
 COMPANION eBOOK

US $39.99

Shelve in
Mobile Computing

User level:
Beginning-Intermediatewww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

SOURCE CODE ONLINE

Start programming with Learn C on the Mac. You don’t need to know anything
about programming—not one little bit. You’ll start with the basics and,

guided by expert Mac developers, take small steps that will help you learn the
essentials of C, the gateway to programming your Mac, iPhone, or iPad.

The perfect introduction for those new to programming, this book teaches
you best practices using the latest tools and techniques. You’ll learn how to
do the following:

• Write and compile native C programs

• Tap into the power of mathematical expressions with variables and
operators

• Empower your programs with pointers and parameters

• Control the direction your program takes with flow control

• Design your own custom data structures

• Create your own command line tools

• Save your program’s data and read it back in again

• Handle errors if things happen to go wrong

Considered a classic by an entire generation of Mac programmers, this new
edition of Learn C on the Mac has been updated for the latest C standards,
which are the foundation for all OS X and iOS app development. Turn to
Learn C on the Mac, and find the knowledge and skills that will help you mas-
ter C programming.

A complete course on C programming for the beginner

Learn C
on the Mac

For OS X and iOS

David Mark | James Bucanek

Companion
eBook
Available

M
ark

Bucanek
 Learn C on the M

ac
SECOND EDITION

SECOND
EDITION

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

 About the Authors ...xiii
 About the Technical Reviewer...xiv
 Acknowledgments..xv
 Introduction...xvi
 Chapter 1: Go Get the Tools!.. 1
 Chapter 2: Programming Basics ... 11
 Chapter 3: C Basics: Statements and Functions 21
 Chapter 4: C Basics: Variables and Operators 43
 Chapter 5: Debugging.. 75
 Chapter 6: Controlling Your Program’s Flow 93
 Chapter 7: Pointers and Parameters... 137
 Chapter 8: More Data Types .. 177
 Chapter 9: The Command Line .. 229
 Chapter 10: Designing Your Own Data Structures 291
 Chapter 11: Working With Files... 331
 Chapter 12: Handling Errors.. 381
 Chapter 13: Advanced Topics.. 411
 Chapter 14: Where Do You Go from Here?... 455
 Appendix: Answers to Excercises ... 467
 Index.. 477

www.allitebooks.com

http://www.allitebooks.org

xvi

Introduction

Welcome Aboard
Welcome! Chances are that you are reading this because you love the Mac. And not only do you
love the Mac, but you also love the idea of learning how to design and develop your very own Mac
programs.

You’ve definitely come to the right place.
This book assumes that you know how to use your Mac. That’s it. You don’t need to know

anything about programming—not one little bit. We’ll start off with the basics, and each step we
take will be a small one to make sure that you have no problem following along.

This book will focus on the basics of programming. At the same time, you’ll learn the
essentials of the C programming language.

In Douglas Adam’s book The Hitchhiker's Guide to the Galaxy, the answer to “the Ultimate
Question of Life, the Universe, and Everything” is determined to be “42.” That answer is, of
course, wrong; the correct answer is “C.”

The C language is the wellspring of software. The nothing-short-of-miraculous revolution in
computing and consumer electronics over the past half century has largely been accomplished
using C, languages that are direct descendants of C (Objective-C, C++), or languages designed to
work like C (Java, C#). Learn C and the programming world is your oyster.

 Note Douglas Adams was a big Macintosh fan.

Once you get through this book, you’ll be ready to move on to object-oriented programming
and Objective-C—the official programming language of OS X and iOS.

Does this all sound a little overwhelming? Not to worry; in this book, we’ll take small steps, so
nobody gets lost. You can definitely do this!

Who Is This Book For?
When Dave wrote the very first edition of Learn C on the Mac back in 1991, he was writing with
college students in mind. After all, college was where he really learned to program. It seems he
was way off.

www.allitebooks.com

http://www.allitebooks.org

INTRODUCTION

 xvii

“My first clue that I had underestimated my audience was when I started getting e-mails
from fifth graders who were making their way through the book. Fifth graders! And not just one
but lots of nine-, ten-, and eleven-year-old kids were digging in and learning to program. Cool!
And the best part of all was when these kids started sending me actual shipping products that
they created. You can’t imagine how proud I was and still am.”

Dave was really on to something. Over the years, we’ve heard from soccer moms, hobbyists,
even folks who were using the Mac for the very first time, all of whom made their way through
Learn C on the Mac and came out the other end, proud, strong, and full of knowledge.

So what do you need to know to get started? Although learning C by just reading a book is
possible, you’ll get the most out of this book if you run each example program as you encounter
it. To do this, you’ll need a Mac running OS X (preferably version 10.6.8 or later) and an Internet
connection. You’ll need the Internet connection to download the free tools Apple has graciously
provided for anyone interested in programming the Mac and to download the projects that go
along with this book.

Again, if you know nothing about programming, don’t worry. The first few chapters of this
book will bring you up to speed. If you have some programming experience (or even a lot), you
might want to skim the first few chapters, and then dig right into the C fundamentals that start in
Chapter 3.

The Lay of the Land
Here’s a quick tour of what’s to come in this book.

 Chapter 1 shows you how to get the free software tools you’ll use throughout this

book.

 Chapter 2 explains some of the basics of how computer programs are built.

 Chapter 3 shows you how to embed a series of programming statements into a

reusable function, something you can call again and again.

 Chapter 4 adds variables and operators into the mix, bringing the power of

mathematical expressions into your programs.

 Chapter 5 teaches you how to watch your program execute, line-by-line, to see that

it’s doing the right thing, or fix it if it’s not.

 Chapter 6 introduces the concept of flow control, using constructs like if, else, do, and

while to control the direction your program takes.

 Chapter 7 covers pointers and parameters, two concepts that will add a dramatic new

level of power to your programs.

 Chapter 8 moves beyond the simple data types used in the first half of the book,

adding the ability to work with more complex numbers along with data types like

arrays and text strings.

www.allitebooks.com

http://www.allitebooks.org

INTRODUCTION

xviii

 Chapter 9 takes a break to show you how to deploy your finished program and use it

from the command line.

 Chapter 10 dives even deeper into data and teaches you how to design your own

custom data structures.

 Chapter 11 shows you how to save your program’s data and read it back in again by

introducing the concept of the data file.

 Chapter 12 gives you some techniques for dealing with errors, for when things go

wrong.

 Chapter 13 covers a variety of advanced topics—typecasting, unions, recursion,

sorting, collections, and much more.

 Finally, Chapter 14 wraps things up and points you to the next step on your journey.

Ready to get started? Let’s go!

www.allitebooks.com

http://www.allitebooks.org

1

1
Chapter

Go Get the Tools!
If you want to build a house, you need a solid set of well-crafted tools. Building
computer programs is no different. Programming requires a specialized set of
development tools-----basically, programs that make programs.

In the early days of C, you only needed a few, relatively simple tools. As
computers have become more sophisticated, so has the universe of
development tools. Today, it’s not uncommon to employ dozens of programs to
create even a ‘‘simple’’ application: editors, compilers, linkers, debuggers,
emulators, profilers, analyzers, and more. Add to that list programs that help you
find documentation, cross reference your code, record your development
history, and, well, it’s starting to look like a whole hardware store full of tools!

The good news is that Apple has come to your rescue. Just as Apple has used
an elegant user interface to demystify their most sophisticated applications,
they’ve done the same for software developers. (That’s you!)

Installing Xcode
Apple’s Xcode is a complete hardware store of software development tools,
packaged and delivered as a single application. All you have to do is write your
program and Xcode will-----behind the scenes-----direct the scores of individual
development tools needed to turn your idea into reality. It would make the
Wizard of Oz proud.

NOTE: An application that organizes multiple development tools into a single
workspace is called an integrated development environment (IDE). Xcode is an IDE.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Go Get the Tools! 2

And getting Xcode into your computer couldn’t be easier. The entire Xcode
development suite is available from the App Store.

Launch the App Store, go to the Developer Tools category (or just search for
‘‘Xcode’’), and click to install Xcode, as shown in Figure 1-1. Don’t worry if your
screen looks a bit different than the figure. Apple is constantly updating Xcode,
so there will probably be a new version of Xcode in the App Store by the time
this book hits the shelves (or your screen).

Figure 1-1. Installing Xcode from the App Store

That’s it! Sit back and wait for Xcode to download and install. And you’re going
to have to wait awhile, as it’s a really big application. So amuse yourself with the
rest of this chapter while it downloads. Switch to the Purchases view, at the top
of the App Store window, if you want see how the download is progressing.

How much is that IDE in the Window?
Xcode has gone through various prices in the past. Apple really wants you to
create great applications and has strived, for the most part, to make its
developments tools freely available.

It used to be that Xcode was only available to registered developers. Becoming
a registered developer usually costs money, so Xcode was ‘‘free’’ only in the
sense that the prize inside a cereal box is ‘‘free.’’

For a while, Xcode was priced at $5. As of this writing, Xcode is free in the App
Store. Hopefully, it will stay that way.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Go Get the Tools! 3

NOTE: If you’re running an older version of OS X and don’t have access to the App
Store, you can still download an earlier version of Xcode—but we don’t recommend
it.

The first problem you’re going to encounter is how to get your copy of Xcode. As of
this writing, you must be a registered developer to obtain an older version of Xcode.
Unfortunately, Apple no longer offers free developer registration—largely because
Xcode is now available for free in the App Store—so you’ll have to pay to register,
and that can be expensive. If you are a registered developer or have access to
Apple’s University Program for higher education, you can log into
http://developer.apple.com/ and download the tools.

But your biggest problem is going to be the differences between the current Xcode
and older versions. The code examples in this book will still work and make sense,
but the commands, windows, features, and controls are all going to be substantially
different. You’re going to have to figure out a lot on your own.

We certainly don’t want to discourage anyone from learning C on the Mac, but we
strongly recommend you upgrade to the latest version of OS X so you have access to
the latest version of Xcode.

What’s a Registered Developer?
So what’s a registered developer and do you need to be one? The short answer
is ‘‘not yet.’’

Becoming a registered developer grants you access to even more tools and
resources than just Xcode. But you don’t need any of that to write great
applications for OS X or iOS! You don’t need it to use Xcode. You certainly don’t
need to be a registered developer to work through this book (or most other
books, for that matter).

You will need to become a registered developer if you want to sell, or even give
away, your masterpieces on any of Apple’s app stores. How cool would that be?
You can register at any time, so there’s no hurry. When you are ready, visit
http://developer.apple.com/.

www.allitebooks.com

http://developer.apple.com/
http://developer.apple.com/
http://www.allitebooks.org

CHAPTER 1: Go Get the Tools! 4

Getting the Projects
While you’re still waiting for Xcode to download and install, why not get the
project files for this book? Everything you need to create the projects in this
book is described in the text, but downloading the finished projects from the
Apress web site will save you a lot of typing.

Go to http://www.apress.com/book/view/9781430245339. Below the book’s
description, you’ll see some folder tabs, one of which is labeled Source
Code/Downloads. Click that tab. Now find the link that downloads the projects for
this book. Click that link and a file named Learn C Projects.zip will download
to your hard drive.

Locate the file Learn C Projects.zip in your Downloads folder (or wherever the
browser saved it). Double-click the file to extract its contents, leaving you with a
folder named Learn C Projects. Move the folder wherever you like.

Using Xcode
Once Xcode has finished installing, launch it as you would any application, from
the dock or LaunchPad. When first launched, Xcode will present its startup
window (Figure 1-2).

www.allitebooks.com

http://www.apress.com/book/view/9781430245339
http://www.allitebooks.org

CHAPTER 1: Go Get the Tools! 5

Figure 1-2. Xcode startup window

The startup window has convenient buttons that create a new project, reopen a
recently visited project, link to the Xcode documentation, and some other stuff
we’re not going to cover in this book.

Xcode organizes your work around a project. A project is a collection of files that
ultimately produce a program. It always consists of a project document (the icon
with the little blueprint) stored inside a folder, as shown in Figure 1-3. That folder
is called the project folder. You open a project by opening the project
document.

CHAPTER 1: Go Get the Tools! 6

Figure 1-3. The contents of a simple Xcode project folder

When opened in Xcode, your project appears in a workspace window, as shown
in Figure 1-4. The window is full of cryptic settings and seemingly complex
controls, but don’t worry. Until you get to some really advanced programming,
you won’t need to fiddle with any of these settings.

Figure 1-4. A workspace window in Xcode

Creating a New Xcode Project
While Xcode still has that ‘‘new car smell,’’ let’s take it for a quick spin around
the block and create a new Xcode project.

To do this, either click on the link labeled Create a new Xcode project link in the
startup window, or choose File New Project from the menubar. You’ll be

CHAPTER 1: Go Get the Tools! 7

presented with the new project assistant, shown in Figure 1-5, which will help
you specify the type of new project you want to create.

Figure 1-5. New project assistant

The left side of the new project assistant lets you choose whether to create a
project for iOS (one that will run on your iPhone, iPad, or iPod touch) or for Mac
OS X (one that will run on your computer). Select Application in the Mac OS X
section.

Next, you need to decide the type of Mac OS X application you want to build. In
this book, you’re going to learn how to build simple, text-only applications that
display text in a window, one line at a time. Once you finish this book, you can
move on to books that will teach you how to use the skills you’ve just mastered
to build applications that will run on your iOS device or on your Mac with the
graphical elements that define those devices.

Select Command Line Tool from the templates pane. This is the only project
template you’ll be using in this book. To complete your selection, click the Next
button.

CHAPTER 1: Go Get the Tools! 8

The next screen (Figure 1-6) lets you name your new project and specify a few
other options. For a command-line tool the options are pretty simple. Enter Hello
in the Name field.

The field Company Identifier allows Xcode to specify who made this application.
Typically, this is a reverse of a domain name you’ve set up for your product.
Unless you’ve got a specific identifier you want to use, use one we’ve set up for
this book. Enter com.apress.learnc in the Company Identifier field.

Figure 1-6. Project template options

Set the Type pop-up menu to C, since you’ll be writing all your programs in the
C programming language.

Automatic Reference Counting doesn’t apply to C. Leave the Use Automatic
Reference Counting checkbox unchecked.

Now that your options are all set, click the Next button.

Finally, Xcode will prompt you for a location in which to save your project folder.
Though you can save your projects anywhere you like, you might want to first

CHAPTER 1: Go Get the Tools! 9

create a master folder, perhaps named My Learn C Projects, in which you can
store all the projects you create for this book

The Workspace Window
Xcode opens your new project in a workspace window, as shown in Figure 1-7.
The workspace window is divided up into panes or views. On the left are the
navigators (how you get around your project). In the middle are your editors
(where you write and design your application). To edit a file, double-click the file
in the navigator and it will appear in the editor. On the right are utilities
(inspectors, libraries, help, and such). Any of these views can be hidden as you
work. In Figure 1-7, the utilities are hidden for the sake of simplicity.

Figure 1-7. Hello project workspace window

At the bottom you’ll find the debug area, which normally appears only while
you’re running or testing a program. This is where you inspect your program
while it’s running and view its output. At the very top is the toolbar. It has
buttons and controls for things you commonly do. The big Run button at the left
will build and run your program, which is what it’s all about. Everything in the
toolbar is just a shortcut for a command in the Xcode menubar; it doesn’t matter
which you use.

CHAPTER 1: Go Get the Tools! 10

Running a Project
One really nice thing about Xcode project templates is that they always create a
finished project. That is, everything it needs to build and run is ready right from
the start. Of course, it won’t do anything useful. In fact, it really won’t do much
of anything at all beyond starting and then stopping again. Changing your
project to do something useful is your job.

But don’t let that stop you; let’s make your new project do nothing! Click the
Run button (the big Play button in the upper left corner of the workspace
window). Xcode will assemble all of the parts of your project (a process know as
building) and will then execute it.

Don’t expect fireworks. The Xcode command-line template makes a project that
causes the words ‘‘Hello, World!’’ to appear in the lower right pane (called the
console), as shown in Figure 1-7.

HELLO, WORLD!

Dennis Ritchie developed the original C language over a period of time between hippies and
disco. Years later, he worked with Brian Kernighan to pen a complete description of the
language. This version of C became known as K&R C.

In their seminal book, the very first example of C (it’s on page 6; you can look it up) was a tiny
program that caused the words “Hello, World” to appear on a console. And in those days it was
probably a Teletype console—a washing-machine–sized mechanical typewriter with roll paper.

Ever since that day, practically every book that explains, teaches, or describes a programming
language starts with an example that makes the words “Hello, World” appear somewhere. In the
spirit of that grand tradition, we are honor bound to teach you how to make “Hello, World!”
appear on your Mac!

Moving On
Believe it or not, you are now ready to learn C on the Mac!

You’ve installed all of the tools you need to create OS X applications, and
you’ve created, built, and run a brand new application. That’s pretty good for
one chapter!

The next chapter will take a break from all of this excitement to talk about the
software development process in general.

11

2
Chapter

Programming Basics
Before we dig into C programming specifics, let’s spend a few minutes
discussing the basics of programming. Why write a computer program? How do
computer programs work? We’ll answer these questions and look at all of the
elements that come together to create a computer program, such as source
code, a compiler, and the computer itself.

If you are already familiar with the basics of programming, please feel free to
skim through this chapter and, if you feel comfortable with the material, skip on
ahead to Chapter 3. The goal here is to get you familiar with the steps involved
in creating a running a simple program.

Programming
Why write a computer program? There are many reasons. Some programs are
written in direct response to a problem too complex to solve by hand. For
example, you might write a program to calculate a value to 5,000 decimal places
or to determine the precise moment to fire the boosters that will safely land the
Mars Rover.

Other programs are written as performance aids, allowing you to perform a
regular task more efficiently. You might write a program to help you balance
your checkbook, keep track of your baseball card collection, or lay out this
month’s issue of Dinosaur Today.

Whatever their purpose, each of these examples shares a common theme. They
are all examples of the art of programming. Your goal in reading this book is to
learn how to use the C programming language to create programs of your own.
Before we get into C, however, let’s take a minute to look at some other ways to
solve your programming problems.

CHAPTER 2: Programming Basics 12

Some Alternatives to C
As mentioned previously, C is one of the most popular programming languages
around. There’s very little you can’t do in C (or in some variant of C), once you
know how. On the other hand, a C program is not necessarily the best solution
to every programming problem.

For example, suppose you are trying to build a database to track your
company’s inventory. Rather than writing a custom C program to solve your
problem, you might be able to use an off-the-shelf package like FileMaker Pro or
perhaps a Unix-based solution like MySQL or PostgreSQL to construct your
database. The programmers who created these packages have already solved
most of the knotty database-management problems you’d face if you tried to
write your program from scratch. The lesson here is this: before you tackle a
programming problem, examine all the alternatives. You might find one that will
save you time and money or one that will prove to be a better solution to your
problem.

Some problems can be solved using the Mac’s built-in scripting language,
AppleScript. Just like C, AppleScript is a programming language. Typically, you
use AppleScript to control other applications. For example, you could create an
AppleScript script that gets your daily calendar from iCal, formats it just the way
you like it using TextEdit, and then prints out the results. Or you could write a
script that launches Safari and opens each of your bookmarked news sites in a
separate window. If you can use existing applications to do what you need,
chances are good you can use AppleScript to get the job done.

Some applications feature their own proprietary scripting language. For
instance, Microsoft Excel lets you write programs that operate on the cells
within a spreadsheet. Some word processing programs let you write scripts that
control just about every word processing feature in existence. Although
proprietary scripting languages can be quite useful, they aren’t much help
outside their intended environments. You won’t find much use for the Excel
scripting language outside Excel, for example.

What About Objective-C, C#, C++, and Java?
There is a constant debate as to which programming language is the best one to
learn first. Naturally, the C++ people think that C++ is by far the best language
to start with. Java, C#, and Objective-C people feel the same way about Java,
C#, and Objective-C. But the truth is that all of those languages are based on C.
And if you learn C first, you’ll have a huge leg up on learning any of them. And

CHAPTER 2: Programming Basics 13

when the next C-based language hits the streets, you’ll have a leg up on that
one, as well.

In a nutshell, C is the best language to start with because many other languages
use the vast majority of C’s syntax and structure. Objective-C, C++, and Java
each start with C and build on C, each in its own unique way. Learning C first is
like learning to walk before learning how to run. If you learn C first, you’ll have an
excellent foundation on which to base your future programming education.

What’s the Best Programming Language
for the Mac or iOS Devices?
All the programs in this book will run in the console, a simple scrolling text
window that is part of Xcode. If you would like to build applications that feature
the Mac look-and-feel with buttons, scroll bars, and windows, you’ll need to
finish this book, then learn Objective-C and Cocoa (for the Mac) or Cocoa Touch
(for iOS devices).

Objective-C is a programming language based on C. Everything you learn about
C will apply to Objective-C. Objective-C is designed to work with objects.
Objects are blocks of code that represent parts of your program, such as a
scrolling window, an image, or a menu. Cocoa is a vast collection of objects that
represent all the elements of the Mac experience. Objective-C was designed to
work together with Cocoa and Cocoa Touch.

Learn C, Objective-C, and Cocoa, and you will have everything you need to
develop even the most complex Macintosh applications. Learn C, Objective-C,
and Cocoa Touch, and you will have everything you need to develop
applications designed to run on mobile devices running iOS.

Learn C on the Mac is the beginning of a series of books that will teach you how
to build professional Mac and iOS applications. Once you’ve finished this book,
you’ll want to dig into Learn Objective-C on the Mac, 2nd Edition by Mark
Dalrymple, Scott Knaster, and Waqar Malik (Apress 2012). It was designed as a
sequel to Learn C on the Mac and does a great job taking you from C to
Objective-C.

Learn Cocoa on the Mac was written by Jack Nutting, Dave Mark, and Jeff
LaMarche (Apress 2010). It completes the cycle, giving you everything you need
to build your own scrollable, clickable Mac applications.

If you are interested in building applications that run on the iPhone, iPod touch,
or iPad, check out Beginning iOS 6 Development by Dave Mark, Jack Nutting,
and Jeff LaMarche (Apress 2012). Beginning iOS Development was also written

CHAPTER 2: Programming Basics 14

as a sequel to Learn Objective-C. Instead of focusing on Cocoa, though, it
focuses on Cocoa Touch.

So, first, finish this book, and then make your way through Learn Objective-C on
the Mac. If Mac application design is your goal, next pick up a copy of Learn
Cocoa on the Mac. If the iPhone, iPod touch, or iPad is your thing, pick up
Beginning iOS Development.

And that’s the road map. Oh, one more thing. You can find each of these books
on the Apress web site at http://www.apress.com.

The Programming Process
In Chapter 1, you installed the Mac development tools and went through the
process of creating a project, which you then built and ran. Let’s take a look at
the programming process in a bit more detail.

Source Code
No matter their purpose, most computer programs start as source code. Your
source code will consist of a sequence of instructions that tells the computer
what to do. Source code is written in a specific programming language, such as
C. Each programming language has its own set of rules (called syntax) that
defines what is and isn’t legal in that language.

Your mission in reading this book is to learn how to create useful, efficient, and,
best of all, legal C source code.

If you were programming using everyday English, your source code might look
like this:

‘‘Hi, Computer! Do me a favor. Take the numbers from 1 to 10,
add them together, and then tell me the sum.’’

If you want to run this program, you need a programming tool that understood
source code written in English. Sadly, computers don’t understand English (yet).
Instead, you must use a precise language, like C, to explain to the computer
exactly what you want it to do. Listing 2-1 is an example of code that sums
numbers 1 through 10.

www.allitebooks.com

http://www.apress.com
http://www.allitebooks.org

CHAPTER 2: Programming Basics 15

Listing 2-1. Summing Numbers 1 through 10 in C

#include <stdio.h>
int main (int argc, const char * argv[])
{

int number, sum;
sum = 0;
for (number=1; number<=10; number++)

sum += number;
printf("The sum of the numbers from 1 to 10 is %d.\n", sum);
return 0;

}

If this program doesn’t mean anything to you, don’t panic. Just keep reading. By
the time you finish this book, this will all make perfect sense.

In case you were wondering, here’s what appeared in the console window when
we ran this program:

The sum of the numbers from 1 to 10 is 55.

Want to try this out for yourself? In Chapter 1, you downloaded the project files
for the book from the Apress web site. Open the Learn C Projects folder on
your hard drive. Next, open the folder named 02.01 - Sample, and double-click
the file named Sample.xcodeproj to open the project in Xcode.

Figure 2-1 shows the workspace window for Sample.xcodeproj. The window is a
complex beast, full of incredibly useful tools to help with your programming
pursuits. The most important part of the project window (at least for the
moment) is the editing pane, the area that allows you to edit your source code.

CHAPTER 2: Programming Basics 16

Figure 2-1. The Sample project workspace

Run the program by clicking the Run button in the toolbar, by choosing the

Project Run command, or by typing ⌘R.

The program should build and then run, and the text we showed you previously
should appear in the console pane. If you don’t see the console pane, choose
the View Debug Area Show Debug Area command.

OK, enough reveling. Let’s get back to the programming process.

Compiling Your Source Code
Once your source code is written, your next job is to hand it off to a compiler.
The compiler translates your C source code into instructions------a sequence of
numeric codes------that make sense to your computer. These instructions are
known as machine language or object code. Source code is for you; machine
language/object code is for your computer. You write the source code using an
editor, and then the compiler translates your source code into a machine-
readable form.

CHAPTER 2: Programming Basics 17

NOTE: Don’t let the terminology bog you down. Read the rest of this chapter, just to
get a basic sense of the programming process, and then move on to Chapter 3. We’ll
lay out everything step-by-step for you, so you won’t get lost.

Think of the process of building and running your program as a three-stage
process. First, Xcode compiles all your source code into object code. Next, all
the object code in your project is linked together by a program called a linker to
form your application. That finished application (called an executable) is what
actually runs on your computer.

Take a look at Figure 2-2. This project contains two source code files, one
named main.c and another named extras.c, as well as an object file named
libc.dylib. Sometimes, you’ll find yourself making use of some code that
others have already compiled. Perhaps they want to share their code but do not
want to show you their source code. This is the way Apple makes their code
available to programmers. They compile the code and save it a special object
file called a library. Or perhaps you’ve built a library of code that you’d like to
use again and again, but don’t want to recompile each time you use the code.
By adding a library of pre-compiled code to your project, you can save some
time and gain immediate access to a world of solutions.

As it turns out, a library called the C Standard Library comes with Xcode and
every other C development environment in the universe. Hmm, that must be why
they call it ‘‘standard.’’ The C Standard Library comes packed with an incredible
number of useful programming bits and pieces that you can use in your own
programs. (This library is so commonly used you don’t even have to ask Xcode
to include it in your project; it just does so automatically.) We’ll talk about those
bits and pieces as we make use of them throughout the book.

CHAPTER 2: Programming Basics 18

Figure 2-2. Project with multiple source files

Building Your Application
Xcode starts by compiling main.c and extras.c source files, shown in Figure 2-
2, turning them into object code. Next, all three object files are linked together
by the linker to create a runnable application. The programs in this book were all
designed to run in the console window. As you make your way through the rest
of the books in this series, you’ll learn how to add the rest of the pieces
necessary to create applications that can be run from the Finder. For now,
Xcode’s console will do just fine.

This entire process-----turning source code into a finished program-----is called a
build. Xcode’s build command takes care of all of the details for you. It
determines what compilers you need, keeps track of the libraries your code links
to, finds a place to store all of the intermediate files created by the compilers
and linkers, and keeps those files organized and up-to-date.

The great thing about Xcode is that you’ll probably never have to concern
yourself with any of these under-the-hood details. You just write your source
code and press the Run button. Xcode will take care of the rest.

CHAPTER 2: Programming Basics 19

What’s Next?
At this point, don’t worry too much about the details. The basic concept to
remember from this chapter is how your C programs run: they start life as
source code and then get translated into object code by the compiler. Finally, all
the object code gets linked together to form your runnable application.

Now, let’s get to the business of writing your very first C program.

21

3
Chapter

C Basics: Statements
and Functions
Every programming language is designed to follow strict rules that define the
language’s source code structure. The C programming language is no different.
These next few chapters will explore the syntax of C. This chapter focuses on
two of the primary building blocks of C programming: statements and functions.
In a nutshell, a statement tells the computer to do something. A function is a
series of statements.

C Statements
A statement in C is very much like a declarative statement in English; it tells the
computer to do something. ‘‘Say ‘Hello’’’ and ‘‘preheat oven to 350°F’’ are
examples of concise, unambiguous, English statements. Here are two
statements in the C language:

printf("Hello!\n");
temperature = 350;

The first statement tells the computer to make the text ‘‘Hello!’’ appear on the
console (similar to what you saw in Chapter 2). The second statement tells the
computer to assign the value 350 to a variable named temperature. C
statements end with a semicolon (;), just as English sentences end with a
period.

CHAPTER 3: C Basics: Statements and Functions 22

C Functions
A C function is a group of C statements. There are many reasons for organizing
statements into a function, but the primary reason for gathering statements into
a single function is to make them easily reusable.

A cake recipe consists of many individual steps: ‘‘sift flour,’’ ‘‘add eggs,’’
‘‘preheat oven,’’ ‘‘spread icing,’’ and so on. By organizing these steps into a
larger entity, a recipe, we can now simply say ‘‘bake a cake,’’ instead of
repeating all of the individual steps.

Similarly, a C function is a sequence of C statements, the whole of which can be
invoked as a C statement. (Read that again, slowly.) You create your own
functions in C like this:

void SayHello(void)
{
 printf("Hello!!!\n");
}

You just created a function named SayHello(), which does one thing. It consists
of a single statement that calls another function, named printf(), that outputs a
message to the console window.

CONSOLE

Technically, the function printf() sends its output to something called standard output and
Xcode redirects standard output to its console pane. You’ll learn more about standard output in
Chapter 9 when we discuss the command line. For the moment, just think of printf() as a
function that sends information to the console.

NOTE: Throughout this book, we’ll designate a function by placing a pair of
parentheses after its name. This will help distinguish between variable names and
function names. For example, the name doTask refers to a variable (variables are
covered in Chapter 4), while doTask() refers to a function.

The printf() function consists of dozens of statements, many of which call other
functions, which themselves consist of dozens of statements, many of which
call even more functions, and so on-----unraveling computer programs can be a
lot like peeling an onion. The point is, you don’t need to concern yourself with

CHAPTER 3: C Basics: Statements and Functions 23

the details of how printf() works, any more than you need to remember all of
the steps involved in baking a cake you buy from your local bakery. You order
the cake and the chef goes through the steps to bake it. You call the SayHello()
function and it goes through the steps to make ‘‘Hello!’’ appear in the console.

Defining a Function
Functions start off with a function declaration, in this case:

void SayHello(void)

A function declaration consists of a return type, the function name, and a pair of
parentheses wrapped around a parameter list. We’ll talk about the return type
and parameter list later. For now, the important thing is to be able to recognize a
function declaration and be able to pick out the function’s name in the
declaration.

Following the declaration comes the body of the function. The body is always
placed between a pair of curly braces: { and }. These braces are known in
programming circles as left curly and right curly. Here’s the body of SayHello():

{
 printf("Hello!!!\n");
}

The body of a function consists of a series of statements. This particular
statement calls another function, but there are other kinds of statements, too. As
you make your way through this book, you’ll learn all of the different kinds of C
statements, and what they’re used for.

Creating efficient statements will make your programs run faster with less
chance of error. The more you learn about programming (and the more time you
spend at your craft), the more efficient you’ll make your code.

Syntax Errors and Algorithms
When you ask Xcode to compile your source code, the compiler does its best to
translate your source code into object code.

As you learn C, you’ll find yourself making two types of mistakes. The simplest
type, called a syntax error, prevents the program from compiling. The syntax of
a language is the set of rules that defines what is or is not legal. The compiler
will only compile code that properly follows the C language syntax, as defined
by the official C standard (C99). If the code you write doesn’t conform to these
rules, the compiler won’t understand what you wrote. When this happens, the

CHAPTER 3: C Basics: Statements and Functions 24

compiler complains and won’t compile your program. You’ll explore several
common kinds of syntax errors, and fix them, later in this chapter.

The second type of mistake is a semantic error, or a flaw in your program’s
algorithm. An algorithm is the approach used to solve a problem. You use
algorithms all the time. For example, here’s an algorithm for sorting your mail:

1. Start by taking the mail out of the mailbox.

2. If there’s no mail, you’re done! Go watch TV.

3. Take a piece of mail out of the pile.

4. If it’s junk mail, throw it away, and go back to step 2.

5. If it’s a bill, put it with the other bills, and go back to step 2.

6. If it’s not a bill and not junk mail, read it, and go back to step 2.

This algorithm completely describes the process of sorting through your mail.
Notice that the algorithm works, even if you didn’t get any mail. Notice also that
the algorithm always ends up at step 2, with the TV on.

Figure 3-1 shows a pictorial representation of the mail-sorting algorithm,
commonly known as a flow chart. Much as you might use an outline to prepare
for writing an essay or term paper, you might use a flow chart to flesh out a
program’s algorithm before you actually start writing the program. Here’s how
this works.

Figure 3-1. The mail-sorting flow chart

CHAPTER 3: C Basics: Statements and Functions 25

This flow chart uses two types of boxes. The rectangular box portrays an action,
such as taking mail out of the mailbox or recycling the junk mail. Once you’ve
taken the action, follow the arrow leading out of the rectangle to go on to the
next step in the sequence.

Each diamond-shaped box poses a yes/no question. Unlike their rectangular
counterparts, diamond-shaped boxes have two arrows leading out of them. One
shows the path to take if the answer to the question inside the box is yes; the
other shows the path to take if the answer is no. Follow the flow chart through,
comparing it to the algorithm described previously.

In the C world, a well-designed algorithm results in a well-behaved program. On
the other hand, a poorly designed algorithm can lead to unpredictable results.
Suppose, for example, you wanted to write a program that added three numbers
together, printing the sum at the end. If you accidentally printed one of the
numbers instead of the sum of the numbers, your program would still compile
and run. However, the result of the program would be in error (you printed one
of the numbers instead of the sum) because of a flaw in your program’s
algorithm.

The efficiency of your source code is a direct result of good algorithm design.
Keep the concept of algorithm in mind as you work your way through the
examples in this book.

Calling a Function
In Chapter 1, you ran a test program to make sure Xcode was installed properly.
The test program sat in a file called main.c and consisted of a single function,
called main(). As a refresher, here’s the source code from main.c:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 // insert code here...
 printf("Hello, World!\n");
 return 0;
}

Though some parts of this program might seem intimidating, hopefully some
parts of it should start to feel familiar.

There’s really only one line in this code that you need to focus on at this point,
and that’s this function call:

 printf("Hello, World!\n");

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: C Basics: Statements and Functions 26

Though this program does have a few complicated-looking elements, at its heart
is a single function call. As far as all the other dangly bits, you can read the ‘‘Five
Easy Pieces’’ sidebar, or just ignore them and know that we’ll get to them as we
go along.

So what does ‘‘calling a function’’ really mean? Basically, whenever your source
code calls a function, each of the statements in the called function is executed
before the next statement of the calling function is executed.

Confused? Don’t worry, you’ll get there. Look at Figure 3-2. In this example,
main() starts with a call to the function MyFunction(). This call to MyFunction()
will cause each of the statements inside MyFunction() to be executed, one after
the other. Once the last statement in MyFunction() is executed, control is
returned to main(). Next, main() calls AnotherFunction(). Once the last
statement in AnotherFunction() is executed, control is again returned to main(),
and main() can then exit with a return code of 0. When main() exits, your
program exits. Returning a value of 0 tells whatever program launched your
program that all is OK and that your program is done.

Figure 3-2. main() calls MyFunction(). All the statements in MyFunction() are executed. Once
MyFunction() returns, main() then calls AnotherFunction().

Every C program you write will have a main() function. Your program will start
running with the first line in main() and, unless something unusual happens, end
with the last line in main(). Along the way, main() may call other functions which
may, in turn, call other functions and so on.

CHAPTER 3: C Basics: Statements and Functions 27

FIVE EASY PIECES

Here’s a bit of behind-the-scenes technical detail for folks who want a more complete picture of
the source code we just explored. Skim through this explanation and, if it seems a bit fuzzy,
come back to it later on. By the time you get to the end of the book, this will all seem pretty
straight-forward.

The source code in main.c can be broken into five basic pieces. Here’s the first piece:

#include <stdio.h>

In C, any line that starts off with a pound sign (#) is known as a preprocessor directive, an
instruction that asks the compiler to do something special. This particular directive is called a
#include (pronounced “pound include”). It asks the compiler to include code from another file
on your hard drive as if that code was in this file in the first place. A #include file is also known
as a header file or just plain header. As it turns out, the file stdio.h contains all kinds of goodies
that you’ll use throughout the book. Just ignore this line for now.

Here’s the second piece:

int main (int argc, const char * argv[])
{
}

As discussed a bit earlier, this is the function declaration for the function named main(). The
curly braces surround the body of the function.

The third piece of this puzzle is this line:

// insert code here...

Any time the compiler encounters two slashes (//) in a row, it ignores the slashes and anything
else on that line. This line of code is called a comment. Its only purpose is to document your code
and to help make clear what’s going on at this point in the program. Comments are a good thing.

The fourth piece is the call to the function printf(), which we will focus on in this chapter.

printf("Hello, World!\n");

The fifth and final piece of your program is this line of code:

return 0;

A return statement in a function tells the compiler that you are done with this function and you
want to return. In this case, you want the function to return a value of 0.

Again, don’t get hung up on the specifics. It’ll all become clear as you go.

CHAPTER 3: C Basics: Statements and Functions 28

Same Program, Two Functions
As you start writing your own programs, you’ll find yourself designing many
individual functions. You might need a function that puts a form up on the
screen for the user to fill out. You might need a function that takes a list of
numbers as input, providing the average of those numbers in return. Whatever
your needs, you will definitely be creating a lot of functions. Let’s see how it’s
done.

Your first program contained a function named main() that passed the text
string ‘‘Hello, world!\n’’ to printf(). Your next program, Hello2, embeds that
functionality in a new function, named SayHello().

NOTE: You’ve probably been wondering why the characters \n keep appearing at the
end of the text strings. Don’t worry; nothing’s wrong with your copy of the book. The
\n is perfectly normal. It tells printf() to move the cursor to the beginning of the
next line in the text window, sort of like pressing the Return key in a text editor.

The sequence \n is frequently referred to as a newline character, a carriage return,
or just plain return. By including a newline at the end of a printf(), you know that
the next line you print will appear at the beginning of the next line in the console
window.

The Hello2 Project
In the Finder, open the Learn C Projects folder. Open the subfolder named 03.01
- Hello2, and double-click the project file Hello2.xcodeproj. A project window
with the title Hello2 will appear, as shown in Figure 3-3.

CHAPTER 3: C Basics: Statements and Functions 29

Figure 3-3. Hello2 workspace window

The area with the gray background on the top of the project window is called
the toolbar. The toolbar contains a variety of convenient shortcuts, which you
can customize to some degree.

The area below the toolbar is divided into a series of panes. On the left side of
the project window, you’ll find the navigator pane. The icons at the top of the
navigator pane allow you to navigate to different areas of your project. By
default, the project navigator icon should appear. The project navigator lists all
the files and folders that make up your project.

The central area is the editor pane and, below it, the debug pane. Select a file in
the project navigator and it will open for editing in the editor pane. When you run
your project, you’ll make use of the debug area. That’s where the console lives.

To the right of the editor pane is the utility pane. The utility area lets you
customize various elements in your program and is especially useful when you
start adding objects to your programs as you move on to Objective-C, Cocoa,
and Cocoa Touch.

On the right side of the toolbar, you’ll find three sets of controls, labeled Editor,
View, and Organizer. The three View buttons allow you to show or hide the
navigator, debug, and utility panes, as you please. You can’t hide the editor
pane-----that’s always there. The commands for switching, revealing, and hiding
these panes can all be found in the View menu.

Let’s take a look at the project navigator. If you don’t see the project navigator,
with its list of folders and files, on the left side of your workspace window (like

CHAPTER 3: C Basics: Statements and Functions 30

the one shown in Figure 3-3), choose View Navigators Show Project Navigator.
Notice the C source code file named main.c in the project navigator’s list of files.
If you click on main.c, the source code within the file will appear in the editor
pane.

Notice the Products folder, below the Hello2 folder. This is where your finished
program (i.e. the ‘‘product’’ of this project) will appear once you’ve successfully
built it. If it’s red, your program hasn’t been built yet.

TIP: Want to learn more about the rest of the items in the project navigator? Apple
has an excellent Xcode manual built right into Xcode. Choose the Help Xcode User
Guide command. The very first page explains the parts of the workspace window,
with links that explain each of the various navigators, editors, and utilities in great
detail. We’ll give you just enough information about Xcode in this book to get you
through learning C, but if you ever want to explore Xcode more, just pull up the Xcode
User Guide and dig in.

The Hello2 Source Code
Here’s the source code from main.c:

#include <stdio.h>

void SayHello(void);

int main (int argc, const char * argv[])
{
 SayHello();

 return 0;
}

void SayHello(void)
{
 printf("Hello, world!\n");
}

Let’s walk through this line by line. Hello2 starts off with this line of source code:

#include <stdio.h>

You’ll find this line (or a slight variation) at the beginning of each one of the
programs in this book. It tells the compiler to include the source code from the
file stdio.h as it compiles main.c. stdio.h contains information you’ll need if you

CHAPTER 3: C Basics: Statements and Functions 31

are going to call printf() in this source code file. You’ll see the #include pre-
processor directive used throughout this book. Get used to seeing this line of
code at the top of each of your source code files.

The line following #include is blank. This is completely cool. Since the C
compiler ignores all blank lines, you can use them to make your code a little
more readable. We like to leave two blank lines between functions.

This line of code appears next:

void SayHello(void);

While this line might look like a function definition, don’t be fooled! If this were a
function definition, it would not end with a semicolon; it would be followed by a
left curly ({) and the rest of the function. This line is known as a function
prototype or function declaration. You’ll include a function prototype for every
function, other than main(), in your source code file.

To understand why, it helps to know that a compiler reads your source code file
from the beginning to the end, a line at a time. By placing a complete list of
function prototypes at the beginning of the file, you give the compiler a preview
of the functions it is about to compile. The compiler uses this information to
make sure that calls to these functions are made correctly.

NOTE: Function prototypes will make a lot more sense to you once you get into the
subject of parameters in Chapter 7. For now, get used to seeing function prototypes
at the beginning of all your source code files.

Next comes the function main(). The first thing main() does is call the function
SayHello().

int main (int argc, const char * argv[])
{
 SayHello();

At this point, the lines of the function SayHello() get run. When SayHello() is
finished, main() can move on to its next line of code. The keyword return tells
the compiler to stop executing statements and return a value of 0 (zero) to the
function that originally called main(). We’ll talk about return later on. Until then,
the only place you’ll see this line is at the end of main().

return 0;
}

CHAPTER 3: C Basics: Statements and Functions 32

Following main() are some more blank lines, followed by the function you
created, SayHello(). SayHello() prints the string ‘‘Hello, world!’’, followed by a
return, in a window, and then returns control to main().

void SayHello(void)
{
 printf("Hello, world!\n");
}

Let’s step back for a second and compare the first program to Hello2. In your
first program, main() called printf() directly. In Hello2, main() calls a function
that then calls printf(). This extra layer demonstrates a basic C programming
technique: taking code from one function and using it to create a new function.
This example took this line of code

printf("Hello, world!\n");

and used it to create a new function called SayHello(). This function is now
available for use by the rest of the program. Every time you call the function
SayHello(), it’s as if you executed this line of code:

printf("Hello, world!\n");

SayHello() may be a simple function, but it demonstrates an important concept.
Wrapping a chunk of code in a single function is a powerful technique. Suppose
you create an extremely complex function, say, 100 lines of code in length. Now,
suppose you call this function in five different places in your program. With 100
lines of code, plus the five function calls, you are essentially achieving 500 lines’
worth of functionality. That’s a pretty good return on your investment!

Let’s watch Hello2 in action.

Running Hello2
In Xcode, run your program. Do this by clicking on the Run button in the toolbar,

choosing the Project Run command, or pressing ⌘R. This asks Xcode to compile
all of your source files (yes, all one of them), link the object code together to
form an executable program, and run that program.

You’ll see the debug area appear below your source code. On the right is the
console output, as shown in Figure 3-4. If you don’t see this, choose the View

Debug Area Activate Console command or press ⇧⌘C.

Gee, this looks just like the output from Chapter 1’s test program. Of course it
does; that was the point. Even though you embedded your printf() inside the
function SayHello(), Hello2 produced the same results.

CHAPTER 3: C Basics: Statements and Functions 33

Figure 3-4. The result of running Hello2

Before you move on to your next program, let’s revisit a little terminology we
first touched on at the beginning of the chapter. The pane in the debug area that
appeared when you ran Hello2 is referred to as the console pane, or just plain
console. There are numerous Standard Library functions designed to send text
to the console; you’re using printf(). The text that appears in the console is
known as the program’s output. After you run a program, you’re likely to check
the output that appears in the console to make sure your program ran correctly.

THE STANDARD LIBRARY

One element of the C standard that relates directly to our discussion of functions is the Standard
Library. The Standard Library is a set of functions available to every C programmer. As you may
have guessed, the printf() function you saw in the sample source code is part of the Standard
Library, as are tons of other great functions. You’ll learn some of the more popular ones as you
make your way through this book. Once you get comfortable with the Standard Library functions
presented here, dig through some of the Standard Library documentation that you’ll find on the
Web, just to get a sense of what else is in there.

A number of great sites discuss the Standard Library. One of our favorite resources on the net is
the Wikipedia entry for the ANSI C Standard Library
(http://en.wikipedia.org/wiki/ANSI_C_standard_library). This page is a terrific
way to get to know the Standard Library. There’s a lot of interesting information here, but the
best part is the table titled “C Standard Library headers.” It contains a link to each of the
Standard Library #include files. Each link takes you to a page that describes the functions
included in that particular header file.

For example, click the stdio.h link. Wow, there sure are a ton of functions in this header file. If
you scroll down a bit, you’ll find a link to a page that describes the Standard Library function
printf(). Follow that link, and you’ll come to a page that contains just about everything you could
ever want to know about printf().

Yeah, it’s a bit techie, but it’s an invaluable reference resource once you start developing your
own code or if you encounter a function in this book and want to know more.

http://en.wikipedia.org/wiki/ANSI_C_standard_library

CHAPTER 3: C Basics: Statements and Functions 34

Doing That Again, and Again, and Again
Imagine what would happen if you changed Hello2’s version of main() so that it
read as follows:

int main (int argc, const char * argv[])
{
 SayHello();
 SayHello();
 SayHello();

 return 0;
}

What’s different? In this version, you’ve added two more calls to SayHello().
Can you picture what the console will look like after you run this new version?

To find out, close the Hello2 project window, and then select Open from Xcode’s
File menu. When Xcode prompts you to open a project, navigate into the Learn
C Projects folder and then into the 03.02 - Hello3 subdirectory, and open the
Hello3.xcodeproj project file.

When you run Hello3, the console pane shown in Figure 3-5 will appear. Take a
look at the output. Does it make sense to you? Each call to SayHello()
generates the text ‘‘Hello, world!’’ followed by a carriage return.

Figure 3-5. Output from Hello3

CHAPTER 3: C Basics: Statements and Functions 35

Generating Some Errors
Before you move on to the next chapter, let’s see how the compiler responds to
errors in your source code. In the Hello3 project window, select main.c so the
source code appears in the editing pane.

In the source code window, find the SayHello() function definition. Note that the
definition of a function is where you actually provide the function body. A
function declaration does not include curly braces. A function definition does
include curly braces. Got it? Good! The function should read

void SayHello(void)
{
 printf("Hello, world!\n");
}

Click to the right of the printf() statement, so the blinking cursor appears just
after the semicolon at the end of the line. Delete the semicolon, so the line now
reads

 printf("Hello, world!\n")

Remember that in C, a regular C statement ends with a semicolon, and you just
left it out. This is like forgetting the period at the end of a sentence Confusing,
isn’t it? Your source code no longer follows the rules established in the C99
standard. This is called a syntax error. Look back at your source code. It should
look like the window in Figure 3-6.

Figure 3-6. Xcode detects a syntax error

While you are typing, a group of elves-----OK, technically Xcode’s ‘‘live issues’’
checker-----is constantly re-evaluating your source code to see that meets all of
the requirements for correct C syntax. If it doesn’t, it immediately puts an error
(or warning) indicator in your editing window at, or near, where it thinks the
problem is.

Fixing the Problem
Click on the error indicator in the gutter, and your window will look something
like Figure 3-7.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: C Basics: Statements and Functions 36

Figure 3-7. Issue detail and Fix It suggestion

Clicking on an issue in the gutter displays additional information about the
problem, or at least Xcode’s interpretation of what it thinks the problem is-----we’ll
get to that in a moment.

In this case, Xcode correctly determined that you omitted the semicolon
required at the end of a C statement. It even includes a Fix It button that offers
to correct the problem for you. Double-click the Fix It button, and Xcode inserts
the required semicolon, and the issue disappears.

Before the days of automatic syntax checking, programmers wouldn’t discovers
errors like this until they tried to compile their source code. If you give those
elves a well-deserved break (by turning off ‘‘live issues’’ feature in the Xcode
preferences), you won’t find out about these kinds of problems until you compile
your code. Leave the semicolon out and try to run (Project Run) your program
again. It doesn’t run. Instead, you receive a ‘‘Build failed’’ message and the
error, once again, appears in your source code. You’ll also see the error in the
output of the latest build log (View Navigators Show Log Navigator) and in the
issues navigator (View Navigators Show Issue Navigator). The issues navigator
keeps a running tab of all of the problems Xcode has knows about, in one
convenient location.

Getting Close
‘‘Close only counts in horseshoes and hand grenades,’’ as the old saying goes.
Someday they might add ‘‘compilers’’ to that list.

Let’s try a different kind of mistake. This time, go to the function definition (not
the declaration, right?). Add a superfluous semicolon at the end of that line, so
your code now looks like this:

void SayHello(void);
{

A new issue indicator should appear in the gutter of your editing pane. Click on
it, as shown in Figure 3-8.

CHAPTER 3: C Basics: Statements and Functions 37

Figure 3-8. Another syntax issue

This time the error message is ‘‘Expected identifier or ‘(‘’’. That doesn’t sound
very helpful, and there’s no Fix It button this time.

A lot of times the compiler can’t tell you what’s wrong with your code, only that
it doesn’t follow the rules for the C language. In this case, the compiler looks at
the first line of the function and assumes it’s a function declaration------remember
that a declaration ends in a semicolon, while a definition contains a function
body. The compiler can’t know that what you did was add an extra semicolon
where it doesn’t belong. It only knows there’s a function declaration followed by
something else that shouldn’t be there.

The take-away message is that the compiler can’t always tell you exactly what
the mistake is, or even exactly where it is. Start by looking for a problem
immediately before where the compiler complains. In some cases the actual
mistake will be someplace else entirely, even in another source file. With some
experience, and a little practice, you’ll get good at figuring out what the problem
is and how to fix it.

Speaking of which, delete that stray semicolon so everything compiles again.
You’ve got other kinds of mistakes to make!

C is Case Sensitive
Another very common mistake results from the fact that C is a case-sensitive
language. In a case-sensitive language, there is a difference between lowercase
and uppercase letters, which means you can’t refer to printf() as Printf() or
even PRINTF().

Let’s try this out. Double-click ‘‘printf’’ in your source code to select it, engage
the Caps Lock on your keyboard, and type ‘‘PRINTF’’. Whoa! What happened?
Does your screen look like Figure 3-9?

Figure 3-9. Xcode’s auto-completion offering the correct function name

CHAPTER 3: C Basics: Statements and Functions 38

Those Xcode elves are hard at work again, trying to keep you out of trouble. As
you typed the letters ‘‘P’’ ‘‘R’’ ‘‘I’’ ‘‘N’’ ‘‘T’’ ‘‘F’’, Xcode looked up all of the valid
function names (that it knows about) that begin with those letters and
immediately listed them below where you are typing. It quickly narrowed in on
the only function that it thinks is valid here, which is printf(). If you pressed the
return key, or kept typing, Xcode would change what you actually typed
(‘‘PRINTF’’) into what was correct (‘‘printf’’).

If Xcode gives you more than one choice (type the function name again, but this
time start with ‘‘get’’), use the mouse or arrow keys to select one, or continue
typing more letters of the function to narrow down the choices. To dismiss
Xcode’s auto-completion suggestion, press the Esc key. So if you type ‘‘P’’ ‘‘R’’
‘‘I’’ ‘‘N’’ ‘‘T’’ ‘‘F’’ Esc, you’ll get ‘‘PRINTF()’’. As discussed, PRINTF() isn’t a
function, so a warning now appears in your code, as shown in Figure 3-10.

Figure 3-10. An unrecognized function name warning

This time the issue is a warning instead an error. So what’s the difference? An
error is something the compiler knows is wrong. In other words ‘‘I (the compiler)
can’t make any sense of what you typed.’’ An error will prevent your program
from compiling.

A warning, by contrast, is something the compiler suspects is wrong, but can
interpret anyway. In other words ‘‘I think that this code is probably wrong, but
you’re the programmer and you’re a lot smarter than me, so I’ll do what the
code says anyway.’’ A warning will not prevent your program from compiling. It
may prevent it from linking or running. Or it maybe that it’s exactly what you
meant to write, the code is 100% correct, and the compiler is just being a
nervous Nelly. But to be honest, that’s unlikely. Try to avoid writing code that
generates warnings.

In this particular case, the reported problem is ‘‘Implicit declaration of function
‘PRINTF’ is invalid in C99.’’ Translated into English, it means that you never gave
the compiler a declaration for a function named PRINTF(), either by #including a
file where it was declared, or by declaring one yourself like you did for
SayHello(). And that’s correct, because there is no such function! When you try
to build this program, it will compile but then fail to link because the linker can’t
connect your request to call a function named PRINTF() with any known function
that’s actually been written.

CHAPTER 3: C Basics: Statements and Functions 39

The wording, and the reason it’s a warning and not an error, has to do with the
history of C. Originally (K&R) C didn’t require you to first declare a function
before you called it. You just wrote PRINTF("Hello") and the compiler assumed
there was a function named PRINTF() somewhere and would compile your code
without any errors. This resulted in thousands of programmers writing
thousands of programs that would compile OK, but then wouldn’t run because
they’d mistyped the name of a function somewhere. The ANSI and ISO
organizations decided this wasn’t good and it would be much better if you had
to explicitly declare every function before you called it. That way, if you did
mistype the name of a function, the compiler could catch it immediately. And
now, the mystery of that SayHello() declaration at the beginning of your file is
solved!

Change PRINTF() back to printf() and let’s continue.

Exploring Xcode’s Built-In Manuals
Before we move on to the next chapter, let’s take a minute to explore an
incredible resource built-in to Xcode: the Documentation browser. The
Documentation browser puts the entire set of Mac, iOS, and Xcode technical
documentation at your fingertips. To bring up the Documentation browser, either
click on the Organizer button on the right edge of the toolbar, or select Help
Documentation and API Reference, as shown in Figure 3-11.

Figure 3-11. Opening the documentation browser to the API reference

The documentation browser (Figure 3-12) is like having a library of technical
manuals at your fingertips. Wait, it is a library of technical manuals at your
fingertips! The written material available through Xcode is vast, and-----just like
your local library-----you’ll probably never read it all. But if you want to know what
a particular function does, you need help getting started using a new

CHAPTER 3: C Basics: Statements and Functions 40

technology, or you would like some advice on how to design the application
icon for your iOS app, it’s all right there.

Figure 3-12. Documentation browser

Notice the set of search options, just below the search field, as shown in Figure
3-12. If you don’t see the options, click on the magnifying glass icon on the left
side of the search field and select Show find options from the popup menu that
appears.

We recommend starting out by setting Match Type to Prefix, Doc Sets to Mac
OS X Core Library and Xcode Developer Library (select the latest version
of each), and set Languages to C and leave all other languages unchecked. This
will make it easy to search for functions and will filter out a lot of information
that’s not relevant while you’re working through this book.

CHAPTER 3: C Basics: Statements and Functions 41

To look up a Standard Library function, type the beginning of the function name
into the search field and press Return. All of the relevant matches will appear
below. Click on one to see its documentation (see Figure 3-12 again).

Getting Help Quickly
As you make your way through the book, you’ll frequently find yourself looking
up functions in the documentation browser. There is, however, a really easy way
to look up functions right from your source code. Let’s give that a try.

Open up one of your Xcode projects. To find the definition of printf(), you
could open the documentation browser, type in ‘‘printf,’’ press Return, click on
the search results, and read the documentation. Or, you could simply hold down
the Option key and click once on the word printf in your source code, as
shown in Figure 3-13.

Figure 3-13. Contextual help

Option-clicking on a function name will pop up an abbreviated synopsis of the
function’s purpose, parameters, and return value. How convenient is that? If
that’s not enough information, you can get to the full documentation either by
clicking on the tiny book icon in upper right corner of the pop-up window, or you
can skip the pop-up and go right to the full documentation window by option-
double-clicking the function name.

What’s Next?
Congratulations! You’ve made it through basic training. You know how to open
a project, compile your code, and even fix a syntax error or two. You’ve learned
about the most important function, main(), and how to declare and define your

CHAPTER 3: C Basics: Statements and Functions 42

own functions. You’ve also learned a little about printf(), the console, and the
Standard Library.

Now you’re ready to dig into the stuff that gives a C program life: variables and
operators.

CHAPTER 3 EXERCISE

Open the project Hello2.xcodeproj, and edit main.c as instructed in each step. Then, describe
the error that results.

1. Change the line
SayHello();
to
SayHello(;

2.Change things back. Now, change the following line
int main(int argc, const char * argv[])
to
int MAIN(int argc, const char * argv[])
Try to build your project.

3.Change things back. Now, delete the left curly brace after the line, like so:
int main(int argc, const char * argv[])
 SayHello();

4.Change things back. Now, change the declaration of SayHello() from
void SayHello(void);
so it reads
void SAYHELLO(void);

43

4
Chapter

C Basics: Variables and
Operators
At this point, you should feel pretty comfortable using Xcode. You should know
how to open a project and how to edit a project’s source code. You should also
feel comfortable running a project and (heaven forbid) fixing any syntax errors
that may have occurred along the way.

On the programming side, you should recognize a function when you see one.
When you think of a function, you should first think of main(), the function that
gets called to start your program. You should remember that functions are made
up of statements.

With these things in mind, you’re ready to explore the foundation of C
programming: variables and operators. Variables and operators are the building
blocks you’ll use to construct your program’s statements.

An Introduction to Variables
A large part of the programming process involves working with data. You might
need to add together a column of numbers or sort a list of names alphabetically.
The tricky part of this process is representing your data in a program, which is
where variables come in.

Variables can be thought of as containers for your program’s data. Imagine a
table with three containers sitting on it. Each container represents a different
variable. One container is labeled cup1, one labeled cup2, and the third cup3.

CHAPTER 4: C Basics: Variables and Operators 44

Now imagine you have three plastic numbers. Place one number inside each of
the three containers. Figure 4-1 shows a picture of what this might look like.

Figure 4-1. Three cups, each one labeled and each with its own value

Each cup represents a different variable.

Now imagine asking a friend to reach into each cup, pull out the number in each
one, and add the three values together. You can ask your friend to place the
sum of the three values in a fourth container created just for this purpose. The
fourth container is labeled sum and can be seen in Figure 4-2.

Figure 4-2. Four cups, one of which is the sum of the other three

This is exactly how variables work. Variables are containers for your program’s
data. You create a variable and place a value in it. You then ask the computer to
do something with the value in your variable. You can ask the computer to add
three variables together, placing the result in a fourth variable. You can even ask
the computer to take the value in a variable, multiply it by two, and place the
result back into the original variable.

Getting back to the example, now imagine that you changed the values in cup1,
cup2, and cup3. Once again, you could call on your friend to add the three
values, updating the value in the container sum. You’ve reused the same
variables, using the same formula, to achieve a different result. Here’s the C
version of this formula:

sum = cup1 + cup2 + cup3;

CHAPTER 4: C Basics: Variables and Operators 45

Every time you execute this line of source code, you place the sum of the
variables cup1, cup2, and cup3 into the variable named sum. At this point, it’s not
important to understand exactly how this line of C source code works. What is
important is to understand the basic idea behind variables. Each variable in your
program is like a container with a value in it. This chapter will teach you how to
create your own variables and how to place a value in a variable.

Working with Variables
Variables come in a variety of flavors, called types. A variable’s type determines
the type of data that can be stored in that variable. You determine a variable’s
type when you create the variable (we’ll discuss creating variables in just a
second). Some variable types are useful for working with numbers. Other
variable types are designed to work with text. In this chapter, we’ll work strictly
with variables of one type, a numerical type called int, short for ‘‘integer’’
(eventually, we’ll get into other variable types). A variable of type int can hold a
numerical value, such as 27 or ---589.

Working with variables is a two-stage process. First you create a variable; then
you use the variable. In C, you create a variable by declaring it. Declaring a
variable tells the compiler, ‘‘Create a variable for me. I need a container to place
a piece of data in.’’ When you declare a variable, you have to specify the
variable’s type as well as its name. In our earlier example, we created four
containers. Each container had a label. In the C world, this would be the same
as creating four variables with the names cup1, cup2, cup3, and sum. In C, if we
want to use the value stored in a variable, we use the variable’s name. We’ll
show you how to do this later in the chapter.

Here’s an example of a variable declaration:

int myVariable;

This declaration tells the compiler to create a variable of type int (remember, ints
are useful for working with numbers) with the name myVariable. The type of the
variable (in this case, int) is extremely important. As you’ll see, variable type
determines the type and range of values a variable can be assigned.

Variable Names
Here are a few rules to follow when you create your own variable names:

1. Variable names must always start with an uppercase or
lowercase letter (A, B, . . . , Z or a, b, . . . , z) or with an
underscore (_).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: C Basics: Variables and Operators 46

2. The remainder of the variable name must be made up of
uppercase or lowercase letters, numbers (0, 1, . . . , 9), or
underscores.

These two rules yield variable names like myVariable, THIS_NUMBER, VaRiAbLe_1,
and A1234_4321. Note that a C variable may never include a space or a character
like an ampersand (&) or asterisk (*). These rules must be followed.

TIP: While the compiler will allow you to begin a variable name with an underscore
(_) character (as in _myVar), you shouldn’t. Apple reserves all names that begin with
a single underscore. There are situations where variable names that you’ve created
can be confused with private variable names that Apple has created. In these cases,
Apple promises to use names that start with a single underscore. If you stick to using
names that do not start with an underscore, there won’t be any confusion.

Similarly, the compiler itself reserves all names that begin with two underscores, as
in __func__. You and Apple both promise not to use names that begin with two
underscores. These kinds of informal agreements between programmers, operating
system developers, and compiler engineers are called programming conventions.
We’ll tell you about conventions you need to know about as we go. And in case you
missed it, you just learned one.

However, these rules do leave a fair amount of room for inventiveness. Over the
years, different groups of programmers came up with additional guidelines (also
known as conventions or style guides) that made variable names more
consistent and a bit easier to read.

As an example of this, Unix programmers tended to use all lowercase letters in
their variable names. When a variable name consisted of more than one word,
the words were separated by an underscore. This yielded variable names like
my_variable or number_of_puppies.

Another popular convention stems from a programming language named
Smalltalk. Instead of limiting all variable names to lower case and separating
words with an underscore, Smalltalk used a convention known as InterCap,
where all the words in a variable or function name are stuck together. Rather
than include a special, separating character, each new word added to the first
word starts with a capital letter. For example, instead of number_of_puppies,
you’d use numberOfPuppies. Instead of my_variable, you’d use myVariable.
When the first character is lowercase, the style is called camelCase. (Get it? The
‘‘humps’’ are in the middle.) Function names follow the same convention, but

CHAPTER 4: C Basics: Variables and Operators 47

start with a capital letter, giving us function names such as SmellTheFlowers()
or HowMuchChangeYouGot().

Which convention should you use? For now, we’ll follow the InterCap
convention described in the previous paragraph. But as you make your way
through the programming universe, you’ll encounter different naming
conventions that vary from language to language and environment to
environment.

As mentioned in Chapter 3, C is a case-sensitive language. The compiler will
cough out an error if you sometimes refer to myVariable and other times refer to
myvariable. Adopt a variable naming convention and stick with it. Be consistent!

The Size of a Type
When you declare a variable, the compiler reserves a section of memory for the
exclusive use of that variable. When you assign a value to a variable, you are
actually modifying the variable’s dedicated memory to reflect that value. The
number of bytes assigned to a variable is determined by the variable’s type. You
should check your compiler’s documentation to see how many bytes go along
with each of the standard C types.

The Xcode compiler assigns 4 bytes to each int. Later in the book, in Chapter 8,
we’ll write a program that explores the size of a variety of C data types.

NOTE: It’s important to understand that the size of a type can change depending on
factors such as your computer’s processor type, operating system (OS X, Windows,
or Linux, for example), and your development environment. Remember to read the
documentation that comes with your compiler.

The variable declaration

int myInt;

reserves 4 bytes of memory for the exclusive use of the variable myInt. If you
later assign a value to myInt, that value is stored in the 4 bytes allocated for
myInt. If you ever refer to myInt’s value, you’ll be referring to the value stored in
myInt’s 4 bytes.

If your compiler used 2-byte ints, the preceding declaration would allocate 2
bytes of memory for the exclusive use of myInt. As you’ll see, it is important to
know the size of the types you are dealing with.

CHAPTER 4: C Basics: Variables and Operators 48

Why is the size of a type important? The size of a type determines the range of
values that type can handle. As you might expect, a type that’s 4 bytes in size
can hold a wider range of values than a type that’s only 1 byte in size. Let’s
discuss how all this works.

Bytes and Bits
Each byte of computer memory is made up of 8 bits. Each bit has a value of
either 1 or 0. Figure 4-3 shows a byte holding the value 00101011. The value
00101011 is said to be the binary representation of the value of the byte. Look
closer at Figure 4-3. Notice that each bit is numbered (the bit numbers are
above each bit in the figure), with bit 0 on the extreme right side to bit 7 on the
extreme left. This is a standard bit-numbering scheme used in most computers.

Figure 4-3. A byte holding the binary value 00101011. Note that the rightmost bit is bit 0, and the
leftmost bit is bit 7. Each bit contributes to the total value of the byte, if the bit is set to 1.

Notice also the labels that appear beneath each bit in the figure (‘‘Add 1,’’ ‘‘Add
2,’’ and so on). These labels are the key to binary numbers. Memorize them (it’s
easy: each bit is worth twice the value of its right neighbor). These labels are
used to calculate the value of the entire byte. Here’s how it works:

1. Start with a value of 0.

2. For each bit with a value of 1, add the label value below the bit.

That’s all there is to it! In the byte pictured in Figure 4-3, you’d calculate the
byte’s value by adding 1 + 2 + 8 + 32 = 43. Where did we get the 1, 2, 8, and
32? They’re the bottom labels of the only bits with a value of 1. Try another one.
What’s the value of the byte pictured in Figure 4-4?

CHAPTER 4: C Basics: Variables and Operators 49

Figure 4-4. What’s the value of this byte? Remember, only the bits set to 1 contribute to the value of
the byte.

Easy, right? 2 + 8 + 16 + 64 = 90. Right! How about the byte in Figure 4-5?

Figure 4-5. What’s the value of this byte? Note that this byte holds the largest value a byte can hold.

This is an interesting one: 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255. This
example demonstrates the largest value that can fit in a single byte. Why?
Because every bit is turned on. We’ve added everything we can add to the value
of the byte.

The smallest value a byte can have is 0 (00000000). Since a byte can range in
value from 0 to 255, a byte can have 256 possible values.

TWO’S COMPLEMENT NOTATION

Actually, the byte calculation approach in the “Bytes and Bits” section is just one of several ways
to represent a number using binary. This approach is fine if you want to represent integers that
are always greater than or equal to zero (known as unsigned integers). Computers use a different
technique, known as two’s complement notation, when they want to represent integers that
might be either negative or positive.

To represent a negative number using two’s complement notation:

1. Start with the binary representation of the positive version of the
number.

2. Complement all the bits (turn the ones into zeros and the zeros
into ones).

CHAPTER 4: C Basics: Variables and Operators 50

3. Add one to the result.

For example, the binary notation for the number 9 is 00001001. To represent –9 in two’s
complement notation, flip the bits (11110110) and then add 1. The two’s complement for –9 is
11110110 + 1 = 11110111.

The binary notation for the number 2 is 00000010. The two’s complement for –2 would be
11111101 + 1 = 11111110. Note that in binary addition, when you add 01 + 01, you get
10. Just as in regular addition, you carry the 1 to the next column.

One side effect of this scheme is that the most-significant bit (the bit on the far left, so called
because it always has the largest value) is 1 whenever the number is negative and is 0 when the
number is zero or positive. Consequently, it’s often referred to as the sign bit.

Don’t worry about the details of binary representation and arithmetic. What’s
important to remember is that the computer uses one notation for positive-only
numbers and a different notation for numbers that can be positive or negative.
Both notations allow a byte to take on one of 256 different values. The positives-
only scheme allows values ranging from 0 to 255. The two’s complement
scheme (see the ‘‘Two’s Complement Notation’’ sidebar) allows a byte to take
on values ranging from ---128 to 127. Note that both of these ranges contain
exactly 256 values.

Going from 1 Byte to 2 Bytes
So far, you’ve discovered that 1 byte (8 bits) of memory can hold one of 28 or
256 possible values. By extension, 2 bytes (16 bits) of memory can hold one of
216 or 65,536 possible values. If the 2 bytes are unsigned (never allowed to hold
a negative value), they can hold values ranging from 0 to 65,535. If the 2 bytes
are signed (allowed to hold both positive and negative values), they can hold
values ranging from -32,768 to 32,767.

A 4-byte int can hold 232 or 4,294,967,296 possible values. Wow! A signed 4-
byte int can hold values ranging from ---2,147,483,648 to 2,147,483,647, while an
unsigned 4-byte int can hold values from 0 to 4,294,967,295. Not enough?
Modern C compilers support 64-bit, or 8-byte, ints that can hold 264 or
18,446,744,073,709,551,616 possible values. Now that’s a lot of values.

To declare a variable as unsigned, precede its declaration with the unsigned
qualifier. Here’s an example:

unsigned int myInt;

CHAPTER 4: C Basics: Variables and Operators 51

Now that you’ve defined the type of variable your program will use (in this case,
unsigned int), you can assign a value to your variable.

Operators
Operators are a special character, or group of characters, that tell the computer
that you want it to do something with your variables. The add operator symbol
(+), for example, tells the compiler you want to add two numbers together. The
meaning of most operators is fairly obvious; you’ll pick up the others as you go
along.

One way to assign a value to a variable is with the assignment operator (=). The
assignment operator tells the computer to compute the value on the right side of
the = and assign that value to the variable on the left side of the =. Take a look at
this line of source code:

myInt = 237;

This statement causes the value 237 to be placed in the memory allocated for
myInt. The one important rule for the assignment operator is that the thing on
the left side of the = must be a variable that can hold the value of whatever is on
the right side of the =. In this line of code

237 = myInt;

you are asking the compiler to copy the value in myInt to the number 237. Since
you can’t change the value of a number, the compiler will report an error when it
encounters this line of code (most likely, the error message will say something
about ‘‘expression is not assignable’’). Go ahead; try this yourself.

NOTE: As we just illustrated, you can use numerical constants (such as 237) directly
in your code. In the programming world, these are called literals.

Look at this example:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 int myInt, anotherInt;

 myInt = 503;
 anotherInt = myInt;

CHAPTER 4: C Basics: Variables and Operators 52

 return 0;
}

Note that we’ve declared two variables in this program. One way to declare
multiple variables is the way we did here, separating the variables by a comma
(,). There’s no limit to the number of variables you can declare using this
method.

We could have declared these variables using two separate declaration lines:

int myInt;
int anotherInt;

Either way is fine. As you’ll see, C is an extremely flexible language. Let’s look at
some other operators.

The +, -, ++, and -- Operators
The addition (+) and subtraction (-) operators each take two values and reduce
them to a single value. An operator that operates on two values is said to be a
binary operator. An operator that operates on one value is said to be a unary
operator. A value operated on by an operator is said to be an operand.

For example, the statement

myInt = 5 + 3;

will first resolve the right side of the = operator by adding the numbers 5 and 3
together. Once that’s done, the resulting value (8) is assigned to the variable on
the left side of the = operator. This statement assigns the value 8 to the variable
myInt. Assigning a value to a variable means copying the value into the memory
allocated to that variable.

Here’s another example:

myInt = 10;
anotherInt = 12 - myInt;

The first statement assigns the value 10 to myInt. The second statement
subtracts 10 from 12 to get 2, and then assigns the value 2 to anotherInt.

The increment (++) and decrement (--) operators operate on a single value only.
++ increments (raises) the value by 1, and -- decrements (lowers) the value by 1.
Take a look:

myInt = 10;
myInt++;

CHAPTER 4: C Basics: Variables and Operators 53

The first statement assigns myInt a value of 10. The second statement changes
myInt’s value from 10 to 11. Here’s another example:

myInt = 10;
--myInt;

This time the second line of code left myInt with a value of 9. You may have
noticed that the first example showed the ++ operator following myInt, while the
second example showed the -- operator preceding myInt.

The position of the ++ and -- operators determines when their operation is
performed in relation to the rest of the statement. Placing the operator on the
right side of a variable or expression (postfix notation) tells the compiler to
resolve all values before performing the increment (or decrement) operation.
Placing the operator on the left side of the variable (prefix notation) tells the
compiler to increment (or decrement) first, and then continue evaluation.
Confused? The following examples should make this point clear:

myInt = 10;
anotherInt = myInt--;

The first statement assigns myInt a value of 10. In the second statement, the --
operator is on myInt’s right side. This use of postfix notation tells the compiler to
assign myInt’s value to anotherInt before decrementing myInt. This example
leaves myInt with a value of 9 and anotherInt with a value of 10.

Here’s the same example, written using prefix notation:

myInt = 10;
anotherInt = --myInt;

This time, the -- operator is on the left side of myInt. In this case, the value of
myInt is decremented before being assigned to anotherInt. The result? myInt
and anotherInt are both left with a value of 9.

NOTE: The uses of prefix and postfix notation shows both a strength and a weakness
of the C language. On the plus side, C allows you to accomplish a lot in a small
amount of code. In our examples, we changed the value of two different variables in
a single statement. C is powerful.

On the downside, C code written in this fashion can be extremely cryptic and difficult
to read for even the most seasoned C programmer. Write your code carefully.

CHAPTER 4: C Basics: Variables and Operators 54

The += and -= Operators
In C, you can place the same variable on both the left and right sides of an
assignment statement. For example, the following statement increases the value
of myInt by 10:

myInt = myInt + 10;

The same results can be achieved using the += operator. In other words,

myInt += 10;

is the same as

myInt = myInt + 10;

In the same way, the -= operator can be used to decrement the value of a
variable.

The statement

myInt -= 10;

decrements the value of myInt by 10.

The *, /, %, *=, /=, and %= Operators
The multiplication (*) and division (/) operators each take two values and reduce
them to a single value, much the same as the + and - operators do. The
statement

myInt = 3 * 5;

multiplies 3 and 5, leaving myInt with a value of 15. The statement

myInt = 5 / 2;

divides 5 by 2, and assuming myInt is declared as an int (or any other type
designed to hold whole numbers), assigns the integral (truncated) result to
myInt. The number 5 divided by 2 is 2.5. Since myInt can only hold whole
numbers, the value 2.5 is truncated and the value 2 is assigned to myInt.

NOTE: Math alert! Numbers like –37, 0, and 22 are known as whole numbers or
integers. Numbers like 3.14159, 2.5, and .0001 are known as real or floating point
numbers.

CHAPTER 4: C Basics: Variables and Operators 55

The modulo (%) operator makes up for the fact that integer division truncates the
quotient. Like the division operator (/) it divides the left number by the right
number, but the result is the remainder of the division instead of the quotient. In
the statements

quo = 16 / 5;
remain = 16 % 5;

the value of 16 is divided by 5 (3.2) and the truncated result (3) is assigned to the
variable quo. In the second statement, the number 16 is again divided by 5 and
the remainder of that division (1) is assigned to remain.

The *=, /=, and %= operators work much the same as their += and -=
counterparts. The statement

myInt *= 10;

is identical to the statement

myInt = myInt * 10;

Similarly, this statement

myInt /= 10;

is identical to the statement

myInt = myInt / 10;

NOTE: The / operator doesn’t always perform truncation. The accuracy of the result
is limited by the data type(s) of the operands. As an example, if the division is
performed using ints, the result will be an int and is truncated to an integer value.

Several data types (such as float) support floating point division using the / operator.
We’ll get to them later in this book.

To wrap up this discussion, it is worth mentioning that most C programmers
prefer the shortcut version of each of the operators just covered. For example,
most C programmers would use

myInt++;
myInt /= 2;

instead of

myInt = myInt + 1;
myInt = myInt / 2;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: C Basics: Variables and Operators 56

Both chunks of code will accomplish the same result. Use what you think will be
easiest for you to read late at night with lots of caffeine coursing through your
system and a steady stream of e-mails coming in from a client or boss
demanding that you finish this project immediately-----because that’s when your
coding choices will matter most.

Using Parentheses
Sometimes the expressions you create can be evaluated in several ways. Here’s
an example:

myInt = 5 + 3 * 2;

You can add 5 + 3 and then multiply the result by 2 (giving you 16). Alternatively,
you can multiply 3 by 2 and add 5 to the result (giving you 11). Which is correct?

TIP: In math class, you may have learned the PEMDAS mnemonic: do things in
Parentheses first, then Exponents, then Multiplication and Division, and finally
Addition and Subtraction. C also follows this rule, although the actual rules are a little
more complex.

C has a set of built-in rules for resolving the order of operators. As it turns out,
the * operator has a higher precedence than the + operator, so the multiplication
will be performed first, yielding a result of 11.

Though it helps to understand the relative precedence of the C operators,
keeping track of them all is hard. That’s why the C gods gave us parentheses!
Use parentheses in pairs to define the order in which you want your operators
performed. The statement

myInt = (5 + 3) * 2;

will leave myInt with a value of 16. The statement

myInt = 5 + (3 * 2);

will leave myInt with a value of 11. You can use more than one set of
parentheses in a statement, as long as they occur in pairs-----one left parenthesis
associated with each right parenthesis. The statement

myInt = ((5 + 3) * 2);

will leave myInt with a value of 16.

CHAPTER 4: C Basics: Variables and Operators 57

Operator Precedence
The previous section referred to C’s built-in rules for resolving operator
precedence. If you have a question about which operator has a higher
precedence, look it up in the chart in Table 4-1. Here’s how the table works.

Table 4-1. The Relative Precedence of C’s Built-In Operators

Operators by Precedence Order

->, ., ++ postfix, -- postfix Left to right

* pointer, & address of, + unary, - unary, !, ~,
++ prefix, -- prefix, sizeof

Right to left

Typecast Right to left

* multiply, /, % Left to right

+ binary, - binary Left to right

<< left-shift, >> right-shift Left to right

>, >=, <, <= Left to right

==, != Left to right

& bitwise-and Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^= Right to left

, Left to right

CHAPTER 4: C Basics: Variables and Operators 58

The higher an operator is in the chart, the higher its precedence. For example,
suppose you are trying to predict the result of this line of code:

myInt = 5 * 3 + 7;

First, look up the operator * in Table 4-1. Hmm, this one seems to be in the
chart twice, once with label ‘‘pointer’’ and once with the label ‘‘multiply.’’ You
can tell just by looking at this line of code that we want the multiply version. The
compiler is pretty smart. Just like you, it can tell that this is the multiply version
of *.

OK, now look up +. Yup, it’s in there twice also, once as unary and once as
binary. A unary + or - is the sign that appears before a number, like +147 or ---
32768. In this line of code, the + operator has two operands, so clearly binary +
is the one to pick.

Now that you’ve figured out which operator is which, you can see that the
multiply * is higher up on the chart than the binary +, and thus has a higher
precedence. This means that the * will get evaluated before the +, as if the
expression were written as

myInt = (5 * 3) + 7;

So far so good. Now, what about the following line of code?

myInt = 27 * 6 % 5;

Both of these operators are on the fourth line in the chart. Which one gets
evaluated first? If both operators under consideration are on the same line in the
chart, the order of evaluation is determined by the entry in the chart’s rightmost
column. In this case, the operators are evaluated from left to right. In the current
example, * will get evaluated before %, as if the line of code were written

myInt = (27 * 6) % 5;

What about this line of code?

myInt = 27 % 6 * 5;

In this case, the % will get evaluated before the *, as if the line of code were
written

myInt = (27 % 6) * 5;

TIP: When in doubt, use parentheses! If the order of operations is important and isn’t
obvious—or you just can’t remember what the operator precedence is—use
parentheses to force the order you want. There’s no cost to using parentheses,

CHAPTER 4: C Basics: Variables and Operators 59

except readability should you use too many of them. It’s much better that your
program does what you meant, instead of what you wrote.

As you look through the chart, you’ll definitely notice some operators that you
haven’t learned about yet. As you read through this book and encounter new
operators, check back with Table 4-1 to see where they fit in.

Sample Programs
So far in this chapter we’ve discussed variables (mostly of type int) and
operators (mostly mathematical). The program examples on the following pages
combine variables and operators into useful C statements. You’ll also learn a bit
more about our friend from the Standard Library, the printf() function.

Opening Operator.xcodeproj
The next program, Operator, provides a testing ground for some of the
operators covered in the previous sections. main.c declares a variable (myInt)
and uses a series of statements to change the value of the variable. By including
a printf() after each of these statements, main.c makes it easy to follow the
variable, step by step, as its value changes.

In Xcode, close any project windows that may be open. In the Finder, locate the
Learn C Projects folder and the 04.01 - Operator subfolder, and double-click the
file Operator.xcodeproj. The operator project window should appear (see
Figure 4-6).

CHAPTER 4: C Basics: Variables and Operators 60

Figure 4-6. The Operator project window

Run Operator by selecting Run from the Product menu. Xcode will compile main.c,
and then link and run the program. Compare your output to that shown in Figure
4-7. They should be about the same.

Figure 4-7. The output from running the Operator project

CHAPTER 4: C Basics: Variables and Operators 61

Stepping Through the Operator Source Code
Let’s take a look at the Operator project’s source code. In Xcode, bring up
main.c in an editing window. main.c starts off with the usual #include of stdio.h.
This provides access to printf().

#include <stdio.h>

main() starts out by defining an int named myInt:

int main(int argc, const char * argv[]) {
 int myInt;

NOTE: Earlier we used the phrase “declaring a variable” and now we’re using the
term “defining.” What’s the difference? A variable declaration is any statement that
specifies a variable’s name and type. The line int myInt; certainly does that. A
variable definition is a declaration that causes memory to be allocated for the
variable. Since the previous statement does cause memory to be allocated for
myInt, it does qualify as a definition. Later in the book, you’ll see some declarations
that don’t qualify as definitions. For now, just remember that a variable definition
causes memory to be allocated.

At this point in the program (after myInt has been declared but before any value
has been assigned to it), myInt is said to be uninitialized. In computerese,
initialization refers to the process of establishing a variable’s value for the first
time. A variable that has been declared, but that has not had a value assigned to
it, is said to be uninitialized. You initialize a variable the first time you assign a
value to it.

Since myInt was declared to be of type int, and since Xcode is currently set to
use 4-byte ints, 4 bytes of memory were reserved for myInt. Since we haven’t
placed a value in those 4 bytes yet, they could contain any value at all. If you
want a variable to contain a specific value, assign the value to the variable
yourself!

NOTE: In Chapter 7, you’ll learn about global variables. Global variables are always
set to 0 when your program starts. Note that all of the variables used in this chapter
are local variables, not global variables. Local variables are not initialized, unless you
do so yourself.

CHAPTER 4: C Basics: Variables and Operators 62

The next line of code uses the * operator to assign a value of 6 to myInt.
Following that, we use printf() to display the value of myInt in the console
window.

 myInt = 3 * 2;
 printf("myInt ---> %d\n", myInt);

The code between printf()’s left and right parentheses is known as an
argument list. The arguments in an argument list are automatically provided to
the function you are calling (in this case, printf()). The receiving function can
use the arguments passed to it to determine its next course of action.

Interestingly, when you define or declare a function, the elements between the
parentheses that correspond to the argument list are known as parameters.
You’ll learn more about parameters in Chapter 7. For the moment, let’s talk
about printf() and the arguments used by this Standard Library function.

The first argument passed to printf() defines what will be drawn in the console
window. The simplest call to printf() uses a quoted text string as its only
argument. A quoted text string consists of a pair of double-quote characters (")
with zero or more characters between them. For example, this call of printf()

printf("Hello!");

will draw the characters Hello! in the console window. Notice that the double
quote characters are not part of the text string.

In a slightly more complex scenario, you can request that printf() draw a
variable’s value in the midst of the quoted string. In the case of an int, do this by
embedding the two characters %d within the first argument and by passing the
int as a second argument. printf() will replace the %d with the value of the int.

In these two lines of code, we first set myInt to 6, use printf() to print the value
of myInt in the console window.

 myInt = 3 * 2;
 printf("myInt ---> %d\n", myInt);

This code produces this line of output in the console window:

myInt ---> 6

The two characters \n in the first argument represent a carriage return and tell
printf() to move the cursor to the beginning of the next line before it prints any
more characters. If we deleted all of the \n characters from the program, all the
output would appear on a single line in the console window. Give it a try. Just
remember to put them back in when you are done playing.

CHAPTER 4: C Basics: Variables and Operators 63

NOTE: The %d in the first argument is known as a format specifier. It specifies the
type of the argument to be included in the string to be printed. The d in the format
specifier tells printf() that you are printing an signed integer variable. The “d”
stands for “decimal.” You can also use %i (“i” for “integer”) if that’s easier to
remember. The two are interchangeable.

You can place any number of % specifications in the first argument, as long as
you follow the first argument by the appropriate number of values. Here’s
another example:

int var1, var2;

var1 = 5;
var2 = 10;
printf("var1 = %d\n\nvar2 = %d\n", var1, var2);

This chunk of code will draw this text in the console window:

var1 = 5

var2 = 10

Notice the blank line between the two lines of output. It was caused by the \n\n
in the first printf() argument. The first carriage return placed the cursor at the
beginning of the next console line (directly under the v in var1). The second
carriage return moved the cursor down one more line, leaving a blank line in its
path.

Let’s get back to the source code. The next line of main.c increments myInt
from 6 to 7, and prints the new value in the console window.

 myInt += 1;
 printf("myInt ---> %d\n", myInt);

The next line decrements myInt by 5 and prints its new value of 2 in the console
window.

 myInt -= 5;
 printf("myInt ---> %d\n", myInt);

Next, myInt is multiplied by 10, and its new value of 20 is printed in the console
window.

 myInt *= 10;
 printf("myInt ---> %d\n", myInt);

After that, myInt is divided by 4, resulting in a new value of 5.

CHAPTER 4: C Basics: Variables and Operators 64

 myInt /= 4;
 printf("myInt ---> %d\n", myInt);

Finally, myInt is divided by 2. Since 5 divided by 2 is 2.5 (not a whole number), a
truncation is performed, and myInt is left with a value of 2.

 myInt /= 2;
 printf("myInt ---> %d\n", myInt);

 return 0;
}

Opening Postfix.xcode
The next program demonstrates the difference between postfix and prefix
notation (recall the ++ and -- operators defined earlier in the chapter?) If you
have a project open in Xcode, close it. In the Finder, go into the Learn C
Projects folder and then into the 04.02 - Postfix subfolder, and double-click the
project file Postfix.xcodeproj.

Take a look at the source code in the file main.c and try to predict the result of
the two printf() calls before you run the program. There’s extra ice cream for
everyone if you get this right. Careful, this one’s tricky.

Once your guesses are locked in, select Run from the Product menu. How’d you
do? Compare your two guesses with the output in Figure 4-8. Let’s look at the
source code.

Figure 4-8. The output generated by Postfix

CHAPTER 4: C Basics: Variables and Operators 65

Stepping Through the Postfix Source Code
The first half of main.c is pretty straightforward. The variable myInt is defined to
be of type int. Then, myInt is assigned a value of 5. Next comes the tricky part.

