
www.allitebooks.com

http://www.allitebooks.org

Instant MinGW Starter

Develop, debug and profile your C++ applications using
the MinGW open source software

Ilya Shpigor

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Instant MinGW Starter

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1210113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-562-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits
Author

Ilya Shpigor

Reviewer

Kyle Schwarz

Acquisition Editor

Edward Gordon

Commissioning Editor

Maria D'souza

Technical Editor

Ankita Meshram

Project Coordinator

Amigya Khurana

Proofreader

Maria Gould

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

Cover Image

Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

"Yoda's aphorism ("There is no 'try'") sounds neat, but it doesn't work for me. I have
done most of my work while anxious about whether I could do the job, and ensure
that it would be enough to achieve the goal if I did. But I tried anyway, because
there was no one but me between the enemy and my city. Surprising myself, I have
sometimes succeeded."

Richard Matthew Stallman,
Launcher of the GNU Project and founder of the Free Software Foundation

Sometimes it seems that the world is limited to just the Microsoft Windows operating system
and that the developing of complex applications is impossible without the latest version of MS
Visual Studio. But there are open houses where there is no need to look at the sky through the
windows. There are a lot of development environments that are different from commonly used
ones, and this variety allows us to feel the world of the software in its entirety.

PCs are losing their significance increasingly and are yielding the personal computing device's
role to tablet computers and smartphones. The world does not consist of only one hardware
architecture nowadays. The different CPU architectures and operating systems for supporting
them are available now. The ability to develop cross-platform applications is important too.

Many software development tools have been created as a part of the GNU Project since
1984 when the project started. The GNU compiler collection is a part of these software
development tools.

Minimalist GNU for Windows (MinGW) is a software port of the GNU Toolchain for Microsoft
Windows operating system. Its minimalism means that MinGW doesn't provide the whole
POSIX compatible environment. In the meantime it doesn't yield to its ancestor for Unix-based
systems but allows you to feel Unix philosophy.

www.allitebooks.com

http://www.allitebooks.org

MinGW allows open source software developers to port their software to the Windows operating
system. MinGW software with any of the well-known cross-platform framework integration
allows you to develop cross-platform applications even if you don't care about this feature. This
feature provides a great competitive advantage if your customer decides to change his or her
computing platform to another suddenly. You don't need a special Linux version or additional
developer team in this case. Just make minor changes in your software and that's all you need.

The MinGW software allows you to use plenty of open source C and C++ libraries that integrate
with MinGW well. You can develop applications with more features and reuse source code thanks
to these libraries. Often open source libraries' licenses allow you to choose if your application will
be a free software or a proprietary one.

The world of command-line interface, Makefiles, and build systems can be very enthralling
like other new things. Compiling your program with new tools always leads to surprises.
It finds faults in places with seemingly clean code. Try to calm it down.

You do not get lost. You can integrate MinGW software with an integrated development
environment (IDE), such as Code::Blocks, Qt Creator, and even Eclipse if you will tolerate
Eclipse's slowness.

Good luck! And don't forget to use a control version system for your source code. The frequent
commits are a pledge of quick bugs searching that has been added to the developed source code
with any new feature or code correction.

This book allows you to quickly start new software project development thanks to detailed
explanation on how to create a necessary development environment. You will know how to
download necessary tools, choose user interface library and compile applications. At first,
it is important to understand where to start. I believe that this book will dispel your doubts
and you will understand that these things are actually simple.

Try it!

Vitaly Lipatov
CEO, Etersoft

www.allitebooks.com

http://www.allitebooks.org

About the Author
Ilya Shpigor is a software developer in a flight simulator manufacturing company in Saint
Petersburg, Russia. His work is in developing real-time computing systems that work under
heavy computational loads. Ilya prefers to use open source software products, such as the
Linux operating system and GNU toolchain, for his daily tasks.

He has participated in ALT Linux distribution and Wine open source software development
before his current job.

Ilya has experience in cross-platform software development, porting applications to other
computing platforms, and real-time computing systems design. He is interested in automating
routine tasks and researching the capacities of different programming languages to solve
specific problems.

Writing a book is the hard work of many people and not just that of the
author. I would like to thank everyone who has helped me with this work.

I would like to gratefully acknowledge Navin Mehra, an Author Relationship
Executive, who found me and suggested I write this book. It is difficult to
overestimate the importance of this event for the book.

I would like to thank the Commissioning Editor, Maria D'souza, who corrected
my drafts so many times.

I would like to thank the technical reviewer, Kyle Schwarz. His comments were
very helpful to improve this book significantly.

And a special thanks to my mentor and friend, Vitaly Lipatov, who introduced
me to the wonderful world of open source software.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Kyle Schwarz has been working on Linux machines for over 7 years and has a deep
understanding of low-level system functions. He is a detail-oriented individual, who has
experience in many aspects of computer software and hardware. He enjoys working with
all technology platforms and is constantly expanding his experience in this field.

He has worked for several major companies on projects that involved FFmpeg, Windows
BATCH scripting, Linux BASH scripting, web development, web design, Windows Installer
scripting, and much more. He currently operates zeranoe.com and does contract work for
companies and individuals.

I would like to thank my Dad for teaching me the value of hard work. His
guidance and leadership have been the most valuable aspects of my life.

www.allitebooks.com

http://www.allitebooks.org

www.packtpub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

www.allitebooks.com

http://www.allitebooks.org

packtLib.packtpub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

 Ê Why Subscribe? Fully searchable across every book published by Packt

 Ê Copy and paste, print and bookmark content

 Ê On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Instant MinGW Starter 1

So, what is MinGW? 3
Installation 5

Step 1 – What do I need? 5
Step 2 – Downloading MinGW 5
Step 3 – Extracting and configuring 5
What do you have to get? 6
Alternative ways to install MinGW 6

Quick start – Creating your first MinGW project 8
Step 1 – Adding source files 8
Step 2 – Adding a Makefile 11
Step 3 – Compiling and linking 12

Top features you'll want to know about 13
1 – Make utility usage 13
2 – Compiler options 17
3 – Importing the existing Visual C++ project 18
4 – Debugging application 26
5 – Profiling application 31
6 – Developing with cross-platform libraries 37

The Qt framework 37
The Gtk+ widget toolkit 42
wxWidgets framework 46

7 – Integrating with IDE 49
Code::Blocks 50
Qt Creator 53
Eclipse 57

People and places you should get to know 61
MinGW official sites 61
MinGW-w64 official sites 61
GNU Compiler Collection official sites 61

Table of Contents

[ii]

GNU Debugger official sites 62
GNU Make official sites 62
Articles and tutorials 62
Community 62
Twitter 62

Instant MinGW Starter

Welcome to Instant MinGW Starter.

This book has been especially created to provide you with all the information that
you need to start developing applications with MinGW software. You will get to
know the basic skills to work with MinGW software and discover some tips and
tricks for using it.

This book contains the following sections:

So, what is MinGW? – This section describes what MinGW actually is, its common
components, and what you can do with it.

Installation – In this section you will learn how to download and install MinGW
software with minimum fuss and then set it up so that you can use it as soon
as possible.

Quick start – Creating your first MinGW project – This section will show you how
to create a new application with MinGW software step by step. It will be the
basis of most your work with MinGW.

Top features you'll want to know about – Here, you will learn how to perform
some tasks with the most important features of MinGW. By the end of this
section you will be able to use the GNU Make utility for effectively building your
projects, importing existing Visual C++ projects to MinGW software, developing
applications based on cross-platform GUI libraries, and configuring several Open
Source IDEs with MinGW.

People and places you should get to know – Every Open Source project is centered
around a community. This section provides you with many useful links to the
project page and forums, as well as a number of helpful articles and tutorials on
MinGW software.

3

Instant MinGW Starter

So, what is MinGW?
Minimalist GNU for Windows (MinGW) is a native software port of the GNU tool chain for the
Microsoft Windows operating system. The base components of MinGW software are compiler,
linker, and assembler. This minimal tool set is enough to start developing applications. But
MinGW contains some service utilities to make the developing process more effective:

 Ê GNU Make

 Ê GNU Debugger (GDB)

 Ê GNU profiler

 Ê Compiler for Windows resource files

 Ê Header files and libraries for Windows API

 Ê Collection of archives and packers

These components allow you to develop native 32-bit Windows applications without any
proprietary third-party software. All components of MinGW software are produced under
GNU General Public License and therefore this is a free software that you can download,
use, and change as you want.

You can develop applications in C, C++, Java, Objective C, Fortran, and Ada programming
languages with MinGW software. C++ application development will be described in this
book, which is more typical for MinGW usage.

Besides developing new applications, you can import existing Visual C++ projects to MinGW
software. It is easy to integrate MinGW with well-known third-party libraries such as DirectX,
Boost, Qt, GTK, OpenGL, and SDL. If you are using any of these libraries, you can compile
your application with MinGW.

MinGW software is very useful for importing Unix and Mac applications to Windows native code.
It provides the same instruments that Unix and Mac developers have used in most cases. Also,
you can import your MinGW-based applications to any computing platform supported by the
GNU toolchain. Therefore, MinGW software is a great instruments' set for developing cross-
platform applications.

Another benefit of MinGW software is modular organization. You can replace most components
of the GNU toolchain with your favorite instruments (for example, debugger, profiler, or build
automation system). These instruments will be integrated with existing components without
any problems. Usage of the MinGW software is the first step to collecting your own developer's
instruments' set for comfortable work.

4

Instant MinGW Starter

The compiler efficiency is one of most important parameters for software developers. There
are a lot of C++ compilers' benchmarks that are available on the Internet. Unfortunately for us,
developers of proprietary compilers are not interested in objective researches of this kind. Fair
comparison of available compilers is impossible because of this.

The MinGW compiler efficiency is abreast to proprietary compiler efficiency today according
to benchmarks of independent software developers. You can find one of them at the
following website:

http://www.willus.com/ccomp_benchmark.shtml?p9+s6

The MinGW software releases are more frequent than the proprietary compilers' releases. This
means that MinGW is developed and improved more dynamically. For example, the standard
features of C++11 have been supported by the GCC compiler earlier than the Visual Studio one.
You can find these features at the following website:

http://wiki.apache.org/stdcxx/C++0xCompilerSupport

Notice that the GNU toolchain is a product of Unix culture. This culture is earlier than GUI
applications with access to any function through menus, dialogs, and icons. Unix software has
been developed as a suite of little stand alone utilities. Each of these performs only one task,
but this execution is optimized very well. Therefore, all these utilities have a text-based
interface. This provides the simplest intercommunication mechanism with a command line
shell and saves the system resources.

If the idea of a text-based interface scares you, be relieved because there are a lot of Integrated
Development Environments (IDE) that support MinGW.

5

Instant MinGW Starter

Installation
There are several ways to install MinGW software on your computer. For example, you can compile
whole MinGW software by yourself, or you can just install MinGW software distribution with a few
clicks. The following steps are the simplest and quickest guide to install MinGW software.

Step 1 – What do I need?
You need the following configurations on your computer to install MinGW software according to
this guide:

 Ê Disk space of 500 MB

 Ê An operating system of any version of Microsoft Windows since Windows XP or newer

 Ê Internet connection

Step 2 – Downloading MinGW
Download a self-extracting archive with the latest version of the MinGW software distribution
from the following web page:

http://nuwen.net/mingw.html

You will find two types of distribution here: one with Git and one without Git. Git is an open
source distributed revision control system. I suggest you install the version with Git because
it contains Bash command shell. This is a comfortable alternative for the standard Windows
Command Prompt. For example, the Bash shell provides the autocomplete function that will
complete the typed commands and pathnames by pressing the Tab key. Also the command
history is available by pressing up and down arrows.

