(Recipes

A Problem-Solution Approach
Shirish Chavan

ApPress’

ww.allitebooks.co

http://www.allitebooks.org

C Recipes

Shirish Chavan

Apress®

www.allitebooks.cond

http://www.allitebooks.org

C Recipes: A Problem-Solution Approach

Shirish Chavan
Sangli, Maharashtra, India

ISBN-13 (pbk): 978-1-4842-2966-8 ISBN-13 (electronic): 978-1-4842-2967-5
DOI10.1007/978-1-4842-2967-5

Library of Congress Control Number: 2017950166
Copyright © 2017 by Shirish Chavan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Technical Reviewer: Yogesh Sharma
Coordinating Editor: Prachi Mehta

Copy Editor: Kim Wimpsett

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
WWW.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book's product page, located at
www.apress.com/978-1-4842-2966-8. For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/978-1-4842-2966-8
www.apress.com/source-code
http://www.allitebooks.org

This is dedicated to
Honorable Dr. Patangrao Kadam,
Chancellor at Bharati Vidyapeeth University in Pune.
—Shirish Chavan

vww . allitebooks.con

http://www.allitebooks.org

Contents at a Glance

About the Authorcccrivmmismmss s ———— Xxvii
About the Technical ReVIEWErcucesssessmsmsmssssssasssssssssssssassssnsnnns XXixX
Acknowledgments........ccccuunsssssmnnmnmmmmssssssssssnnnnnessssssssssssnnnnesssssnns XXXi
Introduction.........ccccimvmmissmm s ————— XXxifi
Chapter 1: Welcome 10 Ccccccvvseeemmmnsssssnsmsssssssssssssssssssssssssssssssnns 1
Chapter 2: Control Statementscccuseemmnnssemnmnnsssesnnmnssssnnnnee. 13
Chapter 3: Functions and Arrays.......ccseeemmmssssnmmssssssmssssssssssssnns 39
Chapter 4: Pointers and Arrayscccccusseesmmssssssssssssssssssssssssssssssns 75
Chapter 5: Functions and Structures with Pointersccccceennne 119
Chapter 6: Data Filescccuueemmmmmsssnnmmmssssnsnmsssssssnmssssssssssssssssnnnns 149
Chapter 7: Self-Referential Structurescccusccmrnnsseeennnssssennnnn 213
Chapter 8: Stacks and QUEUES........cccrrrsssnmmrrmssssmssnsssssnnssnssssnnsnnss 253
Chapter 9: Searching and Sortingcccimmnsemnmmnssseanmmsssssssnns 277
Chapter 10: Cryptographic Systems.........cccvnsssemnmmmsssennnssssssnsnns 301
Chapter 11: Numerical Methods..........ccuseemmmnisemnmmnsssensnnssssessnnns 349

v

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Appendix A: Reference Tablesccuccrmsmmmmssansmsssnsmsssssssssnsssssnnas 403

Appendix B: Library FUNclionscccccuusseemmmnsssssnnmnssssssssssssssnnns 415

Appendix C: C IdiomS......ccciuvssmmmmmmssssnnmmsssssssnsssssssssssssssssssssssnnnnss 421

Appendix D: Glossary of Terms........ccccrmsssnsnssssssnnssssssssssssssssnnns 431
INA@X.iiiiiiisnnnnnnnnnnnnssssssssnnnnnnnnmesssssssnnnnnnnnnnsssssssnsnnnnnnnnnsssssssnnnnnnnnnnnss 439
vi

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AUthOrccccmmisemmmsssmsmsssssmsssssmsssasmssasss s ssnsssssnnnnns XXvii
About the Technical REVIEWETcccccsmssemmmssansmssnsssssnsssssnsssssnnsnns XXix
Acknowledgments........ccccuunsssssmnnmnmmmmssssssssssnnnnnessssssssssssnnnnesssssnns XXXi
Introduction........ccccmnsmmmssmnmmssnnmssssnnsssnsnssssnsssssnsssssnnnsssnnsnssnnnnnnns XXXiii
Chapter 1: Welcome 10 Ccccccvvseeemmmnsssssnsmsssssssssssssssssssssssssssssssnns 1
Programs, Software, and Operating System..........cccoeverercrcncscescencnns 2
Machine Language and Assembly Languagecocververversensersensensenns 2
Procedural LANQUAGES.........ccueerrerrersessessesssssessssssssssssssssssssssssssssssssssssnssnns 3
Object-Oriented LanguagES........ccceererrerrerrersessessessessessssssssssssssssssssssssssnns 3
Terminology in COMPULELSccocvvrrerirrerrer e 4
Compiled and Interpreted Languagescccuceeereriernsesesessesnssesesessenns 4
0]] 011 = Y0 O 5
INTEIPretation.......cccveeececer e ————————— 5

Your First C Program ... e s 6
Salient FEatures of C.........ccorcricnnrcsrreser s 7
IMPIiCit TYPE CONVEISION......couecereeeerererereerereserereraeres e rse e saesessesassesassesassesassesaesenaens 8
EXPIICit TYPE CONVEISIONcoveeereeereerereererereseraesersesessesessesasessesessssessssessesassesassenes 10
Chapter 2: Control Statementscccusemmmnnssmmnmmssssnnmmssssnnmnsnan 13
Selection Statements ... 13
[teration Statements............ccovvveerrienrsscsrr s 13
Jump Statements.........cccecvvrcrcr s ———————— 13
vii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

2-1. SUM 1 10 N NUMDEIS.....ooereeercreercrrees e sss e 14
PIODIBIM «..vvoevesereeseeesseeesseesssesssssessssesssssnssssnssssssssssessssssssssessssssssssessssmsssssnssssssssannees 14
SOIUTION.ceeeerererere e e e e e e e e e e e e e e e e e e sesesesesesenesenesesesesenenenens 14
HOW IEWOTKS.....rvvureesseesseesssessssssssssssssenssssesssssssssssssssmsssssessssmssssmssssssssssessssssssanees 15

2-2. Compute the Factorial of a Number..........cccooevrinrsriennscsesennen 16
PrODIBIM ... s 16
0])10 OO 16
HOW IEWOIKS.......coviceerecctre e s s sn s s 18

2-3. Generate a Fibonacci SEQUENCEcceeveerrercercerser s 18
PrODIBM ... e s 18
SOIULION....c et e s p e ne e naen 18
HOW IEWOIKS.......ctictcececere ettt ss ettt e s 21

2-4. Determine Whether a Given Number IS Prime............ccceevvereeernne 21
PIODIBIM «..vvoeverereeseeesseeessseesssessssssssssessssssssssnsssssessssessssssssssesssssssssmsssssssssnssssssssanees 21
SOIULION.ceceerererererere e e e e e e e e e e e e e e e e e e sesenesenenesesesenenenenenenens 21
HOW EWOTKS....ovvvuereesseessnesssessssssssssssssssnssssssssssssssssssssssssssesssssssssssssssssssssssssssssanees 24

2-5. Compute the Sine FUNCLiON..........ccocorerieerirecr e 25
PrODIBM ... —————— 25
0])10 o RO 25
HOW IEWOIKS.......covieeerccecctre e n s s s 26

2-6. Compute the Cosine FUNCLION..........cccocrvreerrersrcer e 27
PrODIBIM ... e 27
SOIULION. ...t p e e ae e naen 27
HOW BEWOIKS.......ctieececee ettt ettt as sttt e n s e s 29

2-7. Compute the Roots of Quadratic Equation............cecvverververierierienne 29
PIODIBIM «..vvoeverereeseeesseeessseesssesssssessssessssssssssnsssssessssessssssssssessssssssssessssmsssssnssssssssanees 29
SOIULION.ceceerererererere e e e e e e e e e e e e e e sesesenesenesesenesenenenenenenens 29
HOW IEWOTKS.....rvvureesseesseesssessssssssssssssenssssesssssssssssssssmsssssessssmssssmssssssssssessssssssanees 31

viii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

2-8. Compute the Reverse of an INtegerccecvvrvrverversersersensensenienns 31
Lo (010 (=T 3
SOIULION... et sr s a e nnn s 3
HOW BEWOIKS......coveerecerecresessse e sns s ssssessssesssssssessssesssssssssesssssssssssseens 32

2-9. Print a Geometrical Pattern Using Nested Loops.........ccccveeveeenncne 33
PRODIBIM ... e e 33
0] 110 3 OO 33
HOW EWOIKS.......coveecrcctcetrestr e s s sn s 34

2-10. Generate a Table of Future Value Interest Factors..........cccocuuune 35
L (0] 1] [T 1 OO 35
SOIULION....eceeer e e e e e e a e 35
HOW BEWOTKS.......cveeeeeceer ettt sa e st s sae s 36

Chapter 3: Functions and Arrays......ccceemmmmmssssnsmsssssssssssssssssssssnns 39

3-1. Determine the Value of Pi......ccccceeeereececrcecee e 41
L (0] 1] [T 1 OO 4
SOIULION....eceeer e e e e e e a e 4
HOW BEWOTKS.......cveeeeeceer ettt sa e st s sae s 42

3-2. Pick the Prime Numbers from a List of Numberscccccvreenrnene 43
Lo (010 (=T 43
SOIULION.....ecccrrcreeser e e e nnnn s 43
HOW BEWOEKS.......covcececereerenesese e sssse s ssssessssssssssssessssesssssssssesssssssssssseens 45

3-3. Sum Numbers Using Recursion...........cccccevevrernscsesensessssessesenenns 46
PRODIBIM ... e e 46
0] 1110 OOV 46
HOW EWOIKS.......coveecrcctre e n e sr s 47

3-4. Compute the Fibonacci Sequence Using Recursioncccceeunee. 49
L (0] 1] [T 1 OO 49
SOIULION...eceecer e e s e e e e e na e 49
HOW BEWOIKS.......oveectrer et sa et a s et sae s 50

ix

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

3-5. Compute the Factorial of a Number Using Recursion..........c..c..c... 51
PIODIBIM «..vvoevesereeseeesseeesseesssesssssessssesssssnssssnssssssssssessssssssssessssssssssessssmsssssnssssssssannees 51
SOIUTION.ceeeerererere e e e e e e e e e e e e e e e e e e sesesesesesenesenesesesesenenenens 51
HOW IEWOTKS.....rvvureesseesseesssessssssssssssssenssssesssssssssssssssmsssssessssmssssmssssssssssessssssssanees 52

3-6. Search the Largest Element in an Array of Integerscccc.c...... 52
PrODIBIM ... s 52
0])10 OO 52
HOW IEWOIKS.......coviceerecctre e s s sn s s 54

3-7. Solve the Classic Problem of the Towers of Hanoi............cccocevune 54
SOIULION....c et e s p e ne e naen 54
HOW IEWOIKS.......ctictcececere ettt ss ettt e s 56

3-8. Solve the Eight Queens Problem...........cccoovveericnsnncsessessesennenns 57
PIODIBIM «..vvoeverereeseeesseeessseesssessssssssssessssssssssnsssssessssessssssssssesssssssssmsssssssssnssssssssanees 57
SOIULION.ceceerererererere e e e e e e e e e e e e e e e e e e sesenesenenesesesenenenenenenens 57
HOW EWOTKS.....vvvurreesseesseesssesssessssssssssssssmsssssessssnsssanses 60

3-9. Compute Permutations and Combinations of a Given

Set 0f ODJECTS ..o ————— 60
PrODIBM ... e s 60
SOIULION....c et e s p e ne e naen 60
HOW BEWOIKS.......ctieececee ettt ettt as sttt e n s e s 63

3-10. Perform the Summation of Two Matricescoeecvrererserrerernene 63
PIODIBIM «..vvoevesereeseeesseeesseesssesssssessssesssssnssssnssssssssssessssssssssessssssssssessssmsssssnssssssssannees 63
SOIUTION.ceeeerererere e e e e e e e e e e e e e e e e e e sesesesesesenesenesesesesenenenens 63
HOW IEWOTKS.....rvvureesseesseesssessssssssssssssenssssesssssssssssssssmsssssessssmssssmssssssssssessssssssanees 66

3-11. Compute the Transpose of a Matrix.........c.ccoceervernrriennscresennenns 67
PrODIBIM ... s 67
0])10 o RO 67
HOW IEWOIKS.......covieeerccecctre e n s s s 69

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

3-12. Compute the Product of Matricescccccevrrrerrierreerierseesiessensans 69
Lo (010 (=T 69
SOIULION... et sr s a e nnn s 69
HOW BEWOIKS......coveerecerecresessse e sns s ssssessssesssssssessssesssssssssesssssssssssseens 73

Chapter 4: Pointers and Arrayscccssesssssssssssssssssssssssssssssasssssanss 75

4-1. Retrieve Data from an Array with the int Type Data............cccueuuene 75
Lo (010 1 75
0] 1) 10 o TSRS P SR 75
HOW BEWOEKS......covecrecerecsesesssessese e sss s ssssesss s sssssssssesssssssssessssssssssnseens 76

4-2. Retrieve Data from an Array Using the Array Name..........c.ccocueueene 77
PRODIBIM ... e e e 77
0] 110 3 OO 77
HOW EWOIKS.......coveecrcceretr et sn s n e ne s sn s s nne s 79

4-3. Retrieve Data from an Array with char and double Type Data........ 80
L (0] 1] [T 1 OO 80
SOIULION....eceeer e e e e e e a e 80
HOW BEWOTKS.......cveeeeeceer ettt sa e st s sae s 82

4-4. Access the Out-of-Bounds Array Elements..........cccocevvvrvrvenceninnne 82
Lo (010 (=T 82
SOIULION.....ecccrrcreeser e e e nnnn s 82
HOW BEWOEKS.......covcececereerenesese e sssse s ssssessssssssssssessssesssssssssesssssssssssseens 83

4-5. STOre StriNgS....ccveeericrcrrere e s 84
PRODIBIM ... e e 84
0] 1110 OOV 84
HOW EWOIKS.......coveecrcctre e n e sr s 86

4-6. Store Strings Without Initializationccceevvvircrcrcrcecrceee 87
L (0] 1] [T 1 OO 87
SOIULION...eceecer e e s e e e e e na e 87
HOW BEWOIKS.......oveectrer et sa et a s et sae s 89

CONTENTS

4-7. Store Strings in an Interactive Session............ccecvvvvrvrverienseniennen, 89
PIODIBIM «..vvoevesereeseeesseeesseesssesssssessssesssssnssssnssssssssssessssssssssessssssssssessssmsssssnssssssssannees 89
SOIUTION.ceeeerererere e e e e e e e e e e e e e e e e e e sesesesesesenesenesesesesenenenens 89
HOW IEWOTKS.....rvvureesseesseesssessssssssssssssenssssesssssssssssssssmsssssessssmssssmssssssssssessssssssanees 20

4-8. Retrieve the Addresses of Elements in a

TWO-DIimenSional Arrayccccvvervrsersessessessessessessessessessessessessessessessens 91
PrODIBM ... e s 91
SOIULION....c et ne e naen 91
HOW IEWOIKS.......ctictcececere ettt ss ettt e s 92

4-9. Retrieve the Base Addresses of Rows in a

TWO-DIimenSional Arraycccocvvrrersessessessessessessessessessessessessessssssssesnes 93
PrODIBM ... —————— 93
0])10 OO 93
HOW IEWOIKS.......covieeerccecctre e n s s s 94

4-10. Retrieve Data from a Two-Dimensional Arrayc..cccveerrerennene 95
PrODIBM ... e s 95
SOIULION....c et e s p e ne e naen 95
HOW IEWOIKS.......ctieececeecre ettt se s a et s 96

4-11. Retrieve Data from a Two-Dimensional Array Using an

Array NAME ..o s s sn s sn e sn s s s 97
PrODIBIM ... s 97
0])10 o RO 97
HOW IEWOIKS.......covieeerccecctre e n s s s 99

4-12. Retrieve Data from an Array Using an Array of Pointers............. 100
PrODIBIM ... 100
SOIULION....c e e 100
HOW BEWOIKS.......ctictcereccne ettt ettt sttt sas e enas 101

xii

CONTENTS

4-13. Swap Strings Physically..........cccovrrvrrrnnrnrrrer s 102
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 102
SOIULION.....ceececrcrceer s 102
HOW IEWOIKS.......covecrecreeeresesesssesss s ses e ssssesssse s e s snssssssssssssssssnssssnsnnes 103

4-14. Swap Strings Logicallyccceerierrrriennicnenresssese e 104
PrODIBIM ... s 104
SOIULION. ...t e e 104
HOW EWOIKS.......corecrceceteetre s sn e s n e sre e snenas 106

4-15. Store Strings Interactivelyccccoevvrercrcrcrcr s 108
o (0] 1] 1T 1 OO 108
SOIULION....e e 108
HOW BEWOIKS.......cvecrecccer ettt se s e sa e sae e nsnes 109

4-16. Pass Arguments to a Program from the Command Line............ 110
PrODIBIM w.vvvvvveoeeeseesseesssessssensssssssssssssssessssessssssssssssssssessssnsssssnssssssssssssssmsssssssssnns 110
SOIULION.....eececrcrcer e 110
HOW EWOIKS.......coveceeecreeeresesesesse s sss e ssssssssessssesssssssssssssssssssssnssnsnsnnes 111

4-17. Retrieve Stored Strings Using a Pointer to a Pointer 113
o (0] 1] 1T 1 OSSOSO 113
SOIULION. ...t e e 114
HOW EWOIKS.......covectcccetetre e sn e sn s n e sre e nnas 115

Chapter 5: Functions and Structures with Pointersccccuueue. 119

5-1. Pass Arguments by Reference to a Function............cccoccvvceriennnnne 119
PrODIBIM ... e e 119
SOIULION. ...t e e 119
HOW EWOIKS.......covectcccetetre e sn e sn s n e sre e nnas 121

xiii

CONTENTS

5-2. Display Data Stored in Nested Structures..........c.ccevvrrerrerrerenne 122
PIODIBM «..vvvvvesrevseeesseeessensssesssssessssnsssssssssnssssssssssnssssssssssnssssmsssssesssssssssssssssssssanes 122
SOIULION.eeeererererererere e se e e e e e e e e e e se e se e se e nenesesesenenenenenens 123
HOW IEWOTKS...v.vvvuereesseessnesssessssssssssssssssssssssssssssssnssanns 125

5-3. Build a Structure Using a Functionccceevvrieenicnnccsesencnas 129
PrODIBM ... —————— 129
SOIULION.....v et e e s 129
HOW REWOIKS.......covicirccts et s s s sn s sns e enas 131

5-4. Modify the Data in a Structure by Passing It to a Function.......... 131
PrODIBIM ... e 131
SOIULION....c e s 131
HOW BEWOIKS.......ceictcertccne ettt et st s e e sa s enas 133

5-5. Modify the Data in a Structure by Passing a

Pointer-to-Structure to @ FUNCLIONcccocvevrcrecrccr s 134
PrODIBM ... ——————— 134
SOIULION.....v et e e e s 134
HOW IEWOIKS.......cotictsccnr et s e sn s enas 136

5-6. Store and Retrieve Data Using an Array of Structures................. 136
PrODIBIM ... e 136
SOIULION....c e e 136
HOW BEWOIKS.......ctictcereccne ettt ettt sttt sas e enas 138

5-7. Store and Retrieve Data Using an Array of Structures in

Interactive Modecccoeeeeereeser e 139
PrODIBIM ... ———————— 139
SOIULION.....vcctctc e e e e 139
HOW IEWOIKS.......cotictsccnr et s e sn s enas 142

Xiv

CONTENTS

5-8. Invoke a Function Using a Pointer-to-Function...........cccocvrunen.e. 142
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 142
RST8] (o] 142
HOW IEWOIKS.......covecrecreeeresesesssesss s ses e ssssesssse s e s snssssssssssssssssnssssnsnnes 144
5-9. Implement a Text-Based Menu Systemccccceervrveenicrnniennes 146
PrODIBIM ... s 146
SOIULION. ...t e e 146
HOW EWOIKS.......corecrceceteetre s sn e s n e sre e snenas 148
Chapter 6: Data Filesccccvummmmmsssssnnmmmmmmssssssssssnmssssssssssssssnens 149
6-1. Read a Text File Character by Character............ccceevverreeericrnniennen 149
PrODIBIM ... e 149
SOIULION. ...t e e 149
HOW EWOIKS.......covecrcececcetre e sn s s s nenas 150
6-2. Handle Errors When File Opening Fails..........ccccoeverercercercnnnnne 154
o (0] 1] 1T 1 OO 154
SOIULION....e e 154
HOW BEWOIKS.......cvecrecccer ettt se s e sa e sae e nsnes 156
6-3. Write to a Text File in Batch Mode..........ccocvverenrccrnsenesescsnnennes 157
o (0] (< 1 157
RST8] (o] 157
HOW HEWOIKS......coveceeecreeeresesessssesss e ses e ssssssssessssessessssssssssssssssssnssssnsnnes 158
6-4. Write to a Text File in Interactive Mode..........cccoeerercrcercercernnne 160
PrODIBIM ... e e 160
SOIULION. ...t e e 160
HOW EWOIKS.......covectcccetetre e sn e sn s n e sre e nnas 161

XV

CONTENTS

6-5. Read a Text File String by String........ccecvvrvrvrvrvnrencrrererenee 163
PIODIBM «..vvvvvesrevseeesseeessensssesssssessssnsssssssssnssssssssssnssssssssssnssssmsssssesssssssssssssssssssanes 163
SOIULION.eeeererererererere e se e e e e e e e e e e se e se e se e nenesesesenenenenenens 163
HOW IEWOTKS...v.vvvuereesseessnesssessssssssssssssssssssssssssssssnssanns 164

6-6. Write to a Text File Character by Character.............cccoevererercnne. 166
PrODIBM ... —————— 166
SOIULION.....v et e e s 166
HOW REWOIKS.......covicirccts et s s s sn s sns e enas 167

6-7. Write Integers to a Text Fileccccocvvrcrcrcrcrcr e 168
PrODIBIM ... e 168
SOIULION....c e s 168
HOW BEWOIKS.......ceictcertccne ettt et st s e e sa s enas 170

6-8. Write Structures to @ Text File.......cccoovcereericrnncresssese e 171
PIODIBM «..vvvvveseerseeesseessenssssesssssessssnsssssssssnssssssssssessssssssssnssssmsssssnsssssssssssssssesssanes 171
SOIULION.ceeeererererere et e e e e e e e e e e e e e e e e se e senesesesesenenenenens 171
HOW IEWOTKS.....vvvuereesseesseesssessssssssssssssssssssssssssssssessanes 173

6-9. Read Integers Stored in a Text Filecccccocevrrreerccrnccsccencnna. 174
PrODIBM ... ——————— 174
SOIULION.....vcctctc e e e e 174
HOW IEWOIKS.......cotictsccnr et s e sn s enas 175

6-10. Read Structures Stored in a Text File.........c.ccccvvrvercercerccrcernenne 176
PrODIBIM ... 176
SOIULION....c e e 176
HOW BEWOIKS.......ctictcereccne ettt ettt sttt sas e enas 178

6-11. Write Integers to a Binary Fileccccvvrvervrrriercncerserenenee 179
PIODIBM «..ovvvvesrersreesseeessessssnsssssessssnssssssssssnssssssssssnsssssssssssssssmsssssesssssssssssssssesssanes 179
SOIULION.eeererererer et se e e e e e e e e e e e e e nesese e senesesenenenenenenens 179
HOW IEWOTKS.....vvvuereesseessnesssesssssssssssssssssssssssssssssssmsssssssssssssssmssssssssssssssssssssssssanes 180

xvi

CONTENTS

6-12. Write Structures to a Binary File.........cccccvvvvrvrvrvrcrcercencenene 181
o (0] (< 1 181
RST8] (o] 181
HOW IEWOIKS.......cociiiiiisccenie s 183
6-13. Read Integers Written to a Binary Fileccccovererercercernnne 184
PrODIBM ... s 184
£ 18] 1 (o] PSPPSR 184
g (0 L o] € 185
6-14. Read Structures Written to a Binary File.........ccccevvercrcercernne 186
PrODIBM ... s 186
RS T0] 11110 TS 186
HOW IEWOTKS......coceteecceririeceses e es 188
6-15. Rename @ File.......cc.ccoeeeieenccrcssccs e 189
o (0] (< 1 T 189
RST8] (o] 189
HOW IEWOIKS.......cociiiiiisccenie s 190
6-16. Delete @ File.......cooeeeeceeeerceeceeee s 190
PrODIBM ... s 190
KT8] 1 (o] PSPPSR 190
g (0 L o] 6 191
6-17. Copy @ TexXt File.....ccoceeeeeererrcee s 191
PrODIBM ... s 191
RS T0] 11110 o TP 191
HOW IEWOTKS......coceteccesiseceses e s 193
6-18. Copy @ Bin@ry Fileccocvverrerrrrrcrrerer e 194
o (0] (< 1 194
RST8] (o] 194
HOW IEWOIKS.......cociiiiiisccenie s 196

xvii

CONTENTS

6-19. Write to a File and Then Read from That File............cccccvrvrnruenee. 197
PIODIBM «..vvvvvesrevseeesseeessensssesssssessssnsssssssssnssssssssssnssssssssssnssssmsssssesssssssssssssssssssanes 197
SOIULION.eeeererererererere e se e e e e e e e e e e se e se e se e nenesesesenenenenenens 197
HOW IEWOTKS...v.vvvuereesseessnesssessssssssssssssssssssssssssssssnssanns 198

6-20. Position a Text File to a Desired Charactercccoeveerererucnne. 199
PrODIBM ... —————— 199
SOIULION.....v et e e s 199
HOW REWOIKS.......covicirccts et s s s sn s sns e enas 201

6-21. Read from the Device File Keyboard..........c..cccvvrrerrerrercerserennes 206
PrODIBIM ... e 206
SOIULION....c e s 206
HOW BEWOIKS.......ceictcertccne ettt et st s e e sa s enas 207

6-22. Write Text to the Device File Monitorccccocvveevicrencscsenennes 209
PIODIBM «..vvvvveseerseeesseessenssssesssssessssnsssssssssnssssssssssessssssssssnssssmsssssnsssssssssssssssesssanes 209
SOIULION.ceeeererererere et e e e e e e e e e e e e e e e e se e senesesesesenenenenens 209
HOW IEWOTKS.....vvvuereesseesseesssessssssssssssssssssssssssssssssessanes 210

6-23. Read Text from the Device File Keyboard and

Write It to the Device File Monitor...........ccccocvvrvrcrnscrcercercererenene 211
PrODIBIM ... e 211
SOIULION....c e e 211
HOW BEWOIKS.......ctictcereccne ettt ettt sttt sas e enas 212

Chapter 7: Self-Referential Structuresc.ccccnsmrnnsnnnssssnssnnns 213

7-1. Generate Lists of Numbers in an Interactive Manner 213
PrODIBIM ... 213
SOIULION....c e e 214
HOW BEWOIKS.......ctictcereccne ettt ettt sttt sas e enas 215

xviii

CONTENTS

7-2. Create a Linked List Using Anonymous Variables..............ccueue.e. 216
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 216
RST8] (o] 216
HOW IEWOIKS.......covecrecreeeresesesssesss s ses e ssssesssse s e s snssssssssssssssssnssssnsnnes 217
7-3. Delete a Component from a Linked List........cccccoccevnirreenicrnnnennee 220
PrODIBIM ... s 220
SOIULION. ...t e e 220
HOW EWOIKS.......corecrceceteetre s sn e s n e sre e snenas 222
7-4. Insert a Component into a Linked Listccccoovvrvrcrcrcercennnne 225
o (0] 1] 1T 1 OO 225
SOIULION....e e 225
HOW BEWOIKS.......cvecrecccer ettt se s e sa e sae e nsnes 227
7-5. Create a Linked List in an Interactive Session...........cccecvverenenee 232
PrODIBIM w.vvvvvveoeeeseesseesssessssensssssssssssssssessssessssssssssssssssessssnsssssnssssssssssssssmsssssssssnns 232
RST8] (o] 233
HOW EWOIKS.......coveceeecreeeresesesesse s sss e ssssssssessssesssssssssssssssssssssnssnsnsnnes 235
7-6. Process a Linear Linked List.........cccooveerecrsessessessesses s 238
o (0] 1] 1T 1 OSSOSO 238
SOIULION. ...t e e 238
HOW EWOIKS.......covectcccetetre e sn e sn s n e sre e nnas 247
7-7. Create a Linear Linked List with Forward and
Backward TraverSing.......cooceceverereereesessessessessssssssssssssssssssssasssssssssssens 249
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 249
RST8] (o] 249
HOW HEWOIKS......coveceeecreeeresesessssesss e ses e ssssssssessssessessssssssssssssssssnssssnsnnes 251

Xix

CONTENTS

Chapter 8: Stacks and QUEUES........ccusermssnrssansssassssnsssansssassssnsssns 253
8-1. Implement a Stack as an Array...........ccceerercrressersesses s s 254
PrODIBIM ... ————————— 254
SOIULION....c e —————— 254
HOW IEWOIKS..... .ottt ettt se s et 258
8-2. Implement a Stack as a Linked List.........cccccvverrerierrnriersnsiennennns 258
PIODIBM «..vvveveseevseeesseessesssssessssssssssnssssssssssssssssssssessssssssssnssssnsssssesssssssssssssssssssanes 258
SOIUTION. ...ttt se e e e e se e e e e e e e e e e e e e e se e e sesesesenesesenesenesenenens 258
HOW IEWOTKS.....vvveereesseessnesssesssssnssssssssssssssssssssssssmsssssssssssssssmssssssssssssssssssssssssanns 263
8-3. Convert an Infix Expression to a Postfix Expression..................... 263
PrODIBM ... 263
SOIULION....cv ettt e e s 263
HOW REWOIKS.......covicerrcreeceere e s s e e s sesse s sessssennas 266
8-4. Convert an Infix Expression to a Prefix Expression...........ccce.c.... 267
PrODIBM ... ———————— 267
SOIULION....c e 267
HOW IEWOIKS.......ctictcetccre ettt sa s et 270
8-5. Implement a Circular Queue as an Arrayceeeevrerrereresensennas 271
PIODIBM «..vvveveseevseeesseessesssssessssssssssnssssssssssssssssssssessssssssssnssssnsssssesssssssssssssssssssanes 271
SOIULION.eeeeerererere sesesenesenenenenenenenens 27
HOW IEWOTKS.....vvvuereesseessnesssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssssssssssssanns 275
Chapter 9: Searching and Sortingcccimmnmemnmmmsssssnnsssssssnsnnans 277
9-1. Find a Data Element Using a Linear Search..........c..cccverrerrerenne 278
PIODIBM «..vvveveseevseeesseessesssssessssssssssnssssssssssssssssssssessssssssssnssssnsssssesssssssssssssssssssanes 278
SOIULION.eeeeerererere sesesenesenenenenenenenens 278
HOW IEWOTKS.....vvveereesseessnesssesssssnssssssssssssssssssssssssmsssssssssssssssmssssssssssssssssssssssssanns 280

XX

CONTENTS

9-2. Find a Data Element Using a Binary Search.............cccvevverrernnne 280
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 280
SOIULION.....ceececrcrceer s 280
HOW IEWOIKS.......covecrecreeeresesesssesss s ses e ssssesssse s e s snssssssssssssssssnssssnsnnes 282

9-3. Sort a Given List of Numbers Using a Bubble Sort....................... 283
PrODIBIM ... s 283
SOIULION. ...t e e 283
HOW EWOIKS.......corecrceceteetre s sn e s n e sre e snenas 285

9-4. Sort a Given List of Numbers Using an Insertion Sort.................. 286
o (0] 1] 1T 1 OO 286
SOIULION....e e 286
HOW BEWOIKS.......cvecrecccer ettt se s e sa e sae e nsnes 287

9-5. Sort a Given List of Numbers Using a Selection Sort................... 288
PrODIBIM w.vvvvvveoeeeseesseesssessssensssssssssssssssessssessssssssssssssssessssnsssssnssssssssssssssmsssssssssnns 288
SOIULION.....eececrcrcer e 288
HOW EWOIKS.......coveceeecreeeresesesesse s sss e ssssssssessssesssssssssssssssssssssnssnsnsnnes 290

9-6. Sort a Given List of Numbers Using a Merge Sort...........c.cceueucn.e. 291
o (0] 1] 1T 1 OSSOSO 291
SOIULION. ...t e e 291
HOW EWOIKS.......covectcccetetre e sn e sn s n e sre e nnas 293

9-7. Sort a Given List of Numbers Using a Shell Sort............cccocuunun.e. 294
o (0] 1] 1T 1 OO 294
SOIULION...ece e e e e 294
HOW BEWOEKS.......cvecteccetrcrtre sttt se s s s s ae s e s 296

9-8. Sort a Given List of Numbers Using a Quick Sort............ccceruenee. 296
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 296
SOIULION.....ceececrcrceer s 296
HOW IEWOIKS.......covecrecreeeresesesssesss s ses e ssssesssse s e s snssssssssssssssssnssssnsnnes 298

xxi

CONTENTS

Chapter 10: Cryptographic Systems.......c.cccruusmmmsssnsssssnnssssnssssnns 301
10-1. Use the Reverse Cipher Methodccccveverercrcercescencenennne 303
PrODIBIM ... ————————— 303
SOIULION....c e —————— 304
HOW IEWOIKS..... .ottt ettt se s et 306
10-2. Use the Caesar Cipher Methodccccveeeveervenvierieeniessenssessennns 307
PIODIBM «..vvveveseevseeesseessesssssessssssssssnssssssssssssssssssssessssssssssnssssnsssssesssssssssssssssssssanes 307
SOIUTION. ...ttt se e e e e se e e e e e e e e e e e e e e se e e sesesesenesesenesenesenenens 307
HOW IEWOTKS.....vvveereesseessnesssesssssnssssssssssssssssssssssssmsssssssssssssssmssssssssssssssssssssssssanns 310
10-3. Use the Transposition Cipher Methodcccocvviveericrncennens 311
PrODIBM ... 311
SOIULION....cv ettt e e s 31
HOW REWOIKS.......covicerrcreeceere e s s e e s sesse s sessssennas 314
10-4. Use the Multiplicative Cipher Method.........ccccooovercrcrcercerenen. 315
PrODIBM ... ———————— 315
SOIULION....c e 316
HOW IEWOIKS.......ctictcetccre ettt sa s et 318
10-5. Use the Affine Cipher Methodccccevieevevieenierieenesseesesneenns 320
PIODIBM «..vvveveseevseeesseessesssssessssssssssnssssssssssssssssssssessssssssssnssssnsssssesssssssssssssssssssanes 320
SOIULION.eeeeerererere sesesenesenenenenenenenens 321
HOW IEWOTKS.....vvvuereesseessnesssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssssssssssssanns 323
10-6. Use the Simple Substitution Cipher Method...........ccccrverrennene 324
PrODIBM ... 324
SOIULION....cvcctrtr et e e e s 325
HOW REWOIKS.......covicerrcrre e e e s s se e sssse e sessssennas 328
10-7. Use the Vigenére Cipher Method..........ccccccorrienrniecvnceccveneens 330
PrODIBM ... ———————— 330
SOIULION....c e 330
HOW IEWOIKS.......ctictcetccre ettt sa s et 334

xxii

CONTENTS

10-8. Use the One-Time Pad Cipher Method...........cccoevverierieerieriennnes 335
o (0] (< 1 335
RST8] (o] 336
HOW IEWOIKS.......covecrecreeeresesesssesss s ses e ssssesssse s e s snssssssssssssssssnssssnsnnes 339

10-9. Use the RSA Cipher Method..........cccccoveenvreenicnnsresenereennens 340
PrODIBIM ... s 340
SOIULION. ...t e e 3N
HOW EWOIKS.......corecrceceteetre s sn e s n e sre e snenas 345

Chapter 11: Numerical Methods.......c..ccoumssmmmmssnnssssanssssssssssnsssssns 349

11-1. To Find the Roots of an Equation Using the Bisection Method... 350
PrODIBIM ... e 350
SOIULION. ...t e e 350
HOW EWOIKS.......covecrcececcetre e sn s s s nenas 352

11-2. To Find the Roots of an Equation Using the Regula

Falsi Method...........ccovireerrcrsr e 353
o (0] (< 1 T 353
RST8] (o] 354
HOW EWOIKS.......coveceeecreeeresesesesse s sss e ssssssssessssesssssssssssssssssssssnssnsnsnnes 356

11-3. To Find the Roots of an Equation Using Muller’s Method........... 357
PrODIBIM ... e e 357
SOIULION. ...t e e 357
HOW EWOIKS.......covectcccetetre e sn e sn s n e sre e nnas 359

11-4. To Find the Roots of an Equation Using the Newton Raphson

METHOd ... ————— 360
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 360
RST8] (o] 360
HOW IEWOIKS.......covecrecreeeresesesssesss s ses e ssssesssse s e s snssssssssssssssssnssssnsnnes 362

xxiii

CONTENTS

11-5. To Construct the New Data Points Using Newton’s Forward

Method of Interpolation...........ccceeeeeeececscecr e 363
PrODIBIM ... ———————— 363
SOIULION.....vcctctc e e e e 363
HOW IEWOIKS.......cotictsccnr et s e sn s enas 365

11-6. To Construct the New Data Points Using Newton’s Backward

Method of Interpolation..........ccccevvvverierrerir e 366
PIODIBM «..ovvvverreeseeesseessensssesssssessssnssssmsssssssssssssssnssssnsssssnssssmsssssessssssssssnssssssssanes 366
SOIULION.eeeeerererere et se e e e e e e e e e e e e e e e e sesese e senesesenenenenenenens 366
HOW IEWOTKS.....rvvureesseessnesssessssssssssssssssssssssssssssssmsssssssssssssssmssssssssssssssssssssssssanns 368

11-7. To Construct the New Data Points Using Gauss’s Forward

Method of Interpolation...........ccceeeereececrcscr e 369
PrODIBIM ... e 369
SOIULION....c e s 369
HOW BEWOIKS.......cectrertccre ettt sttt s sa s enas 371

11-8. To Construct the New Data Points Using Gauss’s Backward

Method of Interpolation............ccceeeeeercrcscsce e 372
PrODIBM ... ——————— 372
SOIULION.....v et e e e s 373
HOW IEWOIKS.......cotictsccnr et s e sn s enas 375

11-9. To Construct the New Data Points Using Stirling’s Method of

101 (=T 00] = 1] 3 376
PIODIBM «..vvvvvesrevseeesseeessensssesssssessssnsssssssssnssssssssssnssssssssssnssssmsssssesssssssssssssssssssanes 376
SOIULION.eeeererererererere e se e e e e e e e e e e se e se e se e nenesesesenenenenenens 376
HOW IEWOTKS...v.vvvuereesseessnesssessssssssssssssssssssssssssssssnssanns 378

11-10. To Construct the New Data Points Using Bessel’s Method of

INterpolation ..o ——————— 379
PrODIBIM ... 379
SOIULION....c e e 379
HOW BEWOIKS.......ceictreeccre ettt st sa e enas 381

XXiv

CONTENTS

11-11. To Construct the New Data Points Using Laplace Everett’s

Method of Interpolation...........cccecvercrsrsr s 382
PrODIBIM ... e e 382
SOIULION. ...t e e 382
HOW EWOIKS.......covectcccetetre e sn e sn s n e sre e nnas 384

11-12. To Construct the New Data Points Using Lagrange’s

Method of Interpolation..........ccccvcevevieercrree s 385
o (010 (< T 385
SOIULION.....eececrcrcer e 386
HOW EWOIKS.......coveceeecreeeresesesesse s sss e ssssssssessssesssssssssssssssssssssnssnsnsnnes 387

11-13. To Compute the Value of Integration Using Trapezoidal

Method of Numerical Integrationccccoevvrvrcrcrcscr e 388
o (0] 1] 1T 1 OO 388
SOIULION....e e 389
HOW BEWOIKS.......cvecrecccer ettt se s e sa e sae e nsnes 390

11-14. To Compute the Value of Integration Using Simpson’s

3/8th Method of Numerical Integration..........ccccocvvevrieensnrccniccnnene. 391
o (0] 1] 1T 1 OSSOSO 391
SOIULION. ...t e e 391
HOW EWOIKS.......covecrcececcetre e sn s s s nenas 393

11-15. To Compute the Value of Integration Using Simpson’s

1/3rd Method of Numerical Integration...........ccceevvrvrrrnercncensensennens 393
PrODIBIM w..vvvevereeesresseesssessssenessssssssssssssessssssssssssssssssssssssssssssssnsssssssssnssssmssssnsssssnes 393
SOIULION.....eeceerce et 394
HOW HEWOIKS......coveceeecreeeresesessssesss e ses e ssssssssessssessessssssssssssssssssnssssnsnnes 395

11-16. To Solve a Differential Equation Using Modified

Euler’s Method ... 396
o (0] 1] 1T 1 OO 396
SOIULION...e e e 396
HOW BEWOEKS.......cvecteccetrcrtre sttt se s s s s ae s e s 398

XXV

CONTENTS

11-17. To Solve a Differential Equation Using Runge Kutta Method.... 399

PIODIBIT «..cevveeoeeeessssseeessssssesssssssesssssesssss s sssssssesssssssssssssssssssssssssssssssssssnesses 399
SOIULION.eeeererererererere e se e e e e e e e e e e se e se e se e nenesesesenenenenenens 399
HOW HEWOTKS.....cveevrsneeeessssneeessssssessssssssesssssssssssssessssssssssssssssssssssssssssssssssssesses 401
Appendix A: Reference Tablesccccvunnsmmmmmmssssnnnmssssssssssssssnnnns 403
Appendix B: Library FUNClionscccivumssmmmmmmsssssnmssssssssssssssnsnnns 415
Character Testing and Processing Functionsccccecvvrercencenenne 415
String Processing FUNCHIONS..........ccocvvrvrverrersrrer s 416
Mathematical FUNCLIONS..........ccooeviinnnirr s 417
Utility FUNCHIONS......coeeeeeeerr e 419
Appendix C: C IdiomsS.......cccusermsssmmmmsssssssssssssssssssssssesssssesssnsssssnnes 421
Appendix D: Glossary of Terms.....ccccummssssssssnmmmsmmmsssssssssssssssssssnns 431
INA@X.uueeiisnnnsssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssannsssannsssannsssnnnnsssnnss 439

XXVi

About the Author

Shirish Chavan is a software developer, teacher, writer,
and orator. He has authored nine books on computers
including books on Java, Visual Basic .NET, and desktop
publishing (DTP). He has 25 years of experience in
various branches of IT. He is mainly interested in
cryptography. He is currently working on a book on
Python programming and also working on a couple

of software projects. He earned his Master of Science
degree in theoretical physics from Shivaji University
in Kolhapur, India, in 1982. He also teaches computer
science and physics at various institutes as a visiting
professor.

xxvii

About the Technical
Reviewer

Yogesh Sharma is currently employed as a senior engineer at Mphasis with almost a
decade of experience in the development and maintenance of small-scale to enterprise-
grade applications. Yogesh earned his bachelor’s degree in information technology from
VSIT Bombay and is currently experimenting with mobility and NLP technologies with
Prof. Yogesh Karunakar. Prior to editing this book, Yogesh reviewed Beginning Laravel by
Sanjib Sinha (Apress, 2017). He would like to acknowledge his joy for all the support and
motivation in his endeavors.

XXix

Acknowledgments

Thanks to everyone working at Apress who made this book possible. I am particularly
thankful to Mr. Celestin Suresh John, acquisitions editor, and Ms. Prachi Mehta,
coordinating editor, for their patience and guidance.

A good number of my techie friends helped me on technical matters in this book.
Notable among them are Mr. Ajay Dhande, CEO of Cryptex Technologies in Nagpur
(www.cryptextechnologies.com); Prof. Shivajirao Salunkhe and Prof. Manisha
Salunkhe of Harsh Computer Institute in Satara; Dr. Vilas Pharande, Principal at
Arvind Gavali College of Engineering in Satara (www.agce.sets.edu.in); Prof. Sachin
Pratapure and Prof. Vishal Khade at Kalasagar Academy (www.kalasagaracademy.in)
in Wai, Satara; Prof. Anant Bodas and Prof. Vikas Dhane at Yashoda College of
Engineering in Satara; Prof. Sanjay Adhau of Shrikant Computer Training Center,
Amravati (https://www.sctcamravati.com); Dr. Mir Sadique Alj, Principal, PRMIT
& R, Amravati (mitra.ac.in); and Mr. Nikhil Kumbhar, CEO of Aphron Infotech in Pune
(www.aphroninfotech.in). I am also thankful to Mr. Tushar Soni and Mr. Ajay Sawant,
who run the web site Coding Alpha (www.codingalpha.com), and Mr. Neeraj Mishra,
who runs the web site The Crazy Programmer (www.thecrazyprogrammer.com), for their
valuable help in the making of this book.

Dr. Vijay Bhatkar, eminent computer scientist and father of the Indian
supercomputer PARAM 10000, has been a source of inspiration for me. I am grateful to
him for inspiring me.

Last but not least, I am always thankful to Mr. Jarron & Mr. John Borges and their
active Technical Book Services team in Pune for the prompt supply of books.

Thank you, Sirs and Madams, you all made this book possible. Finally, a note: Pune,
Nagpur, and Satara are cities in Maharashtra, India.

XXXi

http://www.cryptextechnologies.com/
http://www.agce.sets.edu.in/
https://www.sctcamravati.com
http://www.kalasagaracademy.in/
http://www.aphroninfotech.in/
http://www.codingalpha.com/
http://www.thecrazyprogrammer.com/

Introduction

This book contains good number of C “recipes” for readers at all levels, from beginning
to advanced. This book follows a problem-solution approach so that you can quickly find
the solution to a desired problem. Every solution comes with suitable code and a brief
discussion of that code. An attempt has been made to strike a perfect balance between
the theory and practice of C.

C made its first appearance in 1972. For a high-level computer language, it's now
at the age of retirement. But despite being 40+ years old, C continues to be strong. C is
among the ten most popular computer languages and will remain so for the next 20 years
at least. Therefore, any expertise you achieve in C will not be obsolete quickly and will
make you productive for years to come. This book will help you solve your problems in C,
as well as make you an expert in C.

Who This Book Is For

The book is primarily for working professionals. However, it is also for students, teachers,
researchers, code testers, and programmers at all levels, from beginner to advanced. It is
expected that you have a working knowledge of C and programming.

How This Book Is Structured

This book consists of 11 chapters. Chapter 1 takes a bird’s-eye view of the C language.
Chapter 2 deals with control statements. Chapters 3-5 deal with functions, arrays,
pointers, and structures. In these chapters you will find the problems faced by working
programmers.

Chapter 6 deals with data files and contains a good number of recipes that deal with
saving files on disk and retrieving data from saved files. Chapters 7-9 cover topics that fall
broadly into the category of data structures. The data structures that have practical utility
are covered in these chapters. Chapter 10 covers various cryptographic systems. C and
cryptography are a very powerful and inte resting combination. In this chapter, you will
experience the power of this combination.

Chapter 11—the last chapter of this book —deals with numerical methods.
Computers were invented as number-crunching machines, but with the passage of
time, they have emerged as data-processing machines. However, even today, number
crunching is one of the most important jobs performed by computers. This chapter offers
you good number of recipes that serve as number-crunching utilities.

I sincerely believe this book will be highly useful to a wide spectrum of readers.

xxxiii

www.allitebooks.cond

http://dx.doi.org/10.1007/978-1-4842-2967-5_1
http://dx.doi.org/10.1007/978-1-4842-2967-5_2
http://dx.doi.org/10.1007/978-1-4842-2967-5_3
http://dx.doi.org/10.1007/978-1-4842-2967-5_5
http://dx.doi.org/10.1007/978-1-4842-2967-5_6
http://dx.doi.org/10.1007/978-1-4842-2967-5_7
http://dx.doi.org/10.1007/978-1-4842-2967-5_9
http://dx.doi.org/10.1007/978-1-4842-2967-5_10
http://dx.doi.org/10.1007/978-1-4842-2967-5_11
http://www.allitebooks.org

CHAPTER 1

Welcome to C

Cis a procedural programming language. The early history of C is closely parallel to

the history of UNIX. This is because C was specifically developed to write the operating
system UNIX, which was introduced by Bell Laboratories in 1969 as an alternative to

the Multics operating system for the PDP-7 computer. The original version of UNIX

was written in assembly language, but programs written in assembly language are less
portable than programs written in high-level languages; hence, the people at AT&T
decided to rewrite the operating system in a high-level language. This decision was
followed by the hunt of a suitable language, but there was no suitable high-level language
that would also permit bit-level programming.

During the same period (1970), Kenneth Thompson developed a language for
systems programming that was named B after its parent language BCPL (which was
developed by Martin Richards in 1967). In 1972, C made its first appearance, as an
improved version of B. Developed by Dennis Ritchie, C’s name is derived from B
(i.e., in the alphabet, the letter C follows the letter B, and in the name BCPL,
the letter C follows the letter B).

Ritchie, with a group of researchers working at Bell Laboratories, also created a
compiler for C. Unlike B, the C language is equipped with an extensive collection of
standard types. In 1973, the new version of UNIX was released in which more than 90
percent of the source code of UNIX was rewritten in C, which added to its portability.
With the arrival of this new version of UNIX, the computing community realized the
power of C. Following the publication of the book The C Programming Language in 1978
by Brian Kernighan and Dennis Ritchie, C shot to fame.

In 1983, the American National Standards Institute (ANSI) formed a committee,
named X3J11, to create a standard specification of C. In 1989, the standard was ratified as
ANSI X3.159-1989, “Programming Language C.” This version of C is usually called ANSI
C, Standard C, or just C89. In 1990, the ANSI C standard (with a few minor modifications)
was adopted by the International Standards Organization (ISO) as ISO/IEC 8999:1990.
This version is popularly known as C90. In 1995, C89 was modified, and an international
character set was added to it. In 1999, it was further modified and published as ISO
9899:1999. This standard is popularly called C99. In 2000, it was adopted as an ANSI
standard.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2967-5_1) contains supplementary material, which is available
to authorized users.

© Shirish Chavan 2017 1
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_1

http://dx.doi.org/10.1007/978-1-4842-2967-5_1

CHAPTER 1 © WELCOME TO C

Programs, Software, and Operating System

Before proceeding, let me explain the meaning of the term computer program
(hereafter, simply program). Well, a program is nothing but a set of instructions to
be fed to a computer so the computer can do some desired work. The relationship
between a program and software can be expressed as follows:

program + portability + documentation + maintenance = software

Portability means the ability of a program to run on different platforms (e.g., the
Windows platform, UNIX platform, etc.). Documentation means a user’s manual and
comments inserted in a program. Maintenance means debugging and modifying the
program as per the requests of users.

Microsoft Windows is an operating system. It consists of a graphical user interface
(GUI). Graphical means pictorial, and interface means middleman, so a GUI is a pictorial
middleman between the user and the internal machinery of a computer that assists a
user (meaning a computer user). In a hotel, the waiter takes your order, approaches the
kitchen, collects the dish ordered by you, and serves you. Similarly, the operating system
takes your order, approaches the internal machinery of computer, and then serves you.

Machine Language and Assembly Language

A microprocessor can be aptly described as the brain of a personal computer. This
microprocessor is nothing but a single chip. Various microprocessors are available.
Microprocessor and central processing unit (CPU) are synonymous. A microprocessor
consists of an important component called an arithmetic and logic unit (ALU), which
performs all the computations. A salient feature of an ALU is that it understands only
machine language, which in turn consists of only two alphabets, namely, 0 and 1

(by contrast English consists of 26 letters). Here is a typical machine language instruction:

10111100010110

A few decades back, programmers did use machine language to write programs.
The then-keyboard consisted of only two keys, captioned 0 and 1. Writing a machine
language program and then typing it in a computer was a laborious and tedious job.
Then came the assembly languages, which eased the task of programmers. Assembly
languages are low-level languages. The following is a typical assembly language
statement (which performs a multiplication of two numbers), which is certainly more
readable than the machine language instruction given earlier:

MUL X, Y

If a machine language program consists of, say, 50 statements, then the
corresponding assembly language program would also consist of approximately 50
statements. As ALU understands only machine language, special software (called an
assembler) was developed to translate assembly language programs into machine
language programs.

CHAPTER 1 © WELCOME TO C

Procedural Languages

A typical procedural language is closer to English than assembly language. For example,
here is a statement in the procedural language Pascal:

If (rollNumber = 147) Then Write ('Entry denied.');

The meaning of this statement, which is quite obvious, is as follows: if the value of
rollNumber is 147, then display the message “Entry denied.” on the screen. To translate
a procedural language program into a machine language program, software called a
compiler is used. Procedural languages are high-level languages.

Programmers use procedural languages in conjunction with the techniques of
structured programming. What is structured programming? In a broad sense, the term
structured programming refers to the movement that transformed the art of programming
into a rational science. It all began with a letter by Edsger Dijkstra, “Go To Statement
Considered Harmful,” published in the March 1968 issue of Communications of the ACM.
Structured programming rests on the following cornerstones:

e Modularity: Instead of writing a one big program, split your
program into a number of subprograms or modules.

e Information hiding: The interface of a module should exhibit only
the least possible information. For example, consider a module
that computes the square root of a number. The interface of this
module will accept a number and return the square root of that
number. The details of this module will remain hidden from the
users of this module.

e Abstraction: Abstraction is the process of hiding the details in
order to facilitate the understanding of a complex system. In a
way, abstraction is related to information hiding.

However, as programs grew larger and larger, it became clear that the techniques
of structured programming are necessary but not sufficient. Computer scientists then
turned to object-oriented programming in order to manage more complex projects.

Object-Oriented Languages

We use computer programs to solve real-life problems. The trouble with the structured
paradigm is that using it, you cannot simulate real-life problems on computers
conveniently. In a structured paradigm, you use data structures to simulate real-life
objects, but these data structures fall far short in simulating real-life objects. Car, house,
dog, and tree are the examples of real-life objects, and it is expected that a programming
language should be capable of simulating these objects to solve real-life problems. The
object-oriented paradigm tackles this problem at its root simply by providing software
objects to simulate real-life objects. An object provided by an object-oriented paradigm is
an instance of a class and possesses identity, properties, and behavior like real-life objects
do. For example, if Bird is a class, then parrot, peacock, sparrow, and eagle are objects

CHAPTER 1 © WELCOME TO C

or instances of the class Bird. Also, if Mammal is a class, then cat, dog, 1ion, and tiger
are objects or instances of the class Mammal. Compared to the structured paradigm, the
object-oriented paradigm is more capable of using existing code. Code means a program
or its part.

The object-oriented paradigm is as old as the structured paradigm. The movement
of the structured paradigm began with Dijkstra’s famous letter “Go To Statement
Considered Harmful” in 1968, whereas the object-oriented paradigm has its origin in
the programming language SIMULA 67, which appeared in 1967. However, the object-
oriented capabilities of SIMULA 67 were not very powerful. The first truly object-oriented
language was Smalltalk. In fact, the term object-oriented was coined through Smalltalk
literature. C is not object-oriented language; it is only a procedural language. In 1983
Bjarne Stroustrup added object-oriented capabilities to C and christened this new
language as C++, which was the first object-oriented language widely used and respected
by the computer industry. Today, the most popular object-oriented language is Java.
Object-oriented languages are high-level languages.

Terminology in Computers

In almost all sciences, the terminology is derived from languages like Greek or Latin.
Why? If you derive terminology from the English language, then there is a risk that
confusion may occur between the technical meaning and the current usage of that term.
In computers, however, terminology is derived from English, causing confusion to new
learners. English words such as tree, memory, core, root, folder, file, directory, virus, worm,
garbage, etc., are used as technical terms in the field of computers. You might be unaware
that particular term has some technical meaning attached to it apart from its current
nontechnical meaning. To avoid confusion, always have a good computer dictionary on
your desk. Whenever in doubt, refer to the dictionary.

Compiled and Interpreted Languages

When a computer scientist designs a new programming language, the major problem is
the implementation of that language on various platforms. There are two basic methods
for implementing a language, as follows:

e Compilation: Code in a high-level language is translated into
alow-level language. A file is created to store the compiled or
translated code. You are then required to execute the compiled
code by giving an appropriate command.

e [nterpretation: Instructions in code are interpreted (executed),
one by one, by a virtual machine (or interpreter). No file is created.

These methods are now discussed in detail.

CHAPTER 1 © WELCOME TO C

Compilation

In compilation, the source code in a high-level language is translated into the machine
language of an actual machine. FORTRAN, Pascal, Ada, PL/1, COBOL, C, and C++ are
compiled languages. For example, consider a C program that displays the text “Hello”
on the screen. Say hello. c is the file that contains the source code of this program
(source code files in C have the extension . c). The C compiler compiles (or translates)
the source code and produces the executable file hello.exe. The file hello.exe contains
instructions in the machine language of the actual machine. You are now required to
execute the file hello. exe by giving an appropriate command, and execution of the file
hello.exe is not part of the compilation process. The executable file hello.exe that is
prepared on the Windows platform can be executed only on the Windows platform.
You simply cannot execute this file on the UNIX platform or the Linux platform.
However, C compilers for all platforms are available. Hence, you can load the appropriate
C compiler on a UNIX or Linux platform, compile the file hello.c to produce the
executable file hello.exe, and then execute it on that platform.

The major benefit of compiled languages is that the execution of compiled programs
is fast. The major drawback of compiled languages is that executable versions of
programs are platform dependent.

Interpretation

In interpretation, a virtual machine is created by adding a desired number of software
layers such that the source code in the high-level language is the “machine language
code” for this virtual machine. For example, the language BASIC is an interpreted
language. Consider a BASIC program that displays the text “Hello” on the screen. Say the
source code of this program is stored in the file hello.bas. The source code in hello.
bas is fed to the BASIC virtual machine, and instructions in hello.bas are interpreted
(executed) by the BASIC virtual machine one by one. Also note that programming
statements in hello.bas are machine language instructions for the BASIC virtual
machine. No new file is created in the interpretation process.

The major benefit of interpreted languages is that programs are platform
independent. The major drawback of interpreted languages is that the interpretation
(execution) of programs is slow. BASIC, LISP, SNOBOL4, APL, and Java are interpreted
languages.

In practice, a pure interpretation, as in the case of BASIC, is seldom used. In
almost all interpreted languages (e.g., Java), a combination of compilation and
interpretation is used. First, using a compiler, the source code in a high-level language
is translated into intermediate-level code. Second, a virtual machine is created such
that the intermediate-level code is machine language code for that virtual machine.
Intermediate-level code is then fed to a virtual machine for interpretation (execution).

Finally, notice that all scripting languages (e.g., Perl, JavaScript, VBScript,
AppleScript, etc.) are pure interpreted languages.

CHAPTER 1 © WELCOME TO C

Your First C Program

As a tradition, the first program in a typical C programming book is generally a “Hello, world”
program. Let’s follow this tradition and create and run (execute) your first program. This
program will display the text “Hello, world” on the screen. Type the following text (program)
in a Cfile and save it in the folder C:\Code with the file name hello.c:

#include <stdio.h>

main()

{
printf("Hello, world\n") ;
return(0) ;

}

Compile and execute this program, and the following line of text appears on the screen:
Hello, world

A language is called case-sensitive if the compiler or interpreter of the language
distinguishes between uppercase and lowercase letters. Pascal and BASIC are not case-
sensitive languages. C and C++ are case-sensitive languages.

e (Cisacase-sensitive language, and therefore you should not
confuse uppercase and lowercase letters. For example, if you type
Main instead of main, it will result in an error.

¢ Do not confuse the file name and program name. Here, hello.c is
the name of the file that contains the source code of the program,
whereas hello is the program name.

To explain how this program works (or any other program, for that matter), I need
to refer to individual lines of code (LOCs) in this program, and hence, I need to number
these lines. Therefore, I have rewritten the program hello with line numbers added to it
as comments (these are multiline comments), as shown here. This program produces the
same output as the program hello.

/* This program will produce the same output as program hello. Only
difference is that this program contains the comments. Comments are for the
convenience of programmers only. Compiler simply ignores these comments.*/

/* BL */
#include <stdio.h> /¥ LOC 1 */
/* BL */
main() /* LOC 2 */
{ /% L0C 3 */
printf("Hello, world\n"); /* LOC 4 */
return(0); /* LOC 5 */
} /% LOC 6 */

CHAPTER 1 © WELCOME TO C

There are two types of comments in C: multiline comments (also called block
comments) and single-line comments (also called line comments). Single-line comments
came from C++ and have been officially incorporated into C since C99.

Now notice the program hello rewritten with single-line comments inserted in it, as
shown here. This program produces the same output as the program hello.

// This program will produce the same output as program hello. Only
difference is that this

// program contains the comments. Comments are for the convenience of
programmers only.

// Compiler simply ignores these comments.

// BL
#include <stdio.h> // LOC 1
// BL
main() // LOC 2
{ // 10C 3
printf("Hello, world\n"); // LOC 4
return(0); // L0C 5
} // L0C 6

Traditionally, C textbooks use only multiline comments and avoid single-line comments.
I will follow this convention in this book. In the remaining part of this chapter, I will cover
implicit type conversions, explicit type conversions, and the salient features of C.

Salient Features of C

Cis a popular language. The following features are responsible for its huge popularity:

e (Cisasmall language. It has only 32 keywords. Hence, it can be
learned quickly.

e Ithas apowerful library of built-in functions. C derives its
strength from this library.

e Itisaportable language. A C program written for one platform
(say, Windows) can be ported to another platform with minor
changes (say, Solaris).

e Cprograms execute fast. Thus, C programs are used where
efficiency matters.

e All the constructs required for structured programming are
available in C.

¢ Good number of constructs required for low-level programming
are available in C, hence C can be used for systems programming.

e Pointers are available in C, which add to its power.

CHAPTER 1 © WELCOME TO C

e The facility of recursion is available in C for solving tricky
problems.

e Chas the ability to extend itself. Programmers can add the
functions coded by them to a library of functions.

e (Cisalmost a strongly typed language.

Implicit Type Conversion

In an assignment statement, the quantity that appears on the right side is called the
r-value, and the quantity that appears on the left side is called the l-value. In every
assignment statement, you ensure that the data type of the 1-value is the same as that

of the r-value. For an example, see the assignment statement given here (assume intN to
be the int variable):

intN = 350; /* L1, now value of intN is 350 */

Here, L1 means LOC 1. To save the space, I may use the letter L to denote LOC in
code. In LOC 1, the l-value is intN, and the r-value is 350; their data type is the same:
int. When the compiler compiles such a statement, it checks the types of both sides of
the assignment statement without forgetting. This duty of the compiler is termed fype
checking. What happens if the types of both sides are not the same? Type conversion
occurs! In type conversion, the type of the value on the right side is changed to that of the
left side before assignment. Type conversions can be classified into two categories.

e Implicit or automatic type conversion (discussed in this section)
e Explicit type conversion (discussed in the next section)

Notice the LOC given here (assume db1N to be the double variable):
dblN = 35; /* L2, OK, now value of dbIN is 35.000000 */

In this LOC, the type of db1N is double, and the type of numeric constant 35 is
int. Here, the compiler promotes the data type of 35 from int (source type) to double
(destination type), and then it assigns the double type constant 35.000000 to db1N. This is
known as implicit type conversion or automatic type conversion. In implicit (or automatic)
type conversion, type conversion occurs automatically.

In type conversion, the type of the r-value is called the source type, and the type of
the l-value is called the destination type. If the range of the destination type is wider than
the range of the source type, then this type of type conversion is called widening type
conversion. If the range of the destination type is narrower than the range of source type,
then this type of type conversion is called narrowing type conversion. The type conversion
in LOC 2 is a widening type conversion because a range of double (destination type) is
wider than a range of int (source type).

CHAPTER 1 © WELCOME TO C

Here is one more example of implicit type conversion (assume intN to be the int
variable):

intN = 14.85; /* L3, OK, now value of intN is 14 */

In this LOC, the type of numeric constant 14.85 is double, and the type of inNis int.
Here, the compiler demotes the data type of 14.85 from double to int, it truncates and
discards its fractional part, and then it assigns the whole-number part, 14, to intN. The
type conversion in LOC 3 is a narrowing type conversion.

Here is one more example of implicit type conversion:

dbIN = 2/4.0; /* L4, OK, now value of dbIN is 0.500000 */

In this LOC, the r-value is an expression that in turn consists of the division of
numeric constant 2 by numeric constant 4.0. But the type of numeric constant 2 is int,
and the type of numeric constant 4.0 is double. Here, the compiler promotes the type of
numeric constant 2 from int to double, and then the division of floating-point numbers
2.0/ 4.0 is performed. The result 0.5 is assigned to db1N.

Note When different types are mixed in an expression or in an assignment statement,
then the compiler performs automatic type conversion while evaluating the expression or
performing the assignment. While performing type conversions, the compiler tries its best to
prevent the loss of information. But sometimes loss of information is unavoidable.

For example, in LOC 3, there is a loss of information (double type numeric constant
14.85 converted to an int type numeric constant 14). There is no loss of information
in widening type conversion, but there is some loss of information in narrowing type
conversion. Widening type conversions are always permitted by the compiler happily.
Narrowing type conversions are also permitted by the compiler but with reluctance, and
sometimes warnings are displayed by the compiler. Type conversions that do not make
sense are simply not permitted. Some type conversions are permitted during compile time,
but the error is reported during runtime. For example, notice the piece of code given here:

double dblN1 = 1.7e+300; /* LOC K */
float f1ltN1; /* LOC L */
f1tN1 = dblNg; /* LOC M */
printf("Value of fltN1 %e\n", fltN1i); /¥ LOC N */

The compiler compiles this piece of code successfully without any warning.
However, when you execute this piece of code, then instead of the expected output, the
following lines of text are displayed on the screen:

Floating point error: Overflow.
Abnormal program termination

CHAPTER 1 © WELCOME TO C

The program “crashes” during the execution of LOC M in which narrowing type
conversion is attempted. When a program is terminated abruptly during runtime, in
programmers’ language we say that the program crashed.

Different languages allow the mixing of types to different extents. Language that
freely allows the mixing of different types without any restriction is called a weakly typed
language or a language with weak typing. A language that does not allow the mixing of
different types at all is called a strongly typed language or a language with strong typing.

Note Cis almost a strongly typed language.

C’s strong type checking is evident in a function call. If a function expects an int type
argument and you pass a string of characters to that function as an argument (instead of
the int type argument), then the compiler reports an error and halts the compilation of
the program, confirming that C is a strongly typed language.

Notice that I used the term almost in the previous Note because, to a certain extent,
implicit type conversion is allowed in C, which makes C an “almost” strongly typed
language, rather than a perfectly strongly typed language.

Explicit Type Conversion

Instead of leaving the type conversion at the mercy of the compiler, you can perform the
type conversion explicitly. This operation is called explicit type conversion, casting, or
coercion. The operator used in casting is called cast. Notice the LOC given here (assume
intN to be an int variable):

intN = (int)14.85; /* L1, OK, casting operation performed */

In this LOC, the casting operation is performed on the numeric constant 14.85. An
operator cast is nothing but (int). In this operation, the type of 14.85 is changed from
double to int, its fractional part is truncated and discarded, and the whole-number part,
14, is returned as a numeric constant of type int, which in turn is assigned to intN. Here
is the generic syntax of a casting operation or explicit type conversion:

(desiredType)expression
Here, desiredType is any valid type such as char, short int, int, long int, float,
double, etc. In this syntax, the cast operator is nothing but (desiredType). Notice

that parentheses are required and are part of a cast operator. The effect of this casting
operation is that the type of expression is changed to desiredType.

10

CHAPTER 1 © WELCOME TO C

In LOC 1, a casting operation is performed on the numeric constant, but it can well
be performed on variables. Notice the piece of code given here:

int intN; /* L2 ¥/
double dbIN = 3.7; /* L3 */
intN = (int)dblN; /* L4 */
printf("Value of intN is: %d\n", intN); /* L5 */
printf("value of dbIN is: %1f\n", dblN); /* L6 */

printf("Value of dbln with cast (int) is: %d\n", (int)dblN); /* L7 */
This piece of code, after execution, displays the following lines of text on the screen:

Value of intN is: 3
Value of dbIN is: 3.700000
Value of dbln with cast (int) is: 3

In this piece of code, a casting operation is performed on the variable db1N twice,
first in LOC 4 and second in LOC 7. Notice that after performing the casting operation
on dblN, the value of dbIN remains unaffected. Actually, the casting operation is not
performed on db1N; the value stored in db1N is retrieved, and then the casting operation
is performed on that retrieved value (i.e., on the numeric constant 3.7). No wonder, after
performing the casting operation on db1N with operator (int) in LOC 4, the variable db1N
has remained unaffected as is evident after execution of LOC 6. The execution of LOC 6
displays the value of dbIN to be 3.7. In LOC 7, the argument to the printf() function is
not a variable but an expression, as shown here:

(int)dbIN
In this first chapter of this book, I discussed various issues related to the C language.
In the remaining chapters of the book, you will see all the C recipes. The purpose of a

cookbook is to provide you readymade solutions (i.e., recipes) to your problems and in
this book also you will find readymade solutions catering to needs of readers at all levels.

11

CHAPTER 2

Control Statements

This chapter presents recipes that exploit the power of control statements to solve
problems. C is rich in control statements. Control statements in C can be broadly
classified into three categories, as follows:

e Selection statements
e Iteration statements

e Jump statements

Selection Statements

A selection statement is used to choose one of the several flows of computer control.
There are two selection statements: if-else and switch.

Iteration Statements

An iteration statement is used to execute a group of statements repeatedly, a finite
number of times. There are three iteration statements: while, do-while, and for.

Jump Statements

There are four jump statements: break, continue, goto, and return. Normally computer
control flows linearly from the preceding statement to the next statement in the source
code. You use a jump statement when you need to bypass this linear flow and have the
computer control jump from one statement to another statement, not necessarily the
successive one.

The goto statement is used to jump to another statement within the same function.
The continue statement is used only in iteration statements. The break statement is used
only in iteration or switch statements. The return statement is used in functions.

© Shirish Chavan 2017 13
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_2

CHAPTER 2 "' CONTROL STATEMENTS

2-1. Sum 1 to N Numbers
Problem

You want to develop a program that computes the sum of 1 to N numbers in an interactive
manner.

Solution
Write a C program that computes the sum of 1 to N numbers with the following specifications:

e The program uses the for loop to perform the summation of
1 to N numbers. Nothing is sacred about the for loop; you can
also use the while loop or the do-while loop, but in these type of
programs the for loop is most preferred.

e The program asks the user to enter the number N (0 < N < 30000).
If the user enters the number N outside of this range, then the
program asks the user to reenter the number.

e When the computed sum is displayed on the screen, the program asks
the user whether he or she wants to compute another sum or quit.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name sum. c:

/* This program computes the sum of 1 through N numbers using for statement in an */
/* interactive manner. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 ¥/
{ /* L3 */
int intN, intCounter, flag; /* L4 */
unsigned long int ulngSum; /* L5 */
char ch; /* L6 */
/* BL */

do { /* outer do-while loop begins */ /* L7 */
/* BL */

do { /* inner do-while loop begins */ /* L8 */
flag = 0; /* L9 */
printf("Enter a number (0 < N < 30000): "); /* L10 */
scanf("%d", &intN); /* L11 */

if ((intN <=0) || (intN > 30000)) /* L12 */
flag = 1; /* L13 */

} while (flag); /* inner do-while loop ends */ /* L14 */
/* BL */

14

CHAPTER 2 " CONTROL STATEMENTS

ulngSum = 0; /* L15 */
/* BL */

for (intCounter = 1; intCounter <= intN; intCounter++) { /* L16 */
ulngSum = ulngSum + intCounter; /* L7 */

} /* L18 */
/* BL */

printf("Required sum is: %lu\n", ulngSum); /* L19 */

printf("Do you want to continue? (Y/N) : "); /* L20 */

scanf(" %c", 8&ch); /* L21 */

} while ((ch =="y") || (ch == 'Y")); /* outer do-while loop ends */ /* L22 */

/* BL */

printf("Thank you.\n"); /* L23 */

return(0); /* L24 */

} /% 125 */

Compile and execute this program. A “run” of this program is given here:

Enter a number (0 < N < 30000): 10000 «
Required sum is: 50005000

Do you want to continue? (Y/N) :y «
Enter a number (0 < N < 30000): 31000 «
Enter a number (0 < N < 30000): 25000 +
Required sum is: 312512500

Do you want to continue? (Y/N) : n «
Thank you.