#include <stdio.h>

int main(int argc, const char * argv[]) {
 int myInt;

 myInt = 5;

The first call to printf() actually has a statement embedded in it. This is
another great feature of the C language. Where there’s room for a variable,
there’s room for an entire statement. Sometimes, performing two actions within
the same line of code is convenient. For example, this line of code

printf("myInt ---> %d\n", myInt = myInt * 3);

first triples the value of myInt, and then passes the result (the tripled value of
myInt) on to printf(). The same could have been accomplished using two lines
of code.

myInt = myInt * 3;
printf("myInt ---> %d\n", myInt);

In general, when the compiler encounters an assignment statement where it
expects a variable, it first completes the assignment, and then passes on the
result of the assignment as if it were a variable. Let’s see this technique in
action.

In main.c, our friend the postfix operator emerges again. Just prior to the two
calls of printf(), myInt has a value of 15. The first of the two printf()’s
increments the value of myInt using postfix notation:

 printf("myInt ---> %d\n", myInt++);

The use of postfix notation means that the value of myInt will be passed on to
printf() before myInt is incremented. Therefore, the first printf() will accord
myInt a value of 15. However, when the statement is finished, myInt will have a
value of 16.

The second printf() acts in a more rational (and preferable) manner. The prefix
notation guarantees that myInt will be incremented (from 6 to 7) before its value
is passed on to printf().

 printf("myInt ---> %d", ++myInt);

 return 0;
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: C Basics: Variables and Operators 66

BREAKING THE PRINTF() INTO TWO STATEMENTS

Can you break each of these printf()s into two separate statements? Give it a try; then, read
on.

The first printf() looks like this:

printf(“myInt ---> %d\n”, myInt++);

Here’s the two-statement version:

printf(“myInt ---> %d\n”, myInt);
myInt++;

Notice that the statement incrementing myInt was placed after the printf(). Do you see why?
The postfix notation makes this necessary. Run through both versions, and verify this for
yourself.

The second printf() looks like this:

printf(“myInt ---> %d\n”, ++myInt);

Here’s the two-statement version:

++myInt;
printf(“myInt ---> %d\n”, myInt);

In this latter version, the statement incrementing myInt came before the printf(). This time,
it’s the prefix notation that makes this necessary. Again, go through both versions, and verify this
for yourself.

Our purpose for demonstrating the complexity of the postfix and prefix
operators is twofold. On one hand, it’s extremely important that you understand
exactly how these operators work from all angles. This will allow you to write
code that works and will aid you in making sense of other programmers’ code.

On the other hand, embedding prefix and postfix operators within function
arguments may save you lines of code but, as you can see, may prove a bit
confusing. So what’s a coder to do? Put clarity before brevity. Make sure your
code is readable. After all, you will likely have to go back and edit it at some
point. Readable code is much easier to maintain. As long as your code is
correct, the compiler will do the same thing with it. So write for the programmer,
not the machine.

CHAPTER 4: C Basics: Variables and Operators 67

Sprucing Up Your Code
You are now in the middle of your C learning curve. You’ve learned about
variables, types, functions, and bytes. You’ve learned about an important part of
the Standard Library, the function printf(). At this point in the learning process,
programmers start developing their coding habits.

Coding habits are the little things programmers do that make their code a little
bit different (and hopefully better!) than anyone else’s. Before you get too set in
your ways, here are a few coding habits you can, and should, add to your
arsenal.

Source Code Spacing
You may have noticed the tabs, spaces, and blank lines scattered throughout
the sample programs. These are known in C as white space. With a few
exceptions, white space is ignored by C compilers. Believe it or not, as far as
the C compiler goes, the program:

#include <stdio.h>
int main (int argc,
const char * argv[])
 {
 int myInt;myInt
=

5
; printf("myInt = %d",
myInt);}

is equivalent to the program

#include <stdio.h>

int main(int argc, const char * argv[]) {
 int myInt;

 myInt = 5;
 printf("myInt = %d", myInt);
}

CHAPTER 4: C Basics: Variables and Operators 68

NOTE: A computer language that doesn’t care about the positioning or white space in
your code is called a free-form language. C is a free-form language. This is in
contrast to languages like COBOL and Ruby that require statements to be on separate
lines, or may even require statements to be at a particular column of a line to be
correct.

While the C language is free-form, the C compiler isn’t. The statements that begin
with # (as in #include <stdio.h>) are called pre-processor directives. Pre-
processor directives are, as the name implies, commands that give instructions to the
compiler itself—before your C code is compiled (or processed). Pre-processor
directives must begin with a # and must be the only statement on that line.

The C compiler doesn’t care if you put five statements per line or if you put 20
carriage returns between your statements and your semicolons. One thing the
compiler won’t let you do is place white space in the middle of a word, such as
a variable or function name. For example, this line of code won’t compile:

my Int = 5;

Instead of a single variable named myInt, the compiler sees two items, one
named my and the other named Int. Indiscriminate white space can confuse the
compiler.

Too little white space can also confuse the compiler. For example, this line of
code won’t compile:

intmyInt;

The compiler needs at least one piece of white space to tell it where the type
(int) ends and where the variable (myInt) begins. On the other hand, as you’ve
already seen, this line compiles just fine:

myInt=5;

Since a variable name can’t contain the character =, the compiler has no
problem telling where the variable ends and where the operator begins.

As long as your code compiles properly, you’re free to develop your own white-
space style. Here are a few hints:

 Place a blank line between your variable declarations and the
rest of your function’s code. Also, use blank lines to group
related lines of code.

 Sprinkle single spaces throughout a statement. Compare

CHAPTER 4: C Basics: Variables and Operators 69

printf("myInt=",myInt);

with:

printf("myInt =", myInt);

The spaces make the second line easier to read.

 When in doubt, use parentheses. Compare

myInt=var1+2*var2+4;

with

myInt = var1 + (2*var2) + 4;

What a difference parentheses and spaces make!

 Always start variable names with a lowercase letter, using an
uppercase letter at the start of each subsequent word in the
name. This yields variable names such as myVar, areWeDone,
and employeeName.

 Always start function names with an uppercase letter, using an
uppercase letter at the start of each subsequent word in the
name. This yields function names such as DoSomeWork(),
HoldThese(), and DealTheCards().

These hints are merely suggestions. Use a set of standards that make sense for
you and the people with whom you work. The object here is to make your code
as readable as possible.

Comment Your Code
One of the most critical elements in the creation of a computer program is clear
and comprehensive documentation. When you deliver your award-winning
graphics package to your customers, you’ll want to have two sets of
documentation. One set is for your customers, who’ll need a clear set of
instructions that guide them through your wonderful new creation. The other set
of documentation consists of the comments you’ll weave throughout your code.
Source code comments act as a sort of narrative, guiding a reader through your
code. You’ll include comments that describe how your code works, what makes
it special, and what to look out for when changing it.

Well-commented code includes a comment at the beginning of each function
that describes the function, the function arguments, and the function’s variables.
Sprinkling individual comments among your source code statements to explain
the role each line plays in your program’s algorithm is also a good idea. In

CHAPTER 4: C Basics: Variables and Operators 70

addition, you should include a block of comments that describe your program’s
overall approach, solutions used, key concepts, and any other information that
will help someone maintaining your code in the future to wrap their head around
your project.

How do you add a comment to your source code? Let’s take a look.

All C compilers recognize the sequence /* as the start of a comment and will
ignore all characters until they hit the sequence */ (the end-of-comment
characters). In addition, all C99-compliant compilers support the use of // to
mark a single-line comment. All characters from // onward on the end of that
line will be ignored.

Here’s some commented code:

int main(int argc, const char * argv[]) {
 int numPieces; // Number of pieces of pie left
 numPieces = 8; // We started with 8 pieces
 numPieces--; // Peter had a piece
 numPieces--; // Quagmire had a piece
 numPieces -= 2; // Cleveland had two pieces!!
 numPieces -= 4; // Joe had the rest!!!

 printf("Slices left = %d", numPieces);
 /* How about
 some cake
 instead? */
 return 0;
}

Notice that, although most of the comments fit on the same line, the last
comment was split between three lines. The preceding code will compile just
fine.

“COMMENTING OUT” CODE

A common use of comments is to save bits and pieces of code that you don’t want to compile. As
you experiment with code, you may write something and find you don’t want it anymore—maybe
you’re going to try something different. Rather than simply deleting your hard work, turn it into a
comment like this:

//SomeFunctionThatDoesNotWork();
ThisFunctionBetterWork();

The compiler ignores comments, no mater what they contain. There are three techniques to
quickly “comment out” statements in your source.

CHAPTER 4: C Basics: Variables and Operators 71

 Insert a // at the beginning of each line. This one is so commonly used
that Xcode has an editor command that will do it for you. Select one or
more lines of source code and press ⌘/ (Command+/), or choose the
Editor Structure Comment Selection command.

 Insert a /* before your code and */ at the end. This works because the
/*…*/ style comment can extend beyond one line. It doesn’t work on
code that already contains /*…*/-style comments, because the first */
ends the comment. But it does work to comment out code within a single
line.

 Insert a new line that reads #if 0 before the first line of your code, and
a new line that reads #endif after the last line. These are more pre-
processor directives. They tell the compiler to only compile the code
between the #if and the #endif if the value of the #if statement is
non-zero. If it’s zero, all of the lines are ignored (as if they were
comments).

To “uncomment” your code so that it compiles again, simply reverse these steps. One advantage
to the last technique is that you can turn them all on again simply by changing the 0 to a 1.

Since each of the programs in this book is examined in detail, line by line, the
comments were left out. This was done to make the examples as simple as
possible. In this instance, do as I say, not as I do. Comment your code. No
excuses!

The Curly Brace Controversy
There are two generally accepted styles for placing curly braces in your code.
The first style is the one we’ve been using:

int main(int argc, const char * argv[]) {
 printf(“Hello, world!”);
 return 0;
}

The second style places the opening curly brace on its own line:

int main(int argc, const char * argv[])
{
 printf(“Hello, world!”);
 return 0;
}

CHAPTER 4: C Basics: Variables and Operators 72

We prefer the second form. Here are the advantages to this approach: we think
it makes your code look a bit cleaner, and that your eye can more easily find the
matching closing brace that matches an opening brace.

The downside to this approach is that it adds an extra line of code to every
block of code in which it is used. This means you see less code per screenful of
code listing.

Experiment with both bracing styles to see which one works best for you. In this
book, we’ve adopted the first style (left curly at the end of the line of code)
because it’s the default bracing style used by Xcode and most of Apple’s
sample code.

TIP: Xcode makes typing and finding matching braces and parentheses magically
simple. First, there’s an Xcode preference that will automatically insert a closing
brace whenever you type an opening brace. You just have to fill in the stuff that goes
between them.

When you type, or use the right arrow key to move the cursor over, a closing curly
brace or parenthesis, Xcode will highlight and blink the matching opening brace or
parenthesis. This is hugely helpful and fun to watch, too. Give it a try. There’s also
the code folding ribbon, just the left of your editing pane. Hover your cursor here and
Xcode will highlight the entire block. Finally, double-click a parenthesis, curly
bracket, or quote character and Xcode will select it, its matching sibling, and
everything in between.

What’s Next?
This chapter introduced the concepts of variables and operators, tied together in
C statements, and separated by semicolons. You learned a lot of mathematical
operators, how C decides what order they get evaluated, and how to use
parentheses to change that order. You also learned how the Standard Library
function printf() uses format specifiers (%d) to replace bits of the output with
values you supply as parameters.

In Chapter 5 you’ll take a little side trip from learning more C and spend a little
time learning some Xcode magic instead. Trust us, it will be a fun excursion.

CHAPTER 4: C Basics: Variables and Operators 73

CHAPTER 4 EXERCISES

1. Find the error in each of the following code fragments:

a. printf(Hello, world);

b. int myInt myOtherInt;

c. myInt =+ 3;

d. printf("myInt = %d");

e. printf("myInt = ", myInt);

f. printf("myInt = %d\", myInt);

g. myInt + 3 = myInt;

h. int main(int argc, const char * argv[]) {
 int myInt;
 myInt = 3;
 anotherInt = myInt;

 return 0;
 }

2. Compute the value of myInt after each code fragment is
executed:

a. myInt = 5;
myInt *= (3+4) * 2;

b. myInt = 2;
myInt *= ((3*4) / 2) - 9;

c. myInt = 2;
myInt /= 5;
myInt--;

d. myInt = 25;
myInt /= 3 * 2;

e. myInt = (3*4*5) / 9;
myInt -= (3+4) * 2;

f. myInt = 5;
printf("myInt = %d", myInt = 2);

g. myInt = 5;
myInt = (3+4) * 2;

CHAPTER 4: C Basics: Variables and Operators 74

h. myInt = 1;
myInt /= (3+4) / 6;

75

5
Chapter

Debugging
So far you’ve learned a lot about how to work with Xcode to create, edit, and
run your very own programming projects. You’ve learned about functions,
variables, operators, and the process of using those items to manipulate your
program’s data. Hopefully, as you’ve been reading and making changes to your
source code, you’ve been trying to anticipate the results of those changes.
Learning how to ‘‘think like a computer’’ will be immensely useful as you develop
your programming talent.

Sometimes it’s really convenient to know what the computer is actually doing.
You did this in the Operators and Postfix projects by using the printf()
statement, like this:

myInt = 3 * 2;
printf("myInt ---> %d\n", myInt);

The first statement stores the value for 6 in the memory assigned to the myInt
variable. The second statement uses the printf() function to output the value
of myInt to the console log so you could see, with your own eyes, that the value
was, in fact, 6.

myInt ---> 6

While this is great-----it confirms that what you thought the computer was doing
and what the computer was actually doing were one in the same-----using
printf() statements between every step of your program is a little awkward.

Look at the source for the entire Operators project. Much of the code exists
solely to help you track the value of the variables. As it turns out, there’s a tool
built right into Xcode that greatly simplifies the process of following along as the
computer runs your program. This tool is called a debugger, so called because it
helps you track down and eliminate bugs in your programs.

CHAPTER 5: Debugging 76

What’s a Debugger?
If you’ve read or watched enough science fiction, you’ve undoubtedly
encountered this scene: a physician places a patient on a table and produces
some kind of portable scanner. A whirring noise ensues and suddenly every
detail of the patient appears before the physician. The physician can see the
patient’s bones, organs, circulatory and nervous system. Vital statistics flash by.
After a brief pause, the physician announces that the victim is suffering from a
mimetic alien organism that is rewriting the telomeres of their intragenic DNA
and he will need immediate synthetic reverse transcriptase therapy in a
hyperbaric chamber … and quickly before he turn into a big lizard! Or something
like that.

Modern doctors don’t quite have medical scanners like those in science fiction
(yet), but as programmers we have something that’s pretty close to it. The
debugger is a powerful tool built into Xcode that can peer into the inner
workings of your program with an astonishing acuity. The debugger can stop
your program in its tracks, examine the values of its variables, and let you
observe and control every step of its execution.

The debugger is probably the single most powerful tool in the programmer’s
arsenal. Usually, you use it to find and correct mistakes (‘‘bugs’’) in your
program, but it can be just as useful in confirming that your program is doing
what you were expecting it to do.

THE ORIGINS OF DEBUGGING

The modern use of the terms “bug” (meaning a flaw or mistake in a computer program) and
“debug” (the act of correcting said flaw) are attributed to Rear Admiral Grace “Amazing Grace”
Hopper. In 1947, then midshipman Hopper was working on the Harvard Mark I computer. And
when we say “computer,” we mean a mechanical device that filled an entire room, weighed
10,000 pounds, and consisted of relays, switches, wires, rotating shafts, motors, and clutches. A
laptop it was not.

The program that the team was working on one day simply would not function property. After
some investigation, they found that a moth had expired in one of the relays. The hapless moth
was carefully extracted and taped into a notebook (there’s a picture of it on the Grace Hopper
Wikipedia page). From that day on, correcting a mistake in a program was referred to as
“debugging” the program.

Rear Admiral Grace Hopper was a pretty amazing person. She had ground-breaking careers both
in academics and the military. She was a pioneer of computer science and one of a handful of
visionaries that conceived of the very idea of a computer language—describing what you want

CHAPTER 5: Debugging 77

the computer to do and have that description translated into machine codes that the computer
would execute. Before that, most people thought computers could only add numbers.

Controlling Execution
So how do you use the Xcode debugger to control your program? Guess what?
You’ve been using the debugger since the first chapter!

Xcode’s debugger takes over the execution of your program every time you run
it from within Xcode. But unless you tell the debugger that you want it to do
something specific, it just stands to the side and lets your program run. Let’s
revisit Chapter 3’s Hello3 project and get the debugger to do a little bit more.

Find the 03.02 - Hello3 project folder and open Hello3.xcodeproj. You can do
that from the Finder or from within Xcode using the Open or Open Recent
commands in the File menu.

Figure 5-1. The Hello3 project

The project should still look like the one in Figure 5-1. If you run it, as you did in
Chapter 3, it will output ‘‘Hello, World!’’ to the console three times.

CHAPTER 5: Debugging 78

Setting Breakpoints
Although you can use the debugger before your program starts or even after it
finishes running, many of the really interesting things happen while your program
is running. The debugger features a mechanism called a breakpoint that stops
the program in its tracks and lets you examine and even change your program’s
variables. When you think breakpoint, think ‘‘coffee break’’ (as opposed to
‘‘break the Ming vase’’). You’re pausing, not being destructive!

Set a breakpoint by clicking in the margin to the left of any statement, as shown
in Figure 5-2. A light blue arrow will appear, indicating an active breakpoint.

Figure 5-2. Setting a breakpoint

When you run your program in Xcode, your program will chug right along, right
up to the point where it encounters the breakpoint; then it will freeze in its
tracks, before it executes the line at which the breakpoint points.

Give it a try. Set a breakpoint, then run your program; click on the Run button in

the toolbar, choose Project Run or press ⌘R. You should see something like the
window in Figure 5-3.

CHAPTER 5: Debugging 79

Figure 5-3. Stopped at a breakpoint

The short green arrow indicates the line of code that is about to be executed. In
this example, the program is about to execute the first of the three calls to
SayHello().

NOTE: The brains behind your computer, the central processing unit (CPU), keeps
track of the currently running program, storing the location of the next line to be
executed in a special memory pointer called the program counter (PC). The short
green arrow corresponds to the program counter. When we say program counter, we
are referring to that green arrow. Just thought you’d like to know!

Some interesting details have also appeared at the bottom of the workspace
window. This is called the debug area. The ribbon at the top of the debug area
has a number of important features. The icon on the immediate left edge of the
ribbon allows you to hide the debug area. It looks like a rectangle with a small
triangle inside. Go ahead and click on it-----you know you want to. The debug
area disappears and the ribbon moves to the bottom of the window. Cool. To
make it reappear, click the icon again and the debug area will reappear.

Next up on the debug ribbon is a series of four buttons that you will use quite
frequently as you debug your programs (Figure 5-4). From left to right, these are

CHAPTER 5: Debugging 80

the Continue/Pause, Step Over, Step Into, and Step Out buttons that initiate
commands of the same name. These commands are available in the Product
Debug menu and have convenient keyboard shortcuts.

Figure 5-4. Debugger controls

Stepping Over a Statement
The first button to learn is the Step Over button. This button means ‘‘execute
one line of my code and stop again.’’ Let’s do that. Click the Step Over button.
The debugger will let your program execute one line of code, in this case the
SayHello() function call, and stop again (see Figure 5-5). Now the program
counter points to the second SayHello() statement.

Figure 5-5. Hello3 stopped after executing SayHello() once

TIP: The debugger lets you show and hide both the variables view (the left pane) and
the console (right pane) in the debug area. As the name implies, the variables view
lets you examine and work with your program’s variables. You can show and hide

CHAPTER 5: Debugging 81

both panes by clicking the appropriate icon on the right side of the debug area, just
below the ribbon (see the mouse cursor in Figure 5-5).

The debugger let your program run one line of source code and stopped again.
In this case, it was a call to the SayHello() function that in turn called the
printf() function to output the first ‘‘Hello, World!’’ message to the console.

Notice that all of the statements in the SayHello() function executed before the
program stopped again. In fact, it doesn’t matter how many statements are in
SayHello() or what other functions it calls; the Step Over button will let them all
run and won’t stop the program again until they have finished and execution
returns to the main() function.

But what if you wanted to watch the details of the SayHello() function execute?
You could set another breakpoint inside the SayHello() function. Remember
that the debugger will stop whenever the program encounters an active
breakpoint. Another way is to use the Step Into button.

Stepping Into a Function
With the program counter before the second call to SayHello(), use the Step
Into button. The workspace window will now look something like Figure 5-6.

Figure 5-6. Stepping into the SayHello() function

CHAPTER 5: Debugging 82

Instead of letting the entire SayHello() function run, the debugger has advanced
to the first statement in the SayHello() function and stopped again. Now you
can step over the individual statements of the SayHello() function. Use the Step
Over button to execute the printf() statement. At this point, your workspace
should look like Figure 5-7.

Figure 5-7. Stepping over the printf() statement

Although there’s only one statement in SayHello(), this same technique will
work with more complex functions. If you want all of the statements in a function
to execute without interruption, use the Step Over button. If you want to dig into
the details of a function and step through each of its statements individually, use
the Step Into button.

NOTE: The Step Into button only applies to statements that call another function. A
simple assignment statement, such as myInt = 3, does not call any functions. If
you try to “step into” this statement, the debugger will execute the assignment
statement and stop again, just as if you had pressed the Step Over button instead.

Take a look at the left side of the workspace window, also shown in Figure 5-7.
When the debugger took control of your program, it also conveniently switched
your project navigator view to show the debug navigator. The debug navigator

CHAPTER 5: Debugging 83

displays the thread(s) and stack(s) in your program. (Every thread has its own
stack.) This is a really simple program, so you only have one thread and stack.

The stack, so called because it works like a stack of plates or cards, records the
history of the functions that lead it to this point in your program. Each time a
function is called, it gets placed on top of the stack. When the called function
calls another function, that new function is added to the top of the stack. As
functions exit, they are removed from the stack. Think of this as a trail of
breadcrumbs that helps the CPU keep track of the sequence of function calls.

Take a look at the debug navigator on the left side of Figure 5-7. Reading the
stack from the bottom up, you see there are three functions: start, main, and
SayHello. start() is the function that started your program. Its job is to call
main(), where the code you wrote begins. Your main() function called
SayHello(), and that’s where you are now. If SayHello() called another function,
that function would be ‘‘pushed’’ onto the top of the stack and would appear
above SayHello.

When SayHello() finishes, it ‘‘pops’’ off of the stack and control is returned to
the calling function-----in this case, back to main().

If you continue to press the Step Over button, the SayHello() function will finish
and you’ll end up back in main(). When this happens, SayHello disappears from
the stack.

TIP: The stack records not only which functions called the function you are in now,
but also the exact location where it was called from. It can also contain variables, and
we’ll talk about that later in the book.

In the Hello3 project, the stack shows that start() called main(), which called
SayHello(). But which of the three calls to SayHello() are you in? You can
determine this by clicking on the name of the calling function in the debug navigator
pane. When you click on a function name in the stack, the debugger will move the PC
indicator to show you the exact location where the call was made. In this case, if you
click on main in the stack, the source code for main() will display in the editing
pane and the green program counter arrow will point to the second SayHello()
call.

Changing the PC indicator doesn’t change where the program is executing, only the
debugger’s display. Click back on the topmost function in the stack to return to
where the program is currently stopped.

CHAPTER 5: Debugging 84

Imagine that SayHello() contained more than one statement. Imagine that it
contained hundreds of statements! Having to click the Step Over button a
hundred times to get back to main() makes our mouse finger hurt just to think
about it. This brings us to the third debugger button, Step Out.

Stepping Out of a Function
The Step Out button is the complement to the Step Into button. The Step Out
button tells the debugger to ‘‘let the program execute the rest of the statements
in this function, return to the statement that called this function, and stop.’’

In this project, if you step into SayHello() and then press the Step Out button,
the rest of SayHello() will execute and you’ll find yourself back in main() again,
immediately after the call to SayHello(). This is fun, isn’t it?

STEPPING OUT OF C

So what will happen if you keep stepping, right past the end of main()? An advanced question,
young Padawan! Here’s the scoop.

If you keep pressing the Step Over button or click the Step Out button while in main(), you’ll
eventually see a screen similar to that shown in Figure 5-8.

Figure 5-8. Stepping into machine code

Whoa! What happened? This doesn’t look like C source code!

CHAPTER 5: Debugging 85

What you are looking at is disassembled machine code. As mentioned earlier in the book, C is a
computer language that gets translated into machine code by a compiler. The machine code is
what the CPU actually executes. Machine code is a string of numbers that makes sense to a CPU
but is unreadable to most humans.

When you stepped out of main() you stepped into machine code that was compiled by Apple,
the BSD Unix engineers, or possibly the compiler. Neither you nor Xcode has the source code for
this machine code, so Xcode shows you the raw machine code instead. Xcode takes that
machine code and disassembles it into a form that is a bit more readable than simple numbers,
though clearly not as readable as C source code. Believe it or not, there are computer engineers
who can read that disassembly.

Interestingly, since your source code does get translated into this same machine code, you can
see your pretty C in this form if you like. Stop at a breakpoint in your program and check the
Product Debug Workflow Show Disassembly While Debugging menu item. When you are
done admiring the view, uncheck the same item to go back to C.

Full Speed Ahead
There are a couple more debugging commands of interest. The Continue button
(see Figure 5-4) starts your program running again. It won’t stop again until it
encounters another breakpoint. It’s useful for when you only want to stop at
breakpoints that you’ve set, instead of stepping through code one line at a time.
In this style of debugging, you set whatever breakpoints you want and click the
Continue button, letting the program run at full speed until it hits another
breakpoint.

Take the example shown in Figure 5-9, where a breakpoint has been set inside
the SayHello() function. In this situation, the program will begin running main()
and then stop when it encounters the printf() statement. If you press the
Continue button, it might not appear that anything happens at all (except that a
‘‘Hello, World!’’ message will have appeared in the console) because the
program counter didn’t move. What happened was this: the rest of the
SayHello() function executed; control returned to main(), which made a second
call to SayHello(); the program entered SayHello() for the second time; and
the debugger ran into the same breakpoint again and stopped.

TIP: Whenever you’re running a program under Xcode’s control the Stop button in the
toolbar becomes active. Clicking the Stop button will completely stop (also called
“abort,” “terminate,” “force quit” or “kill”) your program. Try to run your program

CHAPTER 5: Debugging 86

again while it’s still running, and Xcode will politely ask if it can stop the one that’s
running before starting it again.

Now, let’s say that you’ve set some breakpoints, made changes to your
program, and just want to let the code run freely. But when you press the Run
button in Xcode, the debugger dutifully stops your program at the first
breakpoint.

You could remove all of the breakpoints in your program, but that seems
tedious. You have two choices, one surgical and one sweeping.

First, you can disable any individual breakpoint by clicking on the breakpoint
once, as shown in Figure 5-9.

Figure 5-9. A disabled breakpoint

A disabled breakpoint appears lighter in color. Xcode remembers that you have
a breakpoint here, but the debugger will ignore it.

Your second choice is to deactivate all breakpoints using the Product Debug
Deactivate Breakpoints command. All of your breakpoints will turn grey. This
command tells the debugger to ‘‘ignore all breakpoints, whether they are
disabled or not.’’ It’s an obtuse way of telling the debugger to just step aside

CHAPTER 5: Debugging 87

and let your program run on its own. To go back to debugging, choose the
Activate Breakpoints command.

Take a breath. You’ve learned a lot about the debugger, how to control the
execution of your program, step over statements, and step into and out of
functions. But it doesn’t do much good to step through each statement in your
program if you can’t see what’s happening internally, does it? That’s what
you’re going to learn next.

Examining Variables
The debugger can also examine the values in variables, which (as you’ll see) is
incredibly useful. Close up any open projects, find the 05.01 – OperatorsDB
project folder, and open up OperatorsDB.xcodeproj. It should look like the
workspace window in Figure 5-10.

Figure 5-10. OperatorsDB project workspace

You’ll notice that this is identical to the Operators project you worked on in the
last chapter, but all of the printf() statements have been removed. Armed with
the debugger, you don’t need them anymore.

Set a breakpoint at the second assignment statement, as shown in Figure 5-10,
and run the program. Xcode will compile and run your program, and the
debugger will stop it at the breakpoint, as shown in Figure 5-11.

CHAPTER 5: Debugging 88

Figure 5-11. OperatorsDB stopped at breakpoint

Look at the debug area the bottom of the workspace window. (Note that we’ve
closed the console and are just showing the variables view.) There are three
variables listed in the variable view, argv, argc, and myInt.

NOTE: The variables argv and argc are part of every C program in the book, though
not something you need to worry about here. We’ll tell you all about argc and argv
in Chapter 9.

The listing for myInt says myInt = (int)6, telling you that the myInt variable
holds an integer value of 6. This is correct because you stopped the program
after the first assignment statement executed (the one setting its value to 2 * 3)
and just before the second assignment statement was to execute (the one that
would add 1 to it). Remember that the PC indicator (the green arrow) always
points to the line of code that is about to execute, not the one that has finished
executing.

You can also discover the value of a variable simply by pointing to it with the
mouse. Hover the cursor over any myInt symbol in this function and its value will
pop up, as shown in Figure 5-12.

CHAPTER 5: Debugging 89

Figure 5-12. Variable inspector pop-up

From the last section, you know all about controlling the execution of your
program. It’s time to put that knowledge to use. Click the Step Over button to
execute the next line of source code (see Figure 5-13).

Figure 5-13. myInt after executing second assignment statement

The line of code executes, the value of 1 was added to the myInt variable, and
the new value of myInt appears in the debug area.

We’re sure you have the basic idea by now. Continue to press the Step Over
button and watch how the myInt variable changes after each statement. Pretty
nifty, isn’t it?

TIP: Don’t forget that each of the debugger control buttons has a menu command
with a keyboard shortcut that does the same thing. If you find yourself stepping over
a lot of code, check out the commands in the Product Debug menu and learn the
keyboard shortcuts.

CHAPTER 5: Debugging 90

IN DEFENSE OF PRINTF()

You might be thinking that, now that you know about this amazing debugger thing, you’ll never
have to write another printf() statement again—at least not for the purposes of finding out
what your program is doing. That’s probably not true. While it’s possible to use the debugger for
almost all of your debugging needs, sometimes a simple printf() statement is just what the
doctor ordered, and we’ll continue to use them in this book.

One of the downsides to being able stop your program and examine it in detail is that, well, your
program stops. Let’s say you’re developing a game where you try to save innocent zombies from
being skewered by evil pink unicorns. But something goes wrong when you try to rescue a
zombie with your Apache attack helicopter. You could set a breakpoint at that point in the code,
but it will be really awkward—even impossible—to duplicate the problem if your game comes to
a screeching halt just as begin your maneuver. Using printf() (or any number of similar
logging functions, and there are a few), you can output the state of your zombie and helicopter to
the console and the program will keep running. You can make a few attempts at saving your
zombie and then stop to examine the console log.

How is a Debugger like an Iceberg?
We hope you appreciate the power of setting breakpoints, stepping through
your code, and examining variable, but don’t for an instant think that’s all the
debugger can do. The Xcode debugger is a really, really, complex tool that has
hundreds of functions, commands, and features. In addition, Xcode includes a
suite of additional programming analysis tools called Instruments. Taken
altogether, there’s probably no programming problem they can’t track down.

Don’t feel bad if you haven’t learned everything about the debugger in one day,
or a week, or several years. Seriously, you’ll probably be learning debugger
tricks for the rest of your programming life.

What’s Next?
You can now hang ‘‘debugger’’ on you programming utility belt. And it’s going to
be handy because in the next chapter you’re going to learn how to control your
program’s flow.

CHAPTER 5: Debugging 91

CHAPTER 5 EXERCISE

Open the Hello3 project. Set a breakpoint before the second call to SayHello() function in
main(). Set a second breakpoint before the printf() statement in the SayHello() function.
Run the program. Repeatedly press the Continue button until the program ends.

1. What was the total number of times the debugger stopped the
program?

2. How many times did the debugger stop before the printf()
statement?

3. Can you explain why?

93

6
Chapter

Controlling Your
Program’s Flow
So far, you’ve learned quite a bit about the C language. You know about
functions (especially one named main()), which are made up of statements,
each of which is terminated by a semicolon. You know about variables, which
have a name and a type. Up to this point, you’ve dealt with variables of type int.

You also know about operators, such as =, +, and +=. You’ve learned about
postfix and prefix notation and the importance of writing clear, easy-to-
understand code. You’ve learned about the Standard Library, a set of functions
that comes as standard equipment with every C programming environment.
You’ve also learned about printf(), an invaluable component of the Standard
Library, and how to use the debugger to control execution and examine
variables.

Finally, you’ve learned a few housekeeping techniques to keep your code fresh,
sparkling, and readable. Comment your code, because your memory isn’t
perfect, and insert some white space to keep your code from getting too
cramped.

Next up on the panel? Learning how to control your program’s flow.

Flow Control
The programs you’ve written so far have all consisted of a straightforward series
of statements, one right after the other. Every statement is executed in the order
it occurred. Flow control is the ability to control the order in which your

CHAPTER 6: Controlling Your Program’s Flow 94

program’s statements are executed. The C language provides several keywords
you can use in your program to control your program’s flow. One of these is the
if keyword.

The if Statement
The if keyword allows your program to make a decision, choosing from one of
two courses of action. In English, you might say something like this:

If it’s raining outside, I’ll bring my umbrella; otherwise I won’t.

In this sentence, you’re using if to choose between two options. Depending on
the weather, you’ll do one of two things: you’ll bring your umbrella, or you won’t
bring your umbrella. C’s if statement gives you this same flexibility. Here’s an
example:

#include <stdio.h>
int main (int argc, const char * argv[])
{
 int myInt;
 myInt = 5;
 if (myInt == 0)
 printf("myInt is equal to zero");
 else
 printf("myInt is not equal to zero");
 return 0;
}

This program declares myInt to be of type int and sets the value of myInt to 5.
Next, the if statement tests whether myInt is equal to 0. If myInt is equal to 0
(which you know is not true), it’ll print one string. Otherwise, it’ll print a different
string. As expected, this program prints the string ‘‘myInt is not equal to zero.’’

if statements come in two flavors. The first, known as plain old if, fits this
pattern:

if (expression)
 statement

An if statement will always consist of the word ‘‘if,’’ a left parenthesis, an
expression, a right parenthesis, and a statement (we’ll define both ‘‘expression’’
and ‘‘statement’’ in a minute). This first form of if executes the statement if the
expression in parentheses is true. An English example of the plain if might be

If it’s raining outside, I’ll bring my umbrella.

CHAPTER 6: Controlling Your Program’s Flow 95

Notice that this statement only tells you what will happen if it’s raining outside.
No particular action will be taken if it is not raining.

The second form of if, known as if-else, fits this pattern:

if (expression)
 statement
else
 statement

An if-else statement will always consist of the word ‘‘if,’’ a left parenthesis, an
expression, a right parenthesis, a statement, the word ‘‘else,’’ and a second
statement. This form of if executes the first statement if the expression is true
and executes the second statement if the expression is false. An English
example of an if-else statement might be

If it’s raining outside, I’ll bring my umbrella, otherwise I’ll wear a
hat.

Notice that this example tells you what will happen if it is raining outside (I’ll
bring my umbrella) and if it isn’t raining outside (I’ll wear a hat). The example
programs presented later in the chapter demonstrate the proper use of both if
and if-else.

The next step is to define the terms ‘‘expression’’ and ‘‘statement.’’

Expressions
In C, an expression is anything that has a value. For example, a variable is a
type of expression, since variables always have a value. Even uninitialized
variables have a value-----you just don’t know what the value is! The following are
all examples of expressions:

myInt
myInt + 3
(myInt + anotherInt) * 4
myInt++

An assignment statement is also an expression. Can you guess the value of an
assignment statement? Think back to Chapter 4. Remember when you included
an assignment statement as a parameter to printf()? The value of an
assignment statement is the value that gets assigned to the left side. Check out
the following code fragment:

myInt = 5
myInt += 3

CHAPTER 6: Controlling Your Program’s Flow 96

Both of these statements qualify as expressions. The value of the first
expression is 5. The value of the second expression is 8 (because you added
three to myInt’s previous value).

Here’s similar code, stitched together into a single statement:

myOtherInt = (myInt = 5) + 3;

The first expression (myInt = 5) is performed, which assigns the value of 5. The
computer then evaluates the rest of the express ((5)+3), calculates the number
8, and assigns it to the myOtherInt variable.

TIP: It’s usually considered poor programming form to include assignment
statements inside expressions because it’s so easy to misread the intent of the code.
This feature of C is really handy in those rare cases where you need it, but if there’s a
more obvious way to write your code, try to avoid this construct.

Literals can also be used as expressions. The number ‘‘8’’ has a value. Guess
what? Its value is 8. All expressions, no matter what their type, have a numerical
value.

NOTE: Technically, there is an exception to the rule that all expressions have a
numerical value. The C language has a special variable type, void, that literally
means “nothing.” Any value, variable, or function that is (or is cast to) the void type
has no value. It can’t be used in, or as, an expression. Now if you’re asking, “what’s
a cast?” or “what is type void?” we’ll get to both of these topics later in this book.
For the moment, when you see void, think “no value.”

True Expressions
Earlier, we defined the if statement as follows:

if (expression)
 statement

We then said the statement gets executed if the expression is true. Let’s look at
C’s concept of truth.

Everyone has an intuitive understanding of the difference between true and
false. We can all agree that the statement

CHAPTER 6: Controlling Your Program’s Flow 97

5 equals 3

is false. We can also agree that the following statement is true:

5 and 3 are both greater than 0

This intuitive grasp of true and false carries over into the C language. In the case
of C, however, both true and false have numerical values. Here’s how it works.

In C, any expression that has a value of 0 is said to be false. Any expression
with a value other than 0 is said to be true. As stated earlier, an if statement’s
statement gets executed if its expression is true. To put this more accurately, an
if statement’s statement gets executed if (and only if) its expression has a value
other than 0.

Here’s an example:

myInt = 27;
if (myInt)
 printf("myInt is not equal to 0");

The if statement in this piece of code first tests the value of myInt. Since myInt
is not equal to 0, the printf() gets executed.

Comparative Operators
C’s comparative operators let your program compare two numbers.
Comparative operators compare their left side with their right side and produce
a value of either 1 (true) or 0 (false), depending on the relationship of the two
sides.

For example, the operator == determines whether the expression on the left is
equal in value to the expression on the right. The expression

myInt == 5

evaluates to 1 if myInt is equal to 5 and to 0 if myInt is not equal to 5.

Here’s an example of the == operator at work:

if (myInt == 5)
 printf("myInt is equal to 5");

If myInt is equal to 5, the expression myInt == 5 evaluates to 1, and printf()
gets called. If myInt isn’t equal to 5, the expression evaluates to 0, and the
printf() is skipped. Just remember, the key to triggering an if statement is an
expression that resolves to a value other than 0.

CHAPTER 6: Controlling Your Program’s Flow 98

Table 6-1 shows some of the other comparative operators. You’ll see some of
these operators in the example programs later in the chapter.

Table 6-1. Comparative Operators

Operator Resolves to 1 if . . .

== Left side is equal to right

!= Left side is not equal to right

< Left side is less than right

> Left side is greater than right

<= Left side is less than or equal to right

>= Left side is greater than or equal to right

Logical Operators
The C standard provides a pair of constants that really come in handy when
dealing with the next set of operators. The constant true has a value of 1, while
the constant false has a value of 0. Both of these constants are defined in the
include file <stdbool.h>. You can use these constants in your programs to make
them a little easier to read. Read on, and you’ll see why.

NOTE: In addition to true and false, most C environments also provide the
constants TRUE and FALSE (with values of 1 and 0 respectively). Before the C99
standard, the C language didn’t have a Boolean variable type, so programmers
created these ad hoc constants. If you’re writing modern C code, use bool, true,
and false. If you see TRUE and FALSE in other people’s code, just know it means
the same thing.

The members of the next set of operators are known, collectively, as logical
operators. The set of logical operators is modeled on the mathematical concept
of truth tables. If you don’t know much about truth tables (or are just frightened
by mathematics in general), don’t panic. Everything you need to know is outlined
in the next few paragraphs.

CHAPTER 6: Controlling Your Program’s Flow 99

NOTE: Truth tables are part of a branch of mathematics known as Boolean algebra,
named for George Boole, the man who developed it in the late 1830s. The term
“Boolean” has come to mean a variable that can take one of two values. Bits are
Boolean; they can take on the value 0 or 1.

The Not Operator
The first of the set of logical operators is the ! operator, which is commonly
referred to as the not operator. For example, !A is pronounced ‘‘not A.’’

The ! operator turns true into false and false into true. Table 6-2 shows the truth
table for the ! operator. In this table, T stands for true, which has the value 1,
and F stands for false, which has the value 0. The letter ‘‘A’’ in the table
represents an expression. If the expression A is true, applying the ! operator to
A yields the value false. If the expression A is false, applying the ! operator to A
yields the value true.

Table 6-2. Truth Table for the ! Operator

A !A

T F

F T

Here’s a piece of code that demonstrates the ! operator:

bool myFirstBool, mySecondBool;
myFirstBool = false;
mySecondBool = ! myFirstBool;

The first thing you’ll notice about this chunk of code is the new data type, bool.
A bool can hold either a 0 or a 1. That’s it. Note that bools are perfect for
working with logical operators. This example starts by declaring two bools. You
assign the value false to the first bool, and then use the ! operator to turn the
false into a true and assign it to the second bool.

Take another look at Table 6-2. The ! operator converts true into false and
false into true. What this really means is that ! converts 0 to 1 and any non-
zero value to 0, which comes in handy when you are working with an if
statement’s expression, like this one:

CHAPTER 6: Controlling Your Program’s Flow 100

if (mySecondBool)
 printf("mySecondBool must be true");

The previous chunk of code translated mySecondBool from false to true, which
is the same thing as saying that mySecondBool has a value of 1. Either way,
mySecondBool will cause the if to fire, and the printf() will get executed.

Take a look at this piece of code:

if (! mySecondBool)
 printf("mySecondBool must be false");

This printf() will get executed if mySecondInt is false. Do you see why? If
mySecondBool is false, then !mySecondInt must be true.

The And and Or Operators
The ! operator is a unary operator. Unary operators operate on a single
expression. The other two logical operators, && and ||, are binary operators.
Binary operators, such as the == operator presented earlier, operate on two
expressions, one on the left side and one on the right side of the operator.

The && operator is commonly referred to as the logical and operator. The result
of an && operation is true if, and only if, both the left side and the right side are
true. Here’s an example:

bool hasCar, hasTimeToGiveRide;
hasCar = true;
hasTimeToGiveRide = true;
if (hasCar && hasTimeToGiveRide)
 printf("Hop in - I’ll give you a ride!\n");
else
 printf("I have no car, no time, or no car and no time!\n");

This example uses two variables. One indicates whether the program has a car,
the other whether the program has time to give you a ride to the mall. All
philosophical issues aside (can a program have a car?), the question of the
moment is, which of the two printf()’s will fire? Since both sides of the && are
true, the first printf() will be called. If either one (or both) of the expressions
were false, the second printf() would be called. Another way to think of this is
that you’ll only get a ride to the mall if your friendly program has a car and has
time to give you a ride. If either of these is not true, you’re not getting a ride. By
the way, notice the use here of the second form of if, the if-else statement.

The || operator is commonly referred to as the logical or operator. The result of
an || operation is true if the left side, the right side, or both sides of the || are

CHAPTER 6: Controlling Your Program’s Flow 101

true. Put another way, the result of an || is false if, and only if, both the left side
and the right side of the || are false. Here’s an example:

bool nothingElseOn, newEpisode;
nothingElseOn = true;
newEpisode = true;
if (newEpisode || nothingElseOn)
 printf("Let’s watch Family Guy!\n");
else
 printf("Something else is on or I’ve seen this one.\n");

This example uses two variables to decide whether or not you should watch
Family Guy. One variable indicates whether anything else is on right now, and
the other tells you whether this episode is a rerun. If this is a brand-new episode
or if nothing else is on, you’ll watch Family Guy.

Here’s a slight twist on the previous example:

int nothingElseOn, itsARerun;
nothingElseOn = true;
itsARerun = false;
if ((! itsARerun) || nothingElseOn)
 printf("Let’s watch Family Guy!\n");
else
 printf("Something else is on or I’ve seen this one.\n");

This time, the variable newEpisode has been replaced with its exact opposite,
itsARerun. Look at the logic that drives the if statement. Now you’re combining
itsARerun with the ! operator. Before, you cared whether the episode was a
newEpisode. This time, you are concerned that the episode is not a rerun. See
the difference?

Both the && and the || operators are summarized in the table in Table 6-3. Note
that A&&B is only true if A and B are both true. A||B is true if A, B, or both are
true.

Table 6-3. Truth Table for the && and || Operators

A B A && B A || B

T T T T

T F F T

F T F T

F F F F

CHAPTER 6: Controlling Your Program’s Flow 102

NOTE: On most keyboards, you type an & (ampersand) character by holding down the
Shift key and typing a 7. You type a | character by holding down the Shift key and
typing a \ (backslash). Don’t confuse the | with the letters L or I, or with the !
character.

TruthTester.xcodeproj
If you look in the folder Learn C Projects, you’ll find a subfolder named 06.01 -
TruthTester that contains a project that implements the three examples just
mentioned. Open the project TruthTester.xcodeproj. Take a look at the source
code in main.c. Play with the code. Take turns changing the variables from true
to false and back again. Use this code to get a good feel for the !, &&, and ||
operators.

You might also try commenting out the line #include <stdbool.h> toward the
top of the file. To do this, just insert the characters // at the very beginning of
the line. You’ll quickly see a number of errors complaining that bool, true, and
false are undeclared. Remember this! As you write your own programs, be sure
to #include <stdbool.h> if you want to use bool, true, and false.

Compound Expressions
All of the examples presented so far have consisted of relatively simple
expressions. Here’s an example that combines several different operators:

int myInt;
myInt = 7;
if ((myInt >= 1) && (myInt <= 10))
 printf ("myInt is between 1 and 10");
else
 printf ("myInt is not between 1 and 10");

This example tests whether a variable is in the range between 1 and 10. The key
here is the expression that lies between the if statement’s parentheses:

(myInt >= 1) && (myInt <= 10)

This expression uses the && operator to combine two smaller expressions.
Notice that the two smaller expressions were each surrounded by parentheses
to avoid any ambiguity. If you leave out the parentheses, like

myInt >= 1 && myInt <= 10

CHAPTER 6: Controlling Your Program’s Flow 103

the expression is exactly the same; refer to the Operator Precedence section in
Chapter 3. Once again, you use parentheses just to clarify exactly what you
mean.

Statements
At the beginning of the chapter, we defined the if statement as follows:

if (expression)
 statement

We’ve covered expressions pretty thoroughly. Now, let’s look at the statement.
At this point in this book, you probably have a pretty intuitive model of the
statement. You’d probably agree that

myInt = 7;

is a statement. But is the following one statement or two?

if (isCold)
 printf("Put on your sweater!");

Actually, this code fragment is a statement within another statement: printf() is
one statement residing within a larger statement, the if statement.

The ability to break your code out into individual statements is not a critical skill.
Getting your code to compile, however, is critical. As new types of statements
are introduced (like the if and if-else introduced in this chapter), pay attention
to the statement syntax. And pay special attention to the examples. Where do
the semicolons go? What distinguishes this type of statement from all other
types?

As you build up your repertoire of statement types, you’ll find yourself using one
type of statement within another. That’s perfectly acceptable in C. In fact, every
time you create an if statement, you’ll use at least two statements, one within
the other. Take a look at this example:

if (myVar >= 1)
 if (myVar <= 10)
 printf("myVar is between 1 and 10");

This example used an if statement as the statement for another if statement.
This example calls the printf() if both if expressions are true; that is, if myVar
is greater than or equal to 1 and less than or equal to 10.

You could have accomplished the same result with this piece of code:

if ((myVar >= 1) && (myVar <= 10))
 printf("myVar is between 1 and 10");

CHAPTER 6: Controlling Your Program’s Flow 104

This piece of code is a little easier to read.

There are times, however, when the method demonstrated in the first piece of
code is preferred. Take a look at this example:

if (myVar != 0)
 if ((1 / myVar) < 1)
 printf("myVar is in range");

One thing you don’t want to do in C is divide a number by zero. Any number
divided by zero is infinity, which can’t be represented as an integer, no matter
how many bits your integer has. Consequently, most computers will simply
terminate a program that attempts to divide an integer by 0. It will typically
report an ‘‘arithmetic exception’’ and your program will simply stop. The first
expression in this example tests to make sure myVar is not equal to zero. If myVar
is equal to zero, the second expression won’t even be evaluated! The sole
purpose of the first if is to make sure the second if never tries to divide by
zero. Make sure you understand this point.

What would happen if you wrote the code this way:

if ((myVar != 0) && ((1 / myVar) < 1))
 printf(“myVar is in range”);

As it turns out, exactly the same thing. (Don’t feel bad if you guessed some
other result.) If the left half of the && operator evaluates to false, the right half of
the expression will never be evaluated and the entire expression will evaluate to
false. Why? Because if the left operand is false, it doesn’t matter what the right
operand is-----true or false-----the expression will evaluate to false. Be aware of this
as you construct your expressions.

NOTE: The approach of not evaluating the remainder of an expression if the
evaluation of the first portion of the expression determines the value of the
expression is known as short circuit evaluation or minimal evaluation.

The Curly Braces
Earlier in this book, you learned about the curly braces ({}) that surround the
body of every function. These braces also play an important role in statement
construction. Just as parentheses can be used to group terms of an expression
together, curly braces can be used to group multiple statements together.
Here’s an example:

CHAPTER 6: Controlling Your Program’s Flow 105

onYourBack = true;
if (onYourBack) {
 printf("Flipping over");
 onYourBack = false;
}

In this example, if onYourBack is true, both of the statements in curly braces will
be executed. A pair of curly braces can be used to combine any number of
statements into a single super-statement, also known as a block. You can use
this technique anywhere a statement is called for. In other words, anywhere C
will allow a single statement, you can replace that with a block containing any
number of statements.

Curly braces can be used to organize your code, much as you’d use
parentheses to ensure that an expression is evaluated properly. This concept is
especially appropriate when dealing with nested statements. Consider this
code:

if (myInt >= 0)
 if (myInt <= 10)
 printf("myInt is between 0 and 10.\n");
else
 printf("myInt is negative.\n"); // <-- Error!!!

Do you see the problem with this code? Again, don’t feel bad if you don’t. The
mistake is pretty subtle. The problem is this: which if does the else belong to?
As written (and as formatted), the else looks like it belongs to the first if. That
is, if myInt is greater than or equal to 0, the second if is executed; otherwise,
the second printf() is executed. Is this right?

Nope. As it turns out, an else belongs to the if closest to it (the second if, in
this case). Here’s a slight rewrite to show you how the compiler interprets the
code:

if (myInt >= 0)
 if (myInt <= 10)
 printf("myInt is between 0 and 10.\n");
 else
 printf("myInt is not between 0 and 10.\n");

One point here is that formatting is nice, but it won’t fool the compiler. More
importantly, this example shows how easy it is to make a mistake. Check out
this version of the code:

if (myInt >= 0) {
 if (myInt <= 10)
 printf("myInt is between 0 and 10.\n");
} else {
 printf("myInt is negative.\n");

CHAPTER 6: Controlling Your Program’s Flow 106

}

Do you see how the curly braces help? In a sense, they act to hide the second
if inside the first if statement. There is no chance for the else to connect to the
hidden if.

No one we know ever got fired for using too many parentheses or too many
curly braces.

Where to Place the Semicolon
So far, the statements you’ve seen fall into two categories: simple statements
and compound statements. Function calls, such as calls to printf(), and
assignment statements are called simple statements. Always place a semicolon
at the end of a simple statement, even if it is broken over several lines, like this:

printf("%d%d%d%d",
 var1, var2, var3, var4);

Statements made up of several parts, including (possibly) other statements, are
called compound statements. Compound statements obey some pretty strict
rules of syntax. The if statement, for example, always looks like this:

if (expression)
 statement

Notice that there are no semicolons in this definition. The statement part of the
if can be a simple statement, a block, or another compound statement. If the
statement is simple, follow the semicolon rule for simple statements and place a
semicolon at the end of the statement. If the statement is a block, it will be two
braces ({}) with other statements between them. If the statement is compound,
repeat these rules.

Remember that using curly braces, or curlies, to build a block out of smaller
statements does not require the addition of a semicolon; a simple statement
ends with a semicolon, while a block begins and ends with curly braces.

Two Common Pitfalls
While we’re on the subjects of where to place semicolons and using assignment
operators as values, here are a couple of common C programming mistakes and
how to avoid them.

CHAPTER 6: Controlling Your Program’s Flow 107

The Loneliest Statement
We’ve talked about how much you can cram into a statement, but how little can
you put in a statement? Guess what? A single semicolon qualifies as a
statement, albeit a somewhat lonely one. For example, this code fragment

if (isDark)
 ;

is a legitimate (and thoroughly useless) if statement. If isDark is true, the
semicolon statement gets executed. The semicolon by itself doesn’t do anything
but fill the bill where a statement is needed.

Now look at this code:

if (isDark);

This looks like a perfectly respectable C statement. (Hey, it ends in a semicolon!)
Remember that C is a free-form language and doesn’t care about indenting or
whitespace. The problem is that this statement also does absolutely nothing,
and this really becomes a problem when you then write this classic gem:

if (isDark);
 TurnOnLights();

The problem, as you might have guessed, is that the statement TurnOnLights()
gets performed whether the isDark variable is true or false. Now there are times
where the semicolon by itself is exactly what you need, but after an if
statement isn’t one of them.

Unintentional Assignment
Earlier we talked about using the value of an assignment operator (=) as an
expression. Sometime these appear when we don’t intend them to, as in this bit
of foolishness:

i = 3;
if (i = 5)
 printf("Never print this statement");

So what do you think happens when this code executes? If you guessed ‘‘the
text ‘Never print this statement’ appears on the console,’’ give yourself a gold
star. What happens is this:

1. The value 3 is assigned to the variable i.

2. The value 5 is assigned to the variable i.

CHAPTER 6: Controlling Your Program’s Flow 108

3. The if statement evaluates its expression (5) and determined
that it is true (not zero).

4. The printf() function is executed.

Do you see the mistake now? Instead of using the equals operator (==) in the
expression, we used the assignment operator (=) instead. So instead of
comparing i to 5, the value of i was inadvertently set to 5.

Avoiding Common Pitfalls
These are a few more common mistakes that C programmers make------even
seasoned ones. So how do you avoid them? Clever programmers have used
various tricks over the years. For example, one trick that you’ll see often is to
place the constant on the left in if statements, like this:

if (5 == i)
 printf("Never print this statement");

If you accidentally substitute = for ==, the expression will not compile.
Remember back in Chapter 4 where you flipped the assignment around so that
you were assigning a variable to a constant? You can’t do that, and the compiler
will tell you that you can’t. But this only helps in some circumstances. What if
you’re comparing two variables?

The folks who develop compilers are a pretty talented bunch, and they haven’t
been sitting on their hands. A modern C compiler will issue a variety of warnings
when it sees something suspicious. Look what happens in Xcode when we try to
write an if statement with an assignment (see Figure 6-1).

Figure 6-1. An if statement with assignment warning

The compiler thinks that it’s pretty unusual to find an assignment operator as the
expression of an if statement. It kindly offers to change the assignment (=) into
a comparison (==), which is actually what we meant to write. It also offers to
wrap the assignment in a gratuitous set of parentheses. This unneeded set of
parentheses doesn’t change the meaning of the statement, but it is a nod to the
compiler that says, ‘‘I know this is an assignment expression; please don’t

CHAPTER 6: Controlling Your Program’s Flow 109

complain about it.’’ This is one of those rare situations where using unnecessary
parentheses can trip you up.

Let’s look at what the compiler has to say about our second faux pas (see
Figure 6-2).

Figure 6-2. An if statement with empty body

Again, the compiler caught the mistake. The warning in Figure 6-2 says that
there’s no actionable statement associated with this if statement, so the entire
if statement is useless. It’s not a compiler error because, technically, it’s valid C
syntax. It just doesn’t make any sense. You can’t brush the compiler off on this
one; it knows this is a useless statement. You either need to remove the errant
semicolon or remove the if statement altogether to make the warning go away.

TURNING ON COMPILER WARNINGS

There are actually scores of suspicious patterns that the compiler will look out for. If you want to
enlist the compilers help in pointing them out, you can turn more of these warnings on in the
Xcode build settings. Start by selecting the top-level project in the project navigator as shown in
Figure 6-3.

Figure 6-3. Enabling additional warnings

CHAPTER 6: Controlling Your Program’s Flow 110

The project’s settings will appear in the editor pane, also shown in Figure 6-3. Select the
project’s name under the Project heading (on the left side of the editor pane); this will edit the
setting for the entire project. Choose the Build Settings tab, then choose All and Combined.
Scroll down until you find the compiler warnings section.

In Figure 6-3, we’re turning on the Implicit Signedness Conversion. “The what?” you say? OK,
some of the warnings can be a bit confusing. To get a better explanation choose View Utilities
 Show Quick Help Inspector, as shown in Figure 6-4.

Figure 6-4. Quick help for compiler warnings

The help explains that this compiler setting warns “about implicit integer conversions that
change the signedness of an integer value.” Maybe that doesn’t help that much, so let us
explain. Remember back in Chapter 3 when we talked the two ways of representing integers,
unsigned (simple) and signed (two’s compliment)? If you turn on this setting, it will warn you
whenever you assign an unsigned integer to a variable that’s interpreted as a signed integer, and
vice versa. If the value of the number is negative, the assignment will change the interpretation
of the value—and that’s probably something you don’t want.

With the Quick Help panel open, select some of the other warnings and turn on any that you think
might be helpful. Experienced programmers tend to turn on lots of warnings, and then write their
code so it doesn’t trip any of those warnings. It’s a good habit to adopt.

The while Statement
The if statement uses the value of an expression to decide whether to execute
or skip over a statement. If the statement is executed, it is executed just once.
Another type of statement, the while statement, repeatedly executes a

CHAPTER 6: Controlling Your Program’s Flow 111

statement as long as a specified expression is true. The while statement follows
this pattern:

while (expression)
 statement

The while statement is also known as the while loop, because once the
statement is executed, the while loops back to reevaluate the expression.
Here’s an example of the while loop in action:

int i;
i=0;
while (++i < 3)
 printf("Looping: %d\n", i);
printf("We are past the while loop.");

This example starts by declaring a variable, i, of type int. i is then initialized to
0. Next comes the while loop. The first thing the while loop does is evaluate its
expression. The while loop’s expression is

++i < 3

Before this expression is evaluated, i has a value of 0. The prefix notation used
in the expression (++i) increments the value of i to 1 before the remainder of the
expression is evaluated. The evaluation of the expression results in true, since 1
is less than 3. Since the expression is true, the while loop’s statement, a single
printf(), is executed.

Here’s the output after the first pass through the loop:

Looping: 1

Next, the while loops back and reevaluates its expression. Once again, the
prefix notation increments i, this time to a value of 2. Since 2 is less than 3, the
expression evaluates to true, and the printf() is executed again.

Here’s the output after the second pass through the loop:

Looping: 1

Looping: 2

Once the second printf() completes, it’s back to the top of the loop to
reevaluate the expression. Will this never end? Once again, i is incremented,
this time to a value of 3. Aha! This time, the expression evaluates to false, since
3 is not less than 3. Once the expression evaluates to false, the while loop ends,
and control passes to the next statement, the second printf() in the example:

printf("We are past the while loop.");

CHAPTER 6: Controlling Your Program’s Flow 112

The while loop was driven by three factors: initialization, modification, and
termination. Initialization is any code that affects the loop but occurs before the
loop is entered. In this example, the critical initialization occurred when the
variable i was set to 0.

COUNTER VARIABLE NAMING

Frequently, you’ll use a variable in a loop that changes value each time through the loop. In this
example, the variable i was incremented by 1 each time through the loop. The first time through
the loop, i had a value of 1. The second time, i had a value of 2. Variables that maintain a value
based on the number of times through a loop are known as counters.

In the interest of clarity, some programmers use names like counter or loopCounter. The
nice thing about names like i, j, and k is that they don’t get in the way, as they don’t take up a
lot of space on the line. On the other hand, your goal should be to make your code as readable as
possible, so it would seem that a name like counter would be better than the uninformative i,
j, or k.

One popular compromise holds that the closer a variable’s use is to its declaration, the shorter its
name can be. Once again, pick a style you are comfortable with, and stick with it!

Modification is any code within the loop that changes the value of the loop’s
expression. In this example, the modification occurred within the expression
itself when the counter, i, was incremented.

Termination is any condition that causes the loop to terminate. In this example,
termination occurs when the expression has a value of false. This occurs when
the counter, i, has a value that is not less than 3.

Take a look at this example:

int i;
i = 1;
while (i < 3) {
 printf("Looping: %d\n", i);
 i++;
}
printf("We are past the while loop.");

This example produces the same results as the previous example. This time,
however, the initialization and modification conditions have changed slightly. In
this example, i starts with a value of 1 instead of 0. In the previous example, the

CHAPTER 6: Controlling Your Program’s Flow 113

++ operator was used to increment i at the very top of the loop. This example
modifies i at the bottom of the loop.

Both of these examples show different ways to accomplish the same end. The
phrase ‘‘there’s more than one way to eat an Oreo’’ sums up the situation
perfectly. There will always be more than one solution to any programming
problem. Don’t be afraid to do things your own way. Just make sure your code
works properly and is easy to read.

The for Statement
Nestled inside the C language, right next to the while statement, is the for
statement. The for statement is similar to the while statement, following the
basic model of initialization, modification, and termination. Here’s the pattern for
a for statement:

for (expression1 ; expression2 ; expression3)
 statement

The first expression represents the for statement’s initialization. Typically, this
expression consists of an assignment statement, setting the initial value of a
counter variable. This first expression is evaluated once, before the loop begins.

The second expression is identical in function to the expression in a while
statement, providing the termination condition for the loop. This expression is
evaluated each time through the loop, before the statement is executed.

Finally, the third expression provides the modification portion of the for
statement. This expression is performed at the bottom of the loop, immediately
following execution of the statement.

Note that all three of these expressions are optional and may be left out entirely.
For example, here’s a for loop that leaves out all three expressions:

for (; ;)
 DoSomethingForever();

Since this loop has no terminating expression, it is known as an infinite loop.
Infinite loops are generally considered bad form and should be avoided like the
plague! The for loop can also be described in terms of a while loop:

expression1;
while (expression2) {
 statement
 expression3;
}

CHAPTER 6: Controlling Your Program’s Flow 114

TIP: Since you can always rewrite a for loop as a while loop, why does C have a
for loop at all? The for loop represents a particular programming concept:
stepping through a range of numbers or elements, performing some action at each
step. A while loop represents a slightly different concept: perform some action
repeatedly until a condition is met. Technically, you can write any for loop using a
while statement, and any while loop using a for statement. But one of the goals
of programming is transparency; your code should look like what it does. So choose
the keyword that most closely matches your intent. As you gain experience
programming, you’ll get a sense for when a for statement or a while statement
makes the intent of your code clearer—even if they’re doing exactly the same thing.

Here’s an example of a very typical for loop:

int i;
for (i = 1; i < 3; i++)
 printf("Looping: %d\n", i);
printf("We are past the for loop.");

This example is identical in functionality to the while loops presented earlier.
Note the three expressions on the first line of the for loop. Before the loop is
entered, the first expression is performed.

i = 1

Once the expression is executed, i has a value of 1. You’re now ready to enter
the loop. At the top of each pass through the loop, the second expression is
evaluated.

i < 3

If the expression evaluates to true, the loop continues. Since i is less than 3,
you can proceed. Next, the statement is executed.

printf("Looping: %d\n", i);

Here’s the first line of output:

Looping: 1

Having reached the bottom of the loop, the for loop performs its third
expression.

i++

This changes the value of i to 2. You go back to the top of the loop and
evaluate the termination expression.

CHAPTER 6: Controlling Your Program’s Flow 115

i < 3

Since i is still less than 3, the loop continues. Once again, printf() does its
thing. The console window looks like this:

Looping: 1

Looping: 2

Next, the for statement performs expression3, incrementing the value of i to 3.

i++

Again, you go back to the top of the loop and evaluate the termination
expression.

i < 3

Lo and behold! Since i is no longer less than 3, the loop ends and the second
printf() in the example is executed.

printf("We are past the for loop.");

As was the case with while, for can take full advantage of a pair of curly braces,
like so:

for (i = 0; i < 10; i++) {
 DoThis();
 DoThat();
 DanceALittleJig();
}

In addition, both while and for can take advantage of the loneliest statement,
the lone semicolon:

for (i = 0; i < 1000; i++)
 ;

This example does nothing 1,000 times. Actually, the example does take some
time to execute. The initialization expression is evaluated once, and the
modification and termination expressions are each evaluated 1,000 times.
Here’s a while version of the loneliest loop:

i = 0;
while (i++ < 1000)
 ;

NOTE: Some compilers will eliminate a loop containing only the semicolon and just
set i to its terminating value (the value it would have if the loop executed normally).
This is an example of code optimization. The nice thing about code optimization is

CHAPTER 6: Controlling Your Program’s Flow 116

that it can make your code run faster and more efficiently. The downside is that an
optimization pass on your code can sometimes cause unwanted side effects, like
eliminating the while loop just discussed. Optimization is controlled in your project’s
build settings, the same place you were setting the compiler warnings (see Figure 6-
3). Xcode projects, by default, do not perform optimization while you’re editing and
testing, but will perform optimization when you’re ready to compile your program and
give it to someone else (called a deployment build). Search the Xcode help for “build
settings” and “Xcode scheme” for more information.

LoopTester.xcodeproj
Interestingly, there is an important difference between the for and while loops
you just saw. Take a minute to look back and try to predict the value of i the
first time through each loop and after each loop terminates. Were the results the
same for the while and for loops? Hmm … you might want to take another
look.

Here’s a sample program that should clarify the difference between these two
loops. Look in the folder Learn C Projects, inside the subfolder named 06.02 -
LoopTester, and open the project LoopTester.xcodeproj. LoopTester
implements a while loop and two slightly different for loops. Run the project.
Your output should look like that shown in Figure 6-5.

CHAPTER 6: Controlling Your Program’s Flow 117

Figure 6-5. The output from LoopTester, showing the results from a while loop and two slightly
different for loops

LoopTester starts off with the standard #include. main() defines a counter
variable i and sets i to 0.

#include <stdio.h>
int main (int argc, const char * argv[]) {
 int i;
 i = 0;

main() then enters a while loop.

while (i++ < 4)
 printf("while: i=%d\n", i);

The loop executes four times, resulting in this output:

while: i=1
while: i=2
while: i=3
while: i=4

Do you see why? If not, set a breakpoint and step over each statement using the
debugger. Watch the value for i change as the loop progresses, as shown in
Figure 6-6. Remember, since you are using postfix notation (i++), i gets

CHAPTER 6: Controlling Your Program’s Flow 118

incremented after the test is made to see if it is less than 4. The test and the
increment happen at the top of the loop, before the loop is entered.

Figure 6-6. Watching i change in a while loop

Once the loop completes, it prints the value of i again.

printf("after while loop, i=%d.\n\n", i);

Here’s the result:

after while loop, i=5

Here’s how you got that value. The last time through the loop (with i equal to 4),
you go back to the top of the while loop, test to see if i is less than 4 (it no
longer is), and then do the increment of i, bumping it from 4 to 5.

OK, one loop down, two to go. This next loop looks like it should accomplish the
same thing. The difference is that you don’t do the increment of i until the
bottom of the loop, after you’ve been through the loop once already.

for (i = 0; i < 4; i++)
 printf("first for: i=%d\n", i);

As you can see by the output, i ranges from 0 to 3 instead of from 1 to 4.

first for: i=0
first for: i=1
first for: i=2
first for: i=3

Once you drop out of the for loop, you again print the value of i.

CHAPTER 6: Controlling Your Program’s Flow 119

printf("After first for loop, i=%d.\n\n", i);
Here’s the result:
after first for loop, i=4

This time, the while loop ranged i from 1 to 4, leaving i with a value of 5 at the
end of the loop. The for loop ranged i from 0 to 3, leaving i with a value of 4 at
the end of the loop.

So how do you make the for loop so it works the same way as the while loop?
Take a look:

for (i = 1; i <= 4; i++)
 printf(“second for: i=%d\n”, i);

This for loop started i at 1 instead of 0. It tests to see if i is less than or equal
to 4 instead of just less than 4. You could also have used the terminating
expression i < 5 instead. Either one will work. As proof, here’s the output from
this loop:

second for: i=1
second for: i=2
second for: i=3
second for: i=4

Once again, you print the value of i at the end of the loop.

 printf(“After second for loop, i=%d.\n”, i);
 return 0;
}

Here’s the last piece of output:

after second for loop, i=5

This second for loop is the functional equivalent of the while loop. Take some
time to play with this code. You might try to modify the while loop to match the
first for loop. Step through the code with the debugger and see what effect your
changes have.

By far, the while and for statements are the most common types of C loops.
For completeness, however, we’ll cover the remaining loop, a little-used gem
called the do statement.

The do Statement
The do statement is a while statement that evaluates its expression at the
bottom of its loop, instead of at the top. Here’s the pattern a do statement must
match:

CHAPTER 6: Controlling Your Program’s Flow 120

do
 statement
while (expression);

Here’s a sample:

i = 1;
do {
 printf("%d\n", i);
 i++;
} while (i < 3);
printf("We are past the do loop.");

The first time through the loop, i has a value of 1. The printf() prints a 1 in the
console window, and the value of i is bumped to 2. It’s not until this point that
the expression (i < 3) is evaluated. Since 2 is less than 3, a second pass
through the loop occurs.

During this second pass, the printf() prints a 2 in the console window, and the
value of i is bumped to 3. Once again, the expression (i < 3) is evaluated.
Since 3 is not less than 3, you drop out of the loop to the second printf().

The simple thing to remember about do loops is this: since the expression is not
evaluated until the bottom of the loop, the body of the loop (the statement) is
always executed at least once. Since for and while loops both check their
expressions at the top of the loop, either can drop out of the loop before the
body of the loop is executed.

Let’s move on to a completely different type of statement, known as switch.

The switch Statement
The switch statement uses the value of an expression to determine which of a
series of statements to execute. The basic form of a switch statement looks
likes this:

switch (expression) {
 case constant1:
 statement1
 case constant2:
 statement2
 …
 default:
 statement
}

The switch statement consists of an expression and a series of cases, each
identified by a case label-----the keyword case, followed by a numeric constant

CHAPTER 6: Controlling Your Program’s Flow 121

and a colon. The value of the expression is evaluated (once) and execution
jumps directly to the label that matches the value. If no case label matches the
value, execution skips to the special default label. If there’s no default label,
none of the statements are executed.

Here’s an example that should make this concept a little clearer:

switch (theYear) {
 case 1066:
 printf("Battle of Hastings");
 break;
 case 1492:
 printf("Columbus sailed the ocean blue");
 break;
 case 1776:
 printf("Declaration of Independence\n");
 printf("A very important document!!!");
 break;
 default:
 printf("Don’t know what happened during this year");
}

NOTE: The switch statement and the if statement are both known as selection
statements.

If theYear has a value of 1066, execution continues with the statement following
the label case 1066:, which in this case (no pun intended) refers to the following
line:

printf("Battle of Hastings");

Execution continues, line after line, until either the bottom of the switch (the right
curly brace) or a break statement is reached. In this example, the next line is a
break statement, so no further statements in the switch statement are executed.

The break statement comes in handy when you are working with switch
statements. The break tells the compiler to ‘‘jump out of the switch statement.’’
Execution continues with the next statement after the end of the switch.

Continuing with the example, if theYear has a value of 1492, the switch jumps to
these lines:

printf("Columbus sailed the ocean blue");
break;

A value of 1776 jumps to these lines:

CHAPTER 6: Controlling Your Program’s Flow 122

printf("Declaration of Independence\n");
printf("A very important document!!!");
break;

Notice that this case has two statements before the break. There is no limit to
the number of statements a case can have. Having one is OK; having 653 is OK.
You can even have a case with no statements at all.

This example also contains a default case. If the switch can’t find a case that
matches the value of its expression, the switch looks for a case labeled default.
So if the value of theYear is not 1066, 1492, or 1776, this statement is executed:

printf("Don’t know what happened during this year");

Remember that the default label is optional and lets you write a switch
statement that does nothing if none of case labels match the expression.

NOTE: Almost all parts of a switch statement are optional. You can have as many
case labels as you want, but you don’t have to have any. The case labels don’t have
to be in any particular order, so case 1 can be followed by 99, followed by 4, followed
by -23. A case label can be followed by as many statements as you like or none at
all. You can include a default label or not. You can include break statements or leave
them out. Many of these combinations might not make any sense, but technically
they’re all valid C code.

A case with No Statements
Why would you want a case with no statements? Here’s an example:

switch (numberOfEggs) {
 case 1:
 case 2:
 HardBoilThem();
 break;
 case 3:
 MakeAnOmelet();
}

In this example, if numberOfEggs has a value of 1 or 2, the function
HardBoilThem() is called. If numberOfEggs has a value of 3, the function
MakeAnOmelet() is called. If NumberOfEggs has any other value, nothing happens.
Use a case with no statements when you want two different cases to execute
the same statements.

CHAPTER 6: Controlling Your Program’s Flow 123

But what happens if you have 4 eggs? You get no breakfast? Not cool. Here’s a
better plan.

switch (numberOfEggs) {
 case 1:
 case 2:
 HardBoilThem();
 break;
 case 3:
 MakeAnOmelet();
 break;
 default:
 FrenchToastForEveryone();
}

This example adds a default case. Now, if you have 4 eggs or more, everyone
will get French toast. Yay!

Well, almost. Do you see the flaw here? What happens if numberOfEggs is zero?
It’s a little tricky making French toast with no eggs. Add the following code to
the switch statement, and you’re rescued from that embarrassing situation:

case 0:
 if (hasMilk)
 MakeCereal();
 else
 GoOutForBreakfast();
 break;

This also illustrates that the code in a switch statement can consist of any valid
C code, not just simple statements. A switch case can include if statements,
loops, even other switch statements.

TIP: Unusual, unexpected, or atypical values are called edge conditions in
engineering. Good programmers worry about edge conditions. You want your
program to behave itself no matter what values it has to deal with. We’ll talk more
about this in Chapter 12.

The Mixed Blessing of Fall-Through
Think about what happens with this example:

switch (myVar) {
 case 1:
 DoSometimes();
 case 2:

CHAPTER 6: Controlling Your Program’s Flow 124

 DoFrequently();
 default:
 DoAlways();
}

Notice anything unusual? This code contains no break statements. If myVar is 1,
all three functions will get called. This is called fall-through, because you
execute DoSometimes(), ‘‘fall through’’ the case label and execute
DoFrequently(), and then ‘‘fall through’’ and execute DoAlways().

If myVar is 2, DoFrequently() and DoAlways() will get called. If myVar has any
other value, DoAlways() gets called by itself.

As this example showed, fall-through allows you to layer your switch cases,
adding more functionality as you fall through the cases. With careful planning,
fall-through is a nice tool to have.

That said, fall-through does have its downside. Imagine that you needed to
modify the code. You realized that when myVar is 2, you need to call the function
OnlyWhenMyVarIs2(). So you modify the code to look like this:

switch (myVar) {
 case 1:
 DoSometimes();
 case 2:
 DoFrequently();
 OnlyWhenMyVarIs2();
 default:
 DoAlways();
}

Do you see the problem here? In this version, OnlyWhenMyVarIs2() will get
executed when myVar is 1 or 2. The lack of a break at the end of case 1 means
that anything you add to case 2 will also affect case 1. Not a big deal-----you can
rewrite the code using breaks. The real problem is that if you have not looked at
this code for a while, you might miss the fact that the break is not there and just
assume each case is its own separate entity. One way to solve this problem is to
heavily comment your code, making it clear for the future that you are using fall-
through. Another way to solve this problem is to avoid fall-through. As always,
code carefully; plan for the future.

switch Wrap-Up
At the heart of each switch is its expression. Most switch statements are based
on single variables, but any calculation makes a perfectly acceptable
expression.

CHAPTER 6: Controlling Your Program’s Flow 125

Each case is based on a constant. Numbers (like 47 or -12932) are valid
constants. Variables, such as myVar, are not. As you’ll see later, single-byte
characters (like 'a' or '\n') are also valid constants. Multiple-byte character
strings (like "Gummy-bear") are not.

If your switch uses a default case, make sure you use it as shown in the
preceding pattern. Don’t include the word ‘‘case’’ before the word ‘‘default.’’

Breaks in Loops
The break statement has other uses besides the switch statement. Just as it
‘‘breaks out of’’ a switch statement, it can also be used to ‘‘break out of’’ a loop.

Here’s an example of a break used in a while loop:

i = 1;
while (i <= 9) {
 PlayAnInning(i);
 if (IsItRaining())
 break;
 i++;
}

This example tries to play nine innings of baseball. As long as the function
IsItRaining() returns with a value of false, the game continues uninterrupted. If
IsItRaining() returns a value of true, the break statement is executed, and the
program drops out of the loop, interrupting the game.

The break statement allows you to construct loops that depend on multiple
factors. The termination of the loop depends on the value of the expression
found at the top of the loop, as well as on any outside factors that might trigger
an unexpected break.

The continue Statement
A close cousin of the break statement, the continue statement causes a loop to
jump ahead, instead of stopping altogether. A continue statement skips the rest
of the statements in a loop, but doesn’t stop the loop from continuing (thus the
name). It’s useful for when you want to skip some action in a loop but don’t
want the entire loop to end. A continue statement can only appear in the body
of a while, for, or do loop.

Here’s a fanciful example for a motel room-cleaning algorithm:

int room;

CHAPTER 6: Controlling Your Program’s Flow 126

for (room = 101; room <= 139; room++) {
 if (IsRoomOccupied(room) && DoNoDisturbSignOnRoom(room))
 continue;
 CleanRoom(room);
 RestockSnacksInRoom(room);
}

In this example, the loop wants to clean motel rooms 101 through 139. (Hey, if a
loop can play baseball, it can clean motel rooms!) The loop first considers if
guests occupy the room. If so, it checks to see if the guests have hung a ‘‘do
not disturb’’ sign on the door. If true, the continue statement is executed.

The continue statement causes all of the rest of the code in the body of the loop
to be skipped. The loop performs its normal end-of-loop statement (room++) and
then reevaluates its termination expression (room <= 139).

In a nutshell, the loop is going to try to clean and restock each room in the
motel. If a room is unoccupied or does not have a ‘‘do not disturb’’ sign, the
room will be cleaned and the loop moves on to the next room. If the room is
occupied and is showing a ‘‘do not disturb’’ sign, then the room is skipped. But
the loop doesn’t stop. It moves right on to the next room and repeats the
process.

IsOdd.xcodeproj
This next program combines for and if statements to tell you whether the
numbers 1 through 20 are odd or even and if they are an even multiple of 3. Go
into the Learn C Projects folder, into the 06.03 - IsOdd subfolder, and open the
project IsOdd.xcodeproj.

Run the IsOdd program. You should see something like the workspace window
shown in Figure 6-7, which shows a line for each number from 1 through 20.
Each of the numbers will be described as either odd or even. Each of the
multiples of 3 will have additional text describing them as such. Let’s do a
walkthrough of the code.

CHAPTER 6: Controlling Your Program’s Flow 127

Figure 6-7. The IsOdd program steps through each number from 1 to 20

Stepping Through the IsOdd Source Code
IsOdd starts off with the usual #include and the beginning of main(). main()
starts off by declaring a counter variable named i.

#include <stdio.h>
int main (int argc, const char * argv[])
{
 int i;

The goal here is to step through each of the numbers from 1 to 20. For each
number, you want to check to see if the number is odd or even. You also want
to check whether the number is evenly divisible by 3. Once you’ve analyzed a
number, you’ll use printf() to print a description of the number in the console
window.

CHAPTER 6: Controlling Your Program’s Flow 128

TIP: As mentioned in Chapter 4, the scheme that defines the way a program works is
called the program’s algorithm. It’s a good idea to try to work out the details of your
program’s algorithm before writing even one line of source code.

As you might expect, the next step is to set up a for loop using i as a counter. i
is initialized to 1. The loop will keep running as long as the value of i is less than
or equal to 20. This is the same as saying the loop will exit as soon as the value
of i is found to be greater than 20. Every time the loop reaches the bottom, the
third expression, i++, will be evaluated, incrementing the value of i by 1. This is
a classic for loop:

for (i = 1; i <= 20; i++) {

Now you’re inside the for loop. Your goal is to print a single line for each
number (i.e., one line each time through the for loop). If you check back to
Figure 6-7, you’ll notice that each line starts with the phrase

The number x is

where x is the number being described. That’s the purpose of this first printf():
printf("The number %d is ", i);

Notice that this printf() wasn’t part of an if statement. You want this printf()
to print its message every time through the loop. The next sequence of
printf()s are a different story altogether.

The next chunk of code determines whether i is even or odd and uses printf()
to print the appropriate word in the console window. Because the last printf()
didn’t end with a new-line character ('\n'), the word ‘‘even’’ or ‘‘odd’’ will
appear immediately following

The number x is

on the same line in the console window.

Remember from Chapter 3 that the modulo (%) is a binary operator that returns
the remainder when the left operand is divided by the right operand. For
example, i % 2 divides 2 into i and returns the remainder. If i is even, this
remainder will be 0. If i is odd, this remainder will be 1.

if ((i % 2) == 0)
 printf("even");
else
 printf("odd");

In the expression i % 3, the remainder will be 0 if i is evenly divisible by 3, and
either 1 or 2 otherwise.

CHAPTER 6: Controlling Your Program’s Flow 129

if ((i % 3) == 0)
 printf(" and is a multiple of 3");

If i is evenly divisible by 3, you’ll add the phrase ‘‘ and is a multiple of 3’’

to the end of the current line. Finally, you add a period and a newline (".\n") to
the end of the current line, placing you at the beginning of the next line of the
console window.

printf(".\n");

The loop ends with a curly brace. main() ends with the normal return and curly
brace.

 }
 return 0;
}

Set a breakpoint and step through this entire program, one line at a time, to see
each decision as it is made. Then you’ll be ready to move on to an even more
ambitious program.

NextPrime.xcodeproj
The next program focuses on the mathematical concept of prime numbers. A
prime number is any number whose only factors are 1 and itself. For example, 6
is not a prime number because its factors are 1, 2, 3, and 6. The number 5 is
prime because its factors are limited to 1 and 5. The number 12 isn’t prime-----its
factors are 1, 2, 3, 4, 6, and 12.

The program NextPrime will find the next prime number greater than a specified
number. For example, if you set your starting point to 14, the program would
find the next prime, 17. You have the program set up to check for the next prime
after 235. Lock in your guess, and give it a try.

Go into the folder Learn C Projects, into the subfolder 06.04 - NextPrime, and
open the project NextPrime.xcodeproj. Run the project. You should see
something like the console window shown in Figure 6-8. As you can see, the
next prime number after 235 is (drum roll, please…) 239. Let’s look at how the
program works.

CHAPTER 6: Controlling Your Program’s Flow 130

Figure 6-8. NextPrime reports that the next prime after 235 is 239

Stepping Through the NextPrime Source Code
In addition to #include of <stdio.h>, you added in a #include of <stdbool.h>
to include the definition of true and false, as well as a #include of <math.h>.
<math.h> provides access to a series of math functions, most notably the
function sqrt(). sqrt() takes a single parameter and returns the square root of
that parameter. You’ll see how this works in a minute.

#include <stdio.h>
#include <stdbool.h>
#include <math.h>
int main(int argc, const char * argv[]) {

You’re going to need a boatload of variables. isPrime is defined as a bool. The
rest are defined as ints.

bool isPrime;
int startingPoint, candidate, last, i;

CHAPTER 6: Controlling Your Program’s Flow 131

startingPoint is the number you want to start off with. You’ll find the next prime
after startingPoint. candidate is the current candidate you are considering. Is
candidate the lowest prime number greater than startingPoint? By the time
you’re done, it will be!

startingPoint = 235;

Since 2 is the lowest prime number, if startingPoint is less than 2, you know
that the next prime is 2. By setting candidate to 2, your work is done.

if (startingPoint < 2) {
 candidate = 2;
}

If startingPoint is 2, the next prime is 3, and you’ll set candidate accordingly.

else if (startingPoint == 2) {
 candidate = 3;
}

If you got this far, you know that startingPoint is greater than 2. Since 2 is the
only even prime number, and since you’ve already checked for startingPoint
being equal to 2, you can now limit your search to odd numbers only. You’ll start
candidate at startingPoint, then make sure that candidate is odd. If not, you’ll
decrement candidate.

Why decrement instead of increment? If you peek ahead a few lines, you’ll see
you’re about to enter a do loop, and that you bump candidate to the next odd
number at the top of the loop. By decrementing candidate now, you’re
preparing for the bump at the top of the loop, which will take candidate to the
next odd number greater than startingPoint.

else {
 candidate = startingPoint;
 if (candidate % 2 == 0)
 candidate--;

This loop will continue stepping through consecutive odd numbers until you find
a prime number. You’ll start isPrime off as true, and check the current candidate
to see if you can find a factor. If you do find a factor, you’ll set isPrime to false,
forcing you to repeat the loop.

do {
 isPrime = true;
 candidate += 2;

Now you’ll check to see if candidate is prime. This means verifying that
candidate has no factors other than 1 and candidate. To do this, you’ll check

CHAPTER 6: Controlling Your Program’s Flow 132

the numbers from 3 to the square root of candidate to see if any of them divide
evenly into candidate. If not, you know you’ve got yourself a prime!

last = sqrt(candidate);

NOTE: Why don’t you check from 2 up to candidate-1? Why start with 3? Since
candidate will never be even, you know that 2 will never be a factor. For the same
reason, you know that no even number will ever be a factor.

Why stop at the square root of candidate? Good question! To help understand this
approach, consider the factors of 12, other than 1 and 12. They are 2, 3, 4, and 6.
The square root of 12 is approximately 3.46. Notice how this fits nicely in the middle
of the list of factors. Each of the factors less than the square root will pair up with a
factor greater than the square root. In this case, 2 pairs with 6 (that is, 2 * 6 = 12)
and 3 pairs with 4 (that is, 3 * 4 = 12). This will always be true. If you don’t find a
factor by the time you hit the square root, there won’t be a factor, and the candidate
is prime.

Take a look at the top of the for loop. You start i at 3. Each time you hit the top
of the loop (including the first time through the loop), check to make sure you
haven’t passed the square root of candidate and that isPrime is still true. If
isPrime is false, you can stop searching for a factor, since you’ve just found
one! Finally, each time you complete the loop, you bump i to the next odd
number.

for (i = 3; (i <= last) && isPrime; i += 2) {

Each time through the loop, check to see if i divides evenly into candidate. If so,
you know it is a factor, and you can set isPrime to false.

 if ((candidate % i) == 0)
 isPrime = false;
 }
 } while (! isPrime);
}

Are you lost? Don’t worry; you always have your friend the debugger. Set a
breakpoint and step over each line of code, watching as the variables change,
as shown in Figure 6-9. Try different starting numbers and watch how the path
the code takes is altered.

CHAPTER 6: Controlling Your Program’s Flow 133

Figure 6-9. NextPrime variables in the debugger

Once you drop out of the do loop, you use printf() to print both the starting
point and the first prime number greater than the starting point.

 printf("The next prime after %d is %d. Happy?\n",
 startingPoint, candidate);
 return 0;
}

If you are interested in prime numbers, play around with this program. Take a
look at the exercises following this chapter for ideas.

CHAPTER 6: Controlling Your Program’s Flow 134

TAKING OFF THE TRAINING WHEELS

Can you think of another way of writing this program? We bet you can. There are hundreds of
different ways you could write the NextPrime program, all of them producing the same result.
The way we wrote it isn’t the smallest, the most obvious, or the fastest. It’s kind of a compromise
between all of those traits.

If you want to really spread your programming wings, close your eyes and think about what you
want your code to accomplish and how it’s going to do that. Now open your eyes, create a new
project, and write this same program your own way.

It doesn’t hurt to try. You won’t hurt the computer.

If you want to get an idea of just how different the NextPrime program could be, get on the Web
and look up “Sieve of Eratosthenes”
(http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes) for a radically different way
of searching for prime numbers.

What’s Next?
Congratulations! You made it through some tough concepts. You learned about
the C statements that allow you to control your program’s flow. You learned
about C expressions and the concepts of true and false. You also learned about
the logical operators based on the values true and false. You learned about the
if, if-else, for, while, do, switch, break, and continue statements. In short,
you learned a lot!

