects and they’re still in pristine condition.

You might imagine that the throw statement in the handler for the inner try block is equivalent to the following
statement:

throw t; // Rethrow current exception

Chapter 15 ■ runtime errors and exCeptions

483

After all, you’re just rethrowing the exception, aren’t you? The answer is no; there’s a major difference. If you
make this modification to the program code and run it again. You’ll get this output:

End of the for loop (after the catch blocks) - i is 0
End of the for loop (after the catch blocks) - i is 1
End of the for loop (after the catch blocks) - i is 2
Trouble object caught in inner block: There's a problem
End of the for loop (after the catch blocks) - i is 3
End of the for loop (after the catch blocks) - i is 4
class Trouble object caught in outer block: There's more trouble...
End of the for loop (after the catch blocks) - i is 5
class Trouble object caught in outer block: Really big trouble...
End of the for loop (after the catch blocks) - i is 6

The statement with an explicit exception object specified is throwing the exception, not rethrowing it. This results

in the exception being copied, using the copy constructor for the Trouble class. It’s the object slicing problem again.
The derived portion of each object is sliced off, so you are left with just the base class sub-object in each case. You can
see from the output that the typeid() operator identifies all the exceptions as type Trouble.

Catching All Exceptions
You can use an ellipsis (...) as the parameter specification for a catch block to indicate that the block should handle
any exception:

try
{
 // Code that may throw exceptions...
}
catch(...)
{
 // Code to handle any exception...
}

This catch block handles an exception of any type, so a handler like this must always be last in the sequence of
handlers for a try block. Of course, you have no idea what the exception is, but at least you can prevent your program
from terminating because of an uncaught exception. Note that even though you don’t know anything about it, you can
still rethrow the exception as you did in the previous example.

You can modify the last example to catch all the exceptions for the inner try block by using an ellipsis in place of
the parameter:

// Ex15_07.cpp
// Catching any exception
#include <iostream>
#include "MyTroubles.h"

int main()
{
 Trouble trouble;
 MoreTrouble moreTrouble;
 BigTrouble bigTrouble;

Chapter 15 ■ runtime errors and exCeptions

484

 for (int i {}; i < 7; ++i)
 {
 try
 {
 try
 {
 if (i == 3)
 throw trouble;
 else if (i == 5)
 throw moreTrouble;
 else if(i == 6)
 throw bigTrouble;
 }
 catch (...) // Catch any exception
 {
 std::cout << "We caught something! Let's rethrow it. " << std::endl;
 throw; // Rethrow current exception
 }
 }
 catch (const Trouble& t)
 {
 std::cout << typeid(t).name() << " object caught in outer block: "
 << t.what() << std::endl;
 }
 std::cout << "End of the for loop (after the catch blocks) - i is " << i << std::endl;
 }
}

This produces the following output:

End of the for loop (after the catch blocks) - i is 0
End of the for loop (after the catch blocks) - i is 1
End of the for loop (after the catch blocks) - i is 2
We caught something! Let's rethrow it.
class Trouble object caught in outer block: There's a problem
End of the for loop (after the catch blocks) - i is 3
End of the for loop (after the catch blocks) - i is 4
We caught something! Let's rethrow it.
class MoreTrouble object caught in outer block: There's more trouble...
End of the for loop (after the catch blocks) - i is 5
We caught something! Let's rethrow it.
class BigTrouble object caught in outer block: Really big trouble...
End of the for loop (after the catch blocks) - i is 6

The catch block for the inner try block has an ellipsis as the parameter specification so any exception that is

thrown will be caught by this catch block. Every time an exception is caught, a message displays and the exception is
rethrown to be caught by the catch block for the outer try block. There, its type is properly identified and the string
returned by its what() member is displayed.

Chapter 15 ■ runtime errors and exCeptions

485

Functions That Throw Exceptions
Any function can throw an exception, and this includes constructors. An exception thrown by a function can be
caught in the calling function, as you saw in Ex15_02. For this to occur, the exception must be thrown or rethrown and
not caught within the function. Of course, if you don’t want a program to be terminated as a result of an exception
being thrown, the exception must be caught somewhere, and for that to happen the call of a function that throws
exceptions must be enclosed within a try block and a handler for the try block must catch the exception.

Of course, a function body can contain try blocks with catch blocks to handle exceptions. Any uncaught
exceptions propagate to the point at which the function was called. It is sometimes convenient to make the whole
body of a function a try block with its set of handlers; you can do this by using a function try block.

Function try Blocks
You define a function try block by putting the try keyword before the opening brace of the function body. You place
the catch blocks for the function try block after the closing brace of the function body. Here’s an example:

void doThat(int argument)
try
{
 // Code for the function...
}
catch(BigTrouble& ex)
{
 // Handler code for BigTrouble exceptions...
}
catch(MoreTrouble& ex)
{
 // Handler code for MoreTrouble exceptions...
}
catch(Trouble& ex)
{
 // Handler code for Trouble exceptions...
}

The entire body of the function is now a try block followed by its catch blocks. The catch blocks do not
necessarily catch all the types of exception that may be thrown. Of course a function that throws exceptions doesn’t
need to have a function try block, or indeed any try block. However, any call of a function that throws exceptions
should be enclosed by a try block at some level unless you want the uncaught exception to terminate execution of the
program.

You need to take care that a catch block for a function try block executes an appropriate return statement if
execution is not terminated. If the execution sequence in a catch block for a function try block runs to the end of
the catch block, it is the equivalent of executing return. This will be fine if the function return type is void, but if the
return type is other than void, the behavior is undefined.

Chapter 15 ■ runtime errors and exCeptions

486

Functions That Don’t Throw Exceptions
You can specify that a function does not throw exceptions. You do this by appending the noexcept keyword to the
function header. This does not mean that no exceptions are thrown within the function; it means that if an exception
is thrown, it will be caught within the function and not rethrown. For example:

void doThat(int argument) noexcept
try
{
 // Code for the function...
}
catch(...)
{
 // Handles all exceptions and does not rethrow...
}

This function handles any exceptions that may be thrown. If a function specified with noexcept does throw
an exception that is not caught within the function, the exception will not be propagated to the calling function;
std::terminate() will be called immediately.

Note ■ prior to the C++ 11 language standard, throw() could be appended to a function header to indicate that the
function did not throw exceptions, and throw(exception_type_list) could be appended to identify a set of exception
types that a function could throw. Both of these are now deprecated because they were not effective and could cause
difficulties in practice so you should not use them.

Constructor try Blocks
As I indicated in the previous section, class constructors can throw exceptions. Of course, this can happen even
without an explicit throw statement in the body of a constructor. It's kind of obvious really when you consider
that Standard Library class functions can throw exceptions and these can be used in a constructor. Some member
functions of std::string can throw exceptions for example and if a constructor allocates memory using new, this can
result in an exception being thrown. If an exception is thrown and caught in a constructor, the catch block should
rethrow the exception. This is because the object will not have been constructed and it is essential that the caller
knows this. If execution reaches the end of a catch block for a constructor try block without rethrowing the exception,
the original exception will be rethrown anyway.

If there is the potential for the initialization list for a constructor to throw an exception, you can make the
constructor body, including the initialization list if there is one, a try block. You specify a constructor body that
includes the initialization list as a try block by placing the try keyword immediately following the closing brace for
the parameter list. Here’s an example:

Example::Example(int count) try : BaseClass(count)
{
 // Could throw an exception...
}
catch(...) // Catch any exception
{
 // Handle the exception...
 rethrow;
}

Chapter 15 ■ runtime errors and exCeptions

487

The try keyword precedes the colon that appears before the initialization list so the initialization list is within the
try block. Note that if there is an initialization list, you cannot place the try keyword between the initialization list
and the opening brace for the constructor body. The constructor for the Example class calls a base class constructor,
BaseClass, in the initialization list. If the base class constructor call or the code in the body of the Example constructor
throws an exception, it will be caught by the catch block. The ellipsis specifies that any type of exception is to be
caught but in general you can catch specific exception types and of course there can be multiple catch blocks. It’s not
essential that you rethrow the exception in the catch block. An exception thrown in a constructor try block will be
rethrown in any event when the end of the code in a catch block is reached.

Exceptions and Destructors
Automatic objects that are in scope when an exception is thrown are destroyed so a class destructor may be called
before the catch block that handles the exception is executed. Within a destructor, it can be important to know that
the destructor was called because an exception was thrown rather than because the object was destroyed by going out
of scope in the normal way. You can call the std::uncaught_exception() function that is declared in the exception
header to detect when a destructor is called because an exception was thrown. The function returns true if an
exception was thrown and the corresponding catch block hasn’t been executed, so this allows a suitable course of
action within your destructor to deal with this.

As a general rule, destructors shouldn’t throw exceptions. Destructors are noexcept by default so any exception
thrown within the destructor causes std::terminate() to be called, which ends the program immediately. If a
destructor is called as a result of an exception being thrown and the destructor throws an exception, this prevents
the catch block for the original exception from ever being reached, which could be disastrous. To avoid this situation
you need to make sure that no exceptions are thrown from a destructor in order to allow the handler for the original
exception to execute. Of course, to prevent exceptions from escaping beyond the bounds of a destructor, you can
enclose the code in a try block and use a handler that catches any exception but this is rarely necessary.

Standard Library Exceptions
Several exception types are defined in the Standard Library. They’re all derived from the std::exception class that
is defined in the exception header and they are all defined within the std namespace. The derived exception class
definitions are in the stdexcept header. None of the function members of the standard exception classes will throw an
exception. For reference, the hierarchy for the standard exception classes is shown in Figure 15-8.

Chapter 15 ■ runtime errors and exCeptions

488

There are a lot of types in Figure 15-8 and I’m not going to grind through where they all originate. Your library
documentation will identify when a function throws an exception but I’ll mention a few of the standard exception
types and explain a little about the thinking behind the hierarchy. The bad_cast exception that can be thrown by the
dynamic_cast<>() operator and the bad_alloc exception can be thrown by the operator new. A bad_typeid exception
is thrown if you use the typeid() operator with a null pointer. A shared_ptr constructor will throw a bad_weak_ptr
exception if you attempt to create a shared_ptr object from a weak_ptr that has expired.

Most of the types of exceptions fall into two groups with each group identified by a base class that is derived
from exception, either logic_error or runtime_error. For the most part, Standard Library functions do not throw
logic_error or runtime_exception objects directly, only objects of types derived from these, although std::locale
class members can throw runtime_error. The types that have logic_error as a base are exceptions thrown for errors
that could (at least in principle) have been detected before the program executed because they are caused by defects
in the program logic. The other group, derived from runtime_error, is for errors that are generally data dependent
and can only be detected at runtime. For instance, if you access characters in a string object using the at() member
function and the index is outside the legal range for the object, an exception of type out_of_range is thrown; this is
something you might have detected before calling at(). The ios_base::failure exception is thrown by functions in
the standard library that support stream input-output. I’ll discuss streams in depth in Chapter 17.

Figure 15-8. Standard exception class types

Chapter 15 ■ runtime errors and exCeptions

489

The Exception Class Definitions
You can usefully use a standard exception class as a base class for your own exception class. Since all the standard
exception classes have exception as a base, it’s a good idea to understand what members this class has because they
are inherited by all the other exception classes. The exception class is defined in the exception header like this:

class exception
{
public:
 exception() noexcept; // Default constructor
 exception(const exception&) noexcept; // Copy constructor
 exception& operator=(const exception&) noexcept; // Assignment operator
 virtual ~exception(); // Destructor
 virtual const char* what() const noexcept; // Return a message string
};

This is the public class interface specification and a particular implementation may have additional non-public
members. This is true of the other standard exception classes too. The noexcept that appears in the declaration of
the function members specifies that they do not throw exceptions, as I discussed earlier. The destructor is noexcept
by default. Notice that there are no data members. The null-terminated string returned by what() is defined within
the body of the function definition and is implementation dependent. This function is declared as virtual so it
will be virtual in any class derived from exception. If you have a virtual function that can deliver a message that
corresponds to each exception type, you can use it to provide a basic, economical way to record any exception that’s
thrown.

A catch block with a base class parameter matches any derived class exception type so you can catch any of the
standard exceptions by using a parameter of type exception&. Of course, you can also use a parameter of type logic_
error& or runtime_error& to catch any exceptions of types that are derived from these. You could provide the main()
function with a function try block, plus a catch block for exceptions of type exception:

int main()
try
{
 // Code for main...
}
catch(exception& ex)
{
 std::cout << typeid(ex).name() << " caught in main: " << ex.what() << std::endl;
}

The catch block catches all exceptions that have exception as a base and outputs the exception type and the
message returned by the what() function. Thus this simple mechanism gives you information about any exception
that is thrown and not caught anywhere in a program. If your program uses exception classes that are not derived
from exception, an additional catch block with ellipses in place of a parameter type catches all other exceptions,
but in this case you’ll have no access to the exception object and no information as to what it is. Making the body
of main() a try block is a handy catch-all mechanism but more local try blocks provide a direct way to localize the
source code that is the origin of an exception when it is thrown.

Chapter 15 ■ runtime errors and exCeptions

490

The logic_error and runtime_error classes each only add two constructors to the members they inherit from
exception. For example:

class logic_error : public exception
{
public:
 explicit logic_error(const string& what_arg);
 explicit logic_error(const char* what_arg);
};

runtime_error is defined similarly and all the subclasses except for system_error also have constructors that accept
a string or a const char* argument. The system_error class adds a data member of type std::error_code that
records an error code and the constructors provide for specifying the error code.

Using Standard Exceptions
There is no reason why you shouldn’t make use of the exception classes defined in the Standard Library in your
code, and a few very good reasons why you should. You can use the standard exception types in two ways: you
can throw exceptions of standard types in your code, and you can use a standard exception class as a base for your
own exception types. Obviously, if you are going to throw standard exceptions, you should only throw them in
circumstances consistent with their purpose. This means that you shouldn’t be throwing bad_cast exceptions for
instance because these have a very specific role already. However, you can use some of the exception classes derived
from logic_error and runtime_error directly. To use a familiar example, you might throw a range_error exception
in a Box class constructor when an invalid dimension is supplied as an argument:

Box::Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv}
{
 if(lv <= 0.0 || wv <= 0.0 || hv <= 0.0)
 throw std::range_error("Zero or negative Box dimension.");
}

Of course, the source file would need to include the stdexcept header that defines the range_error class.
The body of the constructor throws a range_error exception if any of the arguments are zero or negative.

Deriving your own Exception Classes
A major point in favor of deriving your own classes from one of the standard exception classes is that your classes
become part of the same family. This makes it possible for you to catch standard exceptions as well as your own
exceptions within the same catch blocks. For instance, if your exception class is derived from logic_error, then a
catch block with a parameter type of logic_error& catches your exceptions as well as the standard exceptions with
that base. A catch block with exception& as its parameter type always catches standard exceptions— as well as yours,
as long as your classes have exception as a base.

Chapter 15 ■ runtime errors and exCeptions

491

You could incorporate the Trouble exception class and the classes derived from it into the standard exception
family quite simply, by deriving it from the exception class. You just need to modify the class definition as follows:

class Trouble : public std::exception
{
public:
 Trouble(const char* pStr = "There's a problem") noexcept;
 virtual ~Trouble();
 virtual const char* what() const noexcept;

private:
 const char* message;
};

This provides its own implementation of the virtual what() member defined in the base class. Your version
displays the message from the class object, as before. With your new knowledge of the exception specification for
functions, you’ve added an exception specification to each member function so that no exceptions are thrown from
within them. You also need to update the member functions of the classes MoreTrouble and BigTrouble that are
derived from Trouble in a similar fashion. Each of the definitions for the member functions must include the same
exception specification that appears for the function in the class definition.

Returning to the Box class definition in the previous section - it would be useful to derive an exception class from
std::range_error to provide the option of a more specific string to be returned by what() that identifies the problem
causing the exception to be thrown. Here’s how you might do that:

#ifndef DIMENSION_ERROR_H
#define DIMENSION_ERROR_H
#include<stdexcept> // For derived exception classes
#include <string>; // For string type
using std::string;
using std::range_error;

class dimension_error : public range_error
{
public:
 using range_error::range_error; // Inherit base constructors

 dimension_error(std::string str, int dim) :
 std::range_error {str + std::to_string(dim)} {}
};
#endif

The using directive causes the base class constructors to be inherited so the class will include these two
constructors:

explicit dimension_error(const std::string& what_arg): std::range_error {what_arg} {}
explicit dimension_error(const char* what_arg): std::range_error {what_arg} {}

This allows dimension_error objects to be created in the same way as base class objects. The additional
constructor provides for an extra parameter that specifies the dimension value that caused the exception to be
thrown. It calls the base class constructor with the argument as a new string object that is formed from appending
a string representation of the second constructor argument, dim, with the string object passed as the first

Chapter 15 ■ runtime errors and exCeptions

492

argument. The to_string() function is a template function that is defined in the string header; it returns a string
representation of its argument, which can be a value of any fundamental numeric type. The inherited what() function
will return whatever string is passed to the constructor when the dimension_error object is created.

Here’s how this exception class could be used in the Box class definition:

// Box.h
#ifndef BOX_H
#define BOX_H
#include <algorithm> // For min() function template
#include "Dimension_error.h"

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv}
 {
 if(lv <= 0.0 || wv <= 0.0 || hv <= 0.0)
 throw dimension_error {"Zero or negative Box dimension.", std::min(lv, std::min(wv, hv))};
 }

 double volume() const { return length*width*height; }
};
#endif

The Box constructor throws a dimension_error exception if any of the arguments are zero or negative. The
constructor uses the min() template function from the algorithm header to determine the dimension argument that
is the minimum of those specified - that will be the worst offender. An example to demonstrate the dimension_error
class in action is:

// Ex15_08.cpp
// Using an exception class
#include <iostream>
#include "Box.h" // For the Box class
#include "Dimension_error.h" // For the dimension_error class

int main()
try
{
 Box box1 {1.0, 2.0, 3.0};
 std::cout << "box1 volume is " << box1.volume() << std::endl;
 Box box2 {1.0, -2.0, 3.0};
 std::cout << "box1 volume is " << box2.volume() << std::endl;
}

Chapter 15 ■ runtime errors and exCeptions

493

catch (std::exception& ex)
{
 std::cout << "Exception caught in main(): " << ex.what() << std::endl;
}

The output from this example is:

box1 volume is 6
Exception caught in main(): Zero or negative Box dimension.-2.000000

The body of main() is a try block and its catch block catches any type of exception that has std::exception

as a base. The output shows that the Box class constructor is throwing a dimension_error exception object when a
dimension is negative. The output also shows that the what() function that dimension_error inherits from
range_error is outputting the string formed in the dimension_error constructor call.

Summary
Exceptions are an integral part of programming in C++. Several operators throw exceptions and you’ve seen that
they’re used extensively within the Standard Library to signal errors. Therefore it’s important that you have a good
grasp of how exceptions work, even if you don’t plan to define your own exception classes. The important points that
I’ve covered in this chapter are as follows:

Exceptions are objects that are used to signal errors in a program.•	

Code that may throw exceptions is usually contained within a •	 try block, which enables an
exception to be detected and processed within the program.

The code to handle exceptions that may be thrown in a •	 try block is placed in one or more
catch blocks that must immediately follow the try block.

A •	 try block, along with its catch blocks, can be nested inside another try block.

A •	 catch block with a parameter of a base class type can catch an exception of a derived
class type.

A •	 catch block with the parameter specified as an ellipsis will catch an exception of any type.

If an exception isn’t caught by any •	 catch block, then the std::terminate() function is called,
and this calls std::abort().

The Standard Library defines a range of standard exception types in the •	 stdexcept header that
are derived from the std::exception class that is defined in the exception header.

The •	 noexcept specification for a function indicates that the function does not throw
exceptions.

A function •	 try block for a constructor can enclose the initialization list as well as the body of
the constructor.

The •	 uncaught_exception() function allows you to detect when a destructor is called as a
result of an exception being thrown.

Chapter 15 ■ runtime errors and exCeptions

494

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back over
the chapter for help. if you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code/), but that really should be a last resort.

exercise 15-1. derive your own exception class called •	 CurveBall from the std::exception
class to represent an arbitrary error, and write a function that throws this exception
approximately 25 percent of the time. (one way to do this is to generate a random number
between 1 and 20, and if the number is 5 or less, throw the exception.) define a main() function
to call this function 1,000 times and to record and display the number of times an exception was
thrown.

exercise 15-2. define another exception class called •	 TooManyExceptions. then throw an
exception of this type from the catch block for CurveBall exceptions in the previous exercise
when the number of exceptions caught exceeds 10.

exercise 15-3. implement your terminate handler in the code for the previous example so that a •	
message is displayed when the TooManyExceptions exception is thrown.

exercise 15-4. a •	 sparse array is an array in which most of the element values are zero or
empty. define a class for a one-dimensional sparse array of elements that are values of type
double such that only non-zero elements are stored. the potential number of elements should
be specified as a constructor argument, so a sparse array to store up to 100 elements can be
defined with this statement:

SparseArray values {100};

implement the subscript operator for the SparseArray class so that you can use array notation to
retrieve or store elements. throw an exception that identifies the erroneous subscript if the legal
index range is exceeded in the subscript operator function. (hint: You could use a linked list of
some kind internally to store the elements...). Create an example to demonstrate the operation
of the SparseArray class including catching and recovering from exceptions thrown by the
subscript operator function.

http://www.apress.com/source-code/

495

Chapter 16

Class Templates

You learned about templates that the compiler uses to create functions back in Chapter 8; this chapter is about
templates the compiler can use to create classes. Class templates are a powerful mechanism for generating new class
types automatically. A significant portion of the Standard Library is built entirely on the ability to define templates,
particularly the Standard Template Library, which includes many class and function templates.

By the end of this chapter, you will have learned:

What a class template is and how it is defined•	

What an instance of a class template is, and how it is created•	

How to define templates for member functions of a class template outside the class •	
template definition

How type parameters differ from non-type parameters•	

How static members of a class template are initialized•	

What a partial specialization of a class template is and how it is defined•	

How a class can be nested inside a class template•	

Understanding Class Templates
Class templates are based on the same idea as the function templates. A class template is a parameterized type — a
recipe for creating a family of class types, using one or more parameters. The argument for each parameter is typically
(but not always) a type. When you define a variable that has a type specified by a class template, the compiler uses the
template to create a definition of a class using the template arguments that you use in the type specification. You can
use a class template to generate any number of different classes. It’s important to keep in mind that a class template
is not a class, but just a recipe for creating classes, because this is the reason for many of the constraints on how you
define class templates.

A class template has a name, just like a regular class, and one or more parameters. A class template must be
unique within a namespace, so you can’t have another template with the same name and parameter list in the
namespace in which the template is defined. A class definition is generated from a class template when you supply
an argument for each of the template’s parameters. This is illustrated in Figure 16-1.

Chapter 16 ■ Class templates

496

Each class that the compiler generates from a template is called an instance of the template. When you define
a variable using a template type for the first time, you create an instance of the template; variables of the same type
defined subsequently will use the first instance created. You can also cause instances of a class template to be created
without defining a variable. The compiler does not process a class template in a source file in any way if the template
is not used to generate a class.

There are many applications for class templates but they are perhaps most commonly used to define container classes.
These are classes that can contain sets of objects of a given type, organized in a particular way. In a container class the
organization of the data is independent of the type of objects stored. Of course, you already have experience of instantiating
and using std::vector and std::array class templates that define containers where the data is organized sequentially.

Defining Class Templates
Class template definitions tend to look more complicated than they really are, largely because of the notation used to
define them and the parameters sprinkled around the statements in their definitions. Class template definitions are
similar to those of ordinary classes, but like so many things, the devil is in the details. A class template is prefixed by the
template keyword followed by the parameters for the template between angled brackets. The template class definition
consists of the class keyword followed by the class template name with the body of the definition between braces. Just
like a regular class, the whole definition ends with a semicolon. The general form of a class template looks like this:

template <template parameter list>
class ClassName
{
 // Template class definition...
};

Figure 16-1. Instantiating a template

Chapter 16 ■ Class templates

497

ClassName is the name of this template. You write the code for the body of the template just as you’d write
the body of an ordinary class, except that some of the member declarations and definitions will be in terms of the
template parameters that appear between the angled brackets. To create a class from a template, you must specify
arguments for every parameter in the list. This differs from a function template where most of the time the compiler
can deduce the template arguments from the context.

Template Parameters
A template parameter list can contain any number of parameters that can be of two kinds — type parameters and
non-type parameters. The argument corresponding to a type parameter is always a type, such as int, or std::string,
or Box; the argument for a non-type parameter can be a literal of an integral type such as 200, an integral constant
expression, a pointer or reference to an object, a pointer to a function or a pointer that is null. Type parameters are
much more commonly used than non-type parameters, so I’ll explain these first and defer discussion of non-type
parameters until later in this chapter.

Note ■ there’s a third possibility for class template parameters. a parameter can also be a template where the
argument must be an instance of a class template. a detailed discussion of this possibility is a little too advanced
for this book.

Figure 16-2 illustrates the options for type parameters. You can write type parameters using the class keyword
or the typename keyword preceding the parameter name (typename T in Figure 16-2 for example). I prefer to use
typename because class tends to connote a class type and the type argument doesn’t have to be a class type.
T is often used as a type parameter name (or T1, T2, and so on when there are several type parameters) because it’s
concise and easy to identify in the template definition but you can use whatever name you want.

Figure 16-2. Class template parameters

Chapter 16 ■ Class templates

498

A Simple Class Template
Let’s take an example of a class template for arrays that will do bounds checking on index values to make sure that
they are legal. The Standard Library provides a comprehensive implementation of an array template but building a
limited array template is an effective basis from which you can learn how templates work. You already have clear idea
of how arrays work so you can concentrate on the template specifics.

This template just has a single type parameter, so in outline, its definition will be:

template <typename T>
class Array
{
 // Definition of the template...
};

The Array template has just one type parameter, T. You can tell that it’s a type parameter because it’s preceded by
the keyword typename. Whatever is “plugged in” for the parameter when you instantiate the template — int, double*,
string, or whatever — determines the type of the elements stored in an object of the resultant class. The definition
in the body of the template will be much the same as a class definition, with data and function members that are
specified as public, protected, or private, and it will typically have constructors and a destructor. You can use T to
define data members or to specify the parameters or return types for function members, either by itself or in types
such as T* or T&&. You can use the template name with its parameter list — Array<T>, in this case — as a type name
when specifying data and function members.

The very least we need by way of a class interface is a constructor; a copy constructor because the space for the
array will need to be allocated dynamically; an assignment operator because the compiler will supply an unsuitable
version if there isn’t one defined; an overloaded subscript operator; and finally a destructor. With this in mind, the
initial definition of the template looks like this:

template <typename T>
class Array
{
private:
 T* elements; // Array of type T
 size_t size; // Number of array elements

public:
 explicit Array<T>(size_t arraySize); // Constructor
 Array<T>(const Array<T>& array); // Copy Constructor
 ~Array<T>(); // Destructor
 T& operator[](size_t index); // Subscript operator
 const T& operator[](size_t index) const; // Subscript operator-const arrays
 Array<T>& operator=(const Array<T>& rhs); // Assignment operator
};

The body of the template looks much like a regular class definition, except for the type parameter, T, in various
places. For example, it has a data member, elements, which is of type pointer to T (equivalent to array of T). When
the template is instantiated to produce a specific class definition, T is replaced by the actual type used to instantiate
the template. If you create an instance of the template for type double, elements will be of type double* or array of
double. The operations that the template needs to perform on objects of type T will obviously place requirements on
the definition of type T when T is a class type.

Chapter 16 ■ Class templates

499

The first constructor is declared as explicit to prevent its use for implicit conversions. The subscript operator
has been overloaded on const. The non-const version of the subscript operator applies to non-const array objects
and can return a non-const reference to an array element. Thus this version can appear on the left of an assignment.
The const version is called for const objects and returns a const reference to an element; obviously this can’t appear
on the left of an assignment.

The assignment operator function parameter is of type const Array<T>&. This type is const reference to Array<T>.
When a class is synthesized from the template — with T as type double, for example — this is a const reference to
the class name for that particular class, which would be const Array<double>, in this case. More generally, the class
name for a specific instance of a template is formed from the template name followed by the actual type argument
between angled brackets. The template name followed by the list of parameter names between angled brackets is
called the template ID.

It’s not essential to use the full template ID within a template definition. Within the body of the Array template,
Array by itself will be taken to mean Array<T>, and Array& will be interpreted as Array<T>&, so I can simplify the class
template definition:

template <typename T>
class Array
{
private:
 T* elements; // Array of type T
 size_t size; // Number of array elements

public:
 explicit Array(size_t arraySize); // Constructor
 Array(const Array& array); // Copy Constructor
 ~Array(); // Destructor
 T& operator[](size_t index); // Subscript operator
 const T& operator[](size_t index) const; // Subscript operator-const arrays
 Array& operator=(const Array& rhs); // Assignment operator
 size_t getSize() { return size; } // Accessor for size
};

Caution ■ You must use the template ID to identify the template outside the body of the template. this will apply
function members of a class template that are defined outside the template.

It’s desirable that the number of elements in an Array<T> object can be determined so the getSize() member
provides this. The assignment operator allows one Array<T> object to be assigned to another, which is something you
can’t do with ordinary arrays. If you wanted to inhibit this capability, you would still need to declare the operator=()
function as a member of the template. If you don’t, the compiler will create a public default assignment operator
when necessary for a template instance. To prevent use of the assignment operator, just declare it as a private
member of the class or use =delete in the declaration to prevent the compiler from supplying the default; then it
can’t be accessed. Of course, you don’t need an implementation for the function member in this case, because you
are not required to implement a function member unless it is used, and a private member will never be used outside
the class. The getSize() member is implemented within the class template so it’s inline by default and no external
definition is necessary.

Chapter 16 ■ Class templates

500

Defining Function Members of a Class Template
If you include the definitions for the function members of a class template within its body, they are implicitly inline
in any instance of the template, just like in an ordinary class. However, you’ll want to define members outside of the
template body from time to time, especially if they involve a lot of code. The syntax for doing this is a little different
from what applies for a normal class.

The clue to understanding the syntax is to realize that external definitions for function members of a class
template are themselves templates. This is true even if a function member has no dependence on the type parameter T,
so getSize() would need a template definition if it was not defined inside the class template. The parameter list for
the template that defines a function member must be identical to that of the class template. Let’s start by defining the
constructors for the Array template.

Constructor Templates
When you’re defining a constructor outside a class template definition, its name must be qualified by the class
template name in a similar way to a function member of an ordinary class. However, this isn’t a function definition,
it’s a template for a function definition, so that has to be expressed as well. Here’s the definition of the constructor:

template <typename T> // This is a template with parameter T
Array<T>::Array(size_t arraySize) : size {arraySize}, elements {new T[arraySize]}
{}

The first line identifies this as a template and also specifies the template parameter as T. Splitting the template
function declaration into two lines, as I’ve done here, is only for illustrative purposes, and isn’t necessary if the whole
construct fits on one line. The template parameter is essential in the qualification of the constructor name because
it ties the function definition to the class template. Note that you don’t use the typename keyword in the qualifier for
the member name; it’s only used in the template parameter list. You don’t need a parameter list after the constructor
name. When the constructor is instantiated for an instance of the class template — for type double for example — the
type name replaces T in the constructor qualifier, so the qualified constructor name for the class Array<double> is
Array<double>::Array().

In the constructor, you must allocate memory in the free store for an elements array that contains size elements
of type T. If T is a class type, a public default constructor must exist in the class T. If it doesn’t, the instance of this
constructor won’t compile. The operator new throws a bad_alloc exception if the memory can’t be allocated for any
reason, so you might want to put the body of the Array constructor in a try block:

template <typename T> // This is a template with parameter T
Array<T>::Array(size_t arraySize) try : size {arraySize}, elements {new T[arraySize]}
{}
catch (std::bad_alloc&)
{
 std::cerr << "memory allocation failed for Array object.\n";
}

This will output a message to std::cerr if new fails to allocate the memory. cerr is the standard error output
stream defined in the iostream header. It encapsulates the same destination as cout but ensures the stream is flushed
so the output appears immediately. The parameter name is omitted from the catch block parameter list because it is
not referenced; some compilers will issue a warning for local variables that are never referenced.