How It Works

The for loop contained in LOCs 16 to 18 performs the summation of 1 to N numbers.
do-while loops with two-level nesting are used in this program. The inner do-while loop
keeps the user inside the loop as long as the user fails to enter the number N in the specified
range. The outer do-while loop keeps the user inside the loop as long as the user wants to
perform the summation again. The inner do-while loop adds robustness to this program.
Besides the for loop, you can also use while or do-while loops to perform the summation.
To use awhile loop to perform summation, replace LOCs 16 to 18 with the following LOCs:

intCounter = 0;

while (intCounter < intN) {
intCounter = intCounter + 1;
ulngSum = ulngSum + intCounter;

}

To use a do-while loop to perform summation, replace LOCs 16 to 18 with the
following LOCs:

intCounter = 0;

do {
intCounter = intCounter + 1;

15

CHAPTER 2 "' CONTROL STATEMENTS

ulngSum = ulngSum + intCounter;
} while (intCounter < 100);

Be careful while coding the terminating condition of a loop. An imprudently coded
termination condition of a loop is the birthplace of bugs.

Bugs loiter around boundary values.

For example, look at the for loop given here:
for (intCounter = 1; intCounter < 100; intCounter++) {

/* some code here */
}

At first glance, you may think this for loop performs 100 iterations, but in reality, it
performs only 99 iterations. Therefore, be cautious when dealing with boundary values.

An error in a source code is a bug. The process of spotting and correcting the error in source
code is called debugging.

An expert programmer creates programs with the least number of possible bugs
and also knows how to debug a program. It is possible to write a small program that is
absolutely free from bugs, but professional programs that consists of thousands of LOCs
are never free from bugs.

2-2. Compute the Factorial of a Number
Problem

You want to develop a program to compute the factorial of a number.

Solution

The factorial of a positive integer n is denoted by n! and is defined as follows:
nl=1x 2x X n

The factorials of a few numbers are given here:

o! =1 (by definition)
1l =1

2l =1 x2=2

3l =1 x2x3 =6

16

CHAPTER 2 " CONTROL STATEMENTS

Write a C program with the following specifications:
e The program uses a for loop to compute the factorial of N.

e The program asks the user to enter the number N (0 < N <=12).
If the user enters the number N outside of this range, then the
program asks the user to reenter the number.

¢ When the computed sum is displayed on the screen, the program
asks the user whether he or she wants to compute another
factorial or quit.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
fact.c:

/* This program computes the factorial of number N in an interactive manner. */

/* BL */

#include <stdio.h> /¥ L1 */
/* BL */

main() /* L2 */
{ /% L3 */
int intN, intCounter, flag; /* L4 */
unsigned long int ulngFact; /* L5 */
char ch; /* L6 */
/* BL */

do { /* outer do-while loop begins */ /* L7 */
/* BL */

do { /* inner do-while loop begins */ /* L8 */
flag = 0; /* 19 */
printf("Enter a number (0 < N <= 12): "); /* L10 */
scanf("%d", &intN); /* L11 */

if ((intN <=0) || (intN > 12)) /* L12 */
flag = 1; /* L13 */

} while (flag); /* inner do-while loop ends */ /* L14 */
/* BL */

ulngFact = 1; /* L15 */
/* BL */

for (intCounter = 1; intCounter <= intN; intCounter++) { /* L16 */
ulngFact = ulngFact * intCounter; /* L17 */

} /* L18 */
/* BL */

printf("Required factorial is: %lu\n", ulngFact); /* L19 */
printf("Do you want to continue? (Y/N) : "); /* L20 */
scanf(" %c", &ch); /* 121 */

} while ((ch == "y") ||(ch == 'Y")); /* outer do-while loop ends */ /* L22 */
/* BL */

17

CHAPTER 2 "' CONTROL STATEMENTS

printf("Thank you.\n"); /* L23 */
return(0); /* 124 */
} /* L25 */

Compile and execute this program. A run of this program is given here:

Enter a number (0 < N <= 12): 6 «
Required factorial is: 720

Do you want to continue? (Y/N) : y «
Enter a number (0 < N <= 12): 20
Enter a number (0 < N <= 12): 12
Required factorial is: 479001600

Do you want to continue? (Y/N) : n «
Thank you.

How It Works

The for loop contained in LOCs 16 to 18 computes the factorial of number N. do-while
loops with two-level nesting are used in this program. The inner do-while loop keeps the
user inside the loop as long as the user fails to enter the number N in the specified range. The
outer do-while loop keeps the user inside the loop as long as the user wants to compute the
factorial again. The inner do-while loop adds robustness to this program. Besides the for
loop, you can also use while or do-while loops to compute the factorial of number N.

2-3. Generate a Fibonacci Sequence
Problem

You want to develop a program to compute the Fibonacci sequence.

Solution

Leonardo Fibonacci (1180 to 1250), also known as Leonardo of Pisa, was an Italian
mathematician. He wrote a number of excellent treatises on mathematics, such as Liber
Abaci, Practica Geometriae, Flos, and Liber Quadratorum. The Fibonacci sequence,
named after its inventor and mentioned in Liber Abaci, begins with 0 and 1, and every
successive term is a sum of the two preceding terms. By definition, the first term is 0, and
the second term is 1. The first few terms are listed here:

First term By definition 0
Second term By definition 1
Third term 0+1-= 1
Fourth term 1+1-= 2
Fifth term 1+2-= 3
Sixth term 2+3 = 5

18

CHAPTER 2 " CONTROL STATEMENTS

The terms in the Fibonacci sequence are also called the Fibonacci numbers. A
possible routine that can generate Fibonacci numbers is given here in pseudocode:

declare four int variables a, b, c, and d

a=0; /* by definition */
b =1; /* by definition */
/% SR loop begins HHHHHHHHHHHHEHMHH */
print the values of a and b

c=a+b; /* compute the next Fibonacci number */
d=b+c; /* compute the next Fibonacci number */
a=c; /* reset the value of a */
b =d; /* reset the value of b */

)
/% S loop ends #HHHHHHHHHHH I */

Write a C program with the following specifications:
e The program uses a for loop to compute the Fibonacci numbers.

e The program asks the user to enter the number N (0 < N <=45). If
user enters the number N outside of this range, then the program
asks the user to reenter the number. The program then generates
N Fibonacci numbers.

¢ When the computed Fibonacci numbers are displayed on the
screen, the program asks the user whether he or she wants to
compute another Fibonacci sequence or quit.

The Code

The following is the code of the C program written with these specifications. Type the
following text (program) in a C file and save it in the folder C: \Code with the file name
fibona.c:

/* This program generates N Fibonacci numbers in interactive manner. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /* L3 */
int intN, intk, flag; /* L4 */
long int 1lngA, 1ngB, 1lngC, lngD; /* L5 */
char ch; /* L6 */
/* BL */

do { /* outer do-while loop begins */ /¥ L7 */
/* BL */

do { /* inner do-while loop begins */ /* L8 */
flag = 0; /* 19 */
printf("Enter a number (0 < N <= 45): "); /* L10 */
scanf("%d", &intN); /* L11 */

19

CHAPTER 2

CONTROL STATEMENTS

if ((intN <=0) || (intN > 45))

flag
} while

=1,
(flag);

1ngA = 0;
lngB = 1;
printf("Fibonacci Sequence:\n");

for (intK = 1; intK <= intN; intK++) {
printf("%d th term is : %1ld\n", ((intK * 2) - 1), 1ngA);

if (((intk *2) - 1) ==

printf("%d th term is :

intN) break;

if ((intK * 2) == intN) break;

IngC =
IngD =
IngA =
1ngB =
}

printf("Do you want to continue? (Y/N) : ");

1ngA + 1ngB;
1ngB + 1ngC;
1ngC;
1ngD;

scanf(" %c", &ch);

} while ((ch == 'y') || (ch =="Y")); /* outer do-while loop ends */

printf("Thank you.\n");
return(0);

}

Compile and execute this program. A run of this program is given here:

Enter a number (0 < N <=

Fibonacci
1 th term

Sequence:
is : 0

Do you want to continue?
Enter a number (0 < N <=
Enter a number (0 < N <=

Fibonacci
1 th term
2 th term
3 th term
4 th term
5 th term
6 th term

Sequence:
is : 0
is : 1
is : 1
is 12
is : 3
is : 5§

Do you want to continue?

Thank you

20

45): 1

(Y/N) @y
45): 50
45): 6

(Y/N) : n

-

-
-

%ld\n", (intK * 2),

-

-

/* inner do-while loop ends */

IngB);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

L12
L13
L14
BL

L15
L16
L17
BL

L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
BL

L28
L29
L30
BL

L31
L32
L33

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 2 " CONTROL STATEMENTS

How It Works

The for loop contained in LOCs 18 to 27 does most of the work. The code contained in
LOCs 23 to 26 computes the Fibonacci numbers. The code contained in LOC 19 and LOC
21 displays the computed Fibonacci numbers on the screen. do-while loops with two-level
nesting are used in this program. The inner do-while loop keeps the user inside the loop as
long as the user fails to enter the number N in the specified range. The outer do-while loop
keeps the user inside the loop as long as the user wants to compute the Fibonacci numbers
again. The inner do-while loop adds robustness to this program. Besides the for loop, you
can also use while or do-while loops to compute the Fibonacci numbers. The Fibonacci
sequence has applications in botany, electrical network theory, searching, and sorting.

2-4. Determine Whether a Given Number Is Prime
Problem

You want to develop a program to determine whether a given number is prime.

Solution

A prime number is a positive whole number that is exactly divisible only by 1 and itself.
The first few prime numbers are as follows: 2, 3,5, 7, 11, 13, 17, 19. All prime numbers are
odd numbers except 2. You will develop a program that will determine whether a given
number is prime.

When program execution begins, you will be asked to enter a number in the range 2
to 2000000000. Type any integer in this range, and the program will tell you whether that
number is prime. Also, enter 0 to terminate the program. Obviously, to find out whether
anumber N is prime, you must divide it by all numbers from 2 through (N - 1) and check
the remainder. Number N is a prime number if the remainder is nonzero in the case of
each division; otherwise, it is not a prime number. However, in practice, you will divide
the number N by all numbers from 2 through N (the square root of N) and check the
remainder. If N is not exactly divisible by any number from 2 through N, then certainly it
is not divisible by any number from 2 through (N - 1).

A routine that will determine whether a given number 1ngN is prime is given here.
Here, isPrime is an int variable; 1ngN, 1ngM, and i are long int variables; the value of
1ngN is 3 or more; and isPrime is set to 1 (to be interpreted as true).

isPrime = 1; /* L1 */
1ngM = ceil(sqrt(1ngN)); /* L2 */
for (i =2; i <= 1ngM; i++) { /* L3 */
if ((IngN % i) == 0) { /* L4 */
isPrime = 0; /* L5 */
break; /* L6 */
} /* L7, if statement ends */
} /* L8, for loop ends */

21

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 "' CONTROL STATEMENTS

In this routine, in LOC 2, by implicit type conversion, the value of 1ngN is converted
into the double type and then fed to sqrt () to compute its square root. The result returned
by sqrt() is fed to ceil() to convert it into a nearest whole number on the higher side.
The result returned by ceil() is then assigned to 1ngM after implicit type conversion.

Next, 1ngN will be divided by all the numbers from 2 through intM. If in all these
divisions, the remainder is nonzero, then 1ngN will be a prime number, otherwise not.
This is done in the for loop that spans LOCs 3 to 8. The actual division is performed in
LOC 4, and the remainder is checked for its value (whether zero or not). If the remainder
is zero, then LOCs 5 and 6 are executed. In LOC 5, the value of the int variable isPrime is
set to zero. In LOC 6, a break statement is executed that terminates the for loop. Noting
the value of isPrime, the result is displayed on the screen. If isPrime is 1 (true), then IngN
is a prime number, and if isPrime is 0 (false), then 1ngN is not a prime number.

Write a C program with the following specifications:

e The program uses a for loop to check the primeness of a number.

e The program asks the user to enter the number N (2 <= N <=
2000000000) to determine whether that number is prime. If the user
enters the number N outside of this range, then the program asks the
user to reenter the number. The program then checks the primeness
of that number. If the user enters 0, then the program is terminated.

The Code

The following is the code of the C program written with these specifications. Type the
following text (program) in a C file and save it in the folder C: \Code with the file name
prime.c:

/* This program determines whether a given number is prime or not. */

/* BL */

#include <stdio.h> /¥ L1 */
#include <math.h> /¥ L2 */
/* BL */

main() /* L3 */
{ /* L4 */
int flag, isPrime; /* L5 */
long int 1ngN, lngM, i; /* L6 */
/* BL */

do{ /* L7 */
/* BL */

do { /* L8 */
flag = 0; /* L9 */
printf("Enter 0 to discontinue.\n"); /* L10 */
printf("Enter a number N (2 <= N <= 2000000000)\n"); /* L11 */
printf("to find whether it is prime or not: "); /* L12 */
scanf("%1d", &lngN); /* 113 */

if (1ngN == 0) break; /* L14 */

if ((IngN < 2) || (1ngN > 2000000000)) /* L15 */

22

flag = 1;
} while (flag);

if (1ngN == 0) break;

if (IngN == 2) {

printf("\n2 is a prime number\n\n");

continue;

}

isPrime = 1;
IngM = ceil(sqrt(1ngN));
for (i = 2; i <= IngM; i++) {
if ((IngN % i) == 0) {
isPrime = 0;
break;
}
}

if (isPrime)

printf("\n%ld is a prime number\n\n", 1lngN);

else

CHAPTER 2

printf("\n%ld is not a prime number\n\n", lngN);

} while (1);

printf("\nThank you.\n");
return(0);

}

CONTROL STATEMENTS

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Compile and execute this program. A run of this program is given here:

Enter 0 to discontinue.

Enter a number in the range (2 <= N <=
to find whether it is prime or not: 17
17 is a prime number

Enter 0 to discontinue.

2000000000)

-

Enter a number in the range (2 <= N <= 2000000000)

to find whether it is prime or not: 1999999997

1999999997 is not a prime number
Enter 0 to discontinue.

-

Enter a number in the range (2 <= N <= 2000000000)

to find whether it is prime or not: 0
Thank you.

-

L16
L17
BL

L18
BL

L19
L20
L21
L22
BL

L23
L24
L25
L26
L27
L28
L29
L30
BL

L31
L32
L33
L34
BL

L35
BL

L36
L37
L38

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

23

CHAPTER 2 "' CONTROL STATEMENTS

How It Works

The for loop contained in LOCs 25 to 30 does the most of the work of checking the
primeness of the number. The code in LOCs 31 to 34 displays the result. do-while loops
with two-level nesting are used in this program. The inner do-while loop keeps the user
inside the loop as long as the user fails to enter a number N in the specified range. The
outer do-while loop keeps the user inside the loop as long as the user wants to checks the
primeness of a new number. The inner do-while loop adds robustness to this program.
Notice LOC 35, which is reproduced here for your quick reference:

} while (1); /* L35 */

It seems that this is an infinite loop because no comparison statement is in the
parentheses. However, a provision for termination of the loop is made in LOC 18, which is
also reproduced here for your quick reference:

If (1IngN == 0) break; /* L18 */

When the value of 1ngN is zero, the execution of this loop is terminated successfully.
The library functions ceil() and sqrt() are used in LOC 24, which is also
reproduced here for your quick reference:

1ngM = ceil(sqrt(1ngN)); /* 124 */

The library functions ceil() and sqrt() are mathematical functions; that’s why I
have included the header file math. h in this program through LOC 2. The term sqrt stands
for “square root,” and the term ceil stands for “ceiling,” which in turn means upper limit.
Here is the generic syntax of a statement that uses the library function sqrt():

dblX = sqrt(dbly);

Here, dblY is an expression that evaluates to a constant of the double type, and db1X
is a variable of the double type. The function sqrt() computes the square root of db1Y
and returns the result, which is assigned to the variable db1X.

The function ceil() converts the double value (passed as an argument) into a
nearest whole-number value on the higher side and returns the result. Here is the generic
syntax of a statement that uses the function ceil():

dblX = ceil(dblY);

Here, dblY is an expression that evaluates to a constant of type double, and db1X is a
double variable.

24

CHAPTER 2 " CONTROL STATEMENTS

2-5. Compute the Sine Function
Problem

You want to compute the sine of an angle x using the infinite series expansion.

Solution

You want to compute the sine of an angle x using the infinite series expansion. The
formula of the infinite series expansion is given here:

sin x = x - x3/3! + x5/5! - x7/7! + ..

Here, x is in radians, and it takes values in the range -1 <= x <= 1. You can see that the
value of successive terms go on, decreasing rapidly. Therefore, it is more than sufficient to
include only the first ten terms. If the value of x is 1, then the contribution due to the tenth
term is approximately 2E-20, and the contribution due to the 40th term is approximately
1.7E-121.

Write a C program with the following specifications:

e The program uses a for loop to compute the sine of an angle x.

e The program asks the user to enter the angle x (-1 <=x<=1).If
user enters the angle x outside of this range, then the program
asks the user to reenter the number.

e When the sine of angle x is displayed on the screen, the program
asks the user whether he or she wants to compute the sine of
another angle or quit.

The Code

The following is the code of the C program written with these specifications. Type the
following text (program) in a C file and save it in the folder C: \Code with the file name sine.c:

/* This program computes the sine of an angle where angle X is */
/* in radians and in the range (-1 <= X <= 1). */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /* L3 */
double dblSine, dblTerm, dblX, dblZ; /* L4 */

int intK, i, flag; /* L5 */

char ch; /* L6 */

/* BL */

do { /* outer do-while loop begins */ /* LT */

/* BL */

25

CHAPTER 2 "' CONTROL STATEMENTS

do { /* inner do-while loop begins */ /* L8 */
flag = 0; /* L9 */
printf("Enter angle in radians (-1 <= X <= 1): "); /* L10 */
scanf("%1f", &dblX); /* L11 */
if ((dblX < -1) || (dblX > 1)) /* L12 */
flag = 1; /* L13 */
} while (flag); /* inner do-while loop ends */ /* L14 */
/* BL */
dblTerm = dblX; /* L15 */
dblSine = dblX; /* L16 */
intK = 1; /* L17 */
dblZ = dblX * dblX; /* L18 */
/* BL */
for (i = 1; i <= 10; i++) { /* L19 */
intK = intK + 2; /* L20 */
dblTerm = -dblTerm * dblZ /(intK * (intK - 1)); /% 121 ¥/
dblSine = dblSine + dblTerm; /* 122 */
} /* 123 */
/* BL */
printf("Sine of %1f is %1f\n", dblX, dblSine); /* L24 */
printf("Do you want to continue? (Y/N) : "); /* L25 */
scanf(" %c", 8&ch); /* L26 */
} while ((ch =="y") || (ch =="Y")); /* outer do-while ends */ /* L27 */
/* BL */
printf("Thank you.\n"); /* 128 */
return(0); /* L29 */
} /* L30 */

Compile and execute this program. A run of this program is given here:

Enter angle in radians (-1 <= X <= 1): 0.5 «
Sine of 0.500000 is 0.479426

Do you want to continue? (Y/N) : y «

Enter angle in radians (-1 <= X <=1): 0 «~
Sine of 0.000000 is 0.000000

Do you want to continue? (Y/N) :y «

Enter angle in radians (-1 <= X <= 1): 0.707 +
Sine of 0.707000 is 0.649556

Do you want to continue? (Y/N) : n «

Thank you.

How It Works

The for loop contained in LOCs 19 to 23 computes the sine of an angle x. The code

in LOC 24 displays the result. do-while loops with two-level nesting are used in this
program. The inner do-while loop keeps the user inside the loop as long as the user fails
to enter the angle x in the specified range. The outer do-while loop keeps the user inside
the loop as long as the user wants to compute the sine of another angle. The inner
do-while loop adds robustness to this program.

26

CHAPTER 2 " CONTROL STATEMENTS

2-6. Compute the Cosine Function
Problem

You want to compute the cosine of an angle x using the infinite series expansion.

Solution

You want to compute the cosine of an angle x using the infinite series expansion. The
formula of the infinite series expansion is given here:

cos X =1 - x2/2! + x4/4) - x6/6! +...

Here, x is in radians, and it takes values in the range -1 <= x <= 1. You can see that the
value of successive terms go on, decreasing rapidly. Therefore, it is more than sufficient to
include only the first ten terms, as discussed in the preceding recipe.

Write a C program with the following specifications:

e The program uses a for loop to compute the cosine of an angle x.

e The program asks the user to enter the angle x (-1 <=x<=1).If
user enters the angle x outside of this range, then the program
asks the user to reenter the number.

¢ When the cosine of angle x is displayed on the screen, the
program asks the user whether he or she wants to compute the
cosine of another angle or quit.

The Code

The following is the code of the C program written with these specifications. This time,
however, you use a slightly different algorithm for coding compared to the preceding
recipe. Type the following text (program) in a C file and save it in the folder C: \Code with
the file name cosine.c:

/* This program computes the cosine of an angle where angle X is */
/* in radians and in the range (-1 <= X <= 1). */

/* BL */

#include <stdio.h> /¥ L1 */
/* BL */

main() /¥ L2 */
{ /* L3 */
double dblCosine, dblX, dblZ; /* L4 */

int i, j, q, flag, factorial, sign; /* L5 */

char ch; /* L6 */

/* BL */

do { /* outer do-while loop begins */ /* L7 */

/* BL */

do { /* inner do-while loop begins */ /* L8 */

27

CHAPTER 2 "' CONTROL STATEMENTS

flag = 0;

printf("Enter angle in radians (-1 <= X <= 1): ");
scanf("%1f", &dblX);

if ((dblX < -1) || (dblX > 1))

flag = 1;
} while (flag); /* inner do-while loop ends */
dblCosine = 0;
sign = -1;
for (i = 2; i <= 10; i += 2)
{
dblz = 1;

factorial = 1;
for (j = 1; j <= 1; j++)

dblz = dblZ * dblX;
factorial = factorial * j;

dblCosine += sign * dblZ / factorial;
sign = - 1 * sign;
}

dblCosine = 1 + dblCosine;

printf("Cosine of %1f is %1f\n", dblX, dblCosine);
printf("Do you want to continue? (Y/N) : ");
scanf(" %c", &ch);

} while ((ch == 'y") || (ch == 'Y")); /* outer do-while ends */

printf("Thank you.\n");
return(0);

}

Compile and execute this program. A run of this program is given here:

Enter angle in radians (-1 <= X <= 1): 0.5 «
Cosine of 0.500000 is 0.8775826

Do you want to continue? (Y/N) : y «

Enter angle in radians (-1 <= X <= 1): 0+~
Cosine of 0.000000 is 1.000000

Do you want to continue? (Y/N) : y «

Enter angle in radians (-1 <= X <= 1): 0.707 +
Cosine of 0.707000 is 0.760309

Do you want to continue? (Y/N) : n

Thank you.

28

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L9 */

L10
L11
L12
L13
L14
BL

L15
L16
L17
L18
L19
L20
BL

L21
L22
L23
L24
L25
BL

L26
L27
L28
L29
BL

L30
L31
L32
L33

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

BL */

L34
L35
L36

*/
*/
*/

CHAPTER 2 " CONTROL STATEMENTS

How It Works

Two-level nesting of for loops is used to compute the cosine of an angle x. LOC 30
displays the result. do-while loops with two-level nesting are used in this program. The
inner do-while loop keeps the user inside the loop as long as the user fails to enter the
angle x in the specified range. The outer do-while loop keeps the user inside the loop as
long as the user wants to compute the cosine of another angle. The inner do-while loop
adds robustness to this program.

2-7. Compute the Roots of Quadratic Equation
Problem

You want to compute the roots of the quadratic equation.

Solution

You want to compute the roots of the quadratic equation ax2 + bx + ¢ = 0. These roots are
given by the following formulae:

(-b + V(b2 - 4ac))/2a and (-b - V(b2 - 4ac))/2a
Roots can be real or imaginary depending upon the values of a, b, and c.
Write a C program with the following specifications:

e The program asks the user to enter the values of a, b, and ¢, which
can be integers or floating-point numbers.

e The program computes the roots and displays the results on the
screen using the formulae given earlier.

e When roots of a quadratic equation are displayed on the screen,
the program asks the user whether he or she wants to compute
the roots of another quadratic equation or quit.

The Code

The following is the code of the C program written with these specifications. Type the
following text (program) in a C file and save it in the folder C: \Code with the file name
roots.c:

/* This program computes the roots of quadratic equation. */

/* BL */
#include <stdio.h> /¥ L1 */
#include <math.h> /¥ L2 */
/* BL */
main() /* L3 */
{ /* L4 */

29

CHAPTER 2 "' CONTROL STATEMENTS

} while ((ch ==

}

double dblA, dblB, dblC, dblD, dblRt1, dblRt2;
char ch;
do { /* do-while loop begins */

printf("Enter the values of a, b and c : ");
scanf("%1f %1f %1f", &dblA, &dblB, &dblC);

dblD = dblB * dblB - 4 * dblA * dblC;
if (dblD == 0)
{
dblRt1 = (- dblB) / (2 * dblA);
dblRt2 = dblRt1;
printf("Roots are real & equal\n");
printf("Root1l = %f, Root2 = %f\n", dblRt1, dblRt2);

}
else if (dblD > 0)

{
dblRt1 = - (dblB + sqrt(dblD)) / (2 * dblA);
dblRt2 = - (dblB - sqrt(dblD)) / (2 * dblA);
printf("Roots are real & distinct\n");
printf("Root1 = %f, Root2 = %f\n", dblRt1, dblRt2);

}

else

{
printf("Roots are imaginary\n");

}

printf("Do you want to continue? (Y/N) : ");
scanf(" %c", &ch);

printf("Thank you.\n");

return 0;

Compile and execute this program. A run of this program is given here:

Enter the values of a, b and c : 10 200 -30 «
Roots are real and distinct
Root1l = -20.148892, Root2 = 0.148892

Do

you want to continue? (Y/N) : y «

Enter the values of a, band c : 40 20 15 «~
Roots are imaginary

Do

you want to continue? (Y/N) : n «

Thank you.

30

'v') || (ch == "'Y")); /* do-while loop ends */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

L5

L6

L7

BL

L8

L9

BL

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
BL

L33
L34

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 2 " CONTROL STATEMENTS

How It Works

Simple mathematical operations are performed to compute the roots of the quadratic
equation. Roots can be real or imaginary depending upon the values of the coefficients
a, b, and c. Therefore, provision is made to test whether the roots are real or imaginary.
The do-while loop keeps the user inside the loop as long as the user wants to compute
the roots of another quadratic equation.

2-8. Compute the Reverse of an Integer
Problem

You want to compute the reverse of an integer.

Solution

You want to compute the reverse of an integer. For example, if a given integer is 12345,
then its reverse is 54321, and you want to compute it programatically.
Write a C program with the following specifications:

e The program asks the user to enter an integer N (0 < N <= 30000).
If the user enters the integer N outside of this range, then the
program asks the user to reenter the integer.

e The program computes the reverse of an integer and displays the
results on the screen.

e Then the program asks the user whether he or she wants to
compute the reverse of another integer or quit.

The Code

The following is the code of the C program written with these specifications. Type the
following text (program) in a C file and save it in the folder C: \Code with the file name
reverse.c:

/* This program computes the reverse of an integer number. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /¥ L2 */
{ /* L3 */
long int intN, intTemp, intRemainder, intReverse; /* L4 */
char ch; /* L5 */

do { /* outer do-while loop begins */ /* L6 */

do { /* inner do-while loop begins */ /* L7 */
printf("Enter a number (0 < N <= 30000): "); /* L8 */
scanf("%1d", &intN); /¥ L9 */

31

CHAPTER 2 "' CONTROL STATEMENTS

} while ((intN <= 0) || (intN > 30000));
/* inner do-while loop ends */

intTemp = intN;
intReverse = 0;

while (intTemp > 0)

{
intRemainder = intTemp % 10;
intReverse = intReverse * 10 + intRemainder;
intTemp /= 10;

}

printf("The reverse of %1d is %1d.\n", intN, intReverse);
printf("Do you want to continue? (Y/N) : ");
scanf(" %c", &ch);
} while ((ch == 'y") || (ch = '¥*));
/* outer do-while loop ends */
printf("Thank you.\n");

return 0O;

Compile and execute this program. A run of this program is given here:

Enter a number (0 < N <= 30000): 12345 +
The reverse of 12345 is 54321.

Do you want to continue? (Y/N): y «
Enter a number (0 < N <= 30000): 45678 +
Enter a number (0 < N <= 30000): 2593 «
The reverse of 2593 is 3952.

Do you want to continue? (Y/N): n «
Thank you.

How It Works

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*

L10
BL

L11
L12
BL3
L14
L15
L16
L17
L18
L19
BL

L20
L21
L22

L23
L24
BL

L25
L26

Simple mathematical operations are performed to compute the reverse of an integer.
do-while loops with two-level nesting are used in this program. The inner do-while

loop keeps the user inside the loop as long as the user fails to enter the integer N in the

specified range. The outer do-while loop keeps the user inside the loop as long as the
user wants to compute the reverse of another integer. The inner do-while loop adds

robustness to this program.

32

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

CHAPTER 2 " CONTROL STATEMENTS

2-9. Print a Geometrical Pattern Using
Nested Loops

Problem

You want to generate and print on-screen the following geometrical pattern using the
nested loops (and not using the naive five printf() statements):

1
212
32123
4321234
543212345

The order of this pattern is five; i.e., it consists of five lines. You want to generate the
pattern of any order from one to nine.

Solution

You can print this pattern programatically using two-level nesting of for loops. Write a C
program with the following specifications:

e The program asks the user to enter the order of the pattern
(1 <=N<=9). If the user enters an N outside of this range, then
the program asks the user to reenter the N.

e The program prints the desired pattern using two-level nesting of
for loops. However, there will be four for loops in this program.

e Then the program asks the user whether he or she wants to print
another pattern or quit.

The Code

The following is the code of the C program written with these specifications. Type the
following text (program) in a C file and save it in the folder C: \Code with the file name
pattern.c:

/* This program prints the geometrical pattern on the screen. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 ¥/
{ /* L3 */
int intI, intJ, intK, intl, intOrd; /* L4 */
char ch; /* L5 */

do { /* do-while loop begins */ /* L6 */

do { /* do-while loop begins */ /* L7 */

33

CHAPTER 2 "' CONTROL STATEMENTS

printf("Enter the order of pattern (0 < N < 10): ");

scanf("%d", &intOrd);

} while ((intOrd <= 0) || (intOrd >= 10));

/* do-while loop ends */

for (intI = 1; intI <= intOrd; intI++)

{
for (int] = intOrd; intJ > intI; intJ--)
{
printf(" ");
}
for (intK = intI; intK »>= 1; intK--)
{
printf("%d", intK);
}

for (intL = 2; intlL <= intI; intlL++)

{
printf("%d", intlL);

}
printf("\n");

printf("Do you want to continue? (Y/N) : ");

scanf(" %c", &ch);

} while ((ch == 'y") || (ch == 'Y")); /* do-while loop ends */

printf("Thank you\n");

return 0;

Compile and execute this program. A run of this program is given here:

Enter the order of pattern (0 < N < 10): 5

1
212
32123
4321234
543212345
Do you want to continue? (Y/N) : n
Thank you.

How It Works

-

-

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

L8 */
L9 */

L10
BL

L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
BL

L31
L32

A correct combination of for loops generates the desired pattern. do-while loops with
two-level nesting are used in this program. The inner do-while loop keeps the user inside
the loop as long as the user fails to enter the integer N in the specified range. The outer
do-while loop keeps the user inside the loop as long as the user wants to generate another
pattern of a different order. The inner do-while loop adds robustness to this program.

34

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 2 " CONTROL STATEMENTS

2-10. Generate a Table of Future Value
Interest Factors

Problem

You want to generate a table of future value interest factors (FVIFs) and print it on the
screen.

Solution

You can generate and print this table programmatically using two-level nesting of for
loops. Write a C program with the following specifications:

e The program generates the FVIF table for interest rates varying
from 1 percent to 6 percent and for the periods varying from 1
year to 10 years.

e The FVIF values should be accurate up to three decimal points.

The Code

The following is the code of the C program written with these specifications. Type the
following text (program) in a C file and save it in the folder C: \Code with the file name
interest.c:

/* This program computes table of FVIF, Future Value Interest Factors. */

/* BL

#include <stdio.h> /* L1
#include <math.h> /* L2
/* BL

#define MAX_INTEREST 6 /* L3
#define MAX_PERIOD 10 /* L4
/* BL

main() /* L5
{ /* L6
int i, interest, years; /* L7
float fvif; /* L8
printf("\nTable of FVIF (Future Value Interest Factors)."); /* L9
printf("\nRate of interest varies from 1% to 6%."); /* L10
printf("\nPeriod varies from 1 year to 10 years."); /* 111
printf("\n\n Interest Rate "); /* L12
Printf("\N\t -- - "); /* 113
printf("\nPeriod"); /* L14
for (i=1; i<= MAX_INTEREST; i++) /* L15
printf("\t %d%", i); /* L16
PNt (Mmoo oo \n"); /* L17
for(years=1; years <= MAX_PERIOD; years++) { /* L18

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

35

CHAPTER 2 "' CONTROL STATEMENTS

printf("%d\t", years);

for(interest=1; interest <= MAX_INTEREST; interest++) {
fvif = pow((1+interest*0.01), years);
printf("%6.3f\t", fvif);

}
printf("\n");

Printf (M- o \n");
printf("Thank you.\n");
return 0;

Compile and execute this program. A run of this program is given here:

Table of FVIF (Future Value Interest Factors).
Rate of Interest varies from 1% to 6%.
Period varies from 1 year to 10 years.

Interest Rate

Period 1% 2% 3% 4% 5% 6%
1 1.010 1.020 1.030 1.040 1.050 1.060
2 1.020 1.040 1.061 1.082 1.102 1.124
3 1.030 1.061 1.093 1.125 1.158 1.191
4 1.041 1.082 1.126 1.170 1.216 1.262
5 1.051 1.104 1.159 1.217 1.276 1.338
6 1.062 1.126 1.194 1.265 1.340 1.419
7 1.072 1.149 1.230 1.316 1.407 1.504
8 1.083 1.172 1.267 1.369 1.477 1.594
9 1.094 1.195 1.305 1.423 1.551 1.689
10 1.105 1.219 1.344 1.480 1.629 1.791
Thank you.

How It Works

/*
/*

/*
/*
/*
/*
/*

/*
/*

L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

FVIF tables are useful in calculating the future value of money. The future value (FVn) of
the principal amount (P) after n years, with a rate of interest (i%) per annum, is given by

the following formulae:
FV =P * (1 +1)n=P * FVIF

Here, FVIF = (1 +1) .

36

CHAPTER 2 " CONTROL STATEMENTS

Suppose the principal amount is US$200, the rate of interest is 6 percent per annum,
and the period is 8 years; from the previous table you can find that the corresponding FVIF
is 1.594 (last column, eighth row). The future value for this amount is given by the following:

FV =US$200 * 1.594 = US$318.80

In this program, LOCs 1 to 2 consist of include statements. LOCs 3 to 4 consist of
define statements. LOCs 5 to 29 consist of the definition of the main() function. In LOCs
7 to 8, a few variables are declared. LOCs 9 to 11 consist of three printf() statements that
print the information about the FVIF table. LOCs 12 to 17 print the heading of the FVIF
table. LOCs 18 to 25 consist of nested for loops. The FVIF table is calculated and printed
in these nested loops. LOC 26 prints the bottom line of the FVIF table.

37

CHAPTER 3

Functions and Arrays

Besides basic types, C consists of derived types. Figure 3-1 shows a diagrammatic
representation of basic types and derived types in C. What brick is to wall, basic type is to
derived type. A derived type is built up using one or more basic types as building blocks.

Both functions and arrays are derived types in C.

Type'|s inC

[
Basic Types

char _
int ;;fga'
enum
. ﬂoat floating-
double }?;";22
e void

arithmetic

types

1
Derived Types

arrays
functions
pointers
structures
unions

Figure 3-1. Basic and derived data types in C. Type and data type are synonymous.

In C, the concept of a function can be explained in a number of ways. Here are some

examples:

A function is a subprogram. It allows you to break a large
computing task into smaller ones.

A function is a piece of code delimited by braces that performs
some well-defined task and also returns a value.

A function is a building block of a program. It is helpful in making

existing code reusable.

A function is also treated as a derived type in C. See Figure 3-1.

A function is a way to extend the repertoire of the C language.

© Shirish Chavan 2017
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_3

39

CHAPTER 3 " FUNCTIONS AND ARRAYS

Every function needs to be coded. Coding a function means writing the
programming statements for that function. Functions in C can be classified into three
categories: the main() function, library functions, and user-defined functions. These
categories are described here in brief:

e The main() function: This function is required in a C program.
There will be one (and only one) main() function in every C
program. When the operating system executes a C program, it actually
executes the main() function. The main() function calls library
functions and user-defined functions, as per the requirements.

The programmer is required to code the main() function.

e Library functions: These are also called system-defined or built-
in functions. For example, printf() and scanf() are library
functions. Library functions are optional in a C program. But it
is virtually impossible to build a useful program that is devoid
of library functions. A programmer is not required to code the
library functions. Compiler developers code the library functions,
compile them, and place them in libraries for you to use.

e User-defined functions: User-defined functions are optional in
a C program. A user-defined function calls other user-defined
functions or library functions, as per the requirements. The
programmer is required to code the user-defined functions.

Technically, the main() function is also a user-defined function
because the programmer (i.e., the user) is required to code

(i.e., define) this function. But the function main() enjoys special
status among all functions that a program may consist of. In fact,
the function main() represents a complete C program. When

an operating system executes a C program, it actually executes
the main() function. No other function is expected to call the
main() function. The main() function, on the other hand, can
certainly call other functions. The main() function is required in
a C program, whereas other functions are optional. This justifies a
separate category for the main() function.

e Array: An array is a list of items of the same data type and name
but different subscripts or indices. Arrays can be one-dimensional
or multidimensional. One-dimensional arrays can be represented
graphically as lists. Two-dimensional arrays can be represented
graphically as tables. Three-dimensional arrays can be
represented graphically as blocks or cubes. For four-dimensional
and higher arrays, graphical representation is not possible.

40

CHAPTER 3 © FUNCTIONS AND ARRAYS

3-1. Determine the Value of Pi
Problem

You want to determine the value of the mathematical constant pi.

Solution

Write a C program that determines the value of the mathematical constant pi using the
Monte Carlo method, with the following specifications:

e The program asks the user to enter the number of tosses as
N (2 <= N <=5000). If the user enters a number N outside of this
range, then the program asks the user to reenter the number.

e Everytoss will generate a pair of coordinates, x and y, in the range
0 <=x, y <=1, which represent a point. It is then tested to see
whether the point generated lies within the circle.

e Using the standard formula stated in Figure 3-2, the program
computes the value of pi.

N_circle = Number of points lying in the circle, x axis and y-axis,
N_square = Number of points lying in the square,
r = radius of circle = 1 unit,

y-axis

A_circle = Area of circle = tré/4 =m/4 unit (asr=1)

A_square = Area of square =r xr =1 unit (asr=1)
N_circle is proportional to A_circle
N_square is proportional to A_square.
N_circle / N_square = A_circle / A_square = 71/ 4
4 x N_Circle
= mn=s —

Q X-axis N_Squa re

-
-
-
-
-
-
-

D
LR R IR B
LI I I
LR R R)

I I R B R]
LI I I

® s 8 s s 8 s s afe

Figure 3-2. Determination of value of pi using the Monte Carlo method

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
monte.c:

/* This program determines the value of PI using Monte Carlo method. */

/* BL */
#include <stdio.h> /* L1 */
#include <stdlib.h> /* L2 */
#include <math.h> /* L3 */

41

CHAPTER 3 " FUNCTIONS AND ARRAYS

/* BL */
main() /* L4 */
{ /* L5 */

int intP, intCircle, intSquare, intToss, intRM, i; /* L6 */
float fltPi, fltX, flty, fltR; /¥ L7 */
char ch; /* L8 */
intRM = RAND_MAX; /* L9 */
do { /* outer do-while loop begins */ /* L10 */
intCircle = 0; /* L11 */

do { /* inner do-while loop beginss */ /* L12 */
printf("Enter the number of tosses (2 <= N <= 5000) : "); /* L13 */
scanf("%d", &intToss); /* L14 */

} while ((intToss < 2) || (intToss > 5000)); /* inner do-wh loop ends */ /* L15 */
intSquare = intToss; /* L16 */

for (i = 0; i < intToss; i++) { /* L7 */
intP = rand(); /* L18 */
f1tX = ((float)intP)/intRM; /* L19 */
intP = rand(); /* L20 */
fltY = ((float)intP)/intRM; /* L21 */
f1tR = sqrt((f1tX * f1tX) + (flty * fltY)); /* L22 */
if (f1tR <= 1) /* L23 */
intCircle = intCircle + 1; /* L24 */
} /* L25 */
fltPi = 4 * ((float) intCircle) / intSquare ; /* 126 */
printf("\nThe value of pi is : %f\n", fltPi); /* L27 */
printf("Do you want to continue? (Y/N) : "); /* L28 */
scanf(" %c", &ch); /* L29 */
} while ((ch == 'y") || (ch == 'Y")); /* outer do-while loop ends */ /* L30 */
/* BL */
printf("Thank you\n"); /* L31 */
return(0); /* L32 */
} /* 133 */

Compile and execute this program. A run of this program is given here:

Enter the number of tosses (2 <= N <= 5000) : 500
The value of pi is : 3.112000

Do you want to continue? (Y/N) : y «

Enter the number of tosses (2 <= N <= 5000) : 1000 +
The value of pi is : 3.148000

Do you want to continue? (Y/N) : n «

Thank you.

How It Works

The accurate value of & (pi) is 3.14159. The most important factor that prevents you from
approaching this accurate value is that the random values generated by the C compiler
are not truly random. Despite this shortcoming, this program has determined the value of

42

CHAPTER 3 © FUNCTIONS AND ARRAYS

pi with sufficient accuracy. If you use the function srand(), you can input a seed value to
this function, and then the random values generated would be more random.

The city of Monte Carlo is located in Monaco and is famous
for gambling and casinos. The Monte Carlo method is based
on simple laws of probability and works as follows: Imagine
arectangle of side 2r and a circle of radius 1, both concentric
with origin O of the coordinate system. For simplicity, you
consider only one-fourth of these figures in the first quadrant,
as shown in Figure 3-2. If you generate a large number of
points randomly to be anywhere within the square, then these
points will occupy all the available space almost uniformly. In
this program, you can generate up to 5,000 points.

In LOCs 18 to 21, a pair of coordinates (f1tX and f1tY) is created with their values
in the range 0 to 1 (boundary values included), and this pair defines a point that lies
somewhere in the square (shown in Figure 3-2). The function rand() creates a random
integer in the range 0 to RAND_MAX, where RAND_MAX is a compiler-defined constant. In
LOC 22, the distance between the origin and the point generated, T1tR, is computed.
Every point generated adds to the value of intSquare; however, if the value of T1tR for
that point is equal to or less than 1, then that point also adds to the value of intCircle. In
Figure 3-2, the variables intCircle and intSquare are represented by the terms N_Circle
and N_Square, respectively.

The for loop spanning LOCs 17 to 25 is iterated intToss times. In LOC 26, the value
of = (pi) is computed. In LOC 27, this value is displayed on the screen.

3-2. Pick the Prime Numbers from a List of Numbers
Problem

You want to pick the prime numbers from a list of serial numbers, say, 1 to 1000.

Solution

Write a C program that picks the prime numbers from a list of numbers, 1 to N, using the
sieve of Eratosthenes, with the following specifications:

e The program generates a list of numbers from 1 up to N.

e The program deletes the first number in the list, 1, as 1 is not
a prime number by definition. The program then deletes the
numbers in a list that are multiples of 2, but 2 is not deleted as 2 is
a prime number by definition.

e The program then deletes the numbers in a list that are multiples
of 3 (as 3 is the next undeleted number after 2), then multiples of
5 (as 5 is the next undeleted number after 3), and then multiples
of the next undeleted numbers (up to the square root of N).
Finally, you are left with a list of prime numbers.

43

CHAPTER 3 " FUNCTIONS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

erato.c:

/* This program picks the prime numbers from a list of serial numbers with

/* a range from 1 to 1000. */

#include <stdio.h>
#include <math.h>
ttdefine SIZE 1000

int status[SIZE];

void sieve()

{

int i, j, sq;

for(i = 0; i < SIZE; i++) {
status[i] = 0;

}
sq = sqrt(SIZE);

for(i=4;i<=SIZE;i+=2) {
status[i] = 1;
}

for(i = 3; i <= sq; i += 2)

if(status[i] == 0)
{
for(j = 2*i; j <= SIZE; j += i)
status[j] = 1;
}
}

status[1] = 1;

}

main()
{
int i, intN;
sieve();
do {
printf("\n\nEnter the number (1 <= N <= 1000) : ");
scanf("%d",&intN);
} while ((intN < 1) || (intN > 1000));

44

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
L2
L3
BL
L4
BL
L5
L6
L7
L8
L9
L10
BL
L11
BL
L12
L13
L14
BL
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
BL
L25
L26
L27
L28
L29
L30
L31
L32

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 3 © FUNCTIONS AND ARRAYS

printf("\nFollowing numbers are prime in the range:
1 to %d :\n", intN); /* L33 */

for (i = 1; i < intN; i++) /* L34 */
if(status[i]==0) printf("%d\t", i); /* L35 */
printf("\nThank you.\n"); /* 136 */
/* BL */

return 0; /* L37 */
} /* L38 */

Compile and execute this program. A run of this program is given here:

Enter the number (1 <= N <= 1000) : +~

Following numbers are prime in the range: 1 to 30 :
2 3 5 7 11 13 17 19 23 29

Thank you.

How It Works

How a sieve of Eratosthenes works is simple. This method is particularly useful when
you want to compute the first N prime numbers. In this method, nonprime numbers
are simply deleted one by one from a list of serial numbers from 1 to N, and finally, you
are left only with prime numbers in the list of serial numbers from 1 to N. Figure 3-3
illustrates a sieve of Eratosthenes works.

‘01|02|(J3|D4‘05|06|0'#l()8‘09|10|11I12‘13|l4|1bl16|1"f|18|l9‘20|21|22l23‘24|2bl26l2'f‘28|29|30|

Figure (a) Given a list of serial numbers from 1 to 30. We want to pick prime numbers from this list. By
definition, 1 is not a prime number and 2 is a prime number, hence delete 1 and leave 2 undeleted.

NO2|03|04‘05|06|07lOB‘09|10|11I12‘13|l-‘1|15‘16|l?ll8|19‘20|21|22‘23‘24|25|26|27‘28|29|30|

Figure (b) Now delete all multiples of 2, i.e., all even numbers (except 2) from this list.

MO 2|0 3%0 5%0 ?‘M OQMI IMISMI SMI TMI‘BMZ 1%2 3%2 5%2 7%29 N

Figure (c) 2 is prime by definition. Next available number in this list is 3. It must be prime. Now delete all
multiples of 3 from this list, i.e., delete 9, 15, 21, & 27. Numbers 6, 12, 18, & 24 are already deleted.

O

Figure (d) Now next available number is 5. It must be prime. Now delete all multiples of 5 from the list,
i.e., delete 25. Other multiples of 5, i.e., 15 and 20, are already deleted.

NO 2]0 BMO SNO 7%11%13%1 ?M19W2 3%@%}@2 9 M

Figure (e) Now next available number is 7. However, we will not delete its multiples. Because prime
numbers are already sieved out. Pime numbers sieved out are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.
Notice that square root of 30 is 5.48. Hence, we need to delete multiples of numbers upto 5 only.

Figure 3-3. Picking the prime numbers from a list of numbers using a sieve of Eratosthenes

45

CHAPTER 3 " FUNCTIONS AND ARRAYS

The function sieve() defined in LOCs 5 to 24 does the task of sieving the numbers
and picking the prime numbers. An int type array called status of size SIZE is defined in
LOC 4, and SIZE is defined to be 1000. All the cells in this array would be filled with either
1s or 0s. These 1 and 0 are status indicators; 0 indicates a prime number, and 1 indicates
anonprime number. For example, cell status[17] would be filled with 0, meaning 17
is prime number; cell status[20] would be filled with 1, meaning 20 is a nonprime
number; and so on.

In LOCs 8 and 9, this array is filled with 0s with the help of a for loop. You ignore the
first cell in this array, i.e., status[0]. The number 1 is not a prime number by definition;
hence, in LOC 23, the program places the integer 1 in the cell status[1]. You know that
numbers 2 and 3 are prime numbers and hence leave the status of the corresponding
cells unaffected, as zeros are already filled in these cells.

In LOCs 12 to 14, a program deletes all the even numbers in the list (except 2) with
the help of a for loop. In reality, the program fills the corresponding cells with status
indicator 1. In LOCs 15 to 22, the program deletes the remaining nonprime numbers in
the list. In reality, the program fills the corresponding cells with status indicator 1.

In LOC 28, the function sieve() is called, and the array status is filled with required
status indicators. When the execution of LOC 28 is complete, the list of prime numbers is
already ready in the memory of the machine. LOC 30 asks you to enter the number N in
the range of 1 to 1000. In LOCs 34 to 35, the prime numbers in the range of numbers 1 to N
are displayed on the screen.

3-3. Sum Numbers Using Recursion
Problem

You want to do the summation of numbers using recursion.

Solution

To begin with, you must express this problem in a recursive form. If the symbol X denotes
summation, then you express the problem of summation of n numbers in a recursive
form as follows:

In=n+2(n-1)

With every recursive call, the problem of computing ¥ n reduces to that of computing
Y (n - 1). As the value of n decreases by 1 with every recursive call, recursion will
terminate in a finite number of steps (recursive calls).

Write a C program that performs the summation of numbers using recursion, as per
the following specifications:

e The program uses a user-defined function called summation() to
perform the summation of numbers.

e The function summation() calls itself to perform the summation.

46

CHAPTER 3 © FUNCTIONS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
sum2.c:

/* This program performs summation of numbers 1 to 4 using recursion. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

int summation (int intM); /* L2 */
/* BL */

main() /* L3 */
{ /% L4 */
int intN = 4, intR; /* L5 */
intR = summation(intN); /* L6 */
printf("Sum : 1 + 2 + 3 + 4 = %d\n", intR); /* L7 */
return(0); /* L8 */

} /% L9 */
/* BL */

int summation(int intM) /* L10 */
/* L11 */

if (intM == 1) /* L12 */
return 1; /* 113 */
else /* L14 */
return (intM + summation(intM - 1)); /* L15 */

} /* L16 */

Compile and execute this program. A run of this program is given here:

Sum : 1 +2+3+4 =10

How It Works

In this program, LOCs 3 to 9 consist of the definition of the main() function. LOCs 10 to

16 consist of the definition of the summation() function. In LOC 6, a call is made to the
function summation(), and integer value 4 is passed to this function as an argument. This
is the first call to the function summation(). The value of the argument (i.e., 4) is assigned
to the parameter intM, which serves as the local variable inside the function summation().
The function summation() consists of two return statements: if the value of intMis 1, then
the value 1 is returned; otherwise, an expression is returned that consists of a function call
(see LOC 15). Because the value of intMis 4, LOC 15 is executed, which wants to return
the following value:

4 + summation(3) Expression A

47

CHAPTER 3 " FUNCTIONS AND ARRAYS

To compute the value of this expression, the computer once again calls the function
summation() with the argument 3. This is the second call to summation(). The values of
the local variables in summation() during its first execution are stored in a stack and not
thrown away. During the second execution of summation(), the value of intMis 3; hence,
once again LOC 15 is executed, which now wants to return the following value:

3 + summation (2) Expression B

To compute the value of this expression, the computer once again calls the function
summation() with the argument 2. This is the third call to summation(). The values of the
local variables in summation() during its second execution are stored in a stack and not
thrown away. During the third execution of summation(), the value of Mis 2; hence, once
again, LOC 15 is executed, which now wants to return the following value:

2 + summation (1) Expression C

To compute the value of this expression, the computer once again calls the function
summation() with the argument 1. This is the fourth call to summation(). The values of
the local variables in summation() during its third execution are stored in a stack and not
thrown away. During the fourth execution of summation(), the value of intMis 1; hence,
this time LOC 13 (and not LOC 15) is executed. LOC 13 consists of the return statement;
this return statement is executed, and integer value 1 is returned. With the execution of
the return statement, the fourth execution of summation() also becomes complete.

Now computer control is transferred back to the third execution of summation().
Recall that while evaluating the expression C—i.e., during the third execution of
summation()—a call was made for the fourth execution of summation(). The value
returned by the fourth execution of summation() is nothing but simply 1, and this is the
value of summation(1). Insert this value in expression C, as follows:

2 + summation (1) =2 + 1 =3

Thus, the value of expression C turns out to be 3. Well, this is the third execution of
summation(). The computer executes the return statement and returns the value 3 to
complete the execution of LOC 15 as well as the third execution of summation().

Now computer control is transferred back to the second execution of summation().
Recall that while evaluating the expression B (i.e., during the second execution of
summation()), a call was made for the third execution of summation(). The value returned
by the third execution of summation() is nothing but simply 3, and this is the value of
summation(2). Insert this value in expression B, as follows:

3 + summation(2) =3 +3 =6
Thus, the value of expression B turns out to be 6. Well, this is the second execution
of summation(). The computer executes the return statement and returns the value

6 in order to complete the execution of LOC 15 as well as the second execution of
summation().

48

CHAPTER 3 © FUNCTIONS AND ARRAYS

Now computer control is transferred back to the first execution of summation().
Recall that while evaluating the expression A (i.e., during the first execution of
summation()), a call was made for the second execution of summation(). The value
returned by the second execution of summation() is nothing but simply 6, and this is the
value of summation(3). Insert this value in expression A, as follows:

4 + summation(3) = 4 + 6 = 10

Thus, the value of expression A turns out to be 10. Well, this is the first execution of
summation(). The computer executes the return statement and returns the value 10 to
complete the execution of LOC 15 as well as the first execution of summation(). The call
for the first execution of summation() was made in LOC 6. The value returned by the first
execution of summation(), which is nothing but 10, is now assigned to intR (see LOC 6).
This is the result of the summation of integers 1 to 4. This result is displayed on the screen
after the execution of LOC 7.

3-4. Compute the Fibonacci Sequence Using

Recursion
Problem

You want to compute the Fibonacci sequence using recursion.

Solution

Write a C program that computes the Fibonacci sequence using recursion with the
following specifications:

e The program should compute the first N Fibonacci numbers.

e The program consists of a user-defined function called fib(),
and this function calls itself recursively in order to compute the
Fibonacci numbers.

e The computed Fibonacci numbers are displayed on the screen.

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name fibona2.c:

/* This program computes Fibonacci sequence using recursion. */

/* BL */
#include <stdio.h> /* L1 */
/* BL */
int fib(int); /* L2 ¥/
/* BL */

49

CHAPTER 3 " FUNCTIONS AND ARRAYS

main() /* L3 */
{ /* L4 */
int intK, intN; /* L5 */
do { /* L6 */
printf("Enter a suitable number: 1 <= N <= 24: "); /* L7 */
scanf("%d", &intN); /* L8 */
} while (intN < 1 || intN > 24); /* L9 */
/* BL */
printf("The first %d Fibonacci numbers are:\n", intN); /* L10 */
for (intK = 0; intK < intN; intK++) /* L11 */
{ /* L12 */
printf("\t%d ", fib(intK)); /* L13 */
if (((intK+1) % 6) == 0) printf("\n"); /* L14 */
/* L15 */
printf("\nThank you.\n"); /* L16 */
return 0; /* L17 */
} /* L18 */
/* LBL */
int fib(int intP) /* L19 */
{ /* L20 */
if (intP <= 0) /* L21 */
return 0; /* 122 */
else if (intP == 1) /* 123 */
return 1; /* 124 */
else /* L25 */
return fib(intP - 1) + fib(intP - 2); /* L26 */
} /% 127 */

Compile and execute this program. A run of this program is given here:

Enter a suitable number : 1 <= N <= 24: 12 «
The first 12 Fibonacci numbers are:

0 1 1 2 3 5
8 13 21 34 55 89
Thank you.
How It Works

This program computes the first N Fibonacci numbers. The do-while loop spanning
LOCs 6 to 9 accepts the value for number N, and it is assigned to the int type variable
intN. The for loop spanning LOCs 11 to 15 computes the N Fibonacci numbers. LOC 13
prints the computed Fibonacci numbers on the screen. LOC 13 also calls the function
fib() with an input argument intK. The function fib() is defined in LOCs 19 to 27. In
LOC 26, two recursive calls are made to this function; in the first recursive call, the value
of the input argument is decreased by 1, and in the second recursive call, the value of
the input argument is decreased by 2. In successive recursive calls, the value of the input
argument continues decreasing, and when it becomes 0 or 1, the standard values of the
first and second Fibonacci numbers are returned, as shown in LOCs 21 to 24.

50

CHAPTER 3 © FUNCTIONS AND ARRAYS

3-5. Compute the Factorial of a Number Using

Recursion
Problem

You want to compute the factorial of a number using recursion.

Solution

Write a C program that computes the factorial of a number using recursion with the
following specifications:

e The program asks the user to enter the number N (1 <= N <=12).
If 0 is entered, then the program is discontinued.

e The program defines the function fact(). The program computes
the factorial of a number using recursion. It calls the function
fact() recursively to make this computation.

e The computed result is displayed on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
fact2.c:

/* This program computes factorial of a number using recursion. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

unsigned long int fact(int intM); /* L2 */
/* BL */

main() /* L3 */
{ /% L4 */
int intN; /* L5 */
unsigned long int 1lngN; /* L6 */
do { /% L7 */
printf("Enter 0 to discontinue\n"); /* L8 */
printf("Enter a suitable number: 1 <= N <= 12: "); /* L9 */
scanf("%d", &intN); /* L10 */

if (intN == 0) /* L11 */
break; /* L12 */

IngN = fact(intN); /* L13 */
printf("%d! = %1d\n", intN, lngN); /* 114 */

} while (1); /* L15 */
printf("Thank you.\n"); /* L16 */

51

CHAPTER 3 " FUNCTIONS AND ARRAYS

return(0); /* L17 */

} /* L18 */
/* BL */

unsigned long int fact(int intM) /* L19 */
{ /* 120 */
if (intM == 1) /* L21 */
return 1, /* 122 */
else /* L23 */
return (intM * fact(intM - 1)); /* L24 */

} /% 125 */

Compile and execute this program. A run of this program is given here:

Enter 0 to discontinue

Enter a suitable number: 1 <= N <= 12: 6 «
6! = 720

Enter 0 to discontinue

Enter a suitable number: 1 <= N <= 12: 12 +
12! = 479001600

Enter 0 to discontinue

Enter a suitable number: 1 <= N <= 12: 0 «~
Thank you.

How It Works

In LOC 10, the number N entered by the user is accepted by the program and assigned

to the variable intN. In LOC 13, the factorial of intN is computed by making a call to the
function fact(). The function fact() is defined in LOCs 19 to 25. Inside this function, in
LOC 24, the function fact() calls itself recursively. With every call, the value of the input
argument is decreased by 1. When the value of the input argument is 1, then the value 1 is
returned, as shown in LOCs 21 to 22.

3-6. Search the Largest Element in an Array of

Integers
Problem

You want to search the largest element in the array of integers using recursion.

Solution

Write a C program that searches the largest element in the array of integers with the
following specifications:

e The program asks the user to enter the size of array N (2 <= N <= 14).
The program then asks the user to enter the N integers.

52

CHAPTER 3

¢ Define a function named largest () that calls itself recursively
and computes the largest element in the array of integers.

e The program displays the searched value of the largest element

on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
maxnum. c:

/* This program finds largest element in array of integers. */

#include <stdio.h>

int

largest(int xList[], int low, int up);

main()

{

int

int intN, i, myList[15];

do { /* do-while
printf("Enter the length of array (2 <= N <=
scanf("%d", &intN);

} while ((intN < 2) || (intN > 14)); /* do-while

printf("Enter %d Elements : ", intN);

for (i = 0; i < intN; i++)
scanf("%d", &myList[i]);

printf("The largest element in array: %d",

largest(myList, 0, (intN-1)));

printf("\nThank you.\n");

return 0;

largest(int xList[], int low, int up)

int max;
if (low == up)
return xList[low];
else
{

max = largest(xList, low + 1, up);
if (xList[low] >= max)

return xList[low];
else

return max;

loop begins */
14) = ");

loop ends */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
BL
L3
L4
L5
L6
L7
L8

FUNCTIONS AND ARRAYS

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

L9 */

L10
L11
L12

L13
L14
L15
L16
BL

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

53

CHAPTER 3 " FUNCTIONS AND ARRAYS

Compile and execute this program. A run of this program is given here:

Enter the length of array (2 <=N<=14) : 8 «
Enter 8 Elements : 22 13 256 5 74 8 4 926 «~
The largest element in array: 926

Thank you.

How It Works

LOCs 6 to 9 consist of a do-while loop, and it accepts the length of an array entered by the
user. LOCs 11 to 12 consist of a for loop that accepts the elements (which are integers) of the
array entered by the user. LOC 13 displays the value of the largest element of the array, and
it also makes a call to the function largest (). LOCs 17 to 30 consist of the definition of the
function largest(); it searches the largest element of the array by calling itself recursively
and then returns this largest element. This returned value by the function largest() is used
by LOC 13 to display it on the screen with the help of the function printf().

3-7. Solve the Classic Problem of the Towers
of Hanoi

You want to solve the classic problem of the towers of Hanoi using the method of
recursion.

Solution

Write a C program that solves the classic problem of the towers of Hanoi using the
method of recursion with the following specifications:

e The program asks the user to enter the number of disks 72 (1 <= <= 10).

e The program defines the function move (), which calls itself
recursively to solve the problem.

e The program prints the computed result on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
hanoi.c:

/* This program solves the classic problem of Towers of Hanoi using the
method of recursion. */
/* BL */
#include <stdio.h> /* L1 */
/* BL */

54

CHAPTER 3 © FUNCTIONS AND ARRAYS

void move(int N, char chrFrom, char chrTo, char chrTemp);

main()
{
int intN;
do {
printf("\nEnter 0 to discontinue\n");
do {
printf("Enter a number (1 <= n <= 10): ");
scanf("%d", &intN);
} while ((intN < 0) || (intN> 10));
if (intN == 0)
break;
move(intN, 'L', 'R', 'C");
} while (1);
printf("Thank you.\n");
return(0);

}

void move(int N, char chrFrom, char chrTo, char chrTemp)
{
if (N> o0) {
move(N-1, chrFrom, chrTemp, chrTo);
printf("Move disk %d from %c to %c\n", N, chrFrom, chrTo);
move(N-1, chxTemp, chrTo, chrFrom);

}

return;

}

Compile and execute this program. A run of this program is given here:

Enter 0 to discontinue
Enter a number (1 <= n <= 10): 3«

Move disk 1 from L to R
Move disk 2 from L to C
Move disk 1 from R to C
Move disk 3 from L to R
Move disk 1 from C to L
Move disk 2 from C to R
Move disk 1 from L to R

Enter 0 to discontinue
Enter a number (1 <= n <= 10): 0 «
Thank you.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L2
BL
L3
L4
Ls
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
BL
L19
L20
L21
L22
L23
L24
L25
L26
L27

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

55

CHAPTER 3 " FUNCTIONS AND ARRAYS

How It Works

The towers of Hanoi are located in a temple situated in the city of Hanoi, which in turn

is located in Asia. The legend goes something like this. There are three poles, as shown

in Figure 3-4. Also, there are 64 disks of gold, all of different radii. Each disk has a hole in
the center so that disks can be stacked around any of the poles, resulting in the formation
of a tower, like a spindle pack of CDs. To begin with, disks are stacked around the left
pole in the order of increasing radius from top to bottom (see Figure 3-4; however, the
figure shows only four disks). Priests in the temple are trying to move all 64 disks to the
right pole. The pole at the center can be used for temporary storage. Their actions are
restricted by the following conditions:

e Asingle disk should be moved at a time.

e Adiskremoved from a pole cannot be placed on the ground. It
must be placed around one of the three poles.

e Alarger disk cannot be placed on a smaller disk. You can certainly
place a smaller disk on a larger disk.

Left pole Middle pole Right pole

Left pole Middle pole Right pole

W/////M

(b) Final position. All disks are stacked around right pole.

Figure 3-4. Classic problem of the towers of Hanoi can be attempted successfully during
recursion

56

CHAPTER 3 © FUNCTIONS AND ARRAYS

It is believed that when the task assigned to priests is complete, the world will come
to an end. Computer scientists have shown keen interest in this problem, because it
shows the utility of recursion, not because they are apprehensive about the possibility of
end of world. Using recursion, this problem can be solved by writing a simple program.
Yes, you can solve this problem simply by using iterations, and without using recursion,
but the program becomes quite complex.

For programming purposes, you can assume that there are n disks stacked around
the left pole, where n is an integer variable. Disks are numbered from top to bottom
serially with the topmost disk numbered as 1 and the bottommost disk numbered as n.
Let’s develop a program for shifting » disks from the left pole to the right pole, without
violating any of the three conditions stated earlier. The problem can be expressed in
recursive form as follows:

1. Move the top (n - 1) disks from the left pole to the center pole
using the right pole for temporary storage.

2. Move the nth disk (the largest and hence the bottommost
disk) from the left pole to the right pole.

3. Move the (n - 1) disks from the center pole to the right pole
using the left pole for temporary storage.

All these three steps appeared—without any distortion—in a recursive function
move () that is defined in LOCs 19 to 25. With every recursive call, the value of n decreases
by 1, and hence recursion stops after a finite number of calls. Also, n = 0 is the stopping
condition for this program.

3-8. Solve the Eight Queens Problem
Problem

You want to solve the eight queens problem using backtracking.

Solution

Backtracking is a general-purpose algorithm to find some or all possible solutions to a
computing problem. In backtracking, to begin with, all possible candidates (which are
likely to succeed) are considered, and then the candidates that are unable to succeed
are discarded. Finally, you are left with only those candidates that successfully solve the
problem. Here, on a chessboard, eight queens are to be arranged in such a manner that
no queen can attack another queen. A successful solution requires that no two queens
share the same row, column, or diagonal. Write a C program that solves the eight queens
problem using recursion with the following specifications:

¢ Define a function called queen(). Two int values are to be
passed to this function as input arguments: a row number on a
chessboard and the number of queens on the chessboard (which
is eight in this case).

57

CHAPTER 3 " FUNCTIONS AND ARRAYS

e The function queen() calls the function print(), the function
place(), and also the function queen() itself recursively.

e The function place() checks the possibility of placing the queens
at proposed squares on a chessboard. If everything is OK, it
returns 1; otherwise, it returns 0.

¢ The function print() prints the successful positions of queens on
the screen.

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
queens.c:

/* This program solves the classic 8-queens problem using backtracking. */

/* BL */

#include<stdio.h> /¥ L1 */
#include<math.h> /* L2 */
/* BL */

void queen(int row, int p); /* L3 */
int chess[8],count; /* L4 */
/* BL */

main() /* L5 */
{ /* L6 */
int p = 8; /* L7 */
queen(1,p); /* L8 */
return 0; /* L9 */
} /* L10 */
/* BL */

void print(int p) /* L11 */
/* L12 */

int 1,3; /¥ 113 */
char ch; /* L14 */
printf("\n\nThis is Solution no. %d:\n\n",++count); /* L15 */
for(i=1;i<=p;++i) /* L16 */
printf("\t%d",i); /* 117 */
/* BL */

for(i=1;i<=p;++i) /* L18 */
/* L19 */

printf("\n\n%d",1i); /* L20 */
for(j=1;j<=p;++j) /* L21 */

{ /* 122 */
if(chess[i]==]) /* 123 */
printf("\tQ"); /* L24 */
else /* L25 */
printf("\t-"); /* L26 */

} /% 127 */

} /* 128 */

58

CHAPTER 3

FUNCTIONS AND ARRAYS

printf("\n\n\nThere are total 92 solutions for 8-queens problem."); /*

printf("\nStrike Enter key to continue : ");
scanf("%c", 8ch);

}

int place(int row,int column)

int i;
for(i=1;i<=row-1;++1i)

if(chess[i]==column)

return 0;

else
if(abs(chess[i]-column)==abs(i-row))
return O;

}

return 1;

}

void queen(int row,int p)

{

int column;
for(column=1;column<=p;++column)

{

if(place(row,column))

chess[row]=column;

if(row==p)
print(p);

else
queen(row+l,p);

}
}
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L29
L30
L31
L32

*/
*/
*/
*/

BL */

L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

BL */

L44
L45
L46
L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
L57
L58
L59
L60
L61

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program. Notice, there are 92 successful solutions to this
problem. As execution begins, solution 1 is displayed on the screen, as shown here. Press
the Enter key, and then solution 2 appears on the screen. If you are not interested in
viewing all 92 solutions, then just press the Enter key and keep it pressed for few seconds.

A run of this program is given here:

59

CHAPTER 3 " FUNCTIONS AND ARRAYS

This is Solution no. 1:

1O R
o
o
1

O o w,
1
1

O~N OV WN R
1
1
O
[]
1
1
O
1

There are total 92 solutions for 8-queens problem.
Strike Enter key to continue:

How It Works

LOCs 5 to 10 define the main() function. In LOC 7, the value of the int variable p is set to
8, because the number of queens on a chessboard is 8. In LOC 8, the function queen() is
called. The first argument to queen() is the int value 1, and it indicates row 1. The second
argument to queen() is the int variable p, and the value of p is set to the int value 8 (i.e.,
the number of queens on the chessboard). LOCs 47 to 61 define the function queen(). The
function queen() calls the function place() to check whether the placement situation
(under consideration) is safe for queens. If everything is OK, then place() returns 1;
otherwise, it returns 0. Once a successful situation for the queens is found, then the
function queen() calls the function print() to print the successful placement situation on
the screen, as shown in LOC 56. In LOC 58, the function queen() calls itself recursively for
further investigation of a placement situation, which is under consideration.

3-9. Compute Permutations and Combinations
of a Given Set of Objects

Problem

You want to compute the permutations and combinations of a given set of objects.

Solution

Write a C program that computes the permutations and combinations of a given set of
objects with the following specifications:

e The program uses the formulae shown in Figure 3-5 and
computes permutations and combinations of r objects taken at a
time from a total n object.

60

CHAPTER 3 © FUNCTIONS AND ARRAYS

n! i nl
P,)= ——— o
™0 ") Bl e
I
I
|

Figure (b) Formula for combinations of ‘r’
objects taken at a time from total 'n’ objects.

Figure (a) Formula for permutations of 'r’
objects taken at a time from total 'n’ objects.