The next chapter introduces the concept of pointers. Pointers are a big deal and
a big concept. Learning how to use pointers will seriously up your game. In
addition, Chapter 7 will discuss function parameters. You’ve been passing
values to functions as parameter this whole time, and now you’ll learn how to
use them yourself. As usual, plenty of code and sample applications will be
included to keep you busy. See you there.

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

CHAPTER 6: Controlling Your Program’s Flow 135

CHAPTER 6 EXERCISES

1. Each of the following examples contains a syntax or logical error.
What is it?

a. if i
 i++;

b. for (i=0; i<20; i++)
 i--;

c. while ()
 i++;

d. do (i++)
 until (i == 20);

e. switch (i) {
 case "hello":
 case "goodbye":
 printf("Greetings.");
 break;
 case default:
 printf("Boring.")
 }

f. if (i < 20)
 if (i == 20)
 printf("Lonely...");

g. while (done = true)
 done = ! done;

h. for (i=0; i<20; i*20)
 printf("Modification...");

2. Modify NextPrime to compute the prime numbers from 1 to 100.

3. Modify NextPrime to compute the first 100 prime numbers.

137

7
Chapter

Pointers and
Parameters
You’ve come a long way. You’ve mastered variable basics, operators, and
statements. You’re about to add some powerful new concepts to your
programming toolbox.

For starters, we’ll introduce the concept of pointers, also known as references.
From now on, you’ll use pointers in almost every C program you write. (You’ve
actually been using them already, it just wasn’t obvious.)

We can’t overstate this: pointers are a really important concept, and one that’s
traditionally difficult to grasp at first. It’s not an exaggeration to say that pointers
are what make all modern software possible. Without them, the programs you
use every day would be impossible to write. Learning pointers is like going from
2D to 3D. It’s like trading in your wheels for a set of wings. If you were a World
of Warcraft Mage, it’d be like acquiring a Rune of Portal spell. Seriously, it’s a
big deal.

We’re going to walk you through pointers, from basic concept to the ins and
outs of using them in a program. Along the way, you’re also going to learn about
function parameters and return values. These will allow you to exchange values
between your functions.

CHAPTER 7: Pointers and Parameters 138

What Is a Pointer?
In programming, pointers are references to other things. When someone calls
your name to get your attention, they’re using your name as a pointer. Your
name is one way people refer to you.

Your home address can also serve as a pointer, telling your mail carrier where to
deliver your shiny new Death Star tea infuser (yes, that’s a real thing!) Your home
address is unique and distinguishes your house from all the other houses in the
world.

When you declare a variable in C, memory is allocated to hold its value. This
memory has a specific, numeric address. C pointers are special variables,
specifically designed to hold one of these addresses.

Later in the chapter, you’ll learn how to create a pointer, how to make it point to
a specific variable, and how to use the pointer to change the variable’s value.

Why Use Pointers?
Pointers can be extremely useful, allowing you to access your data in ways that
ordinary variables just don’t allow. Here’s a real-world example of pointer
flexibility.

When you go to the library in search of a specific title, chances are you start
your search in an online catalog of some sort. Library catalogs contain
thousands of entries, one for every book in the library or, in some cases, in a
group of libraries. Each entry contains information about a specific book,
including the author’s name, the book’s title, and the copyright date.

Most library catalogs allow you to search using a variety of methods. For
example, you might search for a book using the author’s name, the book title,
the subject, or some combination of all these. Figure 7-1 shows a search of the
Laramie County, Wyoming library catalog. This search specifies an author
named Einstein and a book entitled The Meaning of Relativity. (What can we
say? Einstein fascinates us.)

CHAPTER 7: Pointers and Parameters 139

Figure 7-1. Search window from the Laramie County library in Cheyenne

Figure 7-2 shows the results of this search, a catalog entry for Albert Einstein’s
famous book on relativity, called The Meaning of Relativity. Take a minute to
look over the figure. Pay special attention to the catalog number located just
above the book title. The catalog number for this book is 530.1. This number
tells you exactly where to find the book among all the other books on the
shelves. The books are ordered numerically, so you’ll find this book in the 500
shelves, between 530 and 531.

CHAPTER 7: Pointers and Parameters 140

Figure 7-2. Catalog entry for a famous book

In this example, the library bookshelves are like your computer’s memory, with
the books acting as data. The catalog number is the address of your data (a
book) in memory (on the shelf).

As you might have guessed, the catalog number acts as a pointer. The library
catalogs use these pointers to rearrange all the books in the library, without
moving a single book. Think about it. If you search the catalog by subject, it’s
just as if all the books in the library are arranged by subject. Physically, the book
arrangements have nothing to do with subject; the books are arranged
numerically by catalog number. By adding a layer of pointers between you and
the books, the librarians achieve an extra layer of flexibility.

In the same way, if you search the catalog by title, it’s just as if all the books in
the library are arranged alphabetically by title. Again, physically, the book
arrangements have nothing to do with title. By using pointers, all the books in
the library are arranged in different ways without ever leaving the shelves. The
books are arranged physically (sorted by catalog number) and logically (sorted in
by author, subject, title, and so on). Without the support of a layer of pointers,
these logical book arrangements would be impossible.

CHAPTER 7: Pointers and Parameters 141

NOTE: Adding a layer of pointers is also known as adding a level of indirection. The
number of levels of indirection is the number of pointers you have to use to get to
your library book (or to your data).

Checking Out of the Library
So far, we’ve talked about pointers in terms of house addresses and library
catalog numbers. The use of pointers in your C programs is not much different
from those models. Each catalog number points to the location of a book on the
library shelf, just as each street address identifies a specific house. In the same
way, each pointer in your program will point to the location of a piece of data in
computer memory.

If you wrote a program to keep track of your DVD collection, you might maintain
a list of pointers, each one of which might point to a block of data that describes
a single DVD. Each block of data might contain such information as the name of
the movie, the name of the director, the year of release, and a category (such as
drama, comedy, documentary). If you got more ambitious, you could create
several pointer lists. One list might sort your DVDs alphabetically by movie title.
Another might sort them chronologically by year of release. Yet another list
might sort your DVDs by category. You get the picture.

There’s a lot you can do with pointers. By mastering the techniques presented in
these next few chapters, you’ll be able to create programs that take full
advantage of pointers.

The goal for this chapter is to help you master pointer basics. We’ll talk about C
pointers and C pointer operations. You’ll learn how to create a pointer and how
to make the pointer point to a variable. You’ll also learn how to use a pointer to
change the value of the variable the pointer points to.

Pointer Basics
Pointers are address variables. Instead of an address such as 1313 Mockingbird
Lane, Raven Heights, California 90263, a variable’s address refers to a memory
location within your computer. As we discussed in Chapter 2, your computer’s
memory-----also known as random access memory (RAM)-----consists of a
sequence of bytes. One megabyte of RAM has exactly 220 (or 1,048,576) bytes of
memory, while 8 megabytes of RAM has exactly 8 * 220 = 223 = 8,388,608 bytes

CHAPTER 7: Pointers and Parameters 142

of memory. One gigabyte of RAM has exactly 230 bytes = 1,024 megabytes =
1,073,741,824 bytes of memory, and so on.

Every one of those bytes has a unique address. Computer addresses typically
start with zero and continue up, one at a time, until they reach the highest
address. The first byte has an address of 0, the next byte has an address of 1,
and so on. Figure 7-3 shows the addressing scheme for a computer with a
gigabyte of RAM. Notice that the addresses run from 0 (the lowest address) all
the way up to 1,073,741,823 (the highest address). The same scheme would
hold true for 10 gigabytes, or even a terabyte (1,024 gigabytes).

Figure 7-3. The memory addresses of a computer with 1GB of RAM

The Address of a Variable
When you run a program, one of the first things the computer does is allocate
memory for your program’s variables. When you declare an int in your code, like
this

int myVar;

the compiler reserves memory for the exclusive use of myVar.

NOTE: As mentioned earlier in this book, the amount of memory allocated for an int
depends on your development environment. Xcode currently defaults to using 4-byte
ints.

4

CHAPTER 7: Pointers and Parameters 143

Each of myVar’s bytes has a specific address. Figure 7-4 shows the computer’s
1 gigabyte of memory with 4 bytes allocated to the variable myVar. In this
picture, the 4 bytes allocated to myVar have the addresses 836, 837, 838,
and 839.

Figure 7-4. Memory allocated for the variable myInt

By convention, a variable’s address is said to be the address of its first byte (the
first byte is the byte with the lowest numbered address). If a variable uses
memory locations 836 through 839 (as myVar does), its address is 836 and its
length is 4 bytes.

NOTE: When a variable occupies more than 1 byte of memory, the bytes are always
consecutive (next to each other in memory). You will never see an int whose byte
addresses are 508, 509, 510, and 695. A variable’s bytes are like family—they stick
together.

As we showed earlier, a variable’s address is a lot like the library catalog number
in a library book’s catalog entry. Both act as pointers, one to a book on the
library shelf and the other to a variable. From now on, when we use the term
‘‘pointer’’ with respect to a variable, we are referring to the variable’s address.

Now that you understand what a pointer is, your next goal is to learn how to use
pointers in your programs. The next few sections will teach you some valuable

CHAPTER 7: Pointers and Parameters 144

pointer programming skills. You’ll learn how to create a pointer to a variable.
You’ll also learn how to use that pointer to access the variable to which it points.

The C language provides you with a few key tools to help you. These tools come
in the form of two special operators: & and *.

The & Operator
The & operator, called the address-of operator, is a unary operator that pairs
with a variable name to produce the variable’s address. The expression

myVar

retrieves the value stored in the myVar variable, while the expression

&myVar

refers to myVar’s address in memory. If myVar occupied memory locations 836
through 839 (as in Figure 7-4), the expression &myVar would have a value of 836.
The expression &myVar is a pointer to the variable myVar.

An expression like &myVar is a common way to obtain the address of a variable.
But what can you do with that address? Store it into a pointer variable, of
course! A pointer variable is a variable specifically designed to hold the address
of another variable.

Declaring a Pointer Variable
C supports a special notation for declaring pointer variables. The following line
declares a pointer variable named myPointer:

int *myPointer:

The * is not part of the variable’s name. Instead, it tells the compiler that the
associated variable is a pointer, specifically designed to hold the address of an
int variable. Technically, when * appears in a declaration it is a type modifier, not
an operator. It modifies the int variable declaration and turns it into an int pointer
variable declaration. Simply stated, int myInt means ‘‘allocate a variable that
will hold an integer,’’ while int *myInt means ‘‘allocate a variable that will hold
the memory address of a variable that holds an integer.’’ If there was a data type
called bluto, you could declare a variable designed to point to a bluto like this:

bluto *blutoPointer;

CHAPTER 7: Pointers and Parameters 145

NOTE: This declaration is perfectly legal: int* myPointer;

This line also declares a variable named myPointer designed to hold the address of
an int. The fact that the white space comes after the * does not matter to the
compiler. We’ll be using the former format, simply because it’s the most common.
Both are acceptable.

For the moment, we’ll limit ourselves to pointers that point to ints. Look at this
code:

int *myPointer, myVar;

myPointer = &myVar;

The variable declaration allocates two variables: a pointer to an int, and an int.
The assignment statement puts myVar’s address in the variable myPointer. If
myVar’s address is 836, this code will leave myPointer with a value of 836. Note
that this code has absolutely no effect on the value of myVar.

We’re sure you’ve got the concept of memory addresses, and you understand
that every value stored in memory has an address associated with it. You now
know how to obtain that address of a variable with the address-of (&) operator
and store that address in a pointer variable (a variable for storing memory
addresses).

So now what? This is where pointers start to get interesting.

The * Operator
The complement to the address-of (&) operator is the unary * or indirection
operator. It does just the opposite of the & operator: it takes a pointer variable
and turns it into the variable the pointer variable points to. Confusing, isn’t it?
Here’s a simple example.

NOTE: The * operator’s official name in the C standard is the “indirection operator,”
but it’s also commonly referred to as the “star,” “pointer,” or “dereference” operator.

int *myPointer;
int myVar;

myVar = 3;
myPointer = &myVar;

CHAPTER 7: Pointers and Parameters 146

*myPointer = 27;

The first assignment statement (myVar = 3) makes perfect sense. You’ve been
using that form since Chapter 2. The second assignment statement is only a
slight variation of the first. It’s still storing a value into the variable named on the
left side of the assignment operator (=), but this time the value is a memory
address. At this point, myPointer holds the address of myVar. So far, so good.

The third assignment statement is the game changer. It copies the value 27 into
the memory address pointed to by myPointer.

The indirection operator (*) takes the value stored in myPointer and treats it like
the address of a variable. In other words, the computer will take the memory
address stored in the variable myPointer and use it to locate the int variable
somewhere else in memory, and then store the value 27 there. The value of the
myPointer variable does not change. After the assignment, it still contains the
address of myVar.

If myPointer contains the address of myVar, as is the case in our example,
referring to *myPointer is equivalent to referring to myVar. For example, this line

*myPointer = 27;

is the same as this one

myVar = 27;

Still confused? Don’t worry; we’re going to walk through this again with
illustrations. Figure 7-5 joins our program in progress, just after the variables
myVar and myPointer were declared:

int *myPointer, myVar;

CHAPTER 7: Pointers and Parameters 147

Figure 7-5. Memory allocated for myVar and myPointer

COMPUTER ARCHITECTURE AND POINTER SIZES

If you’re curious to know why an int variable takes up 4 bytes of memory and a pointer variable
takes up 8 bytes of memory, read on.

As of this writing, the default size for an int variable is 4 bytes, or 32 bits. 32 bits is enough to
represent any whole number between 0 and 4,294,967,295. If this isn’t perfectly clear, review
the section “Size of a Type” in Chapter 4.

A pointer variable is, essentially, an integer variable that stores the address of a byte in memory.
Logically, it has to be big enough to represent all of the possible memory addresses your
computer has. That means that every pointer variable in a program has to be capable of storing a
number between 0 and the last address, since a variable can (theoretically) be allocated at any
memory address.

If you’ve shopped for a shiny new Mac recently, you know that (with some spare cash) it’s not
difficult to load it up with more than 4GB of RAM. A 32-bit (4 byte) integer can only represent
numbers between 0 and 4,294,967,295 (4GB). Clearly, that’s inadequate for today’s computers.

CHAPTER 7: Pointers and Parameters 148

Modern CPUs use 64-bit (8 byte) pointers. This allows a pointer to store the address of any
memory location between 0 and 18,446,744,073,709,551,615—yikes, that’s big number! It
works out to 16 exabytes, or 16 billion gigabytes—a really, really, big number, and way more
RAM than you can afford.

The size of pointers is intimately tied to the computer’s hardware. Back in the days of the original
Apple II, micro-computers used 16-bit pointers. Simply stated, it means the CPU could directly
address 65,536 memory locations (64K). Hey, it seemed like a lot at the time.

Not surprisingly, it wasn’t very long before this wasn’t enough. By the time the original Mac was
introduced, CPUs were starting to use 32-bit pointers. The Motorola 68000 processor in the
original Mac could, theoretically, address up to 4GB of RAM. Of course, no one made memory
modules that big and you couldn’t install that much RAM on the motherboard even if you could
get your hands on it. But for programmers, it meant that pointer variables were now 4 bytes long.

Fast-forward 30 years and the 4GB of addresses that seemed almost inexhaustible in the 1980s
looks puny now. CPU design has, naturally, been trying to keep up and desktop computers have
now largely transitioned to using 64-bit (8 byte) pointers. Again, that doesn’t mean you can
actually install 16 exabytes of RAM in your Mac, but a program that uses 64-bit pointers will run
on such a system.

64-bit pointers should hold us for some time to come. To put it in perspective, if the surface of a
Popsicle stick represents all of the memory that a 32-bit pointer can address, a 64-bit pointer
can address the surface area of the Golden Gate Bridge. Given the exponential rate that memory
density keeps increasing, and computer programs keep using more memory, the transition from
32- to 64-bit pointers should hold us for about 90 years. Of course, we won’t be surprised if our
great grandchildren are one day shaking their heads wondering how we ever got by with “only”
16 exabytes of addressable memory.

Once memory is allocated for myVar and myPointer, you move on to the
statement:

myPointer = &myVar;

The address of the variable myVar is stored in the 8 bytes allocated to myPointer.
In this example, myVar’s address is 836. Now, myPointer is said to point to
myVar. See Figure 7-6.

CHAPTER 7: Pointers and Parameters 149

Figure 7-6. The address of myVar assigned to myPointer

OK, you’re almost there. The next line of the example writes the value 27 to the
location pointed to by myPointer:

*myPointer = 27;

Without the * operator, the computer would place the value 27 in the memory
allocated to myPointer. The * operator dereferences myPointer. Dereferencing a
pointer turns the pointer into the variable it points to. Figure 7-7 shows the end
results.

CHAPTER 7: Pointers and Parameters 150

Figure 7-7. Finally, the value 27 is assigned to *myPointer.

If you step through the 07.01 --- Pointer project with the debugger, you can
watch each of these steps happen. Of course, the address of myVar won’t be
836, but other than that everything else should be consistent with the
illustrations.

The workspace window, shown in Figure 7-8, shows the values of myPointer
and myVar. The Xcode debugger conveniently adds an expansion triangle next to
pointer values, which let you easily see the value that they point to. This will
become really useful as you continue to explore pointers.

CHAPTER 7: Pointers and Parameters 151

Figure 7-8. Stepping through the Pointer project

The * operator works equally well at retrieving a value. The expression

*myPointer + 4

evaluates to 31. Why? Let’s walk through this together.

Earlier, we saw that myPointer contained the address of the variable myVar.
Since myVar contains the value 27, *myPointer also evaluates to 27 and,
therefore, *myPointer + 4 evaluates to 31.

TIP: Interestingly enough, the * (pointer type modifier), the * (unary indirection
operator), and the * (binary multiplication operator) are almost never confused for
one another, thanks to context. For example, 2 * * myPointer means “Two times
the value stored at pointer myPointer.” In the rare instances where they might get
mixed up, throw in some parentheses to make it clear to the compiler which one you
mean, like this: 2*(*myPointer)

If the concept of pointers seems alien to you, don’t worry. You are not alone.
Programming with pointers is one of the most difficult topics you’ll ever take on.
Just keep reading, and make sure you follow each of the examples line by line.
By the end of the chapter, you’ll be a pointer expert!

CHAPTER 7: Pointers and Parameters 152

Function Parameters
We’re going to take a short break from pointers and talk about functions and
how to exchange values with them. How does this relate to pointers? Be patient,
as we’ll come back around to that soon enough.

Suppose you want to write a function called AddTwo() that takes two numbers,
adds them together, and returns the sum of the two numbers. How do you get
the two original numbers to AddTwo()? How do you get the sum of the two
numbers back to the function that called AddTwo()?

The answer to the first question is function parameters, or values passed to a
function. The second question is answered with a return value, or a value
passed from the function back to the caller of that function. Before you can learn
how to pass values around, or even why you need to, you need to know a little
about the concept of scope.

Variable Scope
In C, every variable is said to have a scope. A variable’s scope defines where in
the program you have access to that variable. In other words, if a variable is
declared inside one function, can another function refer to that same variable?

Simply stated, the scope of a variable is defined by where it’s declared. The
scope of a variable declared inside a function is limited to the code inside that
function.

NOTE: Technically, the scope of a variable declared inside any block ({…}) of code
ends at the closing brace of that block.

This definition is important. It means you can’t declare a variable inside one
function, and then refer to that same variable inside another function. Here’s an
example that will never compile:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int numDots;
 numDots = 500;
 DrawDots();
 return 0;
}

CHAPTER 7: Pointers and Parameters 153

void DrawDots(void)
{
 int i;
 for (i = 1; i <= numDots; i++)
 printf(".");
}

The error in this code occurs when the function DrawDots() tries to reference the
variable numDots. According to the rules of scope, DrawDots() doesn’t even
know about the variable numDots. If you tried to compile this program, the
compiler would complain that DrawDots() tried to use the variable numDots
without declaring it.

The problem you are faced with is getting the value of numDots to the function
DrawDots() so DrawDots() knows how many dots to draw. The answer to this
problem is function parameters.

TIP: DrawDots() is another example of the value of writing functions. We’ve taken
the code needed to perform a specific function (in this case, draw some dots) and
embedded it in a function. Now, instead of having to duplicate the code inside
DrawDots() every time we want to draw some dots in our program, all we need is a
single line of code: a call to the function DrawDots().

How Function Parameters Work
Function parameters are variables, but instead of being declared at the
beginning of a function, parameters are listed between the parentheses of the
function’s declaration, like this:

void DrawDots(int numDots)
{
 /* function’s body goes here */
}

When you call a function you simply provide a value for each parameter, making
sure you pass the function what it expects. To call the version of DrawDots() just
defined, make sure you place an int between the parentheses. The call to
DrawDots() inside main() passes the value 30 into the function DrawDots():

int main (int argc, const char * argv[])
{
 DrawDots(30);
 return 0;
}

CHAPTER 7: Pointers and Parameters 154

When DrawDots() starts executing, it sets its parameter to the passed-in value.
In this case, DrawDots() has one parameter, an int named numDots. When this
call executes

DrawDots(30);

the function DrawDots() sets its parameter, numDots, to a value of 30.

To make things a little clearer, here’s a revised version of the example:

#include <stdio.h>

void DrawDots(int numDots);

int main (int argc, const char * argv[])
{
 DrawDots(30);
 return 0;
}

void DrawDots(int numDots)
{
 int i;
 for (i = 1; i <= numDots; i++)
 printf(".");
}

This version of drawDots will compile and run properly. It starts with the #include
of <stdio.h> and follows with the function prototype for DrawDots(). Recall the
concept of function prototypes that we introduced in Chapter 3. Imagine the
compiler making its way down the file, processing one chunk of code at a time.
Without the prototype, it would hit the call of DrawDots(30) inside main() and
not have anything to verify it against. The prototype assures the compiler that
you intend to provide a function named DrawDots(), that it will not return a value
(that’s why it is declared as void), and that it will take an int as an argument. As
the compiler continues to process the file and comes across the actual call of
DrawDots(), it can make an intelligent assessment of the call to decide if it was
made properly.

After the DrawDots() prototype, you enter main(). main() calls DrawDots(),
passing as a parameter the constant 30. DrawDots() receives the value 30 in its
int parameter, numDots. This means that the function DrawDots() starts
execution with a variable named numDots having a value of 30.

Inside DrawDots(), the for loop behaves as you might expect, drawing 30
periods in the console window. Figure 7-9 shows a picture of this program in
action. You can run this example yourself. The project file, DrawDots.xcodeproj,
is located in the Learn C Projects folder in a subfolder named 07.02 - DrawDots.

CHAPTER 7: Pointers and Parameters 155

Figure 7-9. The function DrawDots() drawing 30 dots

Parameters Are Temporary
When a function gets called, a temporary variable is created for each of its
parameters. When the function exits (returns to the calling function), that
variable goes away.

In the example, you passed a value of 30 into DrawDots() as a parameter. The
value came to rest in the temporary variable named numDots. Once DrawDots()
exited, this version of numDots ceased to exist.

NOTE: Remember, a variable declared inside a function can only be used inside that
function. For this reason, they are often called local variables.

It is perfectly acceptable for two functions to use the same variable names for
completely different purposes. For example, using a variable name like i as a
counter in a for loop is fairly standard. What happens when, in the middle of just
such a for loop, you call a function that also uses a variable named i? Here’s an
example:

#include <stdio.h>

void DrawDots(int numDots);

int main (int argc, const char * argv[])
{

CHAPTER 7: Pointers and Parameters 156

 int i;
 for (i=1; i<=10; i++) {
 DrawDots(30);
 printf("\n");
 }
 return 0;
}

void DrawDots(int numDots)
{
 int i;
 for (i = 1; i <= numDots; i++)
 printf(".");
}

This code prints a series of 10 rows of dots, with 30 dots in each row. After each
call to DrawDots(), a carriage return (\n) is printed, moving the cursor in position
to begin the next row of dots.

Notice that main() and DrawDots() each feature a variable named i. main() uses
the variable i as a counter, tracking the number of rows of dots printed.
DrawDots() also uses i as a counter, tracking the number of dots in the row it is
printing. Won’t DrawDots()’s copy of i mess up main()’s copy of i? No!

When main() starts executing, memory gets allocated for its copy of i. When
main() calls DrawDots(), additional memory gets allocated for the DrawDots()
copy of i. When DrawDots() exits, the memory for its copy of i is deallocated-----
freed up so it can be used again for some other variable.

NOTE: A parameter or variable declared within a function is known as an automatic
variable, so called because they are automatically allocated when the function
begins, and then automatically deallocated when the function ends. DrawDots()
has a two automatic variables: the variable i and the numDots parameter.

The Difference Between Arguments and
Parameters
Here’s one final point: the value passed into a function is known as an
argument. The variable declared to receive that argument is known as a
parameter. In this line of code

DrawDots(30);

CHAPTER 7: Pointers and Parameters 157

the constant 30 is an argument being passed to DrawDots(); it’s not a
parameter.

Many programmers use the terms ‘‘argument’’ and ‘‘parameter’’
interchangeably. For example, someone might talk about passing a parameter
to a function. Strictly speaking, you pass an argument to a function to be
received as a parameter. As long as you understand that point, the term
‘‘parameter passing’’ will do just fine.

Function Return Value
Parameters let you copy values to functions, but what about getting values from
functions? That's where a function’s return value comes into play. A return value
passes a single value from the function back to the function that called it.

You declare the type of value a function will return right at the beginning of the
function’s definition. This permits the function to be used in an expression, just
as if the function was a variable of that type. The return statement at the end of
the function’s body determines what that value will be.

Now we can finally explain the mysterious return 0; statement that’s been in
every example in this book. The function main is declared to return an int value:

int main(int argc, const char *argv[])

When the main() function ends, it returns a value of 0 to whoever called it using
this statement:

return 0;

The function that called main()-----start(), if you must know-----receives the value
when main() ends. The meaning of the value must be agreed upon in advance.
In the case of main(), the value returned is the program’s so-called ‘‘status’’
value. A zero indicates that the program ran successfully. Any other value
indicates that the program failed to run or encountered some problem.

To see function return values in action, let’s create a function named Average().
You’ll find this function in the Average project in the 07.03 - Average folder.
Average() takes two ints and returns the average of those two values:

#include <stdio.h>

int Average(int a, int b);

int main (int argc, const char * argv[])
{
 int avg;

CHAPTER 7: Pointers and Parameters 158

 avg = Average(7, 23);
 printf("The average of 7 and 23 is %d.\n", avg);

 return 0;
}

int Average(int a, int b)
{
 return (a + b) / 2;
}

The function Average() is defined to take two int parameters (a and b) and
return an int value. The call to Average() in main() copies two values (7 and 23)
into the two parameters and executes the code in the function.

The Average() function has a single return statement. The expression in the
return statement calculates a new value using the values of the two parameters
and returns the result to the caller.

Back in main(), the value calculated by Average()’s return statement becomes
the value of the Average(7, 23) statement in the expression. You can use that
returned value any way you like. You can use it as an expression in an if
statement (if (Average(i,j) > 100)), assign it another variable (as we’ve
done here), make it part of a more complex expression (1+Average(i,j)*2)-----the
choices are all yours. The key thing to remember is that the value of a function
call in an expression will be the value returned by the function.

printf() Returns a Value
You are also within your rights to completely ignore the value returned by a
function, like this:

Average(2, 108);

If you write a function call, but ignore its return value, nothing bad happens. The
function executes and the value it returns simply disappears into the mist. For a
function like Average() that would be silly, because the whole purpose of the
function is to calculate a value. If you weren’t interested in the value, you
wouldn’t have called the function.

But a lot of functions perform useful tasks while also returning a value, which
may or may not be of interest to the caller. It is worth noting that printf() is
actually declared to return an int. The value returned is the number of characters
generated, or a negative value if an error occurred. The vast majority of
programmers ignore this return value because all they’re interested in is getting
a message sent to the console. That’s all we’ve cared about so far. But if you

CHAPTER 7: Pointers and Parameters 159

ever find yourself in a situation where you want to know exactly how many
characters the printf() function sent to the console, all you have to do is
observe the value returned by the printf() function call, like this:

int lineLength;
lineLength = printf("The average of 7 and 23 is %d.\n", Average(7, 23));
printf("The previous line is %d characters long.\n", lineLength-1);

Multiple Return Statements
Let’s create a slightly more complex example that also highlights a feature of
return statements. In the folder 07.04 - Minimum, open the Minimum project. It
contains a function named Minimum() that takes two int parameters and returns
the smaller of the two.

#include <stdio.h>

int Minimum(int a, int b);

int main (int argc, const char * argv[])
{
 printf("%d is the smaller of 7 and 23\n", Minimum(7,23));
 printf("%d is the smaller of 23 and 7\n", Minimum(23,7));
 return 0;
}

int Minimum(int a, int b)
{
 if (a < b)
 return a;
 return b;
}

For a function that returns a value------we’ll get to functions that don’t shortly------the
return statement expresses what value is to be returned. But the return
statement has another important attribute: it ends the function.

Just as the break statement you used in Chapter 6 will jump out of any
remaining code in a loop, the return statement jumps out of any remaining code
in that function. Typically, you’ll find a single return statement at the very end of
the function, as you’ve seen in main(), where its purpose is to state the value to
be returned. But you can have additional return statements elsewhere in the
function. If a return isn’t the last statement, it causes the function to exit
immediately and return the stated value to the caller. No further code in the
function is performed.

CHAPTER 7: Pointers and Parameters 160

In the Minimum() function, the if statement determines if the value of a is less
than the value of b. If it is, the return a; statement is performed. This causes
the value of a to be returned as the value for this function and no further
statements in Minimum() are performed.

If a is not less than b, the statement following the if statement is executed
instead. The return b; statement causes the value of b to be returned. The end
result is that the value of the Minimum() function call will be the smaller of its two
argument values.

Returning Nothing at All
Earlier in the book we alluded to the void type. The void type is a special type
that means ‘‘nothing’’ or ‘‘no value.’’ You use it in places to indicate that
something doesn't have any value at all, and void has two very important roles
in functions.

Both of these roles are illustrated in this function definition from the Hello3
project you ran in Chapter 3:

void SayHello(void);

A return type of void indicates that the function does not return a value. That’s
it. The function does not pass a value of any kind back to the caller. You can call
a function with a void return type-----called a void function-----like this:

SayHello();

But you can’t use it in an expression, because it has no value:

myVar = SayHello(); // <-- error, SayHello() does not return a value

The other use of void is in the parameter list of a function that does not have
any parameters. The definition SayHello(void) means that there are no values
passed to SayHello(). When you call SayHello(), you don’t put any arguments
between the two parentheses.

NOTE: You can still use a return statement in a void function; you just omit the
expression. This is sometimes called an empty return statement. It will still stop the
function and return execution to the function that called it, but no value is passed.

A function can have a return value and no parameters, parameters but no return
value, or any other combination that makes sense.

CHAPTER 7: Pointers and Parameters 161

TIP: The compiler will help you use the return statement correctly. If you try to use
a return with an expression in a void function, or forget the expression in a
function that returns a value, or just forget the return statement altogether, the
compiler will issue a warning. Check for those warnings to make sure you are using
the appropriate return statement.

Putting it All Together
Brace yourself. You are about to use almost everything you’ve learned about C
so far. You’ve learned about variables, expressions, functions, if statements,
loops, pointers, and parameter passing. Now we’re going to show a program
that uses them all together. Open the Factor project in Xcode, which you’ll find
in the 07.05 - Factor folder, fasten your seatbelt, and please keep your arms and
legs inside the vehicle at all times.

Using Pointers as Parameters
Combining the individual pieces of C definitely creates a whole that is more than
a sum of its parts. The first bit of alchemy we’ll perform is to combine pointers
with function parameters.

You’ve seen how function parameters can be used to pass any number of
values to a function, and the function’s return value can pass a single value
back. But what if you need to pass more than one value back? Passing pointers
as parameters neatly solves this problem.

The Factor project defines a function named Factor(). The purpose of the
Factor() function is to examine a number, determine if the number is prime, and
find two factors of that number. If you were sleeping that day in math class, the
factors of a number are any two numbers that when multiplied together equal
the original number. If the number is prime, its factors will be 1 and the number
itself.

Define the function like this:

bool Factor(int number, int *firstFactorPtr, int *secondFactorPtr);

Factor() returns a Boolean value (true or false) to the caller and it takes three
parameters: an int value, and two pointers to int values. Remember that a
pointer is a memory address of another variable. Instead of passing a value, as

CHAPTER 7: Pointers and Parameters 162

you’ve done so far, you’re going to pass the address of a value to the function
via a parameter. Can you see where this is going?

Inside the Factor() function, the *firstFactorPtr and *secondFactorPtr
expressions refer to whatever int values those two pointers point to. The
Factor() function doesn’t have to know the names of those variables, nor must
they be in the same scope, but it can still use and modify those values using the
indirection operator (*).

To make this work, the main() function first declares two int variables and then
passes the addresses of those variables to Factor() as arguments.

int n;
int factor1, factor2;
bool isPrime;
n = 15;
isPrime = Factor(n, &factor1, &factor2);

In the Factor() function, the pointers to the two factor variables appear as its
parameters. The function calculates the values and uses the indirection operator
to store the answer in int values that were defined back in main().

bool Factor(int number, int *firstFactorPtr, int *secondFactorPtr)
{
 int factor;
 /* ... imagine code that calculates factor here ... */
 *firstFactorPtr = factor;
 *secondFactorPtr = number / factor;
 return false;
}

Back in main(), after Factor() returns, main() now has three values: the value
returned directly by the Factor() function and the values that were set indirectly
using pointers.

if (isPrime)
 printf("the number %d is prime\n", n);
else
 printf("the number %d has %d and %d as factors\n", n, factor1, factor2);

The end result is that Factor() used a combination of a return value and
pointers to pass three values back to main().

CHAPTER 7: Pointers and Parameters 163

Factor.xcodeproj
Enough teasing, here’s the entire program:

#include <stdio.h>
#include <stdbool.h>
#include <math.h>

bool Factor(int number, int *firstFactorPtr, int *secondFactorPtr);

int main(int argc, const char * argv[])
{
 int n;
 for (n = 2; n <= 20; n++) {
 bool isPrime;
 int factor1, factor2;

 isPrime = Factor(n, &factor1, &factor2);
 if (isPrime)
 printf("the number %d is prime\n", n);
 else
 printf("the number %d has %d and %d as factors\n", n, factor1, factor2);
 }

 return 0;
}

bool Factor(int number, int *firstFactorPtr, int *secondFactorPtr)
{
 int factor;
 for (factor = sqrt(number); factor > 1; factor--) {
 if ((number % factor) == 0) {
 break;
 }
 }

 *firstFactorPtr = factor;
 *secondFactorPtr = number / factor;
 return (factor == 1);
}

Figure 7-10 shows the output of the program when run.

CHAPTER 7: Pointers and Parameters 164

Figure 7-10. The output of Factor

By this point in your journey to master C, you should understand practically
every aspect of this program.

 You know how to #include the needed header files to get the
types and functions your program will use.

 You know how function prototypes are defined.

 You know that the main() function is where your program
starts.

 You know how to declare a variable.

 You understand the for loop that sets n = 2 and then tests
each number up to, and including, 20.

 You know how a function is called.

 You know how to pass values to a function that
becomes its parameters.

 You know how the value returned by a function can be
used in an expression.

 You know how to use the return statement to decide
what value is returned.

 You know how to use an if statement to test a condition and
choose between alternate statements.

CHAPTER 7: Pointers and Parameters 165

 You know how to get the address of a variable, and how to
store it in a pointer or pass it as a parameter.

 You know how to use the indirection operator (*) to act on the
variable that a pointer variable points to.

Go through each line of this code. If anything looks unfamiliar, go back and find
that section of the book to review-----but we bet you won’t have to. Step through
it line by line in the debugger and watch how it works.

Some Pointers on Pointers
There are some finer points (no pun intended) about pointers and parameters
that you should know about. These will help you understand the best ways to
use, and maybe when not to use, pointers in your program.

Pass-By-Value vs. Pass-By-Reference
In the program Average, you passed simple (int) values to the Average()
function. The values of the argument expressions were copied into the
function’s parameters before the function executed. The function could change
its parameter variables, but that has no effect on the original values. (We know
you know all of this; we’re just restating it so it’s clear.)

In programming lingo this is called pass-by-value. A copy of the value is passed
to the function and the function can do anything it wants to with its copy; it will
never affect another variable in the program.

In the Factor program you passed the addresses of two variables. The Factor()
function was able to use those pointers to affect variables outside its scope.
This method of passing values is called pass-by-reference. Instead of copying
the value, a reference to the value is passed to the function. The function can
use this reference to access and/or modify the original value at will.

Whether to use pass-by-value or pass-by-reference is a perennial topic of
debate among programmers, In general, our approach is to use pass-by-value
unless there’s a compelling reason to use pass-by-reference.

Compelling reasons to use pass-by-reference might be

 The value is a group or collection of values. (This will make
sense after you read about arrays in the next chapter.)

CHAPTER 7: Pointers and Parameters 166

 A function must return more than one value. (There are also
other solutions to this particular problem that you’ll learn about
in Chapter 9.)

 The amount of data you need to pass to, or from, a function is
cumbersome to copy. Remember the library example at the
start of the chapter? Even if you could make a copy of an
entire book, it’s still much easier to give someone the catalog
number of the book instead.

 The information that needs to be passed is a complex
collection of values, and the function needs to examine some
values and modify others. (Again, this will make more sense
after Chapter 9.) It’s easier to pass a single reference to the
whole mess rather than copying every value the function will
need.

The NULL Pointer Value
The C language defines a special pointer value named NULL that means ‘‘no
address.’’ You can assign the NULL value to any pointer (myPointer = NULL) and
you can compare pointer values with NULL, as in if (myPointer==NULL). NULL
gives you a value that means the pointer doesn’t point to any variable at all.

Earlier we stated that memory addresses start at zero and go up, and a variable
can be allocated at any address. In practice, that’s not entirely true. Addresses
do start at 0, but OS X and BSD Unix never allocate variables at address 0, or
anywhere near address 0. The reasons why are many, but one important one is
so that programmers can be guaranteed that no valid variable address will ever
be zero.

The NULL constant is address 0. Assigning NULL to a pointer is the same as
setting its integer value to 0. One side effect is that a lot of C programmers use a
short-hand for testing to see if a pointer variable points to a value or not:

if (myPointer) {

Remember that an if statement performs its action if the expression is non-
zero. Since NULL is always zero and any valid variable address will not be zero,
this statement is equivalent to if (myPointer != NULL). We suggest you write
out the long form, simply because it makes your intentions clearer; both are
common.

CHAPTER 7: Pointers and Parameters 167

The Dark Side of Pointers

With great power comes great responsibility.

--- Uncle Ben, from The Amazing Spider-Man

(Cue sinister music.) Pointers are very powerful, but they have a dark side. They
occupy a dangerous land full of hazards just waiting to snare an unsuspecting
programmer. The correct, and safe, use of pointers requires careful planning
and attention to detail.

The principle peril of pointers is that they can point anywhere. There are no
safeguards to ensure that a pointer points to the kind of value you expect it to. It
can just as easily point to another kind of value, or unused memory, or the part
of memory where the code for your program is stored, or an address that
doesn’t even exist.

The effects of using pointers that point to the wrong thing range from the
perplexing to the disastrous. If a pointer points to some other variable, changing
it will have a bizarre effect on your program-----the value you expected to change
won’t, and some other unrelated variable will spontaneously change. If the
pointer points to memory that doesn’t exist, the hardware will catch it and
terminate your program with a ‘‘segment fault’’ signal, colloquially known as a
‘‘crash.’’

PHYSICAL AND LOGICAL MEMORY ADDRESSES

If you’re reading this book carefully, you might have detected an inconsistency.

We said that memory addresses start at zero and go up. We said C reserves address 0 (NULL) to
mean “no address.” We said that if you try to access a memory address that doesn’t exist, your
program will crash. And we said that if you try to access address 0 (via a pointer set to NULL),
your application will crash. But why? Doesn’t address 0 always exist? Isn’t address 0 the one
address in every computer that exists?

Yes and no. The answer lies in the difference between physical memory addresses and logical
memory addresses.

In physical memory—the RAM that’s soldered to your motherboard—address 0 is the first byte
of memory. But your program never addresses physical memory directly. It works with what are
called logical addresses.

CHAPTER 7: Pointers and Parameters 168

Modern computers use a system called virtual memory that maps (translates) the logical
addresses that your program uses into the physical addresses of your RAM. This is done through
(surprise!) a bunch of pointers called a page map. When your program is started it is allocated a
range of logical memory addresses to use. These addresses might start at, say, one million
(1,000,000) and go up from there. You’ll notice that address 0 is intentionally left out. If your
program allocates an integer at address 1,000,000 and stores a value in it, the CPU uses its page
map to translate that logical address into the actual physical address of your RAM. Don’t worry
about the complexity of this; it’s all handled by hardware and it’s mind-numbingly fast.

This arrangement benefits your program in two ways. The first is security. If you accidently use
an uninitialized pointer, your program could end up accessing a memory address that’s not even
part of your program. Imagine if your program could change values in another running program!
Well, relax; you can’t. Your program can only access the logical addresses that have been
assigned to it. Try to access anything outside that range and your program will crash.

The second benefit is simplicity. Every program can allocate its first variable at address
1,000,000. Each program has the same logical addresses, but the page map translates them into
different physical addresses. One program doesn’t have to worry about using addresses of
another program. Each program lives in its own separate universe, and they never collide.

The short and long of it is that you don’t need to worry about it. You’ll never see the actual
(physical) address that your data is stored in. When programming and debugging, everything will
be in the logical addresses allotted to your program.

Here are some tips for staying safe with pointers:

 Make sure your pointer variables are initialized. An uninitialized
integer variable simply contains a goofy number, but an
uninitialized pointer variable will point to some random, likely
invalid, memory location.

 If you don’t have a value to put in a pointer, set it to NULL.
Test the pointer to make sure it isn’t equal to NULL before you
use it. Dereferencing a NULL pointer is the fastest, and most
common, way to crash your program. If a pointer is no longer
valid, set it to NULL again.

CHAPTER 7: Pointers and Parameters 169

 Make sure you don’t use pointers to variables that no longer
exist. In the Factor program, main() allocated a variable and
passed its address to Factor(), which used that pointer. The
variable existed before, and after, the call to Factor() so that
was safe. But what happens if you reverse it? What if Factor()
allocates a variable and passes its address back to main()? It’s
unsafe for main() to use that pointer. Why? Because the
variable created by Factor() disappeared as soon as the
function returned to main(), so the pointer that main() has now
points to a variable that no longer exists. That is a recipe for
disaster.

Don’t feel bad if you make a mistake with pointers, because you will make a
mistake with pointers. We doubt there’s a C programmer alive that hasn’t
crashed their application using a NULL or uninitialized pointer. Professional
programmers with decades of experience do it. In fact, it’s the number one
reason applications crash.

Global and Static Variables
So far we’ve used function parameters, return values, and pointers to pass
values to and from other functions. We did this because the scope of an
automatic variable is confined to the function (or block) it was declared in. This
is, by far, the most common way that values are passed around inside a
program. There is, however, an alternative.

Global Variables
A global variable is a variable that is accessible from every function in your
program. Said another way, the scope of a global variable is the entire program.
The variable is created before the program begins and exists until it ends.

Global variables provide an alternative to passing values via parameters. Global
variables are just like regular variables, with the exception that they can be
referenced inside any of your program’s functions. One function might initialize
the global variable; another might change its value; and another function might
print the value of the global variable in the console window.

As you design your programs, you’ll have to make some basic decisions about
data sharing between functions. If you’ll be sharing a variable among a number
of functions, you might want to consider making the variable a global. Globals
are especially useful when you want to share a variable between two functions
that are several calls apart.

CHAPTER 7: Pointers and Parameters 170

Several calls apart? At times, you’ll find yourself passing a parameter to a
function, not because that function needs the parameter, but because the
function calls another function that needs the parameter.

Look at this code:

#include <stdio.h>
void PassAlong(int myVar);
void PrintMyVar(int myVar);

int main(void)
{
 int myVar;
 myVar = 10;
 PassAlong(myVar);
 return 0;
}

void PassAlong(int myVar)
{
 PrintMyVar(myVar);
}

void PrintMyVar(int myVar)
{
 printf("myVar = %d\n", myVar);
}

Notice that main() passes myVar to the function PassAlong(). PassAlong()
doesn’t actually make use of myVar. Instead, it just passes myVar along to the
function PrintMyVar(). PrintMyVar() prints myVar and then returns. If myVar were
a global, you could have avoided some parameter passing. main() and
PrintMyVar() could have shared myVar without the use of parameters.

WHEN TO USE GLOBALS

When should you use parameters? When should you use globals?

In a nutshell, you should generally avoid using globals unless there’s a compelling reason to do
so. Global variables offer a shortcut that saves you from having to pass information up and down
your chain of function calls and gives disparate functions access to the same information. They
do save time, but sometimes at the cost of proper program design. As you move on to object
programming languages like Objective-C, you’ll find that you rarely (if ever) need globals.

So why learn about them? There are times when a global is absolutely the correct solution. On
the other hand, a telltale sign of an inexperienced programmer is overuse of globals.

CHAPTER 7: Pointers and Parameters 171

None of these decisions are cut and dried. There’s a very influential book titled Design Patterns:
Elements of Reusable Object-Oriented Design written by the so-called “Gang of Four,” Erich
Gamma, Richard Helm, Ralph Jonson, and John Vlissides. The book describes common
programming problems and elegant solutions to those problems. These “design patterns,” as
they have become known as, are universal and can be applied to just about any computer
language. If you’re serious about programming, you should become familiar with design patterns.

At the same time, people have observed “anti-patterns,” bad programming practices used by
poor programmers. Using too many global variables is an anti-pattern, and here’s why. One
philosophy of variable scope is that it should match the scope of its purpose. In other words, a
variable should be available (in scope) to that code that makes use of that variable, and not much
else. Functions shouldn’t have access to unrelated variables. A global variable is accessible
everywhere, but it’s rare to find a variable whose purpose is applicable to every function in your
program. As your programs get larger, they become even more rare.

Let’s take a look at the proper way to add globals to your programs.

Adding Globals to Your Programs
Adding globals to your programs is easy. Just declare a variable outside of any
function. Here’s the example we showed you earlier, using globals in place of
parameters:

#include <stdio.h>

void PassAlong(void);
void PrintMyVar(void);

int gMyVar;

int main (int argc, const char * argv[])
{
 gMyVar = 10;
 PassAlong();
 return 0;
}

void PassAlong(void)
{
 PrintMyVar();
}

void PrintMyVar(void)
{
 printf("gMyVar = %d\n", gMyVar);
}

CHAPTER 7: Pointers and Parameters 172

This example starts with a variable declaration, right at the top of the program.
Because gMyVar was declared outside of a function, gMyVar becomes a global
variable, accessible to each of the program’s functions. Notice that none of the
functions in this version use parameters. As a reminder, when a function is
declared without parameters, use the keyword void in place of a parameter list.

NOTE: Did you notice that letter g at the beginning of the global’s name? Many C
programmers start each of their global variables with the letter g (for global). Doing
this will distinguish your local variables from your global variables.

Static Variables
So far all of the variables you’ve defined have a lifespan equal to their scope.
Parameter and automatic variables defined in a function are created when the
function starts and disappear again when it ends; this is also the same span of
code that has access to that variable. Likewise, a global variable exists as long
as the program does, and it’s accessible anywhere in the program.

A static variable is a hybrid that has the scope of an automatic variable and the
longevity of a global variable. It’s created when the program starts, but its scope
(the code that can ‘‘see’’ that variable) is limited to one function or block of
code. Here’s an example:

#include <stdio.h>
void Countdown(void);

int main (int argc, const char * argv[])
{
 Countdown();
 Countdown();
 Countdown();
 Countdown();

 return 0;
}

void Countdown(void)
{
 static int count = 3;

 if (count != 0)
 printf("%d ...\n", count--);
 else
 printf("Lift-off!\n");
}

CHAPTER 7: Pointers and Parameters 173

The variable count is defined as static and includes an initializer. The variable is
created when the program starts and is immediately assigned the value after the
equals sign. This happens only once. Even though it looks like it would be set to
3 every time the function runs, it doesn’t. And that’s good, because you want it
to remember its value over time.

NOTE: Both globals and statics can have initializer values. If you don’t specify an
initializer value, the variable is set to 0 before your program starts. Automatic
variables can be uninitialized, but global and static variables are always initialized.
The value of your initializer must be a constant; it can’t be an expression that uses
variables or function calls.

Run the program and you’ll see this output:

3 ...

2 ...

1 ...

Lift-off!

Each time the Countdown() function runs it looks at the value in count. If it’s not
0, it outputs that number and then subtracts one from it. If it is 0, it outputs the
message ‘‘Lift-off!’’

This works because the value of count is set to 3 before the program starts.
Every time Countdown() is called, it decrements the count variable by 1 until it
gets to 0.

The scope of count is still limited to the Countdown() function. You can’t refer to
the count variable in main() or any other function. Countdown() can, however,
safely get the address of count (&count) and pass that pointer to another
function or return it. It’s safe because count doesn’t go away when Countdown()
returns, so that address will always point to a valid variable.

OTHER SCOPES

Variables can have scopes besides local and global. The static keyword can be added to a
global variable or function to limit its scope to a single source file (like main.c), which is called a
module; technically it’s a translation unit, but only hard-core compiler geeks ever call it that. Also
note that variables and functions defined in other modules aren’t automatically available
everywhere. You must use the extern keyword to define the functions and global variables you

CHAPTER 7: Pointers and Parameters 174

plan to use from other modules. Poke around some of the header (.h) files that you’ve been
#includeing and you’ll see this a lot.

The extern and static keywords are particularly useful when organizing your program into
multiple modules. We’ll show you how to do that in Chapter 11.

What’s Next?
Wow! You really are becoming a C programmer. In this chapter alone you
covered pointers, function parameters (both by-value and by-reference), global
and static variables, and function return values.

You’re starting to develop a sense of the power and sophistication of the C
language. You’ve built an excellent foundation. Now you’re ready to take off.

The second half of this book starts with an introduction of the concept of data
types. Throughout this book, you’ve been working with a single data type, the
int. The next chapter will introduce the concept of arrays, strings, pointer
arithmetic, and other kinds of numbers. Let’s go.

CHAPTER 7 EXERCISES

1. Predict the result of each of the following code fragments:

a. void AddOne(int *myVar);
int main (int argc, const char * argv[])
{
 int num, i;
 num = 5;
 for (i = 0; i < 20; i++)
 AddOne(&num);
 printf("Final value is %d.\n", num);
 return 0;
}

void AddOne(int *myVar)
{
 (*myVar) ++;
}

CHAPTER 7: Pointers and Parameters 175

b. int gNumber;
int MultiplyIt(int myVar);
int main (int argc, const char * argv[])
{
 int i; gNumber = 2;
 for (i = 1; i <= 2; i++)
 gNumber *= MultiplyIt(gNumber);
 printf("Final value is %d.\n", gNumber);
 return 0;
}

int MultiplyIt(int myVar)
{
 return(myVar * gNumber);
}

c. int gNumber;
int DoubleIt(int myVar);
int main (int argc, const char * argv[])
{
 int i;
 gNumber = 1;
 for (i = 1; i <= 10; i++)
 gNumber = DoubleIt(gNumber);
 printf("Final value is %d.\n", gNumber);
 return 0;
}

int DoubleIt(int myVar)
{
 return 2 * myVar;
}

2. In the Factor project, add the following code just before the return statement
in main():

if (isPrime)
 printf("The last number tested was prime.\n");

Explain why this code will not compile.

3. In the Factor project, a combination of a return value and pointers were used
to return three distinct values from the Factor() function. We also said
that use of pointers should be considered only when they are “compelling.”
Are pointers really needed for the Factor() function to work? Think about
the problem a moment. All three numbers returned by Factor() are related
to each other, or can be derived from one of the other values; either factor

CHAPTER 7: Pointers and Parameters 176

can be calculated using the original number and the other factor, and the
value of the factors will tell you if the number is prime. Rewrite the Factor
project so that the Factor() function doesn’t use any pointers.

177

8
Chapter

More Data Types
You may now consider yourself a C Programmer, First Class. At this point,
you’ve mastered all the basic elements of C programming. You know that C
programs are made up of functions, one (and only one!) of which is named
main(). Each of these functions uses keywords (such as if, for, and while),
operators (such as =, ++, and *=), and variables to manipulate data and make
decisions.

Sometimes you’ll use a parameter to pass values between a calling and a called
function. Sometimes these parameters are passed by value; other times pointers
are used to pass a parameter by address. Some functions return values. Others,
declared with the void keyword, don’t return a value.

So far, all of the variables you’ve declared are ints. In this chapter, you’ll focus
on other types of variables. As you’ll soon see, there are many other data types
are out there.

Data Types Beyond Int
So far, the focus has been on ints, which are extremely useful when it comes to
working with integer numbers. You can add two ints together. You can check if
an int is even, odd, or prime. There are a lot of things you can do with ints, as
long as you limit yourself to integer numbers.

NOTE: Just as a reminder that 1, 2, 3, 527, 33, and –2 are all integer numbers, while
35.7, 0.1, and -1.2345 are not.

CHAPTER 8: More Data Types 178

What do you do if you want to work with numbers such as 3.14159 and ---98.6?
Check out this slice of code:

int myNum;

myNum = 3.5;
printf("myNum = %d", myNum);

Since myNum is an int, the number 3.5 will be truncated before it is assigned to
myNum. When this code ends, myNum will be left with a value of 3 and not 3.5 as
intended. Do not despair. C provides floating point data types, specifically
designed to deal with non-integer numbers.

NOTE: Floating point numbers are extremely flexible. They can store very large
numbers (47,951,200,000,000,000,000,000,000,000,000.0) and very small numbers
(0.0000000017346). The name “floating point” refers to the fact that the radix point
(also called the “decimal point”) can be placed anywhere relative to the significant
digits, which is what allows floating point values to represent such a wide range of
numbers.

The three floating point data types are float, double, and long double. The
types differ in the number of bytes allocated to each and, therefore, the range of
values each can hold. The relative sizes of these three types will vary depending
on what kind of CPU you are using and other variables. Let’s look at a program
you can run to tell you the size of these three types in your development
environment and to show you various ways to use printf() to print floating
point numbers.

FloatSizer
Look inside the Learn C Projects folder, inside the subfolder named 08.01 -
FloatSizer, and open the project named FloatSizer.xcodeproj. Figure 8-1
shows the results of running FloatSizer on a 64-bit Intel Mac Pro using Xcode.
The first three lines of output tell you the size, in bytes, of the types float,
double, and long double, respectively.

Never assume the size of a type. As you’ll see when you go through the source
code, C gives you everything you need to check the size of a specific type in
your development environment. If you need to be sure of a type’s size, write a
program to check the size for yourself.

CHAPTER 8: More Data Types 179

Figure 8-1. The output of FloatSizer

Walking Through the FloatSizer Source Code
FloatSizer starts with the standard #include:

#include <stdio.h>

main() defines three variables, a float, a double, and a long double.

int main (int argc, const char * argv[])
{
 float myFloat;
 double myDouble;
 long double myLongDouble;

Next, you assign a value to each of the three variables. Notice that you’ve
assigned the same number to each. The ‘‘f’’ at the end of the number assigned
to myFloat tells the compiler that this constant is of type float. You could also
have used an ‘‘F’’ at the end of the constant to say the same thing. The ‘‘L’’ at
the end of the constant assigned to myLongDouble signifies a long double. An ‘‘l’’
would have accomplished the same thing. Floating point constants (that is, any
number with a decimal place) with no letter at the end are assumed to be of type
double.

 myFloat = 12345.67890123456789f;
 myDouble = 12345.67890123456789;
 myLongDouble = 12345.67890123456789L;

CHAPTER 8: More Data Types 180

TIP: Programmers tend to use the capital “L” at the end of long constants, because
the lower case “l” can be easily confused with the number “1”.

Why should you care about this? Assigning the right type to a constant ensures
that the appropriate amount of memory is allocated for each constant. A
numeric constant in a C program has a type (and size) just like a variable, and in
this case it’s important that they match. As you’ll see as you get further into the
program, a float (4 bytes) is not nearly large enough to hold this constant at the
number of decimal places it requires. A double (8 bytes) is close to large enough
but not quite. Declaring the constant as a float or double means that some
rounding will occur before the first assignment is even performed. Only the long
double (16 bytes) is large enough to hold the entire value of the constant without
rounding.

Let’s continue walking through the source code. main() uses C’s sizeof
operator to print the size of each of your three floating point types. Even though
sizeof doesn’t look like the other operators you’ve seen (+, *, /, and so on), it is
indeed an operator. Stranger still, sizeof is typically followed by a pair of
parentheses surrounding a single operand and looks much like a function call.
The operand is either a type (like long double) or a variable (like myLongDouble).
sizeof returns the size, in bytes, of its operand.

 printf("sizeof(float) = %zu\n", sizeof(float));
 printf("sizeof(double) = %zu\n”, sizeof(double));
 printf("sizeof(long double) = %zu\n\n", sizeof(long double));

The rest of this program is dedicated to various and sundry ways you can print
your floating point numbers. So far, all of your programs have printed ints using
the %d format specifier. The Standard Library has a set of format specifiers for all
of C’s built-in data types, including several for printing floating point numbers.

THE RIGHT SPECIFIER

Did you notice that we changed from using the %d conversion specifier in the printf() function
to using %zu?

The type of the sizeof operator is an obscure, but important, type called size_t. The size_t
(for “size type”) type is an unsigned integer type that is guaranteed to be large enough to count
all of the bytes your computer can address. See the sidebar “Computer Architecture and Pointer
Sizes” in Chapter 7 for a refresher. The size of the size_t type will be different depending on
the CPU architecture, but will generally be an integer that’s the size of a pointer. The purpose of
size_t is so that you don’t have to care. When you’re dealing with values that represent the

CHAPTER 8: More Data Types 181

size of things in memory, use a size_t variable or expression and it will always work. (We’ll talk
more about this in the next section.)

The printf() function has a special format specifier (%zu) just for size_t values. The “u”
means it’s an unsigned integer (you can’t have a negative number of bytes), and the “z” means
it’s a “size” value.

The format specifier %f will print float and double variables and %Lf will print
long double variables, all in their natural, decimal format.

 printf("myFloat = %f\n", myFloat);
 printf("myDouble = %f\n", myDouble);
 printf("myLongDouble = %Lf\n\n", myLongDouble);

Here’s the result of these three printf()s:

myFloat = 12345.678711
myDouble = 12345.678901
myLongDouble = 12345.678901

NOTE: The number you see on your computer might be different. Different CPUs use
subtly different methods for representing floating point numbers. This results in
slightly different accuracy and rounding.

As a reminder, all three of these numbers were assigned the value

12345.67890123456789

Notice that each of the printed numbers was cut off six digits after the decimal
place. That is the default for the %f format specifier. The fact that myDouble and
myLongDouble are a bit more accurate than myFloat makes sense, since myFloat
is only 4 bytes long, so less memory means less accuracy. If you were dealing
with a number like 3.275, a float would be plenty big, and six digits after the
decimal place would be plenty wide enough to accommodate the number. As is,
the 4-byte limit of the float is causing the original number to be rounded, and
the six digits past the decimal limit is causing your double and long double to
be clipped. Let’s keep going.

Format Specifier Modifiers
Your next printf()s will use format specifier modifiers (that’s a mouthful, isn’t
it?) to more closely control the output produced by printf(). Like C types,
printf() format specifiers have a basic type that can be augmented by
combining it with various modifiers.

CHAPTER 8: More Data Types 182

A specifier begins with a % and ends with the basic specifier. So far we’ve shown
you the signed integer (%d or %i), unsigned integer (%u), and floating point (%f)
specifiers. Between the % and the specifier are where the modifiers go. The long
(L) and size (z) modifiers alter the size of the value the printf() is expecting in
its argument list. We’re now going to show you some other formatting modifiers.

By using %25.16f instead of %f, you tell printf() to print the floating point
number with an accuracy of 16 places past the decimal and to add spaces, if
necessary, in front of the number so it takes up at least 25 character positions.

printf("myFloat = %25.16f\n", myFloat);
printf("myDouble = %25.16f\n", myDouble);
printf("myLongDouble = %25.16lf\n\n", myLongDouble);

Here’s the result of these three printf()s:

myFloat = 12345.6787109375000000
myDouble = 12345.6789012345670926
myLongDouble = 12345.6789012345678902

The number (25) before the decimal point is called the minimum field width
modifier. The decimal point and the number (.16) after it are, together, called the
precision modifier.

printf() printed each of these numbers using a ‘‘precision’’ of 16 places past
the decimal point. Go on, count them; we’ll wait. If the digits stop before 16
places are reached, zeros are added. This is called padding. The 16 digits to the
right of the decimal, plus one for the decimal, plus the five digits to the left of the
decimal total 22 (16 + 1 + 5 = 22) characters. You asked printf() to use at least
25 characters, so printf() added three spaces to the left of each number
(padding with spaces).()

THE ACCURACY OF NUMBERS IN C

You originally asked printf() to print a float with the following value:

12345.67890123456789

The best approximation of this number you were able to represent using a float is this:

12345.6787109375000000

Where did this approximation come from? It has to do with the way your computer stores floating
point numbers.

Chapter 4 described, at length, how integer numbers are represented (computer science majors
call this encoded) using a sequence of binary bits. Floating point numbers are also represented
by a sequence of bits, but it’s a little more complicated than integers. (Who are we kidding?

CHAPTER 8: More Data Types 183

Everything in a computer is a sequence of binary bits! Your bank account balance is a sequence
of binary bits. Your copy of the movie Finding Nemo is a sequence of binary bits. We promise to
stop reminding you of this in the future.)

A single floating point number is basically two numbers that combine to form its value: an integer
that represents the significant digits of the number (with the funny name significand, also known
as the mantissa or coefficient) and a second integer that is an exponent. If you’ve ever studied
any science or engineering, you’ve run across scientific notation, like the following:

2.738 • 109

It’s a two-part number that consists of the significant digits of the number plus a power of ten
that tells you where the decimal place goes. In the example given, the number is 2,738,000,000.
If the exponent was 102, the number would be 273.8. If the exponent was 10-4, the number would
be 0.0002738. Both the significand and the exponent can be negative.

Floating point numbers use, essentially, the same scheme. The biggest difference is that the
exponent is a power of 2 instead of 10 because computers have bits, not fingers.

So why is all this important? Just as ints can’t represent integer values beyond the range of bits
it has, a floating point number can’t represent more significant digits than the range of bits it
uses for its significand. This is the critical difference to understand. An integer variable has a
fixed range based on its size. A floating point variable has a fixed accuracy based on its size.

Assign any number to a floating point variable and—no matter how big or small the value is—
the first handful digits will be accurately represented. But as the number of digits gets longer and
longer, it requires more bits of the significand. At some point the number will be too complex to
store. But unlike an integer (that simply can’t store a number that’s too big), a floating point
number will store a number that’s as close as it can to the original number.

The take-away message is this: the bigger the floating point type, the greater its accuracy. If a
float can’t store the exact value, it will store the number that’s as close to the real number as it
can represent.

The next four printf()s show you the result of using different modifier values to
print the same float:

printf("myFloat = %10.1f\n",myFloat);
printf("myFloat = %.2f\n", myFloat);
printf("myFloat = %.12f\n", myFloat);
printf("myFloat = %.9f\n\n", myFloat);

Here’s the output produced by each of the printf()s:

myFloat = 12345.7
myFloat = 12345.68
myFloat = 12345.678710937500
myFloat = 12345.678710938

CHAPTER 8: More Data Types 184

The specifier %10.1f told printf() to print one digit past the decimal and to use
ten character positions for the entire number. The specifier %.2f told printf() to
print two digits past the decimal and to use as many character positions as
necessary to print the entire number. Notice that printf() rounds off the result
for you and doesn’t simply cut off the number after the specified number of
places.

The specifier %.12f told printf() to print 12 digits past the decimal, and the
specifier %.9f told printf() to print 9 digits past the decimal. Again, notice the
rounding that takes place.

Your format specifier can include a minimum field width, a precision, both, or
neither. Unless you need to exactly control the total number of characters used
to print a number, you’ll probably leave off the first (minimum field width)
modifier and just specify the number of digits past the decimal you want printed,
using specifiers like %.2f and %.9f.

If you do use a minimum field width, like %4.2f, remember that it’s a minimum
width. printf() will never cut off numbers to make it fit in that many characters;
it will only add padding if the number is too short.

Scientific and General Specifiers
The next printf() uses the specifier %e, asking printf() to print the float using
scientific or exponential notation.

printf("myFloat = %e\n", myFloat);

Here’s the corresponding output:

myFloat = 1.234568e+04

1.234568e+04 is equal to 1.234568 times 10 to the fourth power (1.234568 o 104
or 1.234568 o 10,000), which is equal to 12,345.68.

TIP: You can write floating point constants in your C source using exponential
notation, too. The compiler understands a number, followed by the letter “e”,
followed by a power-of-10 exponent. For example, the three statements myDouble
= 123456000000.0, myDouble = 1.23456e11, and myDouble = 123456e6 all
mean the same thing.

The next two printf()s use the %g specifier. The %g specifier is bit of a
chameleon and is more interested in the number of significant digits than the
number of digits to the right of the decimal point. If the number can be

CHAPTER 8: More Data Types 185

comfortably formatted using %f, it uses the %f style format. If not, it
automatically switches to %e style formatting. For example, the code

myFloat = 12345.6789;
printf("myFloat = %g\n", myFloat);
myFloat = 123456789.0;
printf("myFloat = %g\n", myFloat);

produces the following output:

myFloat = 12345.7
myFloat = 1.23457e+08

TIP: If you want a mnemonic to help you remember the three floating point specifiers,
try this: f=fixed point, e=exponential, g=general.

All three floating point specifiers (%f, %e, and %g) can have a precision modifier.
While %f and %e use their precision to determine the number of digits to the right
of the decimal point, %g uses it to mean the number of significant digits to
display, regardless of where the decimal point goes. If the number can be
shown with the desired number of significant digits using the %f format, it is;
otherwise, it switches to %e.

To see how this works, return to the FloatSizer project and add these
statements:

printf("myFloat = %.20g", myFloat);
printf("myFloat = %.20g", myDouble);
printf("myFloat = %.20Lg", myDoubleFloat);

You’re asking printf() to display each number with up to 20 significant digits.
The output will look something like this:

myFloat = 12345.6787109375
myDouble = 12345.678901234567093
myLongDouble = 12345.678901234546789

Notice that %g doesn’t pad the number with zeros. If the number stops after five
significant digits, that’s as long as it will be.

This %g specifier really highlights the difference in precision between the three
floating point variable sizes: float, double, and long double. Notice that while
the float value is close, it drifts away from the original value by the 9th digit. The
double hangs in there for a whopping 17 digits, but is still slightly off the mark.
The long double, however, is spot on, storing exactly the number you wrote in
the source.

CHAPTER 8: More Data Types 186

The Integer Types
At this point you’ve learned about five different variable types: three floating
point types (float, double, and long double) and two integer types (int and
unsigned int). In this section, we’ll introduce you to the remaining 10 different
types, but hopefully in a way that will make things seem simpler, not more
complex.

There are actually only two kinds of numbers in C: integer and floating point. All
of the numeric types are just variations on those two themes. The integer types,
int and char, form the first family. You’re very familiar with int. The char
(character) type is just another integer type, but one more suited for working
with text, which we’ll get to later in this chapter. But for now, just know that char
is just another integer variable type. And you’ve recently met the floating point
family of float and double.

All of the remaining types in C are variations created by using one the four base
types combined with several type modifiers. You’ve already used one modifier
(long) to create a long double. Here are some of the type modifiers that you’ll be
working with:

 The long modifier creates a type that uses even more bits for
increased range/precision. Note that long can be used with int
and double to create a bigger int or a more precise double.

 The short modifier is the opposite of the long modifier and
makes a smaller version of the base type for a number that
has less range/precision. Note that short can only modify an
int.

 The long long modifier (yes, that’s ‘‘long’’ twice) uses even
more bits than the long type for even greater range. Note that
long long can only be used with int.

 The unsigned modifier means the integer can only represent
zero and positive numbers. Note that unsigned can modify an
int or char.

 The signed modifier is the opposite of unsigned, which means
the integer is stored using the twos-compliment format and
can represent both positive and negative numbers. (See
Chapter 4 again if that didn’t make sense.) Note that signed
can modify an int or char.

The first three modifiers (short, long, and long long) are size modifiers and you
can only use one. That is, you can’t create a short long int.

CHAPTER 8: More Data Types 187

The signed and unsigned modifiers are also mutually exclusive, meaning that
you can use one or the other, but never both. You’ll rarely see the signed
modifier in C source code, because all variable types are signed unless you
specify otherwise. Thus, the type signed int is redundant, so almost no one
ever writes that (although it’s perfectly legal). Floating point variables are always
signed; you don’t get a choice there.

Programmers are traditionally a lazy lot and very soon tired of writing ‘‘long int’’
and ‘‘unsigned int.’’ We’re sure they calculated that if they could save
themselves 200 keystrokes a day, it would mean they could retire to a desert
island that much sooner. Whatever.

Regardless, programmers often exploit a quirk of the integer type modifiers to
write less code. If you use any of the short, long, long long, signed, or
unsigned keywords, the compiler assumes you are declaring an int type-----
unless you specify otherwise. This means you can leave the actual ‘‘int’’ out of
the declaration without changing its meaning. Here are three verbose int
declarations:

unsigned int noSign;
short int kindaSmall;
unsigned long int kindaBig;

The following code means exactly the same thing, and you’ll find this second
form used often:

unsigned noSign;
short kindaSmall;
unsigned long kindaBig;

We don’t care which you use. The compiler doesn’t care which you use. Just
don’t fall into the trap of thinking that short, long, and unsigned are distinct data
types. They’re not. They’re all variations of int.

Now that you understand the secret formula for declaring numeric types in C,
we’ll now list every type of numeric variable in the C99 standard:

(signed) char
unsigned char
(signed) short int
unsigned short int
(signed) int
unsigned int
(signed) long int
unsigned long int
(signed) long long int
unsigned long long int
float
double

CHAPTER 8: More Data Types 188

long double

As you can see, it’s not all that complicated. Every C numeric type is a
descendant of either a base integer or floating point type. You can make them
longer, shorter, or change their sign. The IntSizer project will show you how
this all works in a real program.

IntSizer.xcodeproj
Open the IntSizer project. You’ll find it in the 08.02 – IntSizer folder.
IntSizer uses some simple printf() statements to explore these new types,
like this:

printf("sizeof(char) = %zu\n", sizeof(char));
printf("sizeof(unsigned char) = %zu\n", sizeof(unsigned char));
printf("sizeof(short int) = %zu\n", sizeof(short int));
…

Run the project and you’ll see output like that in Figure 8-2.

Figure 8-2. Output of IntSizer

The first thing you’ll notice is that all of the signed variables have the same size
as their unsigned counterparts. That makes sense because the unsigned

CHAPTER 8: More Data Types 189

modifier doesn’t change the size of the variable, just how the bits in the variable
represent numbers.

The other thing you’ll notice is that long int and long long int are the same
size. Or, maybe not. Maybe on your system, the int and the long int values
are the same size.

What’s up with that? Isn’t ‘‘long’’ supposed to mean ‘‘use more bits’’ and ‘‘long
long’’ mean ‘‘use even more bits?’’ As it turns out, it’s entirely up to the compiler
to decide the size of the various integer and floating value sizes. The sizes can
overlap, change over time, and be different for different CPUs.

Not long ago, all C ints were 2 bytes (16-bits). Then the default size of ints
became 32 bits; tomorrow it might be 64. In the example shown in 8-1, ints are
4 bytes (32-bits). A long int may be longer than an int, or it might be the same
size. A long long int might be the same size as a long int, or it might be
longer. The only guarantee that the compiler will give you is that a long int will
never be shorter than an int.

The reasons for this are many. Factors include the history of the C language and
compatibility with software that’s already been written, but mostly it has to do
with your CPU. It may seem counterintuitive, but modern CPUs can work with
32- and 64-bit numbers faster than they can work with 16- and 8-bit numbers. A
C compiler designed to produce the fastest software for a given CPU will
choose the size of int that balances the needs of the programmer with the best
performance aspects of that particular CPU.

The bottom line is that there are no guarantees. Choose the kind of integer that
best fits your needs and let the compiler worry about how many bits it will have.

Which brings us to the questions that you have probably been forming in your
head for the past three or four pages: ‘‘Why are we talking about all of this?’’
‘‘What are my needs?’’ ‘‘Can’t I just use int for everything?’’

These are astute observations, Padawan. Let’s explore the answers together.

The Long and Short of ints
Table 8-1 shows a summary of what you’ve learned about int value sizes and
the range of numbers each can represent.

CHAPTER 8: More Data Types 190

Table 8-1. Ranges of Various int Variables

sizeof(type) Bits Signed Range Unsigned Range

1 8 -128 – 127 0 – 255

2 16 -32,768 – 32,767 0 – 65,535

4 32 -2,147,483,648 – 2,147,483,647 0 – 4,294,967,295

8 64 -9,223,372,036,854,775,808 –
9,223,372,036,854,775,807

0 –
18,446,744,073,709,551,615

Programming problems will arise when you choose a variable size that is too
small, and there can be other kinds of problems if you choose a type that is too
large. The easiest way to explain this is to simply demonstrate three common
problems with ints. Then we’ll give you some advice on how to pick the type
you need.

Inadequate Range
Suppose a customer asked you to write a program designed to print the
numbers 1 through 100, one number per line. Sounds pretty straightforward-----
just create a for loop and embed a printf() in the loop. Use an unsigned char
to act as the loop’s counter. Remember that char is just another integer type.
Refer to Table 8-1 and see that if you declare your counter as an unsigned char,
it can hold values ranging from 0 to 255. That should be plenty, right?

unsigned char counter;
for (counter=1; counter<=100; counter++)
 printf("%d\n", counter);

This program works just fine. But suppose your customer comes back asking
you to extend the program to count from 1 to 1,000 instead of just to 100. You
happily change the 100 to 1,000, like so, and take it for a spin:

unsigned char counter;
for (counter=1; counter<=1000; counter++)
 printf("%d\n", counter);

What do you think will happen when you run it? To find out, open the Learn C
Projects folder, the 08.03 - TypeOverflow subfolder, and the project
TypeOverflow.xcodeproj. Change the loop constant from 100 to 1000, select
Run from the Product menu, and then bring up the console window. This output in
the console pane keeps repeating, on and on, ad infinitum. Congratulations on
your first infinite loop!

CHAPTER 8: More Data Types 191

CAUTION: You’ll want to stop this program by pressing the big Stop button in the
toolbar. If you let it run unabated, it will eat up all of Xcode’s available memory as an
infinite number of messages fill up the console window. This will cause Xcode some
grief.

If you scroll through the console window, you’ll see that the program generates
the numbers 1 through 255, one number per line, and then goes to 0 and starts
climbing again (see Figure 8-3).

Figure 8-3. TypeOverflow running in an infinite loop

The problem with this program occurs when the for loop increments the
counter when it has a value of 255. Since an unsigned char can hold a
maximum value of 255, incrementing it gives it a value of 0 again. Since counter
can never get higher than 255, the for loop never exits.

Just for kicks, edit the code, and change the unsigned char to a signed char.
What do you think will happen? Try it!

The real solution here is to use the right type for your situation and to test, test,
test your code. Change the char to int and everything will work exactly as you
planned. As your programming skills mature, start reading up on the process of
testing your code. Testing your code is a vital part of delivering a successful
product.

CHAPTER 8: More Data Types 192

Implicit Conversion
Here’s probably the simplest program that doesn’t work:

int au;
au = 149597870700;

Set a breakpoint after the assignment statement, as shown in Figure 8-4, in the
AstronomicalUnit program that you’ll find in the 08.04 - AstronomicalUnit folder.
Run the program and examine the value of the au variable using the debugger.

Figure 8-4. Examining the value of au

The code assigns the value 149,597,870,700 (one astronomical unit, or the
mean radius of the earth’s orbit in meters-----just in case you were wondering) to
the int variable au. But, as you know from experimenting and from Table 8-1, an
unsigned int can’t represent a number that large. So only some of the bits were
stored, and the result was the number 3,568,982,636, which is well inside the
orbit of Mercury-----and way off the mark.

You can probably fix this problem in your sleep, right? Change the unsigned int
into an unsigned long int and try again. See, you’re getting the hang of this
now.

The compiler will help you find these kinds of mistakes. As you did in the section
‘‘Avoiding Common Pitfalls’’ in Chapter 6, go into your project’s build settings
and turn on the ‘‘Suspicious Implicit Conversions’’ warning. This warning will tell
you when the compiler thinks a statement might lose information because what
you’re assigning it to is too small, as shown in Figure 8-5.

CHAPTER 8: More Data Types 193

Figure 8-5. Suspicious conversion warning

Sign Conversion
Another hazard is inadvertently changing the representation of a number by
assigning a signed value to an unsigned variable, and vice versa. The following
code won’t work the way it’s written:

unsigned int neverNegNum;
neverNegNum = -2;

Instead of assigning the value of -2 to neverNegNum, its value gets set to
4,294,967,294. That’s because neverNegNum is an unsigned integer. Unsigned
variables can’t represent a negative number, so the value is some number with
the same bits as the twos-complement representation of -2. The bits weren’t
changed or lost; it just changed how they are interpreted. To demonstrate this,
add some more code:

int anyNum;
anyNum = neverNegNum;

Open the SignedUnsigned project that you’ll find in the 08.05 - SignedUnsigned
folder and step through this code with the debugger, as shown in Figure 8-6.

CHAPTER 8: More Data Types 194

Figure 8-6. Conversion of signed to unsigned and back to signed int

Did you see what happened? The bits in neverNegNum were copied into anyNum
and the number became -2 again. It’s all in the interpretation.

The Best int for the Job
As promised, here’s a short course in choosing the right kind of int to use.

1. Choose an int type that agrees with the other ones you’re using.
If a function returns a long int, store that in a long int variable.
Read the section about semantic types.

2. If you encounter a mixture of types, choose a size that’s equal
to or larger than the largest size.

3. If you don’t have a good reason to choose an unsigned type,
use a signed type.

4. If you know the numbers you are going to be using are
particularly large, make sure you choose a size that can
adequately represent all of the numbers you’ll ever need to
store.

5. If none of the above rules apply, use an int.

CHAPTER 8: More Data Types 195

When you need to choose an int type, read these guidelines one at a time and
stop at the first one that applies to your situation. Pretty soon you’ll be doing it
in your sleep. The next few sections explain the reasoning behind these
guidelines, along with a few refinements.

Semantic Types
The C language, the Standard Library, most other libraries, and more than a few
programmers, create semantic types. This isn’t part of the C language; it’s just a
programming convention. We’ll show you how to create your own types in
Chapter 13. For now, just know that a custom type (like size_t) is just a
synonym for one of the int types the compiler understands.

Semantics is the study of the meaning of things. A semantic type is a custom
data type that describes the purpose or meaning of the values it can store.
You’ve already seen the size_t type returned by the sizeof operator. You can
declare a size_t variable just like you declare any other kind of variable.

size_t mySize;

So what kind of int is mySize? The beauty is that you don’t have to care. The
purpose of the size_t type is to define a variable that will store any count of
bytes that this CPU can address. The size_t type will be different kinds of ints
for different kinds of computers. The point is that by choosing a data type that
has meaning, it will always work. If a new CPU comes out and size_t needs to
change, that’s something for the authors of the Standard Library to worry about,
not you.

Other examples are the uid_t type that defines a variable that can identify a
user’s account on a system (called the ‘‘user ID’’). An off_t type variable is
guaranteed to be big enough to describe the position (‘‘offset’’) within any file.
The list goes on and on; there are literally hundreds of these kinds of types.

The corollary to rule #1 is this: if you’re working with values that have a semantic
type (like size_t), use that type. You know that it will always work for that
purpose.

Exact-Width Types
There’s another set of custom data types defined in the Standard Library that
define integers of exactly the size you want. Declaring an int doesn’t guarantee
you a particular size of int, just one that’s well suited for your particular CPU.
So what if you need an int that’s always exactly 16 bits long? You could run a

CHAPTER 8: More Data Types 196

program like IntSizer to find an int type that’s 2 bytes long and use that. But that
only works as long as your compiler never changes and you never compile your
program for a different CPU.

The standard library header <stdint.h> defines a family of custom types that
define integers of specific sizes. The int16_t defines a signed integer variable
that will always be exactly 2 bytes (16 bits) long no matter where your program
is compiled. The rest of the types (int8_t, int32_t, int64_t) do the same and
there’s a matching set for the unsigned integer types (uint8_t, uint16_t,
uint32_t, and uint64_t). There are types that guarantee a minimum size
(int_least16_t, int_least32_t, and so on) but might be bigger. For
performance hounds, there are types that guarantee a minimum size but might
be bigger if the bigger version is faster on this particular CPU (int_fast16_t,
uint_fast8_t). Want the biggest integer your CPU can handle? Use intmax_t.

When considering rule #4, include this advice: if you need an integer that's a
specific size, use one of the exact-width types.

Integer vs. Floating Point
The last bit of advice we’re going to impart before we move on to the char type
is when to use an integer type and when to use a floating point type. Our advice
is simple: use integer for all discrete values and general variables. Use floating
point only for ‘‘continuous’’ values.

The vast majority of your variables will be integers. Integer variables are small,
efficient, and really fast. But most importantly, they’re discrete. They will never
store a fractional value, which makes them well suited to making decisions,
controlling loops, addressing elements in an array (later in this chapter), and so
on. You can’t run a for loop 2.3 times.

Floating point variable are best suited for values that are not discrete. The au
variable used in the earlier example should have been a floating point value. A
spaceship can just as easily be 2,000 km above the earth as it can be 2,000.6
km. Time, distance, color, transparency, field strength, amplitude, speed, and
angles should be floating point numbers.

In the past, programmers avoided floating point numbers like the plague, mostly
because they were so incredibly slow. But modern computers have dedicated
floating point processing units that are so fast that the difference in performance
is now rarely a consideration.

CHAPTER 8: More Data Types 197

NOTE: How fast are floating point numbers on modern computers? To put it into
perspective, in 1990 the most powerful supercomputer in the world was the Cray-2.
It stood 9 feet tall and was capable of performing 1.9 GFLOPs (1.9 billion floating
point calculations per second). Today, you can walk into your neighborhood
electronics mega-mart and pick up any number of computers, even laptops, that can
perform 70 GFLOPs, which is more floating point operations per second than all of
the Cray-2 supercomputers ever made combined.

Now let’s take a look at that ‘‘other’’ integer type, the char.

Working with Characters
With its minimal range, you might think that a char isn’t good for much. Actually,
the C deities created the char for a good reason. It is the perfect size to hold a
single alphabetic character. In C, an alphabetic character is a single character
placed between a pair of single quotes (as in 'a'). Here’s a test to see if a char
variable contains the letter 'a':

char c;

c = 'a';
if (c == 'a')
 printf("The variable c holds the character 'a'.");

As you can see, the character 'a' is used in both an assignment statement and
an if statement, just as if it were a number. A value written this way is called a
character constant.

The ASCII Character Set
In C, a signed char takes up a single byte and can hold a value from ---128 to
127. Now, how can a char hold a numerical value, as well as a character value,
such as 'a'or '+'? The answer lies with the ASCII character set.

NOTE: ASCII stands for the American Standard Code for Information Interchange.

The ASCII character set is a set of 128 standard characters, featuring the 26
lowercase letters, the 26 uppercase letters, the 10 numerical digits, and an
assortment of other exciting characters, such as } and =. Each of these

CHAPTER 8: More Data Types 198

characters corresponds to a value between 0 and 127. The ASCII character set
ignores the values between ---128 and ---1.

For example, the character 'a' has an ASCII value of 97. When a C compiler
sees the character 'a' in a piece of source code, it substitutes the value 97.
Each of the values from 0 to 127 is interchangeable with a character from the
ASCII character set.

WIDE CHARACTER DATA TYPES

Though you’ll make use of the ASCII character set throughout this book, you should know that
there are other character sets out there. Most non-Roman alphabets have more characters than
can be represented by a single byte. To accommodate these multi-byte characters, ISO C
features wide character and wide string data types.

Though you won’t get into multi-byte character sets in this book, you should keep these things in
mind as you write your own code. Read up on the multi-byte extensions introduced as part of the
ISO C standard. There’s an excellent writeup in Samuel Harbison and Guy Steele’s C: A
Reference Manual; the fifth edition was released in 2002 (Prentice Hall) and is a terrific C
reference well worth the purchase price.

For an article with a title that tells it all, read “The Absolute Minimum Every Software Developer
Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!)” by Joel
Spolsky at http://joelonsoftware.com/articles/Unicode.html. Rock on, Joel!

ASCII.xcodeproj
Here’s a program that will make the ASCII character set easier to understand.
Go into the Learn C Projects folder and then into the 08.06 – ASCII subfolder,
and open the project ASCII.xcodeproj.

Before you step through the project source code, take it for a spin. Select Run
from the Product menu or click the run button in the toolbar. A console pane
similar to the one shown in Figure 8-7 should appear. The first line of output
shows the characters corresponding to the ASCII values from 32 to 47. Why
start with 32? The ASCII characters between 0 and 31 are nonprintable
characters like the backspace (ASCII 8) or the carriage return (ASCII 13); see
Table 8-2 later in this section for a rundown of these characters.

http://joelonsoftware.com/articles/Unicode.html

CHAPTER 8: More Data Types 199

Figure 8-7. The ASCII program generating a list of printable ASCII characters.

Notice that ASCII character 32 is a space, also known as ' '. ASCII character
33 is '!'. ASCII character 47 is '/'. This presents some interesting coding
possibilities. For example, this code is perfectly legitimate:

int sumOfChars;
sumOfChars = '!' + '/';

What a strange piece of code! Though you will probably never do anything like
this, try to predict the value of the variable sumOfChars after the assignment
statement. And the answer is that the character '!' has a value of 33 and the
character '/' has a value of 47. Therefore, sumOfChars will be left with a value of
80 following the assignment statement. C allows you to represent most numbers
between 0 and 127 in two different ways: as an ASCII character or as a number.
Let’s get back to the console window in Figure 8-7.

The second line of output shows the ASCII characters from 48 through 57. As
you can see, these 10 characters represent the digits 0 through 9. Here’s a little
piece of code that converts an ASCII digit to its numerical counterpart:

char digit;
int convertedDigit;

digit = '3';
convertedDigit = digit –'0'; // That is a zero and not the letter “Oh”

This code starts with a char named digit initialized to hold the ASCII character
'3'. The character '3' has a numerical value of 51. The next line of code

CHAPTER 8: More Data Types 200

subtracts the ASCII character '0' from digit. Since the character '0' has a
numerical value of 48, and digit started with a numerical value of 51,
convertedDigit ends up with a value of 51 --- 48, also known as 3. Isn’t that
interesting?

The next line of the console window (shown in Figure 8-7) shows the ASCII
characters with values ranging from 58 to 64. The following line is pretty
interesting. It shows the range of ASCII characters from 65 to 90. Notice
anything familiar about these characters? They represent the complete
uppercase Roman alphabet.

The next line in Figure 8-7 lists ASCII characters with values from 91 through 96.
The following line lists the ASCII characters with values ranging from 97 through
122. These 26 characters represent the complete lowercase Roman alphabet.

NOTE: Adding 32 to an uppercase ASCII character yields its lowercase equivalent.
Likewise, subtracting 32 from a lowercase ASCII character yields its uppercase
equivalent.

Guess what? You never want to take advantage of this information! Instead, use the
Standard Library routines tolower() and toupper() to do the conversions for you.

As a general rule, try not to make assumptions about the order of characters in the
current character set. Use Standard Library functions rather than working directly
with character values. Though it is tempting to do these kinds of conversions
yourself, by going through the Standard Library, you know your program will work
across single-byte character sets.

The final line in Figure 8-7 lists the ASCII characters from 123 to 126. As it turns
out, the ASCII character with a value of 127 is another non-printable character.
Table 8-2 shows a table of these unprintable characters. The left column shows
the integer value of each code. Next is the character constant (if there is one),
followed by the official name of the character in the ASCII standard. The right-
most column describes the keyboard equivalent or common name. We’ve
included comments about the more interesting ones.

NOTE: The low ASCII codes are called control characters because, in the past, they
were all intended as instructions (so-called “control codes”) to terminals, modems,
card readers, and other devices. There are codes that mean “here’s the next piece of
data,” “move to the next line,” “this is where the data stops,” “cancel the program,”

CHAPTER 8: More Data Types 201

“that last message wasn’t received,” and so on. Over time, these codes have fallen
into disuse. The only control codes you’re likely to use are 0 (NUL) and 10 (line feed),
and possibly 9 (horizontal tab) and 13 (carriage return).