Chapter 16 ■ Class templates

501

Of course, members defined within a class template body are inline by default and you can specify this too for
an external template for a function member of a class template:

template <typename T> // This is a template with parameter T
inline Array<T>::Array(size_t arraySize)
try : size {arraySize}, elements {new T[arraySize]}
{}
catch (std::bad_alloc&)
{
 std::cerr << "memory allocation failed for Array object.\n";
}

You place the inline keyword following the template parameter list and preceding the member name.
The copy constructor has to create an array for the object being created that’s the same size as that of its

argument, and then copy the latter’s data members to the former. Here’s the code to do that:

template <typename T>
inline Array<T>::Array(const Array& array)
try : size {array.size}, elements {new T[array.size]}
{
 for (size_t i {}; i < size; ++i)
 elements[i] = array.elements[i];
}
catch (std::bad_alloc&)
{
 std::cerr << "memory allocation failed for Array object copy.\n";
}

This assumes that the assignment operator works for type T. This demonstrates how important it is to always
define the assignment operator for classes that allocate memory dynamically. If the class T doesn’t define it, the
default for T is used, with undesirable side effects if creating a T object involves allocating memory dynamically.
Without seeing the code for the template before you use it, you may not realize the dependency on the assignment
operator. Because the copy constructor also allocates memory using the new operator, the body is also in a try block
and the catch block issues a message that identifies where the memory allocation failed.

The Destructor Template
In many cases a default constructor will be OK in a class generated from a template but this is not the case here.
The destructor must release the memory for the elements array, so its definition will be:

template <typename T> inline Array<T>::~Array()
{
 delete[] elements;
}

We are releasing memory allocated for an array so we must use the delete[] form of the operator. Failing to
define this template would result in all classes generated from the template having major memory leaks.

Chapter 16 ■ Class templates

502

Subscript Operator Templates
The operator[]() function is quite straightforward, but we must ensure illegal index values can’t be used. For an
index value that is out of range, we can throw an exception:

template <typename T> inline T& Array<T>::operator[](size_t index)
{
 if (index >=size) throw std::out_of_range {"Index too large: " + std::to_string(index)};

 return elements[index];
}

I could define an exception class to use here, but it’s easier to borrow the out_of_range class type that’s already
defined in the stdexcept header. This is thrown if you index a string object with an out of range index value for
example, so the usage here is consistent with that. An exception of type out_of_range is thrown if the value of index
is not between 0 and size-1. The argument to the out_of_range constructor is a string object that describes the error
and includes the erroneous index value. A null-terminated string (type const char*) corresponding to the string
object is returned by the what() member of the exception object. The argument that is passed to the out_of_range
constructor is a message that includes the erroneous index value to make tracking down the source of the problem a
little easier. An index cannot be less than zero because it is of type size_t, which is an unsigned integer type.

The const version of the subscript operator function will be almost identical to the non-const version:

template <typename T> inline const T& Array<T>::operator[](size_t index) const
{
 if (index >=size) throw std::out_of_range {"Index too large: " + std::to_string(index)};

 return elements[index];
}

The Assignment Operator Template
There’s more than one possibility for how the assignment operator works. The operands must be of the same
Array<T> type with the same T but this does not prevent the size members from having different values. You could
implement the assignment operator so that the left operand retains the same value for its size member. If the left
operand has fewer elements than the right operand, you would just copy sufficient elements from the right operand to
fill the array for the left operand. If the left operand has more elements than the right operand, you could either leave
the excess elements at their original values or set them to the value produced by the default T constructor.

To keep it simple, I’ll just make the left operand have the same size value as the right operand. To implement
this, the assignment operator function must release any memory allocated in the destination object and then do what
the copy constructor did, after checking that the objects are not identical of course. Here’s the definition:

template <typename T> inline Array<T>& Array<T>::operator=(const Array& rhs)
try
{
 if (&rhs != this) // If lhs != rhs...
 { // ...do the assignment...
 if (elements) // If lhs array exists
 delete[] elements; // release the free store memory

Chapter 16 ■ Class templates

503

 size = rhs.size;
 elements = new T[rhs.size];
 for (size_t i {}; i < size; ++i)
 elements[i] = rhs.elements[i];
 }
 return *this; // ... return lhs
}
catch (std::bad_alloc&)
{
 std::cerr << "memory allocation failed for Array assignment.\n";
}

Checking to make sure that the left operand is identical to the right is essential; otherwise you’d free the memory
for the elements member of the object pointed to by this, then attempt to copy it to itself when it no longer exists.
When the operands are different, you release any heap memory owned by the left operand before creating a copy of
the right operand. This has the potential to throw bad_alloc so I have put the function body in a try block too. Heap
memory allocation failure is a rare occurrence these days because physical memory is large and virtual memory is
very large so checking for bad_alloc is often omitted. If bad_alloc is thrown, you’ll definitely know about it anyway.
I’ll omit the try/catch combination for bad_alloc from any subsequent examples where it might apply to keep the
code shorter and less cluttered.

All the function member definitions that you’ve written here are templates and they are inextricably bound to
the class template. They are not function definitions, they’re templates to be used by the compiler when the code for
one of the member functions of the class template needs to be generated, so they need to be available in any source
file that uses the template. For this reason, you’d normally put all the definitions of the member functions for a class
template in the header file that contains the class template itself.

Instantiating a Class Template
The compiler instantiates a class template as a result of a definition of an object that has a type produced by the
template. Here’s an example:

Array<int> data {40};

When this statement is compiled, two things happen: the definition for the Array<int> class is created so that
the type is identified, and the constructor definition is generated because it must be called to create the object. This
is all that the compiler needs to create the data object so this is the only code that it provides from the templates at
this point.

The class definition that’ll be included in the program is generated by substituting int in place of T in the
template, but there’s one subtlety. The compiler only compiles the member functions that your program uses, so you
do not necessarily get the entire class that would be produced by a simple substitution for the template parameter.
On the basis of just the definition for the object, data, it is equivalent to:

class Array<int>
{
private:
 int* elements; // Array of type int
 size_t size; // Number of array elements

public:
 Array(size_t arraySize); // Constructor
};

Chapter 16 ■ Class templates

504

You can see that the only function member is the constructor. The compiler won’t create instances of anything
that isn’t required to create the object, and it won’t include parts of the template that aren’t needed in the program.
This implies that there can be coding errors in a class template and a program that uses the template may still
compile, link, and run successfully. If the errors are in parts of the template that aren’t required by the program, they
won’t be detected by the compiler because they are not included in the code that is compiled. Obviously, you are
almost certain to have other statements in a program besides the declaration of an object that use other function
members — for instance, you’ll always need the destructor to destroy the object — so the ultimate version of the
class in the program will include more than that shown in the preceding code. The point is that what is finally in the
class generated from the template will be precisely those parts that are actually used in the program, which is not
necessarily the complete template.

Caution ■ Of course, this implies that you must take care when testing your own class templates to ensure that all the
function members are generated and tested. You also need to consider what the template does across a range of types so
you need to test a template with pointers and references as the template type argument.

The instantiation of a class template from a definition is referred to as an implicit instantiation of the template,
because it arises as a by-product of declaring an object. This terminology is also to distinguish it from an explicit
instantiation of a template, which I’ll get to shortly and which behaves a little differently.

As I said, the declaration of data also causes the constructor, Array<int>::Array(), to be called, so the compiler
uses the function template that defines the constructor to create a definition for the constructor for the class:

inline Array<int>::Array(size_t arraySize) try : size {arraySize}, elements {new int[arraySize]}
{}
catch (std::bad_alloc&)
{
 std::cerr << "memory allocation failed for Array object creation.\n";
}

Each time you define a variable using a class template with a different type argument, a new class is defined and
included in the program. Because creating the class object requires a constructor to be called, the definition of the
appropriate class constructor is also generated. Of course, creating objects of a type that you’ve created previously
doesn’t necessitate any new template instances. The compiler uses any previously created template instances as
required.

When you use the function members of a particular instance of a class template — by calling functions on
the object that you defined using the template, for example — the code for each member function that you use is
generated. If you have member functions that you don’t use, no instances of their templates are created. The creation
of each function definition is an implicit template instantiation because it arises out of the use of the function. The
template itself isn’t part of your executable code. All it does is enable the compiler to generate the code that you need
automatically. This process is illustrated in Figure 16-3.

Chapter 16 ■ Class templates

505

Note that a class template is only implicitly instantiated when an object of the specific template type needs to be
created. Declaring a pointer to an object type won’t cause an instance of the template to be created. Here’s an example:

Array<string>* pObject; // A pointer to a template type

This defines pObject as type pointer to type Array<string>. No object of type Array<string> is created as a
result of this statement so no template instance is created. Contrast this with the following statement:

Array<std::string*> pMessages {10};

This time the compiler does create an instance of the class template. This defines an Array<std::string*>
object so each element of pMessages can store a pointer to an std::string object. An instance of the template
defining the constructor is also generated. Let’s try out the Array template in a working example. You can put the class
template and the templates defining the member functions of the template all together in a header file Array.h:

// Array class template definition
#ifndef ARRAY_H
#define ARRAY_H
#include <stdexcept> // For standard exception types
#include <string> // For to_string()

// Definition of the Array<T> template...

// Definitions of the templates for function members of Array<T>...
#endif

Figure 16-3. Implicit instantiation of a class template

Chapter 16 ■ Class templates

506

To use the class template, you just need a program that’ll declare some arrays using the template and try them
out. The example will create an Array of Box objects - you can use this definition for the Box class:

// Box.h
#ifndef BOX_H
#define BOX_H

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}
 Box() = default;

 double volume() const { return length*width*height; }
};
#endif

I’ll use some out-of-range index values in the example, just to show that it works:

// Ex16_01.cpp
// Using a class template
#include "Box.h"
#include "Array.h"
#include <iostream>
#include <iomanip>

int main()
{
 const size_t nValues {50};
 Array<double> values {nValues}; // Class constructor instance created
 try
 {
 for (size_t i {}; i < nValues; ++i)
 values[i] = i + 1; // Member function instance created

 std::cout << "Sums of pairs of elements:";
 size_t lines {};
 for (size_t i {nValues - 1} ; i >=0 ; i--)
 std::cout << (lines++ % 5 == 0 ? "\n" : "")
 << std::setw(5) << values[i] + values[i - 1];
 }
 catch (const std::out_of_range& ex)
 {
 std::cerr << "\nout_of_range exception object caught! " << ex.what() << std::endl;
 }

Chapter 16 ■ Class templates

507

 try
 {
 const size_t nBoxes {10};
 Array<Box> boxes {nBoxes}; // Template instance created
 for (size_t i {} ; i <= nBoxes ; ++i) // Member instance created in loop
 std::cout << "Box volume is " << boxes[i].volume() << std::endl;
 }
 catch (const std::out_of_range& ex)
 {
 std::cerr << "\nout_of_range exception object caught! " << ex.what() << std::endl;
 }
}

This example will produce the following output:

Sums of pairs of elements:
 99 97 95 93 91
 89 87 85 83 81
 79 77 75 73 71
 69 67 65 63 61
 59 57 55 53 51
 49 47 45 43 41
 39 37 35 33 31
 29 27 25 23 21
 19 17 15 13 11
 9 7 5 3
out_of_range exception object caught! Index too large: 4294967295
Box volume is 1
Box volume is 1
Box volume is 1
Box volume is 1
Box volume is 1
Box volume is 1
Box volume is 1
Box volume is 1
Box volume is 1
Box volume is 1

out_of_range exception object caught! Index too large: 10

The main() function creates an object of type Array<double> that implicitly creates an instance of the class

template with a type argument of double. The number of elements in the array is specified by the argument to the
constructor, nValues. The compiler will also create an instance of the template for the constructor definition.

Within the first try block, the elements of the values object with are initialized values from 1 to nValues in a
for loop. The expression values[i] results in an instance of the subscript operator function being created. This
instance is called implicitly by this expression as values.operator[](i). Because values is not const, the non-const
version of the operator function is called. A second for loop in the try block outputs the sums of successive pairs of
elements, starting at the end of the array. The code in this loop also calls the subscript operator function, but because
the instance of the function template has already been created, no new instance is generated. Clearly, the expression
values[i-1] has an illegal index value when i is 0, so this causes an exception to be thrown by the operator[]()
function. The catch block catches this and outputs a message to the standard error stream. The what() function for
the out_of_range exception returns a null-terminated string that corresponds to the string object passed to the

Chapter 16 ■ Class templates

508

constructor when the exception object was created. You can see from the output that the exception was thrown by the
overloaded subscript operator function and that the index value is very large. The value of the index suggests that it
originated by decrementing an unsigned zero value.

When the exception is thrown by the subscript operator function, control is passed immediately to the handler,
so the illegal element reference is not used and nothing is stored at the location indicated by the illegal index.
Of course, the loop also ends immediately at this point.

The next try block defines an object that can store Box objects. This time, the compiler generates an instance of
the class template, Array<Box>, which stores an array of Box objects, because the template has not been instantiated
for Box objects previously. The statement also calls the constructor to create the boxes object so an instance of the
function template for the constructor is created. The constructor for the Array<Box> class calls the default constructor
for the Box class when the elements member is created in the free store. Of course, all the Box objects in the elements
array have the default dimensions of 1 × 1 × 1.

The volume of each Box object in boxes is output in a for loop. The expression boxes[i] calls the overloaded
subscript operator, so again the compiler uses an instance of the template to produce a definition of this function.
When i has the value nBoxes, the subscript operator function throws an exception because an index value of nBoxes
is beyond the end of the elements array. The catch block following the try block catches the exception. Because the
try block is exited, all locally declared objects will be destroyed, including the boxes object. The values object still
exists at this point because it was created before the first try block and it is still in scope.

Static Members of a Class Template
A class template can have static members, just like an ordinary class. Static function members of a template class are
quite straightforward. Each instance of a class template instantiates the static function member as needed. A static
function member has no this pointer and therefore can’t refer to non-static members of the class. The rules for
defining static function members of a class template are the same as those for a class, and a static function member of
a class template behaves in each instance of the template just as if it were in an ordinary class.

A static data member is a little more interesting because it needs to be initialized outside the template definition.
Suppose the Array<T> template contained a static data member of type T:

template <typename T>
class Array
{
private:
 static T value; // Static data member
 T* elements; // Array of type T
 size_t size; // Number of array elements

public:
 explicit Array(size_t arraySize); // Constructor
 Array(const Array& array); // Copy Constructor
 ~Array(); // Destructor
 T& operator[](size_t index); // Subscript operator
 const T& operator[](size_t index) const; // Subscript operator-const arrays
 Array& operator=(const Array& rhs); // Assignment operator
 size_t getSize() { return size; } // Accessor for size
};

Chapter 16 ■ Class templates

509

The initialization for the value member is accomplished through a template in the same header file:

template <typename T> T Array<T>::value; // Initialize static data member

This initializes value with the equivalent of 0 so it effectively calls the default constructor for type T. A static data
member is always dependent on the parameters of the template of which it is a member regardless of its type, so you
must initialize value as a template with parameter T. The static variable name must also be qualified with the type
name Array<T> so that it’s identified with the instance of the class template that is generated. You can’t use Array by
itself here, because this template for initializing value is outside the body of the class template, and the template ID is
Array<T>. Suppose you wanted a static member of Array<T> to define a minimum number of elements:

template <typename T>
class Array
{
private:
 static size_t minSize; // Minimum number of elements

 // Rest of the class as before...
};

Even though minSize is of a fundamental type - size_t is an alias for an unsigned integer type - you still must
initialize it in a template and qualify the member name with the template ID:

template<typename T> size_t Array<T>::minSize {5};

minSize can only exist as a member of a class generated from the Array<T> template and each such class has
its own minSize member. It is therefore inevitable that it can only be initialized through another template. Note that
creating an instance of a template does not guarantee that a static data member is defined. A static data member of a
class template will only be defined if it is used because the compiler will only process the template that initializes the
static data member when the member is used.

Non-Type Class Template Parameters
A non-type parameter looks like a function parameter — a type name followed by the name of the parameter.
Therefore, the argument for a non-type parameter is a value of the given type. However, you can’t use just any type for
a non-type parameter in a class template. Non-type parameters are intended to be used to define values that might be
useful in specifying a container, such as array dimensions or other size specification, or possibly as upper and lower
limits for index values.

A non-type parameter can only be an integral type, such as size_t or long; an enumeration type; a pointer or a
reference to an object, such as string* or Box&; a pointer or a reference to a function; or a pointer to a member of a
class. You can conclude from this that a non-type parameter can’t be a floating point type or any class type, so types
double, Box, and std::string are not allowed, and neither is std::string**. Remember that the primary rationale
for non-type parameters is to allow sizes and range limits for containers to be specified. Of course, the argument
corresponding to a non-type parameter can be an object of a class type, as long as the parameter type is a reference.
For a parameter of type Box&, for example, you could use any object of type Box as an argument.

Chapter 16 ■ Class templates

510

A non-type parameter is written just like a function parameter, with a type name followed by a parameter name.
Here’s an example:

template <typename T, size_t size>
class ClassName
{
 // Definition using T and size...
};

This template has a type parameter, T, and a non-type parameter, size. The definition is expressed in terms of
these two parameters and the template name. If you need it, the type name of a type parameter can also be the type for
a non-type parameter:

template <typename T, // T is the name of the type parameter
 size_t size,
 T value> // T is also the type of this non-type parameter
class ClassName
{
 // Definition using T, size, and value...
};

This template has a non-type parameter, value, of type T. The parameter T must appear before its use in the
parameter list, so value couldn’t precede the type parameter T here. Note that using the same symbol with the type
and non-type parameters implicitly restricts the possible arguments for the type parameter to the types permitted for
a non-type argument (in other words, T can only be an integral type).

To illustrate how you could use non-type parameters, suppose you defined the class template for arrays as
follows:

template <typename T, size_t arraySize, T value>
class Array
{
 // Definition using T, size, and value...
};

You could now use the non-type parameter, value, to initialize each element of the array in the constructor:

template <typename T, int arraySize, T value>
Array<T, arraySize, value>::Array(size_t arraySize) : size {arraySize}, elements {new T[size]}
{
 for(size_t i {} ; i < size ; ++i)
 elements[i] = value;
}

This is not a very intelligent approach to initializing the members of the array. This places a serious constraint on
the types that are legal for T. Because T is used as the type for a non-type parameter it is subject to the constraints on
non-type parameter types. A non-type parameter can only be an integral type, a pointer, or a reference, so you can’t
create Array objects to store double values or Box objects, so the usefulness of this template is somewhat restricted.

Chapter 16 ■ Class templates

511

To provide a more credible example, I’ll add a non-type parameter to the Array template to allow flexibility in
indexing the array:

template <typename T, int startIndex>
class Array
{
private:
 T* elements; // Array of type T
 size_t size; // Number of array elements

public:
 explicit Array(size_t arraySize); // Constructor
 Array(const Array& array); // Copy Constructor
 ~Array(); // Destructor
 T& operator[](int index); // Subscript operator
 const T& operator[](int index) const; // Subscript operator-const arrays
 Array& operator=(const Array& rhs); // Assignment operator
 size_t getSize() { return size; } // Accessor for size
};

This adds a non-type parameter, startIndex of type int. The idea is that you can specify that you want to
use index values that vary over a given range. For example, to create an Array<> object that allows index values
from -10 to +10, you would specify the array with the non-type parameter value as –10 and the argument to the
constructor as 21 because the array would need 21 elements. Index values can now be negative so the parameter for
the subscript operator functions has been changed to type int.

Because the class template now has two parameters, the templates defining the member functions of the class
template must have the same two parameters. This is necessary even if some of the functions aren’t going to use the
non-type parameters. The parameters are part of the identification for the class template, so to match the template,
they must have the same parameter list.

There are some serious disadvantages to what I have done here. A consequence of adding the startIndex
template parameter is that different values for the argument generate different template instances. This means that an
array of double values indexed from 0 will be a different type from an array of double values indexed from 1. If you use
both in a program, two independent class definitions will be created from the template, each with whatever member
functions you use. This has at least two undesirable consequences: first, you’ll get a lot more compiled code in your
program than you might have anticipated (a condition often known as code bloat); second (and far worse), you won’t
be able to intermix elements of the two types in an expression. It would be much better to provide flexibility for the
range of index values by adding a parameter to the constructor rather than using a non-type template parameter.
Here’s how that would look:

template <typename T>
class Array
{
private:
 T* elements; // Array of type T
 size_t size; // Number of array elements
 int start; // Starting index value

Chapter 16 ■ Class templates

512

public:
 explicit Array(size_t arraySize, int startIndex=0); // Constructor
 T& operator[](int index); // Subscript operator
 const T& operator[](int index) const; // Subscript operator-const arrays
 Array& operator=(const Array& rhs); // Assignment operator
 size_t getSize() { return size; } // Accessor for size
};

The extra member, start, stores the starting index for the array specified by the second constructor argument.
The default value for the startIndex parameter is 0, so normal indexing is obtained by default.

In the interests of seeing how the function members are defined when you have a non-template parameter, let’s
ignore the better definition and complete the set of function templates that you need for the version of the Array class
template with the additional non-type parameter.

Templates for Function Members with Non-Type Parameters
Because you’ve added a non-type parameter to the class template definition, the code for the templates for all
function members needs to be changed. The template for the constructor is:

template <typename T, int startIndex>
inline Array<T, startIndex>::Array(size_t arraySize) :
 size {arraySize}, elements {new T[arraySize]}
{}

The template ID is now Array<T, startIndex>, so this is used to qualify the constructor name. This is the only
change from the original definition apart from adding the new template parameter to the template and omitting the
try/catch blocks to deal with bad_alloc.

For the copy constructor, the changes to the template are similar:

template <typename T, int startIndex>
inline Array<T, startIndex>::Array(const Array& array) :
 size {array.size}, elements {new T[array.size]}
{
 for (size_t i {} ; i < size ; ++i)
 elements[i] = array.elements[i];
}

Of course, the external indexing of the array doesn’t affect how you access the array internally; it’s still indexed
from zero here.

The destructor only needs the extra template parameter:

template <typename T, int startIndex>
inline Array<T, startIndex>::~Array()
{
 delete[] elements;
}

Chapter 16 ■ Class templates

513

The template definition for the non-const subscript operator function now becomes:

template <typename T, int startIndex>
T& Array<T, startIndex>::operator[](int index)
{
 if (index > startIndex + static_cast<int>(size) - 1)
 throw std::out_of_range {"Index too large: " + std::to_string(index)};

 if(index < startIndex)
 throw std::out_of_range {"Index too small: " + std::to_string(index)};

 return elements[index - startIndex];
}

Significant changes have been made here. The index parameter is of type int to allow negative values.
The validity checks on the index value now verify that it’s between the limits determined by the non-type template
parameter and the number of elements in the array. Index values can only be from startIndex to startIndex+size-1.
Because size_t is usually an unsigned integer type you must explicitly cast it to int; if you don’t, the other values in
the expression will be implicitly converted to size_t, which will produce a wrong result if startIndex is negative. The
choice of message for the exception and the expression selecting it has also been changed.

The const version of the subscript operator function changes in a similar fashion:

template <typename T, int startIndex>
const T& Array<T, startIndex>::operator[](int index) const
{
 if (index > startIndex + static_cast<int>(size) - 1)
 throw std::out_of_range {"Index too large: " + std::to_string(index)};

 if(index < startIndex)
 throw std::out_of_range {"Index too small: " + std::to_string(index)};

 return elements[index - startIndex];
}

Finally, you need to alter the template for the assignment operator, but only the template parameter list and the
template ID that qualifies the operator name need to be modified:

template <typename T, int startIndex>
Array<T, startIndex>& Array<T, startIndex>::operator=(const Array& rhs)
{
 if (&rhs != this) // If lhs != rhs...
 { // ...do the assignment...
 if (elements) // If lhs array exists
 delete[] elements; // release the free store memory

 size = rhs.size;
 elements = new T[rhs.size];
 for (size_t i {}; i < size; ++i)
 elements[i] = rhs.elements[i];
 }
 return *this; // ... return lhs
}

Chapter 16 ■ Class templates

514

There are restrictions on how you use a non-type parameter within a template. In particular, you must not modify
the value of a parameter within the template definition. Consequently, a non-type parameter cannot be used on the
left of an assignment or have the increment or decrement operator applied to it — in other words, it’s treated as a
constant. All parameters in a class template must always be specified to create an instance, unless there are default
values for them. I’ll discuss the use of default argument values for class template parameters later in the chapter.

In spite of the shortcomings of the Array template with a non-type parameter, let’s see it in action in a working
example. You just need to assemble the definitions for the function member templates into a header file together
with the Array template definition with the non-type parameter. The following example will exercise the new features
using Box.h from Ex16_01:

// Ex16_02.cpp
// Using a class template with a non-type parameter
#include "Box.h"
#include "Array.h"
#include <iostream>
#include <iomanip>

int main()
try
{
 try
 {
 const size_t size {21}; // Number of array elements
 const int start {-10}; // Index for first element
 const int end {start + static_cast<int>(size) - 1}; // Index for last element

 Array<double, start> values {size}; // Define array of double values

 for (int i {start}; i <= end; ++i) // Initialize the elements
 values[i] = i - start + 1;

 std::cout << "Sums of pairs of elements: ";
 size_t lines {};
 for (int i {end} ; i >=start; --i)
 std::cout << (lines++ % 5 == 0 ? "\n" : "")
 << std::setw(5) << values[i] + values[i - 1];
 }
 catch (const std::out_of_range& ex)
 {
 std::cerr << "\nout_of_range exception object caught! " << ex.what() << std::endl;
 }

 const int start {};
 const size_t size {11};

 Array<Box, start - 5> boxes {size}; // Create array of Box objects

 for (int i {start - 5}; i <= start + static_cast<int>(size) - 5; ++i)
 std::cout << "Box[" << i << "] volume is " << boxes[i].volume() << std::endl;
}

Chapter 16 ■ Class templates

515

catch (const std::exception& ex)
{
 std::cerr << typeid(ex).name() << " exception caught in main()! "
 << ex.what() << std::endl;
}

This displays the following output:

Sums of pairs of elements:
 41 39 37 35 33
 31 29 27 25 23
 21 19 17 15 13
 11 9 7 5 3
out_of_range exception object caught! Index too small: -11
Box[-5] volume is 1
Box[-4] volume is 1
Box[-3] volume is 1
Box[-2] volume is 1
Box[-1] volume is 1
Box[0] volume is 1
Box[1] volume is 1
Box[2] volume is 1
Box[3] volume is 1
Box[4] volume is 1
Box[5] volume is 1
class std::out_of_range exception caught in main()! Index too large: 6

The body of main() is a try block that catches any uncaught exceptions that have std::exception as a base

class so std::bad_alloc will be caught by this. The nested try block, starts by defining constants that specify
the range of index values and the size of the array. The size and start variables are used to create an instance of the
Array template to store 21 values of type double. The second template argument corresponds to the non-type
parameter and specifies the lower limit for the index values of the array. The size of the array is specified by the
constructor argument.

The for loop that follows assigns values to the elements of the values object. The loop index, i, runs from the
lower limit start, which will be –10, up to and including the upper limit end, which will be +10. Within the loop the
values of the array elements are set to run from 1 to 21.

Next the sums of pairs of successive elements are output starting at the last array element and counting down.
The lines variable is used to output the sums five to a line. As in the earlier example, sloppy control of the index value
results in the expression values[i–1] causing an out_of_range exception to be thrown. The handler for the nested
try block catches it and displays the message you see in the output.

The statement that creates an array to store Box objects is in the outer try block that is the body of main().
The type for boxes is Array<Box,start-5>, which demonstrates that expressions are acceptable as argument values
for non-type parameters in a template instantiation. Such an expression must either evaluate to a value that has the
type of the parameter, or it must be possible to convert the result to the appropriate type by means of an implicit
conversion. You need to take care if such an expression includes the > character. Here’s an example:

Array<Box, start > 5 ? start : 5> boxes; // Will not compile!

Chapter 16 ■ Class templates

516

The intent of the expression for the second argument that uses the conditional operator is to supply a value of
at least 5, but as it stands, this won’t compile. The > in the expression is paired with the opening angled bracket, and
closes the parameter list. Parentheses are necessary to make the statement valid:

Array<Box, (start > 5 ? start : 5)> boxes; // OK

Parentheses are also likely to be necessary for expressions for non-type parameters that involve the arrow
operator (->), or the shift right operator (>>).

The next for loop throws another exception, this time because the index exceeds the upper limit. The exception
is caught by the catch block for the body of main(). The parameter is a reference to the base class and the output
shows that the exception is identified as type std::out_of_range, thus demonstrating there is no object slicing
occurring with a reference parameter. There’s a significant difference between the ways the two exceptions were
caught. Catching the exception in a catch block for the body of main() means that the program ends at this point.
The previous exception was caught inside the body of main() in the catch block for the nested try block so it was
possible to allow program execution to continue.

You must always keep in mind that non-type parameter arguments in a class template are part of the type of
an instance of the template. Every unique combination of template arguments produces another class type. As I
indicated earlier, the usefulness of the Array<T,int> template is very restricted compared to the original. You can’t
assign an array of ten values of a given type to another array of ten values of the same type if the starting indexes for
the arrays are different — the arrays will be of different types. The class template with an extra data member and an
extra constructor parameter is much more effective. You should always think twice about using non-type parameters
in a class template to be sure that they’re really necessary. Often you’ll be able to use an alternative approach that will
provide a more flexible template and more efficient code.

Arguments for Non-Type Parameters
An argument for a non-type parameter that is not a reference or a pointer must be a compile-time constant
expression. This means that you can’t use an expression containing a non-const integer variable as an argument,
which is a slight disadvantage, but the compiler will validate the argument, which is a compensating plus.
For example, the following statements won’t compile:

int start {-10};
Array<double, start> values(21); // Won't compile because start is not const

The compiler will generate a message to the effect that the second argument here is invalid. Here are correct
versions of these two statements:

const int start {-10};
Array<double, start> values(21); // OK

Now that start has been declared as const, the compiler can rely on its value, and both template arguments are
now legal. The compiler applies standard conversions to arguments when they are necessary to match the parameter
type. For example, if you had a non-type parameter declared as type const size_t, the compiler converts an integer
literal such as 10 to the required argument type.

Pointers and Arrays as Non-Type Parameters
The argument for a non-type parameter that is a pointer must be an address, but it can’t be any old address. It must be
the address of an object or function with external linkage; so for example, you can’t use addresses of array elements
or addresses of non-static class members as arguments. This also means that if a non-type parameter is of type const
char*, you can’t use a string literal as an argument when you instantiate the template. If you want to use a string literal
as an argument in this case, you must initialize a pointer variable with the address of the string literal, and pass the
pointer as the template argument.

Chapter 16 ■ Class templates

517

Because a pointer is a legal non-type template parameter, you can specify an array as a parameter, but an array
and a pointer are not always interchangeable when supplying arguments to a template. For example, you could define
a template as follows:

template <long* numbers>
class MyClass
{
 // Template definition...
};

You can now create instances of this template with the following code:

long data[10]; // Global
long* pData {data}; // Global

MyClass<pData> values;
MyClass<data> values;

Either an array name or a pointer of the appropriate type can be used as an argument corresponding to a
parameter that is a pointer. However, the converse is not the case. Suppose that you have defined this template:

template <long numbers[10]>
class AnotherClass
{
 // Template definition...
};

The parameter is an array with 10 elements of type long, and the argument must be of the same type. In this case,
you can the data array defined earlier as the template argument:

AnotherClass<data> numbers; // OK

However, you can’t use a pointer, so the following won’t compile:

AnotherClass<pData> numbers; // Not allowed!

The reason is that an array type is quite different from a pointer type; an array name by itself represents as
address but it is not a pointer and cannot be modified in the way that a pointer can.

Default Values for Template Parameters
You can supply default argument values for both type and non-type parameters in a class template. This works in a
similar way to default values for function parameters - if a given parameter has a default value, then all subsequent
parameters in the list must also have default values specified. If you omit an argument for a template parameter that
has a default value specified, the default is used, just like with default parameter values in a function. Similarly, when
you omit the argument for a given parameter in the list, all subsequent arguments must also be omitted.

Chapter 16 ■ Class templates

518

The default values for class template parameters are written in the same way as defaults for function parameters
— following an = after the parameter name. You could supply defaults for both the parameters in the version of the
Array template with a non-type parameter. Here’s an example:

template < typename T = int, int startIndex = 0>
class Array
{
 // Template definition as before...
};

You don’t need to specify the default values in the templates for the member functions; the compiler will use the
argument values used to instantiate the class template.

You could omit all the template arguments to declare an array of elements of type int indexed from 0.