Figure 3-5. Formulae for permutations and combinations of r objects taken at a time from
a total n objects

e The program displays the computed results on the screen and
asks the user whether he or she wants to continue.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file
name p&c.c:

/* This program computes the permutations and combinations of a given set of
objects. */

/* BL */

#include <stdio.h> /¥ L1 */
/* BL */

int fact(int); /¥ L2 */
int combination(int, int); /* L3 */
int permutation(int, int); /* L4 */
/* BL */

int main() /* L5 */
{ /% L6 */
int intN, intR, intC, intP; /* L7 */
char ch; /* L8 */

do { /% L9 */

do { /* L10 */
printf("Enter the total no. of objects (1 <=n <=7) :"); /* L11 */
scanf("%d", &intN); /* L12 */

} while ((intN < 1) || (intN > 7)); /* L13 */

/* L14 */

do { /* L15 */
printf("Enter the no. of objects to be picked at a time "); /* L16 */
printf("(1 <= r <= %d) :", intN); /* L7 */
scanf("%d", &intR); /* L18 */

} while ((intR < 1) || (intR > intN)); /* L19 */

/* BL */

intC = combination(intN, intR); /* L20 */

61

CHAPTER 3 " FUNCTIONS AND ARRAYS
intP = permutation(intR, intR);

printf("\nCombinations : %d", intC);
printf("\nPermutations : %d", intP);
fflush(stdin);
printf("\nDo you want to continue? (Y/N) : ");
scanf("%c", 8ch);

} while ((ch == "Y") || (ch == "y"));

printf("\nThank you.\n");
return 0;
}
int combination(int intN, int intR)
{
int intC;
intC = fact(intN) / (fact(intR) * fact(intN - intR));
return intC;
}
int permutation(int intN, int intR)
{
int intP;
intP = fact(intN) / fact(intN - intR);
return intP;
}
int fact(int intN)
{
int i;
int facto = 1;
for (i = 1; i <= intN; i++)
{ facto = facto * i;
}
return facto;
}

Compile and execute this program. A run of this program is given here:

Enter the total no. of objects (1 <=n<=) : 7 «~

Enter the no. of objects to be picked at a time (1 <=1 <=) : 4
Combinations : 35

Permutations : 24

Do you want to continue? (Y/N) : n

Thank you.

62

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L21

*/

BL */

L22
L23
L24
L25
L26
L27
L28

*/
*/
*/
*/
*/
*/
*/

BL */

L29
L30

*/
*/

BL */

131
132
133
L34
L35
L36

*/
*/
*/
*/
*/
*/

BL */

L37
L38
L39
L40
L41
L42

*/
*/
*/
*/
*/
*/

BL */

L43
L44
L4s
L46
L47
L48
L49
L50
L51
L52

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 3 © FUNCTIONS AND ARRAYS

How It Works

The program consists of two do-while loops. First, the do-while loop spans LOCs 9 to 13.
This loop accepts the integer value for (the total number of objects) in the range 1 <=n<=7.
Second, the do-while loop spans LOCs 15 to 19. This loop accepts the integer value for

r (the number of objects to be taken at a time) in the range 1 <= <= n. The function
combination() is defined in LOCs 31 to 36. The function permutation() is defined in
LOCs 37 to 42. The function fact() is defined in LOCs 43 to 52. In LOCs 20 to 21, calls
are made to the functions combination() and permutation(). The computed values of
combinations and permutations are displayed on the screen in LOCs 22 to 23.

3-10. Perform the Summation of Two Matrices
Problem

You want to perform the summation of two matrices.

Solution

Figure 3-6 illustrates the summation of matrices. Write a C program that performs the
summation of two matrices A and B such that A + B = C (C is also a matrix), with the
following specifications:

e The program asks the user to enter the order of a matrix (i.e., the
number of rows and columns in a matrix).

e The program accepts data for the two matrices A and B. Matrices
can be added to or subtracted from one another, provided they
have the same number of rows and columns.

e Inthe program, define three functions: input(), output(), and
add(). The function input() accepts the data from the keyboard
for matrices A and B. The function output () displays the matrices
A, B, and C on the screen. The function add() performs the
summation of matrices A and B and fills the values in the matrix C.

LetA, B, and C are matrices of same size. LetA+B =C.
a b ¢ o h i A+B=C= at+g b+h c+i
A=ld et B:jk| LTlde) etk £l

Figure 3-6. Addition of matrices

63

CHAPTER 3 " FUNCTIONS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
summat.c:

/* This program performs the summation of two matrices. */

#tinclude <stdio.h>

void input(int mat[][12], int, int);
void output(int mat[][12], int, int);
void add(int matA[][12], int matB[][12], int matC[][12], int, int);

int main()

{

64

int row, col;
int A[12][22], B[12][12], C[12][12];

do {
printf("Enter number of rows (1 <= M <= 12) :");
scanf("%d", &row);

} while ((row < 1) || (row > 12));

do {
printf("Enter number of columns (0 < N <= 12) :");
scanf("%d", &col);

} while ((col < 1) || (col > 12));

printf("\nEnter Data for Matrix A :\n");
input(A, row, col);

printf("\n");

printf("\nMatrix A Entered by you :\n");
output(A, row, col);

printf("\nEnter Data for Matrix B :\n");
input(B, row, col);

printf("\n");

printf("\nMatrix B Entered by you :\n");
output(B, row, col);

add(A, B, C, row, col);

printf("\nMatirx A + Matrix B = Matrix C. \n");
printf("Matrix C :\n");

output(C, row, col);

printf("\nThank you. \n");

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
BL
L5
L6
L7
L8
BL
L9
L10
L11
L12
BL
L13
L14
L15
L16
BL
L17
L18
L19
L20
L21
BL
L22
L23
L24
L25
L26
BL
L27
L28
L29
L30
L31
BL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 3 © FUNCTIONS AND ARRAYS

return 0; /* 132 */

} /* L33 */
/* BL */

void input(int mat[][12], int row, int col) /* L34 */
{ /* L35 */
int i, j; /* 136 */

for (i = 0; 1 < row; i++) /* L37 */

{ /* L38 */
printf("Enter %d values for row no. %d : ", col, i); /* L39 */

for (j = 0; j < col; j++) /* L40 */
scanf("%d", &mat[i][j]); /* L41 */

} /* L42 */

} /* 143 */
/* BL */

void output(int mat[][12], int row, int col) /* L44 */
{ /* L45 */
int i, j; /% 146 */

for (i = 0; i < row; i++) /* L47 */

{ /* L48 */

for (j = 0; j < col; j++) /* L49 */

/* L50 */

printf("%d\t", mat[i][]j]); /* L51 */

} /* L52 */
printf("\n"); /* L53 */

/* L54 */

} /* L55 */
/* BL */

void add(int matA[][12], int matB[][12], int matC[][12], int m, int n) /* L56 */
{ /* L57 */
int i, j; /% 158 */

for (1 = 0; 1 < m; i++) /* L59 */

{ /* L60 */

for (j = 0; j < n; j++) /* L61 */

/* 162 */

matC[i][j] = matA[i][j] + matB[i][j]; /* 163 */

/* L64 */

} /* L65 */

} /* L66 */

Compile and execute this program. A run of this program is given here:

Enter number of ros (1 <= M <= 12) : 3 «~
Enter number of columns (0 <= N <= 12) : 5 «

Enter Data for Matrix A :

Enter 5 values for row no. 0 : 10 11 12 13 14 «
Enter 5 values for row no. 1 : 11 12 13 14 15
Enter 5 values for row no. 2 : 12 13 14 15 16 -

65

CHAPTER 3 " FUNCTIONS AND ARRAYS

Matrix A Entered by you :
10 11 12 13 14
11 12 13 14 15
12 13 14 15 16

Enter Data for Matrix B :

Enter 5 values for row no. 0 : 14 15 16 17 18
Enter 5 values for row no. 1 : 15 16 17 18 19
Enter 5 values for row no. 2 : 16 17 18 19 20

Matrix B Entered by you :
14 15 16 17 18
15 16 17 18 19
16 17 18 19 20

Matrix A + Matrix B = Matrix C.
Matrix C :

24 26 28 30 32

26 28 30 32 34

28 30 32 34 36

Thank you.

How It Works

The program consists of two do-while loops. First, the do-while loop accepts the integer
value for the number of rows, in the range 1 <= M <= 12. Second, the do-while loop
accepts the integer value for the number of columns, in the range 1 <= N <= 12. LOCs

18 and 23 make a call to the function input () and accept the data for matrices A and

B, respectively. LOCs 21 and 26 make a call to the function output () and display the
matrices A and B on the screen, respectively. LOC 27 makes a call to the function add(),
performs the summation of matrices A and B, and fills the values in matrix C. LOC 30
makes a call to the function output () and displays the matrix C on the screen. LOCs 34 to
43 define the function input(). LOCs 44 to 55 define the function output (). LOCs 56 to

66 define the function add().

66

-
-
-

CHAPTER 3 © FUNCTIONS AND ARRAYS

3-11. Compute the Transpose of a Matrix
Problem

You want to compute the transpose of a matrix.

Solution

Write a C program that computes the transpose of matrix A such that the transpose is A=B
(B is also a matrix; see Figure 3-7), with the following specifications:

e The program asks the user to enter the order of a matrix (i.e., the
number of rows and columns in a matrix).

e The program accepts data for matrix A. It computes the transpose
of matrix A and displays the resultant matrix B on the screen.

Let A and B are matrices. Let B is transpose of A
b e a d
A= [\" . ::| Transpose of A = B b e
c f

Figure 3-7. Transpose of a matrix

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
transp.c:

/* This program computes transpose of a matrix A. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /* L3 */
int mat[12][12], transpose[12][12]; /* L4 */

int i, j, row, col; /* L5 */

/* BL */

dof /% L6 */
printf("Enter number of rows R (0 < R < 13): "); /* L7 */
scanf("%d", &row); /* L8 */

} while ((row < 1) || (row > 12)); /* L9 */

/* BL */

dof /¥ L10 */
printf("Enter number of columns C (0 < C < 13): "); /* L11 */
scanf("%d", &col); /* L12 */

67

CHAPTER 3 " FUNCTIONS AND ARRAYS

} while ((col < 1) || (col > 12));

for (i = 0; i < row; i++)

{
printf("Enter %d values for row no. %d : ", col, i);
for (j = 0; j < col; j++)
scanf("%d", &mat[i][j]);
}

printf("\nMatrix A:\n");
for (i = 0; i < row; i++)
{

for (j = 0; j < col; j++)

printf("%d\t", mat[i][j]);

}
printf("\n");

for (i = 0; i < row; i++)
{

for (j = 0; j < col; j++)
transpose[j]1[i] = mat[i][j];
}

printf("\nTranspose of matrix A: \n");
for (i = 0; i < col; i++)

{

for (j = 0; j < row; j++)

printf("%d\t", transpose[il[j]);

}
printf("\n");

printf("\nThank you.\n");
return 0;

Compile and execute this program. A run of this program is given here:

Enter number of rows R (0 < R < 13): 2«
Enter number of columns C (0 < C < 13): 3 «
Enter 3 values for row no. 0 : 1 2 3 «~
Enter 3 values for row no. 1 : 4 5 6 «~

68

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L13
BL

L14
L15
L16
L17
L18
L19
BL

L20
L21
L22
L23
L24
L25
L26
L27
L28
BL

L29
130
131
L32
L33
L34
L35
BL

L36
L37
L38
139
L40
L41
L42
L43
Laa
BL

L4s5
L46
L47

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 3 © FUNCTIONS AND ARRAYS

Matrix A:
1 2 3
4 5 6

Transpose of matrix A:

1 4
2 5
3 6
Thank you.

How It Works

The program consists of two do-while loops. First, the do-while loop accepts the integer
value for the number of rows for matrix A, in the range 0 < R < 13. Second, the do-while loop
accepts the integer value for the number of columns for matrix A, in the range 0 < C < 13.
LOCs 14 to 19 consist of a for loop, and it accepts the data for matrix A. LOCs 21 to 28
consist of a for loop, and it displays matrix A on the screen. LOCs 29 to 35 consist of a for
loop, and it computes the transpose of matrix A. LOCs 37 to 44 consist of a for loop, and
it displays the transpose of matrix A on the screen. Figure 3-7 illustrates the concept of the
transpose of a matrix.

3-12. Compute the Product of Matrices
Problem

You want to compute the product of matrices A and B.

Solution

Write a C program that computes the product of matrices A and B such that AxB=C
(Cis also a matrix; see Figure 3-8), with the following specifications:

e The program asks the user to enter the order of matrix A and
the number of columns in matrix B. The program also displays
matrices A and B on the screen.

e The program consists of three functions: input(), output(), and
product(). The function input() accepts data from the keyboard,
the function output () displays the matrices on the screen, and
the function product () computes the product of matrices A and B
and fills the data values in matrix C.

e The program computes the product of matrices A and B and
displays the result on the screen.

69

CHAPTER 3 " FUNCTIONS AND ARRAYS

Product of matrices A x B is possible if columns in A are same as rows in B, i.e.,

Amn X Bnp = (an

In order to compute element cij, pick ith row from A and jth column
from matrix B and perform the computation as shown below:

Cij = ﬂnb]j + ﬂjghgj + . + ‘dipl‘)pj

Figure 3-8. The product of matrices A and B, such that Ax B=C

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

promat.c:

/* This program computes the product of two matrices A and B. */
/*
#include <stdio.h> /*
/*
void input(int mat[][8], int, int); /*
void output(int mat[][8], int, int); /*
void product(int matA[][8], int matB[][8], int matC[][8], int, int, int); /*
/*
int main() /*
{ *
int rowA, colA, rowB, colB; /*
int matA[8][8], matB[8][8], matC[8][8]; /*
/*
printf("This program performs product of matricesAand B (A x B).\n"); /*
do{ /*
printf("Enter number of rows in matrix A (1 <= M <= 8): "); /*
scanf("%d", &rowA); /*
} while ((rowA < 1) || (rowA > 8)); /*
/*
do{ /*
printf("Enter number of columns in matrix A (1 <= N <= 8): "); /*
scanf("%d", &colA); /*
} while ((colA < 1) || (colA > 8)); /*
/*
printf("\nNumber of rows in matrix B is equal "); /*
printf("to number of columns in matirx A:\n"); /*
rowB = colA; /*
/*

70

BL */
L1 */
BL */
L2 */
L3 */
L4 */

BL */
L5 */
L6 */
L7 */
L8 */
BL */
L9 */

L10 */
L11 */
L12 */
L13 */
BL */
L14 */
L15 */
L16 */
L17 */
BL */
L18 */
L19 */
L20 */
BL */

CHAPTER 3 © FUNCTIONS AND ARRAYS

do { /* 121 */
printf("Enter number of columns in matrix B (1 <= P <= 8):"); /* L22 */
scanf("%d", &colB); /* L23 */

} while ((colB < 1) || (colB > 8)); /* L24 */
/* BL */

printf("\nEnter data for matrix A :\n"); /* L25 */
input(matA, rowA, colA); /* 126 */
printf("\n"); /* L27 */
printf("Matrix A: \n"); /* L28 */
output(matA, rowA, colA); /* 129 */
printf("\n"); /% 130 */
/¥ BL */

printf("\nEnter data for matrix B :\n"); /* L31 */
input(matB, rowB, colB); /* L32 */
printf("\n"); /* L33 */
printf("Matrix B: \n"); /* L34 */
output(matB, rowB, colB); /* L35 */
printf("\n"); /* L36 */
/* BL */

product(matA, matB, matC, rowA, colA, colB); /* L37 */
printf("Matrix C (matrix A x matrix B = matrix C) : \n"); /* L38 */
output(matC, rowA, colB); /* 139 */
/* L4o */

printf("\nThank you.\n"); /* La1 */
return 0; /* L42 */
} /* 143 */
/* BL */

void input(int mat[][8], int row, int col) /* L44 */
/* L45 */

int i, j; /* La6 */
for (i = 0; 1 < row; i++) /* L4717 */
{ /* L48 */
printf("Enter %d values for row no. %d : ", col, i); /* L49 */
for (j = 0; j < col; j++) /* L50 */
scanf("%d", &mat[i][j]); /* L51 */

} /* L52 */
} /* L53 */
/* BL */

void output(int mat[][8], int row, int col) /* L54 */
/* L55 */

int i, j; /* L56 */
for (i = 0; 1 < row; i++) /* L57 */
{ /* L58 */
for (j = 0; j < col; j++) /* L59 */
/* L60 */

printf("%d\t", mat[i][]]); /* L6l */

} /% 162 */

71

CHAPTER 3

FUNCTIONS AND ARRAYS

printf("\n");

}

void product(int matA[][8], int matB[][8],
int matC[][8], int m1, int n1, int n2)

int i, j, t

)

for (i =0; 1 < m1; i++)

{

for (j = 0; j < n2; j++)

matc[1][3] = 0;

for (t = 0; t < n1; t++)

{
}

Compile and execute this program. A run of this program is given here:

This program performs product of matrices A axnd B (A x B).

matC[i][j] += matA[i][t] * matB[t][]j];

Enter number of rows in matrix A: 3«
Enter number of columns in matrix A: 2«

Number of rows in matrix B
Enter number of columns in

Enter data for
Enter 2 values

Enter 2 values
Enter 2 values
Matrix A:
1 2
3 4
5 6

Enter data for
Enter 4 values

Enter 4 values
Matrix B:

1 2

5 6

72

matrix A:

for row no.
for row no.
for row no.

matrix B:

for row no.
for row no.

is equal to number of columns in matrix A:

matrix B: 4 «~

[y

1 2 -
3 4 +
56 «
1234 «~
5678 «~

www.allitebooks.cond

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L63
L64
L65
BL

L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

http://www.allitebooks.org

CHAPTER 3 © FUNCTIONS AND ARRAYS

Matrix B (matrix A x matrix B = matrix C):

11 14 17 20
23 30 37 44
35 46 57 68
Thank you.

How It Works

The program consists of three do-while loops. First, the do-while loop accepts the
integer value for the number of rows for matrix A, in the range 1 <= M <= 8. Second, the
do-while loop accepts the integer value for the number of columns for matrix A, in the
range 1 <= N <= 8. Third, the do-while loop accepts the integer value for the number of
columns for matrix B, in the range 1 <= P <= 8. LOCs 26 and 32 make a call to the function
input() and accept the data for matrices A and B, respectively. LOCs 29 and 35 make a
call to function output () and display matrices A and B on the screen, respectively. LOC 37
makes a call to function product (), performs the product of matrices A and B, and fills
the values in matrix C. LOC 39 makes a call to the function output and displays matrix

C on the screen. LOCs 44 to 53 define the function input (). LOCs 54 to 65 define the
function output (). LOCs 66 to 80 define the function product().

73

CHAPTER 4

Pointers and Arrays

Pointers are one of the most powerful features of the C language. Pointers allow you to
create quite efficient programs in C. However, the logic behind these programs can be
quite tricky. “In C, there is a strong relationship between pointers and arrays, strong
enough that pointers and arrays should be discussed simultaneously,” writes Kernighan
and Ritchie in their landmark book, The C Programming Language. A pointer is
considered to be a derived type in C (see Figure 3-1 in Chapter 3). In this chapter, you will
enjoy the recipes made using pointers and arrays.

4-1. Retrieve Data from an Array with the int
Type Data

Problem

You want to retrieve the data from an int type array using pointers.

Solution

Write a C program that retrieves the values stored in elements of an int type array using
pointers, with the following specifications:

e The program consists of an int type array called marks, which is
initialized with a few (say, five) suitable int values.

e The program consists of a for loop that retrieves the values stored
in the array marks, with the help of a pointer, and displays the
retrieved values on the screen.

e The program also retrieves the value of the array name marks.

© Shirish Chavan 2017 75
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_4

http://dx.doi.org/10.1007/978-1-4842-2967-5_3#Fig1
http://dx.doi.org/10.1007/978-1-4842-2967-5_3

CHAPTER 4 " POINTERS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
pointi.c:

/* This program uses a pointer to retrieve the values stored in elements of */
/* 1-dimensional int type array. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /* L3 */
int marks [] = {72, 56, 50, 80, 92}; /* L4 */
int i, *ptr; /* L5 */
ptr = &marks[o0]; /* L6 */
for (i = 0; i < 5; i++) /* L7 */
printf("Element no %d, value: %d\n", i+1, *(ptr+i)) ; /* L8 */
printf("Value of array name marks is: %u\n", marks); /* L9 */
return(0); /* L10 */
} /* L11 */

Compile and execute this program, and the following lines of text appear on the screen:

Element no 1, value: 72
Element no 2, value: 56
Element no 3, value: 50
Element no 4, value: 80
Element no 5, value: 92
Value of array name marks is: 65516

How It Works

In LOC 4, an int type array named marks is declared and also initialized with the suitable
int values. In LOC 5, a pointer-to-int is declared, namely, ptr. In LOC 6, the pointer ptr is
made to point to the first element of the array, marks[0]. When the pointer ptr is increased
to (ptr + 1), it points to the next element, marks[1], and so on (see Figure 4-1). When

ptr is dereferenced using the operator *, it returns the value of the first element, marks[0].
When (ptr + 1) is dereferenced using the operator *, it returns the value of the second
element, marks[1], and so on. The for loop spanning LOCs 7 to 8 retrieves the int values
stored in the array named marks and displays them on the screen. In LOC 9, the value of the
array named marks is displayed on the screen. Note the following points:

e The array named marks has the value 65516, which is nothing but
the base address of the array marks. It means, like some pointer,
the array named marks is pointing to the memory cell 65516.

76

CHAPTER 4 © POINTERS AND ARRAYS

In LOC 6, the pointer ptr is made to point to marks[0]; hence, like
the array named marks, it is also pointing to memory cell 65516.

In this program, you use the pointer variable ptr to retrieve the
values in elements or arrays. But as the pointer variable ptr and
array named marks are pointing to the same memory cell, it is
possible to retrieve the values in elements using the array named
marks instead of the pointer variable ptr.

marks[0] 72 < {I] ptr + 0
marks([1] 56 < ptr 1
marks[2] 50 < ptr 2
marks [3] 80 < ptr + 3
marks([4] 92 ot ptr 4

Figure 4-1. Accessing the elements of the int type array called marks using a pointer-to-int
variable called ptr

4-2. Retrieve Data from an Array Using the

Array Name

Problem

You want to retrieve the data from a one-dimensional array using the array name.

Solution

Write a C program that retrieves the values stored in the elements of the one-dimensional

array using the array name, with the following specifications:

e The program consists of an int type array named marks, which is

initialized with a few (say, five) suitable int values.

The program consists of a for loop, which retrieves the values
stored in the array named marks, using the array name marks and
the dereferencing operator *, and displays the retrieved values on
the screen.

The program also retrieves the addresses of the elements of the
array marks.

77

CHAPTER 4 " POINTERS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
point2.c:

/* This program uses array name and dereferencing operator * to retrieve the
values stored */
/* in elements of 1-dimensional array. */

/* BL */

#include <stdio.h> /¥ L1 ¥/
/* BL */

main() /* L2 */
{ /* L3 */
int marks [] = {72, 56, 50, 80, 92}; /* L4 */
int i ; /* L5 */
printf("Values stored in array elements.\n"); /* L6 */
for (i = 0; 1 < 5; i++) /* L7 */
printf("Element no. %d, value: %d\n", i+1, *(marks+i)); /* L8 */
/* BL */

printf("\nValue of array-name marks: %u\n\n", marks); /* L9 */
/* BL */
printf("Addresses of array elements:\n"); /* L10 */
for (i = 0; i< 5; i++) /* L11 */
printf("Address of element marks[%d] : %u\n", i, &marks[i]); /* L12 */
return(0); /* L13 */
} /* L14 */

Compile and execute this program, and the following lines of text appear on the screen:

Values stored in array elements.
Element no. 1, value: 72
Element no. 2, value: 56
Element no. 3, value: 50
Element no. 4, value: 80
Element no. 5, value: 92

Value of array-name marks: 65516

Addresses of array elements:

Address of element marks[0] : 65516
Address of element marks[1] : 65518
Address of element marks[2] : 65520
Address of element marks[3] : 65522
Address of element marks[4] : 65524

78

CHAPTER 4 © POINTERS AND ARRAYS

How It Works

In LOC 4, an int type array named marks is declared and also initialized with suitable int
values. The for loop spanning LOCs 7 to 8 retrieves the values stored in the elements of
the array marks using the array name and the dereferencing operator *. In LOC 9, the value
of the array named marks is displayed on the screen. The for loop spanning LOCs 11 to 12
retrieves and displays on the screen the addresses of the elements of the array marks.

Compare LOC 8 in this program with LOC 8 in the preceding program, point1. You will
notice that the expression *(ptr + i) is now replaced with the expression *(marks + i).
Notice that there’s no need to declare a pointer like ptr because the array named marks
can serve the same purpose.

The expression *(marks + i) used in LOC 8 is fully equivalent to the expression
marks[i]. In fact, whenever the compiler meets an expression of the form marks[i], the
former immediately converts the latter into the form *(marks + i).

Note Whenever a compiler meets an expression of the form arrayName[subscript],
the former immediately converts the latter into the form *(arrayName + subscript).
Therefore, programs that make use of pointers to process arrays are more efficient than
their nonpointer counterparts.

You have used an array named marks in lieu of the pointer-to-int variable ptr to
retrieve the values stored in the elements of the array marks successfully. This does not
mean that the array named marks and the pointer-to-int variable ptr are fully equivalent.
Notice the differences between the array name and the pointer variable:

e Since ptr is a variable of type pointer-to-int, you can assign an
address of any int variable to it. However, you cannot assign an
address of any variable to the array named marks. For example,
notice the LOCs given here (assume that n is an int variable):

ptr = &n; /* 0K */
marks = &n; /* ERROR */

e Since ptr is a variable of type pointer-to-int, you can add
(subtract) an integer to (from) it. However, you cannot add
(subtract) an integer to (from) the array named marks to change
its value. For example, notice the LOCs given here:

ptr = ptr + 1; /* 0K */
marks = marks + 1; /* ERROR */

79

CHAPTER 4 " POINTERS AND ARRAYS

4-3. Retrieve Data from an Array with char and

double Type Data

Problem

You want to retrieve data from one-dimensional char and double type arrays.

Solution

Write a C program that retrieves the values stored in elements of one-dimensional char

and double type arrays, with the following specifications:

e The program consists of char type array text and a double type

array num that are initialized with suitable values.

e The program consists of for loops that retrieve the values stored in

these arrays using array names and the dereferencing operator *.

e The program also retrieves the addresses of elements of these

arrays.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

point3.c:

/* This program retrieves the data stored in 1-dimensional char and

double type */
/* arrays using the pointers. */

#include <stdio.h>

main()
{

char text[] = "Hello";

double num[] = {2.4, 5.7, 9.1, 4.5, 8.2};

int i ;

printf("Values stored in elements of array text.\n");
for (i =0; i< 5; i++)

printf("Element no. %d, value: %c\n", i+1, *(text+i));
printf("\nValues stored in elements of array num.\n");
for (i = 0; i < 5; i++)

printf("Element no. %d, value: %.1f\n", i+1, *(num+i));

printf("\nValue of array-name text: %u\n\n", text);

80

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
L9
BL
L10
L11
L12
BL
L13
BL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 4

printf("Addresses of elements of array text:\n");
for (i =0; i< 5; i++)
printf("Address of element text[%d] : %u\n", i, &text[i]);

printf("\nValue of array-name num: %u\n\n", num);
printf("Addresses of elements of array num:\n");
for (i =0; i< 5; i++)

printf("Address of element num[%d] : %u\n", i, &num[i]);

return(0);

}

POINTERS AND ARRAYS

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L14
L15
L16
BL

L17
BL

L18
L19
L20
BL

L21
L22

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

Values stored in elements of array text.
Element no. 1, value: H

Element no. 2, value:
Element no. 3, value:
Element no. 4, value:
Element no. 5, value:

o KM

Values stored in elements of array num.
Element no. 1, value: 2.4
Element no. 2, value: 5.7
Element no. 3, value:
Element no. 4, value:
Element no. 5, value:

[o N ~Ve]
« e e
N U

Value of array-name text: 65520

Addresses of elements of array text:
Address of element text[0] : 65520
Address of element text[1] : 65521
Address of element text[2] : 65522
Address of element text[3] : 65523
Address of element text[4] : 65524

Value of array-name num: 65480

Addresses of elements of array num:
Address of element num[0] : 65480
Address of element num[1] : 65488
Address of element num[2] : 65496
Address of element num[3] : 65504
Address of element num[4] : 65512

81

CHAPTER 4 " POINTERS AND ARRAYS

How It Works

In LOC 4, a char type array called text is created and also initialized with suitable data.
In LOC 5, a double type array called num is created and also initialized with suitable data.
The for loop spanning LOCs 8 to 9 displays the data stored in array text using the array
name. The for loop spanning LOCs 11 to 12 displays the data stored in the array num
using the array name. In LOC 13, the value of the array name text is displayed on the
screen. The for loop spanning LOCs 15 to 16 displays the addresses of the elements of the
array text. In LOC 17, the value of the array name num is displayed on the screen. The for
loop spanning LOCs 19 to 20 displays the addresses of the elements of the array num on
the screen.

This program is similar to the preceding one. Notice that when 1 is added to text,
the resulting expression (text + 1) points to the next element in the text array. The
expression (text + i) points to the (i+1)th element in the text array. Also, when 1 is
added to num, then the resulting expression (num + 1) points to the next element in the
num array. The expression (num + i) points to the (i+1)th element in the num array. An
element in the text array occupies one memory cell, whereas an element in the num array
occupies eight memory cells.

4-4. Access the Out-of-Bounds Array Elements
Problem

You want to access the out-of-bounds array elements.

Solution

Write a C program that accesses the out-of-bound array elements, with the following
specifications:

e The program creates an int type array named num and initializes
it with suitable data.

e The program declares two pointers to the int type variables.

e The program accesses the out-of-bound array elements with the
help of pointers.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
point4.c:

82

CHAPTER 4 © POINTERS AND ARRAYS

/* This program accesses array elements which are out of bounds. */

/* BL */

#include <stdio.h> /* L1 ¥/
/* BL */

main() /* L2 */
/* L3 */

int num[] = {12, 23, 45, 65, 27, 83, 32, 93, 62, 74, 41}; /* L4 */
int *ipt1, *ipt2; /* L5 */
/* BL */

ipt1 = &num[5]; /* L6 */
ipt2 = &num[6]; /¥ L7 */
/* BL */

printf("Current value of *ipti: %d\n", *ipt1); /* L8 */
printf("Current value of *ipt2: %d\n", *ipt2); /* L9 */
/* BL */

ipt1 = ipt1 - 2; /* L10 */
ipt2 = ipt2 + 3; /* L1l */
/* BL */

printf("Now current value of *ipti: %d\n", *ipt1); /* L12 */
printf("Now current value of *ipt2: %d\n", *ipt2); /* L13 */
/* BL */

ipt1 = ipt1 - 15; /* L14 */
ipt2 = ipt2 + 22; /* L15 */
/*¥ BL */

printf("Now current value of *ipti: %d\n", *ipt1); /* L16 */
printf("Now current value of *ipt2: %d\n", *ipt2); /* L7 */
/* BL */

return(0); /* L18 */
/* L19 */

Compile and execute this program, and the following lines of text appear on the screen:

Current value of *ipti: 83
Current value of *ipt2: 32

Now current value of *ipti: 65
Now current value of *ipt2: 74
Now current value of *ipti: -44
Now current value of *ipt2: 12601

How It Works

In LOC 4, an int type array named num is created and initialized with suitable data. In
LOC 5, two pointers-to-int variables, namely, ipt1 and ipt2, are declared. In LOCs 6 to 7,
the directions of ipt1 and ipt2 are set pointing to in-bound elements of the array num.
The values of the elements to which ipt1 and ipt2 are pointing are displayed on the
screen in LOCs 8 to 9. A similar procedure is repeated in LOCs 10 to 13.

83

CHAPTER 4 " POINTERS AND ARRAYS

LOCs 14 and 15 are reproduced here for your quick reference:

ipt1
ipt2

ipt1 - 15; /* 114, legal but immoral */
ipt2 + 22; /* 115, legal but immoral */

In these LOCs, both pointers are made to point to data values that are beyond the
range of the array num. In LOCs 16 and 17, the data values referred to by these pointers
are retrieved and displayed on the screen. You can compile and execute this program
successfully; the compiler will not complain despite that you have retrieved the data
values beyond the range of the array num. Therefore, you could call LOCs 14 to 17 legal but
immoral. The data values outputted in LOCs 16 and 17 are -44 and 12601. Do not imagine
that these integer values are stored at respective locations by the operating system. You
cannot make any assumption about the data stored in these locations. Perhaps there is
not any data but only executable code. Here, you have just retrieved the data values from
out-of-bound locations. What happens if you try to store some arbitrary values at these
out-of-bound locations? The program may crash, and the computer may hang.

Caution Avoid fiddling with out-of-bound elements of arrays. Such fiddling is justified
only as a last measure. If you try to store some arbitrary values at out-of-bound locations,
then your program may crash and your computer may hang.

4-5. Store Strings
Problem

You want to store strings.

Solution
Write a C program that stores strings, with the following specifications:

e The program declares a char type array named name and
initializes it with a suitable string.

e The program declares a pointer-to-char variable called pname and
makes it point to a string in memory.

e The program displays both these strings on the screen.

84

CHAPTER 4 © POINTERS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
point5s.c:

/* This program stores the strings using pointer to char and char type
array. */

/* BL */

#include <stdio.h> /* L1 ¥/
/* BL */

main() /* L2 */
{ /% L3 */
int i; /* L4 */

char name[] = "Shirish"; /* L5 */

char *pname = "Shirish"; /* L6 */

/* BL */

printf("name: %s\n", name); /* L7 */

printf("pname: %s\n", pname); /* L8 */

/* BL */

strcpy(name, "Dick"); /* L9 */

pname = "Dick"; /* L10 */

/* BL */

printf("name: %s\n", name); /* L11 */

printf("pname: %s\n", pname); /* L12 */

/* BL */

printf("name (all eight bytes): "); /* L13 */

for(i = 0; i < 8; i++) { /* L14 */
printf("%c ", name[i]); /¥ L15 */

} /% L16 */

/* BL */

printf("\npname (all eight bytes): "); /* L17 */

for(i = 0; i < 8; i++) { /* L18 */
printf("%c ", *(pname + 1)); /* 119 */

} /% 120 */

/*¥ BL */

return(0); /* L21 */

} /¥ L22 */

Compile and execute this program, and the following lines of text appear on the screen:

name: Shirish

pname: Shirish

name: Dick

pname: Dick

name (all eight bytes): Dick sh
pname (all eight bytes): Dick nam

85

CHAPTER 4 " POINTERS AND ARRAYS

How It Works

In LOC 5, a char type array named name is declared and initialized with a string constant
of "Shirish". Figure 4-2 (a) shows what happens at the memory level after the execution
of LOC 5. As shown in Figure 4-2 (a), the char type array name is created, which is 8 bytes
long, and the string constant "Shirish" is stored in it.

name sl thr it et rit] s | *hr|"NO

Figure (a) char array name after the execution of LOC 5, program point$§.

pname > ol s hr it e it st | TR [ThDe

Figure (b) pointer to char variable pname after the execution of LOC 6, program point§.

After the execution of LOC 10, these three bytes are freed and reclaimed by operating system for
some other purpose, possibly to store a part of control string "name: %s\n" in LOC 11.

pname - |0]iv]re |k "o rar | 'm

Figure (d) pointer to char variable pname after the execution of LOC 10, program point5.

Figure 4-2. Snapshots of memory during the execution of program point5

In LOC 6, the pointer-to-char variable pname is declared and is set to point to the first
character of the string constant "Shirish". Notice that the string constants created in
LOCs 5 and 6 are different. Figure 4-2 (b) shows what happens at the memory level after
the execution of LOC 6. As shown in Figure 4-2 (b), a string constant "Shirish" is placed
in a memory block that is 8 bytes long, the pointer-to-char variable pname is created, and
it is set pointing to the first character of the string constant "Shirish".

In LOCs 7 and 8, the strings associated with name and pname are displayed on the
screen.

86

CHAPTER 4 © POINTERS AND ARRAYS

In LOC 9, the string constant "Dick" is copied to the char array name. Figure 4-2 (c)
shows what happens at the memory level after the execution of LOC 9. As shown in
Figure 4-2 (c), the string constant "Dick" (which is 5 bytes long) is overwritten on the
existing string constant "Shirish" (which is 8 bytes long). Therefore, the last 3 bytes in the
array name still contain the old data ('s"', 'h', and '\0"). Notice that 8 bytes are reserved
for the char array name, and unused bytes will not be reclaimed by the operating system.

In LOC 10, the string constant "Dick" is assigned to pname. Figure 4-2 (d) shows what
happens at the memory level after the execution of LOC 10. As shown in Figure 4-2 (d),
the string constant "Dick" (which is 5 bytes long) is overwritten on the existing string
constant "Shirish" (which is 8 bytes long). The unused 3 bytes in the memory block are
reclaimed by the operating system and used for some other purpose. Notice that the last
3 unused bytes now contain the characters 'n', 'a’, and 'm'. Possibly these 3 bytes are
used by the operating system to store part of the control string "name: %s\n" in LOC 11.
Unlike the char array name, the block of bytes pointed to by pname is not a reserved one;
hence, unused bytes are immediately reclaimed by the operating system. Notice an
example from everyday life. Say there are four passengers sitting on a bench in a local
train in Mumbai. One of the passengers walks off. The remaining three passengers change
their positions to reclaim the empty space on the bench and sit comfortably.

In LOCs 11 and 12, the string constants associated with name and pname are displayed
on the screen. This string is nothing but "Dick".

In LOCs 14 to 16, you use the for loop to display the contents of the 8 bytes reserved
for the char array name. In LOCs 18 to 20, you use the for loop to display the contents of
the memory block of 8 bytes, which is pointed to by pname.

4-6. Store Strings Without Initialization
Problem

You want to store the strings without initializations.

Solution

Write a C program that stores strings without initializations, with the following
specifications:

e The program declares a char type array called name and a pointer-
to-char variable called pname. However, no initializations are
made.

e The program copies a suitable string to the array name and sets the
pointer pname pointing to a suitable string.

e The program displays both strings on the screen.

87

CHAPTER 4 " POINTERS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name point6.c:

/* This program stores the strings using a pointer to char and a char array, */
/* without initializations. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /¥ L3 */
int i; /* L4 */
char name[8] ; /* L5 */
char *pname ; /* L6 */
/* BL */

strcpy(name, "Shirish"); /* L7 */
pname = "Shirish"; /* L8 */
/* BL */

printf("\nname: %s\n", name); /¥ L9 */
printf("pname: %s\n", pname); /* L10 */
/* BL */

strcpy(name, "Dick"); /* L1 */
pname = "Dick"; /* L12 */
/* BL */

printf("name: %s\n", name); /* L13 */
printf("pname: %s\n", pname); /* L14 */
/* BL */

printf("name (all eight bytes): "); /* L15 */
for(i = 0; i < 8; i++) { /* L16 */
printf("%c ", name[i]); /* L17 */

} /% 118 */
/* BL */

printf("\npname (all eight bytes): "); /* L19 */
for(i = 0; i < 8; i++) { /* L20 */
printf("%c ", *(pname + i)); /* L21 */

} /* L22 */
/* BL */

return(0); /* 123 */
} /* L24 */

Compile and execute this program, and the following lines of text appear on the screen:

name: Shirish

pname: Shirish

name: Dick

pname: Dick

name (all eight bytes): Dick sh
pname (all eight bytes): Dick nam

88

CHAPTER 4 © POINTERS AND ARRAYS

How It Works

The output of this program is the same as that of the preceding program, and there’s no
reason why it should not be. However, this time you did not initialize name and pname.

After the execution of LOC 5, a char type array called name is created that is 8 bytes
long. It doesn’t contain anything; see Figure 4-3 (a). After the execution of LOC 7, the
string constant "Shirish" is placed in this array, as shown in Figure 4-3 (a).

name

Figure (a) char array name — which is essentially empty — after the execution of LOC 5, program
point6.

pname *>-—t—>

Figure (b) pointer to char variable pname — which is not pointing to any well-defined memory
cell — after the execution of LOC 6, program point6.

Figure 4-3. Snapshots of memory during the execution of program point6

After the execution of LOC 6, a pointer-to-char variable called pname is created.
As it is not initialized, it contains garbage. This means pname is not pointing to any
well-defined memory cell; see Figure 4-3 (b).

In LOC 7, the string constant "Shirish" is copied to the array name. In LOC 8, the
pointer pname is made to point to another string constant, "Shirish." After LOC 8, this
program works the same as the preceding program.

4-7. Store Strings in an Interactive Session
Problem

You want to store strings in an interactive session.

Solution

Write a C program that stores strings in an interactive session, with the following
specifications:

e The program declares a char type array named name and a
pointer-to-char variable pname. However, no initializations
are made.

e The program accepts two strings from the keyboard. The first
string is assigned to the array name. The pointer pname is set
pointing to the second string.

e The program displays both strings on the screen.

89

CHAPTER 4 " POINTERS AND ARRAYS

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name point7.c:

/* This program stores the strings using a pointer to char and a char type
array */
/* in an interactive session. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /¥ L3 */
int i; /* L4 */
char name[8] ; /* L5 */
char *pname; /* L6 */
/* BL */

printf("\nEnter name: "); /* L7 */
scanf(" %[*\n]", name); /* L8 */
printf("Enter name again: "); /¥ L9 */
scanf(" %[*\n]", pname); /* L10 */
/* BL */

printf("name: %s\n", name); /* L11 */
printf("pname: %s\n", pname); /* L12 */
/* BL */

return(0); /* L13 */
} /% L14 */

Compile and execute this program. A run of this program is given here:

Enter name: Shirish «

Enter name again: Shirish «
name: Shirish

pname: Shirish

How It Works

In LOC 5, it is specified that the length of the char array should be 8 bytes. Therefore,

the name you type as a response to the request "Enter name: " should contain ata
maximum seven characters. During compile time, the compiler knows that this string will
have a length of 8 bytes.

In LOC 6, a pointer-to-char variable named pname is declared; however, the program
is silent about the length of the string to which pname will be pointing. During compile
time, the compiler is unaware of the length of this string. Therefore, by default, a typical
compiler allows you to enter a string of 127 characters from the keyboard to be assigned
to pname. You can also use the malloc() function in this program to allocate memory
dynamically for the string to be associated with pname.

In LOCs 11 to 12, these strings are displayed on the screen.

90

CHAPTER 4 © POINTERS AND ARRAYS

4-8. Retrieve the Addresses of Elements in a

Two-Dimensional Array
Problem

You want to retrieve the addresses of the elements in a two-dimensional array.

Solution

Write a C program that retrieves the addresses of the elements in a two-dimensional
array, with the following specifications:

e The program declares a two-dimensional int type array called
num and initializes it with suitable data.

e The program retrieves and displays on the screen the addresses of
the elements using a nested for loop with two-level nesting.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
point8.c:

/* Addresses of all elements of a 2-dimensional array are displayed on the
screen. */
/* BL */
#include <stdio.h> /* L1 */
/* BL */
main() /* L2 ¥/
{ /* L3 */
int 1, c; /* L4 */
int num[3][2] = { /* L5 */
{14, 457}, /* L6 */
{24, 382}, /* L7 */
{72, 624} /* L8 */
}; /* L9 */
/* BL */
for(r = 0; 1 < 3; 1++) { /* L10 */
for(c = 0; € < 2; c++) /* L11 */
printf("Address of num[%d][%d]: %u \n", r, c, &num[r][c]); /* L12 */
} /¥ L13 */
/* BL */
return(0); /* L14 */
} /* L15 */

91

CHAPTER 4 " POINTERS AND ARRAYS

Compile and execute this program, and the following lines of text appear on the screen:

Address of num[0][0]: 65514
Address of num[0][1]: 65516
Address of num[1][0]: 65518
Address of num[1][1]: 65520
Address of num[2][0]: 65522
Address of num[2][1]: 65524
How It Works

In LOC 4, two int variables are declared to represent the rows and columns in a two-
dimensional array. In LOCs 5 to 9, a two-dimensional int type array named num is
declared and also initialized with suitable data. LOCs 10 to 13 consist of two-level nesting
of for loops that display on the screen the addresses of all the elements of the array num.

Figure 4-4 shows a diagrammatic representation of the addresses of a two-
dimensional array called num. As the structure of memory is like a list, addresses are
always stored like a list. The base address of the array num is 65514. Also, notice that the
base addresses of 14, 24, and 72 represent the base addresses of the first, second, and
third rows of num (see LOCs 6 to 8), which are 65514, 65518, and 65522 respectively.

0
Base address of array num, it B
is also base address of first ——— 65514 14 num[0] [0]
row of num. 65515
63:_“? 457 } num[0] [1]
Base address of second row of GN
NN, ?::2 24 } num(1] (0]
innl
52
Ei'::? 382 } num (1] [1]
Base address of third row of -
 —
num. — ?2 } num[2] [0]
552
?::;1 624 }num[QJ [1]
DO

Figure 4-4. Memory after creation of two-dimensional int array num that consists of three
rows and two columns

92

CHAPTER 4 © POINTERS AND ARRAYS

4-9. Retrieve the Base Addresses of Rows in a

Two-Dimensional Array
Problem

You want to retrieve the base addresses of the rows in a two-dimensional array.

Solution

Write a C program that retrieves the base addresses of rows in a two-dimensional array,
with the following specifications:

e The program declares a two-dimensional int type array called
num and initializes it with suitable data.

e The program retrieves and displays on the screen the base
addresses of the rows of num.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
point9.c:

/* This program displays the base addresses of rows of a 2-dimensional array
on the screen. */

/* BL */
#include <stdio.h> /* L1 */
/* BL */
main() /* L2 ¥/
{ /* L3 */
int 1; /* L4 */
int num[3][2] = { /* L5 */
{14, 457}, /* L6 */
{24, 382}, /* L7 */
{72, 624} /* L8 */
b /% L9 */
/* BL */
for(r = 0; ¥ < 3; T++) /* L10 */
printf("Base address of row %d is: %u \n", r+1, num[r]); /* L11 */
/* BL */
return(0); /* L12 */
} /* L13 */

93

CHAPTER 4 " POINTERS AND ARRAYS

Compile and execute this program, and the following lines of text appear on the screen:

Base address of row 1 is: 65514
Base address of row 2 is: 65518
Base address of row 3 is: 65522

How It Works

In LOC 4, the int variable 1 is declared to represent a row. In LOCs 5 to 9, the
two-dimensional array num is declared and also initialized with suitable data. The for loop
spanning LOCs 10 to 11 displays the base addresses of the rows of the two-dimensional
array num.

Notice that num[1] returns the address of row number (r + 1).You can also assign
the value returned by num[1] to the pointer-to-int variable, as follows (let ptrInt be the
pointer-to-int variable):

ptrInt = num[0]; /* L14 */

Now ptrInt is pointing to the first element of the first row. You can display the
address stored in ptrInt and the value of the element to which ptrInt is pointing using
the LOCs given here:

printf("Address: %u \n", ptrint);
printf("Value of element: %d \n", *ptrint);

These LOCs after execution display the following lines of text on the screen:

Address: 65514
Value of element: 14

In LOC 11, you can apply the address operator & to num[1] as follows:
printf("Base address of row %d is: %u \n", r+1, &num[r]); /* L15 */

You can replace LOC 11 in this program with LOC 15 and still compile and execute
the program successfully. However, in LOC 14, if you apply the address operator & to
num[0] as follows:

ptrInt = &num[0]; /* L16, compiler issues a warning */

...and compile LOC 16, then the compiler issues a warning with the following words:
“Suspicious pointer conversion.” A pointer-related variable contains a lot of information.
If you make an assignment in which a pointer-related variable is an r-value and the
compiler suspects that all the information in the r-value will not be passed to the 1-value,
then the compiler issues a warning such as nonportable pointer conversion or suspicious
pointer conversion. You are free to ignore the warning, but it is advisable to avoid such
coding.

94

CHAPTER 4 © POINTERS AND ARRAYS

4-10. Retrieve Data from a Two-Dimensional Array
Problem

You want to develop a program that retrieves the values of the elements of a
two-dimensional array.

Solution

Write a C program that retrieves the values of the elements of a two-dimensional array,
with the following specifications:

e The program creates a two-dimensional int type array named
num with the data values filled in it.

e The program uses a pointer to an array to retrieve and display the
data stored in num on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
point10.c:

/* This program uses pointer to array in order to retrieve the values of
elements of */
/* a 2-dimensional array. */

/* BL */

#include <stdio.h> /¥ L1 */
/* BL */

main() /* L2 ¥/
{ /% L3 */
int num[3][2] = { /* L5 */
{14, 457}, /* L6 */

{24, 382}, /¥ L7 */

{72, 624} /* L8 */

}; /* L9 */

int (*ptrArray) [2]; /* L10 */
int row, col, *ptrint; /* L11 */
for(row = 0; row < 3; row++){ /¥ L12 */
ptrArray = 8&num[row]; /* L13 */
ptrInt = (int *) ptrArray; /* L14 */
for(col = 0; col < 2; col++) /* L15 */
printf("%d ", *(ptrInt + col)); /* L16 */
printf("\n"); /* L17 */

} /% L18 */

/* BL */

return(0); /* 119 */
/* L20 */

95

CHAPTER 4 " POINTERS AND ARRAYS

Compile and execute this program, and the following lines of text appear on the screen:

14 457
24 382
72 624

How It Works

In LOCs 5 to 9, the two-dimensional int type array named num is declared, and it is also
filled with suitable int values.

You can declare a pointer to an array variable. This pointer points to the base address
of the array. In LOC 10, a pointer-to-int array variable called ptrArray is declared.
The array in question consists of two elements. Notice that in LOC 10 an array of pointers
is not declared, but a pointer to an array is declared. Also, the parentheses around
*ptrArray are required. In LOC 11, a pointer-to-int variable called ptrInt is declared.

In LOC 13, the address of the row in num is assigned to ptrArray. It is reproduced
here for your quick reference:

ptrArray = &num[row]; /* L13 */

Both ptrArray and ptrInt are pointers, but they are different from one another.
ptrArray is a pointer to an array, whereas ptrInt is a pointer-to-int. You want to assign
ptrArray to ptrInt because in order to retrieve the values in the elements of the array,
you need to dereference ptrInt. But as they are a different type of pointer, you cannot
make direct assignment such as given here:

ptrint = ptrArray; /* Avoid. compiler issues a warning! */

To do such assignment, first you need to cast ptrArray to type int * (i.e., pointer-
to-int), and this casting is done in LOC 14, which is reproduced here for your quick
reference:

ptrInt = (int *) ptrArray; /* 0K, Lig */

Now ptrInt can be dereferenced after adding the appropriate integer values to it.
For example, notice the LOCs given here (let intN1 and intN2 be int variables):

intN1
intN2

(ptrInt + 0); / now intN1 contains the value 14 */
(ptrInt + 1); / now intN2 contains the value 457 */

The for loop spanning LOCs 12 to 18 retrieves the int values stored in the two-
dimensional array num and displays these values on the screen.

96

CHAPTER 4 © POINTERS AND ARRAYS

4-11. Retrieve Data from a Two-Dimensional
Array Using an Array Name

Problem

You want to retrieve the data stored in a two-dimensional array using an array name.

Solution

Write a C program that retrieves the data stored in a two-dimensional array using an array
name, with the following specifications:

e The program creates three two-dimensional arrays called t1, t2,
and t3. Then the program fills t1 and t2 with suitable data values.

e The program fills the data values in t3 by adding data values in t1
and t2, using the rules of matrix addition.

e The program retrieves the data values stored in t1, t2, and t3 by
dereferencing the array name and displays them on the screen.
The program uses different flavors of dereferencing.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
pointil.c

/* This program adds two tables of numbers and enters the results in third
table and then */
/* displays it on the screen using pointers and using three different
approaches. */
/* BL */
#include <stdio.h> /¥ L1 */
/* BL */
main() /* L2 ¥/
{ /* L3 */
int i, j, *p1, *p2, *p3; /* L4 */
int t1 [][4] = { /¥ L5 */
{12, 14, 16, 18}, /* L6 */
{22, 24, 26, 28}, /* L7 */
{32, 34, 36, 38} /* L8 */
}; /* L9 */
int t2 [3][4] = { /* L10 */
{13, 15, 17, 19}, /¥ L11 */
{23, 25, 27, 29}, /¥ L12 */
{33, 35, 37, 39} /* 113 */
}; /* L14 */

97

CHAPTER 4 " POINTERS AND ARRAYS

int t3 [3][4]; /* L15 */
/* BL */

printf("\nTable t3 is computed and displayed:\n\n"); /* L16 */
/* BL */

for(i = 0; i < 3; i++) { /* L17 */
for(j = 0; j < 4; j++) { /* L18 */
*(t3[1] +) = *(t1[i] + F) + *(t2[i] + J); /* L19 */
printf("%d ", *(t3[i] + j)); /* L20 */

} /* L21 */
printf("\n"); /* L22 */
} /* 123 */
/* BL */

printf("\n\nTable t3 is computed and displayed again:\n\n"); /* 124 */
/* BL */

for(i = 0; i< 3; i++) { /* L25 */
for(j = 0; j < 4; j++) { /* L26 */
KOR(E3 + 1) 4) = *OR(t + 1) +)+ *(x(t2 + 1) + 5); /* 127 */
printf("%d ", t3[1i1[3]); /% 128 */
} /* 129 */
printf("\n"); /* L30 */
/* 131 */

/* BL */

p1 = (int *) t1; /* 132 */
p2 = (int *) t2; /* L33 */
p3 = (int *) t3; /* L34 */
printf("\n\nTable t3 is computed and displayed again:\n\n"); /* L35 */
/* BL */

for(i = 0; i < 3; i++) { /* 136 */
for(j = 0; j < 4; j++) { /* L37 */
*p3 +1*4+) =*pr+i*4+3)+*p2+1*4a+7); /* L38 */
printf("%d ", *(p3 + i * 4 + j)); /* 139 */

/* L40 */

printf("\n"); /* L4l */
} /* L42 */
/* BL */

return(0); /* L43 */
} /% 144 */

Compile and execute this program, and the following lines of text appear on the screen:

Table t3 is computed and displayed:
25 29 33 37
45 49 53 57
65 69 73 77

98

CHAPTER 4 © POINTERS AND ARRAYS

Table t3 is computed and displayed again:

25 29 33 37
45 49 53 57
65 69 73 77

Table t3 is computed and displayed again:

25 29 33 37
45 49 53 57
65 69 73 77

How It Works

An individual element in a two-dimensional array is retrieved using this expression:
arrayName[row][col] Expression A

However, whenever the compiler meets an expression of the form arrayName[k], the
former immediately converts the latter into the form *(arrayName + k). Assuming that
k in this expression is nothing but col in the expression A, you can rewrite the previously
given expression as follows:

*(arrayName[row] + col) Expression B

Now again assuming that row in expression B is nothing but k in the expression
arrayName[k], you can rewrite the previously given expression as follows:

((arrayName + row) + col) Expression C

Besides these three expressions, one more expression is used for the retrieval of
elements, and it is given here:

ptr = (int *) arrayName;
*(ptr + row * COL + col) Expression D

Here, COL is the total number of columns in the two-dimensional array, and ptris a
pointer-to-int variable. Notice that expressions A, B, C, and D are fully equivalent.

This program has used the expressions B, C, and D to retrieve the elements of a
two-dimensional array. In the block of code spanning LOCs 17 to 23 you use the
expression B to access the elements of the two-dimensional arrays t1, t2, and t3. In the
block of code spanning LOCs 25 to 31, you use the expression C to access the elements of
the two-dimensional arrays t1, t2, and t3. In the block of code spanning LOCs 36 to 42, you
use the expression D to access the elements of the two-dimensional arrays t1, t2, and t3.

99

CHAPTER 4 " POINTERS AND ARRAYS

4-12. Retrieve Data from an Array Using an Array
of Pointers

Problem

You want to retrieve the data from an array using an array of pointers.

Solution

Write a C program that retrieves the data from an array by using an array of pointers, with
the following specifications:

e The program declares an int type array called intArray. The
program also declares an array of pointers-to-int called ptrArray.

e The program fills suitable data values in the array intArray. The
program then sets the pointers in ptrArray pointing to cells in the
array intArray.

e The program retrieves the data values stored intArray with the
help of ptrArray and displays the retrieved values on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
pointi2.c:

/* This program uses an array of pointers-to-int. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /% L3 */
int i, intArray[6]; /* L4 */
int *ptrArray[6]; /* L5 */
/* BL */

for(i = 0; i < 6; i++) { /* L6 */
intArray[i] = (1 + 2) * 100; /* L7 */
ptrArray[i] = &intArray[i]; /* L8 */
/* L9 */

/* BL */

for(i = 0; i < 6; i++) /* L10 */
printf("intArray[%d], Value: %d, Address: %u\n", /* L11 */
i, *(ptrArray[i]), ptrArray[i]); /* L12 */

/* BL */

return(0); /* L13 */

} /% L14 */

100

CHAPTER 4 © POINTERS AND ARRAYS

Compile and execute this program, and the following lines of text appear on the screen:

intArray[0], Value: 200,
intArray[1], Value: 300,
intArray[2], Value: 400,
intArray[3], Value: 500,
intArray[4], Value: 600,
intArray[5], Value: 700,
How It Works

Address:
Address:
Address:
Address:
Address:
Address:

65514
65516
65518
65520
65522
65524

In LOC 4, you declare an array of integers called intArray. In LOC 5, you declare an array
of pointers-to-int called ptrArray. LOCs 6 to 9 consist of a for loop. Inside this loop, all
the elements of intArray are filled with values according to an arbitrary formula in LOC 7.

In LOC 8, each element in ptrArray is set pointing to the corresponding element in

intArray, as shown in Figure 4-5.

65514

65516

65518

65520

656522

65524

B .

ptrArray

ptrArray[0] =——p 65514

65515

ptrarray[1] — 65516

65517

ptrArray[0] ——» 65518

65519

ptrArray[(] =—— 65520

65521

ptrarray[0] ——— 65522

65523

ptrArray[0] = 65524

65525

200

300

400

500

600

700

intArray

intArray[0]

intArrayl[l]

intArray([2]

intArray[3]

intArray([4]

e R i

intArray[5]

Figure 4-5. Array of pointers ptrArray and array of integers intArray

LOCs 10 to 12 consist of another for loop. The body of this for loop consists of only
one statement, which is fitted in two LOCs (11 and 12) as it is rather long. This statement
sends the output to the screen. This for loop displays on the screen the values stored in
the array intArray, as well as the addresses of the cells of intArray.

101

CHAPTER 4 " POINTERS AND ARRAYS

4-13. Swap Strings Physically
Problem

You want to swap strings physically.

Solution
Write a C program that swaps strings physically, with the following specifications:

e The program creates a two-dimensional array of characters called
friends and stores suitable strings in it. The program displays the
strings (before swapping) on the screen.

e The program swaps the strings physically using a for loop. After
swapping, the program displays the strings on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
pointi3.c:

/* This program a swaps the strings in a 2-dimensional array of characters. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 ¥/
{ /¥ L3 */
int i; /* L4 */
char temp; /* L5 */
char friends [5][10] = { /* L6 */
"Kernighan", /* L7 */

"Camarda", /* L8 */

"Ford", /* L9 */

"Nixon", /* L10 */

"Wu" /* L11 */

}; /* L12 */

/* BL */

printf("Strings before swapping:\n"); /* L13 */
for(i = 0; i < 5; i++) /* L14 */
printf("Friend no. %d : %s\n", i+1, friends[i]); /* L15 */

/* BL */

for(i = 0; i < 10; i++) { /* L16 */
temp = friends[0][i]; /* L17 */
friends[0][i] = friends[1][i]; /* L18 */
friends[1][i] = temp; /* L19 */

} /* L20 */
/* BL */

102

printf("\nStrings after swapping:\n");

for(i = 0; i < 5; i++)
printf("Friend no. %d :

return(0);

}

%s\n", i+1, friends[i]);

CHAPTER 4 © POINTERS AND ARRAYS

/*
/*
/*
/*
/*
/*

L21
L22
L23
BL

L24
L25

*/
*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

Strings before swapping:
: Kernighan
: Camarda

: Ford
: Nixon
¢ Wu

Friend no.
Friend no.
Friend no.
Friend no.
Friend no.

Strings after swapplng
: Camarda
: Kernighan
: Ford
¢ Nixon
¢ Wu

Friend no.
Friend no.
Friend no.
Friend no.
Friend no.

How It Works

1:

vl b W N

1:

vt b w N

The block of code spanning LOCs 6 to 12 creates a two-dimensional char array called
friends and stores five strings in it, as shown in Figure 4-6. The strings stored in the array
friends are as follows:

"Kernighan

"Camarda"

"Ford"

"Nixon"

"Wu"

friends|
friends[1
friends|
friends|

friends |

2]

3]

q'

n'

dqr

"o

"\O"*

Figure 4-6. Two-dimensional array friends. Its size is 50 bytes, and 18 bytes are unused in
this array, representing a waste of memory.

103

CHAPTER 4 " POINTERS AND ARRAYS

The program intends to swap the first two strings, "Kernighan" and "Camarda", so
that after the swapping, the first string would be "Camarda" and the second string would
be "Kernighan".

The for loop spanning LOCs 14 to 15 displays the strings stored in friends on the
screen. The for loop spanning LOCs 16 to 20 swaps the first two strings stored in friends.
In this loop, every single character is swapped between the first string and the second
string with the help of a char variable called temp in which a character is temporarily
stored. Figure 4-7 shows the strings in memory after the swapping. The for loop spanning
LOCs 22 to 23 displays the strings on the screen, after swapping.

friends[0] ol 4 "m* tat et 4 "a' "0

friends[1] "K' [Y

friends 2] 'F’ 'o' b 'd! '\O°

friends[3] 'N! i "x* 'o! 'n' |'\O"

friends[4] W' u' | "\O"

Figure 4-7. Strings stored in friends[0] and friends[1] are swapped. Every character needs
to be picked and process individually.
These are the drawbacks of this program:

e The array friends consumes 50 bytes of memory for the storage
of strings, out of which 18 bytes of memory are simply wasted.

e During swapping, strings are physically moved, and this physical
movement of strings is time-consuming and decreases the
performance of the program.

Thus, this program is expensive as it consumes space (i.e., memory) and time (i.e.,
computing time) in a wasteful manner.

Despite these drawbacks, programmers use this method when the number of strings
is small because this program uses very simple logic. The waste mentioned is negligible
when the number of strings is not large.

4-14. Swap Strings Logically
Problem

You want to swap strings logically.

Solution
Write a C program that swaps strings logically, with the following specifications:

e The program creates an array of pointers. The program creates
the strings in memory. The program sets the pointers (in an array)
pointing to the strings, as shown in Figure 4-8.

104

CHAPTER 4 © POINTERS AND ARRAYS

crinso) [o[[T Lo [T [o []
cetensst) [ad—[o o [[o [[[=[]
eriends(2) @[F [ror [[rar o]

eriendsi4) (@[w [u [rvo]

Figure 4-8. Array of pointers to strings named friends. Compare this arrow with the one
shown in Figure 4-6. The wasting of memory is avoided.

e The program displays the strings (before swapping) on the screen.
The program swaps the first two strings simply by interchanging
the pointers pointing to these strings, as shown in Figure 4-9.

triends 0] | o [e [e [o]

friends(2] §—>| = [o [[rar o]
eriends (4] [@——[1w [[rr0]

Figure 4-9. Pointers friends[0] and friends[1] are swapped. Strings are not moved. This
process ensures better performance.

e The program displays the strings (after swapping) on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
pointi4.c:

/* This program swaps the strings using an array of pointers to strings. */
/* BL */

#include <stdio.h> /* L1 */
/* BL */

105

CHAPTER 4 " POINTERS AND ARRAYS

main() /* L2 */
{ /* L3 */
int i; /* L4 */
char *temporary; /* L5 */
char *friends [5] = { /* L6 */
"Kernighan", /* L7 */

"Camarda", /* L8 */

"Ford", /% L9 */

"Nixon", /* L10 */

"Wu" /* L11 */

}; /* L12 */

/* BL */

printf("Strings before swapping:\n"); /* L13 */
for(i = 0; i < 5; i++) /* L14 */
printf("Friend no. %d : %s\n", i+1, friends[i]); /* L15 */

/* BL */

temporary = friends[1]; /* L16 */
friends[1] = friends[0]; /* L17 */
friends[0] = temporary; /* L18 */
/* BL */

printf("\nStrings after swapping:\n"); /* L19 */
for(i = 0; i < 5; i++) /* L20 */
printf("Friend no. %d : %s\n", i+1, friends[i]); /* L21 */

/* BL */

return(0); /* L22 */

} /* L23 */

Compile and execute this program, and the following lines of text appear on the screen:

Strings before swapping:
Friend no. 1 : Kernighan

Friend no. 2 : Camarda
Friend no. 3 : Ford
Friend no. 4 : Nixon
Friend no. 5 : Wu

Strings after swapping:
Friend no. 1 : Camarda

Friend no. 2 : Kernighan
Friend no. 3 : Ford
Friend no. 4 : Nixon
Friend no. 5 : Wu
How It Works

The block of code spanning LOCs 6 to 12 creates five strings in memory, creates an array
of five pointers called friends, and also sets the pointers in array friends pointing to
these strings. Figure 4-8 illustrates the situation after executing LOCs 6 to 12.

106

CHAPTER 4 © POINTERS AND ARRAYS

The strings stored in memory and pointed to by pointers friends are listed here:
e "Kernighan"

e "Camarda"

e "Ford"
e "Nixon"
.« WU

The first pointer in the array of pointers, friends[0], points to the string "Kernighan";
the second pointer in the array of pointers, friends[1], points to string "Camarda"; and
so on. The program intends to swap the first two strings, "Kernighan" and "Camarda",
so that after the swapping, the first string would be "Camarda" and second string would
be "Kernighan". However, unlike in the preceding program point13, where strings were
physically moved, in this program strings will not be moved physically; instead, simply the
direction of the first two pointers will be interchanged, as shown in Figure 4-9.

The for loop spanning LOCs 14 to 15 displays the strings (before swapping) on the
screen. The block of code spanning LOCs 16 to 18 performs the swapping of the first
two strings. In LOC 16, the direction of the pointer friends[1] is assigned to the pointer
temporary. Now the pointer temporary points to the string "Camarda". In LOC 17, the
direction of the pointer friends[0] is assigned to the pointer friends[1]. Now both
pointers friends[0] and friends[1] point to the string "Kernighan". In LOC 18, the
direction stored in temporary is assigned to the pointer friends[0]. Now the pointer
friends[0] points to the string "Camarda". Figure 4-9 illustrates the situation after
executing the block of LOCs 16 to 18. Thus, in this program, in reality, strings are not
swapped, but pointers are swapped. The for loop spanning LOCs 20 to 21 displays the
strings after swapping on the screen.

Here are the benefits of program point14 over the preceding program point13:

e Inpointi3, the char type array named friends has consumed 50
bytes (Figure 4-6). Not all 50 bytes are used. In fact, 18 bytes in this
array are unused and represent a wastage of memory. In point14,
you use an array of pointers to strings, so now the strings have
consumed just 32 bytes (as each one-dimensional char type array is
now just enough to accommodate a string, as shown in Figure 4-8).
However, in point14, the net savings of memory is less than 18 bytes
because five pointers consume 10 bytes, as each pointer needs 2
bytes for storage. Therefore, the net savings of memory is 8 bytes.

e The performance of pointi14 is better than that of point13. In
point13, to swap the first two strings, the for loop spanning
LOCs 16 to 20 is iterated ten times, and this loop consists of three
statements. Thus, in point13, 30 statements are executed to
perform the swapping of strings. In point14, to swap the strings,
only three statements (spanning LOCs 16 to 18) are executed.

107

CHAPTER 4 " POINTERS AND ARRAYS

4-15. Store Strings Interactively
Problem

You want to store the number of strings (say, five) in primary memory in an interactive
session.

Solution

Write a C program that stores the five strings (say the names of your friends) in primary
memory in an interactive session, with the following specifications:

e The program creates an array of five pointers to strings called
friends. The program also creates a char type array named name
to store a string entered through the keyboard, temporarily.

e The program uses a for loop to accept the strings entered through
the keyboard.

e The program uses the function malloc() to allocate the memory
for the storage of strings.

e The program displays the stored strings on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
pointi5.c:

/* This program accepts and stores the five strings in an interactive session */
/* using the malloc() function */

/* BL */

#include <stdio.h> /* L1 */
#include <stdlib.h> /* L2 */
#include <string.h> /* L3 */
/* BL */

main() /* L4 */
{ /* L5 */
char *friends[5], *ptr, name[30]; /* L6 */
int i, length; /* L7 */
/* BL */

for(i = 0; i < 5; i++) { /* L8 */
printf("Enter name of friend no. %d: ", i + 1); /* L9 */
scanf(" %[*\n]", name); /* L10 */
length = strlen(name); /* L11 */
ptr = (char *) malloc (length + 1); /* L12 */
strcpy(ptr, name); /* L13 */

108

CHAPTER 4 © POINTERS AND ARRAYS

friends[i] = ptr; /* L14 */
} /% L15 */
/*¥ BL */

printf("\n\nList of friends:\n"); /* L16 */
for(i = 0; i < 5; i++) /* L17 */
printf("Friend no. %d : %s\n", i+1, friends[i]); /* L18 */
/* BL */

return(0); /* L19 */
} /* L20 */

Compile and execute this program. A run of this program is given here:

Enter name of friend no. 1: Kernighan -
Enter name of friend no. 2: Camarda -
Enter name of friend no. 3: Ford -
Enter name of friend no. 4: Nixon -
Enter name of friend no. 5: Wu -

List of friends:
Friend no. 1 : Kernighan

Friend no. 2 : Camarda
Friend no. 3 : Ford
Friend no. 4 : Nixon
Friend no. 5 : Wu
How It Works

In LOC 6, the following happens: an array of pointers to strings is declared called friends,
a pointer-to-char is declared called ptr, and a char type array is declared called name.

The for loop spanning LOCs 8 to 15 is responsible for accepting and storing the
strings entered through the keyboard. The strings to be entered are the names of five
friends; hence, it is assumed that the length of name would be up to 30 characters only.

LOC 10 consists of a call to the scanf() function. It accepts the string of characters
typed by the user and assigns it to the char type array called name. Notice that the string is
delimited by the newline character (' \n"). After typing the string when the user pressed
the Enter key, the typed string (except the newline character) is stored in the char type
array called name.

In LOC 11, the length of the string (stored in name) is computed and assigned to the
int variable length. LOC 12 consists of a call to the malloc() function.

The function malloc() allocates memory during runtime. It allocates a block of
contiguous memory and returns the base address of that block of memory. The generic
syntax of a statement that uses the function malloc() is given here:

ptrPtr = (dataType *) malloc (size);

109

CHAPTER 4 " POINTERS AND ARRAYS

Here, ptrPtr is a pointer to the dataType variable; dataType is any valid data type
such as int, char, float, etc.; and size is an integer (or expression that evaluates to an
integer) that indicates the number of bytes required for storage. If required memory
cannot be allocated, then the null pointer is returned. The header file <stdlib.h>
contains the prototype of the function malloc().

After the execution of LOC 12, a contiguous block of memory of size (length + 1)
bytes is allocated, and the pointer ptr is set pointing to it. After execution of LOC 13, the
contents of the array name are copied to this allocated block of memory. After execution of
LOC 14, the direction of the pointer ptr is assigned to the pointer friends[i]. Therefore,
after execution of LOC 14, the pointer friends[1] is pointing to the allocated block of
memory mentioned in LOCs 12 and 13. Here, i is the serial number of the string. For the
first string, the value of i is 0, for the second string the value of i is 1, and so on.

The for loop spanning LOCs 17 to 18 displays the strings stored in memory on
the screen.

4-16. Pass Arguments to a Program from the
Command Line
Problem

You want to pass the arguments to a program from a command line.

Solution

Write a C program with the following specifications:
e The program accepts arguments from the command line.
e The program uses pointers to deal with the arguments.

e The program displays the arguments on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
pointi6.c:

/* This program uses command-line arguments. */

/* BL */
#include <stdio.h> /* L1 */
/* BL */
main(int argc, char *argv[]) /* L2 */
/* L3 */
int i; /* L4 */
printf("Few towns in %s district:\n", argv[1]); /* L5 */
for(i = 2; i < argc; i++) /* L6 */

110

CHAPTER 4 © POINTERS AND ARRAYS

printf("%s\n", argv[i]); /* L7 */
return(0); /* L8 */
} /* L9 */

Compile and execute this program, and the following line of text appears on the screen.
Few towns in (null) district:

This program expects arguments, but you have not passed any argument to this
program. As a result, this program has displayed somewhat bizarre-looking output.