Table 8-2. The ASCII Unprintables

Code C Constant ASCII Name Common Name

0 '\0' NUL Null (used to terminate text strings, explained in the
“Text Strings” section)

1 SOH Control-A

2 STX Control-B

3 ETX Control-C

4 EOT Control-D (the end-of-file mark)

5 ENQ Control-E

6 ACK Control-F

7 '\a' BEL Control-G (beep; works in Terminal but not in Xcode)

8 '\b' BS Control-H (backspace)

9 '\t' HT Control-I (tab)

10 '\n' LF Control-J (line feed)

11 '\v' VT Control-K (vertical feed)

12 '\f' FF Control-L (form feed)

13 '\r' CR Control-M (carriage return, no line feed)

14 SO Control-N

15 SI Control-O

CHAPTER 8: More Data Types 202

16 DLE Control-P

17 DC1 Control-Q

18 DC2 Control-R

19 DC3 Control-S

20 DC4 Control-T

21 NAK Control-U

22 SYN Control-V

23 ETB Control-W

24 CAN Control-X

25 EM Control-Y

26 SUB Control-Z

27 ESC Control-[(escape character)

28 FS Control-|

29 GS Control-]

30 RS Control-^

31 US Control-_

127 DEL Delete

Stepping Through the ASCII Source Code
Before you move on to the next topic, take a look at the source code that
generated the ASCII character listing in Figure 8-7. The ASCII program starts off
with the usual #include and follows it by a function prototype of the function
PrintChars(). PrintChars() takes two parameters that define a range of chars
to print.

CHAPTER 8: More Data Types 203

#include <stdio.h>
void PrintChars(char low, char high);

main() calls PrintChars() seven times in an attempt to functionally organize the
ASCII characters.

int main (int argc, const char * argv[])
{
 PrintChars(32, 47);
 PrintChars(48, 57);
 PrintChars(58, 64);
 PrintChars(65, 90);
 PrintChars(91, 96);
 PrintChars(97, 122);
 PrintChars(123, 126);

 return 0;
}

PrintChars() declares a local variable, c, to act as a counter as you step
through a range of chars.

void PrintChars(char low, char high)
{
 char c;

You use low and high to print a label for the current line, showing the range of
ASCII characters to follow. Notice that you use %d to print the integer version of
these chars. %d can handle any integer types no bigger than an int.

 printf("%d to %d --->", low, high);

Next, a for loop is used to step through each of the ASCII characters, from low
to high, using printf() to print each of the characters next to each other on the
same line. The printf() bears closer inspection. Notice the use of %c (instead of
your usual %d) to tell printf() to print a single ASCII character.

 for (c = low; c <= high; c++)
 printf("%c", c);

Once the line is printed, a single newline is printed, moving the cursor to the
beginning of the next line in the console window. Instead of using printf()
again, you use a new function named putchar(). putchar() outputs a single
character to the console. That’s all it does. Unlike printf(), it doesn’t output
multiple characters or perform any formatting of values. Its single parameter is
the numeric value of the character to output, so you pass it the character
constant of the line feed character (note the use of single quotes instead of
double quotes):

CHAPTER 8: More Data Types 204

 putchar('\n');
}

The char data type is extremely useful to C programmers (such as yourself). The
next two topics, arrays and text strings, will show you why. As you read through
these two sections, keep the concept of ASCII characters in the back of your
mind. As you reach the end of the section on text strings, you’ll see an important
relationship develop among all three topics.

Arrays
The next topic for discussion is arrays. An array is a list of variables. For
example, this declaration

int myNumber[3];

creates three separate int variables, referred to in your program as myNumber[0
], myNumber[1], and myNumber[2]. Each of these variables is known as an
array element. The number between the brackets ([and] are known as
brackets or square brackets) is called an index. In this declaration

char myChar[20];

the name of the array is myChar. This declaration will create an array of type char
with a dimension of 20. The dimension of an array is its number of elements. The
array elements will have index values that run from 0 through 19.

NOTE: In C, array indexes always run from 0 to one less than the array’s dimension.
It’s called zero-based indexing. Some other computer languages use ordinal-based
indexing (where the first element has an index of 1).

This slice of code first declares an array of 100 ints and then assigns each int a
value of 0:

int myNumber[100], i;

for (i=0; i<100; i++)
 myNumber[i] = 0;

You could have accomplished the same thing by declaring 100 individual ints
and initializing each individual int. Here’s what that code might look like:

int myNumber0, myNumber1, ..., myNumber99;

myNumber0 = 0;
myNumber1 = 0;

CHAPTER 8: More Data Types 205

 .
 .
 .
myNumber99 = 0;

Note that the dots in this last chunk of code are not valid C syntax. They are
there to save our fingers from typing out the other 97 statements. It would take
100 lines of code just to initialize these variables! Using an array accomplishes
the same thing in just a few lines of code. Look at this code fragment:

int sum = 0;
for (i=0; i<100; i++)
 sum += myNumber[i];

printf("The sum of the 100 numbers is %d.\n", sum);

This code adds together the value of all 100 elements of the array myNumber.

NOTE: In the preceding example, the for loop is used to step through an array,
performing some operation on each of the array’s elements. You’ll use this technique
frequently in your own C programs.

Why Use Arrays?
Programmers would be lost without arrays. Arrays allow you to keep lists of
things. For example, if you need to maintain a list of 50 employee numbers, you
could declare an array of 50 ints. You can declare an array using any C type.
For example, this code

float salaries[50];

declares an array of 50 floating point numbers. This might be useful for
maintaining a list of employee salaries.

Use an array when you want to maintain a list of related data, or if you want to
get at the different variables using an expression (index). The next sections
show an example.

Dice.xcode
Look in the Learn C Projects folder, inside the 08.07 - Dice subfolder, and
open the project Dice.xcodeproj. Dice simulates the rolling of a pair of dice.
After each roll, the program adds the two dice together, keeping track of the
total. It rolls the dice 1,000 times and then reports on the results. Give it a try!

CHAPTER 8: More Data Types 206

Run Dice by selecting Run from the Product menu or toolbar. A console pane
should appear, similar to the one shown in Figure 8-8. Take a look at the
output-----it’s pretty interesting. The first column lists all the possible totals of two
dice. Since the lowest possible roll of a pair of six-sided dice is a one and a one,
the first entry in the column is 2. The column counts all the way up to 12, the
highest possible roll (achieved by a roll of a six and a six).

Figure 8-8. Output of the Dice program, simulating 1,000 rolls of a pair of dice

The number in parentheses is the total number of rolls (out of 1,000) that
matched that row’s number. For example, the first row describes the dice rolls
that total 2. In this run, the program rolled 30 twos. Finally, the program prints an
x for every ten of these rolls. Since 30 twos were rolled, three xs were printed at
the end of the twos’ row. Since 173 sevens were rolled, 17 xs were printed at
the end of the sevens’ row.

NOTE: Recognize the curve depicted by the xs in Figure 8-8? The curve represents a
“normal” probability distribution, also known as a bell curve. According to the curve,
you are about 6.1 times more likely to roll a 7 as you are to roll a 12. Want to know
why? Check out a book on probability and statistics.

Let’s take a look at the source code that makes this possible.

CHAPTER 8: More Data Types 207

Stepping Through the Dice Source Code
Dice starts off with three #includes. <stdlib.h> gives you access to the routines
rand() and srand(), <time.h> gives you access to clock(), and <stdio.h> gives
you access to printf().

#include <stdlib.h>
#include <time.h>
#include <stdio.h>

Here are the function prototypes for RollOne(), PrintRolls(), and PrintX().
You’ll see how these routines work as you walk through the code.

int RollOne(void);
void PrintRolls(int rolls[]);
void PrintX(int howMany);

main() declares an array of 13 ints named rolls. rolls will keep track of the 11
possible types of dice rolls. rolls[2] will keep track of the total number of twos,
rolls[3] will keep track of the total number of threes, and so on, up until
rolls[12], which will keep track of the total number of twelves rolled. Since
there is no way to roll a zero or a one with a pair of dice, rolls[0] and rolls[1]
will go unused.

int main (int argc, const char * argv[])
{
 int rolls[13], twoDice, i;

NOTE: You could have rewritten the program using an array of 11 ints, thereby
saving two ints worth of memory. If you did that, rolls[0] would track the
number of twos rolled, rolls[1] would track the number of threes rolled, and so
on. This would have made the program a little harder to read, since rolls[i] would
be referring to the number of (i+2) values rolled.

In general, it is OK to sacrifice memory to make your program easier to read, as long
as program performance isn’t compromised.

The function srand() is part of the Standard Library. It initializes a random
number generator, using a seed provided by another Standard Library function,
clock(), which returns the current date and time. The value of clock() is
always changing and never repeats-----such is the nature of time. Using clock()
to initialize the random number generator means it will produce a different
random sequence of numbers every time you run your program.

 srand(clock());

CHAPTER 8: More Data Types 208

Once the random number generator is initialized, another function, rand(), can
be called to obtain ints with a random values.

Why random numbers? Sometimes you want to add an element of
unpredictability to your program. For example, in this program, you want to roll a
pair of dice again and again. The program would be pretty boring if it rolled the
same numbers over and over. By using a random number generator, you can
generate a random number between 1 and 6, thus simulating the roll of a single
die!

main()’s next step is to initialize each of the elements of the array rolls to 0. This
is appropriate since no rolls of any kind have taken place yet.

 for (i = 0; i< 13; i++)
 rolls[i] = 0;

Let’s roll some dice! This for loop rolls the dice 1,000 times. As you’ll see, the
function RollOne() returns a random number between 1 and 6, simulating the
roll of a single die. By calling it twice and storing the sum of the two rolls in the
variable twoDice, you’ve simulated the roll of two dice.

 for (i = 1; i <= 1000; i++) {
 twoDice = RollOne() + RollOne();

The next line is pretty tricky, so hang on. At this point, the variable twoDice holds
a value between 2 and 12, the total of two individual dice rolls. You’ll use that
value to specify which of the rolls’ ints to increment. If twoDice is 12 (if you
rolled a pair of sixes) you’ll increment rolls[12]. Get it? If not, go back and read
through this again. If you still feel stymied (and it’s OK if you are), find a C buddy
to help you through this. It is important that you get this concept. Be patient.

 ++ rolls[twoDice];
 }

Once you’re finished with your 1,000 rolls, you pass rolls as a parameter to
PrintRolls().

 PrintRolls(rolls);

 return 0;
}

Notice that you used the array name without the brackets (rolls instead of
rolls[]). The name of an array is a pointer to the first element of the array. If
you have access to this pointer, you have access to the entire array. You’ll see
how this works when you look at PrintRolls().

RollOne() first calls rand() to generate a random number ranging from 0 to
32,767 (actually, the upper bound is defined by the constant RAND_MAX, which is

CHAPTER 8: More Data Types 209

guaranteed to be at least 32,767). Next, the % operator is used to return the
remainder when the random number is divided by 6. This yields a random
number ranging from 0 to 5. Finally, 1 is added to this number, converting it to a
number between 1 and 6, and that number is returned.

int RollOne(void)
{
 return (rand() % 6) + 1;
}

PrintRolls() starts off by declaring a single parameter, an array pointer named
rolls. Notice that rolls was declared using square brackets, telling the
compiler that rolls is a pointer to the first element of an array (in this case, to an
array of ints).

void PrintRolls(int rolls[])
{
 int i;

The for loop steps through the rolls array, one int at a time, starting with
rolls[2] and making its way to rolls[12]. For each element, PrintRolls() first
prints the roll number and then, in parentheses, the number of times (out of
1,000) that roll occurred. Next, PrintX() is called to print a single x for every ten
rolls that occurred. Finally, a carriage return is printed, preparing the console
window for the next roll.

 for (i = 2; i<= 12; i++) {
 printf("%2d (%3d): ", i, rolls[i]);
 PrintX(rolls[i] / 10);
 putchar('\n');
 }
}

PrintX() is pretty straightforward. It uses a for loop to print the number of xs------
using putchar() again------specified by the parameter howMany.

void PrintX(int howMany)
{
 int i;

 for (i = 1; i <= howMany; i++)
 putchar('x');
}

Danger, Will Robinson!
Before you move on to the next topic, there is one danger worth discussing at
this point. See if you can spot the potential hazard in this piece of code:

CHAPTER 8: More Data Types 210

int myInts[3], i;
for (i=0; i<20; i++)
 myInts[i] = 0;

Yikes! The array myInts consists of exactly 3 array elements, yet the for loop
tries to initialize 20 elements. This is called exceeding the bounds of your array.
C will let you get away with this kind of source code. To you, that means Xcode
will compile this code without complaint. Your problems will start as soon as the
program tries to initialize the fourth array element, which was never allocated.

What will happen? The safest thing to say is that the results will be
unpredictable. The problem is that the program is trying to assign a value of 0 to
a block of memory that it doesn’t necessarily own. Anything could happen. The
program could crash or stop behaving in a rational manner. We’ve seen cases
where the computer actually leaps off the desk, hops across the floor, and
jumps face first into the trashcan.

Well, OK, not really. Remember the section about how pointers are dangerous?
Arrays are pointers. Pointers are arrays. Think about it. The same kind of caution
you must exercise to make sure your pointers point to the right thing must be
used with arrays to make sure you don’t try to access something outside that
array.

The #define Directive
When you send your .c file to the compiler, the compiler first invokes a
preprocessor, asking it to go through the source code file and perform a series
of tasks to prepare the source code for the actual compilation. Here’s a link to
an excellent Wikipedia article that describes the C preprocessor:

http://en.wikipedia.org/wiki/C_preprocessor

The preprocessor responds to preprocessor directives it finds in your source
file. One preprocessor directive you’ve already used is the #include directive.
Another preprocessor directive, the #define (pronounced ‘‘pound-define’’ or just
‘‘define’’), tells the compiler to substitute one piece of text for another
throughout your source code. This statement

#define kDiceSides 6

tells the compiler to substitute the character 6 every time it finds the text
kDiceSides in the source code. kDiceSides is known as a macro. As the
preprocessor goes through your code, it replaces every macro that’s been
define as it goes.

http://en.wikipedia.org/wiki/C_preprocessor

CHAPTER 8: More Data Types 211

NOTE: It’s important to know that the compiler never actually modifies your source
code. Macro substitution is performed “on the fly” as the source code is translated
into machine code.

Here’s an example of a #define in action:

#define kMaxArraySize 100

int main (int argc, const char * argv[])
{
 char myArray[kMaxArraySize];
 int i;

 for (i=0; i <kMaxArraySize; i++)
 myArray[i] = 0;

 return 0;
}

The #define at the beginning of this example substitutes 100 for kMaxArraySize
everywhere it appears in the source code file. In this example, the substitution
will be done twice. Though your source code is not actually modified, here’s the
effect of this #define:

int main (int argc, const char * argv[])
{
 char myArray[100];
 int i;

 for (i=0; i<100; i++)
 myArray[i] = 0;

 return 0;
}

Note that a #define must appear in the source code file before it is used. In
other words, this code won’t compile:

int main (int argc, const char * argv[]) {
 char myArray[kMaxArraySize];
 int i;
#define kMaxArraySize 100
 for (i = 0; I <kMaxArraySize; i++)
 myArray[i] = 0;
 return 0;
}

CHAPTER 8: More Data Types 212

Having a #define in the middle of your code is just fine. The problem here is that
the first use of kMaxArraySize appears before the #define!

CAUTION: We mentioned this awhile back, but it bears repeating. While C is a free-
form language, the preprocessor is not. A preprocessor directive must be on its own
line, with no C code or other directives on the same line. Preprocessor directives are
not C statements and don’t end in a semicolon.

If you use #defines effectively, you’ll write more flexible and readable code. In
the previous example, you can change the size of the array by modifying a
single line of code, the #define. If your program is designed well, you can
change the line to

#define kMaxArraySize 200

Recompile your code and your program will still work properly. A good sign that
you are using #defines properly is an absence of constants in your code. In the
preceding examples, the constant 100 was replaced by kMaxArraySize.

NOTE: Many programmers use a naming convention for #defines that’s similar to
the one they use for global variables. Instead of starting the name with a g (as in
gMyGlobal), a #define that’s used as a constant starts with a k (as in
kMyConstant).

Unix programmers tend to name their #define constants using all uppercase letters,
sprinkled with underscores (_) to act as word dividers (as in MAX_ARRAY_SIZE).
Neither is wrong; just be consistent.

Using #defines in Your Code
Let’s revisit the Dice program. You’ll notice that there were a lot of constants
scattered about.

 int rolls[13], twoDice, i;
 for (i = 0; i < 13; i++)
 for (i = 1; i <= 1000; i++) {
 return (rand() % 6) + 1;
 for (i = 2; i <= 12; i++) {

The program works fine now, but what if you want a program that will calculate
rolls of 8-sided dice or 20-sided dice. Or maybe you want to roll the dice 2,000

CHAPTER 8: More Data Types 213

times or 1,000,000 times. You’d have to go through and recalculate new
constants and change every one in the source. This is both tedious and error
prone. As your programs get bigger, it becomes even more tedious and error
prone.

Using preprocessor macros, you can let the computer do the work of updating
all of the constants, and even do some of the math for you! Start by adding
some #define directives to the beginning of the Dice program, or go open the
Dice2 project inside the 08.08 - Dice2 folder and follow along.

#define kDiceSides 6
#define kLowestRoll (1*2)
#define kHighestRoll (kDiceSides*2)
#define kRollArraySize (kHighestRoll+1)
#define kRolls 1000

The next step is to replace the constant values in the code with their new
names.

 int rolls[kRollArraySize], twoDice, i;
 for (i = 0; i < kRollArraySize; i++)
 for (i = 1; i <= kRolls; i++) {
 return (rand() % kDiceSides) + 1;
 for (i = kLowestRoll; i <= kHighestRoll; i++) {

Not only is your program now easier to update, it’s easier to read. The
expression

(rand() % kDiceSides) + 1

is a lot more descriptive than

(rand() % 6) + 1

If you came back to this program six months from now, you might have no idea
what ‘‘6’’ is. But kDiceSides is something you would understand.

Stepping Through the Preprocessor
So let’s see how this works by walking through the steps the preprocessor
takes. First, the preprocessor encounters the #define directives.

#define kDiceSides 6
#define kLowestRoll (1*2)
#define kHighestRoll (kDiceSides*2)
#define kRollArraySize (kHighestRoll+1)

It creates macros for kDiceSides, kLowestRoll, kHighestRoll, and
kRollArraySize. It then moves on to the source code. When it encounters this
line of code

CHAPTER 8: More Data Types 214

 int rolls[kRollArraySize], twoDice, i;

it discovers a macro name that it knows (kRollArraySize). It replaces that
symbol with its definition. Inside the compiler, the line now looks like this:

 int rolls[(kHighestRoll+1)], twoDice, i;

That doesn’t look like it helped much, but bear with us a little longer. The
preprocessor doesn’t just make one substitution and move on. It performs what
are known as recursive substitutions. In other words, if the definition of one
macro contains another macro, the processor keeps replacing them. After
replacing kHighestRoll, the line now looks like this:

 int rolls[((kDiceSides*2)+1)], twoDice, i;

The second replacement substituted kHighestRoll with (kDiceSides*2). But it’s
still not done. After one more substitution, the line looks like this:

 int rolls[((6*2)+1)], twoDice, i;

The macro kDiceSides is replaced with its definition (6) and the preprocessor
has now run out of things to replace. The final declaration-----int rolls[
((6*2)+1)]-----is what gets compiled by the C compiler.

TIP: Don’t worry about the math involved in a statement like int rolls[
((6*2)+1)]. This formula won’t be calculated when your program runs. C
compilers have a constant recognizer; it’s an optimization that replaces any
expression, or part of an expression, that only contains constants with a single
constant value. If you write the statement y = (x * (4 * 7 – 1)) + ((
100 / 4) * (9 - 3)) - (4 + 2), the compiler will reduce all of the
constants in the expression. The code that gets compiled will be y = x * 27 +
144.

The Advantages of Using #define Directives
An obvious benefit of using #define directives in our previous example is that
the preprocessor determined how big your array needed to be based on the
number of sides on the dice being rolled! The rest of the code is easier to read,
too. It’s now obvious that the statement

 for (i = 0; i < kRollArraySize; i++)

is looping through the elements of the rolls array. Similarly, the loop

 for (i = kLowestRoll; i <= kHighestRoll; i++) {

CHAPTER 8: More Data Types 215

is going to work through each possible roll of the dice.

CAUTION: When defining macros that are going to be used in expressions, use
parentheses generously. When the macro is replaced with its definition, you don’t
want there to be any confusion over what the expression means.

But the real beauty-----and the real power-----of the preprocessor shows up when
you need to update your program. Change the 6 in the #define kDiceSides
directive to 12 and rerun the program, as shown in Figure 8-9.

Figure 8-9. Dice2 after changing the #define kDiceSides macro definition to 12

By changing one (one!) number, the rolls[] array was sized correctly so it could
hold all of the results (it’s now 23 elements long), the for loop initialized the
correct number of array elements, the RollOne() function now returns a value
between 1 and 12, and the PrintRolls() function outputs 21 results.

o

CHAPTER 8: More Data Types 216

Try playing around with Dice2 a little. Change kDiceSides to 20. Change kRolls
to 2000.

NOTE: Interestingly, you could have reversed the order of these #defines and your
code would still have compiled. As long as all macros are defined at the point they
are needed, the order they occur in the source is not important. What is important is
that every #define appears in the source code before any source code that refers to
it.

Function-like #define Macros
But wait! Macros don't stop there. You can create a #define macro that takes
one or more arguments. Here’s an example:

#define SQUARE(A) ((A) * (A))

This macro takes a single argument. The argument can be anything. If you use
this macro

myInt = SQUARE(myInt + 1);

the compiler would use its first pass to turn the line into this:

myInt = ((myInt + 1) * (myInt + 1));

Notice the usefulness of the parentheses in the macro. If the macro were
defined like this

#define SQUARE(A) A * A

the compiler would have produced

myInt = myInt + 1 * myInt + 1;

which is not what you wanted. The multiplication that gets performed by this
statement is 1 * myInt because the * operator has a higher precedence than
the + operator.

Be sure you pay strict attention to your use of white space in your #define
macros. For example, there’s a world of difference between this macro

#define SQUARE(A) ((A) * (A))

and this macro

#define SQUARE (A) ((A) * (A))

CHAPTER 8: More Data Types 217

Note the space between SQUARE and (A). This second form creates a #define
constant named SQUARE, which is defined as (A) ((A) * (A)). A call to this
macro won’t even compile because the compiler doesn’t know what A is.

Here’s another interesting macro side effect. Imagine calling this macro

#define SQUARE(A) ((A) * (A))

like this

mySquare = SQUARE(myInt++);

The preprocessor pass expands this macro call to this:

mySquare = ((myInt++) * (myInt++));

Do you see the problems here? First off, myInt will get incremented twice by this
macro call (probably not what was intended). Second, the first myInt++ will get
executed before the multiplication happens, yielding a final result of
myInt*(myInt+1), which is definitely not what you wanted! The point here is to
be careful when you pass an expression as a parameter to a macro that it
doesn’t have what are called unwanted side effects.

Here’s one final point. Keeping all your #define statements together toward the
top of the file is good form. People generally expect to find a #define at the top
of the file, not in the middle.

Text Strings
The first C program in this book made use of a text string:

printf("Hello, world!");

This section will teach you how to use text strings like "Hello, world!" in your
own programs. It will teach you how these strings are stored in memory and
how to create your own strings from scratch.

A Text String in Memory
Take a look at Figure 8-10. This figure represents the text string "Hello,
world!" as it exists in memory. The string is stored as a sequence of 14
consecutive bytes. The first 13 bytes consist of the 13 ASCII characters in
‘‘Hello, world!’’ Note that the seventh byte contains a space (ASCII value 32).

CHAPTER 8: More Data Types 218

Figure 8-10. The “Hello, world!” text string

The final byte has an integer value of 0 (ASCII character NUL), not to be
confused with the ASCII character ‘0’ (the digit) or ‘O’ (the 15th letter of the
Roman alphabet). The NUL is what makes this string a C string. Every C string
ends with a '\0' character, and is called a NUL-terminated string.

Notice that the bytes in the string are numbered from 0 up to 13, instead of from
1 to 14. In effect, a string is an array of chars, and in C, arrays are zero-based.

When you use a quoted string like "Hello, world!" in your code, the compiler
creates the string for you. This type of string is called a string constant. When
you use a string constant in your code, the detail work is done for you
automatically. In this example

printf("Hello, world!");

the 14 bytes needed to represent the string in memory are allocated. The value
of each character is stored in the correct element. The '\0' character is placed
in the 14th element automatically. The string constant in an expression
evaluates to a pointer to the first character in the array. It’s this address that
gets passed to printf() as its first argument.

String constants are great, but they can’t be used for everything. The biggest
disadvantage is that they are, well, constants; you can’t change them.
Computers are generally useful because they deal with data that changes, so
clearly string constants won’t work everywhere.

What you need is a variable that can hold a series of characters that can be
used to store a NUL-terminated string.

Hmmmm, what that would look like?

(Jump in anytime.)

If you guessed ‘‘an array of chars,’’ give yourself a big pat on the back!

Character arrays are exactly how you manipulate strings in C. Let’s look at a
simple example of how to use char arrays to alter strings.

FullName.xcodeproj
Open the FullName project in the 08.09 - FullName folder. By now, the first part
of this program should be perfectly understandable.

CHAPTER 8: More Data Types 219

#include <stdio.h>
#include <strings.h>

void PrintFullName(char *firstName, char *lastName);

int main(int argc, const char * argv[])
{
 PrintFullName("David", "Mark");
 PrintFullName("James", "Bucanek");

 return 0;
}

The <strings.h> header file is included so that you have access to the many
string functions supplied by the Standard Library. You declare a
PrintFullName() function that takes two char pointers.

In C, there is no difference between a pointer to a single variable and a pointer
to the first element of an array of variables. Whether the pointer points to one
variable or a thousand is determined entirely by how the pointer is used. To
make this distinction a little clearer, when talking about pointers we’ll refer to a
pointer to the first element of an array of characters as a ‘‘string pointer’’ and a
pointer to a single char variable as a ‘‘char pointer.’’

The main() function calls the PrintFullName() function twice. Each time, it
supplies two string pointers. The string pointers were automatically created
using string constants. Now here’s the part of the program that’s interesting:

void PrintFullName(char *firstName, char *lastName)
{
 char fullName[20];

 strcpy(fullName, lastName);
 strcat(fullName, ", ");
 strcat(fullName, firstName);

 printf("full name: %s\n", fullName);
}

The PrintFullName() function declares its two parameters, firstName and
lastName. These will point to the first character of the two string constants
allocated in main().

The first statement declares an array, named fullName, which consists of 20
char elements.

char fullName[20];

Like any uninitialized automatic variable, the values of those 20 chars is a
complete mystery.

CHAPTER 8: More Data Types 220

The first function call is to the strcpy() Standard Library function.

strcpy(fullName, lastName);

The strcpy() (called ‘‘string copy’’) function takes two string pointers. The
function copies the char values from the array of characters pointed to by the
second argument into the character array pointed to by the first argument. It
keeps copying characters until it has copied the '\0' character at the end of the
second array (string). The first parameter is called the destination pointer
(because that’s where the chars get copied to) and the second parameter is
called the source pointer (because those are the chars that get copied).

strcpy() is the string equivalent of an assignment statement. Its sole function is
copy the bytes of one string to the destination array, duplicating the string in the
process. Because it keeps copying characters until it copies the '\0' character
at the end of the second string, it doesn’t matter how long the string is. Your
only job is to make sure the destination array has enough room to
accommodate the copied chars.

Set a breakpoint and examine the contents of fullName following the strcpy()
function call. The Xcode debugger is smart enough to know that an array of
chars is probably a string and so displays the string to the right of the variable
name, as shown in Figure 8-11. Note that when displaying strings, the debugger
doesn’t display the values for every element in the array. It only shows those
characters up to the first '\0', which ends the string.

Figure 8-11. The effect of copying as string using strcpy()

CHAPTER 8: More Data Types 221

Now the fullName array contains a copy of the characters from the lastName
string constant. The next function you’re going to use is strcat().

strcat(fullName, ", ");

Similar to strcpy(), the strcat() (called ‘‘string concatenate,’’ or just ‘‘string
cat’’) function also copies the characters passed in the second argument to the
character array passed in the first argument. But unlike strcpy(), it doesn’t
replace the characters at the beginning of the array. Instead, it steps through the
characters that are already in the destination array looking for the '\0' that
terminates the string. When it finds it, it then begins copying characters from the
source string, one at a time, until it copies all of them and the terminating '\0'.

The effect of strcat() is to join together, or ‘‘concatenate,’’ two strings by
appending the characters pointed to by the second parameter to the end of the
string pointed to by the first parameter. You can see this in the debugger by
performing one step over command, as shown in Figure 8-12.

Figure 8-12. The effect of appending a second string to the first using strcat()

Now the fullName array contains the characters from lastName plus two more
characters, a comma and a space. After the second call to strcat(), the array
contains both names separated by a comma, as shown in Figure 8-13.

CHAPTER 8: More Data Types 222

Figure 8-13. Final fullName string after the second call to strcat()

The final step is to print out the results. This is done using the printf() function,
but this time you use a format specifier of %s.

printf("full name: %s\n", fullName);

The %s specifier outputs a C string. The argument must be a pointer to a NUL-
terminated array of characters. printf() replaces the %s with every character in
the string up to, but not including, the terminating '\0' character.

NOTE: Clever readers (and we’re sure that’s you) would probably point out that
PrintFullName() could have also been accomplished using a single printf()
statement, like this:

printf("full name: %s, %s\n", lastName, firstName);

But then you wouldn’t have learned all this great stuff about char arrays and
functions like strcat().

We made one of those ‘‘it’s your responsibility’’ comments a page or so back.
Let’s take a look at that now.

CHAPTER 8: More Data Types 223

Overflow.xcodeproj
Open the Overflow project, which you’ll find in the 08.10 - Overflow folder. It’s
identical to the FullName project, except for one additional line of code:

PrintFullName("Wilhelmina", "Romanowski");

Run the project. On our machine, it doesn’t get very far. Instead of running as
expected, the program halts in the debugger with a fatal SIGABRT, as shown in
Figure 8-14.

Figure 8-14. The Overflow program crashing at the strcat() function call

The SIGABRT message means the program died. Crashed. Dead in its tracks.
Kicked the bucket. Bit the dust. Pushing up daisies. Why did this happen?

Earlier we talked about the danger of writing data outside of an array, and that’s
exactly what this program did. The fullName array only has 20 character
elements. So the maximum size of a string that can be stored there is 19
characters long (you always need one more element to hold the '\0' character).

Poor Wilhelmina Romanowski’s name is longer than that. The strcat() function
just does what it’s told: it copies characters from one place to another. It has no
way of knowing if there’s enough room in the fullName array. That’s your job.

CHAPTER 8: More Data Types 224

CAUTION: This kind of programming bug is called a buffer overflow, and it’s one of
the most exploited weaknesses in software. Hackers will intentionally feed programs
bizarre or ridiculously large amounts of data in an attempt to trick the program into
writing values where it shouldn’t, overwriting other variables in the program.
Sometimes hackers can use this technique to take over a program and insert their
own code. Seriously.

Checking to make sure you don’t overflow the limits of your arrays (or anything
else) can be done through bounds checking or planning.

To employ bounds checking, you include code that checks to make sure what
you’re about to do is safe before you do it. For example, there’s a Standard
Library function named strlen() (‘‘string length’’). Pass it a pointer to a string
and it will count the number of characters in that string and return it as an int.
Using that function, you could add the following code to Overflow:

if (strlen(fullName) + strlen(firstName) + 1 <= 20)
 strcat(fullName, firstName);

This new conditional adds the length of the string already in fullName to the
length of the string in firstName. If the total (plus room for the '\0') will fit in the
fullName array, then the strcat() function is called.

It’s important to do this kind of bounds checking, and the authors of the
Standard Library know that. The Standard Library has evolved to include a raft
of ‘‘safe’’ functions that perform the necessary bounds checking. Instead of
adding a whole mess of extra if statements to your program, let’s replace the
strcpy() and strcat() functions with safer alternatives, like the following:

strlcpy(fullName, lastName, sizeof(fullName));
strlcat(fullName, ", ", sizeof(fullName));
strlcat(fullName, firstName, sizeof(fullName));

The strlcpy() and strlcat() functions take three parameters instead of two.
The third parameter is the total size of the char array pointed to by the first
parameter. Note how convenient the sizeof operator is here. Now the functions
have all of the information they need to make an intelligent decision about how
many characters can be safely copied. Both of these functions will copy only the
characters that will fit into the destination array. If the array fills up, they stop.
Now your program runs safely, as shown in Figure 8-15-----although Wilhelmina
might want to change her name to ‘‘Cher.’’

r

CHAPTER 8: More Data Types 225

Figure 8-15. Safely coded string copy routines

Another way of solving this kind of problem is to use the planning approach;
write your code so there’s always enough room in the array, either by making
sure the array is big enough or making sure the data going in won’t overflow it.

For example, you could use a relatively new feature of the C language called
variable length arrays. In English, it means that the size of an automatic array
variable can be determined using an expression; it doesn’t have to be a
constant. Every time the PrintFullName() function runs, the array can be a
different size. This would allow you to replace the array declaration

 char fullName[20];

with this declaration

 char fullName[strlen(firstName) + strlen(lastName) + 2 + 1];

Now, no matter how long the first and last name strings are (within reason), the
fullName array will always have exactly enough elements to store both names, a
comma, a space, and the terminating '\0' character.

What’s Next?
Congratulations! You made it through one of the longest chapters in this book.
You mastered several new data types, including floats and chars. You learned
how to use arrays, especially in conjunction with chars. You learned about C

CHAPTER 8: More Data Types 226

strings, how they’re stored, and a few Standard Library functions for
manipulating them. You also learned about C’s text-substitution mechanism, the
#define preprocessor directive.

In Chapter 9 you’re going to create a real, honest-to-goodness, program. Along
the way you’re going to learn some important stuff about OS X and some really
clever things you can do with pointers.

CHAPTER 8 EXERCISES

1. Each of the following code fragments has a logical flaw or syntax error.
Can you find it?

a. char c;
int i;
i=0;
for (c=0; c<=255; c++)
 i += c;

b. float myFloat;
myFloat = 5.125;
printf("The value of myFloat is %d.\n", f);

c. charc;
c = "a";
printf("c holds the character %c.\n", c);

d. char c[5];
c = "Hello, world!";

e. #define kMaxArraySize 200;

f. char c[kMaxArraySize];
#define kMaxArraySize 20
int i;
for (i=0; i<kMaxArraySize; i++)
 c[i] = 0;

g. #define kMaxArraySize 200
char c[kMaxArraySize];
c[kMaxArraySize] = 0;

2. Rewrite Dice, showing the possible rolls using three (or more) dice instead
of two.

CHAPTER 8: More Data Types 227

3. Rewrite Overflow to use a variable length array so the fullName array is
never too small. Try passing PrintFullName() shorter, and even longer,
names.

229

9
Chapter

The Command Line
Everything you’ve done up to this point has been inside the safe confines of the
Xcode sandbox. There’s nothing wrong with that; professional programmers
spend most of their time inside Xcode. But ultimately, the goal is create a ‘‘real’’
program that runs on its own. A program you can copy to another computer and
run there. Maybe one day, a program you upload to the App Store and sell to
multitudes of people around the world.

All of the projects in this book build a single executable file. A binary executable,
as they are known, is the simplest form of a program that the operating system
understands: a single file that contains machine code. It doesn’t get much
simpler than that. When an executable is run, those machine codes are read
from the file and copied into the computer’s RAM, where the CPU executes
them.

Xcode can create other kinds of programs, many quite complex. If you go on to
learn Objective-C or iOS, you’ll create some of those other kinds of applications.
But for now, you’ll stay with simple executables.

In this chapter, you’re going to learn about the command line-----the other
computer interface. You’re also going to learn how to build your program so you
can run it on its own, give it to your friends to run, deliver it to your employer, or
even sell it. This stage of software development is called deployment. You’re
going to use those deployment skills to create and install your own command-
line tool. Along the way you’re going to learn a little about OS X’s underpinnings,
especially paths, and some clever things you can do with pointers. Let’s get
started.

CHAPTER 9: The Command Line 230

Command Line Basics
If you’ve spent some time using the command line, a lot of this section will be
familiar to you. You might want to skim through it, or skip it entirely if you and
the command line are old friends.

Before big LCD displays and wireless keyboards, before graphical user
interfaces with overlapping windows, before the trackpad, before the mouse
even, there was the command line. A command-line interface (CLI) is an
incredibly simple way to control a computer, and almost self-explanatory. You
type words (commands) on a line and press the Return key. The computer
performs those commands and then waits for you to type another. For an era,
the command-line interface was just about the only interface computers had.
Apple’s original computer, the Apple II, relied on a command-line interface.

In OS X, the command line lives on in the Terminal application. Launch the
Terminal application------you’ll find it in the Applications folder, then inside the
Utilities subfolder------and you’ll see a stark window, like the one shown in
Figure 9-1.

NOTE: If you’re thinking that the command-line interface is still around just for
nostalgia, think again. While we now use a graphical user interface (GUI) to do most
of our work, the command-line interface remains a powerful tool. It can be used to
automate your development, examine and control running processes, help you debug
applications, set hidden preferences, administer and control remote computers, and
so much more. On your journey to obtaining OS X High Wizard status, you’ll come to
appreciate the formidable capabilities of the command line.

Figure 9-1. Terminal window

Each Terminal window runs a shell session. A shell is a program that implements
a command-line interface. It’s the program that waits for you to type something
and then performs the actions you commanded.

CHAPTER 9: The Command Line 231

NOTE: The default shell program in OS X is bash (pronounced just like the word
“bash”). It’s an abbreviation for the Bourne-Again shell, a successor to the original
Bourne shell (sh) written by Stephen Bourne.

Other popular shells are the Korn shell (ksh), Z shell (zsh), C shell (csh), and TENEX
C shell (tcsh). OS X includes all of these shells and others. The C and TENEX C shells
are interesting because their syntax is intended to mimic the C programming
language. There are specialty shells like the Remote shell (rsh) and Secure shell
(ssh) for executing commands on another computer.

Traditionally, a shell will begin by outputting a salutation. That’s the first line you
see in the window in Figure 9-1:

Last login: Wed Jul 27 11:01:39 on ttys000

The salutation might alert you to unread mail that’s waiting for you, a message
of the day, or even a joke. After the salutation is the prompt:

mac-pro:~ james$

The prompt is just that-----the shell is saying that it’s waiting for you to type a
command. The standard prompt includes the name of your computer (called its
hostname), the current directory (we’ll get to that later), your user account name,
and a prompt character ($).

You enter your command after the prompt by typing on the keyboard and
pressing the Return key. Try it. Type the letters ‘‘ls’’ and press Return. The shell
performs the ls (‘‘list directory contents’’) command and the output appears
after your command in the window, as shown in Figure 9-2.

Figure 9-2. Output of ls command

The ls command lists the objects in the current directory. The shell outputs
another prompt, telling you that it’s finished and is ready for another command.

CHAPTER 9: The Command Line 232

NOTE: Command line tools use UNIX parlance. In UNIX-speak, a directory is a folder.
A file is a document. A file system object is a generic term for any named entity on
your file system (which includes files, directories, and other things).

Command Arguments
Commands, like C functions, can also have arguments. Arguments follow the
command and are separated from the command, and other arguments, by
spaces. An argument that alters the behavior of a command is called an option
or switch, and it is traditionally prefixed by one or two hyphens (-), pronounced
‘‘dash.’’ Try the ls command again, but this time add a -l (that’s a lower case
letter l) switch before pressing Return.

Figure 9-3. Output of ls -l command

The ls command’s -l switch changes its output to the ‘‘long’’ format (see Figure
9-3), which shows the type, permissions, size, ownership, and last modified date
of each item in your home folder. In most commands, multiple switches can be
combined. The following three commands are identical:

ls -l -h -n
ls -lhn
ls -ln -h

Command arguments that are not switches are generally a path to something,
which the command will act on. The command ls -l Music will list the items in
your Music directory, rather than your home directory.

CHAPTER 9: The Command Line 233

Learning More About Commands
What switches, options, and arguments a command understands or allows
differs with each command. To learn about a command, use the man (‘‘manual’’)
command. Type the command man ls and press Return, as shown in Figure 9-4.

Figure 9-4. The man page for the ls command

The man command will present the ‘‘manual’’ page for the command named in
the argument. Most commands have a man page. The man command uses
another command, named less, to present the information to you. The less
command is the UNIX equivalent of Apple’s Preview application; it’s the all-
purpose text viewer. Press the space bar to advance one page at a time. Press
the ‘‘u’’ and ‘‘d’’ keys to move up or down one half page. The ‘‘g’’ key will run
you back up to the top, the ‘‘h’’ key will show you a help page, and the ‘‘q’’ key
will quit less and return you to back to the shell.

NOTE: Unfortunately, there are no hard rules when it comes to UNIX commands and
switches. For every one hundred commands that use switches that start with a
hyphen (-), there’s one that doesn’t. There are hundreds of commands that act on

CHAPTER 9: The Command Line 234

files, and hundreds that don’t. Most commands will let you combine switches, but
there are a few that won’t. The advice to commit to memory is “read the man page.”

Naturally, there’s a man page about man (man man), and there’s a man page for
less (man less).

So how do you discover commands? One way is with another command. The
apropos command will search the database of man pages for keywords. For
example, this command

apropos time

lists all of the man pages that mention the word ‘‘time’’ in their name or
summary. Here’s the tail end of the output produced by the apropos time
command:

…
tmutil(8) - Time Machine utility
touch(1) - change file access and modification times
tzfile(5) - timezone information
uevent_onidle(n), uevent::onidle(n) - Request merging and deferal to idle time
uptime(1) - show how long system has been running
zdump(8) - timezone dumper
zic(8) - timezone compiler

Man pages are organized into sections. The pages with sections (1) or (8) after
their name are generally the ones you’re interested in. Section 1 documents
regular shell commands. Section 8 documents utilities, some of which are useful
commands. Other sections, like section 5, simply document the format of
particular files. Section 2 documents programming functions, like printf(). This
section has been moved into Xcode’s help, so you won’t find section 2 man
pages in OS X anymore.

As you peruse the list of time-related man pages, you discover uptime(1). Enter
uptime in the Terminal window and press Return, and you’ll see something like
this:

marchhare:~ james$ uptime
14:30 up 13 days, 2:46, 2 users, load averages: 0.28 0.39 0.36

uptime is a simple command that outputs the current time, how long your
computer has been running since it was last booted, how many users are
logged in, and some statistics on how hard your CPU is working.

You now have enough information that you can spend hours looking up new
commands using apropos, and reading all about them using the man command.
Now let’s move on to why any of this matters.

CHAPTER 9: The Command Line 235

Where Shell Commands Come From
You might be wondering what all this has to do with C programming. After all, it
would appear that the shell, although very talented, is just a program that
understands a bunch of text commands. But that’s not true at all. The shell
doesn’t understand any of the commands you’ve given it.

The shell is a remarkably simple, and subtly brilliant, concept. When you type in
a command (like ls), the shell simply looks for an executable named ls and runs
it. That’s basically all it does. All of the commands you’ve used so far (ls, man,
less, apropos, uptime), and hundreds of other commands you can give it, are all
separate executable programs written in-----drum roll, please-----C.

Every project in this book could be used as a command in the shell. All you have
to do to create a new command is follow these steps.

1. Write and build an executable command-line program (which
you’ve already done).

2. Put it where the shell can find it.

That’s it. As soon as you’ve done that, your computer’s command-line interface
magically has a new command-----a command that you created!

We’re now going to show you how to create and install your own command-line
tools. But before we do that, let’s talk just a little more about the shell. We’ve
oversimplified the shell a bit. It does have other talents:

 The shell understands a small number of keywords that, like C
language keywords, allows it to declare variables, compute
values, makes decisions using if statements, perform for and
while loops, and even define functions that can be reused. In
this sense, a shell is a kind of programming language-----but a
decidedly limited one when compared to C.

 The shell can link commands together to accomplish complex
jobs.

 A sequence of shell commands can be saved in a file, called a
shell script, and used again later. This makes it possible to
create complex sequences of shell commands (which might
include if decisions and for loops) and easily reuse them.

 A shell script can, in turn, be used as a command.

If you want to learn more, you can spend an evening (or two!) reading the bash
man page. Warning: it’s over 200 screens of dense, often technical,

CHAPTER 9: The Command Line 236

descriptions. There are whole books just on shell scripting; check the
www.apress.com web site. But you won’t need to learn any of that to get through
this book. We’re not going to concentrate on the shell so much as what it takes
to create a C program that can run as a shell command.

Creating a Command-Line Tool
A command-line tool is an executable file that’s designed to be useful when
used from a command-line interface. Remember that the shell can start just
about any executable file that exists on your system, but not all of those are
going to be useful as commands. What we refer to as a ‘‘command-line tool’’ is,
therefore, not a technical description so much as a statement of its intent.

So while every executable you’ve created so far could be run from the
command line, very few of them would be considered command-line tools. For
example, the AstronomicalUnit project from Chapter 8 would make a terrible
command. The program simply stores a number in memory and then exits. The
program doesn’t do any useful work. It doesn’t output any interesting
information. It doesn’t accept any input. It basically starts, does nothing, and
stops again. Boring.

Useful command-line tools tend to interact with the user or other tools. They do
this through input and output. You’re already familiar with the output half-----all of
those printf() calls output text to the shell (when you’re not running your
program from within Xcode).

Now you’re going to explore the input side of the equation. Command-line tools
get their input from two sources: command-line arguments and standard input
or stdin.

Command-line arguments are strings passed from the shell to your program.
When you execute a command with one or more arguments, like ls –l, those
arguments are converted into C strings and passed along to the program. The
program can examine the arguments-----in this example, the ls program sees you
used an -l switch-----and uses them to alter its behavior. How a tool uses
arguments is entirely up to it.

The other input option is standard input, referred to in code as stdin. Standard
input is the complement to standard output (stdout). The functions printf()
and putchar() send characters to standard output, where they end up in the
Xcode console window, or the Terminal window, or possibly elsewhere. A
command-line program’s standard input is where it can receive characters sent
to it by you or from another program. Let’s start with command-line arguments.

http://www.apress.com

CHAPTER 9: The Command Line 237

Command Arguments and main()
Earlier we said that a command-line tool may accept arguments, like C
functions, allowing you to pass values to the command. It’s more than a
similarity; it’s exactly what happens.

When the shell runs a command, it uses a special mechanism to turn the text
you typed on the command line into a series of C strings. These C strings are
allocated and copied into your program before it begins execution, and you’ve
been staring right at them since the first chapter. Let’s revisit the definition of
main():

int main(int argc, char argv[])

The two parameters to main() contain all of the arguments passed to your
program from the shell (or any other program that knows how to pass
arguments). The argc variable will be the number of strings that were passed.
The argv parameter is an array of char pointers. Each element is a char pointer
that points to one command-line argument string. The dimension of the argv
array is always argc elements long, so the valid elements of argv are always
argv[0] through argv[argc-1].

If you create a command-line tool named SeeArgs and run it from the command
line, you get this:

mac-pro:~ james$ SeeArgs see args run

When SeeArg’s main() function starts, the values of argc and argv will be those
shown in Table 9-1.

Table 9-1. Values of argc and argv[]

Variable Value

argc 4

argv[0] "SeeArgs"

argv[1] "see"

argv[2] "args"

argv[3] "run"

CHAPTER 9: The Command Line 238

Notice that the path (or name) of the command-line tool is included in the list.
There are situations where it’s handy to know where your program is located or
the name that was used to run it, so the shell passes this as the first string. This
also means that your program should always have at least one string in the
array. If your command was run with one or more arguments, the remaining
strings will be those arguments.

CAUTION: Never assume that the first argv[] string is the command’s name, or that
there even is a first string. This is a convention adhered to by all shell programs and
other well behaved programs that might run your program—but it’s not guaranteed.
A poorly written program may run your program with an arbitrary first string, or no
strings at all. Always check argc and code cautiously.

SeeArgs.xcodeproj
So let’s get to it. Open the SeeArgs project in the 09.01 - SeeArgs folder. The
program looks likes this:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 int i;

 for (i = 0; i < argc; i++) {
 printf("argv[%d] = '%s'\n", i, argv[i]);
 }

 return 0;
}

You can probably figure this one out in your sleep by now. The main() function
loops through the array of arguments that were passed to it and outputs each,
one per line.

So how do you test this? To test your new command-line program, you must
supply it with some arguments. That means you have to compile the program,
copy it somewhere the shell can run it, and then run it from the command line.
But that also means you can’t use Xcode and all its great tools-----especially the
debugger! What if the program doesn’t work? How will you find out what’s
wrong and fix it?

CHAPTER 9: The Command Line 239

Don’t worry, Xcode has you covered. To allow you to test command-line tools,
or any other program that expects arguments, you can set up test arguments in
Xcode. The test arguments will be passed to your program when you run it.

To set this up, edit the Run scheme for your project. From the Project menu,
choose the Edit Scheme… command, or choose the same command from the left
side of the Scheme button in the toolbar. You’ll see an edit scheme dialog, as
shown in Figure 9-5.

Figure 9-5. Edit scheme dialog

Select the Run SeeArgs scheme on the left. On the right, find the Arguments
Passed on Launch area. Click the + button at the bottom to add a new
argument. Enter ‘‘one’’ as the first argument. Repeat until you’ve added several
arguments. Click the OK button.

TIP: The check box next to each entry in the Arguments Passed on Launch area
allows you choose just the arguments you want passed. You set up several
combinations of arguments, and then select just the ones you want to test. Testing
your program with a variety of test cases to make sure it behaves itself under all
circumstances is a good practice.

CHAPTER 9: The Command Line 240

Now when you run your program, Xcode will build and run it, passing it the
arguments you set up in the Run scheme, just as if you had typed them in a
shell. When the program runs, it prints out the arguments, as shown in
Figure 9-6.

Figure 9-6. Output of SeeArgs test

The Arguments Passed on Launch feature allows you to test and debug your
program before you leave Xcode. This is important. You always want to make
sure your code works before you send it out ‘‘into the world,’’ as it were.

The first string argument output by the program is pretty crazy:

argv[0] = '/Users/james/Library/Developer/Xcode/DerivedData/SeeArgs-
cqukehifhjrwaifymjhcviumcciz/Build/Products/Debug/SeeArgs'
argv[1] = 'one'
argv[2] = 'two'
argv[3] = 'three'

Remember that the first argument is the name, or path, to your program. In this
case, it’s the path to where Xcode stores your compiled program during
development. The exact location isn’t important. It’s something you let Xcode
worry about. Just know that Xcode is being a good shell citizen by passing the
path of your program as its first argument.

The remaining strings are exactly the arguments you set up. It looks like your
first command-line tool works!

CHAPTER 9: The Command Line 241

Deploying the Program
The next step is to build your program so that it’s suitable to be deployed.
Deploying a program means to package it up so that it can be delivered to other
developers, testers, or your end users. This might mean nothing more
complicated that copying the finished program to a folder on your own
computer. But you might copy it to a USB drive, put it in a disk image, upload it
to a web server, or even submit it to Apple’s App Store.

Use Xcode’s Archive command to prepare your program for delivery. The
Archive command compiles your program in a form suitable for distribution, and
then packages up all of the parts that get delivered. These files are called,
appropriately enough, the deliverables. For a command line tool, there’s really
only one file (the executable), but Xcode will produce two files. We’ll explain why
in a bit.

Prepare your archive by choosing the Archive command from the Product menu.
Xcode will rebuild your project and convert the finished product into an Xcode
archive. The archive will appear in the Organizer window, as shown in
Figure 9-7.

Figure 9-7. Finished SeeArgs archive in Organizer window

The Archive command behaves according to your project’s Archive scheme.
You saw how to edit schemes earlier. If you choose Edit Schemes and then the
Archive scheme, you can edit its options. But you shouldn’t have to. The default
options should be perfect.

CHAPTER 9: The Command Line 242

BUILD SETTINGS

Xcode compiles and links your program using a huge collection of options called the build
settings. By default, your project will have two sets of build settings: Debug and Release. The
Debug settings are used while you test and debug your code. The Release settings are used
when you archive for deployment.

The differences between these settings are many, but two of them are pretty important. The
Debug setting turns off most of the compiler optimizations and adds in a lot of data that allows
the debugger to do its job. Without those settings, it would be difficult (sometimes impossible) to
debug your application. On the other hand, you want your finished application to be as fast and
lean as possible. So when deploying your program, use the Release settings, in which those
optimizations are enabled.

The other important setting involves the CPU architecture. Different models of Macs have
different CPUs, and a single executable isn’t compatible with all of them. When using the Release
build settings, Xcode compiles your program multiple times, one for each supported CPU
architecture. Your finished program is actually a collection of several copies of your program, one
for each family of CPU. When your program is run, the OS loads the version of the program that it
understands.

The Debug build settings, however, do not compile your program for every possible CPU. It only
compiles it for your CPU, since it assumes you're the only one that’s going to run it. Why compile
a bunch of code that’s never going to be run?

Use the Release build settings if you plan on transferring your program to another computer. It’s
embarrassing to build a program using Debug build settings and copy it someone’s machine,
only to discover it doesn’t contain any code that will run. And yes, we’ve done that (blush).

Once you’ve created an Xcode archive for your program, you need to deploy it.
Select the archive and click the Distribute button, shown in Figure 9-7. In the
distribute dialog, shown in Figure 9-8, choose the Save Built Products option.
This option causes Xcode to copy your finished program to the desired location.

CHAPTER 9: The Command Line 243

Figure 9-8. Distribute archive options

Click the Next button and choose a name and location to save your finished
application. Navigate to your Desktop and change the deployment package
name to MyDeployment. (You can choose a different name and location, but
you’ll have to adjust the instructions in the rest of this section accordingly.)

Open the MyDeployment folder on your desktop. You should see a file structure
like that shown in Figure 9-9.

Figure 9-9. Contents of a deployment folder

CHAPTER 9: The Command Line 244

The structure of the deployment folder mimics the location in your system where
permanent, third-party, command-line tools are normally installed. You’ll also
notice that the folder includes a SeeArgs.1 file stored inside a man1 folder. If
you were producing a tool that you expected lots of people to install and use,
your command-line tool would include a man page, just like all of the other tools
you’ve used. The SeeArgs.1 file contains that man page, and if placed it in the
correct location, will join the other man pages that the man and apropos tools
access. We’ll ignore the man page for now. If you’re interested, Google ‘‘How to
write a UNIX man page’’ and you’ll find dozens of tutorials.

Now you’re ready to install your new command-line tool. And guess what?
You’re going to do it using just the command line! But first we need to explain a
couple of concepts that will make this process easier to understand-----and will
also be important in later chapters.

Using Paths
Every file and folder on your volume has a name and a path. The name is its
name. Its path is a string that describes exactly where that item is on your
computer by listing every directory, in order, that contains that item. A path ends
with the name of the item.

Think of it this way. Josephine is a person. Her name is Josephine. Her ‘‘path’’ is
Milky Way Galaxy, Earth, United States of America, New Mexico, Sometown,
Power Road, 1234, Josephine. Admittedly, the ‘‘Milky Way Galaxy’’ part might
have been a bit excessive, but the idea is to write down an unambiguous
description of Josephine that can’t possibly be confused with any other
Josephine in the entire universe.

A path in UNIX is sequence of directory and file names, each separated by a ‘‘/’’
(‘‘slash’’) character, also referred to as the path separator. The complete path to
an item in the file system is called an absolute path. An absolute path always
starts with a ‘‘/’’ (called the ‘‘root’’ directory), followed by all of the directory
names leading to the item, and ending with that item’s name. Here’s an example
of an absolute path on James’s hard drive:

/Users/james/Music/iTunes/iTunes Music/Moscow Symphony Orchestra/The
Egyptian/Valley of the Kings.mp3

This path describes the 17th track from the soundtrack The Egyptian, in the
iTunes collection stored in James’s account. Dave might also have the same
track, from the same album, stored in his iTunes library. But since Dave has a
different home folder, the absolute path to his file will be different:

CHAPTER 9: The Command Line 245

/Users/davemark/Music/iTunes/iTunes Music/Moscow Symphony Orchestra/The
Egyptian/Valley of the Kings.mp3

So even if Dave has the same tastes in movie soundtracks that James exhibits,
there’s no ambiguity as to which file each path refers to. On the other hand, it’s
going to get really tedious typing out the absolute path of every file you want to
work with. This brings us to relative paths.

Current Directory and Relative Paths
A relative path is a partial path that relies on the context of another path to
complete it. Relative paths do not start with a ‘‘/’’-----that’s how you tell that it’s a
relative path. That context is the current directory, also called the working
directory.

The current directory is always an absolute path to a directory. A relative path
starts where the current directory ends. The absolute path of an item is obtained
by simply joining (concatenating) the current directory with the relative path. For
example, if the current directory was /Users/james, the relative path of James’s
iTunes folder would be, simply, Music/iTunes.

Current directory: /Users/james
Relative path: Music/iTunes
Absolute path: /Users/james/Music/iTunes

Returning to the previous analogy, if you were in the United States of America,
you could address Josephine as ‘‘New Mexico, Sometown, Power Road, 1234,
Josephine.’’ You don’t have to specify the country or planet because those are
assumed. Similarly, if you were in Sometown, New Mexico, the path ‘‘Power
Road, 1234, Josephine’’ would do the trick. If you were standing in front of the
house at 1234 Power Road, you could just say ‘‘Josephine’’ and there still
wouldn’t be any confusion about whom you were talking about.

Similarly, if the current directory was /Users/james, the path to track 17 would
be Music/iTunes/iTunes Music/Moscow Symphony Orchestra/The
Egyptian/Valley of the Kings.mp3. If the current directory was iTunes’s music
folder (/Users/james/Music/iTunes/iTunes Music), that same file could be
addresses as Moscow Symphony Orchestra/The Egyptian/Valley of the
Kings.mp3.

There are two big advantages to using relative paths. The first is brevity. If the
current directory is Dave’s home folder (/Users/davemark), Dave can refer to his
Download folder simply by typing Download and not /Users/davemark/Download
every time.

CHAPTER 9: The Command Line 246

TIP: Use the cd (“change directory”) command to change the current directory path
in the shell. The cd command takes a single argument, the new directory path (as in
cd Documents). Notice that the path can be relative to the previous current
directory. If you omit the path, your home directory becomes the current directory. To
find out what the current directory is, issue the pwd (“print working directory”)
command. All paths you use in the shell are relative to the current directory.

The second advantage is that the same (relative) path can be reused at different
locations simply by changing the current directory. You can write a program that
uses the paths Documents, Downloads, Music, and Pictures. If the current
directory is /Users/james, all of those paths refer to folders that belong to
James. If the current directory is changed to /Users/davemark, now those same
paths refers to the Documents, Downloads, Music, and Pictures folder that belong
to Dave.

Table 9-2 shows the relative paths to the Music folder and the Valley of the
Kings.mp3 file given three different current directories. The paths for the Music
directory might be unexpected. These are special directory names.

Table 9-2. Examples of Relative Paths

Current Directory Path to Music Path to Valley of the Kings

/Users/james Music Music/iTunes/iTunes Music/Moscow Symphony
Orchestra/The Egyptian/Valley of the Kings.mp3

/Users/james/Music . iTunes/iTunes Music/Moscow Symphony
Orchestra/The Egyptian/Valley of the Kings.mp3

/Users/james/Music/
iTunes/iTunes Music

../.. Moscow Symphony Orchestra/The
Egyptian/Valley of the Kings.mp3

Special Directory Names
There are two special directory names that can be used in a path: ‘‘.’’ and ‘‘..’’
(that’s one and two periods, pronounced ‘‘dot’’ and ‘‘dot-dot’’).

The . directory name means ‘‘this directory.’’ You can use it anywhere in a path,
but it’s most useful at the beginning of a relative path or by itself. If the current
directory is /Users/james/Music and you want a relative path to the Music folder,
the path would be empty, which is awkward in places like the command line

CHAPTER 9: The Command Line 247

where an argument needs to be ‘‘something.’’ In this situation, the lone . path
fits the bill perfectly. It’s also used to emphasize that the path starts at the
current directory; The paths iTunes and ./iTunes mean exactly the same thing.

The .. directory name is a bit more interesting. It means ‘‘the directory that
contains this directory.’’ This is known by various names, but parent directory
and enclosing folder are the most common.

The file system organization uses a ‘‘tree’’ analogy: every path starts at the
‘‘root’’ (/), follows a number of ‘‘branches’’ (directories), until it gets to a ‘‘leaf’’
(file). Technically it’s called a directed graph, but we’ll ignore its official name
because that doesn’t help the squirrels.

Imagine that your computer is a squirrel. When the squirrel wants to find the
item at a path like /Users/james/Documents/Winter/Nuts.txt, it starts at the root
of the directory tree. It then scampers down the Users branch. There, it finds the
james branch, then the Documents branch, then the Winter branch. Finally, on the
Winter branch it finds the Nuts.txt leaf. In a sense, a path is a sequence of
directions (turn right, go three blocks, turn left) that lead to a final destination.

The .. name is a direction that says ‘‘go back to the branch this one’s attached
to.’’ Can you guess what the following path leads to?

/Users/james/Music/iTunes/../../Documents/Winter/Nuts.txt

If you guessed /Users/james/Documents/Winter/Nuts.txt, you are correct. The
squirrel started at the root, ran down the Users, james, Music, and iTunes
branches. It then turned around and went back up one branch (now it’s back at
Music), went back up another branch (now it’s back at james), then turned
around and followed the Documents and Winter branches down to the Nuts.txt
leaf.

TIP: One peculiarity of the tree/branch/leaf analogy is that computer science
engineers have always gotten the directions backwards from real trees. In computer
terms, you “descend” the tree as you move towards the leaves. So when you move
from the root, to a branch, to a leaf you are moving “down” the tree. In real trees, of
course, you’d be going up. Likewise, moving from a directory to its parent directory is
described as “ascending” or “going up” the directory tree. If it helps, think of your file
system as an upside down tree, planted in the ceiling and growing towards the floor.

The .. directory name is very useful in relative paths. If the current directory is
/Users/james/Documents, the relative path to James’s Music folder is ../Music:
the current directory is Documents, .. means ‘‘go up to james,’’ and Music

CHAPTER 9: The Command Line 248

means ‘‘from there, go down to Music.’’ The relative path to Dave’s Music folder
is ../../davemark/Music.

The Home Directory Name
There’s one last special directory name; the ~ path is the home directory. The ~
is the tilde character, usually found in the upper left corner of your keyboard
next to the 1 key. The ~ replaces the / at the beginning of an absolute path. The
~ directory translates into the ‘‘home directory of the current user.’’ When James
is logged into his computer, ~ is replaced with /Users/james. When Dave is
logged in, ~ becomes /Users/davemark. The path ~/Music translates to ‘‘the
Music folder inside the home folder of the currently logged in user.’’

The ~ directory is particularly handy for specifying the path to the user’s
standard items (Documents, Download, Music, Pictures, Library, and so on).
Since it’s an absolute path, it doesn’t depend on the current directory.

All of these features-----absolute paths, current/working directory, the . and ..
directory names-----are part of the UNIX file system, upon which OS X is built. The
one exception is the ~ path. The home path is a convention that you can use in
the shell, but most C file functions don’t understand it. This will become
important when you start accessing files in Chapter 11. But feel free to use ~ on
the command line.

Now that you understand the home directory, current directory, absolute paths,
relative paths, and special directory names, it’s time to install your command-
line tool.

Installing a Command-Line Tool
Earlier we said that to install a program so that it becomes a command in the
shell, one must

2. Put it where the shell can find it.

The easiest way to do this is to simply tell the shell exactly where your program
is. If the command is an explicit pathname to an executable program, the shell
runs that program, no questions asked. For example, you can run your new
command line tool right now. Open a Terminal window and enter this command
after the prompt:

CHAPTER 9: The Command Line 249

~/Desktop/MyDeployment/usr/local/bin/SeeArgs Moe Larry Curly
argv[0] = '/Users/james/Desktop/MyDeployment/usr/local/bin/SeeArgs'
argv[1] = 'Moe'
argv[2] = 'Larry'
argv[3] = 'Curly'

TIP: The shell has a feature called auto-completion (similar to Xcode’s auto-
completion). When typing a long path, type just enough letters to identify the directory
and press the Tab key. If you typed enough letters, the shell will fill in the remainder
of the name. If you didn’t, it will beep. Keep typing and try again. You could type the
path ~/Desktop/MyDeployment/usr/local/bin/SeeArgs using the
keystrokes “~”, “/”, “D”, “e”, Tab, “M”, “y”, Tab, Tab, “l”, Tab, Tab, Tab. Notice that
in a directory with only one choice you don't have to type anything except the Tab.

Path auto-completion is found in a lot of places in OS X, so don’t hesitate to try the
Tab key.

Congratulations! You just ran your first command-line tool from the shell. Before
you crank up the Karaoke machine to celebrate, it would be nice if you didn’t
have to enter the entire path to your tool every time you wanted to run it. What
you really want is to be able to type the command

SeeArgs Moe Larry Curly

and have the shell find your program and run it, like it does with ls, man, and all
those others.

So where does the shell look for command-line tools? If the command is just a
name (like ls), it looks in a sequence of directories contained in a shell variable
named PATH. As we said, a shell is kind of programming language that has
variables. You can see the value of this variable using this command:

echo $PATH
/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin

This value tells the shell to look for a command-line tool first in the /usr/bin
directory. If it doesn’t find one with the right name there, it looks in /bin. It keep
working through the (colon-separated) list of directories until it finds the
command or runs out of directories-----in which case you’ll get a ‘‘command not
found’’ error.

To add your tool to the family of command-line tools that the shell will
seamlessly find, you need to either copy it to one of the directories in that list or
expand the list of directories where the shell looks for commands.

CHAPTER 9: The Command Line 250

So you could simply copy your SeeArgs program to the /usr/local/bin
directory. /usr/local/bin is the directory traditionally reserved for user-installed
tools that are local to this computer. It’s not a good idea to start adding tools to
the system’s tool folders, /bin, /sbin, and so on. Leave those alone, unless you
really know what you’re doing.

Instead, we’re going to show you how to create your own private bin directory,
install your tool there, and add it to the shell’s list of tool directories. And you’re
going to accomplish this with just three commands!

Creating a Private bin Directory
Return to the Terminal window. This first command will create a new folder in
your home directory named bin. Type it in and press the Return key.

mkdir ~/bin

The mkdir (‘‘make directory’’) command is just like the New Folder command in
the Finder, except that it creates the folder and names it all in one step. If you
open up your home folder in the Finder, you’ll now see a new subfolder named
bin.

bin (short for ‘‘binaries’’) is the traditional name for folders that contain
executable files, just as Applications is the name used for a folder of regular
applications. Your bin folder will be the place to put all of the command-line
tools that you want to use via the shell. Since it’s your folder, it won’t conflict
with any of the tools already installed by the system or by anyone else.

Installing the Tool
Now you need to get your program into your bin folder. Do that using the mv
command:

mv ~/Desktop/MyDeployment/usr/local/bin/SeeArgs ~/bin

The mv (‘‘move’’) command moves one or more items to a directory. The items to
move are listed first in the arguments, and the directory you want them all
moved to is last. The mv command will also rename files and folders------in UNIX,
there’s no distinction between moving something and renaming it.

If you open up the bin folder in your home folder, you will see that your SeeArgs
program is now there. Using the mv command is identical to switching to the
Finder and dragging the SeeArgs file from its deployment folder into your new
bin folder.

CHAPTER 9: The Command Line 251

Configuring the PATH Variable
The final command is a bit tricky. You need to reconfigure the shell so it also
looks in your new, private, ~/bin folder in addition to the regular ones. You’re
going to do this by adding a new shell command to the .bash_profile file. Yes,
that filename started with a period. Enter the following command in the shell,
and be really careful with this one; the single quotes, double quotes, spaces,
and punctuation have to be just so or it won’t work. Be sure you get the double
quote followed by a single quote after ~/bin:

echo 'PATH="$PATH:~/bin"' >> ~/.bash_profile

The echo command is a tool that’s not much more complicated than the one you
just wrote. It does nothing more than output (echo) all of its arguments to
standard output-----just like yours, but without any embellishment. In this case, its
single argument is the shell statement PATH="$PATH:~/bin", surrounded by
single quotes. This statement works something like a C assignment statement. It
says that the PATH variable is to be set to the contents of the previous PATH
variable plus a colon and one more path, ~/bin.

This statement gets added to a special file named .bash_profile. The >>
operator took care of redirecting the echo’s output and appending it to the end
of the .bash_profile file. We’ll explain all about redirection later in this chapter.

Every time the bash shell starts up, it looks for a file named .bash_profile in
your home folder. If it finds it, it executes all of the statements it finds there. By
adding this statement, every new shell will be configured to look for commands
in your private bin folder.

Oh, and don’t bother looking for this file-----you won’t find it. Names that begin
with a period (so-called ‘‘dot files’’) are invisible. They don’t appear in the Finder
or when you list a directory using the ls command (unless you add the -a or -A
switch). If you want to see the contents of this file, use the command cat
~/.bash_profile. There’s also a simple text editor you can use. The command
pico ~/.bash_profile will let you interactively edit the file. Type Control+X to
quit the pico editor and return the shell.

Close the Terminal window and open a new one. Remember, the .bash_profile
only gets run when the shell starts, so to see your changes, you need a new
shell.

If everything went according to plan, your updated PATH is all set up, as
demonstrated in Figure 9-10.

CHAPTER 9: The Command Line 252

Figure 9-10. Reconfigured shell PATH and user-installed command

From here on, all you have to do to install new command tools is copy them into
your ~/bin folder. The setup stuff only needs to be done once.

Character Input
Let’s take stock of what you’ve accomplished so far. You’ve learned a little
about the command-line interface and shells. You know how to start a shell,
execute commands, and pass arguments to those commands. More
importantly, you learned how to create your own command-line programs, using
the C language, that can use those arguments to do something useful. That’s
huge.

On this last leg of the ‘‘Grand Command Line Tour,’’ you’re going to learn the
other way that command-line tools receive input from the shell, see how your
program’s input and output connect with other programs, and find out a little
about pointers along the way.

Pipes
You already know that functions like printf() and putchar() write characters to
standard output, and that somehow that makes those characters appear in the
Xcode console (when your program is running in Xcode), or in the Terminal
window (when your program is run from the command line). As it turns out,
every UNIX process has an associated standard input, output, and error stream.
In addition, UNIX provides a mechanism, known as a pipe, to connect these
streams together.

Want to take the output from one program and feed it to the input of another?
Use a pipe. Pipes are one-way only. For obvious reasons, you can’t connect the
output of one process to the output of another. Same with connecting an input
to an input. A process’s error stream is an output stream.

CHAPTER 9: The Command Line 253

NOTE: By convention, a program that produces useful output sends it to standard
output. If it has any error or diagnostic messages, it sends those to standard error.
Often these two outputs are connected to the same pipe, which means it doesn’t
matter which one you use because they all end up in the same place. But sometimes
shells want to separate the program’s regular output from its error messages and will
connect those character streams to different pipes.

Before a program starts running, it is connected to a character stream of
incoming bytes (standard in) and a character stream of outgoing bytes (standard
output). The program reads characters from standard in and writes characters to
standard output. What it doesn’t do is care about what those pipes are
connected to. Someone else determines that.

A command-line tool may only read from standard in, only write to standard
output, both, or neither. What make sense depends on the nature of the tool.

Redirection
By connecting a process to different character streams, it’s possible to
reconfigure a single command-line tool to be used in different ways-----without
changing the tool. Connecting a command’s input or output to an alternative
stream is called redirecting its input/output (I/O). The following are the four most
common character streams that a process will be connected to:

 Keyboard (input) or window (output)

 A file

 Nothing at all

 Standard in/out of another program

The Interactive Character Streams
The first type of connection is the default when running your command in Xcode
or from the shell. If you don’t redirect your command’s input or output, its input
will be connected to the keyboard and its output will be connected to the
console window.

Anything you type on your keyboard appears on your program’s standard in as
characters. Anything your program outputs to standard output appears in the

CHAPTER 9: The Command Line 254

console pane or Terminal window. You’ve already seen the latter countless
times. You’ll try out the keyboard in the next project.

Pipes to Files
The second option occurs when your program’s standard in or out is redirected
to a file. This is very common. The file acts as either a pre-determined source of
characters (when connected to standard in) or as a repository for characters
(when connected to standard output). If you want the output of a command to
be saved as a file, instead of simply appearing in the Terminal window, you use
one of the redirection operators (such as > or >>) to connect its standard output
to a file.

You did that when you installed your first command line tool. Normally, the
output of the echo command goes to the Terminal window. You saw this with
the command echo $PATH. But when you were reconfiguring the bash shell, you
redirected the output of the echo command to the .bash_profile file like this:

echo 'PATH="$PATH:~/bin"' >> ~/.bash_profile

To redirect a tool’s output you can use either > or >>. The > operator redirects a
tool’s standard output to a file. The file is overwritten with whatever the tool
outputs. Nothing appears in the Terminal. For example, if you want to save a
long directory listing of the current directory to a file on your desktop named
Dir.txt, issue this command in the Terminal:

ls -l > ~/Desktop/Dir.txt

The >> operator is the same as >, except that if the file already exists it isn’t
erased; whatever the tool outputs is appended to the end of the existing file.
You did this with the echo command so that, on the off chance you already had
a .bash_profile file, the existing file wasn’t deleted first.

Note that >> and ~/.bash_profile are not arguments of the echo tool. That is,
they don’t appear in its argc/argv parameters. The redirection operators are
recognized by the shell and are used to configure the tool’s standard in and
standard output before the tool is even started.

The shell’s < operator will redirect a file to the command’s standard in. You can
redirect both the input and output in the same command.

CHAPTER 9: The Command Line 255

Null
Your program’s standard in or out may not be connected to anything at all.
When your program tries to obtain characters from standard in, it will get
nothing. Anything it sends to standard output will pass into oblivion.

UNIX even has a pseudo-file that represents nothing, named /dev/null. The
null file isn’t a regular file. It’s a connection to a built-in driver that produces
nothing when read and discards everything written to it. It’s the character
stream equivalent of a black hole. You can intentionally connect a command to
this black hole using a redirection operator:

ls > /dev/null

NOTE: Pseudo-files are file system objects that appear to be regular files but are
actually connections to special processes inside the operating system. Writing to a
pseudo-file might send the information to a driver, a physical device, or (as in the
case if /dev/null) to nothing at all.

All of the “files” in the /dev (“devices”) directory are pseudo-files.

Other Processes
Finally, your program’s standard in or out can be connected directly to the
standard output or in (respectively) of another process, and this is where the
command line gets really interesting. Take a look at this command:

ls | wc

You know the ls command does, but what this command outputs certainly isn’t
a directory listing:

 9 9 69

So what happened? In the shell, the | (vertical bar) character is called the pipe
operator, so named because it creates a pipe that connects the standard output
of the left command to the standard in of the right command. The wc (‘‘word
count’’) command is tool that reads a file or character stream and counts the
number of lines, words, and characters it contains. This output tells you that
there were 9 lines, 9 words, and 69 characters in the output produced by ls.

Note that you didn’t see the output of the ls command. The characters it sent to
its standard output were transferred directly to the standard in of the wc
command. The wc command read those characters, counted them, and the

CHAPTER 9: The Command Line 256

results were output to its standard output, which wasn’t redirected and
appeared in the Terminal window.

NOTE: The wc command is typical of most command-line tools in that it will either do
its job on the files passed to it as arguments, or on standard input if no files are
named. The command wc ~/Desktop/Dir.txt will count the characters in the
Dir.txt file, while the command wc will count the characters on its standard input.

The shell lets you combine, and recombine, tools to accomplish all sorts of
tasks. As a simple example, consider the ls command. The ls command (by
default) sorts the names of the files and directories into ASCII order. As you
already know, the ASCII values for the upper case letters are smaller than those
for the lower case letters. This causes ls to produce the following list:

Desktop
Documents
Downloads
Movies
Music
Pictures
Public
bin

The problem is that bin is after Public. ls does not think ‘‘B’’ comes after ‘‘P’’ in
the alphabet. Instead, this ordering occurs because the ASCII value of ‘‘b’’ is
larger than the ASCII value of ‘‘P.’’

Here's another example. This time the output of the ls command is piped to the
sort command, which has a lot of options for sorting things into the desired
order:

ls | sort --ignore-case
bin
Desktop
Documents
Downloads
…

The sort command reads the lines from standard input, sorts them according to
the criteria specified by the arguments, and outputs the sorted list to its
standard output. Now your folder names are sorted into alphabetical (rather than
ASCII value) order.

CHAPTER 9: The Command Line 257

THE TERSENESS OF THE COMMAND LINE

UNIX commands are traditionally terse. They came from a time where the command line was the
computer’s only interface. Programmers spent all day typing hundreds, if not thousands, of
commands. The shorter the commands, the more work they could get done—also, CRT displays
weren’t that big.

If you were an experienced UNIX geek, the following command would make perfect sense:

sort -fdr

For the rest of us, we’d have to go to the sort command’s man page to find out what the -f, -
d, and -r options meant. Because programmers don't (thankfully!) spend all day at the
command line anymore, the trend for super-short commands has reversed. Many commands
now have verbose synonyms for their options. The command

sort --ignore-case --dictionary-order --reverse

is identical to the previous one, and much easier to understand without a manual. Similarly,
command names themselves are getting longer and more descriptive. Newer commands like
system_profiler are appearing alongside old ones like od (“octal dump,” if you must know).

Namer.xcodeproj
Let’s start with a simple program that reads something from standard input.
Open the Namer project. You’ll find it in the 09.02 - Namer folder.

Namer will ask you to type your first name on the keyboard. Once you’ve typed
your first name and pressed Return, the program will use your name to create a
custom welcome message. Then Namer will tell you how many characters long
your name is. How useful!

To run Namer, select Run from the Product menu. A console window will appear,
prompting you for your first name, like this:

Type your first name, please:

Type your first name, and then press Return. You should see something like
what’s shown in Figure 9-11. Let’s take a look at the source code that generated
this output.

CHAPTER 9: The Command Line 258

Figure 9-11. The output, and input, of the Namer program

Stepping Through the Namer Source Code
At the heart of Namer is a Standard Library function called scanf(). scanf() is
the flip side of printf(). Where printf() takes variable values you already
have, formats them, and sends them to standard output as characters, scanf()
reads characters from standard input, converts them to values, and stores the
results in variables that you can use.

This code will read in an int from standard input:

int myInt;
scanf("%d", &myInt);

The %d tells scanf() to read an int from the character stream. Notice the use of
the & before the variable myInt. This passes myInt’s address to scanf(),
allowing scanf() to change myInt’s value.

Namer starts off with a pair of #includes. <string.h> gives you access to the
Standard Library function strlen(). From <stdio.h> you’re going to get your old
friend printf(), and now scanf(), too.

#include <stdio.h>
#include <string.h>

To read in a text string, you have to first declare a variable to receive the text
characters. Namer uses an array of characters for this purpose:

CHAPTER 9: The Command Line 259

int main (int argc, const char * argv[])
{
 char name[20];

The array name is big enough to hold a 19-byte text string. When you allocate
space for a text string, remember to save 1 byte for the NUL that terminates the
string.

The program starts by printing a prompt. A prompt is a text string that lets the
user know the program is waiting for input.

 printf("Type your first name, please: ");

The Input Buffer
Before we get to the scanf() call, you should understand how the computer
handles input from the keyboard. When the computer starts running your
program, it automatically creates a big array of chars for the sole purpose of
storing keyboard input to your program. This array is known as your program’s
input buffer. The input buffer is carriage-return based. Every time you hit a
carriage return, all the characters typed since the last carriage return are
appended to the current input buffer.

When your program starts, the input buffer is empty. If you type this line using
your keyboard

123 abcd

and follow it with a carriage return, the input buffer will look like Figure 9-12. The
computer keeps track of the current end of the input buffer. The space character
between the ‘‘3’’ and the ‘‘a’’ has an ASCII value of 32. Notice that the Return
key is also translated into a carriage return character (13) and added to the input
buffer.

Figure 9-12. Standard input buffer after typing a line on the keyboard

Given the input buffer shown in Figure 9-12, suppose your program called
scanf(), like this:

scanf("%d", &myInt);

CHAPTER 9: The Command Line 260

Since you asked scanf() to scan an integer, it starts at the beginning of the
input buffer and reads only characters that would be characters of an integer
(that is, digits and possible a positive or negative sign), one at a time, until it hits
any character that isn’t part of an integer. The scanner will also skip over any
whitespace before the number (or most anything else it’s scanning). In this
example, it scans the characters ‘‘1,’’ ‘‘2,’’ and ‘‘3.’’ It stops when it hits the
space character because a space can’t appear in the middle of an integer
number.

After the scanf(), the input buffer looks like Figure 9-13. Notice that the
characters read by scanf() were removed from the input buffer and that the rest
of the characters slid over to the beginning of the buffer.

NOTE: Software engineers call this a first in, first out (FIFO) buffer because, as the
name implies, the first character written into the pipe will be the first character to be
read from the pipe. All UNIX pipes are FIFOs.

Once it stops reading characters, scanf() translates the characters ‘‘1,’’ ‘‘2,’’
and ‘‘3’’ into to the numeric value 123, and stores that value in the variable
myInt.

Figure 9-13. Input buffer after scanning "%d"

If you then typed the following line

3.5 DM

followed by a carriage return, the input buffer would look like Figure 9-14. At this
point the input buffer contains two carriage return characters. To the input
buffer, a carriage return is just another character. To a function like scanf(), the
carriage return is both whitespace and a line break.

Figure 9-14. Standard input buffer after typing a second line

CHAPTER 9: The Command Line 261

NOTE: If you forgot what whitespace is, it’s all of the characters you don’t see (tab,
space, newline, return) but are still considered text.

On with the Program
Before we started the discussion on the input buffer, main() had just called
printf() to prompt for the user’s first name:

 printf("Type your first name, please: ");

Next, it called scanf() to read the first name from the input buffer:

 scanf("%s", name);

Since the program just started, the input buffer is empty. scanf() will wait until
characters appear in the input buffer, which will happen as soon as you type
some characters and press Return. Type your first name, and press Return.

NOTE: As mentioned earlier, scanf() will (typically) ignore leading whitespace
characters in the input buffer. If a line contains nothing but whitespace, the entire
line will be ignored. For example, if you type a few spaces and tabs and then press
Return, scanf() will continue to sit there, waiting for some real input. Try it!

Once you type your name, scanf() will copy the characters, a byte at a time,
into the char array pointed to by name. Remember, because name was declared
as an array, name points to the first of the 20 bytes allocated for the array.

If you type in the name ‘‘Dave,’’ scanf() will place the four characters ‘‘D,’’ ‘‘a,’’
‘‘v,’’ and ‘‘e’’ in the first four of the 20 bytes allocated for the array. Next, scanf()
will set the fifth byte to a value of '\0' (NUL) to terminate the string properly (see
Figure 9-15). Since the string is properly terminated by the '\0' in name[4], you
don’t really care about the value of the bytes name[5] through name[19].

Next, you pass name on to printf(), asking it to print the name as part of a
welcome message. The %s tells printf() that name points to the first byte of a
zero-terminated string. printf() will step through memory, one byte at a time,
starting with the byte that name points to. printf() will print each byte in turn
until it hits a byte with a value of '\0'. The NUL character marks the end of the
string.

 printf("Hello, %s!\n", name);

CHAPTER 9: The Command Line 262

Figure 9-15. Name array after the string “Dave” is copied to it

NOTE: If name[4] didn’t contain a zero, the string wouldn’t be properly terminated.
Passing a non-terminated string to printf() is a sure way to confuse printf().
printf() will step through memory one byte at a time, printing a byte and looking
for a zero. It will keep printing bytes until it happens to encounter a byte set to '\0'.
Remember, C strings must be terminated!

The next line of the program calls another Standard Library function, called
strlen(). strlen() takes a pointer as a parameter and returns the length, in
bytes, of the string pointed to by the parameter. strlen() depends on the string
being zero-terminated. Just like sizeof(), strlen() returns a value of type
size_t, so you use a format specifier of %zu.

 printf("Your name is %zu characters long.", strlen(name));

 return 0;
}

The Problem with Namer
So far, the program looks great. Namer seems to run just fine. What’s the
problem?

Imagine what would happen if you typed a 20-character, or longer, name in
response to the console prompt. We realize that very few of you have a name
that long, but just bear with us. The name array is only long enough to hold a
19-character name, reserving one byte for the string terminating NUL. scanf()
doesn’t know how big your name array is, so it doesn’t know when to stop
copying characters. When scanf() receives data too long for its char array, it
keeps copying bytes anyway, even if it means stepping off the end of the array.
When scanf() writes that 21st character in an array defined to have a length of
20, where does that extra byte go? No place good.

Figure 9-16 shows what happens when you run Namer, typing in the follow for a
name:

qwertyqwertyqwertyqwertyqwertyqwertyqwertyqwerty

CHAPTER 9: The Command Line 263

Figure 9-16. Program crash due to buffer overflow

Making Namer Safe
So how do you fix Namer? Just as with the Overflow project in Chapter 8, there
are three approaches: allocate the buffer that’s always big enough for the data,
make sure the data is never too big to fit in the buffer, or make sure the data
never overflows the buffer.

You can’t use the first solution here because it’s a Catch-22; you have to
allocate the name array before you call scanf() to read the input buffer, and you
can’t find out how long the name in the input buffer is until scanf() returns.

The second approach isn’t practical either. You can’t force the user to limit
themselves to a 20, 50, or even 60,000 character name. No matter how big you
make the buffer, someone could feed your program a string that’s one character
longer than that.

So the third approach looks like your best (only) option. One solution would be
to use a function other than scanf(), as you did in the Overflow project. There
you replaced the strcpy() and strcat() functions with their strlcpy() and
strlcat() counterparts, which were safer. For reading a string from standard
input, you could use a function like fgets(). fgets() reads one line of
characters from an input stream and copies them to a char array. And just like
strlcpy() and strlcat(), one parameter is the maximum size of the destination
array-----fgets() promises to never copy more characters than will fit.

CHAPTER 9: The Command Line 264

Luckily, you don’t have to change much. The scanf() can also set limits on the
size of what it scans. Just like their printf() counterparts, scanf() specifiers
can also have a field width modifier. When used with a scanf() specifier, it limits
the maximum number of characters scanf() will read for a value. For a string
conversion, that pretty much translates into the maximum length the string will
be. Change the scanf() statement so it looks like this:

 scanf("%19s", name);

Now your program is as safe as houses. Remember that writing safe code is
easier than fixing unsafe code.

Pointer Arithmetic
We know this chapter is all about command-line tools, arguments, and
character streams, but we have a very special lesson about pointers for you. It’s
a feature of C called pointer arithmetic. It’s really handy when dealing with
character strings one character at a time, which makes this the perfect place to
talk about it.

C allows you to add and subtract integer values to the value of a pointer. A
pointer is, after all, just an integer that represents an address of a byte in
memory. But when you add or subtract a pointer and an integer, C treats that
arithmetic very differently than it does when you add or subtract two integers.

Let’s start with some basics about comparing pointers, and then we’ll ‘‘do the
math.’’

Comparing Pointers
This might seem blindly obvious to you, or maybe you didn’t even think about it,
but you can compare two pointers for equality or inequality. The first one is
simple:

int array[10];
int *aPointer;
int *bPointer;
aPointer = &array[2];
bPointer = &array[2];
if (aPointer == bPointer) {
 …

If aPointer and bPointer point to the same memory address, the if expression
is true. What might not be obvious is that you can compare pointers for
inequality too:

CHAPTER 9: The Command Line 265

aPointer = &array[1];
bPointer = &array[7];
if (aPointer < bPointer) {
 …

Elements in an array are always allocated in successive memory locations,
having progressively higher addresses. So the address of the second element in
any array will always be higher (greater than) the address of the first element.
Now we’ll explain why that obvious piece of information is so important.

Pointer Addition
C allows you to add an integer value to a pointer value. The result of the
expression is another pointer. Here’s an example:

aPointer = &array[1];
bPointer = aPointer + 1;

When you add a number (integer) to a pointer (address), C doesn’t merely add
the integer value of the number to the integer value of the memory address. C
treats every pointer as a reference to an ‘‘element’’ in memory, just as every
index of an array (array[0], array[1], array[2], and so on) addresses one
element of that array.