Step 3 – Extracting and configuring
Run the self-extracting archive. Specify the target directory and click on the Extract button.

Suppose that you choose C:\ as the target directory. The archive will be extracted to C:\
MinGW. I strongly recommend you not to install MinGW software in C:\Program Files.
There are problems with paths containing spaces.

Run the set_distro_paths.bat script in C:\MinGW after the archieve extraction. It will add
the MinGW software directory to the PATH system variable for integration with the Windows
Command Prompt and Bash shell. This script does not work properly on Windows Vista and
Windows 7. Check the MinGW directory existence in the PATH variable after executing it.

6

Instant MinGW Starter

What do you have to get?
Congratulations! You have got the linker, C, and C++ compilers on your computer with header
files and libraries for Windows API. Boost, GLEW, SDL, PCRE, Free Type, Vorbis, and many more
libraries have been installed too. Moreover, there is profiler, Bash shell, Git, and other utilities.

There are several other ways to install MinGW software. One of them may be more suitable for
your goals.

Alternative ways to install MinGW
The installation process described earlier refers to the unofficial distribution of the MinGW
software with additional libraries and utilities. It may seem doubtful for users accustomed
to proprietary software, but this is common practice for open source users. The third-party
distributions are more usable and complete than official ones in some cases. This is achieved by
integrating several relative open source products into one distribution. GNU Linux distribution
is a typical sample of this practice.

You can download and install the official distribution of MinGW software from the following
developers' website:

http://www.mingw.org

I recommend you use the mingw-get installer application with a text-based interface. You can
get a list of all the available packages by executing the following command:

$ mingw-get list

Execute the following command to install the necessary packages (for example, GCC, G++, GDB):

$ mingw-get install gcc g++ gdb

A more detailed instruction manual is available at the official MinGW website. You can simply
install extensions for MinGW software using the mingw-get application.

The 64-bit MinGW software version is available from the MinGW-w64 fork. Fork is an alternative
branch of mainstream software development. The goal of any fork is to achieve specific software
features. MinGW-w64 is a completely different software package than MinGW with its own
staff of developers. However, the basic principles of MinGW and MinGW-w64 are the same. All
knowledge gained in this book you can apply to MinGW-w64 software. The following website is
for the MinGW-w64 project:

http://mingw-w64.sourceforge.net

7

Instant MinGW Starter

You can download the archive with MinGW software from here and unpack them. After
unpacking you will get a ready-to-use MinGW software.

The following is the website of a MinGW-w64 software's unofficial distribution:

http://tdm-gcc.tdragon.net

This distribution provides a more flexible configuration of the installable components than
the official one. The installation will be performed through the standard Windows Installation
Wizard application.

MinGW software is supplied with some open source IDE. For example, such integrated product
is available on Code::Blocks, official website http://www.codeblocks.org.

www.allitebooks.com

http://www.allitebooks.org

8

Instant MinGW Starter

Quick start – Creating your first MinGW project
Let's create a simple typical C++ Windows application from scratch. Its interface will consist of a
dialog window with two buttons. A click on the first button leads to a display of a message while
a click on the second button leads to the application termination. The application contains a
resource file with Windows Controls captions, sizes, styles, and fonts.

Step 1 – Adding source files
First of all, you must create a source C++ file and name it main.cpp. This file will contain the
main function:

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include "resource.h"

BOOL CALLBACK DialogProc(HWND hwndDlg, UINT uMsg, WPARAM wParam,
LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_CLOSE:
 EndDialog(hwndDlg, 0);
 return TRUE;

 case WM_COMMAND:
 switch(LOWORD(wParam))
 {
 case IDC_BTN_QUIT:
 EndDialog(hwndDlg, 0);
 return TRUE;

 case IDC_BTN_TEST:
 MessageBox(hwndDlg, "Message text", "Information",
MB_ICONINFORMATION);
 return TRUE;
 }
 }

 return FALSE;
}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nShowCmd)
{
 return DialogBox(hInstance, MAKEINTRESOURCE(DLG_MAIN), NULL,
(DLGPROC)DialogProc);
}

9

Instant MinGW Starter

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

The first line is the definition of the WIN32_LEAN_AND_MEAN macro, which disables the
inclusion of rarely-used Windows header files. The next two lines include the header file with the
Windows API functions' declaration and the header file with application resources identifiers.

The DialogProc function processes messages sent to our modal dialog. These messages
contain information about events that occurred. The message identifier is passed to the
function in the uMsg parameter. The wParam and lParam parameters are used for additional
message-specific information. The hwndDlg parameter defines the dialog window that has
received the message.

The DialogProc function processes the following messages:

1. WM_CLOSE: This message is caused by a click on the standard close window button.

2. WM_COMMAND with the IDC_BTN_QUIT parameter: This message is caused by
a click on the Quit button.

3. WM_COMMAND with the IDC_BTN_TEST parameter: This message is caused by
a click on the Test button.

The WM_CLOSE and WM_COMMAND with IDC_BTN_QUIT parameter messages causes the
application to terminate. The WM_COMMAND with the IDC_BTN_TEST parameter message
causes the standard message box displaying.

The function which is defined next is WinMain. This function will be called when the application
launches. The DialogBox Windows API function is called here to create a modal dialog window.
We pass the hInstance variable to this function with a handle to the module whose executable
file contains the resources of the created dialog. These resources are read-only embedded data
in a binary file.

Next, the DialogBox function parameter is a pointer to the null-terminated string that
specifies the dialog template in the resource data. The MAKEINTRESOURCE macro is used
here to convert the DLG_MAIN identifier of the integer type to the null-terminated string.
This identifier is defined in the resource.h header file.

The third parameter of the DialogBox function is the handle of the parent window that
owns the dialog window. This is equal to the NULL value in our case that means the absence
of a parent window.

The last parameter of the function is a pointer to the dialog window procedure to process
messages. We pass the pointer to the DialogProc function for this parameter.

10

Instant MinGW Starter

User interface elements and their parameters can be described in the resource file. All data
from this file will be embedded into executable files and these will be available when the
application runs.

Let's add this resource file to our project (resource.rc):

#include "resource.h"

DLG_MAIN DIALOGEX 6, 5, 138, 75

CAPTION "Typical Windows Application"

FONT 10, "Tahoma"

STYLE 0x10CE0804

BEGIN
 CONTROL "&Message", IDC_BTN_TEST, "Button", 0x10010000, 46, 15, 46,
15
 CONTROL "&Quit", IDC_BTN_QUIT, "Button", 0x10010000, 46, 45, 46, 15
END

You can see the inclusion of the resource.h header in the first line of the resource file. The
user interface element identifiers are defined in this header file. These identifiers are used to
provide access from C++ code to resource data.

The DLG_MAIN element of the DIALOGEX type is defined in the next line. This element
represents the dialog template with the position and size dialog window parameters. All
statements in the next lines define the appearance of the dialog box and its elements.

The next line of the resource file contains the CAPTION statement. This statement defines the
title of the dialog box. The FONT statement defines the font size and typeface for the dialog text
font. The STYLE statement defines the window style of the dialog box.

The dialog box buttons are defined between the BEGIN and END statements. These parameters
are defined for each button as follows:

 Ê Type of the user interface element (this is equal to CONTROL)

 Ê Caption of the element

 Ê Element identifier

 Ê Class of the element (this is equal to Button)

 Ê Window style of the element

 Ê Position (x, y) and size (width, height)

11

Instant MinGW Starter

The third file is a header for the binding resource identifiers and C++ code (resource.h):

#include <windows.h>

#define DLG_MAIN 100
#define IDC_BTN_TEST 101
#define IDC_BTN_QUIT 102

The dialog box and buttons' identifiers are specified here.

Step 2 – Adding a Makefile
The compilation rules are required to build our application. The rules describe algorithms to
compile sources and link object files together to assembly executable files and libraries. This kind
of algorithm is present in common IDEs, such as Visual Studio. However, it is often hidden inside
the graphical user interface and is not available for change. You have the ability to control each
step of the building application algorithm with the GNU Make utility.

You can perform each compilation step manually by calling the compiler and linker from
the command line interface. However, the rules in the GNU Make utility file can automate
these operations.

This is the simplest variant of the rules of the GNU Make utility file to build our application
(Makefile):

win32-app.exe: main.cpp resource.rc.res.o
 g++ -o win32-app.exe main.cpp resource.rc.res.o

resource.rc.res.o: resource.rc
 windres -o resource.rc.res.o -i resource.rc

clean:
 rm -f *.o win32-app.exe

Notice that there is a tabulation under each command. Tabulation and spaces are not the same
for the GNU Make utility and this is often subjected to criticism.

The Makefile syntax will be described in detail in the later part of this book. It consists of
targets (specified under the colon), and commands for producing these targets at the next line.
The file list after the colon consists of files on which the target depends. These files are called
prerequisites. The target will be rebuilt by the make command if one of its prerequisite files has
been changed.

The following targets are specified in this Makefile:

 Ê The final executable file, that is, win32-app.exe

 Ê The object file with application resources, that is, resource.rc.res.o

 Ê The utility target to remove temporary files, that is, clean

12

Instant MinGW Starter

The MinGW C++ compiler application name is g++. The compiler for the Windows resource
files is windres. Each GNU utility has detailed information about command line options and
developers' feedback. Running the GNU utility from the Windows command prompt or Bash
shell with the --help option will lead to displaying this information. This is the example of the
same GNU utility run.

$ g++ --help

The clean utility target is required to remove all files generated by the compiler and linker.
The rm command is called to perform this task. You can use the clean target to rebuild the
application after changing source files. Just perform this target and then build your application.

Step 3 – Compiling and linking
Now we are ready to compile our first application with MinGW software. First of all, you must
run the command shell. There are several ways to do this. The simplest one is by launching the
command shell from the Windows Start menu. Just type the cmd or bash command in the
menu's Search field. Furthermore, there are a lot of file managers with integrated command
shells which you will be comfortable to work with. Far Manager is one of these.

You will see a window with the command line shell. Several useful commands for directory
navigation have been installed with MinGW software:

 Ê cd <dir>: This command changes the current directory to the specified one.

For example, to change the directory to C:\Projects, type the following
command line:

$ cd /c/Projects

 Ê pwd: This command writes the absolute pathname of the current directory

 Ê ls: This command lists the current directory contents

Change the current directory to the project one. The C:/ path equals to the /c path in the
Bash shell. This is due to the specific Unix environment's integration with Windows filesystems.
Type the make command after changing the current directory. This is all that you need to do for
compiling and linking applications. You get the executable binary after the GNU Make utility is
executed successfully. Retype the make command to rebuild the application after changing any
of the source files. It may be helpful to remove all the files, which were already generated by the
compiler and linker, by using the make clean command before rebuilding the application.

13

Instant MinGW Starter

Top features you'll want to know about
Several useful features of MinGW software will be described in detail in this section. You will
get detailed knowledge about the most commonly used GNU toolchain utilities, such as C++
compiler, GNU Make, GNU Debugger, and the GNU gprof profiler. Also the integration of
MinGW software with several well-known GUI libraries and IDE systems will be described.

1 – Make utility usage
We created a simple Makefile in the previous section. Let's explore the GNU Make utility's
behavior and the syntax of Makefile in more detail.

You can run the GNU Make utility from the command shell with the make command. It will
search one of the Makefile, GNUmakefile, or makefile named files and start to build the
first line target. For changing this behavior, type the following command:

$ make -f OtherMakefile other_target

This leads to reading OtherMakefile as input file of rules and executing commands to build
other_target.