Now let’s execute this program from the command line with arguments. Let’s assume
that all executable files (such as hello.exe) are stored in the folder C:\Output. Open the
Command Prompt window. See to it that folder C: \Output is the current folder. Type the
following command:

C:\Output> point16 Sangli Miraj Kavathe Tasgav Vita Shirala Kadegav «
Now the following lines of text appear on the screen:

Few towns in Sangli district:
Miraj

Kavathe

Tasgav

Vita

Shirala

Kadegav

How It Works

C has made provisions for command-line arguments. When you intend to pass
arguments to a program, the first line of the main() function looks like this:

main(int argc, char *argv[]) /* L2 */

In the given LOC, parentheses contain a parameter list. Normally, arguments
are passed to a function in a function call. But as the main() function is called by the
execution environment, arguments are also passed to the main() function by the
execution environment. When program execution begins, the function main() is called
with two arguments, namely, argc (argument count) and argv (argument vector).
Notice that the same names are used for parameters and arguments. The argument argc
indicates the number of arguments being passed to the program, and its data type is int.
The argument argv is an array of pointers-to-char that contain the arguments, one per
string. The size of argv is (argc + 1). As per convention, argv[0] represents the name
of the program being executed. This means the minimum possible value of argc is 1.
Also, the Null value is associated with argv[argc]. In other words, argv[argc] is a null
pointer. The remaining arguments are true arguments and are passed to the program for
processing.

111

CHAPTER 4 " POINTERS AND ARRAYS

In the case of this program, argc is 8 because we have typed 8 strings, namely,
point16, Sangli, Miraj, Kavathe, Tasgav, Vita, Shirala, and Kadegav. These strings are
associated with various pointers as follows:

String Name of pointer to char
"point16" argv[o]
"Sangli" argv[1]
"Miraj" argv[2]
"Kavathe" argv[3]
"Tasgav" argv[4]
"Vita" argv[s]
"Shirala" argv[6]
"Kadegav" argv[7]

Also, a null value is associated with the pointer argv[8].
It is responsibility of the execution environment to do the following:

e To count the strings and pass that number as argc to the program

e To build the array argv (which is an array of pointers-to-char), to
associate various strings to the appropriate elements in this array
as tabulated earlier, and to pass this array to the program

Consider the case when no arguments are passed to the program. In such a case,
argcis 1, and the array argv has only two elements, namely, argv[0] and argv[1]. In
addition, the pointer argv[0] is associated with the string "point16", and the pointer
argv[1] is associated with value null. After the execution of LOC 5, the following line of
text is displayed on the screen:

Few towns in (null) district:
LOC 5 is reproduced here for your quick reference:
printf("Few towns in %s district:\n", argv[1]); /* L5 */

The value of argv[1] is null. This value is placed at the conversion specification %s,
and you get the output shown earlier. LOCs 6 to 7 consist of a for loop; as the value of
argcis 1, the condition (2 < argc) turns out to be false during the first iteration, and not
a single iteration of the for loop takes place. Then the program terminates.

Now consider the case when the arguments listed earlier are passed to the program.
argv[0] is associated with the string "point16", and argv[8] is associated with the
value null. Other elements of argv are associated with the argument strings as tabulated
earlier. As the value of argv[1] is "Sangli", after the execution of LOC 5, the following
line of text is displayed on the screen:

Few towns in Sangli district:

112

CHAPTER 4 © POINTERS AND ARRAYS

As the value of argc is 8, the for loop performs six iterations and displays the names
of six towns, one town per iteration.

Since argyv is a pointer to an array of pointers, you can dereference it to access the
strings associated with it. This means instead of using the expression given here:
argv[k];

...you can also use the expression given here:

*(argv + k)

The program point16 was rewritten with this modification and is given here. Type

the following text (program) in a C file and save it in the folder C: \Code with the file name

pointi7.c:

/* This program also uses command-line arguments. An alternative version. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main(int argc, char *argv[]) /* L2 */
/* L3 */

int i; /* L4 */
printf("Few towns in %s district:\n", *++argv); /* L5 */
for(i = 2; i < argc; i++) /* L6 */
printf("%s\n", *++argv); /* L7 */
return(0); /* L8 */
} /* L9 */

Compile and execute this program with or without arguments and you get the same
output as with points.

It produces the same output as the preceding program. Notice the expression *++argv.
In this expression, the first integer, 1, is added to the pointer argyv (i.e., it is made to point
to the next string), and then it is dereferenced using the operator * to retrieve the string to
which it is pointing.

4-17. Retrieve Stored Strings Using a Pointer to

a Pointer
Problem

You want to retrieve stored strings using a pointer to a pointer.

113

CHAPTER 4 " POINTERS AND ARRAYS

Solution

Write a C program that retrieves stored strings using a pointer to pointer, with the
following specifications:

e The program declares a two-dimensional char type array named
cities and initializes it with suitable data (strings).

e The program declares a pointer-to-char variable called ptr and a
pointer to pointer-to-char variable ptrPtr. The program retrieves
the strings stored in the array cities with the help of the pointer
variables ptr and ptrPtr and displays them on the screen.

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name point18.c:

/* This program retrieves the stored strings using a pointer to po inter to
char type array. */

/* Bl */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 ¥/
{ /* L3 */
int i, j; /* L4 */
char ch; /* L5 */
char cities[5][10] = { /* L6 */
"Satara", /* L7 */

"Sangli”, /* 18 */

"Karad", /* L9 */

"Pune", /* L10 */

"Mumbai" /* L11 */

}; /* L12 */

char *ptr, **ptrPtr; /* L13 */
/* BL */

ptrPtr = &ptr; /* L14 */
/* BL */

for(i=0; i<5; i++) { /* L15 */
ptr = (char *) cities[i]; /* L16 */

j = 0; /* L17 */
/* BL */

do { /* L18 */
ch = *(ptr + j); /* L19 */
printf("%c", ch); /* L20 */
j=3+1; /* 121 %/

} while(ch = "\0"); /* 122 */
/* BL */

114

CHAPTER 4 © POINTERS AND ARRAYS

printf("\t\t"); /* 123 */
j=o0; /% 124 */
/*¥ BL */

do { /* L25 */
ch = *(*ptrPtr + j); /* L26 */
printf("%c", ch); /¥ L27 */
j=3+1; /* 128 */

} while(ch != "\0"); /* 129 */
/*¥ BL */

printf("\n"); /* L30 */
} /* 131 */
/* BL */

return(0); /* L32 */
} /* L33 */

Compile and execute this program, and the following lines of text appear on the screen:

Satara Satara
Sangli Sangli
Karad Karad
Pune Pune
Mumbai Mumbai
How It Works

In LOC 4, two int variables, i and j, are declared. In LOC 5, a char variable called ch is
declared. In LOCs 6 to 12, the two-dimensional char type array called cities is declared
and also initialized with suitable strings. In LOC 13, a pointer-to-char variable ptr and a
pointer to pointer-to-char variable ptrPtr are declared. Notice the following about this
program:

e chisachar variable.

e ptrisapointer to a char variable.

e *ptrisa char variable.

e ptrPtrisa pointer to a pointer-to-char variable.
e *ptrPtris a pointer-to-char variable.

e **ptrPtrisa char variable.

Figure 4-10 shows the diagrammatic representation of the char array cities and the
pointers ptr and ptrPtr. Notice the output of this program. You can see two columns,
and each column lists the names of cities. The first column is outputted by the do-while
loop in LOCs 18 to 22 using *ptr. The second column is outputted by the do-while loop
in LOCs 25 to 29 using **ptrPtr. Both do-while loops are placed in a for loop. This for
loop performs five iterations, and in each iteration a single line of text is displayed on the
screen. Notice LOC 14, which is reproduced here for your quick reference:

ptrPtr = 8ptr; /* L14 */
115

CHAPTER 4 " POINTERS AND ARRAYS

®—1—| Satara\o

\J

Sangli\o
ptrPtr ptr

Karad\o

Pune\o0

Mumbai\o

cities[5][10]

Figure 4-10. Diagrammatic representation of pointer-to-char variable ptr and pointer-
to-char variable ptrPtr. Notice that ptrPtr is pointing to ptr, and ptr is pointing to the first
character in the first row of a two-dimensional char type array called cities.

In LOC 14, the address of ptr is assigned to ptrPtr. As ptrPtr is a pointer to a
pointer-to-char, you can assign to it only the address of a pointer-to-char.

Notice LOC 16, which represents the first statement in the body of the for loop and is
reproduced here for your quick reference:

ptr = (char *) cities[i]; /* L16 */

In LOC 16, the address of the first character in the ith row is assigned to the pointer
variable ptr. The address of the ith row is returned by cities[1].Itis cast to (char *)
and then assigned to ptr. This casting is necessary because cities[1] is not a pointer to
char; itis a pointer to the ith row.

Thus, during the first iteration, LOC 16 assigns the address of the first character of
the first row (i.e., the address of 'S" in "Satara") to ptr. During the second iteration,
LOC 16 assigns the address of the first character of the second row (i.e., address of 'S' in
"Sangli")to ptr, and so on.

Notice LOC 19 in the first do-while loop, which is reproduced here for your quick
reference:

ch = *(ptr + j); /% 119 */

Notice that this is a nested loop. The outer loop is a for loop. Consider the second
iteration of the for loop. At the beginning of the second iteration of the for loop, in LOC 16,
ptr is set to point to the first character in the second string (and this second string is
nothing but "Sangli"). During the first iteration of the do-while loop, (ptr + j) points to
the first character in "Sangli" as j is equal to 0. Consequently, LOC 19 retrieves the first
character in "Sangli" (itis 'S"), and it is sent to the screen for display in LOC 20. During
the second iteration of the do-while loop, (ptr + j) points to the second character
in "Sangli" as j is equal to 1. Consequently, LOC 19 retrieves the second character in
"Sangli" (itis "a"'), and it is sent to the screen for display in LOC 20. Proceeding in this
manner, the complete string "Sangli" is retrieved and displayed on the screen.

116

CHAPTER 4 © POINTERS AND ARRAYS

Notice LOC 26 in the second do-while loop, which is reproduced here for your quick
reference:

ch = *(*ptrPtr + j); /* L26 */

Notice that this is also a nested loop. The outer loop is a for loop. Consider the
second iteration of the for loop. At the beginning of the second iteration of the for loop,
in LOC 16, ptr is set to point to the first character in the second string (and this second
string is nothing but "Sangli"). Also, ptrPtr always points to ptr. It means during the
second iteration of the for loop, *ptrPtr points to the first character in the second
string (and this second string is nothing but "Sangli"). During the first iteration of the
do-whileloop, (*ptrPtr + j) points to the first character in "Sangli" as j is equal
to 0. Consequently, LOC 26 retrieves the first character in "Sangli" (itis 'S"'), and itis
sent to the screen for display in LOC 27. During the second iteration of the do-while
loop, (*ptrPtr + j) points to the second character in "Sangli" as j is equal to 1.
Consequently, LOC 26 retrieves the second character in "Sangli” (itis 'a'), and itis
sent to the screen for display in LOC 27. Proceeding in this manner, the complete string
"Sangli" is retrieved and displayed on the screen.

117

CHAPTER 5

Functions and Structures
with Pointers

In this chapter, you will explore the capabilities of functions and structures with the help
of pointers. You can certainly use functions and structures without pointers. However,
with the use of pointers, you need fewer lines of code to perform the same tasks.

5-1. Pass Arguments by Reference to a Function
Problem

You want to pass arguments by reference to a function to set the values of the credit count
of members. This credit count is represented by an integer, and it can be set either from
the main() function or from a user-defined function.

Solution

Write a C program that passes the arguments by reference, with the following
specifications:

e The program creates two integer variables, intCC1 and intCC2,
to store the credit counts of members and assigns predetermined
values to them. The program also displays these values on the
screen.

e The program defines the function changeCreditCount() in which
the int variables intCC1 and intCC2 (which represent credit
counts) are passed as arguments by reference. In addition to the
function main(), the function changeCreditCount() can also set
the values of the credit count.

© Shirish Chavan 2017 119
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_5

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

e The program changes the values of credit counts from
the function changeCreditCount (). New values of credit
counts are displayed on the screen. When the execution of
changeCreditCount() is complete and control returns to the
main() function, then the program again displays the values
of credit counts to verify that the values of credit counts set in
changeCreditCount() are intact.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C:\Code with the filename

ref.c:

/* In this programs arguments are passed by reference to set the credit

count. */
#include <stdio.h>
void changeCreditCount(int *p1, int *p2);

main()

{

int intCC1 = 15, intCC2 = 20;

printf("Computer-control is in main() function\n");
printf("intCC1 = %d and intCC2 = %d\n", intCC1, intCC2);
changeCreditCount(8intCC1, &8intCC2);

printf("Computer-control is back in main() function\n");
printf("intCC1 = %d and intCC2 = %d\n", intCC1, intCC2);
return(0);

}

void changeCreditCount(int *p1, int *p2)
{
printf("Computer-control is in changeCreditCount() function\n");
printf("Initial values of *p1 and *p2: \n");
printf("*p1 = %d and *p2 = %d\n", *p1, *p2);
*p1 = *p1 * 45
*pz - *pz * 4;
printf("Now values of *p1 and *p2 are changed\n");
printf("*p1 = %d and *p2 = %d\n", *p1, *p2);
return;

120

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
BL
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
BL
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

Compile and execute this program, and the following lines of text appear on the screen:

Computer-control is in main() function

intCC1 = 15 and intCC2 = 20

Computer-control is in changeCreditCount() function
Initial values of *p1 and *p2:

*pl = 15 and *p2 = 20

Now values of *pl and *p2 are changed

*pl = 60 and *p2 = 80

Computer-control is back in main() function

intCC1 = 60 and intCC2 = 80

How It Works

When you pass arguments by reference and change the values of parameters in the
called function, the values of arguments in the caller function are also changed. You exploit
this fact to set the values of credit counts either from the main() function or from a
user-defined function.

When you pass arguments by reference, you actually pass pointers to the called
function. When you intend to pass arguments by reference, then you need to do the
following:

e Prefix each argument in a function call with the address operator
& (asin LOC 8).

e Prefix each parameter with the indirection operator * in the
function prototype (as in LOC 2) and function definition
(asin LOC 13).

LOC 2 consists of the prototype of function changeCreditCount (). In LOC 2, the
parameters p1 and p2 are prefixed by the indirection operator * as follows:

void changeCreditCount(int *p1, int *p2); /* L2, passing the arguments
by reference */

The block of code spanning LOCs 13 to 23 consists of the definition of the function
changeCreditCount(). Inside the main() function, in LOC 5, two int variables, intCC1
and intCC2, are declared and also initialized with the values 15 and 20, respectively.

In LOC 7, the values of intCC1 and intCC2 are displayed on the screen. In LOC 8, the
function changeCreditCount() is called. LOC 8 is reproduced here for your quick
reference:

changeCreditCount(&intCC1, &intCC2); /* L8, passing the arguments
by reference */

Inside the function changeCreditCount(), the data resides in parameters p1 and p2.

Because the arguments are passed by reference, the variables p1 and p2 are nothing but
the aliases of the variables intCC1 and intCC2.

121

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

In LOC 17, the values of p1 and p2 are displayed on the screen, which are nothing
but the current values of intCC1 and intCC2, which in turn are nothing but 15 and 20,
respectively. In LOCs 18 and 19, the values of p1 and p2 are updated to 60 and 80,
respectively. In LOC 21, the updated values of p1 and p2 (i.e., 60 and 80) are displayed
on the screen. LOC 22 consists of the return statement. After execution of LOC 22, the
control is returned to the main() function. Next, LOC 9 in the function main() is executed,
and after execution of this LOC, the message “Computer-control is back in main()
function” is displayed on the screen. In LOC 10, the values of intCC1 and intCC2 (which
are now 60 and 80) are displayed on the screen, and then the execution of program is
complete. Notice that as variables p1 and p2 in the function changeCreditCount() are
nothing but aliases of the variables intCC1 and intCC2 in main(), when the values of p1
and p2 are updated in LOCs 18 and 19, the values of intCC1 and intCC2 inmain() are also
updated automatically.

5-2. Display Data Stored in Nested Structures
Problem

You want to access the members and embedded members in nested structures and then
display the data stored in these structures on the screen. Figure 5-1 shows the data stored
in structures, and Figure 5-2 shows the structure diagrammatically.

Table Showing the Biodata of Five Secret Agents
Name Roll Number Agein years Weightin kg Joining Date
Dick 1 21 70.6 10/18/2006
Robert 2 22 75.8 8/24/2007
Steve 3 20 53.7 3/19/2006
Richard 4 19 83.1 6/22/2006
Albert 5 18 62.3 1/126/2007

Figure 5-1. Table showing the biodata of five secret agents

122

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

. this member
biodata structure is structure
name rollno age weight joiningDate
| I I |
this member is this member this member is int this member is float
char array is int | | I
month day year
I | |
this member is int this member is int this member is int

Figure 5-2. Diagrammatic representation of structure biodata that consists of structure
JjoiningDate as its member. Notice that joiningDate is a structure variable of type struct date.

Solution

Write a C program that uses pointers to structures to access the members and embedded
members in nested structures and then to display the data stored in these structures on
the screen, with the following specifications:

e The program creates a structure called date to store the joining
dates of members. The program creates the structure biodata
to store the biodata of members, and the structure date is
also a member of the structure biodata (see Figure 5-1 and
Figure 5-2). To save the space, use only the first two records
shown in Figure 5-1.

e The program creates two variables of type struct biodata and
assigns suitable values to them.

e The program uses pointers to structures to retrieve the data stored
in structures and displays this data on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename
struil.c:

/* In this program pointers to structures are used to access the embedded members in */
/* nested structures. The data in structures is then displayed on the screen. */
/* BL */
#include <stdio.h> /* L1 ¥/
/* BL */

123

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

main()
{
struct date {
int month;
int day;
int year;
b
struct biodata {
char name[15];
int rollno;
int age;
float weight;
struct date joiningDate;
b
struct biodata *ptri, sai = {"Dick", 1, 21, 70.6F, 10, 18, 2006};

struct biodata *ptr2, sa2 = {"Robert", 2, 22, 75.8F, 8, 24, 2007};
ptri = &sai;
ptr2 = &sa2;

printf("Biodata of Secret Agent # 1: \n");

printf("\tName: %s\n", (*ptri).name);

printf("\tRoll Number: %d\n", (*ptr1).rollno);

printf("\tAge: %d years \n", (*ptri).age);

printf("\tWeight: %.1f kg\n", (*ptr1).weight);

printf("\tJoining Date: %d/%d/%d\n\n", (*ptr1).joiningDate.month,
(*ptr1).joiningDate.day, (*ptr1).joiningDate.year);

printf("Biodata of Secret Agent # 2: \n");

printf("\tName: %s\n", ptr2->name);

printf("\tRoll Number: %d\n", ptr2->rollno);

printf("\tAge: %d years \n", ptr2->age);

printf("\tWeight: %.1f kg\n", ptr2->weight);

printf("\tJoining Date: %d/%d/%d\n", ptr2->joiningDate.month,
ptr2->joiningDate.day, ptr2->joiningDate.year);

return(0);

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L2

L3

L4

L5

L6

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
BL

L20
L21
L22
L23
L24
L25
L26
BL

L27
L28
L29
L30
L31
L32
L33
BL

L34
L35

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

Biodata of Secret Agent # 1:
Name: Dick

Roll Number: 1

Age: 21 years

Weight: 70.6 kg

Joining Date: 10/18/2006
Biodata of Secret Agent # 2:

124

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

Name: Robert

Roll Number: 2

Age: 22 years

Weight: 75.8 kg

Joining Date: 8/24/2007

How It Works

In LOCs 4 to 8, the structure date is defined. In LOCs 9 to 15, the structure biodata is
defined. The structure date is a member of the structure biodata. In LOCs 16 to 17, the
variables sal and sa2 of type biodata are declared and initialized with suitable values.
In the same LOCs (i.e., 16 to 17), the pointers ptr1 and ptr2 to the structure biodata are
declared. In LOC 18, the pointer ptr1 is set pointing to the variable sal. In LOC 19, the
pointer ptr2 is set pointing to variable sa2.

In the block of code spanning LOCs 20 to 26, the data assigned to variable sa1
(it is the biodata of Secret Agent #1) is displayed on the screen. LOC 21 displays the name
of Secret Agent #1 on the screen, and it is reproduced here for your quick reference:

printf("\tName: %s\n", (*ptr1).name); /* L21 */

The construction (*ptr1).name is used to retrieve the string name stored in sal.
Similar constructions are used in the remaining LOCs (i.e., 22 to 26) to retrieve the data
stored in sa1. LOCs 25 and 26 represent a single statement, but as it is very long, itis
shown on two LOCs. In this statement, the construction (*ptr1).joiningDate.month
is used to retrieve the month, the construction (*ptr1).joiningDate.day is used to
retrieve the day, and the construction (*ptr1).joiningDate.year is used to retrieve the
year of birth of Secret Agent #1.

In the block of code spanning LOCs 27 to 33, the data assigned to variable sa2
(it is the biodata of Secret Agent #2) is displayed on the screen. In this block of code,
different constructions are used, compared to the preceding block of code, to retrieve the
data stored in variable sa2. LOC 28 displays the name of Secret Agent #2 on the screen,
and it is reproduced here for your quick reference:

printf("\tName: %s\n", ptr2->name); /* L28 */

The construction ptr2->name is used to retrieve the string name stored in sa2. Similar
constructions are used in the remaining LOCs (i.e., 29 to 33) to retrieve the data stored
in sa2. LOCs 32 and 33 represent a single statement, but as it is very long, it is put on two
LOCs. In this statement, the construction ptr2->joiningDate.month is used to retrieve
the month, the construction ptr2->joiningDate.day is used to retrieve the day, and the
construction ptr2->joiningDate.year is used to retrieve the year of birth of Secret Agent #2.

Constructions (*ptr).joiningDate.month and ptr->joiningDate.month can be
used in scanf() statements, as shown here:

scanf("%d", &agent.joiningDate.month);

scanf("%d", &(*ptr).joiningDate.month);
scanf("%d", 8ptr->joiningDate.month);

125

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

Either of these LOCs, after execution, accepts an integer value from the keyboard and
assigns it to agent.joiningDate.month

Constructions (*ptr).joiningDate.month and ptr->joiningDate.month can also
be used in assighment statements, as shown here:

agent.joiningDate.month = agent.joiningDate.month + 3;
(*ptr).joiningDate.month = (*ptr).joiningDate.month + 3;
ptr->joiningDate.month = ptr->joiningDate.month + 3;

Either of these LOCs, after execution, increases the value of agent.joiningDate.

month by 3.
Now here are a few words about the dot operator and the arrow operator.

Dot Operator

In the following code, you assign the suitable values to sai:

strcpy(sal.name, "Dick"); /* L1 */
sal.rollno = 1; /* L2 */
sal.age = 21; /* L3 */
sal.weight = 70.6F; /* L4 */

Notice that an individual member of a structure is accessed using the following
construction:

structureVariableName.memberName
The dot (.) that connects structureVariableName to memberName is called a structure
member operator. The construction given here can be used in a program like an ordinary

variable. For example, notice the LOCs given here:

sal.age = sal.age + 1; /* L5 */
sal.weight = sal.weight + 2.3; /* L6 */

After execution of LOC 5, the value of sal.age increases by 1 (it changes from 21 to 22).

After execution of LOC 6, the value of sal.weight increases by 2.3 (it changes from
70.6 to 72.9).

Arrow Operator

Notice the piece of code given here:

struct biodata { /¥ L1 */
char name[15]; /* L2 */
int rollno; /* L3 */
int age; /* L4 */

126

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

float weight; /* L5 */
¥ /% L6 */
struct biodata *ptr, agent = {"Dick", 1, 21, 70.6F}; /* L7 */
ptr = &agent; /* L8 */
printf("Biodata of secret agent:\n"); /* LL */
printf("Name: %s\n", (*ptr).name); /* L9 */
printf("Roll Number: %d\n", (*ptr).rollno); /* L10 */
printf("Age: %d years \n", (*ptr).age); /* L11 */
printf("Weight: %.1f kg\n\n", (*ptr).weight); /* L12 */

This piece of code, after execution, displays the following lines of text on the screen:

Biodata of secret agent:
Name: Dick

Roll Number: 1

Age: 21 years

Weight: 70.6 kg

In this piece of code, the structure biodata is declared in LOCs 1 to 6. In LOC 7,
you declare a pointer called ptr to struct biodata and a variable agent of type struct
biodata. In LOC 8, the pointer ptr is made to point to the variable agent. In LOCs 9 to 12,
you display the biodata of the agent on the screen. Notice how members of the agent are
accessed using the pointer ptr. Construction *ptr can be used instead of the variable
agent. Hence, the following LOCs are fully equivalent:

printf("Name: %s\n", agent.name);
printf("Name: %s\n", (*ptr).name);

Either of these LOCs, after execution, will display the following line of text on the screen:
Name: Dick

Also, notice that in the construction (*ptr).name, parentheses around *ptr are
necessary because the precedence of the structure member operator . is higher than *.
The construction *ptr.name means *(ptr.name), which is illegal here because name is
not pointer, and hence it cannot be dereferenced.

Pointers to structures are used frequently; hence, an alternative notation, called the
arrow operator, is provided as a shorthand. This arrow operator is ->. For example, the
construction given here:
ptr->name

...is fully equivalent to either of the following constructions:

agent.name
(*ptr).name

127

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

This means the following LOCs are fully equivalent:

printf("Name: %s\n", agent.name);
printf("Name: %s\n", (*ptr).name);
printf("Name: %s\n", ptr->name);

Either of these LOCs, after execution, will display the following line of text on the
screen:

Name: Dick

Also, the following LOCs are fully equivalent:

printf("Roll Number: %d\n", agent.rollno);
printf("Roll Number: %d\n", (*ptr).rollno);
printf("Roll Number: %d\n", ptr->rollno);

Either of these LOCs, after execution, will display the following line of text on the
screen:

Roll Number: 1

Also, the following LOCs are fully equivalent:

printf("Age: %d years \n", agent.age);
printf("Age: %d years \n", (*ptr).age);
printf("Age: %d years \n", ptr->age);

Either of these LOCs, after execution, will display the following line of text on the
screen:

Age: 21 years

Constructions involving pointers can also be used in scanf() statements. Notice the
LOCs given here:

scanf("%d", &agent.age);
scanf("%d", &(*ptr).age);
scanf("%d", &ptr->age);

Either of these LOCs, after execution, accepts the integer value entered through the
keyboard and assigns it to agent.age.

Constructions involving pointers can also be used in assignment statements. Notice
the LOCs given here:

agent.age = agent.age + 5;

(*ptr).age = (*ptr).age + 5;
ptr->age = ptr->age + 5;

128

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

Either of these LOCs, after execution, increases the value of agent.age by 5.

Also, notice that it is possible to declare the pointer ptr and the variable agent in

LOC 6 and drop LOC 7. This means the piece of code spanning LOCs 1 to 7, given earlier,
can be replaced with the following piece of code:

struct biodata {
char name[15];
int rollno;

int age;

float weight;
} *ptr, agent = {"Dick", 1, 21, 70.6F};

5-3. Build a Structure Using a Function
Problem

You want to build a structure using a function.

Solution

/*
/*
/*
/*
/*
/*

L1
L2
L3
L4
L5
L6

Write a C program that passes the individual members of a structure to a function so
that this function builds a structure using this data and returns it, with the following
specifications:

The program creates a structure called rectangle that in turn
consists of two int type members, height and width. The
program creates two variables, rect1 and rect2, of type struct
rectangle.

The program creates a function makeIt() that accepts the values
of members height and width as input arguments. The program
calls the function makeit () and passes suitable values for height
and width to it as input arguments. Using these input arguments,
the function makeIt() builds and returns the structure rectangle,
which is then assigned to variables rect1 and rect2.

The data stored in rect1 and rect2 is then displayed on the screen.

*/
*/
*/
*/
*/
*/

129

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename

stru2.c:

/* This program uses a function which accepts values of individual mmembers

of structure, */
/* builds a structure, and returns it. */

#include <stdio.h>

struct rectangle {
int height;

int width;

};

struct rectangle makeIt(int height, int width);

main()

{

struct rectangle rect1, rect2;
rectl = makeIt(20, 30);

rect2 = makeIt(40, 80);

printf("Dimensions of recti: \n");
printf("height: %d\n", recti.height);
printf("width: %d\n\n", recti.width);

printf("Dimensions of rect2: \n");
printf("height: %d\n", rect2.height);
printf("width: %d\n\n", rect2.width);

return(0);

}

struct rectangle makeIt(int height, int width)
{
struct rectangle myRectangle;
myRectangle.height = height;
myRectangle.width = width;
return myRectangle;

}

130

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
BL
L6
BL
L7
L8
L9
L10
L11
BL
L12
L13
L14
BL
L15
L16
L17
BL
L18
L19
BL
L20
L21
L22
L23
L24
L25
L26

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

Compile and execute this program, and the following lines of text appear on the screen:

Dimensions of recti:
height: 20

width: 30
Dimensions of rect2:
height: 40

width: 80

How It Works

In the block of code spanning LOCs 2 to 5, the structure rectangle is defined. It consists
of two int type members, namely, height and width. The values of these two members
are passed as arguments to the function makeIt() that builds a rectangle and then returns
the structure rectangle. The block of code spanning LOCs 20 to 16 defines the function
makeIt().The parameter names in the function makeIt() were chosen to be same as the
member names in the structure (i.e., height and width) to keep the logic simple.

The scope of the structure rectangle is set to be external (it is declared outside of
any function) so that it can be accessed from any function. LOC 6 consists of the function
prototype. In LOC 9, two variables, rect1 and rect2, of type struct rectangle are declared.

In LOC 10, a call is made to the function makeIt(), and arguments 20 and 30 are
provided as values of the parameters height and width. The function makeIt() returns a
structure rectangle with its member values set accordingly (i.e., height is 20 and width
is 30), and this returned structure is assigned to the variable rect1.

Similarly, in LOC 11, a call is made to the function makeIt() but with different
arguments (40 and 80). The structure returned by makeIt() is then assigned to the
variable rect2.

LOCs 12 to 17 display the values of members belonging to the structures rect1
and rect2.

5-4. Modify the Data in a Structure by Passing It

to a Function
Problem

You want to modify the data in a structure by passing it to a function.

Solution

Write a C program, with the following specifications, that passes a structure to a function
as an input argument, and this function resets the data in this structure and returns it:

e The program creates a structure rectangle that in turn consists
of two int type members, height and width. The program also
creates two variables, rect1 and rect2, of type struct rectangle
and initializes these variables with suitable values. The data
stored in rect1 and rect?2 is displayed on the screen.

131

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

¢ The program creates a function called doubleIt() that accepts
the variable of type struct rectangle (i.e., rect1 or rect2) as the
input argument, resets the data of this variable, and then returns
this variable. Using these returned variables, the variables rect1
and rect?2 are reset.

e Thereset data stored in rect1 and rect2 is again displayed on the
screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename

stru3.c:

/* This program uses a function which accepts a structure as an input
argument */
/* and returns a structure after modifying data in it. */

/*

#include <stdio.h> /*
/*

struct rectangle { /*
int height; /*

int width; /*

}s /*
/*

struct rectangle doubleIt(struct rectangle ourRect); /*
/*

main() /*
{ /*
struct rectangle rect1 = {10, 15}, rect2 = {25, 35}; /*

/*

printf("Dimensions of rectl before modification: \n"); /*

printf("height: %d\n", recti.height); /*

printf("width: %d\n\n", recti.width); /*

/*

rectl = doubleIt(rect1); /*

/*

printf("Dimensions of rectl after modification: \n"); /*

printf("height: %d\n", recti.height); /*

printf("width: %d\n\n", recti.width); /*

/*

printf("Dimensions of rect2 before modification: \n"); /*

printf("height: %d\n", rect2.height); /*

printf("width: %d\n\n", rect2.width); /*

/*

rect2 = doublelt(rect2); /*

/*

132

BL
L1
BL
L2
L3
L4
L5
BL
L6
BL
L7
L8
L9
BL
L10
L11
L12
BL
L13
BL
L14
L15
L16
BL
L17
L18
L19
BL
L20
BL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

printf("Dimensions of rect2 after modification: \n"); /* L21 */
printf("height: %d\n", rect2.height); /* L22 */
printf("width: %d\n\n", rect2.width); /* L23 */
/* BL */

return(0); /* L24 */
} /* L25 */
/* BL */

struct rectangle doubleIt (struct rectangle ourRect) /* 126 */
{ /¥ L27 */
ourRect.height = 2 * ourRect.height; /* 128 */
ourRect.width = 2 * ourRect.width; /* 129 */
return ourRect; /* 130 */

} /* L31 */

Compile and execute this program, and the following lines of text appear on the
screen:

Dimensions of rectl before modification:
height: 10

width: 15

Dimensions of rect1l after modification:
height: 20

width: 30

Dimensions of rect2 before modification:
height: 25

width: 35

Dimensions of rect2 after modification:
height: 50

width: 70

How It Works

LOCs 2 to 5 define the structure rectangle. The structure rectangle consists of two int
type members, namely, height and width. LOC 6 consists of the prototype of the function
doubleIt().

In LOC 9, two variables, rect1 and rect2, of type struct rectangle are declared
and also initialized with suitable values. LOCs 10 to 12 display the data stored in rect1.
In LOC 13, the function doubleIt() is called. In this function call, the input argument
is rect1, and the value returned by doubleIt() is also assigned to rect1. LOCs 26 to
31 define the function doubleIt(). This function accepts a variable of type struct
rectangle as an input, doubles the values of its members, and returns the modified value
of that variable. LOCs 14 to 16 display the data stored in rect1 after modification.

LOCs 17 to 19 display the values of members of rect2. In LOC 20, function
doubleIt() is called. The argument to this function is rect2, and the value returned by
this function is assigned to rect2. This function simply doubles the values of members
of rect2. LOCs 21 to 23 display the values of members of rect2 after modification by
doubleIt().

133

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

In this program, the structure rectangle is declared outside of any function so
that its scope should be external. The structure rectangle can be accessed from any
function.

5-5. Modify the Data in a Structure by Passing a

Pointer-to-Structure to a Function
Problem

You want to modify the data in a structure by passing a pointer-to-structure to a function.

Solution

Write a C program that modifies the data in a structure by passing a pointer-to-structure
to a function, with the following specifications:

e The program creates a structure called rectangle that in turn
consists of two int type members, namely, height and width.
The program also creates two variables, rect1 and rect2, of type
struct rectangle and initilizes these variables with suitable
values. The data stored in rect1 and rect2 is displayed on the
screen.

e The program creates a function called doubleIt() that accepts
the pointer-to-struct rectangle (say, &rect1) as an input
argument and modifies the data in rect1.

e Thereset data stored in rect1 is again displayed on the screen.
The procedure is then repeated for rect2.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename
stru4.c:

/* This program uses a function which accepts a pointer to structure as an
input argument */
/* and modifies data in that structure. */

/* BL */
#include <stdio.h> /* L1 */
/* BL */
struct rectangle { /* L2 */
int height; /* L3 */
int width; /* L4 */
}; /* L5 */
/* BL */

134

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

void doubleIt(struct rectangle *ptr); /* L6
/* BL

main() /* L7
{ /* L8
struct rectangle rect1 = {10, 15}, rect2 = {25, 35}; /* L9
/* BL

printf("Dimensions of recti before modification: \n"); /* L10

printf("height: %d\n", recti.height); /* L1

printf("width: %d\n\n", recti.width); /* L12
/* BL

doubleIt(8rect1); /* L13
/* BL

printf("Dimensions of recti after modification: \n"); /* L14

printf("height: %d\n", recti.height); /* L15

printf("width: %d\n\n", rectil.width); /* L16
/* BL

printf("Dimensions of rect2 before modification: \n"); /* L17

printf("height: %d\n", rect2.height); /* L18

printf("width: %d\n\n", rect2.width); /* L19
/* BL

doubleIt(&rect2); /* L20
/* BL

printf("Dimensions of rect2 after modification: \n"); /* L21

printf("height: %d\n", rect2.height); /* L22

printf("width: %d\n\n", rect2.width); /* 123
/* BL

return(0); /* 124

} /* 125
/* BL

void doubleIt (struct rectangle *ptr) /* L26

{ /* L27

ptr->height = 2 * ptr->height; /* 128

ptr->width = 2 * ptr->width; /* 129

return; /* L30

} /* 131
Compile and execute this program, and the following lines of text appear on the

screen:

Dimensions of recti before modification:
height: 10

width: 15

Dimensions of rect1l after modification:
height: 20

width: 30

Dimensions of rect2 before modification:
height: 25

width: 35

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

135

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

Dimensions of rect2 after modification:
height: 50
width: 70

How It Works

LOCs 2 to 5 define the structure rectangle. The structure rectangle consists of two int
type members, namely, height and width. The structure rectangle is declared outside of
any function so that its scope is external. The structure rectangle can be accessed from
any function. LOC 6 consists of the prototype of the function doubleIt(). This function
accepts a pointer-to-struct rectangle as an input and then doubles the values of the
members of the structure, namely, height and width. This function does not return any
value, and its return type is void.

In LOC 9, two variables, rect1 and rect2, of type struct rectangle are declared
and are also initialized with suitable initializers. LOCs 10 to 12 display the values of the
members of rect1. In LOC 13, the function doubleIt() is called. The argument to this
function is &rect1. This function simply doubles the values of members of rect1.

LOCs 14 to 16 display the values of members of rect1 after modification by doubleIt().

LOCs 17 to 19 display the values of members of rect2. In LOC 20, function
doubleIt() is called. The argument to this function is &rect2. This function simply
doubles the values of the members of rect2. LOCs 21 to 23 display the values of members
of rect2 after modification by doubleIt().

LOCs 26 to 31 consist of the definition of the function doubleIt().

5-6. Store and Retrieve Data Using an Array of

Structures
Problem

You want to store and retrieve data using an array of structures.

Solution

Write a C program that stores and retrieves the data using an array of structures, with the
following specifications:

e The program declares a structure, namely, biodata. The program
creates an array, namely, agents of type struct biodata.

¢ The program fills the elements of the array agents with suitable
data, in batch mode. Figure 5-1 shows the data stored in this
array. To save the space, use only the first two records shown in
Figure 5-1.

e The program displays the data filled in the elements of the array
on the screen.

136

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

The Code

/* In this program an array of structures is used. */

#include <stdio.h>

main()

struct biodata {
char name[15];
int rollno;
int age;

float weight;

}s

struct biodata agents[2];

strcpy(agents[0].name, "Dick");
agents[0].rollno = 1;
agents[0].age = 21;
agents[0].weight = 70.6F;

strcpy(agents[1].name, "Robert");
agents[1].rollno = 2;
agents[1].age = 22;
agents[1].weight = 75.8F;

printf("Biodata of Secret Agent # 1: \n");
printf("\tName: %s\n", agents[0].name);
printf("\tRoll Number: %d\n", agents[0].rollno);
printf("\tAge: %d years \n", agents[0].age);
printf("\tWeight: %.1f kg\n\n", agents[0].weight);

printf("Biodata of Secret Agent # 2: \n");
printf("\tName: %s\n", agents[1].name);
printf("\tRoll Number: %d\n", agents[1].rollno);
printf("\tAge: %d years \n", agents[1].age);
printf("\tWeight: %.1f kg\n", agents[1].weight);

return(0);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename
strus.c:

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
L9
BL
L10
Bl
L11
L12
L13
L14
BL
L15
L16
L17
L18
BL
L19
L20
L21
L22
L23
BL
L24
L25
L26
L27
L28
BL
L29
L30

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

137

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

Compile and execute this program, and the following lines of text appear on the screen:

Biodata of Secret Agent # 1:
Name: Dick

Roll Number: 1

Age: 21 years

Weight: 70.6 kg

Biodata of Secret Agent # 2:
Name: Robert

Roll Number: 2

Age: 22 years

Weight: 75.8 kg

How It Works

In LOCs 4 to 9, the structure biodata is created. In LOC 10, an array of structures called
agents is created of type struct biodata. This array consists of only two elements:
agents[0] and agents[1].

e agents[0] is meant for storing the first record shown in Figure 5-1.

e agents[1] is meant for storing the second record shown in
Figure 5-1.

In LOCs 11 to 14, the first element of the array, agents[0], is filled with data. In
LOCs 15 to 18, the second element of the array, agents[1], is filled with data.

The individual structure member in an array element is accessed using the
construction shown here:

arrayElementName.memberName

Here, the dot (.) is a structure member operator. For example, the member age in the
first array element agents[0] can be accessed using the construction given here:

agents[0].age

In LOCs 19 to 23, the data filled in agents[0] is displayed on the screen. In
LOCs 24 to 28, the data filled in agents[1] is displayed on the screen.

In this program, you assign the values to individual members of array elements.
Can you initialize array elements? Certainly! You can do so. Notice the piece of code
given here:

struct biodata { /* L1 */
char name[15]; /¥ L2 */
int rollno; /* L3 */
int age; /* L4 */
float weight; /% L5 */
1 /* L6 */
/* BL */

138

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

struct biodata agents[2] = /* L7 */
{ /* L8 */

{"Dick", 1, 21, 70.6F}, /* L9 */

{"Robert", 2, 22, 75.8F} /* L10 */

}; /* L11 */

In this piece of code, you declare an array called agents that consists of two elements
and initialize these elements using the data contained in the first two records shown in
Figure 5-1 as initializers. Replace LOCs 10 to 18 in the program stru6 with LOCs 7 to 11 in
the piece of code given earlier, and the program works equally well.

5-7. Store and Retrieve Data Using an Array of

Structures in Interactive Mode
Problem

You want store and retrieve data using an array of structures in interactive mode.

Solution

Write a C program that stores and retrieves data using an array of structures, with the
following specifications:

e The program declares a structure, namely, biodata. The program
creates an array called agents of type struct biodata.

e The program fills the elements of the array agents with suitable
data in interactive mode. Figure 5-1 shows the data to be stored in
this array.

e The program displays the data filled in the elements of the array
on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename
stru6.c:

/* An interactive program that makes use of array of structures. */

/* BL */

#include <stdio.h> /¥ L1 */
/* BL */

main() /* L2 */
{ /* L3 */
int i; /* L4 */
struct biodata { /¥ L5 */

139

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

char name[15];
int rollno;
int age;

float weight;
b

struct biodata agents[5];

for(i = 0; i < 5; i++) {
printf("\nEnter Biodata of Secret Agent # %d: \n", i+1);
printf("Name: ");
scanf("%s", 8agents[i].name);
printf("Roll Number: ");
scanf("%d", agents[i].rollno);
printf("Age: ");
scanf("%d", agents[i].age);
printf("Weight: ");
scanf("%f", dagents[i].weight);
}

printf("\nNow data entered by you will ");
printf("be displayed on the screen.\n\n");
for(i = 0; i < 5; i++) {
printf("Biodata of Secret Agent # %d: \n", i+1);
printf("\tName: %s\n", agents[i].name);
printf("\tRoll Number: %d\n", agents[i].rollno);
printf("\tAge: %d years \n", agents[i].age);
printf("\tWeight: %.1f kg\n\n", agents[i].weight);
}

return(0);

}

linkfloat()

{
float number = 10, *pointer;
pointer = &number;
number = *pointer;
return(0);

Compile and execute this program. A run of this program is given here:

Enter Biodata of Secret Agent # 1:
Name: Dick -

Roll Number: 1 ad

Age: 21 -

Weight: 70.6 -

140

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L6

L7

L8

L9

L10
BL

L11
BL

L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
BL

L23
L24
L25
L26
L27
L28
L29
L30
L31
BL

L32
L33
BL

L34
L35
L36
L37
L38
L39
L40

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

Enter Biodata of Secret Agent # 2:
Name: Robert -

Roll Number: 2 e

Age: 22 -

Weight: 75.8 -

Enter Biodata of Secret Agent # 3:
Name: Steve At

Roll Number: 3 -~

Age: 20 -

Weight: 53.7 -

Enter Biodata of Secret Agent # 4:
Name: Richard -

Roll Number: 4 -~

Age: 19 At

Weight: 83.1 -

Enter Biodata of Secret Agent # 5:
Name: Albert -

Roll Number: 5 -

Age: 18 -

Weight: 62.3 -

Now data entered by you will be displayed on the screen.
Biodata of Secret Agent # 1:
Name: Dick

Roll Number: 1

Age: 21 years

Weight: 70.6 kg

Biodata of Secret Agent # 2:
Name: Robert

Roll Number: 2

Age: 22 years

Weight: 75.8 kg

Biodata of Secret Agent # 3:
Name: Steve

Roll Number: 3

Age: 20 years

Weight: 53.7 kg

Biodata of Secret Agent # 4:
Name: Richard

Roll Number: 4

Age: 19 years

Weight: 83.1 kg

Biodata of Secret Agent # 5:
Name: Albert

Roll Number: 5

Age: 18 years

Weight: 62.3 kg

141

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

How It Works

In LOCs 5 to 10, the structure biodata is created. In LOC 11, an array called agents is
created of type struct biodata.LOCs 12 to 22 consist of a for loop that performs five
iterations and accepts data from the user through the keyboard to be filled in the array.
The user enters the data of the five secret agents from Figure 5-1. In a single iteration, the
data of a single secret agent is accepted and filled in a corresponding element of the array.

In LOCs 23 to 31, the data of the five secret agents that is stored in the array agents is
displayed on the screen. LOCs 25 to 31 consists of a for loop that performs five iterations
and displays the data of five secret agents stored in the array agents. In a single iteration,
the data of a single secret agent is displayed on the screen.

Notice the benefit of using an array of structures instead of individual variables. Now
you can use a for loop to handle the input as well as the output.

Also, notice that this program is short despite that it handles the biodata of five secret
agents compared to the earlier program, which handled the biodata of only two secret
agents.

The piece of code contained in LOCs 34 to 40 is the definition of the function
linkfloat(). If you don’t include this function, then during runtime the program crashes
and the following message appears on the screen: “Floating point formats not linked.
Abnormal program termination.” The program crashes when the scanf() function is
about to accept the floating-point value for weight for the first member. To prevent
the abnormal termination of this program, you are required to include this function
somewhere in the program, preferably at the end of the program. There’s no need to call
this function.

5-8. Invoke a Function Using a Pointer-to-Function
Problem

You want to invoke a function using a pointer-to-function.

Solution

Write a C program that invokes a function using a pointer-to-function, with the following
specifications:

e The program declares the pointer-to-function ptrFunc.

e The program declares two functions, sum() and add(). These
functions perform the addition of numbers. The return type of
these functions is int.

e The program invokes the functions sum() and add() using the
pointer-to-function ptrFunc.

142

CHAPTER 5

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename

point19.c

/* This program uses a pointer-to-function to invoke functions.

#include <stdio.h>

int sum (double ni, double n2);
int add(int m1, int m2);

main()
{
int r;
int (*ptrFunc)();

ptrFunc = sum;
r = (*ptrFunc)(2.3, 4.5);
printf("(int)(2.3 + 4.5) = %d\n", 1);

ptrFunc = add;
r = (*ptrFunc)(10, 15);
printf("10 + 15 = %d\n", 1);

return(0);

}

int sum(double j1, double j2)
{

int result;
result = (int)(j1 + j2);
return(result);

}

int add(int k1, int k2)
{

return(ki + k2);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
BL
L4
L5
L6
L7
BL
L8
L9
L10
BL
L11
L12
L13
BL
L14
L15
BL
L16
L17
L18
L19
L20
L21
BL
L22
L23
L24
L25

Compile and execute this program, and the following lines of text appear on the

screen:

(int) (2.3 + 4.5) =6
10 + 15 = 25

FUNCTIONS AND STRUCTURES WITH POINTERS

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

143

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

How It Works

In LOC 2, the prototype of the function sum() is declared. The return type of sum() is int,
and it has two parameters of type double. In LOC 3, the prototype of the function add() is
declared. The return type of add() is int, and it has two parameters of type int. In LOC 6,
an int variable 1 is declared to store the values returned by the functions sum() and
add() temporarily. In LOC 7, a pointer-to-function ptrFunc is declared (the return type of
this function must be int).

In LOC 8, the pointer ptrFunc is made to point to the function sum(). In LOC 9, the
function sum() is called using the pointer ptrFunc and two double type arguments
(2.3 and 4.5) are passed to the function sum(). Also, the value returned by sum() is
assigned to the variable r. In LOC 10, the value of r is displayed on the screen.

In LOC 11, the pointer ptrFunc is made to point to the function add(). In LOC 12, the
function add() is called using the pointer ptrFunc, and two int type arguments (10 and 15)
are passed to the function add(). Also, the value returned by add() is assigned to the
variable r. In LOC 13, the value of r is displayed on the screen.

LOCs 16 to 21 consist of the definition of the function sum(). In this function, two
double type arguments are added, the result is subjected to a cast operation in order to
change its type to int, and then the result is returned.

LOCs 22 to 25 consist of the definition of the function add(). In this function two int
type arguments are added, and the result is returned.

If you find the logic of this program difficult to understand, then consider another
program, point20, that is easier to understand.

First, notice the following generic syntax:

(@ Declaring a pointer to a function
(b) Setting that pointer pointing to a function
(c) Calling that function using the pointer

Here is the generic syntax:

returnType functionName (parameterlList); /¥ L1 */
returnType (*pointerToFunction)(); /* L2 */
pointerToFunction = functionName; /* L3 */
(*pointerToFunction)(argumentlList); /* L4 */
pointerToFunction(argumentList); /* L5 */

In this block of code, LOC 1 consists of the prototype of the function
functionName(), and LOC 2 consists of the declaration of the pointer-to-function
named pointerToFunction. Generally, LOC 1 is placed outside the main() function,
whereas LOCs 2 to 4 are placed inside the main() function. Notice that returnType
mentioned in LOCs 1 and 2 must be the same. The parentheses shown in LOCs 1 and 2
are required and cannot be omitted. In LOC 3, the address of functionName is assigned
to pointerToFunction. In LOC 4, the function functionName() is called using the
pointer pointerToFunction. In LOC 5 also, the function functionName() is called using
the pointer pointerToFunction. But the syntax given in LOC 4 is standard and is more
preferred.

144

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

Type the following C program in a text editor and save it in the folder C: \Code with
the filename point20.c:

/* This program uses a pointer-to-function to invoke a function. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

void welcome(void); /* L2 */
/* BL */

main() /* L3 */
{ /% L4 */
void (*ptrFunc)(); /* L5 */
ptrFunc = welcome; /* L6 */
(*ptrFunc)(); /% L7 */
return(0); /* L8 */

} /* L9 */
/* BL */

void welcome(void) /* L10 */
/* L11 */

printf("Welcome boys and girls.\n"); /* 112 */
return; /* L13 */
} /* 114 */

Compile and execute this program, and the following line of text appears on the
screen:

Welcome boys and girls.

In this program, in LOC 2, the prototype for the function welcome() is declared.
The return type of welcome() is void. In LOC 5, a pointer-to-function named ptrFunc is
declared. Notice the term void in LOC 5, which indicates that this pointer can point to
only that function whose return type is void. In LOC 6, the pointer ptrFunc is set pointing
to the function welcome().

Note LOC 6 exploits the following fact: the value of the function name is nothing but the
address of the function definition stored in memory.

In LOC 7, the function welcome() is invoked (i.e., called) using the pointer ptrFunc.
Notice that ptrFunc is a pointer, whereas *ptrFunc is a function.

145

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

5-9. Implement a Text-Based Menu System
Problem

You want to implement a text-based menu system using a pointer-to-function.

Solution

Write a C program that implements a text-based menu system using a pointer-to-function,

with the following specifications:

e The program declares an array of pointers-to-functions called
funcPtr. In this program, Edit-menu is to be implemented and
consists of four menu items: Cut, Copy, Paste, and Delete.

¢ The program declares four functions: cut(), copy(), paste(), and
delete(). These functions are called when the corresponding
menu item is activated by the user.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the filename

point21i.c:

/* This program uses a pointer-to-function to implement text based menu system.

#include <stdio.h>

void cut (int intCut);
void copy (int intCopy);

void paste (int intPaste);
void delete (int intDelete) ;
main()

{

void (*funcPtr[4])(int) = {cut, copy, paste, delete};

int intChoice;

printf("\nEdit Menu: Enter your choices (0, 1, 2, or 3).\n");
printf("Please do not enter any other number

except 0, 1, 2, or 3 to \n");

printf("avoid abnormal termination of program.\n");
printf("Enter 0 to activate menu-item Cut.\n");

printf("Enter 1 to activate menu-item Copy.\n");
printf("Enter 2 to activate menu-item Paste.\n");
printf("Enter 3 to activate menu-item Delete.\n");

146

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*

/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
BL
L6
L7
L8
L9
L10

L11
L12
L13
L14
L15
L16

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/

CHAPTER 5 © FUNCTIONS AND STRUCTURES WITH POINTERS

scanf("%d", &intChoice);
(*funcPtr[intChoice]) (intChoice);
printf("Thank you.\n");
return(0);

}

void cut (int intCut)

{
printf("You entered %d.\n", intCut);

printf("Menu-item Cut is activated.\n");

}

void copy (int intCopy)

printf("You entered %d.\n", intCopy);
printf("Menu-item Copy is activated.\n");

}

void paste (int intPaste)

{
printf("You entered %d.\n", intPaste);

printf("Menu-item Paste is activated.\n");

}

void delete (int intDelete)

{
printf("You entered %d.\n", intDelete);

printf("Menu-item Delete is activated.\n");

}

Compile and execute this program. A run of this program is given here:

Edit Menu: Enter your choices (0, 1, 2, or 3).
Please do not enter any other number except 0, 1, 2, or 3 to
avoid abnormal termination of program.

Enter 0 to activate menu-item Cut.

Enter 1 to activate menu-item Copy.

Enter 2 to activate menu-item Paste.

Enter 3 to activate menu-item Delete.

2 -

You entered 2.

Menu-item Paste is activated.

Thank you.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L17
L18
L19
L20
L21
BL

L22
L23
L24
L25
L26
BL

L27
L28
L29
L30
L31
BL

L32
L33
L34
L35
L36
BL

L37
L38
L39
L40
L41

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

147

CHAPTER 5 " FUNCTIONS AND STRUCTURES WITH POINTERS

How It Works

In LOCs 2 to 5, the prototypes of functions cut (), copy(), paste(), and delete() are
declared. In LOC 8, an array of pointers called funcPtr is declared and consists of four
elements, and it is also initialized. The pointers in the array funcPtr are made to point
toward the functions cut(), copy(), paste(), and delete(), and serially (i.e., pointer
funcPtr[0] is pointing toward the function cut(), etc.). In LOCs 10 to 16, the user is
advised to enter an integer in the range 0 to 3 to activate the corresponding menu item
in Edit-menu. The choice entered by the user is stored in the int variable intChoice.
In LOC 18, the corresponding function is called using the appropriate pointer in the
array funcPtr. LOCs 22 to 16 consist of the definition of the function cut(). LOCs 27
to 31 consist of the definition of the function copy(). LOCs 32 to 36 consist of the
definition of the function paste(). LOCs 37 to 41 consist of the definition of the
function delete().

148

CHAPTER 6

Data Files

A fileis a collection of data that is named and saved in the secondary storage (like on a
disk or tape). The contents of a file can be retrieved and modified as per the requirements
of the storage.

Every piece of data that is loaded in the primary or secondary memory of a computer
is not a file. It is only when you save that data on the disk and name it suitably that the
collection of data assumes the status of a file. Why use files? Read on. Primary memory is
volatile; when you switch off the computer, everything that is stored in primary memory
is lost. Therefore, it is necessary to save the data on the secondary storage (because the
secondary storage is not volatile). It is also necessary to offer some suitable name to that
collection of data so anyone can refer to that collection of data unambiguously. When you
do this (i.e., save the collection of data on the secondary storage and name it), you get a
file. A file is also called a disk file in order to distinguish it from a device file.

6-1. Read a Text File Character by Character
Problem

You want to read a text file character by character.

Solution

Write a C program that reads a text file character by character, with the following
specifications:
e The program opens and reads an existing text file called test.txt
that is stored in the default folder of C: \Compiler.

e The program uses the function fgetc() to read a character from
a file and uses the function putchar() to display the character on
the screen.

Create a small text file, named test. txt, with the following contents:
Welcome to C programming.

Thank you.

© Shirish Chavan 2017 149
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_6

CHAPTER 6 ' DATA FILES

Place the compiler in the folder C: \Compiler. Place the text file test.txt in this
folder. This is the folder from which the compiler gets launched every time you start it

because the main program file of the compiler rests in this folder.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

filesi.c:

/* This program reads the contents of the text file test.txt and displays */

/* these contents on the screen.

#include <stdio.h>

main()

{

int num;

FILE *fptr;

fptr = fopen("test.txt", "r");
num = fgetc(fptr);

while(num != EOF) {
putchar (num);

num = fgetc(fptr);
}

fclose(fptr);
return(0);

}

*/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
L6
L7
BL
L8
L9
L10
L11
BL
L12
L13
L14

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

Welcome to C programming.
Thank you.

How It Works

Now let’s see how this program works. In LOC 4, an int variable called num is declared.
In LOC 5, a pointer to the FILE variable fptr is declared. FILE is a derived type. To use
this type (i.e., FILE) effectively, you are not required to know its composition or internal

details. LOC 5 is reproduced here for your quick reference:

FILE *fptr;

150

/* L5 */

CHAPTER 6 ' DATA FILES

After reading LOC 5, you should be expecting the following LOCs to follow LOC 5:

FILE var; /* LOC A */
fptr = &var; /* LOC B */

In LOC A, a FILE variable named var is declared, and in LOC B, the address of var
is assigned to fptr. After all, this is the generic procedure of using the pointers in C.
Contrary to your expectations, instead of LOCs A and B, LOC 6 follows LOC 5, which is
reproduced here for your quick reference:

fptr = fopen("test.txt", "r"); /* L6 */

By and large, LOC 6 performs, among other things, everything that LOCs A and B
are supposed to perform. In LOC 6, a call is made to the function fopen(), which is used
to “open” a file. Before using any file in a program, you are required to open it using the
function fopen().

The function fopen() creates an anonymous variable of type FILE, sets a pointer
pointing to that variable, and then returns the pointer that is assigned to fptr. The
function fopen() also creates a special pointer and sets it pointing to the first character in
the file test.txt; this is not the usual pointer in C but just a “marker” that always points to
the next character in the file to be read. To avoid confusion, I will call this special pointer
a marker. When the first character in the file is read, the marker is automatically made to
point to the second character in the file. When the second character in the file is read, the
marker is automatically made to point to the third character in the file. And so on.

Also note that this “marker” is not an official term in C language. When the marker
points to the first character in a file, then according to standard terminology in the C
language, you can say that the file is positioned to the first character of the file. When the
marker points to the second character in a file, then according to standard terminology in the
C language, you say that the file is positioned to the second character of the file. And so on.

Note Whenever a file is opened using the function fopen(), the file is positioned to the
first character of the file.

Notice that two arguments are passed to the function fopen(), and both these
arguments are strings.

The first argument represents the file name: "test.txt".

The second argument represents the mode: "r".

The first argument represents the name of a file to be opened. The second argument
represents the mode in which a file will be opened. The mode "r" indicates that this
file will be opened for reading only. You just cannot modify the contents of this file. The

generic syntax of a statement that uses the function fopen() is given here:

fptr = fopen(filename, "mode")

151

CHAPTER 6 ' DATA FILES

Here, fptr is the pointer to the FILE variable, the file name is an expression that
evaluates to a string constant that consists of the name of a file (with or without the path)
to be opened, and "mode" is a string constant that consists of one of the file-opening
modes. The function fopen() creates an anonymous variable of type FILE, associates
the file being opened with this variable, and then returns a pointer to FILE pointing to
this anonymous variable, which, in turn, is assigned to the pointer variable fptr. If file
opening fails (i.e., a file cannot be opened), then fopen() returns a NULL pointer. Also,
once a file is opened, thereafter it is referred to using the pointer variable fptr. If a file
name is devoid of a path, then it is assumed that the file rests in the default folder, which
is C:\Compiler.

After the execution of LOC 6, the file test. txt opens successfully. Hereafter, you
will not use the file name test.txt to refer to this file; instead, you will use the pointer
variable fptr to refer to this file. Also, the marker is now set pointing to the first character
in the file test.txt. This means the file is positioned to the first character of the file.

In LOC 7, the first character in the file test.txt is read, and its ASCII value is
assigned to the int variable num. The contents of the file test. txt are reproduced here
for your quick reference:

Welcome to C programming.
Thank you.

Notice that the first character in the file is 'W' and its ASCII value is 87. LOC 7 is
reproduced here for your quick reference:

num = fgetc(fptr); /¥ L7 */

LOC 7 consists of a call to the function fgetc(). This function reads a character from
the file represented by fptr and returns its ASCII value, which, in turn, is assigned to the
int variable num. As the marker is pointing to the first character in the file (itis 'W"), fgetc()
reads it and returns its ASCII value (it is 87), which, in turn, is assigned to num. Also, the
marker is now advanced so as to point to the second character in the file, i.e., 'e". All this
takes place as LOC 7 executes.

The generic syntax of a statement that uses the function fgetc() is given here:

intN = fgetc(fptr);

Here, intNis an int variable, and fptr is a pointer to the FILE variable. The function
fgetc() reads the character pointed to by the marker, from the file specified by fptr.
After reading the character, fgetc() returns its ASCII value, which is assigned to the int
variable intN and sets the marker pointing to the next character. If fgetc() encounters
an end-of-file-character (which is the character *Z whose ASCII value is 26, pronounced
as “Control-Z"), then instead of returning its ASCII value 26, it returns the value of the
symbolic constant EOF, which is the int value -1. EOF stands for “end of file” However,
apart from the end-of-file situation, this value is also returned by some functions when an
error occurs. It is a symbolic constant defined in the file <stdio.h> as follows:

#define EOF (-1) /* End of file indicator */

152

CHAPTER 6 ' DATA FILES

EOF represents an int value -1. Do not think that the value of EOF is stored at the end of
file. Actually, it is not. Character "Z is stored at the end of file to mark the end of a text file.

You must have noticed that the function fgetc() works like the function getchar()
that you use to read a character from the keyboard. However, the function getchar ()
doesn’t expect any argument, whereas the function fgetc() expects a pointer to the FILE
variable as an argument.

C also offers the function getc() that is identical to the function fgetc(); the only
difference is that the function getc() is implemented as a macro, whereas the function
fgetc() is implemented as a function.

LOCs 8to 11 consist of awhile loop. The rest of the file is read in this loop. LOC 8 consists
of a continuation condition of a loop, and it is reproduced here for your quick reference:

while(num != EOF) { /* L8 */

You can read the expression in parentheses (which represents a continuation
condition of a loop) because while num is not equal to EOF, looping is permitted. In other
words, LOC 8 tells you that looping is permitted as long as the value of num is not equal to -1.
However, looping terminates once num becomes equal to -1. For now, the value of num s
87; hence, looping is permitted. Now the first iteration begins. The body of this while loop
consists of only LOCs 9 and 10. Notice LOC 9, which is reproduced here for your quick
reference:

putchar (num); /* L9 */

The function putchar() converts the int value 87 stored in num to the corresponding
char constant 'W' and sends this char constant to the screen for display. LOC 10 is same
as LOC 7 and is reproduced here for your quick reference:

num = fgetc(fptr); /* L10 */

I'have already discussed how LOC 7 works. Before the execution of LOC 10, the
marker was pointing to the second character in the file, i.e., "e". After the execution
of LOC 10, the ASCII value of 'e' (which is 101) is assigned to num, and the marker is
advanced so as to point to the next (third) character in the file.

LOCs 9 and 10 are executed repeatedly as many times as there are characters in a
file. This loop performs 37 iterations as there are 26 characters in the first line and 11
characters in the second line, including the newline character at the end of each line.
Consider the 37th iteration of the loop. In LOC 9, the character constant newline (ASCII
value 10) is sent to the screen for display. This is the last character in the second line and
also the last useful (useful from the point of view of the user of the file) character in the
file. In LOC 10, the end-of-file character *Z is read by fgetc(); however, its ASCII value 26
is not returned by fgetc(). Instead, a special value -1 (the value of the symbolic constant
EOF) is returned by fgetc(), and it is assigned to num. At the beginning of the 38th
iteration, the continuation condition (num != EOF) turns out to be false, and iteration is not
permitted. Then the next LOC, which follows the while loop, is executed. This next LOC
is LOC 12, which is reproduced here for your quick reference:

fclose(fptr); /* L12 */

153

CHAPTER 6 ' DATA FILES

The function fclose() is used to close a file. It is advisable that an opened file should

be closed when it is no longer needed in a program. Think of the function fclose() as a
counterpart of the function fopen(). The function fclose() accepts only one argument;
this argument is a pointer to the FILE variable and then closes the file specified by that
pointer to the FILE variable. It returns the value 0 if the operation (of closing the file) is
successful and returns the value EOF (i.e., -1) if the operation fails. After the execution of
LOC 12, the file specified by fptr (which is test.txt) is closed. The generic syntax of a
statement that uses the function fclose() is given here:

intN = fclose(pointer to FILE variable);

Here, pointer_to_FILE variable is a pointer to the FILE variable, and intNis an
int type variable. The value returned by fclose(), which is either 0 (if the operation is
successful) or -1 (if the operation fails), is stored in intN.

The program terminates after the execution of LOC 12.

Finally, notice that even if you don’t close a file, it is closed automatically when the
program is terminated. However, it is advisable to close a file when it is no longer needed
in a program because of these reasons:

e There is an upper limit on the number of files that can remain
open at a time.

e When afile is closed, some housekeeping actions are performed
by the programming environment that are badly needed.

e Some memory is freed.

6-2. Handle Errors When File Opening Fails
Problem

You want to handle the situation safely when file opening fails.

Solution

Write a C program that safely handles the situation when file opening fails, with the
following specifications:

e The program opens the text file satara.txt thatis placed in the
folder C: \Code. The program checks whether the file opening is
successful with the help of the function feof (). If file opening
fails, then the program ensures a safe exit and avoids crashing.

e The program reads the file, displays its contents on the screen,
and then closes the file. If file closing fails, the program reports it.

In the preceding recipe, I did not take into account the possibility that file opening
(and therefore file closing) can fail. If file closing fails, then sometimes you can ignore it,
because when a program is terminated, all open files are closed automatically. But if file

154

CHAPTER 6 ' DATA FILES

opening fails, then the program will certainly not work as per your expectations. Therefore,
it is absolutely necessary in a program to check whether file opening is successful. Also, it
is advisable to check whether file closing is successful.

Create a small text file, named satara.txt, with the following contents:

Satara is surrounded by mountains.
Satara was capital of Maratha empire for many years.

Place this text file in the folder C: \Code.

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name files2.c:

/* This program reads the contents of a text file and displays these
contents on the screen. */

/* File-opening and file-closing is checked for success. File is placed in the */
/* desired folder. Function feof() is used to detect the end of file. */

/* BL */
#include <stdio.h> /¥ L1 */
/* BL */
main() /* L2 */
{ /* L3 */
int num, k = 0; /* L4 */
FILE *fptr; /* L5 */
fptr = fopen("C:\\Code\\satara.txt", "r"); /* L6 */
if (fptr != NULL) { /% L7 */
puts("File satara.txt is opened successfully"); /* L8 */
puts("Contents of file satara.txt:"); /* L9 */
num = fgetc(fptr); /* L10 */
/* BL */
while(!feof(fptr)) { /* L11 */
putchar(num); /* L12 */
num = fgetc(fptr); /* L13 */
} /* 114 */
/*¥ BL */
k = fclose(fptr); /* L15 */
if(k == -1) /% L16 */
puts("File-closing failed"); /* L17 */
else /* L18 */
puts("File satara.txt is closed successfully"); /* L19 */
} /* 120 */
else /* L21 */
puts("File-opening failed"); /* L22 */
return(0); /* L23 */
} /* 124 */

155

CHAPTER 6 ' DATA FILES

Compile and execute this program, and the following lines of text appear on the screen:

File satara.txt is opened successfully

Contents of file satara.txt:

Satara is surrounded by mountains.

Satara was capital of Maratha empire for many years.
File satara.txt is closed successfully

How It Works

EOF is a value (-1) that is returned when the end of file occurs. EOF stands for “end of

file” In addition to an end-of-file situation, this value is also returned by some functions
when an error occurs. To differentiate between these two causes of a returned EOF, two
functions are available in C: feof() and ferror(). The generic syntax of a statement that
uses the function feof () is given here:

intN = feof(fptr);

Here, intNis an int variable, and fptr is a pointer to the FILE variable. This function
returns a nonzero (true) value when the end of file has occurred on the file specified by
fptr; otherwise, it returns a zero (false) value.

Also, the generic syntax of a statement that uses the function ferror() is given here:

intN = ferror(fptr);

Here, intNis an int variable, and fptr is a pointer to FILE variable. This function
returns a nonzero (true) value if an error has occurred on the file specified by fptr;
otherwise, it returns a zero (false) value.

Notice LOC 6, which is reproduced here for your quick reference:
fptr = fopen("C:\\Code\\satara.txt", "r"); /* L6 */

The name of file to be opened, with the path, is given here:

C:\Code\satara.txt

In LOC 6, instead of a single backslash, a double backslash is used in the string file
name because it (the double backslash) is an escape sequence.

Notice LOC 7, which is reproduced here for your quick reference:
if (fptr != NULL) { /% L7 */

In this LOC, the value of fptr is checked. Only if the file opening is successful is
the code block spanning LOCs 8 to 19 executed; otherwise, LOC 22 is executed, which

displays the following message on the screen:

File-opening failed

156

CHAPTER 6 ' DATA FILES

In LOC 15, the value returned by fclose() is assigned to an int variable named k. If
the file closing fails, then the value of -1 is assigned to the int variable k, and in that case
the following message appears on the screen:

File-closing failed

However, failure messages did not appear in the output of this program because both
operations (file opening and file closing) were successful.
Notice LOC 11, which is reproduced here for your quick reference:

while(!feof(fptr)) { /* L11 */

The function feof () returns a nonzero (true) value when the end of file occurs;
otherwise, it returns a zero (false) value. Notice the logical negation operator ! prefixed to
feof(). As a result, iterations are discontinued after the occurrence of the end of file. You
can read LOC 11 as follows: while not the end of file, iterations are permitted.

6-3. Write to a Text File in Batch Mode
Problem

You want to write to a text file in a batch mode.

Solution
Write a C program that writes to a text file in batch mode, with the following specifications:
e The program writes to a file using the function fputs().

e The program creates a text file, namely, kolkata.txt, in a folder
called C:\Code and writes the following couple of lines to it:

Kolkata is very big city.
It is also very nice city.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
files3.c:

/* This program creates a text file kolkata.txt using the function fputs(). */

/* BL */
#include <stdio.h> /* L1 */
/* BL */
main() /* L2 ¥/

157

CHAPTER 6 ' DATA FILES

{ /% L3 */
int k = 0; /* L4 */
FILE *fptr; /* L5 */
fptr = fopen("C:\\Code\\kolkata.txt", "w"); /* L6 */
if (fptr != NULL) { /¥ L7 */

puts("File kolkata.txt is opened successfully."); /* L8 */
fputs("Kolkata is very big city.\n", fptr); /* L9 */
fputs("It is also very nice city.\n", fptr); /* L10 */
k = fclose(fptr); /* L11 */
if(k == -1) /* L12 */
puts("File-closing failed"); /* 113 */
if(k == 0) /* L14 */
puts("File is closed successfully."); /* L15 */

/* L16 */

else /* L17 */
puts("File-opening failed"); /* L18 */
return(0); /* 119 */

} /% 120 */

Compile and execute this program, and the following lines of text appear on the screen:

File kolkata.txt is opened successfully.
File is closed successfully.

Open the file kolkata. txt, just created, in a suitable text editor and verify that its
contents are as expected.