In this example, aPointer points an int. Let’s pretend that this int is at memory
address 2,004. The memory occupied by that int is 4 bytes (assuming 32-bit
ints). Asking C to add 1 to the pointer is asking it to calculate the address of the
next int ‘‘element’’ in memory. It does that by adding 4 to the pointer, because
the size of an int is 4 bytes. The value of bPointer is now 2,008.

Let’s try this statement:

bPointer = aPointer + 6;

Again, you’re asking C to calculate the 6th element past the variable that
aPointer currently points to. Since aPointer points to an int variable (4 bytes), it
adds 24 (64) to the pointer’s address. The address in bPointer is now 2,028
(2,004+64) and points to array[7].

C treats pointers like arrays, so a pointer to a variable is (in C’s mind) a pointer
to the first element of an array. Adding one to a pointer calculates the address of
the next ‘‘element’’ in that ‘‘array.’’ You can see this in relationship shown in
Figure 9-17.

CHAPTER 9: The Command Line 266

Figure 9-17. Equivalency of array elements and pointer addition, assuming pointer==array

Stated precisely, adding an integer to a pointer adds the value of the integer
times the size of the variable type the pointer points to, to the address of the
pointer. This means that when adding an integer to a pointer, the math depends
on the size of the variable the pointer points to. Consider the following code
fragments:

char *charPtr;
int *intPtr;
double *doublePtr;
charPtr += 1 // adds 1 to address in charPtr
intPtr += 1 // add 4 to address in intPtr
doublePtr += 1 // adds 8 to address in doublePtr

In each of these expressions, the integer 1 was added to a pointer. But the
pointers all point to variables of different sizes, so the number of memory
addresses added to each pointer is different.

You can also subtract integers from pointers, as well as increment and
decrement them; the effect is the same. Take this snippet of code:

aPointer = array; // aPointer points to array[0]
aPointer += 3; // aPointer points to array[3]
aPointer -= 2; // aPointer points to array[1]
aPointer++; // aPointer points to array[2]

In each case, an integer was added or subtracted from a pointer. Adding or
subtracting integers adjusted the address of the pointer based on the size of the
variable type (int) of the pointer. As you’ve probably guessed already, when
dealing with arrays of one-byte elements (like char), integer math and pointer
math are synonymous.

CHAPTER 9: The Command Line 267

Incrementing and decrementing a pointer is the same as adding or subtracting
the integer 1. It’s this last fact that C programmers employ a lot, and this is the
expression you’re going to use in the next project. But before we get to that,
let’s cover one more tidbit of C pointer arithmetic.

POINTER EQUIVALENCY

We’ve hinted at this in the past, but now you know enough about arrays, pointers, and pointer
arithmetic to appreciate just how interchangeable pointers and array variables are.

We’ve prepared a kind of “cheat sheet” for you. Open the PointerEquivalence project that you’ll
find in the 09.03 - PointerEquivalence folder. The program consists of nothing but short blocks of
code that demonstrate functionally equivalent statements. Take this code, for example:

int i, array[10];
int *pointer, *intPtr;

pointer = array;
i = 4;

intPtr = &array[i];
intPtr = pointer + i;

The last two statements are functionally identical. Because pointer was set to the address of
the first element in array, the expressions &array[i] and pointer+i mean the same thing:
a pointer to the ith element of array.

The equivalency between array variables and pointers runs deep in C. So deep that array variable
names and pointer variables are largely interchangeable. The following C code might look insane,
but it is perfectly legal and will work exactly the way you think it should:

int x;
x = pointer[i];
x = *(array+i);
intPtr = &pointer[i];
intPtr = array + i;

You can use the subscript operator ([]) with a pointer variable, and you can use any array
variable name as though it was a pointer variable pointing to the first element of that array. The
only thing you can’t do is

array = intPtr;

because array isn’t a pointer variable that can be assigned a new value.

Use PointerEquivalence to study pointer and array syntax, or use it as a reference when trying to
determine the best solution to a pointer problem. Read through the PointerEquivalence project

CHAPTER 9: The Command Line 268

carefully—line by line—until you’re sure you understand every statement. Do that, and you’re
well on your way to C pointer mastery.

Subtracting Pointers
If a pointer plus an integer equals another pointer, than a pointer minus a pointer
should equal an integer, right?

Right you are. Subtracting two pointers yields an integer, and it follows the same
rules as pointer addition. The difference of two pointers is the count of elements
between the two pointers. An ‘‘element’’ is the type of variable the pointers point
to. Here’s a really simple example:

int array[10];
int *aPointer = &array[1];
int *bPointer = &array[7];
int x = bPointer - aPointer;

Can you guess what x will be set to? Let’s assume that the memory address of
array is 2,000. The address of aPointer will be 2,004 (assuming 4-byte ints),
and the address of bPointer will be 2,028. The difference between the aPointer
and bPointer is 24 bytes of memory.

The variable x will be set to 6 because the difference between aPointer and
bPointer is 6 ints (24÷4). This works for all variable types, not just ints. The
formula C uses when subtracting pointers is the difference in byte addresses
divided by the size of the variable the pointers point to. C will only let you
subtract pointers to variables of the same size.

Now that you know all of these cool new tricks with pointers, let’s do something
with it.

WordCount.xcodeproj
Look in the Learn C Projects folder, inside the 09.04 - WordCount subfolder,
and open the project WordCount.xcodeproj. WordCount will ask you to type a
line of text and will count the number of words in the text you type.

To run WordCount, select Run from the Product menu. WordCount will prompt you
to type a line of text.

Type a line of text, please:

Type at least a few words of text, and end your line by pressing Return. When
you press Return, WordCount will report its results. WordCount is open to all

CHAPTER 9: The Command Line 269

kinds of whitespace, so feel free to sprinkle your input with tabs, spaces, and
the like. An example output is shown in Figure 9-18. Let’s take a look at the
source code that generated this output.

Figure 9-18. The results of running WordCount

Stepping Through the WordCount Source Code
WordCount starts with the usual #includes and adds a new one. <ctype.h>
includes the prototype of the function isspace(), which takes a char as input
and returns a non-zero number if the character is either a tab ('\t'), carriage
return ('\r'), newline ('\n'), vertical tab ('\v'), form feed ('\f'), or space (' '),
and returns 0 otherwise.

#include <stdio.h>
#include <ctype.h>
#include <stdbool.h>

Next is a constant, kMaxLineLength, that specifies the largest line this program
can handle. 200 bytes should be plenty.

#define kMaxLineLength 200

Then the function prototypes for the two functions ReadLine() and CountWords()
are defined. ReadLine() reads in a line of text and CountWords() takes a line of
text and returns the number of words in the line:

void ReadLine(char *buff);
int CountWords(char *line);

CHAPTER 9: The Command Line 270

main() starts by defining an array of chars that will hold the line of input you type
and an int that will hold the result of your call to CountWords():

int main (int argc, const char * argv[])
{
 char line[kMaxLineLength+1];
 int numWords;

main() prompts the user to type some text and press Return.

 printf("Type a line of text, please:\n");

Once the prompt is output, you pass line to ReadLine(). Remember that line
is a pointer to the first byte of the array of chars. When ReadLine() returns, line
contains a line of text, terminated by a '\0' character, making line a legitimate,
NUL-terminated C string. You’ll pass that string on to CountWords().

 ReadLine(line);
 numWords = CountWords(line);

You then print a message telling how many words there were in the line:

 printf("\n---- This line has %d word%s ---\n", numWords, (numWords!=1 ?
"s" : ""));

 printf("%s\n", line);

 return 0;
}

CONDITIONAL OPERATOR

Are you wondering what that strange expression (numWords!=1 ? "s" : "") in the
printf() argument is all about? It’s called the conditional operator. The conditional operator is
a trinary operator that takes three (3!) operands. Its general form is this:

condition ? true_expression : false_expression

It works just like an if statement, but entirely inside an expression. If the condition is true
(non-zero), the whole expression becomes the value of true_expression. If the condition is
false (zero), the whole expression becomes the value of false_expression. In other words,
the statement describes two expressions; only one gets used, depending on the value of the
condition expression.

The three expressions (condition, true_expression, and false_expression) can be any
kind of C expression you want—they could even contain another conditional operator—with the
following restrictions: The condition expression must be suitable for use in an if statement
and true_expression and false_expression must be the same type of expression. For

CHAPTER 9: The Command Line 271

example, if true_expression was an integer, then false_expression must also be an
integer. Remember that C will replace the whole expression with either true_expression or
false_expression, so the two must be interchangeable at that position in the overall
expression.

There’s a long-standing debate over whether the conditional operator is pure genius or pure evil.
Extremists will claim that you should never use it, while other programmers use it like ketchup.
The problem is that overuse of conditional operators can make your code difficult to read. On the
other hand, a well-placed conditional operator can dramatically simplify your code.

Our advice is to use it when it makes your code substantially simpler. For example, here are two
alternate ways to write the printf() statement in WordCount:

char *plural;
if (numWords != 1)
 plural = "s";
else
 plural = "";
printf("\n---- This line has %d word%s ---\n", numWords, plural);

A second solution is something like this:

printf("\n---- This line has %d word ", numWords);
if (numWords != 1)
 printf("s");
printf(" ---\n");

We think that the conditional operator used in the WordCount project made the code more
concise and easier to read.

If you plan on using conditional operators, you’ll almost always want to put them inside
parentheses so that the left and right expressions don’t get confused with what surrounds it.

This last bit of code shows attention to detail, something very important in a
good program. Notice that the sentence in the first printf() ended with the
characters ‘‘word%s.’’ If the program found either no words or more than one
word, you want it to say

This line has 0 words.

or

This line has 2 words.

If the program found exactly one word, the sentence should read

This line has 1 word.

CHAPTER 9: The Command Line 272

You accomplish this by ending the word with a string format specifier (%s), that
will be replaced with either the string "s" if it needs to be plural, or "" (an empty
string) if not. Which string gets printed is determined by a conditional operator
(read the sidebar ‘‘Conditional Operator’’ for more information). Got it? Let’s
move on.

ReadLine()
In main(), you defined an array of chars to hold the line of characters you type
in. When main() called ReadLine(), it passed the name of the array as a
parameter to ReadLine():

 char line[];

 ReadLine(line);

As we said earlier, the name of an array also acts as a pointer to the first
element of the array. In this case, line is equivalent to &(line[0]). ReadLine()
now has a pointer to the first byte of main()’s line array.

void ReadLine(char *buff) {

numCharsRead will track how many characters you’ve read so far. You’ll use it to
make sure you don’t read more characters into line than line can hold.

 int numCharsRead = 0;

This while loop calls getchar() to read one character at a time from the input
buffer. getchar() returns the next character in the input buffer as an int (not a
char). If there’s an error, or you run out of characters to read, it returns the
constant EOF. You’ll learn more about EOF in Chapters 11 and 12.

The expression in the while loop contains an assignment operator, so the
character value just read gets stored into c before anything else happens. That’s
important because you’ll need to know what the character was later.

 int c;
 while ((c = getchar()) != EOF
 && c != '\n'
 && ++numCharsRead <= kMaxLineLength) {

The while loop’s condition tests three things. You want the while loop to stop if
there are no more characters to read from the input stream, the user pressed
the Return key, or if the number of characters read has exceeded the size of
your line buffer.

The first condition is tested by comparing getchar()’s return value to EOF. The
second one compares the character read to the newline constant ('\n'). (You

CHAPTER 9: The Command Line 273

know that the value returned by getchar() has already been stored in the c
variable because the && operator always evaluates the left expression before the
right one.) Finally, the ++ operator is used to add 1 to the count of characters
you’ve read so far and checks to see that you have’tt read more characters than
will fit in the array.

INVERTING COMPOUND CONDITIONALS

Sometimes you need to express a conditional in the negative. For simple expressions, this is
easy. If you need to test for night time, you can write !isDaytime. But sometimes you need to
invert a compound Boolean expression. For example, what’s the opposite of isDaytime ||
isCloudy? You have two choices.

The simplest is to wrap the ! operator around the whole expression. If you want an expression to
be true when you can not go stargazing, that would be (isDaytime || isCloudy). If you
want an expression to be true when you can go stargazing, then simply negate the whole thing:
! (isDaytime || isCloudy).

The second alternative is to negate the compound. In logic, there’s a formula for expressing any
&& or || expression in the negative, as shown in table 9-2.
Table 9-2. Inverting logical && and ||

Regular Expression Opposite Expression

A && B !A || !B

A || B !A && !B

So if you have an expression that’s true when A && B are true, the opposite of that expression is
!A || !B, equivalent to ! (A && B). In the stargazing example, the opposite of (
isDaytime || isCloudy) would be (!isDaytime && !isCloudy). Think about it;
you can go stargazing if it’s nighttime and the sky is clear.

Logically, the three conditions in ReadLine()’s while loop are testing for things that will stop
the loop. But the condition expression of a while loop must be written so that it’s true for the
loop to continue. There are at least two ways to write this:

while ((c = getchar()) != EOF
 && c != '\n'
 && ++numCharsRead <= kMaxLineLength) {

and

while (! ((c = getchar()) == EOF

CHAPTER 9: The Command Line 274

 || c == '\n'
 || ++numCharsRead > kMaxLineLength)) {

In the first form, the condition reads “run the loop if the getchar() does not return EOF, the
character isn’t a newline, and there’s still room in the buffer.” The second condition means
exactly the same thing, but reads “stop the loop if getchar() returns EOF, the user pressed
Return, or the buffer has run out of space.” Remember that != is the opposite of ==, and <= is
the opposite of >.

Humans have problems with the word “not.” When our mothers tell us that we “can not have a
cookie,” our brains tend to ignore the “not” and the only message that gets through is “can have
a cookie.” Programmers have the same problem. Sometimes expressing conditions in the
negative (“not daylight and not cloudy”) can make code difficult to comprehend. Reformulating
the condition (“not (daylight or cloudy)”) can make it easier to understand.

CAUTION: Note that c is an int, not a char. getchar() returns an int variable,
which is larger than a char variable. The getchar() function must return a value
that represents all single byte character values (-128...127) in addition to a constant
(EOF) that means the input stream ended. It can’t do this if it returned a single byte
char value, because every possible char value is already spoken for.

getchar()’s solution is to return the 256 possible char values as an unsigned int
value (0…255), leaving the rest of the range of int values available to mean other
things. When c is compared to EOF, two full ints are being compared and the
condition can tell the difference between the EOF value of -1 and a character value of
-1 (because a character value of -1 will be 255). When c is assigned to *buff, only
the lowest 8 bits of data in the int are assigned to the char variable. Since the
char variable is signed, a value of 255 becomes -1.

If any of this is confusing, review the section “The Long and Short of ints” in Chapter
8 and look forward to the “Conversion Rules” section in Chapter 13.

If the while loop conditional passes all of the tests, the loop’s one and only
statement is executed.

 *buff++ = c;

You’ll see this kind of statement a lot in C. It efficiently performs three
operations in a single, compact, statement.

1. The address of the char variable that buff points to is obtained.

CHAPTER 9: The Command Line 275

2. The value of c is stored at the char variable at that address.

3. 1 is added to the pointer buff so that it now points to the next
element in memory.

The important thing to note is the use of the post-increment operator (++) to
increment the pointer after the value of c was stored in *buff. If buff pointed to
line[0] before this statement, then c would be stored in line[0] and buff
would point to line[1] afterwards.

Contrast that with this statement:

 *++buff = c;

Here the buff pointer is incremented before it’s dereferenced. If buff pointed to
line[0] beforehand, then c would get stored in line[1] because buff was
changed from line[0] to line[1] before the assignment was made. For your
program, that’s not what you want. You want buff to always point to the next
empty element of line. When a character is stored there, buff is incremented
afterwards so it (once again) points to the next empty element in the line array.

Finally, the loop ends and you terminate whatever characters the loop stored in
line with a '\0'. Remember that a C string must be terminated by with a NUL
character or it won’t be a valid string.

*buff = '\0';

To review, when the ReadLine() returns to the caller, the address passed to it
will contain the characters read from the input stream, terminated with a NUL
character to make it a proper C string. The string will never be more than
kMaxLineLength long. It will be shorter if a newline ('\n') character is read or if
there are no more characters in the input stream. Perfect! Now let’s move on to
CountWords().

CountWords()
CountWords() also takes a pointer to the first byte of main()’s line array as a
parameter. CountWords() will step through the array, looking for non---whitespace
characters. When one is encountered, CountWords() sets inWord to true and
increments numWords and keeps stepping through the array looking for a
whitespace character that marks the end of the current word. Once the
whitespace is found, inWord is set to false again and the process repeats.

int CountWords(char *line)
{
 int numWords, inWord;

CHAPTER 9: The Command Line 276

 numWords = 0;
 inWord = false;

When the while loop is entered for the first time, line points to the first
character in the string. The loop continues as long as *line contains a character
value other than NUL ('\0'). Let’s start by looking just at the ‘‘outside’’ portion of
the loop:

 while (*line != '\0') {
 … // do something with *line
 line++;
 }

This is a great loop for processing an array of something and is very common in
C. The while loop’s conditional determines when the loop should stop based on
the value that the pointer is pointing to now. For your purposes, you stop when
you get to the NUL ('\0') character at the end of the string. At the bottom of the
loop, the line pointer is incremented so that it points to the next element in the
array when it repeats. Compare that code to this:

int i;
for (i = 0; line[i] != '\0'; i++) {
 … // do something with line[i]

That’s right, it’s basically the same logic-----without a pointer variable. Now let’s
look at the entire loop.

 while (*line != '\0') {
 if (isspace(*line)) {
 inWord = false;
 }
 else {
 if (! inWord) {
 numWords++;
 inWord = true;
 }
 }

 line++;
 }

The body of the loop processes each character in the line string, one character
at a time. It maintains a bool variable named inWord that will be set to false
when it finds a character that is whitespace (space, tab, newline, etc.). It sets it
back to true when it finds a character that is not whitespace (letters, numbers,
punctuation, and everything else).

CHAPTER 9: The Command Line 277

Computer scientists call this kind of logic a state machine. A state machine is
the simplest form of machine logic (and the basis for all computers, by the way).
The loop operates in one of two states: in word or not in word.

When a state machine changes from one state to another, it’s called a state
transition, and that’s how this loop does its job. When the isspace(*line) test is
false, it means that this is an ‘‘in word’’ character and the else block is
executed. Before it sets inWord to true, it checks to see if inWord is currently
false. If it is, it means that the previous character (the one immediately before
this character) is a whitespace character, which means that this character is the
beginning of a new word. When this happens, the numWords counter is
incremented.

Now that inWord is now true, the increment statement won’t be executed again
until another whitespace character is found (setting inWord to false), followed
by another non-whitespace character. This is sometimes called edge logic
because numWords is only incremented on the ‘‘edges’’ between whitespace and
non-whitespace characters.

If this isn’t completely clear, run CountWords in the debugger, step through this
loop, and watch how inWord and numWords change.

When CountWords() is finished, it returns the number of words it found in the
string. Technically, it returns the number of whitespace to non-whitespace
transitions it found, but that’s basically the same thing.

Now that you understand this program completely, let’s run it again. Choose the
Run command from the Product menu. When the program starts running, click in
the console pane, type a line, and press the Return key. You should see
something like the output back in Figure 9-18.

NOTE: The connection between your keyboard and standard input for an Xcode or
Terminal window will only be active when that pane or window is active. To type
characters to your command, first make sure the Xcode console window is active by
clicking the mouse in the console pane.

Now let’s test your program from the command line. We’ll show you this to
prove how versatile command-line tools can be, and to show you a handy trick
for testing your program from the command line.

CHAPTER 9: The Command Line 278

Testing WordCount in the Shell
When you ran WordCount in Xcode, Xcode provided a console window
connected to standard output and connected your keyboard to standard input.
But what if you want to quickly run your program in the shell without going
through the archive and deployment steps you did at the beginning of this
chapter? It turns out that there’s a clever feature of the Terminal window that will
make this easy.

If you just ran the WordCount program, then Xcode has recently built the
executable. If not, choose the Product Build for Running command from the
menu bar to make sure you binary executable is up to date.

Open a window in the Terminal and position it alongside the workspace window,
as shown in Figure 9-16. Type the following command in the terminal-----but don’t
press Return yet! (The last character on the line is the vertical bar, usually found
above the Return key.)

echo 'Four score and seven years ago' |

Now switch back to the Xcode workspace window. In the project navigator, find
the WordCount executable inside the Products group. This object represents
your finished program during development and testing. Drag the WordCount
program over to the Terminal window and drop it. You should see a result
similar to that in Figure 9-19.

Figure 9-19. Dropping a file into a Terminal window

Dropping a file or folder into the Terminal window while at a command prompt
will insert the absolute path of that item into your command line. It’s a fantastic
time saver. For example, type cd, drop any folder from the Finder into the
Terminal window, and then press Return. Your current working directory will
now be set to that folder.

CHAPTER 9: The Command Line 279

NOTE: Both path auto-completion and the Terminal’s drag-and-drop feature will
escape any special characters. A lot of characters, especially the “space” character,
mean something to the shell (space separates arguments). To tell the shell that this
character is part of a path name and is not a shell operator, precede the character
with the “\” (backslash)—the same one you use in C string constants to tell the
compiler that the next character means something special. This is called escaping
the character.

In this case, the path inserted is the one to Xcode’s magic storage where it
keeps all of your project’s intermediate files organized and up-to-date. Again,
it’s not important where this is. What’s important is that it’s an absolute path to
the last executable Xcode built, and as such the shell will execute this program
directly.

Switch back to the Terminal window and press the Return key. The shell’s |
(pipe) operator will execute two commands: echo and your CountWords tool. It
connects the standard output of echo to the standard input of your tool, and
both start running.

The echo tool sends the text of its arguments to standard output. These
characters (‘‘Four score and seven years ago\n’’) appear on your tool’s standard
input. CountWords now reads those words from standard input, counts them,
and send its output to standard output, which appears in the Terminal window,
as shown in Figure 9-20.

Figure 9-20. Text sent to CountWords through a shell pipe

But why stop there? Try your command again, on its own without the echo
command, but this time end the command with an input file redirection operator,
as shown in Figure 9-21.

CHAPTER 9: The Command Line 280

Figure 9-21. CountWords counting the words in a file

Without making any modifications in your command-line tool, you just
repurposed it to count the words output by the echo command, and again to
count the words in the first line of a file. Just as easily, the output of your
program could become the input of some other tool. That’s the versatility of
standard input and standard output.

Before we move on, there are two things to make note of. First, your program
still outputs the string ‘‘Type a line of text, please:’’. That’s because your
program doesn’t know that there’s no human sitting at a keyboard typing
characters. It just reads the characters it gets from standard input, which is the
correct way for a tool to think about the world. It’s beyond the scope of this
book, but command-line tools written by experienced programmers can
examine properties of the standard input character stream to determine if it’s an
interactive source (like a keyboard) or a character stream coming from a file or
another program. The tool can then adjust its behavior by, for example, only
outputting the prompt string when it’s getting characters from a keyboard.

The other thing that you’ll notice is that when you typed ‘‘The quick brown fox’’
in the Xcode console pane, the words ‘‘The quick brown fox’’ appeared in the
window after the prompt. But when you piped ‘‘Four score and seven years
ago’’ to your tool, they didn’t. That’s because Xcode and the Terminal echo
characters typed on the keyboard, meaning that the character is sent both to
the program and to the window------so you can see what you’re typing. Characters
piped from one program to another don’t go anywhere near the window. Again,
experienced programmers can control the echo mode, which is how a
command that prompts for a password is able to hide the characters you type
on the keyboard.

So far, none of the projects in this book rise the level of ‘‘useful command line
tool.’’ Most were just exercises in C, and the last two duplicate commands
already written. Your SeeArgs program is basically the echo command, and
CountWords is a pale imitation of the wc (‘‘word count’’) tool.

Let’s finish up this chapter by writing something that’s not already built into OS
X. We can’t say it’s super-useful, but we’re sure that you don't already have a
program like it.

CHAPTER 9: The Command Line 281

RomanNumeral.xcodeproj
In your Learn C on the Mac projects folder, find the 09.0X - RomanNumeral
folder and open the RomanNumeral.xcodeproj document. This is a command-
line tool that converts its argument from decimal into roman numerals.

The program starts out with some #includes and defines some constants.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define kMinDecimalNumber 1
#define kMaxDecimalNumber 3999
#define kMaxRomanNumeralLength 15

The range of numbers the program can convert is limited to 1 through 3,999. It’s
easy to determine that the length of the converted Roman numeral will never
exceed 15 characters-----the longest possible result is MMMDCCCLXXXVIII (or
3,888), if you’re curious. These are all established as constants for the program.

Your ‘‘number to Roman numeral’’ conversion function needs a prototype.

void NumberToRomanNumeral(int number, char *romanNumeral);

main()
The main() function loops through the command’s arguments, converts each
one from a decimal number to a Roman numeral, and outputs the results to
standard output.

int main(int argc, const char * argv[])
{
 int i;
 for (i=1; i<argc; i++) {
 int number;
 number = atoi(argv[i]);
 if (number >= kMinDecimalNumber && number <= kMaxDecimalNumber) {
 char romanNumeral[kMaxRomanNumeralLength+1];
 NumberToRomanNumeral(number, romanNumeral);
 printf("%d = %s\n", number, romanNumeral);
 }
 }

 return 0;
}

CHAPTER 9: The Command Line 282

The only function you haven’t seen before is atoi(). The atoi() (‘‘ASCII to
Integer’’) function takes a string pointer as an argument and returns an int. If the
string begins with the characters of a decimal number, it converts that to a
numeric value and returns it. Otherwise, it returns 0. In other words, if you pass
it the string ‘‘173’’ atoi() will return the integer value 173.

NumberToRomanNumeral()
Now we get to the really interesting part of the program. The
NumberToRomanNumeral() function takes two parameters: an int value to convert
and a pointer to a string buffer where the converted value will be stored. This
function uses character arrays and pointers in ways that you haven’t seen
before, so let’s go through it carefully.

void NumberToRomanNumeral(int number, char *romanNumeral)
{
 static char roman[] = "IVXLCDM";

The first statement defines a static character array pre-initialized to a string
constant. You haven’t seen this before, but when you combine an array
declaration with an array initializer, the array’s dimension is set exactly to the
size needed to store the value(s). In this statement, the array will be 8 chars
long.

TIP: To initialize an array of something other than chars, list the values between
curly braces, separated by commas. This statement will allocate an array of 6 ints
and fill its elements with the values listed:

int testValues[] = { -1, 0, 1, 3, 99, 276 };

The program is going to use the characters in this array in pairs. The first two
characters represent the Roman numerals for 1 and 5, the next two for 10 and
50, the next two are 100 and 500, and finally 1,000; you don’t need 5,000
because the function only converts numbers less than 4,000.

The numeral value is going to be used as an index into the roman array. It’s
initialized to 0.

 int numeral;
 numeral = 0;

A local char array is allocated to hold the Roman numeral string as it’s being
constructed, along with a char pointer that will be used to point to elements of
that array.

CHAPTER 9: The Command Line 283

 char result[kMaxRomanNumeralLength+1];
 char *resultPtr;

The result array is initialized by setting its last element to NUL. resultPtr is then
set to point to that element.

 result[kMaxRomanNumeralLength] = '\0';
 resultPtr = &result[kMaxRomanNumeralLength];

Typically, you deal with characters of a string starting with the beginning of an
array and working up. But this program is going to build the Roman numeral
representation backwards, starting with the last character and working (right to
left) towards the beginning of the buffer. The one rule to remember in C is that
there are no rules; use the solution that fits the problem.

Why the string is constructed backwards makes sense when you see the loop
that performs the conversion. The loop runs until the value of number is zero,
meaning there are no more digits to convert. It begins by isolating the one’s digit
of the number, dividing it by 10, and getting the remainder. If the value of number
was 173, then first value of digit will be 3.

 while (number != 0) {
 int digit;
 digit = number % 10;

The loop is going to convert the decimal numbers from right to left (3, then 7,
and finally 1). This is why the results are constructed from right to left.

Now we get to the heart of the conversion. If you don’t know how Roman
numerals work, it’s pretty simple. Decimal digits between 1 and 9 are
represented by combinations of Roman numeral characters that represent the
values of 1, 5 and 10: 1 = I, 2 = II, 3 = III, 4 = IV (‘‘one less than five’’), 5 = V, 6 =
VI (‘‘one more than five’’), 7 = VII, 8 = VIII, 9 = IX (‘‘one less than ten’’). The next
power of ten repeats this pattern, but with different characters that represent 10,
50, and 100 (X, L, and C).

The program converts a single digit to the appropriate pattern using a switch
statement.

 switch (digit) {
 case 0:
 break;

 case 3:
 *--resultPtr = roman[numeral];
 case 2:
 *--resultPtr = roman[numeral];
 case 1:
 *--resultPtr = roman[numeral];
 break;

CHAPTER 9: The Command Line 284

 case 4:
 *--resultPtr = roman[numeral+1];
 *--resultPtr = roman[numeral];
 break;

 case 8:
 *--resultPtr = roman[numeral];
 case 7:
 *--resultPtr = roman[numeral];
 case 6:
 *--resultPtr = roman[numeral];
 case 5:
 *--resultPtr = roman[numeral+1];
 break;

 case 9:
 *--resultPtr = roman[numeral+2];
 *--resultPtr = roman[numeral];
 break;
 }

The variations on this statement are the heart of the code:

*--resultPtr = roman[numeral];

Reading it from right to left, it uses the numeral integer to address one element
of the roman array. This is the static array that contains the characters ‘‘I,’’ ‘‘V,’’
and so on. The first time through the loop numeral is 0, so roman[numeral] will
be the character I.

On the assignment side of the operator is the pointer expression *--resultPtr.
As you already know, this is a combination of a pointer dereference and a pre-
decrement operator. The pointer’s address is first decremented by one element,
and the address is used to store the character (‘‘I’’). resultPtr started out
pointing to the result[15]. After this statement, result[14] will contain the
character ‘‘I’’ and resultPtr will point to it.

The character sequence for each number is constructed by a carefully arranged
set of case statement labels. If the value of the digit is 1, execution jumps to the
case 1: label, which inserts one ‘‘I’’ into result. If the value is 3, then case 3:
label does exactly the same thing. But case 3: isn’t followed by a break
statement, so it falls through and executes the code for case 2:, which falls
through to case 1:. The result? If the value is 3, three ‘‘I’’ characters are inserted
into result.

CHAPTER 9: The Command Line 285

The patterns for 5, 6, 7, and 8 work similarly, except that the value inserted for
case 5: is roman[numeral+1]. The first time through the loop, numeral is 0, so
numeral+1 will address the ‘‘V’’ character in the array.

Cases 4 and 9 insert two characters, either the pattern ‘‘one less than five’’ or
‘‘one less than ten.’’

After the case statement is finished, the loop prepares for the next iteration. The
first step is to divide the working number by 10.

 number /= 10;

If the starting number was 173, number will now be 17-----essentially chopping off
the last decimal digit. The next time through the loop, the value of number will be
17, and digit will be 7. The third time, both will be 1. When 1 is divided by 10,
the value of number goes to 0 and the loop stops.

But the real magic happens with the next statement.

 numeral += 2;
}

numeral is the index into the static set of roman characters. By adding 2 to it, it
shifts the set of characters used by the switch statements. Now roman[numeral]
refers to ‘‘X’’ (ten) instead of ‘‘I’’ (one). On the third pass through the loop,
roman[numeral] will be a ‘‘C’’ (one hundred), and so on.

As each power-of-ten decimal digit is processed by the loop, the index of
numeral increases to select a matching power of ten Roman numeral.

When the loop exits, the resultPtr pointer points to the last character inserted
into the result array. This is the first character of the finished string. Remember
that you started by setting the last element of result to NUL, so resultPtr is
always pointing to a NUL-terminated C string.

The last step is to copy the finished string to the buffer provided by the caller.
This assumes that the caller has provided enough space to hold the results,
which is reasonable since the maximum length of the finished string is well
known.

strcpy(romanNumeral, resultPtr);

Try your program by setting some test arguments in the Edit Scheme dialog, as
shown in Figure 9-22. When testing your program, give it a wide range of
numbers that will exercise all execution paths of your program. You want to
verify that it works on typical values, but you’re also looking for values that
might trip it up or expose a flaw in the logic.

CHAPTER 9: The Command Line 286

Figure 9-22. Setting test arguments for RomanNumeral

Run your program and you should see output like that shown in Figure 9-23.

Figure 9-23. Output of RomanNumeral test run

If there’s anything about this program that isn’t crystal clear at this point, run it
in the debugger. Step through each line and watch how the variables change
and how the program flow through the loop and the switch statements work.

CHAPTER 9: The Command Line 287

Also try out your new command in the Terminal, using any of the techniques
we’ve shown you so far. Give it different numbers as arguments, or something
that isn’t a number at all.

Hang onto this project, because you’re going to revisit it in a later chapter.

One Last Word About the Command-Line
Interface
Before we end this chapter, we want to revisit the CLI one more time. The
number of command-line tools, and what they can accomplish, is staggering.
It’s not a computer interface that most people learn, but those that understand it
weld a powerful tool.

Just to give you a taste, what if we told you that many of the applications you
use in OS X are just fronts for command-line tools? Take Apple’s Disk Utility
application. It can format and repair volumes, create disk images, partition
drives, unmount disks, and so on. But none of these capabilities are part of the
application. When you choose to repair a volume, for example, the Disk Utility
application simply runs the diskutil command-line tool. If you look at the man
pages for diskutil, hdiutil, and pdisk, you’ll find that you can do all of these
things directly from the command line. This means that you can write a shell
script to do it. It also means you can log in from a remote computer and do it.

Applications like Disk Utility are called wrappers or shells, because they are
nothing more than a GUI (graphical user interface) ‘‘wrapped’’ around the
functionality of an existing command line tool.

When you installed Xcode, it added a whole bunch of new commands to your
command line. All of the compiling, linking, and debugging that Xcode does is
actually performed by command-line tools (gcc, gdb, and so on) that you can run
too. Xcode even provides a command-line tool that will let you build Xcode
projects from the command line, appropriately named xcodebuild. You can read
about it using man:

man xcodebuild

Professional programmers use tools like this to automate their development.
Most large applications are not produced by someone opening a project file and
pressing the Build button. The developers write a shell script that checks out the
final source files from a source control system, builds and archives the project
using the xcodebuild tool, and then packages up the deployed files into a disk
image, installer package, or however the program will be distributed. By

CHAPTER 9: The Command Line 288

automating the process, the developer won’t accidently forget an important step
when delivering their program to their customers.

And now that you know how to create your own command-line tools, you can
make the CLI even more powerful.

What’s Next?
What you accomplished in this chapter is huge. You learned how to create a
finished (deployed) program that you can install and use in the OS X command
line interface. You learned how commands get arguments. You also learned
about standard output and standard input, how they can be redirected to other
sources, and connected to other programs. Along the way you learned some
really important pointer skills.

In the next chapter, you’re going to expand your variable universe even more by
learning how to define and use structures.

CHAPTER 9 EXERCISES

1. Modify the SeeArgs project so that it acts more like the Unix echo
command: output each argument string to standard output, separated by
spaces, and followed by a single newline character. Bonus points for
outputting a space character only between multiple argument strings.

2. At the end of this code, what will the printf() statement output?

 char message[] = "Leo cC ran the Man";
 int x[] = { 2, 3, 5, 4 };
 int y[] = { 6, 4, 1, 13 };

 int i;
 for (i = 0; i < (sizeof(x)/sizeof(x[0])); i++) {
 char *xPtr, *yPtr;

 xPtr = message + x[i];
 yPtr = xPtr + y[i];

 char c;
 c = *xPtr;
 *xPtr = *yPtr;
 *yPtr = c;
 }

 printf("%s!\n", message);

CHAPTER 9: The Command Line 289

3. Change WordCount so that it continues to read, and count the words in,
subsequent lines.

291

10
Chapter

Designing Your Own
Data Structures
Chapter 8 introduced several new data types, such as float and char. We
discussed the range of each type and the format specifiers used to print each
type using printf(). Next, you explored the concept of arrays, focusing on the
relationship between char arrays and C strings. Along the way, you discovered
the #define statement, C’s text substitution mechanism. In Chapters 7, 8 and 9,
you learned a lot about pointers.

This chapter will show you how to use existing C types as building blocks to
design your own customized data structures. You’ll also learn how to
dynamically allocate memory for those structures as you need it.

Bundling Data
There will be times when your programs will want to bundle together, or
associate, related data. For example, suppose you are writing a program to
organize your DVD collection. Imagine the type of information you will want to
access for each DVD. At the very least, you’ll want to keep track of the movie’s
title. You might also want to rate each DVD on a scale from one to ten. Finally,
let’s add in a comment field you can use to describe your feelings about the
movie or perhaps note to whom you loaned this particular movie.

In the next few sections, we’ll look at two separate approaches to a basic DVD
tracking program. Each approach will revolve around a different set of data
structures. One will make use of arrays (Model A) and the other a set of custom
designed data structures (Model B).

CHAPTER 10: Designing Your Own Data Structures 292

Model A: Three Arrays
One way to model your DVD collection is with a separate array for each DVD’s
attributes:

#define kMaxDVDs 5000
#define kMaxTitleLength 256
#define kMaxCommentLength 256

char rating[kMaxDVDs];
char title[kMaxDVDs][kMaxTitleLength];
char comment[kMaxDVDs][kMaxCommentLength];

This code fragment uses three #defines. kMaxDVDs defines the maximum number
of DVDs this program will track. kMaxTitleLength defines the maximum number
of characters in a DVD title. kMaxCommentLength defines the maximum number of
characters in the DVD comment array.

Next, rating is an array of 5,000 chars, one char per DVD. Each of the chars in
this array will hold a number from 1 to 10, the rating you’ve assigned to a
particular DVD. This line of code assigns a value of 8 to DVD 37:

rating[37] = 8; /* A pretty good DVD */

The arrays title and comment are each known as multidimensional arrays. A
normal array, like rating, is declared using a single dimension. The statement of

float myArray[5];

declares a normal (one-dimensional) array containing five floats, namely:

myArray[0]
myArray[1]
myArray[2]
myArray[3]
myArray[4]

This statement

float myArray[3][5];

declares a two-dimensional array containing 15 floats (3 * 5 = 15), namely:

myArray[0][0]
myArray[0][1]
myArray[0][2]
myArray[0][3]
myArray[0][4]
myArray[1][0]
myArray[1][1]
myArray[1][2]

CHAPTER 10: Designing Your Own Data Structures 293

myArray[1][3]
myArray[1][4]
myArray[2][0]
myArray[2][1]
myArray[2][2]
myArray[2][3]
myArray[2][4]

Think of a two-dimensional array as an array of arrays. myArray[0] is an array of
five floats. myArray[1] and myArray[2] are also arrays of five floats each.

Here’s a three-dimensional array:

float myArray[3][5][10];

How many floats does this array contain? Tick, tick, tick-----got it? 3 * 5 * 10 =
150. This version of myArray contains 150 floats.

NOTE: C allows you to create arrays of any dimension, though you’ll rarely have a
need for more than a single dimension.

Why would you ever want a multidimensional array? If you haven’t already
guessed, the answer to this question is going to lead us back to the DVD
tracking example. Here are the declarations for your three DVD tracking arrays:

#define kMaxDVDs 5000
#define kMaxTitleLength 256
#define kMaxCommentLength 256

char rating[kMaxDVDs];
char title[kMaxDVDs][kMaxTitleLength];
char comment[kMaxDVDs][kMaxCommentLength];

Once again, rating contains one char per DVD, while title contains an array of
chars whose length is kMaxTitleLength for each DVD. Each of title’s arrays is
large enough to hold a title up to 255 bytes long with a single byte left over to
hold the terminating NUL byte. And comment contains an array of chars whose
length is kMaxCommentLength for each DVD. Each of comment’s arrays is large
enough to hold a comment up to 255 bytes long with a single byte left over to
hold the terminating NUL byte.

MultiArray.xcodeproj
Here’s a sample program that brings this concept to life. MultiArray defines the
two-dimensional array title (as described previously), prompts you to type a

CHAPTER 10: Designing Your Own Data Structures 294

series of DVD titles, stores the titles in the two-dimensional title array, and
then prints out the contents of title.

Open the Learn C Projects folder, go inside the folder 10.01 - MultiArray, and
open the project MultiArray.xcodeproj. Run MultiArray by selecting Run from the
Product menu. MultiArray will first tell you how many bytes of memory are
allocated for the entire title array:

The title array takes up 1024 bytes of memory.

To see where this number came from, here’s the declaration of title from
MultiArray:

#define kMaxDVDs 4
#define kMaxTitleLength 256

char title[kMaxDVDs][kMaxTitleLength];

By performing the #define substitution yourself, you can see that title is
defined as a 4-by-256 array: 4 * 256 = 1,024, matching the result reported by
MultiArray.

After MultiArray reports the title array size, it enters a loop, prompting you for
your list of favorite movies:

Title of DVD #1:

Enter a DVD title, and press Return. You’ll be prompted to enter a second DVD
title. Type in a total of four DVD titles, pressing Return at the end of each one.

MultiArray will then step through the array, using printf() to list the DVDs
you’ve entered. If your entire DVD collection consists entirely of classic TV
boxed sets and obscure anime, feel free to use our list, shown in Figure 10-1.

CHAPTER 10: Designing Your Own Data Structures 295

Figure 10-1. MultiArray in action

Let’s take a look at the source code.

Stepping Through the MultiArray Source Code
MultiArray starts with a standard #include. <stdio.h> gives you access to both
printf() and fgets().

#include <stdio.h>

These two #defines will be used throughout the code:

#define kMaxDVDs 4
#define kMaxTitleLength 256

Let’s look at the function prototypes for PrintDVDTitle(). PrintDVDTitle()
prints out the specified DVD title. Note the return type of void. This means that
this function does not return a value.

void PrintDVDTitle(int dvdNum, char title[][kMaxTitleLength]);

main() starts off by defining title, your two-dimensional array. title is large
enough to hold four movie titles. The name of each title can be up to 255
characters long, plus the terminating NUL byte.

int main (int argc, const char * argv[]) {
 char title[kMaxDVDs][kMaxTitleLength];

CHAPTER 10: Designing Your Own Data Structures 296

Notice anything different about the declaration of title in the PrintDVDTitle()
prototype and the declaration of title in main()? We’ll discuss this difference
when we get to the PrintDVDTitle() code in a bit.

dvdNum is a counter used to step through each of the DVD titles in a for loop.

 int dvdNum;

This printf() prints out the size of the title array. Notice that it uses the %zu
format specifier to print the result returned by sizeof, because the sizeof
operator always results in an integer value of type size_t.

 printf("The title array takes up %zu bytes of memory.\n\n", sizeof(title)
);

Next, let’s look at the loop that reads in the title names. dvdNum starts with a
value of 0, is incremented by one each time through the loop, and stops as soon
as dvdNum is equal to kMaxDVDs. Why ‘‘equal to kMaxDVDs’’? Since dvdNum acts as
an array index, it has to start with a value of 0. Since there are four elements in
the array, they range in number from 0 to 3. If dvdNum is equal to kMaxDVDs, the
loop needs to stop or it will be trying to access title[4], which does not exist.
Make sense?

 for (dvdNum = 0; dvdNum < kMaxDVDs; dvdNum++) {

Each time through the loop, the prompt ‘‘Title of DVD #’’ is output to the
console, followed by the value of dvdNum+1. Though C starts its arrays with 0,
people like to number things starting with 1.

 printf("Title of DVD #%d: ", dvdNum + 1);

Once the prompt is printed, you call fgets() to read in a line of text from the
console. fgets() is used because it’s safe; the second parameter is the total
length of the array the characters will be copied to. fgets() promises to never
copy more characters than will fit in the array.

NOTE: The third parameter of fgets() is a pointer to the input stream it will read
characters from. Functions like printf() and scanf() always use the standard
out and standard in character streams (respectively). But there are many other
character streams, and functions like fgets() can be directed to use any of them
using this third parameter. To direct fgets() to read from standard in, pass it the
stdin constant, conveniently provided by the Standard Library.

The line of characters read from the keyboard are stored in the char array
title[dvdNum]. You’ll tell fgets() to limit input to the length of that char array,

CHAPTER 10: Designing Your Own Data Structures 297

which is kMaxTitleLength. The last parameter, stdin, tells fgets() to read its
input from standard in, as opposed to reading from a file.

 fgets(title[dvdNum], kMaxTitleLength, stdin);
 }

Take a look at the first parameter you passed to fgets(), (title[dvdNum]).
What type is this parameter? Remember, title is a two-dimensional array, and
a two-dimensional array is an array of arrays. title is an array of char arrays.
title[dvdNum] is an array of chars, and thus exactly suited as a parameter to
fgets().

Imagine an array of chars named blap:

char blap[100];

You’d have no problem passing blap as a parameter to fgets(), right? fgets()
would read the characters from the input buffer and place them in blap.
title[0] is just like blap. Both are pointers to an array of chars. blap[0] is the
first char of the array blap. Likewise, title[0][0] is the first char of the array
title[0].

OK, let’s get back to the code.

Once the first loop ends, it prints a dividing line. A second loop then calls
PrintDVDTitle() for each DVD title. The first parameter to PrintDVDTitle()
specifies the number of the DVD you want printed. The second parameter is the
title array pointer.

 printf("-----\n");

 for (dvdNum = 0; dvdNum < kMaxDVDs; dvdNum++)
 PrintDVDTitle(dvdNum, title);

Finally, main() ends by returning 0:

 return 0;
}

Printing the DVD Titles
Next, the PrintDVDTitle() function begins. Take a close look at the definition of
PrintDVDTitle()’s second parameter. Notice that the first of the two dimensions
is missing (the first pair of brackets is empty). While you could have included the
first dimension (kMaxDVDs), the fact that you were able to leave it out makes a
really interesting point. When memory is allocated for an array, it is allocated as
one big block. To access a specific element of an array, the compiler needs the

CHAPTER 10: Designing Your Own Data Structures 298

starting address of the array, the size of each element in the array, and number
of the element you want to access. It works just like pointer math: memory
address = pointer + (index sizeof(element))

void PrintDVDTitle(int dvdNum, char title[][kMaxTitleLength]) {
 printf(“Title of DVD #%d: %s\n”,
 dvdNum + 1, title[dvdNum]);
}

In the case of title, the compiler allocated a block of memory 1,024 bytes long.
Think of this block as four char arrays, each of which is 256 bytes long (4 * 256
= 1,024). To get to the first byte of the first array, you just use the pointer that
was passed in (title points to the first byte of the first of the four arrays). To
access the first byte of the second array (in C notation, title[1][0]), the
compiler adds 256 to the pointer title. In other words, the start of the second
array is 256 bytes further in memory than the start of the first array. The start of
the fourth array is 768 bytes (3 * 256 = 768) further in memory than the start of
the first array.

While it is nice to know how to compute array offsets in memory, the point we’re
making here is that the compiler calculates the title array offsets using the size
of each element. But in this case, the ‘‘element’’ isn’t simply an int, char, or
float-----it’s another array-----and the compiler doesn’t know how big that array is
unless you tell it.

You also might expect the compiler to use the first array dimension (4) to verify
that you don’t reference an array element that is out of bounds. For example,
you might expect the compiler to complain if it sees this line of code:

title[5][0] = '\0';

Guess what? C compilers don’t do bounds checking of any kind. If you want to
access memory beyond the bounds of your array, no one will stop you. This is
part of the ‘‘charm’’ of C-----it gives you the freedom to write programs that crash
in spectacular ways. Your job is to learn how to avoid such pitfalls.

To sum up: when defining an array of indeterminate size, you may leave out the
dimension of the highest order array, because C doesn’t care how big it is. (You
should care, but C doesn’t.) You must, however, supply the sizes of any arrays
used as elements of that array because without that the compiler can’t
determine how big each element is, and if it can’t do that, it can’t calculate the
address of an individual element.

Let’s return again to the printf() statement inside PrintDVDTitle():

 printf("Title of DVD #%d: %s\n", dvdNum + 1, title[dvdNum]);

CHAPTER 10: Designing Your Own Data Structures 299

Note the two format specifiers. The first, %d, is used to print the DVD number.
The second, %s, is used to print the DVD title itself. The \n at the end of the
string is used to force a carriage return between each of the DVD titles.

Getting Rid of the Extra Carriage Return
If you look back at Figure 10-1, you might notice an extra carriage return after
each line of output produced by PrintDVDTitle(). That’s because when fgets()
reads a line, it includes all of the characters on that line, including the newline
character at the end of the line. (This is in contrast to scanf(), which stops when
it gets to the newline character.) Under normal circumstances, the newline
character is always the last character in the string buffer, so you can add this
line of code (just after the call to fgets()) to get rid of it:

title[dvdNum][strlen(title[dvdNum]) - 1] = '\0';

Note that you’ll need to add a #include <string.h> to the top of the file to
access the strlen() function. This line of code finds the length of the string that
was just typed in. The string includes a carriage return at the very end of it. You
subtract one from the length, and then store a NUL character right where the
carriage return sits, making the string one byte shorter.

This code isn’t particularly good because it lacks some basic safeguards. You’ll
learn about error and range checking in a later chapter, where we’ll explain
what’s wrong with this code. But for now, it’s good enough.

Finishing Model A
In the beginning of the chapter, we described a program that would track your
DVD collection. The goal was to look at two different approaches to solving the
same problem. The first approach, Model A, uses three arrays to hold a rating,
title, and comment for each DVD in the collection:

#define kMaxDVDs 5000
#define kMaxTitleLength 256
#define kMaxCommentLength 256

char rating[kMaxDVDs];
char title[kMaxDVDs][kMaxTitleLength];
char comment[kMaxDVDs][kMaxCommentLength];

Before you move on to Model B, take a closer look at the memory used by the
Model A arrays:

 The array rating uses 1 byte per DVD (enough for a 1-byte
rating from 1 to 10).

CHAPTER 10: Designing Your Own Data Structures 300

 The array title uses 256 bytes per DVD (enough for a text string
holding the movie title, up to 255 bytes in length, plus the
terminating NUL character).

 The array comment also uses 256 bytes per DVD (enough for a
text string holding a comment about the DVD, up to 255 bytes
in length, plus the terminating NUL character).

Added together, Model A allocates 513 bytes per DVD. Since Model A allocates
space for 5,000 DVDs when it declares its three key arrays, it uses 2,565,000
bytes (5,000 513 = 2,565,000) for its data.

Since the program really only needs 513 bytes per DVD, wouldn’t it be nice if
you could allocate the memory for a DVD only when you need it? With this type
of approach, if your collection only consisted of 50 DVDs, you’d only have to
use 25,650 bytes of memory (50 513 = 25,650), instead of 2,565,000.

NOTE: Memory usage is just one factor to take into account when deciding which
data structures to use in your program. Another is ease of use. If you have plenty of
memory available, Model A takes less time to implement and is much easier to work
with. In that case, memory be damned; go for the simpler solution. The cool thing
about being the programmer is that you get to decide what’s best in any given
situation.

As you’ll see by the end of this chapter, C provides a mechanism for allocating
memory as you need it. Model B takes a first step toward memory efficiency by
creating a single data structure that contains all the information relevant to a
single DVD. Later in this chapter, you’ll learn how to allocate just enough
memory for a single structure.

Model B: The Structure Approach
As mentioned, your DVD program must keep track of a rating (from 1 to 10), the
DVD’s title, and a comment about the DVD:

#define kMaxDVDs 5000
#define kMaxTitleLength 256
#define kMaxCommentLength 256

char rating[kMaxDVDs];
char title[kMaxDVDs][kMaxTitleLength];
char comment[kMaxDVDs][kMaxCommentLength];

CHAPTER 10: Designing Your Own Data Structures 301

C provides the perfect mechanism for wrapping all three of these variables in
one tidy bundle. A struct allows you to associate any number of variables
together under a single name. Here’s an example of a struct declaration:

#define kMaxTitleLength 256
#define kMaxCommentLength 256

struct DVDInfo {
 char rating;
 char title[kMaxTitleLength];
 char comment[kMaxCommentLength];
};

This struct declaration creates a new type called struct DVDInfo. Just as you’d
use a type like int or float to declare a variable, you can use this new type to
declare an individual struct. Here’s an example:

struct DVDInfo myInfo;

This line of code uses the previous type declaration as a template to create an
individual struct. The compiler uses the type declaration to tell it how much
memory to allocate for the struct and allocates a block of memory large enough
to hold all of the individual variables that make up the struct.

The variables that form the struct are known as fields. A struct of type DVDInfo
has three fields: a char named rating, an array of chars named title, and an
array of chars named comment. To access the fields of a struct, use the .
operator (called the ‘‘dot’’ operator). Here’s an example:

struct DVDInfo myInfo;
myInfo.rating = 7;

Notice the . between the struct name (myInfo) and the field name (rating). The
. following a struct name tells the compiler that a field name is to follow.

An entire struct can be copied to another struct using the assignment (=)
operator, like this:

struct MyStruct {
 int i;
 long int l;
 float f;
} aStruct, bStruct;

aStruct = bStruct;

Like any other kind of assignment, the entire contents of the right operand are
copied to the left operand, just as if you had manually copied each field
individually, like this:

CHAPTER 10: Designing Your Own Data Structures 302

aStruct.i = bStruct.i;
aStruct.l = bStruct.l;
aStruct.f = bStruct.f;

StructSize.xcodeproj
Here’s a program that demonstrates the declaration of a struct type, as well as
the definition of an individual struct. Open the Learn C Projects folder, go inside
the folder 10.02 - StructSize, and open the project StructSize.xcodeproj. Run
StructSize.

Compare your output with the console window shown in Figure 10-2. They
should be the same, or very similar. The first three lines of output show the
names of the rating, title, and comment fields. To the right of each field name
you’ll find printed the number of bytes of memory allocated to that field. The last
line of output shows the memory allocated to the entire struct.

Figure 10-2. StructSize shows the size of a DVDInfo struct.

Stepping Through the StructSize Source Code
If you haven’t done so already, take a minute to look over the source code in
main.c. Once you feel comfortable with it, read on.

main.c starts off with the standard #include along with a new one:

#include <stdio.h>
#include "structSize.h"

CHAPTER 10: Designing Your Own Data Structures 303

The angle brackets (<>) that surround all the #include files you’ve seen so far tell
the compiler to look for the #include file in the directories that contain library
header files, which are C source files that are part of C’s Standard Library,
provided by Apple, or from other sources that came bundled with Xcode. When
you surround the include file name by double quotes ("") instead (like those
around "structSize.h" in this example), you are telling the compiler to look for
this #include file in your project. These are referred to as project headers, to
distinguish them from library headers. The quick and dirty tip to remember is
you use brackets around files you didn’t write and quotes around files you did.

NOTE: If you use double quotes ("") in an #include directive and the compiler can’t
find that file in your project, it will fall back to searching the library headers just as if
you had used angle brackets (<>) instead. Because of this, some lazy programmers
use double quotes for all of their #include files, but that practice is discouraged.

Regardless of where it locates the #include file, the compiler treats the contents
of the #include file as if it were actually inside the including file. In this case, the
compiler treats <stdio.h> and "structSize.h" as if they were directly inside
main.c. Strictly speaking, the preprocessor replaces the #include line with the
entire contents of the included file, before control is handed off to the compiler.

NOTE: As you’ve already seen, C #include files typically end in the one character
extension .h. Though you can give your #include files any name you like, the .h
extension is one you should definitely stick with. The “h” stands for “header.”

Let’s take a look at structSize.h. The simplest way is to select the file in the
project navigator. For files that are part of your project, this works just fine.
Another way to do this is through Xcode’s Related Files pop-up menu, shown in
Figure 10-3, which works for header files that you wrote as well as those that
you didn’t. Just above the editing pane in the workspace window, look toward
the left edge of the control ribbon. There, next to the back and forward history
buttons, is the Related Files menu button.

Click the button, find the Includes submenu, and select structSize.h from the
menu. The editor pane will now display the structSize.h file. Note that this pop-
up includes all included files, including (no pun intended) stdio.h.

CHAPTER 10: Designing Your Own Data Structures 304

Figure 10-3. Selecting an include file from Xcode’s Related Files menu

Now the editor is displaying the structSize.h file. If you look again at the Related
Files menu, you’ll see an Included By submenu that lists main.c! Xcode is
constantly cross-referencing all of the files in your project, so that you can easily
jump to any included header file, or see all of the source files that include the
header file you’re looking at.

NOTE: Header files typically contain things like #defines, global variables, and
function prototypes. By embedding these things in an #include file, you remove
clutter from your source code file, and more importantly, you make this common
source code available to other source code files via a single #include.

structSize.h starts off with two #defines you’ve seen before:

#define kMaxTitleLength 256
#define kMaxCommentLength 256

Next is the declaration of the struct type, DVDInfo:

struct DVDInfo {
 char rating;
 char title[kMaxTitleLength];
 char comment[kMaxCommentLength];
};

CHAPTER 10: Designing Your Own Data Structures 305

By including the header file at the top of the file (where you might place your
globals), you’ve made the DVDInfo struct type available to all of the functions
inside main.c. If you placed the DVDInfo type declaration inside of main()
instead, your program would still have worked (as long as you placed it before
the definition of myInfo), but you would not have access to the DVDInfo type
outside of main().

NOTE: That’s probably isn’t all that’s in the .h file. The C header file template that
comes with Xcode inserts code like this whenever you create a new C header file:

#ifndef ProjectName_filename_h

#define ProjectName_filename_h

// Your source code goes here

#endif

This bit of preprocessing magic lets you #include your .h file without worrying if
some other file has already included it. Including it twice will likely result in duplicate
definition errors. These preprocessor directives check to see if this header has
already been included and, if not, allows the code to be compiled. If it has been
included already, the code is ignored. If you poke around the headers of the Standard
Library, you’ll see this often.

That’s all that was in the header file structSize.h. Back in main.c, main() starts
by defining a DVDInfo struct named myInfo. myInfo has three fields:
myInfo.rating, myInfo.title, and myInfo.comment.

int main (int argc, const char * argv[])
{
 struct DVDInfo myInfo;

The next three statements print the size of the three myInfo fields. The %zu
format specifier is used again to print the value returned by sizeof, but this time
a minimum field width of 4 is thrown in to make all of the numbers line up neatly.

 printf(" rating field: %4zu byte\n", sizeof(myInfo.rating));
 printf(" title field: %4zu bytes\n", sizeof(myInfo.title));
 printf("comment field: %4zu bytes\n", sizeof(myInfo.comment));

This next printf() prints a separator line, purely for aesthetics:

 printf(" ----------\n");

CHAPTER 10: Designing Your Own Data Structures 306

Finally, you print the total number of bytes allocated to the struct. Do the
numbers add up? They should!

 printf("myInfo struct: %4zu bytes", sizeof(myInfo));
 return 0;
}

On some computers, these numbers won’t always add up. Here’s why: many
computers follow rules to keep various data types lined up a certain way. For
example, the old Motorola 68000 CPU was incapable of reading an int unless
its address was an even number. So the compiler had to make sure that every
int, long int, float, double, and struct would start at an even address.
Conversely, a char or array of chars could start at either an odd or even
address. In addition, on a 68000 machine, a struct must always have an even
number of bytes.

This is called data alignment. The alignment rules, like the sizes of ints, vary
from one CPU to the next. Even on CPUs that don’t require an integer to start
on an even memory address, it may be faster if it does, so the compiler may
choose to align variables to addresses that are evenly divisible by 2, 4, or even 8
bytes.

If you want, you can see this right now. In the structSize.h file, add an int
between the rating and title variables, like this:

char rating;
int fourBytes;
char title[kMaxTitleLength];

When we made this change and ran StructSize on our systems, the size of
myInfo jumped from 513 bytes to 520, which is 7 bytes longer. That’s because,
in addition to the 4 bytes for the new int, the compiler inserted three unused
bytes between rating and fourBytes so that fourBytes would start on an
address that’s evenly divisible by 4. This is called padding. On our particular
CPU, this makes reading and storing the fourBytes int much faster-----that’s a
good thing.

TIP: In general, you shouldn’t worry about alignment. How the compiler aligns, packs,
and pads structures is already optimized for your particular CPU. Should it ever
become an issue for your program, check the build settings and read up on the
#pragma pack() preprocessor directive. These let you adjust the alignment rules
the compiler uses.

CHAPTER 10: Designing Your Own Data Structures 307

Passing a struct As a Parameter
Think back to the DVD tracking program we’ve been discussing throughout this
chapter. It started off with three separate arrays, each of which tracked a
separate element. One array stored the rating field, another stored the movie’s
title, and the third stored a pithy comment.

We then introduced the concept of a structure that would group all the elements
of one DVD together in a single struct. One advantage of a struct is that you
can pass all the information about a DVD using a single pointer. Imagine a
routine called PrintDVD(), designed to print the three elements that describe a
single DVD. Using the original array-based model, you’d have to pass three
parameters to PrintDVD():

void PrintDVD(char rating, char *title, char *comment) {
 printf("rating: %d\n", rating);
 printf("title: %s\n", title);
 printf("comment: %s\n", comment);
}

Using the struct-based model, however, you could pass the information using a
single pointer. As a reminder, here’s the DVDInfo struct declaration again:

#define kMaxTitleLength 256
#define kMaxCommentLength 256

struct DVDInfo {
 char rating;
 char title[kMaxTitleLength];
 char comment[kMaxCommentLength];
};

This version of main() defines a DVDInfo struct and passes its address to a new
version of PrintDVD() (we’ll get to it next):

int main (int argc, const char * argv[])
{
 struct DVDInfo myInfo;

 PrintDVD(&myInfo);

 return 0;
}

Just as has been the case in earlier programs, passing the address of a variable
to a function gives that function the ability to modify the original variable.
Passing the address of myInfo to PrintDVD() gives PrintDVD() the ability to
modify the three myInfo fields. Though the new version of PrintDVD() doesn’t

CHAPTER 10: Designing Your Own Data Structures 308

modify myInfo, it’s important to know that the opportunity exists. Here’s the
new, struct-based version of PrintDVD():

void PrintDVD(struct DVDInfo *myDVDPtr)
{
 printf("rating: %d\n", (*myDVDPtr).rating);
 printf("title: %s\n", myDVDPtr->title);
 printf("comment: %s\n", myDVDPtr->comment);
}

Notice that PrintDVD() receives its parameter as a pointer to (i.e., the address
of) a DVDInfo struct. The first printf() uses the * operator to turn the struct
pointer back to the struct it points to and then uses the . operator to access
the rating field:

(*myDVDPtr).rating

C features a special operator, ->, that lets you accomplish the exact same thing.
The -> operator is binary. That is, it requires both a left and right operand. The
left operand is a pointer to a struct, and the right operand is the struct field.
The following notation

myDVDPtr->rating

is exactly the same as

(*myDVDPtr).rating

Use whichever form you prefer. In general, most C programmers use the ->
operator to get from a struct’s pointer to one of the struct’s fields.

Passing a Copy of the struct
In addition to being copied via the assignment operator (=), a struct can be
included as an argument in a function call. Here’s a version of main() that
passes the struct itself, instead of its address:

int main (int argc, const char * argv[]) {
 struct DVDInfo myInfo;

 PrintDVD(myInfo);
}

As always, when the compiler encounters a function parameter, it passes a copy
of the parameter to the receiving routine. The previous version of PrintDVD()
received a copy of the address of a DVDInfo struct (pass by reference).

In this new version of PrintDVD(), the compiler passes a copy of the entire
DVDInfo struct (pass by value), not just a copy of its address. This copy of the

CHAPTER 10: Designing Your Own Data Structures 309

DVDInfo struct includes copies of the rating field plus the title and comment
arrays.

void PrintDVD(struct DVDInfo myDVD)
{
 printf("rating: %d\n", myDVD.rating);
 printf("title: %s\n", myDVD.title);
}

When you pass a copy of a struct (pass by value), it works just like passing any
other variable type. Any changes made by the function only change the local
parameter-----and are lost when the function returns. If this version of PrintDVD()
made changes to its local myDVD struct, those changes would be lost when
PrintDVD() returned.

TIP: Just as you can pass a copy of an entire struct as a parameter, a function can
return a copy of an entire struct. Just make the function’s return type a struct.

Sometimes you’ll want to pass a copy of a struct. One advantage this
technique offers is that there’s no way that the receiving function can modify the
original struct. Another advantage is that it offers a simple mechanism for
making a copy of a struct. A disadvantage is that copying a struct takes time
and uses memory. Though time won’t usually be a problem, memory usage
might be, especially if your struct gets pretty large. Just be aware that whatever
you pass as a parameter is going to get copied. Pass a struct as a parameter,
and the compiler will copy the struct. Pass a pointer to a struct, and the
compiler will copy the pointer.

ParamAddress.xcodeproj
There’s a sample program in the Learn C Projects folder, inside a subfolder
named 10.03 - ParamAddress, that should help show the difference between
passing the address of a struct and passing a copy of the struct. Open and
run ParamAddress.xcodeproj. Note that main() defines a DVDInfo struct named
myDVD and prints the address of myDVD’s rating field.

 struct DVDInfo myDVD;
 printf("Address of myDVD.rating in main(): %28p\n", &(myDVD.rating));

As you can see, you print an address using the %p format specifier. The ‘‘p’’
stands for pointer. This is the proper way to print the address of a pointer in C.
Here’s the output of this printf() on our computer:

Address of myDVD.rating in main(): 0x7fff5fbff7b8

CHAPTER 10: Designing Your Own Data Structures 310

Next, main() passes the address of myDVD as well as a copy of myDVD as
parameters to a routine named PrintParamInfo():

PrintParamInfo(&myDVD, myDVD);

Here’s the prototype for PrintParamInfo():

void PrintParamInfo(struct DVDInfo *myDVDPtr, struct DVDInfo myDVDCopy);

The first parameter is a pointer to a myDVD struct. The second parameter is a
copy of the same struct. PrintParamInfo() prints the address of the rating
field of each version of myDVD:

 printf("Address of myDVDPtr->rating in PrintParamInfo(): %10p\n",
&(myDVDPtr->rating));
 printf("Address of myDVDCopy.rating in PrintParamInfo(): %10p\n",
&(myDVDCopy.rating));

Here are the results, including the line of output generated by main():

Address of myDVD.rating in main(): 0x7fff5fbff7b8
Address of myDVDPtr->rating in PrintParamInfo(): 0x7fff5fbff7b8
Address of myDVDCopy.rating in PrintParamInfo(): 0x7fff5fbff730

Notice that the rating field accessed via a pointer has the same address as the
original rating field in main()’s myDVD struct. If PrintParamInfo() uses the first
parameter to modify the rating field, it will, in effect, be changing main()’s
rating field. If PrintParamInfo() uses the second parameter to modify the
rating field, main()’s rating field will remain untouched.

HEXADECIMAL MEMORY ADDRESSES

Most programmers, the Xcode debugger, and the %p format specifier use hexadecimal notation
(hex for short) when they deal with addresses. Hex notation represents numbers as base 16
instead of the normal base 10 you are accustomed to using. Instead of the 10 digits (0 through
9), hex features 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, and f. Each digit of a number
represents a successive power of 16 instead of successive powers of 10.

For example, the number 532 in base ten is equal to 5•102 + 3•101 + 2•100 = 5•100 + 3•10 +
2. The number 532 in hex is equal to 5•162 + 3•161 + 2•160 = 5•256 + 3•16 + 2 = 1,330 in
base 10. The number ff in hex is equal to 15•16 + 15 = 255 in base 10. Remember, the hex
digit f has a decimal (base 10) value of 15.

Computer engineers love hexadecimal because every two hexadecimal digits is exactly one byte,
which makes it well suited for describing values stored in RAM.

CHAPTER 10: Designing Your Own Data Structures 311

C also supports a (rarely used) notation called octal. Octal numbers are base 8, using only the
digits 0 through 7. In C, Octal numbers begin with a 0 digit. Thus, the constant 123 is one
hundred and twenty three, while the constant 0123 is eighty three (1•82 + 2•81 + 3•80 = 1•64
+ 2•8 + 3). Octal was popular in some of the very earliest computers that uses 6-bit bytes, but
when CPUs moved to 8-bit bytes it was no longer very convenient.

To write a hex constant in C, preceded it by the characters 0x. The constant
0xff has a decimal value of 255. The constant 0xFF also has a decimal value of
255. C doesn’t distinguish between uppercase and lowercase hex digits.

struct Arrays
Just as you can declare an array of chars or ints, you can also declare an array
of structs:

#define kMaxDVDs 5000
struct DVDInfo myDVDs[kMaxDVDs];

This declaration creates an array of 5,000 structs of type DVDInfo. The array is
named myDVDs. Each of the 5,000 structs will have the three fields: rating,
title, and comment. You access the fields of the structs as you might expect.
Here’s an example (note the use of the all-important . operator):

myDVDs[10].rating = 9;

You now have an equivalent to the first DVD tracking data structure. Where the
first model used three arrays, you now have a solution that uses a single array.
As you’ll see when you start writing your own programs, packaging your data in
a struct makes life a bit simpler. Instead of passing three parameters each time
you need to pass a DVD to a function, you can simply pass a struct.

From a memory standpoint, both DVD tracking solutions cost the same. With
three separate arrays, the cost is as follows:

 5,000 bytes /*rating array*/
5,000 * 256 = 1,280,000 bytes /*title array*/
5,000 * 256 = 1,280,000 bytes /*comment array*/

Total 2,565,000 bytes

With an array of structs, this is the cost:

5,000 * 513 = 2,565,000 bytes /*Cost of array of 5,000 DVDInfo structs*/

So what can you do to cut this memory cost down? We thought you’d never
ask!

CHAPTER 10: Designing Your Own Data Structures 312

Allocating Your Own Memory
One of the limitations of an array-based DVD tracking model is that arrays are
not resizable. When you define an array, you have to specify exactly how many
elements make up your array. For example, this code defines an array of 5,000
DVDInfo structs:

#define kMaxDVDs 5000
struct DVDInfo myDVDs[kMaxDVDs];

As mentioned, this array will take up 2,565,000 bytes of memory, whether you
use the array to track 1 DVD or 5,000. If you know in advance exactly how many
elements your array requires, arrays are just fine. In the case of this DVD
tracking program, using an array just isn’t practical. For example, if your DVD
collection consists entirely of a test DVD that came with your DVD burner and a
rare bootleg of Gilligan’s Island outtakes, a 5,000 struct array is overkill. Even
worse, what happens if you’ve got more than 5,000 DVDs? No matter what
number you pick for kMaxDVDs, there’s always the chance that it won’t prove
large enough.

The problem here is that arrays are just not flexible enough to do what you want.
Instead of trying to predict the amount of memory you’ll need in advance, you
need a method that will give you a chunk of memory the exact size of a DVDInfo
struct, as you need it. In more technical terms, you need to allocate and
manage your own memory.

NOTE: Allocating your own memory, called dynamic memory allocation, is a very
important programming skill to learn. An automatic int variable is invaluable in
writing a for loop when you know you’re going to need one int variable. But you
can’t declare variables if you don’t know how many or what kinds you’re going to
need. Your program will have to wait until it reads information from a file, the user
asks to create a new document, they click on a button to add a DVD, or they drop in a
picture; at that point your program will have to decide what variables it will need to
represent those things and allocate them. As you progress to writing more useful
programs, most of your data will be dynamically allocated.

When your program starts running, your operating system (Mac OS X, Unix, and
Windows are all examples of operating systems) carves out a chunk of memory
for the exclusive use of your application. Some of this memory is used to hold
the object code that makes up your application. Still more of it is used to hold
things like your application’s global variables. As your application runs, some of

CHAPTER 10: Designing Your Own Data Structures 313

this memory will be allocated to main()’s local variables. When main() calls a
function, memory is allocated for that function’s local variables. When that
function returns, the memory allocated for its local variables is freed up
(sometimes called deallocated or released). This memory becomes available to
be allocated all over again. It’s just like recycling.

In the next few sections, you’ll learn about some functions you can call to
allocate a block of memory and to free that memory (return it to the pool of
available memory) when you’re done with it. Ultimately, you’ll combine these
functions with a data structure called a linked list to provide a more memory-
efficient, and more flexible, alternative to the array.

Using malloc()
The Standard Library function of malloc() allows you to allocate a block of
memory of a specified size. To access malloc(), you need to include the file
<stdlib.h>:

#include <stdlib.h>

malloc() takes a single parameter, the size of the requested block, in bytes.
malloc() returns a pointer to the newly allocated block of memory. Here’s the
function prototype:

void *malloc(size_t size);

The block of memory comes from a vast reservoir of memory called the heap.
The heap consists of most of the unused addresses in your computer-----those
not already used by your program’s code, static and automatic variables, and
some miscellaneous addresses reserved by the operating system.

If malloc() can’t allocate a block of memory the size you requested, it returns a
pointer with the value NULL. NULL is a constant, defined to have a value of zero,
used to specify an invalid pointer. In other words, a pointer with a value of NULL
does not point to a legal memory address. You learned about NULL in Chapter 7.
Now you’ll get a chance to use it.

You might be scratching your head over malloc()’s return type, void*. C allows
you to declare a pointer to void. It might appear oxymoronic (a pointer to
nothing), but it turns out to be very useful. C interprets a void* as ‘‘a pointer to a
variable of unknown type.’’ It’s not that the pointer points to nothing; it points to
something but the compiler doesn’t know what.

You can use a void pointer like any other pointer. You can assign it an address,
pass it as variable, and so on. The only thing you can’t do is this:

CHAPTER 10: Designing Your Own Data Structures 314

void *nothing;
*nothing = 1;

You can’t assign anything to the ‘‘value’’ that nothing points to because the
compiler doesn’t know what that is. Is it an int? A float? A struct of some
kind?

So what good are void pointers? Bear with us and you’ll find out.

Converting the Type Returned by malloc()
Here’s a code fragment that allocates a single DVDInfo struct:

struct DVDInfo *myDVDPtr;
myDVDPtr = malloc(sizeof(struct DVDInfo));

In general, you’ll convert the void pointer returned by malloc() to the pointer
type you really want. Here’s how it’s typically done. The first line of code
declares a new variable, myDVDPtr, which is a pointer to a DVDInfo struct. At this
time, myDVDPtr doesn’t point to a DVDInfo struct. You’ve just told the compiler
that myDVDPtr is designed to point to a DVDInfo struct.

The second line of code calls malloc() to allocate a block of memory the size of
a DVDInfo struct. The sizeof operator results in a size_t integer, the exactly
type you need to pass as a parameter to malloc(). How convenient!

On the right side of the = operator is a void * and on the left side is a struct
DVDInfo *. The compiler will normally complain if you try to assign a pointer of
one type to a pointer of a different type. Consider the confusion that could result
if you set a pointer to a char to the address of an int.

The compiler makes an exception for void pointers. It allows you to assign a
void pointer to any kind of pointer, and any kind of pointer can be assigned to a
void pointer. In effect, a void * is a wildcard pointer that can point to anything
in memory. C trusts that you know what it actually points to.

So you could have used a typecast here to make this more explicit:

myDVDPtr = (struct DVDInfo *)malloc(sizeof(struct DVDInfo));

Though this explicit typecast isn’t strictly necessary, it makes your intentions
quite clear and allows the compiler to step in with a warning if you’ve got your
types mixed up. Don’t worry if this is confusing. You’ll learn all about
typecasting in Chapter 13.

CHAPTER 10: Designing Your Own Data Structures 315

CALLOC()

An alternative to the malloc() function is calloc(). calloc() also allocates a block of
memory, exactly the way malloc() does, but it fills that block of bytes with zeros before it
returns. When you allocate memory with malloc(), the contents of the new memory are
uninitialized, just like when you declare an automatic variable in a function. If you want all of the
values in your new variables to be set to zero, use the calloc() function instead.

calloc() take two parameters. The second parameter is the size of the structure or variable
that you want allocated, just like malloc(). The first parameter is the number of structures you
want allocated. This makes calloc() particularly convenient for allocating arrays of things. For
example, calloc(100, sizeof(int)) allocates a block of memory big enough for an
array of 100 ints (int array[100]) and sets all of those ints to 0.

To allocate a single something, pass 1 as the first parameter, like this: calloc(1,
sizeof(struct DVDInfo));

Using the Allocated Memory Block
If malloc() succeeded, myDVDPtr points to a struct of type DVDInfo. For the
duration of the program, you can use myDVDPtr to access the fields of this newly
allocated struct:

myDVDPtr->rating = 7;

You need to understand the difference between a block of memory allocated
using malloc() and a block of memory that corresponds to a local variable.
When a function declares a local variable, the memory associated with that
variable is temporary. As soon as the function exits, the block of memory
associated with that memory is returned to the pool of available memory.

A block of memory that you allocate using malloc() sticks around until you
specifically return it to the pool of available memory (heap) or until your program
exits.

free()
The Standard Library provides a function called free() that returns a previously
allocated block of memory back to the pool of available memory. Here’s the
function prototype:

void free(void *ptr);

CHAPTER 10: Designing Your Own Data Structures 316

free() takes a single argument, a pointer to the first byte of a previously
allocated block of memory. The following line returns the block allocated earlier
to the free memory pool:

free(myDVDPtr);

Use malloc() to allocate a block of memory. Use free() to free up a block of
memory allocated via malloc(). You are responsible for freeing up any memory
that you allocate. You create it; you free it. That said, when a program exits, the
operating system automatically frees up all memory allocated by that program.

CAUTION: Never put a fork in an electrical outlet. Never pass an address to free()
that didn’t come from malloc(), calloc(), or any other function that returns an
allocated block of memory from the heap. Both will make you extremely unhappy!

Keeping Track of That Address!
The address returned by malloc() is critical. If you lose it, you’ve lost access to
the block of memory you just allocated. Even worse, you can never free() the
block, and it will just sit there, wasting valuable memory, for the duration of your
program. This is called a memory leak.

Here are the essential rules for allocating your own blocks of memory.

1. Allocate a block of the correct size using malloc() (or any
similar function) and save the pointer malloc() returns in a
variable.

2. Use the returned pointer to access the variables in that block of
memory however you please.

3. When you’re done with it, pass the original pointer to free() so
that memory block can be recycled.

4. Once you pass an address to free(), never use it again-----in
another call to free() or for any other purpose. If you have a
pointer variable that still points to that address, set it to NULL.

CHAPTER 10: Designing Your Own Data Structures 317

NOTE: One great way to lose a block’s address is to call malloc() inside a function,
saving the address returned by malloc() in a local variable, and then fail to call
free() before the function exits. Your local variable goes away, taking the address
of your new block with it!

There are many ways to keep track of a newly allocated block of memory. As
you design your program, you’ll figure out which approach makes the most
sense for your particular situation. One technique you’ll find useful is to place
the pointer inside a special data structure known as a linked list.

TIP: Modern computers have so much memory that you’re likely never to notice if
your program is leaking small amounts of memory. One way to check is to use any of
Xcode’s memory leak detection tools (and there are several).

Get into the practice of occasionally profiling your program using Xcode’s Instruments
tool. It will analyze your program and look for all kinds of problems—like memory
leaks.

Working with Linked Lists
The linked list is one of the most widely used techniques for organizing data
structures in C. A linked list is a series of structs, each of which contains a
pointer field. Each struct in the series uses its pointer to point to the next
struct in the series. Figure 10-4 shows a linked list containing three elements.

Figure 10-4. A linked list

Figure 10-4 shows a linked list containing three structs. A linked list starts with
a master pointer. The master pointer is a pointer variable that points to the first
struct in the list, also known as the head. This first struct contains a field, also
a pointer, which points to the second struct in the linked list. The second
struct contains a pointer field that points to the third element. The linked list in

CHAPTER 10: Designing Your Own Data Structures 318

Figure 10-4 ends with the third element. The pointer field in the last element of a
linked list is typically set to NULL. The last element in the list is known as the tail.

Why Use Linked Lists?
Linked lists allow you to be extremely memory efficient. Using a linked list, you
can implement your DVD tracking data structure, allocating exactly the number
of structs that you need-----no more, no less. Each time a DVD is added to your
collection, you’ll allocate one new struct and add it to the linked list.

A linked list starts out as a single master pointer. When you want to add an
element to the list, call malloc() to allocate a block of memory for the new
element. Next, make the master pointer point to the new block. Finally, set the
new block’s next element pointer to NULL.

Creating a Linked List
The first step in creating a linked list is the design of the linked list struct.
Here’s a sample:

#define kMaxTitleLength 256
#define kMaxCommentLength 256

struct DVDInfo {
 char rating;
 char title[kMaxTitleLength];
 char comment[kMaxCommentLength];
 struct DVDInfo *next;
}

The change here is the addition of a fourth field, a pointer to a DVDInfo struct.
This field is the link that connects two different DVDInfo structs together. If
myFirstPtr is a pointer to one DVDInfo struct and mySecondPtr is a pointer to a
second struct, this line

myFirstPtr->next = mySecondPtr;

connects the two structs. Once they are connected, you can use a pointer in
the first struct to access the second struct or its fields! For example, the
following line sets the rating field of the second struct to 7:

myFirstPtr->next->rating = 7;

Using the next field to get from one struct to the next is also known as
traversing a linked list.

CHAPTER 10: Designing Your Own Data Structures 319

The next (and final) program for this chapter will incorporate the new version of
the DVDInfo struct to demonstrate a more memory-efficient DVD tracking
program. This program is pretty long, so you may want to take a few moments
to let the dog out and answer your mail.

NOTE: There are many variants of the linked list. If you connect the last element of a
linked list to the first element, you create an unending circular list.

If you add a prev field to the struct and use it to point to the previous element in
the list (in addition to the next one) you’ve created a doubly-linked list. This technique
allows you to traverse the linked list in two directions.

As you gain more programming experience, you’ll want to check out some
books on data structures. Three books well worth exploring are Algorithms in C,
Parts 1---5 by Robert Sedgewick (Addison-Wesley 2001), Data Structures and C
Programs by Christopher J. Van Wyk (Addison-Wesley 1990), and our personal
favorite, Fundamental Algorithms, volume one of Donald Knuth’s The Art of
Computer Programming series (Addison-Wesley 1997).

DVDTracker.xcodeproj
DVDTracker implements Model B of your DVD tracking system, but instead of
pre-allocating a huge array of DVDInfo structs, it’s going to allocate memory only
for the ones it needs as it goes. It uses a text-based menu, allowing you to quit,
add a new DVD to the collection, or list all of the currently tracked DVDs.

Open the Learn C Projects folder, go inside the folder 10.04 - DVDTracker, and
open the project DVDTracker.xcodeproj. Run DVDTracker. The console window
will appear, showing the following prompt:

Enter command (q=quit, n=new, l=list):

At this point, you have three choices. You can type ‘‘q’’ and press Return to quit
the program. You can type ‘‘n’’ and press Return to add a new DVD to your
collection. Finally, you can type ‘‘l’’ and press Return to list all the DVDs in your
collection.

Start by typing ‘‘l’’ and pressing Return. You should see this message:

No DVDs have been entered yet...

Next, the original command prompt should reappear:

Enter command (q=quit, n=new, l=list):

CHAPTER 10: Designing Your Own Data Structures 320

This time, type ‘‘n’’ and press Return. You will be prompted to enter a DVD title
and comment:

Enter DVD Title: The Ring
Enter DVD Comment: Scariest movie ever!

Next, you’ll be prompted for a rating for the new DVD. The program expects a
number between 1 and 10. Try typing something unexpected, such as the letter
‘‘x’’, followed by a carriage return.

Enter DVD Rating (1-10): x
Enter DVD Rating (1-10): 9

The program checks your input, discovers it isn’t in the proper range, and
repeats the prompt. This time type a number between 1 and 10, and press
Return. The program returns you to the main command prompt:

Enter command (q=quit, n=new, l=list):

Type ‘‘l’’ and press Return. The single DVD you just entered will be listed, and
the command prompt will again be displayed:

Title: The Ring
Comment: Scariest movie ever!
Rating: 9

Enter command (q=quit, n=new, l=list):

Type ‘‘n’’ and press Return to enter another DVD. Repeat the process one more
time, adding a third DVD to the collection. Now, type ‘‘l’’ and press Return to list
all three DVDs. Here’s our list:

Enter command (q=quit, n=new, l=list): l
Title: The Ring
Comment: Scariest movie ever!
Rating: 9

Title: Tenacious D in the Pick of Destiny
Comment: Jack Black rocks. Kyle Gass can play.
Rating: 7

Title: Hot Fuzz
Comment: Simon Pegg sleeper - must see!
Rating: 8

Enter command (q=quit, n=new, l=list): q

Finally, type ‘‘q’’ and press Return to quit the program.

Goodbye...

CHAPTER 10: Designing Your Own Data Structures 321

Let’s hit the source code.

Stepping Through the DVDTracker Source Code
main.c starts by including four different files. stdio.h gives you access to
routines like printf() and fgets(). stdlib.h gives you access to malloc() and
free(). string.h gives you access to strlen() and strlcpy(). ctype.h brings in
isspace(). The fourth include file is your own dvdTracker.h.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "dvdTracker.h"

dvdTracker.h starts off with two #defines that you should know pretty well by
now:

#define kMaxTitleLength 256
#define kMaxCommentLength 256

TIP: As you make your way through the DVDTracker source code, you’ll notice we’ve
added some decorative comments used to mark the beginning of a section of code.
For example, in dvdTracker.h, we’ve added comments to mark off areas for defines
and struct declarations.

In main.c, we’ve done something similar to set off the beginning of each function.
Each includes a short description of what the function does, what the parameters
mean, and so on. You should do something similar in your own code. It’ll make your
code easier to read and understand later.

Next is the new and improved DVDInfo struct declaration:

struct DVDInfo {
 char rating;
 char title[kMaxTitleLength];
 char comment[kMaxCommentLength];
 struct DVDInfo *next;
};

Let’s get back to main.c. After the #includes are the local function prototypes.
We’ll explain each function as we get to them.

CHAPTER 10: Designing Your Own Data Structures 322

char GetCommand(void);
struct DVDInfo *ReadStruct(void);
void AddToList(struct DVDInfo *curPtr);
void ListDVDs(void);
char *TrimLine(char *line);

Next, you need two global variables to keep track of your linked list.

static struct DVDInfo *gHeadPtr, *gTailPtr;

The gHeadPtr pointer points to the first (head) DVDInfo struct in your linked list.
The gTailPtr pointer points to the last (tail) struct in your linked list. A tail
pointer isn’t strictly necessary-----you can always find the last (tail) struct in the
list by starting at the head and traversing all of the links-----but it makes some
operations super simple, so this program will use a tail pointer.

Being defined outside of any function makes gHeadPtr and gTailPtr global
variables. Remember that global variables are always initialized to zero before
your program begins running, so both of these pointers will be set to NULL when
main() starts.

main()
Speaking of which, let’s get main() started. main() begins by defining a char
named command, which will be used to hold the single letter command typed by
the user.

int main (int argc, const char * argv[])
{
 char command;

Next, main() enters a while loop, calling the function GetCommand().
GetCommand() prompts you for a one character command: 'q', 'n', or 'l'. Once
GetCommand() returns 'q', you drop out of the while loop and exit the program.

 while ((command = GetCommand()) != 'q') {

If GetCommand() returns 'n', the user wants to enter information on a new DVD.
First, you call ReadStruct(), which allocates space for a DVDInfo struct and
prompts the user for the information to place in the new struct’s fields. Once
the struct is filled out, ReadStruct() returns a pointer to the newly allocated
struct.

The pointer returned by ReadStruct() is passed on to AddToList(), which adds
the new struct to the linked list.

CHAPTER 10: Designing Your Own Data Structures 323

 switch(command) {
 case 'n':
 AddToList(ReadStruct());
 break;

If GetCommand() returns 'l', the user wants to list all the DVDs in a collection.
That’s what the function ListDVDs() does.

 case 'l':
 ListDVDs();
 break;
 }
 printf("\n----------\n");
 }

At the end of the loop a couple of lines are output to separate the last command
from the next one. If GetCommand() returns a 'q', then the loop exits and says
‘‘Goodbye’’ before it ends.

 printf("Goodbye...\n");
 return 0;
}

GetCommand()
Next up is the GetCommand() function. GetCommand() prompts the user to type
one of the commands and press return. It then reads a line of text from standard
in (which will be the keyboard) and returns the first character on that line.

char GetCommand(void)
{
 char buffer[100+1];
 printf("Enter command (q=quit, n=new, l=list): ");
 fgets(buffer, sizeof(buffer), stdin);
 return *TrimLine(buffer);
}

The function starts by allocating a temporary string buffer to read the line. 100
characters should be more than enough. It outputs a prompt, and then uses the
fgets() function to read the line into buffer. The second parameter is the size
of the array, so fgets() will never try to copy more characters than there’s room
for.