In the previous section we created the following Makefile:

win32-app.exe: main.cpp resource.rc.res.o
 g++ -o win32-app.exe main.cpp resource.rc.res.o

resource.rc.res.o: resource.rc
 windres -o resource.rc.res.o -i resource.rc

clean:
 rm -f *.o win32-app.exe

This works, but it has some problems. First of all the main.cpp and resource.rc.res.o
files are specified several times. You must rename these in several places if one of these has been
changed. This violates one of the most important principles of software development, Don't
repeat yourself (DRY). Variables can help you to avoid this problem. The GNU Make variables
are often used to save constant values and change behavior during the build process. Our
Makefile with variables will be as follows:

EXE=win32-app.exe
CPP=main.cpp
RES=resource.rc

$(EXE): $(CPP) $(RES).res.o
 g++ -o $(EXE) $(CPP) $(RES).res.o

14

Instant MinGW Starter

$(RES).res.o: $(RES)
 windres -o $(RES).res.o -i $(RES)

clean:
 rm -f *.o *.exe

The variable definition contains the name and variable value after the equals sign. You must
use the dollar sign before the variable name within parentheses to access its value after the
variable definition.

The source, resource, and executable files are defined as variables in our example. Now you
should change the variable value in one place only to rename any of these files.

GNU Make allows the user to define variables, but there are several special automatic variables.
These variables are computed for each rule that is executed. You can use the $@ variable to
specify the previously defined target and the $^ variable to specify all the prerequisites of this
target. After doing all this Makefile will look as follows:

CPP=main.cpp
RES=resource.rc

win32-app.exe: $(CPP) $(RES).res.o
 g++ -o $@ $^

$(RES).res.o: $(RES)
 windres -o $@ -i $^

clean:
 rm -f *.o *.exe

The automatic variables can be used just like the user-defined ones. Now output files of g++ and
the windres command are declared with the $@ variable and source files with the $^ one.

Suppose you want to link your application with a third-party library. The library is supplied with
the header file and a dynamic-link or static-link library. You must inform the compiler about
these files' paths and the library to link with. The simplest way to do it is using the GNU Make
environment variables.

An environment variable is a variable that comes from the command shell in which GNU Make
runs. There are several predefined environment variables with standard names. You can add
custom environment variables from your command shell, but the most common practice is to
operate with the standard one in Makefile. Environment variables affect target producing
commands in Makefile (for example, additional compiler options are usually passed through
environment variables).

15

Instant MinGW Starter

The following Makefile is a linking example with the static-link boost program options library
(the file path of the library is C:\MinGW\lib\libboost_program_options.a):

OBJ=main.o options.o
RES=resource.rc

CXXFLAGS+=-IC:\MinGW\include
LIBS+=-LC:\MinGW\lib -lboost_program_options

win32-app.exe: $(OBJ) $(RES).res.o
 g++ -o $@ $^ $(LIBS)

$(RES).res.o: $(RES)
 windres -o $@ -i $^

clean:
 rm -f *.o *.exe

CXXFLAGS is a predefined environment variable that contains command line options for the
C++ compiler. This variable can be used to specify the paths of additional header files required
for source compilation. Paths to headers are specified there with the -I prefix. You can specify
several paths separated by a space as follows:

CXXFLAGS+=-IC:\first_include_path -IC:\second_include_path

LIBS is a simple variable with a list of static-link libraries to link with. This variable is passed to
the C++ compiler explicitly in the win32-app.exe target producing rule. Libraries to link are
specified with the -l prefix, and without the first three letters (lib), as well as the suffix (.a).
The full path to linked libraries must be specified too with the -L prefix.

The following command is used to print all the predefined GNU Make environment variables:

$ make -p

Notice that the additional options.cpp source file has been added to the project in this
example. Also the CPP variable has been renamed to OBJ and contains object files list now.
GNU Make will compile object files from source files automatically if they have same names (for
example, main.o and main.cpp).

The following Makefile is a linking example with a dynamic-link zlib library (the file path of the
library is C:\MinGW\git\bin\libz.dll):

OBJ=main.o
RES=resource.rc

CXXFLAGS+=-IC:\MinGW\include

16

Instant MinGW Starter

LIBS+=-LC:\MinGW\git\bin –lz

win32-app.exe: $(OBJ) $(RES).res.o
 $(CXX) -o $@ $^ $(LIBS)

$(RES).res.o: $(RES)
 windres -o $@ -i $^

clean:
 rm -f *.o *.exe

Dynamic-link libraries are described in the LIBS variable by the same rules as for static-link
libraries.

CXX is an environment variable with the C++ compiler's application name. This is equal to g++
by default.

You can call the GNU Make utility for the Makefile subdirectory's processing. This is an
example of the root project directory, Makefile, that performs the GNU Make utility for
subdirectories (foo and bar):

SUBDIRS = foo bar

.PHONY: subdirs $(SUBDIRS)

subdirs: $(SUBDIRS)

$(SUBDIRS):
 $(MAKE) -C $@

The .PHONY rule is a special rule. It is used to specify the fact that the target is not a file. This
is required in our case because subdirectories always exist and the GNU Make will not rebuild
targets whose files already exist. MAKE is an environment variable with GNU Make application
name. This is equal to C:\MinGW\bin\make by default if the installation path of MinGW
software is equal to C:\MinGW.

Makefiles can include comments. All lines starting with the # symbol will be considered by GNU
Make as comments.

Makefiles can be complex and consists of several separated files. To include external file content
in Makefile use include directive, for example:

include Makefile.mingw

17

Instant MinGW Starter

GNU Make is a great instrument for compiling small projects with a couple of source files and
headers. There are more powerful instruments for building complex applications that consist of
several libraries and executables. Some of them are based on the GNU Make utility and produce
Makefiles as the output (for example, GNU Autotools and CMake). I strongly recommend you to
study and use one of these for your daily projects.

2 – Compiler options
The MinGW compiler behavior is highly dependent on command line options. These options are
usually set through GNU Make environment variables. The following is a list of commonly used
predefined environment variables:

 Ê CC: This variable sets the C compiler in use

 Ê CFLAGS: This variable sets the C compiler command line options

 Ê CPPFLAGS: This variable sets the C PreProcessor flags, which are used by C and C++
compilers

 Ê CXX: This variable sets the C++ compiler in use

 Ê CXXFLAGS: This variable sets the C++ compiler command line options

 Ê LD: This variable sets the linker in use

 Ê LDFLAGS: This variable sets the linker command line options

 Ê LDLIBS: This variable sets libraries to link

The following is a list of commonly used MinGW C and C++ compilers' command line options:

 Ê -o file-name: This gives the name of the compiler output file.

 Ê -c: This is used for compilation only. The object files will be created without
further linking.

 Ê -Dname=value: This defines the C preprocessor macro with a specified name and
value. The =value part can be skipped. The default value (equal to 1) will be used
instead. The result of this option will be the same as the following declaration in the
source file:

#define name value

 Ê -llibrary-name: This uses the specified dynamic-link or static-link library for linking.

 Ê -Idirectory: This uses the directory to search headers by compiler.

 Ê -Ldirectory: This uses the directory to search dynamic-link libraries for linking.

 Ê -g: This produces debugging information to be used by GDB debugger.

 Ê -pg: This generates extra code to write profiling information for the gprof
performance analyzer.

www.allitebooks.com

http://www.allitebooks.org

18

Instant MinGW Starter

 Ê -Wall: This shows all the compiler's warning messages.

 Ê -On: This sets the compiler's optimization level to an n value. The available levels are
-O0, -O1, -O2, -O3, -Os, and -Ofast. The -O0 option disables all optimizations. The
-O3 option provides the maximum optimization of code size and execution time. The
-Os option optimizes for code size. The -Ofast option is the -O3 option with non-
accurate math calculation.

 Ê -std=standard: This uses the specified language standard (example for C++
standard: -std=C++11).

3 – Importing the existing Visual C++ project
You can use MinGW software even if you already have your project developed with Visual C++.
The importing process from Visual C++ to MinGW is quite simple. All you need is to remove
unusable headers and create Makefiles to compile and link existing C++ sources.

This process will be described in detail in this section by an example application. The application
is a simple command-line archiving utility based on the zlib compression library. The boost
library is also used for command-line option parsing. The application consists of the core
static-link library and the z_pack executable. This separation by library and executable is
required for complex project linking example with several modules.

You can see the Visual C++ project structure in the Solution Explorer window in the
following screenshot:

19

Instant MinGW Starter

First of all, let's look at the source code of the core library. This library contains the
implementation of most of the application's functionality. The command-line parsing and
compressing mechanisms are implemented here. Each of these mechanisms are encapsulated
in a separate class. The Options class implements the command-line options' parsing. The
Packer class implements the compressing and decompressing algorithms.

Let's look at the Options class. The following code shows the class declaration in the
options.h file:

namespace po = boost::program_options;
class Options
{
public:
 Options(int argc, char* argv[]);

 std::string GetString(std::string option_name);
 po::options_description& GetDescription();
 bool IsUnzip();
 bool IsComplete();

private:
 po::variables_map options_;
 po::options_description description_;
};

The following code shows the constructor definition of the Options class in the
options.cpp file:

Options::Options(int argc, char* argv[])
{
 description_.add_options()
 (kHelp.c_str(), "produce help message")
 (kInFile.c_str(), po::value<string>(), "input file name")
 (kOutFile.c_str(), po::value<string>(), "output file name")
 (kUnzip.c_str(), "unzip the archive");

 try
 {
 po::store(po::parse_command_line(argc, argv, description_),
 options_);
 }
 catch(...)
 {
 cout << GetDescription() << "\n";
 exit(1);
 }
}

20

Instant MinGW Starter

The constructor's input parameters are the count of command-line arguments and the
vector with arguments' values. First of all the object from the boost library of the options_
description class with the description_ name is configured here with the available
command-line arguments. This object is a field of the Options class.

All available command-line arguments are defined as global constants of the string type in
the options.h file:

static const std::string kHelp = "help";
static const std::string kInFile = "in";
static const std::string kOutFile = "out";
static const std::string kUnzip = "unzip";

These arguments with descriptions are passed to the add_options method of the
description_ object to configure it. Now this object stores information about available
command-line arguments. After that, arguments passed to the constructor input parameters
are parsed and saved to the variables map. This map is an object from the boost library of the
variables_map class with the options_ name. This object is a field of the Options class.

The available command-line arguments are printed if any exception occurs in the arguments'
parsing operation. The application's termination will be caused with the exit function in
this case.

The following code is the GetString method's definition of the Options class in the
options.cpp file:

string Options::GetString(string option_name)
{
 if (options_.count(option_name) == 0)
 return string();

 return options_[option_name].as<string>();
}

The method returns the specified program option value of the string type or an empty
string if the option has not been passed as a command-line argument. I suggest you name
command-line arguments as program options after parsing them in the constructor of the
Options class.

The following three methods of the Options class are quite simple. These perform a check
on the existence of specific program options or return them:

 Ê The IsComplete method checks if input and output filenames have been passed as
command-line arguments to the application. This method returns the true value if
the filenames exist.

21

Instant MinGW Starter

 Ê The IsUnzip method checks if the --unzip command-line argument exists.

 Ê The GetDescription method returns the reference to the description_ field of
the Options class. You can print available command-line arguments if this object is
passed to the cout standard output stream.

The second class of the core library is Packer. The compressing and decompressing algorithms
are implemented here. This class contains the Compress and Decompress static methods. The
static class methods may be very helpful to implement algorithms without state and mutable
data. You don't need the object of the class to call static methods.

The following code shows the declaration of the class in the packer.h file:

class Packer
{
public:
 static void Compress(std::string in_file, std::string out_file);
 static void Decompress(std::string in_file, std::string out_file);
};

The following code shows the Compress method's definition in the packer.cpp file:

void Packer::Compress(string in_file, string out_file)
{
 io::filtering_ostreambuf out;
 out.push(io::zlib_compressor());
 out.push(io::file_sink(out_file.c_str(), ios::binary));
 io::copy(io::file_source(in_file.c_str(), ios::binary), out);
}

The input parameters of this method are strings with filenames of source and target files.