How It Works

Notice LOC 6, which is reproduced here for your quick reference:
fptr = fopen("C:\\Code\\kolkata.txt", "w"); /* L6 */

Here, the file name is "C:\\Code\\kolkata.txt", and the mode is "w". As you are
going to write to a file, file-opening mode must be "w". This means a file named
kolkata.txt will be opened for writing in the specified folder C: \Code. Notice LOCs 9
and 10, which are reproduced here for your quick reference:

fputs("Kolkata is very big city.\n", fptr); /* L9 */
fputs("It is also very nice city.\n", fptr); /* L10 */

For the sake of clarity, I have used two statements; otherwise, a single statement is
sufficient. Either LOC consists of a call to the function fputs (), which is used for writing
a string to a file. How this function works closely resembles the function puts (), which is
used to display a string on the screen. However, there are three main differences between
how these functions work, as follows:

158

CHAPTER 6 ' DATA FILES

¢ The function puts() writes (displays) an argument string on the
screen. The function fputs() writes an argument string to a file.

e The function puts() expects only one argument, and it is string.
The function fputs() expects two arguments: a string and a
pointer to the FILE variable.

e The function puts() replaces the string-terminating character
'\0" in the string with the newline character '\n' before
displaying that string on the screen. The function fputs() simply
throws away the string-terminating character '\0' and writes the
remaining string to the file.

Notice the generic syntax of a statement that uses the function fputs() given here:
intN = fputs(string, fptr);

Here, intNis an int variable, the string is an expression that evaluates to a string
constant, and fptr is a pointer to the FILE variable; the string constant is written to a
file specified by fptr. If the operation succeeds, then a nonnegative value is returned by
this function; otherwise, EOF is returned. In LOCs 9 and 10, I have preferred to ignore the
value returned by this function. However, in a professional program, you should catch
the returned value and see whether the operation is successful. Write errors are common
while writing to disk.

In LOC 9, the string "Kolkata is very big city.\n" iswritten to a file specified by
fptr (i.e., kolkata.txt).

Note When you read a file, the marker is advanced accordingly so that it always points
to the next character to be read. Similarly, when you write to a file, the marker is advanced
accordingly so that it always points to the location in the file where the next character will
be written.

Before the execution of LOC 9, the file positions to the first character of the file. The
string "Kolkata is very big city.\n" consists of 26 characters. After the execution of
LOC 9, the file positions to the 27th character of the file.

In LOC 10, the string "It is also very nice city.\n"iswritten to the file. This
string consists of 27 characters. Therefore, after the execution of LOC 10, the file positions
to the 54th character of the file.

Finally, notice that when a string is written to a file using the function fputs(), then
the character '\0', which is a string-terminating character, is not written to the file, nor it
isreplaced by '\n' as in the case of puts().

159

CHAPTER 6 ' DATA FILES

6-4. Write to a Text File in Interactive Mode
Problem

You want to write to a text file in interactive mode.

Solution

Write a C program that writes to a text file in interactive mode, with the following
specifications:

e The program writes to a file using the function fputs().

e The program creates the text files in an interactive manner. It
accepts the name and text of the file in an interactive manner.

The Code

The following is the code of the C program written with these specifications. Type the following

C program in a text editor and save it in the folder C: \Code with the file name files4.c:

/* This program creates a text file in an interactive session
using the function fputs(). */

/*

#include <stdio.h> /*
#include <string.h> /*
/*

main() /*
{ /*
int k =0, n = 0; /*
char filename[40], temp[15], store[80]; /*
FILE *fptr; /*
printf("Enter filename (AAAAAAA.AAA) extension optional: "); /*
scanf("%s", temp); /*
strcpy(filename, "C:\\Code\\"); /*
strcat(filename, temp); /*
fptr = fopen(filename, "w"); /*
if (fptr != NULL) { /*
printf("File %s is opened successfully.\n", filename); /*
puts("Enter the lines of text to store in the file."); /*
puts("Strike Enter key twice to end the line-entry-session."); /*
fflush(stdin); /*
gets(store); /*

n = strlen(store); /*
/*

while(n != 0){ /*
fputs(store, fptr); /*
fputs("\n", fptr); /*

160

BL
L1
L2
BL
L3
L4
Ls
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
BL
L20
L21
L22

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

gets(store);
n = strlen(store);

}

k = fclose(fptr);
if(k == -1)
puts("File-closing failed");
if(k == 0)
puts("File is closed successfully.");

else
puts("File-opening failed");
return(0);

}

CHAPTER 6 ' DATA FILES

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L23
L24
L25
BL

L26
L27
L28
L29
L30
L31
L32
L33
L34
L35

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program. A couple of runs of this program are given here.

Here is the first run:

Enter filename (AAAAAAA.AAA) extension optional: Mumbai.txt «

File C:\Code\Mumbai.txt is opened successfully.
Enter the lines of text to store in the file.

Strike Enter key twice to end the line-entry-session.

Mumbai is capital of Maharashtra. -
Mumbai is financial capital of India. -
-

File is closed successfully.

Here is the second run:

Enter filename (AAAAAAA.AAA) extension optional: wai
File C:\Code\wai is opened successfully.
Enter the lines of text to store in the file.

Strike Enter key twice to end the line-entry-session.

Wai is a small town in Satara district. -
There are good number of temples in Wai. d
-

File is closed successfully.

How It Works

Now let’s discuss how this program works with reference to the second run. In LOC 6,
three char arrays are declared, namely, filename, temp, and store. The file name you

entered ("wai") is stored in the array temp, to which the path is added, and then the file

name with the path "C:\\Code\\wai" is stored in the array file name. Notice LOC 11,

which is reproduced here for your quick reference:

strcat(filename, temp);

/* L11 */

161

CHAPTER 6 ' DATA FILES

In LOC 11, the function strcat() is called. This function is used for concatenating the
strings. Before the execution of LOC 11, filename and temp contains the following strings:

e Filename: "C:\\Code\\"
e Temp: "wai"
After the execution of LOC 11, filename and temp contains the following strings:

File name: "C:\\Code\\wai"
Temp: "wai"

Notice that the string stored in temp is appended to the string stored in the file name.
The generic syntax of a statement that uses the function strcat() is given here:

storage = strcat(destination, source);

Here, storage is a pointer-to-char variable, the destination is a char array (or pointer-
to-char variable), and the source is an expression that evaluates to a string constant. The
string constant in source is appended to the string constant in the destination, and a copy
of the resulting string constant is stored in the destination and returned. The returned
value is generally ignored, and I have chosen to ignore it in LOC 11.

Next, notice LOC 17, which is reproduced here for your quick reference:

fflush(stdin); /* L17 */

The function fflush() is used to flush out the stray characters loitering in the passage
between the keyboard and the central processing unit (technically speaking, in the input
buffer). You enter the file name wai and then press the Enter key. The file name entered is
read and assigned to temp by the programming environment, but the Enter key stroke (i.e.,
newline character) remains in the passage (between the keyboard and the CPU), and it
needs to be flushed out. This flushing is performed by the function fflush() in LOC 17.

Next, notice LOCs 18 and 19, which are reproduced here for your quick reference:

gets(store); /* L18 */
n = strlen(store); /* L19 */

The function gets() in LOC 18 reads the first string typed, which is "Wai is a
small town in Satara district.", and places itin the char array store. In LOC 19, the
function strlen() computes and returns the length of this string (which is 39), which is
assigned to the int variable n.

Next, the while loop begins. Notice LOC 20, the first LOC of the while loop, which is
reproduced here for your quick reference:

while(n != 0) { /* L20 */

Notice the continuation condition of the while loop. Looping is permitted only if n is
not equal to zero. Now the value of n is 39; hence, iteration is permitted. The first iteration
begins. Notice LOCs 21 and 22, which are reproduced here for your quick reference:

fputs(store, fptr); /* L21 */
fputs("\n", fptr); /* 122 */

162

CHAPTER 6 ' DATA FILES

Both LOCs call the function fputs() that, in turn, writes an argument string to the file
specified by the pointer to the FILE variable fptr. LOC 21 writes the string stored in the store
to the file specified by fptr. LOC 22 writes the string "\n" to the file specified by fptr. In
LOC 22, you are appending the newline character to the string manually. If you don’t do this,
then retrieving the strings (from a file) using the function fgets () becomes difficult as the
function fgets () assumes that strings stored in a file are terminated with newline characters.

Next, LOCs 23 and 24 are executed, which are the same as LOCs 18 and 19. In LOC 23,
the second string typed, which is "There are good number of temples in Wai.",isread
by the function gets() and is stored in the store. In LOC 24, its length is computed, which is
40, and is returned by the function strlen(), which in turn is assigned to the int variable n.

As execution of the first iteration is complete, computer control goes to LOC 20,
the first LOC of the while loop. As the value of n is 40 and not zero, the second iteration
is permitted. In LOC 21, the string stored in store, which is "There are good number
of temples in Wai.",iswritten to the file specified by fptr. In LOC 22, the newline
character is written to the file specified by fptr.

Next, LOCs 23 and 24 are executed. In LOC 23, the third string typed, which is the
null string because you pressed the Enter key at the beginning of the line, is read by the
function fgets (). In LOC 24, the length of the null string, which is the zero, is returned by
the function strlen(), which in turn is assigned to the int variable n.

As execution of the second iteration is complete, computer control goes to LOC 20,
the first LOC of the while loop. As the value of n is zero, the third iteration is not permitted.
Computer control then goes to LOC 26, in which the file specified by fptr is closed.

6-5. Read a Text File String by String
Problem

You want to read a text file string by string.

Solution
Write a C program that reads a text file string by string, with the following specifications:

e The program reads the text file kolkata.txt using the function
fgets() and then displays the text in the file on the screen using
the function printf().

e The program checks for successful file opening and file closing.

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name files5.c:

/* This program reads the file kolkata.txt using the function fgets(). */
/* BL */

#include <stdio.h> /¥ L1 */
/* BL */

163

CHAPTER 6 ' DATA FILES

main() /*
{ /*
int k = 0; /*
char *cptr; /*
char store[80]; /*
FILE *fptr; /*
fptr = fopen("C:\\Code\\kolkata.txt", "r"); /*
if (fptr != NULL) { /*
puts("File kolkata.txt is opened successfully."); /*
puts("Contents of this file:"); /*
cptr = fgets(store, 80, fptr); /*
/*

while (cptr != NULL) { /*
printf("%s", store); /*
cptr = fgets(store, 80, fptr); /*

} r*
/*

k = fclose(fptr); /*
if(k == -1) /%
puts("File-closing failed"); /*
if(k == 0) /*
puts("\nFile is closed successfully."); /*

} r*
else /*
puts("File-opening failed"); /*
return(0); /*
} /*

L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
BL
L13
L14
L15
L16
BL
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

File kolkata.txt is opened successfully.
Contents of this file:

Kolkata is very big city.

It is also very nice city.

File is closed successfully.

How It Works

Think of the function fgets() as the counterpart of the function fputs(). The function
fgets() is used for reading the strings from a file. The generic syntax of a statement that

uses the function fgets() is given here:
cptr = fgets(storage, n, fptr);

Here, cptr is a pointer-to-char variable, storage is a char type array, n is an
expression that evaluates to an integer constant, and fptr is a pointer to the FILE

variable. The function fgets () reads a string from the file specified by fptr and stores

164

CHAPTER 6 ' DATA FILES

that string in the array storage. At most (n - 1) characters are read by fgets(), and the
string stored in storage is always terminated with '\0'. Then the function fgets() returns
a pointer to char pointing to the first character in array storage when the string-reading
operation is successful; otherwise, it returns NULL. Also, notice that the function fgets()
reads a string starting at the current location (pointed to by the marker), up to and
including the first newline character it encounters, unless it reaches an EOF or has read

(n - 1) characters before that point. It then appends the '\0' character (string-terminating
character) to that string before storing it in storage.

In LOC 5, a pointer-to-char variable called cptr is declared. In LOC 6, the char
array store is declared. In LOC 8, the file kolkata.txt is opened for reading, and it is
associated with a pointer to the FILE variable fptr. Notice LOC 12, which is reproduced
here for your quick reference:

cptr = fgets(store, 80, fptr); /* L12 */

In LOC 12, the following tasks are performed:

e The first string stored in the file specified by fptr is read, and it
is placed in the char array called store. Notice that this string is
"Kolkata is very big city."

e The marker is advanced so as to point to the next string available
in the file specified by fptr.

e The function fgets() returns a pointer to char pointing to the
first character in the char array store, which is assigned to cptr.
You need this value only to detect the end of file. When the end of
file occurs, fgets() returns NULL.

The second argument to fgets() in LOC 12 is the integer value 80. It indicates that
fgets() will read at most 79 characters when called (80 - 1) . This means if a string stored
in a file consists of more than 79 characters, then the remaining characters will not be
read. In the next call to fgets(), it will start reading the next string.

Next, there is awhile loop in LOCs 13 to 16, which is reproduced here for your quick
reference:

while (cptr != NULL) { /* L13 */
printf("%s", store); /* L14 */
cptr = fgets(store, 80, fptr); /* L15 */
} /* L16 */

In LOC 13, the value stored in cptr is tested for its equivalence with NULL in order
to detect the occurrence of the end of file. In LOC 14, the string stored in the char array
store (which is "Kolkata is very big city.")is displayed on the screen. Notice that
this is the first iteration of the while loop. In LOC 15 (which is the same as LOC 12), the
next string in the file (which is "It is also very nice city.")isread and stored in
the char array store. Also, the pointer to the first character of store is returned, which is
assigned to cptr. As execution of first iteration is complete, computer control goes to
LOC 13 again.

165

CHAPTER 6 ' DATA FILES

Next, LOC 13 is executed. No NULL value is still assigned to cptr; hence, the second
iteration is permitted. Next, LOC 14 is executed in which the string stored in store
(whichis "It is also very nice city.")is displayed on the screen. Next, LOC 15 is
executed in which fgets () tries to read the next string (third string) in the file. But as this
file (kolkata.txt) consists of only two strings, this reading operation fails, and fgets()
returns a NULL value, which is assigned to cptr. As the execution of the second iteration is
complete, computer control goes to LOC 13 again.

Next, LOC 13 is executed. As a NULL value is assigned to cptr, the third iteration is not
permitted, and execution of the loop terminates. Next, computer control passes to LOC
17 in which the file specified by fptr is closed.

6-6. Write to a Text File Character by Character
Problem

You want to write to a text file character by character.

Solution

Write a C program that writes to a text file character by character, with the following
specifications:

e The program opens the text file jaipur.txt in write mode.

e The program writes to this file in interactive mode using the
function fputc().

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name filesé6.c:

/* This program creates a text file in an interactive session using the
function fputc(). */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /* L3 */
int k =0, n = 0; /* L4 */
FILE *fptr; /* L5 */
fptr = fopen("C:\\Code\\jaipur.txt", "w"); /* L6 */
if (fptr !'= NULL) { /¥ L7 */
puts("File jaipur.txt is opened successfully."); /* L8 */
puts("Enter text to be written to file. Enter * to"); /* L9 */
puts("terminate the text-entry-session."); /* L10 */

n = getchar(); /* L11 */
/* BL */

166

CHAPTER 6 ' DATA FILES

while(n != "*"){ /* L12 */
fputc(n, fptr); /* L13 */

n = getchar(); /* L14 */

} /% L15 */
/* BL */

k = fclose(fptr); /* L16 */
if(k == -1) /* L17 */
puts("File-closing failed"); /* L18 */
if(k == 0) /* L19 */
puts("File is closed successfully."); /* L20 */

} /* 121 */
else /* 122 */
puts("File-opening failed"); /* L23 */
return(0); /* L24 */
} /% 125 */

Compile and execute this program. A run of this program is given here:

File jaipur.txt is opened successfully.

Enter text to be written to file. Enter * to
terminate the text-entry-session.

Jaipur is capital of Rajsthan. «

Jaipur is famous for historical Hawamahal. «
L

File is closed successfully.

How It Works

You have typed two lines of text to be written to the file jaipur.txt. When you type a
character, it is not processed by the CPU. Characters typed stand in a queue. It is only
when you press the Enter key that these characters (standing in a queue) are processed by
the CPU, one by one. First, type the following line of text and press Enter:

Jaipur is capital of Rajsthan.
Notice LOC 11, which is reproduced here for your quick reference:
n = getchar(); /* L11 */
The function getchar () reads the first character in the line of text, which is 'J', and
returns its ASCII value (it is 74), which is assigned to the int variable n.
Next, the execution of the while loop begins, which spans LOCs 12 to 15. LOC 12 is

reproduced here for your quick reference:

while(n 1= "*') { /¥ 112 ¥/

167

CHAPTER 6 ' DATA FILES

Notice the continuation condition of the while loop in LOC 12. This loop iterates
as long as n is not equal to character '*'. (Or more correctly, it iterates as long as n is not
equal to 64, the ASCII value of '*'. As n is equal to 74 and not equal to 64, iteration is
permitted.) Now the first iteration begins.

Next, LOC 13 is executed, which is reproduced here for your quick reference:

fputc(n, fptr); /* L13 */

The function fputc() writes the character, whose ASCII value is stored in the
int variable n, in the file specified by fptr. As the ASCII value of 'J' is stored in n, the
character 'J" is written to the file specified by fptr (i.e., to the file jaipur.txt).

The generic syntax of a statement that uses the function fputc() is given here:

intN = fputc (n, fptr);

Here, intNis an int variable, n is an expression that evaluates to an integer value,
and fptr is a pointer to the FILE variable. The function fputc() writes the character,
whose ASCII value is n, to the file specified by fptr. The function fputc() returns the
value of EOF if the operation fails and returns the value of n if operation is successful.

C also offers the function putc(), which is identical to the function fputc(); the only
difference is that the function putc() is implemented as a macro, whereas the function
fputc() is implemented as a function.

Next, LOC 14 is executed, which is same as LOC 11. In LOC 14, the next character
in the line of text is read, which is 'a’', and its ASCII value (97) is assigned to variable n.
As execution of the first iteration is complete, computer control goes to LOC 12 again. As
the value of n is not equal to 64 (ASCII value of *), the second iteration is permitted, and
so on. In this manner, the characters in the line of text are written to the file. When the
character is *, then the continuation condition in LOC 12 fails, and further iterations are
not permitted.

In this program, you use the character * as a terminating character. What if * is part
of the text? Ideally, the terminating character should not be a printable character. You can
use *Z (Control-Z) as a terminating character, which can be passed to the program simply
by pressing the function key F6.

6-7. Write Integers to a Text File
Problem

You want to write the integers to a text file.

Solution

Write a C program that writes the integers to the text file numbers . dat, with the following
specifications:

e The program uses the function fprintf() to write to the file.

e The program writes integer values to the file.

168

CHAPTER 6 ' DATA FILES

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files7.c:

/* This program writes data to a file using the function fprintf() */

/*

#include <stdio.h> /*
/*

main() /*
{ r*
int i, k = 0; /*
FILE *fptr; /*
fptr = fopen("C:\\Code\\numbers.dat", "w"); /*
if (fptr != NULL) { /*
puts("File numbers.dat is opened successfully."); /*
/*

for(i = 0; i < 10; i++) /*
fprintf(fptr, "%d ", i+1); /*

/*

puts("Data written to file numbers.dat successfully."); /*
/*

k = fclose(fptr); /*
if(k == -1) /*
puts("File-closing failed"); /*
if(k == 0) /*
puts("File is closed successfully."); /*

/*

else /*
puts("File-opening failed"); /*
return(0); /*
} e

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
BL
L9
L10
BL
L11
BL
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21

Compile and execute this program, and the following lines of text appear on the

screen:

File numbers.dat is opened successfully.
Data written to file numbers.dat successfully.
File is closed successfully.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Open the file numbers.dat in a suitable text editor and verify that its contents are as

follows:

12 3 456 7 8 9 10

169

CHAPTER 6 ' DATA FILES

How It Works

In the preceding recipes you used the functions fputc() and fputs() to write the
characters and strings to a file, respectively. But if you want to write the data of other data
types (e.g., int, float, etc.) to a file, then you need to use the function fprintf().

Note Using the function fprintf(), you can write the data items of different data
types to afile in a single statement. Also, fprintf() can be used to write the formatted
data to a file. fprintf() writes the data to a file in text format.

LOCs 9 and 10 consist of a for loop, and in this loop data is written to the file
numbers.dat. These LOCs are reproduced here for your quick reference:

for(i = 0; i < 10; i++) /¥ L9 */
fprintf(fptr, "%d ", i+1); /* L10 */

This for loop iterates ten times and writes ten numbers to the file, one number per
iteration. The numbers are actually written to the file in LOC 10, in which a call is made to
the function fprintf(). You should also note that the fprintf() function always writes
the data to a file in character format (or text format).

The function fprintf() works like the function printf(). There are two main
differences, however, as follows:

e The function printf() sends the data to the screen for display,
whereas the function fprintf() sends the data to the file for
writing it in that file.

e Like the function printf(), the function fprintf() also expects the
control string and a comma-separated list of arguments. However,
the function fprintf() expects one more argument compared to
the function printf(). This extra argument is a pointer to the FILE
variable (i.e., fptr), and this must be a first argument.

Before proceeding, notice the generic syntax of a statement that uses the function
fprintf() given here:

intN = fprintf(fptr, "control string", argi, arg2, ..., argN);

Here, intNis an int variable, fptr is a pointer to the FILE variable, "control
string" is a control string that appears in the printf() function, and arg1, arg2,, argN
is a comma-separated list that appears in the printf() function. The values of arguments
are inserted in the control string (to replace the corresponding conversion specifications),
and the resulting string is written to the file specified by fptr. The function fprintf()
returns an int value that indicates the number of characters written to the file if operation
is successful; otherwise, it returns EOF. For example, except for the tenth iteration of the
for loop, the fprintf() function in LOC 10 returns 2 (one digit + one space), and in the
tenth iteration it returns 3 (two digits + one space).

170

CHAPTER 6 ' DATA FILES

6-8. Write Structures to a Text File
Problem

You want to write the structures to a text file.

Solution

Write a C program that writes the structures to the text file agents . dat, with the following
specifications:

e The program opens the file agents.dat in write mode.

e The program accepts the data for structures (shown in Figure 6-1)
in interactive mode.

Table Showing the Biodata of Five Secret Agents

Name Roll Number Agein years Weightinkg
First record Dick 1 21 706
Second record —+— Robert 2 2 758
Third record —— Steve 3 20 53.7
Fourth record —— Richard 4 19 83.1
Fifth record —— Albert 5 18 623

Note: Individual row in this table is termed as record. This table consists of five records

Figure 6-1. Table showing the biodata of five secret agents

e The program uses the function fprintf() to write the structures
to the file.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
files8.c:

/* This program writes a structure to a file using the function fprintf() */

/* BL */
#include <stdio.h> /* L1 */
/* BL */
main() /* L2 */
{ /¥ L3 */

171

CHAPTER 6 ' DATA FILES

int k = 0;

char flag = 'y';

FILE *fptr;

struct biodata{

char name[15];

int rollno;

int age;

float weight;

b

struct biodata sa;
fptr = fopen("C:\\Code\\agents.dat", "w");
if (fptr != NULL) {

printf("File agents.dat is opened successfully.\n");

while(flag == 'y'){

printf("Enter name, roll no, age, and weight of agent:

scanf("%s %d %d %f", sa.name,
&sa.rollno,
&sa.age,
&sa.weight);
fprintf(fptr, "%s %d %d %.1f", sa.name,
sa.rollno,
sa.age,
sa.weight);
fflush(stdin);
printf("Any more records(y/n): ");
scanf(" %c", &flag);
}

k = fclose(fptr);
if(k == -1)
puts("File-closing failed");
if(k == 0)
puts("File is closed successfully.");

else
puts("File-opening failed");
return(0);

}

Compile and execute this program. A run of this program is given here:

File agents.dat is opened successfully.

Enter name, roll no, age, and weight of agent: Dick 1 21 70.6

Any more records (y/n): y -

Enter name, roll no, age, and weight of agent: Robert 2 22 75.8

Any more records (y/n):y

172

");

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

-

L4

L5

L6

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
BL

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
Bl

131
L32
L33
L34
L35
L36
L37
L38
L39
L40

-

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 6 ' DATA FILES

Enter name, roll no, age, and weight of agent: Steve 3 20 53.7 ad
Any more records (y/n): vy -

Enter name, roll no, age, and weight of agent: Richard 4 19 83.1 e
Any more records (y/n): y -

Enter name, roll no, age, and weight of agent: Albert 5 18 62.3 d
Any more records (y/n): n -

File is closed successfully.

Open the file agents.dat in a suitable text editor and verify that its contents are as
shown here:

Dick 1 21 70.6Robert 2 22 75.8Steve 3 20 53.7Richard 4 19 83.1Albert 5 18 62.3

How It Works

In this recipe, you use the function fprintf() to write the biodata of five secret agents
shown in Figure 6-1 to a file. LOCs 7 to 12 consist of the declaration of the structure
biodata. In LOC 13, the variable sa of type struct biodatais declared. The data of a
secret member typed in through the keyboard is saved in this variable before writing it to
the file. LOCs 17 to 30 consist of a while loop in which the main activity (i.e., accepting
the data typed through keyboard and writing it to the file) takes place. Notice the
continuation condition of the loop in LOC 17, which is reproduced here for your quick
reference:

while(flag == 'y'){ /% L17 */

Iterations are permitted while the value of the char variable flagis 'y'. As the value
of the char variable flag is already 'y' (see LOC 5), the first iteration of the loop begins.
LOCs 19 to 22 consist of a scanf statement. It is a single statement, but as the statement is
long, it is split into four LOCs for better readability. The data of Dick typed (i.e., Dick 1 21
70.6) is read by this scanf statement and assigned to the variable sa.

LOCs 23 to 26 consist of the fprintf statement. Like the preceding statement, this
is also a single statement but split into four LOCs for better readability. In this statement,
the data stored in the variable sa is written to the file specified by fptr. In LOC 27, the
function fflush() is called to flush out the newline character loitering in the passage
between the keyboard and the CPU. In addition, a single space is prefixed to the
conversion specification %c in LOC 29 to deal with this unwanted newline character. In
fact, one of the provisions is enough to deal with this unwanted newline character:

e Provision of LOC 27
e Single space prefixed to %c in LOC 29

In LOC 29, the character typed (either 'y' or 'n") as a reply to the question "Any
more records (y/n)" isread and assigned to the char variable flag. If your reply is
'y', then further iterations of the while loop are permitted; otherwise, iterations are
discontinued.

173

CHAPTER 6 ' DATA FILES

6-9. Read Integers Stored in a Text File
Problem

You want to read the integers stored in a text file.

Solution

Write a C program that reads the integers stored in a text file, with the following
specifications:

e The program opens the file numbers.dat in reading mode. In this
file, the integer values are already stored.

e The program reads the file numbers.dat using the function
fscanf() and displays its contents on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files9.c:

/* This program reads a file using the function fscanf() */
#include <stdio.h>

main()

intm=0, n, k = 0;
FILE *fptr;
fptr = fopen("C:\\Code\\numbers.dat", "r");
if (fptr != NULL) {
puts("File numbers.dat is opened successfully.");
puts("Contents of file numbers.dat:");
m = fscanf(fptr, "%d", 8n);

while(m != EOF){

printf("%d ", n);

m = fscanf(fptr, "%d", &n);
}

printf("\n");

k = fclose(fptr);

if(k == -1)
puts("File-closing failed");

if(k == 0)

174

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
L9
L10
BL
L11
L12
L13
L14
BL
L15
L16
L17
L18
L19

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 6 ' DATA FILES

puts("File is closed successfully."); /* L20 */

/* L21 */

else /* 122 */
puts("File-opening failed"); /* L23 */
return(0); /* L24 */
} /* 125 */

Compile and execute this program, and the following lines of text appear on the screen:

File numbers.dat is opened successfully.
Contents of file numbers.dat:
12345678910

File is closed successfully.

How It Works

Think of the function fscanf () as the counterpart of the function fprintf(). How the
function fscanf() works is analogous to that of the function scanf (). There are two main
differences in how these functions work, however, as follows:

e The function scanf() reads the data coming from the keyboard,
whereas the function fscanf() reads the data stored in a file.

e Like the function scanf(), the function fscanf() also expects the
control string and a comma-separated list of arguments. However,
the function fscanf() expects one more argument compared to
the function scanf (). This extra argument is a pointer to the FILE
variable (i.e., fptr), and this must be a first argument.

Before proceeding, notice the generic syntax of a statement that uses the function
fscanf() given here:

intN = fscanf(fptr, "control string", argi, arg2, ..., argN);

Here, intNis an int variable; fptr is a pointer to the FILE variable; "control
string" is a control string that appears in the scanf() function; and arg1, arg2,, argN
is a comma-separated list of arguments that appears in the scanf () function. The values
of the data items read from a file are assigned to respective arguments. This function
returns an int value, which is the number of successful field conversions if the reading
operation is successful; otherwise, it returns EOF.

Now let’s discuss how this program works. Notice LOC 10, which is reproduced here,
for your quick reference:

m = fscanf(fptr, "%d", &n); /* L10 */
The function fscanf() in LOC 10 reads the first integer stored in the file specified
by fptr and assigns this integer to the int variable n. The first integer stored in the

file specified by fptr is 1, and this value is assigned to n. Also, one field conversion is
successfully read; hence, value 1 is returned, which is assigned to the int variable m.

175

CHAPTER 6 ' DATA FILES

Next, there is awhile loop spanning LOCs 11 to 14. LOC 11 contains the continuation
condition of the while loop, which is reproduced here for your quick reference:

while(m != EOF){ /* L11 */

As the value of mis now 1 and not EOF, iteration is permitted, and the first iteration
begins. Next, LOC 12 is executed, which is reproduced here for your quick reference:

printf("%d ", n); /* L12 */

In LOC 12, the value stored in the int variable n, which is 1, is displayed on the
screen. Next, LOC 13 is executed, which is the same as LOC 10. In LOC 13, the next int
value stored in the file, which is 2, is read and assigned to the int variable n. Next, as
the execution of the first iteration is complete, computer control goes to LOC 11. As the
value of mis now 2 and not EOF, the second iteration begins, and so on. Proceeding in this
manner, the complete file is read.

When all the int values stored in the file are read and fscanf () tries to read the next
int value (which is nonexistent), then the reading operation fails, and the function fscanf()
returns the EOF value, which is assigned to m, and then the iterations are terminated.

6-10. Read Structures Stored in a Text File
Problem

You want to read the structures stored in a text file.

Solution

Write a C program that reads the structures stored in a text file, with the following
specifications:

e The program opens the file agents.dat in reading mode. This file
consists of the structures and biodata of five secret agents.

e The program reads the file agents.dat using the function
fscanf() and displays its contents on the screen.

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name files10.c:

/* This program reads the records stored in a file using the function
fscanf(). */
/* BL */
#include <stdio.h> /* L1 */
/* BL */

176

CHAPTER 6 ' DATA FILES

main() /* L2 */
{ /* L3 */
int k = 0, m = 0; /* L4 */
FILE *fptr; /* L6 */
struct biodata{ /* L7 */
char name[15]; /* L8 */
int rollno; /¥ L9 */
int age; /* L10 */
float weight; /* L11 */
}; /* L12 */
struct biodata sa; /* L13 */
fptr = fopen("C:\\Code\\agents.dat", "r"); /* L14 */
if (fptr 1= NULL) { /* 115 */
printf("File agents.dat is opened successfully.\n"); /* L16 */
m = fscanf(fptr, "%s %d %d %f", sa.name, /* L19 */
&sa.rollno, /* L20 */

&sa.age, /* L21 */

&sa.weight); /* L22 */

/* BL */

while(m != EOF){ /* L23 */
printf("Name: %s, Roll no: %d, Age: %d, Weight: %.1f\n", /* L24 */
sa.name, sa.rollno,sa.age, sa.weight); /* L25 */

m = fscanf(fptr, "%s %d %d %f", sa.name, /* 126 */
&sa.rollno, /¥ L27 */

&sa.age, /* 128 */

8sa.weight); /* L29 */

} /* L30 */
/* BL */

k = fclose(fptr); /* 131 */
if(k == -1) /* L32 */
puts("File-closing failed"); /* L33 */
if(k == 0) /* L34 */
puts("File is closed successfully."); /* L35 */

} /* 136 */
else /* 137 */
puts("File-opening failed"); /* L38 */
return(0); /* L39 */
} /* L4o */

Compile and execute this program, and the following lines of text appear on the screen:

File agents.dat is opened successfully.

Name: Dick, Roll no: 1, Age: 21, Weight: 70.6
Name: Robert, Roll no: 2, Age: 22, Weight: 75.8
Name: Steve, Roll no: 3, Age: 20, Weight: 53.7
Name: Richard, Roll no: 4, Age: 19, Weight: 83.1
Name: Albert, Roll no: 5, Age: 18, Weight: 62.3
File is closed successfully.

177

CHAPTER 6 ' DATA FILES

How It Works

Now let’s discuss how this program works. Notice LOCs 19 to 22, which contain a single
fscanf statement, but because the statement is long, it is split into four LOCs for better
readability. These LOCs are reproduced here for your quick reference:

m = fscanf(fptr, "%s %d %d %f", sa.name, /* L19 */
&sa.rollno, /* L20 */
&sa.age, /* L21 */
&sa.weight); /* 122 */

This statement, after execution, reads the data of Dick (i.e., Dick 1 21 70.6) stored
in the file specified by fptr and assigns that data to the variable sa. As four conversion
specifications are read successfully, the function fscanf() returns the int value 4, which
is assigned to the int variable m.

Next, there is awhile loop spanning LOCs 23 to 30. LOC 23 contains the
continuation condition of the while loop; it is reproduced here for your quick reference:

while(m != EOF){ /* L23 */

As the value of mis now 4 and not EOF, the first iteration begins. Next, the printf
statement is executed, which spans LOCs 24 and 25, which are reproduced here for your
quick reference:

printf("Name: %s, Roll no: %d, Age: %d, Weight: %.1f\n", /* L24 */
sa.name, sa.rollno,sa.age, sa.weight); /* L25 */

The data items stored in the variable sa (i.e., the data of Dick) are displayed on the
screen in LOCs 24 and 25. Next, the fscanf statement is executed, which spans LOCs
26 to 29. This statement is precisely the same as the statement spanning LOCs 19 to 22.
It reads the data of the second secret agent (i.e., the data of Robert) stored in the file
and assigns that data to the variable sa. Proceeding in this manner, the complete file is
read. When the complete file is read and the function fscanf() tries to read the further
data, which simply doesn’t exist, then the reading operation fails and the EOF value is
returned by this function, which is assigned to the int variable m. Then the iterations are
terminated.

178

CHAPTER 6

6-11. Write Integers to a Binary File
Problem

You want to write the integers to a binary file.

Solution

Write a C program that writes the integers to a binary file, with the following
specifications:

e The program opens the binary file num.dat in writing mode and
creates an array of integers.

e The program writes the integers to the file num.dat using the
function fwrite().

The Code

DATA FILES

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name files11.c:

/* This program writes an array of int values to a binary file using the

function fwrite(). */
#include <stdio.h>
main()

int i, k, m, a[20];
FILE *fptr;

for(i = 0; i < 20; i++)
a[i] = 30000 + i;

fptr = fopen("C:\\Code\\num.dat", "wb");
if (fptr != NULL) {
puts("File num.dat is opened successfully.");
m = fwrite(a, sizeof(int), 10, fptr);
if (m == 10)
puts("Data written to the file successfully.");
k = fclose(fptr);
if(k == -1)
puts("File-closing failed");
if(k == 0)
puts("File is closed successfully.");

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
BL
L6
L7
BL
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

179

CHAPTER 6 ' DATA FILES

else /* L20 */
puts("File-opening failed"); /* L21 */
/* BL */

return(0); /* L22 */
} /% 123 */

Compile and execute this program, and the following lines of text appear on the screen:

File num.dat is opened successfully.
Data written to the file successfully.
File is closed successfully.

This program has written the ten integer values (30000, 30001, 30002, 30003, 30004,
30005, 30006, 30007, 30008, 30009) to the binary file num.dat.

Open the file num.dat in a suitable text editor, and you will find that its contents are
as follows:

Oulu2u3u4u5ubu7u8u9u

The contents are unreadable (at least meaningless, if not readable) as the file is
binary. You can read the contents of this file using the function fread(). The size of this
file is 20 bytes as ten int values are stored in it (10 x 2 bytes = 20 bytes). A similar text file
would end up consuming 50 bytes (10 x 5 bytes).

How It Works

The function fwrite() is used to write the data to a file in binary format. The function
fwrite() is particularly suitable for writing an array to a file in binary format. The file
must be opened in binary mode, if the function used for file writing is fwrite(). When
you use the function fwrite() instead of the function fprintf(), there are two possible
benefits: there is saving of storage space, in general, and the fwrite statement is less
complex than the fprintf statement.

The generic syntax of a statement that uses the function fwrite() for writing an
array to a file is given here:

m = fwrite(arrayName, sizeof(dataType), n, fptr);

Here, mis an int variable, arrayName is the name of the array to be written to a file,
dataType is the data type of the array, n is the number of elements in the array to be
written to the file, and fptr is a pointer to the FILE variable. The function fwrite() writes
the n elements of the array arrayName to the file specified by fptr and returns a number
that indicates the number of array elements successfully written. If the writing operation
fails, then a zero value is returned. The returned value is generally ignored in small
programs, but in professional programs it is collected and inspected to find out whether
the writing operation was successful.

In LOCs 6 and 7, the int array a is populated with suitable values ranging from 30000
to 30019.

180

CHAPTER 6 ' DATA FILES

Next, consider LOC 8, which is reproduced here for your quick reference:
fptr = fopen("C:\\Code\\num.dat", "wb"); /* L8 */

Notice that the file-opening mode is "wb". It means the file num.dat is opened for
writing in binary mode. Next, consider LOC 11, which is reproduced here for your quick
reference:

m = fwrite(a, sizeof(int), 10, fptr); /* L11 */

Notice that four arguments are passed to fwrite(). The first argument, a, is the
name of the array to be written to the file; the second argument indicates the size of the
array element (it is 2 bytes); the third argument, 10, indicates the number of elements
of the array to be written to a file; and the fourth argument, fptr, specifies the file to
which the array a is to be written. As the size of int is 2, you can replace the the second
argument simply with 2. Also, the array a consists of 20 elements, but here we have
chosen to write only 10 elements of this array to a file (see the third argument; it is 10).
LOC 11, after execution, writes the first ten elements of the array a to the file specified by
fptr and returns an int value 10, which is assigned to m. Notice the comfort of writing a
complete array in a single statement to a file.

6-12. Write Structures to a Binary File
Problem

You want to write structures to a binary file.

Solution
Write a C program that writes structures to a binary file, with the following specifications:
e The program opens the binary file agents2.dat in writing mode.

e The program writes the structures to agents2.dat using the
function fwrite().

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
files12.c:

/* This program writes structures to a binary file using the function furite(). */
/* BL */
#include <stdio.h> /* L1 */
/* BL */

181

CHAPTER 6 ' DATA FILES

main()
{
int k = 0;
char flag = 'y';
FILE *fptr;
struct biodata {
char name[15];
int rollno;
int age;
float weight;
b
struct biodata sa;
fptr = fopen("C:\\Code\\agents2.dat", "wb");
if (fptr != NULL) {
printf("File agents2.dat is opened successfully.\n");

while(flag == 'y'){

printf("Enter name, roll no, age, and weight of agent:

scanf("%s %d %d %f", sa.name,
&sa.rollno,
&sa.age,
&sa.weight);

furite(&sa, sizeof(sa), 1, fptr);

fflush(stdin);

printf("Any more records(y/n): ");

scanf(" %c", &flag);

}

k = fclose(fptr);
if(k == -1)
puts("File-closing failed");
if(k == 0)
puts("File is closed successfully.");
}

else
puts("File-opening failed");
return(0);

}

Compile and execute this program. A run of this program is given here:

File agents2.dat is opened successfully.

Enter name, roll no, age, and weight of agent: Dick 1 21 70.6

Any more records(y/n): y -

Enter name, roll no, age, and weight of agent: Robert 2 22 75.8

Any more records(y/n): y

Enter name, roll no, age, and weight of agent: Steve 3 20 53.7

Any more records(y/n): y -

182

");

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L2

L3

L4

L5

L6

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
BL

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
B1

L28
L29
L30
L31
L32
L33
L34
L35
L36
L37

-

-

-

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 6 ' DATA FILES

Enter name, roll no, age, and weight of agent: Richard 4 19 83.1 -
Any more records(y/n): y -

Enter name, roll no, age, and weight of agent: Albert 5 18 62.3 e
Any more records(y/n): n -

File is closed successfully.

Open the file agents2.dat in a suitable text editor, and you will find that its contents
are as follows:

Dick A

The contents are unreadable (at least meaningless, if not readable) as the file is
binary. You can read the contents of this file using the function fread(). Also, compare
these contents with the contents of the text file agents.dat, which was written using the
function fprintf(), given here:

Dick 1 21 70.6Robert 2 22 75.8Steve 3 20 53.7Richard 4 19 83.1Albert 5 18 62.3

How It Works

The generic syntax of a statement that uses the function fwrite() for writing a single
variable to a file is given here:

m = fwrite(8var, sizeof(var), 1, fptr);

Here, mis an int variable, var is a variable of any data type, and & is an address
operator. The third argument, 1, indicates that the value of only one object is to be written
to a file (here var is the object), and fptr is a pointer to the FILE variable. The function
fwrite() writes the value of the variable var to a file specified by fptr and returns the
int value 1 if the operation is successful; otherwise, it returns zero. The returned value is
generally ignored in small programs, and it is ignored in the next program.

This program is a remake of the program files8. The only differences are the
following:

e Instead of opening a file in text mode, here it is opened in
binary mode.

¢ Instead of using the function fprintf() for writing the data to a
file, the function fwrite() is used.

Notice LOC 14, which is reproduced here for your quick reference:

fptr = fopen("C:\\Code\\agents2.dat", "wb"); /* L14 */

183

CHAPTER 6 ' DATA FILES

In LOC 14, you can see that file-opening mode is "wb". It means the file agents2.dat
is opened for writing in binary mode. Notice LOC 23, which is reproduced here for your
quick reference:

furite(&sa, sizeof(sa), 1, fptr); /* L23 */

This LOC, after execution, writes the data stored in the variable sa to the file
specified by fptr. The third argument, 1, indicates that only one object is to be written to
a file (here sa is an object).

6-13. Read Integers Written to a Binary File
Problem

You want to read the integers written to a binary file.

Solution

Write a C program that reads the integers written to a binary file, with the following
specifications:

e The program opens the binary file num.dat in reading mode.

e The program reads the integers written to the file using the
function fread().

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
files13.c:

/* This program reads the binary file num.dat using the function fread() */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /* L3 */
int i, k; /* L4 */
int a[10]; /* L5 */
FILE *fptr; /* L6 */
/* BL */

fptr = fopen("C:\\Code\\num.dat", "rb"); /¥ L7 */
if (fptr != NULL) { /* L8 */
puts("File num.dat is opened successfully."); /* L9 */
/* L10 */

fread(a, sizeof(int), 10, fptr); /* L11 */

184

puts("Contents of file num.dat:");

for(i = 0; i < 10; i++)
printf("%d\n", a[i]);

k = fclose(fptr);
if(k == -1)

puts("File-closing failed");
if(k == 0)

}

else
puts("File-opening failed");

puts("File is closed successfully.");

return(0);

}

CHAPTER 6 ' DATA FILES

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL

L12
BL

L13
L14
BL

L15
L16
L17
L18
L19
L20
L21
L22
BL

L23
L24

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

File num.dat is opened successfully.
Contents of file num.dat:
30000

30001

30002

30003

30004

30005

30006

30007

30008

30009

File is closed successfully.

How It Works

Think of the function fread()as a counterpart of the function fwrite(). It is used to read
binary files. The generic syntax of a statement that uses the function fread() for reading

an array stored in a file is given here:

m = fread(arrayName, sizeof(dataType), n, fptr);

Here, mis an int variable, arrayName is the name of the array in which the values
read will be stored, dataType is the data type of an array (e.g., int, float, etc.), nis the
number of values to be read, and fptr is a pointer to FILE that specifies the file to be read.
The function fread() reads the n values of the data type dataType from the file specified
by fptr, stores them in the array arrayName, and returns a number that indicates the

185

CHAPTER 6 ' DATA FILES

number of values read. If the reading operation is quite successful, then the value n is
returned. If the reading operation fails and no value is read, then zero is returned. In
small programs, the returned value is generally ignored.

Consider LOC 7, which is reproduced here for your quick reference:

fptr = fopen("C:\\Code\\num.dat", "rb"); /* L7 */

Notice that file-opening mode is "rb". It means the file num.dat is opened for
reading in binary mode. Next, notice LOC 11, which is reproduced here for your quick
reference:

fread(a, sizeof(int), 10, fptr); /* L11 */

In this LOC, the function fread() reads the ten int values stored in the file specified
by fptr and then stores these values in the first ten elements of the array a. (Why ten? The
third argument says so, and why int? The second argument says so.) Notice the comfort
of reading a complete array in a single statement.

Values stored in the array a are then displayed on the screen using the for loop that
spans LOCs 13 and 14, reproduced here for your quick reference:

for(i = 0; i < 10; i++) /* L13 */
printf("%d\n", a[i]); /* L14 */

This for loop performs ten iterations and displays the values stored in the ten
elements of array a.

6-14. Read Structures Written to a Binary File
Problem

You want to read the structures written to a binary file.

Solution

Write a C program that reads the structures written to the binary file, with the following
specifications:

e The program opens the binary file agents2.dat in reading mode.

e The program reads the structures written to the file using the
function fread().

186

CHAPTER 6 ' DATA FILES

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files14.c:

/* This program reads the structures stored in the binary file agents2.dat */

/* using the function fread() */

/*

#include <stdio.h> /*
/*

main() /*
{ r*
int k = 0, m = 0; /*
FILE *fptr; /*
struct biodata{ /*
char name[15]; /*
int rollno; /*
int age; /*
float weight; /*
}; r*
struct biodata sa; /*
fptr = fopen("C:\\Code\\agents2.dat", "rb"); /*
if (fptr != NULL) { /*
printf("File agents2.dat is opened successfully.\n"); /*

m = fread(8sa, sizeof(sa), 1, fptr); /*
/*

while(m != 0){ /*
printf("Name: %s, Roll no: %d, Age: %d, Weight: %.1f\n", /*
sa.name, sa.rollno,sa.age, sa.weight); /*

m = fread(&sa, sizeof(sa), 1, fptr); /*

} r*
/*

k = fclose(fptr); /*
if(k == -1) /*
puts("File-closing failed"); /*
if(k == 0) /*
puts("File is closed successfully."); /*

/*

else /*
puts("File-opening failed"); /*
return(0); /*
} r*

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
BL
L17
L18
L19
L20
L21
BL
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

187

CHAPTER 6 ' DATA FILES

Compile and execute this program, and the following lines of text appear on the screen:

File agents2.dat is opened successfully.

Name: Dick, Roll no: 1, Age: 21, Weight: 70.6
Name: Robert, Roll no: 2, Age: 22, Weight: 75.8
Name: Steve, Roll no: 3, Age: 20, Weight: 53.7
Name: Richard, Roll no: 4, Age: 19, Weight: 83.1
Name: Albert, Roll no: 5, Age: 18, Weight: 62.3
File is closed successfully.

How It Works

This program is a remake of the program files10 with the following differences:

e Inthis program, file-opening mode is "rb" (i.e., the file agents2.
dat will be opened for reading in binary mode).

e The function fread() is used instead of the function fscanf() to
read the file.

Now let’s discuss how this program works. Notice LOC 16, which is reproduced here
for your quick reference:

m = fread(8sa, sizeof(sa), 1, fptr); /* L16 */

This LOC, after execution, reads the data of Dick stored in the file specified by fptr
and stores that data in the variable sa. The second argument indicates the size of the
variable sa. The third argument indicates that only one object (here data that will be
stored in the variable sa is the object) is to be read from the file. The fourth argument
indicates that the file to be read is specified by fptr. As one object is successfully read, the
integer value 1 is returned by this function, which is assigned to m. You are interested in
the returned value so that you can detect the end of file. When the end of file occurs, then
no object can be read, and fread() returns zero.

Next, there is awhile loop that spans LOCs 17 to 21. Notice LOC 17, which is
reproduced here for your quick reference:

while(m != 0){ /* 117 */

Notice the continuation condition that says iterations are permitted, while m is not
equal to zero. As the value of mis now 1, the first iteration is permitted. Now the first
iteration begins. Next, the printf statement spanning LOCs 18 to 19 is executed. This is
a single statement, but it is put onto two LOCs because it is long. This printf statement
displays the data of Dick on the screen. Next, LOC 20 is executed, which is the same as
LOC 16. LOC 20, after execution, reads the data of Robert from the file and stores it in the
variable sa. This is how the data of successive members is read from the file. When the end
of file occurs and fread() tries to read from the file, then the reading operation fails and
zero is returned (m becomes equal to zero), which terminates the execution of the loop.

188

CHAPTER 6

6-15. Rename a File
Problem

You want to rename a file.

Solution

Write a C program that renames the file kolkata.txt as city.dat.

The Code

DATA FILES

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files15.c:

/* This program changes the name of file kolkata.txt to city.dat. */

#include <stdio.h>
main()

int m;
m = rename("C:\\Code\\kolkata.txt", "C:\\Code\\city.dat");
if (m == 0)
puts("Operation of renaming a file is successful.");
if (m 1= 0)
puts("Operation of renaming a file failed.");
return(0);

}

Compile and execute this program, and the following line of text appears
on the screen:

Operation of renaming a file is successful.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
L9

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

L10 */
L11 */

Open the file city.dat in a suitable text editor and verify that its contents are as

shown here:

Kolkata is very big city.
It is also very nice city.

189

CHAPTER 6 ' DATA FILES

How It Works

In C, you can rename a file using the function rename(). Also, you can delete a file using
the function remove(). The generic syntax of a statement that uses the function rename()
is as follows:

n = rename(oldFilename, newFilename);

Here, 01dFilename and newFilename are expressions that evaluate to the string
constants, which in turn consist of the old file name and new file name, respectively; n is
an int variable. The function rename () changes the name of the file from oldFilename
to newFilename and returns an integer value, which is assigned to n. If the operation of
renaming is successful, then the zero value is returned; otherwise, a nonzero value is
returned.

In this program, the file kolkata.txt is renamed as city.dat in LOC5. LOC 5 is
reproduced here for your quick reference:

m = rename("C:\\Code\\kolkata.txt", "C:\\Code\\city.dat"); /* L5 */

The first argument to the function rename() is an old file name, and the second
argument to the function rename() is a new file name.

6-16. Delete a File
Problem

You want to delete a file.

Solution

Write a C program that deletes the file city.dat.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
files16.c:

/* This program deletes the file city.dat. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /* L2 */
{ /* L3 */
int m; /* L4 */
m = remove("C:\\Code\\city.dat"); /* L5 */

190

CHAPTER 6 ' DATA FILES

if (m == 0) /* L6 */
puts("Operation of deletion of file is successful."); /* L7 */
if (m = 0) /* L8 */
puts("Operation of deletion of file failed."); /* 19 */
return(0); /* L10 */
} /* L11 */

Compile and execute this program, and the following line of text appears
on the screen:

Operation of deletion of file is successful.

The file city.dat is now deleted, and you can verify it by suitable means.

How It Works

The function remove () is used to delete (i.e., remove) a file. The generic syntax of a
statement that uses the function remove() is as follows:

n = remove(filename) ;

Here, filename is an expression that evaluates to a string constant that consists of the
name of the file to be deleted, and n is an int variable. The function remove() deletes the
file name and returns an integer value that is assigned to n. If the operation of deleting a
file is successful, then a zero value is returned; otherwise, a nonzero value is returned.

LOC 5 deletes the file city.dat. LOC 5 is reproduced here for your quick reference:

m = remove("C:\\Code\\city.dat"); /* L5 */

The only argument to the function remove () is the name of the file to be deleted with
the path.

6-17. Copy a Text File
Problem

You want to copy a text file.

Solution

Write a C program that creates a copy of the text file satara. txt with the file name town.dat.

191

CHAPTER 6 ' DATA FILES

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files1i7.c:

/* This program creates a copy of the text file satara.txt

with the filename town.dat. */
#include <stdio.h>

main()

{

FILE *fptrSource, *fptrTarget;
int m, n, p;

fptrSource = fopen("C:\\Code\\satara.txt", "r");
if(fptrSource == NULL){
puts("Source-file-opening failed");

exit(1);

}

puts("Source-file satara.txt opened successfully");

fptrTarget = fopen("C:\\Code\\town.dat", "w");
if(fptrTarget == NULL){

puts("Target-file-opening failed");

exit(2);

}

puts("Target-file town.dat opened successfully");

m = fgetc(fptrSource);
while(m != EOF){

fputc(m, fptrTarget);

m = fgetc(fptrSource);
puts("File copied successfully");

n = fclose(fptrSource);

if(n == -1)
puts("Source-file-closing failed");
if(n == 0)

puts("Source-file closed successfully");
p = fclose(fptrTarget);

if(p == -1)
puts("Target-file-closing failed");

192

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
BL
L6
L7
L8
L9
L10
L11
BL
L12
L13
L14
L15
L16
L17
BL
L18
BL
L19
L20
L21
L22
BL
L23
BL
L24
L25
L26
L27
L28
BL
L29
L30
L31

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 6 ' DATA FILES

if(p == 0) /% 132 */
puts("Target-file closed successfully"); /* L33 */
/* BL */

return(0); /* L34 */
} /* L35 */

Compile and execute this program, and the following lines of text appear
on the screen:

Source-file satara.txt opened successfully
Target-file town.dat opened successfully
File copied successfully

Source-file closed successfully
Target-file closed successfully

Open the file town.dat in a suitable text editor and ensure that its contents are as
shown here:

Satara is surrounded by mountains.
Satara was capital of Maratha empire for many years.

This confirms that the newly created file town.dat is an exact replica of the file
satara.txt.

How It Works

The generic steps involved in the process of creating a copy of a text file are as follows:
1. Open the source file for reading in text mode.

Open the target file for writing in text mode.

Read a character in the source file and write it to the target file.

Repeat the step 3 until the end of source file occurs.

LA

Close the files.

The source file satara.txt is opened in LOC 6. If file opening fails, then LOCs 8 and
9 are executed. Of particular interest is LOC 9, which causes the program to terminate,
and it is reproduced here for your quick reference:

exit(1); /* L9 */

The function exit() causes the program to terminate. It is like an emergency exit.
The generic syntax of a statement that uses the function exit () is given here:

exit(n);

193

CHAPTER 6 ' DATA FILES

Here, n is an expression that evaluates to an integer constant. If the value of n is
zero, then it indicates the normal termination of a program. If the value of n is nonzero,
then it indicates the abnormal termination of a program. This indication is meant for the
caller program. Before the termination of the program, the function exit() performs the
following tasks:

¢ Flushes out the input and output buffers
¢ Closes all the open files

In LOC 9, you pass a nonzero argument to the function exit() indicating the
abnormal termination of the program. Now notice LOC 15, which is reproduced here for
your quick reference:

exit(2); /* L15 */

This time you have also passed a nonzero argument to the function exit() to
indicate the abnormal termination of the program. But this time you have chosen another
nonzero value, 2. Now the caller program is able to know the precise cause of program
termination. The caller program inspects the argument; if it is 1, then it concludes that
the program terminated because the source file opening failed, and if it is 2, then it
concludes that the program terminated because the target file opening failed. Here the
caller program is the function main().

The functions fgetc() and fputc() are used in this program to read a character
from a file and to write a character to a file, respectively.

6-18. Copy a Binary File
Problem

You want to copy a binary file.

Solution

Write a C program that creates a copy of the binary file hello.exe with the file name
world.exe. Also, ensure that the executable file hello.exe is available in the folder C:\
Output. This file displays the text “hello, world” on the screen after execution, and it is the
executable version of the ubiquitous hello program coded by Brian Kernighan.

The Code

The following is the code of the C program written with these specifications. Type the following
C program in a text editor and save it in the folder C: \Code with the file name files18.c:

/* This program creates a copy of the binary file hello.exe named as world.exe. */
/* BL */
#include <stdio.h> /* L1 ¥/
/* BL */

194

CHAPTER 6 ' DATA FILES

main() /* L2 */
{ /¥ L3 */
FILE *fptrSource, *fptrTarget; /* L4 */
int m, n, p; /¥ L5 */
/* BL */

fptrSource = fopen("C:\\Output\\hello.exe", "rb"); /* L6 */
if(fptrSource == NULL){ /* L7 */
puts("Source-file-opening failed"); /* L8 */
exit(1); /* L9 */
} /* L10 */
puts("Source-file Hello.exe opened successfully"); /* L11 */
/* BL */

fptrTarget = fopen("C:\\Output\\world.exe", "wb"); /* L12 */
if(fptrTarget == NULL){ /* L13 */
puts("Target-file-opening failed"); /* L14 */
exit(2); /* L15 */
} /% L16 */
puts("Target-file World.exe opened successfully"); /* L17 */
/* BL */

m = fgetc(fptrSource); /* L18 */
/* BL */

while(m != EOF){ /* L19 */
fputc(m, fptrTarget); /* L20 */
m = fgetc(fptrSource); /* L21 */
/* L22 */

/* BL */

puts("File copied successfully"); /* L23 */
/* BL */

n = fclose(fptrSource); /* 124 */
if(n == -1) /% L25 */
puts("Source-file-closing failed"); /* L26 */
if(n == 0) /* L27 */
puts("Source-file closed successfully"); /* L28 */
/* BL */

p = fclose(fptrTarget); /* 129 */
if(p == -1) /* L30 */
puts("Target-file-closing failed"); /* 131 */
if(p == 0) /* 132 */
puts("Target-file closed successfully"); /* L33 */
/* BL */

return(0); /* L34 */
} /* L35 */

195

CHAPTER 6 ' DATA FILES

Compile and execute this program, and the following lines of text appear on the screen:

Source-file Hello.exe opened successfully
Target-file World.exe opened successfully
File copied successfully

Source-file closed successfully
Target-file closed successfully

Using a suitable Command Prompt window, execute the file world.exe and ensure
that the following output is displayed on the screen:

hello, world

This confirms that the file world. exe is an exact replica of the file hello.exe.

How It Works

This program is a remake of the program files17. The program files17 creates a copy of
the text file, whereas this program (i.e., files18) creates a copy of the binary file. The only
differences are the following:

e Inthe program files17, the source file (satara.txt) is opened
for reading in text mode, whereas in the program files18, the
source file (hello.exe) is opened for reading in binary mode.

e Inthe program files17, the target file (town.dat) is opened for
writing in text mode, whereas in the program files18, the target
file (world.exe) is opened for writing in binary mode.

LOCs 6 and 12 are reproduced here for your quick reference:

fptrSource
fptrTarget

fopen("C:\\Output\\hello.exe", "rb"); /* L6 */
fopen("C:\\Output\\world.exe", "wb"); /* L12 */

The first argument to the function fopen() is the name of the file to be opened with
the path, and the second argument is the mode in which the file is to be opened. You can
see that the opening mode for the file hello.exe is “reading and binary,” and the opening
mode for the file world. exe is “writing and binary.”

196

CHAPTER 6

DATA FILES

6-19. Write to a File and Then Read from That File

Problem

You want to write to a file and also to read that file.

Solution

Write a C program that writes to a file and also reads that file, with the following

specifications:

e The program opens the text file pune. txt in writing mode. The
program writes some text to this file.

e The program rewinds the file pune. txt using the function rewind().

e The program reads the file pune. txt and displays the text on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files19.c:
/* This program performs write and read operations on a file. */
#include <stdio.h>

main()

{

FILE *fptr;

char store[80];

int k;

fptr = fopen("C:\\Code\\pune.txt", "w+");

if(fptr '= NULL){

puts("File pune.txt opened successfully");
fputs("Pune is very nice city.", fptr);
puts("Text written to file pune.txt successfully");
rewind(fptr);
fgets(store, 80, fptr);

puts("Contents of file pune.txt:");
puts(store);

k = fclose(fptr);

if(k == -1)

puts("File-closing failed");

if(k == 0)

puts("File closed successfully");
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
L6
L7
BL
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

197

CHAPTER 6 ' DATA FILES

else
puts("File-opening failed");

return(0);

}

/*
/*
/*
/*
/*

L22
L23
BL

L24
L25

*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

File pune.txt opened successfully

Text written into file pune.txt successfully
Contents of file pune.txt:

Pune is very nice city.

File closed successfully.

How It Works

Hitherto, in every program, you have either written to a file or read a file. However, in this
program, you have written to a file, and then the same file is read. This can be done in
number of ways. Let’s note couple of methods of doing so.
For the first method, follow these steps:

the file (or write to the file), then the marker marches ahead accordingly. In the second

1.

For the second method (used in program files19), follow these steps:
1.
2.
3.

4,
5.

2
3
4.
5
6

Open a file in "w" mode using the function fopen().
Write to the file the desired data.
Close the file using the function fclose().

Open the file again in "r" mode using the function fopen().
Read the file.

Close the file using the function fclose().

Open a file in "w+" mode using the function fopen().
Write to the file the desired data.

Rewind the file using the function rewind(). To rewind the file
means to position the file to its first character.

Read the file.

Close the file using the function fclose().

When you open a file using the function fopen(), then the file is always positioned to
its first character (i.e., the marker is pointing to the first character of the file). As you read

method, in step 3, you have rewound the file using the function rewind(). This step is
necessary because when you write to the file in step 2, then the marker is pointing to the
(n + 1)th byte of the file provided that you have written n characters to the file. However,

198

CHAPTER 6 ' DATA FILES

before you read the file, the latter must be positioned to its first character. This can be

done simply by closing the file and then opening it again. Alternatively, this can be done

simply by calling the function rewind(), which positions the file to its first character.
Notice the simplified syntax of a statement that uses the function rewind() given here:

rewind(fptr);

Here, fptr is a pointer to the FILE variable. The function rewind() rewinds the file
specified by fptr.

In LOC 10 a string is written to the file pune.txt. In LOC 12 the file is rewound using
the function rewind(). After the execution of LOC 12, the file is positioned to its first
character. In LOC 13, a file is read, and the contents of the file (which are nothing but a
single string) are stored in the char array store. In LOC 15, the string stored in store is
displayed on the screen.

6-20. Position a Text File to a Desired Character
Problem

You want to position a text file to a desired character in that file.

Solution

Write a C program that positions a text file to a desired character in that file, with the
following specifications:

e The program opens the text file pune. txt in reading mode.

e The program uses the function ftell() to find out the current
position of the file. Also, the program uses the function fseek() to
position the file to the desired character in that file.

e The program positions the file to various desired characters in the
file using the functions fseek() and ftell().

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
files20.c:

/* This program postions the file to desired characters in that file using */
/* the functions fseek() and ftell(). */

/* BL */
#include <stdio.h> /* L1 */
/* BL */
main() /* L2 */
{ /¥ L3 */

199

CHAPTER 6 ' DATA FILES

FILE *fptr;
int m, n, k, p;
fptr = fopen("C:\\Code\\pune.txt", "r");

if(fptr = NULL){

puts("File pune.txt opened successfully");
puts("Let n denotes current file position");
n = ftell(fptr);

printf("Now value of n is %d\n", n);

printf("Let us read a single character and it is: ");

m = fgetc(fptr);

putchar(m);

printf("\n");

n = ftell(fptr);

printf("Now value of n is %d\n", n);

fseek(fptr, 8, 0);

puts("Statement \"fseek(fptr, 8, 0);\" executed");
n = ftell(fptr);

printf("Now value of n is %d\n", n);

fseek(fptr, 3, 1);

puts("Statement \"fseek(fptr, 3, 1);\" executed");
n = ftell(fptr);

printf("Now value of n is %d\n", n);

fseek(fptr, -5, 1);

puts("Statement \"fseek(fptr, -5, 1);\" executed");
n = ftell(fptr);

printf("Now value of n is %d\n", n);

fseek(fptr, -3, 2);

puts("Statement \"fseek(fptr, -3, 2);\" executed");
n = ftell(fptr);

printf("Now value of n is %d\n", n);

fseek(fptr, 0, 2);

puts("Statement \"fseek(fptr, 0, 2);\" executed");
n = ftell(fptr);

printf("Now value of n is %d\n", n);

puts("Now let us perform a read operation");

m = fgetc(fptr);

printf("Value read is %d\n", m);

n = ftell(fptr);

printf("Now value of n is still %d\n", n);
fseek(fptr, 0, 0);

puts("Statement \"fseek(fptr, 0, 0);\" executed");
n = ftell(fptr);

printf("Now value of n is %d\n", n);

puts("That's all.");

k = fclose(fptr);
if(k == -1)

200

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L4

L5

L6

BL

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
132
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
La4
L45
L46
L47
BL

L48
L49

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 6 ' DATA FILES

puts("File-closing failed"); /* L50 */
if(k == 0) /* L51 */
puts("File closed successfully."); /* L52 */

} /* 153 */
else /* L54 */
puts("File-opening failed"); /* L55 */

/* BL */

return(0); /* L56 */
} /* 157 */

Compile and execute this program, and the following lines of text appear on the screen:

File pune.txt opened successfully

Let n denotes current file position

Now value of n is 0

Let us read a single character and it is: P
Now value of n is 1

Statement "fseek (fptr, 8, 0);" executed
Now value of n is 8

Statement "fseek (fptr, 3, 1);" executed
Now value of n is 11

Statement "fseek (fptr, -5, 1);" executed
Now value of n is 6

Statement "fseek (fptr, -3, 2);" executed
Now value of n is 20

Statement "fseek (fptr, 0, 2);" executed
Now value of n is 23

Now let us perform a read operation

Value read is -1

Now value of n is still 23

Statement "fseek (fptr, 0, 0);" executed
Now value of n is 0

That's all.

How It Works

The function fseek() is used to position a file to the desired character of that file. The
function ftell() is used to retrieve the current position of a file. Notice LOC 6, which is
reproduced here for your quick reference:

fptr = fopen("C:\\Code\\pune.txt", "r"); /* L6 */

After the execution of LOC 6, the file pune.txt opens in "r" mode. Also, the file is
positioned to the first character of the file (i.e., 'P"), as shown in Figure 6-2 (a). Whenever
you open a file using the function fopen(), the file is always positioned to the first
character of the file.

201

CHAPTER 6 ' DATA FILES

[Plujnfe] |i]s| [vie|r]y] [n]ifcle] |clilt]y].]]

marker

Figure (a) File is positioned to the first character of the file (i.e., 'P'). It means marker is pointing to the
first character of the file. Last character in this file "—' is end-of-file character whose ASCII value is 26.

- [Plufole] T[] Ve[l [lIele] b |

marker

Figure (b) File is positioned to the second character of the file (i.e., 'u’). It means marker is pointing
to the second character of the file.

[Plufnle] Jils] [vie[r]y] |n|i]cle] [clile]y].[~]

marker

Figure (c) File is positioned to the ninth character of the file (i.e., v'). It means marker is pointing to
the ninth character of the file.

(Plulnle] [i]s| [v]e[r[y| [nli]cle] [cfi]t]y].|~]

marker

Figure (d) File is positioned to the twelfth character of the file (i.e., 'y'). It means marker is pointing
to the twelfth character of the file.

(Plulnle] [ifs| [vle|r[y] [nlilcle] [c|ilt]y].]~]
marker

Figure (e) File is positioned to the seventh character of the file (i.e., 's'). It means marker is pointing
to the seventh character of the file.

[Plulnle] [i]s| |vle|r]y| [nli]cle] |c[i[t]y].|~]

marker

Figure (f) File is positioned to the twenty first character of the file (i.e., 't'). It means marker is
pointing to the twenty first character of the file.

[Plulnle] [i]s| |vle|=]y| [nli]cle] |c[ift]y].|~]

marker

Figure (g) File is positioned to the end-of-file-character (twenty fourth character) of the file (i.e., '=").
It means marker is pointing to the end-of-file-character (twenty fourth character) of the file.

Figure 6-2. Positioning of the file

You can retrieve the current position of a file using the function ftell(). Notice LOC
10, which is reproduced here for your quick reference:

n = ftell(fptr); /* L10 */

202

CHAPTER 6 ' DATA FILES

In LOC 10, the function ftell() returns the long int value 0 (the index of the first
character in the file, i.e., 'P"), which is assigned to the long int variable n. Notice that
characters in the file are indexed beginning with zero, which is akin to elements in an
array. It means the index of the first character 'P' is 0, the index of the second character
'u' is 1, the index of the third character 'n' is 2, and so on.

Notice the generic syntax of a statement that uses the function ftell() given here:

n = ftell(fptr);

Here, nis a long int variable, and fptr is a pointer to the FILE variable. The
function ftell() returns a long int value, which indicates the position of a file specified
by fptr.

A character is read using the function fgetc(). Notice LOC 13, which is reproduced
here for your quick reference:

m = fgetc(fptr); /* L13 */

In LOC 13, the function fgetc() reads the character 'P' and returns its ASCII value
(it is 80), which is assigned to the int variable m. After the execution of LOC 13, the file is
positioned to the second character of the file (i.e., 'u"), as shown in Figure 6-2 (b). LOC
16 is same as LOC 10, and it is reproduced here for your quick reference:

n = ftell(fptr); /* L16 */

In LOC 16, the function ftell() returns the long int value 1 (the index of the
second character of the file, i.e., 'u'), which is assigned to the long int variable n.In
LOC 18, the file is positioned to the ninth character in the file (i.e., 'v'), as shown in
Figure 6-2 (c). LOC 18 is reproduced here for your quick reference:

fseek(fptr, 8, 0); /* L18 */

Because indexing begins with zero, the index of 'v' is 8, and it appears as the second
argument in the function call in LOC 18. The first argument in this function call is fptr, a
pointer to the FILE variable, and it indicates the file to be positioned. The third argument
in this function call is the integer value 0, and it indicates that the counting of characters
is to be made from the beginning of the file.

Notice the generic syntax of a statement that uses the function fseek() given here:

p = fseek(fptr, offset, origin);

Here, p is an int variable, fptr is a pointer to the FILE variable, offset is an
expression that evaluates to a long int value, and origin is one of the three values 0, 1,
or 2. offset indicates the character offset counted from the origin; when originis 0,
then offset is counted from the beginning of the file (as in the case of LOC 18). When
originis 1, then offset is counted from the current position of the file (i.e., the current
position of the character pointed to by the marker). When origin is 2, then offset is
counted from the end of the file. The function fseek() positions the file as specified by
the arguments and then returns 0 if the operation of positioning the file is successful;
otherwise, it returns a nonzero value.

203

CHAPTER 6 ' DATA FILES

In LOC 20, once again, the current position of the file is retrieved. It is precisely the
same as LOC 13 or LOC 16. In LOC 20, the function ftell() returns the long int value
8 (the index of the ninth character of the file, i.e., 'v'), which is assigned to the long int
variable n.

In LOC 22, the file is positioned to the character 'y' (in the word "very"), as shown
in Figure 6-2 (d). LOC 22 is reproduced here for your quick reference:

fseek(fptr, 3, 1); /* 122 */

In this function call, origin (the third argument) is 1, which means the counting of
characters is to be made from the current position of the file (i.e., 'v'). Also, offset (the
second argument) is 3. Thus, the third character from 'v' is 'y', and hence the file is
positionedto 'y'.

In LOC 24, once again, the current position of the file is retrieved, and in this case the
value of nis 11 because 'y' is the 12th character of the file.

In LOC 26, the file is positioned to the character 's"' (in the word "is"), as shown in
Figure 6-2 (e). LOC 26 is reproduced here for your quick reference:

fseek(fptr, -5, 1); /% 126 */

Notice that in this function call origin (the third argument) is 1; it means the
counting of characters is to be made from the current position of the file (i.e., 'y"'). Also,
offset (the second argument) is -5. Notice that offset is a negative value, it means
counting is to be made in the reverse direction, i.e., to the beginning of file. Thus, the fifth
character from 'y' in the reverse direction is 's"' (in the word "is"), and hence the file is
positioned to 's".

In LOC 28, once again, the current position of the file is retrieved, and in this case the
value of nis 6 because 's' is the seventh character of the file.