The TrimLine() function removes any and all whitespace characters from both
the beginning and the end of the line the user just typed. We’ll explain how
TrimLine() works a little later. The only thing you need to know right now is that
it returns a pointer to the string of characters the user typed in. Since
GetCommand() is only interested in the first character, the * (pointer dereference)

CHAPTER 10: Designing Your Own Data Structures 324

operator is used to fetch the first character in the string array and return it to the
caller.

ReadStruct()
Next up is ReadStruct(). Notice the unusual declaration of the function name:

struct DVDInfo *ReadStruct(void)
{

This declaration says that ReadStruct() returns a pointer to a DVDInfo struct.

ReadStruct() calls malloc() to allocate a block of memory the size of a DVDInfo
struct. The variable infoPtr stores the pointer to the new block.

 struct DVDInfo *infoPtr;
 infoPtr = malloc(sizeof(struct DVDInfo));

Next, you’ll print a prompt for the DVD title and call fgets() to read a line from
the input buffer. fgets() will copy the line to a temporary buffer array.

 char buffer[500+1];
 printf("Enter DVD Title: ");
 fgets(buffer, sizeof(buffer), stdin);

The second parameter of fgets() is the size of the buffer array in bytes. By
using the sizeof() operator, you don’t have to remember how many characters
are in buffer; the compiler will figure it out for you. If you decide to change the
dimension of buffer in the future, you can do so knowing that the call to
fgets()will adjust itself accordingly.

Earlier in the chapter (in the MultiArray sample program), you discovered that
fgets() leaves '\n' at the end when it reads in a line of input. Also, the user
may start or end their title with superfluous space or tab characters, which you
don’t want to store. Space, tab, and the newline character are all whitespace
characters, so we wrote a routine to strip off any whitespace from the ends of
the string. This is called trimming a string. Again, we’ll get to the details of how
TrimLine() works in a moment; for now, just know that it trims off any
whitespace and returns a string pointer. This pointer is passed to the strlcpy()
function to safely copy the trimmed string into the title field of the struct.

 strlcpy(infoPtr->title, TrimLine(buffer), sizeof(infoPtr->title));

You then repeat the process to prompt for and read in the DVD title.

 printf("Enter DVD Comment: ");
 fgets(buffer, sizeof(buffer), stdin);
 strlcpy(infoPtr->comment, TrimLine(buffer), sizeof(infoPtr->comment));

CHAPTER 10: Designing Your Own Data Structures 325

Now a do-while loop starts. The loop first prompts the user to enter a number
between 1 and 10. Again, fgets() and TrimLine() are used to get just the
characters typed on the line. Like you did in the last chapter, the atoi() function
is used to convert the string into a numeric value.

 int num;
 do {
 printf("Enter DVD Rating (1-10): ");
 fgets(buffer, sizeof(buffer), stdin);
 num = atoi(TrimLine(buffer));
 }
 while ((num < 1) || (num > 10));

The loop continues to repeat until the user types in a line of text that can be
converted into a number between 1 and 10. Hopefully, they’ll get it right on the
first try. When they do, the loop ends and the num variable is assigned to the
rating field of the new DVDInfo struct.

 infoPtr->rating = num;

Finally, and this is the exciting part, the pointer to the new struct is returned to
the caller.

 return (infoPtr);
}

When the call to ReadStruct() returns the main(), the pointer it just returned is
immediately passed to AddToList().

AddToList()
AddToList() takes a pointer to a DVDInfo struct as a parameter. It uses the
pointer to add the struct to the end of the linked list:

void AddToList(struct DVDInfo *curPtr)
{

The first thing it does is test to see if gHeadPtr is NULL, indicating that the list is
empty. If so, then the new DVDInfo struct is the first one in the list, making it the
new head.

 if (gHeadPtr == NULL)
 gHeadPtr = curPtr;

If gHeadPtr is not NULL, the linked list contains at least one element. In that case,
make the next field of the very last element on the list point to the new struct.

 else
 gTailPtr->next = curPtr;

CHAPTER 10: Designing Your Own Data Structures 326

In either case, set gTailPtr to point to the new last element in the list. Finally,
make sure the next field of the last element in the list is NULL. You’ll see why you
want it this way in the next function, ListDVDs().

 gTailPtr = curPtr;
 curPtr->next = NULL;
}

ListDVDs()
Moving on, the ListDVDs() function is called when the user enters the ‘l’
command. ListDVDs() lists all the DVDs in the linked list, and the variable
curPtr is used to point to the link element currently being examined.

void ListDVDs(void)
{
 struct DVDInfo *curPtr;

If no DVDs have been entered yet, you’ll print an appropriate message:

 if (gHeadPtr == NULL) {
 printf("No DVDs have been entered yet...\n");

Otherwise, you’ll use a for loop to step through the linked list. The for loop
starts by setting curPtr to point to the first element in the linked list and
continues as long as curPtr is not NULL. Each time through the loop, curPtr is
set to point to the next element in the list. Since you make sure that the last
element’s next pointer is always set to NULL, when curPtr is equal to NULL, you
know you have been through every element in the list and you are done.

 } else {
 for (curPtr = gHeadPtr; curPtr != NULL; curPtr = curPtr->next) {
 if (curPtr != gHeadPtr)
 printf("--------\n");
 printf("Title: %s\n", curPtr->title);
 printf("Comment: %s\n", curPtr->comment);
 printf("Rating: %d\n", curPtr->rating);
 }
 }

The first two statements print a separator line, but only if curPtr is pointing to
something other than the first DVDInfo struct in the list. The if statement
outputs a separator between each DVD title, but not before the first one (or after
the last one).

The next two printf()s use the %s format specifier to print the strings in the
fields title and comment. Finally, the rating field is printed, and you head back
to the top of the loop.

CHAPTER 10: Designing Your Own Data Structures 327

TrimLine()
The last function is the TrimLine() function that’s been used from several places
so far. The values you get from someone typing characters on the keyboard are
going to be examined for command characters, copied to string fields, and
converted into numbers. In all of these situations, you don’t want extraneous
whitespace characters at the beginning or end of the line getting in the way.
When you have a routine job that needs to be performed in multiple places, that
is the code that should be put in a function.

TrimLine() receives a pointer to a string and returns a pointer to a string.

char *TrimLine(char *line)
{

NOTE: TrimLine() doesn’t need to know the size of the array where the line is
stored because it will only get smaller. There’s no chance TrimLine() could spill
over into memory it’s not supposed to, so TrimLine() is inherently safe.

The first task it undertakes is to strip off any whitespace characters at the end of
the line. Just as you’ve done in other programs, replacing any character in a
string with a '\0' character terminates that string at that point, shortening it by
one or more characters.

The first task is to determine the location in the array of the last character.

 size_t length = strlen(line);

The length value tells you how many characters are in the string and can be
used to calculate the index of the last character, which is exactly what the while
loop does:

 while (length > 0 && isspace(line[length-1])) {
 line[length-1] = '\0';
 length--; // string is now one char shorter
 }

The first condition checks to see that there are still characters in the array. It’s
just as unsafe to access elements before the array as it is to access ones off the
end of the array. If length is 0, the expression line[length-1] would access a
non-existent element. Not a good thing.

The second half of the loop condition determines if the last character in the
string is whitespace, using the isspace() function you got by including the
ctype.h header. If it is a whitespace character, it is replaced with '\0'. This

CHAPTER 10: Designing Your Own Data Structures 328

terminates the string and makes it one character shorter. To account for this, the
length variable is decremented and the loop repeats.

It doesn’t matter how many whitespace characters are at the end of this
string-----none or fifty. The loop will continue to run until they are all gone.

The second half of TrimLine() eliminates whitespace characters from the
beginning of the string, but using a different technique. This time it starts with a
pointer to the first character and increments that pointer until it points to a
character that isn’t a whitespace character.

 char *head = line;
 while (isspace(*head))
 head++;

Now what? You might be surprised to discover that the function is finished. All it
has to do is return the head pointer to the caller.

 return head;
}

The caller gets back a pointer to string that does not start, or end, with any
whitespace. Note that if the first character is not whitespace, the pointer
returned will be the same as the original line pointer.

This works because of the definition of a string in C: a pointer to an array of
characters terminated by a NUL character. In effect, the address of every
successive character in a string is a pointer to a valid string; a string that’s just
one character shorter than the address of the previous element.

TIP: There are functions, such as strspn(), that do the same kind of work that
TrimLine() does. We elected to write this code out because we’re trying to teach
you how C works. In day-to-day programming, however, look for library functions
that already do what you want to do. In other words, don’t reinvent the wheel. If
something seems obvious, like sorting elements into order, it’s highly likely that a
routine has already been written—and you should use it. The functions in the
libraries are high-quality code that have been thoroughly tested and optimized. You
could spend days and still not come up with something better.

Again, if you don’t follow this exactly, we encourage you to run your program in
the debugger. Give it some input lines that start and/or end with a few extra
spaces, and watch how TrimLine() does its magic.

CHAPTER 10: Designing Your Own Data Structures 329

What’s Next?
This chapter covered a wide range of topics, from defining structs to
managing linked lists. The intent of the chapter, however, was to attack a real-
world programming problem-----in this case, a program to catalog DVDs. This
chapter showed several design approaches, discussing the pros and cons of
each. Finally, the chapter presented a prototype for a DVD tracking program.
The program allows you to enter information about a series of DVDs and, on
request, will present a list of all the DVDs tracked.

One problem with this program is that once you exit, all of the data you entered
is lost. The next time you run the program, you have to start all over again.
Chapter 11 offers a solution to this problem. The chapter introduces the concept
of files and file management, showing you how to save your data from memory
out to your hard disk drive and how to read your data back in again. The next
chapter updates DVDTracker, storing the DVD information collected in a file on
your disk drive.

CHAPTER 10 EXERCISES

1. Each of these code fragments contains either a syntax error or a logical flaw.
What is it?

a. struct Link {
 name[50];
 Link *next;
 };

b. struct Link {
 struct Link next;
 struct Link prev;
 };

c. void StepAndPrint(char *line)
{
 while (*line != '\0')
 line++;
 printf("%s", line);
}

2. Rewrite TrimLine() so that it uses the Standard Library function
strspn() to skip over any space or tab characters at the beginning of the
string.

CHAPTER 10: Designing Your Own Data Structures 330

3. Update DVDTracker so it maintains its linked list in order from the lowest
rating to the highest rating. If two DVDs have the same rating, the order is
unimportant.

4. Update DVDTracker to add a prev field to the DVDInfo struct so it
maintains a doubly linked list. As before, the next field will point to the next
struct in the list. Now, however, the prev field should point to the
previous struct in the list. Add an option to the menu that prints the DVD
list backward, from the last struct in the list to the first.

331

11
Chapter

Working With Files
Chapter 10 introduced DVDTracker, a program designed to keep track of your
DVD collection. DVDTracker allowed you to enter a new DVD, as well as list all
existing DVDs. DVDTracker’s biggest shortcoming was that it didn’t save the
DVD information when it exited. If you ran DVDTracker, entered information on
ten DVDs, and then quit, your information would be gone. The next time you ran
DVDTracker, you’d have to start from scratch.

The solution to this problem is to somehow save all of the DVD information
before you quit the program so it can be used again the next time you run it.
This is called persistence. This chapter will show you how to implement
persistence. It introduces the concept of files, the long-term storage for your
program’s data. You’ll start off with the basics, learning how to open and read a
file and displaying its contents in the console window. Next, you’ll learn how to
write data out to a file. You’ll learn about a variety of file opening modes that
give you more options when dealing with files, and how to selectively read and
update portions of a file. Towards the end, you’ll learn how files and character
streams are related.

NOTE: As you move on to other programming languages (such as Objective-C, Java,
or C++), sophisticated development frameworks (such as Cocoa), and even other
operating systems, you’ll find there are many ways to work with files. Most of them
are based on the concepts you’ll learn in this chapter.

Stay with the program! Learn the basics, and you’ll find moving on to other
development platforms much, much easier in the long run.

CHAPTER 11: Working With Files 332

What Is a Data File?
A data file is a series of bytes residing in some storage media. Files can be
stored on your hard drive, on a recordable DVD or CD, flash memory, a file
server, or even on your iPod. The iTunes application is made up of a collection
of files, including the actual executable, the preference files, and all the song
files. Your favorite word processor lives in a file, and so does each and every
document you create with your word processor.

The project archive that came with this book contains many different files.
Apple’s developer tools are made up of hundreds of files. Each of the Learn C
projects consists of at least two files: a project file and at least one source code
file. When you compile and link a project, you produce a new kind of file, an
executable file. All of these are examples of the same thing: a collection of bytes
known as a file.

All of the files on your computer share a common set of traits. All files reside on
a filesystem. Every file has a name. Each file has a size, measured in bytes. The
file main.c from the DVDTracker project contains about 4 thousand (4K) bytes.
An HDTV movie in iTunes might take up several billion bytes.

File Basics
A file consists of a stream of consecutive bytes. The bytes in a file are organized
very much like a char array in memory. Every byte in a file has an address,
called an offset or position. The first byte of a file is always at offset 0, and the
offset of the last byte is always one less than the length of the file. The position
after the last byte of a file is called the end of file (EOF) position.

When you want to access the data in a file, you first open the file using a
Standard Library function. The one you’ll be using is fopen(), pronounced ‘‘eff-
open.’’ Once your file is open, you can read data from the file or write new data
back into the file using Standard Library functions like fgets(), fscanf(), and
fprintf(). Once you are done working with your file, you’ll close it using
another Standard Library function, fclose().

Before we get into the specifics of opening a file, let’s take a side trip to examine
the rules for naming files in C.

Understanding File Names
You’ve already explored path and file names in Chapter 9. If any of that seems
fuzzy now, consider rereading the section ‘‘Using Paths’’ in Chapter 9.

CHAPTER 11: Working With Files 333

In OS X’s native filesystem, a file or directory name can be up to 255 characters
long. File names are typically uncomplicated, but OS X allows them to contain
any Unicode character (except ‘/’). This means they are allowed to contain
symbols and foreign characters. It really doesn’t matter to the operating system;
a file name is simply a sequence of bytes. To refer to a file you must provide that
sequence of bytes.

Other filesystems may have (and often do) different rules for file names. They will
have different limits on the number of characters a file name can have and what
those characters can be. In the original Microsoft DOS operating system, for
example, file names couldn’t be more than 8 characters long! C doesn’t impose
these rules-----they’re imposed by the filesystem your program is using. So if your
program reads files from a cloud server, you’ll have to live within the rules for
that server. If you stick to plainly named files (using only ASCII characters) of
reasonable length (32 characters or less), you should be fine.

File names traditionally end with a file name extension. An extension is a .
(period) followed by a short sequence of characters that indicate the kind of
data in the file. Commonly used extensions are txt (plain text), mp3 (MPEG-2
audio layer 3 encoded sound), png (Portable Network Graphics encoded image),
and so on. A file named ‘‘Notes’’ that contained only ASCII characters would be
named Notes.txt. OS X does not require you to use extensions, but it’s the
norm.

As you learned in Chapter 9, the / (slash) character has a special meaning and is
used to separate directory and file names in a path-----and is why the / character
is the only one not allowed in a file name. The . and .. names refer to the
current and parent directory (respectively).

You also learned about the ~ path that specifies your home directory. You can’t
use the ~ path in most C file functions, but we’ll show you how to work around
that shortly.

Opening and Closing a File
Here’s the function prototype for fopen(), found in the file <stdio.h>:

FILE *fopen(const char *name, const char *mode);

The const keyword marks a variable or parameter as read-only. In other words,
while name and mode are both pointers to variables, the fopen() function
promises not to change them. It will only use their values, but won’t modify the
values they point to in any way. We’ll talk more about the const keyword in
Chapter 13.

CHAPTER 11: Working With Files 334

The first parameter to fopen(), name, tells fopen() which file you want to open.
The second parameter, mode, tells fopen() how you’ll be accessing the file. The
three basic file modes are ‘‘r’’, ‘‘w’’, and ‘‘a’’, which stand for read, write, and
append, respectively.

TIP: The mode parameter is char *, not char. In other words, mode is a NUL-
terminated C string, so use "r", not 'r'. Don’t worry if you forget; the compiler will
complain if you mix them up.

‘‘r’’ tells fopen() that you want to read data from the file and that you won’t be
writing to the file at all. The file must already exist in order to use this mode. In
other words, you can’t use the mode ‘‘r’’ to create a file.

The mode ‘‘w’’ tells fopen() that you want to write to the specified file. If the file
doesn’t exist yet, a new file with the specified name is created. If the file does
exist, fopen() deletes it and creates a new empty file for you to write into.

CAUTION: This point bears repeating: calling fopen() with a mode of "w" will
delete a file (along with the file’s contents!) if the file already exists, essentially
starting you over from the beginning of the file. Be careful!

The mode ‘‘a’’ is similar to ‘‘w’’ mode. It tells fopen() that you want to write more
to the specified file and to create the file if it doesn’t exist. If the file does exist,
however, the data already there won’t be deleted. Any data you write to the file
is appended to the end of the file.

If fopen() successfully opens the specified file, it allocates a struct of type FILE
and returns a pointer to the FILE struct. The FILE struct contains information
about the open file, including its current mode (e.g., ‘‘r’’, ‘‘w’’, or ‘‘a’’) as well as
the current file position.

The file position indicator is a pointer into the file that acts like a bookmark in a
book. When you open a file for reading, for example, the file position points to
the first byte in the file (position 0). When you read the first byte, the file position
moves to the next byte (position 1).

It’s not really important to know the details of the FILE struct. All you need to
do is keep track of the FILE pointer returned by fopen(). By passing the pointer
to a Standard Library function that reads or writes, you’ll be sure the read or
write takes place in the right file and at the right file position. You’ll see how all
this works as you go through this chapter’s sample code.

CHAPTER 11: Working With Files 335

Here’s a sample fopen() call:

FILE *fp;
if ((fp = fopen("My Data File.txt", "r")) == NULL) {
 printf("Can not open file!!!\n");
 exit(1);
}

This code first calls fopen(), attempting to open the file named My Data File.txt
for reading. If fopen() cannot open the file for some reason-----perhaps you’ve
asked it to open a file that doesn’t exist-----it returns NULL. In that case, it’ll print
an error message and exit.

NOTE: There is a limit to the number of simultaneous open files. This limit is
implemented as a #define, FOPEN_MAX, defined in the file <stdio.h>. At the time
of this writing, FOPEN_MAX was defined to be 20.

If fopen() does open the file, it will allocate the memory for a FILE struct, and
fp will point to that struct. You can then pass fp to routines that read from the
file. Once you’re done with the file, you’ll pass fp to the function fclose():

int fclose(FILE *stream);

fclose() takes a pointer to a FILE as a parameter and attempts to close that
file. If the file is closed successfully, fclose() frees up the memory allocated to
the FILE struct and returns a value of 0. It is very important that you match
every fopen() with a corresponding fclose(), particularly if you are writing to
the file.

Once you’ve passed a FILE pointer to fclose(), that FILE pointer no longer
points to a FILE struct. After calling fclose(), do not attempt to use that FILE
struct pointer for anything. If the pointer variable is going to hang around, set it
to NULL. If you want to access the file again, you’ll have to make another
fopen() call.

Reading a File
Once you open a file for reading, the next step is to read data from the file.
Several Standard Library functions help you do just that. For starters, the
function fgetc() reads a single character from a file. Here’s the function
prototype:

int fgetc(FILE *fp);

CHAPTER 11: Working With Files 336

The single parameter is the FILE pointer returned by fopen(). fgetc() reads a
single character from the file and advances the file position indicator one byte. If
the file position pointer is already at the end of the file, fgetc() returns the
constant EOF.

The function fgets(), which you made use of in Chapter 9, reads a series of
characters into an array of chars. Here’s the function prototype:

char *fgets(char *s, int n, FILE *fp);

You should already be comfortable using fgets(). In the previous uses, you
passed stdin as the third parameter to fgets(). As it turns out, stdin is a FILE
pointer automatically provided to your program when it starts. In this chapter,
you’ll open a file with fopen() and use fgets() to read from that file instead.

Here’s an example using fopen(), fgetc(), and fclose():

#define kMaxBufferSize 200
FILE *fp;
if ((fp = fopen("My Data File.txt", "r")) == NULL) {
 printf("Can not open file!!!\n");
 exit(1);
}

printf("File contents: ");
int c;
while ((c = fgetc(fp)) != EOF) {
 putchar(c);

fclose(fp);

This program attempts to open the file My Data File.txt for reading. If successful,
it reads the characters in the file, one at a time, echoing each to standard out
until it has read them all. When that happens, the next call to fgetc() returns the
constant EOF, indicating that the file position indicator is now beyond the last
byte of the file. It then closes the file.

The function fscanf() is similar to scanf(), but it reads from a specific file
instead of standard in. Here’s the prototype:

int fscanf(FILE *fp, const char* format, ...);

The first parameter is the FILE pointer returned by fopen(). The second
parameter is a format specification embedded inside a character string. The
format specification tells fscanf() what kind of data you want read from the file.
The ... operator in a parameter list tells the compiler that zero or more
parameters may follow the second parameter. Like scanf() and printf(),
fscanf() uses the format specification to determine the number of parameters it

CHAPTER 11: Working With Files 337

expects to see. Be sure to pass the correct number of parameters or your
program will get confused.

These are a few of the file access functions provided by the Standard Library.
Want to look up something? Here’s that link to that online Standard Library
reference we keep mentioning:

www.infosys.utas.edu.au/info/documentation/C/CStdLib.html

Click the link to <stdio.h> at the top of the page. You might also want to take a
look at C, A Reference Manual by Samuel Harbison and Guy Steele, especially
Chapter 15, ‘‘Input/Output Facilities’’ (Prentice Hall, 2002).

In the meantime, here’s an example program that uses the functions fopen()
and fgetc() to open a file and display its contents.

PrintFile.xcodeproj
PrintFile opens a file named My Data File.txt, reads in all the data from the file
one character at a time, and prints each character in the console window.

Open the Learn C Projects folder, go inside the folder 11.01 - PrintFile, and open
the project PrintFile.xcodeproj.

To get PrintFile to do something useful, you’ll need to supply it with a file to
read. Launch the TextEdit application that came with OS X or your favorite plain
text editor (it doesn’t matter which). Create a new document and type
something into it, as shown in Figure 11-1.

Figure 11-1. Creating the My Data File.txt file

If you’re using TextEdit, make sure you choose the Format Make Plain Text
command so the document is saved as plain ASCII (or Unicode) characters.
Choose the Save command, navigate to your Desktop folder, and save the file

http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html

CHAPTER 11: Working With Files 338

with the name My Data File, as shown in Figure 11-2. The application should
add a txt extension automatically. If it doesn’t, make sure the file name ends
with .txt.

Figure 11-2. Saving the My Data File.txt file

NOTE: The Finder may optionally hide a file’s file name extension. While you see a file
named “My Data File” in the Finder, the real name of the file is still My Data File.txt.
Use the Finder’s Get Info command to confirm this or to toggle the file’s Hide
Extension option.

Switch back to Xcode and run the project. Your console should look like the one
in Figure 11-3.

CHAPTER 11: Working With Files 339

Figure 11-3. PrintFile echoing My Data File.txt to the console

Let’s take a look at the source code.

Stepping Through the PrintFile Source Code
Open the source code file main.c by clicking its name in the project navigator.
Take a minute to look over the source code. Once you feel comfortable with it,
read on.

main.c starts off with some needed #includes and a function prototype.

#include <stdio.h> // fopen(), fgetc(), fclose(), ...
#include <pwd.h> // getpwuid()
#include <unistd.h> // getuid()
void SetHomeDirectory(void);

The <pwd.h> and <unistd.h> headers, along with the SetHomeDirectory(), are so
the program can find your home directory. Remember that we said most
Standard Library functions don’t recognized the ~ path? This is one way around
that limitation.

main() defines an fp variable to point to the FILE pointer.

int main(int argc, const char * argv[])
{
 FILE *fp;

CHAPTER 11: Working With Files 340

The first call is to SetHomeDirectory(). This function, which we’ll explain shortly,
sets the current working directory to your home folder. Once this is done, path
names will be relative to this directory, which is exactly what is used in the next
function call to fopen(). fopen() opens the file named Desktop/My Data File.txt
for reading, and saves the file pointer in the variable fp:

 SetHomeDirectory();
 fp = fopen("Desktop/My Data File.txt", "r");

Because the path is a relative path (does not start with /), the file that fopen()
will try to open is the My Data File.txt inside your Desktop folder. Some
programs like to be explicit that they’re specifying relative path using
./Desktop/My Data File.txt. Both work just as well.

If fp is NULL, fpopen() can’t open the file and an appropriate error message is
printed.

 if (NULL == fp) {
 printf("Error opening My Data File.txt\n");
 } else {

If the file was opened successfully, you enter a while loop that continuously
calls fgetc(), passing it the file pointer fp. fgetc() returns the next character in
the file. The returned character is assigned to c. If c is not equal to EOF,
putchar() is called, taking c as a parameter.

 int c;
 while ((c = fgetc(fp)) != EOF)
 putchar(c);

putchar() prints the specified character to the console window. You could have
accomplished the same thing by using printf().

 printf("%c", c);

NOTE: As you program, you’ll often find multiple solutions to the same problem.
Should you use putchar() or printf()? If performance is critical, pick the option
that is more specific to your particular need. In this case, printf() is designed to
handle many different data types. putchar() is designed to output a single
character. Chances are, the source code for putchar() is simpler and more
efficient than the source code for printf() when it comes to outputting one char.
If performance is critical, you might want to use putchar() instead of printf(). If
performance isn’t critical, go with your own preference.

CHAPTER 11: Working With Files 341

Once you’re done, close the file by calling fclose(). Remember to always
balance each call of fopen() with a corresponding call to fclose().

 fclose(fp);
 }

 return 0;
}

SetHomeDirectory()

Now let’s get back to that SetHomeDirectory() function. It’s a deceptively simple
bit of code, but it takes a little explaining.

First up is the struct passwd pointer. The passwd struct is defined by the
Standard Library and contains fields that contain details about a user’s account.
These details include the user’s account name, their ID, the group they belong
to, their default shell, and so on. The particular field you’re interested in is the
pw_dir field; it contains the path name of the user’s home directory.

void SetHomeDirectory(void)
{
 struct passwd *pw;

Given the appropriate user ID, the getpwuid() function will return a struct
passwd pointer to this information for any user account on the system. You,
however, are only interested in one user------the user that is currently logged in.
You get that from the getuid() (‘‘get user ID’’) function. Pass the value returned
from getuid() to getpwuid(), and you now have lots of interesting information
about, well, yourself!

 pw = getpwuid(getuid());

The chdir() function changes the current working directory for the process. To
make your home folder the current working directory, pass the pw_dir field to
chdir().

 chdir(pw->pw_dir);
}

And you’re done! Those two lines of code are all that’s needed to get the ID of
the user that’s running this program, look up some basic account information
about that user, and use that information to set the current working directory to
their home folder. That’s pretty slick.

CHAPTER 11: Working With Files 342

Writing Files
So far, you’ve learned how to open a file using fopen() and how to read from a
file using fgetc(). You’ve seen, once again, that you can often use two different
functions to solve the same problem. Now let’s look at some functions that
allow you to write data out to a file.

The Standard Library offers many functions that write data out to a previously
opened file. This section will introduce three of them: fputc(), fputs(), and
fprintf().

fputc() takes an int holding a character value and writes the character out to
the specified file. fputc() is declared as follows:

int fputc(int c, FILE *fp);

If fputc() successfully writes the character out to the file, it returns the value
passed to it in the parameter c. If the write fails for some reason, fputc() returns
the value EOF.

NOTE: Calling fputc(c, stdout) is the same as calling putchar(c).
Writing a single character to standard out is such a common task that someone wrote
the putchar() function so you don’t have to write fputc(c,stdout) every time.
These are called convenience functions. It’s quite common to see several functions
that can accomplish the same thing, but some have a less complicated set of
parameters designed to make it easier to perform typical tasks. You can always
switch to the more complicated function if you need to do something more unusual.

fputs() is similar to fputc(), but writes out a NUL-terminated string instead of a
single character. fputs() is declared as follows:

int fputs(const char *s, FILE *fp);

fputs() writes out all the characters in the string but does not write out the
terminating zero. If the write fails, fputs() returns EOF; otherwise, it returns a
nonnegative number.

fprintf() works just like printf(). Instead of sending its output to the console
window, fprintf() writes its output to the specified file. fprintf() is declared
as follows:

int fprintf(FILE *fp, const char *format, ...);

CHAPTER 11: Working With Files 343

The first parameter specifies the file to be written to. The second is the format
specification text string. Any further parameters depend on the contents of the
format specification string.

DVDFiler.xcodeproj
In Chapter 10 you ran DVDTracker, a program designed to help you track your
DVD collection. The big shortcoming of DVDTracker is its inability to save your
carefully entered DVD data. When you quit the program, the DVD information
you entered gets discarded, forcing you to start over the next time you run
DVDTracker.

The next program, DVDFiler, solves this problem by adding two special
functions to DVDTracker. ReadFile() opens a file named DVD Data.txt, reads in
the DVD data from the file, and uses that data to build a linked list of DVDInfo
structs. WriteFile() writes the linked list back out to the file.

Open the Learn C Projects folder, go inside the folder 11.02 - DVDFiler, and
open the project DVDFiler.xcodeproj. Check out the DVDFiler workspace
window shown in Figure 11-4. Notice that this project is made up of several
source files: main.c, DVDInfo.c, DVDInfo.h, DVDFile.c, and DVDFile.h. Your
project can contain as many source code files as you like. Just make sure that
only one of the files has a function named main(), since that’s where your
program will start.

Figure 11-4. The DVDFiler project window

CHAPTER 11: Working With Files 344

The file main.c starts out very much like the main.c from Chapter 10’s
DVDTracker program. Most of the functions that deal with DVDInfo structs are,
however, curiously absent. These have been moved into the DVDInfo.c source
file. A new file, DVDFile.c, contains the new functions that read and write the
DVD data file. So why were these functions moved into different source files?
Read the ‘‘Modular Code’’ sidebar to find out.

MODULAR CODE

The DVDFiler program has gotten just complicated enough that we decided to break it up into
modules. As your programs get bigger, you’ll want to begin organizing them so they don’t get out
of hand.

Programs are kind of like companies. As a business grows, it will often reorganize itself into
divisions, departments, subsidiaries, and so on. That’s because one person can’t manage
everything that’s going on in a big organization. The company creates departments within itself,
each of a manageable size. Department A can work with department B to accomplish things, but
department A doesn’t have to worry about the details of department B (who they hire, what their
vacation schedule is, and so on).

Similarly, programmers organize large applications into functions, modules, objects, and
frameworks. C programmers refer to each .c file as a module. Generally, a module has two
parts: its implementation and its interface. The implementation is the code in the .c file that
does the work. Its interface, usually in a matching .h file, is the information another module
needs to use that code.

To see this in practice, look at the DVDFile.h and DVDFile.c files in the DVDFiler project. Here’s
the content from the DVDFile.h file:

extern void WriteFile(void);
extern void ReadFile(void);

It only contains two function prototypes: WriteFile() and ReadFile(). They are marked with
the extern keyword to indicate that these functions are implemented in another module. If you
look at the DVDFile.c source file, you’ll see those two functions, but there are others as well. All
of that code is part of the implementation. A function (like main()) doesn’t need to know
anything else about the code in DVDFile.c except that it contains two functions—ReadFile()
and WriteFile()—that will load or save the list of DVDs.

The interface should be the minimum amount of information another module needs to use that
module. Broadly speaking, the simpler the interface, the better the module is designed.
Returning to the recipe analogy from Chapter 3, a well-designed module that bakes cakes should
have a simple interface. It should include functions to order a cake and pick it up. There should
be constants for the flavors to choose from. But the details of the cake-baking process (where

CHAPTER 11: Working With Files 345

the flour is purchased, the ratio of sugar and egg whites) are details that only the implementation
is concerned about.

As you design your functions and modules, think of them as a bakery or any other kind of retail
service. Your customer (often called the client) is the code that will be using the services of your
module. The module’s interface is your storefront—menu, counter, and cash register. This is all
the information your customer needs. What goes on in the kitchen (mixing equipment, recipes,
inventory, and so on) is the implementation. That stays hidden.

Programmers do this so they can change the details of how a module works without upsetting
the rest of the program. As long as the “contract” of the interface remains the same, the
implementation of the module can be safely changed without introducing new bugs. In DVDFiler
you could, for example, change the file name of the DVD Data.txt file or its format; you could
even decide to store your DVD data in an SQLite database instead of a single file. But
ReadFile() and WriteFile() function will, from main()’s perspective, still do exactly what
they do now.

The getpwuid() function you used in the PrintFile project is a perfect example of this kind of
evolution. When UNIX was very young, the getpwuid() function got its data from a simple ASCII
text file, no more complicated than the DVD Data.txt file you’re using today. As UNIX matured,
account information got more complex. Today, OS X stores its user account information in a
sophisticated database that uses encryption, shadow passwords, and can even connect to other
databases over a network. So while the format and location of the user account information has
changed a dozen times over the past four decades (the implementation), the getpwuid()
function (the interface) still works the same as it always has.

Exploring DVD Data.txt
Before you run DVDFiler, take a quick look at the file DVD Data.txt. You’ll find it
in the 11.02 --- DVDFiler folder, although the file is not part of your Xcode project.
Drag the DVD Data.txt file to your desktop using the Finder (hold down the
Option key before dropping it to make it a copy). The DVDFiler application will
expect to find this file in your Desktop folder. If you don’t have a copy of DVD
Data.txt don’t worry, the program will still work.

Take a look at the DVD Data.txt file. You can open it using TextEdit (as you did
earlier), your favorite text editor, Xcode (drag the DVD Data.txt file from the
desktop and drop it into the Xcode icon in the dock), or just preview it in the
Finder.

At first glance, the contents of the file may not make much sense, but the text
does follow a well-defined pattern:

CHAPTER 11: Working With Files 346

The Ring
Scariest movie ever!
9
Tenacious D in The Pick of Destiny
Jack Black rocks, Kyle Gass can play
7
Hot Fuzz
Simon Pegg sleeper – must see!
8

The file is organized in clusters of three lines each. Each cluster contains a one-
line DVD title, a one-line DVD comment, and a one-line numerical DVD rating.

NOTE: The layout of your data files is as important a part of the software design
process as the layout of your program’s functions. The DVD Data.txt file follows a
well-defined pattern. As you lay out a file for your next program, think about the
future. Can you live with one-line DVD titles? Do you want the ability to add a new
DVD field, perhaps the date of the DVD’s release? The time to think about these types
of questions is at the beginning of your program’s life, during the design phase.

Running DVDFiler
Run DVDFiler. The console window will appear, prompting you for a q, n, or l:

Enter command (q=quit, n=new, l=list):

Type ‘‘l’’, and press Return to list the DVDs currently in the program’s linked list.
If you need a refresher on linked lists, now would be a perfect time to turn back
to Chapter 10.

Title: The Ring

Comment: Scariest movie ever!

Rating: 9

Title: Tenacious D in The Pick of Destiny

Comment: Jack Black rocks, Kyle Gass can play

Rating: 7

CHAPTER 11: Working With Files 347

Title: Hot Fuzz

Comment: Simon Pegg sleeper – must see!

Rating: 8

Enter command (q=quit, n=new, l=list):

While Chapter 10’s DVDTracker started with an empty linked list, DVDFiler starts
with a linked list built from the contents of the DVD Data.txt file. The DVDs you
just listed should match the DVDs you saw when you viewed the DVD Data.txt
file.

Let’s add a fourth DVD to the list. Type ‘‘n’’, and press Return:

Enter command (q=quit, n=new, l=list): n

Enter DVD Title: The Shawshank Redemption

Enter DVD Comment: #1 movie of all time on imdb.com

Enter DVD Rating (1-10): 10

Enter command (q=quit, n=new, l=list):

Next, type l to make sure your new DVD made it into the list:

Enter command (q=quit, n=new, l=list): l

Title: The Ring

Comment: Scariest movie ever!

Rating: 9

Title: Tenacious D in The Pick of Destiny

Comment: Jack Black rocks, Kyle Gass can play

Rating: 7

Title: Hot Fuzz

Comment: Simon Pegg sleeper – must see!

Rating: 8

CHAPTER 11: Working With Files 348

Title: The Shawshank Redemption
Comment: #1 movie of all time on imdb.com
Rating: 10

Enter command (q=quit, n=new, l=list):

Finally, type ‘‘q’’, and press Return. This causes the program to write the current
linked list back out to the file DVD Data.txt. To prove this write worked, run
DVDFiler one more time. When prompted for a command, type ‘‘l’’ to list your
current DVDs. You should find your new DVD nestled at the bottom of the list.
Let’s see how this works.

Creating a New Source Code File
Before you move on to the program itself, let’s take a look at the process of
creating a new source code file in your project. When Xcode creates a
command line tool project, it adds a single source code file, main.c. To add a
new file, start by clicking the Source folder in the project navigator (shown on
the left, behind the sheet, in Figure 11-5). This tells Xcode where you want the
new file placed.

Select New File from the File menu. The new file template dialog will appear, as
shown in Figure 11-5. To add a C source file, select the C and C++ template
group (under OS X) on the left side of the window. Then choose C File from the
list that appears and click the Next button. In the next screen that appears,
you’ll be asked to name the file and choose what project targets it belongs to.
You’ll probably have only one target, which should be selected. When you’re
good to go, click the Create button.

NOTE: If you just added new files to the DVDFiler project, be sure to select any files
you added, and press the Delete key to remove the files from the project.

CHAPTER 11: Working With Files 349

Figure 11-5. New file template dialog

If you want to add a header (.h) file to your project, repeat the same steps but
choose the Header File template instead of the C File template.

We now return to the program previously in progress.

Stepping Through the DVDFiler Source Code
Now we’re going to walk you through the DVDFiler source one file at a time.
Since the project is broken up into modules, we’ll tackle each file one at a time,
describing the functions therein. So here we go.

main.c
The main.c file contains three functions: main(), GetCommand(), and
SetHomeDirectory(). These functions are in main.c because they facilitate
running the overall program, and they don’t belong in either of the other two
modules. Sometimes determining where a function belongs is a matter of
figuring out where it doesn’t belong.

CHAPTER 11: Working With Files 350

main.c starts out with code you’ll instantly recognize. It includes the headers it
needs, including the project headers DVDInfo.h and DVDFile.h, and it declares
prototypes for the other two functions.

#include <stdio.h>
#include <pwd.h> // getpwuid()
#include <unistd.h> // getuid()
#include "DVDInfo.h"
#include "DVDFile.h"

char GetCommand(char *prompt);
void SetHomeDirectory(void);

With the preliminaries out of the way, main() gets started. The first thing it does
is set the working directory to your Desktop folder and read the contents of the
DVD Data.txt file.

int main (int argc, const char * argv[])
{
 SetHomeDirectory();
 chdir("./Desktop");
 ReadFile();

The working directory is set in two steps. SetHomeDirectory() sets the working
directory to your home directory. The call to chdir() then changes it again, this
time to your Desktop folder. The path passed to chdir() can be a relative path,
based on the current working directory.

We’ll take a look at ReadFile() later.

Next, main() enters a loop and processes commands until the user enters the
‘q’ command. This is almost identical to the DVDTracker program from
Chapter 10.

 char command;
 while ((command = GetCommand("Enter command (q=quit, n=new, l=list)"))
!= 'q') {
 switch(command) {
 case 'n':
 AddToList(ReadStruct());
 break;
 case 'l':
 ListDVDs();
 break;
 }
 printf("\n----------\n");
 }

CHAPTER 11: Working With Files 351

When the loop exits (because the user quit the program), you call WriteFile()
to write any changes made to the linked list (like a new DVD!) back out to the
DVD Data.txt file.

 WriteFile();

The program says farewell and exits.

 printf("Goodbye...\n");
 return 0;
}

We won’t go over the GetCommand() or SetHomeDirectory() functions, because
they are pretty much identical to those used in the PrintFile and DVDTracker
programs you’ve already worked through.

DVDInfo.h
Now take a look at the DVDInfo.h header file. It contain #defines and struct
declarations that should be familiar to you.

#define kMaxTitleLength 256
#define kMaxCommentLength 256

struct DVDInfo
{
 char rating;
 char title[kMaxTitleLength];
 char comment[kMaxCommentLength];
 struct DVDInfo *next;
};

Following those definitions are the function prototype for the public functions of
the DVDInfo module. Public functions are ones you expect other modules to call
to accomplish tasks. They are marked as extern so that, when included in
main.c or DVDFile.c, the compiler knows that the source for these functions are
in another module.

extern struct DVDInfo *ReadStruct(void);
extern void AddToList(struct DVDInfo *curPtr);
extern void ListDVDs(void);
extern struct DVDInfo *NewDVDInfo(void);
extern char *TrimLine(char *line);

The DVDInfo.h header also declares a global variable that keeps track of the
beginning of the linked list. The extern keyword at the beginning of the
declaration tells the C compiler that the actual variable is defined elsewhere,
probably in a different module. You can declare extern functions and variables
wherever you want, but you can only define them once. In this case, the

CHAPTER 11: Working With Files 352

gHeadPtr is defined in DVDInfo.c. But any module that includes this header can
access that global, because the compiler now knows about it.

extern struct DVDInfo *gHeadPtr;

DVDInfo.c
Now let’s move on to the DVDInfo.c file. It starts with the usual includes:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "DVDInfo.h"

Following that are the actual definitions of the gHeadPtr and gTailPtr variables.

struct DVDInfo *gHeadPtr;
static struct DVDInfo *gTailPtr;

Notice that the gTailPtr is defined to be static, and an extern declaration for it
isn’t included in the DVDInfo.h header. We’ve decided that gTailPtr should be a
‘‘private’’ variable, only accessible to the functions in the DVDInfo module. The
static keyword limits the scope of this variable to this module only. Functions in
other modules can’t use it, even if they wanted to.

So why did we do this? Because the other modules (main.c and DVDFile.c)
don’t need it and we might decide to do something different in the future. If you
looked at the exercise answers for DVDTracker in Chapter 10, you’ve already
seen an alternate version of DVDTracker that doesn’t use a gTailPtr variable.
By making gTailPtr ‘‘private,’’ we’re free to change what it means or even get
rid of it without affecting how the rest of the program works. Does that make
sense? Let’s move on.

Most of the remaining code in DVDInfo is almost identical to what’s in the
DVDTracker program. The functions ReadStruct(), AddToList(), ListDVDs(),
and TrimLine() are only slightly changed, so we won’t rehash them again here.
The only thing that’s really different is the new function NewDVDInfo():

struct DVDInfo *NewDVDInfo(void)
{
 return calloc(1, sizeof(struct DVDInfo));
}

We found ourselves writing the statement malloc(sizeof(struct DVDInfo))
over and over. When you find yourself writing the same code again and again,
consider turning it into a function that can be more easily reused. Now all of
those calls to malloc() can be replaced with a call to NewDVDInfo(). In addition,

CHAPTER 11: Working With Files 353

we changed the implementation so that it calls calloc() instead of malloc();
now the returned DVDInfo struct is pre-initialized with zeros, which just seems
so much more tidy. (We’re going to revisit NewDVDInfo() in the next chapter,
where you’ll learn another reason why we made this change.)

DVDFile.c
Now (finally!) you get to the functions that read and write the DVD Data.txt file.
You’ve already seen the DVDFile.h header file. This defines the interface to the
DVDFile module, which is pretty straightforward.

extern void WriteFile(void);
extern void ReadFile(void);

Open up the DVDFile.c file and we’ll step through the implementation. It starts
out with these #includes:

#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include "DVDInfo.h"
#include "DVDFile.h"

Most of these you’ve already experienced. Note that DVDFile.c includes both
DVDInfo.h and DVDFile.h files. The DVDInfo.h gives the module all of the
knowledge it needs to use the functions in the DVDInfo module as well as
defining the DVDInfo struct and related constants. The DVDFile.h provides the
prototype for the WriteFile() and ReadFile() functions. Next up are the
constants.

#define kDVDFileName "DVD Data.txt"

The only constant defined is the name of the DVD Data.txt file. Since this is
defined in the .c file, it’s a ‘‘private’’ constant-----the other modules don’t know
what the file name is. This means you can change the name without affecting
code in other modules.

In addition to ReadFile() and WriteFile(), there’s also the
ReadStructFromFile(), which needs a prototype.

static struct DVDInfo *ReadStructFromFile(FILE *fp);

ReadStructFromFile() is not intended to be called from other modules. It’s only
used by ReadFile() to create and read one record from the data file. By
including the static keyword, you restrict the scope of this function to this
module. In other words, you can’t call this function from another module-----even
if you tried, C won’t let you. By making ReadStructFromFile() a ‘‘private’’

CHAPTER 11: Working With Files 354

function, you can later decide to change how it works, or even replace it with
something else.

WriteFile()
WriteFile() is the first of the two big file functions. It’s called by main() just
before the program quits to save whatever is in the DVDInfo struct list to a file.
After declaring a couple of variables, it opens the DVD Data.txt file for writing.

void WriteFile(void)
{
 FILE *fp;
 struct DVDInfo *infoPtr;

 fp = fopen(kDVDFileName, "w");

The fopen() function returns a FILE pointer to the newly open, and created, file.
Passing ‘‘w’’ for the mode parameter means you’re going to rewrite this file. If
the file exists, it’s first deleted and replaced with a new (empty) file. If the file
didn't exist, a new (empty) file is created. After fopen() returns, you know the file
exists, is empty, and is ready to write data to.

The for loop steps through the linked list, setting infoPtr to point to the first
struct in the list, moving it to point to the next struct, and so on, until infoPtr
is equal to NULL. Since the last struct in the list sets its next pointer to NULL,
infoPtr will be equal to NULL after the last struct in the list.

 for (infoPtr=gHeadPtr; infoPtr!=NULL; infoPtr=infoPtr->next) {

Take a good long look at this for loop statement. It contains all of the
statements needed to traverse a linked list. The initialization statement starts by
setting infoPtr to the first (head) struct in the list. The loop’s condition
statement stops when pointer to the next struct is NULL. After one DVDInfo
struct has been processed, the increment statement gets the pointer to the
next struct in the list, or NULL if there are no more. If everything in the statement
makes sense to you, you are well on your way to becoming a C master.

Each time through the list, you call fprintf() to print the title string followed by
a carriage return and then the comment string followed by a carriage return.
Remember, each of these strings was NUL-terminated, a requirement if you plan
on using the %s format specifier. The rating field is output using the %d specifier.

 fprintf(fp, "%s\n", infoPtr->title);
 fprintf(fp, "%s\n", infoPtr->comment);
 fprintf(fp, "%d\n", infoPtr->rating);
 }

CHAPTER 11: Working With Files 355

Once you finish writing the linked list into the file, you close the file by calling
fclose().

 fclose(fp);
}

One thing you’ll notice is that if there are no DVD structs in the list (gHeadPtr is
NULL), then WriteFile() creates an empty file; the file is created, nothing is
written to it, and then it’s closed.

ReadFile()
ReadFile() is the complement to WriteFile(). It’s called when main() starts. It
opens the file DVD Data.txt for reading. If you can’t open the file-----presumably
because the file doesn’t exist-----it prints an error message and returns, leaving
the list empty.

void ReadFile(void)
{
 FILE *fp;

 if ((fp = fopen(kDVDFileName, "r")) == NULL) {
 printf("Could not open file!\n");
 printf("File '%s' expected to be in %s.\n", kDVDFileName, getwd(NULL)
);
 return;
 }

If the file could not be opened, main() outputs an informative message that
includes the name of the file and what directory the ReadFile() function is
expecting it to reside in. It gets the later from the getwd() (‘‘get working
directory’’) function.

With the file open, a while loop starts that runs as long as
ReadStructFromFile() continues to return new DVDInfo structs.
ReadStructFromFile() attempts to read one record from the file and uses that
data to fill in a DVDInfo struct. If successful, it returns the completed DVDInfo
struct, which the loop then adds to the linked list.

 struct DVDInfo *infoPtr;
 while ((infoPtr = ReadStructFromFile(fp)) != NULL) {
 AddToList(infoPtr);
 }

ReadStructFromFile() returns NULL when it hits the end of the file. In that case,
the loop stops and the file is closed again.

CHAPTER 11: Working With Files 356

 fclose(fp);
}

ReadStructFromFile()
ReadStructFromFile() does all of the heavy lifting for ReadFile(). It uses a funky
form of fscanf() to read in the first two DVDInfo fields. The format descriptor
%[^\n]\n tells fscanf() to read characters from the specified file as long as the
characters are in that set, and then to read a \n character and stop. The
characters scanned by the %[^\n] specifier are copied in to a char array.
scanf() always tacks on a terminating '\0' so the variable is a valid C string.

CHARACTER SET NOTATION

The square brackets inside a format specifier ([abcdef]) give you much greater control over
scanf(). It’s called character set notation and it appears repeatedly in C, the shell, and
elsewhere. In its simplest form, it lists the characters in the set. A span of characters can be
indicated by a range ([1-9]). Characters are then tested to see if they’re either in the set or not.
The set [aeiou] defines the set of common vowels. “a” is in that set, “b” isn’t. The set [a-z]
is all of the lowercase letters. The set [a-zA-Z0-9_] is the set of all letters (upper and
lowercase), the digits zero through nine, and the underscore character. The character “7” is in
that set. The character “.” isn’t.

The ^ (caret) is the inverse set modifier. When it’s the first character in a set, it inverts the set.
The set [^a-z] is every character that is not a lower case letter. The character “7” is in that set,
“k” isn’t. The set [^\n] is the set of every character that is not a newline character. Every ASCII
character is a member of that set except, obviously, the newline character.

ReadStructFromFile() begins by defining a few variables. It then allocates a new
DVDInfo struct, using the function defined in DVDInfo.c.

static struct DVDInfo *ReadStructFromFile(FILE *fp)
{
 struct DVDInfo *infoPtr;
 int num;
 bool successful = true;

 infoPtr = NewDVDInfo();

The fscanf() statements that follow attempt to read the three lines that make
up a DVD record in the DVD Data.txt file and convert those lines of text into the
three field variables that make up a DVDInfo struct.

CHAPTER 11: Working With Files 357

fscanf() returns the constant EOF if it attempts to read past the end of the file.
The code checks the return value of each call to fscanf(). If any of them return
EOF, the variable successful is changed from true to false.

 if (fscanf(fp, "%[^\n]\n", infoPtr->title) == EOF)
 successful = false;
 if (fscanf(fp, "%[^\n]\n", infoPtr->comment) == EOF)
 successful = false;
 if (fscanf(fp, "%d\n", &num) == EOF)
 successful = false;
 else
 infoPtr->rating = num;

Reading the rating value requires two steps. Since the rating value in the struct
is a char, you can’t use the %d specifier to read it directly-----a %d expects an int
pointer. The solution is to define a temporary int variable named num and scan
in the value there. If the fscanf() is successful, store the value of num into the
rating field. Maybe rating should have been an int? It’s something to consider
for a future version of your program.

The code then checks its success variable. If it’s false, then at least one of the
fscanf() calls encountered the end of the file. In this situation, the DVDInfo
struct that was just allocated is freed-----you don’t want to create a memory
leak-----and the function returns NULL, indicating to the caller that the record
couldn’t be read.

 if (! successful) {
 free(infoPtr);
 infoPtr = NULL;
 }

If everything went OK, the function returns the freshly allocated and filled-in
DVDInfo struct to the caller.

 return infoPtr;

Every function that reads data from a file (fscanf(), fgetc(), fgets(), and
others) advances the file position indicator. The first time ReadStructFromFile()
is called, the file position is at the beginning of the file (offset 0). After the first
call, the file position will be pointing to the first character of the fourth line of the
file-----the title of the second DVD. Each subsequent call to ReadStructFromFile()
reads one record and advances to the next one in the file, until they have all
been read.

That’s it! Everything needed to save your DVD collection data in a text file, and
read that information back in the next time DVDFiler starts, was contained in
those three functions. Congratulations, your first foray into data persistence was
a success.

CHAPTER 11: Working With Files 358

Fancier File Manipulation
Now that you’ve mastered the basics of file reading and writing, there are a few
more topics are worth exploring. We’ll start off with a look at some additional file
opening modes.

The Update Modes
So far, you’ve encountered the two basic file opening modes: ‘‘r’’ and ‘‘w’’.
There’s also an ‘‘a’’ (append) mode that s like ‘‘w’’ (write) but doesn’t erase any
existing data. Each of these modes has a corresponding update mode, specified
by adding a plus sign (+) to the mode. The three update modes, ‘‘r+’’, ‘‘w+’’, and
‘‘a+’’ allow you to open a file for both reading and writing.

A great chart in Harbison and Steele’s C: A Reference Manual summarizes these
modes quite nicely. My version of the chart is found in Table 11-1. Before you
read on, take a minute to look over the chart to be sure you understand the
different file modes.

Table 11-1. Rules Associated with Each of the Basic File Opening Modes

Mode Rules “r” “w” “a” “r+” “w+” “a+”

Named file must already exist Yes No No Yes No No

Existing file’s contents are lost No Yes No No Yes No

Read OK Yes No No Yes Yes Yes

Write OK No Yes Yes Yes Yes Yes

Write begins at end of file No No Yes No No Yes

TIP: Most implementations of fopen(), including the one in OS X, will allow you to
add an “x” to the end of the “w” or “a” modes, as in "w+x". This modifier will
prevent the file from being opened if the file already exists. It’s most useful when you
want to use the “w” mode to write out a brand new file, but don’t want to
accidentally delete an existing file if one’s already there.

CHAPTER 11: Working With Files 359

Random File Access
So far, each of the examples presented in this chapter have treated files as a
sequential stream of bytes. When DVDFiler read from a file, it started from the
beginning of the file and read the contents, one byte at a time or in larger
chunks, but from the beginning straight through until the end. This sequential
approach works fine if you intend to read or write the entire file all at once. As
you might have guessed, there is another model.

Instead of starting at the beginning and streaming through a file, you can use a
technique called random access. The Standard Library provides a set of
functions that let you reposition the file position indicator to any location within
the file, so that the next read or write you do occurs exactly where you want it
to.

Imagine a file filled with 100 ints, each of which was 4 bytes long. The file
would be 400 bytes long. Now, suppose you wanted to retrieve the tenth int in
the file. Using the sequential model, you would have to do ten reads to get the
tenth int into memory. Unless you read the entire file into memory, you’ll
constantly be reading a series of ints to get to the int you want.

Using the random access model, you would first calculate where in the file the
tenth int starts. Then, you’d jump to that position in the file and read just that
int. To move the file position indicator just before the tenth int, you’d skip over
the first nine int (9 * 4 = 36 bytes).

Using Random Access Functions
There are a number of useful functions you’ll need to know about in order to
randomly access your files. fseeko() moves the file position indicator to an
offset you specify, relative to either the beginning of the file, the current file
position, or the end of the file.

int fseeko(FILE *fp, off_t offset, int whence);

You pass your FILE pointer as the first parameter, a file position offset as the
second parameter, and SEEK_SET, SEEK_CUR, or SEEK_END as the third parameter.
The offset value is relative to the position indicated by the whence argument:
SEEK_SET represents the beginning of the file, SEEK_CUR represents the current
position, and SEEK_END represents the end of the file (in which case you’ll
probably use a negative offset).

CHAPTER 11: Working With Files 360

DinoEdit.xcodeproj
The DinoEdit project is a simple example of random file access. It allows you to
edit a series of dinosaur names stored in a file named My Dinos.data. Each name
stored in My Dinos.data is allotted 20 characters in the file. A segment of a file
that contains a value (or a group of related values) is typically referred to as a
record. The position of each record in My Dinos.data is easy to calculate: multiple
the record number by 20. The byte at that position, and the next 19 bytes,
contains one name. Let’s take DinoEdit for a spin.

Open the Learn C Projects folder, go inside the folder 11.03 - DinoEdit, and
open the DinoEdit.xcodeproj document. Also inside that folder you’ll find a My
Dinos.data file. Move or copy that file to your desktop. DinoEdit will count the
number of dinosaur names in the file My Dinos.data and will use that number to
prompt you for a dinosaur number to edit.

Enter number from 1 to 5 (0 to exit, a to add):

NOTE: If you don’t have a copy of My Dinos.data, the program will still work, but
you’ll have to supply all of the names. Run the program and type “a” and Return, and
then enter a new dinosaur name (up to 20 characters long), and press Return again.
Repeat this three or four more times so you’ll have a few names stored in the file.

Since the file My Dinos.data has five records, enter a number from 1 to 5. If you
type the number 3, for example, DinoEdit will fetch the third dinosaur name from
the file and ask you to enter a new name for the third dinosaur. When you type a
new name, DinoEdit will overwrite the existing name with the new name.

Dino #3: Gallimimus

Enter new name (optional): Euoplocephalus

You can elect not to replace the name by pressing Return without entering in a
new name.

Either way, DinoEdit will loop around prompt you to enter another dinosaur
number. Reenter the same number, so you can verify that the change was made
in the file.

Enter number from 1 to 5 (0 to exit): 3

Dino #3: Euoplocephalus

Enter new name (optional): Gallimimus

Enter number from 1 to 5 (0 to exit): 0

CHAPTER 11: Working With Files 361

Goodbye...

It’s not the most efficient dinosaur editor we’ve used, but it’ll do. Let’s take a
look at the source code.

Stepping Through the DinoEdit Source Code
The file DinoEdit.h starts off with a few #defines. kDinoRecordSize defines the
length of each dinosaur record. Note that the dinosaur file doesn’t contain any
carriage returns, just 100 bytes (5 * 20 = 100) of pure dinosaur pleasure!

kMaxLineLength defines the length of an array of chars you’ll use to read in any
new dinosaur names. kDinoFileName is the name of the dinosaur file.

#define kDinoRecordSize 20
#define kMaxLineLength 100
#define kDinoFileName "My Dinos.data"

Now take a look at the main.c file. It starts with the usual #includes, along with
an #include for DinoEdit.h so that you get to use those #defines.

#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <string.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>
#include <pwd.h>
#include <unistd.h>
#include "DinoEdit.h"

Next come the function prototypes for the functions in main.c:

void SetHomeDirectory(void);
int GetNumber(void);
int GetNumberOfDinos(void);
void ReadDinoName(int number, char *dinoName);
bool GetNewDinoName(char *dinoName);
void WriteDinoName(int number, char *dinoName);
char *TrimLine(char *line);

TIP: If you ever want to find out which of the functions you call are dependent on a
particular #include file, comment out the #include directive. Xcode will pretty
quickly pop up error indicators next to the functions you just made it forget about.

CHAPTER 11: Working With Files 362

If you type a function and Xcode tells you it doesn’t know what you’re talking about,
look up the documentation for that function (hold down the Option key and then
double-click on the name of the function). Most man pages indicate which header file
that function is defined in. Add that #include to your program and you are back in
business.

main()
main() starts out by setting the working directory, so that the data file (My
Dinos.data) will be where you expect it to be.

int main(int argc, const char * argv[])
{
 SetHomeDirectory();
 chdir("./Desktop");

Two variables are defined: one to hold the number entered by the user, and a
second to hold the dinosaur name read from the file.

 int number;
 char dinoName[kDinoRecordSize+1];

main() basically consists of a loop that first prompts for a dinosaur number at
the top of the loop and processes the selection in the body of the loop.

 while ((number = GetNumber()) != 0) {

GetNumber() prompts for a dinosaur number between 0 and the number of
dinosaur records in the file. If the user types 0, you drop out of the loop and exit
the program. If they type the letter ‘‘a’’ as a response, you allow them to add a
new record to the end of the file.

If the body of the loop starts, then the user either entered a dinosaur number or
an ‘‘a’’. The if statement executes if it’s the former, reading one dinosaur name
and printing it out.

 if (number>0) {
 ReadDinoName(number, dinoName);
 printf("Dino #%d: %s\n", number, dinoName);

The alternative is that the user entered ‘‘a’’, in which case GetNumber() will return
-1 and the else statement will execute. This does nothing more than set the
dinosaur number for the new record.

 } else {
 number = GetNumberOfDinos() + 1;

CHAPTER 11: Working With Files 363

 }

GetNewDinoName() prompts the user for a new dinosaur name and captures what
the user types in. GetNewDinoName() returns true if a name is entered and false
if the user just presses return. If the user entered a name, you’ll pass it on to
WriteDinoName(), which will write the name to the file, either overwriting an
existing name or creating a new record.

 if (GetNewDinoName(dinoName))
 WriteDinoName(number, dinoName);

The loop continues until the user enters 0. The loop stops, main() bids the user
adieu, and the program stops.

 }
 printf("Goodbye...");
 return 0;
}

GetNumber()
GetNumber() starts off with a call to GetNumberOfDinos(). As its name implies,
GetNumberOfDinos() looks at the dinosaur file and returns the number of records
in the file. It then starts a loop that prompts the user to enter a command. If the
response is 0, an existing dinosaur record number, or the letter ‘‘a’’, the function
returns 0, the record number, or -1, respectively. If it’s anything else, the loop
repeats until it likes the answer.

int GetNumber(void)
{
 int number, numDinos;

 numDinos = GetNumberOfDinos();

 do {
 printf("Enter number from 1 to %d (0 to exit, a to add): ",
 numDinos);

 char lineBuffer[kMaxLineLength];
 fgets(lineBuffer, sizeof(lineBuffer), stdin);
 number = atoi(TrimLine(lineBuffer));

 if (number==0 && *TrimLine(lineBuffer)=='a')
 return (-1);
 } while ((number < 0) || (number > numDinos));

 return number;
}

CHAPTER 11: Working With Files 364

GetNewDinoName()
The GetNewDinoName() function is also not terribly complicated. You’ve used
variations of this code in several earlier projects. It prompts the user to type in a
dinosaur name, reads those characters into a buffer, strips off any whitespace,
and copies the result to the dinoName parameter, making sure the name is not
more than kDinoRecordSize characters long. (Remember that the buffer to hold
a name that long must be one character longer, for the NUL termination
character.) GetNewDinoName() returns true if the user typed something on the
line, and false if they didn’t.

bool GetNewDinoName(char *dinoName)
{
 char line[kMaxLineLength];

 printf("Enter new name (optional): ");
 fgets(line, kMaxLineLength, stdin);
 strlcpy(dinoName, TrimLine(line), kDinoRecordSize+1);

 return (dinoName[0] != '\0');
}

GetNumberOfDinos()
GetNumberOfDinos() starts your file management adventure.
GetNumberOfDinos() determines the number of dinosaur records by examining
the overall length of the file and dividing that number by the length of one
dinosaur name record. It uses a function named stat() that returns lots of
information about a file and copies that into a stat struct, defined by the
Standard Library.

int GetNumberOfDinos(void)
{
 struct stat fileStats;

 if (stat(kDinoFileName, &fileStats) != 0)
 return 0;

 return fileStats.st_size / kDinoRecordSize;
}

If stat() was able to collect the information about the file, it copies that into the
stat struct (at the address you supplied in the second argument) and returns a
value of 0. If something goes wrong-----most likely because the file doesn’t
exist-----it returns some other value.

CHAPTER 11: Working With Files 365

If the file doesn’t exist, GetNumberOfDinos() returns 0 to the caller. This makes
sense-----no file, no dinosaurs.

If the file does exist, the total length of the file will be copied to the st_size field.
Dividing that number by kDinoRecordSize calculates the total number of whole
dinosaur name records in the file. The sample file that accompanies this book is
100 bytes long, meaning there are 5 (100÷20) records.

ReadDinoName()
Next up is the ReadDinoName() function. This function reads one dinosaur record
and returns it, as a NUL terminated string, to the caller. It starts by defining a few
variables and then opening the file for reading:

void ReadDinoName(int number, char *dinoName)
 {
 FILE *fp;
 off_t positionOfRecord;

 fp = fopen(kDinoFileName, "r");

The next step is to calculate the position of the desired record in the file. Your
dinosaurs are numbered starting at 1, but file positions-----like memory
addresses, array indexes, and just about everything else in computers-----start at
0. So 1 is subtracted from the number and then multiplied by kDinoRecordSize.
If number was 1, the positionOfRecord will be 0 ((1-1)20). If the number is 3,
the position will be 40 ((3-1)20), and so on.

 positionOfRecord = (number-1) * kDinoRecordSize;

Now the exciting part! The fseeko() function is called to set the file position
indicator to the desired offset in the file. The SEEK_SET constant tells fseeko()
that the offset is from the beginning of the file (position 0). If you want to jump
right to a specific offset in a file, use the SEEK_SET constant.

 fseeko(fp, positionOfRecord, SEEK_SET);

TIP: If you want to know where the file’s file position indicator is currently at, call the
ftello() function. The rewind() convenience function sets the file position to 0,
the same as fseeko(fp,0,SEEK_SET).

Now that the file position indicator is positioned at the first character of your
dinosaur’s name, all that’s left to do is to read those characters into memory.
The fread() function is similar to the fgetc() function you’ve already used. But
instead of reading one character, it reads as many as you want. Unlike fscanf()

CHAPTER 11: Working With Files 366

and fgets(), it doesn’t look at the characters or try to interpret them in any way.
It simply gets however many bytes you tell it to read and copies those to the
memory address you pass in the first parameter.

 fread(dinoName, kDinoRecordSize, 1, fp);

The second parameter is the number of bytes (characters) fread() is going to
copy. The third parameter is a multiplier for the second argument. If you want to
read four long ints, for example, you can write fread(array,sizeof(long
int),4,fp). Since you only want one 20-character record, pass 1. The last
argument is the FILE pointer.

After fread() returns, 20 bytes-----starting from the position set by fseeko()-----will
have been copied into dinoName. To make sure dinoName is a properly NUL
terminated C string, a '\0' character is stored in the 21st element of the array.
This will make more sense when you get to the WriteDinoName() function.

 dinoName[kDinoRecordSize] = '\0';

There’s nothing left to do except close the file and return to the caller.

 fclose(fp);
}

WriteDinoName()
WriteDinoName() opens the file for reading and writing using the ‘‘append’’
mode. Since you used a mode of ‘‘a+’’ instead of ‘‘w+’’, you won’t lose the
contents of My Dinos.data (in other words, My Dinos.data won’t be deleted and re-
created). Alternatively, you could have used the "r+" mode. That would have
also opened it for reading and writing and wouldn’t have erased it. But if the file
didn’t already exist, that mode would fail and you couldn’t create a new
dinosaur database from scratch. Some of these decisions can be tricky!

WriteDinoName() follows the same pattern as ReadDinoName(). It starts by
opening the file, calculating the offset of the record, and moving the file position
indicator to that offset.

void WriteDinoName(int number, char *dinoName)
{
 FILE *fp;
 off_t positionOfRecord;
 fp = fopen(kDinoFileName, "a+");
 positionOfRecord = (number-1) * kDinoRecordSize;
 fseeko(fp, positionOfRecord, SEEK_SET);

The real difference is that it writes out the supplied name instead of reading it in,
using the fwrite() function.

CHAPTER 11: Working With Files 367

 fwrite(dinoName, kDinoRecordSize, 1, fp);

fwrite() takes the same parameters as fread(). The only thing that changes is
the direction of the transfer.

It’s really important to understand that fwrite() and fread() do not treat the
bytes in dinoName as a C string, or any other kind of value. For fwrite(), the
memory address you pass in the first parameter is just a sequence of bytes.
What those bytes represent is entirely up to you.

In this program, those bytes represent a C string stored in a char array. If the
name is 8 characters long, then those 8 characters, the terminating NUL
character, and 11 unknown char values will be copied to the file. When those
same 20 bytes are read back in, the dinoName array is filled with an 8 character
name, a terminating NUL character, and 11 more bytes you don’t care about
because they’re beyond the NUL character that marks the end of the string.

If the name is exactly 20 characters long, then those 20 characters will be
written to the file. When you read them back into the dinoName array, only the
twenty characters are transferred. That’s why the ReadDinoName() function
included the statement dinoName[kDinoRecordSize] = '\0' so in the special
case of a 20-character dinosaur name, the array will still contain a properly
terminated C string.

Which brings us to some questions that you might have about those 11
unknown characters. Should you care what their values are? They could be any
value, but since nothing beyond the NUL character is important to your C string,
their values don't matter. So why do we write them? It’s important because of
the way fseeko() works. If you started at position 0 and wrote just the 8
characters and the NUL, your file would be 9 characters long. When you write the
next dinosaur name, your program will try to seek to position 20, but it can’t
because your file is only 9 characters long. fseeko() can’t seek beyond the end-
of-file (EOF) position of the file. So you must write these extra bytes so the file’s
length is always an even multiple of 20.

Now that you understand all of that, let’s wrap up the WriteDinoName() function.
The only thing left to do is close the file and return.

 fclose(fp);
}

Wrap Up
Finally, there’s the TrimLine() function, which you’ve seen before. And that’s
the entire DinoEdit program. It’s quite a bit different than earlier programs, and it

CHAPTER 11: Working With Files 368

uses files in a completely different way. So let’s take this opportunity to talk
about that file and other ways to use fread() and fwrite().

Text vs. Data Files
You probably noticed that the file extension of the My Dinos file is data instead of
txt. That’s because it isn’t a text file. A text file contains nothing but ASCII or
Unicode characters. You can open it, and likely edit it, using any text file editor
such as TextEdit or Xcode.

The My Dinos file is different. You can’t open My Dinos and edit it like a text file.
It’s a file format that you created. You’ve used the generic data extension to
indicate to the world that this file contains data that is not organized in a
standarized format, like text or JPEG. As you learned in the WriteDinoName()
function, the bytes between names might not even be valid characters.
Programmers call these junk or pad bytes.

Sometimes it’s really useful to look at the data in your files. But since My
Dinos.data isn’t a text file, how do you do that? It turns out that there’s a handy
command line tool for doing just that. Are you really surprised?

The hexdump command will format the raw bytes of any file and output them to
standard out as hexadecimal digits. Actually, it can output data in all kinds of
ways, but one hex number per byte is the default. Our favorite hexdump switch is
-C. This switch outputs each byte both as a hexadecimal value and (if possible)
the corresponding ASCII character. Figure 11-6 shows the My Dinos.data file
being ‘‘dumped’’ in the Terminal window.

Figure 11-6. Hexdump of My Dinos.data

The file offsets, shown on the left column in Figure 11-6, are also in
hexadecimal. So offset 00000020 is actually 32 (216+0) in decimal. That’s why

CHAPTER 11: Working With Files 369

the second dinosaur name (‘‘Barney’’) appears to start at offset 00000014,
because that’s actually offset 20 (116+4) in the file.

Working with Endians
So far in this book, the only thing you’ve written and read are single-byte
characters. Characters are very portable because they’re self-contained: a
character is a character no matter where it goes.

We alluded to the fact that fread() and fwrite() don’t regard the pointer they
are given as a specific kind of variable (char array, int, struct, and so on). To
fread() and fwrite(), the buffer pointer is just a sequence of bytes in memory.
What those bytes represent is entirely up to you to decide.

There are subtle issues that arise when you start writing more complex
variables, like ints and structs, using fwrite() to a file that might be read back
on a different computer. Data written to file has persistence. It has to make
sense not only to your computer, but other computers, and even computers that
haven’t been built yet. We’ve already warned you that other CPUs have different
lengths of ints and pointers, but they can also differ in how the bytes in an int
are organized.

There are generally two ways to organize the bytes in an int. If you go all the
way back to Chapter 4, in the section ‘‘Bytes and Bits,’’ you learned that an int
value is stored as individual bits. Each bit represents one power-of-2. A multi-
byte int is stored in successive bytes. A 64-bit int, for example, is stored in
eight bytes. The first byte stores the bits 0 through 7, the second byte stores the
bits 8 through 15, and so on, up to the last byte that stores the bits 56 through
63. The complication is that some CPUs store the low bit byte in the first
address of the int, and some CPUs store the high bit byte in the first address of
the int.

Which ‘‘end’’ of the integer holds the first byte defines the CPU’s endianness.
(Try saying that quickly, three times.) When the first address of an int stores the
least significant bits (bits 0-7) of the number, it is called little-endian byte order.
When the first address of the int stores the most significant bits of the number,
it is called big-endian byte order.

Figure 11-7 shows the same integer number (1,234) stored in a four byte int
located at address 836. On the left, the value is stored on a CPU that uses little-
endian order. On the right, the CPU uses big-endian order.

CHAPTER 11: Working With Files 370

Figure 11-7. The value 1,234 stored in little-endian and big-endian order

If you wrote this integer to a file on a little-endian computer using fwrite(), and
then read it in using fread() on a big-endian computer, the number would
change from 1,234 to 3,523,477,504. This is probably not what you want. There
are two techniques to make sure your number makes sense to other computers.

The first is to use the fixed-width integer types we told you about in Chapter 8.
These will ensure that the length of the integer you write to a file will be the
same size no matter what CPU is running your program.

The other is to use the byte-order swapping functions supplied by the operating
system. Here’s a code fragment that uses both techniques to safely write an
integer value to a file so it always has the same size and byte order:

#include <libkern/OSByteOrder.h>
…

int myInt;
…

int32_t safeInt;
safeInt = OSSwapHostToBigInt32(myInt);
fwrite(&safeInt, sizeof(safeInt), 1, fp);

This code uses a byte-swapping function to rearrange the order of the bytes in
the variable myInt from whatever order your CPU uses to big-endian order and
then stores it in a known-width integer variable. The 4 bytes of that variable are
then written to the file. The number that’s in the file will always be in big-endian
order no matter what the native (‘‘host’’) order of your CPU is.

To read that number back from the file, reverse the process, like so:

int32_t safeInt;
fread(&safeInt, sizeof(safeInt), 1, fp);
myInt = OSSwapBigToHostInt32(safeInt);

CHAPTER 11: Working With Files 371

The functions defined in <libkern/OSByteOrder.h> are supplied by OS X (rather
than the Standard Library). OS X supplies a rich set of byte-swapping functions
that are easy to understand, and we like that. The functions names are almost
self-explanatory. The OSSwapHostToBigInt32() swaps the byte order of the 32-
bit integer argument from the host byte order to big-endian order. The
OSSwapBigToHostInt32() function reverses the process. These functions are all
‘‘smart’’; they’ll only reorder the bytes if you’re running on a little-endian CPU. If
your CPU uses big-endian byte ordering already, these functions don’t change
anything.

We’re going to finish up this chapter by giving the RomanNumeral project from
Chapter 9 a tune-up. In the process, you’re going to learn a little more about
writing command-line tools and some interesting facts about what it means to
be a ‘‘file.’’

Making RomanNumeral a Better Tool
In Chapter 9 you wrote a command-line tool that would convert decimal number
arguments into Roman numerals. Now you’re going to make that tool even more
useful------well, as useful as a Roman numeral converter can be.

Most command-line tools that process files use a well-known convention for
getting the data it’s going to work on. If one or more arguments passed to the
program are paths to files, the tool processes those files and exits. If there are
no command-line arguments, then the program processes the characters from
its standard in character stream instead. Check the man pages for tools like cat,
sort, grep, and others. They all work this way.

When you design your command-line tool to behave this way, it becomes a
flexible member of the command-line community. It can be directed to perform
its magic on existing files, or become one step in a chain of commands that’s
transforming a data stream. Consider the command

MyTool ~/Desktop/MyFile.txt | sort --unique

This command directs MyTool to do whatever-it-does on the file MyFile.txt. The
results are piped from MyTool’s standard out to the sort tool’s standard in.
Because sort wasn’t given any file arguments, it sorts the output of MyTool.
Contrast that with this command:

sort --unique ~/Desktop/MyFile.txt | MyTool

This time the sort tool reads MyFile.txt and outputs the sorted results to MyTool.
Instead of reading a file, MyTool reads its standard in and outputs the results.
Depending on what MyTool does, the results could be strikingly different.

CHAPTER 11: Working With Files 372

Stepping Through RomanNumeral.xcodeproj
Open the RomanNumeral.xcodeproj project for Chapter 11. You’ll find it in the
11.04 - RomanNumeral folder. We’ll only cover the differences between this
project and the one in Chapter 9. If you have questions about what didn’t
change, refer back to the description of the first version.

The new version starts out with two additional #include directives.

#include <stdbool.h>
#include <ctype.h>

In addition to the existing NumberToRomanNumeral() function, there are two new
ones.

void PrintUsageAndExit(void);
void ReplaceNumbersInStream(FILE* stream);

main()
The main() function has been almost completely rewritten. It starts by looping
through the arguments passed to it from the command line.

int main(int argc, const char * argv[])
{
 int i;
 for (i=1; i<argc; i++) {

Remember that argv[0] is the path to the tool, and not an argument, so the loop
ignores that. Next it checks for the existence of a particular string.

 if (strcmp(argv[i], "-h") == 0)
 PrintUsageAndExit();

The strcmp() function takes two string pointers and returns 0 if the two are
identical. It’s the string equivalent of a comparison operator. If it does return 0,
then the user passed ‘‘-h’’ as one of the arguments. Your program looks for that
switch and prints out a usage message and stops.

Many command-line tools will output a so-called usage message whenever the
arguments it gets don’t make sense, there’s some kind of problem, or it is asked
to. The usage message should contain a very brief explanation of how the tool
should be used and what arguments it understands. It’s also common that a
command will recognize a switch (typically -h, for ‘‘help’’) that will output its
usage message so the user can read it.

CHAPTER 11: Working With Files 373

If the argument isn’t the -h switch, main() tries to convert it to a number. If
successful, it converts the decimal number to a roman numeral and prints that,
just like the version from Chapter 9.

 int number;
 number = atoi(argv[i]);
 if (number != 0) {
 if (number >= kMinDecimalNumber && number <= kMaxDecimalNumber) {
 char romanNumeral[kMaxRomanNumeralLength+1];
 NumberToRomanNumeral(number, romanNumeral);
 printf("%d = %s\n", number, romanNumeral);

If the argument appears to be a number, but isn’t in the range of numbers the
program can convert, it prints the usage message and stops.

 } else {
 PrintUsageAndExit();
 }

Now you’re at the business end of the program. If the argument wasn’t the -h
switch, and it wasn’t a number, assume it’s a file and try to open it.

 } else {
 FILE* fp = fopen(argv[i], "r");
 if (fp != NULL) {
 ReplaceNumbersInStream(fp);
 fclose(fp);

If the argument is a path to a file that can be opened, the file is opened and
passed to the ReplaceNumbersInStream() function. This function does most of
the work for the tool, and we’ll get to it in a moment.

If the file couldn’t be opened, then the argument wasn’t a path to readable text
file. In that case, you again output the usage message and exit.

 } else {
 PrintUsageAndExit();
 }
 }
 }

Once the loop works through all of the arguments, one at a time, it stops and
the code checks for one more condition. If no arguments were passed on the
command line, the ReplaceNumbersInStream() function is run anyway, but this
time it’s passed the stdin constant.

 if (argc == 1)
 ReplaceNumbersInStream(stdin);

So if the user types numbers or file paths as arguments to the command, those
numbers and files are converted. If they don’t enter any arguments, the tool

CHAPTER 11: Working With Files 374

looks to standard input as the source of data. With that, the main() function is
complete.

 return 0;
}

PrintUsageAndExit()
The PrintUsageAndExit() function is very straightforward.

void PrintUsageAndExit(void)
{
 fprintf(stderr, "Usage: RomanNumeral [-h] [number | file ...]\n");
 fprintf(stderr, "\t-h prints this message and exits\n");
 fprintf(stderr, "\tnumber between %d and %d\n", kMinDecimalNumber,
kMaxDecimalNumber);
 fprintf(stderr, "\tfile file echoed to stdout, replacing decimal
numbers\n");
 fprintf(stderr, "\tif no arguments are specified, replaces decimal numbers
in stdin\n");
 exit(1);
}

It’s traditional that error and usage messages are sent to the standard error
stream, not the standard output stream. That’s why PrintUsageAndExit() uses
fprintf(stderr,… instead of printf(….

ReplaceNumbersInStream()
Now you’re at the heart of the program, ReplaceNumbersInStream(). It starts out
with a while loop that’s going to read every character in the input stream.

void ReplaceNumbersInStream(FILE* stream)
{
 int c;
 while ((c=fgetc(stream)) != EOF) {

It looks at each character to determine if it’s a decimal digit. It does this using
the isdigit() function.

 if (isdigit(c)) {

If it is a digit, your program assumes that this is the first character in an integer
number. It will use fscanf() to convert those digits into a numeric value, but
before it does that it calls a very unusual function.

 ungetc(c, stream);

CHAPTER 11: Working With Files 375

The problem with character streams is this: the only way to figure out if you
want to do something with the next character is to read it, and once you’ve read
it, it’s no longer in the stream. If you decide it’s not a character you want to
process, you’re stuck-----the character has already been read. ungetc() lets you
undo the last (and only the last) fgetc(), essentially putting the last character
read back into the stream as if you’d never read it. With the first digit of the
number back in the stream, you can now use fscanf() to scan the next integer
number from the stream.

 long long int number;
 fscanf(stream, "%lld", &number);

The number read is now checked to see if it’s one that your program can
convert (remember that NumberToRomanNumeral() can only convert numbers
between 1 and 3,999). If it can, the number is converted and output to standard
out. The effect is that the number scanned is replaced by its Roman numeral
equivalent.

 if (number >= kMinDecimalNumber && number <= kMaxDecimalNumber) {
 char romanNumeral[kMaxRomanNumeralLength+1];
 NumberToRomanNumeral((int)number, romanNumeral);
 printf("%s", romanNumeral);

If the number can’t be converted, the same number is echoed.

 } else {
 printf("%lld", number);
 }

Notice that the number scanned is a long long int. That’s in case the number
encountered in the stream is a really big one, it won’t get messed up because it
wouldn’t fit in a regular int.

Finally, there’s the else clause for the original isdigit() decision. If the
character read from the stream isn’t a digit, it gets echoed verbatim and the
loop goes back around and gets the next character.

 } else {
 putchar(c);
 }
 }
}

Now that you’ve seen all of ReplaceNumbersInStream(), let’s review what it does.
It reads all of the characters in a stream. All characters that aren’t numbers get
output, unchanged, to standard out. Any sequence of characters that appears to
be a number is converted from decimal to Roman numerals, assuming the value
of the number is within an acceptable range. If not, the decimal number is
output (unchanged).

CHAPTER 11: Working With Files 376

This kind of logic is called a filter or a transformation. It looks for patterns in the
incoming character stream. If it finds what it’s looking for, it changes it
somehow. Everything else gets passed through unchanged.

Putting RomanNumeral Through Its Paces
You’re going to reuse the trick from Chapter 9 to quickly test your new
command-line tool from the Terminal window.

1. Build the RomanNumeral project (Product Build for
Running).

2. Open a Terminal window and position it next to the project
workspace window.

3. Open the Products folder in the project navigator and drag the
RomanNumeral file into the Terminal window.

4. Type several numbers (this example uses 97, 431, and 1995)
and press Return.

Your modified RomanNumeral tool will run and convert the three arguments, as
shown in Figure 11-8. This is no different than the tool you built in Chapter 9.

Figure 11-8. Testing the modified RomanNumeral project in the Terminal

Repeat the first three steps to run your tool again, but this time specify a file that
contains some numbers. When we gave the program the argument
~/Desktop/DVD\ Data.txt, this is the output we saw (note that we shortened the
path to the RomanNumeral tool in the book so it’s easier to read):

CHAPTER 11: Working With Files 377

mac-pro:~ james$ /some/path/to/RomanNumeral ~/Desktop/DVD\ Data.txt

The Ring

Scariest movie ever!

IX

Tenacious D in The Pick of Destiny

Jack Black rocks, Kyle Gass can play

VII

Hot Fuzz

Simon Pegg sleeper – must see!

VIII

…

Instead of trying to convert the argument ‘‘~/Desktop/DVD\ Data.txt’’ in a
Roman numeral, the program read the file and converted all of the numbers it
found there into Roman numerals. For this file, it was the rating value (1-9) given
to each movie that got changed.

One last bit of fun. In the Terminal window, start a line with this

ls –l ~ |

and then drag your RomanNumeral tool into the Terminal window again. This will
create a command that pipes the output of the ls -l (‘‘list directory’’) command
to the standard in of your RomanNumeral tool. Press Return to see the results.

mac-pro:~ james$ ls -l ~ | /some/path/to/RomanNumeral

total 0

drwx------+ XV james staff DX Aug XVII XV:LI Desktop

drwx------+ VI james staff CCIV Jul XXVII XI:XXXIII Documents

drwx------+ IV james staff CXXXVI Jul XXV XXII:XXVIII Downloads

drwx------@ XLIII james staff MCDLXII Aug X XVI:XXXIX Library

drwx------+ III james staff CII Jul XXV XXII:XXVIII Movies

drwx------+ III james staff CII Jul XXV XXII:XXVIII Music

drwx------+ XVI james staff DXLIV Aug XVIII XVIII:XXX Pictures

drwxr-xr-x+ IV james staff CXXXVI Jul XXV XXII:XXVIII Public

drwxr-xr-x III james staff CII Jul XXVII XI:XXXV bin

CHAPTER 11: Working With Files 378

How hilarious is that? All of the numbers in your home folder’s directory listing
were replaced with Roman numerals! This is UNIX for gladiators.

But seriously, we had you update the RomanNumeral project for a couple of
reasons. The first was to make this über-useful program play well with the other
command-line tools, and so that it acts more like a well-rounded command-----
complete with a usage message and a help switch.

The other, more important, reason is so you’d get a taste of using file objects
(yes, we used the word ‘‘object’’) interchangeably.

File System Objects
What’s really remarkable about the ReplaceNumbersInStream() function is that
there is only one. This single function takes one FILE pointer parameter and
uses it to read the characters in a file, or a character stream, or even your
keyboard, and then translate that information and send the results to standard
out.

This works because UNIX is built around the philosophy that ‘‘everything is a
file.’’ Thus, an open FILE pointer could refer to a regular file, a directory, a
character stream, a pipe from another program, your keyboard, the console
pane in Xcode, a Terminal window, or a network communications socket. The
beauty here is that no matter what it is, if you want to send one character to that
file/pipe/console/window/socket you call fputc().

NOTE: Don’t believe us? Run your RomanNumeral program again, from the
command line or Xcode, by itself without any arguments. It will start running and
pause, waiting for you to type something since your keyboard is now connected to its
standard in. Start typing words and numbers, pressing Return in between, and see
what happens.

This kind of interchangeability is called abstraction, and it’s a key concept in
object-oriented programming. It’s great for programmers because you don’t
have to write four different versions of ReplaceNumbersInStream()-----one that
reads from a file, one that reads from a pipe, one that reads from your keyboard,
and one that reads from a network port. You write one function that reads from
a FILE and then you pass it any kind of open FILE you can get your hands on.

Well, almost. The one thing you need to know about abstraction is that just
because all of these different things can be represented by a FILE, it doesn't

CHAPTER 11: Working With Files 379

mean they all act exactly the same. Each FILE has a set of properties that limit
what you can do with it.

Some properties are implicit. For example, the standard input character stream
connected to your program is the reading-end of a FIFO pipe. You can read one
or more characters from that pipe using functions like fgetc(), fgets(),
fscanf(), and plain old fread(). What you can’t do is try to send it characters
using functions like fputc() or fprintf(). You can’t write characters to
standard input or read characters from standard output.

Other properties of a FILE can be specified. When you open a file for reading
only (mode ‘‘r’’), you can’t use any function that would write bytes to that file,
such as fputc() or fprintf(). Conversely, if you opened a file for writing only
(mode ‘‘w’’), you can’t read anything from it.

Knowing these limitations lets you design functions that work on a variety of
input and output sources. Your ReplaceNumbersInStream() function is designed
so that it will work on any input source that supplies a sequence of characters.
Thus, it works for files, pipes from other programs, and your keyboard. The
functions in DinoEdit that randomly read and replace sections of a file would,
however, not work if you tried to use stdin or stdout.

What’s Next?
You learned about files and streams. You now know how to create, open, and
close a file. You then moved on to reading and writing files and you explored the
file opening modes. Finally, you learned all about random file access. Along the
way you learned how to set the current working directory, get the length of a file,
and a little about making a well-behaved command-line tool.

Chapter 12 is going to look at what could go wrong and what you should do
about it.

CHAPTER 11 EXERCISES

1. Can you find the syntax error or logical mistake in each of these code
fragments?

a. FILE *fp;
fp = fopen("w", "My Data File.txt");
if (fp != NULL)
 printf("The file is open.");

CHAPTER 11: Working With Files 380

b. int myData = 7;
FILE *fp;
fp = fopen("My Data File", "r");
fscanf("Here’s a number: %d", &myData);

c. FILE *fp;
char *line;
fp = fopen("My Data File.txt", "r");
fscanf(fp, "%s", &line);

d. FILE *fp;
char line[100];
fp = fopen("My Data File", "w");
fscanf(fp, "%s", line);

2. Write a program that reads in a text file with the following format:

 The first line in the file contains a single number. Call it x.

 All subsequent lines contain a list of x numbers,
separated by spaces or tabs.