The compression is performed with the copy function from the boost library that copies one
stream content to another. The stream of the file_source class from the boost library
is used in this function as input parameter. The copy function produces the object of the
filtering_ostreambuf class with the out name as the result. The stream of the file_
source class is anonymous and is created from the source filename and stream type. This is the
binary type in our case. The out object has been configured by the compression filter of the
zlib_compressor type and anonymous stream of the file_sink boost library class. This
anonymous stream represents the target file.

After performing the Compress method, the compressed file with the specified target filename
will be created.

22

Instant MinGW Starter

The following code shows the Decompress method's definition of the Packer class in the
packer.cpp file:

void Packer::Decompress(std::string in_file, std::string out_file)
{
 io::filtering_istreambuf in;
 in.push(io::zlib_decompressor());
 in.push(io::file_source(in_file.c_str(), ios::binary));
 io::copy(in, io::file_sink(out_file.c_str(), ios::binary));
}

This method is similar to the Compress method, but the filter of the zlib_decompressor
type has been used here. The decompressed file with a specified target filename will be created
after this method is performed.

The rest of the core library source files have been automatically generated by Visual C++.

Another solution's project is z_pack. This project binds the core library classes' functionality in
to use them in the complete application. The z_pack project consist of one source file with the
main function implementation and several autogenerated files by Visual C++.

The following code shows the main function's definition in the z_pack.cpp file:

int main(int argc, char* argv[])
{
 Options options(argc, argv);

 If (! options.IsComplete())
 {
 cout << options.GetDescription() << "\n";
 return 1;
 }

 if (options.IsUnzip())
 Packer::Decompress(options.GetString(kInFile), options.
GetString(kOutFile));
 else
 Packer::Compress(options.GetString(kInFile), options.
GetString(kOutFile));
 return 0;
}

23

Instant MinGW Starter

The input parameters of this function are the same as the Options class constructor. These
are count of command-line arguments and vectors with argument values. First of all the
object of the Options class with the options name is created here. The next operation is
checking the source and target filenames for correctness using the IsComplete method
of the options object. The available command-line arguments will be printed and the
application will be terminated if this checking fails. The specified compression or decompression
operation is performed if command-line arguments are correct. The IsUnzip method of the
options object defines what kind of operation must be performed. The Compression and
Decompression operations perform as per the Packer class static methods.

The input parameters for these methods are available from the GetString method of the
Options class execution result.

Full Visual C++ project sources are available in the code bundle uploaded on the Packt website.

You can build this project and check its functionality. The Visual C++ versions of the boost and
zlib libraries are required to compile the project. The comfortable distribution of both libraries
is available at the following website:

http://www.boostpro.com/download

You can test the functionality of our example application after building one. Type the following
command to compress the existing file:

$ z_pack.exe --in test.txt --out test.zip

The following command is used to decompress the existing archive:

$ z_pack.exe --unzip --in test.zip --out test.txt

Now you have the necessary information about our example Visual C++ project to import
it to the MinGW software. The following are step-by-step instructions to do this:

1. Create a new directory for the MinGW project version with the core and
z_pack subdirectories.

2. Copy the options.h, options.cpp, packer.h, and packer.cpp files to the
core subdirectory.

3. Copy the z_pack.cpp file to the z_pack subdirectory.

4. Remove the following line from all the files in the project that have the cpp extension:

#include "stdafx.h"

5. Add the following Makefile to the root project directory:

SUBDIRS = core z_pack

.PHONY: all $(SUBDIRS)

24

Instant MinGW Starter

all: $(SUBDIRS)

$(SUBDIRS):
 $(MAKE) -C $@ clean
 $(MAKE) -C $@

This Makefile allows you to perform the make clean and make commands for
the core and z_pack subdirectories. The make command will build your application
and the make clean command will remove output files generated by the compiler
and linker.

6. Add the following Makefile to the core subdirectory:

OBJ=options.o packer.o

CXXFLAGS+=-IC:\MinGW\include

libcore.a: $(OBJ)
 ar rcs $@ $^

clean:
 rm -f *.o *.a

The ar archive utility is used to maintain the options.o and packer.o object files
into the libcore.a archive here. This archive will be used for static linking with the
z_pack executable. The libcore.a archive is conceptually the same as the Visual C++
static-link library. You can get additional information about the ar archive utility by the
executing following command:

$ ar --help

7. Add the following Makefile to the z_pack subdirectory:

OBJ=z_pack.o

MINGW_DIR=C:\MinGW
CXXFLAGS+=-I..\core
LIBS+=-L..\core -lcore -L$(MINGW_DIR)\lib -lboost_program_options
-lboost_iostreams -L$(MINGW_DIR)\git\bin -lz

z_pack.exe: $(OBJ)
 $(CXX) -o $@ $^ $(LIBS)

clean:
 rm -f *.o *.exe

Linking with all necessary external libraries (boost and zlib) occurs here because the ar
archive utility does not perform any linking.

8. Type the make command in the root project directory to build our application.

25

Instant MinGW Starter

This is all you need to import our example Visual C++ project to the MinGW software. You will get
the z_pack.exe executable file after building it.

It is quite simple to change the libcore.a static-link library to the dynamic-link variant one. All
you need is to change the Makefile files for the z_pack executable and the core library.

The following Makefile will create the dynamic-link core library variant:

OBJ=options.o packer.o

MINGW_DIR=C:\MinGW
CXXFLAGS+=-I$(MINGW_DIR)\include
LIBS+=-L$(MINGW_DIR)\lib -lboost_program_options -lboost_iostreams
-L$(MINGW_DIR)\git\bin -lz

libcore.dll: $(OBJ)
 $(CXX) -shared -o $@ $^ $(LIBS)

clean:
 rm -f *.o *.dll

The C++ compiler and linker will be called here unlike the static-link core library variant.
Furthermore, the -shared compiler option must be specified to create the dynamic-link library.

The following Makefile is for the z_pack executable to link with the core library dynamically:

OBJ=z_pack.o

CXXFLAGS+=-I..\core
LIBS+=-L..\core -lcore

z_pack.exe: $(OBJ)
 $(CXX) -o $@ $^ $(LIBS)

clean:
 rm -f *.o *.exe *.dll

Linking with external libraries (boost and zlib) is not required here because it has occurred in the
core library building.

You must copy the libcore.dll library and the z_pack.exe executable files into one
directory to run the application.

26

Instant MinGW Starter

It is important to note that libraries, objects, and executable files compiled with Visual C++ and
MinGW software are incompatible. This means that you need the MinGW version of all static-
link and dynamic-link libraries that you want to link with your application compiled with MinGW
software. You must check the existing MinGW version of all third-party libraries that have been
used in your project before importing this to MinGW software.

4 – Debugging application
MinGW software contains GNU Debugger (GDB). This is a standard tool to debug applications
developed with MinGW software. You can't use GDB to debug projects compiled with the Visual
C++ compiler.

You can install GDB manually if it doesn't exist in your MinGW software distribution. Perform the
following instructions to do the same:

1. Download the GDB application archive from the official download page:
http://sourceforge.net/projects/mingw/files/MinGW/Extension/gdb

Some problems might occur with the latest GDB version's launching. Try to install
the previous debugger version if you get errors.

2. Extract the downloaded archive to the MinGW software installation directory. I
recommend you to extract the archive to C:\MinGW\git if you have installed MinGW
software with Git as described in this book.

After installing GDB you can test its functionality by typing the following command:

$ gdb --help

GDB has been installed correctly if you see the application using information. Now you have the
necessary debugger utility to start debugging your MinGW-based application.

Let's debug the example application with GDB. The application is a simple program with a
null-pointer assignment.

The following code shows the content of the source file named segfault.cpp:

#include <string.h>

void bar()
{
 int* pointer = NULL;
 *pointer = 10;
}

void foo()
{
 bar();

27

Instant MinGW Starter

}

int main()
{
 foo();

 return 0;
}

The null-pointer assignment operation occurs in the bar function. The bar function is called
from foo and the foo function is called from the main function.

The following Makefile is to compile the example:

OBJ=segfault.o

CXXFLAGS+=-g

segfault.exe: $(OBJ)
 $(CXX) -o $@ $^

clean:
 rm -f *.o *.exe

The MinGW C++ compiler doesn't include debug information in output binary files by default.
We need to add the -g compiler option to do it in this Makefile.

You will get the segfault.exe executable file with debugging symbols after compilation.
It means that GDB can inform you not only about memory addresses but also the names of
routines and variables.

Type the following command to start debugging our example application:

$ gdb segfault.exe

To start the application with command-line arguments use the --args GDB option. For example:

$ gdb --args z_pack.exe --in test.txt --out test.zip

The input and output filenames will be passed to the z_pack.exe application in this case.

You will see the GDB command prompt after launching the debugger. Type the r command to
run the loaded application:

(gdb) r

This is the short variant of the run command. Most of the GDB commands have common and
short variants. All future commands will be described with short variants because they are easy
to remember and type.

www.allitebooks.com

http://www.allitebooks.org

28

Instant MinGW Starter

You will see this program crash message after the application starts running, as shown in the
following screenshot:

You can see that the program abortion is receiving the SIGSEGV signal by application. The
POSIX system sends this signal to process when it makes an invalid virtual memory reference or
segmentation fault. Furthermore the source file's line, where the error has occurred, is displayed
here. The following is the sixth line of the segfault.cpp file:

*pointer = 10;

Our example program execution has stopped after the crash. You can interact with the debugger
through the command line when the program is stopped. For example, you can get the stack
backtrace to explore the nested functions' calls. Type the bt command as follows:

(gdb) bt

You will see something like the following screenshot:

You will see called functions' names and source file lines, where these have been called by the
program just before it crashed.

Moreover, you can get a list of source file lines in the error place by the l command:

(gdb) l

29

Instant MinGW Starter

You will see the bar function source code. Now you have enough information to fix the
segmentation fault error.

To quit from GDB type the q command:

(gdb) q

And type y to confirm.

GDB allows you to set breakpoints to stop program execution in a predefined place. There are
several breakpoint types. The simplest types are a breakpoint at entry to the function and a
breakpoint at a line in a source file. You need to specify the application source files directory to
provide access to these for GDB. The command to start the application debugging in this case
will look like the following:

$ gdb --directory=. segfault.exe

The --directory command-line option defines the source files directory. The current
directory has been added in this example (the current directory equals to point symbol).

All the loaded directories are available by typing the following command:

(gdb) show directories

The following command is used to set a breakpoint at the foo function from the segfault.
cpp source file:

(gdb) b segfault.cpp:foo

To set a breakpoint at the fifth line of the segfault.cpp source file type the following command:

(gdb) b segfault.cpp:5

A list with information about all the current defined breakpoints is available by using the following
command:

(gdb) i b

You can run our example program after setting breakpoints:

(gdb) r

Program execution will be stopped at the first breakpoint in the foo function after that. You can
continue execution by using the c command:

(gdb) c

Type this and the next breakpoint at the fifth line of the segfault.cpp source file will be
achieved. The backtrace information and source file lines are available at each breakpoint.

30

Instant MinGW Starter

Watchpoint is a special breakpoint type to detect read and write variable operations. This
command is used to set a watchpoint for the pointer variable:

(gdb) aw pointer

GDB can set such watchpoints if variables have been defined in the current context. This means
that you must stop program execution at the bar function and then set a watchpoint for its local
pointer variable. The program can be stopped in the main function to set a watchpoint for any
global variable.