In LOC 30, the file is positioned to the character 't' (in the word "city"), as shown
in Figure 6-2 (f). LOC 30 is reproduced here for your quick reference:

fseek(fptr, -3, 2); /* 130 */

Notice that in this function call origin (the third argument) is 2; this means the
counting of characters is to be made from the end of the file (i.e., from the end-of-file
character). Also, offset (the second argument) is -3. As offset is a negative value, counting
is to be made in the reverse direction, i.e., to the beginning of file. Thus, the third character
from the end-of-file-character in the reverse direction is 't', and hence the file is
positioned to 't'. In this case, you can imagine that the index of the end-of-file character
is 0, the index of the period (.) is -1, the index of 'y" is -2, and the index of 't "' is -3.

Also, notice that when origin is 0, then offset must be zero or a positive number.
When originis 2, then offset must be zero or negative number. When origin is 1, then
offset can be a positive or negative number.

In LOC 32, once again, the current position of the file is retrieved, and in this case the
value of n is 20 because 't' is the 21st character of the file.

204

CHAPTER 6 ' DATA FILES

In LOC 34, the file is positioned to the end-of-file character, as shown in Figure 6-2 (g).
LOC 34 is reproduced here for your quick reference:

fseek(fptr, 0, 2); /* L34 */

In LOC 36, once again, the current position of the file is retrieved, and in this case the
value of n is 23 because the end-of-file character is the 24th character of the file.

In LOC 39, aread operation is performed. LOC 39 is reproduced here for your quick
reference:

m = fgetc(fptr); /* 139 */

Now instead of the ASCII value of the end-of-file character, a special value EOF (its
value is -1) is returned by the function fgetc(), which is assigned to m. You inspect the
value of m after every read operation to find out whether the end of file has occurred.

LOC 40 displays the value of m on the screen, and itis -1.

Whenever a read operation is performed using the function fgetc(), then the
marker is advanced to the next character automatically. But after the execution of LOC
39, the marker is not advanced because the marker is already pointing to the end-of-
file character, and it simply cannot be advanced. This is verified in LOC 41, which is
reproduced here for your quick reference:

n = ftell(fptr); /* L41 */

In LOC 41, the value of n turns out to be 23, as expected.
In LOC 43, the file is positioned to the first character of the file, as shown in Figure 6-2 (a).
LOC 43 is reproduced here for your quick reference:

fseek(fptr, 0, 0); /* L43 */
In LOC 45, once again, the current position of the file is retrieved, and in this case the
value of n is 0 as expected.
Instead of LOC 43, you can use the LOC given here to position the file to the first
character of the file:
rewind(); /* Equivalent to L43 */
Imagine that after LOC 45, the following LOC is executed:
fseek(fptr, 30, 0); /* Imagine this LOC after L45 */
After execution of the LOC shown, the file is positioned to the 31st character of the
file. But the file doesn’t contain 31 characters. The index of the last character (end-of-file

character) in the file is 23. Hence, this LOC should be considered erratic even though you
can compile and execute this LOC successfully.

205

CHAPTER 6 ' DATA FILES

Note Never make the marker point to a character that is not part of the file.

6-21. Read from the Device File Keyboard
Problem

You want to read from the device file keyboard.

Solution
Write a C program with the following specifications:

e The program implements the keyboard using a pointer to the
FILE constant stdin.

e The program reads the data from the keyboard and displays it on
the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files21.c:

/* This program reads the device-file "keyboard" and displays */
/* the contents of this file on the screen. */

#tinclude <stdio.h>

main()

{

char text[500];

int m, n =0, p;

puts("Type the text. The text you type form the contents");
puts("of the device-file keyboard. Strike the function");
puts("key F6 to signify the end of this file.");

m = fgetc(stdin);

while(m != EOF){
text[n] = m;
n=n+1;

m = fgetc(stdin);
}

206

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
BL
L9
BL
L10
L11
L12
L13
L14

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 6 ' DATA FILES

/* BL */

puts("Contents of device file \"keyboard\":"); /* L15 */
/* BL */

for(p = 0; p < n; p++) /* L16 */
putchar(text[p]); /* L17 */
/* BL */

return(0); /* L18 */
} /% L19 */

Compile and execute this program.

Type the text. The text you type form the contents
of device file keyboard. Strike the function key
F6 to signify the end of this file.

Chavan’s Street Principle # 1 -

Never stand behind donkey or truck. ot

Donkey will kick you. -

Truck will reverse and crush you. it

<F6> ~

Contents of device file "keyboard":

Chavan’s Street Principle # 1

Never stand behind donkey or truck.

Donkey will kick you.

Truck will reverse and crush you.

How It Works

According to C, a file is a transmitter or receiver of a stream of characters/bytes to or from
the CPU, respectively.

In an interactive program, when you type the text, the keyboard transmits a stream of
characters to the central processing unit. Hence, the keyboard fits well in C’s model of a file.
When program sends the output to the monitor for display, the monitor receives a stream of
characters from the central processing unit. Hence, the monitor also fits well in C’s model of
afile. As a generic term, device file is used to refer to a keyboard file or a monitor file.

When you read a file or write to a file, you need a pointer to the FILE variable
(like fptr used in the preceding programs). Are there any predefined pointers to FILE
variables (like fptr) for the device files’ keyboard and monitor? Yes, there are pointers to
FILE constants (instead of variables) predefined for device files, as listed in Table 6-1.

Table 6-1. Predefined Pointers to FILE Constants for Device Files

Pointer to FILE Constants Device File
stdin Keyboard
stdout Monitor
stderr Monitor

207

CHAPTER 6 ' DATA FILES

Both stdout and stderr specify the same device file, i.e., monitor; but these
constants are used in different contexts. To display the normal text on the monitor, you
use the constant stdout, whereas to display the error messages on the monitor (e.g., the
file opening failed), you use the constant stderr.

In LOC 4, you declare a char type array called text, which can accommodate 500
characters. Next, consider LOC 9, which is reproduced here for your quick reference:

m = fgetc(stdin); /* L9 */

This LOC, after execution, reads a character from the file specified by the pointer to
the FILE constant stdin (i.e., keyboard) and returns its ASCII value, which is assigned to m.
You type three lines of text, and the first line of text is given here:

Chavan's Street Principle # 1

All these characters are transmitted to the CPU only after pressing the Enter key.
After the execution of LOC 9, the first character in this line of text (itis 'C") is read by the
function fgetc(), and its ASCII value (it is 67) is returned, which is assigned to variable m.

Next, there is the while loop, which spans LOCs 10 to 14. LOC 10 is reproduced here
for your quick reference:

while(m != EOF){ /* L10 */

The continuation condition of the while loop in LOC 10 states that iterations of the
while loop are permitted, while m is not equal to EOF. As the value of mis 67 and not EOF,
the first iteration is permitted. Next, LOC 11 is executed, which is reproduced here for
your quick reference:

text[n] = m; /* L11 */

In this LOC, the ASCII value of m (which is 67) is assigned to the first element of the
array text. (Why the first element? The value of n is 0, which serves as the index of the
array text.) As text is a char array, the character 'C' (as its ASCII value is 67) is stored in
the first element of text. In LOC 12, the value of n is increased by 1, which serves as the
index of the array text. Next, LOC 13 is executed, which is the same as LOC 9. In LOC 13,
the next character available in the line of text (itis 'h") is read by the function fgetc(),
and so on. When you strike the function key F6, then character Control-Z (its ASCII value
is 26) is sent by the keyboard to the CPU. When the function fgetc() reads this character,
then instead of returning its ASCII value, it returns the value EOF, and then iterations of
the while loop are terminated.

Next, the for loop in LOCs 16 to 17 is executed, which displays the contents of the
char array text on the screen.

208

CHAPTER 6

6-22. Write Text to the Device File Monitor
Problem

You want to write text to the device file monitor.

Solution
Write a C program with the following specifications:

e The program implements the monitor using a pointer to the FILE
constant stdout and also a pointer to the FILE constant stderr.

e The program reads the text from the text file satara.txt and
writes it to the device file monitor (stdout).

e Ifthe file opening or closing fails, then the program writes the
error message to the device file monitor (stderr).

The Code

DATA FILES

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

files22.c:

/* This program reads the disk-file satara.txt and writes those */
/* contents to the device-file "monitor." */

#include <stdio.h>
main()

{

int m, k;

FILE *fptr;
fptr = fopen("C:\\Code\\satara.txt", "r");
if (fptr != NULL){
puts("Disk-file kolkata.txt opened successfully.");
puts(" Its contents are now written to device file monitor:");
m = fgetc(fptr);

while(m != EOF){
fputc(m, stdout);

m = fgetc(fptr);
}

k = fclose(fptr);
if(k == -1)

fprintf(stderr, "Disk-file closing failed\n");

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
L4
L5
L6
L7
L8
L9
L10
BL
L11
L12
L13
L14
BL
L15
L16
L17

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

209

CHAPTER 6 ' DATA FILES

if(k == 0) /% 118 */
puts("Disk-file closed successfully."); /* L19 */
/* L20 */

else /* L21 */
fprintf(stderr, "Disk-file opening failed\n"); /* L22 */
/* BL */

return(0); /* 123 */
} /* L24 */

Compile and execute this program, and the following lines of text appear on the screen:

Disk-file satara.txt opened successfully.

Its contents are now written to device file monitor:
Satara is surrounded by mountains.

Satara was capital of Maratha empire for many years.
Disk-file closed successfully.

How It Works

In LOC 6, the disk file satara.txt is opened for reading. Next, consider LOC 10, which is
reproduced here for your quick reference:

m = fgetc(fptr); /* L10 */

In this LOC, the function fgetc() reads the first character in the file specified by
fptr (itis 'S"), and its ASCII value (it is 83) is assigned to the int variable m. Next, there
isawhileloop that spans LOCs 11 to 14. LOC 11 is reproduced here for your quick
reference:

while(m != EOF){ /* L11 */

LOC 11 includes the continuation condition of the while loop, which states that
iterations of the while loop are permitted, while m is not equal to EOF. As the value of mis
83, and not EOF, the first iteration of the while loop is permitted. Next, LOC 12 is executed,
which is reproduced here for your quick reference:

fputc(m, stdout); /* L12 */

In LOC 12, the function fputc() writes the character (whose ASCII value is stored
in m) to the file specified by the pointer to the FILE constant stdout, and this file is the
monitor. Thus, after the execution of LOC 12, the character 'S' is displayed on the screen.
Next, LOC 13 is executed, which is the same as LOC 10. In this LOC, the function
fgetc() reads the second character from the file specified by fptr, and so on. Proceeding
in this manner, all the readable characters in the file are displayed on the screen.

210

CHAPTER 6 ' DATA FILES

6-23. Read Text from the Device File Keyboard
and Write It to the Device File Monitor

Problem

You want to read the text from the device file keyboard and write it to the device file monitor.

Solution
Write a C program with the following specifications:

e The program implements the keyboard using a pointer to the
FILE constant stdin.

e The program implements the monitor using a pointer to the FILE
constant stdout.

e The program reads the text from the keyboard and writes it to the
monitor.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
files23.c:

/* This program reads the device-file keyboard and writes those */
/* contents to the device-file monitor. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

main() /¥ L2 */
{ /¥ L3 */
char text[500]; /* L4 */
int m, n = 0, p; /* L5 */
puts("Type the text. The text you type form the contents"); /* L6 */
puts("of the device-file keyboard. Strike the function"); /* L7 */
puts("key F6 to signify the end of this file."); /* L8 */
/* BL */

m = fgetc(stdin); /* L9 */
/* BL */

while(m != EOF){ /* L10 */
text[n] = m; /* L11 */
n=n+1; /* L12 */

m = fgetc(stdin); /* L13 */

} /* L14 */
/* BL */

211

CHAPTER 6 ' DATA FILES

puts("Contents of the device-file keyboard are now"); /* L15 */
puts("written to the device-file monitor."); /* L16 */
/* BL */

for(p = 0; p < n; p++) /* L17 */
fputc(text[p], stdout); /* L18 */
/* BL */

return(0); /* L19 */
} /* L20 */

Compile and execute this program, and the following lines of text appear on the screen:

Type the text. The text you type form the contents
of the device-file keyboard. Strike the function
key F6 to signify the end of this file.

I am a born writer. -
I inherited the art of writing from my country. -
<F6> «~

Contents of the device-file keyboard are now
written into the device-file monitor.

I am a born writer.

I inherited the art of writing from my mother.

How It Works

During the execution of the program, the text typed by the user of the program is stored in
the array text. The block of code spanning LOCs 9 to 14 reads the text from the device file
keyboard and stores it in the array text. The block of code in LOCs 17 to 18 writes the text
stored in the array text to the device file monitor.

212

CHAPTER 7

Self-Referential Structures /

A self-referential structure is a structure in which one of its members is a pointer to the
structure itself. The generic syntax of a self-referential structure is given here:

struct tag {
member1;
member2;

struct tag *next;

};

Here, next is a pointer variable pointing to the structure struct tag itself. Notice the
example of the self-referential structure given here:

struct members {
char name[20];
struct members *next;

};

7-1. Generate Lists of Numbers in an

Interactive Manner
Problem

You want to generate a list of numbers in an interactive manner.

© Shirish Chavan 2017 213
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_7

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

Solution

Write a C program that generates a list of numbers, with the following specifications:

e The program determines the size of the list in an interactive
manner; i.e., the size of the list is not prefixed.

e The program uses the function calloc() to allocate the memory
dynamically, which is required for the lists.

e Lists are filled with the numbers generated using a simple ad hoc
formula.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

srsl.c:

/* This program uses function calloc() for dynamic allocation of memory. */

#include <stdio.h> /*
/*

main() *
{ ’*
int n, i, j; /*
int *ptr, *1list[10]; /*
printf("Enter an integer as size of list (1 <= n <= 20): "); /*
scanf("%d", &n); /*
for(i = 0; i < 10; i++) { /*
list[i] = (int *) calloc(n, sizeof(int)); /*
for(j = 0; j < n; j++) /*
(list[i] + j) =1 + j + 10; /

) /*
/*

printf("Displaying the values of items in list\n"); /*
for(i = 0; i < 10; i++) { /*
printf("List[%d]: ", i); /*
for(j = 0; j < n; j++) { /*
printf("%d ", *(list[i] + j)); /*

} r*
printf("\n"); r*

/*

/*

return(0); /*

) &

214

L1
BL
L2
L3
L4
Ls
L6
L7
L8
L9
L10
L11
L12
BL
L13
L14
L15
L16
L17
L18
L19
L20
BL
L21
L22

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

Compile and execute this program. A run of this program is given here:

Enter an integer as size of list (1 <= n <= 20): 20 -
Displaying the values of items in list
List[0]: 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

List[1]: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
List[2]: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
List[3]: 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
List[4]: 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
List[5]: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
List[6]: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
List[7]: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
List[8]: 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
List[9]: 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

How It Works

The function calloc() is used for allocating memory dynamically for arrays. You can also
use the function malloc() for allocating memory dynamically for arrays. But calloc() is
more convenient for arrays. Unlike malloc(), the calloc() function initializes the entire
allocated memory to a null character value ('\0"). Like malloc(), the calloc() function
also returns a pointer to void, which points to the first byte of the allocated memory block.
The generic syntax of a statement that uses the function calloc() is given here:

ptr = (dataType *) calloc (n, size);

Here, ptr is a pointer to the dataType variable; dataType is any valid data type such
as int, char, float, etc.; size is an integer (or expression that evaluates to an integer) that
indicates the number of bytes required for an object (e.g., if the type of array is int, then
sizeis 2); and nis an integer (or expression that evaluates to an integer) that indicates the
number of objects (e.g., if the array consists of ten elements, then n is 10). This function
allocates a contiguous block of memory whose size in bytes is atleastn x size. If the
required memory cannot be allocated, then a NULL pointer is returned.

In LOC 5, you declare an array of pointers-to-int that consists of ten elements and is
called 1ist. This means you have ten pointers-to-int at your disposal, and you can refer
to any one of them using the symbol 1ist[i]. To every pointer, you are going to attach a
listof n int type values, and the value of n will be entered by the user at runtime. LOC 7
accepts the value entered for n. LOCs 8 to 12 consist of nested for loops. In LOC 9, you
allocate the memory dynamically. LOC 9 is reproduced here for your quick reference:

list[i] = (int *) calloc(n, sizeof(int)); /* L9 */

This LOC, after execution, reserves n blocks of memory (each block consists of 2
bytes, which is the size of int) and returns a pointer that is cast to type (int *), and then
itis assigned to 1ist[i]. Now you can assign a list of n int values to the int pointer
list[i]. And certainly you have assigned a list of n int values to list[i] in LOCs 10 to
11, which consist of the inner for loop that performs n iterations. Assignments are made
in LOC 11, and as you can see, arbitrary values are assigned to 1list[i].

215

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

The values assigned to the list are displayed on the screen in LOCs 14 to 20, which
consist of nested for loops.

7-2. Create a Linked List Using Anonymous

Variables
Problem

You want to create a linked list using anonymous variables.

Solution
Write a C program that creates a linked list, with the following specifications:

e The program uses the anonymous variables, which are created
using the function malloc().

e The program creates a structure named members. The char type
array named name is a member of this structure. Suitable values are
assigned to name, and these names are displayed on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
srs2.c:

/* This program implements a simple linear linked list. */
/* Function malloc() is used to create the components of list. */

/* BL */

#include <stdio.h> /¥ L1 ¥/
#include <stdlib.h> /¥ L2 */
#include <string.h> /* 13 */
/* BL */

struct members { /* L4 */
char name[20]; /* L5 */
struct members *next; /* L6 */
}; /¥ L7 */
/* BL */

typedef struct members node; /* L8 */
/* BL */

void display(node *start); /* L9 */
/* BL */

main() /* L10 */
{ /* L11 */
node *start; /* L12 */
/* BL */

216

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

start = (node *) malloc(sizeof(node));
strcpy(start->name, "lina");

start->next = (node *) malloc(sizeof(node));
strcpy(start->next->name, "mina");

start->next->next = (node *) malloc(sizeof(node));
strcpy(start->next->next->name, "bina");
start-»>next->next->next = (node *) malloc(sizeof(node));
strcpy(start->next->next->next->name, "tina");
start->next->next->next->next = NULL;

printf("Names of all the members:\n");
display(start);

return(0);

}

void display(node *start)
int flag = 1;

do {
printf("%s\n", start->name);
if(start->next == NULL)
flag = 0;

start = start->next;
} while (flag);
return;
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L13
L14
L15
L16
L17
L18
L19
L20
L21
BL

L22
L23
BL

L24
L25
BL

L26
L27
L28
BL

L29
L30
L31
L32
L33
L34
BL

L35
L36

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program, and the following lines of text appear on the screen:

Names of all the members:
lina
mina
bina
tina

How It Works

First, notice the salient features of this program:

e The declaration of structure members is placed outside the
function main() so that its scope is extern and any function can
access it without trouble.

e Using typedef, the type named struct members is changed to node
as shorter names are more convenient to pronounce and write.

217

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

Notice the block of code spanning LOCs 13 to 21. Figure 7-1 illustrates how these
LOCs work; the figure consists of nine diagrams, with one diagram per LOC. The salient
feature of this program is that variables of type node used here are anonymous and
created with the help of the dynamic memory allocation function malloc(). This is the
way linked lists are created and processed. You will rarely find the named variables in the
programs creating and processing linked lists.

(o Te (o[e
i i i i

|
|
|
|
pointer pointer | pointer pointer
|
|
|

start start->next start start->next

Figure (a) After execution of LOC 13, a memaory
block is allocated for anonymous variable of type

Figure (b) After execution of LOC 14, string "lina"
is copied into slot reserved for name in this

node and pointer start is set pointing to it. L memary block.
] N Figure (c) After execution of LOC 15,
| e | > lina L v L one more memory block (this is
second) is allocated for anonymous
ﬂ ﬂ ﬂ variable of type node and pointer
pointer pointer pointer start->next is set pointing to it.
start start->next start->next->next

- - Figure (d) After execution of LOC 186,
[» lina [» mina ® string "mina" is copied into slot
reserved for name in the second

ﬂ ﬁ ﬂ memory block.

pointer pointer pointer
start start->next start->next->next

I I I i

pointer pointer pointer pointer
start start->next start->next->next start->next->next->next

Figure (e) After execution of LOC 17, one more memory block (this is third) is allocated for
anonymous variable of type node and pointer start->next->next is set pointing to it.

I I f I

pointer pointer pointer pointer
start start->next start->next->next start->next->next->next

Figure (f) After execution of LOC 18, string "bina" is copied into slot reserved for name in the third
memory block.

Figure 7-1. Snapshots of memory during the execution of program srs2

218

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

pointer pointer
start->next->next start->next->next->next->next
| ._|_> ina | @—» mna | @ bina | e—» °

I I I

pointer pointer pointer
start start->next start->next->next->next

Figure (g) After execution of LOC 19, one more memory block (this is fourth) is allocated for
anonymous variable of type node and pointer start->next->next->next is set pointing to it.

pointer pointer
start->next->next start->next->next->next->next
@——| Ilina ®——» mina ®—»| bina @—— tina ®
pointer pointer pointer
start start->next start->next->next->next

Figure (h) After execution of LOC 20, string "tina" is copied into slot reserved for name in the fourth
memory block.

pointer pointer
start->next->next start->next->next->next->next
@——» lina @——»| mina @——»| bina @—— tina |NULL
pointer pointer pointer
start start->next start->next->next->next

Figure (i) After execution of LOC 21, peointer start->next->next->next->next is assigned the
value NULL. Now it is a NULL pointer pointing to nowhere.

Figure 7-1. (continued)

After the execution of LOC 13, a memory block is allocated for the anonymous
variable of type node, and the pointer start is set pointing to it. After the execution of
LOC 14, the string "1ina" is copied into a slot reserved for name in that memory block.
After the execution of LOC 15, one more memory block (this is the second) is allocated
for the anonymous variable of type node, and the pointer start->next is set pointing to it.
After the execution of LOC 16, the string "mina" is copied into the slot reserved for name in
the second memory block. After the execution of LOC 17, one more memory block
(this is the third) is allocated for the anonymous variable of type node, and the pointer
start->next->next is set pointing to it.

219

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

After the execution of LOC 18, the string "bina" is copied into the slot reserved for
name in the third memory block. After the execution of LOC 19, one more memory block
(this is the fourth) is allocated for the anonymous variable of type node, and the pointer
start->next->next->next is set pointing to it. After the execution of LOC 20, the string
"tina" is copied into the slot reserved for name in the fourth memory block. After the
execution of LOC 21, the pointer start->next->next->next->next is assigned the value
NULL. Now it is a NULL pointer pointing to nowhere.

LOC 23 calls the function display() that displays all four names on the screen.

7-3. Delete a Component from a Linked List
Problem

You want to delete a component from a linked list.

Solution

Write a C program that deletes a component from a linked list, with the following
specifications:

e The program implements a simple linear linked list using the
function malloc() to create the components of the list.

e The program deletes a couple of components from this list.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
srs3.c:

/* This program implements a simple linear linked list. */
/* Function malloc() is used to create the components of list. */
/* Couple of components in the list are deleted. */

/* BL */

#include <stdio.h> /* L1 */
#include <stdlib.h> /* L2 */
#include <string.h> /* 13 */
/* BL */

struct members { /* L4 */
char name[20]; /* L5 */
struct members *next; /* L6 */
}; /* L7 */
/* BL */

typedef struct members node; /* L8 */
/* BL */

void display(node *start); /* L9 */
/* BL */

220

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

main() /* L10 */
{ /* L11 */
node *start, *temp = NULL; /* L12 */
/* BL */

start = (node *) malloc(sizeof(node)); /* L13 */
strcpy(start->name, "lina"); /* L14 */
start->next = (node *) malloc(sizeof(node)); /* L15 */
strcpy(start->next->name, "mina"); /* L16 */
start->next->next = (node *) malloc(sizeof(node)); /* L17 */
strcpy(start->next->next->name, "bina"); /* L18 */
start->next->next->next = (node *) malloc(sizeof(node)); /* L19 */
strcpy(start->next->next->next->name, "tina"); /* L20 */
start->next->next->next->next = NULL; /* L21 */
/* BL */

printf("Names of all the members:\n"); /* L22 */
display(start); /* 123 */
/* BL */

printf("\nDeleting first component - lina\n"); /* L24 */
temp = start->next; /* L25 */
free(start); /* L26 */
start = temp; /* L27 */
temp = NULL; /* 128 */
display(start); /* 129 */
/* BL */

printf("\nDeleting non-first component - bina\n"); /* L30 */
temp = start->next->next; /* 131 */
free(start->next); /* 132 */
start->next = temp; /* 133 */
temp = NULL; /* 134 */
display(start); /* L35 */
/* BL */

return(0); /* L36 */

} /* 137 */
/* BL */

void display(node *start) /* L38 */
/* L39 */

int flag = 1; /* L40 */
/* BL */

do { /* L41 */
printf("%s\n", start->name); /* L42 */
if(start->next == NULL) /* L43 */
flag = 0; /% Lag */
start = start->next; /* L45 */

} while (flag); /* L46 */
/* BL */

return; /* L47 */
} /* L48 */

221

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

Compile and execute this program, and the following lines of text appear on the
screen:

Names of all the members:

lina

mina

bina

tina

Deleting first component - lina
mina

bina

tina

Deleting non-first component - bina
mina

tina

How It Works

Itis a salient feature of a linked list that you can insert and delete components from it
easily. In an array, the deletion or insertion of an element is a troublesome task. Figure 7-2
illustrates how a component can be deleted from a list. The procedure involved in deleting
the first component in a list slightly differs from that of another component in a list.

® lina @ mina @®—»| bina ® tina NULL

v

Y
hJ

Figure (a) Initial linked list consisting of four components. Second component is to be deleted.

lina [] mina @

®
Y
v
=3
=]
]
®
v
[—d
=]
[
=
[=
=
[l

@
v
5
o
@
Y
=3
=1
W
®
Y
f—
=
@
=z
c
—
[l

Figure (c) Free the memory allocated to second component using the function free ().

Figure 7-2. Generic procedure of deleting a component in a linked list

In LOCs 13 to 21, a linked list is created that consists of four components, as shown
in Figure 7-2 (a). In LOCs 25 to 28, the first component (1ina) is deleted from the list. In
LOCs 31 to 34, the (now) second component (bina) is deleted from the list. Figure 7-3
illustrates the process of removing the first component (1ina) from the list. Figure 7-4
illustrates the process of removing the now second component (bina) from the list.

222

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

pointer

start

pointer

start->next

J

pointer

start->next->next

g

pointer

start->next->next->next->next

g

component (mina).

[»| lina ®—— mina ®——» bina ®——» tina NULL
‘ I
p?mter | [] pointer
temp
start->next->next->next
temp = start->next; /* L25 */

Figure (a) After execution of LOC 25 (given above) pointer temp is made to point to second

now as good as garbage.

pointer pointer pointer
start temp->next temp->next->next->next
® mina @®—»| bina @——» tina |NULL
“ I
inter -
Ot | [pointer
temp
temp->next->next
free (start): /* L26 */

Figure (b) After execution of LOC 26 (given above) first component (lina) disappears as memory
allocated to it is freed. Other pointers are now redefined in terms of temp. Contents of start are

pointer pointer pointer
start start->next start->next->next->next
®——»| mina [»| bina ®——» tina NULL
“ i
inter -
po | [] pointer
temp
start->next->next
start = temp; /* L27 */

Figure (c) After execution of LOC 27 (given above) pointer start is made to point to second
component (mina). Other pointers are now redefined in terms of start.

Figure 7-3. Deleting the first component from the linear linked list, program srs3

223

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

pointer pointer pointer

start start->next start->next->next->next

J g g

I.—|—> mina @®—» bina ®——| tna NULL
A
pointerﬂ .
start-»next->next [] pointer
temp

temp = start->next->next; /* L31 */

Figure (a)Aﬂer execution of LOC 31 (given above) pointer temp is made to point to third component
(tina).

pointer pointer pointer

start start->next temp->next

I] I
| ._|_. mna | @ tina | NULL

free(start->next); /* L32 */ ® pointer

temp

Figure (b) After execution of LOC 32 (given above) second component (bina) disappears as
memory allocated to it is freed. Pointer in tina is now redefined in terms of temp. Contents of
start->next are now as good as garbage.

pointer pointer pointer

start start->next start->next->next

g g 4

|._|_. mna | @—»| tina |NULL
A
pointer
L temp
start->next = temp; /* L33 */

Figure (c) After execution of LOC 33 (given above) pointer start->next is made to point to tina.
Pointer in tina is now redefined in terms of start.

Figure 7-4. Deleting the second component (bina) from the linear linked list, program srs3

First, consider the removal of the first component (1ina) from the list. LOCs 25 to 28
are reproduced here for your quick reference:

temp = start->next; /* L25 */
free(start); /* L26 */
start = temp; /* L27 */
temp = NULL; /* L28 */

224

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

In LOC 25, the pointer temp is made to point to the second component (mina), as
shown in Figure 7-3 (a). In LOC 26, the memory allocated to the first component (1ina)
is freed. As a result, the first component is destroyed, as shown in Figure 7-3 (b). Now
the contents of the pointer start are as good as garbage. In LOC 27, the pointer start
is made to point to the (now) first component (mina), as shown in Figure 7-3 (c). The
process of deletion is now complete. But the pointer temp is still pointing to the first
component. A purist may object to this situation. Therefore, to pacify the purists, the
pointer temp is assigned a NULL value in LOC 28. But in professional programs, you will
not find LOC 28, because it is a useless burden on the performance of the program. If
temp is pointing to the list, you should just ignore it.

Now consider the removal of the (now) second component (bina) from the list. LOCs
31 to 34 are reproduced here for your quick reference:

temp = start->next->next; /* 131 */
free(start->next); /* 132 */
start->next = temp; /* L33 */
temp = NULL; /* L34 */

In LOC 31, the pointer temp is made to point to the third and last component (tina),
as shown in Figure 7-4 (a). In LOC 32, the memory allocated to the second component
(bina) is freed; as a result, the second component (bina) is destroyed, as shown in
Figure 7-4 (b). Now the contents of the pointer in the first component (mina) are as
good as garbage. In LOC 33, the pointer in the first component (mina) is made to point
to the second and last component (tina), as shown in Figure 7-4 (c). Now the process
of deletion is complete. But to pacify the purists, I have assigned a NULL value to temp in
LOC 34. While developing professional programs, you will not use LOC 34 as it is useless
burden on the performance of the program.

7-4. Insert a Component into a Linked List
Problem

You want to insert a component in a linked list.

Solution

Write a C program that inserts a component in a linked list, with the following
specifications:

e The program implements a simple linear linked list using the
function malloc() to create the components of the list.

e The program inserts a couple of components in this list.

225

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

SIS4.C:

/* This program implements a simple linear linked list using the function

malloc(). */

/* Couple of components are inserted in the list after creating it. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct members {
char name[20];
struct members *next;

};
typedef struct members node;
void display(node *start);

main()

{

node *start, *temp;

start = (node *) malloc(sizeof(node));
strcpy(start->name, "lina");

start->next = (node *) malloc(sizeof(node));
strcpy(start->next->name, "mina");
start->next->next = (node *) malloc(sizeof(node));
strcpy(start->next->next->name, "bina");
start->next->next->next = NULL;

printf("Names of all the members:\n");
display(start);

printf("\nInserting sita at first position\n");
temp = (node *) malloc(sizeof(node));
strcpy(temp->name, "sita");

temp->next = start;

start = temp;

display(start);

printf("\nInserting tina between lina and mina\n");

temp = (node *) malloc(sizeof(node));
strcpy(temp->name, "tina");

226

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
L2
L3
BL
L4
L5
L6
L7
BL
L8
BL
L9
BL
L10
L11
L12
BL
L13
L14
L15
L16
L17
L18
L19
BL
L20
L21
BL
L22
L23
L24
L25
L26
L27
BL
L28
L29
L30

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

temp->next = start->next->next; /* 131 */
start->next->next = temp; /* 132 */
display(start); /* 133 */
/* BL */

return(0); /* 134 */

} /* L35 */
/* BL */

void display(node *start) /* L36 */
/* 137 */

int flag = 1; /* 138 */
/* BL */

do { /* 139 */
printf("%s\n", start->name); /* L40 */
if(start->next == NULL) /* L41 */
flag = 0; /* L42 */
start = start-»>next; /* L43 */

} while (flag); /* L44 */
/* BL */

return; /* L45 */
} /* L46 */

Compile and execute this program, and the following lines of text appear on the
screen:

Names of all the members:

lina

mina

bina

Inserting sita at first position
sita

lina

mina

bina

Inserting tina between lina and mina
sita

lina

tina

mina

bina

How It Works

The procedure of inserting a component at the beginning of the list slightly differs from
that of inserting a component elsewhere in the list. This program has dealt with both of
these cases. Figure 7-5 illustrates the generic procedure of inserting a new component in
alinear linked list.

227

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

| .—|—.| lina [.—I-.‘ bina l ._’_. tina | NULL

Figure (a) Initial linked list consisting of three components. A new component (mina) is to be inserted
between first and second components (i.e., between lina and bina)

Figure (b) Create a new component using malloc () function. Copy data (here name is data) into it.
Set pointer of first component (lina) pointing to new component (mina) and set pointer in new
component (mina) pointing to second component (bina).

Figure (c) Now list consists of four components.

Figure 7-5. Generic procedure of inserting a new component in a linear linked list

A new component (sita) is inserted in the list at the beginning of the list in LOCs
23 to 26. Figure 7-6 illustrates this process. A new component (tina) is inserted in the list
between the components 1ina and mina in LOCs 29 to 32, as illustrated in Figure 7-7.

Consider the block of code spanning LOCs 23 to 26. After the execution of LOC 23, a
memory block is allocated for the anonymous variable of type node, and the pointer temp
is set pointing to it, as shown in Figure 7-6 (a). After the execution of LOC 24, the string
"sita" is copied into the slot reserved for name in this newly allocated memory block,
as shown in Figure 7-6 (b). After the execution of LOC 25, the pointer temp->next is set
pointing to the first component (1ina) in the list, as shown in Figure 7-6 (c). After the
execution of LOC 26, the pointer start is set pointing to the newly created component
sita, as shown in Figure 7-6 (d). The pointer temp is still pointing to the component sita.
A NULL value may be assigned to the pointer temp, but this affects the performance of the
program slightly. It is advisable to ignore the pointer temp rather than assigning a NULL
value to it.

Now consider the block of code spanning LOCs 29 to 32. After the execution of LOC
29, a memory block is allocated for the anonymous variable of type node, and the pointer
temp is set pointing to it, as shown in Figure 7-7 (a). After the execution of LOC 30, a string
"tina" is copied into a slot reserved for name in this newly allocated memory block, as
shown in Figure 7-7 (b). After the execution of LOC 31, the pointer temp->next is set
pointing to the third component (mina) in the list, as shown in Figure 7-7 (c). After the
execution of LOC 32, the pointer start->next->next is set pointing to the newly created
component tina, as shown in Figure 7-7 (d). The pointer temp is still pointing to the
component tina. A NULL value may be assigned to the pointer temp, but this affects the
performance of the program slightly (i.e., the execution time increases). It is advisable to
ignore the pointer temp rather than assigning a NULL value to it.

228

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

pointer pointer pointer

start start->next start->next->next

g g g

I ._|_> ina | @—» mna | @—» bina [NULL
o) pointer
start->next->next->next
pointer pointer
temp temp->next
temp = (node *) malloc(sizeof (node)): /* 123 */

Figure (a) After execution of LOC 23 (given above) a memory block is allocated for anonymous
variable of type node and pointer temp is set pointing to it.

pointer pointer pointer
start start->next start->next->next
@®——| lina @—» mina @®—»| bina |NULL

| .—|—p sita] pointer
start->next->next->next

f I

pointer pointer
temp temp->next

strcpy (temp->name, "sita"); J* L24 */

in this newly allocated memory block.

Figure (b) After execution of LOC 24 (given above) string "sita" is copied into slot reserved for name

Figure 7-6. Inserting a new component (sita) at the beginning of the list, program srs4

229

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

pointer pointer pointer
start start->next start->next->next
@®—— lina ®——» mina @®—»| bina |NULL

¥ ﬂ
| ._|_, sita o pointer
start->next->next->next

pointer pointer
temp temp->next

temp->next = start; /* L25 */

Figure (c) After execution of LOC 25 (given above) pointer temp->next is set pointing to first
component (lina) in the list.

pointer pointer pointer

start start->next->next start->next->next->next

|.| ina | @—» mna | @—» bina |NULL

'y ﬂ

Yy pointer
[] » sita [] start->next->next->next->next
pointer pointer
temp start->next

start = temp /* L26 */

Figure (d) After execution of LOC 26 (given above) pointer start is set pointing to newly created
component sita. Other pointers are now redefined in terms of start. Pointer temp is still pointing to
component sita. A NULL value may be assigned to pointer temp.

Figure 7-6. (continued)

230

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

pointer pointer pointer pointer

start start->next start->next->next start->next->next->next

| ._‘_. sita @—» lina @—| mina @—»| bina |[NULL
pointer ﬂ

| .+’ . S=->n->n->n->n
where s = start
ﬂ ﬂ and n = next

pointer pointer

temp temp->next

temp = (node *) malloc(sizeof(node)); f* L29 */

Figure (a) After execution of LOC 29 (given above) a memory block is allocated for anonymous
variable of type node and pointer temp is set pointing to it.

pointer

start->next->next->next

pointer

pointer pointer
start->next->next

start start->next

]]] I

® sita @——» lina @ mina [
pointer ﬂ

| ._|_. tina ® S->n->n->n->n
where s = start
ﬂ ﬂ and n = next

pointer pointer

temp temp->next

v
h A

hJ

strepy (Lemp->name, "tina"): J* OL30 */

Figure (b) After execution of LOC 30 (given above) a string "tina" is copied into a slot reserved for
name in this newly allocated memory block.

Figure 7-7. Inserting a new component (sita) not at the beginning of the list, program srs4

231

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

pointer pointer pointer

start start->next start->next->next

pointer

start->next->next->next

g 4 4 g

| ._|_. sta | @—f» lna | @—» mna | @—» bina |NULL
A

N - pointerﬂ

¢ e tna . S=>n->n->n->n

where s = start

ﬂ ﬂ and n = next
pointer pointer
temp temp->next

temp->next = start->next->next; /* L31 */

Figure (c) After execution of LOC 31 (given above) pointer temp->next is set pointing to third
component (mina) in the list.

pointer pointer pointer

start start->next start->next->next

pointer

start->next->next->next->next

J d 4 g

®—— sita @o—» lina ® mina @—— bina |[NULL
'y
v 1
| | tina ® pointer
§=>N->n->n->n->n
where s = start
ﬂ ﬂ and n = next
pointer pointer
temp start->next->next->next

start->next->next = temp; /* L32 */

Figure (d) After execution of LOC 32 (given above) pointer start->next->next is set pointing to
newly created component tina. Pointers in tina, mina, and bina are now redefined in terms of start
Painter temp is still pointing to component tina. A NULL value may be assigned to pointer temp.

Figure 7-7. (continued)

7-5. Create a Linked List in an Interactive
Session
Problem

You want to create a linked list in an interactive session.

232

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

Solution
Write a C program that creates a linked list in an interactive session, with the following
specifications:

e The program implements a simple linear linked list using the

function malloc() to create the components of the list.

e The program accepts the data for the components entered by the
user during the execution of the program and then displays this
data on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
srs5.c:

/* This program implements a simple linear linked list. */
/* Components of list are created in interactive session. */

/* BL */

#include <stdio.h> /* L1 */
#include <stdlib.h> /* L2 */
#include <string.h> /* L3 */
/* BL */

struct members { /* L4 */
char name[20]; /* L5 */
struct members *next; /* L6 */
}; /* L7 */
/* BL */

typedef struct members node; /* L8 */
/* BL */

void display(node *start); /* L9 */
void create(node *start); /* L10 */
/* BL */

main() /* L11 */
/* L12 */

node *start, *temp; /* L13 */
/* BL */

start = (node *) malloc(sizeof(node)); /* L14 */
temp = start; /* L15 */
create(start); /* L16 */
/* BL */

start = temp; /* 117 */
printf("\nNames of all the members:\n"); /* L18 */
display(start); /* L19 */
/* BL */

return(0); /* 120 */

} /* L21 */

233

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

void display(node *start)
int flag = 1;

do {
printf("%s\n", start->name);
if(start->next == NULL)
flag = 0;
start = start->next;
} while (flag);

return;

}
void create(node *start)
{

int flag = 1;

char ch;

printf("Enter name: ");

do {
scanf(" %[*\n]", start->name);
printf("Any more name? (y/n): ");
scanf(" %c", &ch);

if(ch == 'n"){
flag = 0;
start->next = NULL;
}
else {

start->next = (node *) malloc(sizeof(node));
start = start->next;
printf("Enter name: ");

}
} while (flag);

return;
}
Compile and execute this program. A run of this program is given here:

Enter name: lina -

Any more name? (y/n): vy -

Enter name: mina -

Any more name? (y/n): vy -

Enter name: bina -

Any more name? (y/n):y «

234

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L22
L23
L24
BL

L25
L26
L27
L28
L29
L30
BL

131
L32
BL

L33
L34
L35
L36
L37
BL

138
L39
L40
L41
L42
L43
L4
L4s
L46
L47
L48
L49
L50
L51
BL

L52
L53

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

Enter name: tina -

Any more name? (y/n): n it
Names of all the members:
lina

mina

bina

tina

How It Works

This is an interactive program. Professional programs that process linked lists are
necessarily interactive programs. In an interactive program, the number of components
a list will have is not known at compile time. Therefore, a do-while loop is used in this
program, which contains the basic statements to create a new component and fill data in
it. After creating a component, a user will be asked whether he or she wants to create one
more component. If the user says no, then the loop is terminated; otherwise, it iterates.

As the program starts, LOC 13 is executed in which two pointer variables, start and
temp, are declared of type pointer to node.In LOC 14, a memory block is allocated for
the anonymous variable of type node, and the pointer start is set pointing to it, as shown
in Figure 7-1 (a).

In LOC 15, the value of start is assigned to temp. This step has nothing to do with
the creation of components. In LOC 15, the value of start in temp is preserved so that this
preserved value can be used while making a call to the function display() in LOC 19.

In LOC 16, a call is made to the function create(). Notice the definition of the
function create() given in LOCs 33 to 53. In LOCs 35 and 36 two variables are declared.
In LOC 37, you are asked to enter the name for the first component. I have entered
the name 1ina in the run given earlier. Then the do-while loop begins, and LOC 39 is
executed. LOC 39 consists of a scanf() function that accepts the name entered through
the keyboard for the first component and copies it into the slot reserved for name in the
memory block allocated for the first component, as shown in Figure 7-1 (b). Then LOC 40
asks the user a question: Any more items? (y/n). To this question, the user replies yes
by typing y. This letter is assigned to the char variable ch in LOC 41.

Then there is the if-else statement spanning LOCs 42 to 50. If the user types n as a
response to the previously mentioned question, then LOCs 43 and 44 are executed, or if
the user types y instead of n, LOCs 47 to 49 are executed. As the user has typed y, LOCs 47
to 49 are executed. In LOC 47, a memory block is allocated for the anonymous variable of
type node, and the pointer start->next is set pointing to it, as shown in Figure 7-1 (c).

In LOC 48, the pointer start is set to point to the second component in the list. The
pointer in the second component is now redefined as start->next. LOC 48 resets the
value of start in every iteration. Because of LOC 48, you will not find long chains like
start->next->next->next->next in this program. Figure 7-1 (a) shows the snapshot of
memory after the execution of LOC 48. In LOC 49, the user is asked to enter the name for
the second component. The user has typed the name mina for the second component in
the run given eatrlier.

235

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

Now the second iteration of the loop begins. Next, LOC 39 is executed in which the
name typed by the user (mina) is copied into the slot reserved for name in the second
component. In LOC 40, the user is asked the question: Any more items? (y/n).To this
question, the user has replied yes by typing y. Consequently, computer control jumps to
LOC 47 in which a memory block is allocated for the third component of the list, and the
pointer start->next (which is the pointer in the second component) is made to point to
this third component, as shown in Figure 7-8 (b). After the execution of LOC 48, the pointer
start is made to point to the third component in the list, as shown in Figure 7-8 (c).

The pointer in the third component is now redefined as start->next. In LOC 49, the user is
asked to enter the name for the third component. The user has typed the name bina for the
third component in the run given earlier.

Figure (a) After execution of LOC 48,
(during first iteration of loop) pointer
¥ start is made to point to second

. lina . - ® component in the list. Pointer in second
ol component is now redefined in terms of
ﬂ ﬂ start as start->next.
pointer pointer
start start->next
start = start->next; /* L48 */
A4
l ® | lina ®—» mina [®
pointer pointer pointer
start start->next start->next->next
start->next = (node *) malloc(sizeof (node)): /* LAT */

Figure (b) After execution of LOC 47, (during second iteration of loop) a memory block is allocated for
third component of list and pointer in mina (start->next) is set pointing to it.

| P | ina | @—» mina | @—» °

pointer pointer

start start->next
start = start->next; /* L48 */

Figure (c) After execution of LOC 48, (during second iteration of loop) pointer start is set
pointing to third component in the list. Pointer in third component is now redefined in terms of
start as start->next.

Figure 7-8. Snapshots of memory, program srs5

236

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

[] lina [] » mina @®——| bina @ > ®
pointer pointer pointer
start start->next S->n->n

. where s = start
start->next = (node *) malloc(sizeof (node)); /* L47 */ and n = next.

Figure (d) After execution of LOC 47, (during third iteration of loop) a memory block is allocated for
fourth component of list and pointer in bina (start->next) is set pointing to it.

| () | lina [] »| mina @ »| bina @ > ®
pointer pointer
start start->next

start = start->next; /* L48 */

Figure (e) After execution of LOC 48, (during third iteration of loop) pointer start is set pointing to

fourth component in the list. Pointer in fourth component is now redefined in terms of start as
start->next

® lina ®——| mina @——| bina [»| tina | NULL

pointer pointer

start start->next
start->next = NULL; /* L44 */

Figure (f) After execution of LOC 44, (during fourth and last iteration of loop) value NULL is assigned
to pointer in fourth and last component in list, namely, start->next.

Figure 7-8. (continued)

Now the third iteration of the loop begins. Next, LOC 39 is executed, in which the
name typed by user (bina) is copied into the slot reserved for the name in the third
component. In LOC 40, the user is asked this question: Any more items? (y/n). To this
question, the user has replied yes by typing y. Consequently, computer control jumps to
LOC 47, in which a memory block is allocated for the fourth component of the list, and
the pointer start->next (which is the pointer in the third component) is made to point to
this fourth component, as shown in Figure 7-8 (d).

After the execution of LOC 48, the pointer start is made to point to the fourth
component in the list, as shown in the Figure 7-8 (e). The pointer in the fourth
component is now redefined as start->next. In LOC 49, the user is asked to enter
the name for the third component. The user has typed the name tina for the fourth
component in the run given earlier.

237

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

Now the fourth iteration of the loop begins. Next, LOC 39 is executed in which the
name typed by the user (tina) is copied into the slot reserved for the name in the fourth
component. In LOC 40, the user is asked this question: Any more items? (y/n).To
this question, the user has replied no by typing n. Consequently, LOCs 43 and 44 are
executed. In LOC 43, the int variable flag is assigned the value 0. In LOC 44, the pointer
in the fourth component is assigned the value NULL, as shown in Figure 7-8 (f). Now
the iterations of the loop are terminated. Consequently, the execution of the function
create() also terminates, and computer control returns to the main() function.

Next, LOC 17 is executed. Now start is made to point to the first component, 1ina,
as shown in Figure 7-1 (i). In LOC 15, the initial value of start is stored with this very
purpose.

7-6. Process a Linear Linked List
Problem

You want to create a professional program to process a linear linked list.

Solution

Write a C program that creates a professional program to process a linear linked list, with
the following specifications:

e The program creates a linear linked list in an interactive manner.

¢ Anynumber of components can be inserted in this list after
creating it.

e Anynumber of components can be deleted from this list.
e The program is able to purge an existing list to create a new list.

e The program displays the list on the screen after creating it, after
inserting a component in it, and after deleting a component from it.

e The program is equipped with a menu that looks something
like this:

e Select the desired operation.

e Enter 1 to create a new linked list.

e Enter 2 to insert a component in the list.

e Enter 3 to delete a component from the list.
e Enter 4 to end the session.

e Now enter a number (1, 2, 3, or 4).

238

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

e When the execution of the program begins, this menu appears
on the screen. The user is required to enter a suitable number
(1,2, 3, or 4) to indicate his or her choice. Ideally, the user should
enter 1 and then create the suitable list. When the list is created,
itis displayed on the screen, and the user is taken back to this
menu. Now the user can enter 2 to insert a new component in the
list. Also, the user can enter 3 to delete a component from the list.
The user can also enter 1 to create a new list. In such a case, an
existing list is destroyed. Finally, the user can enter 4 to terminate

the execution of the program.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

srsb.c:

/* This program implements a simple linear linked list with professional

quality. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct members {
char name[20];
struct members *next;

};
typedef struct members node;

int menu(void);

void create(node *start);

void display(node *start);

node *insert(node *start);

node *delete(node *start);

node *location(node *start, char target[]);

main()

{

node *start = NULL, *temp;
int selection;

do {
selection = menu();
switch(selection) {

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
L2
L3
BL
L4
L5
L6
L7
BL
L8
BL
L9
L10
L11
L12
L13
L14
BL
L15
L16
L17
L18
BL
L19
L20
L21
BL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

239

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

case 1:
start = (node *) malloc(sizeof (node));
temp = start;
create(start);
start = temp;
display(start);
continue;

case 2:
if (start == NULL) {
printf("\nList is empty! Select the option 1.\n");
continue;
}
start = insert(start);
display(start);
continue;

case 3:
if (start == NULL) {
printf("\nList is empty! Select the option 1.\n");
continue;

start = delete(start);
display(start);
continue;

default:
printf("\nEnd of session.\n");

twhile(selection != 4);

return(0);

}

int menu(void)

{

int selection;

do {
printf("\nSelect the desired operation:\n");
printf("Enter 1 to create a new linked list\n");
printf("Enter 2 to insert a component in the list\n");
printf("Enter 3 to delete a component from the list\n");
printf("Enter 4 to end the session.\n");
printf("\nNow enter a number(1, 2, 3, or 4): ");
scanf("%d", &selection);
if((selection < 1) || (selection > 4))

printf("Invalid Number! Please try again.\n");

240

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

L22
L23
L24
L25
L26
L27
L28
BL

L29
L30
L31
L32
133
L34
L35
L36
BL

L37
138
139
L40
L41
L42
L43
La4
BL

L45
L46
L47
L48
BL

L49
L50
BL

L51
L52
L53
L54
LS5
L56
L57
L58
L59
L60
L61
L62
163

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

twhile((selection < 1) || (selection > 4));
return(selection);

}

void create(node *start)
{

int flag = 1;

char ch;

printf("Enter name: ");

do {
scanf(" %[*\n]", start->name);
printf("Any more name?(y/n): ");
scanf(" %c", 8&ch);

if(ch == 'n"){
flag = 0;
start->next = NULL;
}
else {

start->next = (node *) malloc(sizeof(node));
start = start->next;
printf("Enter name: ");

}
} while (flag);

return;

}

void display(node *start)

int flag = 1;
if (start == NULL){

printf("\nList is empty! Select the option 1.\n");

return;

}

printf("\nNames of all the members in the list:\n");

do {
printf("%s\n", start->name);
if(start->next == NULL)
flag = 0;
start = start->next;
} while (flag);

return;

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L64
L65
L66
BL
L67
L68
L69
L70
L71
BL
L72
L73
L74
L75
L76
L77
L78
L79
L8o
L81
L82
L83
L84
L85
BL
L86
L87
BL
L88
L89
L90
L91
L92
L93
L94
L95
BL
L96
L97
L98
L99
L100
L101
BL
L102
L103
BL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

241

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

node *insert(node *start)
{

int flag = 1;

node *new, *before, *tmp;
char newName[20];

char target[20];

printf("Enter name to be inserted: ");

scanf(" %[*\n]", newName);

printf("Before which name to place? Type \"last\" if last: ");
scanf(" %[~\n]", target);

if(strcmp(target, "last") == 0) {
tmp = start;

do{
start = start->next;
if(start->next == NULL){
new = (node *)malloc(sizeof(node));
strcpy(new->name, newName);
start->next = new;
new->next = NULL;
flag = 0;
}
twhile(flag);

start = tmp;
return(start);

if(strcmp(start->name, target) == 0) {
new = (node *)malloc(sizeof(node));
strcpy(new->name, newName);
new->next = start;
start = new;
}
else {
before = location(start, target);
if (before == NULL)
printf("\nInvalid entry! Please try again\n");
else {
new = (node *)malloc(sizeof(node));
strcpy(new->name, newName);
new->next = before->next;
before->next = new;
}
}

242

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L104
L105
L106
L107
L108
L109
L110
L111
L112
L113
L114
Bl

L115
L116
BL

L117
L118
L119
L120
L121
L122
L123
L124
L125
L126
BL

L127
L128
L129
BL

L130
L131
L132
L133
L134
L135
L136
L137
L138
L139
L140
L141
L142
L143
L144
L145
L146

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

return(start); /*
} *
/*

node *delete(node *start) /*
{ *
node *before, *tmp; /*
char target[20]; /*
/*

printf("\nEnter name to be deleted: "); /*
scanf(" %[*\n]", target); /*
/*

if(stremp(start->name, target) == 0) /*
if(start->next == NULL){ /*
free(start); /*

start = NULL; /*

} *
else /*

{ /*
tmp = start->next; /*
free(start); /*
start = tmp; /*

} *
else { /*
before = location(start, target); /*
if(before == NULL) /*
printf("\nInvalid entry. Please try again.\n"); /*
else { /*
tmp = before->next->next; /*
free(before->next); /*
before->next = tmp; /*

} *

} *
return(start); /*
} r*
/*

node *location(node *start, char target[]) /*
{ *
int flag = 1; /*
if(stremp(start->next->name, target) == 0) /*
return(start); /*
else if(start->next == NULL) /*
return(NULL); /*

else { /*
/*

do{ /*
start = start->next; /*
if(stremp(start->next->name, target) == 0) /*
return(start); /*

L147
L148
BL

L149
L150
L151
L152
BL

L153
L154
BL

L155
L156
L157
L158
L159
L160
L161
L162
L163
L164
L165
L166
L167
L168
L169
L170
L171
L172
L173
L174
L175
L176
L177
BL

L178
L179
L180
L181
L182
L183
L184
L185
BL

L186
L187
L188
L189

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

243

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

if(start->next == NULL){
flag = 0;
printf("Invalid entry. Please try again.\n");

}
twhile(flag);
}

return(NULL);
}

Compile and execute this program. A run of this program is given here:

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 1 -

Enter name: lina -

Any more name?(y/n): y e
Enter name: mina -

Any more name?(y/n): y -
Enter name: bina -

Any more name?(y/n):y
Enter name: tina -

Any more name?(y/n): n At
Names of all the members in the list:
lina

mina

bina

tina

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 2 -
Enter name to be inserted: sita -
Before which name to place? Type "last" if last: lina
Names of all the members in the list:

sita

lina

mina

bina

tina

244

/*
/*
/*
/*
/*
/*
/*
/*
/*

L190
L191
L192
L193
L194
BL

L195
L196
L197

*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 2 -
Enter name to be inserted: gita ad
Before which name to place? Type "last" if last: bina -
Names of all the members in the list:

sita

lina

mina

gita

bina

tina

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 2 -
Enter name to be inserted: rita -
Before which name to place? Type "last" if last: last ad
Names of all the members in the list:

sita

lina

mina

gita

bina

tina

rita

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 3 -
Enter name to be deleted: sita d

Names of all the members in the list:

lina

mina

gita

bina

tina

rita

245

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 3 -
Enter name to be deleted: rita -

Names of all the members in the list:

lina

mina

gita

bina

tina

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 3 -
Enter name to be deleted: mina -

Names of all the members in the list:

lina

gita

bina

tina

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 1 -
Enter name: dick -

Any more name?(y/n): y -

Enter name: tom -

Any more name?(y/n):y <

Enter name: harry -

Any more name?(y/n): n i

Names of all the members in the list:
dick

tom

harry

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

246

CHAPTER 7

Now enter a number (1, 2, 3, or 4): 3 -
Enter name to be deleted: tom -

Names of all the members in the list:

dick

harry

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 3 -
Enter name to be deleted: dick -

Names of all the members in the list:

harry

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 3 -
Enter name to be deleted: harry -

List is empty! Select the option 1.

Select the desired operation:

Enter 1 to create a new linked list

Enter 2 to insert a component in the list
Enter 3 to delete a component from the list
Enter 4 to end the session.

Now enter a number (1, 2, 3, or 4): 4 -
End of session.

How It Works

SELF-REFERENTIAL STRUCTURES

This program consists of six user-defined functions. This is how they work:

e menu(): This function displays the menu. It takes no argument
and returns an int value. It is defined in LOCs 51 to 66.

e create(): This function creates a linked list. It expects the pointer
start as an argument. It returns no value. It is defined in LOCs 67

to 87.

e display(): This function displays the components in the linked

list on the screen. It is defined in LOCs 88 to 103.

247

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

248

insert(): This function inserts a new component in a linked

list. It expects the pointer start (which is a pointer to the first
component in the list) as an argument. After making the successful
insertion, it returns the pointer start (it is modified after insertion,
if the insertion is made at the beginning of the list). It is defined in
LOCs 104 to 148. LOCs 116 to 128 handle the case in which a new
component is to be inserted last. LOCs 131 to 134 handle the case
in which a new component is to be inserted at the beginning of the
list. LOCs 137 to 147 handle the case in which a new component is
to be inserted elsewhere. In this last case (i.e., insertion elsewhere),
a call is made to the function location(), which returns a pointer
to a component before the target component.

delete(): This function deletes a component in the linked list. It
is defined in LOCs 149 to 177. It expects the pointer start (which
is a pointer to the first component in the list) as an argument.
After making the successful deletion, it returns the pointer

start (it is modified after deletion, if the first component in the
list is deleted). LOCs 156 to 165 handle the case in which a first
component in the list is to be deleted. In this case, two subcases
arise: (a) when the list contains only one component and (b)
when the list contains two or more components. LOCs 157 to 158
handle the first subcase, and LOCs 162 to 164 handle the second
subcase. LOCs 167 to 174 handle the case in which a nonfirst
component in the list is to be deleted. In this piece of code, (a) a
call is made to the function location() in the LOC 167, (b) LOCs
168 to 169 handle the case in which an invalid entry is made,

and (c) LOCs 171 to 173 handle the case in which the successful
deletion of the nonfirst component is to be made.

location(): This function is called by the functions insert() and
delete(). It expects the pointer start (which is a pointer to the
first component in the list) and a char string (which consists of the
name of the component, such as 1ina, mina, etc.) as arguments.

It returns a pointer to node. It is defined in LOCs 178 to 197.

If the name of the (n + 1)th component is passed to this function
as an argument, then it returns a pointer to the nth component.
For example, if the string "mina" is passed as an argument, then

it returns a pointer to the component 1ina. The name of the first
component is never passed to this function as an argument.

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

7-7. Create a Linear Linked List with Forward and
Backward Traversing

Problem

You want to create a linked list with forward and backward traversing.

Solution

Write a C program that creates a linked list with forward and backward traversing, with
the following specifications:

e The program implements a linear linked list and fills the
components of the list with suitable data.

e The program consists of two functions, namely, showforward()
and showbackward(); these functions display the data in
the components on the screen using forward and backward
traversing, respectively.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
srs7.c:

/* This program implements a linear linked list with forward */
/* and backward traversing. */

/* BL */

#include <stdio.h> /* L1 */
#include <string.h> /* L2 */
/* BL */

struct members { /* L3 */
char name[20]; /* L4 */
struct members *forward, *backward; /¥ L5 */
}; /* L6 */
/* BL */

typedef struct members node; /* L7 */
/* BL */

void showforward(node *start); /* L8 */
void showbackward(node *end); /* L9 */
/* BL */

main() /* L10 */
{ /* L11 */
node m1, m2, m3, *start, *end, /* L12 */
/* BL */

249

CHAPTER 7 ' SELF-REFERENTIAL STRUCTURES

strcpy(mi.name, "lina");
strcpy(m2.name, "mina");
strcpy(m3.name, "bina");

start = 8&m1;

start->forward = &m2;
start->forward->forward = &m3;
start->forward->forward->forward = NULL;

end = &m3;

end->backward = &m2;
end->backward->backward = &m1;
end->backward->backward->backward = NULL;

printf("Names of members (forward traversing):\n");
showforward(start);

printf("\nNames of members (backward traversing):\n");
showbackward(end);

return(0);

}

void showforward(node *start)

{
int flag = 1;

do {
printf("%s\n", start->name);
if(start->forward == NULL)
flag = 0;
start = start->forward;
} while (flag);

return;

}

void showbackward(node *end)

{
int flag = 1;

do {
printf("%s\n", end->name);
if(end->backward == NULL)
flag = 0;
end = end->backward;
} while (flag);

return;

}

250

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L13
L14
L15
BL

L16
L17
L18
L19
BL

L20
L21
L22
L23
BL

L24
L25
L26
BL

L27
L28
BL

L29
130
L31
BL

L32
133
134
L35
L36
137
BL

L38
139

L40
L41
L42
BL

L43
La4
L4s
L46
L47
L48
BL

L49
L50

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 7 * SELF-REFERENTIAL STRUCTURES

Compile and execute this program, and the following lines of text appear on the
screen:

Names of members (forward traversing):
lina
mina
bina
Names of members (backward traversing):
bina
mina
lina

How It Works

In this program, a linear linked list is implemented with the provision of forward
and backward traversing. Figure 7-9 shows a typical linear linked list with forward and
backward traversing.

variable m3
variable m1 pointer
v end
@——| lina |NULL| @ pmna | @ | @& » bina | @ |NuLL ®
B F 3 A
pointer
start
variable m2

Figure 7-9. A linear linked list with forward and backward traversing, program srs7

In this program, the structure member consists of two pointers to the parent type
(see LOC 6): forward (which is the same as the next pointer in the preceding programs)
and backward. Also, in the program, two pointers to node are declared, namely, start
and end. The pointer start is associated with the pointer forward, and the pointer end
is associated with the pointer backward. The logic behind traversing the components in
the list is the same as in the preceding programs. For forward traversing, you start with
the pointer start and then march ahead with the help of the pointer forward in each
component. For backward traversing, you start with the pointer end and then march
backward with the help of the pointer backward in each component. The function
showforward() displays the names of members using forward traversing, and the
function showbackward() displays the names of members using backward traversing.
It is possible to write a single function for both types of traversing, but to keep the things
simple, I have gone for two separate functions.

251

CHAPTER 8

Stacks and Queues

A stack is an abstract data structure. Specifically, a stack is a list of elements in which
you can insert the elements and also delete the elements from it. This list is open at one
end and closed at the other end. The operations of insertion and deletion can be done
only from the open end. A stack is also called a last in first out (LIFO) data structure.
A stack of dishes in a cafeteria is an example of LIFO. In this stack, the waiter places
(inserts) the dishes at the top of the stack, and customers take (delete) the dishes from
the top of the stack.

The operations of inserting and deleting elements from the stack are called pushing
and popping in technical jargon, respectively.

Note The term push indicates the insertion of an element into a stack. The term pop
indicates the deletion of an element from a stack.

Stacks can be implemented in terms of arrays and linked lists. Some of the
applications of stacks are listed here:

e Conversion of an algebraic expression from one form to another.
Generally, the forms are infix expression, prefix expression, and
postfix expression.

e Evaluation of an algebraic expression.
e Storage of variables when a function is called.
e Reversal of a string.

A queue is also an abstract data structure somewhat analogous to a stack. However,
unlike a stack, a queue is open at both ends. One end is called the front end, and other
end is called the rear end. Insertion is done at the rear end, and deletion is done at the
front end. A queue is also known as a first in first out (FIFO) data structure. A circular
queue is a special type of queue in which the front end is joined to the rear end.

© Shirish Chavan 2017 253
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_8

CHAPTER 8 ' STACKS AND QUEUES

A queue can be implemented in terms of arrays and linked lists. Queues are used in
the following cases:

In printing machines, to print the files standing in a queue
To access the files from a secondary storage system
In an operating system, for scheduling jobs waiting for their turn

In a ticket reservation system that consists of multiple reservation
counters at different locations

While implementing a breadth-first traversal of a graph

8-1. Implement a Stack as an Array
Problem

You want to implement a stack as an array.

Solution

Write a C program that implements a stack as an array, with the following specifications:

The program defines four functions: stackMenu(),
displayStack(), popItem(), and pushItem(). The purpose

of stackMenu() is to display a menu on the screen that offers
choices for users. The purpose of displayStack() is to display
the elements stored in a stack on the screen. The purpose of
popItem() is to pop the element from the stack. The purpose of
pushItem() is to push the item into the stack.

The elements to be pushed into the stack are int type data values.
The maximum capacity of this stack is eight elements only.

A stack is an array of int values.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

stacki.c:
/* This program implements a stack in terms of array. */
include <stdio.h>

include <stdlib.h>
define STACKSIZE 8

254

/*
/*
/*
/*
/*

BL
L1
L2
L3
BL

*/
*/
*/
*/
*/

CHAPTER 8 ' STACKS AND QUEUES

int stack[STACKSIZE];
int intTop = 0;

int stackMenu(void);
void displayStack(void);
void popItem(void);

void pushItem(void);

void main()
{
int intChoice;
do { /* do-while statement begins */
intChoice = stackMenu();
switch(intChoice) {
case 1:
pushItem();
break;
case 2:
popItem();
break;
case 3:
displayStack();
break;
case 4:
exit(0);
} /* switch statement ends */
fflush(stdin);
} while(1); /* do-while statement begins */
}

int stackMenu()

{
int intChoice;
printf("\n\n Enter 1 to Push an Element onto Stack. ");
printf("\n Enter 2 to Pop an Element from Stack. ");
printf("\n Enter 3 to Displays the Stack on the Screen.");
printf("\n Enter 4 to Stop the Execution of Program.");
printf("\n Enter your choice (0 <= N <= 4): ");
scanf("%d", &intChoice);
return intChoice;

}

void displayStack()

/* switch statement begins */

int j;

if(intTop == 0) {
printf("\n\nStack is Exhausted.");
return;

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L4

L5

L6

L7

L8

L9

BL

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
BL

131
L32
133
L34
L35
L36
L37
138
139
L40
L41
BL*
L42
L43
L44
L4s
L46
L47
L48

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
/
*/
*/
*/
*/
*/
*/
*/

255

CHAPTER 8 ' STACKS AND QUEUES

else {
printf("\n\nElements in stack:");
for(j=intTop-1; j > -1; j--)
printf("\n%d", stack[j]);
}
}

void popItem()

if(intTop == 0) {
printf("\n\nStack is Exhausted.");
return;
}
else
printf("\n\nPopped Element: %d ", stack[--intTop]);
}

void pushItem()

int intData;
if(intTop == STACKSIZE) {
printf("\n\nStack is Completely Filled.");
return;
}
else {
printf("\n\nEnter Element K (0 <= K <= 30000) : ");
scanf("%d", &intData);
stack[intTop] = intData;
intTop = intTop + 1;
printf("\n\nElement Pushed into the stack");

Compile and execute this program. A run of this program is given here:

Enter 1 to Push an Element into Stack.

Enter 2 to Pop an Element from Stack.

Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <=4): 1

Enter Element K (0 <= N < 30000): 2468 «

Enter 1 to Push an Element into Stack.

Enter 2 to Pop an Element from Stack.

Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <=4): 1 +

256

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L49
L50
L51
L52
L53
L54
BL

L55
L56
Ls7
L58
L59
L60
L61
L62
L63
BL

L64
L65
L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Enter

Enter
Enter
Enter
Enter
Enter

Enter

Enter
Enter
Enter
Enter
Enter

CHAPTER 8

Element K (0 <= N < 30000): 3200 «

1 to
2 to
3 to
4 to
your

Push an Element into Stack.

Pop an Element from Stack.

Display the Stack on the Screen.
Stop the Execution of the Program.
choice (0 <=N<=4):1 «~

Element K (0 <= N < 30000): 4555 +

1 to
2 to
3 to
4 to
your

Push an Element into Stack.

Pop an Element from Stack.

Display the Stack on the Screen.
Stop the Execution of the Program.
choice (0 <= N<=4): 3 «~

Elements in Stack:

4555
3200
2468

Enter
Enter
Enter
Enter
Enter

1 to
2 to
3 to
4 to
your

Push an Element into Stack.

Pop an Element from Stack.

Display the Stack on the Screen.
Stop the Execution of the Program.
choice (0 <= N <=4): 2+~

Popped Element: 4555

Enter
Enter
Enter
Enter
Enter

1 to
2 to
3 to
4 to
your

Push an Element into Stack.

Pop an Element from Stack.

Display the Stack on the Screen.
Stop the Execution of the Program.
choice (0 <= N<=4): 3 «

Elements in Stack:

3200
2468

Enter
Enter
Enter
Enter
Enter

1 to
2 to
3 to
4 to
your

Push an Element into Stack.

Pop an Element from Stack.

Display the Stack on the Screen.
Stop the Execution of the Program.
choice (0 <= N<=4): 4 «~

STACKS AND QUEUES

257

CHAPTER 8 ' STACKS AND QUEUES

How It Works

This program defines four functions: stackMenu(), displayStack(), popItem(), and
pushItem().LOCs 31 to 41 define the function stackMenu(). LOCs 42 to 54 define the
function displayStack(). LOCs 55 to 63 define the function popItem(). LOCs 64 to 78
define the function pushItem(). The array stack and variable intTop are placed outside
of any function so that their scope should be global. Almost all the code in the main()
function is placed in a do-while loop so that these LOCs can be executed repeatedly
with convenience. In LOC 14, a call is made to the function stackMenu(). This function
displays the menu before the user and asks him or her to enter a choice. The choices
are as follows: enter 1 to push an element into a stack, enter 2 to pop an item from a
stack, enter 3 to display the stack on the screen, and enter 4 to stop the execution of the
program. The choice entered by the user is returned by the stackMenu() function, and
it is assigned to the int variable intChoice. LOCs 15 to 27 consist of a switch statement.
The value stored in intChoice is passed to this switch statement. Depending upon the
value of intChoice, the switch statement calls the concerned function. For choice 1, the
function pushItem() is called. For choice 2, the function popItem() is called. For choice
3, the function displayStack() is called. For choice 4, the function exit() is called that
terminates the execution of the program.

8-2. Implement a Stack as a Linked List
Problem

You want to implement a stack as a linked list.

Solution

Write a C program that implements a stack as a linked list, with the following
specifications:

¢ The program defines five functions: getnode(), stackMenu(),
displayStack(), popItem(), and pushItem(). The purpose
of stackMenu() is to display a menu on the screen that offers
choices for users. The purpose of displayStack() is to display
the elements stored in a stack on the screen. The purpose of
popItem() is to pop the element from the stack. The purpose of
pushItem() is to push the item into the stack.

e The elements to be pushed into the stack are int type data values.
The maximum capacity of this stack is eight elements only.

e Implement the stack as a linked list of int values.