Array<> numbers {101};

The legal index values run from 0 to 100, as determined by the default value for the non-type template parameter
and the argument to the constructor. You must still supply the angled brackets, even though no arguments are
necessary. The other possibilities open to you are to omit the second argument or to supply them all, as shown here:

Array<string, -100> messages {200}; // Array of 200 string objects indexed from -100
Array<Box> boxes {101}; // Array of 101 Box objects indexed from 0

If a class template has default values for any of its parameters, they only need to be specified in the first
declaration of the template in a source file, which usually will be the definition of the class template.

Explicit Template Instantiation
So far in this chapter, instances of a class template have been created implicitly as a result of defining a variable of a
template type. You can also explicitly instantiate a class template without defining an object of the template type. The
effect of an explicit instantiation of a template is that the compiler creates the instance determined by the parameter
values that you specify.

You have already seen how to explicitly instantiate function templates back in Chapter 8. To instantiate a class
template, just use the template keyword followed by the template class name and the template arguments between
angled brackets. This statement explicitly creates an instance of the Array template:

template class Array<double, 1>;

This creates an instance of the template that stores values of type double, indexed from 1. Explicitly instantiating
a class template generates the class type definition and it instantiates all of the function members of the class from
their templates. This happens regardless of whether you call the function members so the executable may contain
code that is never used.

Special Cases
You’ll encounter many situations where a class template definition won’t be satisfactory for every conceivable
argument type. For example, you can compare string objects by using overloaded comparison operators, but you
can’t do this with null-terminated strings. If a class template compares objects using the comparison operators, it
will work for type string but not for type char*. To compare objects of type char*, you need to use the comparison
functions that are declared in the cstring header.

Chapter 16 ■ Class templates

519

To deal with this sort of problem, you have two options. The first possibility is to avoid the problem. You can
use static_assert() that you met way back in Chapter 10 to test one or more of the type arguments. The second
possibility is to define a class template specialization, which provides a class definition that is specific to a given set of
arguments for the template parameters. I’ll explain how you use static_assert() first.

Using static_assert() in a Class Template
You can use static_assert() to cause the compiler to output a message and fail compilation when a type argument
in a class template is not appropriate. static_assert() has two arguments; when the first argument is false, the
compiler outputs the message specified by the second argument. To protect against misuse of a class template,
the first argument to static_assert() will use one or more of the templates from the type_traits header.
These test the properties of types and classify types in various ways. The templates in type_traits have the
std::integral_constant template as a base, which defines a static member, value, which is a constant expression
that is implicitly convertible to type bool. There are a lot of templates in the type_traits header so I’ll just mention
a few in Table 16-1 to give you an idea of the possibilities, and leave you to explore the rest in your Standard Library
documentation. These templates are all defined in the std namespace.

Template Result

is_default_constructible<T> The value member is only true if type T is default constructible, which means
for a class type that the class has a no-arg constructor.

is_copy_constructible<T> The value member is true if type T is copy constructible, which means for a
class type that the class has a copy constructor.

is_assignable<T> The value member is true if type T is assignable, which means for a class type
that it has an assignment operator function.

is_pointer<T> The value member is true if type T is a pointer type and false otherwise.

is_null_pointer<T> The value member is true only if type T is of type std::nullptr_t.

is_class<T> The value member is true only if type T is a class type.

It’s easy to get confused about what is happening with these templates. Keep in mind that these templates are
relevant at compile time. A template such as is_assignable<T> will be compiled each time an instance of a template
that uses it in a static_assert() is instantiated. The result therefore relates to the argument that was used to instantiate
the template so the test applies to the template type argument. An example should make it clear how you use these.

Let’s amend Ex16_01 to show this in operation. First, comment out the line in the Box class definition in Box.h
that generates the default constructor:

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}
// Box() = default;
 double volume() const { return length*width*height; }
};

Table16-1.

Chapter 16 ■ Class templates

520

Next, add an #include directive for the type_traits header to Array.h and add one statement following the
opening brace in the body of the Array template:

#include <stdexcept> // For standard exception types
#include <string> // For to_string()
#include <type_traits>

template <typename T>
class Array
{
 static_assert(std::is_default_constructible<T>::value, "A default constructor is required.");

// Rest of the template as before...
};

You can now recompile the example, which will fail of course. The first argument to static_assert() is the value
member of the instance of is_default_constructible<T> for the current type argument for T. When this is type Box,
the value member of the template will be false, triggering the message you’ll see in the output from your compiler
and the compilation will fail. Removing the commenting out of the Box default constructor will allow the compilation
to succeed. The complete example is in the code download as Ex16_03.

Defining a Class Template Specialization
A class template specialization is a class definition, not a class template. Instead of using the template to generate the
class from the template for a particular type, char* say, the compiler uses the specialization you define for that type
instead. Thus a class template specialization provides a way to predefine instances of a class template to be used by
the compiler for specific sets of argument for the template parameters.

Suppose it was necessary to create a specialization of the first version of the Array template for type char*. You’d
write the specialization of the class template definition as follows:

template <>
class Array<char*>
{
 // Definition of a class to suit type char*...
};

This definition of the specialization of the Array template for type char* must be preceded by the original
template definition, or by a declaration for the original template. Because all the parameters are specified, it is called
a complete specialization of the template, which is why the set of angle brackets following the template keyword
are empty. The compiler will always use a class definition when it is available, so there’s no need for the compiler to
consider instantiating the template for type char*.

It may be that just one or two function members of a class template need to have code specific to a particular
type. If the function members are defined by separate templates outside the class template, rather than within the
body of the class template, you can just provide specializations for the function templates that need to be different.

Chapter 16 ■ Class templates

521

Partial Template Specialization
If you were specializing the version of the template with two parameters, you may only want to specify the type
parameter for the specialization, leaving the non-type parameter open. You could do this with a partial specialization
of the Array template that you could define like this:

template <int start> // Because there is a parameter...
class Array<char*, start> // This is a partial specialization...
{
 // Definition to suit type char*...
};

This specialization of the original template is also a template. The parameter list following the template keyword
must contain the parameters that need to be specified for an instance of this template specialization — just one in this
case. The first parameter is omitted because it is now fixed. The angled brackets following the template name specify
how the parameters in the original template definition are specialized. The list here must have the same number of
parameters as appear in the original, unspecialized template. The first parameter for this specialization is char*.
The other parameter is specified as the corresponding parameter name in this template.

Apart from the special considerations you might need to give to a template instance produced by using
char* for a type parameter, it may well be that pointers in general are a specialized subset that need to be treated
differently from objects and references. For example, to compare objects when a template is instantiated using a
pointer type, pointers must be dereferenced, otherwise you are just comparing addresses, not the objects or values
stored at those addresses.

For this situation, you can define another partial specialization of the template. The parameter is not completely
fixed in this case, but it must fit within a particular pattern that you specify in the list following the template name.
For example, a partial specialization of the Array template for pointers would look like this:

template <typename T, long start>
class Array<T*, start>
{
 // Definition to suit pointer types other than char*...
};

The first parameter is still T, but the T* between angled brackets following the template name indicates that
this definition is to be used for instances where T is specified as a pointer type. The other two parameters are still
completely variable, so this specialization will apply to any instance where the first template argument is a pointer.

Choosing between Multiple Partial Specializations
Suppose both the partial specializations of the Array template that I just discussed were defined — the one for
type char*, and the one for any pointer type. How can you be sure that the version for type char* is selected by the
compiler when this is appropriate for any particular instantiation? For example, consider this declaration:

Array<Box*, -5> boxes {11};

Clearly, this only fits with the specialization for pointers in general, but both partial specializations fit the
declaration if you write this:

Array<char*, 1> messages {100};

Chapter 16 ■ Class templates

522

In this case, the compiler determines that the char* partial specialization is a better fit because it is more
specialized than the alternative. The partially specialized template for char* is determined to be more specialized
than the specialization for pointers in general because although anything that selects the char* specialization —
which happens to be just char*— also selects the T* specialization, the reverse is not the case.

One specialization is more specialized than another when every argument that matches the given specialization
matches the other, but the reverse is not true. Thus you can consider a set of specializations for a template to be
ordered from most specialized to least specialized. When several template specializations may fit a given declaration,
the compiler will select and apply the most specialized specialization from these.

Friends of Class Templates
Because a class can have friends, you won’t be surprised to learn that a class template can also have friends. Friends
of a class template can be classes, functions, or other templates. If a class is a friend of a class template, then all its
function members are friends of every instance of the template. A function that is a friend of a template is a friend of
any instance of the template, as shown in Figure 16-4.

Figure 16-4. A friend function of a class template

Templates that are friends of a template are a little different. Because they have parameters, the parameter list for
the template class usually contains all the parameters to define the friend template. This is necessary to identify the
instance of the friend template that is the friend of the particular instance of the original class template. However, the
function template for the friend is only instantiated when you use it in your code. In the Figure 16-5, getBest() is a
function template.

Chapter 16 ■ Class templates

523

Although each class template instance in Figure 16-5 could potentially have a unique friend template instance,
this is not necessarily the case. If the class template has some parameters that aren’t parameters of the friend
template, then a single instance of the friend template may service several instances of the class template.

Note that an ordinary class may have a class template or a function template declared as a friend. In this case,
all instances of the template are friends of the class. With the example in Figure 16-6, every member function of
every instance of the Thing template is a friend of the Box class because the template has been declared as a
friend of the class.

Figure 16-5. A function template that is a friend of a class template

Figure 16-6. A class template that is a friend of a class

The declaration in the Box class is a template for a friend declaration and this effectively generates a friend
declaration for each class generated from the Thing template. If there are no instances of the Thing template then the
Box class has no friends.

Chapter 16 ■ Class templates

524

Class Templates with Nested Classes
A class can contain another class nested inside its definition. A class template definition can also contain a nested
class or even a nested class template. A nested class template is independently parameterized, so inside another class
template it creates a two-dimensional ability to generate classes. Dealing with templates inside templates is outside
the scope of this book, but I’ll introduce aspects of a class template with a nested class.

Let’s take a particular example. Suppose you want to implement a stack, which is a “last in, first out” storage
mechanism. A stack is illustrated in Figure 16-7. It works in a similar way to a plate stack in a self-service restaurant.
It has two basic operations. A push operation adds an item at the top of a stack and a pop operation removes the item
at the top of the stack. Ideally a stack implementation should be able to store objects of any type so this is a natural
for a template.

Figure 16-7. The concept of a stack

The parameter for a Stack template is a type parameter that specifies the type of objects in the stack, so the initial
template definition is going to be:

template <typename T>
class Stack
{
 // Detail of the Stack definition...
};

If you want the stack’s capacity to grow automatically, you can’t use fixed storage for objects within the stack. One
way of providing the ability to automatically grow and shrink the stack as objects are pushed on it or popped off it, is
to implement the stack as a linked list. The nodes in the linked list can be created in the free store, and the stack only
needs to remember the node at the top of the stack. This is illustrated in Figure 16-8.

Chapter 16 ■ Class templates

525

When you create an empty stack, the pointer to the head of the list is nullptr, so you can use the fact that it
doesn’t contain any Node objects as an indicator that the stack is empty. Of course, only the Stack object needs access
to the Node objects that are in the stack. The Node objects are just internal objects used to encapsulate the objects that
are stored in the stack so there’s no need for anyone outside the Stack class to know that type Node exists.

A nested class that defines nodes in the list is required in each instance of the Stack template, and because a
node must hold an object of type T, the Stack template parameter type, you can define it as a nested class in terms of
T. We can add this to the initial outline of the Stack template:

template <typename T>
class Stack
{
private:
 // Nested class
 class Node
 {
 public:
 T* pItem {}; // Pointer to object stored
 Node* pNext {}; // Pointer to next node

 Node(T& item) : pItem {&item} {} // Create a node from an object
 };

 // Rest of the Stack class definition...
};

The Node class is declared as private so we can afford to make all its members public so that they’re directly
accessible from function members of the Stack template. Objects of type T are the responsibility of the user of the
Stack class so only a pointer to an object of type T is stored in a Node object. The constructor is used when an object

Figure 16-8. A stack as a linked list

Chapter 16 ■ Class templates

526

is pushed onto the stack. The parameter to the constructor is a reference to an object of type T and the address of this
object is used to initialize the pItem member of the new Node object. The rest of the Stack class template to support
the linked list of Node objects shown in Figure 16-8 is:

template <typename T>
class Stack
{
 private:
 // Nested Node class definition as before...

 Node* pHead {}; // Points to the top of the stack
 void copy(const Stack& stack); // Helper to copy a stack
 void freeMemory(); // Helper to release free store memory

 public:
 Stack() = default; // Default constructor
 Stack(const Stack& stack); // Copy constructor
 ~Stack(); // Destructor
 Stack& operator=(const Stack& stack); // Assignment operator

 void push(T& item); // Push an object onto the stack
 T& pop(); // Pop an object off the stack
 bool isEmpty() {return !pHead;} // Empty test
};

As I explained earlier, a Stack object only needs to “remember” the top node so it has only one data member,
pHead, of type Node*. There’s a default constructor, a copy constructor, a destructor, and an assignment operator
function. The destructor is essential because nodes will be created dynamically using new and the addresses stored
in raw pointers. The push() and pop() members transfer objects to and from the stack and the isEmpty() function
returns true if the Stack object is empty. The private copy() member of the Stack class will be used internally in
the copy constructor and the assignment operator function to carry out operations that are common to both; this
will reduce the number of lines of code necessary and the size of the executable. Similarly, the private freeMemory()
function is a helper that will be used by the destructor and the assignment operator function. We just need the
templates for the member functions of the Stack template to complete the implementation.

Function Templates for Stack Members
I’ll start with the definition of the template for the copy() member:

template <typename T>
void Stack<T>::copy(const Stack& stack)
{
 if(stack.pHead)
 {
 pHead = new Node {*stack.pHead}; // Copy the top node of the original
 Node* pOldNode {stack.pHead}; // Points to the top node of the original
 Node* pNewNode {pHead}; // Points to the node in the new stack

Chapter 16 ■ Class templates

527

 while(pOldNode = pOldNode->pNext) // If it's nullptr, it's the last node
 {
 pNewNode->pNext = new Node {*pOldNode}; // Duplicate it
 pNewNode = pNewNode->pNext; // Move to the node just created
 }
 }
}

This copies the stack represented by the stack argument to the current Stack object, which is assumed to be
empty. It does this by replicating pHead for the argument object, then walking through the sequence of Node objects,
copying them one by one. The process ends when the Node object with a null pNext member has been copied.

The freeMemory() helper function will release the heap memory for all Node objects belonging to the current
Stack object:

template <typename T>
void Stack<T>::freeMemory()
{
 Node* pTemp {};
 while(pHead)
 { // While current pointer is not null
 pTemp = pHead->pNext; // Get the pointer to the next
 delete pHead; // Delete the current
 pHead = pTemp; // Make the next current
 }
}

This uses a temporary pointer to a Node object to hold the address stored in the pNext member of a Node object
before the object is deleted from the free store. At the end of the while loop, all Node objects belonging to the current
Stack object will have been deleted and pHead will be nullptr.

The default constructor is defined within the template as the default that the compiler should supply. The copy
constructor must replicate a Stack<T> object, which can be done by walking through the nodes and copying them,
which is exactly what the copy() function does. This makes the template for the copy constructor trivial:

template <typename T>
Stack<T>::Stack(const Stack& stack)
{
 copy(stack);
}

The assignment operator is similar to the copy constructor, but two extra things must be done. First, the function
must check to see whether or not the objects involved are identical. Second, it must release memory for nodes in the
object on the left of the assignment before copying the object that is the right operand. Here’s the template to define
the assignment operator so that it works in this way:

template <typename T>
Stack<T>& Stack<T>::operator=(const Stack& stack)
{
 if (this != &stack) // If objects are not identical
 {
 freeMemory(); // Release memory for nodes in lhs
 copy(stack); // Copy rhs to lhs
 }
 return *this // Return the left object
}

Chapter 16 ■ Class templates

528

Using the helper functions, the implementation becomes very simple. If the operands are the same, it’s only
necessary to return the object. If the objects are different, the first step is to delete all the nodes for the left-hand
object, which is done by calling freeMemory(), then replace them with copies of the nodes from the right operand by
calling copy().

The code for the destructor template just needs to call freeMemory():

template <typename T>
Stack<T>::~Stack()
{
 freeMemory();
}

The template for the push() operation is very easy:

template <typename T>
void Stack<T>::push(T& item)
{
 Node* pNode {new Node(item)}; // Create the new node
 pNode->pNext = pHead; // Point to the old top node
 pHead = pNode; // Make the new node the top
}

The Node object encapsulating item is created by passing the reference to the Node constructor. The pNext
member of the new node needs to point to the node that was previously at the top. The new Node object then
becomes the top of the stack so its address is stored in pHead.

The pop() operation is slightly more work because you must delete the top node:

template <typename T>
T& Stack<T>::pop()
{
 T* pItem {pHead->pItem}; // Get pointer to the top node object
 if(!pItem) // If it's empty
 throw std::logic_error {"Stack empty"}; // Pop is not valid so throw exception

 Node* pTemp {pHead}; // Save address of top node
 pHead = pHead->pNext; // Make next node the top
 delete pTemp; // Delete the previous top node
 return *pItem; // Return the top object
}

It is possible that there could be a pop operation on an empty stack. Because the function returns a reference, you
can’t signal an error through the return value, so you have to throw an exception in this case. After storing the pointer
to the object in the top node in the local pItem variable, the function deletes the top node, promotes the next node to
the top, and returns a reference to the object.

Chapter 16 ■ Class templates

529

That’s all the templates you need to define the stack. If you gather all the templates into a header file, Stacks.h,
you can try it out with the following code:

// Ex16_04.cpp
// Using a stack defined by nested class templates
#include "Stacks.h"
#include <iostream>
#include <string>
using std::string;

int main()
{
 const char* words[] {"The", "quick", "brown", "fox", "jumps"};
 Stack<const char*> wordStack; // A stack of C-style strings

 for (size_t i {}; i < sizeof(words)/sizeof(words[0]) ; ++i)
 wordStack.push(words[i]);

 Stack<const char*> newStack {wordStack}; // Create a copy of the stack

 // Display the words in reverse order
 while(!newStack.isEmpty())
 std::cout << newStack.pop() << " ";
 std::cout << std::endl;

 // Reverse wordStack onto newStack
 while(!wordStack.isEmpty())
 newStack.push(wordStack.pop());

 // Display the words in original order
 while(!newStack.isEmpty())
 std::cout << newStack.pop() << " ";
 std::cout << std::endl;

 std::cout << std::endl << "Enter a line of text:" << std::endl;
 string text;
 std::getline(std::cin, text); // Read a line into the string object

 Stack<const char> characters; // A stack for characters

 for (size_t i {}; i < text.length(); ++i)
 characters.push(text[i]); // Push the string characters onto the stack

 std::cout << std::endl;
 while(!characters.isEmpty())
 std::cout << characters.pop(); // Pop the characters off the stack

 std::cout << std::endl;
}

Chapter 16 ■ Class templates

530

Here’s an example of the output:

jumps fox brown quick The
The quick brown fox jumps

Enter a line of text:
Never test for errors that you don't know how to handle.

.eldnah ot woh wonk t'nod uoy taht srorre rof tset reveN

You first define an array of five objects that are null-terminated strings, initialized with the words shown. Then

you define an empty Stack object that can store const char* objects. The for loop then pushes the array elements
onto the stack. The first word from the array will be at the bottom of the wordStack stack and the last word at the top.
You create a copy of wordStack as newStack to exercise the copy constructor.

In the next while loop, you display the words in newStack in reverse order by popping them off the stack and
outputting them in a while loop. The loop continues until isEmpty() returns false. Using the isEmpty() function
member is a safe way of getting the complete contents of a stack. newStack is empty by the end of the loop, but you
still have the original in wordStack.

The next while loop retrieves the words from wordStack and pops them onto newStack. The pop and push
operations are combined in a single statement, where the object returned by pop() for wordStack is the argument for
push() for newStack(). At the end of this loop, wordStack is empty and newStack contains the words in their original
sequence — with the first word at the top of the stack. You then output the words by popping them off newStack, so at
the end of this loop, both stacks are empty:

The next part of main() reads a line of text into a string object using the getline() function and then creates a
stack to store characters:

 Stack<const char> characters; // A stack for characters

This creates a new instance of the Stack template, Stack<const char>, and a new instance of the constructor for
this type of stack. At this point, the program contains two classes from the Stack template each with a nested
Node class.

You peel off the characters from text and push them onto the new stack in a for loop. The length() function
of the text object is used to determine when the loop ends. Finally the input string is output in reverse by popping
the characters off the stack. You can see from the output that my input was not even slightly palindromic, but you
could try, “Ned, I am a maiden” or even “Are we not drawn onward, we few, drawn onward to new era.”

Summary
If you understand how class templates are defined and used, you’ll find it easy to understand and apply the
capabilities of the Standard Template Library. The ability to define class templates is also a powerful augmentation of
the basic language facilities for defining classes. The essential points I’ve discussed in this chapter include:

A class template defines a family of class types.•	

An instance of a class template is a class definition that generated by the compiler from the •	
template using a set of template arguments that you specify in your code.

An implicit instantiation of a class template arises out of a definition for an object of a class •	
template type.

An explicit instantiation of a class template defines a class for a given set of arguments for the •	
template parameters.

Chapter 16 ■ Class templates

531

An argument corresponding to a type parameter in a class template can be a fundamental •	
type, a class type, a pointer type, or a reference type.

The type of a non-type parameter can be an integral or enumeration type, a pointer type, or a •	
reference type.

A partial specialization of a class template defines a new template that is to be used for a •	
specific, restricted subset of the arguments for the original template.

A complete specialization of a class template defines a new template for a specific, complete •	
set of parameter arguments for the original template.

A friend of a class template can be a function, a class, a function template, or a class template.•	

An ordinary class can declare a class template or a function template as a friend.•	

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. If you get stuck, look back over
the chapter for help. If you’re still stuck after that, you can download the solutions from the apress website
(www.apress.com/source-code/), but that really should be a last resort.

exercise 16-1. Define a · template for one-dimensional sparse arrays that will store objects of
any type so that only the elements stored in the array occupy memory. the potential number of
elements that can be stored by an instance of the template should be unlimited. the template
might be used to define a sparse array containing pointers to elements of type double with the
following statement:

SparseArray<double> values;

Define the subscript operator for the template so that element values can be retrieved and set just like in a normal
array. If an element doesn’t exist at an index position, the subscript operator should return an object created by
the default constructor for the object class. exercise the template with a main() function that stores 20 random
element values of type int at random index positions within the range 32 to 212 in a sparse array with an index
range from 0 to 499, and output the values of element that exist along with their index positions.

exercise 16-2. Define a template for a linked list type that allows the list to be traversed backward from the end
of the list, as well as forward from the beginning. apply the template in a program that stores individual words
from some arbitrary prose or poetry as std::string objects in a linked list, and then displays them five to a line
in sequence and in reverse order.

exercise 16-3. Use the linked list and sparse array templates to produce a program that stores words from a
prose or poetry sample in a sparse array of up to 26 linked lists, where each list contains words that have the
same initial letter. Output the words, starting each group with a given initial letter on a new line. (remember to
leave a space between successive > characters when specifying template arguments—otherwise, >> will be
interpreted as a shift right operator.)

exercise 16-4. add an insert() function to the SparseArray template that adds an element following the last
element in the array. Use this function and a SparseArray instance that has elements that are SparseArray
objects storing string objects to perform the same task as the previous exercise.

http://www.apress.com/source-code/

533

Chapter 17

File Input and Output

THE C++ LANGUAGE has no provision for input and output. The subject of this chapter is the input and output (I/O)
capabilities that are available in the Standard Library, which provides support for device-independent input and
output operations. You’ve used elements of these facilities to read from the keyboard and output to the screen in all
the examples so far. In this chapter I’ll expand on that and explain how you can read and write disk files. By the end
of this chapter, you’ll have learned:

What a stream is•	

What the standard streams are•	

How binary streams differ from text streams•	

How to create and use file streams•	

How errors in stream operations are recorded, and how you can manage them•	

How to use unformatted stream operations•	

How to write numerical data to a file as binary data•	

How objects can be written to and read from a stream•	

How to overload the insertion and extraction operators for your classes•	

How to create string streams•	

Input and Output in C++
You’ll need many different kinds of I/O capabilities in your programs. An application might need to store and retrieve
data in a database, to create application windows and display graphics on the screen, to communicate over a phone
line or over a network. All of these examples have one thing in common. They’re totally outside the remit of C++ and
its Standard Library.

This implies that in the majority of situations you’ll use I/O facilities that aren’t part of C++, although they may
well be provided as part of your C++ development environment. Of course, the capabilities that are provided in C++
are still very important; they represent a substantial Standard Library facility with extensive functionality. In addition
to file I/O capability, they provide facilities for data formatting using string-based I/O.

Chapter 17 ■ File input and Output

534

Understanding Streams
The I/O functionality provided by the standard library involves using streams. A stream is an abstract representation
of an input device or an output device that is a sequential source or destination for data in your program and of
course, a stream is represented by a class type. You can visualize a stream as a sequence of bytes flowing between an
external device and the main memory of your computer. You can write data to an output stream and read data from an
input stream; some streams provide the capability for both input and output. Fundamentally, all input and output is a
sequence of bytes being read from, or written to, some external device.

When you’re reading data from an external device, it’s up to you to interpret the data correctly. When you read
bytes from an external source, the bytes could be a sequence of 8-bit characters, a sequence of UCS characters, binary
values of various types, or a mixture of all of them. There’s no way to tell from the data in the stream what it is. You have
to know the structure and type of data in advance, and read and interpret it accordingly.

Data Transfer Modes
There are two modes for transferring data to and from a stream: text mode and binary mode. In text mode, the data
is interpreted as a sequence of characters that is usually organized as one or more lines terminated by the newline
character, '\n'. Numerical values are separated by one or more whitespace characters. In text mode, a stream
may transform newline characters as they’re read from or written to the physical device. Whether this occurs, and
how characters are changed, is system dependent. On some systems such as Microsoft Windows, a single newline
character is written to a stream as two characters: a carriage return and a line feed. When a carriage return and a line
feed are read from a stream, they’re mapped into a single character, '\n'. On other systems such as Unix, the newline
will remain a single character. In binary mode, there are no transformations of data. The original bytes are transferred
between memory and the stream without conversion.

Text Mode Operations
In text mode, you can read and write various types of data using the extraction and insertion operators, >> and <<,
exactly as you’ve been doing throughout the book when reading from std::cin and writing to std::cout. These are
formatted I/O operations that occur in text mode. Binary numerical data such as integers and floating-point values
are converted to a character representation before they’re written to the stream, and the inverse process occurs when
numerical values are read. Of course, data written in text mode is still just a sequence of bytes in the file. You could
still read it in binary mode if you wanted; whether the data written in text mode would make sense when it is read in
binary mode is doubtful though.

Binary Mode Operations
In binary mode you read or write bytes, regardless of the type of data. A binary value of type int occupying four bytes
in memory is written as four bytes, as is a 4-byte float value or a sequence of four characters of type char. This means
that the data is recorded exactly as it is inside your computer, with none of the small errors that can creep in as a result
of the conversions of floating-point data in text mode. Once the bytes have been written to the file, they are just bytes,
there’s no indication of what they were. Because you are reading bytes, how you interpret the bytes is up to you. You
must know what type of data was written to a file in order to read it sensibly. There is nothing to prevent a sequence of
four bytes from being read as a 4-byte integer, a float value, or as four characters.

A binary read or write operation can be for a single byte, a given number of bytes, or a sequence of bytes
terminated by a delimiter of some kind. You always read or write a sequence of bytes exactly as they are in memory.
These are unformatted input/output operations because data transferred between memory and the stream without
modification. Data that you write to a stream may originate as any combination of character strings and binary
numerical values of various types, but whatever they are, it’s the bytes that make up the data values in memory that
are written to the stream.

Chapter 17 ■ File input and Output

535

Advantages of Using Streams
The primary reason for using streams for I/O operations is to make the code for the operations independent of the
physical device. This has a couple of advantages. First, you don’t have to worry about the detailed mechanics of each
device; that is all taken care of behind the scenes. Second, a program will work with a variety of disparate physical
devices without necessitating changes to the source code.

The physical reality of an output stream — in other words, where the data goes when you write to it — can be any
device to which a sequence of bytes can be transferred. File stream I/O will typically be to a file on a disk or on a solid
state drive. The Standard Library defines three standard output stream objects, cout, cerr, and clog, all of which are
typically associated with the display screen. std::cout is the standard output stream. std::cerr and std::clog are
both connected to the standard error stream, which is used for error reporting. The difference between the last two
streams is that cerr is unbuffered (so data is written immediately to the output device), whereas clog is buffered
(so data will only be written when the buffer is full). Figure 17-1 shows some devices and the kinds of streams that
they would represent.

Keyboard

Program

Input
Streams

Output
Streams

Monitor

my _in_stream

std ::cout
std ::cerr
std ::clog

Text mode only
disk or solid state

drive
my _out _stream

Text or binary mode

std ::cin

Figure 17-1. I/O devices and streams

In principle, an input stream can be any serial source of data, but it’s typically a disk file or the keyboard. As I indicated
earlier, streams are objects of class types, and the standard streams are predefined objects that are associated with
specific external devices on your system. When you’ve been reading objects from cin using the extraction operator, >>,
or writing objects to cout using the insertion operator, <<, you’ve been using overloaded versions of the operator>>()
and operator<<() functions for these objects. For other sources or destinations for data, you define a stream object and
associate it with a file on a particular device. Figure 17-1 shows my_in_stream as the object for reading from a file on disk
and my_out_stream as the object for writing to a file. Let’s look at the classes that represent streams.

Caution ■ Writing files is a hazardous business and you run the examples from this chapter at your own risk. it’s very
easy to overwrite files that matter. to avoid this possibility, set up a separate directory (folder) on your system and use
this for examples from this chapter and your solutions to exercises. Before executing any of the examples, make sure that
file paths in the code correspond to the directory you have set up for the purpose.

the code in this chapter uses Microsoft Windows path specifications. i recommend that you change the file paths to suit
your environment in any event. to encourage this i have used paths on the D: drive in the examples, which will usually be
the dVd/Cd drive unless you have a real or virtual second disk. Of course, the examples won’t work with the dVd/Cd drive.

Chapter 17 ■ File input and Output

536

Stream Classes
There are quite a few classes involved in stream I/O, and these are mostly defined by class templates. The main classes
that I’ll be discussing in this chapter and the relationships between them are illustrated in Figure 17-2. Figure 17-2
is a simplified representation, but it’s all you need to understand the principles. ios_base is an “ordinary” class, and
the others are instances of templates. The istream type for example, is an instance of the basic_istream template,
basic_istream<char>, and the ios type is the instance of the basic_ios template, basic_ios<char>. The stream
classes share a common base, ios, which defines flags that record the state of a stream and the formatting modes in
effect. Thus, all the stream classes that provide the I/O operations that you’ll be using share a common set of status
and formatting flags, and the functions to query and set them.

ios
 test and set
stream state

ofstream
File Output

fstream
File Input/Output

ifstream
File Input

istream
Sequential & Random

Input

iostream
Sequential &

Random Input/Output

ostream
Sequential &

Random Output

ios_base
records stream state,
formatting controls

ios header

ios header

istream header ostream header

fstream header fstream header

fstream header

istream header

Figure 17-2. The main classes that represent streams

Figure 17-2 doesn’t show the streambuf type that provides buffering in memory for stream I/O because this is an
instance of standalone template type basic_streambuf, which is defined in the streambuf header; you don’t need to
concern yourself with this type - it is used internally by stream objects as necessary.

The iostream header just defines the standard stream objects but to do this it includes the ios, istream, ostream,
and streambuf headers so you get all these when you include iostream into a source file. The standard input stream
cin is an object of type istream, and the standard output streams cout, cerr, and clog are ostream objects. You can
see that the stream classes for file handling, ifstream, fstream, and ofstream, all have istream, ostream, or both as
base classes, so the facilities that you’ve been using with the standard streams cin and cout are going to be available
with file streams too. Note that fstream is derived from iostream and does not have ifstream or ofstream as a base
class; thus the classes for file streams are completely independent of one another.