Moreover, you can configure GDB to display a list of variables with the current values at each
breakpoint hit. To add the pointer variable in this list type the following command:

(gdb) display pointer

The value of the pointer variable will be displayed at the next breakpoint program stop.

You can disable a breakpoint of any type to prevent the program from stopping at it. The
following is the command to do it:

(gdb) disable 1

The specified number is a breakpoint identifier. This identifier is declared in the breakpoints
information list.

To enable the breakpoint type the following command:

(gdb) enable 1

The breakpoint can be removed if it is no longer needed:

(gdb) d 1

There are several useful commands for tracing a program:

 Ê Continue to run a program until the control reaches a different source line
(analogous of trace into):

(gdb) s

 Ê Continue to the next source line in the current stack frame (analogous of step over):

(gdb) n

 Ê Continue execution until the function in the selected stack frame returns:

(gdb) fin

These commands can be used after the program has run and been stopped by breakpoint.

31

Instant MinGW Starter

You can rebuild your application without debug information to produce release variants of
executable files and libraries. But there is a possibility to remove debug information from
existing binary files. Use the strip command as follows:

$ strip segfault.exe

GDB is quite useful to debug abnormal program behavior (segmentation faults, for example).
But using the same approaches as the test suite and event logging can complete the GDB
capabilities for the algorithms' correctness checking.

5 – Profiling application
MinGW software contains the gprof performance analyzing tool. This instrument can be useful
for tracking down an application's bottlenecks. The gprof tool is a part of the GNU Binutils
collection and therefore it is present in all MinGW distributions. You can't use gprof to analyze
the performance of applications compiled with Visual C++ compiler.

Let's profile an example application with gprof. This application reads bytes from a file to an
STL vector type container, sorts them, and writes the result to an output file. The application
source code is present in the file named sorting.cpp.

The following is the main function definition:

int main()
{
 ReadData();

 SortData();

 WriteResult();

 return 0;
}

You can see the basic application algorithm in this function. First of all, the data is reading from
the input text file. Then the data is sorted and written to the output file. Each of these steps are
implemented in the separate function.

The following code shows the ReadData function's definition:

void ReadData()
{
 ifstream in_file("source.txt", ios::in | ios::binary);

 copy(istream_iterator<char>(in_file), istream_iterator<char>(),
 back_inserter(gData));
}

32

Instant MinGW Starter

The stream of the ifstream class with the in_file name is used here to read the source.
txt input file content. Then the STL copy algorithm is used to copy the in_file stream
content to the global gData container of the vector<char> class. We use the iterator of the
istream_iterator class to access elements of the in_file stream in the copy algorithm.

The SortData function implements the simplest bubble sort algorithm:

void SortData()
{
 char temp;
 size_t size = gData.size();

 for (int i = (size - 1); i > 0; i--)
 {
 for (int j = 1; j <= i; j++)
 {
 if (gData[j-1] > gData[j])
 {
 temp = gData[j-1];
 gData[j-1] = gData[j];
 gData[j] = temp;
 }
 }
 }
}

This sort algorithm processes the elements of the gData container.

The following is the WriteResult function definition:

void WriteResult()
{
 ofstream out_file("result.txt", ios::out | ios::binary);
 out_file.write(&gData[0], gData.size());
}

The stream of the ofstream class with the out_file name is used here to write the gData
container content to the output result.txt file. The write method of the out_file stream
is called here to perform the file writing operation. An empty file with the result.txt name
will be created to write if this file already exists. The sorting.cpp file is available in the code
bundle uploaded on the Packt website.

The following is Makefile for the example application:

OBJ=sorting.o

CXXFLAGS+=-pg

33

Instant MinGW Starter

sorting.exe: $(OBJ)
 $(CXX) -o $@ $^ $(CXXFLAGS)

clean:
 rm -f *.o *.exe *.out *.dot

Profiling information is needed for performance analyzing. This information can be generated
by an executable file's extra code. The same kind of extra code creation is an optional feature of
the compiler and this feature can be specified by the compiler -pg option. This option must be
specified for each object file compilation and final linking. The CXXFLAGS environment variable
is used to do this in our Makefile.

You can test our example application after compilation. Just copy any plain text file to project
directory with, name it source.txt, and run the sorting.exe executable file. You will get
the result.txt file with the sorted source file content after the application finishes its work.
Perform the following steps to profile our example application:

1. Launch the application's executable file. After that you will get the gmon.out file with
the profiling data in the current working directory.

2. Run the gprof utility to interpret the gmon.out file information and write the result to
the profile.txt output file:

$ gprof -zq sorting.exe > profile.txt

These gprof utility options have been used in the preceding:

 Ê The -z option is required to include all used functions in the output file

 Ê The -q option causes a call-graph of the program for a more detailed report

You have got a text report with the profiling data in the profile.txt file. It can be opened in
any text editor. But this text representation of the profiling information is not comfortable to
discovery. There are handy tools for visualizing a gprof report.

For visualization we need the following tools:

 Ê Python 2.7 interpreter

 Ê Python script to convert the gprof report to dot file format

 Ê Graphviz package with visualization utilities for dot format

You can download Python version 2.7 from the following official website:

http://python.org/download

Python can be installed with the standard Windows Installer. To do this just run the downloaded
MSI file.

34

Instant MinGW Starter

The script to convert a gprof report text file to dot format is available on the following
developer page:

http://code.google.com/p/jrfonseca/wiki/Gprof2Dot

This script is a free software and you can use, distribute, and modify it as you want. To install
this script copy it to C:\MinGW\bin or C:\MinGW\git\bin.

The Graphviz package is available at the following official website:

http://www.graphviz.org/Download_windows.php

Graphviz can be installed with Windows Installer in the same way as Python interpreter.

Now you have the necessary scripts and the visualization utility to visualize our profiling results.
Perform the following steps to do this:

1. Run the gprof2dot.py script to get the dot file:

$ gprof2dot.py -s profile.txt > profile.dot

This gprof2dot.py utility option has been used here.

The -s option removes functions and templates argument information.

After that you will get the profile.dot file with call-graph of the program.

2. Run the gvedit.exe application. It is available from the Start menu of Windows. Go
to File | Open from the main menu. Specify the profile.dot file.

You will see a call-graph of the program as shown in the following screenshot:

35

Instant MinGW Starter

You can see a call-graph in the preceding screenshot. Nodes of this graph are represented as
colored edges. These nodes represent called functions of the analyzing program. Each edge
contains the following information:

 Ê Total time % is the percentage of the running time spent in this function and all
its children

 Ê Self time % (in brackets) is the percentage of the running time spent in this
function alone

 Ê Total calls is the total number of times this function was called (including recursive calls)

Moreover, nodes have temperature-like colors according to the total time percent value. Most
time expensive functions display as red (hot-spot) edges and the most cheap ones as dark blue.

The most execution time of our example application has been spent in the red colored
SortData function. Statistic information about the SortData function at graph confirms it:

 Ê Total time is equal to 99.35 percent

 Ê Self time is equal to 55.81 percent

 Ê Total calls is equal to 1

We can use the STL sort algorithm instead of the bubble one to optimize our example
application. Let's change the code of the SortData function as follows:

void SortData()
{
 sort(gData.begin(), gData.end());
}

36

Instant MinGW Starter

Now you need to rebuild the application, run the application, and run gprof and the
gprof2dot.py script. Open the resulting dot file in the Graphviz application. You will
see the call-graph as shown in the following screenshot:

37

Instant MinGW Starter

The red edges disappear from the graph. This means that we don't have any explicit bottleneck.
All program execution time has been evenly distributed between several functions.

You can remove the profiling extra code from executable files and libraries after profiling with
the strip command:

$ strip sorting.exe

Profiling is a significant technique that allows you to find and remove bottlenecks in your
applications. This may be very helpful for performance analyzing of the complex systems with
many components and libraries. MinGW software allows you to include this technique in your
software development process in a simple and fast manner.

6 – Developing with cross-platform libraries
MinGW software allows you to develop applications based on any library compiled with the
MinGW C++ compiler. Open source libraries are often supplied in Visual C++ and MinGW
compilation variants. Moreover, you can always get the source code of these libraries and build
them with your MinGW software. Several well-known open source cross-platform frameworks
and toolkits are described as follows:

 Ê Qt framework

 Ê Gtk+ widget toolkit

 Ê wxWidgets framework

The same functionality example application will be developed with each of these libraries. The goal
of these examples is to show the first steps to deploy and to start working with these libraries.

Our example application consists of a window with two buttons. A click on the first button
leads to the display of a message and a click on the second button leads to the application
termination. This functionality is the same as the one described in the Quick start section.

The Qt framework
The Qt framework provides not only a cross-platform widget toolkit for GUI development but
also contains features for SQL database access, XML parsing, thread management, interaction
over a network, and internalization support. The Qt framework has its own container classes
such as Qstring or QVector and a set of well-known algorithms such as sorting, searching,
and copying to process data in these containers that allow you to substitute the capabilities
of STL and Boost libraries by the Qt ones. This kind of Qt framework self-sufficiency is of
great advantage to develop cross-platform applications. All you need to do to import your Qt
application to a new platform is building a Qt framework for this one. There are a lot of platforms
that are supported by Qt framework developers:

 Ê Windows

 Ê Mac OS X

www.allitebooks.com

http://www.allitebooks.org

38

Instant MinGW Starter

 Ê Linux

 Ê Solaris

 Ê Symbian

 Ê Android (unofficial framework port with the name Ministro)

Let's begin our work with the Qt framework. It is important to note that Qt libraries have been
compiled with the specific MinGW software version. Your application must be compiled with the
same MinGW version and therefore you must install it. The alternative way is the compilation
of Qt libraries sources with your already installed MinGW software, but this variant will not be
described in this book. You can find some helpful instructions to do this at the following website:

http://www.formortals.com/build-qt-static-small-microsoft-intel-gcc-compiler

All other toolkits described here don't need a specific MinGW software version. The following are
instructions to install Qt libraries version 4.6.4 and some necessary software to start developing
with it:

1. Download the MinGW version of the Qt libraries for Windows from the following
official website:
http://qt-project.org/downloads

Note that this library has been compiled with a specific (equal in our case to 4.4)
MinGW software version.

2. Install the downloaded Qt libraries with the setup wizard. Run the downloaded exe file
to do it.

3. Download the MinGW software of version 4.4 from the following official download page:
http://sourceforge.net/projects/mingw/files/MinGW/Base/gcc/Version4/
Previous%20Release%20gcc-4.4.0/

You need the file to be named gcc-full-4.4.0-mingw32-bin-2.tar.lzma. This
is an archive with the MinGW compilers' executable files and necessary core libraries.

4. Extract the downloaded MinGW software archive to the directory without spaces in the
path (for example, C:\MinGW4.4).

You can use the 7-Zip application to extract the LZMA archive type. This application is
available at the following official website:
http://www.7-zip.org/download.html

5. Download the GNU Binutils for MinGW software from the following official
download page:
http://sourceforge.net/projects/mingw/files/MinGW/Base/binutils/
binutils-2.19

You need the archive to be named binutils-2.19-2-mingw32-bin.tar.gz.

6. Extract the downloaded GNU Binutils archive to the same directory as the MinGW
software. This is C:\MinGW4.4 in our case.

39

Instant MinGW Starter

7. Download the GNU Make utility from the following web page:
http://sourceforge.net/projects/mingw/files/MinGW/Extension/make/
mingw32-make-3.80-3

You need to download the mingw32-make-3.80.0-3.exe file.

8. Install GNU Make utility to the MinGW software directory (C:\MinGW4.4). Run the
downloaded exe file and use the setup wizard to do it.