258

CHAPTER 8 ' STACKS AND QUEUES

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
stack2.c:

/* This program implements a stack in terms of a linked list. */

/* BL */

include <stdio.h> /* L1 */
include <stdlib.h> /¥ L2 ¥/
/* BL */

struct intStack /* L3 */
{ /* L4 */
int element; /* L5 */
struct intStack *next; /* L6 */
}; /* L7 */
typedef struct intStack node; /* L8 */
node *begin=NULL; /¥ L9 */
node *top = NULL; /* L10 */
/* BL */

node* getnode() /* L11 */
/* L12 */

node *temporary; /* L13 */
temporary=(node *) malloc(sizeof(node)) ; /* 114 */
printf("\nEnter Element (0 <= N <= 30000): "); /* L15 */
scanf("%d", &temporary -> element); /* L16 */
temporary -> next = NULL; /* 117 */
return temporary; /* L18 */

} /* L19 */
/* BL */

void pushItem(node *newnode) /* L20 */
/* L21 */

node *temporary; /* 122 */
if(newnode == NULL) { /* 123 */
printf("\nThe Stack is Completely Fillled"); /* 124 */
return; /* L25 */

} /* 126 */
if(begin == NULL) { /* L27 */
begin = newnode; /* 128 */

top = newnode; /* 129 */

} /* L30 */
else { /* L31 */
temporary = begin; /* 132 */
while(temporary -> next != NULL) /* 133 */
temporary = temporary -> next; /* L34 */
temporary -> next = newnode; /* L35 */

top = newnode; /* 136 */

} /* L37 */

259

CHAPTER 8 ' STACKS AND QUEUES

printf("\nElement is pushed into the Stack");
}

void popItem()
{

node *temporary;

if(top == NULL) {
printf("\nStack is Exhausted");
return;

}

temporary = begin;

if(begin -> next == NULL) {
printf("\nPopped Element is: %d ", top -> element);
begin = NULL;
free(top);
top = NULL;

}

else {
while(temporary -> next != top) {

temporary = temporary -> next;

temporary -> next = NULL;

printf("\n Popped Element is: %d ", top -> element);

free(top);
top = temporary;
}
}

void displayStack()
{
node *temporary;
if(top == NULL) {
printf("\nStack is Exhausted ");
}
else {
temporary = begin;
printf("\nElements in the stack : ");

printf("\nLeft-Most Element Represents Bottom : ");

printf("Right-Most Element Represents Top \n\n");
printf("%d", temporary -> element);
while(temporary != top) {
temporary = temporary -> next;
printf("\t%d ", temporary -> element);
}
}
}

int stackMenu()
{

260

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L38
L39

*/
*/

BL */

L40
L41
L42
L43
L4
L4s
L46
L47
L48
L49
L50
L51
L52
L53
L54
Ls5
L56
Ls57
L58
L58
L59
L60
L61
L62

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

BL */

L63
L64
L65
L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80
BL

L81
L82

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 8 ' STACKS AND QUEUES

int intChoice; /* L83 */
printf("\n\nEnter 1 to Push an Element into Stack. "); /* L84 */
printf("\nEnter 2 to Pop an Element from Stack. "); * L85 */
printf("\nEnter 3 to Displays the Stack on the Screen."); /* L86 */
printf("\nEnter 4 to Stop the Execution of Program."); /* L87 */
printf("\nEnter your choice (0 <= N <= 4): "); /* 188 */
scanf("%d", &intChoice); /* 189 */
return intChoice; /* L9o */

} /* L91 */
/* BL */

void main() /* 192 */
{ /% 193 */
int intChoice; /* 194 */
node *newnode; /* L95 */
do { /* L96 */
intChoice = stackMenu(); /* L97 */
switch(intChoice) { /* 198 */
case 1: /* 199 */

newnode = getnode(); /* L100 */

pushItem(newnode); /* L101 */

break; /* L102 */

case 2: /* L103 */

popItem(); /* L1104 */

break; /* L105 */

case 3: /* L106 */

displayStack(); /* L107 */

break; /* L108 */

case 4: /* 1109 */

exit(0); /* L110 */

} /* L111 */

fflush(stdin); /* L112 */

} while(1); /* L113 */

} /* L114 */

Compile and execute this program. A run of this program is given here:

Enter 1 to Push an Element into the Stack.
Enter 2 to Pop an Element from the Stack.
Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <= 4): 1 «

Enter Element (0 <= K <= 30000): 222 «
Element is pushed into the Stack.

Enter 1 to Push an Element into the Stack.
Enter 2 to Pop an Element from the Stack.

261

CHAPTER 8 ' STACKS AND QUEUES

Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <=4): 1 +

Enter Element (0 <= K <= 30000): 333 «
Element is pushed into the Stack.

Enter 1 to Push an Element into the Stack.
Enter 2 to Pop an Element from the Stack.
Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N<=4): 1 «

Enter Element (0 <= K <= 30000): 444 «
Element is pushed into the Stack.

Enter 1 to Push an Element into the Stack.
Enter 2 to Pop an Element from the Stack.
Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <=4): 3

Elements in the stack:
Left-Most Element Represents Bottom : Right-Most Element Represents Top

222 333 444

Enter 1 to Push an Element into the Stack.
Enter 2 to Pop an Element from the Stack.
Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <= 4): 2+

Popped Element is: 444

Enter 1 to Push an Element into the Stack.
Enter 2 to Pop an Element from the Stack.
Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <= 4): 3 «

Elements in the stack:
Left-Most Element Represents Bottom : Right-Most Element Represents Top

222 333

Enter 1 to Push an Element into the Stack.

262

CHAPTER 8 ' STACKS AND QUEUES

Enter 2 to Pop an Element from the Stack.
Enter 3 to Display the Stack on the Screen.
Enter 4 to Stop the Execution of the Program.
Enter your choice (0 <= N <= 4): 4 «

How It Works

This program defines five functions: getnode(), stackMenu(), displayStack(), popItem(),
and pushItem().LOCs 11 to 19 define the function getnode(). LOCs 20 to 39 define the
function pushItem().LOCs 40 to 62 define the function popItem().LOCs 63 to 80 define the
function displayStack().LOCs 81 to 91 define the function stackMenu(). LOCs 92 to 114
define the main() function. Almost all the code in the main() function is placed in a
do-while loop so that these LOCs can be executed repeatedly with convenience. When a
user pushes an element onto the stack, the function pushItem() is called. When a user pops
an element from the stack, the function popItem() is called. When a user wants to display
the stack on the screen, the function displayStack() is called.

In LOC 97, a call is made to the function stackMenu(). This function displays the menu
before the user and asks him or her to enter a choice. The choices are as follows: enter 1 to
push an element into a stack, enter 2 to pop an item from a stack, enter 3 to display the stack
on the screen, and enter 4 to stop the execution of the program. The choice entered by the
user is returned by the stackMenu() function, and it is assigned to the int variable intChoice.

LOCs 98 to 111 consist of a switch statement. The value stored in intChoice is passed
to this switch statement. Depending upon the value of intChoice, the switch statement
calls the concerned function. For choice 1, the function pushItem() is called. For choice 2,
the function popItem() is called. For choice 3, the function displayStack() is called. For
choice 4, the function exit() is called that terminates the execution of the program.

8-3. Convert an Infix Expression to a Postfix

Expression
Problem

You want to convert an infix expression into a postfix expression.

Solution

Write a C program that converts an infix expression into a postfix expression, with the
following specifications:

e The program defines three functions: lowPriority(), pushOpr(),
and popOpr (). The function lowPriority() assigns the
appropriate priority value to every operator in an infix equation.
The function pushOpz () is invoked after pushing an operator into
the stack. The function popOpr () is to be invoked after popping an
operator from the stack.

e Itis assumed that only one of the following operators is used in an
expression: +, -, *, /, %, A, and (.

263

CHAPTER 8 ' STACKS AND QUEUES

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name

stack3.c:

/* This program converts an infix expression into a postfix expression.

include <stdio.h>
include <string.h>

char postfixExp[60];
char infixExp[60];

char operatorStack[60];
int i=0, j=0, intTop=0;

int lowPriority(char opr, char oprStack)
{
int k, p1, p2;
char oprList[] = {'+
int prioList[] {o, 0
if(oprStack == '(')
return 0;
for(k = 0; k < 65 k ++) {
if(opr == oprList[k])
pl = priolList[k];
}
for(k = 0; k < 6; k ++) {
if(oprStack == oprList[k])
p2 = priolList[k];

l*l, l/l’ l%l, I/\l, l(l};
,1, 2 3,4};

if(p1 < p2)
return 1;

else
return 0;

}
void pushOpr(char opr)
{

if(intTop == 0) {
operatorStack[intTop] = opr;
intTop++;
}
else {
if(opr '= "(") |
while(lowPriority(opr, operatorStack[intTop-1]
1 8 intTop > 0) {

264

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

*

BL
L1
L2
BL
L3
L4
L5
L6
BL
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
BL
L27
L28
L29
L30
L31
L32
L33
L34

L35

/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

CHAPTER 8 ' STACKS AND QUEUES

postfixExp[j] = operatorStack[--intTop];

J++s
}
}

operatorStack[intTop] = opr;

intTop++;
}
}

void popOpr()
{

while(operatorStack[--intTop] != "(') {

postfixExp[j]
j++s
}
}

void main()

{

char k;

= operatorStack[intTop];

printf("\n Enter Infix Expression : ");

gets(infixExp);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

while((k=infixExp[i++]) != '\0') { /* while statement begins. */ /*

switch(k) {
case ' ' :

case '(' :
case '+

case '-

case '*' :
case '/' :
case '
case '%' :

case ")' :

default :

}
}

while(intTop »>= 0) {

postfixExp[]j]
3+

}

/* switch statement begins

break;

pushOpr (k) ;
break;

popOpr();
break;

postfixExp[j] = k;

J++;

/* switch statement ends.
/* while state ment ends.
/* while statement begins
= operatorStack[--intTop];

CXTF
/%

/%

/%

/%

/%

/%

/%

/%

/%

/%

/%

/%

/%

/%

/%

/%

/%
YAC
YA
AV
/%

/%

/* while statement ends. */ /*

L36
L37
L38
L39
L40
L41
L42
L43
BL

La4
L45
L46
L47
L48
L49
L50
BL

L51
L52
L53
L54
L55
L56
L57
L58
L59
L60
L61
L62
L63
L64
L65
L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

265

CHAPTER 8 ' STACKS AND QUEUES

postfixExp[j] = '\0'; /* L81 */
printf("\n Infix Expression : %s ", infixExp); /* L82 */
printf("\n Postfix Expression : %s ", postfixExp); /* L83 */
printf("\n Thank you\n "); /* L84 */
} /* L85 */

Compile and execute this program. A few runs of this program are given here:
Here is the first run:

Enter Infix Expression: a+b +

Infix Expression: a+b
Postfix Expression: ab+
Thank you

Here is the second run:
Enter Infix Expression: (a+b)*(c-d) +

Infix Expression: (a+b)*(c-d)
Postfix Expression: ab+cd-*
Thank you

Here is the third run:
Enter Infix Expression: ((a+b)/(c-d))*((e-f)/(g+h)) «

Infix Expression: ((a+b)/(c-d))*((e-f)/(g+h))
Postfix Expression: ab+cd-/ef-gh/*
Thank you

How It Works

This program declares three functions: lowPriority(), pushOpx (), and popOpr (). LOCs
3 to 5 define the three arrays: postfixExp, infixExp, and operatorStack. LOC 6 declares
the int variables i, j, and intTop. These items are declared outside of any function so
that their scope is global. LOCs 7 to 26 define the function lowPriority(). The function
lowPriority() assigns the appropriate priority value to every operator in the infix
equation. The priority of various operators is as follows:

Operator Priority or Precedence Values
{ 4
(3
A 2
*/ 1
+, - 0

266

CHAPTER 8 ' STACKS AND QUEUES

LOCs 27 to 43 define the function pushOpx (). This function is responsible for
pushing the element onto the stack. LOCs 44 to 50 define the function popOpx (). This
function is responsible for popping the element from the stack. LOCs 51 to 85 consist of
the code of the main() function. LOC 54 instructs the user to enter the infix equation. The
equation entered by the user is read by the gets() function in LOC 55, and it is stored in
the char array infixExp. LOCs 56 to 76 consist of a while loop. At the beginning of every
iteration, elements in the array infixExp are read and assigned to the variable k. If the
element is a null character, which signifies the end of the array, then the execution of the
while loop terminates. The variable k is then passed to the switch statement. Depending
upon the value of k, the appropriate case in the switch statement is executed.

8-4. Convert an Infix Expression to a Prefix

Expression
Problem

You want to convert an infix expression into a prefix expression.

Solution

Write a C program that converts an infix expression into a prefix expression, with the
following specifications:

e The program defines four functions: fillPre(), lowPriority(),
pushOpr (), and popOpzx (). The function fillPre() accepts a
character as an input argument and places it as the first element
in the array prefixExp. The function lowPriority() assigns an
appropriate priority value to every operator in an infix equation.
The function pushOpz () is invoked after pushing an operator into
the stack. The function popOpr () is to be invoked after popping an
operator from the stack.

e Itis assumed that only one of the following operators is used in an
expression: +, -, *, /, %, A, (, and {.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
stack4.c:

/* This program converts infix expression into a prefix expression. */

/* BL */
include <stdio.h> /¥ L1 ¥/
include <string.h> /* L2 ¥/
/* BL */

267

CHAPTER 8 ' STACKS AND QUEUES

char prefixExp[60];
char infixExp[60];
char operatorStack[60];
int n=0, intTop=0;

void fillPre(char let)
{
int m;
if(n == 0)
prefixExp[0] = let;
else {
for(m=n+ 1; m > 0; m--)
prefixExp[m] = prefixExp[m - 1];
prefixExp[0] = let;
}

n++;

}

int lowPriority(char opr, char oprStack)
{
int k, p1, p2;
char oprList[] = {'+
int priolist[] = {o,
if(oprStack == ")')
return 0;
for(k = 0; k < 6; k ++) {
if(opr == oprList[k])
pl = priolist[k];

{l |, |_|’ |*|, |/|’ |%|, |,\|’ |)|};
{o 0) 1) 1) 2) 3) 4};

for(k = 0; k < 65 k ++) {
if(oprStack == oprList[k])
p2 = priolList[k];

}

if(p1 < p2)
return 1;

else
return 0;

}
void pushOpr(char opr)

if(intTop == 0) {
operatorStack[intTop] = opr;
intTop++;

}

else {
if(opr = ")") {

268

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L3

L4

L5

L6

BL

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
BL

L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38

/* BL

/*
/*
/*
/*
/*
/*
/*
/*

L39
L40
L41
L42
L43
L44
L45
L46

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 8 ' STACKS AND QUEUES

while(lowPriority(opr, operatorStack[intTop-1]) ==

1 8% intTop > 0) {
fillPre(operatorStack[--intTop]);
}
}
operatorStack[intTop] = opr;
intTop++;
}
}

void popOpr()
{

while(operatorStack[--intTop] != ")")
fillPre(operatorStack[intTop]);
}

void main()
{
char chrL;
int length;
printf("\n Enter Infix Expression : ");
gets(infixExp);
length = strlen(infixExp);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

while(length > 0) { /* first while loop begins. */ /*
chrL = infixExp[--length]; /*
switch(chrL) { /* switch statement begins. */ /*
case ' ' : /*
break; /*

case ')' : /*
case '+' /*
case '-' /*
case '*' : /*
case '/' : /*
case 'M' /*
case '%' : /*
pushOpr(chrL); /*

break; /*

case '(' : /*
popopr(); /*

break; /*

default /*
fillPre(chrlL); /*

} /* switch statement ends. */ /*
} /* first while loop ends. */ /*

while(intTop > 0) {

/* second while loop begins. */ /*

fillPre(operatorStack[--intTop]); /*
n++; /%
} /* second while loop ends. */ /*

L47
L48
L49
L50
L51
L52
L53
L54

*/
*/
*/
*/
*/
*/
*/
*/

BL */

L55
L56
L57
L58
L59

*/
*/
*/
*/
*/

BL */

L60
L61
L62
L63
L64
L65
L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80
L81
L82
L83
L84
L85
L86
L87
L88
L89
L90
L91

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

269

CHAPTER 8 ' STACKS AND QUEUES

prefixExp[n] = '"\0'; /* 192 */
printf("\n Infix Expression : %s ", infixExp); /* L93 */
printf("\n Prefix Expression : %s ", prefixExp); /* L94 */
printf("\n Thank you\n"); /* L95 */
} /* 196 */

Compile and execute this program. A few runs of this program are given here:
Here is the first run:

Enter Infix Expression: a+b +

Infix Expression: a+b
Prefix Expression: +ab
Thank you

Here is the second run:
Enter Infix Expression: (a+b)*(c-d)

Infix Expression: (a+b)*(c-d)
Prefix Expression: *+ab-cd
Thank you

Here is the third run:
Enter Infix Expression: ((a+b)/(c-d))*((e-f)/(g+h)) «

Infix Expression: ((a+b)/(c-d))*((e-f)/(g+h))
Prefix Expression: */+ab-cd/-ef+gh
Thank you

How It Works

This program consists of four functions: fillPre(), lowPriority(), pushOpr(), and
popOpr (). LOCs 3 to 5 define the three arrays: prefixExp, infixExp, and operatorStack.
LOC 6 declares the int variables n and intTop. These items are declared outside of any
function so that their scope is global. LOCs 7 to 18 define the function fillPre(). LOCs
19 to 38 define the function lowPriority(). The function lowPriority() assigns the
appropriate priority value to every operator in the infix equation. LOCs 39 to 54 define the
function pushOpr (). This function is responsible for pushing the element onto the stack.
LOCs 55 to 59 define the function popOpx (). This function is responsible for popping the
element from the stack.

LOCs 60 to 96 consist of the code of the main() function. LOC 64 instructs the user to
enter the infix equation. The equation entered by the user is read by the gets() function
in LOC 65, and it is stored in the char array infixExp. The length of this infix equation is
computed in LOC 66, and it is stored in the int variable length.

270

CHAPTER 8 ' STACKS AND QUEUES

LOCs 67 to 87 consist of the first while loop, and LOCs 88 to 91 consist of the second
while loop. In the first while loop, at the beginning of every iteration, elements in the
array infixExp are read and assigned to the variable chrL. The execution of this loop
terminates when all the elements in the array infixExp are read. This loop consists
of a switch statement spanning LOCs 69 to 86. The variable chrl is passed to this
switch statement. Depending upon the value of chrL, the appropriate case is executed.
Particularly, the operators are pushed onto the stack using the function pushOpz (). In the
second while loop, the function fillPre() is called repeatedly. Operators stored in the
array operatorStack are passed to this function, one by one. Finally, in LOCs 93 and 94,
the infix and prefix expressions are displayed on the screen.

8-5. Implement a Circular Queue as an Array
Problem

You want to implement a circular queue as an array.

Solution

Write a C program that implements a circular queue as an array, with the following
specifications:

e The program defines four functions: insertCircQue(),
deleteCircQue(), displayCircQue(), and displayMenu().

e The function insertCirQue() is called when an element is
inserted in the circular queue. The function deleteCircQue()
is called when an element from a circular queue is deleted. The
function displayCircQue() is called when a circular queue is
displayed on the screen. The function displayMenu() is called
when the menu is displayed on the screen.

The Code

The following is the code of the C program written with these specifications. Type the
following C program in a text editor and save it in the folder C: \Code with the file name
stacks.c:

/* This program implments a circular queue. */

/* BL */
include <stdio.h> /¥ L1 */
define SIZE 8 /¥ L2 */
/* L3 */
/* BL */
int circQue[SIZE]; /* L4 */
int frontCell = o; /¥ L5 */
int rearCell = 0; /* L6 */
int kount = 0; /* L7 */
/* BL */

271

CHAPTER 8 ' STACKS AND QUEUES

void insertCircQue()
{
int num;
if(kount == SIZE) {
printf("\nCircular Queue is Full. Enter Any
Choice Except 1.\n ");

}

else {

printf("\nEnter data, i.e, a number N (0 <= N : 30000): ");

scanf("%d", &num);
circQue[rearCell] = num;
rearCell = (rearCell + 1) % SIZE;
kount ++;
printf("\nData Inserted in the Circular Queue. \n");
}
}

void deleteCircQue()

if(kount == 0) {
printf("\nCircular Queue is Exhausted!\n");

}

else {
printf("\nElement Deleted from Cir Queue is %d \n",
circQue[frontCell]);
frontCell = (frontCell + 1) % SIZE;
kount --;

}

}

void displayCircQue()
int i, j;
if(kount == 0) {

printf("\nCircular Queue is Exhausted!\n ");

else {

printf("\nElements in Circular Queue are given below:

j = kount;

for(i = frontCell; j != 0; j--) {
printf("%d ", circQue[i]);
i=(i+ 1) % SIZE;

}

printf("\n");

}
}

272

\n");

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L8 */
L9 */

L10
L11

L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
BL

L23
L24
L25
L26
L27
L28

L30
131
132
L33
L34
BL

L35
L36
L37
138
L39
L40
L41
L42
L43
L4
L45
L46
L47
L48
L49
L50
BL

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 8 ' STACKS AND QUEUES

int displayMenu()
{

int choice;

printf("\nEnter 1 to Insert Data.");
printf("\nEnter 2 to Delete Data.");
printf("\nEnter 3 to Display Data.");
printf("\nEnter 4 to Quit the Program. ");
printf("\nEnter Your Choice: ");
scanf("%d", 8&choice);

return choice;
}
void main()
{
int choice;
do { /* do-while loop begins. */
choice = displayMenu();
switch(choice) { /* switch statement begins. */
case 1:
insertCircQue();
break;
case 2:
deleteCircQue();
break;
case 3:
displayCircQue();
break;
case 4:
exit(0);
default:
printf("\nInvalid Choice. Please enter again. \n ");
} /* switch statement ends. */
} while(1); /* do-while loop ends. */
}

Compile and execute this program. A run of this program is given here:

Enter 1 to Insert Data.
Enter 2 to Delete Data.
Enter 3 to Display Data.
Enter 4 to Quit the Program.
Enter Your Choice: 1 «~

Entr data, i.e., a number N (0 <= N <= 30000): 222 «
Data Inserted in the Circular Queue.

Enter 1 to Insert Data.
Enter 2 to Delete Data.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L51
L52
L53
L54
L55
L56
L57
L58
L59
L60
L61
BL

L62
L63
L64
L65
L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L8o
L81
L82
L83

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

273

CHAPTER 8 ' STACKS AND QUEUES

Enter 3 to Display Data.
Enter 4 to Quit the Program.
Enter Your Choice: 1 «

Entr data, i.e., a number N (0 <= N <= 30000): 333
Data Inserted in the Circular Queue.

Enter 1 to Insert Data.

Enter 2 to Delete Data.

Enter 3 to Display Data.

Enter 4 to Quit the Program.

Enter Your Choice: 1 «

Entr data, i.e., a number N (0 <= N <= 30000): 444

Data Inserted in the Circular Queue.

Enter 1 to Insert Data.
Enter 2 to Delete Data.
Enter 3 to Display Data.
Enter 4 to Quit the Program.
Enter Your Choice: 3 =

Elements in the Circular Queue are given below:
222 333 444

Enter 1 to Insert Data.
Enter 2 to Delete Data.
Enter 3 to Display Data.
Enter 4 to Quit the Program.
Enter Your Choice: 2«

Element Deleted from Cir Queue is 222

Enter 1 to Insert Data.
Enter 2 to Delete Data.
Enter 3 to Display Data.
Enter 4 to Quit the Program.
Enter Your Choice: 3 =

Elements in the Circular Queue are given below:
333 444

Enter 1 to Insert Data.
Enter 2 to Delete Data.
Enter 3 to Display Data.
Enter 4 to Quit the Program.
Enter Your Choice: 4 «

274

-

CHAPTER 8 ' STACKS AND QUEUES

How It Works

In LOC 2, the size of the circular queue is limited to eight elements. LOC 4 defines an int
type array called circQue to store the data elements in the array. LOCs 5 to 7 define three
int variables: frontCell, rearCell, and kount. This array and the variables are defined
outside of any function so that their scope is global. Initially, when the queue is empty,
then the values of frontCell and rearCell are zero; i.e., both variables are pointing to
the first cell in the array circQue.

Next, when the user inserts the first data element in the queue (say, 222), then the
value of frontCell continues to be zero. However, the value of rearCell becomes 1
because [(rearCell + 1) % 8] = [(0 + 1) % 8] = 1. This means the variable frontCell is
pointing to the first cell in the array, and the variable rearCell is pointing to the second
element in the array.

Next, when the user inserts the second data element in the queue (say, 333), then
the value of frontCell continues to be zero. However, the value of rearCell becomes
2 because [(rearCell + 1) % 8] = [(1 + 1) % 8] = 2. This means the variable frontCell is
pointing to the first cell in the array, and the variable rearCell is pointing to the third
element in the array.

Next, when the user inserts the third data element in the queue (say, 444), then
the value of frontCell continues to be zero. However, the value of rearCell becomes
3 because [(rearCell + 1) % 8] = [(2 + 1) % 8] = 3. This means the variable frontCell is
pointing to the first cell in the array, and the variable rearCell is pointing to the fourth
element in the array.

Next, when the user deletes the data element in the queue (it is 222), then the value
of rearCell continues to be 3. However, the value of frontCell becomes 1 because
[(frontCell + 1) % 8] = [(0 + 1) % 8] = 1. This means the variable frontCell is pointing to
the second cell in the array, and the variable rearCell is pointing to the fourth element in
the array.

This program consists of four functions: insertCircQue(), deleteCircQue(),
displayCircQue(), and displayMenu().LOC 4 defines an int type array called circQue.

LOCs 8 to 22 define the function insertCircQue(). This function is called
when an element is inserted in the circular queue. LOCs 23 to 34 define the function
deleteCircQue(). This function is called when an element is deleted from the circular
queue. LOCs 35 to 50 define the function displayCircQue(). This function is called
when a circular queue is to be displayed on the screen. LOCs 51 to 61 define the function
displayMenu(). This function is called when the user menu is to be displayed on the screen.

LOCs 62 to 83 consist of the main() function. In LOC 64, an int variable choice is
declared in order to store the choice of the user. LOCs 65 to 82 consist of the do-while
loop. This loop is executed repeatedly until the program is terminated by the user. This
do-while loop consists of a switch statement on LOCs 67 to 81. When the user menu
is displayed on the screen, the user enters his or her choice, and this choice is stored in
the int variable called choice. This variable choice is passed to the switch statement.
Depending upon the value of choice, an appropriate case is executed. If the value of
choice is 1, then the function insertCircQue() is called. If the value of choice is 2, then
the function deleteCircQue() is called. If the value of choice is 3, then the function
displayCircQue() is called. If the value of choice is 4, then the program is terminated. If
the value of choice is something else, then the default case is executed and the message
“Invalid Choice. Please enter again.” is displayed on the screen.

275

CHAPTER 9

Searching and Sorting

The current English meaning of the terms “searching” and “sorting” also holds good
in computer science. Sometimes, this is not the case. For example, the current English
meaning of the terms “root,” “garbage” or “tree” is very different from their meaning in
computer science.

Note Searching is the process of finding the location of a desired element from a group
of elements.

For searching, generally following methods are used:
e Linear search,
e Binary search,

e Interpolation search.

Note Sorting is the process of arranging the elements in desired order (e.g., ascending
or descending, etc.), given a group of elements.

For sorting, generally following methods are used:
e Bubble sort,
e Inserting sort,
e Selection sort,
e Merge sort,
e Shell sort,

e Quicksort,

© Shirish Chavan 2017 277
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_9

CHAPTER 9 " SEARCHING AND SORTING

9-1. Find a Data Element Using a Linear Search
Problem

You want to find a desired data element from an unordered list of data elements using a
linear search.

Solution

Write a C program that finds a data element from an unordered list of data elements using
a linear search, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function searchData() that searches the
desired data element in a given list of numbers using a linear or
sequential search algorithm.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename srch1.c:

/* This program performs linear search to find a desired data element from */
/* a set of given data elements. */

/* BL */

#include <stdio.h> /* L1 */
/* BL */

int intStorage[50]; /¥ L2 */
int kount = 0; /* L3 */
/* BL */

int searchData(int intData) /* L4 */
{ /* L5 */
int intCompare = 0; /* L6 */
int intNum = -1; /* L7 */
int i, /* L8 */
for(i = 0; i < kount; i++) { /* L9 */
intCompare++; /* L10 */
if(intData == intStorage[i]){ /* L11 */
intNum = i; /* L12 */
break; /* L13 */

} /% L14 */

/* L15 */

printf("Total Number of Comparisons Made Are: %d", intCompare); /* L16 */
return intNum; /* L17 */

} /* L18 */
/* BL */

278

CHAPTER 9 © SEARCHING AND SORTING

void main()

{

int intPosition, intData, i;

printf("Enter the number of data elements N (2 <= N <= 50): ");

scanf("%d", 8&kount);

printf("Enter the %d integers I (0 <= I <= 30000) ", kount);

printf("separated by white spaces: \n");
for (i=0; i < kount; i++)

scanf("%d", &intStorage[i]);
fflush(stdin);

printf("Enter the Data Element D to be Searched (0 <= D <= 30000): ");

scanf("%d", &intData);
intPosition = searchData(intData);
if(intPosition != -1) {
printf("\nData Element Found at Position ");
printf("or Location: %d\n", (intPosition + 1));
}
else
printf("\nData Element Not Found.\n");
printf("\nThank you.\n");

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program. A couple of runs of this program are given below.

First run:

Enter the number of data elements N (2 <= N <= 50):
Enter the 8 integers I (0 <= I <= 30000) separated
10 20 30 40 50 60 70 80 -

Enter the Data Element D to be Searched (0 <= D <=
Total Number of Comparisons Made Are: 6

Data Element Found at Position or Location: 6
Thank you.

Second run:

Enter the number of data elements N (2 <= N <= 50):
Enter the 8 integers I (0 <= I <= 30000) separated
10 20 30 40 50 60 70 80 -

Enter the Data Element D to be Searched (0 <= D <=
Total Number of Comparisons Made Are: 8

Data Element Not Found.

Thank you.

8 -

by white spaces:

30000): 60

8 -

by white spaces:

30000): 55

-

-

279

CHAPTER 9 " SEARCHING AND SORTING

How It Works

In a linear or sequential search, every element in list is compared with the data element
to be searched, until a match is found. This method is convenient when list contains

a small number of data elements. The benefits of this method are: (a) you can use
unordered list of numbers and (b) logic used in this program is very simple. Linear search
has worst-case complexity of 0(n), where n is the size of the list.

LOC 2 defines int type array intStorage to store the list of numbers entered by
user. LOC 3 defines the int variable kount that represents the size of list of data elements.
LOCs 4-18 define the function searchData() that finds the desired number (i.e., data
element) in a given list. The number to be searched is passed to this function as an
input argument. This number, i.e., intData, is compared with every number in the list
intStorage using the for loop. When match is found, looping is terminated and result is
returned. If no match is found then appropriate result is returned.

LOCs 19-39 consists of main() function. In LOC 22, user is asked to enter the size
of list. The size of list should be in the range of 2 to 50. The size of list entered by user is
stored in the int variable kount. In LOC 24 user is asked to enter the numbers to fill in the
list. The numbers entered by user are stored in the array intStorage. In LOC 29, user is
asked to enter the number to be searched. The number entered by user is stored in the int
type variable intData. In LOC 31, function searchData() is called and variable intData is
passed to this function as an input argument. The result returned by this function is stored
in the int type variable intPosition. Then result is displayed on the screen.

9-2. Find a Data Element Using a Binary Search
Problem

You want to find a data element from an unordered list of data elements using a binary
search.

Solution

Write a C program that finds a data element from an ordered list - in increasing order - of
data elements using a binary search, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function searchData() that searches the
desired data element in a given list of numbers - in increasing
order - using the binary search algorithm.

280

CHAPTER 9 © SEARCHING AND SORTING

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename srch2.c:

/* This program performs a binary search to find a desired data element from */

/* an ordered set of given data elements. */

/*

#include <stdio.h> /*
/*

int intStorage[50]; /*
int kount = 0; /*
/*

int searchData(int intData) /*
{ r*
int intLowBound = 0; /*
int intUpBound = kount -1; /*
int intMidPoint = -1; /*
int intCompare = 0; /*
int intNum = -1; /*
while(intLowBound <= intUpBound) { /*
intCompare++; /*
intMidPoint = intLowBound + (intUpBound - intLowBound) / 2; /*
if(intStorage[intMidPoint] == intData) { /*
intNum = intMidPoint; /*
break; /*

} r*
else { /*
if(intStorage[intMidPoint] < intData) { /*
intLowBound = intMidPoint + 1; /*

} r*

else { /*
intUpBound = intMidPoint -1; /*

} r*

} r*

} r*
printf("Total comparisons made: %d" , intCompare); /*
return intNum; /*

} r*
/*

void main() /*
{ r*
int intPosition, intData, i; /*
printf("Enter the number of data elements N (2 <= N <= 50): "); /*
scanf("%d", 8&kount); /*
printf("Enter the %d integers I (0 <= I <= 30000) ", kount); /*
printf("in increasing order, \nseparated by white spaces: "); /*
for (i=0; i < kount; i++) /*

BL
L1
BL
L2
L3
BL
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
BL
L30
L31
L32
L33
L34
L35
L36
L37

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

281

CHAPTER 9 " SEARCHING AND SORTING

scanf("%d", &intStorage[i]);
fflush(stdin);

printf("Enter the Data Element D to be Searched (0 <= D <= 30000): ");

scanf("%d", &intData);
intPosition = searchData(intData);
if(intPosition != -1) {
printf("\nData Element Found at Position ");
printf("or Location: %d" ,(intPosition+1));
}
else
printf("\nData Element not found.");
printf("\nThank you.\n");

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L38
L39
L40
L41
L42
L43
La4
L45
L46
L47
L48
L49
L50

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Compile and execute this program. A couple of runs of this program are given below.

First run:

Enter the number of data elements N (2 <= N <= 50): 8§
Enter the 8 integers I (0 <= I <= 30000) in increasing order,
separated by white spaces: 10 20 30 40 50 60 70 80 «

Enter the Data Element D to be Searched (0 <= D <= 30000): 50
Total comparisons made: 3

Data Element Found at Position or Location: 5

Thank you.

Second run:

Enter the number of data elements N (2 <= N <= 50): §
Enter the 8 integers I (0 <= I <= 30000) in increasing order,
separated by white spaces: 10 20 30 40 50 60 70 80 «

Enter the Data Element D to be Searched (0 <= D <= 30000): 65
Total comparisons made: 3

Data Element Not Found.

Thank you.

How It Works

-

In a binary search, the list that contains data elements (i.e., integer numbers) must be an
ordered list either in increasing or decreasing order. Here, in this program, a list sorted

in increasing order is used. You are given a data element intData to be searched in this

list. Firstly, a list is divided into two equal parts (say, upper part and lower part). Then it
is found whether the intData lies in upper part or lower part. Suppose, it lies in upper
part then lower part of the list is discarded and upper part of this list is again divided into
two equal parts (say up part and low part). Once again it is found whether intData lies in
up part or low part. Suppose, intData lies in low part. Then up part is discarded and low
part is again divided into two parts. This procedure is repeated until a match for intData
is found in the given list or it is confirmed that there is no match for intData in the given

282

CHAPTER 9 © SEARCHING AND SORTING

list. The benefit of this method is that it is more efficient compared to linear search
method. You get the match for intData in less number of comparisons compared to
linear search. When list is big and already ordered then it is advisable to use this method.
Linear search has worst-case complexity of 0(n) whereas binary search has worst-case
complexity of 0(log n), where n is size of the list of numbers.

LOC 2 defines int type array intStorage to store the list of numbers entered by user.
LOC 3 defines the int variable kount that represents the size of list of data elements.
LOCs 4-34 define the function searchData() that finds the desired number (i.e., data
element) in a given list of numbers using a binary search. The number to be searched is
passed to this function as an input argument.

Five int type variables are declared in the LOCs 6-10. LOCs 11-26 consist of a
while-loop. Binary search is performed in this loop. LOCs 30-50 consist of main() function.
LOC 33 instructs the user to enter the size of the list in the range 2 to 50. The size entered
by user is stored in the int variable kount. LOC 35 instructs the user to enter the list of
integers in increasing order. The list of numbers entered by user is stored in int type array
intStorage. LOC 40 instructs the user to enter the data element to be searched. The data
element entered by user is stored in the int variable intData. LOC 42 calls the function
searchData(). The variable intData is passed to function searchData() as an input
argument. The function searchData() finds the match for intData in the list of numbers
intStorage and returns it. The value returned by searchData() is assigned to int
variable intPosition in the LOC 42. The result of search is then displayed on the screen
in the LOCs 44, 45 and 48.

9-3. Sort a Given List of Numbers Using a
Bubble Sort

Problem

You want to sort a given list of unordered numbers in an ascending (ie, increasing) order
using a bubble sort.

Solution

Write a C program that sorts a given list of unordered numbers in an ascending
(ie. increasing) order, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function bubbleSort () that sorts the given
list of unordered numbers in an asending (ie, increasing) order
using the bubble sort algorithm.

283

CHAPTER 9 " SEARCHING AND SORTING

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename sort1.c:

/* This program sorts a given list of integers in an increasing order
using bubble sort. */

/*

#include <stdio.h> /*
/*

int intStorage[20]; /*
int kount = 0; /*
/*

void bubbleSort() /*
{ /*
int intTemp; /*
int i,7; /*
int intSwap = 0; /* 0-false & 1-true */ /*
for(i = 0; i < kount-1; i++) { /* outer for loop begins */ /*
intSwap = 0; /*

for(j = 0; j < kount-1-i; j++) { /* inner for loop begins */ /*
if(intStorage[j] > intStorage[j+1]) { /* if statement begins */ /*

intTemp = intStorage[jl; /*
intStorage[j] = intStorage[j+1]; /*
intStorage[j+1] = intTemp; /*

intSwap = 1; /*

} /* if statement ends */ /*

} /* inner for loop ends */ /*
if(lintSwap) { /*
break; /*

} /*

} /* outer for loop ends */ /*

} /*
/*

void main() /*
{ /*
int i; /*
printf("Enter the number of items in the list, N (2 <= N <= 20): "); /*
scanf("%d", &kount); /*
printf("Enter the %d integers I (0 <= I <= 30000) ", kount); /*
printf("separated by white spaces: \n"); /*
for (i=0; i < kount; i++) /*
scanf("%d", &intStorage[i]); /*
fflush(stdin); /*
bubbleSort(); /*
printf("Sorted List: "); /*
for(i = 0; 1 < kount; i++) /*

284

BL
L1
BL
L2
L3
BL
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
BL
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 9 © SEARCHING AND SORTING

printf("%d ", intStorage[i]); /* L37 */
printf("\nThank you.\n"); /* L38 */
} /* 139 */

Compile and execute this program. A run of this program is given below:

Enter the number of items in the list, N (2 <= N <= 20): 8
Enter the 8 integers I (0 <= I <= 30000) separated by white spaces:
30 80 20 70 40 10 60 90 ~

Sorted List: 10 20 30 40 60 70 80 90

Thank you.

How It Works

Bubble sort is simple yet effective sorting algorithm and hence it is quite popular when
lists to be ordered are not very big. In bubble sort two successive elements are compared
and are swapped if first element is greater than the second one. Iflists to be ordered are
big then this method is not used because the worst case complexity for this method is
O(n?) where n represents the number of items or elements in the list.

Suppose unordered list contains 4 numbers as follows:

171916 14

To begin with, first number 17 is compared with 19. These numbers are already in
ascending order hence no swapping is needed. Next, second number 19 is compared with
third number 16. As these numbers are not in ascending order, swapping is needed. After
swapping, the list of numbers looks as follows:

17161914

Next, third number 19 is compared with fourth number 14. As these numbers are not
in ascending order, they are swapped. After swapping the list becomes as follows:

17161419

Next, first number 17 is compared with second number. As these numbers are not in
ascending order, they are swapped. After swapping the list becomes as follows:

16171419

This process is repeated until the complete list is sorted in ascending order.

In this program, LOC 2 defines int type array intStorage to store the list of numbers
entered by user. LOC 3 defines the int variable kount that represents the size of list of
data elements.

LOCs 4-23 define the function bubbleSort() that sorts a list of unordered numbers
in to a list of ascending numbers.

Four int type variables are declared in the LOCs 6-8. LOCs 9-22 consist of outer for
loop and LOCs 11-18 consist of inner for loop.

LOCs 24-39 consists of main() function. LOC 27 asks the user to enter the size of list
and this size of list is assigned to int variable kount. LOS 29 asks the user to populate the
list. The elements of list are stored in the int array intStorage. LOC 34 calls the function
bubbleSort() that sorts the numbers in the list. LOCs 36-37 consists of a for loop that
displays the sorted list of numbers on the screen.

285

CHAPTER 9 " SEARCHING AND SORTING

9-4. Sort a Given List of Numbers Using an
Insertion Sort

Problem

You want to sort a given list of unordered numbers in an ascending (ie, increasing) order
using an insertion sort.

Solution

Write a C program that sorts a given list of unordered numbers in an ascending
(ie. increasing) order, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function insertionSort() that sorts the
given list of unordered numbers in an asending (ie, increasing)
order using the insertion sort algorithm.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename sort2.c:

/* This program sorts a given list of unordered integers in an
increasing order */
/* using an insertion sort. */

/* BL */

#include <stdio.h> /¥ L1 */
/* BL */

int intStorage[20]; /* L2 */
int kount = 0; /* L3 */
/* BL */

void insertionSort() /* L4 */
{ /* L5 */
int intInsert; /* L6 */
int intVacancy; /* L7 */
int i, /* L8 */
for(i = 1; i < kount; i++) { /* for loop begins */ /* L9 */
intInsert = intStorage[i]; /* L10 */
intVacancy = i; /* L11 */
while (intVacancy > 0 &3 intStorage[intVacancy-1] > intInsert) { /* L12 */
intStorage[intVacancy] = intStorage[intVacancy-1]; /* 113 */
intVacancy--; /* L14 */

} /* L15 */

286

CHAPTER 9 © SEARCHING AND SORTING

if(intVacancy != i) { /* if statement begins */ /* L16 */
intStorage[intVacancy] = intInsert; /* L17 */

} /* if statement ends */ /* L18 */

} /* for loop ends */ /* L19 */

} /* 120 */
/* BL */

void main() /* L21 */
{ /* L22 */
int i; /* L23 */
printf("Enter the number of data elements N (2 <= N <= 20): "); /* L24 */
scanf("%d", 8&kount); /* L25 */
printf("Enter the %d integers I (0 <= I <= 30000) ", kount); /* 126 */
printf("separated by white spaces: \n"); /* L27 */
for (i=0; i < kount; i++) /* L28 */
scanf("%d", &intStorage[i]); /¥ L29 */
fflush(stdin); /* L30 */
insertionSort(); /* 131 */
printf("Sorted List: "); /* 132 */
for(i = 0; i < kount; i++) /* L33 */
printf("%d ",intStorage[i]); /* L34 */
printf("\nThank you.\n"); /* L35 */

} /* L36 */

Compile and execute this program. A run of this program is given below:

Enter the number of items in the list, N (2 <= N <= 20): 8 «
Enter the 8 integers I (0 <= I <= 30000) separated by white spaces:
98 23 45 67 55 30 78 45

Sorted List: 23 30 45 45 55 67 78 98

Thank you.

How It Works

In insertion sort, the list is divided into two parts, lower part and upper part. The lower
part is sorted and upper part is unsorted, in general. As sorting proceeds, the lower part
grows in size and upper part shrinks in size. Ultimately, when upper part is reduced to
zero, the list is completely sorted. Suppose the unsorted list consists of five numbers as
follows:

86317

To begin with, compare first number 8 with second number 6. These numbers are
not in order, therefore, swap these numbers. After swapping, the list becomes as given
below. Notice that first two numbers now form a lower part of the list that is completely
sorted. Also, last three numbers form the upper part of the list that is unsorted:

68317

287

CHAPTER 9 " SEARCHING AND SORTING

Next, compare second number 8 with third number 3. These numbers are not in
order, therefore swap these numbers. After swapping, the list becomes as given below:

63817

Next, compare first number 6 with second number 3. These numbers are not in
order, therefore swap these numbers. After swapping, the list becomes as given below:

36817

Notice that lower part of the list now consist of three numbers (3, 6, and 8) and this
sub-list is now completely sorted. Upper part of the list now consists of two numbers
(1 and 7) and this sub-list is unsorted, in general.

Next, compare third number 8 with fourth number 1. These numbers are not in
order, therefore swap these numbers. After swapping, the list becomes as given below:

36187

Next, there is comparison between 6 and 1. Proceeding in this manner, the complete
list is sorted.

In this program, LOC 2 defines int type array intStorage to store the list of numbers
entered by user. LOC 3 defines the int variable kount that represents the size of list of data
elements. LOCs 4-20 define the function insertionSort() that sorts a list of unordered
numbers in to a list of ascending numbers. Three int type variables are declared in the
LOCs 6-8. LOCs 9-19 consist of a for loop. LOCs 12-15 consist of awhile loop.

LOCs 21-36 consist of the main() function. LOC 24 asks the user to enter the size of
list and this size of list is assigned to int variable kount. LOS 26 asks the user to populate
the list. The elements of list are stored in the int array intStorage. LOC 31 calls the
function insertionSort() that sorts the the unordered list. LOCs 33-34 consists of a for
loop that displays the sorted list of numbers on the screen.

9-5. Sort a Given List of Numbers Using a
Selection Sort

Problem

You want to sort a given list of unordered numbers in an ascending (ie, increasing) order
using a selection sort.

Solution

Write a C program that sorts a given list of unordered numbers in an ascending
(ie. increasing) order, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function selectSort() that sorts the given
list of unordered numbers in an asending (ie, increasing) order
using the selection sort algorithm.

288

CHAPTER 9 © SEARCHING AND SORTING

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename sort3.c:

/* This program sorts a given list of unordered integers in an increasing
order */
/* using a selection sort. */

/* BL */

#include<stdio.h> /* L1 */
/* BL */

int intStorage[20]; /* L2 */
int kount = 0; /* L3 */
/* BL */

void selectSort() /* L4 */
{ /* L5 */
int i, j, k, intTemp, intMin; /* L6 */
for(i=0; i < kount-1; i++) { /* outer for loop begins */ /* L7 */
intMin = intStorage[i]; /* L8 */

k = 1; /* L9 */

for(j = i+1; j < kount; j++) { /* inner for loop begins */ /* L10 */
if(intMin > intStorage[j]) { /* if statement begins */ /* L11 */

intMin = intStorage[j]; /¥ L12 */

k = /¥ L13 */

} /* if statement ends */ /* L14 */

} /* inner for loop end */ /* L15 */
intTemp = intStorage[i]; /* L16 */
intStorage[i] = intStorage[k]; /* L17 */
intStorage[k] = intTemp; /* L18 */

} /* outer for loop end */ /* L19 */

} /* L20 */
/* BL */

void main() /* 121 */
{ /* 122 */
int i; /* L23 */
printf("Enter the number of data elements N (2 <= N <= 20): "); /* L24 */
scanf("%d", &kount); /* L25 */
printf("Enter the %d integers I (0 <= I <= 30000) ", kount); /* 126 */
printf("separated by white spaces: \n"); /* L27 */
for (i=0; i < kount; i++) /* L28 */
scanf("%d", &intStorage[i]); /* 129 */
fflush(stdin); /* L30 */
selectSort(); /* L31 */
printf("Sorted List: "); /* 132 */
for(i = 0; i < kount; i++) /* L33 */
printf("%d ",intStorage[i]); /* 134 */
printf("\nThank you.\n"); /* L35 */

} /* L36 */

289

CHAPTER 9 " SEARCHING AND SORTING

Compile and execute this program. A run of this program is given below:

Enter the number of items in the list, N (2 <= N <= 20): 8 «
Enter the 8 integers I (0 <= I <= 30000) separated by white spaces:
80 20 10 30 60 40 70 50 -

Sorted List: 10 20 30 40 50 60 70 &0

Thank you.

How It Works

Like insertion sort, selection sort is also an in-place comparison-based sorting algorithm.
In selection sort, list is divided into two parts: sorted part that lies to left end and unsorted
part that lies to right end. The smallest number is selected from the unsorted list and it
is interchanged with the first number (ie, leftmost number). Then next smallest number
is selected from the unsorted list and it is swapped with second number. This process
is repeated until the complete list is sorted. Selection sort has worst case complexity of
O(n?) where n is the size of list.

Suppose the unsorted list is as given below:

9030501020 80

The smallest number in this list is 10, interchange it with the first number 90. After
interchange, the list becomes as follows:

1030509020 80

Now, the first number 10 represents the sorted sub-list that lies to left-end and
remaining four numbers represent the unsorted sub-list that lies to right-end. Next, the
smallest number in the unsorted sub-list is 20. Interchange it with the first number in the
unsorted sub-list, ie, with 30. After interchange the complete list becomes as follows:

10205090 30 80

Now the first two numbers 10 and 20 represent the sorted sub-list that lies to left-end
and remaining three numbers represent the unsorted sub-list that lies to right-end. Next,
the smallest number in the unsorted sub-list is 30. Interchange it with the first number in
the unsorted sub-list, ie. with 50. After interchange the complete list becomes as follows:

1020309050 80

Now the first three numbers 10, 20 and 30 represent the sorted sub-list that lies to
left-end and remaining two numbers represent unsorted sub-list that lies to right-end.
Proceeding in this manner, the complete list is sorted.

In this program, LOC 2 defines int type array intStorage to store the list of numbers
entered by user. LOC 3 defines the int variable kount that represents the size of list of
data elements. LOCs 4-20 define the function selectSort() that sorts a list of unordered
numbers in to a list of ascending numbers. Five int type variables are declared in the LOC 6.
LOCs 7-19 consist of an outer for loop and LOCs 10-15 consist of an inner for loop.

LOCs 21-36 consist of main() function. LOC 24 asks the user to enter the size of list and
this size of list is assigned to int variable kount. LOS 26 asks the user to populate the list.

290

CHAPTER 9 © SEARCHING AND SORTING

The elements of list are stored in the int array intStorage. LOC 31 calls the function
selectSort() that sorts the the unordered list. LOCs 33-34 consists of a for loop that
displays the sorted list of numbers on the screen.

9-6. Sort a Given List of Numbers Using a
Merge Sort

Problem

You want to sort a given list of unordered numbers in an ascending (ie, increasing) order
using a merge sort.

Solution

Write a C program that sorts a given list of unordered numbers in an ascending
(ie. increasing) order, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function mergeSort () that sorts the given list
of unordered numbers in an asending (ie, increasing) order using
the merge sort algorithm.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename sort4.c:

/* This program sorts a given list of unordered integers in an increasing
order */
/* using a merge sort. */

/* BL */

#include<stdio.h> /* L1 */
/* BL */

int intStorage[20]; /* L2 */
int kount = 0; /* L3 */
/* BL */

void merge(int m1, int ni1, int m2, int n2); /* L4 */
/* BL */

void mergeSort(int m, int n) /* L5 */
/* L6 */

int intMid; /¥ L7 */
if(m < n) /* L8 */

2901

CHAPTER 9 " SEARCHING AND SORTING

}

{
intMid = (m + n)/2;
mergeSort(m, intMid);
mergeSort(intMid + 1, n);
merge(m, intMid, intMid + 1, n);
}

void merge(int m1, int ni1, int m2, int n2)

}

int tmpStorage[40];
int m, n, k;

m = mi;

n = m2;

k =0;

while(m <= n1 & n <= n2)
{

if(intStorage[m] < intStorage[n])
tmpStorage[k++] = intStorage[m++];
else
tmpStorage[k++] = intStorage[n++];

while(m <= n1)

tmpStorage[k++] = intStorage[m++];
while(n <= n2)

tmpStorage[k++] = intStorage[n++];
for(m = mi, n = 0; m <= N2; M++, N++)

intStorage[m] = tmpStorage[n];

void main()

{

int kount, i;

printf("Enter the number of data elements N (2 <= N <= 20): ");

scanf("%d", 8kount);
printf("Enter the %d integers I (0 <= I <= 30000) ", kount);
printf("separated by white spaces: \n");
for (i=0; i < kount; i++)

scanf("%d", &intStorage[i]);
fflush(stdin);
mergeSort(0, kount-1);
printf("Sorted List: ");
for(i = 0; i < kount; i++)

printf("%d ",intStorage[i]);
printf("\nThank you.\n");

292

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L9 */

L10
L11
L12
L13
L14
L15
BL

L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
131
L32
133
L34
L35
L36
BL

137
L38
139
L40
L41
L42
L43
L44
L45
L46
L47
L48
L49
L50
L51
L52

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 9 © SEARCHING AND SORTING

Compile and execute this program. A run of this program is given below:

Enter the number of items in the list, N (2 <= N <= 20): 8 «
Enter the 8 integers I (0 <= I <= 30000) separated by white spaces:
80 70 60 50 40 30 60 10 -

Sorted List: 10 30 40 50 60 60 70 80

Thank you.

How It Works

Merge sort is an efficient algorithm and it can be used with large sized lists. Merge sort
divides the array into two equal, or almost equal, halves. Iflist consists of eight elements,
then it is divided into two sub-lists each containing four elements. If list consists of nine
elements then it is divided into two sub-lists with four and five elements. These halves
are again divided into equal, or almost equal, halves. This process is repeated untill each
sub-list consists of only one element. A list that consists of only one element is already
sorted. Then these sorted sublists are merged together in stepwise manner to form the
completely sorted list. This process is implemented with the help of recursion. Mege sort
has worst case complexity of O(n log n).

Suppose, the unsorted list is as given below:

83472165

This list consists of eight elements; therefore divide this list into two equal sub-lists,
each containing four elements, as given below:

8347 2165

Again divide these sub-lists into still smaller sub-lists (total four sub-lists) as follows
83472165

Again divide these sub-lists into still smaller sub-lists (total eight sub-lists) as follows:
83472165

Now the process of merging the sub-lists begins. Consider first and second sub-lists
(8 and 3). These are not in order, therefore, you need to swap these sub-lists. Consider
third and fourth sub-lists (4 and 7). These are in order and hence no swapping is needed.
Consider fifth and sixth sub-lists (2 and 1). These are not in order, therefore, you need to
swap these sub-lists. Similarly, the seventh and eights sub-lists (6 and 5) are not in order and
you need to interchange these sub-lists. Finally, you get the four sorted sub-lists as follows:

38471256

Next first and second sub-lists are merged together with sorting in mind. Also, third
and fourth sub-lists are merged together. You get the following two sorted sub-lists:

3478 1256

Next, these two sub-lists are merged together with sorting in mind and you get the
sorted list as follows:

12345678

293

CHAPTER 9 " SEARCHING AND SORTING

In this program, LOC 2 defines int type array intStorage to store the list of numbers
entered by user. LOC 3 defines the int variable kount that represents the size of list of
data elements. LOCs 5-15 define the function mergeSort() that sorts a list of unordered
numbers in to a list of ascending numbers. LOCs 16-36 define the function merge().
Function mergeSort () is called by the main() function and the function merge() is called
by the function mergeSort (). Function mergeSort() also calls itself recursively.

LOCs 37-52 define the main() function. LOC 40 asks the user to enter the size of list
and this size of list is assigned to int variable kount. LOS 42 asks the user to populate the
list. The elements of list are stored in the int array intStorage. LOC 47 calls the function
mergeSort () that sorts the the unordered list. LOCs 49-50 consists of a for loop that
displays the sorted list of numbers on the screen.

9-7. Sort a Given List of Numbers Using a
Shell Sort

Problem

You want to sort a given list of unordered numbers in an ascending (ie, increasing) order
using a shell sort.

Solution

Write a C program that sorts a given list of unordered numbers in an ascending (ie.
increasing) order, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function shel1Sort() that sorts the given list
of unordered numbers in an asending (ie, increasing) order using
the shell sort algorithm.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename sort5.c:

/* This program sorts a given list of unordered integers in an increasing
order */
/* using a shell sort. */

/* BL */
#include<stdio.h> /¥ L1 */
/* BL */
int intStorage[20]; /* L2 */
int kount = 0; /* L3 */
/* BL */

294

CHAPTER 9 © SEARCHING AND SORTING

void shellSort()
{
int in, out;
int insert;
int gap = 1;
int elements = kount;
int i = 0;
while(gap <= elements/3)
gap = gap * 3 +1;
while(gap > 0) {
for(out = gap; out < elements; out++) {
insert = intStorage[out];
in = out;
while(in > gap -1 &% intStorage[in - gap] >= insert) {
intStorage[in] = intStorage[in - gap];
in -= gap;

intStorage[in] = insert;
}
gap = (gap -1) /3;
i++;
}
}

void main() {
int i;

printf("Enter the number of items in the list, N (2 <= N <= 20): ");

scanf("%d", 8&kount);

printf("Enter the %d integers I (0 <= I <= 30000) ", kount);

printf("separated by white spaces: \n");
for (i=0; i < kount; i++)
scanf("%d", &intStorage[i]);
fflush(stdin);
shellSort();
printf("Sorted List: ");
for(i = 0; i < kount; i++)
printf("%d ", intStorage[i]);
printf("\nThank you.\n");
}

Compile and execute this program. A run of this program is given below:

Enter the number of items in the list, N (2 <= N <= 20): 8

-

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Enter the 8 integers I (0 <= I <= 30000) separated by white spaces:

80 70 60 50 40 30 20 10 -
Sorted List: 10 20 30 40 50 60 70 80
Thank you.

L4

L5

L6

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
BL

L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

295

CHAPTER 9 " SEARCHING AND SORTING

How It Works

Shell sort is an efficient sorting method and it is based on insertion sort method. In this
method, pairs of elements which are far apart from each other are sorted firstly, then the
gap between the elements to be compared is reduced progressively. The gap between the
elements is generally denoted by h and the process stated above is repeated by reducing
the value of h until it becomes 1. In this program, however, int variable gap is used to
denote the gap between the elements. Thus out-of-place elements are moved faster to
their proper position compared to insertion sort. This method is developed by Donald
Shell. Worst case complexity of shell sort is 0(n) where n is size of the list.

In this program, LOC 2 defines int type array intStorage to store the list of numbers
entered by user. LOC 3 defines the int variable kount that represents the size of list of
data elements. LOCs 4-26 define the function shellSort() that sorts a list of unordered
numbers in to a list of ascending numbers. LOCs 6-10 declare the five int type variables.
LOCs 11-12 consist of a while-loop that sets the value of int variable gap. LOCs 13-25
consist of awhile-loop that carries out the task of sorting the list of unordered numbers.

LOCs 27-41 define the main() function. LOC 29 asks the user to enter the size of list
and this size of list is assigned to int variable kount. LOS 31 asks the user to populate the
list. The elements of list are stored in the int type array intStorage. LOC 36 calls the
function shellSort() that sorts the unordered list. LOCs 38-39 consists of a for loop that
displays the sorted list of numbers on the screen.

9-8. Sort a Given List of Numbers Using a
Quick Sort

Problem

You want to sort a given list of unordered numbers in an ascending (ie, increasing) order
using a quick sort.

Solution

Write a C program that sorts a given list of unordered numbers in an ascending
(ie. increasing) order, with the following specifications:

e Program defines int type array intStorage to store the list of
numbers entered by user.

e Program defines the function quickSort() that sorts the given list
of unordered numbers in an asending (ie, increasing) order using
the quick sort algorithm.

296

CHAPTER 9 © SEARCHING AND SORTING

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename sort6.c:

/* This program sorts a given list of unordered integers in an increasing

order */
/* using a quick sort. */

#include<stdio.h>

int intStorage[20];
int kount = 0;

void swap(int ni, int n2)

{
int intTemp = intStorage[ni];
intStorage[n1] = intStorage[n2];
intStorage[n2] = intTemp;

}

int partition(int left, int right, int pivot)
{
int 1Ptr = left -1;
int rPtr = right;
while(1) {
while(intStorage[++1Ptr] < pivot) {
}
while(xPtr > 0 & intStorage[--rPtr] > pivot) {
}
if(1Ptr >= rPtr)
break;
else
swap(1Ptr, rPtr);

swap(1Ptr,right);
return 1Ptr;

}

void quickSort(int left, int right)
{
int pivot, partPt;
if(right - left <= 0) {
return;

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
L3
BL
L4
L5
L6
L7
L8
L9
BL
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
BL
L27
L28
L29
L30
L31
L32

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

297

CHAPTER 9 " SEARCHING AND SORTING

else { /* L33 */
pivot = intStorage[right]; /* L34 */
partPt = partition(left, right, pivot); /* L35 */
quickSort(left, partPt - 1); /* 136 */
quickSort(partPt + 1,right); /* L37 */

} /¥ 138 */

} /¥ 139 */
/* BL */

void main() /* L40 */
{ /* L41 */
int i; /* L42 */
printf("Enter the number of items in the list, N (2 <= N <= 20): "); /* L43 */
scanf("%d", &kount); /* L44 */
printf("Enter the %d integers I (0 <= I <= 30000) ", kount); /* L45 */
printf("separated by white spaces: \n"); /* L46 */
for (i=0; i < kount; i++) /* L4a7 */
scanf("%d", &intStorage[i]); /* L48 */
fflush(stdin); /* L49 */
quickSort(o, kount - 1); /* L50 */
printf("Sorted List: "); /* L51 */
for(i = 0; i < kount; i++) /* L52 */
printf("%d ", intStorage[i]); /* L53 */
printf("\nThank you.\n"); /* L54 */

} /* L55 */

Compile and execute this program. A run of this program is given below:

Enter the number of items in the list, N (2 <= N <= 20): 8 «
Enter the 8 integers I (0 <= I <= 30000) separated by white spaces:
80 70 60 50 40 30 20 10 «~

Sorted List: 10 20 30 40 50 60 70 80

Thank you.

How It Works

Quick sort method is very efficient and can be used for sorting the large sized lists. In
this method an array is partitioned into two arrays such that one array holds the values
smaller than the pivot and other array holds the values greater than the pivot. Once a list
is partitioned into two smaller sub-lists, the function that performs the sorting, calls itself
recursively to sort the smaller sub-lists. The worst case complexity of this method is
0(n log n) where nis the size of the list.

In this program, LOC 2 defines int type array intStorage to store the list of numbers
entered by user. LOC 3 defines the int variable kount that represents the size of list of
data elements.

298

CHAPTER 9 © SEARCHING AND SORTING

LOCs 4-9 define the function swap() that simply swaps the numbers in the list.
LOCs 10-26 define the function partition(). This function calls the function swap() as
per requirement. LOCs 27-39 define the function quickSort(). This function calls the
function partition() and it also calls itself recursively.

LOCs 40-55 define the function main(). LOC 43 asks the user to enter the size of list
and this size of list is assigned to int variable kount. LOS 45 asks the user to populate the
list. The elements of list are stored in the int array intStorage. LOC 50 calls the function
quickSort() that sorts the the unordered list. LOCs 52-53 consists of a for loop that
displays the sorted list of numbers on the screen.

299

CHAPTER 10

Cryptographic Systems)

In this chapter we will deal with application programs related to cryptography. In love,

war and business, we need to send the messages secretly. The art and science of keeping

the messages secure is called cryptography. A message to be dispatched is also called
as plaintext or cleartext. Encryption is the process of converting the plaintext into a
scrambled, unreadable message. This message is called ciphertext. The process of

converting the scrambled message back into plaintext is called decryption.

The various methods used for encryption/decryption of messages are as follows:

Reverse cipher. In reverse cipher, the textis simply reversed in

order to encrypt it. Unless the text is palindrome, the encrypted
text is Greek to anyone. For example, the word “computer” is
encrypted as “retupmoc” in reverse cipher. During decryption,
ciphertext is reversed to retrieve plaintext.

Caesar cipher. Caesar cipher was invented by Julius

Caesar hence the name. If key = 2, then letters A, B, C,..., X, Y, Z
in plaintext are replaced by the letters C, D, E,..., Z, A, B,
respectively, to obtain the ciphertext. During decryption,

the letters C, D, E,..., Z, A, B in ciphertext are replaced by the
letters A, B, C,..., X, Y, Z, respectively, to retrieve the plaintext.
In program, letters are first conveted to their ASCII code and
then key is added (during encryption) and subtracted (during
decryption) from the ASCII codes.

Transposition cipher.In transposition cipher, firstly,
plaintext is written in a 2-dimensional array, then dimensions
of this 2-dimensional array are interchanged (ie, rows become
columns and columns become rows), and then text is read
from this modified 2-dimensional array which is nothing but
ciphertext. See Figure 10-1.

© Shirish Chavan 2017
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_10

301

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

row 0

row 1

row 2

row 3

row 4

row S

row 6

col0 coll col2Z col3 cold col5 col6
| [| | [| | In order to read plaintext,
C a n d G simply read row after row,
starting from row 0, fol-
r y | P t 0|9 r lowed by row 1, followed by
alplhl|y i s row 2, and so on.
vV | e r|y) In order to read ciphertext,
simply read column after
ofwile | r|[flul]l column, starting from col-
c o b [n umn 0, followed by column
1, followed by column 2,
a |t i o |n and so on.

Plaintext — C and Cryptography is very powerful combination.

Ciphertext — Cra o a ypvwctapheeointyrrmodo yfbn gi ui.Crspln

Figure 10-1. Cryptography using Transposition cipher. Here, key is 7, hence number of
columns are 7.

302

Multiplicative cipher.Multiplicative cipher is analogous

to Caesar cipher. However, instead of addition/subtraction,
multiplication/division is performed. During encryption, ASCIL
codes of letters in plaintext are multiplied by key to obtain ciphertext.
During decryption, ASCII codes of letters in ciphertext are multiplied
by an inverse function of the key to retrieve the plaintext.

Affine cipher. Affine cipher is combination of Caesar cipher
and Multiplicative cipher.

Simple Substitution cipher.InSimple Substitution cipher,
every letter in alphabet is randomly replaced by another letter to
obtain the key. Thus key in this cipher is nothing but the string of
26 letters (alphabets) in random order. Using this key, encryption
and decryption is performed.

Vigenere cipher. Vigenere cipher is nothing but the Caesar
cipher with multiple keys. As it uses multiple keys, it is called as
“polyalphabetic substitution cipher.” Letthe word CAT be the
Vigenere cipher textkey (see Figure 10-2). Here, letter C means
key is 2, letter A means key is 0, and letter T means key is 19. During
encryption and decryption these keys are used in cyclical order.
During encryption, first letter in plaintext is encrypted using

the key = 2, second letter in plaintext is encrypted using the key =0,
third letter in plaintext is encrypted using the key = 19, fourth
letter in plaintext is encrypted using the key = 2, and so on. During
decryption also these keys are used in the same order.

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

w
—
C
<
2
>
<
N

18 19 20 21 22 23 24 25

Figure 10-2. Letters A to Z are serially numbered as 0 to 25 as shown here

e One-Time Pad cipher. This cipher is impossible to crack but also
inconvenient to use. It is nothing but a Vigenére cipher with
the following additional features: (a) key is exactly as long as
the plaintext message, (b) key is made up of randomly selected
characters, and (c) the key once used is thrown away and never
used again. Like many consumable items, this key also believes in
the policy of “use and throw.”

e RSAcipher.RSA cipher is named after its inventors Ron Rivest,
Adi Shamir, and Leonard Adleman. This cipher uses two types
of keys, namely, Public key and Private key. Public key is used
for encryption of plaintext. Private key is used for decryption of
ciphertext. This cipher derives its strenght from the fact that if two
large prime numbers are multiplied then the resulting number is
difficult to factorize.

10-1. Use the Reverse Cipher Method
Problem

You want to implement a cryptographic system using the Reverse cipher method.
Merits:

e Easytoimplement

e Quick execution of program

e Needsless memory
Demerits:

¢ Notvery difficult to decipher

e Cannot be used in high-level applications

303

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Solution

Write a C program that implements a cryptographic system using the Reverse cipher

method, with the following specifications:

e Program defines the functions: (a) menu() to display menu for
users on the screen, (b) encryptMsg() to encrypt the plaintext,
and (c) decryptMsg() to decrypt the ciphertext.

e Function encryptMsg() simply reverses the plaintext in order to
encrypt it. Function decryptMsg() simply reverses the encrypted
text in order to restore the plaintext.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should
accommodate 100 characters.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename crypti.c:

/* This program implements cryptographic system using the Reverse cipher method.

#include <stdio.h>
#include <string.h>

char msgOriginal[100];
char msgEncrypt[100];
char msgDecrypt[100];
int intChoice, length;

void menu()

{
printf("\nEnter 1 to Encrypt a Message.");
printf("\nEnter 2 to Decrypt an Encrypted Message.");
printf("\nEnter 3 to Stop the Execution of Program.");
printf("\nNow Enter Your Choice (1, 2 or 3) and Strike Enter Key: ");
scanf("%d", &intChoice);

}

void encryptMsg()
{

int i, j;

fflush(stdin);

printf("Enter the Message to be Encrypted (upto 100 characters): \n");
gets(msgOriginal);

length = strlen(msgOriginal);

304

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
L2
BL
L3
L4
L5
L6
BL
L7
L8
L9
L10
L11
L12
L13
L14
BL
L15
L16
L17
L18
L19
L20
L21

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

j = length - 1; /* L22 */
for (i = 0; i < length; i++) { /* L23 */
msgEncrypt[j] = msgOriginal[i] ; /* L24 */
j--3 /* L25 */

} /* 126 */
msgEncrypt[length] = '\o'; /* L27 */
printf("\nEncrypted Message: %s", msgEncrypt); /* L28 */

} /% 129 */
/* BL */

void decryptMsg() /* L30 */
{ /* 131 */
int i, j; /* 132 */
fflush(stdin); /* L33 */
printf("Enter the Message to be Decrypted (upto 100 characters): \n"); /* L34 */
gets(msgEncrypt); /* 135 */
length = strlen(msgEncrypt); /* 136 */

j = length - 1; /* L37 */
for (i = 0; i < length; i++) { /* L38 */
msgDecrypt[j] = msgEncrypt[i] ; /* 139 */
j--; /* L40 */

} /* L41 */
msgDecrypt[length] = "\o'; /* L42 */
printf("\nDecrypted Message: %s", msgDecrypt); /* 143 */

} /* Lag */
/* BL */

void main() /* L45 */
{ /* L46 */
do { /* L47 */
menu(); /* L48 */
switch (intChoice) { /* L49 */
case 1: /* L50 */
encryptMsg(); /* L51 */

break; /* L52 */

case 2: /* L53 */
decryptMsg(); /* L54 */

break; /* L55 */

default: /* L56 */
printf("\nThank you.\n"); /* L57 */

exit(0); /* L58 */

/* L59 */

} while (1); /* L60 */

} /% L61 */

305

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Compile and execute this program. A run of this program is given below:

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 1«
Enter the Message to be Encrypted (upto 100 characters):

C and Cryptography is very powerful combination.

Encrypted Message: .noitanibmoc lufrewop yrev si yhpargotpyrC dna C
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 2«
Enter the Message to be Decrypted (upto 100 characters):
.noitanibmoc lufrewop yrev si yhpargotpyrC dna C «

Decrypted Message: C and Cryptography is very powerful combination.
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 3 «
Thank you.

How It Works

Reverse cipher is a simple method to cipher the plaintext. In this method, the plaintext
to be encrypted is simply reversed. For example, if plaintext is “computer” then encrypted
text according to Reverse cipher is “retupmoc.” This method can be implemented using
recursion. However, in this program, recursion is avoided to keep the logic simple.

In the LOCs 3-5, three char type arrays are declared namely, msgOriginal,
msgEncrypt, and msgDecrypt. LOCs 7-14 consist of definition of function menu(). This
function displays menu for users on the screen so that various options in this program
can be used conveniently. LOCs 9-12 ask the user to enter an appropriate choice and also
describe the various options available to user. LOC 13 reads the choice entered by user
and stores this choice in the int variable intChoice.

LOCs 15-29 consist of definition of the function encryptMsg(). This function simply
reverses the plaintext and stores the encrypted text in the array msgEncrypt. LOC 19
asks the user to enter the plaintext. The plaintext entered by user is stored in the variable
msgOriginal. LOCs 23-26 consist of a for loop which reverses the plaintext stored in the
msgOriginal and processed text is stored in the variable msgEncrypt.

LOCs 30-44 consist of definition of the function decryptMsg(). This function again
reverses the ciphertext stored in the array msgEncrypt and stores the processed text in the
array msgDecrypt.

306

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

LOCs 45-61 consist of definition of the function main(). LOCs 47-61 consist of a
do-while loop. This seems to be an infinite loop, however, function exit() in the LOC
58 effectively stops the execution of this loop. LOC 48 calls the function menu() which
displays the menu for users on the screen. The choice entered by user is stored in the int
variable intChoice. LOCs 49-59 consist of switch statement. Value stored in intChoice is
passsed to this statement. If value of intChoice is 1 then function encryptMsg() is called.
If value of intChoice is 2 then function decryptMsg() is called. If value of intChoice is
else then function exit () is called which terminates the execution of do-while loop and
also terminates the execution of this program.