For example, if the first number in the file is 6, all subsequent lines will have six numbers per
line, like this:

6
100 200 300 400 500 600

There is no limit to the number of lines in the file.

After reading in each line of numbers, it should echo those numbers to standard out, separated
by tab characters. It should keep reading and printing lines until it hits the end of the file.

You can print each number as you encounter it or, for extra credit, allocate an array of ints large
enough to hold one line’s worth of ints and then pass that array to a function that prints an int
array.

381

12
Chapter

Handling Errors
You’ve learned a lot about C. You’ve learned about arrays, pointers, dynamically
allocating memory, and accessing files. Along the way, we’ve hinted at some of
the pitfalls you have to look out for: not storing values outside the dimension of
an array, not using uninitialized pointers, checking fgetc() for EOF, and so on.
But we haven’t really been doing this in any systematic way.

Error handling is a general term for writing code so it still works when
unexpected things happens. And believe us, unexpected things will happen.
Your code isn’t battling for survival in the inevitable zombie apocalypse, but your
program does need to defend itself from erroneous values, unexpected
circumstances, and (yes) even hackers. And like the hero in Zombieland, you
can survive by following a few simple rules.

The rules we’ve developed for you are based on programming best practices.
Best practices are guidelines------born of experience and research------that help you
write better programs. There are entire books dedicated to this subject. Instead
of going into the theory and history, we’ve chosen a simple set of rules to get
you started. They encompass some good habits that might not be obvious to
new programmers, but will generally reduce the number of bugs in your
program, both now and in the future. As you gain more programming
experience, you’ll learn the rationale behind these rules and even circumstances
where they might not apply. But for now, we want you to follow these rules.
We’re sure they’ll get you started in the right direction.

But before we get to those rules, let’s talk about what happens when things go
wrong.

CHAPTER 12: Handling Errors 382

Murphy’s Law
Anything that can go wrong will go wrong.

- Edward Murphy, Jr.

Forget everything you’ve heard about Murphy’s Law. The real Murphy’s Law has
nothing to do with the perverseness of the universe or buttered toast’s ability to
land, wrong-side-down, on your carpet.

Major Edward A. Murphy, Jr. was an aerospace engineer who worked on safety-
critical systems for the United States Air Force. While the exact origins of his law
are somewhat murky, his famous proclamation sums up an extremely important
principle of engineering: if there is any possibility that some element of an event
will fail, then it will fail if that event is repeated often enough.

Pouring a glass of iced tea seems like a safe and repeatable task. It might have
an error rate of less than 1:100,000. In other words, if you pour 100,000 glasses
of iced tea, 99,999 of those will go flawlessly and one won’t-----the tea misses,
you knock over the glass, or whatever. That sounds like phenomenally good
odds. You could easily go your entire life, pouring one or two glasses of iced tea
every day, and never have a mishap.

Now take a group of 10,000,000 people pouring a single glass of iced tea each
day. With an error rate of 1:100,000 there will be, on average, over 100 spilled
glasses of tea every day-----every day! Murphy’s law tells us that, unless there is
absolutely zero chance that something can go wrong, then no matter how
remote that chance, if you continue to do that thing, and wait long enough, it will
(eventually) go wrong.

What does that have to do with programming? If there’s a possibility that
something can go wrong, then given enough time and enough repetitions, that
thing will go wrong. It could be an index that is beyond the dimension of an
array. It could be a file that is missing or contains data you weren’t expecting. If
your code is not written to anticipate and deal with those potential problems,
one day your program will behave badly. It could crash, stop working, act
strangely, freeze, or even destroy important data.

Take the DVDFiler program you wrote in the last chapter. Imagine a hard drive
glitch that caused a bad bit of data to be written to the first record in the My
DVD Data.txt file. If the wrong amount of data was written to that first record, the
remaining DVD records would all be read incorrectly. Once that happened, when
the data was written back out, it would wipe out your entire database of DVD
titles! Now the chances of that are slim, but remember Murphy’s Law. If there

CHAPTER 12: Handling Errors 383

was only a one-in-a-million chance that the first record of the file was messed
up somehow, that sounds pretty reliable. But if you sell your DVD cataloguing
program to 10,000,000 happy Mac users, odds are about 10 of them will be
sending you really angry messages-----every day!

As you program, you need to consider what could go wrong and code
defensively so that if something does go wrong, your program will still work
(within reason), or at least fail gracefully, do something predictable and not
cause more problems. Programs that recover gracefully from the unexpected
are said to be fault tolerant, and that’s your goal for this chapter. Here are the
rules.

Rule #1: Never Assume
Making assumptions leads to poor programming. Code that depends on an
assumption is setting itself up for a fall should that assumption turn out to be
erroneous one day. Remember Murphy’s Law; if your code depends on an
assumption, and there’s any possibility that the assumption could be wrong,
then your code will eventually fail.

So what is an assumption? An assumption is any fact about a value or variable
that your code depends on being true to function property. As long as the fact is
true, your code will function as you intended it. But as soon as that fact is no
longer true, who knows what will happen?

Assumptions About Variables
Here’s a simple example of an assumption we already told you to avoid. In the
DVDTracker program in Chapter 10, the ReadStruct() function prompts the user
to enter a DVD title and then copies the reply into a DVDInfo struct.

 char buffer[500+1];
 printf("Enter DVD Title: ");
 fgets(buffer, 501, stdin);
 strlcpy(infoPtr->title, TrimLine(buffer), 256);

This code makes a couple of assumptions. The fgets(buffer,501,stdin)
statement assumes that the buffer array is at least 501 characters long. Now
that is not a terrible assumption to make because the declaration for buffer is
only two lines earlier. You can easily see that buffer is defined as char buffer[
500+1].

Let’s say that one day in the distant future you decide to change the size of the
buffer to 300+1. If you make that change, you should also change the 501 in

CHAPTER 12: Handling Errors 384

fgets() to 301 or fgets() might write beyond the end of your buffer. Remember
Murphy’s Law-----except this time it applies to you, not your program. If you write
your code so that you must remember to update two things to keep it working,
then one day you’re going to forget to make both changes and your previously
working program will now have a bug in it.

Instead, write the code like this:

 char buffer[500+1];
 …
 fgets(buffer, sizeof(buffer), stdin);

This code removes the assumption you made about the size of buffer. Instead,
you get the actual size of the array from the compiler, so no matter what
dimension you change buffer to, the fgets() function will still be safe. One day
you could even decide to declare buffer using a variable dimension (so that it is
a difference size every time the function runs) and the call to fgets() will still be
safe!

The last line of code also makes an assumption:

 strlcpy(infoPtr->title, TrimLine(buffer), 256);

It assumes that infoPtr->title is a char array that is 256 characters long. If you
go find the declaration of struct DVDInfo in dvdTracker.h, you can confirm that
this is true.

#define kMaxTitleLength 256
struct DVDInfo
{
 char rating;
 char title[kMaxTitleLength];
 …

But this definition is in another file. It would be really easy to change the
declaration of kMaxTitleLength and forget to go through all of your other source
files looking for any code that assumed it was still 256. You can make the code
a little better by writing it like this:

 strlcpy(infoPtr->title, TrimLine(buffer), kMaxTitleLength);

This code, at least, no longer assumes that kMaxTitleLength is 256. But it still
assumes that title is declared as char title[kMaxTitleLength]. If title
changed to char title[kSomeOtherLength], then (again!) your code in main.c
would be broken. The safest statement you can write is

 strlcpy(infoPtr->title, TrimLine(buffer), sizeof(intoPtr->title));

Again, you use the compiler to remove any assumptions from your code. Now,
no matter how title is defined, the call to strlcpy() will behave itself.

CHAPTER 12: Handling Errors 385

Check Ranges
Another trap programmers fall into is assuming that a particular variable is
always within a reasonable range. What ‘‘reasonable’’ is depends on the code,
but it’s very tempting to write your code for the values that work and forget
about the values that won’t.

Here are two good examples from the Factor project from Chapter 7, both of
which are in the Factor() function. Let’s start with the value of the number
parameter.

bool Factor(int number, int *firstFactorPtr, int *secondFactorPtr)
{
 int factor;
 for (factor = sqrt(number); factor > 1; factor--) {
 if ((number % factor) == 0) {
 break;
 }
 }

This looks like perfectly safe code. Given any number, the loop will look for a
factor of number (greater than 1) and stop. So what’s the problem?

The problem is that number is an int. An int can also be zero or negative. The
sqrt() function doesn’t work for 0 or negative numbers. In those cases, the
value that ends up getting stored in factor could be really whacky. On our
computer, when number was -1, factor was set to some crazy value like
-2,147,483,648. If number is 0, factor will likely be 0 and the number%factor
expression will terminate your program with a ‘‘divide by zero’’ exception. Yikes!

So how do you protect your program from out-of-range values? There are three
techniques. The first is a little timid, but legitimate: verify that the value will never
be out of range. That sounds simple, doesn’t it? It’s usually a little more difficult
than you might think. For a function like Factor(), we suggest a plan of action
like this:

 Make the Factor() function static so that it can’t be called
from another module.

 Verify that every place in your program you call Factor() can’t
possibly pass it a 0 or negative value.

 Add comments to the Factor() function that warn any
programmer using it that number must be a value greater than
0 or bad things will happen.

CHAPTER 12: Handling Errors 386

This kind of solution is usually reserved for when the code needed to protect
your program is cumbersome or would be unacceptably slow. Neither of those
is really the case here, so let’s move on to the second technique.

The second solution is to have Factor() protect itself from bad values. Add the
following code to the beginning of Factor():

bool Factor(int number, int *firstFactorPtr, int *secondFactorPtr)
{
 if (number < 1)
 return false;
 …

Now Factor() is as safe as houses. You can pass it any integer value possible
and it won’t crash the program or return any unexpected values. It won’t find the
factor of any number less than 1, but it won’t do anything stupid either.

We’ll describe the third technique at the end of this section. For now, let’s
continue to worry about the values that get passed to your functions.

Tolerate All Possible Values
Sometimes the acceptable values for a variable aren’t a simple range-----such as
greater than 1 or less then 100. The values a function is designed to deal with
are called its domain. Any values outside its domain may have undesirable
results. As a rule, you want your function to behave itself regardless of whether
its values are inside or outside its domain.

Defining what values are acceptable is entirely up to you, the designer of the
function. While you’re still looking at the Factor() function, consider the other
two parameters, firstFactorPtr and secondFactorPtr. Towards the end of the
function is this code:

 *firstFactorPtr = factor;
 *secondFactorPtr = number / factor;

If the value of either firstFactorPtr or secondFactorPtr was NULL, your program
would crash. How would you prevent that from happening? You could use the
technique you just used for number and simply prevent the function from doing
anything if either pointer is NULL:

 if (number<1 || firstFactorPtr==NULL || secondFactorPtr==NULL)
 return false;

While that satisfies the letter of rule #1, it misses the spirit. Not having the
function do anything useful if either of the return value pointers are NULL is a bit

CHAPTER 12: Handling Errors 387

harsh. After all, number could still be valid and the purpose of the Factor()
function-----to find two factors of number-----could still be performed.

Instead, let’s replace the assignment statements with something a bit more
tolerant:

 if (firstFactorPtr != NULL)
 *firstFactorPtr = factor;
 if (secondFactorPtr != NULL)
 *secondFactorPtr = number / factor;

This code is a lot more genial and (surprise!) more flexible. If number is within
range, the function will still perform its calculation. If either of the two return
value arguments are NULL, then that respective value is not returned to the
caller-----but the function still does its job. This now means that you can call
Factor() to get both factors, neither, or just one by selectively passing NULL for
the pointer arguments.

Allowing a parameter to be NULL to indicate that there is no value, or you don’t
want a value returned, is a common pattern in C functions. It makes its usage
pattern-----the ways in which your function can be used-----more flexible. More
importantly, it means your function doesn't assume that a valid pointer is always
supplied.

Now let’s jump to the MultiArray project from Chapter 9. In this first example of
storing DVD information in arrays, we mentioned that the fgets() function will
include the newline character in the string it returns. When this code executes, it
could leave a newline at the end of each string:

for (dvdNum = 0; dvdNum < kMaxDVDs; dvdNum++) {
 printf("Title of DVD #%d: ", dvdNum + 1);
 fgets(title[dvdNum], kMaxTitleLength, stdin);

We also told you that you could add the following code to remove that newline:

 title[dvdNum][strlen(title[dvdNum]) - 1] = '\0';

Can you see what’s potentially wrong with this code? What if the string returned
by fgets() is empty? (It can happen.) The strlen() function will return 0 and the
variable title[dvdNum][-1] will be set to '\0'. That’s bad.

In this example, the domain of the strings you want to clean up includes only
those strings that end in a single newline character. That means two things: the
string should be at least one character long and the last character should be a
newline. To be safe-----and not write NUL values to invalid memory locations-----you
should at least test the length of the string, like this:

CHAPTER 12: Handling Errors 388

 size_t titleLength = strlen(title[dvdNum]);
 if (titleLength>=1)
 title[dvdNum][titleLength-1] = '\0';

It’s also possible that the last character of the string isn’t a newline. This can
happen if there are more characters on the line than the buffer size passed to
fgets(). To be extra tolerant, you need to see if the last character is a newline
before obliterating it, like this:

 size_t titleLength = strlen(title[dvdNum]);
 if (titleLength>=1 && title[dvdNum][titleLength-1] == '\n')
 title[dvdNum][titleLength-1] = '\0';

This is tolerant code! It does what it’s supposed to do (remove the extraneous
newline character from the end of the line), yet won’t do anything bad (writing
NUL bytes to other variables) or stupid (deleting a legitimate character from the
line).

So by now you should be getting the idea. Don’t make assumptions about the
value of variables that aren’t under your complete control. Determine the domain
of your function-----what kinds and ranges of values it is designed to work with-----
and make sure it does that. But also make sure it’s prepared to deal with any
values outside of that domain. What you do with out-of-domain values is up to
you, but try to write your code so it does the best it can.

We mentioned a third technique for dealing with assumptions. Let’s look at that
now.

Assert Your Assumptions
So far you’ve tried to protect the Factor() function from crashing your program
by (a) making sure it is never passed a value outside its domain or (b) adding
code to protect the function from out-of-domain values. The second method is
safer, but it might require you to add a lot of code to check for invalid values-----
values that you’re pretty sure should never happen.

This leaves you torn between adding potentially useless code to the function
and laying awake at night worrying that your function is going be thrown outside
to be chased by zombies, with no way to defend itself. As other parts of the
program get changed, as other programmers get involved, as more and more
code calls your Factor() function, the guarantee that it will never be passed a
value of 0 gets slimmer and slimmer. But is the only solution to code the
function so it can handle any value?

As it turns out, there is another option. The C99 standard includes a facility
called assertions. An assertion is a way for you, the programmer, to state what

CHAPTER 12: Handling Errors 389

your assumptions are. If you assume that number will never be 0 or negative, you
write that as an assertion in your code, like this:

bool Factor(int number, int *firstFactorPtr, int *secondFactorPtr)
{
 assert(number >= 1);

That’s all you have to write. If the expression in the assertion is true (number is
greater or equal to 1), then the code continues on. If not, the program terminates
and outputs a message to the standard error stream:

Assertion failed: (number >= 1), function Factor, file
/Users/james/Documents/Projects/Factor/Factor/main.c, line 37.

Terminating your program might seem a bit extreme, but allowing Factor() to
run with number set to 0 is equally hazardous.

Think of assertions as a promise, or guarantee, that the number parameter will
never be less than 1. It strikes a balance between merely assuming that number
will never be less than 1 and adding a lot of code to protect against something
that should not happen in the first place.

Assertions are usually lightweight, so feel free to add them wherever you want.
They are particularly useful for testing things like array indexes before you use
them.

int someIndex;
char string[100];
…
assert(someIndex>=0 && someIndex<sizeof(string));
if (string[someIndex] == 'X') {
 …

This code says, ‘‘I’ve looked through all of the code and someIndex should never,
ever, be outside the dimension of the string array. I’ve declared my assumption
in an assert statement that will stop the program if that assumption ever proves
to be wrong.’’

C assertions are used a lot during development and allow programmers sleep at
night. If your program runs at all, then you know that all of your assertions were
true.

Assertions do add code to your functions, so you might be wondering how they
are different from adding code like this:

 if (number < 1) {
 fprintf(stderr, "number should never be less than 1\n");
 exit(1);
 }

CHAPTER 12: Handling Errors 390

Technically, there is no difference at all. The assert macro adds code your
function that tests the condition. If the condition is false, it calls a function that
outputs a message to standard error and terminates your program. But the
assert macro has a hidden talent; you can turn it off.

You get the assert macro by including the <assert.h> Standard Library header,
like this:

#include <assert.h>

If you only include the <assert.h> header, then all of the assert statements in
your code will behave the way we’ve describe. If, however, you define the
NDEBUG preprocessor macro before you include the <assert.h> header, like

#define NDEBUG
#include <assert.h>

all of the assert statements in your code disappear (to the compiler). The assert
statements don’t generate any code, they don’t make any decisions, and they’ll
never terminate your program. They are also no longer protecting any of your
code, but at this point you’re pretty sure it doesn’t need protecting.

The idea is to use assertions during development and testing. You can sprinkle
your code with hundreds of assertions that you’re sure should all be true. You
then put your program through its paces, testing every function and possible
data value you can think of. If an assert terminates your program, then you
immediately know which assumption was wrong. You may need to modify your
assumptions, or change the code so the assumption is true again. When you're
done, your program should run without tripping any assert statements.

When your program is ‘‘clean’’ you can turn off all of the assertion code by
defining the NDEBUG macro and recompiling your project. It’s the same program,
just without the safety net.

You should now understand what we mean by an ‘‘assumption,’’ why
assumptions pose a hazard to your programs, and the tradeoffs involved in
either living with them or trying to protect your code from them. Let’s move on
to the next rule.

Rule #2: Stay Alert
You can’t know if the zombies are coming if you’re kicking back listening to your
iPod with your eyes closed. Similarly, you won’t know if functions are failing if
you ignore their return values. Numerous projects in this book have ignored
return values. We did this to keep things simple and so you could focus on the

CHAPTER 12: Handling Errors 391

lessons at hand. Now you’re ready. So let’s start paying attention to return
values from now on.

Pay Attention to Return Values
In the PrintFile project from Chapter 11, you first saw the SetHomeDirectory()
function. It called two functions: one to get information about the current user
and a second to change the current working directory.

void SetHomeDirectory(void)
{
 struct passwd *pw;
 pw = getpwuid(getuid());
 chdir(pw->pw_dir);
}

Under normal circumstances, this code should always work. The getpwuid()
should always return the account information for the currently logged-in user
(which, after all, has to exist or the user couldn’t have logged in). And since
every user account has a home directory, the call to chdir() should always be
successful. At least that’s true 99.999% of the time. Now go back and read
Murphy’s Law again.

It’s extremely unlikely, but it’s entirely possible that the user ID for the current
process isn’t the logged-in user. It’s also possible that the account record for
the user can’t be retrieved. It’s also possible that the home directory of the
account is invalid, has been renamed, or could be inaccessible. Is any of this
likely? No. Is it possible? Absolutely.

Let’s rewrite SetHomeDirectory() so it is much more robust. The first order of
business is to pay attention to the values returned by getpwuid() and chdir().

int SetHomeDirectory(void)
{
 struct passwd *pw = getpwuid(getuid());
 assert(pw!=NULL); // the current user should always be valid
 return chdir(pw->pw_dir);
}

First up is to check that the pointer returned from getpwuid() is not NULL.
According to the documentation for getpwuid(), it returns a pointer to a struct
passwd if successful, or NULL if not. Let’s say that you’ve decided that, as the
developer, the circumstances under which getpwuid() could fail are too obscure
to worry about. On the other hand, if it does happen, you want to know about it
and prevent the program from continuing with an invalid pw pointer. The assert
statement is the perfect solution.

CHAPTER 12: Handling Errors 392

NOTE: The call to getuid() can’t fail, so Murphy’s Law doesn’t apply. Every Unix
process has a user ID. If it didn’t, it wouldn’t be running. If it’s not running, it can’t
call getuid().

The code also pays attention to the chdir() return value. The documentation for
chdir() says that if chdir() is successful, it will return a value of 0, and a
negative value if it fails. The question is, what to do about it?

You’ve decided that SetHomeDirectory() doesn’t really know what to do if
chdir() is unsuccessful. Remember that you’ve used SetHomeDirectory() in
several projects. In some programs, not being able to set the working directory
to the user’s home directory would be a showstopper. For other applications, it
might be nothing more than an inconvenience. Instead of doing something with
chdir()’s return value, you’re going to pass the buck to the caller. The return
value of the function has been changed to int, and the success (or failure) of
chdir() is returned to the caller.

Now the caller can decide what to do if the working directory can’t be changed.
The caller might even choose to ignore it, but it won’t because
SetHomeDirectory() ignored it.

errno
The caller of your new SetHomeDirectory() should now pay attention to the
returned value. This will let it know when SetHomeDirectory() is unsuccessful,
but not why it was unsuccessful. The answer to that question can be found in
the errno variable.

errno is a global variable defined by the Standard Library that stores an integer
code describing the problem encountered by the last Standard Library function
call that failed. Most Standard Library functions that return a success/fail
indication set the specific reason for the failure in errno before they return.

If chdir() was not successful, the program should do something about it.
chdir() is a pretty simple routine and is usually successful. But it still might not
work if

 The directory named in the path doesn’t exist.

 The current user doesn’t have permission to read the directory
named in the path.

 The path is invalid (not a properly formed directory path).

CHAPTER 12: Handling Errors 393

Depending on what went wrong, the program might decide to do different
things. For example, if the directory is missing, the program could try to create
one so it does. To find out what went wrong with chdir(), look at the value of
errno:

if (chdir(path) != 0) {
 switch (errno) {
 case ENOENT:
 fprintf(stderr, "path '%s' does not exist\n”, path);
 break;
 case ENOTDIR:
 fprintf(stderr, "path '%s' is not a directory\n”, path);
 break;
 case EACCES :
 fprintf(stderr, "you do not have permission to access '%s' \n”,
path);
 break;
 default:
 perror("chdir() failed");
 }
 }

You should only examine the value of errno after a Standard Library call fails.
The value of errno is meaningless if the call succeeds. In other words, this code
is wrong:

chdir(path);
if (errno == EACCES) {
 …

So which Standard Library functions set errno when they fail? That answer is in
the documentation. A function that sets errno will state that fact in its
documentation. It should also list the possible errno values that it might set and
what those codes mean to that function. In OS X, the function chdir() lists
seven possible errno codes: EACCES, EFAULT, EIO, ELOOP, ENAMETOOLONG, ENOENT,
and ENOTDIR. You can find a list of the most common errno values on Apple’s
web site
(https://developer.apple.com/library/mac/#documentation/Darwin/Reference
/ManPages/man2/intro.2.html) and in the ‘‘intro’’ man page through the Xcode
documentation browser.

NOTE: errno is usually not a simple variable. When you write code, you treat it as if
it was a variable that can only be examined. But in most operating systems, errno is
a macro that expands to a function call that retrieves the error code of the last call
that failed. While this normally does not affect your code, it does mean that you can’t

https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/intro.2.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/intro.2.html

CHAPTER 12: Handling Errors 394

do certain things that you could with a regular variable. You can’t, for example, get
the address of the errno variable (&errno).

errno is only valid until the next Standard Library call. If you plan to refer to it
again later, you should save it in another variable.

A couple of handy functions when dealing with errno are perror() and
strerror(). perror() is a convenience function that writes a message to stderr
along with a description of the current errno value, translated into the your local
language. In the previous code example, if chdir() failed and set errno to ELOOP,
the function perror("chdir() failed") will output this message to stderr:

chdir() failed: Too many levels of symbolic links

The message parameter passed to perror() is optional; you can print just the
error code description using perror(NULL). perror() is handy if you just want to
dump a description of the current errno value to the error output stream.

If you want to do a little more with errno, the strerror() function will translate
the error code into a readable description and return that as a string pointer.
You can then use that to format a more comprehensive message, or whatever
else you decide. strerror()’s one parameter is the errno code to translate, so
it isn’t dependent on the current value of errno.

The definition of errno, and the constants for all of its possible values, is in
<errno.h>. The prototype for perror() is in <stdio.h>. You’ll find strerror()
defined in <string.h>. For even more error display functions, check out the
err(), warn(), and related functions defined in <err.h>.

Rule #3: Have an Escape Plan
When there are zombies around, you don’t want to go any place where you
could get backed into a corner. Effectively handling errors also means having a
clear escape plan for every contingency. The path your code takes when it’s
doing its job is just as important as the path it takes when it can’t.

There are many ways to accomplish this. The goals for effective error handling
are

 Don’t uglify your code.

 Handle errors consistently.

Adding extraneous code tends to obscure your code’s real purpose and makes
it difficult to read. So you’ll want to use clearly recognizable, and easy to follow,

CHAPTER 12: Handling Errors 395

coding patterns for error handling. You also want to make sure every possible
error is handled consistently, so some unexpected error (or combination)
doesn’t leave your code trapped in a loop somewhere.

In this section we’ll teach you six coding patterns for handling errors. The first
few are demonstrated in an updated version of the DVDFiler project you wrote in
Chapter 11 named DVDFiler2. It also includes some of the enhancements we’ve
already shown you. You’ll find the project document in the 12.01 - DVDFiler2
folder.

Follow the Success
The first error-handling pattern is one we call the ‘‘follow the success’’ pattern.
Here’s a sketch of what it looks like:

DoSomething();
if (successful) {
 DoSomethingElse();
 if (successful) {
 DoAThirdThing();
 if (successful) {
 // be happy
 }
 }
}
// Handle success or failure here

The basic principle is to test the success or failure after each step in the process
using an if statement. If successful, the if statement performs the next step,
and so on.

This pattern has the advantage that it is easy to follow the code, especially the
successful path. All of the error handling code is grouped towards the end of the
function, which is also convenient and easier to read. Let’s rewrite the
ReadStructFromFile() function using this error handling pattern.

Starting at the beginning, a new assert statement makes sure this function is
never called with a NULL file pointer.

static struct DVDInfo *ReadStructFromFile(FILE *fp)
{
 assert(fp != NULL);

The local variables are declared and a new DVDInfo struct is allocated.

 struct DVDInfo *infoPtr;
 int scanResult;
 infoPtr = NewDVDInfo();

CHAPTER 12: Handling Errors 396

Note the new scanResult variable. You’re going to use it to examine and save
the result of each fscanf() call. If an fscanf() is successful (returns 1), the next
fscanf() is performed, until the entire DVD record has been read from the file.

 scanResult = fscanf(fp, "%[^\n]\n", infoPtr->title);
 if (scanResult == 1) {
 scanResult = fscanf(fp, "%[^\n]\n", infoPtr->comment);
 if (scanResult == 1) {
 int num;
 scanResult = fscanf(fp, "%d\n", &num);
 if (scanResult == 1) {
 infoPtr->rating = num;
 }
 }
 }

If any of the fscanf() calls were not successful, then scanResult will be
something other than 1 at the end of this code. You can then use it to determine
if the entire operation was successful or not.

 if (scanResult != 1) {
 if (scanResult != EOF) {
 fprintf(stderr, "Invalid data near offset %lu, %d: %s\n",
 (long unsigned int)ftello(fp),
 errno,
 strerror(errno));
 }
 free(infoPtr);
 infoPtr = NULL;
 }

There are two kinds of failures that you’re interested in knowing about. If any
fscanf() function returned EOF, that means the entire file has been read. All you
want to do is stop and return NULL to the caller. While EOF is a ‘‘failure’’ for the
fscanf() function, it isn’t a ‘‘failure’’ for your function; it’s exactly what you
expect to happen once the file has been completely read.

If the returned value is anything else, then fscanf() encountered something
unexpected. It could be incorrectly formatted data in the file or a file error of
some kind. It doesn’t matter. Output a message that a problem occurred,
approximately where in the file, and stop reading.

The final statement will return either the successfully read DVDInfo struct (if
scanResult was 1) or NULL (if scanResult was anything else).

 return intoPtr;
}

While this is a pretty simple pattern to follow, it has one significant
disadvantage. If you have more than a few steps to accomplish, your code

CHAPTER 12: Handling Errors 397

keeps getting indented more and more to the right, until it start spilling off the
right edge of your edit pane. That can make your code cumbersome to read and
edit. So this pattern is really good for simple functions that need to perform a
few steps and check for errors.

Sometimes you need to handle each step differently. To do so, use else
statements to catch and handle individual failures. A sketch of that pattern looks
like this:

DoSomething();
if (successful) {
 DoSomethingElse();
 if (successful) {
 DoAThirdThing();
 if (successful) {
 // be happy
 } else {
 // DoAThirdThing() failed
 }
 } else {
 // DoSomethingElse() failed
 }
} else {
 // Do Something() failed
}

Now let’s rewrite ReadStructFromFile() again using an alternate version of this
style to make the code even simpler.

Early Return
The ‘‘early return’’ pattern uses a return statement after all of the successful
branches have been taken, and immediately returns the successful result to the
caller. Using this pattern, the main block of code in ReadStructFromFile() now
looks like this:

 scanResult = fscanf(fp, "%[^\n]\n", infoPtr->title);
 if (scanResult == 1) {
 scanResult = fscanf(fp, "%[^\n]\n", infoPtr->comment);
 if (scanResult == 1) {
 int num;
 scanResult = fscanf(fp, "%d\n", &num);
 if (scanResult == 1) {
 infoPtr->rating = num;
 return infoPtr; // <-- success!
 }
 }
 }

CHAPTER 12: Handling Errors 398

Notice the return infoPtr statement in the last block of code? If all of the
fscanf() functions were successful, then the only thing left to do is to return
that to the caller. None of the remaining code in the function is ever executed.
This simplifies the code at the end of the function, which now only deals with the
failures; it doesn’t first have to check to see if there was a failure or not.

 if (scanResult != EOF) {
 // output failure message here
 }
 free(infoPtr);
 return NULL;

Your code looks pretty simple now. It’s easy to read, and it has an escape path
for all possible errors. Let’s move on to other functions and try out some other
error handling patterns.

Skip Past Failure
The ‘‘skip past failure’’ pattern is really the opposite of the ‘‘follow the success’’
pattern. In this style, a variable is used as a flag to indicate when a problem has
occurred. Once that flag is set, all the remaining actions are skipped over. A
sketch of this pattern looks like this:

bool problemOccurred = false;

if (DoSomething() == ERROR)
 problemOccurred = true;

if (! problemOccurred)
 if (DoSomethingElse() == ERROR)
 problemOccurred = true;

if (! problemOccurred)
 if (DoThirdThing() == ERROR)
 problemOccurred = true;

if (! problemOccurred) {
 // everything was successful
} else {
 // a problem occurred
}

Each step is evaluated for success. If one fails, the failure flag is set. Once set,
none of the other actions in the function are performed because each one
checks the failure flag first. The execution skips over the remaining steps until it
gets to the error handling code towards the end of the function.

CHAPTER 12: Handling Errors 399

The flag can be anything. It could be a Boolean variable, such as
problemOccurred, but is often an error variable that is set to 0 and remains 0 as
long as no failures have been encountered. This is the style you’re going to use
to rewrite the WriteFile() function.

The new WriteFile() starts out just as it did in the past, but it also declares (and
sets to 0) an error variable.

void WriteFile(void)
{
 FILE *fp;
 struct DVDInfo *infoPtr;
 int error = 0;

As each step of the function is performed, the success of that step is reviewed.
If a problem occurs, the error code is saved in error. This tells any subsequent
steps that there was a problem.

 fp = fopen(kDVDTempName, "w");
 if (fp == NULL)
 error = errno;

Every step after that follows the same pattern: if there have been no problems
up to this point, perform the step and determine if something went wrong.

 for (infoPtr=gHeadPtr; infoPtr!=NULL; infoPtr=infoPtr->next) {
 if (! error)
 if (fprintf(fp, "%s\n", infoPtr->title) < 0)
 error = errno;
 if (! error)
 if (fprintf(fp, "%s\n", infoPtr->comment) < 0)
 error = errno;
 if (! error)
 if (fprintf(fp, "%d\n", infoPtr->rating) < 0)
 error = errno;
 }

After writing (or not) all of the DVD records, the file needs to be closed. Notice
that this step isn’t dependent on whether a problem occurred or not. It’s your
job to close the file whether you were successful in writing it or not. If there’s a
problem closing the file, however, you definitely want to remember that.

 if (fp != NULL) {
 if (fclose(fp) != 0)
 error = errno;
 }

Finally, report if the whole operation succeeded.

CHAPTER 12: Handling Errors 400

 if (error)
 fprintf(stderr, "Could not write DVD data file: %s\n", strerror(error
));
}

NOTE: Even though the error variable is an int, it is being used as a flag and,
therefore, that is how it is being treated in the if statements. Remember that an
expression is true if it’s non-zero and false if it’s zero. As long as the value of error
remains set to zero, the error flag is false (no error yet). As soon as an error value is
assigned to it, it becomes true (an error has occurred).

This is the style of error handling that Apple recommends. It’s popular because
it’s pretty straightforward to read and no matter how many steps your function
has, the code doesn’t keep getting indented to the right.

You can sometimes combine this with the ‘‘early return’’ style. A sketch of that
style looks like this:

if (DoSomething() == ERROR)
 return errno;
if (DoSomethingElse() == ERROR)
 return errno;
if (DoThirdThing() == ERROR)
 return errno;

This is a very simple and readable style. It doesn’t work for the WriteFile()
function because there are things that have to be done before the function
returns. Specifically, the file has to be closed using fclose(). To use this style,
every error handing block would have to close the file before returning and that’s
a lot of duplicated code to maintain. Programmers call these kinds of tasks
housekeeping. If your function doesn’t have any housekeeping, the early return
style is clean and simple.

You don’t have to slavishly follow these patterns verbatim. We’ll have you
rewrite the for loop in WriteFile() one more time, this time in a much more
compact form. Try it this way:

 for (infoPtr=gHeadPtr; infoPtr!=NULL && !error; infoPtr=infoPtr->next) {
 if (fprintf(fp, "%s\n", infoPtr->title) < 0
 || fprintf(fp, "%s\n", infoPtr->comment) < 0
 || fprintf(fp, "%d\n", infoPtr->rating) < 0) {
 error = errno;
 }
 }

CHAPTER 12: Handling Errors 401

If you look at this code carefully, you’ll discover that it follows the same pattern
as the previous version. But instead of using a bunch of if statements, it
exploits the minimal evaluation feature of the || and && operators.

If the first call to fprintf() returns a negative value, the expression fprintf(…)
< 0 is true, and neither of the other two expression are evaluated. For a function
call, ‘‘never evaluated’’ means ‘‘is never called.’’ If the first fprintf() returns a
non-negative value (meaning it succeeded), then the expression (the next
fprintf()) on the right side of the || is evaluated, and so on.

The end result is that if any of the fprintf() calls fail, the statement error =
errno is performed and the loop stops. Notice that the term && !error was
added to the condition of the loop. As long as all of the fprintf() calls are
successful, the loop continues until the entire linked list is written.

Deciding how to write your error handing code is a matter of taste. If you find
the earlier version easier to read and understand, stick with that. If you find the
latter version completely understandable, you may enjoy the more compact
version. Now let’s move on to the next strategy.

Percolate Errors Up
We showed you the ‘‘percolate errors up’’ pattern earlier, but we’ll repeat it
briefly here. Sometimes a function that observes an error simply doesn’t know
what to do about it. The simplest solution is to turn the success or failure of all
of its individual steps into success or failure for the whole function, and pass the
final verdict back to the caller. You already did this with SetHomeDirectory():

int SetHomeDirectory(void)
{
 struct passwd *pw = getpwuid(getuid());
 assert(pw != NULL);
 return chdir(pw->pw_dir);
}

This new version of SetHomeDirectory() returns 0 if successful and some other
number if not. The caller should observe the results and take appropriate action.
To accommodate the changes in SetHomeDirectory(), modify the code in
main() to handle any problem:

if (SetHomeDirectory() != 0
 || chdir("./Desktop") != 0) {
 perror("Could not chdir to ~/Desktop");
 exit(1);
 }

CHAPTER 12: Handling Errors 402

This new code either successfully sets the working directory to ~/Desktop or it
stops the program from running.

Speaking of harsh, sometimes it’s appropriate for individual functions to take
drastic actions on their own, which brings us to the next pattern.

Exit, Stage Left
Some errors defy a graceful recovery. There’s no point in writing code to handle
them, or percolating the error up to the caller; the caller can’t do anything about
them either. In the DVDFiler project, the NewDVDInfo() function is one such
example. If the NewDVDInfo() function can’t allocate the tiny bit of memory
required to store a single DVDInfo struct, then your program is in serious,
serious, trouble, and it should be put out of its misery.

struct DVDInfo *NewDVDInfo(void)
{
 struct DVDInfo *newInfoPtr;

 newInfoPtr = calloc(1, sizeof(struct DVDInfo));
 if (newInfoPtr==NULL) {
 fprintf(stderr, "Out of memory!\n");
 exit(1);
 }

 return newInfoPtr;
}

The new version of NewDVDInfo() checks for a successful allocation and calls
exit() if it fails. In other words, if NewDVDInfo() can’t allocate a new DVDInfo
struct, then it just won’t return.

This is why you don’t have to check the return value of NewDVDInfo() anywhere
in your program. It’s impossible for it to return a NULL value. Murphy’s Law
doesn’t apply.

NOTE: You could have written this code too:

 newInfoPtr = calloc(1, sizeof(struct DVDInfo));

 assert(newInfoPtr != NULL);

 return newIntoPtr;

As long as assertions are enabled, this would have the same effect. But remember
that the purpose of assert statements are as an aid to debugging and testing.
Ideally, you should be able to turn them off one day. If you did turn assertions off,

CHAPTER 12: Handling Errors 403

then NewDVDInfo() could now return a NULL pointer and the assumption you made
that it can’t will now be false.

The lesson is, don’t use assert statements to make decisions or handle errors. Make
assertions about things that should always be true.

The Long Jump
The last error-handling pattern is a rather advanced one, and if you feel like
skipping to Rule #4 now and coming back to this later, we’ll completely
understand. The problem programmers have with all of this error checking and
handling stuff is that it gets in the way of writing the code they really want to
write. In a perfect (programming) world, what you really want to write is

DoSomething();
DoSomethingElse();
DoThirdThing();
// be happy

and then somewhere else you can write the code to take care of things if they
go wrong.

There’s a technique called exception handling that allows you to do just that
using a pair of magic functions named setjmp() and longjmp(). You use them
by splitting up your code into two blocks. The first block contains the code that
does the work. This is called the try block. The second block of code gets
executed only if there’s a problem in the try block. This is called the exception or
catch block.

Let’s rewrite the ReadFile() function using setjmp() and longjmp(). You can
find this version of the project in the 12.02 - DVDFiler3 folder. You start off by
declaring a special variable that will be used to coordinate the code flow.

static jmp_buf readJump;

This is a module-wide global because both ReadFile() and the functions it calls
will need it. Next, ReadFile() gets started.

void ReadFile(void)
{
 FILE *fp = NULL;
 int error;

The next statement is where the magic happens. The setjmp() function creates
a kind of bookmark for the CPU that remembers exactly where the program is

CHAPTER 12: Handling Errors 404

when you called it. It immediately returns 0. A 0 value means the bookmark was
created and the code can begin doing whatever it was going to do.

 if ((error = setjmp(readJump)) == 0) {

The code that you write next is the try block: the code that you want to perform.
If anything goes wrong, call the longjmp() function with a non-zero error code.

 if ((fp = fopen(kDVDFileName, "r")) == NULL)
 longjmp(readJump, errno);

 struct DVDInfo *infoPtr;
 while ((infoPtr = ReadStructFromFile(fp)) != NULL) {
 AddToList(infoPtr);
 }

 fclose(fp);

Notice that there’s not a lot of error checking in this code, and no error handling
at all. That’s because if this code is successful (no errors), it just runs and exits
the code block, as easy as walking down the street.

Next is where the magic happens. If any code calls longjmp(), then the
program’s execution jumps directly back to the point where setjmp() was
originally called-----it does not pass go, it does not collect $200. setjmp() returns
(again!), but this time the return value is the error code you passed to longjmp().
The second time through, the if statement is false (because the error code
returned is not zero) and the else block of the if statement executes. This is
where all of your error handling goes.

 } else {
 if (fp == NULL) {
 printf("Could not open file!\n");
 printf("File '%s' should be in %s.\n", kDVDFileName, getwd(NULL));
 } else {
 fprintf(stderr, "Invalid data near offset %lu, %d: %s\n",
 (long unsigned int)ftello(fp),
 error,
 strerror(error));
 fclose(fp);
 }
 }
}

The real power of longjmp() is that calls to it aren’t limited to the function where
setjmp() was called. You can call longjmp() in any function your function calls
or any functions they call. This rewrite continues with the ReadStructFromFile()
and a new function named ReadOneField().

CHAPTER 12: Handling Errors 405

The ReadStructFromFile() starts out simply enough.

static struct DVDInfo *ReadStructFromFile(FILE *fp)
{
 assert(fp != NULL);

 struct DVDInfo tempInfo;
 int num;

This version differs from the past versions in that instead of calling fscanf()
directly, the fscanf() calls have been wrapped up into a new function named
ReadOneField(). If ReadOneField() returns true, then the value was read
successfully. If it returns false, then the end of the file (EOF) was encountered.
In the latter case, you want to return NULL to the caller.

 if (! ReadOneField(fp, "%[^\n]\n", tempInfo.title))
 return NULL;
 if (! ReadOneField(fp, "%[^\n]\n", tempInfo.comment))
 return NULL;
 if (! ReadOneField(fp, "%d\n", &num))
 return NULL;
 tempInfo.rating = num;

Another feature of this modified ReadStructFromFile() is that the values are
read into a temporary struct and then copied into a dynamically allocated
memory block only when success has been determined. This simplifies the
housekeeping in case there was an error (which will make sense in a moment).

 struct DVDInfo *infoPtr;
 infoPtr = NewDVDInfo();
 *infoPtr = tempInfo;

 return infoPtr;
}

Now you get to the ReadOneField() function. This function attempts to read one
value from the data file.

static bool ReadOneField(FILE *fp, const char *scanFormat, void *varPtr)
{
 int scanResult;
 scanResult = fscanf(fp, scanFormat, varPtr);

If successful, the value is copied to the pointer in the varPtr parameter and it
returns true.

 if (scanResult == 1)
 return true;

If the scan encountered the end of the file (EOF), then it return false.

CHAPTER 12: Handling Errors 406

 if (scanResult == EOF)
 return false;

If there was any other kind of problem, the longjmp() function passes the error
code all the way back to the ReadFile() routine.

 longjmp(readJump, errno);
}

longjmp() takes care of all of the work in percolating up any problems
encountered. It doesn’t matter how deep you are in if statements, loops, or
function calls, the longjmp() function cuts through all of that and jumps
immediately to the setjmp() call, all the way back in ReadFile().

This also demonstrates Apple’s recommended use of exceptions. Notice that
the normal ‘‘error’’ of EOF is not handled through longjmp(). Apple’s philosophy
is that errors that you expect to handle in the normal course of business (file not
found, end of file, and so on) should be handled using one of the earlier error
handling patterns. Exceptions should be reserved for (pardon the pun)
exceptional errors: events that represent serious problems or are completely
unexpected.

The WriteFile() function in DVDFiler3 was also rewritten to use setjmp() and
longjmp(), so take a look at that function to see a second example of using
longjmp().

EXCEPTION HANDLING IN OTHER LANGUAGES

The idea of exception handling is new enough that it’s not part of the C language. But it’s a very
powerful technique that can really untangle a lot of knotty error handling. Languages that came
after C (C++, Java, C#, Objective-C) all recognized the power of exception handling, and those
languages all have exception handling syntax built right into the language. For example, in
Objective-C you can write

@try {
 DoSomething();
 DoSomethingElse();
 DoThirdThing();
} @catch(id whatWentWrong) {
 // Handle errors here
}

We’ll be honest: using exceptions in other languages is a lot easier than using setjmp() and
longjmp() in C. But the concept and benefits are the same, and it’s an important lesson that
you can take with you to other languages.

CHAPTER 12: Handling Errors 407

In closing, let us say that there are many ways to structure your error handling
code. These are the most popular, but by no means the only ways to do it. As
long as your error handling code sticks to the principles of good design (doesn't
uglify your program and deals with all possible errors), you should be fine.

Now let’s look at getting out in front of problems before they occur.

Rule #4: Anticipate Problems
Why wait around for the zombies to find you when you could seek them out and
stop them from coming after you? Error handling isn’t entirely reactionary (only
dealing with problems after they happen). Consider being proactive: design your
code to anticipate problems and mitigate their impact.

Let’s take a look again at DVDFiler. The WriteFile() function opens a file for
writing, writes the records, and closes the file. If anything goes wrong, it logs the
error and returns. What could be better than that?

The problem with WriteFile() is this: if the existing file was perfectly fine, the
function starts out by deleting it. If anything goes wrong while writing the new
file, much (if not all) of the information about your DVDs will be lost! Wouldn’t it
be better if you could write the new file before deleting the old one? That way, if
anything goes wrong, the original file is still intact.

The technique of writing a temporary file and then using it to replace the original
is called as safe save, and it’s used by a multitude of applications. Let’s modify
DVDFiler to work that way. Open the DVDFiler4 project in the 12.03 - DVDFiler4
folder. In the DVDFile.c module, add a #define for a temporary file name.

#define kDVDTempName "DVD Data.temp"

The initial part of the WriteFile() function will be exactly the same, except that
it will use the temporary filename instead.

void WriteFile(void)
{
 FILE *fp;
 struct DVDInfo *infoPtr;
 int error = 0;

 fp = fopen(kDVDTempName, "w");
 if (fp == NULL)
 error = errno;

 for (infoPtr=gHeadPtr; infoPtr!=NULL && !error; infoPtr=infoPtr->next) {
 if (fprintf(fp, "%s\n", infoPtr->title) < 0
 || fprintf(fp, "%s\n", infoPtr->comment) < 0

CHAPTER 12: Handling Errors 408

 || fprintf(fp, "%d\n", infoPtr->rating) < 0) {
 error = errno;
 }
 }

 if (fp != NULL) {
 if (fclose(fp) != 0)
 error = errno;
 }

At the end of this code, the entire DVD data file has been written to the
temporary file. If everything went OK, error is still 0.

The next task is to replace the original file with the new one. This is a two-step
process. First, you delete the original file and then change the name of the
temporary file to the original one.

 if (! error) {
 unlink(kDVDFileName);

The unlink() function is that Standard Library’s ‘‘delete file’’ function. Its odd
name alludes to removing an object from the file system’s ‘‘tree’’ of directories
and files. Notice that you ignored the error returned by unlink(). There are three
possible outcomes for unlink():

1. The file was successfully deleted.

2. The file wasn’t deleted because it didn’t exist.

3. The file wasn’t deleted because of some other problem.

Surprisingly, none of these outcomes affect your program. If the file was
deleted, that’s great! That’s exactly what was supposed to happen. If the file
wasn’t deleted because it wasn’t there in the first place, that’s OK too. It just
means the program is writing the file for the first time.

If some other problem (access permissions or whatever) prevented the file from
being deleted, that means that the next step (renaming the temporary file) will
fail because the file name already exists. In this last case, you’ll catch the
problem when the rename() function fails and deal with it there.

The last step is to rename the temporary file so it has the name of the DVD data
file.

 if (rename(kDVDTempName, kDVDFileName) != 0) {
 error = errno;
 unlink(kDVDTempName);
 }

CHAPTER 12: Handling Errors 409

If successful, the newly written file will take the place of the previous DVD data
file, and you’re done! If unsuccessful, capture the error code for reporting and
then blindly delete-----that is to say, ignoring any errors since you can’t do
anything about them-----the temporary file.

Now your WriteFile() function is substantially more robust. If everything goes
smoothly, it overwrites you data file of DVD titles. But if things go south, the
original file of DVD information will still be saved.

Rule #5: Pick Your Battles
You don’t have to slavishly handle every error the world throws at your program.
As you design your error handling, consider the impact each failure will have on
your program’s behavior and what possible courses of action your program
could take. Even in the final DVDFiler project, not every return value is examined.
At the end of the ReadFile() function is this statement:

 fclose(fp);

At this point in the program, ReadFile() has successfully opened the file and
read every data record it can. If an error occurs closing the file, what can
DVDFiler do about it?

The answer is ‘‘nothing.’’ ReadFile() has successfully accomplished everything
it was written to do. If some obscure error occurs now, it really doesn’t matter.

So while error checking and handling is generally a good thing, consider why
you’re doing it and what you’ll do with that information. And if the answer is ‘‘not
much,’’ you might not need any at all!

What’s Next?
You’ve come a long way since Chapter 1! You’ve learned all of the C basics-----
variables, types, functions, parameter passing, pointers, arrays, structs, if
statements, and loops. Along the way you’ve learned about C strings, the file
system, the preprocessor, variable scope, modular programming, error handling,
and creating command line tools.

Congratulations, you can now officially call yourself a C programmer. That’s not
to say that’s all there is to learn about C. The next chapter covers an eclectic
collection of some of the more advanced C topics. In it you’ll learn about type
conversion and casting, recursion, and other nifty facts and tricks. See you
there.

CHAPTER 12: Handling Errors 410

CHAPTER 12 EXERCISES

1. What’s the (error handling) flaw in this code?

bool ReadNumberFromFile(FILE *fp, int *value)
{
 if (fscanf(fp, "%d", value) == EOF)
 return false; // no more numbers
 else
 return true; // value successfully read
}

2. Each of the following code fragments makes at least one potentially
disastrous assumption. Write an assert statement to ensure that
assumption is always true.

a. if (dvdInfoPtr->rating != 0) {

b. if ((total / count) > mean) {

c. if (argc < 2) {
 fprintf(stderr, “%s: requires at least one
argument\n", argv[0]);
 …

d. char *copyOfString = malloc(strlen(str) + 1);
strcpy(copyOfString, str);

e. array[index] += 1;

3. What is Murphy’s Law?

411

13
Chapter

Advanced Topics
Congratulations! By now you’ve mastered most of the fundamental C
programming concepts. This chapter will fill you in on some useful C
programming tips, tricks, and techniques that will enhance your programming
skills. Some are additional features of the C language while others are advanced
programming techniques. You’ll start with a look at type conversion, C’s
mechanism for translating one data type to another.

Type Conversion
In a few places along your journey to learning C, you’ve assigned one type of
variable to another. You’ve assigned an int variable to a char. In other places
you passed an argument value that had a slightly different type than the
function’s parameter type. As an example, in the Factor() function, you passed
an int argument to the sqrt() function, even though sqrt() expects its
parameter to be a double.

When you do this, the compiler has to translate one type of value into another.
This is called type conversion. You probably didn’t think twice about this, which
is fine, because C usually does the right thing automatically. But since there will
be times when you need a bit more control over your type conversion, let’s take
a closer look at this process.

You will often find yourself converting a variable of one type to a variable of
another type. For example, this code fragment

float f;
int i;
f = 3.5;
i = f;

CHAPTER 13: Advanced Topics 412

printf("i is equal to %d\n", i);

causes the following line to appear in the console window:

i is equal to 3

Notice that the original value assigned to f was truncated from 3.5 to 3 when the
value in f was assigned to i. This truncation was caused when the compiler saw
an int on the left side and a float on the right side of this assignment
statement:

i = f;

The compiler automatically converted the float to an int. As you already know,
an int only stores whole integers so the fractional portion of the number (.5) was
discarded. In general, the right side of an assignment statement is always
translated to the type on the left side when the assignment occurs. In this case,
the compiler handled the type conversion for you. This is called an implicit
conversion. Implicit conversions occur whenever the compiler believes it can
reasonably convert the value for you.

Another place implicit conversions occur are in function arguments. If you
supply one type of value (an int) but the parameter type is another (a float), the
compiler will do its best to convert the argument value to the parameter’s type.
In the following code, two implicit conversions occur:

int a, b;
a = 5;
b = exp2(a);

The exp2() function returns the number 2 to the power of the given argument (b
= 2a). Here’s the function’s prototype:

double exp2(double e);

As you can see, neither the function’s return value nor the parameter is an int.
The compiler converted the integer value of 5 into a floating point value (5.0) and
passed that to the function. The function returned a floating point value (32.0),
which was converted back to an integer before being assigned to b.

The exp2() function will do just what you expect it to for any reasonable integer
value: exp2(10) will return 1,024, exp2(32) will return 4,294,967,296, and so on.

Another hidden source of type conversion occurs in expressions. Binary
arithmetic and comparison operators require that both operands be the same
type. In the following code, the compiler has to convert one of the two variables
so it matches the type of the other:

CHAPTER 13: Advanced Topics 413

int i = 99;
double d = 98.7;
if (i == d) {
 …

The compiler tries to promote up-----performing the safest conversion it can. In
this particular situation, it will convert the int into a double and then compare
the two double values (99.0==98.7) for equality.

There’s a kind of ‘‘trickle down’’ effect when you mix types in an expression. The
result of all arithmetic operators will be the same type as its operands. The result
of this expression

i - d

will be a double. The i is converted to a double so the - (subtraction) operator
had two double operands, and the result of subtracting two doubles is a double.

Conversion Rules
The compiler will attempt to convert any integer or floating point variable into the
needed type automatically. Assign a char to a long double and the compiler will
perform whatever numeric conversion is necessary so that long double has the
same logical value the char did.

Most of the time implicit conversion works silently and doesn’t cause any
problems. But there are some cases in which this automatic conversion could
cause you some headaches, so let’s look at the rules the compiler uses and why
it might matter to you. These aren’t the exact rules the compiler uses, but it’s
close enough to give you an idea of how things get done.

1. Any int can be safely converted to a longer int.

A long int can be safely converted to a long long int. A short int can be
safely converted to an int, long int, or long long int. In the following code, it
doesn’t matter what the value of c is, all of the variables will have the same
value:

char c; short int si; int i; long int li; long long int lli;
lli = li = i = si = c;

When converting to longer integer types, the compiler guarantees that the new
value will always be the same number.

2. Any int can be successfully converted to a shorter int, only if
the value will fit in the shorter representation.

CHAPTER 13: Advanced Topics 414

The int value 999 (32 bits) can be converted to a short int (16 bits), but not a
char (8 bits). When an int is converted to a shorter representation, only the least
significant bits of the value are preserved. Here’s an example:

unsigned int i = 999;
unsigned char c = i;

Only the lowest eight bits of the number 999 (11 1110 0111 in binary) are
assigned to the unsigned char, becoming 231 (1110 0111).

3. When a signed integer is converted to an unsigned integer-----or
vice versa-----of the same length, the bits of the value remain the
same, but the number will change if the new type cannot
represent that number.

We covered this awhile back, but it bears repeating.

unsigned char uc = 231;
signed char sc = uc;

Converting the unsigned char value of 231 (1110 0111 in binary) into a signed
char will become -25 (1110 0111 in two’s complement binary).

4. A unsigned integer can always be safely converted to a signed
integer that has a longer representation.

This is sort of a corollary to the first and third rules. It’s always safe to convert an
unsigned integer to a signed integer if the signed integer’s representation is
longer, like this:

unsigned int ui;
signed long long int slli = ui;

No matter what value is stored in ui, that assignment statement always works.

5. Any floating point value can be safely converted to another
floating representation that is longer.

Similar to the rule for ints, the C language guarantees that you can convert a
shorter floating point value to a longer floating point value with no change in the
value.

float f; double d; long double ld;
ld = d = f;

No matter what value f contains, all of these variables will contain the same
number.

CHAPTER 13: Advanced Topics 415

6. When a floating point value is converted to another floating
point value that is shorter, the new value will be the closest
approximation the new type can represent.

We already covered this extensively in Chapter 8. Shorter floating point numbers
don’t have as much precision as longer ones. When you assign a longer floating
point to a shorter one, the compiler does its best to find a number as close to
the original that the new type can represent.

7. Converting a floating point value to an integer removes the
fractional portion of the value and converts the whole number
portion to an integer.

Success will depend on the integer type being long enough to represent the
whole number portion of the floating point value. In essence, the floating point
value is truncated and turned into a long long int. The rest of the conversion
follows the rules for converting a long long int to a smaller (or unsigned)
integer type.

TIP: Remember that floating point to integer conversion never rounds up or down; the
fractional portion of the floating point value is just stripped off. This code

double d = 4.999;

int i = d;

will assign the value 4 to i, not 5. If you want to round up or down, check out the
functions round(), ceil(), and floor().

Conversion Warnings
Depending on your build settings, the compiler may warn you about some
conversions that it feels are suspect. It will be particularly keen to point out
situations where you assign or compare signed and unsigned integers, or when
you assign or compare 64-bit integers with 32-bit integers. Both are common
sources of bugs.

You can suppress these warnings by exerting explicit control over the
conversion of numeric values. You do this using a typecast.

CHAPTER 13: Advanced Topics 416

Typecasting
You can tell the compiler to convert any type into any other (convertible) type
using a typecast. A typecast is the type you want the value converted to,
surround by parentheses, immediately before the value. Here’s an example:

(long int)n

This expression converts the value of the variable n to a long int. It doesn’t
matter what n is. It could be an int, a char, a unsigned long long int, a float,
or a long double. If it’s physically possible to convert the value of n into a long
int, the compiler will do that and the result of that expression will be a long int.

Typecasting is really handy in a variety of circumstances. First, it lets you control
the type conversion performed by the compiler. Using typecasting to control
conversion is called an explicit conversion.

Modifying the code used earlier, you can control implicit conversion like this:

int i = 99;
double d = 99.0;
if (i == (int)d) {

In this code, instead of automatically converting i to a double (so both sides of
the == operator are double), the d variable is forced to become an int. Now the
compiler looks at both operands and sees that both are ints, no implicit
conversion is necessary, and the == operator compares two ints.

You can put a typecast in front of any expression you want. The compiler will do
its best to convert it to that type before evaluating it in the larger context of the
statement or expression.

The typecast is an operator. It doesn’t change the basic rules that other C
operators live by. If the earlier code was changed to

if (i == (long int)d) {

the compiler would look at the type of the operand on the left (an int) and the
type of the operand on the right (a long int) and would implicitly convert the left
int into a long int so that == is comparing two long ints. This results in two
conversions: d gets converted to long int (explicit conversion), and i gets
converted to a long int (implicit conversion). You can’t use typecasting to
change the rules of C operators, but you can use them to nudge them in the
direction you want.

CHAPTER 13: Advanced Topics 417

NOTE: Technically, a variable type in parentheses immediately before any value is
called a cast operator. The term “typecast” doesn’t appear anywhere in the C
language standard, but it’s such a common term among programmers that we use it
here.

Programmers often use typecasts to explicitly declare the conversions they
know are required. It’s superfluous (since the compiler must perform the
conversion anyway), but it’s a way for the programmer to document that they
know what conversions are needed and they’re OK with it. This would not be
uncommon code for an experienced C programmer:

int a, b;
a = 5;
b = (int)exp2((double)a);

Type A, obsessive programmers have even been known to cast the return value
of functions that they intentionally ignore as (void), just to point out that they
are ignoring the function’s returned value:

(void)printf("I don’t care how many characters were output to stdout.\n");

Typecasting Pointers
Typecasting can also be used to change the meaning of pointers. This notation
casts the variable myPtr as a pointer to an int:

(int *)myPtr

C does not consider two pointers to different types to be compatible. In other
words, a pointer to a char and a pointer to an int are incompatible and won’t be
implicitly converted. The code

int *iPtr;
char *cPtr;
iPtr = cPtr;

will cause a compiler error. It just doesn’t make sense to the compiler. A pointer
either points to an int or it points to a char. An address that points to a char
shouldn’t be assigned to a variable that points to int because that
fundamentally changes the meaning of the value at that address.

The exception to the rule is the void* type, which is compatible with any specific
pointer type.

CHAPTER 13: Advanced Topics 418

NOTE: Interestingly, typecasting pointers never involves any actual conversion. All
pointers are the same, no matter what they point to. Typecasting pointers is entirely a
matter of semantics. The compiler is trying to protect you from doing something that
doesn’t make any sense (treating an int* as if it were a char*), but changing a
pointer from one pointer type to another doesn’t change the value or the
representation of the pointer.

When you typecast a pointer to a different type of pointer, you’re telling the
compiler that you know what you’re doing and that the variable at that address
is, in fact, compatible with the type that you say it is. That’s a lot of power, so
please make sure you’re right.

For example, typecasting pointers could allow you to link together structs of
different types. For example, suppose you declared two struct types, as
follows:

struct Dog {
 struct Dog *next;
};
struct Cat {
 struct Cat *next;
};

By using typecasting, you could create a linked list that contains both Cats and
Dogs. Imagine the source code you’d need to implement such a linked list.

struct Dog myDog;
struct Cat myCat;
myDog.next = &myCat; // <--Compiler error
myCat.next = NULL;

In the first assignment statement, a pointer of one type is assigned to a pointer
of another type. &myCat is a pointer to a struct Cat. myDog.next is declared to be
a pointer to a struct Dog. The compiler won’t let you do that. To make this code
compile, you need a typecast.

struct Dog myDog;
struct Cat myCat;
myDog.next = (struct Dog *)(&myCat);
myCat.next = NULL;

Another way to do this would be to exploit the wildcard void* type. Here’s a
new version of the Dog and Cat code:

CHAPTER 13: Advanced Topics 419

struct Dog {
 void *next;
};
struct Cat {
 void *next;
};
struct Dog myDog;
struct Cat myCat;
myDog.next = &myCat;
myCat.next = NULL;

This code lets Dog.next point to a Cat struct without a typecast, because the
next field is a void pointer, which basically translates into ‘‘a pointer to
anything.’’ The void pointer should only be used when the pointer is truly
generic, because it removes so many of the compiler’s normal safety checks. An
explicit type makes it quite clear what is going on. In our previous example,
anyone looking over our code would easily be able to tell that we were forcing a
Dog to point to a Cat. In the void pointer example, the difference in type is far
less obvious. Use type and typecasting intentionally. Make both part of your
program design.

const Modifier
Several chapters back we promised to explain what the const modifier meant,
and we mean to keep that promise now. The const (‘‘constant’’) type modifier
means that the variable’s value is immutable (big word for ‘‘cannot be
changed’’).

At first glance that seems oxymoronic; a variable that ‘‘can’t be changed’’ isn’t
much of a ‘‘variable’’ is it? And you’re right. Nevertheless, C does allow you to
declare a constant variable like this:

const int ci = 3;

Attempting to assign or modify the value of ci in any way will generate a
compiler error:

ci = 4; /* <-- syntax error */

But that’s not where the const modifier is really useful. It’s really useful in
combination with pointers, and that’s where you’ll see it used most often. Here
are a couple of examples.

This next declaration creates a pointer to a const char array:

const char* message;

f

CHAPTER 13: Advanced Topics 420

In reality, it doesn’t mean that the characters message points are incapable of
being changed. What it means is that they shouldn’t be changed. Any attempt to
change those chars via this pointer (*message = '\0') will generate a compiler
error.

The following function prototype declares a pointer to a DVDInfo struct that
should not be modified. It’s common to use the const qualifier on a pointer
parameter that will only be used to get information from the variable the pointer
points to and should never modify the value it points to.

void PrintDVDTitle(const struct DVDInfo *dvdInfoPtr);

By declaring this parameter const struct DVDInfo, any attempt by the function
to change the DVDInfo struct via the pointer (dvdInfoPtr->rating = 3) is an
error. When you see const in a function prototype, it’s the function’s ways of
saying, ‘‘I will use this pointer only to get information, I won’t change anything it
points to.’’ That can be very useful information to know.

You can assign a regular pointer to a const pointer, but you can’t assign a const
pointer to a regular pointer. The compiler considers this an ‘‘escalation of
privileges,’’ since you are assigning the address of something that shouldn’t be
changed to a pointer that is perfectly fine with changing it. If you must do this,
you’ll have to use a typecast.

const char *message = "fixed message";
char *greeting;
greeting = (char*)message;

Also be careful of where the const keyword goes. This declaration probably
doesn’t mean what you think it does:

char const *message = "fixed message";
message[0] = 'F'; /* allowed */
message = NULL; /* <-- syntax error */

This statement declares a pointer that you cannot change, which points to a
char that you can change. The compiler is perfectly happy with the second
assignment statement. The third one is a syntax error. We’re pretty sure that’s
not what you want. Put the const keyword directly before the thing that
shouldn’t change. In this example, the const should be before the char (the char
values shouldn’t change), not before the * (the pointer can change).

Creating Your Own Types
The typedef statement lets you use existing types to create brand new types
you can then use in your declarations. You’ll declare this new type just as you

y

CHAPTER 13: Advanced Topics 421

would a variable, except that you precede the declaration with the keyword
typedef. The name you declare will become the name of a new type. Here’s an
example:

typedef int *IntPointer;
IntPointer myIntPointer;

The first line of code creates a new type named IntPointer. The second line
declares a variable named myIntPointer, which is a pointer to an int.

You’ve been using typedefs since the beginning of this book. The types size_t
and off_t, for example, are typedefs defined by the Standard Library.

typedefs add semantic information (meaning) to your variable declarations. They
also create a central place where you can modify all of those declarations at
once. Let’s say you have a program that performs user commands, and you
decide to represent a command value as a char. You can create a typedef like
this:

typedef char Command;

Now you can use the new Command type everywhere in your program where you
store, pass, or manipulate a ‘‘command’’ value.

Command myCommand, *lastCommandPtr;
Command getCommand(void);
void PerformCommand(Command command);

Your code is now much more descriptive. The purpose and meaning of the
myCommand and lastCommandPtr variables, the return value of getCommand(), and
the parameter to PerformCommand() are now obvious.

TIP: Do you want to quickly see how a custom type is defined? Hold down the
Command key and then click on any type name in your source. Xcode will jump to
header file where that type is defined.

If in the future, you decide that a ‘‘command’’ value should be an int instead of
char, all you have to do is change one line of code.

typedef int Command;

Every Command variable, parameter, and expression in your entire program
now becomes an int.

CHAPTER 13: Advanced Topics 422

struct typedefs
typedefs are commonly used to simplify the declaration of structs (and as you’ll
soon see, enums and unions too). Throughout this book you’ve used the syntax

struct DVDInfo

to refer to the definition of the DVDInfo structure. It’s much more common for
programmers to define a structure using a typedef, like this:

typedef struct DVDInfoTag {
 char rating;
 char title[kMaxTitleLength];
 char comment[kMaxCommentLength];
 struct DVDInfoTag *next;
} DVDInfo;

This statement defines a new type, named DVDInfo, which is the type struct
DVDInfoTag. You can now declare structures and pointers to the structure like
this:

DVDInfo oneDVD;
DVDInfo *gHeadPtr;
void AddToList(DVDInfo *newInfo);

The keyword phrase struct DVDInfoTag can still be used, and the two are
interchangeable. The DVDInfoTag is called the structure’s tag. If you’re using a
typedef to define the struct, and you don’t need to refer to the struct before
the typedef is complete, then the tag can be omitted. If you omit it, the only way
to refer to this struct is through its typedef name.

Which brings up an interesting quirk of the C language.

Forward References
C uses a one-pass compiler. It reads your source code one statement at a time,
compiles that, and moves on. That means it must know everything it needs to
compile each statement before it gets to it. This is why you always put #include
and function prototypes at the beginning of each file.

An obscure problem that arises is the need to refer to a struct that hasn’t been
defined yet. This is called a forward reference.

C allows you to refer to structs (and unions, and enums) that you haven’t
defined yet using its tag. In other words, you can use a type like struct
PlayerTag as a type before that struct has been defined. The limitation is that
you can only use what the compiler knows about the struct so far (which isn’t

CHAPTER 13: Advanced Topics 423

much). Since none of the fields of the struct are defined yet, you can’t declare
struct variables, get the struct’s size, or access any of its fields. But you can
declare a pointer to it-----a pointer will be the same no matter what the structure
turns out to be-----and you can use it in typedefs and typecasts. Here’s an
example:

typedef struct CoachTag Coach; // <-- forward reference to struct CoachTag
typedef struct PlayerTag Player; // <-- forward reference to struct PlayerTag

struct CoachTag {
 Player *firstPlayerPtr; // <-- forward reference to struct PlayerTag
}; // <-- struct CoachTag is now fully defined

struct PlayerTag {
 Player *nextPlayerPtr; // <-- forward reference to struct PlayerTag (it’s
not finished yet)
 Coach *coachPtr;
}; // <-- struct PlayerTag is now fully defined

void AnyFunction(void)
{
 Coach coach;

 coach.firstPlayerPtr = calloc(1, sizeof(Player));
 coach.firstPlayerPtr->coachPtr = &coach;
}

The Coach struct has a field that points to a linked list of players, and each
player has a pointer back to their coach. Without forward references, you can
see how it would be impossible to declare these types.

Enumerated Types
Similar to typedefs, the enum statement lets you declare a new type known as an
enumerated type. An enumerated type is a set of named integer constants and a
variable to store those values. A series of examples will make this clear.

enum Weekdays {
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday
};
enum Weekdays whichDay;
whichDay = Thursday;

CHAPTER 13: Advanced Topics 424

This code starts off with an enum declaration. The enum is given the tag Weekdays
and consists of the constants Monday, Tuesday, Wednesday, Thursday, and Friday.
The second line of code uses this new enumerated type to declare a variable
named whichDay. whichDay is an integer variable that can store any of the
Weekdays constants, as evidenced by the last line of code, which assigns the
constant Thursday to whichDay.

Here’s another example:

enum Colors {
 red,
 green = 5,
 blue,
 magenta,
 yellow = blue + 5
} myColor;
myColor = blue;

This code declares an enumerated type with the tag Colors and variable of that
type named myColor. Notice that initializers accompany some of the constants in
the Colors list. When the compiler creates the enumeration constants, it
numbers them sequentially, starting with 0. In the previous example, Monday has
a value of 0, Tuesday has a value of 1, and so on until you reach Friday, which
has a value of 4. In this case, the constant red has a value of 0. But the constant
green has a value of 5. Things move along from there, with blue and magenta
having values of 6 and 7, respectively. Next, yellow has a value of blue+5, which
is 11. This code also declares an enumeration variable named myColor, which is
then assigned a value of blue.

You can declare an enumerated type without a tag if you’re only interested in
the constants:

enum {
 chocolate,
 strawberry,
 vanilla
};
int iceCreamFlavor = vanilla;

This code declares a series of enumeration constants with values of 0, 1, and 2.
You can assign the constants to an int, as was done with iceCreamFlavor. This
comes in handy when you need a set of integer constants but have no need for
a tag name.

TIP: One nifty feature of using enums is that the compiler will catch switch
statements that forget one of the values. If you write

CHAPTER 13: Advanced Topics 425

switch (iceCreamFlavor) {

 case chocolate:

 …

 case vanilla:

 …

}

the compiler will let you know that you forgot to include a case for strawberry.

enums can also be declared using a typedef, like this:

typedef enum {
 Animal,
 Vegetable,
 Mineral
} Category;
Category question = Vegetable;

enum values are typically interchangeable with ints. Technically, the compiler
only guarantees that an enum variable will be long enough to store all of the
constants in the list, so Catagory could be as small as a char.

Unions
C offers a special data type, known as a union, which allows a single variable to
disguise itself as several different data types. unions are declared just like
structs. Here’s an example:

union Number {
 short int i;
 float f;
 char *s;
} myNumber;

This declaration creates a type named union Number. It also creates an individual
variable named myNumber. If this were a struct declaration, you’d be able to
store three different values in the three fields of the struct. A union, on the other
hand, lets you store one and only one of the union’s fields in the union. Here’s
how this works.

When a union is declared, the compiler allocates the space required by the
largest of the union’s fields, sharing that space with all of the union’s fields. If a
short int requires 2 bytes, a float 4 bytes, and a pointer 8 bytes, myNumber is

CHAPTER 13: Advanced Topics 426

allocated exactly 8 bytes. You can store a short int, a float, or a char pointer
in myNumber. The compiler allows you to treat myNumber as any of these types. To
refer to myNumber as an int, refer to

myNumber.i

To refer to myNumber as a float, refer to

myNumber.f

To refer to myNumber as a char pointer, refer to

myNumber.s

You are responsible for remembering which form the union is currently
occupying.

CAUTION: If you store a pointer in myUnion by assigning a value to myUnion.s,
you’d best remember that fact. If you proceed to store a float in myUnion.f,
you’ve just trashed your pointer. Remember, there are only 8 bytes allocated to the
entire union.

In addition, storing a value as one type and reading it as another can produce
unpredictable results. For example, if you stored a float in myNumber.f, the field
myNumber.i would not be the same as (int)(myNumber.f).

One way to keep track of the current state of the union is to declare an int to go
along with the union, as well as a #define (or enum!) for each of the union’s
fields.

#define kUnionContainsInt 1
#define kUnionContainsFloat 2
#define kUnionContainsPointer 3
union Number {
 short int i;
 float f;
 char *s;
} myNumber;
int myUnionTag;

If you are currently using myUnion as a float, assign the value
kUnionContainsFloat to myUnionTag. Later in your code, you can use myUnionTag
when deciding which form of the union you are dealing with.

if (myUnionTag == kUnionContainsInt)
 DoIntStuff(myUnion.i);
else if (myUnionTag == kUnionContainsFloat)

CHAPTER 13: Advanced Topics 427

 DoFloatStuff(myUnion.f);
else
 DoPointerStuff(myUnion.s);

Why Use Unions?
In general, unions are most useful when dealing with two data structures that
share a set of common fields but differ in some small way. For example,
consider these two struct declarations:

struct Pitcher {
 char name[40];
 int team;
 int strikeouts;
 int runsAllowed;
} ;
struct Batter {
 char name[40];
 int team;
 int runsScored;
 int homeRuns;
} ;

These structs might be useful if you were tracking the pitchers and batters on
your favorite baseball team. Both structs share a set of common fields, the
array of chars named name and the int named team. Both structs have their
own unique fields as well. The Pitcher struct contains a pair of fields
appropriate for a pitcher, strikeouts and runsAllowed. The Batter struct
contains a pair of fields appropriate for a batter, runsScored and homeRuns.

One solution to your baseball-tracking program would be to maintain two types
of structs, a Pitcher and a Batter. There is nothing wrong with this approach.
As an alternative, however, you can declare a single struct that contains the
fields common to Pitcher and Batter, with a union for the unique fields, like so:

typedef enum {
 kMets,
 kReds
} TeamID;

typedef enum {
 kPitcher,
 kBatter
} PlayerType;

typedef struct {
 int strikeouts;
 int runsAllowed;

CHAPTER 13: Advanced Topics 428

} Pitcher;

typedef struct {
 int runsScored;
 int homeRuns;
} Batter;

typedef struct {
 PlayerType type;
 char name[40];
 TeamID team;
 union {
 Pitcher pStats;
 Batter bStats;
 } u;
} Player;

Here’s an example of a Player declaration:

Player myPlayer;

Once you create the Player struct, you can initialize the type field with one of
either kPitcher or kBatter:

myPlayer.type = kBatter;

You can access the name and team fields like this:

myPlayer.team = kMets;
printf("Stepping up to the plate: %s\n", myPlayer.name);

Finally, you can access the union fields like this:

if (myPlayer.type == kPitcher)
 myPlayer.u.pStats.strikeouts = 20;

The u was the name given to the union in the declaration. Every Player you
declare will automatically have a union named u built into it. The union gives you
access to either a Pitcher struct named pStats or a Batter struct named
bStats, both of which occupy the same memory. The previous example
references the strikeouts field of the pStats field.

unions aren’t used very often, but they do provide an interesting alternative to
maintaining multiple data structures. Try them. Write your next program using a
union or two. If you don’t like them, you can return them for a full refund.

Recursion
Some programming problems are best solved by repeating the same process.
For example, to learn whether a number is prime (see Chapter 6) you might step

CHAPTER 13: Advanced Topics 429

through each of the even integers between 2 and the number’s square root, one
at a time, searching for a factor. If no factor is found, you have a prime. The
process of stepping through the numbers between 2 and the number’s square
root is called iteration.

The Iterative Approach
In programming, iterative solutions are fairly common. Almost every time you
use a for loop, you are applying an iterative approach to a problem. An
alternative to the iterative approach is known as recursion. In a recursive
approach, instead of repeating a process in a loop, you embed the process in a
function and have the function call itself until the process is complete. If that
sounds a little weird, hang in there. It will make perfect sense soon.

Suppose you wanted to calculate 5 factorial (written 5!). The factorial of a
number is the product of each integer from 1 up to the number, for example:

5! = 5 • 4 • 3 • 2 • 1 = 120

Using an iterative approach, you might write some code like this:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int i, num;
 long int fac;
 num = 5;
 fac = 1;
 for (i=1; i<=num; i++)
 fac *= i;
 printf("%d factorial is %ld.\n", num, fac);
 return 0;
}

NOTE: If you are interested in trying this code, you’ll find it in the Learn C Projects
folder, under the subfolder named 13.01 - Iterate.

If you ran this program, you’d see this line printed in the console window:

5 factorial is 120.

As you can see from the source code, the algorithm steps through (iterates) the
numbers 1 through 5, building the factorial with each successive multiplication.

CHAPTER 13: Advanced Topics 430

A Recursive Approach
Problems that lend themselves to a recursive solution have one thing in
common: a job that can be subdivided into one or more smaller jobs that are
just like the larger one.

The factorial problem fits this description. The factorial of 3 is 3 2 1. The
factorial of 4 is 4 3 2 1. So the factorial of 4 can be rewritten as 43! (4 times
the factorial of 3). Similarly, the factorial of 5 is 5 4!, and so on.

A function can calculate the factorial of 5 by calling itself to calculate the
factorial of 4 and then multiplying that result by 5. When the function is called to
calculate the factorial of 4, it repeats the process: calling itself to calculate 3!
and then multiplying that by 4. Here’s a recursive function that calculates a
factorial:

long int Factorial(long int num)
{
 if (num > 1)
 num *= Factorial(num - 1);
 return(num);
}

Factorial() takes a single parameter, the number whose factorial you are trying
to calculate. Factorial() first checks to see whether the number passed to it is
greater than 1. If so, Factorial() calls itself, passing 1 less than the number
passed into it. This strategy guarantees that, eventually, Factorial() will get
called with a value of 1.

CAUTION: Any recursive function needs a terminating condition: some indication that
it’s reached the end of the work to be done and can stop calling itself. If there’s a bug
in its terminating condition, the function may continue to call itself indefinitely,
causing the program to run out of stack space and crash. Programmers call this an
infinite recursion bug.

Figure 13-1 shows this process in action.

CHAPTER 13: Advanced Topics 431

Figure 13-1. The recursion process caused by the call Factorial(3)

The process starts with a call to Factorial():

result = Factorial(3);

Take a look at the leftmost Factorial() source code in Figure 13-1. Factorial()
is called with a parameter of 3. The if statement checks to see if the parameter
is greater than 1. Since 3 is greater than 1, the following statement is executed:

num *= Factorial(num - 1);

This statement calls Factorial() again, passing a value of n-1, or 2, as the
parameter. This second call of Factorial() is pictured in the center of
Figure 13-1.

NOTE: It’s important to understand that this second call to Factorial() is treated
just like any other function call that occurs in the middle of a function. The calling
function’s variables are preserved while the called function runs. In this case, the
called function is just another copy (called an instance) of Factorial().

CHAPTER 13: Advanced Topics 432

This second call of Factorial() takes a value of 2 as a parameter. The if
statement compares this value to 1 and, since 2 is greater than 1, executes this
statement:

num *= Factorial(num - 1);

This statement calls Factorial() yet again, passing num-1, or 1, as a parameter.
The third call of Factorial() is portrayed on the rightmost side of Figure 13-1.

The third call of Factorial() starts with an if statement. Since the input
parameter was 1, the if statement fails. Thus, the recursion termination
condition is reached. Now, this third call of Factorial() returns a value of 1.

At this point, the second call of Factorial() resumes, completing the statement:

num *= Factorial(num - 1);

Since the call of Factorial() returned a value of 1, this statement is equivalent
to

num *= 1;

leaving num with the same value it came in with, namely 2. This second call of
Factorial() returns a value of 2.

At this point, the first call of Factorial() resumes, completing the statement:

num *= Factorial(num - 1);

Since the second call of Factorial() returned a value of 2, this statement is
equivalent to

num *= 2;

Since the first call of Factorial() started with the parameter num taking a value
of 3, this statement sets num to a value of 6. Finally, the original call of
Factorial() returns a value of 6. This is as it should be, since 3 factorial = 3 2
 1 = 6.

The recursive version of the factorial program is in the Learn C Projects folder,
under the subfolder named 13.02 - Recurse. Open the project and step through
the program line by line. Pay particular attention to the stack in the debug
navigator, as shown on the left in Figure 13-2. Notice the multiple copies of the
Factorial() function on the stack. Each call to Factorial() pushes a new
function onto the stack.

CHAPTER 13: Advanced Topics 433

Figure 13-2. Stepping through the Recurse project

Function Pointers
Function pointers are next on the list of advanced topics. Function pointers are
exactly what they sound like: pointers that point to functions. Up to now, the
only way to call a function was to place its name in the source code, like so:

MyFunction();

Just as every variable has an address in memory, every function has an address
too. You can store that address in a variable and then use that variable to call
the function. Here’s an example:

int (*myFuncPtr)(float);

This line of code declares a function pointer named myFuncPtr. myFuncPtr is a
pointer to a function that takes a single parameter, a float, and returns an int.
The parentheses in the declaration are all necessary. The first pair ties the * to
myFuncPtr, ensuring that myFuncPtr is declared as a pointer. The second pair
surrounds the parameter list and distinguishes myFuncPtr as a function pointer.

CHAPTER 13: Advanced Topics 434

TIP: Function pointer declarations in C are notoriously ugly and hard to read. Most
programmers use a typedef to simplify the situation. By defining the typedef

typedef int (*AFuncPtrThatTakesFloatReturnsInt)(float);

you can now declare the myFunctPtr variable with much less fuss:

AFuncPtrThatTakesFloatReturnsInt myFuncPtr;

Suppose you had a function called DealTheCards() that took a float as a
parameter and returned an int. This line of code assigns the address of
DealTheCards() to the function pointer myFuncPtr:

myFuncPtr = DealTheCards;

Notice that the parentheses were left off the end of DealTheCards(). This
omission is critical. If the parentheses were there, the code would have called
DealTheCards(), returning a value, and tried to store that value in myFuncPtr.
You may also have noticed that the & operator wasn’t used. When you refer to a
function without using the parentheses at the end, the compiler knows you are
referring to the address of that function.

Now that you have the function’s address in the function pointer, there’s only
one thing left to do-----call the function. Here’s how it’s done:

int result;
result = (*myFuncPtr)(3.5);

This line calls the function DealTheCards(), passing it the parameter 3.5 and
returning the function value to the int result. C also allows for a shortcut syntax
that allows you to call the function this way too:

int result;
result = myFuncPtr(3.5);

In our opinion, this latter form is a bit easier on the eye.

You can do a lot with function pointers. You can create an array of function
pointers; call a different function each day of the week. You can pass a function
pointer as a parameter to another function. This is a powerful technique that
allows you, or someone else, to create a generic solution where the details of
the specific solution are provided by a function passed via a pointer. You obtain
the address of that function and pass it to the generic solution, which then turns
around and calls the function. We’ll show you an example of that in the
‘‘Standard Library’’ section later in this chapter.

CHAPTER 13: Advanced Topics 435

For your enjoyment, there’s a function-calling project in the Learn C Projects
folder, inside the 13.03 - FuncPointer subfolder. The program is pretty simple,
but it should serve as a useful reference when you start using function pointers
in your own programs.

The Remaining Operators
If you go back to Chapter 4 and review the list of operators shown in Table 4-1,
you’ll likely find a few operators you are not yet familiar with. Most of the ones
we’ve missed were designed specifically to set the individual bits within a byte.
For example, the | operator (not to be confused with its comrade, the logical ||
operator) takes two values and ORs their bits together, resulting in a single
value. This operator is frequently used to set a particular bit to 1.

Check out this code:

short int myShort;
myShort = 0x0001 | myShort;

This code sets the rightmost bit of myShort to 1, no matter what its current
value. This line of code, based on the |= operator, does the exact same thing:

myShort |= 0x0001;

The & operator takes two values and ANDs their bits together, resolving to a
single value. This operator is frequently used to clear a bit. Clearing a bit sets its
value to 0.

Check out this code:

short int myShort;
myShort = 0xfffe & myShort;

This code sets the rightmost bit of myShort to 0, no matter what its current
value. It might help to think of 0xfffe as 1111111111111110 in binary.

This line of code, based on the &= operator, does the exact same thing:

myShort &= 0xFFFE;

The ^ operator takes two values and XORs their values together. It goes along
with the ^= operator. The XOR (exclusive or) is a Boolean operation that results
in a 0 bit if both operand bits are the same, and a 1 bit if they’re different. XOR
gets its name from that fact that it works just like the OR operation (results in a 1
if either operand is 1), but ‘‘excludes’’ the case where both bits are 1.

CHAPTER 13: Advanced Topics 436

The ~ (bitwise not) operator is a unary operator that turns all the one bits into
zeros and all the zero bits into ones. It works exactly like the ! (not) operator, but
on the individual bits of the value.

The &, |, ^, and ~ operators are summarized in Table 13-1.

Table 13-1. Truth Table for &, | , ^, and ~ Operators

A B A & B A | B A ^ B ~A

1 1 1 1 0 0

1 0 0 1 1 0

0 1 0 1 1 1

0 0 0 0 0 1

The previous examples assumed that a short int is 2 bytes (16 bits) long. Of
course, this makes for some implementation-dependent code. Here’s a more
portable example. This code sets the rightmost bit of myShort, no matter how
many bytes are used to implement a short:

short int myShort
myShort = (~1) & myShort;

You could also write this as follows:

myShort &= (~1);

The last of the binary operators, <<, >>, <<=, and >>= are used to shift bits within
a variable, either to the left or to the right. The left operand is usually an
unsigned variable, and the right operand is a positive integer specifying how far
to shift the variable’s bits.

For example, this code shifts the bits of myShort 2 bits to the right:

unsigned short int myShort = 0x0100;
myShort = myShort >> 2; /* same as myShort >>= 2; */

myShort starts off with a value of 0000000100000000 and ends up with a value
of 0000000001000000 (in hex, that’s 0x0040). Notice that zeros get shifted in to
make up for the leftmost bits that are getting shifted over, and the rightmost bits
are lost when they shift off the end.

CHAPTER 13: Advanced Topics 437

CAUTION: The right bit-shift operators are designed to work with unsigned values
only. If you right-shift signed values, your CPU might fill in with 0 bits or duplicate the
most significant bit (called a signed shift). C doesn’t dictate one or the other, so read
your compiler’s documentation—or avoid doing that.

The last operator we need to cover is the , (comma) operator. The , operator
gives you a way to combine two expressions into a single expression. The ,
operator is binary, and both operands are expressions. The left expression is
evaluated first, and the result is discarded. The right expression is then
evaluated, and its value becomes the value of the expression.

Here’s an example:

for (i =0, j=0; i<20 && j<40; i++, j+=2)
 DoSomething(i, j);

This for loop is based on two variables instead of one. Before the loop is
entered, i and j are both set to 0. The , operator allows you to put two
expressions (i=0 and j=0) where normally only one expression goes.

The loop continues as long as i is less than 20 and j is less than 40. Each time
through the loop, i is incremented by 1 and j is incremented by 2.

To use the , operator in a function’s parameter list, you must surround it by
parentheses so it isn’t confused with the commas used to separate arguments,
like this:

MyFunction(i, (j-=2, j*j));

The function MyFunction() is called with two arguments. The first argument is
the value of i. The second argument begins by subtracting two from j and
updating its value. The updated value of j is then squared and the result is
passed as the second argument.

TIP: Using the , (comma), = (assignment), or ?: (conditional) operators in expressions
can make your code hard to read and understand. All can be used to get out of sticky
coding situations, but we would discourage you from using them unless you have to.

CHAPTER 13: Advanced Topics 438

Getting More From The Libraries
There is a lot more to the Standard Library than what we’ve covered in this
book-----a lot more. And there are many more libraries beyond the Standard
Library. As a newly minted C programmer, your first assignment is to dig into the
C Standard Library and learn to use the functions you find there. Wikipedia has
an excellent road map at http://en.wikipedia.org/wiki/C_standard_library.

A good place to start is with the functions declared in <string.h>. Read about
the difference is between strcmp() and strncmp(). Wander around. Get to know
the Standard Library very well. Whenever you need functionality, first turn to the
Standard Library. Do not reinvent the wheel!

To give you a taste of the kinds of problems that have already been solved for
you, let’s take a look at some of the collection functions in both the Standard
Library and Core Foundation.