The class templates that generate the stream classes generally have type parameters that specify the character
sets for a particular stream, and the class names in Figure 17-2 apply to streams that deal with characters of type char.
The names in Figure 17-2 are aliases for predefined instances of these templates. There are also aliases for predefined
template instances for streams that handle characters of type wchar_t, called wistream, wostream, wiostream,
wifstream, wofstream, and wfstream. I won’t discuss these wide-character stream classes specifically in this chapter,
but they work in the same way as the byte stream classes.

Chapter 17 ■ File input and Output

537

You’ll sometimes see references to the original templates rather than the aliases that appear in Figure 17-2 so you
need to be aware of the template names. The aliases for the stream class template are defined by these typedefs:

typedef basic_ios<char> ios;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_iostream<char> iostream;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_fstream<char> fstream;

The corresponding aliases for wide-character streams have wchar_t as the type argument, in place of char.
I’ll use the type aliases in the rest of this chapter rather than the full template names, as they involve considerably
less typing!

Standard Stream Objects
The standard streams are defined in the iostream header as objects within the std namespace like this:

extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

The iostream header file also defines the equivalent wide-character stream objects:

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

You’ve already made extensive use of the standard input stream cin and the standard output stream cout.
The cerr and clog streams are used in exactly the same way as cout. I won’t repeat what I covered in previous
chapters about reading from and writing to the standard streams. I’ll concentrate on the background to how they
work; the same techniques and mechanisms apply to other stream types. To begin with, I’ll revisit the formatted
stream operations that you’re familiar with, and show how you can use these with files. I’ll then delve into
unformatted stream operations and how and when you can use those to your advantage.

Stream Insertion and Extraction Operations
The insertion and extraction operators that you’ve been using with standard stream objects work just the same
with other types of stream objects. As I indicated in Figure 17-1, the standard streams operate only in text mode,
because the data source and destination are essentially character-based. The insertion and extraction operators are
principally concerned with converting between internal binary representations of data and their external character
representations. When you use these operators with streams other than the standard streams, you only use them in
text mode because they work with a character-based representation of the data. Text mode is concerned with the
visual presentation of the data, which can be an approximation of the binary data when it is numeric.

Chapter 17 ■ File input and Output

538

Stream Extraction Operations
The operator>>() function is implemented as a set of templates for function members of the istream class to support
reading the following types of data from any input stream:

short int long long long

unsigned unsigned int unsigned long unsigned long long

float double long double

bool void*

The operator>>() function that supports the void* type enables you to read address values into a pointer of
any type, except for a pointer to type char, which refers to a null-terminated string and is treated as a special case.
Overloads of operator<<() are defined by non-member templates to read characters into variables of types char,
signed char, and unsigned char and to read character sequences that do not contain whitespace as C-style strings
into arrays of type char*, signed char*, and unsigned char*.

Let’s revisit how the code you’ve been writing connects to these operator functions by considering what happens
when you write statements such as these:

int i {};
double x {};
std::cin >> i >> x;

std::cin is an object of type istream so the last statement that reads values for the two variables from the stream
translates to this:

(std::cin.operator>>(i)).operator>>(x);

The operator>>() function is called once for each use of the extraction operator. The function returns a reference
to the stream object for which it was called (in this case std::cin), so you can use the return value to call the next
operator function. The parameter for operator>>() has to be a reference to allow the function to store the data value
that it reads from the stream in the variable that is passed as the argument.

Whitespace characters are regarded as delimiters between values and ignored, so you can’t read whitespace
characters using any of the operator>>() functions for the istream class. You’ll recall that you used the
std::getline() function for cin when you wanted to read a line of text that includes whitespace; you can use this in
the same way for any istream object.

Stream Insertion Operations
The operator<<() function is overloaded in the ostream class for formatted stream output of values of the
fundamental types. Output to cout works analogously to input with cin. You can write the values of i and x to cout
with this statement:

std::cout << i << ' ' << x;

Chapter 17 ■ File input and Output

539

This statement translates to three operator<<() function calls:

std::cout.operator<<(std::cout.operator<<(i), ' ').operator<<(x);

All versions of the operator<<() function return a reference to the stream object for which they’re called, so
you can use the return value to call the next operator<<() function. The operator<<() functions that write single
characters and null-terminated strings to the stream are implemented as non-member functions, which is why the
operator function call to write i to the stream appears as the first argument to the operator function call to write the
space. The non-member function returns the stream object, and that’s used to call the member function that writes
the value of x.

operator<<() is overloaded in the ostream class for the same set of types as operator>>() in the istream class.
Outputting a single character or a null-terminated string is catered for by non-member versions of operator<<().
The functions that output a single character to an output stream have the following prototypes:

ostream& operator<<(ostream& out, char ch);
ostream& operator<<(ostream& out, signed char ch);
ostream& operator<<(ostream& out, unsigned char ch);

There are similar functions defined that will output null-terminated strings:

ostream& operator<<(ostream& out, const char* str);
ostream& operator<<(ostream& out, const signed char* str);
ostream& operator<<(ostream& out, const unsigned char* str);

You can see now why you can output a string using a pointer to a char type, but pointers to other types are always
written to a stream as an address. Because these functions are defined, sending a variable of type const char* to an
output stream writes the string to which the pointer points to the stream, rather than the address stored in the pointer
variable. If you want the address contained in the pointer to be output rather than the string, you must explicitly cast
it to type void*. Then, the member function of ostream that has a parameter of that type will be called. Thus, these
statements output a message

const char* message {"More is less and less is more."};
std::cout << message;

To output the address contained in message, you can use this statement:

std::cout << static_cast<void*>(message);

Stream Manipulators
You’ve already made extensive use of manipulators to control formatting of stream output in text mode. The basic
manipulators shown in Table 17-1 can be inserted into any stream in text mode; these are defined in the ios header.

Chapter 17 ■ File input and Output

540

All of the manipulators in Table 17-1 can be inserted directly into the stream using the << operator, for example:

int i {1000};
std::cout << std::hex << std::uppercase << i << std::endl;

This will write the value of the integer, i, as a hexadecimal value using uppercase hexadecimal digits followed by
a newline. In other words, you’d see 3E8 in the output.

It’s interesting and educational to see how this works. You know that using an insertion operator results in a
version of operator<<() being called, but none of the versions I’ve described so far can be involved here, because
they only deal with values of specific types being output to the stream. The effect of these manipulators doesn’t

Table 17-1. Basic Stream Manipulators

Manipulator Effect

dec Sets the default radix for integers to decimal.

oct Sets the default radix for integers to octal.

hex Sets the default radix for integers to hexadecimal.

fixed Outputs floating-point values in fixed-point notation without an exponent.

scientific Outputs floating-point values in scientific notation with an exponent.

hexfloat Enables hexadecimal floating-point formatting.

defaultfloat Restores the default formatting for floating-point values.

boolalpha Represents bool values as alphabetic; true and false in English.

noboolalpha Represents bool values as 1 and 0, which is the default.

showbase Indicates the base for octal (0 prefix) and hexadecimal (0x prefix) integers.

noshowbase Omits the base indication for octal and hexadecimal integers.

showpoint Always outputs floating-point values to the stream with a decimal point.

noshowpoint Outputs integral floating-point values without a decimal point.

showpos Displays a + prefix for positive integers.

noshowpos Does not display a + prefix for positive integers.

skipws Skips whitespace on input.

noskipws Does not skip whitespace on input.

uppercase Uses uppercase for hexadecimal digits A to F, and E for an exponent.

nouppercase Uses lowercase for hexadecimal digits a to f, and e for an exponent.

internal Inserts “fill characters” to pad the output to the field width.

left Aligns values left in an output field.

right Aligns values right in an output field.

endl Writes a newline character to the stream buffer and writes the contents of the buffer
to the stream.

flush Writes data from the stream buffer to the stream.

Chapter 17 ■ File input and Output

541

involve sending data to a stream, so they can’t be data values. In fact, all of the manipulators in Table 17-1 are pointers
to functions of the same type. When you use one of these manipulators, a version of operator<<() that accepts a
pointer to a function as the argument is called and the manipulator is passed as the argument.

To make this clearer, I’ll take an example. The hex manipulator is a pointer to this function that is defined in the
ios header:

ios_base& hex(ios_base& str);

You might use the hex manipulator in a statement such as this:

std::cout << std::hex << i;

This translates to:

(std::cout.operator<<(std::hex)).operator<<(i);

The first call of operator<<() has the pointer to function, std::hex, as an argument. Within the operator<<()
function, the hex() function will be called using the function pointer to set the output formatting to transfer the value
of i to the stream in hexadecimal format.

The ios_base class that cropped up in the prototype for hex() is the base of the ios class, as you saw at the
beginning of this chapter. Because this is the base for all of the stream classes, the type ios_base& can reference
any stream object. All of the manipulators are pointers to functions that have a parameter and a return type of type
reference to ios_base, so they all result in the same version of operator<<() being called, which will call the function
pointed to by the argument. ios_base defines flags that control the stream, and the function that is called when you
use a manipulator modifies the appropriate flags to produce the desired result. You can modify these flags directly
using the functions std::setf() and std::unsetf() for a stream object, but it’s much easier to use the manipulators.

Manipulators with Arguments
There are some manipulators that accept an argument. These are defined in the iomanip header. You use these
manipulator functions in the same way as the other manipulators, by effectively inserting a function call into the
stream. Table 17-2 shows the ones that are most commonly used.

Table 17-2. Manipulators That Accept an Argument

Manipulator Effect

setprecision(int n) Sets the precision for floating-point output to n digits. This remains in effect until you
change it.

setw(int n) Sets the field width for the next output value to n characters. This will reset on each
output to the default setting, which outputs a value in a field width that is just sufficient
to accommodate the value.

setfill(char ch) Sets the fill character to be used as padding within the output field to ch. This is modal,
so it remains in effect until you change it again.

setbase(int base) Sets the output representation for integers to octal, decimal, or hexadecimal,
corresponding to values for the argument of 8, 10, or 16. Any other values will leave the
number base unchanged.

Chapter 17 ■ File input and Output

542

The return type of each of the manipulators in Table 17-2 is implementation defined. Here’s an example of
using them:

std::cout << std::endl << std::setw(10) << std::setfill('*') << std::left << i << std::endl;

This statement outputs the value i left-justified in a field that’s ten characters wide. The field will be padded with
'*' in any unused character positions to the right of the value. The fill character will be in effect for any following
output values, but you must set the field width explicitly prior to each output value.

Caution ■ it’s an error to include parentheses for the manipulators that do not require an argument such as
std::left, so don’t confuse them with the manipulators in iomanip that do require an argument.

The iomanip header also declares the setiosflags() and resetiosflags() functions that set or reset the flags
that control stream formatting by specifying a mask. You construct the mask using the bitwise OR operator to combine
flags that are defined in the ios_base class. The name of each flag is the same as the name of the manipulator that sets
it, so you could set the flags for left-justified, hexadecimal output like this:

std::cout << std::endl << std::setw(10)
 << std::setiosflags(std::ios::left | std::ios::hex) << i <<std::endl;

This will output i as a left-justified, hexadecimal value in a field that’s ten characters wide. You can use ios
instead of ios_base as the qualifier for the flag names here, because the flags are inherited in the ios class from
ios_base.

File Streams
There are three types of stream objects for working with files: ifstream, ofstream, and fstream. As you saw earlier,
these classes have istream, ostream, and iostream as base classes, respectively. An istream object represents a file
input stream so you can only read it, an ofstream object represents a file output stream that you can only write to it,
and fstream is a file stream that you can read or write.

You can associate a file stream object with a physical file when you create it. You can also create a file stream
object that isn’t associated with a file, and then call a function member to establish the connection with a specific
file. In order to read or write a file, you must “open” the file; this attaches the file to your program via the operating
system with a set of permissions that determine what you can do with it. If you create a file stream object with an
initial association to a file, the file is opened and available for use immediately. It’s possible to change the file that is
associated with a file stream object so you can use a single ofstream object for example to write to different files at
different times.

A file stream has some important properties. It has a length, which corresponds to the number of characters in
the stream; it has a beginning, which is index position of the first character in the stream; and it has an end, which
is the index position one beyond the last character in the stream. It also has a current position, which is the index
position of the character in the stream where the next read or write operation will start. The first character in a file
stream is at index position 0. These properties provide a way for you to move around a file to read the particular parts
that you’re interested in or to overwrite selected areas of the file.

Chapter 17 ■ File input and Output

543

Writing a File in Text Mode
To begin investigating file streams, let’s look at how you can write to a file stream. An output file will be represented by
an ofstream object, which you can create like this:

std::ofstream outFile {"filename"};

The argument to the ofstream constructor is the file name, which can be a string literal, a variable of type char*
pointing to a C-style string, or a string object. The file name can include the file path, but if it doesn’t, the file should
be in the current directory. Text mode is the default so the file identified by filename will automatically be opened
for writing in text mode and you can write to it immediately. I’ll explain how you open a file in binary mode later.
If filename doesn’t exist, a file with this name and path will be created. If the file exists, the file is opened with the
file position at 0, the beginning of the file, so whatever you write to the file will overwrite any existing contents. The
outFile object has an ostream sub-object, so the stream operations that I’ve discussed for the standard output stream
apply to an output file stream in text mode. Let’s see text mode output to a file working in an example that finds prime
numbers and writes them to a file:

// Ex17_01.cpp
// Writing primes to a file
#include <cmath> // For sqrt() function
#include <fstream> // For file streams
#include <iomanip> // For stream manipulators
#include <iostream> // For standard streams
#include <string> // For string type
#include <vector> // For vector container
using ulong = unsigned long long;

int main()
{
 size_t max {}; // Number of primes required
 std::cout << "How many prime would you like (at least 4)? : ";
 std::cin >> max;
 if (max < 4) max = 4;

 std::vector<ulong> primes {2ULL, 3ULL, 5ULL}; // First three primes defined
 ulong trial {5ULL}; // Candidate prime
 bool isprime {false}; // true when a prime is found
 ulong limit {}; // Maximum divisor

 while (primes.size() < max)
 {
 trial += 2; // Next value for checking
 limit = static_cast<ulong>(std::sqrt(trial));
 for (auto prime : primes)
 {
 if (prime > limit) break; // Only check divisors < square root
 isprime = trial % prime > 0; // false for exact division...
 if (!isprime) break; // ...if so it's not a prime
 }
 if (isprime) // If we found one...
 primes.push_back(trial); // ...save it
 }

Chapter 17 ■ File input and Output

544

 std::string filename {"d:\\Example_Data\\primes.txt"};
 std::ofstream outFile {filename}; // Define file stream object

 // Output primes to file
 size_t perline {5}; // Prime values per line
 size_t count {};
 for (auto prime : primes)
 {
 outFile << std::setw(10) << prime;
 if (++count % perline == 0) // New line after every perline primes
 outFile << std::endl;
 }
 outFile << std::endl;
 std::cout << max << " primes written to " << filename << std::endl;
}

Here’s some sample output:

How many prime would you like (at least 4)? : 1000
1000 primes written to d:\Example_Data\primes.txt

All the primes are written to the file. If you intend to use the path specified in the code, you must create the

ExampleData directory on drive D: before you execute the program; otherwise change the initial value for filename to
the path you have set up for examples. Note that you can use a single forward slash, '/', instead of '\\'as a delimiter
in a string specifying a file path. The Standard Library does not provide a way to create directories or folders because
these are system dependent. The library that comes with your compiler may provide functions to create directories.
You should be able to view the contents of the file created by the example using any text editor.

I defined ulong as an alias for type unsigned long long to save typing and reduce the length of some of the
statements. Most of the detail of determining whether or not an integer is prime you have seen before. The change
here is that this code only checks prime divisors for trial up the square root of its value, so execution will be faster
when trial is a prime; without the square root as the upper limit for divisors, division by all primes in the vector
would be tried. An integer that is not prime has two factors whose product is the non-prime value. If the two factors
are identical, they are the square root of the value. If they are different, one has to be less than the square root. Thus
any non-prime integer always has at least one factor that is less than or equal to its square root.

std::sqrt() is defined in the cmath header by a template that with integral arguments returns a value of type
double. Without the explicit cast of the result to type ulong, you are likely to get a compiler warning because of the
potential loss of data from an implicit cast of a floating-point value to an integer. The primes are saved in a vector
container because we need the known primes in memory for use in checking a prime candidate. Of course, it would
be possible to hold a subset of the primes in memory with the rest in a file, but that would need the capability to read
the file, which I haven’t explained yet.

The fstream header defines the ofstream type as well as the ifstream and fstream, so including this header into
a source file provides for creating stream objects for all combinations of file read and write operations. The ofstream
object is created by passing filename that identifies the file name and path to the constructor. You could pass a literal
to the constructor here, but frequently you’ll need to allow the file to be used to be identified by user input. The output
stream is in text mode by default. The primes are written to the file using the << operator in exactly the same way as if you
were writing them to cout. You can see that the stream manipulators work in the same way too. The setw() manipulator
is important here. Without the use of setw(), there would be no whitespace between one prime and the next.

Chapter 17 ■ File input and Output

545

The file is closed automatically when the ostream object is destroyed - at the end of the program in this case.
You can close a file by calling the close() member of the ostream object. For example:

outFile.close(); // Close the file associated with the stream

It is best practice to explicitly close a file when it is no longer required, even when you know it will eventually be
closed for you. After executing this statement you can no longer write to the file. You can verify that the file contents
is overwritten by running the program twice with a lower number of primes in the second instance and looking at the
contents after each run.

Note ■ You don’t have to overwrite the file contents; that happens to be the default setting. i’ll explain how you control
the way a file is written a little later in this chapter.

Reading a File in Text Mode
To read a file, you create an ifstream object that encapsulates the file, for example:

string filename {"D:\\Example_Data\\primes.txt"};
std::ifstream inFile {filename};

This defines an ifstream object, inFile, that encapsulates the primes.txt file that was created in the
Example_Data directory on the D: drive, and opens the file ready for reading in text mode with the file position as 0.
If you’re going to read a file, it must already exist and should not be empty, but we all know that things don’t always go
as planned. What happens if you try to read from a file that you haven’t prepared earlier?

Checking the State of a File Stream
As far as the definition of the ifstream object is concerned, the answer is absolutely nothing: you just have a file
stream object that won’t work. To find out if everything is as it should be, you must test the status of the file, and
there are several ways to do this. One possibility is for you to call the is_open() member of the ifstream object,
which returns true if the file is open and false if it isn’t; if the file doesn’t exist, clearly it can’t be open. Another
option is to call the fail() function that is inherited in the file stream classes from the ios class; this returns true
if any file error occurred.

You can also use the ! operator with a file stream object. This operator is overloaded in the ios class to check
the stream status indicators. When applied to a stream object, it returns true if the stream isn’t in a satisfactory state.
Using the ! operator function is equivalent to calling fail() for the stream object. To make sure a stream object is in a
satisfactory condition and ready for use, you can write this:

if(!inFile)
{
 std::cout << "Failed to open file " << filename << std::endl;
 return 1;
}

You can test whether or not an output file stream object is available for use in exactly the same way, because the
ofstream class inherits from ios too. It also inherits the fail() function and implements the is_open() function.

Chapter 17 ■ File input and Output

546

The stream classes also inherit an overload of operator bool() from the basic_ios class. This returns true if
a stream object is ready for I/O to be performed. The overload is explicit, so you can only use this to test a stream
using an explicit cast. For example:

if(static_cast<bool>(inFile))
{
 // No error states so we can read the file...
}
else
{
 std::cout << "Failed to open file " << filename << std::endl;
 return 1;
}

Even though casting to type bool offers a positive check mechanism, I think it’s clearer to use the expression
!inFile.fail(). However, there’s an even simpler option. The basic_ios class defines operator void*(). This
operator function overloads a conversion of an object to a pointer of type void*; it is not defined as explicit so the
compiler can insert it as an implicit conversion. The function returns nullptr if calling fail() for the stream object
returns true, and a non-null pointer otherwise. You know that a pointer as an if or while loop expression is implicitly
converted to type bool. Therefore you can validate an input file stream object like this:

if(inFile)
{
 // No error states so we can read the file...
}
else
{
 std::cout << "Failed to open file " << filename << std::endl;
 return 1;
}

This is equivalent to the previous code fragment but less typing. I’ll look further into stream error states a little
later in this chapter.

Reading a file in text mode is just like reading from cin —you use the extraction operator in exactly the same
way. However, you don’t necessarily know how many data values there are in a file, so how do you know when you’ve
reached the end? The eof() function that is inherited from basic_ios in the ofstream class provides a neat solution.
It returns true when the end of file (EOF) is reached, so you can just continue to read data until that happens.

Reading the File
You now know enough about how input file streams work to read the file that was written by the previous example.
This example reads the file and outputs the primes to the screen. Here’s the code:

// Ex17_02.cpp
// Reading the primes file
#include <fstream>
#include <iostream>
#include <iomanip>
#include <string>
using ulong = unsigned long long;

Chapter 17 ■ File input and Output

547

int main()
{
 std::string filename {"D:\\Example_Data\\primes.txt"}; // Input file name
 std::ifstream inFile {filename}; // Create input stream object

 // Make sure the file stream is good
 if (!inFile)
 {
 std::cout << "Failed to open file " << filename << std::endl;
 return 1;
 }

 ulong aprime {};
 size_t count {};
 size_t perline {6};
 while (true) // Continue until EOF is found
 {
 inFile >> aprime; // Read a value from the file
 if (inFile.eof()) break; // Break if EOF reached

 std::cout << (count++ % perline == 0 ? "\n" : "") << std::setw(10) << aprime;
 }
 std::cout << "\n" << count << " primes read from " << filename << std::endl;
}

The output will be a listing of the primes written by Ex17_01.cpp. They were written 5 to a line in the file but the
output here is 6 to a line, just to be different. A newline is a whitespace character that is ignored by the << operator
function for stream input so it has no effect on the output to cout. However, although this file is easy to view in a
text editor in this instance, there’s a potential problem with reading it in general. Each value is written to the file
with a field width of 10. This is fine when the values are less than 10 digits, but there will be no whitespace between
successive values if one of them is 10 or more digits. This is unlikely here, but possible in general. The absence of
whitespace between successive values would prevent the file from being read correctly. The >> operator depends
on whitespace to separate one value from the next. If it isn’t there, the input process cannot determine where one
value ends and the next begins; a contiguous sequence of digits will be read as a single input value. It would be better
to ensure there is at least a newline character between successive values in the file. You need to keep this in mind
whenever you are writing a file in text mode. We’ll fix this in the next example.

The file input stream object is type ifstream and the file name is passed to the constructor analogous to
creating an ofstream object. Assuming it exists, the file is opened ready to read with the file position as 0, which is the
beginning of the file contents. After creating inFile, the ! operator is applied to the object in the if statement to verify
that the file exists. You can see this check failing if you introduce an error into the file name - spell it prrimes.txt for
example.

The primes are read from inFile in an indefinite while loop using the >> operator for the stream object. The if
statement that calls eof() for inFile to determine when the end of file has been reached ends the loop. Note that
the EOF condition is set when you read a file after the last data item has been read—the file position will be end, one
beyond the last byte in the file. EOF is not set by reading the last data item. This means that the check for EOF will only
be true if all the data has been read (or the file position has been set to end by some other means) and you execute
another read operation. When EOF is detected by a read operation, the EOF flag is set in the stream object but no data is
transferred, so aprime will be left unchanged by the read operation that executes after the last prime has been read.

Chapter 17 ■ File input and Output

548

The file will be closed when the stream object is destroyed, but you can close an input stream in the same way as
an output stream:

inFile().close(); // Close the input stream

The file can no longer be read after close() has been called.

Setting the Stream Open Mode
The open mode for an ifstream or ofstream object determines what you can do with a file. You define an open mode
as a combination of bit mask values of type openmode that are defined in ios_base and inherited in the stream
classes via the ios class. The constructors for ifstream and ofstream objects have a second parameter of type
openmode that has a default value that we have used up to now. The openmode mask values are shown in Table 17-3.

Table 17-3. Stream open mode values

Value Meaning

ios::app Moves to the end of the file before each write (append operation). This ensures that you can only
add to what is in a file; you can’t overwrite it.

ios::ate Moves to the end of the file after opening it (at the end). You can move the current position to
elsewhere in the file subsequently.

ios::binary Sets binary mode. In binary mode, all characters are unchanged when they’re transferred to or
from the file. If binary mode is not set, the mode is text mode.

ios::in Opens the file for reading.

ios::out Opens the file for writing.

ios::trunc Truncates the existing file to zero length.

An open mode specification consists of one or more of these openmode values. Because each openmode setting is
a single bit, you generate an open mode that is a combination of these by bitwise-ORing them. For a file that is to be
opened for writing in binary mode, such that data can only be added at the end of the file, you would specify the mode
by the expression ios::out|ios::app|ios::binary. You can open a file for reading and writing by specifying both
ios::in and ios::out, but this is only legal with an object of type fstream, as you’ll see shortly.

The default open mode for an ifstream object is ios::in, which just opens the file for input. The default for an
ofstream object is ios::out, which specifies that the file is to be opened for output. You can set the file open mode by
supplying it as a second argument to a file stream constructor. For example, you can specify the open mode for a file
output stream such that you can append data to the file rather than overwrite the contents like this:

std::string filename {"D:\\Example_Data\\primes.txt"};
std::ofstream outFile {filename, std::ios::out|std::ios::app};

The combination of ios::out and ios::app as the open mode causes the file to be opened for output so that all
writes are at the end of the file; this means that the file position is set to end. It’s not essential to specify ios::in for an
input file stream and ios::out for an output file stream because it is implicit in the type of stream. Thus the definition
of outFile could be:

std::ofstream outFile {filename, std::ios::app}; // Same as previous definition

Chapter 17 ■ File input and Output

549

If you explicitly close a file stream by calling close() for the stream object, you can reopen the stream with
a different open mode by calling open() for the stream object. The open() member accepts two arguments, the
file name and the open mode. The second parameter to open() class has a default value that is the same as for the
constructor. You could close the outFile stream and reopen it with a different open mode setting with the following
statements:

outFile.close();
outFile.open(filename);

This reopens the file to overwrite the original contents, because ios::out is the default value for the second
parameter. To reopen the file to append data you would use this statement:

outFile.open(filename, std::ios::out|std::ios::app);

Let’s create a variation on Ex17_01 that generates and displays the number of primes that you request, but if the
primes.txt file already exists, the primes in the file are accessed and displayed as necessary and new primes that
need to be found are added to the file. The program will only need to generate primes in excess of those already in the
file. Any that are already in the file can be displayed immediately.

The logic is a little complicated so I’ll go through the code in detail. The example will need to determine whether
or not there is an existing file, and if it doesn’t exist, it must create it. If it does exist, the program will output primes
from the file up to the number required, if they are all in the file. If there are fewer primes in the file than the number
requested, the example must discover the additional primes and write them to the file, as well as outputting them to
the standard output stream. Here’s the code to do that:

// Ex17_03.cpp
// Reading and writing the primes file
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <string>
using std::ios;
using std::string;
using ulong = unsigned long long;

ulong nextprime(ulong aprime, const string filename); // Find the prime following aprime

int main()
{
 string filename {"D:\\Example_Data\\more_primes.txt"};
 size_t nprimes {}; // Number of primes required
 size_t count {}; // Count of primes found
 ulong lastprime {}; // Last prime found
 size_t perline {5}; // Number output per line

 // Get number of primes required
 std::cout << "How many primes would you like (at least 4)?: ";
 std::cin >> nprimes;
 if (nprimes < 4) nprimes = 4;

Chapter 17 ■ File input and Output

550

 std::ifstream inFile; // Create input file stream
 inFile.open(filename); // Open the filename file for input

 if (!inFile.fail()) // If there is a file...
 { // ...read primes from it
 while (true)
 {
 inFile >> lastprime;
 if (inFile.eof()) break;

 std::cout << std::setw(10) << lastprime << (++count % perline == 0 ? "\n" : "");
 if (count == nprimes) break;
 }
 inFile.close(); // Reading is finished
 if (count == nprimes) // Check if we found them all
 {
 inFile.close(); // We are done with the file
 std::cout << std::endl << count << "primes found in file." << std::endl;
 return 0;
 }
 }

 // If we get to here, we need to find more primes
 inFile.clear(); // Clear EOF flag
 inFile.close(); // Reading is finished
 try
 {
 size_t oldCount {count}; // The number that were in the file
 std::ofstream outFile; // Create an output stream object

 if (oldCount == 0)
 { // The file is empty
 outFile.open(filename); // Open file to create it
 if (!outFile.is_open())
 throw ios::failure {string {"Error opening output file "} + filename + " in main()"};

 outFile << "2\n3\n5\n"; // Write 1st three primes to file
 outFile.close();
 std::cout << std::setw(10) << 2 << std::setw(10) << 3 << std::setw(10) << 5;
 lastprime = 5;
 count = 3;
 }

 while (count < nprimes)
 {
 lastprime = nextprime(lastprime, filename);
 outFile.open(filename, ios::out | ios::app); // Open file to append data

Chapter 17 ■ File input and Output

551

 if (!outFile.is_open())
 throw ios::failure {string {"Error opening output file "} + filename + " in main()"};
 outFile << lastprime << '\n';
 outFile.close();
 std::cout << std::setw(10) << lastprime << (++count % perline == 0 ? "\n" : "");
 }
 std::cout << std::endl << nprimes << " primes found. "
 << nprimes-oldCount << " added to file." << std::endl;
 }
 catch (std::exception& ex)
 {
 std::cout << typeid(ex).name() << ": " << ex.what() << std::endl;
 return 1;
 }
}

main() calls the nextprime() function to obtain the prime that follows the prime that is the first argument. The
second argument is the name of the file that contains the primes found so far. The definition of this function is:

ulong nextprime(ulong last, const string filename)
{
 bool isprime {false}; // true when we have a prime
 ulong aprime {}; // Stores a prime from the file
 std::ifstream inFile; // Local file input stream object

 // Find the next prime
 ulong limit {};
 while (true)
 {
 last += 2ULL; // Next value for checking
 limit = static_cast<ulong>(std::sqrt(last));

 // Try dividing the candidate by all the primes up to limit
 inFile.open(filename); // Open the primes file
 if (!inFile.is_open())
 throw ios::failure {string {"Error opening input file "} +filename + " in nextprime()"};

 do
 {
 inFile >> aprime;
 } while (aprime <= limit && !inFile.eof() && (isprime = last % aprime > 0));
 inFile.close();
 if (isprime) // We got one...
 return last; // ...so return it
 }
}

Chapter 17 ■ File input and Output

552

This program will output the number of primes that you request and write any new ones to the file
more_primes.txt. Here some sample output from an execution that is not the first:

How many primes would you like (at least 4)?: 31
 2 3 5 7 11
 13 17 19 23 29
 31 37 41 43 47
 53 59 61 67 71
 73 79 83 89 97
 101 103 107 109 113
 127
31 primes found. 2 added to file.

Because all the primes that are found are stored in the file, it’s no longer necessary to keep them in memory;

they can be read from the file when required. Primes are found by the nextprime() function, but before exploring
that, let’s look at how the code in main() works.

After getting the number of primes required from the user, the more_primes.txt file is opened as an input
stream. The ifstream object, inFile, is created using the default constructor. The stream object will not be associated
with a file at this point. To use the stream object to open the pmore_primes.txt file, the open() function is called with
the file name as the argument. The function can accept a second argument — the open file mode — but because it’s
not specified, the default value of ios::in will apply. Of course, the first time you run the example, the file won’t exist,
so it will be created. Note that if the path to the file does not exist, an exception will be thrown in main(). You can
verify that this is the case by changing the directory name to a non-existent directory.

Of course, it may be that the file could not be opened for some reason so it’s a good idea to verify that the file
stream is in a good state before you try to read it. This is done by calling fail() for the file stream object in the if
statement. fail() returns true if the file could not be opened so if the expression !inFile.fail() is true, all is well.

Within the if block, up to nprimes values are read from the file in the indefinite while loop. Calling eof() for
inFile after each read operation checks whether the end of file has been reached. After each prime read successfully
has been written to cout, there’s a check whether the number required have been found. If they have, there’s nothing
more to do beyond closing the file and outputting a suitable message. When this occurs, the file obviously contains
more primes than were required and therefore no new primes are added.

If the while loop ends because EOF was reached, the condition remains set until it is reset. Calling the clear()
function for the stream object resets all errors flags, including the flag that indicates EOF has been recognized. I’ll
discuss what else you can do with the clear() function a little later in the chapter.

After closing the file, the remainder of the code in main() comes within a try block because an exception will be
thrown if there’s a problem with opening the file. The catch block will catch any exception type that has exception as
a base so it will catch ios::failure objects.