9. Add the installation MinGW software path to the PATH Windows environment variable.
Remove the existing paths of other MinGW software installations from there. The C:\
MinGW4.4\bin path must be added in our example.

Now you have the necessary libraries and specific MinGW software version to start developing
an application based on the Qt framework.

Our example application is implemented in the main.cpp source file. The following is the main
function definition:

int main(int argc, char* argv[])
{
 QApplication application(argc, argv);

 QMainWindow* window = CreateWindow();

 CreateMsgButton(window);

 CreateQuitButton(window, application);

 return application.exec();
}

First of all, the object of the QApplication class named application is created here. This
object is used to manage the application's control flow and main settings. After that, the window
of the QMainWindow class named window is created by the CreateWindow function. Two
window buttons are created by the CreateMsgButton and CreateQuitButton functions.
The exec method of the application object is called to enter the main event loop when all
user interface objects have been created. Now the application starts processing events such as
button pressing.

The following is the CreateWindow function that encapsulate's the main application window
creation:

QMainWindow* CreateWindow()
{
 QMainWindow* window = new QMainWindow(0, Qt::Window);

 window->resize(250, 150);

40

Instant MinGW Starter

 window->setWindowTitle("Qt Application");
 window->show();

 return window;
}

The main application window is an object of the QMainWindow class named window . It is
created by a constructor that has two input parameters. The first parameter is of the QWidget*
type. This is a pointer to the window's parent widget. It equals to zero in our case which means
that there is no parent widget. The second parameter is of the Qt::WindowFlags type
and defines the window style. It equals to Qt::Window that matches the standard window
appearance with the system frame and title bar.

After the main window creation its size is set with the resize method of the window object.
Then the window title is set with the setWindowTitle method of the window object. The next
action is to make the main window visible by using the show method of the window object. The
function returns the pointer to the created window object.

The following code shows the CreateMsgButton function that encapsulates the creation of
button with message showing action:

void CreateMsgButton(QMainWindow* window)
{
 QMessageBox* message = new QMessageBox(window);
 message->setText("Message text");

 QPushButton* button = new QPushButton("Message", window);
 button->move(85, 40);
 button->resize(80, 25);
 button->show();
 QObject::connect(button, SIGNAL(released()), message, SLOT(exec()));
}

At first, we need to create a message window to display it when we click on the button. This
message window is an object of the QMessageBox class named message. It is created by a
constructor with one input parameter of the QWidget* type. This is a pointer to the parent
widget. The text displayed in the message window is set by the setText method of the
message object.

Now we need a button that will be placed at the main window. This button is the object of the
QPushButton class named button. The constructor with two input parameters is used here to
create this object. The first parameter is a string with the button text of the QString class. The
second parameter is the parent widget pointer. The position and size of the button object are
set by the move and resize methods. After configuring the button we make it visible by using
the show method.

41

Instant MinGW Starter

Now we need to bind the button press event and message window displaying. The connect
static method of the QObject class is used here for this goal. It allows to create a connection
between the button object's release signal and the exec method of the message object. The
exec method causes the displaying of window with message.

The following code shows the CreateQuitButton function that encapsulates the creation of
the close application button:

void CreateQuitButton(QMainWindow* window, QApplication& application)
{
 QPushButton* quit_button = new QPushButton("Quit", window);
 quit_button->move(85, 85);
 quit_button->resize(80, 25);
 quit_button->show();
 QObject::connect(quit_button, SIGNAL(released()), &application,
SLOT(quit()));
}

This function is similar the CreateMsgButton function. But the message window isn't created
here. The close application button is an object of the QPushButton class named quit_
button. The release signal of the quit_button button is connected to the quit method of
the application object. This method leads to the application closing with successful code.

The full main.cpp file is available in the code bundle uploaded on the Packt website.

Now you are ready to build an example application. You need to perform the following instructions:

1. Create a Qt project file with the following command:

$ qmake -project

You will get a file with the pro extension and name of the current directory.

2. Create Makefile, service files, and subdirectories with the following command:

$ qmake

3. Compile the project with the GNU Make utility:

$ mingw32-make

The GNU Make utility executable name is mingw32-make in the official distribution. This one
has been installed with the MinGW software of version 4.4.

You will get the qt.exe executable file in the debug subdirectory after compilation.

This is the debugging version of our example application. Type the following command to build
the release version:

$ mingw32-make release

The qt.exe executable file will be created in the release subdirectory after this compilation.

42

Instant MinGW Starter

The Gtk+ widget toolkit
Gtk+ is a cross-platform toolkit with many widgets to construct user interfaces. It is important
to note that Gtk+ has been written in C language. This toolkit has an object model, but there
are no C++ classes and objects. You can use the toolkit in your C++ applications, but it may
be helpful to use the gtkmm. The gtkmm is an official C++ interface for Gtk+. The gtkmm
interface is not described in this book, but you can get more information about it at the
following official website:

http://www.gtkmm.org

Gtk+ is a good choice if you are looking for a widget toolkit for user interface creation and you
don't need any additional features provided by the Qt framework.

The following are the instructions to install the Gtk+ widget toolkit:

1. Download the all-in-one bundle archive with the Gtk+ widget toolkit from the following
official website:
http://www.gtk.org/download/win32.php

2. Extract the archive to the directory without spaces in the path (for example, C:\Gtk+).

3. Add the installation path of the Gtk+ toolkit to the PATH Windows environment
variable. The path, C:\Gtk+\bin, must be added in our case.

4. Create a new Windows environment variable named PKG_CONFIG_PATH. Specify the
path to the pkg-config utility files as a value of this variable. This is C:\Gtk+\lib\
pkgconfig in our case.

Now you have the necessary libraries to start developing applications with the Gtk+ widget toolkit.
Unlike the Qt framework you don't need the same MinGW software version as Gtk+ libraries
have been compiled with. Any already installed MinGW software can be used to compile your
applications.

Our example application is implemented in the main.cpp source file. The following is the main
function definition:

int main(int argc, char* argv[])
{
 gtk_init(&argc, &argv);

 GtkWidget* window = CreateWindow();

 GtkWidget* box = gtk_vbox_new(FALSE, 0);
 gtk_widget_show(box);

 CreateMsgButton(box);

 CreateQuitButton(box);

43

Instant MinGW Starter

 gtk_container_add(GTK_CONTAINER(window), box);
 gtk_widget_show(window);
 gtk_main();

 return 0;
}

First of all the gtk_init function is called. It initializes everything that we need to operate
with Gtk+ toolkit. Four widgets are created in the main function after that. There are the
main window, vertical box container, and two buttons. The main window is a pointer to the
GtkWidget Gtk+ structure that is created by the CreateWindow function.

The box container is needed to place several widgets in the main window (two buttons in our case).
This box container is a pointer to the GtkWidget structure that is created by the gtk_vbox_new
Gtk+ function. This function has two input parameters. The first parameter is of the gboolean
type that defines whether all children widgets are to be given equal space allotments. The second
parameter is of the gint type that defines the number of pixels to place between child widgets.
The gtk_widget_show function is called to make the box container visible.

Buttons to show messages and close applications are created in the CreateMsgButton and
CreateQuitButton functions.

The gtk_container_add function is used to put one widget into another. The box container
has been put into the main window in our case. After that the window widget is made visible
with the gtk_widget_show function.

The gtk_main function leads to run main application loop to process events.

The following is the CreateWindow function that creates the main window:

GtkWidget* CreateWindow()
{
 GtkWidget* window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

 gtk_window_set_title(GTK_WINDOW(window), "Gtk+ Application");
 g_signal_connect(window, "delete-event",
G_CALLBACK(gtk_main_quit), NULL);
 g_signal_connect(window, "destroy", G_CALLBACK(gtk_main_quit),
NULL);

 return window;
}

The main window of the GTK_WINDOW_TOPLEVEL type is created here with the gtk_window_
new function. This window type equals to a regular application window. Then the window title is
set with the gtk_window_set_title function.

44

Instant MinGW Starter

Now we must bind the application closing and main window destroy events. This is needed
to close the application after the main window closes. The events are named signals in Gtk+
terminology. The g_signal_connect macro is used here for signal binding. This macro has
four arguments. The first argument is the pointer to the widget that you need to connect to. The
second argument is a string with the signal name. The third argument is a callback function that
will process this signal. The fourth argument is the pointer to additional signal data.

There are two signals named delete-event and destroy that match the window closing
event. The gtk_main_quit function will be called when these signals occur in our case. This
function will stop the application event loop and will lead to the application termination.

The following is the CreateMsgButton function that creates the message showing button:

void CreateMsgButton(GtkWidget* box)
{
 GtkWidget* button = gtk_button_new_with_label("Message");
 gtk_widget_show(button);
 g_signal_connect(G_OBJECT(button), "clicked",
 G_CALLBACK(ShowMessage), NULL);
 gtk_container_add(GTK_CONTAINER(box), button);
}

This function has one input parameter of the pointer to the GtkWidget structure type. This is
used to pass the pointer of the button container widget.

The button widget is a pointer to the GtkWidget structure named button. It is created by the
gtk_button_new_with_label function. This function has only one input parameter with the
button label string. After that the button widget is made visible with the gtk_window_show
function. The clicked signal of the button widget is connected to the ShowMessage function.
The button widget is added to the box container when it has been configured.

The following is the ShowMessage function to create and display the message window:

void ShowMessage(GtkWidget* widget, gpointer data)
{
 GtkWidget* message = gtk_message_dialog_new((GtkWindow*)data, GTK_
DIALOG_MODAL, GTK_MESSAGE_INFO, GTK_BUTTONS_OK, "Message text");
 gtk_dialog_run(GTK_DIALOG(message));
 gtk_widget_destroy(message);
}

The message window is the Gtk+ dialog widget that has been created with the gtk_message_
dialog_new function. Parent window pointers, dialog flags, message types, dialog buttons,
and message text are passed to this function. The gtk_dialog_run function is called to
display the created dialog. This function will return control when the dialog button has been
clicked. The gtk_widget_destroy function at the next line will destroy our message window.

45

Instant MinGW Starter

The following is the CreateQuitButton function that creates the quit button:

void CreateQuitButton(GtkWidget* box)
{
 GtkWidget* button = gtk_button_new_with_label("Quit");
 gtk_widget_show(button);
 g_signal_connect(G_OBJECT(button), "clicked",
 G_CALLBACK(gtk_main_quit), NULL);
 gtk_container_add(GTK_CONTAINER(box), button);
}

This is the same as the CreateMsgButton function, but the button labels differ. Moreover, the
clicked signal of this button is bound with the gtk_main_quit function. This function will
lead to the application termination.

The full main.cpp file is available in the code bundle uploaded on the Packt website.

The following is Makefile to compile our example application:

OBJ=main.o

CXXFLAGS+='pkg-config --cflags gtk+-win32-2.0'
LIBS+='pkg-config --libs gtk+-win32-2.0'

gtk.exe: $(OBJ)
 $(CXX) -o $@ $^ $(LIBS)

clean:
 rm -f *.o *.exe

The pkg-config utility from the Gtk+ toolkit is used here to get the compiler and linker Gtk+
specific flags. The grave accent mark means that the wrapped string will be performed as a
command and the result of the execution will be returned as a string value.

The following pkg-config options have been used here:

 Ê --cflags: This prints the preprocessor and compiler flags to compile the application
with a specified library

 Ê --libs: This prints the linker flags to link the application with a specified library

gtk+-win32-2.0 is the name of the package with the Gtk+ libraries that we want to link with.

The results of the pkg-config utility execution are assigned to the CXXFLAGS and
LIBS variables.

Now you have all the source files that are needed to compile our example application. Type the
make command to do this. You will get the gtk.exe executable file in the current directory.