Sorting with the Standard Library
A very common programming problem is how to sort a collection of items into a
particular order. Let’s say you have a large DVD collection. You might want to
sort them into alphabetical order by title. Or maybe you want to sort them into
order of rating, so your favorites are listed first. You’d like that sorting function to
be fast and efficient, but you’re probably not keen on taking a college-level
course on data algorithms to learn about the dozens of different sorting
methodologies that have been developed over decades.

A much easier solution is to turn to the Standard Library, which has a variety of
sorting functions written for you. This is high-quality sorting code that embodies
the best-known algorithms and optimizations. So let’s see how you’d use them
to sort your DVDs.

One of the fastest sorting techniques is called the ‘‘quick sort’’ algorithm. The
Standard Library function qsort() will perform a quick sort. The problem with
any sorting function is that it has to know how to compare two items in an array
to determine what order they should be in. The authors of the Standard Library
certainty couldn’t anticipate you creating a DVDInfo structure or wanting to sort
your collection by title. So how does a function like qsort()-----that knows
nothing about your data-----implement a sort that’s going to compare and reorder
your data? The answer is function pointers.

The qsort() function takes a parameter that’s a function pointer. That function
is expected to take two pointers as parameters and return an int. The return

http://en.wikipedia.org/wiki/C_standard_library

CHAPTER 13: Advanced Topics 439

value tells qsort() if the elements referred to by the pointers are in the correct
order or not.

The beauty of this arrangement is that the qsort() function doesn’t need to
know anything about what it’s sorting. All it needs to know is that you’re going
to supply it a function that will tell it if two elements in the array are in the correct
order, and it takes care of the rest. So let’s put qsort() to work sorting DVDs.

SortDVDs.xcodeproj
Find the 13.04 - SortDVDs projects folder and open the SortDVDs.xcodeproj
document. main.c starts out with the usual #includes.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Next, you declare a DVDInfo structure. This is slightly different than the one
you’ve used in earlier programs, but the principles are the same.

typedef struct {
 const char *title;
 const char *country;
 int rating;
} DVDInfo;

The next bit of code declares an array of DVDInfo structs and fills in their fields.
It does this using a complex initializer.

static DVDInfo testArray[] = {
 { "A Monster in Paris", "France", 8 },
 { "Space Dogs", "Russia", 5 },
 { "Wallace & Gromit", "United Kingdom", 9 },
 { "A Bug's Life", "United States", 9 },
 { "Despicable Me", "United States", 7 },
 { "Planet 51", "Spain", 6 }
};

Just as you can add an initializer to a simple variable declaration (int i = 0),
you can initialize arrays and structures by separating the individual elements or
fields with commas and surrounding the entire list with curly braces. In this
example, you have an array of structs, so each element of the array (someType
array[] = { element0, element1, element2 }) is itself a struct initializer ({
fieldA, fieldB, fieldC }).

If you supply an array initializer, you can leave the dimensions of the array blank;
C will determine the size of the array based on how many elements are listed.
Which is why the next #define statement exists.

CHAPTER 13: Advanced Topics 440

#define kNumberOfDVDs (sizeof(testArray)/sizeof(DVDInfo))

You could count the number of structs in the testArray, but then you’d have to
remember to update that number if you later added a new one to the list.
Instead, just let the compiler tell you how many DVDInfo structs are in
testArray using the sizeof operator.

Following the data declarations are the local function prototypes. We’ll explain
each of these shortly.

void PrintTestArray(void);
int CompareDVDTitles(const void* l, const void* r);
int CompareDVDCountries(const void* l, const void* r);
int CompareDVDRatings(const void* l, const void* r);

main()
main() starts out by calling the PrintTestArray() function. It’s a simple function
the prints out the DVD information in testArray, one per line.

int main(int argc, const char * argv[])

{
 printf("Original order:\n");
 PrintTestArray();

It’s called once to show you the order of the items in the array before anything is
changed. Here’s the output:

Original order:

Title Country Rating

A Monster in Paris France 8

Space Dogs Russia 5

Wallace & Gromit United Kingdom 9

A Bug's Life United States 9

Despicable Me United States 7

Planet 51 Spain 6

Now comes the fun part. The qsort() function sorts an array of anything into
order, determined by the logic in the function passed via the last argument.

 qsort(testArray, kNumberOfDVDs, sizeof(DVDInfo), CompareDVDTitles);

The first three arguments describe your array: the address of the array, the
number of elements in the array, and the size of each element. The last

CHAPTER 13: Advanced Topics 441

argument is a function pointer that will compare any two elements of the array.
The function must expect two pointer parameters and return an int, like this:

int CompareTwoElements(const void* leftElement, const void* rightElement)

The two void * parameters can point to any two elements of the array. They are
void pointers because qsort() doesn’t know what they are and doesn’t care.
The function must compare the two elements------so obviously, it knows what they
are------and will return 0 if the two are equal, a negative number if they are in order
(left is before right), or a positive number if they are out of order (right should be
before left). The function you passed is CompareDVDTitles(), which compares
the title field of two DVDInfo structs. That’s all that’s needed to sort this array
into title order.

You can verify that qsort() did its job by printing out the array again.

 printf("\nTitle order:\n");
 PrintTestArray();

When the array is printed this time, the order is different.

Title order:

Title Country Rating

A Bug's Life United States 9

A Monster in Paris France 8

Despicable Me United States 7

Planet 51 Spain 6

Space Dogs Russia 5

Wallace & Gromit United Kingdom 9

You can continue to reorder the array by supplying different sorting functions. In
the following statements, the array is sorted again, this time into order of
country.

 printf("\nCountry order:\n");
 qsort(testArray,kNumberOfDVDs,sizeof(DVDInfo),CompareDVDCountries);
 PrintTestArray();

This code produces the following output:

Country order:

Title Country Rating

A Monster in Paris France 8

Space Dogs Russia 5

CHAPTER 13: Advanced Topics 442

Planet 51 Spain 6

Wallace & Gromit United Kingdom 9

Despicable Me United States 7

A Bug's Life United States 9

The array is sorted one final time, into rating order, and output again.

 printf("\nRating order:\n");
 qsort(testArray,kNumberOfDVDs,sizeof(DVDInfo),CompareDVDRatings);
 PrintTestArray();

Rating order:

Title Country Rating

A Bug's Life United States 9

Wallace & Gromit United Kingdom 9

A Monster in Paris France 8

Despicable Me United States 7

Planet 51 Spain 6

Space Dogs Russia 5

PrintTestArray()
The PrintTestArray() does exactly what it says, and isn’t anything you haven’t
seen before. Here’s the source for it:

void PrintTestArray(void)
{
 printf("%-24s %-16s %s\n", "Title", "Country", "Rating");
 unsigned int i;
 for (i=0; i<kNumberOfDVDs; i++)
 printf("%-24s %-16s %d\n",
 testArray[i].title, testArray[i].country, testArray[i].rating);
}

CompareDVDTitles()
The qsort() function is doing all of the complicated work, but it couldn’t do its
job without the help of a comparison function. Your first comparison function is
CompareDVDTitles(), which compares the title field of two DVDInfo structs.

int CompareDVDTitles(const void* l, const void* r)
{
 const DVDInfo *leftDVDPtr = l;

CHAPTER 13: Advanced Topics 443

 const DVDInfo *rightDVDPtr = r;
 return strcmp(leftDVDPtr->title, rightDVDPtr->title);
}

That’s all there is to it, and it’s all the code you have to write in order to turn the
generic qsort() function into something that can sort an array of DVDInfo
structs. The real fun is in supplying different sorting algorithms, so let’s look at
the next one.

CompareDVDCountries()
Just like the CompareDVDTitles() function, this function compares two strings.
The only difference is that it compares the country field of the two DVDInfo
structs instead of the title.

int CompareDVDCountries(const void* l, const void* r)
{
 const DVDInfo *leftDVDPtr = l;
 const DVDInfo *rightDVDPtr = r;
 return strcmp(leftDVDPtr->country, rightDVDPtr->country);
}

Are you getting the hang of this? Let’s try a slightly more complicated case.

CompareDVDRatings()
The final sort comparison function compares the ratings of two DVDInfo
structs.

int CompareDVDRatings(const void* l, const void* r)
{
 const DVDInfo *leftDVDPtr = l;
 const DVDInfo *rightDVDPtr = r;
 int result = rightDVDPtr->rating - leftDVDPtr->rating;
 if (result != 0)
 return result;
 return CompareDVDTitles(l, r);
}

There are two things to note about CompareDVDRating(). First, the result value
is calculated by subtracting the left rating value from the right rating value. This
returns a positive number if the right rating is greater than the left rating.
Remember that returning a positive value indicates that the two elements are
out of order.

CHAPTER 13: Advanced Topics 444

The ‘‘natural’’ order would be to sort the DVDs from lowest to highest rating (by
subtracting the right rating from the left). This function reverses the order of the
DVDs (so it’s in highest to lowest rating order) by inverting the returned value.

You can do this with any sorting function. One way to sort your DVDs into
reverse alphabetical order (Z to A) would be to pass qsort() this function:

int ReverseDVDTitles(void *l, void *r)
{
 return 0 - CompareDVDTitles(l, r);
}

TIP: The code return CompareDVDTitles(r, l); would also create a
reverse sorting function.

The other thing that’s interesting about CompareDVDRatings() is that it worries
about the case where the ratings of the two DVDs are the same (result is 0). If
the ratings are the same, the two elements are considered equal. qsort()
doesn’t guarantee the order of elements that are equal, except that they will
next to each other in the array. For an explanation, see the sidebar ‘‘Stable and
Unstable Sorting.’’

To make qsort() sort all of the DVDs into a predictable order, the
CompareDVDRatings() function implements a sub-sort. If the primary fields being
compared (rating) are equal, the comparison is performed on a secondary field
(title, in this case). This causes all DVDs with the same rating to be in
alphabetical order in the list.

STABLE AND UNSTABLE SORTING

Sorting algorithms can be divided into two groups: stable and unstable. Both sort items into
ascending order, but differ in how they order items that are equal. As an example, look at the list
of DVDs after they were sorted into title order: “A Bug’s Life” came before “Despicable Me.”
After they were sorted by country, however, “Despicable Me” is now before “A Bug’s Life.”

That’s because, during the country sort, both of these records were equal because both are from
the United States. qsort() is an unstable sort; it doesn’t guarantee the order of equal elements.
Sometimes “A Bug’s Life” will be before “Despicable Me,” and sometimes it won’t.

A stable sort, by contrast, guarantees that the order of equal elements will stay the same after
the array is reordered. So if “A Bug’s Life” was before “Despicable Me” before it was sorted by
country, they will still be in the same (relative) order afterwards.

CHAPTER 13: Advanced Topics 445

When using stable sorting, you can sort the array into title order, sort it again into country order,
and you’ll know that all of the titles from the same country will be in alphabetical order. To
accomplish the same using an unstable sort, you must create a comparison function that
performs sub-sorting, like that shown in CompareDVDRatings(). Stable sorting algorithms
tend to be slower.

So now you know how flexible functions like qsort() can be and just how much
work they can save you. Well, maybe you don’t know, so we’ll tell you: an
optimized quick sort algorithm requires about a page of dense, complex, C. We
could have written an entire chapter just on the quick sort. You accomplished
the same with just a few lines of code.

Now let’s move on to the Core Foundation library. This is another C library, but
this one comes from Apple.

Collections in Core Foundation
OS X includes the Core Foundation framework (another kind of library) that
provides you with hundreds of powerful C functions. Unlike the Standard
Library, Core Foundation is much more object-oriented. In an object-oriented
world, most data is in opaque (you don’t know what’s inside) blobs of data that
you pass around by pointer. Each blob is called an object, and the pointer is
called a reference. We discuss this a little more in the next chapter, but you
don’t need to know anything about objects for this excursion.

NOTE: The Core Foundation uses the term type to describe a set of properties shared
by multiple objects. Most object oriented programming languages use the term class.
It’s the same concept, just different names.

The Core Foundation framework provides, among other things, a number of
different collection solutions. A collection is container (like an array) that can
hold other bits and blobs of data. They are much more flexible than the C arrays
and structures you’ve used so far. Core Foundation provides five kinds of
collections:

CHAPTER 13: Advanced Topics 446

 Array: An array is, conceptually, like a C array, except that you
don’t have to pre-allocate enough room to hold all of the
elements. As you add more elements, the array makes room
for them. You can also insert and remove elements from the
middle of the array; all of the remaining elements are moved
down (or up) as needed. There are also functions to sort and
search the array.

 Dictionary: A dictionary is a form of associative array. Instead
of addressing each element (value) using an integer index,
each element is associated with a key. The key can be any
value you choose. You define what the keys are and what the
values are, and the dictionary uses one to find the other. For
example, you could create a dictionary that maps an
imdb.com movie ID (key) to a DVDInfo struct (value) in your
DVD collection. Give the dictionary an imdb.com movie ID,
and it will tell you if you have that DVD and what it is.

 Set: A set is an unordered collection of values, and it acts very
much like its mathematical counterpart. You can’t directly
request an individual element in a set (by index or key), but
you can determine if a value is in the set. A value can only be
added to a set once. That is, a value is either in the set or it’s
not.

 Bag: A bag is like a set, but you can add the same value
multiple times. Think of a bag of marbles. You can put one
aggie and three steelies in a bag. Even though all three
steelies are the same ‘‘value,’’ they count as three elements in
the bag.

 Tree: A tree organizes values into a hierarchy. The files on your
hard drive form a hierarchy. Each folder can contain files and
folders, which can contain files and folders, which can contain
files and folders, and so on. If you have something like that in
your program, you can use a tree to organize it.

The collections supplied by Core Foundation are, like the Standard Library sort
functions, a generalized solution that you customize by supplying it with a set of
functions. A collection requires several user-supplied functions to do its job.
These are all bundled together in a struct that constitutes a kind of ‘‘personality
module’’ for the collection. Let’s see how this works by using a set collection to
keep track of your favorite DVDs.

CHAPTER 13: Advanced Topics 447

FavoriteDVDs.xcodeproj
Locate the 13.05 - FavoriteDVDs folder and open the FavoriteDVDs.xcodeproj
document. This project shares some code that’s identical to the SortDVDs
project, so we’re only going to discuss the differences. It starts out the same,
but it includes one new #include:

#include <CoreFoundation/CoreFoundation.h>

This includes the headers for the entire Core Foundation library. Unlike the
Standard Library (which is broken up into many small header files), this single
header includes most of the Core Foundation functions at once.

To use any Core Foundation functions, you must link your program to the Core
Foundation framework. If your project’s template didn’t include
CoreFoundation.framework, then you’ll need to add it to your project. Select the
FavoriteDVDs project in the project navigator (the top-most icon). The project
and target settings will appear in the editor pane, as shown in Figure 13-3.

Figure 13-3. Adding the CoreFoundation framework to a project

Select the target, and then the target’s Build Phases. Locate the Link Binaries
with Libraries section, expand it, and click the + button to add a new framework.
Navigate the list and select CoreFoundation from the list of frameworks. Click
Add and your project is now ready to use any Core Foundation functions. Click
back on main.c to return to your source code.

FavoriteDVDs continues on, defining DVDInfo and a testArray[], exactly the
way SortDVDs did. Now come the functions that define how your set collection
will behave. First, define the prototypes for your functions.

CHAPTER 13: Advanced Topics 448

static CFStringRef FavoriteSetItemDescription(const void *value);
static Boolean FavoriteSetCompareItems(const void *value1, const void *value2
);
static CFHashCode FavoriteSetItemHashCode(const void *value);

These are the three functions you have to supply Core Foundation to have a set
collection work with custom values. Your set will store pointers to C strings as
values. We’ll explain exactly how each function works later on.

Next, you define a CFSetCallBacks struct and fill it in with pointers to your
functions.

static CFSetCallBacks FavoriteSetCallBacks = {
 0,
 NULL,
 NULL,
 FavoriteSetItemDescription,
 FavoriteSetCompareItems,
 FavoriteSetItemHashCode
};

This structure defines all of the custom behavior for your set collection. The very
first value is a version number and must be 0. The remaining fields are the five
user-supplied functions, but you don’t always need to define all five.

The first two function pointers are used to automatically allocate and deallocate
storage for your values. Since you’re going to use pointers to C strings that have
already been allocated, you don’t need to supply functions for these behaviors
and you can leave them set to NULL.

The third function is used when the collection wants to describe the object, say
when printing a description of the set to standard out. We’ve supplied a function
for this, although it won’t be used in this program.

The last two functions are the important ones. The fourth function determines if
two values in the set are equal. This is how the set determines if a value is
already in the set or not. The last function generates a hash code for the value.
We’ll explain what that is a little later, too.

For now, just know that this block of function pointers is the ‘‘glue’’ that turns
the Core Foundation set collection functions into ones custom made to work
with your kind of data. So let’s create a set and use it!

main()
main() starts out by creating a mutable set. ‘‘Mutable’’ means you can change
the contents of the collection, which is definitely what you want here.

CHAPTER 13: Advanced Topics 449

int main(int argc, const char * argv[])
{
 CFMutableSetRef favorites;
 favorites = CFSetCreateMutable(NULL, kNumberOfDVDs, &FavoriteSetCallBacks
);

The function CFSetCreateMutable() creates the set. The first parameter is a
memory allocation function, which should always be NULL. The second is a hint
to the set collection on how many elements this set is expected to hold. For
small collections, this value doesn’t matter much. For really large ones, letting
the framework know ahead of time that it’s going to store a boatload of
elements can make it more efficient.

The last argument is the key: it's the CFSetCallBacks struct you defined earlier,
filled with the custom functions you want this set collection to use. With the set
created, it’s ready to use. Start by adding two DVD titles to the set.

 CFSetAddValue(favorites, testArray[0].title);
 CFSetAddValue(favorites, testArray[3].title);

The CFSetAddValue() function adds a value to a set. The value must be what
your custom callback functions expect. In this case, your callback functions are
designed to store and compare C strings, so the values are C string pointers.

Adding a value to a set adds it to the set only if that value isn’t already in the set.
So it doesn’t matter how many time you add ‘‘Space Dogs’’ to the set. Only the
first call to add ‘‘Space Dogs’’ adds it to the set. Subsequent calls determine
that ‘‘Space Dogs’’ is already in the set and does nothing else.

Now the code loops through the DVDs, printing them out. As each DVD is
printed, it uses the set to determine if this DVD is a favorite or not.

 printf("Fav Title\n");
 unsigned int i;
 for (i=0; i<kNumberOfDVDs; i++) {
 char fav = ' ';
 if (CFSetContainsValue(favorites, testArray[i].title))
 fav = '*';
 printf(" %c %s\n", fav, testArray[i].title);
 }

The CFSetContainsValue() function returns true if the given value is in the set or
false if it isn’t. The loop uses this information to determine if it will print a ‘*’
next to your favorite DVD titles. Here’s the output of the program:

Fav Title

 * A Monster in Paris

 Space Dogs

CHAPTER 13: Advanced Topics 450

 Wallace & Gromit

 * A Bug's Life

 Despicable Me

 Planet 51

Ignoring our obvious obsession with animated insects, the code was able to
determine which DVDs were our favorites without adding a new field to DVDInfo.

Now let’s look at the three callback functions that made this possible.

FavoriteSetItemDescription()
The description function is only used when you request a ‘‘description’’ of an
item in the collection. This program doesn’t do that, so this function is never
called. Nevertheless, it’s good practice to supply a description function for
custom collections. This one works by simply converting the C string into a Core
Foundation string object.

static CFStringRef FavoriteSetItemDescription(const void *value)
{
 return CFStringCreateWithCString(NULL, value, kCFStringEncodingASCII);
}

FavoriteSetCompareItems()
The next function is one that’s critical to getting the set to work. This is the
function the set will call when it needs to determine if two values are equal.
Since both values are C strings, you can pass this off to the strcmp() function to
do the work. strcmp() returns 0 if the strings are equal, so the == operator is
used to turn that result into the ‘‘is equal’’ or ‘‘is not equal’’ return value the set is
expecting.

static Boolean FavoriteSetCompareItems(const void *value1, const void *value2)
{
 return (strcmp(value1,value2) == 0);
}

FavoriteSetItemHashCode()
The last function you need to supply is called a hash code function. Sets,
dictionaries, and bags all use hash tables to speed up the process of finding a
value in the collection. See the ‘‘Hash Tables’’ sidebar if you’re interested in
learning more about them.

CHAPTER 13: Advanced Topics 451

HASH TABLES

Hash tables are a technique for searching large collections of values quickly.

Arrays are notoriously slow to search, and the time required to search one increases with the
size of the collection. If array A had 100 elements and array B had 10,000 elements, it would
take (on average) a hundred times longer to find an element in array B than array A.

One technique is to first sort the array into order. Then you can use a binary search to more
quickly find a value. By assuming the array is sorted, a binary search will start by checking the
middle element of the array. If that element is before the value it’s looking for, the search knows
that none of the elements before the middle can be the value. It then checks the middle element
of the upper half and repeats the process, each time eliminating half of the remaining elements,
until it narrows in on the one value it was looking for. The Standard Library’s bsearch()
function implements a binary search for you.

A binary search can reduce the time needed to search a collection dramatically. For an array with
10,000 elements, the number of tests drops from 5,000 to just 11 or 12 (on average). But—and
this is a big “but”—it requires that the collection be in sorted order, which itself can be a very
time consuming activity.

Enter, hash tables. They have the almost magical ability to reduce the search time to almost
nothing, and the size and order of the collection doesn’t matter. A hash table can find an element
in an unsorted collection of 10,000,000 elements almost as fast as in one with only 10.

Hash tables accomplish this feat by assigning an integer number to each value, called a hash
code. The hash codes for two identical values will always be the same. The hash codes for two
values that are not equal are highly likely to be different (but they don’t have to be). A large array
of pointers is created and filled with pointers to each element in the collection. The index of each
pointer is that element’s hash code. To find any element matching a value, the hash code for that
value is generated, that number is used as an index into the hash table, the pointer element at
that index is fetched, and the value it points to is compared with the original value. If they match,
you found the value. If not, you didn’t. It’s quick, simple, and efficient.

We’ve oversimplified hash tables some. We could spend the rest of this chapter going into the
details, but we couldn’t do better than the hash table Wikipedia page at
http://en.wikipedia.org/wiki/Hash_table, which we encourage you to peruse.

The key to using a hash table is to assign every value a hash code, which is an
integer number. Two values that are equal must return the same hash code. Two
value that aren’t equal could have the same hash code, but the collection is
more efficient if they don’t. So the idea is to write a formula that will generates
different codes for almost any two values but must return the same code for two
values that are equal. Here’s the hash code function for this set:

http://en.wikipedia.org/wiki/Hash_table

CHAPTER 13: Advanced Topics 452

static CFHashCode FavoriteSetItemHashCode(const void *value)
{
 CFHashCode code = 0;
 unsigned int bitShift = 0;
 const char* c = value;
 while (*c != '\0') {
 code += (((CFHashCode)*c) << bitShift);
 if (++bitShift >= (sizeof(CFHashCode)-sizeof(char)) * 8)
 bitShift = 0;
 c++;
 }
 return code;
}

This code adds the ASCII value of each character to the code variable, shifting
the bits of each successive character one more bit to the left (essentially
multiplying it by the next power of 2). If bitShift gets close to shifting the bits of
the char past the end of the CFHashCode integer, it’s reset to 0 and starts over
again.

The end result is that the bits of each character get smeared across the bits of
the CFHashCode integer. Both character value and order affect the final value, so
the strings ‘‘tar’’ and ‘‘rat’’ will return different hash codes.

You’re done. That’s all the code it takes to create a set that stores C strings.
Core Foundation arrays, dictionaries, and other collections all work in a similar
manor. Whip up a set of callback functions that define the kind and behavior of
the data you want to store there, and let the array, dictionary, or set handle all of
the details.

NOTE: If you want to store Core Foundation type objects (CFType, CFString,
CFNumber, and so on) in a collection, you don't have to do any work at all. The
kCFTypeSetCallBacks constant already contains a set of functions for storing,
describing, comparing, and hashing Core Foundation objects in a set. There are
similar constants for arrays, dictionaries, bags, and trees.

By now, you should have a taste of what the Standard Library and Core
Foundation framework can do for you.

What’s Next?
You learned about a variety of topics in this chapter. You started with type
conversion and typecasting and then moved on to unions. You learned about

CHAPTER 13: Advanced Topics 453

recursion and function pointers. You found out about the rest of the C
operators. Finally, you took a field trip to sorting, collections, and the world of
object-oriented programming.

Chapter 14 answers the question, ‘‘Where do you go from here?’’ Do you want
to learn to create programs with that special Mac look and feel? Ready to start
writing iOS apps? Would you like more information on data structures and C
programming techniques? Chapter 14 offers some suggestions to help you find
your programming direction.

CHAPTER 13 EXERCISES

1. What’s the syntactic or logical flaw in each of the following code
fragments?

a. struct Dog {
 struct Dog *next;
} ;
struct Cat {
 struct Cat *next;
} ;
struct Dog myDog;
struct Cat myCat;
myDog.next = (struct Dog)&myCat;
myCat.next = NULL;

b. int *MyFunc(void);
typedef int (*FuncPtr)();
FuncPtr myFuncPtr = MyFunc;

c. union Number {
 int i;
 float f;
 char *s;
};
Number myUnion;
myUnion.f = 3.5;

CHAPTER 13: Advanced Topics 454

d. struct Player {
 int type;
 char name[40];
 int team;
 union {
 int myInt;
 float myFloat;
 } u;
} myPlayer;
myPlayer.team = 27;
myPlayer.myInt = -42;
myPlayer.myFloat = 5.7;

e. int *myFuncPtr(int);
myFuncPtr = main;
*myFuncPtr();

2. For each of the following descriptions, choose a Core Foundation collection
that you think would best fit the data. The choices are array, dictionary,
set, bag, or tree.

a. The names of the days of the week (Sunday, Monday,
Tuesday, and so on).

b. b. URLs that you want to visit later.

c. The taxonomical name of organisms, organized by species,
genus, family, order, class, phylum, and so on.

d. Gym locker numbers assigned to members. Given a
member’s name, find the locker number they are assigned.

e. Raffle entries, recorded by name. A person can buy more
than one chance to win the raffle, which will enter them
multiple times.

455

14
Chapter

Where Do You Go from
Here?
Now that you’ve mastered the fundamentals of C, you’re next step is to dig into
the specifics of Mac programming. As you ran the example programs in the
previous chapters, you probably noticed that none of the programs sport the
look and feel that make a Mac program a Mac program. For one thing, all of the
interaction between you and your program focuses on the keyboard and the
console window. None of the programs take advantage of the mouse. None
offer color graphics, pull-down menus, buttons, checkboxes, scrolling windows,
or any of the thousand things that make OS X applications so special. These
things are all part of the Mac user interface.

In short, the book has, so far, only taught basic C programming on a Mac
computer. This is fundamentally different from creating programs that have a
Mac GUI interface. That’s the next logical step in the process, and that’s what
this chapter is about.

The Mac User Interface
The user interface is the part of your program that interacts with the user. So far,
your user interface skills have focused on writing to and reading from the
console window using functions such as printf(), scanf(), and getchar(). The
advantage of this type of user interface is that each of the aforementioned
functions is available on every machine that supports the C language. Programs
written using the standard library are extremely portable.

CHAPTER 14: Where Do You Go From Here? 456

On the down side, console-based user interfaces tend to be limited. With a
console-based interface, you can’t use an elegant graphic to make a point.
Text-based interfaces can’t provide animation or digital sound. In a nutshell, the
console-based interface is simple and, at the same time, simple to program. OS
X’s graphical user interface (GUI) offers an elegant, more sophisticated method
of working with a computer.

Learning Objective-C
Your Mac programs just wouldn’t be the same without windows, drop-down
and pop-up menus, icons, buttons, and scroll bars. You can and should add
these user interface elements to your programs. Fortunately, the set of Apple
developer tools you downloaded and installed at the beginning of this book
includes everything you need to build world-class applications with all the
elements that make the Mac great!

The key to working with these elements lies in understanding Objective-C and
Cocoa. The Objective-C language is a superset of C. This means that everything
you just learned about C will work in Objective-C! There are a number of
excellent resources available for learning Objective-C. One of them is just a
mouse click away.

Choose the Documentation and API Reference command from the Xcode Help
menu. This will open Xcode’s documentation browser. In the search field, type
in ‘‘Programming Objective-C’’ and press Return. In the list of results, locate two
documents: Programming with Objective-C and The Objective-C Programming
Language. Start with the first if you want to get a feel for what Objective-C has
to offer. Jump to the second if you want to start learning the language. If you’ve
never done any object oriented programming, the second document has a link
to the Object Oriented Programming with Objective-C guide, which is a great
primer on the advantages of objects.

We love these documents. They are very well written and detailed, and best of
all, they’re free! Take a few minutes to read through the first few pages. If you
feel comfortable with the language and the tone, you’ve found your path to
learning Objective-C.

If this document makes your eyes glaze over and you start to feel a bit queasy,
there are plenty of other ways to learn Objective-C. If you like the experience
you had reading this book, check out its companion book from Apress called
Learn Objective-C on the Mac by Mark Dalrymple and Scott Knaster (2009).
Mark and Scott are two of the smartest people we know, and they do an
excellent job explaining the concepts behind the Objective-C language.

CHAPTER 14: Where Do You Go From Here? 457

Because that book was written as a sequel to this one, you should feel right at
home.

What’s Objective-C got that regular old C doesn’t? In a word, objects. Just as a
struct brings variables together under a single name, an object can bring
together variables as well as functions, binding them together under a single
class name.

Objects are incredibly powerful. Every part of the Mac user interface has a set of
objects associated with it. Want to create a new window? Just create a new
window object and the object will take care of all the housekeeping associated
with maintaining a window. The window object’s functions will draw the
contents of the window for you, perhaps communicating with other objects to
get them to draw themselves within the window.

There are pull-down menu objects, icon objects, scrollbar objects, file objects,
even objects that can organize other objects. If you can imagine it, there’s
probably a set of objects that will help you build it.

Learning Cocoa and Cocoa Touch
Learning Objective-C will teach you the mechanics of working with objects.
Once you get that down, you can turn your attention to Cocoa or Cocoa Touch,
Apple’s object libraries. Cocoa is an extensive collection of objects that will
allow you to implement pretty much every aspect of the Mac OS X experience.
Cocoa Touch is a collection of objects that will allow you to create exciting
mobile applications for iOS devices like the iPod Touch, iPhone, or iPad.

As you might expect, Apple’s developer tools contain some excellent Cocoa
documentation. Back in the documentation browser, search for ‘‘Cocoa’’ and
locate the article ‘‘Introducing Cocoa,’’ if your interested in creating OS X
applications. If you’re goal is rock the iOS world, a good place to start is the
‘‘iOS Technology Overview.’’ All of this excellent documentation can be found
right in your Documentation browser, and you can’t beat the price.

As the names suggest, the Cocoa and Cocoa Touch libraries share a lot in
common. Learn one, and you’ve already learned half of the other.

A Bit of OS X Code
Our editors are hounding on us to get this last chapter submitted, but we can’t
resist showing you a bit more-----just three more projects-----and then we’ll let you
go. These are just to give you a taste of where you’re heading.

CHAPTER 14: Where Do You Go From Here? 458

Fire up Xcode, and choose New Project command from the File menu. When
the new project assistant appears, select the Command Line Tool template, and
click Next. Type in ‘‘TastOfObjC’’ for the Product Name. For this project, change
the Type from C to Foundation (see Figure 14-1), and click the Next button.
Choose a location and click Create.

Figure 14-1. Creating a Foundation tool project

When the project appears, select Run from the Product menu. Once the build is
complete, bring up the console. You should see something that looks like this:

2012-08-26 19:12:35.347 TasteOfObjC[580:303] Hello, World!

That’s it. This project is the starting point for your next big adventure-----
mastering Objective-C. You’ll find that your Objective-C output looks much the
same as your C output. All your programs will run in the console window. The
difference? You’ll be building and using objects. This is the perfect platform for
learning the mechanics of programming with Objective-C before you add Cocoa
to the mix.

Speaking of Cocoa, let’s build a Cocoa project, since we’re here. Back in
Xcode, choose New Project command from the File menu. When the New

CHAPTER 14: Where Do You Go From Here? 459

Project assistant appears, select Application in the OS X section. This time
select the Cocoa Application template, and click the Next button. Name the
project ‘‘TasteOfCocoa’’ and click the Create Document-Based Application
option. The rest of the options don’t matter for this demonstration.

Figure 14-2. Creating a new Cocoa application project

When the project appears, select Run from the Product menu. After a few
seconds of intense compiler action, a new application will launch. You’ll be able
to tell the new application is running because a window similar to the one shown
in Figure 14-3 will appear. In addition, a new application icon with the name
TasteOfCocoa will appear on the dock, toward the right side, and a menu named
TasteOfCocoa will appear in the menu bar, just to the right of the Apple menu.

CHAPTER 14: Where Do You Go From Here? 460

Figure 14-3. A simple Cocoa application

TasteOfCocoa is a real-life Cocoa application. Try resizing the window. Select
New from the File menu, and a new window will appear. You can open and close
as many windows as you like. Try the Format Font Show Fonts command, or
the Format Font Show Colors command. For a laugh, choose the TasteOfCocoa
 About TasteOfCocoa command. This is the ‘‘Hello, World!’’ of Cocoa
applications.

A Quick iOS App
It’s pretty obvious that you can create OS X applications using OS X and Xcode,
but what about those iOS devices? Xcode provides everything you need to
create, test, and debug applications for Apple’s mobile operating system too.
Let’s take a quick peek at how that works.

CHAPTER 14: Where Do You Go From Here? 461

Once again, and we swear for the last time, choose New Project from the File
menu. When the New Project assistant appears, select Application in the iOS
(not the OS X!) section. On the right you’ll see a lot of possible iOS templates, as
shown in Figure 14-4. Select the Utility Application template, and click the Next
button. Name the project ‘‘TasteOfiOS’’. Make sure the Use Storyboards option
is turned off and click the Next button.

Figure 14-4. Creating an iOS app

To help you quickly code and debug iOS applications, Xcode includes an iOS
device simulator. That’s right. You’re Mac can pretend to be any iOS device. It’s
theoretically possible (although not recommended) that you could create,
debug, and deliver an iOS app without ever touching an actual mobile device.

Find the Scheme control in the toolbar and change it to iPhone 6.0 Simulator, as
shown in Figure 14-5.

CHAPTER 14: Where Do You Go From Here? 462

Figure 14-5. Changing Scheme to iPhone Simulator

Now press the Run button in the toolbar or choose the Product Run command.
An iPhone interface will appear on your screen, shown on the left in Figure 14-6.
It’s the iOS project you just created running in a simulated iPhone.

Figure 14-6. iPhone simulator

The Utility Application template creates a simple one-screen iOS app with an
auxiliary view accessible through an ‘‘info’’ button. Click the i in the lower right
corner of the screen and watch the app flip to its auxiliary view, as shown in the
middle of Figure 14-6. (If you run this in the iPad simulator you get a slightly
different interface.)

CHAPTER 14: Where Do You Go From Here? 463

You can even quit the app by clicking the home button. After your app quits, the
simulator goes back to the springboard (shown on the right of Figure 14-6).
Click your app to launch it again, just as you would on a real iPhone.

Just a Touch of Objective-C
Quit the simulator and go back to the TasteOfiOS project. Click the
MainViewController.h file in the project navigator, as shown in Figure 14-7, and
take a quick look at it. Now do the same with MainViewController.m.

Figure 14-7. MainViewController.h source

What you’re reading is Objective-C, and it doesn’t look much like the C that
you’ve learned in this book. Remain calm. There’s a perfectly logical
explanation, and you’ll soon discover you know a lot more about this code than
you think you do.

Most modern object-oriented languages (Java, C#, C++) are ‘‘C-like’’ languages.
That is, they kind of look and work like C, but they’re not C. If you already know
C, then that’s great; you have a leg up on learning these languages because you
only need to learn what’s different from C, which saves some time. But they’re
not C, and a lot of the details are different.

Objective-C is an extension to C, not a look-alike. Objective-C adds new syntax
to the C language, but doesn’t change anything about C itself. That’s important,
because-----unlike those other languages-----it means that everything you’ve

CHAPTER 14: Where Do You Go From Here? 464

learned in this book will apply to Objective-C. You just have something new to
learn beyond it.

So that the Objective-C extensions aren’t confused with existing C, they are quit
distinct from regular C syntax. Objective-C adds a few so-called ‘‘at’’ keywords,
like @interface, @property, @class, @end, and so on. And Objective-C functions
(called methods) are called by placing them between brackets, like this: [object
myFunction]. Just about everything else (that is, anything not starting with an
‘‘@’’ sign or between brackets) is plain old C.

The primary tool of the object-oriented programmer is the class. A class is just
like a struct, except that it binds together not just variables but the functions
(methods) that act on that struct as well. Using C, you already learned to bind
together related values in a struct and write functions that act on that struct,
like this:

struct DVDInfo {
 const char *title;
 const char *comments;
 int rating;
 struct DVDInfo *next;
};
struct DVDInfo *NewDVDInfo(void);
void AddDVDToList(struct DVDInfo *dvdInfoPtr);
…
struct DVDInfo *myDVD = NewDVDInfo();
myDVD->rating = 9;
AddDVDToList(myDVD);

C programmers do this because it’s just good programming. Objective-C adds
new syntax that makes this easier to write, helping you keep your code neat and
tidy. Here’s the same concept written using an older form of Objective-C (so you
can see the similarities):

@interface DVDInfo : NSObject {
 NSString *title;
 NSString *comments;
 int rating;
 DVDInfo *next;
}
- (DVDInfo*)next;
- (void)addToList;
@end
…
DVDInfo *myDVD = [DVDInfo new];
myDVD->rating = 9;
[myDVD addToList];

CHAPTER 14: Where Do You Go From Here? 465

As you can see, a class looks and works very much like a struct. The methods
(functions) that work on this object (struct) are declared as part of the class,
defined between the @interface and @end keywords.

Objective-C puts the object front and center in the method calling syntax, so
your focus becomes the object and what messages (functions) you want that
object to perform. While this looks radically different than how C works, behind
the scenes the computer ultimately does the same work: it calls a function
(addToList) and the first (invisible to you) parameter is a pointer to your myDVD
object-----exactly the way the AddDVDToList() function works. Isn’t that clever?

Modern Objective-C departs a little further from the C struct syntax, but the
results are still very similar. Here’s the final version of the DVDInfo class
declaration, written in Objective-C 2.0:

@interface DVDInfo : NSObject
 @property (strong) NSString *title;
 @property (strong) NSString *comments;
 @property int rating;
 @property (readonly) DVDInfo* next;
 - (void)addToList;
@end
…
DVDInto *myDVD = [DVDInfo new];
myDVD.rating = 9;
[myDVD addToList];

So don’t be spooked by the odd syntax. Objective-C is really just some
additional tools that will help you write even better C, keep your data organized,
and take care all kinds of details (like allocating and freeing memory) for you.
Trust us, you’re going to love it.

Go Get ‘Em
Well, that’s about it. We hope you enjoyed reading this book as much as we
enjoyed writing it. Above all, we hope you are excited about your newfound
programming capabilities. By learning C, you’ve opened the door to an exciting
new adventure. You can move on to Objective-C and Cocoa, tackle web
programming with PHP, enter the Windows universe with C#, or explore the
cross-platform capabilities of Java. There are so many choices out there, and
they are all based on C.

Go on out there and write some code. And keep in touch!

467

Appendix

Answers to Exercises
This appendix features the answers to the exercises in the back of each chapter.
Chapter 3 was the first chapter to feature exercises, so that's where we start.

Chapter 3
1. This screenshot shows the error we got when we changed

SayHello() ; to SayHello(;.

APPENDIX: Answers to Excercises 468

2. This screenshot shows the error we got when we changed main
to MAIN. The linker fails because every program must have a
function named main(), and now yours doesn’t.

3. This screenshot shows the error we got when we deleted the
left curly brace that opens the main() function.

APPENDIX: Answers to Excercises 469

4. This screenshot shows the errors we got when we changed the
case of the SayHello() function prototype.

Chapter 4
1. Find the mistake in each of the following code fragments:

a. The quotes around "Hello, World" are missing.

b. The comma between the two variables (myInt and
myOtherInt) is missing.

c. =+ should be +=.

d. The second parameter to printf() is missing. Each
format specifier in the first string must be matched
with an appropriate variable in the parameter list.

e. Here's another runtime error. This time, you are
missing the %d in the first argument to printf(). This
won’t cause any problems (the myInt value is simply
ignored), but it’s probably not what you intended.

f. This time, you've either got an extra \ or are missing
an n following the \ in the first printf() parameter.

g. The left-hand and right-hand sides of the assignment
are switched. The variable being assigned is always
on the left.

h. The declaration of anotherInt is missing. The compiler
doesn’t know what anotherInt is.

APPENDIX: Answers to Excercises 470

2. Compute the value of myInt after each code fragment is
executed:

a. 70

b. -6

c. -1

d. 4

e. -8

f. 2

g. 14

h. 1

Chapter 5
After stepping through the Hello3 project:

1. The debugger stopped at breakpoints a total of four times.

2. The debugger stopped before the printf() statement three
times, once for each time the debugger stopped at breakpoints
a total of four times.

3. The main() function executed once, and the debugger stopped
for the breakpoint in main() once. The SayHello() function was
executed three times, and the debugger stopped for the
breakpoint in that function each time, for a total of four breaks.

Chapter 6
1. What's wrong with each of the following code fragments?

a. An if statement's expression must be surrounded by
parentheses.

b. We increment i inside the for loop's expression and
then decrement it in the body of the loop. This loop
will never end!

APPENDIX: Answers to Excercises 471

c. The while loop has parentheses but is missing an
expression.

d. The do statement should follow this format:

do
 statement
while (expression) ;

e. Each case in this switch statement contains a text
string, which is illegal. Also, case default should read
default.

f. The printf() will never get called because if i is less
than 20, then it can’t possibly be equal to 20.

g. This is probably the most common mistake made by C
programmers. The assignment operator (=) is used
instead of the logical equality operator (==). Since the
assignment operator is perfectly legal inside an
expression, the compiler won't find this error. This is
an annoying little error you'll encounter again and
again!

h. Once again, this code will compile, but it likely is not
what you wanted. The third expression in the for loop
is usually an assignment statement-----something to
move i toward its terminating condition. The
expression i*20 is useless here, since it doesn't
change anything.

2. Look in the folder 06.E2 - NextPrime2.

3. Look in the folder 06.E3 - NextPrime3.

Chapter 7
1. Predict the result of each of the following code fragments:

a. The final value is 25.

APPENDIX: Answers to Excercises 472

b. The final value is 512. Try changing the for loop from
2 to 3. Notice that this generates a number too large
for a 2-byte short to hold. Now change the for loop
from 3 to 4. This generates a number too large for
even a 4-byte int to hold. Be aware of the size of your
types!

c. The final value is 1,024.

2. The expression isPrime is not recognized, because the scope of
a variable ends with the block of code it was declared in.

3. Look in the folder 07.E3 – Factor2.

Chapter 8
1. What's wrong with each of the following code fragments?

a. The char type defaults to signed, so c can only hold
values from -128 to 127. It would be better to use an
int.

b. Use %f, %g, or %e to print the value of a float, not %d.
Also, the variable being printed is f. It should be
myFloat.

c. A character constant is surrounded by single quotes,
not double quotes. The text string "a" is an array
composed of two characters: 'a' and the terminating
'\0' char. The variable c is only a single byte in size.
Even if c were 2 bytes long, you couldn't assign a
pointer to an integer. Try copying the text one byte at
a time into a variable large enough to hold the text
string and its terminating zero byte.

d. Once again, this code uses the wrong approach to
copying a text string. Also, even if the characters in
the string were correctly copied into c, the c array is
not large enough to hold that text string and its zero
byte.

e. A #define directive is not a C statement and does not
end with a semicolon (unless you want a semicolon to
be included in the replacement text).

APPENDIX: Answers to Excercises 473

f. The #define of kMaxArraySize must come before the
first non-#define reference to it.

g. This array definition (char c[kMaxArraySize])
creates an array ranging from c[0] to
c[kMaxArraySize-1]. The reference to
c[kMaxArraySize] is out of bounds.

2. Look in the folder 08.E2 – Dice3.

3. Look in the folder 08.E3 - Overflow.

Chapter 9
1. Look in the folder 09.E1 - SeeArgs2.

2. ‘‘Learn C on the Mac!’’ If you want to step through the program,
look in the folder 09.E2 - Message.

3. Look in the folder 09.E3 - WordCount2.

Chapter 10
1. What's wrong with each of the following code fragments?

a. The keyword struct before Link is missing in the
declaration of the next field.

b. You can’t declare a field of a struct to be a copy of
itself. It’s more likely that these should be pointers to
similar structs, in which case the correct syntax is
struct Link *next.

c. While this is perfectly valid C code, it will never output
anything. The while loop advances the line pointer
until it points to a '\0' character. It then prints this
value using printf(), but since line always points to a
'\0' nothing is output.

2. Look in the folder 10.E2 - DVDTracker2.

3. Look in the folder 10.E3 - DVDTracker3.

APPENDIX: Answers to Excercises 474

4. Look in the folder 10.E4 - DVDTracker4.

Chapter 11
1. What's wrong with each of the following code fragments?

a. The arguments to fopen() are backwards. The first
argument is the path to the file, and the second is the
mode.

b. The first parameter to fscanf() contains a prompt, as
if you were calling printf(). The first parameter of
fscanf() is the FILE pointer.

c. line is declared as a char pointer instead of as an
array of chars, the pointer is uninitialized, and no
memory was allocated for the string being read in by
fscanf(). Also, since line is a pointer, the & in the
fscanf() call shouldn't be there.

d. This code is fine except for two problems. The file is
opened for writing, yet we are trying to read from the
file using fscanf(); this will fail. Also, there is no
protection against reading more than 99 characters
into the line array.

2. Look in the folder 11.E2 - FileReader.

Chapter 12
1. The fscanf() function returns the number of values successfully

scanned, or EOF. The if statement only tests for EOF and
assumes the conversion was successful otherwise. The correct
test should be if (fscanf(fp,"%d",value) != 1) to
determine if the conversion was successful or not.

2. Write an assert statement to ensure each assumption is true.

a. assert(dvdInfoPtr != NULL);

b. assert(count != 0);

c. assert(argc >= 1);

APPENDIX: Answers to Excercises 475

d. assert(str != NULL); assert(copyOfString !=
NULL);

e. assert(index >= 0 && index < sizeof(array));

3. Anything that can go wrong, will go wrong.

Chapter 13
1. What's wrong with each of the following code fragments?

a. In the next-to-last line, the address of myCat is cast to
a struct. Instead, the address should be cast to a
pointer to a struct (struct Dog *).

b. The typedef defines FuncPtr to be a pointer to a
function that returns an int. MyFunc() is declared to
return a pointer to an int, not an int.

c. The declaration of myUnion is missing the keyword
union. Unless you use a typedef, unions and structs
are declared using a tag. A tag must always be used in
conjunction with the union or struct keyword. Here's
the corrected declaration: union Number myUnion;

d. The Player union fields must be accessed using u.
Instead of myPlayer.myInt, refer to myPlayer.u.myInt.
Instead of myPlayer.myFloat, refer to
myPlayer.u.myFloat.

e. First, myFuncPtr is not a function pointer and not a
legal l-value. As is, the declaration just declares a
function named myFuncPtr. This declaration fixes that
problem int (*myFuncPtr)(int);. Next, main()
doesn't take a single int as a parameter. Besides that,
calling main() yourself is a questionable practice.
Finally, to call the function pointed to by myFuncPtr,
use either myFuncPtr(); or (*myFuncPtr)();, instead
of *myFuncPtr();.

2. Choose a Core Foundation collection that best fits the data.

APPENDIX: Answers to Excercises 476

a. Array. The names of the week are a sequence which
one would naturally address using a day number (0 for
Sunday, 1 for Monday, and so on).

b. Set. URLs that you want to visit don’t have any
particular order, and you don’t want them duplicated
in the collection if you add the same URL more than
once.

c. Tree. The organization of species forms a hierarchy,
which is perfectly suited for trees.

d. Dictionary. A dictionary can easily map locker
numbers (the value) with member names (the key).

e. Bag. Like set, a bag stores unordered values. Unlike a
set, a bag can contain duplicate values. This permits a
person’s name to be added to the bag more than
once, and thus be entered into the raffle more than
once, improving their odds.

477

Index

 Numbers and Symbols
& operator, 144
* operator

address, 149
assignment statement, 146
debugger, 150
dereferences, 149
game changer, 146
memory allocation, 147, 148
value assignment, 149, 150

, (comma) operator, 437
^ operator, 435
| operator, 435
~ (bitwise not) operator, 436

 A
Absolute path, 244
Apple’s Xcode

cost, 2
folder contents, 6
installation, 1–2
new project assistant, 7
project files, 4
project template options, 8
registered developer, 3
running a project, 10
startup window, 4, 5
workspace window, 6, 9

apropos command, 234
Archive command, 241
argc and argv values, 237
Arguments, 156–157

Arguments Passed on Launch, 239
Array initializer, 282
ASCII.xcodeproj

convertedDigit, 200
lowercase Roman alphabet, 200
printable ASCII character, 199
source code

main() calls, 203
PrintChars(), 202
printf(), 203
putchar(), 203

sumOfChars, 199
unprintables, 200–202

Assignment operator (=), 51
Auto-completion feature, 249
Automatic variable, 156, 172
Average() function, 157–158, 165

 B
Binary multiplication operator, 151
Binary operators, 436
Boolean algebra, 99
break statement, 125
Bug, 76
Build settings, 242

 C
calloc(), 315
camelCase, 46
Cast operator, 417
cd (change directory) command, 246

INDEX 478

C functions
calling a function, 25–26
case sensitive, 37–39
console pane, 22
declaration, 23
Hello2 project

editor pane, 29
program running, 32
project navigator, 29
source code, 30–32
toolbar, 29
workspace window, 29

issue detail and fixing it, 36
mail-sorting flow chart, 24
main.c

comment, 27
function declaration, 27
#include file, 27
return statement, 27

semantic error, 24
Standard Library, 33
syntax errors, 23, 35, 37

char array, 332
Cocoa and Cocoa Touch, 457
Command line

character input
interactive character streams,

253
Namer.xcodeproj (see

Namer.xcodeproj)
null file, 255
other processes, 255–256
pipes, 252–253
pipes to files, 254

command arguments, 232
command-line interface, 287
command-line tool

command arguments and
main(), 237–238

installing, 250
PATH variable configuration,

251–252

private bin directory creation,
250

SeeArgs.xcodeproj, 238–240
deploying program, 241–244
man page, 233–234
pointer arithmetic

comparing pointers, 264
pointer addition, 265–268
pointer equivalence, 267
subtracting pointers, 268

RomanNumeral.xcodeproj (see
RomanNumeral.xcodeproj)

shell program, 230–231, 235–236
terminal window, 230
terseness of, 257
using paths

absolute path, 244
current directory and relative

paths, 245–246
home directory name, 248
path separator, 244
special directory names, 246–

248
WordCount.xcodeproj (see

WordCount.xcodeproj)
Command-line interface, 287
Compound expressions, 102–103
Compound statements, 106
Conditional operators, 270–271
const modifier, 419–420
continue statement, 125–126
C operators

*, /, %, *=, /=, and %= operators,
54–56

++ and -- operators, 53
+= and -= operators, 54
addition (+) and subtraction (-)

operators, 52
assignment operator (=), 51
precedence of, 57–59
using parentheses, 56

Core Foundation framework
array, 446

INDEX 479

bag, 446
dictionary, 446
FavoriteDVDs.xcodeproj, 447, 448

FavoriteSetCompareItems(),
450

FavoriteSetItemHashCode(),
450–452

main(), 448–450
set, 446
tree, 446

Countdown() function, 173
CountWords(), 275–277
C programming

comment out statements, 70–71
commented code, 69–70
const modifier, 419–420
creating own types

example, 421
forward references, 422–423
struct typedefs, 422

curly brace placement, 71
enumerated types, 423–425
function pointers, 433–435
Operator.xcodeproj

output, 60
project window, 60
source code, 61–64

Postfix.xcode
output, 64
source code, 65–66

recursion
iterative approach, 429
recursive approach, 430–433

remaining operators, 435–437
type conversion

conversion rules, 413–415
conversion warnings, 415
definition, 411
example, 411
implicit conversion, 412
trickle down effect, 413

typecasting
cast operator, 417

example, 416
explicit conversion, 416
pointers, 417–419

unions, 425–428
white space, 67–69

C shell (csh), 231
C statements, 21
Curly braces, 71
C variables

bytes and bits
bit-numbering scheme, 48
1 byte to 2 bytes, 50–51
byte value, 49
two’s complement notation,

49
data containers, 43, 44
declaration of, 45
type size, 47–48
variable names, 45–47

 D
Data structures

bundling data, 291
DVD

myInfo, 301
rating, 301
struct, 301
StructSize.xcodeproj (see

StructSize.xcodeproj)
DVD’s attributes

Char, 292
#defines, 292
floats, 292, 293
kMaxTitleLength, 293
myArray[0], 293
rating, 292
tracking arrays, 293

DVDTracker.xcodeproj (see
DVDTracker.xcodeproj)

linked lists
creation, 318–319
master pointer, 317

INDEX 480

Data structures (cont.)
memory allocation

Address! tracking, 316, 317
free(), 315
malloc() (see malloc())

MultiArray.xcodeproj
blap, 297
#define, 294
dvdNum+1, 296
fgets(), 297
#include <stdio.h>, 295
#include <string.h>, 299
kMaxDVDs, 296
PrintDVDTitle() function, 295,

297–299
printf(), 294, 295
title[0][0], 297
title array size, 294

ParamAddress.xcodeproj, 309–
311

struct
advantage and disadvantage,

309
#define kMaxDVDs, 311
DVDInfo struct declaration,

307
main(), 308
myDVDPtr->rating, 308
myDVDs[10].rating, 311
myInfo fields, 307
PrintDVD(), 307, 308

Data types
arrays

char myChar[20]\, 204
Dice.xcode (see Dice.xcode)
exceeding the bounds of your

array, 210
float salaries[50]\, 205
int myNumber[3]\, 204
myNumber, 205

characters
ASCII Character Set, 197–198

ASCII.xcodeproj (see
ASCII.xcodeproj)

#define Directive
advantages of, 214–216
code, 212–213
function-like #define Macros,

216–217
kDiceSides, 210
kMaxArraySize, 211, 212
MAX_ARRAY_SIZE, 212
pound-define, 210
preprocessor, 213–214

FloatSizer (see FloatSizer)
integer types (see Integer types)
ints, 177

exact-width types, 195
IMPLICIT Conversion, 192–193
inadequate range, 190–191
integer vs. floating point,

196–197
ranges of, 190
semantic types, 195
sign conversion, 193–194

IntSizer.xcodeproj, 188–189
myNum, 178
text strings

FullName.xcodeproj (see
FullName.xcodeproj)

in memory, 217–218
Overflow.xcodeproj (see

Overflow.xcodeproj)
Debug area, 79
Debugging

definition, 76
execution control

Hello3 project, 77
running program, full speed,

85–87
setting breakpoints, 78–80
stepping into function, 81–84
stepping out function, 84–85
stepping over statement,

80–81

INDEX 481

iceberg, 90
Operators and Postfix projects, 75
origins, 76–77
variables examination

argv and argc, 88
inspector pop-up, 89
myInt, 88, 89
OperatorsDB project

workspace, 87
OperatorsDB stopped at

breakpoint, 88
OperatorsDB.xcodeproj, 87
printf() statement, 90
Step Over button, 89

Dice.xcode
output of, 206
source code

function prototypes, 207
#includes, 207
main(), 207
PrintRolls(), 208
PrintX(), 209
rand(), 208
RAND_MAX, 208
RollOne(), 208
srand(), 207
twoDice, 208

DinoEdit.xcodeproj
dinosaur number, 360
GetNewDinoName, 364
GetNumber(), 363
GetNumberOfDinos(), 364–365
kDinoFileName, 361
kDinoRecordSize, 361
kMaxLineLength, 361
main(), 362–363
main.c, 361
My Dinos.data, 360
ReadDinoName(), 365–366
TrimLine(), 367
WriteDinoName(), 366–367

Documentation browser, 39, 40
do statement, 119–120

DVDFiler.xcodeproj
DVD Data.txt exploration, 345–

346
DVDFile.c, 353–354
DVDInfo.h, 351–352
DVDInfo structs, 343, 344
main.c, 349–351
modular code, 344–345
new source code file, 348–349
project window, 343
ReadFile(), 355–356
ReadStructFromFile(), 356–357
running, 346–348
WriteFile(), 343, 354–355

DVDTracker, 331, 343
DVDTracker.xcodeproj

DVD rating, 320
DVD title, 320
Enter command, 320
source code

AddToList(), 325
ctype.h, 321
DVDInfo struct declaration,

321
dvdTracker.h, 321
GetCommand(), 323
ListDVDs(), 326
main(), 322–323
main.C, 321
ReadStruct(), 324–325
stdio.h, 321
string.h, 321
TrimLine(), 327–328

 E
echo command, 251
Edit scheme dialog, 239
End of file (EOF), 332
Enumerated types, 423–425
errno, 392–394
Error handling

anticipation, 407–409

INDEX 482

Error handling (cont.)
assumptions

assert statements, 388–490
Factor() function, 386
fgets(), 387
ranges, 385–386
variables, 383–384

escape plan
early return, 397–398
exception handling, 403
exit, stage left, 402–403
follow the success” pattern,

395–397
longjmp(), 404
percolate errors up” pattern,

401–402
ReadFile() function, 403
ReadOneField() function, 405
ReadStructFromFile(), 404,

405
setjmp() function, 403
skip past failure” pattern,

398–401
Murphy’s law, 382–383
return values

chdir(), 391
errno, 392–394
getpwuid(), 391
SetHomeDirectory(), 391

Explicit conversion, 416

 F
Factor() function, 161–162, 165
Factorial problem, 430–433
Factor program, 169
Factor.xcodeproj, 163–165
FALSE constant, 98
Files

bytes, 332
char array, 332
data file, 332
end of file (EOF), 332

manipulation
DinoEdit.xcodeproj (see

DinoEdit.xcodeproj)
endians, 369–371
random access functions, 359
random file access, 359
text vs. data files, 368–369
update modes, 358

names, 332–333
offset/position address, 332
opening and closing, 333–335
PrintFile.xcodeproj (see

PrintFile.xcodeproj)
reading, 335–337
RomanNumeral tool (see

RomanNumeral.xcodeproj)
system objects, 378–379
writing

DVDFiler.xcodeproj (see
DVDFiler.xcodeproj)

fprintf(), 342
fputc(), 342
fputs(), 342
putchar(), 342

Filesystem, 332
First in, first out (FIFO) buffer, 260
FloatSizer

format specifier modifiers
approximation, 182
fixed accuracy, 183
(%f) specifiers, 182
mantissa or coefficient, 183
printf()s, 181–183
significand, 183
specifier %, 184

output of, 178, 179
scientific and general specifiers

double hangs, 185
%g specifier, 184
printf(), 184

source code
#include, 179
myDouble, 181

INDEX 483

myLongDouble, 179, 181
printf() function, 180, 181
size_t, 180
sizeof, 180

for statement
compiler warnings, 116
execution, 114–115
infinite loop, 113
initialization, 113
loneliest statement, 115
LoopTester.xcodeproj, 116–119
modification, 113
semicolon, 115
termination, 113

Forward references, 422–423
fread(), 365, 366
Free-form language, 68
fseeko(), 365, 366
ftello(), 365
FullName.xcodeproj

PrintFullName() function, 219
printf() function, 222
strcat(), 221, 222
strcpy(), 220
<strings.h> header file, 219

Function parameters
AddTwo(), 152
vs. arguments, 156–157
global variables

addition, 171–172
data sharing, 169
definition, 169
parameter passing, 170
usage, 170–171

pointers as, 161–162
return value

Average() function, 157–158
main() function, 157
multiple return statements,

159–160
printf(), 158–159
void function, 160–161

static variables, 172–174

temporary, 155–156
variable scope, 152–153
working, 153–155

Function pointers, 433–435

 G
GetCommand(), 351
GetNewDinoName(), 363, 364
GetNumberOfDinos(), 364–365
getpwuid(), 341, 345
getuid(), 341
gMyVar function, 172
gTailPtr variable, 352

 H
Hash tables, 450–452
Header file. See #include file
hexdump command, 368

 I, J
if statement, 94–95, 103–104

avoiding mistakes
compiler warnings, 109–110
constant on left, 108
if statement with assignment

warning, 108
if statement with empty body,

109
curly braces, 104–106
loneliest statement, 107
semicolon, 106
unintentional assignment,

107–108
Implicit conversion, 412
#include file, 27
Infinite loops, 113
Infinite recursion bug, 430
Initializer values, 173
Integer types

C99 standard, 187
int and unsigned int, 186

INDEX 484

Integer types (cont.)
long modifier, 186
short modifier, 186
signed modifier, 186
unsigned modifier, 186
verbose int declarations, 187

InterCap convention, 46
iOS App, 460–463
iPhone simulator, 462
isDark variable, 107
IsOdd.xcodeproj

IsOdd program, 126, 127
IsOdd source code, 127–129

isPrime, 130–132
itsARerun, 101

 K
kDinoRecordSize, 365
Korn shell (ksh), 231

 L
less command, 233
Logical memory address, 167–168
Logical operators

And and Or operators, 100–102
Not operator, 99–100
TRUE and FALSE constants, 98
truth tables, 98

loopCounter, 112
LoopTester.xcodeproj, 116–119
ls command, 231, 256
ls -l command, 232

 M
Mac user interface

Cocoa and Cocoa Touch, 457
learning Objective-C, 456–457

malloc()
block size, 313
DVDInfo struct, 314
myDVDPtr, 314

struct DVDInfo *myDVDPtr, 314
void pointer, 313

man command, 233–234
Minimum() function, 159–160
mkdir (make directory) command,

250
Murphy’s law, 382–383
mv (move) command, 250

 N
Namer.xcodeproj

input and output, 257, 258
input buffer, 259–260
program crash, 262–263
programming, 261–262
safe namer, 263
source code, 258

NewDVDInfo(), 352
newEpisode, 101
NextPrime.xcodeproj

NextPrime program, 129–130
NextPrime source code, 130–134

NumberToRomanNumeral(), 282–287

 O
Objective-C, 456–457, 463–465
OS X Code

Cocoa application project, 459,
460

foundation tool project, 458
OSSwapHostToBigInt32(), 371
Overflow.xcodeproj

bounds checking, 224
PrintFullName() function, 225
SIGABRT message, 223
strcat() function call, 223
string copy routines, 225
strlcpy() and strlcat() functions,

224

INDEX 485

 P
Page map, 168
PassAlong() function, 170
Path separator, 244
PEMDAS mnemonic, 56
Persistence, 331
Physical memory address, 167–168
Pipes, 252–253
Pointers

& operator, 144
* operator

address, 149
assignment statement, 146
debugger, 150
dereferences, 149
game changer, 146
memory allocation, 147, 148
value assignment, 149, 150

address of variable, 142–144
as parameters, 161–162
computer architecture and

pointer sizes, 147–148
disadvantages, 167
Factor.xcodeproj, 163–165
level of indirection, 141
library

catalogs, 138
checking, 141
search by catalog number,

139–140
search by title, 140
search window, 139

memory addresses, 142
NULL value, 166
pass-by-value vs. pass-by-

reference, 165–166
RAM, 141
references, 138
type modifier, 151
variable declaration, 144–145

Pre-processor directives, 68
PrintFile.xcodeproj

fclose(), 341
fgetc(), 340
fopen(), 340
fpopen(), 340
Hide Extension option, 338
main.c source code, 339
My Data File.txt file creation, 337
printf(), 340
putchar(), 340
saving My Data File.txt file, 337–

338
SetHomeDirectory(), 339, 341
TextEdit application, 337

PrintMyVar() function, 170
PrintUsageAndExit(), 374
Program counter (PC), 79
Program flow control

expressions
assignment statement, 95
comparative operators, 97–98
compound, 102–103
logical operators (see Logical

operators)
true, 96–97
TruthTester.xcodeproj, 102
variables, 95
void, 96

IsOdd.xcodeproj (see
IsOdd.xcodeproj)

NextPrime.xcodeproj (see
NextPrime.xcodeproj)

statements
break statement, 125
continue statement, 125–126
do statement, 119–120
for statement (see for

statement)
if statement (see if statement)
switch statement (see switch

statement)
while statement, 110–113

Programming basics
C programming, 12

INDEX 486

Programming basics (cont.)
for Mac or iOS devices, 13, 14
Objective-C, C#, C++, and Java,

12
source code

building application, 18
compilation, 16, 18
summing numbers 1 through

10, 15
workspace window, 16

Pseudo-files, 255

 Q
qsort() function, 438
Quick sort algorithm, 438

 R
ReadDinoName(), 365–366
ReadFile(), 355–356
ReadLine(), 272–275
ReadStructFromFile(), 356–357
Recursion

iterative approach, 429
recursive approach, 430–433

Relative paths, 245–246
Remote shell (rsh), 231
ReplaceNumbersInStream(), 374–376
rewind(), 365
Right bit-shift operators, 437
RomanNumeral tool

command-line tool, 371
RomanNumeral.xcodeproj (see

RomanNumeral.xcodeproj)
Terminal window, 376–378

RomanNumeral.xcodeproj
headers, 281
main(), 281, 372–374
NumberToRomanNumeral(),

282–287
PrintUsageAndExit(), 374
ReplaceNumbersInStream(),

374–376

 S
Secure shell (ssh), 231
SeeArgs.xcodeproj, 238–240
SetHomeDirectory(), 339, 341
Shell program, 230, 231, 235–236
Signed shift, 437
Simple statements, 106
sort command, 256
Stable and unstable sorting, 444
Standard Library, 33
Standard Library function, 332
Standard Library sorting

quick sort algorithm, 438
SortDVDs.xcodeproj

CompareDVDCountries(), 443
CompareDVDRatings(), 443,

444
CompareDVDTitles(), 442
main(), 440–442
PrintTestArray(), 442

State transition, 277
StructSize.xcodeproj

DVDInfo struct size, 302
source code

angle brackets (<>), 303
data alignment, 306
DVDInfo struct type, 305
#include file, 303
main.c, 302
myInfo, 305
padding, 306
structSize.h file, 303, 304
Xcode’s Related Files menu,

304
struct typedefs, 422
switch statement, 120

break statement, 121
case label, 120
case with no statements,

122–123
default label, 121, 122
fall-through, 123–124

INDEX 487

selection statements, 121
switch wrap-up, 124–125

 T
TENEX C shell (tcsh), 231
Translation unit, 173
tree/branch/leaf analogy, 247
Trickle down effect, 413
Trinary operator, 270
TRUE constant, 98
Truth tables, 98, 99
TruthTester.xcodeproj, 102
TurnOnLights(), 107
Two’s complement notation, 49
Typecasting

cast operator, 417
example, 416
explicit conversion, 416
pointers, 417–419

Type conversion
conversion rules, 413–415
conversion warnings, 415
definition, 411
example, 411
implicit conversion, 412
trickle down effect, 413

 U
Unary indirection operator, 151
Unions, 425–428
uptime command, 234

 V
Virtual memory, 168
void function, 160–161

 W
wc command, 256
White space, 67–69
WordCount.xcodeproj

results of, 269
source code

conditional operator, 270–271
CountWords(), 275–277
function prototypes, 269, 270
header files, 269
inverting compound

conditionals, 273–274
ReadLine(), 272–275

testing WordCount, 278–280
WriteDinoName(), 366–367
WriteFile(), 343, 354–355

 X, Y
Xcode. See Apple’s Xcode
Xcode’s built-in manuals, 39–41

 Z
Z shell (zsh), 231

 i

Learn C on the Mac

For OS X and iOS

■ ■ ■

David Mark

James Bucanek

ii

Learn C on the Mac: For OS X and iOS

Copyright © 2012 by David Mark and James Bucanek

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher's location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4533-9

ISBN-13 (electronic): 978-1-4302-4534-6

 Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: James Markham
Technical Reviewer: Michael Thomas
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.
apress.com/source-code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code
http://www.apress.com/source-code

To Deneen, Daniel, Kelley, and Ryan, ILYANMWITWWA.

To Deborah, for making time.

 v

Contents

 About the Authors ...xiii
 About the Technical Reviewer...xiv
 Acknowledgments..xv
 Introduction...xvi
 Chapter 1: Go Get the Tools!.. 1
Installing Xcode..1
How much is that IDE in the Window? ...2
What’s a Registered Developer?..3
Getting the Projects..4
Using Xcode ...4

Creating a New Xcode Project ..6
The Workspace Window ...9
Running a Project ...10

Moving On ..10
 Chapter 2: Programming Basics ... 11
Programming ...11

Some Alternatives to C ...12
What About Objective-C, C#, C++, and Java? ..12

What’s the Best Programming Language for the Mac or iOS Devices?13
The Programming Process...14

Source Code ...14
Compiling Your Source Code ..16
Building Your Application ...18

What’s Next?..19
 Chapter 3: C Basics: Statements and Functions 21
C Statements..21
C Functions ..22

CONTENTS

vi

Defining a Function. ..23
Syntax Errors and Algorithms. ..23
Calling a Function. ..25

Same Program, Two Functions ..28
The Hello2 Project28
The Hello2 Source Code . ..30
Running Hello2 . ..32

Doing That Again, and Again, and Again. ..34
Generating Some Errors...35

Fixing the Problem. ...35
Getting Close36
C is Case Sensitive . ..37

Exploring Xcode’s Built-In Manuals39
Getting Help Quickly . ..41

What’s Next?. ..41
 Chapter 4: C Basics: Variables and Operators 43
An Introduction to Variables...43

Working with Variables. ..45
Variable Names45
The Size of a Type47
Bytes and Bits. ..48
Going from 1 Byte to 2 Bytes. ...50

Operators51
The +, -, ++, and -- Operators . ..52
The += and -= Operators . ..54
The *, /, %, *=, /=, and %= Operators. ...54

Using Parentheses ...56
Operator Precedence ...57
Sample Programs...59

Opening Operator.xcodeproj. ..59
Stepping Through the Operator Source Code...61
Opening Postfix.xcode64
Stepping Through the Postfix Source Code65

Sprucing Up Your Code ..67
Source Code Spacing . ..67
Comment Your Code...69
The Curly Brace Controversy71

What’s Next?. ..72
 Chapter 5: Debugging. .. 75
What’s a Debugger?...76

CONTENTS

 vii

Controlling Execution ...77
Setting Breakpoints ..78
Stepping Over a Statement...80
Stepping Into a Function...81
Stepping Out of a Function ...84
Full Speed Ahead..85

Examining Variables...87
How is a Debugger like an Iceberg? ..90
What’s Next?..90
 Chapter 6: Controlling Your Program’s Flow 93
Flow Control ...93

The if Statement ...94
Expressions..95

True Expressions ..96
Comparative Operators...97
Logical Operators ...98
TruthTester.xcodeproj ..102

Compound Expressions..102
Statements...103

The Curly Braces ..104
Where to Place the Semicolon..106
Two Common Pitfalls..106

The while Statement ..110
The for Statement ..113

LoopTester.xcodeproj ...116
The do Statement...119
The switch Statement ..120

A case with No Statements ..122
The Mixed Blessing of Fall-Through ...123
switch Wrap-Up..124

Breaks in Loops ...125
The continue Statement...125
IsOdd.xcodeproj ...126

Stepping Through the IsOdd Source Code..127
NextPrime.xcodeproj..129

Stepping Through the NextPrime Source Code ..130
What’s Next?..134

CONTENTS

viii

 Chapter 7: Pointers and Parameters... 137
What Is a Pointer?..138

Why Use Pointers?..138
Checking Out of the Library ..141

Pointer Basics ..141
The Address of a Variable...142
The & Operator ...144
Declaring a Pointer Variable ...144
The * Operator ..145

Function Parameters..152
Variable Scope..152
How Function Parameters Work ...153
Parameters Are Temporary ..155
The Difference Between Arguments and Parameters ..156

Function Return Value..157
printf() Returns a Value...158
Multiple Return Statements..159
Returning Nothing at All ...160

Putting it All Together ..161
Using Pointers as Parameters ..161
Factor.xcodeproj...163

Some Pointers on Pointers...165
Pass-By-Value vs. Pass-By-Reference...165
The NULL Pointer Value ..166
The Dark Side of Pointers ...167

Global and Static Variables ..169
Global Variables..169
Adding Globals to Your Programs...171
Static Variables...172
What’s Next? ..174
 Chapter 8: More Data Types .. 177
Data Types Beyond Int ...177

FloatSizer..178
The Integer Types ...186
IntSizer.xcodeproj...188
The Long and Short of ints ...189

The Best int for the Job..194
Semantic Types ..195
Exact-Width Types..195
Integer vs. Floating Point..196

CONTENTS

 ix

Working with Characters..197
The ASCII Character Set ...197
ASCII.xcodeproj...198
Stepping Through the ASCII Source Code ..202

Arrays...204
Why Use Arrays?...205
Dice.xcode ..205
Stepping Through the Dice Source Code..207
Danger, Will Robinson! ...209

The #define Directive ...210
Using #defines in Your Code...212
Stepping Through the Preprocessor ...213
The Advantages of Using #define Directives ..214
Function-like #define Macros...216

Text Strings..217
A Text String in Memory ...217
FullName.xcodeproj..218
Overflow.xcodeproj...223

What’s Next?..225
 Chapter 9: The Command Line .. 229
Command Line Basics..230

Command Arguments...232
Learning More About Commands ...233
Where Shell Commands Come From..235

Creating a Command-Line Tool..236
Command Arguments and main() ...237
SeeArgs.xcodeproj..238

Deploying the Program ..241
Using Paths ..244

Current Directory and Relative Paths ...245
Special Directory Names ..246
The Home Directory Name..248

Installing a Command-Line Tool ..248
Creating a Private bin Directory..250
Installing the Tool ...250
Configuring the PATH Variable..251

Character Input ..252
Pipes...252
Redirection ...253
Namer.xcodeproj ..257

CONTENTS

x

Pointer Arithmetic ..264
Comparing Pointers ..264
Pointer Addition ..265
Subtracting Pointers...268

WordCount.xcodeproj...268
Stepping Through the WordCount Source Code ...269
Testing WordCount in the Shell ..278

RomanNumeral.xcodeproj..281
main() ...281
NumberToRomanNumeral() ..282

One Last Word About the Command-Line Interface...287
What’s Next?..288
 Chapter 10: Designing Your Own Data Structures 291
Bundling Data...291
Model A: Three Arrays..292

MultiArray.xcodeproj ..293
Model B: The Structure Approach ..300

StructSize.xcodeproj...302
Passing a struct As a Parameter..307

Passing a Copy of the struct...308
ParamAddress.xcodeproj ...309
struct Arrays ..311
Allocating Your Own Memory...312

Using malloc()...313
free() ...315
Keeping Track of That Address! ...316

Working with Linked Lists..317
Why Use Linked Lists?..318
Creating a Linked List...318

DVDTracker.xcodeproj..319
Stepping Through the DVDTracker Source Code ..321

What’s Next?..329
 Chapter 11: Working With Files... 331
What Is a Data File? ...332
File Basics..332

Understanding File Names ...332
Opening and Closing a File ...333

Reading a File ..335

CONTENTS

 xi

PrintFile.xcodeproj ...337
Stepping Through the PrintFile Source Code..339

Writing Files ...342
DVDFiler.xcodeproj ...343

Fancier File Manipulation...358
The Update Modes..358
Random File Access ...359
Using Random Access Functions ...359
DinoEdit.xcodeproj..360
Text vs. Data Files ..368
Working with Endians...369

Making RomanNumeral a Better Tool ..371
Stepping Through RomanNumeral.xcodeproj...372
Putting RomanNumeral Through Its Paces...376

File System Objects ...378
What’s Next?..379
 Chapter 12: Handling Errors.. 381
Murphy’s Law ..382
Rule #1: Never Assume..383

Assumptions About Variables ...383
Check Ranges...385
Tolerate All Possible Values..386
Assert Your Assumptions..388

Rule #2: Stay Alert ...390
Pay Attention to Return Values ...391
errno ...392

Rule #3: Have an Escape Plan..394
Follow the Success...395
Early Return ..397
Skip Past Failure...398
Percolate Errors Up...401
Exit, Stage Left ...402
The Long Jump...403

Rule #4: Anticipate Problems...407
Rule #5: Pick Your Battles..409
What’s Next?..409
 Chapter 13: Advanced Topics.. 411
Type Conversion...411

Conversion Rules ..413

CONTENTS

xii

Conversion Warnings..415
Typecasting..416

Typecasting Pointers ..417
const Modifier ..419
Creating Your Own Types...420

struct typedefs..422
Forward References ...422

Enumerated Types ...423
Unions ..425

Why Use Unions?..427
Recursion ...428

The Iterative Approach ...429
A Recursive Approach ..430

Function Pointers ...433
The Remaining Operators ..435
Getting More From The Libraries ...438

Sorting with the Standard Library ..438
Collections in Core Foundation ...445

What’s Next?..452
 Chapter 14: Where Do You Go from Here?... 455
The Mac User Interface..455

Learning Objective-C ..456
Learning Cocoa and Cocoa Touch ..457

A Bit of OS X Code..457
A Quick iOS App ...460
Just a Touch of Objective-C ...463
Go Get ‘Em ...465
 Appendix: Answers to Excercises ... 467
 Index.. 477

xiii

About the Authors

 Dave Mark is a longtime Mac developer and author who has written a
number of books on Mac and iOS development, including Beginning iPhone
4 Development (Apress, 2011), More iPhone 3 Development (Apress, 2010),
Learn C on the Mac (Apress, 2008), Ultimate Mac Programming (Wiley,
1995), and the Macintosh Programming Primer series (Addison-Wesley,
1992). Dave was one of the founders of MartianCraft, an iOS and Android
development house. Dave loves the water and spends as much time as
possible on it, in it, or near it. He lives with his wife and three children in
Virginia.

 James Bucanek has spent the past 30 years programming and developing
microprocessor systems. He has experience with a broad range of computer
hardware and software, from embedded consumer products to industrial
robotics. His development projects include the first local area network for the
Apple II, distributed air conditioning control systems, a piano teaching
system, digital oscilloscopes, silicon wafer deposition furnaces, and
collaborative writing tools for K-12 education. James holds a Java Developer
Certification from Sun Microsystems and was awarded a patent for
optimizing local area networks. James is currently focused on OS X and iOS
software development, where he can combine his deep knowledge of UNIX

and object-oriented languages with his passion for elegant design. James holds an Associate's
degree in classical ballet from the Royal Academy of Dance.

xiv

About the Technical Reviewer

 Michael Thomas has worked in software development for
over 20 years as an individual contributor, Team Lead, Program
Manager, and Vice President of Engineering. Michael has over
10 years experience working with mobile devices. His current
focus is in the medical sector using mobile devices to accelerate
information transfer between patients and health care
providers.

 xv

Acknowledgments

This book could not have been written without the support of our wonderful families. Deneen,
Daniel, Kelley, Ryan, Deborah, Doug, and Amber, thank you all for everything you’ve done for us.
We truly are lucky men.

Many, many thanks to the fine folks at Apress. Clay Andres started this ball rolling by
bringing both Dave and James over to Apress. Steve Anglin is largely responsible for deciding
what Apress prints, and we are flattered by his continued conviction in this book. James
Markham kept a watchful eye on every paragraph, keeping our message clear and
comprehensible. Michael Thomas checked every line of code and symbol to ensure complete
accuracy. Any technical errors are ultimately our responsibility, but there are significantly fewer
thanks to Michael. Mary Behr dotted our i's, crossed our t’s, corrected our spelling, and made
sure we used “whom” correctly. If you find this book easy to read, you have Mary’s blue pencil to
thank. Anna Ishchenko designed our beautiful cover. Last, but certainly not least, we are indebted
to Coordinating Editor Jill Balzano who managed to juggle schedules, coordinate editors, track
production, and herd two headstrong authors towards a common goal. To all the folks at Apress,
thank you, thank you, thank you!

Dave says: A very special shout out goes to James, my incredibly talented co-author.
James made many important technical contributions to this book, helping me scrub the prose
and the sample code to ensure that it followed the C standard to the letter. He also added many
concepts to the book that are vital to any aspiring programmer.

And from James: I am most grateful to David Mark for allowing me the opportunity to
contribute to this venerable title. Dave has made learning C engaging and enjoyable for an entire
generation of programmers. It’s been an honor contributing to that institution. I would also like
to extend thanks to Apple’s Xcode development team for continually improving one of the finest
software development tools in the world.

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Chapter 1 Go Get the Tools!
	Installing Xcode
	How much is that IDE in the Window?
	What’s a Registered Developer?
	Getting the Projects
	Using Xcode
	Creating a New Xcode Project
	The Workspace Window
	Running a Project

	Moving On

	Chapter 2 Programming Basics
	Programming
	Some Alternatives to C
	What About Objective-C, C#, C++, and Java?

	What’s the Best Programming Language for the Mac or iOS Devices?
	The Programming Process
	Source Code
	Compiling Your Source Code
	Building Your Application

	What’s Next?

	Chapter 3 C Basics: Statements and Functions
	C Statements
	C Functions
	Defining a Function
	Syntax Errors and Algorithms
	Calling a Function

	Same Program, Two Functions
	The Hello2 Project
	The Hello2 Source Code
	Running Hello2

	Doing That Again, and Again, and Again
	Generating Some Errors
	Fixing the Problem
	Getting Close
	C is Case Sensitive

	Exploring Xcode’s Built-In Manuals
	Getting Help Quickly

	What’s Next?

	Chapter 4 C Basics: Variables and Operators
	An Introduction to Variables
	Working with Variables
	Variable Names
	The Size of a Type
	Bytes and Bits
	Going from 1 Byte to 2 Bytes

	Operators
	The +, -, ++, and -- Operators
	The += and -= Operators
	The *, /, %, *=, /=, and %= Operators

	Using Parentheses
	Operator Precedence
	Sample Programs
	Opening Operator.xcodeproj
	Stepping Through the Operator Source Code
	Opening Postfix.xcode
	Stepping Through the Postfix Source Code

	Sprucing Up Your Code
	Source Code Spacing
	Comment Your Code
	The Curly Brace Controversy

	What’s Next?

	Chapter 5 Debugging
	What’s a Debugger?
	Controlling Execution
	Setting Breakpoints
	Stepping Over a Statement
	Stepping Into a Function
	Stepping Out of a Function
	Full Speed Ahead

	Examining Variables
	How is a Debugger like an Iceberg?
	What’s Next?

	Chapter 6 Controlling Your Program’s Flow
	Flow Control
	The if Statement

	Expressions
	True Expressions
	Comparative Operators
	Logical Operators
	TruthTester.xcodeproj

	Compound Expressions
	Statements
	The Curly Braces
	Where to Place the Semicolon
	Two Common Pitfalls

	The while Statement
	The for Statement
	LoopTester.xcodeproj

	The do Statement
	The switch Statement
	A case with No Statements
	The Mixed Blessing of Fall-Through
	switch Wrap-Up

	Breaks in Loops
	The continue Statement
	IsOdd.xcodeproj
	Stepping Through the IsOdd Source Code

	NextPrime.xcodeproj
	Stepping Through the NextPrime Source Code

	What’s Next?

	Chapter 7 Pointers and Parameters
	What Is a Pointer?
	Why Use Pointers?
	Checking Out of the Library

	Pointer Basics
	The Address of a Variable
	The & Operator
	Declaring a Pointer Variable
	The * Operator

	Function Parameters
	Variable Scope
	How Function Parameters Work
	Parameters Are Temporary
	The Difference Between Arguments and Parameters

	Function Return Value
	printf() Returns a Value
	Multiple Return Statements
	Returning Nothing at All

	Putting it All Together
	Using Pointers as Parameters
	Factor.xcodeproj

	Some Pointers on Pointers
	Pass-By-Value vs. Pass-By-Reference
	The NULL Pointer Value
	The Dark Side of Pointers

	Global and Static Variables
	Global Variables
	Adding Globals to Your Programs
	Static Variables
	What’s Next?

	Chapter 8 More Data Types
	Data Types Beyond Int
	FloatSizer
	The Integer Types
	IntSizer.xcodeproj
	The Long and Short of ints

	The Best int for the Job
	Semantic Types
	Exact-Width Types
	Integer vs. Floating Point

	Working with Characters
	The ASCII Character Set
	ASCII.xcodeproj
	Stepping Through the ASCII Source Code

	Arrays
	Why Use Arrays?
	Dice.xcode
	Stepping Through the Dice Source Code
	Danger, Will Robinson!

	The #define Directive
	Using #defines in Your Code
	Stepping Through the Preprocessor
	The Advantages of Using #define Directives
	Function-like #define Macros

	Text Strings
	A Text String in Memory
	FullName.xcodeproj
	Overflow.xcodeproj

	What’s Next?

	Chapter 9 The Command Line
	Command Line Basics
	Command Arguments
	Learning More About Commands
	Where Shell Commands Come From

	Creating a Command-Line Tool
	Command Arguments and main()
	SeeArgs.xcodeproj

	Deploying the Program
	Using Paths
	Current Directory and Relative Paths
	Special Directory Names
	The Home Directory Name

	Installing a Command-Line Tool
	Creating a Private bin Directory
	Installing the Tool
	Configuring the PATH Variable

	Character Input
	Pipes
	Redirection
	Namer.xcodeproj

	Pointer Arithmetic
	Comparing Pointers
	Pointer Addition
	Subtracting Pointers

	WordCount.xcodeproj
	Stepping Through the WordCount Source Code
	Testing WordCount in the Shell

	RomanNumeral.xcodeproj
	main()
	NumberToRomanNumeral()

	One Last Word About the Command-Line Interface
	What’s Next?

	Chapter 10 Designing Your Own Data Structures
	Bundling Data
	Model A: Three Arrays
	MultiArray.xcodeproj

	Model B: The Structure Approach
	StructSize.xcodeproj

	Passing a struct As a Parameter
	Passing a Copy of the struct

	ParamAddress.xcodeproj
	struct Arrays
	Allocating Your Own Memory
	Using malloc()
	free()
	Keeping Track of That Address!

	Working with Linked Lists
	Why Use Linked Lists?
	Creating a Linked List

	DVDTracker.xcodeproj
	Stepping Through the DVDTracker Source Code

	What’s Next?

	Chapter 11 Working With Files
	What Is a Data File?
	File Basics
	Understanding File Names
	Opening and Closing a File

	Reading a File
	PrintFile.xcodeproj
	Stepping Through the PrintFile Source Code

	Writing Files
	DVDFiler.xcodeproj

	Fancier File Manipulation
	The Update Modes
	Random File Access
	Using Random Access Functions
	DinoEdit.xcodeproj
	Text vs. Data Files
	Working with Endians

	Making RomanNumeral a Better Tool
	Stepping Through RomanNumeral.xcodeproj
	Putting RomanNumeral Through Its Paces

	File System Objects
	What’s Next?

	Chapter 12 Handling Errors
	Murphy’s Law
	Rule #1: Never Assume
	Assumptions About Variables
	Check Ranges
	Tolerate All Possible Values
	Assert Your Assumptions

	Rule #2: Stay Alert
	Pay Attention to Return Values
	errno

	Rule #3: Have an Escape Plan
	Follow the Success
	Early Return
	Skip Past Failure
	Percolate Errors Up
	Exit, Stage Left
	The Long Jump

	Rule #4: Anticipate Problems
	Rule #5: Pick Your Battles
	What’s Next?

	Chapter 13 Advanced Topics
	Type Conversion
	Conversion Rules
	Conversion Warnings

	Typecasting
	Typecasting Pointers

	const Modifier
	Creating Your Own Types
	struct typedefs
	Forward References

	Enumerated Types
	Unions
	Why Use Unions?

	Recursion
	The Iterative Approach
	A Recursive Approach

	Function Pointers
	The Remaining Operators
	Getting More From The Libraries
	Sorting with the Standard Library
	Collections in Core Foundation

	What’s Next?

	Chapter 14 Where Do You Go from Here?
	The Mac User Interface
	Learning Objective-C
	Learning Cocoa and Cocoa Touch

	A Bit of OS X Code
	A Quick iOS App
	Just a Touch of Objective-C
	Go Get ‘Em

	Appendix: Answers to Exercises
	Index
	Numers and Symbols

	A

	B
	C
	D
	E
	F

	G
	H
	I, J
	K

	L

	M

	N
	O
	P

	Q

	R

	S
	T

	U

	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