At this point, the value of count represents the number of primes in the file; you save this in oldCount for use in a
message after all the required primes have been found. Of course, if the value of oldCount is 0, no primes were
read from the file so you must write the file from scratch. This involves opening the file and writing the first three
primes, 2, 3, and 5, to it as seed values. Of course, this is a text file so you can write the three values as a single string.
You also write these values to cout because they are first three of those required. Subsequent primes will follow 5 so
lastprime is set to this value.

Subsequent primes are found in the while loop that continues as long as count is less than nprimes. The next
prime is found by calling the nextprime() function with lastprime as the first argument; the second argument is the
file name because the function will use the file contents as divisors.

Calling open() for outFile with ios::out|ios::app as the argument opens the file to append data. After
verifying the file was opened successfully, lastprime is written to the file followed by a newline as separator. The file is
then closed because it will need to be opened to read it on the next iteration to find the next prime.

Chapter 17 ■ File input and Output

553

The nextprime() function finds a new prime using the primes from the file as divisors, so it creates a local
ifstream object. The process for finding the next prime is in the indefinite while loop. The first value to be checked
is obtained by incrementing lastprime by 2. The value passed to the function as lastprime will be the last prime
number found, so you don’t need to check that it is odd. To determine whether value is a prime, you try dividing by
all the primes up to the square root of the value in the do-while loop. The loop continues as long as the prime read is
less that limit and it not an exact divisor and as long as EOF has not been reached. If the loop ends because of an exact
divisor, isprime will be false so the outer while loop will continue with the next candidate in last.

The program works, but this process of opening and closing the file every time you go round the loop in the
nextprime() function is very inefficient. It would be much better if you could just read the file from the beginning
each time, so let’s see how you could do that.

Managing the Current Stream Position
You can access and change the current stream position using function members of the istream and ostream classes;
these don’t apply to the standard streams because the standard streams don’t relate to physical devices for which a
stream position would be meaningful. They do apply to objects of all the file stream classes. The functions in istream
and ostream are inherited in ifstream and ofstream respectively, and both sets of functions are inherited by the
fstream class via iostream.

There are two things that you can do in relation to the stream position: you can obtain the current position in
the stream, and you can change the current position. The current position is returned by the tellg() function for
input stream objects and by the tellp() function for output stream objects. The g in tellg() is for “get” and the p
in tellp() is for “put,” so this indicates whether you get data from the stream the function relates to or you put data
into it. Both functions return a value of type pos_type that represents an absolute position in a stream. pos_type is an
integer type that is defined within the basic_ios class and inherited by the stream classes.

For example, you could obtain the current position in an input file stream object called inFile using this
statement:

std::ifstream::pos_type here {inFile.tellg()}; // Record current file position

This initializes here with the current file position, the type for here is cumbersome because pos_type must be
qualified with the name of the class in which it is defined. You can avoid having to remember the specific type for a file
position by using the auto keyword:

auto here = inFile.tellg(); // Record current file position

Don’t forget. always use = when specify a variable type as auto; if you use an initializer list, the variable will be the
wrong type.

You define a new position in a stream by calling seekg() for an input stream object or seekp() for an output
stream object. The argument is typically a position that you recorded using either tellg() or tellp(). For example,
you could reset the stream position for inFile back to here with this statement:

inFile.seekg(here); // Set current position to here

A stream position is an integral value that is the index position of a character in the stream, where the first
character is at index position 0. It’s therefore possible to use integer values to move to specific positions in a stream.
This can be hazardous in text mode because it’s difficult to keep track of where data is in a text file, not least because
the number of characters in the stream may be different from the number of characters written. However, seeking to

Chapter 17 ■ File input and Output

554

position 0 is always going to move to the beginning of the stream, so it could be used in the nextprime() function to
avoid closing and reopening the file on each iteration of the while loop:

ulong nextprime(ulong last, const string filename)
{
 bool isprime {false}; // true when we have a prime
 ulong aprime {}; // Stores a prime from the file
 std::ifstream inFile(filename); // Local file input stream object
 if (!inFile.is_open())
 throw ios::failure {string {"Error opening input file "} + filename + " in nextprime()"};

 // Find the next prime
 ulong limit {};
 while (true)
 {
 last += 2ULL; // Next value for checking
 limit = static_cast<ulong>(std::sqrt(last));

 // Try dividing the candidate by all the primes up to limit
 do
 {
 inFile >> aprime;
 } while (aprime <= limit && !inFile.eof() && (isprime = last % aprime > 0));

 inFile.seekg(0);
 if (isprime) // We got one...
 {
 inFile.close(); // ...close the file...
 return last; // ...and return the prime
 }
 }
}

With this version of the function, you open the file when you create the ifstream object and simply reset the file
position to the first character in the file at the end of the while loop. Only when a prime has been found do you close
the input file.

An alternative to moving to an absolute position in a stream is to move to a position specified as an offset relative
to one of three specific positions in a stream. The offset can be positive or negative. You can define a new position
relative to the first character in the stream (the offset must be positive), relative to the last character in the stream
(the offset must be negative), or relative to the current position. The offset from the current position can be positive or
negative, as long as the position is not at either end. Figure 17-3 illustrates how you seek to a relative position.

ios::endios::beg ios::cur

negative offset positive offset negative offsetpositive offset

inFile.seekg(2, std::ios::beg)

inFile.seekg(-2, std::ios::cur)

inFile.seekg(-4, std::ios::end)

Input File Stream

EOF

Figure 17-3. Moving to a relative stream position

Chapter 17 ■ File input and Output

555

You use versions of seekg() or seekp() that accept two arguments when moving to a relative position. The first
argument is the offset, which is an integral value of type off_type, and the second argument must be one of the values
in Table 17-4 that are defined in the ios class.

Table 17-4. Constants identifying the base position for a relative stream position

Value Description

beg Offset is relative to the first character in the file.

cur Offset is relative to the current file position.

end Offset is relative to one beyond the last character in the file.

The constants in Table 17-4 are not stream positions. They are constants of type std::ios_base::seekdir, not
the stream position type, As I explained, the offset value must be positive relative to ios::beg and negative relative to
ios::end. An offset of 0 relative to ios::end sets the position to the end of the file, so you can use this when you want
to append to a file. An offset can be in either direction relative to ios::cur by using positive or negative values for
the offset. You can specify the offset as an integer constant, or as an expression that evaluates to an integer. Of course,
these standard position values are inherited in the file stream classes so you can access them as a member of such
objects.

The seekg() functions return a reference to the file stream object, so you can combine a seek operation with an
input operation by using an extraction operator, for example:

inFile.seekg(10, inFile.beg) >> value;

This statement moves the file position to an offset of ten characters from the beginning of the file and read a data
item from that point into value.

Similarly, you can use the seekp() function to move to a position where you want to start the next output
operation; the function arguments are exactly the same as for seekg(). The next write to the stream will overwrite
characters, starting with the character at the new position. Relative seek operations don’t work in text mode, and
absolute seeks are dubious so I recommend that you avoid seeking in text mode.

You know that a file position is the index of a character position in the stream and std::ios::end is the position
one beyond the last character written to the stream. You can therefore determine the length of a stream like this:

auto stream_length = inFile.seekg(0, inFile.end).tellg();

The seekg() function returns the file stream, so this is used to call tellg() for the same stream object. Because
seekg() moves the position to one beyond the last character, the tellg() function returns a value that will be the
number of characters in the stream.

Note ■ i’m not done with the operations i’ve discussed here. i’ll return to them later in this chapter when i discuss
random read/write operations on a stream.

Unformatted Stream Operations
In addition to the insertion and extraction operators for formatted I/O in text mode, there are function members of
the stream classes for transferring data without any formatting. The extraction operator treats whitespace characters
as delimiters, but otherwise ignores them. The unformatted stream input functions don’t skip whitespace
characters — they’re read and stored just like any other characters.

Chapter 17 ■ File input and Output

556

Unformatted Stream Input
The istream class defines a wealth of unformatted input functions that are inherited in the file stream classes. For a
start, there are two varieties of the get() function member to read a single character from a stream:

std::istream::int_type get();
Reads a single character from the stream and returns it. std::istream::int_type is an
implementation defined integral type that will be capable of storing any character. It will
usually correspond to type int. If the end of file is reached, the function returns a character
representing end of file, which is the character returned by std::char_traits::eof() and
by the EOF macro in the cstdio header. If a character can’t be read from the stream for any
reason, the error flag ios::failbit will be set. (I’ll discuss this and other error flags later in
the chapter, when I discuss I/O errors.)

std::istream& get(char& ch);
Reads a single character from the stream and stores it in ch. The function returns a
reference to the stream object, so you can combine calling this function with other member
function calls. As with the previous function, if a character can’t be read from the stream,
the failbit error flag is set and EOF is stored in ch.

The peek() function member is similar to the first get() function in that it reads the next character from the
stream; the difference is that it leaves the character in the stream so you can read it again. peek() returns the character
read as a value of type std::istream::int_type.

You can return the last character read from a stream back to the stream by calling the unget() function member.
For a file, this just moved the file position back to the character that was read. unget() returns a reference to the
istream object for which it was called. It’s typically used in combination with a get() function that reads a single
character when parsing input. For example, you might need a function to skip characters that are not digits in a stream
so as to position the stream at the next digit; you could define it like this:

std::ifstream& skipnondigits(std::ifstream& in)
{
 std::istream::int_type ch {};
 while (true)
 {
 ch = in.get();
 if(ch == EOF) break;
 if(std::isdigit(ch))
 { // When a digit is read...
 in.unget(); // ...put it back in the stream
 break;
 }
 }
 return in; // Return the stream
}

The effect of this function is to move the file position until a digit is found, or until EOF if no digits are present.
Returning the file stream is a convenience for the caller to call a stream function member in the same statement.
The caller could test for EOF for example, which would indicate that no digits were found:

if(!skipnondigits(in).eof())
{
 // Read a numerical value...
}

Chapter 17 ■ File input and Output

557

The putback() function member has a similar effect to unget(), but in this case you specify the character to put
back in the stream as an argument. In the preceding example, instead of the statement calling unget(), you could
have written this:

in.putback(ch); // ...put back the digit...

The argument to putback() must be the last character read; otherwise, the result is undefined. The putback()
function also returns a reference to the stream.

There are two get() functions that read a sequence of characters as a null-terminated string:

std::istream& get(char* pArray, std::streamsize n);
Reads up to n-1 characters from the stream and stores them in the array pArray, adding a
null terminator at the end to make n characters in total. Characters are read until a newline
character is read, the end of file is reached, or n-1 characters have been read. If a newline is
reached, it isn’t stored, but '\0' is always appended to the sequence of characters read. The
effect is to read a line of text without storing the '\n' character that marks the end of the line.
The '\n' character remains in the stream as the next character to be read. Because up to n
characters may be stored, the array pointed to by pArray should have at least n elements.
ios::failbit is set if no characters are stored. std::streamsize is a signed integer type that
is implementation defined.

std::istream& get(char* pArray, std::streamsize n, char delim);
This works in the same way as the previous function, except that you can specify a delimiter,
delim, that will be used in place of newline to end the input process. If the delimiter is
found, it isn’t stored, but is left in the stream.

There are two getline() function members that are almost equivalent to the get() functions that read a line
of text:

std::istream& getline(char* pArray, std::streamsize n);
std::istream& getline(char* pArray, std::streamsize n, char delim);

The difference between getline() and the corresponding get() function is that getline() removes the
delimiter from the stream, so the next character to be read is the character following the delimiter.

After calling an unformatted input function, you can determine the number of characters that were read by
calling gcount() for the stream object. This returns the count of characters read by the last unformatted input
operation as a value of type std::streamsize.

You can read a specified number of characters from a stream, assuming they’re available, with the read()
function member:

std::istream& read(char* pArray, std::streamsize n);

This function reads n characters into pArray if they are available, including any newlines and null characters.
If the end of the file is reached before n characters have been read, ios::failbit is set in the input object.

You’ll typically use the read() function when you know that n characters are available in the stream. There’s
another member function that you can use when this isn’t the case. The readsome() function operates similarly to
read(), but it returns the count of the number of characters read:

std::streamsize readsome(char* pstr, std::streamsize n);

If fewer than n characters are available in the stream, the function sets the ios::eofbit flag so calling eof() for
the stream object will return true.

Chapter 17 ■ File input and Output

558

You can skip over characters in an input stream with this function:

std::istream& ignore(std::streamsize n, std::istream::int_type delim);

Up to n characters are read from the stream and discarded. Reading the delim character or reading n characters
ends the process. There are default values for the parameters n and delim of 1 and the character representing EOF,
respectively. Thus, you can skip a single character with the following statement:

inFile.ignore(); // Skip one character

To skip 20 characters, you would write this:

inFile.ignore(20); // Skip 20 characters up to the end of the file

Reading the end of file will stop the process in this case, but you could skip 20 characters in the current line with
the following statement:

inFile.ignore(20, '\n'); // Skip 20 characters up to the end of the current line

Unformatted Stream Output
In stark contrast to the plethora of unformatted input functions, you have just two functions available for unformatted
output to a stream in text mode: put() and write(). The put() function takes the following form:

std::ostream& put(char ch);

This writes the single character, ch, to the stream and returns a reference to the stream object. To write a
sequence of characters to a stream, you use the write() function, which has this form:

std::ostream& write(const char* pArray, std::streamsize n);

This writes n characters to the stream from the array, pArray. Any kind of characters can be written, including
null characters. Generally, output to a stream is buffered and sometimes you want the contents of the stream buffer
written to the stream regardless of whether the buffer is full. Calling the flush() member of an ostream object will do
this. flush() writes the contents of the stream buffer to the device and returns a reference to the stream object.

Errors in Stream Input/Output
All the stream classes store the state of the stream in a data member that is an integer. This member is normally 0 but
when a stream error occurs, the state is set to a combination of one or more error flags. These flags are defined by
integer constants that are bit masks of type std::ios_base::iostate; this type is inherited along with the constants
that are flags in all classes derived from ios_base. Table 17-5 shows the meanings of these flags.

Chapter 17 ■ File input and Output

559

If EOF is read, the stream state will be ios::eofbit. If a serious error occurred while reading from a stream and no
characters could be read, both the ios::badbit and ios::failbit flags will be set, so the stream state would be the
result of ios::badbit|ios::failbit.

Once a flag is set, it remains set unless you reset it. You’ll sometimes want to reset the flags — when you reach
the end of a file while reading it, for example — because you may subsequently want to read the file again. Calling
clear() for a stream object resets all the error flags:

infile.clear(); // Clear all error states

You can test the state of a stream by applying a cast to type bool or the ! operator to the stream object, by calling
its fail() member, or by using just the object; this can be in an if statement or a loop condition. fail() returns true
if badbit and/or failbit have been set, the same as the ! operator. For example:

while(!inFile.fail())
{
// Read from inFile...
}
inFile.clear(); // Clear any error states

You can use this kind of loop to read to the end of a file, because when the end of file is reached, the read
operation will set failbit as well as eofbit. You could also write this as:

while(inFile)
{
// Read from inFile...
}
inFile.clear(); // Clear any error states

This is implicitly invoking operator void*() for the stream object followed by an implicit conversion of the
pointer to type bool.

The stream classes inherit function members that test the state of individual flags. As Table 17-6 shows, they each
return a value of type bool.

Table 17-5. Stream State Flags

Flag Meaning

ios::badbit A single bit that is set when a stream is in a state in which it can’t be used further—if an I/O
error occurred, for example. This isn’t recoverable.

ios::eofbit A single bit that is set when the end of file is reached.

ios::failbit A single bit that is set if an input operation didn’t read the characters expected or an output
operation failed to write characters successfully. This is typically due to a conversion or
formatting error or reading beyond the end of the stream. Any subsequent operations will fail
while the bit is set, but the situation may be recoverable.

ios::goodbit Defined as 0. If the stream state is goodbit, there are no errors.

Chapter 17 ■ File input and Output

560

Instead of just calling clear() at the end of the previous code fragment, you might do a more detailed analysis of
the stream state:

while(inFile)
{
// Read from inFile...
}
if(inFile.bad())
{
 std::cout << "Non-recoverable file input error." << std::endl;
 std::exit(1);
}
inFile.clear();

The fail() function will return true if either failbit or badbit is set, so there could have been a non-
recoverable read error. This now terminates the program if badbit is set. The other error bits will be set by reading
beyond the end of the file so it’s reasonable to clear the error state and continue as long as badbit was not set.

Input/Output Errors and Exceptions
When errors occur in I/O operations, exceptions may be thrown. The exceptions for stream errors are of type
std::ios_base::failure This type is a nested class that is inherited in ios from ios_base, so you can use
ios::failure as the exception type. A mask that is a member of a stream object determines whether an exception
will be thrown when a particular stream state flag is set. You can set this mask by passing a mask to the exceptions()
member of the stream object, with bits set to specify which flags you want to throw exceptions. For example, if you
would like to have exceptions thrown when any of the flag bits is set for a stream called inFile, you could enable this
with the following statement:

inFile.exceptions(ios::badbit | ios::eofbit | ios::failbit);

Now if anything goes wrong, even when just the end of a file is reached, an exception of type ios::failure will
be thrown.

Generally, it’s better to test the error flags in one of the ways I’ve discussed, rather than to use exceptions for
handling I/O errors, at least as far as the eofbit and failbit flags are concerned. Most of the time, you’ll be involved
in dealing with failbit and eofbit flags, because these are a part of the normal process of handling stream input and
output. The default position in most development environments is that exceptions are not thrown for stream errors.

Table 17-6. Functions for Testing Stream State Flags

Function Action

bad() Returns true if badbit is set in the stream object.

eof() Returns true if eofbit is set in the stream object.

fail() Returns true if failbit or badbit is set in the stream object.

good() Returns true if goodbit is set in the stream object which implies the other flags are not set.

Chapter 17 ■ File input and Output

561

You can check whether exceptions will be thrown by calling a version of exceptions() with no arguments that returns
a value of type iostate. The value returned reflects which error flags will result in an exception being thrown, so you
can test whether a given flag being set will throw exceptions as follows:

std::ios::iostate willthrow {inFile.exceptions()};
if(willthrow & std::ios::badbit)
 std::cout << "Causing badbit to be set will throw an exception" << std::endl;

The result of ANDing ios::badbit with willthrow will be 0 unless ios::badbit is set in willthrow.

Stream Operations in Binary Mode
There are many situations in which text mode isn’t appropriate or convenient, and it can sometimes cause difficulties.
The transformation of newline characters into two characters on some systems and not others makes relative seek
operations unreliable for programs that are to run in both environments. By using binary mode, you avoid these
complications and make the stream operations much simpler. You’ve already seen how to open a stream in binary
mode: you just need to specify the open mode flags appropriately. You can read and write a file in binary mode using
functions that you have already seen, put() and get(). Let’s try it in an example.

We can write a program that will copy any file. The copying can be done using the get() and put() function
members for a stream that read and write a single character:

// Ex17_04.cpp
// Copying files
#include <iostream> // For standard streams
#include <cctype> // For character functions
#include <fstream> // For file streams
#include <string> // For string type
#include <stdexcept> // For standard exceptions
using std::string;
using std::ios;

void validate_files(string source, string target); // Validate the files
int main(int argc, char* argv[])
try
{
 // Verify correct number of arguments
 if (argc != 3)
 throw std::invalid_argument {"Input and output file names required.\n"};

 // Check for output file identical to input file
 const string source {argv[1]}; // The input file
 const string target {argv[2]}; // The destination for the copy
 if (source == target)
 throw std::invalid_argument {string("Cannot copy ") + source + " to itself.\n"};
 validate_files(source, target);

 // Create file streams
 std::ifstream in {source, ios::in | ios::binary};
 std::ofstream out(target, ios::out | ios::binary | ios::trunc);

Chapter 17 ■ File input and Output

562

 // Copy the file
 char ch {};
 while (in.get(ch))
 out.put(ch);

 if (in.eof())
 std::cout << source << " copied to " << target << " successfully." << std::endl;
 else
 std::cout << "Error copying file" << std::endl;
}
catch (std::exception& ex)
{
 std::cout << std::endl << typeid(ex).name() << ": " << ex.what();
 return 1;
}

// Verify input file exists and check output file for overwriting
void validate_files(string infile, string outfile)
{
 std::ifstream in {infile, ios::in | ios::binary};
 if (!in) // Stream object
 throw ios::failure {string("Input file ") + infile + " not found"};

 // Check if output file exists
 std::ifstream temp {outfile, ios::in | ios::binary};
 if (temp)
 { // If the file stream object is ok then the output file exists
 temp.close(); // Close the stream
 std::cout << outfile << " exists, do you want to overwrite it? (y or n): ";
 if (std::toupper(std::cin.get()) != 'Y')
 {
 std::cout << "Destination file contents to be kept. Terminating..." << std::endl;
 }
 }
}

This program requires the name of the input file and the name of the output file as command-line arguments. I
entered this on the command line on my Microsoft Windows system with the current directory as the one containing
Ex17_04.exe:

Ex17_04.exe D:\Example_Data\primes.txt D:\Example_Data\primes_copy.txt

I got the following output:

D:\Example_Data\primes.txt copied to D:\Example_Data\primes_copy.txt successfully.

Chapter 17 ■ File input and Output

563

I also tried this:

Ex17_04.exe Ex17_04.exe Ex17_04_copy.exe

This generated the following output:

Ex17_04.exe copied to Ex17_04_copy.exe successfully.

The duplicate .exe file was in the current directory after executing the copy too, which is most encouraging! This
execution shows that using a file name without a path refers to a file in the current directory. Of course, it’s more than
likely that your system environment already provides a copy function but it’s nice to be able to create one for yourself.

The array argv will have argc elements, the first of which will contain the program name. Thus, argv should have
three elements, accommodating the program name plus the two file names, so you first verify that to be the case in
main(). If there are no command-line arguments, you throw a standard exception of type invalid_argument that will
be caught by the catch block at the end of main(). Having checked the arguments, you then assign them to a pair of
string objects that will make for easier manipulation and recognition in the remainder of the code.

You don’t want to be copying a file to itself, so you check that the files aren’t the same by comparing them.
If they are the same, you don’t continue—you throw another exception. Once you’re past the validity checks on the
command-line arguments, there still could be problems with the source and destination files so the validate_files()
function is called to check them out.

The validate_files() function first verifies that the source file exists by creating an ifstream object for it. If the
file does not exist, the ! operator applied to the stream object will return true, in which case an exception is thrown
that will be caught by the catch block in main(). It’s possible that the output file exists, so it’s important to verify that
it can be overwritten when that is the case; it could be disastrous the blindly go ahead with overwriting an existing
file. Creating an ofstream object will create the file if it doesn’t exist so an output file stream is no help. However,
you can determine whether a file exists by creating an input stream object for it and using the stream object as an if
expression. As you saw earlier, this implicitly calls operator void*() for the object, which returns a non-null pointer
if the file exists; the resultant pointer is implicitly converted to type bool. If the file does exist, you offer the option of
overwriting the file or terminating the copy operation.

If there are any problems with the source and target files for the copy operation, the validate_files()
function throws an exception. It only returns normally to main() when all is well. The code for copy operation is very
straightforward. After creating the ifstream and ofstream objects for the input and output files respectively, the copy
occurs in the while loop. Because the copying is character by character, regardless of what the characters are, the
operation works with any file contents. The get() function call for the in object will return false when EOF is read,
thus ending the copy process.

Writing Numeric Data in Binary
In binary mode data is written and read as a sequence of bytes, regardless of what the data is. Numerical data can be
written as binary values with no conversion to a string representation. Writing binary avoids the errors that can be
introduced by converting binary floating-point values to decimal representation, and the data takes up less space
in the file. Because you don’t need whitespace to separate data items in the file, the file will be shorter and therefore
faster to read. As long as you know what kind of data was written, you can read exactly what you wrote.

You need to be cautious when you’re reading binary data on a different sort of computer from where it was
written. There can be differences in the representations of binary floating-point values, and binary integers can be
stored differently on different machine architectures; you learned in Chapter 1 about big-endian and little-endian
ways of representing binary integers.

Chapter 17 ■ File input and Output

564

There are no stream functions that write numerical values of fundamental types to a file in binary, or read them
back; the binary operations only read and write bytes. However, you can write your own, as I’ll demonstrate. The file
streams have the read() and write() function members that just read and write bytes:

basic_istream& read(char* str, std::streamsize count); // Read count bytes into str
basic_ostream& write(const char* str, std::streamsize count); // Write count bytes from str

std::streamsize is an integer type that is defined in the ios header. These functions read or write count bytes
starting at str. Obviously, read() is an ifstream member and write() is an ofstream member and the fstream class
has both members.

You can use the read() and write() members to implement a set of functions that will write any of the numerical
types as binary data. The best way to see how this might work is, as ever, to consider an example.

Suppose you want to write values of type double to a file. You could implement your own write() function to
do this:

void write(std::ostream& out, double value)
{
 out.write(reinterpret_cast<char*>(&value), sizeof(double));
}

To write a floating-point value to a file, you write the sequence of bytes that the value occupies in memory to the
file. This is illustrated in Figure 17-4, which assumes that type double occupies 8 bytes.

out.write(reinterpret_cast<char*>(&value), sizeof(double));

double variable value

8 bytes

Figure 17-4. Writing a double value to a stream in binary mode

You force the conversion of the address of the first byte of the double value to type char*, and pass that to the
write() member of the stream object, out. The reinterpret_cast<>() operator only alters the interpretation of what
the pointer points to, without changing the data it points to in any way. The sizeof operator provides the number of
bytes to be written for type double, so you pass that value to the write() member of the stream object as the count of
the number of bytes to be written.

Clearly, you can write any of the numeric types to a stream in exactly the same way, so you could define a
template that will generate these functions when required. Such a template could potentially create functions for class
types, creating the illusion that the templates would work with objects of any class type. Unfortunately, this isn’t the
case. For example, a class object that contained a pointer as a data member wouldn’t be valid when it was read back

Chapter 17 ■ File input and Output

565

from a file because the address in the pointer would certainly be invalid. You can prevent the template from being
misused by applying static_assert() in the way you saw in Chapter 16. The type_traits header defines templates
that you can use to ensure the template is only instantiated for numeric types. Here’s the function template for binary
output of numeric data:

#include <type_traits> // For is_arithmetic

template <typename T>
void write(std::ostream& out, T value)
{
 static_assert(std::is_arithmetic<T>::value, "Only for use with numeric types.");
 out.write(reinterpret_cast<char*>(&value), sizeof(T));
}

The is_arithmetic<T> template results in true only if T is an integer or floating-point type. It will result in false
causing an assertion for any other type, including class types, and pointer and reference types.

A function template to generate functions to read a binary values from a file is also easily defined:

template <typename T>
void read(std::istream& in, T& value)
{
 static_assert(std::is_arithmetic<T>::value, "Only for use with numeric types.");
 in.read(reinterpret_cast<char*>(&value), sizeof(T));
}

This reads the number of bytes that a variable of type T occupies into the memory locations occupied by value.
The second parameter is a reference to allow the bytes read from the file to be stored at the location identified by the
argument.

Notice that you use a reference to an istream object as the first parameter type here, rather than a reference
to an ifstream object. Similarly, with the write() function you use ostream& as the type for the stream parameter.
Although you’ll only use these functions with file streams, making the parameters references to file stream types has
a distinct disadvantage. The fstream class is derived from iostream, and so has istream and ostream as indirect base
classes. It isn’t derived from ifstream or ofstream. By using istream& and ostream& as the parameter types in the
templates, you ensure that both will work with fstream as well as ifstream in the case of read<T>(), or ofstream in
the case of write<T>().

Defining function templates to read and write arrays of values of the basic types is not difficult, although you
must include a function parameter to specify the array length when the array is written, because the array length
cannot be deduced from an argument:

template <typename T>
void write(std::ostream& out, T* values, size_t length)
{
 write(out, length);
 for(size_t i {} ; i< length ; ++i)
 write(out, values[i]));
}

This first writes the array length, followed by the array elements using instances the function template for writing
a single numeric value. If T is not numeric, the instances of the function template for writing single value will cause
an assertion, so the instance of this template will not compile. You could just write the element values but writing the
array length first will allow the read<T>() template to avoid reading more elements than were written to the file. It is
up to the user to ensure that the values array has sufficient elements.

Chapter 17 ■ File input and Output

566

Here the template for functions to read an array of elements of any numeric type:

template <typename T>
size_t read(std::istream& in, T* values)
{
 size_t length {};
 read(in, length); // Creates previous template instance
 size_t i {};
 for(; i < length ; ++i)
 {
 read(in, values[i]);
 if(!in) break;
 }
 return i;
}

This uses the templates for reading single values. The static_assert() in those will prevent instances of this
template from compiling when T is not a numeric type. I have included a check for a stream error in the loop. This will
include a check for a premature EOF that would cause fewer elements to be read than were expected. This should not
happen, but returning the number of values read will allow the caller to recognize when this occurs and know how
many there are.

Templates for functions to write and read std::vector<T> and std::array<T,N> containers are easy. Here are
templates for array containers:

#include <array>
#include <type_traits>

// Write arrays of numeric values
template <typename T, size_t N>
void write(std::ostream& out, std::array<T, N>& values)
{
 write(out, N); // Previous template instance
 for(size_t i {} ; i < N ; ++i)
 write(out, values[i]);
}

// Read arrays of numeric values
template <typename T, size_t N>
size_t read(std::istream& in, std::array<T, N>& values)
{
 size_t length {};
 read(in, length);
 if(N < length) throw std::invalid_argument {"Too few elements in array container."};
 size_t i {};
 for(; i < length ; ++i)
 {
 read(in, values[i]);
 if(!in) break;
 }
 return i;
}

Chapter 17 ■ File input and Output

567

The user is responsible for creating the array container for both input and output operations. It’s also up to the
user to verify that it’s OK to overwrite an output file when it already exists. Simple, isn’t it?

The templates for vector<T> containers are also simple:

#include <vector>
#include <type_traits>

// Write vectors of numeric values
template <typename T>
void write(std::ostream& out, std::vector<T>& values)
{
 write(out, values.size());
 for(auto x ; values)
 write(out, x);
}

// Read vectors of numeric values
template <typename T>
size_t read(std::istream& in, std::vector<T>& values)
{
 size_t length {};
 read(in, length);
 T value {};
 size_t i {};
 for(; i < length ; ++i)
 {
 read(in, value);
 if(!in) break;
 values.push_back(value);
 }
 return i;
}

If you put all these templates together in a header file with #include directives for the array, vector, fstream,
type_traits and stdexcept headers, you can try it out with an example. To exercise all the templates need quite a lot
of code. Although the code is a bit repetitive, I’ll explain the contents of main() piecemeal. The program will assume
that the primes.txt file that was created by Ex17_03.cpp still exists in the Example_Data directory and contains at
least 20 primes. First, the header files and using directives in Ex17_05.cpp:

// Ex17_05.cpp
// Using function templates for numeric I/O
#include <cctype> // For character functions
#include <fstream> // For file streams
#include <iostream> // For standard streams
#include <iomanip> // For stream manipulators
#include <array> // For array container template
#include <vector> // For vector container template
#include <string> // For string type
#include "Binary_Numeric_IO.h" // For numeric I/O function templates
using std::ios;
using std::string;
using ulong = unsigned long long;

Chapter 17 ■ File input and Output

568

The templates for numeric I/O functions should be in the Binary_Numeric_IO.h header. The main() function
will make use of a helper function that checks whether a file exists. The code for it is:

void check_output_file(string filename)
{
 std::ifstream in(filename);
 if (in)
 {
 std::cout << filename << " exists. Overwrite(Y or N)?: ";
 char reply {};
 std::cin >> reply;
 std::cin.ignore(); // Remove EOF
 if (std::toupper(reply) != 'Y')
 std::exit(1);
 }
}

To check whether the file identified by the argument exists, a file input stream is created from the file name. If the
file exists, the implicit cast of the in object will result in true. In this case there’s a prompt for permission to overwrite
the file. If the answer is not 'y' or 'Y', the program is terminated by calling exit(). Reading a single character from
a stream using get() leaves the EOF that results from pressing the Enter key in the stream. If you place the code above
after main() in Ex17_05.cpp, don’t forget to put a prototype for the function before main().