46

Instant MinGW Starter

wxWidgets framework
The wxWidgets framework contains the widget toolkit for user interface development and
features for network programming, threading support, image processing, database support, and
HTML and XML processing. The wxWidgets have a set of their own containers and algorithms
that can be enough to develop applications with this framework resources only.

Implementing own user interface elements is common practice for many widget toolkits and
frameworks. This is what makes the Qt framework and Gtk+ widget toolkit. wxWidgets unlike
these, uses the native platform's user interface elements through the platform's API. Thanks to
this, wxWidgets-based applications look and feel like a native one.

wxWidgets is a good base to develop cross-platform high-quality, native-looking applications for
Mac OS X, Windows, Linux, and other Unix family operating systems.

Several wxWidgets framework versions are available from the official website as source code
archives. You can download one of these and build it with your currently installed MinGW software.

The following are the instructions to install the wxWidgets widget toolkit:

1. Download the wxMSV version of wxWidgets from the following official website:
http://www.wxwidgets.org/downloads

2. Install the downloaded wxWidgets toolkit with the setup wizard. Run the downloaded
exe file to do it. We will assume that the C:\wxWidgets target directory has been
specified for example.

3. Build the wxWidgets toolkit with your already installed MinGW software. Type the
following commands to do it:

cd C:\wxWidgets\build\msw

make -f makefile.gcc SHARED=1 UNICODE=1 BUILD=release clean

make -f makefile.gcc SHARED=1 UNICODE=1 BUILD=release

4. Download the wx-config utility from the developer's page:
http://code.google.com/p/wx-config-win

This utility is used to search the wxWidgets toolkit libraries and header files by
GNU Make.

5. Copy the wx-config utility to the wxWidgets installation directory (in our case
C:\wxWidgets).

6. Add the path to the wxWidgets installation directory and the path to the dynamic-
linked libraries in the PATH Windows environment variable. The C:\wxWidgets and
C:\wxWidgets\lib\gcc_dll values must be added in our example.

Now you have the necessary libraries to start developing applications with the wxWidgets widget
toolkit.

47

Instant MinGW Starter

The example wxWidgets application is implemented in the main.cpp source file. User classes
must be created here unlike the Gtk+ and Qt example application variants. The MyApp class is
the base application class that is derived from the wxApp wxWidgets library standard class.

The following is the MyApp class definition:

class MyApp : public wxApp
{
public:
 virtual ~MyApp() {}

private:
 virtual bool OnInit();
};

The virtual destructor and the OnInit virtual method are defined here. The virtual destructor is
needed here for correct parent class data deleting. All application functionality is implemented
in the OnInit method of the MyApp class.

The following is the OnInit method of the MyApp class:

bool MyApp::OnInit()
{
 MyDialog* dialog = new MyDialog(NULL, 0, _("wxWidgets
application"));

 wxSizer* sizer = dialog->CreateButtonSizer(wxOK | wxCANCEL);
 sizer->SetDimension(175, 50, 100, 100);

 while (dialog->ShowModal() == wxID_OK)
 {
 wxMessageBox(_("Message text"),
 _("Information"),
 wxOK | wxICON_INFORMATION, dialog);
 }

 dialog->Destroy();
 return true;
}

The main application window is created here. This window is the object of the MyDialog class
with the dialog name. The MyDialog class is a user defined class derived from the wxDialog
widget class. The constructor of the MyDialog class has three input parameters. These are
parent widget pointer, widget identifier, and title bar caption string.

www.allitebooks.com

http://www.allitebooks.org

48

Instant MinGW Starter

Then two buttons with OK and Cancel captions are created for the dialog object by
the CreateButtonSizer method. This method has one parameter that defines the
standard buttons list to creation. Each of these buttons is represented by the bit flag. The
CreateButtonSizer method returns the pointer to the object of the wxSizer class with the
sizer name. This object represents the sub-window that contains the buttons. Thanks to the
sizer object the button's position can be changed with the SetDimensions method. This
method has four input parameters. The first two parameters are x and y coordinates and the
second two parameters are the width and height of the sizer subwindow.

The ShowModal method of the dialog object method will be called in a loop after the widget's
initialization. This is the main application loop. It will be interrupted when the main application
window has been destroyed.

The information message will be displayed when the button with the wxID_OK identifier is clicked
on. The wxMessageBox function is used to show an informational message. This function has six
input parameters. The four of these are used here and the other two have values by default. The
first parameter is a string with the message text. The second parameter is a string with message
window caption bar text. The third parameter defines the message window style by bit flags. The
fourth parameter is a pointer to the parent widget. The last two parameters are the coordinates of
the message window.

The main application window will be hidden when the button with the Cancel caption will
be clicked. The Destroy method of the dialog object is called here to destroy the main
application window.

The following is the MyDialog class definition:

class MyDialog : public wxDialog
{
public:
 MyDialog(wxWindow* parent, wxWindowID id,
 const wxString& title) : wxDialog(parent, id, title) {}
 virtual ~MyDialog() {}
};

The MyDialog class is derived from the wxDialog widget. The class constructor and destructor
are defined here. The MyDialog class constructor just passes input parameters to the parent
class constructor.

You must specify this macro in the main.cpp source file to create the application instance and
start the program:

IMPLEMENT_APP(MyApp)

The full main.cpp file is available in the code bundle uploaded on the Packt site.

49

Instant MinGW Starter

The following is Makefile to compile our example application:

OBJ=main.o

CXXFLAGS+='wx-config --cxxflags --wxcfg=gcc_dll/mswu'
LIBS+='wx-config --libs --wxcfg=gcc_dll/mswu'

wxwidgets.exe: $(OBJ)
 $(CXX) -o $@ $^ $(LIBS)

clean:
 rm -f *.o *.exe

The wx-config utility is used here. This is the wxWidgets framework's alternative of the
pkg-config utility of Gtk+ toolkit. The wx-config utility is used here to get the compiler
and linker wxWidgets specific flags.

The next wx-config utility options have been used here:

 Ê --cxxflags: This prints the preprocessor and compiler flags to compile the
application with the wxWidget library

 Ê --libs: This prints linker flags to link the application with the wxWidget library

 Ê --wxcfg: This specifies a relative path to the build.cfg configuration file

Now you are ready to compile our example application. Type the make command to do it.
You will get the wxwidgets.exe executable file in the current directory after compilation.

It is important to note that you can debug and profile your applications based on any of
the described toolkit and frameworks with the MinGW software tools (GDB debugger
and gprof profiler).

7 – Integrating with IDE
MinGW software can be integrated with a lot of well-known free IDE systems. Integration
with the following systems will be described here:

 Ê Code::Blocks

 Ê Qt Creator

 Ê Eclipse

Integration in this case means the ability to edit MinGW-based project source code, building
this project, and debugging it from the IDE. This integration provides a comfortable interface to
interact with the most commonly used MinGW instruments.

50

Instant MinGW Starter

Code::Blocks
Code::Blocks is an open source cross-platform IDE for developing C and C++ applications.
Code::Blocks has an open architecture. Thanks to this, IDE capabilities can be expanded with
plugins with significant facilitates software development process.

Code::Blocks supports a lot of C and C++ compilers and several debuggers. This IDE is a good
alternative for the Visual C++ one to develop C++ applications.

The following are instructions to install and configure the Code::Blocks IDE:

1. Download the Code::Blocks IDE distribution with the already integrated MinGW
software from the official website:
http://www.codeblocks.org/downloads/binaries

2. Install the downloaded Code::Blocks distribution. Run the downloaded exe file to do it.

3. Select additional IDE components in Choose Components dialog during installation
process.

The default installable components will be enough to start developing the C++
application. But you can choose additional languages supporting GNU utilities
and IDE plugins.

4. Start installed Code::Blocks system and select GNU GCC Compiler to use in the
compilers auto-detection dialog.

Now you are ready to use the Code::Blocks IDE system with integrated MinGW software.

You can install the Code::Blocks IDE without integrated MinGW software if you have already
installed it. The following are instructions to set up Code::Blocks working with your already
installed MinGW software:

1. Run Code::Blocks IDE.

2. Select Settings | Compiler and Debugger... in the main menu. You will see the
compiler setting dialog:

51

Instant MinGW Starter

3. Switch to the Toolchain executables tab. Specify the MinGW software installation
directory and its utility executables file names.

52

Instant MinGW Starter

Perform the following actions to create a new MinGW based project in Code::Blocks IDE:

1. Run Code::Blocks IDE. You will see the main system window:

You can see the Start here tab content in the middle of the window. The main IDE
menu is placed at the top of the window. The messages panel is placed at the bottom
of the window. The build error messages, build log, debugger messages, and search
results will be displayed here.

2. Click on the create a new project icon on the Start here tab or choose File | New |
Project...in the main menu.

3. We will create a template Windows application in this example. Choose the Win32GUI
project icon in the new from template dialog to do it.

53

Instant MinGW Starter

4. Choose a frame-based type of project in the next dialog.

5. Specify the project name and path to store its sources.

6. Select the compiler to build the application in the last dialog. It will be equal to the GNU
GCC compiler by default. Leave it unchanged.

You will get template source files of the MinGW-based Windows API application. This application
just shows an empty window at launch.

You can build our example application from the Code::Blocks IDE interface. Choose Build | Build
in the main menu or press Ctrl + F9 to do it. The build log and build messages will be displayed in
the messages panel after that. Note what debug variant of build has been performed. You can
change it to a release variant by switching the Build target combobox in the main menu. The
application executable files will be created at the bin subdirectory of the our project directory.

Now the application is ready to be run. Choose Build | Run in the main menu or press Ctrl + F10
to run the application. You will see the application window and console window , where the
standard output stream messages will be displyed.

Code::Blocks IDE allows you to debug applications with the GDB debugger. First of all you
must set breakpoints to stop program execution in specified places. Press the F5 key to set a
breakpoint at the current line in the source file. Press F8 or choose Debug | Start from the main
menu to start debugging. After that program execution stops at the specified line. Now you can
get information about variables, call stack, CPU registers, and threads, or continue execution.
All this functionality is available from the Debug submenu. You can continue the application
debugging with the next line (F7) and step into (Shift + F7) commands.

Qt Creator
Qt Creator is a cross-platform open source IDE, which is part of the Qt software development kit.
It includes a source code editor, visual debugger, and forms designer. It supports both MinGW
and Visual C++ software.

Qt Creator is the best choice to develop Qt framework-based C++ applications. But other
frameworks, toolkits, and programming languages are supported poorly. This obstacle
must be considered when you choose this IDE for your application's development.

MinGW software and Qt libraries are not present in the Qt Creator IDE distribution and
therefore you must install these separately.

The following are instructions to install and configure Qt Creator IDE:

1. Download Qt Creator IDE distribution from the official website:
http://qt-project.org/downloads

54

Instant MinGW Starter

2. Install Qt Creator with the help of the setup wizard. Just run the downloaded exe file to
do it. Run the installed Qt Creator IDE. You will see the main system window:

The Welcome tab content is placed in the middle of the window. You can see the main
system menu at the top of the window. The control panel is placed at the left-hand
side of the window. The most commonly used commands are available in this panel.
Moreover the icons of different Qt Creator IDE modes (Editor, Designer and so on) are
placed here. The messages' output panels are available at the bottom of window.

3. Select Tools | Options... in the main menu. You will see the Options dialog.

4. Switch to the Build & Run icon in the left-hand side of the dialog panel.

5. Switch to the Qt Versions tab at the top of the dialog window. Now you see the
following screenshot:

55

Instant MinGW Starter

6. Click on the Add button and specify the path to the qmake.exe file. This is
C:\Qt\4.6.4\bin\qmake.exe for the default Qt libraries installation path.