The check_output_file() function will be called several times in main(). A subsequent read from cin will fail if
EOF is left in the stream; calling ignore() for the stream object removes the EOF. The function template to read from a
file into an array<T,N> container can throw exceptions, so the body of main() will be a try block:

int main()
try
{
 // Code for main()...
}
catch (std::exception& ex)
{
 std::cout << ex.what() << std::endl;
}

The first block of code in main() reads the primes.txt file:

const size_t primes_count {20};
ulong primes[primes_count];
string primesfile {"D:\\Example_Data\\primes.txt"};
std::ifstream in {primesfile};
if (!in) throw ios::failure{primesfile + " not found in main()."};
for (size_t i {} ; i < primes_count ; ++i)
{
 in >> primes[i];
 if (in.eof()) throw std::runtime_error {string {"not enough primes in "} +primesfile};
}
in.close();

Chapter 17 ■ File input and Output

569

This defines an array of primes_count elements of type unsigned long long and fills the array from the data in
primes.txt. The file was written in text mode so it is read using the >> operator for the stream. It’s possible that the file
with the name and path specified by primesfile does not exist - a typo in the initial value for primesfile would cause
that for example, so there’s a check to verify that the file does indeed exist. If it doesn’t, an exception is thrown that will
be caught by the catch block for main().

The next block of code in main() writes the contents of the primes array to a file in binary mode:

string binaryfile {"D:\\Example_Data\\primes.bin"};
check_output_file(binaryfile);
std::ofstream out {binaryfile};
write(out, primes, primes_count);
out.close();
std::cout << binaryfile << " written." << std::endl;

This calls the helper function to verify that it’s OK to overwrite the output file if it exists. The data in the array is
written to the file by an instance of the write<T>() function template for arrays. After writing the file, the stream and
the file are closed, so the file can be reopened subsequently in a different mode.

Just to demonstrate that the binary file contains the same data as the original text file, the next block of code reads
it back into another array and output the data to cout:

ulong primesback[primes_count];
in.open(binaryfile, ios::binary | ios::in);
if (!in) throw ios::failure {binaryfile + " not found in main() ."};
read(in, primesback);
in.close();
size_t perline {6};
std::cout << "Primes read into array:\n";
for (size_t i {}; i < primes_count; ++i)
{
 std::cout << std::setw(10) << primesback[i];
 if (!((i + 1) % perline)) std::cout << '\n';
}
std::cout << std::endl;

This uses the same file input stream object, in, that was used to read the text file to open a binary file to read it.
The file is read using an instance of the function template for reading from a binary file into an array. This template
will use an instance of the function template that reads a single value from a binary file. There’s a check that the input
file does exist before reading it. The contents of the array are written to cout, so the output will show whether or not
everything is working as it should.

The next block of code reopens the binary file and reads the contents into a vector<T> container:

in.open(binaryfile, ios::binary|ios::in);
if (!in) throw ios::failure {binaryfile + " not found in main() ."};
std::vector<ulong> primes_vector;
read(in, primes_vector);
in.close();

Chapter 17 ■ File input and Output

570

This uses the same file input stream object to reopen the binary file to read it. The data is read into the vector
using an instance of another of the function templates. The stream is closed, which closes the file, so the file can be
reopened later to read it or write it.

The data in the vector is written to a new binary file by the next block of code in main():

string vectorfile {"D:\\Example_Data\\primesvector.bin"};
check_output_file(vectorfile);
out.open(vectorfile, ios::binary | ios::out);
write(out, primes_vector);
out.close();
std::cout << vectorfile << " written." << std::endl;

This is similar to what happened previously, but uses an instance of another function template that writes
the contents of a vector<T> container to a binary file. The file is closed and then reopened to read it by the next code
in main():

in.open(vectorfile, ios::binary | ios::in);
 if (!in) throw ios::failure {vectorfile + " not found in main()."};
 std::array<ulong, primes_count> primesarray;
 read(in, primesarray);
 in.close();

Here, the data that was written from the vector to the file is read back into an array<T,N> container. This results
in yet another template instance created from the read<T,N>() template for reading into an array container. Of
course, to show that the write<T,N>() template also works, we write the array container to another file:

string arrayfile {"D:\\Example_Data\\primesarray.bin"};
check_output_file(arrayfile);
out.open(arrayfile, ios::binary | ios::out);
write(out, primesarray);
out.close();
std::cout << arrayfile << " written." << std::endl;

Finally, to show that nothing was lost along the way, we read the file that was just written and output the contents:

size_t count {};
in.open(arrayfile, ios::binary | ios::in);
if (!in) throw ios::failure {arrayfile + " not found in main()."};
read(in, count);
ulong prime {};
for (size_t i {}; i < count; ++i)
{
 read(in, prime);
 std::cout << std::setw(10) << prime;
 if (!((i + 1) % perline)) std::cout << '\n';
}
std::cout << std::endl;

Chapter 17 ■ File input and Output

571

We know that the first item in the file is the count of the number of prime values that follow, so that is read
first and used to control reading of the prime values in the for loop. That’s a lot of code but all the templates for
transferring numerical data to and from a binary file have been used, so the output will show whether all the
templates work. Remember, if you don’t create a template instance, the template will not be compiled and could
contain coding errors. I got this output:

D:\Example_Data\primes.bin written.
Primes read into array:
 2 3 5 7 11 13
 17 19 23 29 31 37
 41 43 47 53 59 61
 67 71
D:\Example_Data\primesvector.bin written.
D:\Example_Data\primesarray.bin written.
 2 3 5 7 11 13
 17 19 23 29 31 37
 41 43 47 53 59 61
 67 71

This shows that all the templates work. If you run the example a second time, you will get prompts to ask whether

you want to overwrite the binary files that now exist.

File Read/Write Operations
You can open a stream so that you can carry out both input and output operations with a file. fstream objects
specifically support both input and output operations. This will sometimes involve changing the file position
frequently. As you saw early on in this chapter, fstream inherits from iostream, which in turn inherits from istream
and ostream, so all the input and output functions discussed so far are available for an fstream object. You can create
an fstream object with a file name as the constructor argument, just like an ifstream or ofstream object. For example:

string filename {"D:\\Example_Data\\primes.txt"};
std::fstream bothways {filename};

The default open mode is ios::in|ios::out and like the other file streams, it will be in text mode by default.
To create a stream operating in binary mode, you specify an argument for the second parameter, exactly as you’ve
done previously. For example:

string filename {"D:\\Example_Data\\primes.bin"};
std::fstream bothways {filename, std::ios::in|std::ios::out|std::ios::binary};

This opens the file for both input and output operations in binary mode. If the file can’t be opened for any reason,
ios::failbit will be set. Note that you can’t use ios::app with fstream objects, but you can use ios::trunc, which
will discard any previous file contents. In fact, you can’t use ios::app in combination with ios::in at all, so you can’t
use it for ifstream objects either. This isn’t unreasonable, because ios::app implies that you’ll write at the end of the
file, which isn’t particularly meaningful for an input stream.

Chapter 17 ■ File input and Output

572

The default constructor creates a stream object with no associated file. You can then open a particular physical
file by using the open() member of the fstream object, for example:

std::fstream inout;
inout.open(filename, std::ios::in|std::ios::out|std::ios::binary|std::ios::trunc);

The first statement creates an fstream object without associating it with a file. The second statement opens the
file specified by filename for both input and output in binary mode and discards any existing file contents. If you omit
the second argument, the default open mode is the same as for the constructor: ios::in|ios::out. If you’re both
writing and reading a file, then almost by definition you’ll want to read and/or write at random positions within the
file, so let’s look at how you do that.

Random Access to a File
I’ll discuss random access to a file in the context of using an fstream object in binary mode but you can apply the
same techniques to reading an ifstream or to updating an ofstream in binary mode. Once you have opened a file
stream for input and output, you can read from or write to any position in the stream. However, you do need to know
where you are in the stream, and where you want to go next.

Random Access to a Binary Stream
As I have said, you can open an fstream for both reading and writing, however, there’s a slight catch: Whenever you
switch from reading the file to writing it, and vice versa, you must either flush the stream or execute a seek to set the
file position; executing a seek carries less overhead so it’s usually better to seek. You call seekp() to switch from read
to write operations and seekg() to switching from writing a file to reading it. If you want to retain the current position
when switching between reads and writes, you can obtain the current position by calling tellg() or tellp() and
passing that as the argument to the seek function. You know all you need to know to be able to read and write a file at
arbitrary position but an example will show how it all hangs together.

Random File Operations in Practice
We can write another example to write prime numbers to a file. This time we’ll use a binary file and provide the option
of requesting a particular prime—the 25th or 432nd prime in sequence, for instance. The idea is that if the prime is in
the file, the program should fetch it and display it. If it isn’t, the program should calculate new primes up to the one
required and add them to the file. All the examples of file I/O in this chapter have been procedural, so this time I’ll
take an object-oriented approach and define a Primes class to provide the capability:

#include <fstream>
#include <string>
using std::string;
using ulong = unsigned long long;

class Primes
{
private:
 std::fstream primesfile; // The file stream - input & output
 size_t nprimes {}; // Number in the file
 ulong lastprime {}; // Last prime in the file

Chapter 17 ■ File input and Output

573

 bool file_exists(string file); // Returns true if a file exists
 bool isprime(ulong n); // Returns true if n is prime

public:
 Primes(string filename = "D:\\Example_Data\\primes_cache.bin");
 ~Primes() { primesfile.close(); }

 ulong prime_after(ulong n); // Next prime after an integer
 ulong next_prime(ulong prime); // Next prime after a prime
 ulong operator[](size_t n); // nth prime (indexed from 0)
};

The data members that record the number of primes in the file and the last prime in the file are for convenience
and to improve efficiency a little; they’ll be recorded in the file too so it’s not absolutely essential to store them as data
members. Knowing the last prime without having to read the file will make it easy to decide whether or not a prime
that is requested is in the file. The approach for finding primes will not be particularly efficient in any event though
because the class interface hides a lot of complexity.

The fstream member will encapsulate the file containing the primes. The constructor parameter has a default
specification for the file so if you don’t supply an argument, the same file will be used each time. The file contents will
be a little different from previous examples. The number of primes in the file will be recorded as the first item of data.
This will allow the Primes constructor to initialize the data members easily. All data will be written in binary mode.
The destructor just closes the file.

The application of the function members is fairly self-explanatory. You can obtain a prime using an index with
the subscript operator. The primes are indexed from 0 for consistency with indexing generally but there are arguments
for indexing from 1. It would be easy to implement this as an option. The next_prime() member will return the prime
that follows the argument, which must be a prime. The prime_after() member will return the next prime that is
greater than an arbitrary integer. The isprime() and file_exists() members are for use by other function members
and therefore private.

All the input and output operations will be carried out by instances of the templates that were defined for
Ex17_05 in the Binary_Numeric_IO.h header, so that will be included in this program.

Implementing the Constructor

The constructor is responsible for creating the fstream object that encapsulates the file specified by the argument and
initializing the data members. It will be necessary for the constructor to first decide whether the file already exists.
Here’s the code:

Primes::Primes(string filename)
{
 if (!file_exists(filename)) // If no file...
 {
 std::ofstream out {filename, ios::binary|ios::out}; // ...create it
 nprimes = 3;
 lastprime = 5ULL;
 write(out, nprimes);
 write(out, 2ULL);
 write(out, 3ULL);
 write(out, 5ULL);
 out.close();
 primesfile.open(filename, ios::binary | ios::in | ios::out);
 }

Chapter 17 ■ File input and Output

574

 {
 primesfile.open(filename, ios::binary | ios::in | ios::out);
 read(primesfile, nprimes);
 primesfile.seekg(sizeof(nprimes) + (nprimes-1)*sizeof(ulong), primesfile.beg);
 read(primesfile, lastprime);
 }
}

The file_exists() member checks whether there is a file. If the file doesn’t exist, it’s created by the ofstream
object, out, and the first three primes are written preceded by the prime count. After closing out, the file is opened using
the fstream object that is a member by calling open() for it. The file is then ready for use by the function members.

Checking for the Existence of a File

The code in the else block executes when the file does exist. The nprimes member by immediately reading the file
because the file is opened at the beginning. To initialize lastprime, the seek operation sets the position as an offset
from the first bytes in the file before reading the value. The offset is the length of the prime count value plus the
lengths of the two prime values that precede the last value.

The file_exists() member is very simple:

bool Primes::file_exists(string file)
{
 std::ifstream stream {file};
 return static_cast<bool>(stream);
}

The process is to create a file input stream object. If the file does exist, casting the ifstream object to bool will
result in true; if it does not exist the result will be false.

The member to find a prime that is greater than a given integer is not too difficult:

ulong Primes::prime_after(ulong n)
{
 ulong prime {};
 if (n < lastprime)
 {
 primesfile.seekg(sizeof(nprimes), primesfile.beg);
 while (prime < n) read(primesfile, prime);
 }
 else
 {
 while((prime = next_prime(lastprime)) < n);
 }
 return prime;
}

The value to be returned will be stored in the local variable, prime. If the argument is less than lastprime, which
is the last prime in the file, we just need to search the file to find the first prime that is greater than the argument. After
moving the file position to the first byte following the count, the while loop reads primes from the file until one is found
that is greater than the argument. If the argument is not less than lastprime, it is necessary to generate more primes
until one is discovered that is greater than n. Successive primes are created by calling the next_prime() member.
This function will find the prime that is greater than the argument, write it to the file, and update the count recorded in
the file. It will also update the nprimes and lastprime members. We end up with all new primes added to the file.

Chapter 17 ■ File input and Output

575

Finding a Prime that follows a Prime

The next_prime() member implementation looks like this:

ulong Primes::next_prime(ulong prime)
{
 if (prime < lastprime)
 { // Next prime must be in the file
 primesfile.seekg(sizeof(nprimes), primesfile.beg);
 ulong current {};
 for (size_t i {}; i < nprimes; ++i)
 {
 read(primesfile, current);
 if (prime < current) return current;
 }
 throw std::logic_error {string {"next_prime() fail. File contents incorrect or "} +
 std::to_string(prime) + " not a prime"};
 }

 // The next prime is not in the file
 ulong trial {lastprime + 2ULL};
 do
 {

 while (!isprime(trial)) trial += 2ULL;
 lastprime = trial;
 primesfile.seekp(0, primesfile.end); // File position to the end
 write(primesfile, lastprime);
 ++nprimes;
 primesfile.seekp(0); // File position to the beginning
 write(primesfile, nprimes);
 trial += 2ULL;
 } while (lastprime <= prime);
 return lastprime;
}

There’s more code to this, but it’s not difficult. The if block deals with the situation when the argument prime
is less than lastprime. In this case the next prime must be in the file - in the worst case it’s lastprime. The for loop
search for the first prime in the file that is greater than prime and returns it. In the unlikely event of a prime not
being found in the file, an exception is thrown that indicates that there must be something wrong with the file or the
function argument.

The do-while loop deals with the situation when lastprime is not greater than the argument. In this case,
more primes must be found until one is found that is greater than the argument. This process is essentially what you
have seen before. The prime candidate is in trial, which is lastprime+2 initially. The isprime() member is called
to check whether trial is prime. Each new prime is written to the file and the count at the beginning of the file is
updated, along with the nprimes and lastprime members. The loop continues until lastprime is greater than the
argument, prime.

Chapter 17 ■ File input and Output

576

Checking for a Prime

We just need a definition for the isprime() member:

bool Primes::isprime(ulong n)
{
 ulong root_n {static_cast<ulong>(std::sqrt(n))};
 ulong prime {};
 primesfile.seekg(sizeof(nprimes), primesfile.beg);

 while (primesfile)
 {
 read(primesfile, prime);
 if ((n % prime) == 0) return false;
 if (prime > root_n) return true;
 }
 throw std::logic_error {string {"isprime() fail. Could not determine primeness of "} +
 std::to_string(n)};
}

This assumes that lastprime is always greater than the square root of the argument, n. Barring errors in the code,
this should always be the case because it is a private function that is only used inside the class. Before checking
begins, the file position is moved to the first byte of the first prime in the file, which follows the count. The while loop
determines whether n is prime by reading primes and using them as divisors. This continues until either there is an
exact division - in which case n is not prime, or until all primes less that the root of n have been tried as divisors, in
which case n is prime. The throw statement is belt and braces - it should never be executed. There’s a serious program
error somewhere if it is.

Implementing the Subscript Operator

The subscript operator will return the prime that is the index, where the index value for the first prime is 0. Of course,
the nth prime may or may not be in the file, so the operator function must deal with this:

ulong Primes::operator[](size_t n)
{
 ulong prime {};
 if (n < nprimes)
 { // The nth prime is in the file
 primesfile.seekg(sizeof(nprimes) + (n*sizeof(ulong)), primesfile.beg);
 read(primesfile, prime);
 return prime;
 }

 // If we get to here, the nth prime is not in the file
 while (nprimes < n + 1)
 {
 lastprime = next_prime(lastprime);
 }
 //We have found the nth prime
 return lastprime;
}

Chapter 17 ■ File input and Output

577

It’s a surprisingly easy function to implement. If nprimes is greater than the index, the prime is in the file, so we
just move the file position to the first byte of the nth prime and read it. You can see the expression for the offset for the
seek operation; it’s the index times the size of a prime value, plus the size of the count. If there are too few primes in
the file, next_prime() is called to add a prime until there are n+1 primes in the file (this is because the index starts at 0).
The last prime in the file is then returned.

Using the Primes Class

We just need a program to try out the Primes class:

// Ex17_06.cpp
#include <iostream>
#include <iomanip>
#include <vector>
#include "Primes.h"

int main()
{
 Primes primes;
 std::cout << "3rd prime is " << primes[2] << std::endl;
 std::cout << "5th prime is " << primes[4] << std::endl;
 ulong prime {primes.prime_after(50)};
 std::cout << "Prime greater than 50 is " << prime << std::endl;
 std::cout << "Prime following " << prime << " is " << primes.next_prime(prime) << std::endl;
 std::cout << "Primes between 100 and 300 are:\n";
 std::vector<ulong> values;
 prime = primes.prime_after(100);
 while (prime < 300)
 {
 values.push_back(prime);
 prime = primes.next_prime(prime);
 }
 size_t count {};
 size_t perline {6};
 for (auto p : values)
 {
 std::cout << std::setw(12) << p;
 if (
 (++count % perline) == 0) std::cout << std::endl;
 }
 std::cout << std::endl;
 std::cout << "500th prime is " << primes[499] << std::endl;
}

Chapter 17 ■ File input and Output

578

The complete code for the example is in the code download. This tries the various ways of using a Primes object
and produces the following output:

3rd prime is 5
5th prime is 11
Prime greater than 50 is 53
Prime following 53 is 59
Primes between 100 and 300 are:
 101 103 107 109 113 127
 131 137 139 149 151 157
 163 167 173 179 181 191
 193 197 199 211 223 227
 229 233 239 241 251 257
 263 269 271 277 281 283
 293
500th prime is 3571

The code in main() is very straightforward so you should have no problem seeing what is happening. The output

demonstrates that the Primes class works as it should. The example shows how easy it is to encapsulate file operations
within a class and how simple random read and writes are, as long as you obey the rules for file I/O.

String Streams
There are three string stream classes that connect a stream to a string object in memory. This enables you to read or
write a string as though it was a file. The string stream classes are istringstream, ostringstream, and stringstream,
which have istream, ostream, and iostream as base classes, respectively. Operations on these classes are essentially
the same as for the file streams, except of course that the input and output operations are to string objects.

Although they can use any of the I/O functions that are inherited from their corresponding base class, string
streams are used most often with the insertion and extraction operators. The reason for this is that their primary
application is formatting data in memory, or analyzing input. For example, you might have an application in which
the format of the input isn’t known in advance. In such a case, you could read the data as a sequence of characters
into a string object, and then use the stream input operations with an istringstream object attached to your string
object to carry out formatted read operations on it. This provides the possibility to read the input as many times as
necessary to figure out its format.

Suppose you read a line of input from cin with these statements:

string buffer;
getline(std::cin, buffer);

Having read the input into buffer, you can create an istringstream object with the following statement:

std::istringstream inStr {buffer};

You can now read from buffer via the inStr stream just like any other stream and make use of the conversion
capability from character representation to binary:

long value {};
double data {};
inStr >> value >> data;

Chapter 17 ■ File input and Output

579

You can use an ostringstream object to format data into a string. For instance, you could create a string object
and an output string stream with these statements:

string outBuffer;
std::ostringstream outStr {outBuffer};

You can now use the insertion operators to write to outBuffer via outStr:

double number {2.5};
outStr << "number = " << (number/2.0);

As a result of the write to the string stream, outBuffer will contain "number = 1.25". The string outBuffer will
automatically expand to accommodate however many characters you write to the stream, so it is a very flexible way of
forming strings or complex output messages.

The string parameter to the string stream constructors is a reference in each case, so write operations for
the ostringstream and stringstream objects act directly on the string object. There is also a default constructor
for each of the string stream classes. When you use these, the string stream object will maintain a string object
internally, and you can obtain a copy of this using the str() member, for example:

std::ostringstream outStr;
double number {2.5};
outStr << "number = " << (3 *number/2);
string output {outStr.str()};

After these statements have been executed, output will contain the string "number = 3.75".

Objects and Streams
In previous chapters I’ve been telling you how great object-oriented programming is, so inevitably the question of writing
objects to a file arises. The process of writing objects to a stream so they can be retrieved is called serialization. Serializing
an object is writing it to a stream and you deserialize it to get it back. So what assistance is there for you to implement
input and output of objects? As far as the C++ Standard Library is concerned - nil, zip, nothing - you’re on your own.

Although this is inconvenient, it’s not altogether surprising. By nature, defining a class is completely open
ended so inevitably an object of an arbitrary class type is an unknown quantity. Data members of a class can be
of fundamental types, class types and pointer types. Input and output operations for objects are going to be class
specific, whether we like it or not.

Serialization is a large and complex topic. However, I think it’s important to have an inkling of what is involved
when you are starting out in C++ so this section provides that. In spite of the difficulties implicit in generalized
serialization, some C++ development systems do provide a framework for supporting it. If your development
environment doesn’t, you can do something yourself. Serialization can mean different things depending on the
context. Writing an object to a stream so that an environment that is not C++ can access and use it is a completely
different problem from writing an object so you can read it back later in the same program. I’ll illustrate how simple
the latter can be through examples.

Using the Insertion Operator with Objects
You have already seen how to implement an overloaded version of operator<<() to write Box objects to a stream;
this was for writing an object to the standard output stream. In general this can be done for any class, either as a
global function if there are accessory functions for the data members, or as a friend of the class if there are not. In
most cases it’s quite straightforward. The fundamental question is usually what you will output for a given class type,

Chapter 17 ■ File input and Output

580

and this depends on why you are implementing text mode output for it. The answer may be different depending on
whether you are writing an object to a stream in order to read it back later, or whether you just want a human readable
representation of an object on the standard output stream. The latter is usually a primary reason to implement
operator<<() for a class. In general, what you write to cout to represent an object is unlikely to be what you need in a
file stream to read the object back.

Let’s consider the specific case of the Primes class in the previous example. Writing a Primes object to the
standard output stream by overloading the insertion operator is probably not a good solution. A Primes object may
encapsulate a file that contains a large number of primes. You are unlikely to need a general capability for outputting
these en masse as text, and if you do, it’s likely to be better to provide the capability by defining a member function
such as list_primes(). It also likely to be a good idea to in this case to supplement this with a get_count() member
to return the number of primes in the file. You really don’t want to initiate output to your display if there are millions
of them.

It’s sometimes better to write objects to a file in binary mode when you want to recover the objects from a
stream, especially when a class has one or more data members of a floating-point type. Binary mode preserves the
integrity of floating-point data, which is not the case in text mode. Binary floating-point values are not always precisely
representable in decimal form so the conversion of a value for output in text mode can introduce small errors. This
implies that an object read back in text mode may not be identical to the object that was written. In a way, the Primes
class already provides for serializing an object in binary mode. When you create a Primes object, the constructor
synthesizes the object from data in the file if the file is present. I’ll have more to say about object I/O in binary mode a
little later. In the meantime, let’s look at serializing objects in text mode.

Using the Extraction Operator with Objects
I’ll show how you can implement the extraction operator using a variation on the Box class that you saw Chapter 12.
The >> operator function needs two parameters, the istream object that is the source of the data, and a reference to
the Box object where the data is to go. The left operand of the >> operator corresponds to the first parameter and the
right operand is the second parameter. It will be a friend of the Box class so it can access the data members. Here’s the
Box class definition, including the operator functions:

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}

 Box()=default; // Default constructor

 Box(const Box& box) // Copy constructor
 : length {box.length}, width {box.width}, height {box.height} {}

 double volume() const // Calculate the volume
 { return length*width*height; }

 friend std::ostream& operator<<(std::ostream& stream, const Box& box);
 friend std::istream& operator>>(std::istream& in, Box& box);
};

Chapter 17 ■ File input and Output

581

The second parameter for operator>>() has to be a reference; it must not be const because the input operation
will change it. I’ll define operator<<() like this to make sure the input operation works reliably:

inline std::ostream& operator<<(std::ostream& out, const Box& box)
{
 return out << std::setw(10) << box.length << ' '
 << std::setw(10) << box.width << ' '
 << std::setw(10) << box.height << '\n';
}

Writing a space or a newline after each output value guarantees that each value will be separated by at least one
whitespace character. This guards against the possibility that a value could be more than the specified field width. If
there is no whitespace between successive values in the stream, they will be read by operator>>() as a single value.
The final newline that is output ensures that each object is written in a separate line.

We can define the function for the extraction operator like this:

inline std::istream& operator>>(std::istream& in, Box& box)
{
 return in >> box.length >> box.width >> box.height;
}

This uses the standard extraction operator function to read values from the stream into the data members of
box. The standard operator>>() function for extraction data of fundamental types returns a reference to the stream
object so we can return that from our overload. The definitions for both functions are inline so they can go in Box.h,
following the class definition. Simple, isn’t it?

This will work with any stream include a file stream, so let’s see it in action:

// Ex17_07.cpp
// Writing Box objects to a file and reading them back
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "Box.h"
using std::string;

int main()
try
{
 std::vector<Box> boxes {Box {1.0, 2.0, 3.0}, Box {2.0, 2.0, 3.0},
 Box {3.0, 2.0, 2.0}, Box {4.0, 2.0, 3.0},
 Box {1.0, 4.0, 3.0}, Box {2.0, 2.0, 4.0}};

 const string filename {"D:\\Example_Data\\boxes.txt"};
 std::ofstream out {filename};
 if (!out)
 throw std::ios::failure {string {"Failed to open output file "} + filename};

 for (auto& box : boxes)
 out << box; // Write a Box object
 out.close(); // Close the input stream

 std::cout << boxes.size() << " Box objects written to the file." << std::endl;

Chapter 17 ■ File input and Output

582

 std::ifstream in {filename}; // Create a file input stream
 if (!in) // Make sure it's valid
 throw std::ios::failure {string("Failed to open input file ") + filename};

 std::cout << "Reading objects from the file.\n";
 std::vector<Box> newBoxes;
 Box newBox;
 while (true)
 {
 in >> newBox;
 if (!in) break;
 newBoxes.push_back(newBox);
 }
 in.close(); // Close the input stream
 std::cout << newBoxes.size() << " objects read from the file:\n";
 for (auto& box : newBoxes)
 std::cout << box;
}
catch (std::exception& ex)
{
 std::cout << typeid(ex).name() << ": " << ex.what() << std::endl;
}

Here’s the output:

6 Box objects written to the file.
Reading objects from the file.
6 objects read from the file:
 1 2 3
 2 2 3
 3 2 2
 4 2 3
 1 4 3
 2 2 4

Clearly the objects read from the input file are those that were written, so file I/O in text mode for Box objects is

working satisfactorily. There’s a few points to note here. The while loop that reads objects from the file reads each
object into the same variable, newBox. This is passed to the push_back() member of the vector by value so the Box
copy constructor is called to create the object that is stored in the vector. The range-based for loop that lists the boxes
in the newBoxes vector uses our operator<<() function with cout, so the example demonstrates that it works with
different types of output stream. The loop to access the objects in the newBoxes vector has a reference variable, so
the objects in the vector are not duplicated; the objects in the vector are accessed by reference to write them to the
standard output stream.

Object I/O in Binary Mode
There are pros and cons for using binary mode to transfer objects to and from a file. Space in the file is minimized
in binary mode and you are assured of getting back what was written - assuming the operations are implemented
correctly. However, there are no delimiters for data in binary mode so reading a file where the sequence of data items
can vary can be tricky to say the least.

Chapter 17 ■ File input and Output

583

You have seen how you can implement functions that read and write data of fundamental types. Supporting
object input and output is essentially more of the same. Each class type needs functions that perform the read
and write operations. Writing an object to a stream will ultimately boil down to writing data of fundamental types.
Reading an object from a stream will always involve reading a sequence of data items of fundamental types, then
reconstructing the original object. An essential requirement for writing an object to a file is that all its data members
can be written. Of course, data members of an object can themselves be objects of class types and there must be
provision for writing these objects and reconstructing them when the file is read. This can lead to a lot of complexity.

Let’s take a simple example of binary file I/O with Box objects. Here’s the Box class definition:

class Box
{
private:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}

 Box() = default; // Default constructor

 Box(const Box& box) // Copy constructor
 : length {box.length}, width {box.width}, height {box.height} {}

 double volume() const // Calculate the volume
 {
 return length*width*height;
 }

 friend std::ostream& operator<<(std::ostream& stream, const Box& box);
 friend std::istream& operator>>(std::istream& in, Box& box);

 friend std::ifstream& read(std::ifstream& in, Box& box);
 friend std::ofstream& write(std::ofstream& out, Box& box);
};

The binary file I/O operations are provided by friend functions, read() and write(). The first parameter is a file
stream so these cannot be used for other stream types. Both functions return a reference to the stream, so the caller
can use the return value to check the stream state. I left the text mode I/O functions in because we will need the text
mode output in main() to output Box objects to cout. Here’s the definition for the binary input function:

inline std::ifstream& read(std::ifstream& in, Box& box)
{
 in.read(reinterpret_cast<char*>(&box.length), sizeof(box.length));
 in.read(reinterpret_cast<char*>(&box.width), sizeof(box.width));
 in.read(reinterpret_cast<char*>(&box.height), sizeof(box.height));
 return in;
}

Chapter 17 ■ File input and Output

584

The code is very simple. There are three calls for the read() function for the stream that read the number of bytes
occupied by each of the data members. The address of each data member is reinterpreted as a pointer of type char*
because all binary input is read as a sequence of characters. The write() function is very similar:

inline std::ofstream& write(std::ofstream& out, Box& box)
{
 out.write(reinterpret_cast<char*>(&box.length), sizeof(box.length));
 out.write(reinterpret_cast<char*>(&box.width), sizeof(box.width));
 out.write(reinterpret_cast<char*>(&box.height), sizeof(box.height));
 return out;
}

Both functions are inline so the definitions should be in Box.h, following the class definition. Here’s a main()
function to test this:

// Ex17_08.cpp
// Writing & reading Box objects in binary mode
#include <fstream> // For file streams
#include <iostream> // For standard streams
#include <string> // For string type
#include <vector> // For vector container
#include "Box.h"
using std::string;

int main()
try
{
 std::vector<Box> boxes {Box {1.0, 2.0, 3.0}, Box {2.0, 2.0, 3.0},
 Box {3.0, 2.0, 2.0}, Box {4.0, 2.0, 3.0},
 Box {1.0, 4.0, 3.0}, Box {2.0, 2.0, 4.0}};

 const string filename {"D:\\Example_Data\\boxes.bin"};
 std::ofstream out {filename, std::ios::binary};
 if (!out)
 throw std::ios::failure {string {"Failed to open output file "} + filename};

 for (auto& box : boxes)
 write(out, box); // Write a Box object
 out.close(); // Close the output stream

 std::cout << boxes.size() << " Box objects written to " << filename << std::endl;

 std::ifstream in {filename, std::ios::binary}; // Create a file input stream
 if (!in) // Make sure it's valid
 throw std::ios::failure {string("Failed to open input file ") + filename};

Chapter 17 ■ File input and Output

585

 std::cout << "Reading objects from the file.\n";
 std::vector<Box> newBoxes;
 Box newBox;
 while (true)
 {
 if(!read(in, newBox)) break;
 newBoxes.push_back(newBox);
 }
 in.close(); // Close the input stream
 std::cout << newBoxes.size() << " objects read from " << filename << ":\n";
 for (auto& box : newBoxes)
 std::cout << box;
}
catch (std::exception& ex)
{
 std::cout << typeid(ex).name() << ": " << ex.what() << std::endl;
}

This uses a vector containing the same Box objects as the previous example as the objects to be written to a binary
file. The output file is opened in binary mode by specifying the open mode as std::ios::binary; std::ios::out is
implicit in the stream type and does not need to be specified. Each object is written to the file by calling the write()
function that is a friend of the Box class in a range-based for loop. The objects are read from the file in a similar
loop. The read() function is called in the if expression that checks for EOF being reached to end the loop. The output
demonstrates that everything is working:

6 Box objects written to D:\Example_Data\boxes.bin
Reading objects from the file.
6 objects read from D:\Example_Data\boxes.bin:
 1 2 3
 2 2 3
 3 2 2
 4 2 3
 1 4 3
 2 2 4

You can try append mode with this example. You can change the definition of the output file stream object to:

std::ofstream out {filename, std::ios::binary|std::ios::app};

Each time you execute the example, the objects will be appended to the file. The output of what is in the file will
increase on each execution.

More Complex Objects in Streams
With the Box object, I deliberately chose a simple case. Handling derived class objects gets more complicated. You
need a virtual input and output mechanism to ensure that derived class objects are handled properly, but there’s
no way you can make the insertion and extraction operator functions class members. The operator>>() and
operator<<() functions cannot be member functions of your class because they overload the operator functions in
the stream classes. They are binary operators, and binary operator functions that are class members can only have

Chapter 17 ■ File input and Output

586

one parameter - the right operand. You have no way to pass the stream object and the right operand to the function
implemented as a member of your class. However, a global operator function could call a virtual class member that
implements an I/O operation. I’ll add function members to the Box class to perform I/O in text mode:

class Box
{
protected:
 double length {1.0};
 double width {1.0};
 double height {1.0};

public:
 // Constructors
 Box(double lv, double wv, double hv) : length {lv}, width {wv}, height {hv} {}

 Box() = default; // Default constructor

 Box(const Box& box) // Copy constructor
 : length {box.length}, width {box.width}, height {box.height} {}

 virtual double volume() const // Calculate the volume
 {
 return length*width*height;
 }

 // Member stream I/O functions
 virtual std::ostream& put(std::ostream& out) const // Stream output
 {
 return out << std::setw(10) << length << ' ' << std::setw(10) << width << ' '
 << std::setw(10) << height << '\n';
 }

 virtual std::istream& get(std::istream& in) // Stream input
 {
 return in >> length >> width >> height;
 }
};

I’ve added two public virtual members to the class that perform the stream I/O operations. They use the operator
functions implemented by the stream objects for fundamental types to transfer the data members, in the same way as
the previous friend operator functions. The insertion and extraction operator functions no longer need to be friend
functions because they will now call these functions that are in the public class interface.

You can implement the operator<<() function like this:

inline std::ostream& operator<<(std::ostream& out, const Box& box)
{
 return box.put(out);
}

Chapter 17 ■ File input and Output

587

This calls the virtual put() function member of the Box class to perform the output operation and returns the
stream object. Similarly, the implementation of the operator>>() function will be:

inline std::istream& operator>>(std::istream& in, Box& box)
{
 return box.get(in);
}

To provide stream support for a class that is derived from Box, such as the Carton class in Ex14_08, you just need
to define overrides in the Carton class for the virtual get() and put() functions in the base class. The derived class
function members can call the base class versions where necessary.

You’ll remember the Carton class that is derived from Box implemented a different volume() function and added
a string data member that contained the name of the material from which the Carton was made. The get() and
put() function member for this class could be defined like this:

class Carton : public Box
{
private:
 string material;

public:
 // Constructor explicitly calling the base constructor
 Carton(double lv, double wv, double hv, string str = "material") : Box {lv, wv, hv}
 {
 material = str;
 }

 Carton() = default;

 // Function to calculate the volume of a Carton object
 double volume() const override
 {
 double vol {(length - 0.5)*(width - 0.5)*(height - 0.5)};
 return vol > 0.0 ? vol : 0.0;
 }

 // Stream output
 std::ostream& put(std::ostream& out) const override
 {
 out << std::left << std::setw(15) << material << ' '; // Write the material
 return Box::put(out); // Write the sub-object
 }

 // Stream input
 std::istream& Carton::get(std::istream& in) override
 {
 in >> material; // Read the string
 return Box::get(in); // Read the sub-object
 }
};

Chapter 17 ■ File input and Output

588

The Carton class overrides the get() and put() members of the Box class; the override keyword will cause the
compiler to verify that a corresponding virtual base class function exists. The overrides call the base class member in
the return statement to deal with the inherited data members. When you call operator<<(), the function will select
the appropriate virtual put() function for the object because the object is passed to the function as a reference.
This will work for any class that has Box as a direct or indirect base as long as the get() and put() overrides of the
base class functions exist in a derived class. Let’s see if it works:

// Ex17_09.cpp
// Writing & reading base and derived class objects
#include <fstream> // For file streams
#include <iostream> // For standard streams
#include <string> // For string type
#include <vector> // For vector container
#include "Box.h"
#include "Carton.h"
using std::string;

int main()
try
{
 std::vector<Box> boxes {Box {1.0, 2.0, 3.0}, Box {2.0, 2.0, 3.0},
 Box {3.0, 2.0, 2.0}, Box {4.0, 2.0, 3.0}};
 std::vector<Carton> cartons {Carton {6.0, 7.0, 8.0, "plastic"}, Carton {5.0, 7.0, 9.0, "wood"},
 Carton {5.0, 6.0, 5.0}};

 const string filename {"D:\\Example_Data\\containers.txt"};
 std::ofstream out {filename};
 if (!out)
 throw std::ios::failure {string {"Failed to open output file "} + filename};

 for (auto& box : boxes)
 out << box; // Write a Box object
 out.close(); // Close the output stream

 std::cout << boxes.size() << " Box objects written to " << filename << std::endl;

 std::ifstream in {filename}; // Create a file input stream
 if (!in) // Make sure it's valid
 throw std::ios::failure {string("Failed to open input file ") + filename};

 std::cout << "Reading Box objects from the file:\n";
 Box box;
 while (true)
 {
 in >> box; // Read an object from the file
 if (!in) break; // End if EOF
 std::cout << box; // Output the object read
 }
 in.close(); // Close the input stream

Chapter 17 ■ File input and Output

589

 out.open(filename); // Open the output file
 for (auto& carton : cartons)
 out << carton; // Write a Carton object
 out.close(); // Close the output stream
 std::cout << cartons.size() << " Carton objects written to " << filename << std::endl;

 in.open(filename);
 std::cout << "Reading Carton objects from the file:\n";
 Carton carton;
 while (true)
 {
 in >> carton; // Read a Carton object from the file
 if (!in) break; // End if EOF
 std::cout << carton; // Output the object read
 }
 in.close(); // Close the input stream
}
catch (std::exception& ex)
{
 std::cout << typeid(ex).name() << ": " << ex.what() << std::endl;
}

This populates a vector with Box objects and writes them to a file in text mode using the overloaded
operator>>() function. The objects are then read back and written to cout using the same overloaded operator
function that was used to write to the file. The process is repeated with Carton objects to demonstrate that the output
operations are selected at runtime. The output from the example shows that it all works:

4 Box objects written to D:\Example_Data\containers.txt
Reading Box objects from the file:
 1 2 3
 2 2 3
 3 2 2
 4 2 3
3 Carton objects written to D:\Example_Data\containers.txt
Reading Carton objects from the file:
plastic 6 7 8
wood 5 7 9
cardboard 5 6 5

You may have noticed that we didn’t really write objects to a file in any of the previous examples. We just wrote the

data that the program needed to recreate an object of a given type - the dimensions in the case of a Box object. Nothing
in the file identified the contents as representing an object. The typeid operator results in a type_info object that you
could use to obtain the type name so you could write this to the stream too. In theory this would allow the input process
to verify that the data in the stream related to the type of object you are expecting. However, there’s no guarantee that
the name() member of the type_info class will always return the same string for a given class type from one execution
to the next so if you do need to identify the class type in the file, it would be better to devise your own scheme for this.

The difficulties increase with classes that are more complex than Box or Carton. Suppose that you want to serialize
objects of classes that contain pointers to objects of other classes. A fundamental prerequisite is that the class type of the
object being pointed to defines functions that enable serialization. These are essential to write and retrieve the objects
pointed to. Writing the address that a pointer contains to a stream is futile because the address won’t be valid when it’s
read back. The object pointed to will certainly be located at a different address when it’s reconstructed. However, you
can still deal with it. Figure 17-5 shows one possible approach for writing an object that contains a linked list to a stream.

Chapter 17 ■ File input and Output

590

The only thing that is important about a pointer when serializing it is whether or not it’s nullptr. If it’s nullptr,
it doesn’t point to anything so there’s no object to write to the stream. If it’s not nullptr, then there is an object that
must be written to the stream. You can represent the state of a pointer in the stream as a bool value; if it’s nullptr you
can write it as false; otherwise you write it as true, and record the object to which it points in the stream. Figure 17-7
illustrates the contents of the stream after writing an object that encapsulates a linked list of Node objects each of
which contains an Item object. The pointer to the first object in the list is written as true if the list is not empty; if the
list isn’t empty the Item object that is contained in the first Node object is written to the stream. If the pNext pointer
member of a Node is not nullptr, true is written to the stream followed by the Item object from the next Node object.
The last Node will have nullptr as its pNext member, which will be written to the stream as false; this ends the
output. You don’t need to store Node object in the stream; they are just wrappers for the items that are the real data.
I’m leaving it as a final exercise for you to implement this in an example.

Note ■ an alternative approach to serialization is to use a mark-up language to express the data and structure for an
object. XMl — the eXtended Markup Language — is often the base for languages that are used to specify objects in a
file. this approach has the merit that it is independent of the programming language used to read and write the data, but
retains the object definitions. a discussion of this is outside the scope of this book.

Summary
In this chapter, I’ve covered the basics of stream operations and how you can apply them to writing and reading files.
The important elements that you’ve explored in this chapter include:

The standard library supports input and output operations on character streams, binary (byte) •	
streams, and string streams.

The standard streams for input and output are •	 std::cin and std::cout. The standard error
streams are std::cerr and std::clog.

The Standard Library defines file stream classes that encapsulate a file for input, for output, or •	
for both. These classes are std::ifstream, std::ofstream and std::fstream.

The open mode that you specify when creating or opening a stream determines whether you •	
can read from a stream and/or write to it. It also determines whether the stream contents are
to be overwritten on output, and whether the stream is binary or text.

 item2 0 item11 1 item3 1 item4 1

Node
object

pHead!=nullptr

pNext!=nullptr

pNext==nullptr

space

Node
object

Node
object

Node
object

pNext!=nullptr

pNext!=nullptr

Figure 17-5. Serializing an object containing a linked list

Chapter 17 ■ File input and Output

591

A file only contains bytes, regardless of the open mode. There is nothing to prevent you from •	
reading a binary stream as text or vice versa.

Opening a file output stream with a file name for which no file exists causes a file to be created.•	

A file has a beginning, an end, and a current position.•	

You can alter the current position in a file stream to a position that was recorded previously. •	
This can be a position that is a positive offset from the beginning of the stream, a position that
is a negative offset from the end of a stream, or a position that is a positive or negative offset
from the current position.

The extraction and insertion operators provide formatted stream input and output operations •	
for data of fundamental types.

To support stream operations for your objects, you can overload the insertion and extraction •	
operators with operator functions that are friends of your class.

Stream class provide •	 read() and write() function members for reading and writing a stream
in binary mode. Binary mode operations always read and write a sequence of bytes.

The string stream classes provide stream I/O operations to or from •	 std::string objects in
memory.

eXerCISeS

the following exercises enable you to try out what you’ve learned in this chapter. if you get stuck, look back
over the chapter for help. if you’re still stuck, you can download the solutions from the apress website
(http://www.apress.com/source-code), but that really should be a last resort.

exercise 17-1. Write a •	 Time class that stores hours, minutes, and seconds as integers. provide
an overloaded insertion operator (<<) that will print the time in the format hh:mm:ss to any
output stream.

exercise 17-2. provide a simple extraction operator (•	 operator>>()) for the Time class that will
read time values in the form hh:mm:ss. how are you going to cope with the : characters?

exercise 17-3. Write a program to log time values to a file. Write a matching program to read a •	
file of time values and output them to the screen.

exercise 17-4. Write a program that reads lines of text from standard input and writes them •	
to standard output, removing all leading whitespace and converting multiple spaces to single
spaces. test it on input from the keyboard and on characters read from a file. Write a second
program that converts lowercase characters to uppercase, and test that too.

exercise 17-5. define a class that encapsulates a linked list of •	 Box objects. implement
operator>>() and operator<<() for the class so the object can be stored in a file and read
back. define a main() function to show that your class works.

this is not quite the end of the book. in my previous C++ book there was a sizable project for you to attempt. it is
too long for inclusion here but it is still available in the download for the exercise solutions for this book. there is a
project description for you to read before you implement the project. there’s also my solution that you can look at
if you get stuck. have fun!

http://www.apress.com/source-code

A���������
Abstract class

Circle class creation, 454
constructor, 453
data member, 457
definition, 453
interface, 455
three-level class hierarchy, 458
Vessel class, 456–457
volume() function, 454–455

Access specifiers, 407–408
Address-of operator, 153
Aggregation, 402
AND operator, 61, 92
Arithmetic operations, 29
Array<T,N> template, 140
Arrays

of characters, 131
definition, 105
dynamic allocation, 169
initial values, 111
of pointers, 158
runtime, 119
size, 111
usage, 106

assert() macro, 311
average() function, 223

B���������
Beans array argument, 225
Binary literals, 28
Binary mode

get() and put() function, 561–562
main() function, 563
numerical data, 563

array containers, 566
function template, 565
#include directives, 567

is_arithmetic<T> template, 565
main() function, 568
primes_count elements, 569
read() function, 564
static_assert(), 565–566
vector<T> container, 567, 569–570
write() function, 564–565

validate_files() function, 563
Binary notation, 11
Bitwise operators

AND, 61
exclusive OR

flags, 67
setfill() manipulator, 67
setw() manipulator, 67

flags, 57
OR, 62
record information, 57–58
shift operators, 59

definition, 58
logical operations, 60
signed and

unsigned integers, 60
Bubble sort, 130
Bubble up, 130

C���������
Call stack, 213
Capture clause, 279
Casting pointers, 447–449
change() function, 276
change_it() function, 220
Character set, 17

escape sequences, 18
control characters, 19
double quotes, 20
problem characters, 19
string literal, 20

trigraph sequences, 18

Index

593

C++ language
characters

ASCII codes, 16
escape sequence, 19
trigraph sequence, 18
UCS codes, 17
Unicode, 17

classes, 7
code presentation styles, 8
compile and link process, 8–9
definition, 1
header files, 7
numbers

big-endian and little-endian systems, 14
binary numbers, 9
floating-point numbers, 15
hexadecimal numbers, 11
negative binary numbers, 12
octal integers, 14

object-oriented approach, 20
objects, 7
proceduaral programmming, 20
programming concepts

comments, 2
functions, 3
header files, 3
input/output streams, 5
keywords, 6
names, 6
namespaces, 5
preprocessing directives, 3
return statement, 5
statements, 4
structure, 2
whitespace, 3

source files, 7
Standard Library, 1, 7
templates, 7

Class, 315
access specifiers, 320
addBox() function, 360
arrays, 340
const member function, 339
constructors

Box class, 323
copy constructor, 330
default constructor, 322, 326
definition, 324
delegating constructor, 329
explicit keyword, 327
initialization list, 326

data hiding, 317
data members, 321
definition, 320
destructors, 347

encapsulation, 316
friend functions, 333

boxSurface() function, 335
main() function, 335
unrestricted access, 336

function member, 321
inheritance, 317
manipulators, 539–540

ios header, 541
with arguments, 541–542

nested class, 359
listBoxes() member, 361
Truckload class, 360
with public access, 362

non-const function, 339
object size, 341
pointers, 350

Box object, 351
listBox() member, 351
Package class, 353
package objects, 352
setNext() function, 353
Truckload object, 352

(see also Truckload class)
polymorphism, 318
private data members, accessing, 331
references, 350
standard stream objects, 536–537
static data members, 342

accessing, 345
Box class constructor, 346
constructor, 344
getObjectCount() function, 344–345
objectCount, 343

static function members, 342
accessing, 347
getObjectCount() function, 346

streambuf type, 536
stream extraction operations, 538
stream insertion operations, 538–539
struct keyword, 321
terminology, 319
this pointer

return type, 337
volume() function, 336

typedefs, 537
volume() function, 338

Class templates, 495
array template, 498
assignment operator, 499, 502
constructor, 498, 500
container classes, 496
default values, 518
definitions, 496
destructor, 501

■ index

594

friends function, 522
getSize() member, 499
instantiation, 496, 503

Box class, 506
explicit instantiation, 504, 518
implicit instantiation, 504–505
main() function, 507
member functions, 504
out-of-range index values, 506
subscript operator, 508
try block, 508
what() function, 507

member function, 500
nested class (see Stack)
non-type parameters, 509

arguments, 516
array template, 511, 514
assignment operator, 513
conditional operator, 516
copy constructor, 512
destructor, 512
exception, 516
function parameter, 510
member function, 511
pointers, 517
subscript operator, 513

parameters
non-type parameter, 497
type parameter, 497

specialization
complete specialization, 520
partial specialization, 521

static_assert(), 519
static members, 508
subscript operator, 499, 502

Comma operator, 116
Constant max, 166
Constant pointers, 160
Const function parameter, 223
Constructor

Box class, 415
copy constructor

Carton class, 412
definition, 412–413

creation, 409–411
default constructor, 414
definition, 409, 412

Container
array<>, 142
deleting elements from vector, 147
vector<T>, 144

Copy constructor
Carton class, 412
definition, 412–413

Crosscast, 448
C-style string, 131

D���������
Data hiding, 317
Data types. See Class
Debugging

assert() macro, 311
description, 306
preprocessing directives, 307
tools for, 306

Decimal integer literals, 26
Decimal notation, 10
Decision making

arbitrary calculation, 101
boolean literals, 80
character classification, 86
comparison operators, 80
conditional operator

definition, 95
if statement, 95
increment operator, 95
program, 96

Converting Character, 87
floating-point values, 82
if-else statement

char variable, 88
definition, 88
isalnum() function, 88
logic, 88
program, 89

if statement
declaration, 83
logic, 82
program, 83–84
semicolon (;), 83

locale header, 87
logical operators

AND, 92
negation, 93–94
OR, 93
usage, 92

Nested if-else statements, 89
Nested if statements, 85
relational operators, 79
standard library functions, 87
switch statement, 101–102

break statement, 97
case label, 97
cases, 97
case values, 99
creation, 97
default label, 97
integer constant expression, 97
isalpha() function, 99
program, 98
tolower() function, 99

unconditional branching, 100

■ index

595

Default argument values, 231
Default capture clause, 279
Default constructor, 414
Delete operator, 169
Destructors, 416
Dimensions Setup, 137
doThat() function, 439
doThis() function, 439
Do-while loop, 121, 166–167
Downcast, 448
draw() function, 431, 453
dynamic_cast<>() operator, 450
Dynamic memory allocation, 167

arrays, 169
hazards, 171

E���������
Encapsulation, 316
Error handling, 463
Exceptions, 463

class objects
base class type, 478
catch block, 475, 483
code implementation, 474
default constructor, 474
dynamic type, 479
header file, 474
parameter type, 479
rethrow exceptions, 480
working principles, 477

definition, 464
functions

constructor try block, 486
destructor, 487
exceptions thrown, 486
function try block, 485

handling process, 467
nested try blocks, 471
Standard Library, 487

Box class constructor, 490
catch block, 489
dimension_error

objects, 491–492
exception class, 489
logic_error classes, 490
runtime_error classes, 490
std::range_error function, 491
Trouble exception class, 491

throw exception, 465, 469
functions, 470
try blocks, 470

throwIt() function, 473
try block, 464

uncaught exception, 468
std::abort() function, 468
std::exit() function, 469
std:: terminate() function, 468

Explicit type conversion
compiler, 47
explicit cast, 48
old-style casts, 49
program, 47–48
static_cast keyword, 47

Extension namespace, 296
External linkage

const variable, 289
definition, 288

Extern declaration, 289
Extern keyword, 75
extract_words() function, 263

F���������
File read/write operations

fstream object, 572
ifstream/ofstream object, 571
random access

binary stream, 572
constructor, 573
data members, 573
file_exists() member, 574
fstream member, 573
isprime() member, 576
next_prime() member, 575
object-oriented approach, 572
Primes class, 577
subscript operator, 576

File streams
properties, 542
reading file, text mode

close (), 548
coding implementation, 546–547
eof() function, 546–547
explicit cast, 546
fail() function, 545
ifstream object, 545
void*(), 546

types, 542
writing file, text mode

close(), 545
cmath header, 544
coding implementation, 543
fstream header, 544
ofstream object, 543
unsigned long, 544

Fill() function, 141
find_words(), 228

■ index

596

For loop, 108, 110
floating-point values, 113
range-based, 116

Fragmentation, memory, 172
Function header, 4
Functions, 3, 213

characteristics of, 214
in classes, 214
declaration, 218
definition, 214
for loops, 216
inline, 239
main(), 230
overloading

const pointer parameters, 245
const reference parameters, 246
default parameter values, 246
largest() function, 241
pointer parameters, 243
reference parameters, 243

pass-by-reference, 225
pass-by-value mechanism, 219

array, 222
pointer, 221

pointer to function, 255
prototypes, 218
recursive (see Recursive function)
returning values

pointer, 233
reference, 238

return statement, 217
static variables, 239
template

definition, 247
explicit type argument, 250
instances, 248
overloading, 251
specialization, 250
typename, 248

Fundamental data types, 23
arithmetic operations, 29
assignment operations

const variables, 32
conversion, 32
<< operators, 32
lvalue, 30
program, 31
rvalue, 30

auto keyword, 52
automatic variables, 71
binary literals, 28
binary operators, 28
bitwise operators

(see Bitwise operators)

character variables
arithmetic expressions, 50
definition, 50
escape sequences, 50
unicode character, 51

cmath header
numerical functions, 40
program, 42
radians calculation, 41–42
sqrt() function, 43
trigonometric functions, 41

decimal integer literals, 26
declaration, 34
using directive, 34
dynamic variable, 71
enumerators

compile-time constants, 68
creation, 67
definition, 67
explicit value, 68
old-style enumerations, 70
program, 68–69
standard output stream, 68

explicit type conversion
compiler, 47
explicit cast, 48
old-style casts, 49
program, 47–48
static_cast keyword, 47

extern keyword, 75
floating-point calculations

NaN and ±infinity operands, 40
operands, 38
pitfalls, 38

floating-point literal, 38
floating-point variables, 37
global variables

advantages, 72
and automatic variables, 73–74
definition, 71
Example.cpp, 72
increment operator, 74
main(), 72
scope resolution operator, 74

hexadecimal literals, 27
implicit conversions, 46
increment and decrement operators

definition, 35
postfix decrement, 35
postfix increment, 35

limits standard library header, 49–50
Lvalues and Rvalues, 52–53
octal literals, 27
op= assignment operators, 32–33

■ index

597

operator precedence and associativity
C++ operators, 56
definition, 55
expression, 56

sizeof operator, 34
static keyword, 71
static variables, 75
stream manipulators

integer values, 45
iomanip header, 44
setprecision() parameter, 44

typedef keyword, 70
unary operators, 28
variables (see Variables)

G���������
getWeight() function, 422, 424
Global namespace, 295
Global variables

advantages, 72
and automatic variables, 73–74
definition, 71
Example.cpp, 72
increment operator, 74
main(), 72
scope resolution operator, 74

H���������
Header file

description, 292
preventing duplication in, 293

Heap/free store, 167
Hexadecimal literals, 27

I, J, K���������
Implicit conversions, 46
Indefinite loops, 127
index_min, 235
Indirection operator, 154
Indirect member selection operator, 171
Inheritance, 317, 399, 426

vs. aggregation, 401
class

access level of, 406
access specifiers, 407–408
Box class, 402–403
Carton class, 403–404
constructor (see Constructor)
data member, 418
definition, 399, 401, 415
destructors, 416

hierarchies, 400
main() function, 404
member function, 419
protected keyword, 405

multiple inheritance (see Multiple inheritance)
Inline functions, 239
Interface, 455
Internal linkage, 288
isalnum() function, 88
is_arithmetic<T> template, 312
isprime function, 167

L���������
Lambda expressions, 271

capture clause, 279
definition, 272
function parameter, 275
function templates, 274
naming of, 272
recursion in, 283
std::function template type, 276
in template, 281

Linkage
definition, 288
for name, 288

listVector<T>(), 282
list_words() function, 228
Loop

definition, 107
do-while loop, 121
for loop, 108
indefinite, 127
nested loops, 123
skipping loop iterations, 125
while loop, 117

Loop control expression, 114–115

M���������
main(), 230
Max_word_length() function, 265
Member selection, pointer, 171
Memory leaks, 172
Multidimensional arrays, 134

character, 138
dimensions setup, 137
initializing, 136

Multiple inheritance
ambiguity problems, 421, 424
Carton class, 421
CerealPack class, 420, 423
class hierarchy, 420, 424–425
data members, 422
definition, 419

■ index

598

Fundamental data types (cont.)

getWeight() function, 422, 424
header file, 422
interface, 420
main().function, 424
virtual base class, 425–426

Myprog, 230
myRegion, 295
mysort() function, 279

N���������
Namespace, 6, 294

aliases, 301
declaration, 298
definition, 295
and functions, 298
nested, 302
unnamed, 301

Nested if-else statements, 89
Nested if statements, 85
Nested loops, 123
Nested namespaces, 302
New operator, 168
nextFibonacci() function, 241
non-const reference, 238
Non-type template parameters, 253
normalize() function, 302
Null character, 131
nullptr, 229
Numerical functions, 40

O���������
Object-oriented approach, 20–21
Object-oriented

programming (OOP), 315
Octal literals, 27
One-dimensional array, 134
Operator overloading

arithmetic operators, 380
Box objects, 381
listBox() member, 382
main() function, 384
max() and min() functions, 382
memory management, 381
operator function, 386
output statements, 384

assignment operator, 369
binary operator, 367
Box class, 365
class members

assignment operator, 375, 377
copy constructor, 374, 377
destructor, 375
move constructor, 375, 379

Class_Type operators, 373
definition, 366
function members, 368
function object, 396
global operator, 369
inline function, 370
main() function, 369
member operator function, 370
operators, 366
reference function parameter, 367
relational operators, 372
Return_Type operators, 373
show() function, 371
subscript operator

do-while loop, 387
friend function, 388
getBox() member, 392
listBoxes() member, 388, 390
operator<<() function, 388
temporary copy, 392
Truckload class, 387

type conversions, 394
conversion operators, 395
increment and decrement operators, 395

unary operators, 374
OR operator, 62, 93

P���������
Pass-by-reference mechanism, 225
Pass-by-value mechanism, 219

array, 222
pointer, 221

peek() function, 556
Pointer

definition, 458
pvalue, 168
Vessel class destructor, 459
virtual destructors, 460

Pointer arithmetic operation, 162
Pointers, 151

address-of operator, 153
arithmetic operation, 162
arrays of, 158
constant, 160
definition, 151
difference in, 164
indirection operator, 154
member selection, 171
notation, array name, 164
shared_ptr<T> object, 175, 178
to char, 156
unique_ptr<T>, 174
uses, 156
weak_ptr<T>, 179

■ index

599

Pointer to function, 255
Polymorphism, 318, 429

Base Class Pointer, 430
Box.h and Box.cpp, 431
Carton class definition, 430
casting pointers, 448–449
cost of, 451–452
default argument values, 443
dynamic binding/late binding, 434
dynamic cast, 448
pointer

definition, 458
Vessel class destructor, 459
virtual destructors, 460

pointer to derived class convertion
Casting pointers, 447–448
CerealPack class, 447
compiler, 447

pure virtual functions
(see Pure virtual functions)

reference parameter, 444–445, 450
showVolume() function, 432
smart pointers, 444
static binding, 433
ToughPack class, 431
typeid operator, 450
usage, 431
virtual functions

access specifiers, 441
class hierarchies, 438
declaration, 434
final, 440
overriding, 440
requirements, 438
showVolume() function, 438
ToughPack class, 437
volume() function, 436

volume() function, 432–433
Postfix decrement operator, 35
Postfix increment operator, 35
power() function, 215–216, 218
Preprocessing directives, 287, 290
Preprocessing identifiers, 291
Pure virtual functions

abstract class
Circle class creation, 454
constructor, 453
data member, 457
definition, 453
interface, 455
three-level class hierarchy, 458
Vessel class, 456–457
volume() function, 454–455

purpose of, 452
Shape class creation, 453

putback() function, 557
put() function, 558
pvalue, 168
pWords, 228
PWords alias, 229

Q���������
Quicksort algorithm, 261

R���������
Range-based for loop, 116
Raw pointers, 173
Raw string literal, 209
readsome() function, 557
Recursive function, 258

extract_words() function, 263
main() function, 262
max_word_length() function, 265
Quicksort algorithm, 261
show_words() function, 266
sort() function, 264
sorting operation, 261
swap() function, 264

Reference cycles, 173
References, 180

lvalue, 181
rvalue, 182
variable, range-based for loop, 181

Relational operators, 79
resetiosflags() functions, 542
reverse() function, 274

S���������
seekg() function, 555
seekp() function, 555
setiosflags() function, 542
setValues<T>(), 282
shift_range() function, 235
show_data() function, 233
show_error() function, 246
showHCF function, 284
showVolume() function, 432
Show_words() function, 266
Size() function, 141
Sizeof operator, 34
Smart pointer, 173
sort() function, 264, 276
sqrt() function, 43

■ index

600

Stack, 167
assignment operator, 527
code implementation, 529
concept, 524
copy() function, 526–527
default constructor, 527
destructor template, 528
freeMemory() function, 526–527
getline() function, 530
isEmpty() function, 530
length() function, 530
linked list, 525
node object, 525
pop() operation, 528
push() operation, 524, 528

Standard error stream, 535
Standard Template Library (STL), 7
Statement, C++, 4
Static assertion, 312
Static variables, 75, 239
Stream I/O

advantages of, 535
binary mode, 534 (see also Binary mode)
class (see Class)
data transferring, 534
definition, 534
errors in

clear(), 559
exceptions, 560–561
fail() function, 559–560
state flags, 559–560

file read/write operations (see File read/write
operations)

file streams (see File streams)
objects

in binary mode, 583
Carton class overrides, 588–589
extraction operator, 580
insertion operator, 579–580
linked list, 590
operator>>() and

operator<<() functions, 586
public virtual members, 586
serialization, 579
volume() function, 587

open mode
clear() function, 552
close(), 549
definition, 548
fail() function, 552
file overwrite, 548
nextprime() function, 551–554
open (), 549
outFile, 548
seekg() functions, 555

seekp() function, 555
standard output stream, 549–551
tellg() function, 553
values, 548

text mode, 534
unformatted input functions

EOF, 556
gcount(), 557
getline(), 557
null-terminated string, 557
peek() function, 556
putback(), 557
readsome() function, 557
single character, 556
unget() function, 556

unformatted output functions, 558
Strings

character access, 190
compare() function

substr() function, 197
with substring, 196
word, 195

comparison operators, 193
cstring header, 185
erase() function, 207
find() function

getline() function, 200
set of characters, 200
string::npos, 198
while loop, 200

insert() function, 204
international characters

char16_t, 208
char32_t, 208
wchar_t characters, 208–209

raw string literals, 209
replace() function, 205
rfind() function, 203
string object

concatenation, 188
define and initialize, 188
length() function, 186
proverb, 186–187

string type, 185
substr() function, 192
Unicode characters, 209

String stream classes, 578–579
surface() function, 450
swap() function, 264
Switch statement, 101–102

break statement, 97
case label, 97
cases, 97
case values, 99
creation, 97

■ index

601

default label, 97
integer constant expression, 97
isalpha() function, 99
program, 98
tolower() function, 99

T���������
tellg() function, 553
Ternary operator, 95
TESTFUNCTION identifier, 308
Three-dimensional array, 134
total() function, 418
Trailing return type, 255
Translation unit, 287
Tree structure, 258
TReturn, 252
Trigonometric functions, 41
Truckload class

constructor, 355
definition, 354
deleteBox() function, 355
getFirstBox() function, 356
getNextBox() function, 354, 356
listBox(), 357
main() function, 359
Package object, 355

Two-dimensional array, 134
type_traits header, 313

U���������
unget() function, 556
Unicode

character, 51
UTF-8, 17
UTF-16, 17

Universal Modelling Language (UML), 400
Unnamed namespaces, 301

V���������
Variables

const keyword, 26
definition, 23
integer

definition, 24
functional notation, 24
initializer list, 24
narrowing conversion, 24
program, 25
signed integer types, 25
unsigned integer types, 26

Vector
capacity of, 145–147
container, 147
size of, 145–147

Vessel class, 456
Virtual base class, 425–426
Virtual functions

access specifiers, 441
class hierarchies, 438
declaration, 434
final, 440
overriding, 440
requirements, 438
showVolume() function, 438
ToughPack class, 437
volume() function, 436

void keyword, 215
volume() function, 408–409, 432–433, 441–442, 454

W, X���������
While loop, 117
write() function, 558

Y, Z���������
yield() function, 224

■ index

602

Switch statement (cont.)