7. Switch to the Tool Chains tab at the top of the dialog window. You will see the
following screenshot:

Qt Creator can find already installed MinGW software automatically, but I recommend
you manually add it for detailed configuration.

56

Instant MinGW Starter

8. Click on the Add button and choose the MinGW variant in the pop-up list.

9. Click on the Browse... button near the Compiler path field and specify the path to the
g++.exe file. This is equal to C:\MinGW4.4\bin\g++.exe if the MinGW software
has been installed to the C:\MinGW4.4 directory.

10. Click on the Browse... button near the Debugger input field and specify the path to
the gdb.exe file. You can install the GDB debugger separately if your MinGW software
distribution doesn't already contain it. The debugger path equals to C:\MinGW4.4\
bin\gdb.exe for our example.

11. Click on the Apply and then OK button to complete the configuration.

Now you are ready to use the Qt Creator IDE system integrated with MinGW software and Qt
libraries. Note that your MinGW software version must be the same as the MinGW software that
has been used to build your installed Qt libraries.

The following are the instructions to create example Qt-based application with Qt Creator IDE:

1. Select File | New File or Project from the main menu. You will see the template
application choosing dialog.

2. Select Applications and Qt Gui Application variant in the project type selecting fields:

3. Click on the Choose... button.

57

Instant MinGW Starter

4. Specify the project name (for example, qt) and location to store the source files in the
Location tab of the Qt Gui Application dialog. Click on the Next button.

5. Choose Desktop target in the Targets tab of the dialog and click on Next.

6. You can change the default source files and class names in the Details tab. I suggest
you leave these unchanged for our example application. Just click on the Next button.

7. The subproject and version control can be added in the Summary dialog tab. Switch
version control to None and click on the Finish button.

You will get a template of the Qt-based application with the source files located in a
specified location.

Click on the Build Project icon at the left-hand side of the control panel or press Ctrl + B to build
our example application. The qt.exe executable file will be created in the debug subdirectory
of the project directory. You can select the debug or release build variant in the control panel's
project configuration submenu (this is placed under the Run icon).

Click on the Run icon to launch our example application. You will see the empty application
window with the status bar and toolbar.

Qt Creator IDE allows you to debug your applications with the GDB debugger. This is standard
procedure to do it; you must specify breakpoints at source file lines and then start debugging.
Use the F9 key to set a breakpoint and the F5 key to start debugging.

The variables' current values, call-stack, and watchpoints configuration are available in debugging
mode. You can find all this information in the additional panels of Qt Creator main window. Use
Step Over (F10) and Step Into (F11) Debug submenu items to continue application execution.

Eclipse
Eclipse is a cross-platform open source IDE with multi-language support. There are a huge
amount of plugins that have been developed for this IDE. Eclipse supports many compilers,
interpreters, debuggers, version control systems, unit testing frameworks, and so on. You can
use Eclipse for developing applications in any popular programming language and framework.

Eclipse is an excellent IDE for comfortable application developing, but it has been developed in
Java and has a massive architecture. Therefore there are high demands on the performance of
your computer.

This is not the Eclipse IDE system distribution that contains the MinGW software. You must
install it separately to integrate with Eclipse.

The following are instructions to install and configure the Eclipse IDE system:

1. Download Java Runtime Environment (JRE) from the official website:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Install it with the setup wizard. Just run the downloaded exe file to do it.

www.allitebooks.com

http://www.allitebooks.org

58

Instant MinGW Starter

3. Add the path of the JRE executable files to the PATH Windows environment
variable (for example, C:\Program Files\Java\jre7\bin).

4. Download the Eclipse IDE for C/C++ Developers version archive from the
official website:
http://www.eclipse.org/downloads

Note what you need the 32-bit Eclipse IDE system version for 32-bit JRE and
64-bit one for 64-bit JRE.

5. Unpack the Eclipse archive to any directory (for example, C:\Program Files)

Now you are ready to use the Eclipse IDE system. The MinGW software utilities will be
integrated automatically thanks to Windows environment variables. Therefore the MinGW bin
subdirectory with executable files must be specified there.

The following are instructions to create an example application in Eclipse IDE:

1. Run Eclipse IDE. You will see the Welcome screen.

2. Select File | New | C++ Project from the main menu. You will see the project
configuration dialog as shown in the following screenshot:

59

Instant MinGW Starter

3. Select the Hello world C++ Project item in the Project type selection field. Select the
MinGW GCC item in the Toolchains selection field. Click on the Next button. You will
see the Basic Settings dialog. The author, copyright notice, and source files directory
can be specified here.

4. Click on the Next button. This is the Select Configurations dialog. Debug, release,
or both build configurations availability can be selected here.

5. Click on the Finish button.

After that you get a template C++ console project with the source files placed at the src
subdirectory of the project directory. Now you see the Eclipse IDE window as shown in the
following screenshot:

The Project Explorer panel is placed at the left-hand side of the window. You can find all the
project source files here. The source file editor is placed in the middle part of the window. You
can find the messages' output panel at the bottom of the window.

Select Project | Build Project from the main menu to build our example application. After that
the executable file will be created in the Debug subdirectory of the project directory. You can
switch to the release configuration to build the project. Click on the build icon (hammer icon)
at the main menu and select Release configuration to build. The Release subdirectory will be
created with the compiled executable file.

60

Instant MinGW Starter

Select Run | Run from the main menu or press Ctrl + F11 to launch our example application.
You will see the result of the application execution in the console output panel at the bottom
of the Eclipse window.

You can debug applications with the Eclipse IDE system. Press Ctrl + Shift + B key to set the
breakpoint at the current line of a source file. After setting the breakpoints select Run |
Debug from the main menu or press the F11 key to start debugging. You will see panels with
call-stack, variable values, CPU registers values, breakpoints, and loaded modules in the
debugging mode. Use the Step Over (F6) and Step Into (F5) Run submenu items to continue
application execution.

61

Instant MinGW Starter

People and places you should get to know
There is a lot of information about MinGW software available on the Internet. You will get to
know some helpful sources from this section.

MinGW official sites
 Ê Homepage: http://www.mingw.org

 Ê Manuals: http://www.mingw.org/wiki/HOWTO

 Ê Wiki: http://www.mingw.org/wiki

 Ê Source code and binary files: http://sourceforge.net/projects/mingw/
files/MinGW

 Ê Available mailing lists: http://www.mingw.org/lists.shtml

MinGW-w64 official sites
 Ê Homepage: http://mingw-w64.sourceforge.net

 Ê Wiki: http://sourceforge.net/apps/trac/mingw-w64

 Ê Source code and binary files: http://sourceforge.net/projects/mingw-w64/files

 Ê Discussion forum: http://sourceforge.net/projects/mingw-w64/forums/
forum/723797

 Ê Public support mailing list: https://lists.sourceforge.net/lists/listinfo/
mingw-w64-public

 Ê Support IRC channel: irc://irc.oftc.net/#mingw-w64

GNU Compiler Collection official sites
You can find a lot of useful information about MinGW utilities on the GCC official site:

 Ê Homepage: http://gcc.gnu.org

 Ê Manual and documentation: http://gcc.gnu.org/onlinedocs

 Ê Wiki: http://gcc.gnu.org/wiki

 Ê Available mailing lists: http://gcc.gnu.org/lists.html

62

Instant MinGW Starter

GNU Debugger official sites
All the information that you need to debug an application with GNU Debugger can be found at
the official site:

 Ê Homepage: http://www.gnu.org/software/gdb

 Ê Manual and documentation: http://www.gnu.org/software/gdb/documentation

 Ê Wiki: http://sourceware.org/gdb/wiki

 Ê Available mailing lists: http://www.gnu.org/software/gdb/mailing-lists

GNU Make official sites
 Ê Homepage: http://www.gnu.org/software/make

 Ê Manual and documentation: http://www.gnu.org/software/make/manual/
html_node/index.html

 Ê Mailing lists: <bug-make@gnu.org>; <help-make@gnu.org>

Articles and tutorials
Here you can find several useful articles and tutorials for MinGW software usage:

 Ê http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html: This is a detailed
article about gprof profiler usage

 Ê http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor: This is quite
simple and demonstrative tutorial on GNU Make utility

 Ê http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html: You will find
detailed information about MinGW C++ compiler optimization capabilities

 Ê http://gcc.gnu.org/onlinedocs/gcc/Standards.html: You can find information
about compiler's supporting standards

Community
 Ê Largest free and open source-focused IRC network: http://freenode.net

 Ê Unofficial distributions: http://nuwen.net/mingw.html;
http://tdm-gcc.tdragon.net

 Ê Several MinGW developers sites: http://www.willus.com/mingw/colinp;
http://www.megacz.com; http://rmathew.com

Twitter
 Ê Packt Publishing: https://twitter.com/packtopensource

Thank you for buying

Instant MinGW Starter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with Microsoft
Application Virtualization 4.6
ISBN: 978-1-84968-126-1 Paperback: 308 pages

Virtualize your application infrastructure efficiently using
Microsoft App-V

1. Publish, deploy, and manage your virtual
applications with App-V

2. Understand how Microsoft App-V can fit into
your company.

3. Guidelines for planning and designing an App-V
environment.

4. Step-by-step explanations to plan and implement
the virtualization of your application infrastructure

Entity Framework Tutorial
ISBN: 978-1-84719-522-7 Paperback: 228 pages

Learn to build a better data access layer with the ADO.
NET Entity Framework and ADO.NET Data Services

1. Clear and concise guide to the ADO.NET Entity
Framework with plentiful code examples

2. Create Entity Data Models from your database and
use them in your applications

3. Learn about the Entity Client data provider and
create statements in Entity SQL

4. Learn about ADO.NET Data Services and how they
work with the Entity Framework

Please check www.PacktPub.com for information on our titles

.NET 4.0 Generics Beginner's Guide
ISBN: 978-1-84969-078-2 Paperback: 396 pages

Enhance the type safety of your code and create
applications easily using Generics in .NET Framework 4.0

1. Learn how to use Generics' methods and generic
collections to solve complicated problems.

2. Develop real-world applications using Generics

3. Know the importance of each generic collection
and Generic class and use them as per your
requirements

4. Benchmark the performance of all Generic
collections

Software Testing using Visual
Studio 2010
ISBN: 978-1-84968-140-7 Paperback: 400 pages

A step by step guide to understand the features and
concepts of testing applications usng Visual Studio.

1. Master all the new tools and techniques in Visual
Studio 2010 and the Team Foundation Server for
testing applications

2. Customize reports with Team foundation server.

3. Get to grips with the new Test Manager tool for
maintaining Test cases

4. Take full advantage of new Visual Studio features
for testing an application's User Interface

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewer
	www.packtpub.com
	packtLib.packtpub.com
	Table of Contents
	Instant MinGW Starter
	So, what is MinGW?
	Installation
	Step 1 – What do I need?
	Step 2 – Downloading MinGW
	Step 3 – Extracting and configuring
	What do you have to get?
	Alternative ways to install MinGW

	Quick start – Creating your first MinGW project
	Step 1 – Adding source files
	Step 2 – Adding a Makefile
	Step 3 – Compiling and linking

	Top features you'll want to know about
	1 – Make utility usage
	2 – Compiler options
	3 – Importing the existing Visual C++ project
	4 – Debugging application
	5 – Profiling application
	6 – Developing with cross-platform libraries
	The Qt framework
	The Gtk+ widget toolkit
	wxWidgets framework

	7 – Integrating with IDE
	Code::Blocks
	Qt Creator
	Eclipse

	People and places you should get to know
	MinGW official sites
	MinGW-w64 official sites
	GNU Compiler Collection official sites
	GNU Debugger official sites
	GNU Make official sites
	Articles and tutorials
	Community
	Twitter