Beginning C++

Ivor Horton

Beginning C++

Copyright © 2014 by Ivor Horton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0008-7

ISBN-13 (electronic): 978-1-4842-0007-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Michael Thomas
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: Lori Cavanaugh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This is for Alexander and Henry who are both going to learn programming soon. If their amazing expertise
with Minecraft is anything to go by, they will be brilliant at it.

vii

Contents

About the Author ��� xxiii

About the Technical Reviewer �� xxv

Introduction �� xxvii

Chapter 1 ■ : Basic Ideas ��1

Modern C++ ��1

C++ Program Concepts ���2

Comments and Whitespace ��� 2

Preprocessing Directives and Header Files ��� 3

Functions ��� 3

Statements �� 4

Data Input and Output�� 5

return Statements�� 5

Namespaces �� 5

Names and Keywords �� 6

Classes and Objects ��7

Templates ��7

Program Files ��7

Standard Libraries ���7

Code Presentation Style ��7

Creating an Executable ���8

Representing Numbers ��9

Binary Numbers ��� 9

Hexadecimal Numbers �� 11

■ Contents

viii

Negative Binary Numbers �� 12

Octal Values ��� 14

Big-Endian and Little-Endian Systems �� 14

Floating-Point Numbers ��� 15

Representing Characters ���16

ASCII Codes ��� 16

UCS and Unicode ��� 17

C++ Source Characters ���17

Trigraph Sequences ��� 18

Escape Sequences �� 18

Procedural and Object-Oriented Programming ���20

Summary ���21

Chapter 2 ■ : Introducing Fundamental Types of Data ���23

Variables, Data, and Data Types ��23

Defining Integer Variables�� 24

Defining Variables with Fixed Values ��� 26

Integer Literals ��26

Decimal Integer Literals��� 26

Calculations with Integers ���28

More on Assignment Operations ��� 30

The op= Assignment Operators ���32

using Declarations and Directives ���34

The sizeof Operator ���34

Incrementing and Decrementing Integers ���35

Postfix Increment and Decrement Operations ��� 35

Defining Floating-Point Variables ��36

Floating-Point Literals ���37

Floating-Point Calculations ���38

Pitfalls �� 38

Mathematical Functions �� 40

■ Contents

ix

Formatting Stream Output ���43

Mixed Expressions and Type Conversion ���45

Explicit Type Conversion ��47

Old-Style Casts �� 49

Finding the Limits ��49

Working with Character Variables ���50

Working with Unicode Characters ��� 51

The auto Keyword ���52

Lvalues and Rvalues ��52

Summary ���53

Chapter 3 ■ : Working with Fundamental Data Types ���55

Operator Precedence and Associativity ���55

Bitwise Operators ��57

The Bitwise Shift Operators ��� 58

Using the Bitwise AND ��� 61

Using the Bitwise OR ��� 62

Using the Bitwise Exclusive OR ��� 63

Enumerated Data Types ���67

Old-Style Enumerations ��� 70

Synonyms for Data Types ��70

The Lifetime of a Variable ��71

Positioning Variable Definitions ���71

Global Variables ��� 71

Static Variables �� 75

External Variables ��75

Summary ���76

Chapter 4 ■ : Making Decisions ��79

Comparing Data Values ���79

Applying the Comparison Operators �� 80

Comparing Floating Point Values ��� 82

■ Contents

x

The if Statement ��82

Nested if Statements ��� 85

Code-Neutral Character Handling �� 86

The if-else Statement ��88

Nested if-else Statements ��� 89

Understanding Nested ifs �� 90

Logical Operators ��92

Logical AND ��� 92

Logical OR �� 93

Logical Negation �� 93

The Conditional Operator ���95

The switch Statement ���97

Unconditional Branching ���100

Statement Blocks and Variable Scope ���101

Summary ���102

Chapter 5 ■ : Arrays and Loops ���105

Arrays ��105

Using an Array ��� 106

Understanding Loops ��107

The for Loop ��108

Avoiding Magic Numbers ��110

Defining the Array Size with the Initializer List ���111

Determining the Size of an Array ��111

Controlling a for Loop with Floating-Point Values ���113

More Complex for Loop Control Expressions ���114

The Comma Operator ��116

The Ranged-based for Loop ��116

The while Loop ��117

Allocating an Array at Runtime ��119

■ Contents

xi

The do-while Loop ���121

Nested Loops ���123

Skipping Loop Iterations ��125

Breaking Out of a Loop ��127

Indefinite Loops ��� 127

Arrays of Characters ��131

Multidimensional Arrays ��134

Initializing Multidimensional Arrays ��� 136

Multidimensional Character Arrays ��� 138

Alternatives to Using an Array ���140

Using array<T,N> Containers �� 140

Using std::vector<T> Containers ��� 144

The Capacity and Size of a Vector ��� 145

Deleting Elements from a Vector container ��� 147

Summary ���148

Chapter 6 ■ : Pointers and References ��151

What Is a Pointer? ���151

The Address-Of Operator ���153

The Indirection Operator ��154

Why Use Pointers? ��� 156

Pointers to Type char ���156

Arrays of Pointers �� 158

Constant Pointers and Pointers to Constants ��160

Pointers and Arrays ���162

Pointer Arithmetic �� 162

Using Pointer Notation with an Array Name �� 164

Dynamic Memory Allocation ��167

The Stack and the Heap �� 167

Using the new and delete Operators ��� 168

■ Contents

xii

Dynamic Allocation of Arrays ��� 169

Member Selection through a Pointer ��� 171

Hazards of Dynamic Memory Allocation ��171

Memory Leaks ��� 172

Fragmentation of the Free Store �� 172

Raw Pointers and Smart Pointers ���173

Using unique_ptr<T> Pointers �� 174

Using shared_ptr<T> Pointers �� 175

Comparing shared_ptr<T> Objects ��� 178

weak_ptr<T> Pointers �� 179

Understanding References ��180

Defining lvalue References �� 181

Using a Reference Variable in a Range-Based for Loop �� 181

Defining rvalue References ��� 182

Summary ���183

Chapter 7 ■ : Working with Strings ���185

A Better Class of String ���185

Defining string Objects �� 186

Operations with String Objects �� 188

Accessing Characters in a String��� 190

Accessing Substrings �� 192

Comparing Strings ��� 193

Searching Strings �� 198

Searching a String Backwards �� 203

Modifying a String ��� 204

Strings of International Characters ���208

Strings of wchar_t Characters ��� 208

Objects that contain Unicode Strings ��209

Raw String Literals ��209

Summary ���210

■ Contents

xiii

Chapter 8 ■ : Defining Functions ���213

Segmenting Your Programs ���213

Functions in Classes �� 214

Characteristics of a Function ��� 214

Defining Functions ��214

The Function Body ��� 216

Function Declarations �� 217

Passing Arguments to a Function ��219

Pass-by-Value �� 219

Pass-by-Reference �� 225

Arguments to main() ��� 230

Default Argument Values ���231

Multiple Default Parameter Values �� 231

Returning Values from a Function ���233

Returning a Pointer �� 233

Returning a Reference ��� 238

Inline Functions ���239

Static Variables ��239

Function Overloading ��241

Overloading and Pointer Parameters ��� 243

Overloading and Reference Parameters �� 243

Overloading and const Parameters ��� 245

Overloading and Default Argument Values �� 246

A Sausage Machine for Functions ���247

Creating Instances of a Function Template �� 248

Explicit Template Argument ��� 249

Function Template Specialization �� 250

Function Templates and Overloading ��� 251

Function Templates with Multiple Parameters �� 252

Non-Type Template Parameters ��� 253

■ Contents

xiv

Trailing Return Types ���254

Pointers to Functions ��255

Defining Pointers to Functions �� 256

Recursion ��258

Applying Recursion �� 261

The Quicksort Algorithm �� 261

The main() Function �� 262

The extract_words() Function ��� 263

The swap() Function �� 264

The sort() function ��� 264

The max_word_length() Function ��� 265

The show_words() Function �� 266

Summary ���267

Chapter 9 ■ : Lambda Expressions ��271

Introducing Lambda Expressions ��271

Defining a Lambda Expression ��272

Naming a Lambda Expression ���272

Passing a Lambda Expression to a Function ���274

Function Templates that Accept Lambda Expression Arguments �� 274

A Function Parameter Type for Lambda Arguments �� 275

Using the std::function Template Type ��� 276

The Capture Clause ���279

Capturing Specific Variables �� 280

Using Lambda Expressions in a Template ���281

Recursion in Lambda Expressions ��283

Summary ���284

Chapter 10 ■ : Program Files and Preprocessing Directives ���287

Understanding Translation Units��287

The “One Definition” Rule �� 288

Program Files and Linkage �� 288

■ Contents

xv

Determining Linkage for a Name ��� 288

External Names ��� 289

const Variables with External Linkage ��� 289

Preprocessing Your Source Code ��289

Defining Preprocessing Identifiers ��291

Undefining an Identifier ��� 292

Including Header Files ���292

Preventing Duplication of Header File Contents �� 293

Namespaces ��294

The Global Namespace �� 295

Defining a Namespace��� 295

Applying using Declarations �� 298

Functions and Namespaces �� 298

Unnamed Namespaces �� 301

Namespace Aliases ��� 301

Nested Namespaces �� 302

Logical Preprocessing Directives ��303

The Logical #if Directive �� 303

Testing for Specific Identifier Values ��� 303

Multiple Choice Code Selection ��� 304

Standard Preprocessing Macros ��� 305

Debugging Methods ��306

Integrated Debuggers �� 306

Preprocessing Directives in Debugging ��� 307

Using the assert() Macro ��� 311

Switching Off assert() Macros ��� 311

Static Assertions ���312

Summary ���313

■ Contents

xvi

Chapter 11 ■ : Defining Your Own Data Types ���315

Classes and Object-Oriented Programming ��315

Encapsulation �� 316

Inheritance ��� 317

Polymorphism �� 318

Terminology ���319

Defining a Class ��320

Constructors ��322

Defining Constructors Outside the Class ��� 324

Default Constructor Parameter Values ��� 326

Using a Constructor Initialization List �� 326

Use of the explicit Keyword ��� 327

Delegating Constructors �� 329

The Copy Constructor �� 330

Accessing Private Class Members ��331

Friends ��333

The Friend Functions of a Class �� 333

Friend Classes ��� 336

The this Pointer ���336

Returning this from a Function �� 337

const Objects and const Member Functions ���338

Casting Away const ��� 339

Arrays of Class Objects ���340

The Size of a Class Object ���341

Static Members of a Class ��342

Static Data Members �� 342

Accessing Static Data Members �� 345

A Static Data Member of the Class Type �� 346

Static Function Members��� 346

Destructors ��347

■ Contents

xvii

Pointers and References to Class Objects ���350

Using Pointers As Class Members ���350

Defining the Package Class ��� 353

Defining the Truckload Class ��� 354

Implementing the Truckload Class ��� 355

Nested Classes ��359

Summary ���362

Chapter 12 ■ : Operator Overloading ���365

Implementing Operators for a Class ��365

Operator Overloading ��� 366

Operators That Can Be Overloaded �� 366

Implementing an Overloaded Operator �� 367

Global Operator Functions ��� 369

Implementing Full Support for an Operator ��� 370

Implementing All Comparison Operators in a Class ��� 371

Operator Function Idioms ��373

Default Class Members ���374

Defining the Destructor ��� 375

When to Define a Copy Constructor ��� 377

Implementing the Assignment Operator �� 377

Implementing Move Operations ��� 379

Overloading the Arithmetic Operators ���380

Improving Output Operations ��� 384

Implementing One Operator in Terms of Another �� 386

Overloading the Subscript Operator ��387

Lvalues and the Overloaded Subscript Operator ��� 392

Overloading Type Conversions ��394

Overloading the Increment and Decrement Operators ��395

Function Objects ���396

Summary ���397

■ Contents

xviii

Chapter 13 ■ : Inheritance ��399

Classes and Object-Oriented Programming ��399

Hierarchies �� 400

Inheritance in Classes ���401

Inheritance vs� Aggregation ��� 401

Deriving Classes �� 402

protected Members of a Class ��405

The Access Level of Inherited Class Members ��405

Choosing Access Specifiers in Class Hierarchies �� 407

Changing the Access Specification of Inherited Members �� 408

Constructor Operation in a Derived Class ��409

The Copy Constructor in a Derived Class ��� 412

The Default Constructor in a Derived Class ��� 414

Inheriting Constructors �� 415

Destructors Under Inheritance ��416

The Order in Which Destructors Are Called �� 417

Duplicate Data Member Names ��418

Duplicate Function Member Names ��419

Multiple Inheritance ��419

Multiple Base Classes�� 420

Inherited Member Ambiguity ��� 421

Repeated Inheritance �� 424

Virtual Base Classes �� 425

Converting Between Related Class Types ���426

Summary ���426

Chapter 14 ■ : Polymorphism ��429

Understanding Polymorphism ���429

Using a Base Class Pointer �� 429

Calling Inherited Functions �� 431

Virtual Functions �� 434

■ Contents

xix

Default Argument Values in Virtual Functions �� 442

Virtual Function Calls with Smart Pointers �� 444

Using References to Call Virtual Functions �� 444

Calling the Base Class Version of a Virtual Function �� 445

Converting Between Pointers to Class Objects �� 446

Dynamic Casts ��� 448

Converting References �� 450

Determining the Polymorphic Type �� 450

The Cost of Polymorphism ��451

Pure Virtual Functions ���452

Abstract Classes �� 453

Indirect Abstract Base Classes �� 456

Destroying Objects Through a Pointer ���458

Virtual Destructors ��� 460

Summary ���460

Chapter 15 ■ : Runtime Errors and Exceptions ���463

Handling Errors ���463

Understanding Exceptions ���464

Throwing an Exception �� 465

The Exception Handling Process ��� 467

Code That Causes an Exception to Be Thrown �� 469

Nested try Blocks �� 471

How It Works �� 473

Class Objects as Exceptions ��474

Matching a Catch Handler to an Exception �� 475

How It Works �� 477

Catching Derived Class Exceptions with a Base Class Handler ��� 478

Rethrowing Exceptions �� 480

Catching All Exceptions ��� 483

■ Contents

xx

Functions That Throw Exceptions ��485

Function try Blocks �� 485

Functions That Don’t Throw Exceptions �� 486

Constructor try Blocks ��� 486

Exceptions and Destructors ��� 487

Standard Library Exceptions ���487

The Exception Class Definitions �� 489

Using Standard Exceptions �� 490

Summary ���493

Chapter 16 ■ : Class Templates ���495

Understanding Class Templates ��495

Defining Class Templates ��496

Template Parameters ��� 497

A Simple Class Template ��� 498

Defining Function Members of a Class Template �� 500

Instantiating a Class Template ��503

Static Members of a Class Template ���508

Non-Type Class Template Parameters ���509

Templates for Function Members with Non-Type Parameters ��� 512

Arguments for Non-Type Parameters �� 516

Pointers and Arrays as Non-Type Parameters ��� 516

Default Values for Template Parameters ���517

Explicit Template Instantiation ��518

Special Cases ��518

Using static_assert() in a Class Template ��� 519

Defining a Class Template Specialization �� 520

Partial Template Specialization �� 521

Choosing between Multiple Partial Specializations ��� 521

■ Contents

xxi

Friends of Class Templates��522

Class Templates with Nested Classes ���524

Function Templates for Stack Members �� 526

Summary ���530

Chapter 17 ■ : File Input and Output ���533

Input and Output in C++ ���533

Understanding Streams ��� 534

Advantages of Using Streams �� 535

Stream Classes ���536

Standard Stream Objects ��� 537

Stream Insertion and Extraction Operations �� 537

Stream Manipulators ��� 539

File Streams ��542

Writing a File in Text Mode �� 543

Reading a File in Text Mode ��� 545

Setting the Stream Open Mode ���548

Managing the Current Stream Position�� 553

Unformatted Stream Operations ���555

Unformatted Stream Input ��� 556

Unformatted Stream Output �� 558

Errors in Stream Input/Output ���558

Input/Output Errors and Exceptions ��� 560

Stream Operations in Binary Mode ��561

Writing Numeric Data in Binary ��� 563

File Read/Write Operations ���571

Random Access to a File ��� 572

String Streams ��578

■ Contents

xxii

Objects and Streams ���579

Using the Insertion Operator with Objects ��� 579

Using the Extraction Operator with Objects ��� 580

Object I/O in Binary Mode �� 582

More Complex Objects in Streams �� 585

Summary ���590

Index ���593

xxiii

About the Author

Ivor Horton graduated as a mathematician and was lured into information
technology with promises of great rewards for very little work. In spite of the
reality being a great deal of work for relatively modest rewards, he has continued
to work with computers to the present day. He has been engaged at various
times in programming, systems design, consultancy, and the management and
implementation of projects of considerable complexity.

Ivor has many years of experience in designing and implementing systems
for engineering design and manufacturing control. He has developed occasionally
useful applications in a wide variety of programming languages, and has taught
primarily scientists and engineers to do likewise. His currently published works
include tutorials on C, C++, and Java. At the present time, when he is not writing
programming books or providing advice to others, he spends his time fishing,
traveling, and enjoying life in general.

xxv

About the Technical Reviewer

Michael Thomas has worked in software development for more than 20 years
as an individual contributor, team lead, program manager, and Vice President
of Engineering. Michael has more than 10 years of experience working with
mobile devices. His current focus is in the medical sector, using mobile devices to
accelerate information transfer between patients and health care providers.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Basic Ideas
	Modern C++
	C++ Program Concepts
	Comments and Whitespace
	Preprocessing Directives and Header Files
	Functions
	Statements
	Data Input and Output
	return Statements
	Namespaces
	Names and Keywords

	Classes and Objects
	Templates
	Program Files
	Standard Libraries
	Code Presentation Style
	Creating an Executable
	Representing Numbers
	Binary Numbers
	Hexadecimal Numbers
	Negative Binary Numbers
	Octal Values
	Big-Endian and Little-Endian Systems
	Floating-Point Numbers

	Representing Characters
	ASCII Codes
	UCS and Unicode

	C++ Source Characters
	Trigraph Sequences
	Escape Sequences

	Procedural and Object-Oriented Programming
	Summary

	Chapter 2: Introducing Fundamental Types of Data
	Variables, Data, and Data Types
	Defining Integer Variables
	Defining Variables with Fixed Values

	Integer Literals
	Decimal Integer Literals
	Hexadecimal Literals
	Octal Literals
	Binary Literals

	Calculations with Integers
	More on Assignment Operations

	The op= Assignment Operators
	using Declarations and Directives
	The sizeof Operator
	Incrementing and Decrementing Integers
	Postfix Increment and Decrement Operations

	Defining Floating-Point Variables
	Floating-Point Literals
	Floating-Point Calculations
	Mathematical Functions

	Formatting Stream Output
	Mixed Expressions and Type Conversion
	Explicit Type Conversion
	Old-Style Casts

	Finding the Limits
	Working with Character Variables
	Working with Unicode Characters

	The auto Keyword
	Lvalues and Rvalues
	Summary

	Chapter 3: Working with Fundamental Data Types
	Operator Precedence and Associativity
	Bitwise Operators
	The Bitwise Shift Operators
	Shifting Signed Integers
	Logical Operations on Bit Patterns

	Using the Bitwise AND
	Using the Bitwise OR
	Using the Bitwise Exclusive OR

	Enumerated Data Types
	Old-Style Enumerations

	Synonyms for Data Types
	The Lifetime of a Variable
	Positioning Variable Definitions
	Global Variables
	Static Variables

	External Variables
	Summary

	Chapter 4: Making Decisions
	Comparing Data Values
	Applying the Comparison Operators
	Comparing Floating Point Values

	The if Statement
	Nested if Statements
	Code-Neutral Character Handling

	The if-else Statement
	Nested if-else Statements
	Understanding Nested ifs

	Logical Operators
	Logical AND
	Logical OR
	Logical Negation

	The Conditional Operator
	The switch Statement
	Unconditional Branching
	Statement Blocks and Variable Scope
	Summary

	Chapter 5: Arrays and Loops
	Arrays
	Using an Array

	Understanding Loops
	The for Loop
	Avoiding Magic Numbers
	Defining the Array Size with the Initializer List
	Determining the Size of an Array
	Controlling a for Loop with Floating-Point Values
	More Complex for Loop Control Expressions
	The Comma Operator
	The Ranged-based for Loop
	The while Loop
	Allocating an Array at Runtime
	The do-while Loop
	Nested Loops
	Skipping Loop Iterations
	Breaking Out of a Loop
	Indefinite Loops

	Arrays of Characters
	Multidimensional Arrays
	Initializing Multidimensional Arrays
	Setting Dimensions by Default

	Multidimensional Character Arrays

	Alternatives to Using an Array
	Using array<T,N> Containers
	Using std::vector<T> Containers
	The Capacity and Size of a Vector
	Deleting Elements from a Vector container

	Summary

	Chapter 6: Pointers and References
	What Is a Pointer ?
	The Address-Of Operator
	The Indirection Operator
	Why Use Pointers ?

	Pointers to Type char
	Arrays of Pointers

	Constant Pointers and Pointers to Constants
	Pointers and Arrays
	Pointer Arithmetic
	The Difference between Pointers

	Using Pointer Notation with an Array Name

	Dynamic Memory Allocation
	The Stack and the Heap
	Using the new and delete Operators
	Dynamic Allocation of Arrays
	Member Selection through a Pointer

	Hazards of Dynamic Memory Allocation
	Memory Leaks
	Fragmentation of the Free Store

	Raw Pointers and Smart Pointers
	Using unique_ptr<T> Pointers
	Using shared_ptr<T> Pointers
	Comparing shared_ptr<T> Objects
	weak_ptr<T> Pointers

	Understanding References
	Defining lvalue References
	Using a Reference Variable in a Range-Based for Loop
	Defining rvalue References

	Summary

	Chapter 7: Working with Strings
	A Better Class of String
	Defining string Objects
	Operations with String Objects
	Concatenating Strings

	Accessing Characters in a String
	Accessing Substrings
	Comparing Strings
	The compare( ) Function
	Comparisons Using substr( )

	Searching Strings
	Searching for any of a Set of Characters

	Searching a String Backwards
	Modifying a String
	Inserting a String
	Replacing a Substring
	Removing Characters from a String

	Strings of International Characters
	Strings of wchar_t Characters

	Objects that contain Unicode Strings
	Raw String Literals
	Summary

	Chapter 8: Defining Functions
	Segmenting Your Programs
	Functions in Classes
	Characteristics of a Function

	Defining Functions
	The Function Body
	Return Values
	How the return Statement Works

	Function Declarations
	Function Prototypes

	Passing Arguments to a Function
	Pass-by-Value
	Passing a Pointer to a Function
	Passing an Array to a Function
	const Pointer Parameters
	Passing a Multidimensional Array to a Function

	Pass-by-Reference
	References Can Be Risky
	Improving the Program
	Simplifying Code using Type Aliases

	References versus Pointers

	Arguments to main()

	Default Argument Values
	Multiple Default Parameter Values

	Returning Values from a Function
	Returning a Pointer
	Returning a Reference

	Inline Functions
	Static Variables
	Function Overloading
	Overloading and Pointer Parameters
	Overloading and Reference Parameters
	Overloading and const Parameters
	Overloading with const Pointer Parameters
	Overloading and const Reference Parameters

	Overloading and Default Argument Values

	A Sausage Machine for Functions
	Creating Instances of a Function Template
	Explicit Template Argument
	Function Template Specialization
	Function Templates and Overloading
	Function Templates with Multiple Parameters
	Non-Type Template Parameters

	Trailing Return Types
	Pointers to Functions
	Defining Pointers to Functions

	Recursion
	Applying Recursion
	The Quicksort Algorithm
	The main() Function
	The extract_words() Function
	The swap() Function
	The sort() function
	The max_word_length() Function
	The show_words() Function

	Summary

	Chapter 9: Lambda Expressions
	Introducing Lambda Expressions
	Defining a Lambda Expression
	Naming a Lambda Expression
	Passing a Lambda Expression to a Function
	Function Templates that Accept Lambda Expression Arguments
	A Function Parameter Type for Lambda Arguments
	Using the std::function Template Type

	The Capture Clause
	Capturing Specific Variables

	Using Lambda Expressions in a Template
	Recursion in Lambda Expressions
	Summary

	Chapter 10: Program Files and Preprocessing Directives
	Understanding Translation Units
	The “One Definition” Rule
	Program Files and Linkage
	Determining Linkage for a Name
	External Names
	const Variables with External Linkage

	Preprocessing Your Source Code
	Defining Preprocessing Identifiers
	Undefining an Identifier

	Including Header Files
	Preventing Duplication of Header File Contents

	Namespaces
	The Global Namespace
	Defining a Namespace
	Applying using Declarations
	Functions and Namespaces
	Unnamed Namespaces
	Namespace Aliases
	Nested Namespaces

	Logical Preprocessing Directives
	The Logical #if Directive
	Testing for Specific Identifier Values
	Multiple Choice Code Selection
	Standard Preprocessing Macros

	Debugging Methods
	Integrated Debuggers
	Preprocessing Directives in Debugging
	Using the assert( ) Macro
	Switching Off assert() Macros

	Static Assertions
	Summary

	Chapter 11: Defining Your Own Data Types
	Classes and Object-Oriented Programming
	Encapsulation
	Data Hiding

	Inheritance
	Polymorphism

	Terminology
	Defining a Class
	Constructors
	Defining Constructors Outside the Class
	Default Constructor Parameter Values
	Using a Constructor Initialization List
	Use of the explicit Keyword
	Delegating Constructors
	The Copy Constructor
	Implementing the Copy Constructor
	Reference Parameters

	Accessing Private Class Members
	Friends
	The Friend Functions of a Class
	Friend Classes

	The this Pointer
	Returning this from a Function

	const Objects and const Member Functions
	Casting Away const

	Arrays of Class Objects
	The Size of a Class Object
	Static Members of a Class
	Static Data Members
	Accessing Static Data Members
	A Static Data Member of the Class Type
	Static Function Members

	Destructors
	Pointers and References to Class Objects
	Using Pointers As Class Members
	Defining the Package Class
	Defining the Truckload Class
	Implementing the Truckload Class

	Nested Classes
	Summary

	Chapter 12: Operator Overloading
	Implementing Operators for a Class
	Operator Overloading
	Operators That Can Be Overloaded
	Implementing an Overloaded Operator
	Global Operator Functions
	Implementing Full Support for an Operator
	Implementing All Comparison Operators in a Class

	Operator Function Idioms
	Default Class Members
	Defining the Destructor
	When to Define a Copy Constructor
	Implementing the Assignment Operator
	Implementing Move Operations

	Overloading the Arithmetic Operators
	Improving Output Operations
	Implementing One Operator in Terms of Another

	Overloading the Subscript Operator
	Lvalues and the Overloaded Subscript Operator
	Potential Ambiguities with Conversions

	Overloading Type Conversions
	Overloading the Increment and Decrement Operators
	Function Objects
	Summary

	Chapter 13: Inheritance
	Classes and Object-Oriented Programming
	Hierarchies

	Inheritance in Classes
	Inheritance vs. Aggregation
	Deriving Classes

	protected Members of a Class
	The Access Level of Inherited Class Members
	Choosing Access Specifiers in Class Hierarchies
	Changing the Access Specification of Inherited Members

	Constructor Operation in a Derived Class
	The Copy Constructor in a Derived Class
	The Default Constructor in a Derived Class
	Inheriting Constructors

	Destructors Under Inheritance
	The Order in Which Destructors Are Called

	Duplicate Data Member Names
	Duplicate Function Member Names
	Multiple Inheritance
	Multiple Base Classes
	Inherited Member Ambiguity
	Repeated Inheritance
	Virtual Base Classes

	Converting Between Related Class Types
	Summary

	Chapter 14: Polymorphism
	Understanding Polymorphism
	Using a Base Class Pointer
	Calling Inherited Functions
	Virtual Functions
	Requirements for Virtual Function Operation
	Virtual Functions and Class Hierarchies
	Using override
	Using final
	Access Specifiers and Virtual Functions

	Default Argument Values in Virtual Functions
	Virtual Function Calls with Smart Pointers
	Using References to Call Virtual Functions
	Calling the Base Class Version of a Virtual Function
	Converting Between Pointers to Class Objects
	Dynamic Casts
	Casting Pointers Dynamically

	Converting References
	Determining the Polymorphic Type

	The Cost of Polymorphism
	Pure Virtual Functions
	Abstract Classes
	Abstract Classes As Interfaces

	Indirect Abstract Base Classes

	Destroying Objects Through a Pointer
	Virtual Destructors

	Summary

	Chapter 15: Runtime Errors and Exceptions
	Handling Errors
	Understanding Exceptions
	Throwing an Exception
	The Exception Handling Process
	Unhandled Exceptions

	Code That Causes an Exception to Be Thrown
	Nested try Blocks
	How It Works

	Class Objects as Exceptions
	Matching a Catch Handler to an Exception
	How It Works
	Catching Derived Class Exceptions with a Base Class Handler
	Rethrowing Exceptions
	Catching All Exceptions

	Functions That Throw Exceptions
	Function try Blocks
	Functions That Don’t Throw Exceptions
	Constructor try Blocks
	Exceptions and Destructors

	Standard Library Exceptions
	The Exception Class Definitions
	Using Standard Exceptions
	Deriving your own Exception Classes

	Summary

	Chapter 16: Class Templates
	Understanding Class Templates
	Defining Class Templates
	Template Parameters
	A Simple Class Template
	Defining Function Members of a Class Template
	Constructor Templates
	The Destructor Template
	Subscript Operator Templates
	The Assignment Operator Template

	Instantiating a Class Template
	Static Members of a Class Template
	Non-Type Class Template Parameters
	Templates for Function Members with Non-Type Parameters
	Arguments for Non-Type Parameters
	Pointers and Arrays as Non-Type Parameters

	Default Values for Template Parameters
	Explicit Template Instantiation
	Special Cases
	Using static_assert( ) in a Class Template
	Defining a Class Template Specialization
	Partial Template Specialization
	Choosing between Multiple Partial Specializations

	Friends of Class Templates
	Class Templates with Nested Classes
	Function Templates for Stack Members

	Summary

	Chapter 17: File Input and Output
	Input and Output in C++
	Understanding Streams
	Data Transfer Modes
	Text Mode Operations
	Binary Mode Operations

	Advantages of Using Streams

	Stream Classes
	Standard Stream Objects
	Stream Insertion and Extraction Operations
	Stream Extraction Operations
	Stream Insertion Operations

	Stream Manipulators
	Manipulators with Arguments

	File Streams
	Writing a File in Text Mode
	Reading a File in Text Mode
	Checking the State of a File Stream
	Reading the File

	Setting the Stream Open Mode
	Managing the Current Stream Position

	Unformatted Stream Operations
	Unformatted Stream Input
	Unformatted Stream Output

	Errors in Stream Input/Output
	Input/Output Errors and Exceptions

	Stream Operations in Binary Mode
	Writing Numeric Data in Binary

	File Read/Write Operations
	Random Access to a File
	Random Access to a Binary Stream
	Random File Operations in Practice
	Implementing the Constructor
	Checking for the Existence of a File
	Finding a Prime that follows a Prime
	Checking for a Prime
	Implementing the Subscript Operator
	Using the Primes Class

	String Streams
	Objects and Streams
	Using the Insertion Operator with Objects
	Using the Extraction Operator with Objects
	Object I/O in Binary Mode
	More Complex Objects in Streams

	Summary

	Index