10-2. Use the Caesar Cipher Method
Problem

You want to implement a cryptographic system using the Caesar cipher method.
Merits:

e Based on simple logic
e Historically important
e Canbe modified to make the deciphering of ciphertext difficult
e Economical to implement
Demerits:
e Ciphertext can be deciphered using brute-force techniques
e Cannotbe used in high-level applications without modifications

e Transportation of key securely is difficult

Solution

Write a C program that implements a cryptographic system using the Caesar cipher
method, with the following specifications:

e Program defines the functions: (a) menu() to display menu for
users on the screen, (b) encryptMsg() to encrypt the plaintext,
and (c) decryptMsg() to decrypt the ciphertext.

e Assume the suitable value for KEY. Function encryptMsg()
encrypts the plaintext simply by adding the KEY to ASCII values of
letters. Function decryptMsg() decrypts the ciphertext simply by
subtracting the KEY from the ASCII values of letters.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should
accommodate 100 characters.

307

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename crypt2.c:

/* This program implements a cryptographic system using Caesar cipher method.

#include <stdio.h>
#include <string.h>

#define KEY 5

char msgOriginal[100];
char msgEncrypt[100];
char msgDecrypt[100];
int intChoice, length;

void menu()

{
printf("\nEnter 1 to Encrypt a Message.");
printf("\nEnter 2 to Decrypt an Encrypted Message.");
printf("\nEnter 3 to Stop the Execution of Program.");
printf("\nNow Enter Your Choice (1, 2 or 3) and Strike Enter Key: ");
scanf("%d", &intChoice);

}

void encryptMsg()
{

int i, ch;
fflush(stdin);
printf("Enter the Message to Encrypt, Do Not Include Spaces and \n");
printf("Punctuation Symbols (upto 100 alphabets): \n");
gets(msgOriginal);
length = strlen(msgOriginal);
for(i = 0; i < length; i++) {
ch = msgOriginal[i];
if(ch >= "a' & ch <= 'z") {
ch = ch + KEY;
if(ch > 'z")
ch=ch-"'z"+"'a" - 1;
msgEncrypt[i] = ch;

else if(ch >= 'A" 88 ch <= 'Z"){
ch = ch + KEY;
if(ch > 'Z")
ch=ch-"2"+"'A" - 1;
msgEncrypt[i] = ch;

308

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
L2
BL
L3
BL
L4
L5
L6
L7
BL
L8
L9
L10
L11
L12
L13
L14
L15
BL
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

msgEncrypt[length] = "\o';
printf("\nEncrypted Message: %s", msgEncrypt);
}

void decryptMsg()
{

int i, ch;
fflush(stdin);
printf("Enter the Message to Decrypt (upto 100 alphabets):\n");
gets(msgEncrypt);
length = strlen(msgEncrypt);
for(i = 0; i < length; i++) {
ch = msgEncrypt[i];
if(ch >= 'a' & ch <= 'z") {
ch = ch - KEY;
if(ch < 'a")
ch=ch+ 'z" - 'a" +1;
msgDecrypt[i] = ch;

}
else if(ch >= 'A" 88 ch <= 'Z"){
ch = ch - KEY;
if(ch < 'A")
ch=ch+'Z" - "'A" +1;
msgDecrypt[i] = ch;

}
msgDecrypt[length] = "\0o';
printf("\nDecrypted Message: %s", msgDecrypt);

void main()
{
do {
menu();
switch (intChoice) {
case 1:
encryptMsg();
break;
case 2:
decryptMsg();
break;
default:
printf("\nThank you.\n");
exit(0);

}
} while (1);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L39
L40
L41
BL

L42
L43
L44
L4s
L46
L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
Ls57
L58
L59
L60
L61
L62
L63
L64
L65
L66
BL

L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80
L81
L82
L83

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

309

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Compile and execute this program. A run of this program is given below:

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 1«
Enter the Message to Encrypt, Do Not Include Spaces and
Punctuation Symbols (upto 100 alphabets):
CandCryptographyIsVeryPowerfulCombination

Encrypted Message: HfsiHwduytlwfumdNxAjwdUtbjwkzgqHtrgnfynts
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 2«
Enter the Message to Decrypt (upto 100 alphabets):
HfsiHwduytlwfumdNxAjwdUtbjwkzgHtrgnfynts «

Decrypted Message: CandCryptographyIsVeryPowerfulCombination
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 3 «
Thank you.

How It Works

Caesar cipher was invented by Julius Caesar. In this cipher, during encryption, key is
added to ASCII values of letters in plaintext in order to obtain the ciphertext. Also, during
decryption, key is subtracted from the ASCII values of letters in ciphertext in order to
retrieve the plaintext.

For example, if value of key is 3 then during encryption, A would be ciphered to
D, B would be ciphered to E, ..., Wwould be ciphered to Z, X would be ciphered to A, Y
would be ciphered to B, and Z would be ciphered to C. Ditto for lowrecase letters. During
decryption, the procedure is reverted.

In LOC 3, the value of KEY is set to be 5. In the LOCs 4-6, three char type arrays
are declared namely, msgOriginal, msgEncrypt, and msgDecrypt. LOCs 8-15 consist of
definition of function menu(). This function displays menu for users on the screen so that
various options in this program can be used conveniently. LOCs 10-13 ask the user to enter
an appropriate choice and also describe the various options available to user. LOC 14
reads the choice entered by user and stores this choice in the int variable intChoice.

LOCs 16-41 consist of definition of the function encryptMsg(). This function
converts the plaintext into ciphertext. LOCs 20-21 ask the user to enter plaintext. LOC 22
reads this plaintext and stores it in the variable msgOriginal. LOCs 24-38 consist of a for
loop. In this for loop the plaintext is converted into ciphertext using the Caesar cipher
method. Ciphertext is stored in the variable msgEncrypt. LOC 40 displays the ciphertext
on the screen.

310

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

LOCs 42-66 consist of definition of the function decryptMsg(). This function retrieves
the plaintext from the ciphertext. LOC 46 asks the user to enter the ciphertext. The
ciphertext entered by user is read and stored in the variable msgEncrypt in LOC 47. LOCs
49-63 consist of a for loop. In this for loop, the ciphertext is decrypted into a plaintext and
is stored in the variable msgDecrypt. LOC 65 displays this decrypted text on the screen.

LOCs 67-83 consist of definition of the function main(). LOCs 69-82 consist of a
do-while loop. This seems to be an infinite loop, however, function exit() in the LOC 80
effectively stops the execution of this loop. LOC 70 calls the function menu() which displays
the menu for users on the screen. The choice entered by user is stored in the int variable
intChoice. LOCs 71-81 consist of a switch statement. Value stored in intChoice is passsed
to this statement. If value of intChoice is 1 then function encryptMsg() is called. If value
of intChoice is 2 then function decryptMsg() is called. If value of intChoice is else then
function exit() is called which terminates the execution of do-while loop and also
terminates the execution of this program.

10-3. Use the Transposition Cipher Method
Problem

You want to implement a cryptographic system using the Transposition cipher method.
Merits:

e More secure compared to Caesar cipher
e (Canbe modified to make the deciphering of ciphertext difficult

e Different versions of transposition cipher are available and we
have a choice to select a suitable method that serves the problem
best

Demerits:

e Logicis not simple and hence program is somewhat difficult to
debug

e Level of security offered is moderate
e Notvery effective for small messages

e Transportation of keys securely is difficult

Solution

Write a C program that implements a cryptographic system using the Transposition
cipher method, with the following specifications:

e Program defines the functions: (a) menu() to display menu for
users on the screen, (b) encryptMsg() to encrypt the plaintext,
and (c) decryptMsg() to decrypt the ciphertext.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should
accommodate 100 characters.

311

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename crypt3.c:

/* This program implements a cryptographic system using the Transposition
cipher method. */

/* BL */
#include <stdio.h> /* L1 */
#include <string.h> /* L2 ¥/
/* BL */
#define KEY 7 /* L3 */
/* BL */
char msgToEncrypt[110]; /* L4 */
char msgToDecrypt[110]; /* L5 */
char msgEncrypt[20][KEY]; /* L6 */
char msgDecrypt[20][KEY]; /% L7 */
int intChoice, length; /* L8 */
/* BL */
void menu() /* L9 */
/* L10 */
printf("\nEnter 1 to Encrypt a Message."); /* L11 */
printf("\nEnter 2 to Decrypt an Encrypted Message."); /* L12 */
printf("\nEnter 3 to Stop the Execution of Program."); /* L13 */
printf("\nNow Enter Your Choice (1, 2 or 3) and Strike Enter Key: "); /* L14 */
scanf("%d", &intChoice); /* L15 */
/* L16 */
/* BL */
void encryptMsg() /* L7 */
/* L18 */
int row, col, rows, cilr, length, k = 0; /* L19 */
printf("Enter the Message (20 to 110 letters) to be Encrypted: \n"); /* L20 */
fflush(stdin); /* L21 */
gets(msgToEncrypt); /* 122 */
length = strlen(msgToEncrypt); /* L23 */
(length/KEY) + 1 ; /* L24 */
cilr = length % KEY; /* cilr - characters in last row */ /% 125 */
for(row = 0; row < rows; row++) { /* L26
for(col = 0; col < KEY; col++) { /* 127
msgEncrypt[row][col] = msgToEncrypt[k++]; /* L28
if (k == length) break; /* 129
} /* 130
} /* 131
printf("\nEncrypted Message: \n"); /* L32
for(col = 0; col < KEY; col++) { /* L33
for(row = 0; row < rows; row++) { /* L34
if ((col »>= cilr) 88 (row == (rows-1))) /* L35
continue; /* L36

312

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

no,

printf("%c", msgEncrypt[row][col]);
}
}
}

void decryptMsg()
{

int row, col, rows, cilr, length, k = 0;
printf("Enter the Message (20 to 110 letters) to be Decrypted: \n");
fflush(stdin);
gets(msgToDecrypt);
length = strlen(msgToDecrypt);
rows = (length/KEY) + 1 ;
cilr = length % KEY; /* cilr - characters in last row */
for(col = 0; col < KEY; col++) {
for(row = 0; row < rows; row++) {

if ((col >= cilr) 8&% (row == (rows-1)))

continue;
msgDecrypt[row][col] = msgToDecrypt[k++];
if (k == length) break;
}

}
printf("\nDecrypted Message: \n");

for(row = 0; row < rows; row++) {
for(col = 0; col < KEY; col++) {
printf("%c", msgDecrypt[row][col]);

}
}
}
void main()
{
do {
menu();
switch (intChoice) {
case 1:
encryptMsg();
break;
case 2:
decryptMsg();
break;
default:

printf("\nThank you.\n");
exit(0);

}
} while (1);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L37
L38
139
L41
BL

L42
L43
L44
L4s
L46
L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
L57
L58
L59
L60
L61
L62
L63
L64
L65
BL

L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80
L81
L82

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

313

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Compile and execute this program. A run of this program is given below:

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 1«
Enter the Message (20 to 110 letters) to be Encrypted:

C and Cryptography is very powerful combination. <

Encrypted Message:

Cra o a ypvwctapheeointyrrmodo yfbn gi ui.Crspln

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 2«
Enter the Message (20 to 110 letters) to be Decrypted:

Cra o a ypvwctapheeointyrrmodo yfbn gi ui.Crspln «

Decrypted Message:

C and Cryptography is very powerful combination.

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 3 «
Thank you.

How It Works

Firstly, let us discuss the working of Transposition cipher. Transposition cipheris
illustrated in figure 10-1. Draw the table as shown in figure. Number of columns in this
table should be equal to key. Here, key is 7, hence number of columns is also 7. Now write
the plaintext in this table as follows: Write the first 7 (because key is 7) characters in the
first row (i.e., row 0), then write the next 7 characters in the second row (i.e., row 1), and
so on. The last cell in the last row is unoccupied hence it is shown shaded. Now plaintext
is encrypted as follows: Firstly, write the characters in the first column (i.e., col 0), then
write the characters in the second column (i.e., col 1), and so on. In this manner you get
the encrypted text. Decryption is simply reverse of the encryption.

Now let us discuss the working of this program. In LOC 3, the value of KEY is set
to be 7. LOCs 4-8 consist of variable declaration. In LOCs 4-5 two 1-dimensional char
type arrays are declared, namely, msgToEncrypt and msgToDecrypt. In LOCs 6-7 two
2-dimensional char type arrays are declared, namely, msgEncrypt and msgDecrypt.

LOCs 9-16 consist of definition of function menu(). This function displays menu for
users on the screen so that various options in this program can be used conveniently.
LOCs 11-14 ask the user to enter an appropriate choice and also describe the various
options available to user. LOC 15 reads the choice entered by user and stores this choice
in the int variable intChoice.

314

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

LOCs 17-41 consist of definition of the function encryptMsg(). This function
converts the plaintext into ciphertext. LOC 20 asks the user to enter plaintext. LOC 22
reads this plaintext and stores it in the variable msgToEncrypt. LOC 24 computes the
number of row required for the storage of message. LOC 25 computes the cilr, i.e.,
characters in last row. Here, cilr is 6 and hence one cell in the last row is empty and it is
shown shaded. LOCs 26-31 consist of nested for loops. In this nested for loops, message
is encrypted and stored in the variable msgEncrypt. LOCs 32-39 display the encrypted
message on the screen.

LOCs 42-65 consist of definition of the function decryptMsg (). This function retrieves
the plaintext from the ciphertext. LOC 45 asks the user to enter the ciphertext. The ciphertext
entered by user is read and stored in the variable msgToDecrypt in LOC 47. LOC 49 calculates
number of rows required. LOC 50 calculates cilr, i.e., characters in the last row. LOCs 51-58
consist of nested for loops. In these nested loops, plaintext is retrieved from the ciphertext.
LOCs 59-64 display the decrypted message on the screen.

LOCs 66-82 consist of definition of the function main(). LOCs 68-81 consist of a
do-while loop. This seems to be an infinite loop, however, function exit() in the LOC 79
effectively stops the execution of this loop. LOC 69 calls the function menu() which displays
the menu for users on the screen. The choice entered by user is stored in the int variable
intChoice. LOCs 70-80 consist of a switch statement. Value stored in intChoice is passsed
to this statement. If value of intChoice is 1 then function encryptMsg() is called. If value
of intChoice is 2 then function decryptMsg() is called. If value of intChoice is else then
function exit() is called which terminates the execution of do-while loop and also
terminates the execution of this program.

10-4. Use the Multiplicative Cipher Method
Problem

You want to implement a cryptographic system using the Multiplicative cipher method.
Merits:

e Level of security offered is good
e System requirements are not very high
Demerits:

e Logicis not simple and hence program is somewhat difficult to
implement and debug

e Letter A in plaintext always encrypts to A

e Ciphertext can be deciphered using brute force techniques with a
very high speed computer

e Transportation of keys securely is difficult

315

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Solution

Write a C program that implements a cryptographic system using the Multiplicative

cipher method, with the following specifications:

e Program defines the functions: (a) menu() to display menu for
users on the screen, (b) encryptMsg() to encrypt the plaintext,
and (c) decryptMsg() to decrypt the ciphertext.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should
accommodate 100 characters.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename crypt4.c:

/* This program implements a cryptographic system using the Multiplicative

cipher method. */

#include <stdio.h>
#include <string.h>

char msgOriginal[100];
char msgEncrypt[100];
char msgDecrypt[100];
int length, intChoice, a = 3; /* a is the KEY */

void menu()

{
printf("\nEnter 1 to Encrypt a Message.");
printf("\nEnter 2 to Decrypt an Encrypted Message.");
printf("\nEnter 3 to Stop the Execution of Program.");
printf("\nNow Enter Your Choice (1, 2 or 3) and Strike Enter Key:");
scanf("%d", &intChoice);

}

void encryptMsg()

int 1 ;
printf("Enter the Message to Encrypt in FULL CAPS, Do Not Include \n");
printf("Spaces and Punctuation Symbols (upto 100 characters): \n");
fflush(stdin);
gets(msgOriginal);
length = strlen(msgOriginal);
for (i = 0; 1 < length; i++)
msgEncrypt[i] = (((a * msgOriginal[i]) % 26) + 65);

316

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
L2
BL
L3
L4
L5
L6
BL
L7
L8
L9
L10
L11
L12
L13
L14
BL
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

msgEncrypt[length] = '\o'; /* L25 */
printf("\nEncrypted Message: %s", msgEncrypt); /* 126 */

} /* L27 */
/* BL */

void decryptMsg() /* L28 */
{ /% 129 */
int i; /* 130 */
int alnv = 0; /* L31 */
int flag = 0; /* 132 */
printf("Enter the Message to Decrypt (upto 100 characters): \n"); /* L33 */
fflush(stdin); /* L34 */
gets(msgEncrypt); /* L35 */
length = strlen(msgEncrypt); /* 136 */
for (i = 0; i < 26; i++) { /* L37 */
flag = (a * i) % 26; /* L38 */

if (flag == 1) /* 139 */

alnv = i; /* L4o */

} /* L4l */
for (i = 0; i < length; i++) /* L42 */
msgDecrypt[i] = (((aInv * msgEncrypt[i]) % 26) + 65); /* L43 */
msgDecrypt[length] = '\o'; /* Lag */
printf("\nDecrypted Message: %s", msgDecrypt); /* L45 */

} /* L46 */
/* BL */

void main() /* L47 */
{ /* L48 */
do { /* 149 */
menu(); /* L50 */
switch (intChoice) { /* L51 */
case 1: /* L52 */
encryptMsg(); /* L53 */

break; /* L54 */

case 2: /* L55 */
decryptMsg(); /* L56 */

break; /* L57 */

default: /* L58 */
printf("\nThank you.\n"); /* L59 */

exit(0); /* L60 */

} /* L61 */

} while (1); /* L62 */

} /% 163 */

317

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Compile and execute this program. A run of this program is given below:

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 1«
Enter the Message to Encryptin FULL CAPS, Do Not Include
Spaces and Punctation Symbols (upto 100 characters):
CANDCRYPTOGRAPHYISVERYPOWERFULCOMBINATION «

Encrypted Message: TNAWTMHGSDFMNGIHLPYZMHGDBZMCVUTDXQLANSLDA
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 2«
Enter the Message to Decrypt (upto 100 characters):
TNAWTMHGSDFMNGIHLPYZMHGDBZMCVUTDXQLANSLDA <

Decrypted Message: CANDCRYPTOGRAPHYISVERYPOWERFULCOMBINATION
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 3 «
Thank you.

How It Works

Firstly, let us discuss the working of Multiplicative cipher.In Caesar cipher,

key is added to serial number of letters in plaintext. In Multiplicative cipher, key

is multiplied to serial number of letters in plaintext in order to encrypt it. During
decryption, serial numbers of letters in ciphertext are multiplied by an inverse function
of the key to retrieve the plaintext. To keep the things simple, let us consider only capital
alphabets. Hence, the symbol set consists of only 26 characters. The serial number of
capital alphabets are as follows:A -0,B—1,C—2,...,,1-38,...,, K- 10,...,U—-20,...,
X — 23,Y — 24, Z — 25. Suppose the key is 3. With this key, letter A (whose serial number
is 0) would be encrypted as follows:

A would be encrypted to — (serial no. of A x key) =0x3 =0 =A

With the same key, letter B (whose serial number is 1) would be encrypted as follows:
B would be encrypted to — (serial no. of B x key) =1x3=3=0D

With the same key, letter C (whose serial number is 2) would be encyrpted as follows:

C would be encrypted to — (serial no. of C x key) =2 x3=6=0G

318

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

With the same key, letter K (whose serial number is 10) would be encrypted as follows:
K would be encrypted to — (serial no. of D x key) =10 x3=30=30-26=4=FE
With the same key, letter U (whose serial number is 20) would be encrypted as follows:

U would be encrypted to — (serial no. of U x key) = 20 x 3 = 60 = 60 - 26 -
26 =8 =1

If the product (serial no. x key) exceeds 25 we subtract 26 from it repeatedly till the
result is less than 26. In program this is done using the modulus operator %. Notice the
LOC 24 given below:

msgEncrypt[i] = (((a * msgOriginal[i]) % 26) + 65); /* L24 */

In this LOC a is key and its value is set to 3 in LOC 6. The msgOriginal[i] is nothing
but ASCII value of (i+1)th letter in the plaintext. Also, 65 are added to result in order to
convert serial number of letter to its ASCII value as ASCII value of letter A is 65.

LOC 43 is mainly responsible for decryption of ciphertext and it is reproduced below
for your quick reference:

msgDecrypt[i] = (((aInv * msgEncrypt[i]) % 26) + 65); /* L43 */

Here, alnv is modular inverse of (a % 26) and msgEncrypt[i] is nothing but the
ASCII value of (i+1)th letter in the ciphertext. Also, 26 is the size of symbol set. Only
capital alphabets are used to form the plaintext hence symbol set consists of only 26
characters. Modular inverse is computed using the following formula. Let i be the
modular inverse of (a % m) then following relation holds good:

(@a*i)%m=1

LOCs 37-41 consist of a for loop which computes the aInv, the modular inverse
of (a % 26) where a is the key and 26 is the size of symbol set.

In this program, the key is 7. Generally, the key is kept very large in order to make its
hacking with brute-force technique very difficult. Keys with 7 or 8 digits are not uncommon
inMultiplicative cipher.Butunlikein Caesar cipher, you just cannot take any intger as
akeyinMultiplicative cipher. For example, if you choose the key = 8. Then both B and
O encrypt to the same letter I. Also, both C and P encrypt to the same letter Q. Certainly,
this key is useless. Ideally, every letter in alphabet A to Z must encrypt to a unique letter in
alphabet A to Z, otherwise the cipher would not work. The useful key in Multiplicative
cipher is selected using the following formula:

Note Key and size of symbol set must be relatively prime to each other. Numbers m and n
are relatively prime to each other when their gcd (“greatest common divisor" also called
“greatest common factor”) is 1.

319

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

There is Euclid’s algorithm to find the gcd of two positive numbers m and n, given below:

Step 1: Divide m by n and let r be the remainder.
Step 2: If r is 0, n is the answer; if r is not 0, go to step 3.
Step 3: Set m = n and n = r. Go back to step 1.

In this program key is 3 and size of symbol set is 26. As these numbers are small, it is
immediately clear that their gcd is 1 and these numbers are realtivley prime. However, if
numbers are large, then you are required to use Euclid’s algorithm to verify the usefulness
of key.

Now let us discuss the working of this program. LOCs 3-6 consist of variable
declaration. In LOCs 3-5 three char type arrays are declared, namely, msgOriginal,
msgEncrypt, and msgDecrypt. In LOC 6, the value of variable a is set to 3.

LOCs 7-14 consist of definition of function menu(). This function displays menu for
users on the screen so that various options in this program can be used conveniently.
LOCs 9-12 ask the user to enter an appropriate choice and also describe the various
options available to user. LOC 13 reads the choice entered by user and stores this choice
in the int variable intChoice.

LOCs 15-27 consist of definition of the function encryptMsg(). This function converts
the plaintext into ciphertext. LOCs 18-19 ask the user to enter plaintext. LOC 21 reads this
plaintext and stores it in the variable msgOriginal. LOCs 23-24 consist of a for loop. In
this for loop the plaintext is converted into a ciphertext according to multiplicative cipher
logic. LOC 26 displays the encrypted message on the screen.

LOCs 28-46 consist of definition of the function decryptMsg(). This function retrieves
the plaintext from the ciphertext. LOC 33 asks the user to enter the ciphertext. The ciphertext
entered by user is read and stored in the variable msgEncrypt in LOC 35. LOCs 37-43 consist
of two for loops in consecution. In these for loops the plaintext is retrieved from the
ciphertext. In LOC 45, the decrypted message is displayed on the screen.

LOCs 47-63 consist of definition of the function main(). LOCs 49-62 consist of a
do-while loop. This seems to be an infinite loop, however, function exit() in the LOC 60
effectively stops the execution of this loop. LOC 50 calls the function menu() which displays
the menu for users on the screen. The choice entered by user is stored in the int variable
intChoice. LOCs 51-61 consist of a switch statement. Value stored in intChoice is passsed
to this statement. If value of intChoice is 1 then function encryptMsg() is called. If value
of intChoice is 2 then function decryptMsg() is called. If value of intChoice is else then
function exit() is called which terminates the execution of do-while loop and also
terminates the execution of this program.

10-5. Use the Affine Cipher Method
Problem

You want to implement a cryptographic system using the Affine cipher method.
Merits:

e Level of security offered is better than multiplicative cipher
e System requirements are not very high

e Utilizes the benefits of Caesar cipher and multiplicative cipher

320

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

Demerits:

e Logicis not simple and hence program is somewhat difficult to
implement and debug

e Ciphertext can be deciphered using brute force technique with a
very high speed computer

e Transportation of keys securely is difficult

Solution

Write a C program that implements a cryptographic system using the Affine cipher
method, with the following specifications:

e Program defines the functions: (a) menu() to display menu for
users on the screen, (b) encryptMsg() to encrypt the plaintext,
and (c) decryptMsg() to decrypt the ciphertext.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should
accommodate 100 characters.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename crypt5.c:

/* This program implements a cryptographic system using the Affine cipher
method. */

/* BL */

#include <stdio.h> /¥ L1 ¥/
#include <string.h> /* L2 ¥/
/* BL */

char msgOriginal[100]; /* L3 */
char msgEncrypt[100]; /* L4 */
char msgDecrypt[100]; /* L5 */
int intChoice, length, a = 3, b = 5; /* L6 */
/* BL */

void menu() /* L7 */
{ /* L8 */
printf("\nEnter 1 to Encrypt a Message."); /* L9 */
printf("\nEnter 2 to Decrypt an Encrypted Message."); /* L10 */
printf("\nEnter 3 to Stop the Execution of Program."); /* L11 */
printf("\nNow Enter Your Choice (1, 2 or 3) and Strike Enter Key: "); /* L12 */
scanf("%d", &intChoice); /* L13 */

} /* L14 */
/* BL */

void encryptMsg() /* L15 */
{ /* L16 */

321

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

}

Vv

}

Vv

{

}

int i,

printf("Enter the Message to Encrypt in FULL CAPS, Do Not Include \n");
printf("Spaces and Punctuation Symbols (upto 100 characters): \n");

fflush(stdin);
gets(msgOriginal);
length = strlen(msgOriginal);
for (i = 0; i < length; i++)
msgEncrypt[i] = ((((a * msgOriginal[i]) + b) % 26) + 65);
msgEncrypt[length] = "\o';
printf("\nEncrypted Message: %s", msgEncrypt);

oid decryptMsg()
int i;
int alnv = 0;
int flag = 0;

printf("Enter the Message to Decrypt (upto 100 chars): \n");
fflush(stdin);
gets(msgEncrypt);
length = strlen(msgEncrypt);
for (i = 0; i < 26; i++) {

flag = (a * 1) % 26;

if (flag == 1)

alnv = i;
}

for (i = 0; i < length; i++)

msgDecrypt[i] = (((aInv * ((msgEncrypt[i] - b)) % 26)) + 65);

msgDecrypt[length] = '\o';
printf("\nDecrypted Message: %s", msgDecrypt);

oid main()
do {
menu();
switch (intChoice) {
case 1:
encryptMsg();
break;
case 2:
decryptMsg();
break;
default:
printf("\nThank you.\n");
exit(0);
} while (1);

322

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

BL */

L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
L4
L4s
L46
BL

L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
Ls7
L58
L59
L60
L61
L62
L63

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

Compile and execute this program. A run of this program is given below:

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 1«
Enter the Message to Encrypt in FULL CAPS, Do Not Include
Spaces and Punctuation Symbols (upto 100 characters):
CANDCRYPTOGRAPHYISVERYPOWERFULCOMBINATION «

Encrypted Message: YSFBYRMLXIKRSLNMQUDERMLIGERHAZYICVQFSXQIF
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 2«
Enter the Message to Decrypt (upto 100 characters):
YSFBYRMLXIKRSLNMQUDERMLIGERHAZYICVQFSXQIF «

Decrypted Message: CANDCRYPTOGRAPHYISVERYPOWERFULCOMBINATION
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 3 «
Thank you.

How It Works

Firstly, let us discuss the working of Affine cipher. A notable drawback of
Multiplicative cipher isthatletter A in plaintext always encrypts to A. This is a sort
of loop hole. In order to deal with this drawback, Multiplicative cipher is modified to
Affine cipher. Affice cipher is combination of Multiplicative cipher and Caesar
cipher. Consequently, there are two keys in Affine cipher, namely, key_A and key_B;
and in this program, these keys are represented by the variables a and b, respectively.
Also, their values are set to 3 (for a) and 5 (for b) in LOC 6. First key, key_A is used for
Multiplicative component of Affine cipher and second key, key_B is used for Caesar
component of Affine cipher. The restrictions on the selection of key_A in Affine
cipher are same as that ofin Multiplicative cipher. Like in Caesar cipher, there are
almost no restrictions on the selection key_B.

LOC 24 mainly encrypts the plaintext into ciphertext and it is reproduced below for
your quick reference:

msgEncrypt[i] = ((((a * msgOriginal[i]) + b) % 26) + 65); /* 124 */

Here, msgOriginal[i] represents the ASCII value of (i+1)th character in plaintext.
Also, a and b are first and second keys, respectively. Key a is meant for Multiplicative
component and key b is meant for Ceasar component. 26 is the size of the symbol set as
only capital alphabets A..Z are used for forming the plaintext. Finally, integer 65 is ASCII
value of letter A.

323

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

LOC 43 mainly decrypts the ciphertext to retrieve the plaintext and it is reproduced
below for your quick reference:

msgDecrypt[i] = (((aInv * ((msgEncrypt[i] - b)) % 26)) + 65); /* L43 */

Here, alnv is modular inverse of (a % 26), b is second key meant for Caesar
component, msgEncrypt[1i] is ASCII value of (i+1)th character in ciphertext, 26 is size of
symbol set, and 65 is ASCII value of A.

Now let us discuss the working of this program. LOCs 3-6 consist of variable
declaration. In LOCs 3-5 three char type arrays are declared, namely, msgOriginal,
msgEncrypt, and msgDecrypt. In LOC 6, the value of variable a is set to 3 and value of
variable b is set to 5.

LOCs 7-14 consist of definition of function menu(). This function displays menu for
users on the screen so that various options in this program can be used conveniently.
LOCs 9-12 ask the user to enter an appropriate choice and also describe the various
options available to user. LOC 13 reads the choice entered by user and stores this choice
in the int variable intChoice.

LOCs 15-27 consist of definition of the function encryptMsg(). This function
converts the plaintext into ciphertext. LOCs 18-19 ask the user to enter plaintext. LOC 21
reads this plaintext and stores it in the variable msgOriginal. LOCs 23-24 consist of a for
loop. In this for loop the plaintext is converted into a ciphertext according to affine cipher
logic. LOC 26 displays the encrypted message on the screen.

LOCs 28-46 consist of definition of the function decryptMsg(). This function retrieves
the plaintext from the ciphertext. LOC 33 asks the user to enter the ciphertext. The
ciphertext entered by user is read and stored in the variable msgEncrypt in LOC 35.

LOCs 37-43 consist of two for loops in consecution. In these for loops the plaintext is
retrieved from the ciphertext. In LOC 45, the decrypted message is displayed on the screen.

LOCs 47-63 consist of definition of the function main(). LOCs 49-62 consist of a
do-while loop. This seems to be an infinite loop, however, function exit() in the LOC 60
effectively stops the execution of this loop. LOC 50 calls the function menu() which displays
the menu for users on the screen. The choice entered by user is stored in the int variable
intChoice. LOCs 51-61 consist of a switch statement. Value stored in intChoice is passsed
to this statement. If value of intChoice is 1 then function encryptMsg() is called. If value
of intChoice is 2 then function decryptMsg() is called. If value of intChoice is else then
function exit() is called which terminates the execution of do-while loop and also
terminates the execution of this program.

10-6. Use the Simple Substitution Cipher Method
Problem

You want to implement a cryptographic system using the Simple Substitution cipher method.
Merits:

e Level of security offered is good
e System requirements are not very high

e Logic used is simple to implement

324

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

Demerits:
e Execution of program is not very fast

e Ciphertext can be deciphered using brute force technique with a
very high speed computer

¢ Transportation of keys securely is difficult

Solution

Write a C program that implements a cryptographic system using the Simple
Substitution cipher method, with the following specifications:

e Program defines the functions: (a) generateKey() to generate the
encrypt key and decrypt key, (b) menu() to display menu for users
on the screen, (c) encryptMsg() to encrypt the plaintext, and (d)
decryptMsg() to decrypt the ciphertext.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should
accommodate 100 characters.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename crypt6.c:

/* This program implements a cryptographic system using the Simple Substitution */
/* cipher method. */

/* BL */

#include <stdio.h> /* L1 */
#include <stdlib.h> /* L2 */
#include <string.h> /% 13 */
/* BL */

char msgOriginal[100]; /* L4 */
char msgEncrypt[100]; /* L5 */
char msgDecrypt[100]; /* L6 */
int intEncryptKey[26], intDecryptKey[26]; /* L7 */
int intChoice, i, j, seed, length, randNum, num, flag = 1, tag = 0; /* L8 */
/* BL */

void generateKey() /* L9 */
{ /* L10 */
printf("\nEnter seed S (1 <= S <= 30000): "); /* L11 */
scanf("%d", 8seed); /* L12 */
srand(seed); /* L13 */
for(i=0; i < 26; i++) /* L14 */
intEncryptKey[i] = -1; /* L15 */
for(i=0; i < 26; i++) { /* L16 */

325

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

}

do {
randNum = rand();
num = randNum % 26;
flag = 1,
for(j = 0; j < 26; j++)
if (intEncryptKey[j] == num)
flag = 0;
if (flag == 1){
intEncryptKey[i] = num;
tag = tag + 1;

}
} while ((!flag) & (tag < 26));

printf("\nEncryption KEY = ");
for(i=0; i < 26; i++)
printf("%c", intEncryptKey[i] + 65);
for(i = 0; i < 26; i++) {
for(j = 0; j < 26; j++) {
if(i == intEncryptKey[j]) {
intDecryptKey[i] = j ;
break;
}
}
}

printf("\nDecryption KEY = ");
for(i=0; i < 26; i++)
printf("%c", intDecryptKey[i] + 65);

void menu()

{

}

printf("\nEnter 1 to Encrypt a Message.");

printf("\nEnter 2 to Decrypt an Encrypted Message.");
printf("\nEnter 3 to Stop the Execution of Program.");
printf("\nNow Enter Your Choice (1, 2 or 3) and Strike Enter Key: ");

scanf("%d", &intChoice);

void encryptMsg()
{

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

printf("Enter the Message to Encrypt in FULL CAPS, Do Not Include \n"); /*

printf("Spaces and Punctuation Symbols (upto 100 characters): \n");

fflush(stdin);
gets(msgOriginal);

length = strlen(msgOriginal);
for (i = 0; 1 < length; i++)

msgEncrypt[i] = (intEncryptKey[(msgOriginal[i]) - 65]) + 65;

msgEncrypt[length] = "\o';

326

/*
/*
/*
/*
/*
/*
/*

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
137
138
139
L40
L41
L42
L43
L44
BL

L45
L46
L47
L48
L49
L50
L51
L52
BL

L53
Ls4
LS5
L56
Ls7
L58
L59
L60
L61
L62

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

printf("\nEncrypted Message: %s", msgEncrypt);
}

void decryptMsg()
{

printf("Enter the Message to Decrypt (upto 100 chars): \n");
fflush(stdin);
gets(msgEncrypt);

length = strlen(msgEncrypt);
for (i = 0; i < length; i++)

msgDecrypt[i] = (intDecryptKey[(msgEncrypt[i]) - 65]) + 65;
msgDecrypt[length] = '\o';

printf("\nDecrypted Message: %s", msgDecrypt);

}
void main()
{
generateKey();
do {
menu();
switch (intChoice) {
case 1:
encryptMsg();
break;
case 2:
decryptMsg();
break;
default:

printf("\nThank you.\n");
exit(0);

}
} while (1);
}

Compile and execute this program. A run of this program is given below:

Enter seed S (1 <= S <= 30000): 2000 «

Encryption KEY = KJVWBAIZRUHNFXGDMTLPOQSCEY
Decryption KEY = FEXPYMOKGBASQLUTVIWRICDNZH

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 1 «
Enter the Message to Encrypt in FULL CAPS, Do Not Include
Spaces and Punctuation Symbols (upto 100 characters):
CANDCRYPTOGRAPHYISVERYPOWERFULCOMBINATION «

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L63
L64

*/
*/

BL */

L65
L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
BL

L76
L77
L78
L79
L80
L81
L82
L83
L84
L85
L86
L87
L88
L89
L9o
L91
L92
L93

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

327

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Encrypted Message: VKXWVTEDPGITKDDZERLOBTEDGSBTAONVGFIRXKPRGX
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 2«
Enter the Message to Decrypt (upto 100 characters):
VKXWVTEDPGITKDDZERLOBTEDGSBTAONVGFIRXKPRGX ~ «

Decrypted Message: CANDCRYPTOGRAPHYISVERYPOWERFULCOMBINATION
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 3 «
Thank you.

How It Works

Firstly, let us discuss the working of Simple Substitution cipher.In Simple
Substitution cipher both encryption and decryption keys are 26 letters long. Here, to
keep the things simple, plaintext will be formed using only capital alphabets A..Z. In order
to create encryption key, simply place all the 26 capital alphabets in random order, one
by one, and you get encryption key. The encryption key generated in a sample run of this
program is given below:

Encryption KEY = KIVWBAIZRUHNFXGDMTLPOQSCEY

There are whopping 403,291,461,126,605,635,584,000,000 number of encryption keys
possible for Simple Substitution cipher. This rules out the chances of hacking the
ciphertext created under Simple Substitution cipher. Even if you employ a computer
that would try out a billion keys every second, it would take about twelve billion years to
try out all the possible keys.

Suppose your plaintext is CAT. Let us encrypt it. Encryption key is reproduced below
alongwith standard alphabet for quick comparison:

Standard Alphabet
Encryption KEY

ABCDEFGHIJKLMNOPQRSTUVWXYZ
KIVWBAIZRUHNFXGDMTLPOQSCEY

Letter C (which is third letter in standard alphabet) would encrypt to letter V because
third letter in encryption key is V. Letter A (which is first letter in standard alphabet)
would encrypt to letter K because first letter in encryption key is K. Letter T (which is
twentieth letter in standard alphabet) would encrypt to letter P because twentieth letter
in encryption key is P. Thus ciphertext is VKP.

Now let us decrypt this ciphertext. The decryption key corresponding to this
encryption key is given below along with standard alphabet for quick comparison:

Standard Alphabet
Decryption KEY

ABCDEFGHIJKLMNOPQRSTUVWXYZ
FEXPYMOKGBASQLUTVIWRICDNZH

328

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

Ciphertext is VKP. Letter V would decrypt to letter C because twenty second
letter in decryption key is C. Letter K would decrypt to letter A because eleventh letter
in decryption key is A. Letter P would decrypt to letter T because sixteenth letter in
decryption key is T. Thus plaintext retrieved from ciphertext is CAT, as expected.

Encryption key is generated by placing the 26 alphabets randomly, one by one.
However, generation of decryption key is dependent on encryption key. Let us see how
this, above given, decryption key is generated.

First letter in decryption key is F because in encryption key A is the sixth letter and
sixth letter in standard alphabet is F. Second letter in decryption key is E because in
encryption key B is the fifth letter and fifth letter in standard alphabet is E. Third letter
in decryption key is X because in encryption key C is the twenty fourth letter and twenty
fourth letter in standard alphabet is X. And so on.

While generating the encryption key in this program, random numbers are
generated using the function rand(). Random number generation in computers is not
truly random. However, in this program, provision is made to enter the “seed” (an integer)
that can push the random number generation in computers close to true random number
generation. User can type different seed everytime he/she runs a program and get a
different encryption key.

Now let us discuss the working of this program. LOCs 4-8 consist of variable
declaration. In LOCs 4-6 three char type arrays are declared, namely, msgOriginal,
msgEncrypt, and msgDecrypt. The size of these char arrays is 100. In LOC 7, two int type
arrays are declared, namely, intEncryptKey and intDecryptKey. The size of these int
arrays is 26. In LOC 8, few int type variables are declared.

LOCs 9-44 consist of definition of the function generateKey (). This function
generates two keys, namely, encrypt key and decrypt key. LOC 11 asks the user to enter
the “seed” which is nothing but an integer in the range 1 to 30,000. The “seed” entered
by user is read and stored in the variable seed in the LOC 12. This “seed” is used for
generating a random number. LOCs 14-15 consist of a for loop which places the number
-1in every cell of the array intEncryptKey. Number -1 in any cell indicates that proper
key is not yet placed in that cell. LOCs 16-29 consist of a for loop. In this for loop
encrypt key is generated, i.e., 26 capital letters are filled in the array intEncryptKey at
random. This encrypt key is displayed on the screen in the LOCs 30-32. LOCs 31-40
again consist of a for loop. In this for loop decrypt key is generated. This decrypt is,
however, dependent on encrypt key and it is displayed on the screen in the LOCs 41-43.

LOCs 45-52 consist of definition of function menu(). This function displays menu
for users on the screen so that various options in this program can be used conveniently.
LOCs 47-50 ask the user to enter an appropriate choice and also describe the various
options available to user. LOC 51 reads the choice entered by user and stores this choice
in the int variable intChoice.

LOCs 53-64 consist of definition of the function encryptMsg(). This function converts
the plaintext into ciphertext. LOCs 55-56 ask the user to enter plaintext. LOC 58 reads this
plaintext and stores it in the variable msgOriginal. LOCs 60-61 consist of a for loop. In
this for loop the plaintext is converted into a ciphertext according to simple substitution
cipher logic. LOC 63 displays the encrypted message on the screen.

LOCs 65-75 consist of definition of the function decryptMsg(). This function
retrieves the plaintext from the ciphertext. LOC 67 asks the user to enter the ciphertext.
The ciphertext entered by user is read and stored in the variable msgEncrypt in LOC 69.
LOCs 71-72 consist of a for loop which retrieves the plaintext from the ciphertext and
stores it in msgDecrypt. In LOC 74, the decrypted message is displayed on the screen.

329

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

LOCs 76-93 consist of definition of the function main(). LOC 78 consists of a call to
the function generateKey (). LOCs 79-92 consist of a do-while loop. This seems to be
an infinite loop, however, function exit () in the LOC 90 effectively stops the execution
of this loop. LOC 80 calls the function menu() which displays the menu for users on the
screen. The choice entered by user is stored in the int variable intChoice. LOCs 81-91
consist of a switch statement. Value stored in intChoice is passsed to this statement. If
value of intChoice is 1 then function encryptMsg() is called. If value of intChoice is 2
then function decryptMsg() is called. If value of intChoice is else then function exit()
is called which terminates the execution of do-while loop and also terminates the
execution of this program.

10-7. Use the Vigenéere Cipher Method
Problem

You want to implement a cryptographic system using the Vigeneére cipher method.
Merits:

e Level of security offered is better than Caesar cipher method.
For about 300 years, this cipher was believed to be unbreakable,
however, Charles Babbage and Friedrich Kasiski independently
invented a method of breaking it in the middle of the nineteenth
century

e Notvery difficult to implement and debug

e Combines the benefits of Caesar cipher method and multiple keys
Demerits:

e Logic used is not very simple

e Ciphertext can be deciphered using brute force technique with a
very high speed computer

e Transportation of keys securely is difficult

Solution

Write a C program that implements a cryptographic system using the Vigenére cipher
method, with the following specifications:

e Program defines the functions: (a) getKey() to accept text key
from user, (b) menu() to display menu for users on the screen, (c)
encryptMsg() to encrypt the plaintext, and (d) decryptMsg() to
decrypt the ciphertext.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should
accommodate 100 characters.

330

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename crypt7.c:

/* This program implements a cryptographic system using the Vigenere cipher

method. */
/*
#include<stdio.h> /*
#include <string.h> /*
/*
char msgOriginal[100]; /*
char msgEncrypt[100]; /*
char msgDecrypt[100]; /*
char msgKey[15]; /*
int intChoice, lenKey, lenMsg, intKey[15]; /*
/*
void getKey() /*
{ /*
int i, j; /*
fflush(stdin); /*
printf("\nEnter TEXT KEY in FULL CAPS, Do Not Include Spaces and \n"); /*
printf("Punctuation Symbols (upto 15 characters): \n"); /*
gets(msgKey); /*
lenkey = strlen(msgKey); /*
for(i = 0; i < lenKey; i++) /*
intKey[i] = msgKey[i] - 65; /*
} r*
/*
void menu() /*
{ r*
printf("\nEnter 1 to Encrypt a Message."); /*
printf("\nEnter 2 to Decrypt an Encrypted Message."); /*
printf("\nEnter 3 to Stop the Execution of Program."); /*
printf("\nNow Enter Your Choice (1, 2 or 3) and Strike Enter Key: "); /*
scanf("%d", &intChoice); /*
} r*
/*
void encryptMsg() /*
{ r*
int i, j, ch; /*
fflush(stdin); /*
printf("Enter the Message to be Encrypted (upto 100 alphabets), "); /*
printf("do not include \nspaces and punctuation symbols:\n"); /*
gets(msgOriginal); /*
lenMsg = strlen(msgOriginal); /*
for(i = 0; i < lenMsg; i++) { /*
j = i % lenKey; /*

BL
L1
L2
BL
L3
L4
L5
L6
L7
BL
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
BL
L19
L20
L21
L22
L23
L24
L25
L26
BL
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

331

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

ch = msgOriginal[i];
if(ch >= 'a' & ch <= 'z") {
ch = ch + intKey[j];
if(ch > 'z")
ch=ch-"'z"+"'a" - 1;
msgEncrypt[i] = ch;

else if(ch >= 'A" 88 ch <= 'Z"){
ch = ch + intKey[j];
if(ch > 'Z")
ch=ch-"'Z"+"'A" - 1;
msgEncrypt[i] = ch;

}
msgEncrypt[lenMsg] = '\o';
printf("\nEncrypted Message: %s", msgEncrypt);
}

void decryptMsg()
{

int i, j, ch;
fflush(stdin);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

printf("Enter the Message to be Decrypted (upto 100 alphabets):\n"); /*

gets(msgEncrypt);
lenMsg = strlen(msgEncrypt);
for(i = 0; i < lenMsg; i++) {
j =1 % lenKey;
ch = msgEncrypt[i];
if(ch >= 'a' 8% ch <= 'z") {
ch = ch - intKey[j];
if(ch < 'a")
ch=ch+ 'z"-"'a" +1;
msgDecrypt[i] = ch;

else if(ch >= "A" & ch <= 'Z"){
ch = ch - intKey[j];
if(ch < 'A")
ch=ch+ '2" - 'A" + 1;
msgDecrypt[i] = ch;

}

msgDecrypt[lenMsg] = '\0';

printf("\nDecrypted Message: %s", msgDecrypt);
}

void main()

{
getKey();

332

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

137
L38
139
L40
L41
L42
L43
L44
L45
L46
L47
L48
L49
L50
L51
L52
L53
BL

L54
Lss
Ls6
Ls7
L58
L59
L60
L61
L62
L63
L64
L65
L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
BL

L80
L81
L82

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

do { /*
menu(); /*
switch (intChoice) { /*
case 1: /*
encryptMsg(); /*

break; /*

case 2: /*
decryptMsg(); /*

break; /*

default: /*
printf("\nThank you.\n"); /*

exit(0); /*

} r*

} while (1); /*
} r*

Compile and execute this program. A run of this program is given below:

Enter TEXT KEY in FULL CAPS, Do Not Include Spaces and
Punctuation Symbols (upto 15 characters):
WORLDPEACE +~

Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 1 «

Enter the Message to be Encrypted (upto 100 alphabets), do not include
Spaces and punctuation symbols:
CandCryptographyIsVeryPowerfulCombination «

Encrypted Message: YoeoFgcpvscfraknMsXinmGzztvfwpYcdmlcetksj
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 2«
Enter the Message to be Decrypted (upto 100 alphabets):
YoeoFgcpvscfraknMsXinmGzztvfwpYcdmlcetksj — «

Decrypted Message: CandCryptographyIsVeryPowerfulCombination
Enter 1 to Encrypt a Message.

Enter 2 to Decrypt an Encrypted Message.

Enter 3 to Stop the Execution of Program.

Now Enter Your Choice (1, 2, or 3) and Strike Enter Key: 3 «
Thank you.

L83
L84
L85
L86
L87
L88
L89
L90
L91
L92
L93
L94
L95
L96
L97

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

333

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

How It Works

Firstly, let us discuss the working of Vigenére cipher. Vigenére cipher is nothing but
the Caesar cipher with multiple keys. It carries the name of Italian cryptographer Blaise de
Vigenére. However, most possibly, it was inveted by another Italian cryptographer Giovan
Battista Bellaso. As it uses multiple keys, it is also called Polyalphabetic Substitution
cipher. Let the word CAT be the Vigenere cipher key. The letters in A to Z are serially
numbered as 0 to 25, respectively, as shown in figure 10-2. Here, letter C means key is 2,
letter A means key 0, and letter T means key is 19. During encryption and decryption these
keys are used in cyclical order. During encryption, first letter in plaintext is encrypted using
the key = 2, second letter in plaintext is encrypted using the key = 0, third letter in plaintext
is encrypted using the key = 19, fourth letter in plaintext is encrypted using the key = 2, and
so on. During decryption also these keys are used in the same order.

For simplicity, let us form a sample plaintext using only capital alphabets. In
program, however, provision is made for both upper and lower case letters. Suppose
plaintext is COMPUTER and let us encrypt it using the key CAT. The keys will be used in
the following order:

Plaintext = C 0 M P u T E R
Keys = 2 0 19 2 0 19 0
Ciphertext = E 0 F R u M G R

The first letter in plaintext is C and its serial number is 2, also key is 2, therefore it
encrypts to (serial number of C + key =2 + 2 = 4 =) E. Second letter in plaintext is O and its
serial number is 14, also key is 0, therefore and it encrypts to (serial number of
O +key =14 + 0 = 14 =) O. Third letter in plaintext is M and its serial number is 12, also key
is 19, therefore it encrypts to (serial number of M + key=12+19=31=31-26=5=)F.
Fourth letter in plaintext is P and its serial number is 15, also key is 2, therefore it
encrypts to (serial number of P + key = 15 + 2 = 17 =) R. Proceeding in this manner, we
get the ciphertext EOFRUMGR. You can retrieve the plaintext from ciphertext simply by
proceeding in the reverse manner.

Now let us discuss the working of this program. LOCs 3-7 consist of variable
declaration. In LOCs 3-6 four char type arrays are declared, namely, msgOriginal,
msgEncrypt, msgDecrypt, and msgKey. The size of first three char arrays is 100 and that of
fourth array is 15. In LOC 7, an int type array intKey of size 15 is declared. Also, in LOC 7,
few int type variables are declared.

LOCs 8-18 consist of definition of the function getKey(). This function accepts
text key from user. LOCs 12-13 ask the user to enter the text key in upper case. Text key
entered by user is read in LOC 14 and stored in the variable msgKey. LOCs 16-17 consist
of a for loops and in this loop serial numbers of letters in msgKey are filled in the array
intKey.

LOCs 19-26 consist of definition of function menu(). This function displays menu
for users on the screen so that various options in this program can be used conveniently.
LOCs 21-24 ask the user to enter an appropriate choice and also describe the various
options available to user. LOC 25 reads the choice entered by user and stores this choice
in the int variable intChoice.

334

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

LOCs 27-53 consist of definition of the function encryptMsg(). This function
converts the plaintext into ciphertext. LOCs 31-32 ask the user to enter plaintext. LOC 33
reads this plaintext and stores it in the variable msgOriginal. LOCs 35-50 consist of a for
loop. In this for loop the plaintext is converted into a ciphertext according to Vigenere
cipher logic. LOC 52 displays the encrypted message on the screen.

LOCs 54-79 consist of definition of the function decryptMsg(). This function
retrieves the plaintext from the ciphertext. LOC 58 asks the user to enter the ciphertext.
The ciphertext entered by user is read and stored in the variable msgEncrypt in LOC 59.
LOCs 61-76 consist of a for loop which retrieves the plaintext from the ciphertext and
stores it in msgDecrypt. In LOC 78, the decrypted message is displayed on the screen.

LOCs 80-97 consist of definition of the function main(). LOC 82 consists of a call
to the function getKey (). LOCs 83-96 consist of a do-while loop. This seems to be an
infinite loop, however, function exit() in the LOC 94 effectively stops the execution of
this loop. LOC 84 calls the function menu() which displays the menu for users on the
screen. The choice entered by user is stored in the int variable intChoice. LOCs 85-95
consist of a switch statement. Value stored in intChoice is passsed to this statement. If
value of intChoice is 1 then function encryptMsg() is called. If value of intChoice is 2
then function decryptMsg() is called. If value of intChoice is else then function exit()
is called which terminates the execution of do-while loop and also terminates the
execution of this program.

10-8. Use the One-Time Pad Cipher Method
Problem

You want to implement a cryptographic system using the One-Time Pad cipher method.
Merits:

e Almost unbreakable cipher; breaks only if key is compromised
otherwise it is unbreakable

e Based on simple logic
e Systemrequirement is not very high
Demerits:

e Keyis as long as plaintext hence generation of key is time
consuming if message is very long

e Key needs to be generated on the “use and throw” basis

e Due to abnormal size of key, handling and storage of key is
troublesome

e Transportation of key securely is very difficult compared to other
methods

335

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

Solution

Write a C program that implements a cryptographic system using the One-Time Pad

cipher method, with the following specifications:

e Program defines the functions: (a) generateKey() to generate
the key, (b) menu() to display menu for users on the screen, (c)
encryptMsg() to encrypt the plaintext, and (d) decryptMsg() to

decrypt the ciphertext.

e Program also defines the char type arrays msgOriginal,
msgEncrypt, and msgDecrypt to store the messages. Array should

accommodate 100 characters.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename crypt8.c:

/* This program implements a cryptographic system using the One-Time Pad

cipher method. */

#include <stdio.h>
#include<string.h>

char msgOriginal[100];

char msgEncrypt[100];

char msgDecrypt[100];

char msgKey[100];

int intChoice, lenKey, lenMsg, intKey[100];

void generateKey()
{
int i, randNum, num, seed;
lenKey = lenMsg;
printf("\nEnter seed S (1 <= S <= 30000): ");
scanf("%d", 8&seed);
srand(seed);
for(i = 0; i < lenKey; i++) {
randNum = rand();
num = randNum % 26;
msgkey[i] = num + 65;
intKey[i] = num;
}
msgKey[lenKey] = '\0o';
printf("\nKey: %s", msgKey);
}

336

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*

BL
L1
L2
BL
L3
L4
L5
L6
L7
BL
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
BL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

void menu()

{
printf("\nEnter 1 to Encrypt a Message.");
printf("\nEnter 2 to Stop the Execution of Program.");
printf("\nNow Enter Your Choice (1 or 2) and Strike Enter Key: ");
scanf("%d", &intChoice);

}

void encryptMsg()
{

int i, j, ch;
fflush(stdin);
printf("Enter the Message to be Encrypted (upto 100 alphabets), ");
printf("Do Not Include \nSpaces and Punctuation Symbols:\n");
gets(msgOriginal);
lenMsg = strlen(msgOriginal);
generateKey();
for(i = 0; i < lenMsg; i++) {
ch = msgOriginal[i];
if(ch >= 'a' & ch <= 'z") {
ch = ch + intKey[i];
if(ch > 'z")
ch=ch-"z"+"a" - 1;
msgEncrypt[i] = ch;

else if(ch >= "A" && ch <= 'Z"){
ch = ch + intKey[i];
if(ch > 'Z")
ch=ch-"'2"+"'A" - 1;

msgEncrypt[i] = ch;
}
msgEncrypt[lenMsg] = '\o';
printf("\nEncrypted Message: %s", msgEncrypt);
}
void decryptMsg()
int i, j, ch;
fflush(stdin);
printf("\nEnter the Message to be Decrypted (upto 100 alphabets):\n");
gets(msgEncrypt);

lenMsg = strlen(msgEncrypt);
for(i = 0; i < lenMsg; it++) {
ch = msgEncrypt[i];
if(ch >= 'a' & ch <= 'z") {
ch = ch - intKey[i];
if(ch < 'a")

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L24
L25
L26
L27
L28
L29
L30
BL

L31
L32
133
L34
L35
L36
137
138
L39
L40
L41
L42
L43
L44
L45
L46
L47
L48
L49
L50
L51
L52
L53
L54
Lss
L56
L57
BL

L58
L59
L60
L61
L62
L63
L64
L65
L66
L67
L68
L69

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

337

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

ch=ch+ 'z" - "'a" +1;
msgDecrypt[i] = ch;

else if(ch >= 'A" & ch <= 'Z2"){
ch = ch - intKey[i];
if(ch < 'A")
ch=ch+'2" - 'A" + 1;
msgDecrypt[i] = ch;

}

msgDecrypt[lenMsg] = '\o0';

printf("\nDecrypted Message: %s", msgDecrypt);
}

void main()
{
do {
menu();
switch (intChoice) {
case 1:
encryptMsg();
decryptMsg();
break;
default:
printf("\nThank you.\n");
exit(0);

}
} while (1);

Compile and execute this program. A run of this program is given below:

Enter 1 to Encrypt a Message.
Enter 2 to Stop the Execution of Program.

Now Enter Your Choice (1 or 2) and Strike Enter Key: 1
Enter the Message to be Encrypted (upto 100 alphabets), Do Not Include

Spaces and Punctuation Symbols:
CandCryptographyIsVeryPowerfulCombination

Enter seed S (1 <= S <= 30000): 2000

Key: KIVWBAIZRUHRKNAFFHRBXNKUGHDMIHTDKLRWTZVMZ

Encrypted Message: MjizDrgokinikchdNzMfolZiclurdsVrwmzjtsdam

Enter the Message to be Decrypted (upto 100 alphabets):

MjizDrgokinikchdNzMfolZiclurdsVrwmzjtsdam «

338

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80
L81
L82
BL

L83
L84
L85
L86
L87
L88
L89
L90
L91
L92
L93
L94
L95
L96
L97

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

Decrypted Message: CandCryptographyIsVeryPowerfulCombination
Enter 1 to Encrypt a Message.

Enter 2 to Stop the Execution of Program.

Now Enter Your Choice (1 or 2) and Strike Enter Key: 2«
Thank you.

How It Works

Firstly, let us discuss the working of One-Time Pad cipher. One-Time Pad cipheris
impossible to crack. Itis a Vigenére cipher with the following modifications:

e The text key is exactly as long as the plaintext.

e The text key is made simply by placing the randomly picked
characters, one by one.

e The text key is generated on “use and throw” basis. The key once
used is never used again.

Suppose, the plaintext is COMPUTER. Now to encrypt this plaintext you are required
to generate the key that is eight characters long and it consists of randomly picked
characters. Let the text key be BDLVACFX. The keys corresponding to these letters are
given below (see also Figure 10-2):

1]
@
(=)
—
<
=
(@}
-
>

Letters in Text Key
Keys = 1 3 1 21 0 2 5 23

Using these keys, the plaintext COMPUTER is encrypted as follows:

Plaintext = C 0 M P U T E R
Keys = 1 3 1 21 O 2 5 23
Ciphertext = D R X K u Vv] 0

The plaintext COMPUTER is encrypted to DRXKUVJO. Decryption is simply reverse
of the encryption.

Now let us discuss the working of this program. LOCs 3-7 consist of variable
declaration. In LOCs 3-6 four char type arrays, each of size 100, are declared, namely,
msgOriginal, msgEncrypt, msgDecrypt, and msgKey. In LOC 7, an int type array intKey of
size 100 is declared. Also, in LOC 7, few int type variables are declared.

LOCs 8-23 consist of definition of the function generateKey (). This function
generates the key. The length of key is same as that of plaintext, i.e., msg0riginal. LOC 12
asks the user to enter the “seed” which is nothing but an integer in the range 1 to 30,000.
The “seed” entered by user is read in the LOC 13 and stored in the int variable seed.
LOCs 15-20 consist of a for loop in which the key is generated and stored in the variable
msgKey. The key consist of only upper case letters. LOC 22 displays the key on the screen.

LOCs 24-30 consist of definition of function menu(). This function displays menu
for users on the screen so that various options in this program can be used conveniently.
LOCs 26-28 ask the user to enter an appropriate choice and also describe the various
options available to user. LOC 29 reads the choice entered by user and stores this choice
in the int variable intChoice.

339

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

LOCs 31-57 consist of definition of the function encryptMsg(). This function
converts the plaintext into ciphertext. LOCs 35-36 ask the user to enter plaintext. LOC 37
reads this plaintext and stores it in the variable msgOriginal. LOC 38 computes the length
of msgOriginal. LOC 39 calls the function generateKey (). LOCs 40-54 consist of a for
loop. In this for loop the plaintext is converted into a ciphertext according to One-Time
Pad cipher logic. LOC 56 displays the encrypted message on the screen.

LOCs 58-82 consist of definition of the function decryptMsg(). This function
retrieves the plaintext from the ciphertext. LOC 62 asks the user to enter the ciphertext.
The ciphertext entered by user is read and stored in the variable msgEncrypt in LOC 63.
LOCs 65-79 consist of a for loop which retrieves the plaintext from the ciphertext and
stores itin msgDecrypt. In LOC 81, the decrypted message is displayed on the screen.

LOCs 83-97 consist of definition of the function main(). LOCs 85-96 consist of a
do-while loop. This seems to be an infinite loop, however, function exit() in the LOC 94
effectively stops the execution of this loop. LOC 86 calls the function menu() which
displays the menu for users on the screen. The choice entered by user is stored in the int
variable intChoice. LOCs 87-95 consist of a switch statement. Value stored in intChoice
is passsed to this statement. If value of intChoice is 1 then case 1 is activated and
functions encryptMsg() and decryptMsg() are called in succession. If value of intChoice
is else then function exit () is called which terminates the execution of do-while loop
and also terminates the execution of this program.

10-9. Use the RSA Cipher Method
Problem

You want to implement a cryptographic system using the RSA cipher method.
Merits:

e Almost unbreakable cipher

e Being public key cryptographic system, problem of transportation
of key securely is done away with

e This cipher - or any public key cipher - provides digital signatures
that cannot be repudiated

Demerits:
e Uses complex arithmetic and hence difficult to implement and debug
e System requirement is high
e Implementation of this cipher may not be economical

e Program execution is slow

340

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

Solution

Write a C program that implements a cryptographic system using the RSA cipher
method, with the following specifications:

e Program defines the functions prime(), findPrime(),
computeKeys(), cd(), encryptMsg(), and decryptMsg(). Function
prime() detects whether a given integer is prime or not. Function
findPrime() finds the nth prime number. Functions cd() and
computeKeys () together find the permissible values of d and e.
Function encryptMsg() converts the plaintext into ciphertext.
Function decryptMsg() retrieves the plaintext from ciphertext.

e Program defines the char type array msgOriginal, and int type
arrays d, e, temp, msgEncrypt, and msgDecrypt. Size of all arrays
should be 100.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename crypt9.c:

/* This program implements a cryptographic system using the RSA cipher method. */

/* BL */

#include <stdio.h> /* L1 */
#include <math.h> /* L2 */
#include <string.h> /* L3 */
/* BL */

long int i, j, p, q, n, t, flag; /* L4 */
long int e[100], d[100], temp[100], msgDecrypt[100], msgEncrypt[100]; /* L5 */
char msgOriginal[100]; /* L6 */
int prime(long int); /* L7 */
int findPrime(long int s); /* L8 */
void computeKeys(); /* L9 */
long int cd(long int); /* L10 */
void encryptMsg(); /* L1 */
void decryptMsg(); /* L12 */
/* BL */
void main() { /* L13 */
long int s; /* L14 */
do{ /* L15 */
printf("Enter the serial number S of 1st prime number (10<=S<=40):"); /* L16 */
scanf("%1d", 8s) ; /* L17 */
} while ((s < 10) || (s > 40)); /* L18 */
p = findPrime(s); /* L19 */
printf("First prime number p is: %d \n", p) ; /* L20 */
do{ /* 121 */
printf("Enter the serial number S of 2nd prime number (10 <=S <= 40):"); /* L22 */
scanf("%1d", 8s) ; /* 123 */

341

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

} while ((s < 10) || (s > 40)); /* 124 */

q = findPrime(s); /* L25 */
printf("Second prime number q is: %d \n", q) ; /* 126 */
printf("\nEnter the Message to be Encrypted, DoNot Include Spaces:\n"); /* L27 */
fflush(stdin); /* 128 */
scanf("%s",msgOriginal); /* 129 */
for (i = 0; msgOriginal[i] != NULL; i++) /* L30 */
msgDecrypt[i] = msgOriginal[i]; /* L31 */
n=p*agq; /* 132 */
=(p-1)*(q-1); /* 133 */
computeKeys(); /* L34 */
printf("\nPossible Values of e and d Are:\n"); /* L35 */
for (i =0; 1< 3j-1; i++) /* L36 */
printf("\n %1d \t %1d", e[i], d[i]); /* L37 */
printf("\nSample Public Key: (%1d, %1d)", n, e []), /* L38 */
printf("\nSample Private Key: (%1d, %1d)", n, -1]); /* L39 */
encryptMsg(); /* L40 */
decryptMsg(); /* L41 */

} /* L42 */
/* BL */

int findPrime(long int s) /* L43 */
{ /* Lag */
int f, d, tag; /* L45 */
f=2; /% L46 */
i=1; /% 147 */
while(i <= s){ /* L48 */
tag = 1; /* 149 */
for(d = 2 ; d <= f-1 ; d++){ /* L50 */
if(f % d == 0) { /% L51 */

tag = 0; /* L52 */

break ; /* L53 */

} /* L54 */

} /* L55 */
if(tag == 1) { /* L56 */

if (i == s) /* L57 */
return(f); /* L58 */

i++ /* L59 */

} /* L60 */

f++ ; /* L6l */

} /¥ 162 */
return(0); /* L63 */

} /* 164 */
/* BL */

int prime(long int pr) /* L65 */
{ /* L66 */
int i; /* L67 */
j=sqrt(pr); /* L68 */
for (i = 2; 1 <= 3; i++) { /* L69 */

342

if(pr % i == 0)
return O;
}

return 1;

}

void computeKeys()
{
int k;
k = 0;
for (i =2; i< t; i++) {
if(t % i ==0)
continue;
flag = prime(i);
if(flag == 1 8% 1 !=p 8& i !=q) {
e[k] = i;
flag = cd(e[k]);
if(flag > 0) {

d[k] = flag;
k++;
}
if(k == 99)
break;

}
}
}

long int cd(long int x)

long int k = 1;
while(1) {
k =k +t;
if(k % x == 0)
return(k/x);
}

}

void encryptMsg()
{

long int pt, ct, key = e[0], k, length;
i=o0;
length = strlen(msgOriginal);
while(i != length) {
pt = msgDecrypt[i];

pt = pt-96;

k =1;

for (j = 0; j < key; j++) {
k = k * pt;

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L70
L71
L72
L73
L74
BL
L75
L76
L77
L78
L79
L8o
L81
L82
L83
L84
L85
L86
L87
L88
L89
L9o
L91
L92
L93
L94
BL
L95
L96
L97
L98
L99
L100
L101
L102
L103
BL
L104
L105
L106
L107
L108
L109
L110
L111
L112
L113
L114

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

343

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

k =k%n;
}
temp[i] = k;
ct = k + 96;
msgEncrypt[i] =
i++;
}
msgEncrypt[i] =-
printf("\nThe Encrypted Message:\n");
for (i = 0; msgEncrypt[i] != -1; i++)
printf("%c", msgEncrypt[i]);

void decryptMsg()
{

long int pt, ct, key = d[0], k;

i=0;

while(msgEncrypt[i] != -1) {
ct = temp[i];

j=0; J < key; j++) {
k * ct;
k

—h7_
II/-\H

or
k *
k=k%n
}
pt = k + 96;
msgDecrypt[i] =
i++;
}
msgDecrypt[i] =- 1;
printf("\nThe Decrypted Message:\n");
for (i = 0; msgDecrypt[i] != -1; i++)
printf("%c", msgDecrypt[i]);
printf("\nThank you. \n ");

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L115
L116
L117
L118
L119
L120
L121
L122
L123
L124
L125
L126
BL

L127
L128
L129
L130
L131
L132
L133
L134
L135
L136
L137
L138
L139
L140
L141
L142
L143
L144
L145
L146
L147

Compile and execute this program. A run of this program is shown in Figure 10-3.

344

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

Enter the serial number 5 of 1st prime number (10 <= 3 <= 40): 12
First prime number p is: 37

Enter the serial number S of 2Znd prime number (10 <= S <= 40): 34
Second prime number g is: 139

Enter the Message to be Encrypted, Do Not Include Spaces:
CandCryptographylsUeryPowerfulCombination?tt

Possible Values of e and d Are:

89 2177
9?7 3073
101 4181

Sample Public Key: (5143, 101)

Sample Private Key: (5143, 4181)

The Encrypted Message:

ad’ sl zrcan pltluoc ¥z >06rAb zEC9Ba™9z3111
The Decrypted Message:
CandCruptographylsUeryPowerfulCombination???
Thank you.

Figure 10-3. A sample run of the program crypt9. A part of the output is cropped out to
save the space.

How It Works

Firstly, let us discuss the working of RSA cipher. All the preceding cryptographic
systems are known as private key cryptographic systems. In private key cryptogaphy,
you are required to send to receiver of message: (a) ciphertext and (b) secret key.
But when you send ciphertext alongwith a secret key then very purpose of ciphering
is challenged. Because anyone with a key can decrypt the ciphertext. In practice,
when when both parties (sender and receiver) agree to use private key cryptography
then they personally meet to share the secret key, and then only ciphertext is sent to
receiving party, time to time.

The problem of sharing the secret key is solved by public key cryptographic systems.
The very first such system is called RSA cipher. It is also most popular cryptographic
system. It was first described by Ron Rivest, Adi Shamir and Leonard Adleman in 1977,
hence the name RSA (R for Ron, S for Shamir and A for Adleman).

Public key cipher has two keys, one for encryption and other for decryption. Private
key cipher has only one key that is used for encryption as well as decryption. All the
preceding cryptographic systems are private key cryptographic systems. In some of the
preceding programs, there is mention of two keys, one for encryption and another for
decryption (for example, Recipe 10.6, Simple Substitution cipher). But actually it is only
one key and decryption key is nothing but encryption key in another suitable form.

Private Key cipher is also called as Symmetric cipher and Public Key cipher is
also called as Asymmetric cipher.InPublic Key cipher, encryption key is called public
key and decryption key is called private key. Public key is shared with all, however, private
key is secret and it is in possession of the receiver (of the message) only. Thus public key
is used for encryption and private key is used for decryption.

345

CHAPTER 10 ' CRYPTOGRAPHIC SYSTEMS

InRSA cipher, the generic procedure of encryption and decryption is as follows:

e (Create two very large prime numbers randomly. These numbers
are called p and q.

e Multiply p by q and the result is called n. Therefore, n=p *q.

e Calculate the product (p - 1) *(q - 1) and call it t. Therefore,
t=(p-1)*(q-1).

e (Create arandom number e such that e is relatively prime with t.
Also,1<ec<t.

e (Calculate the modular inverse of (e % t) and call it d. It means,
find the value d such that (d*e) % t=1. Alsod < t.

e Public key s (e, n) and private key is (d, n).

e Letletter M from plaintext is encrypted to letter C. It is done as
follows: C = M*® % n.

e Letter C from ciphertext is decrypted back to M. It is done as
follows: M = C! % n.

The RSA cipher derives its strenght from the fact that if two large prime numbers are
multiplied then the resulting number is difficult to factorize.

Now let us discuss the working of this program. LOCs 4-6 consist of variable
declaration. LOC 4 declares few long int type variables. LOC 5 declares five long int
type arrays. LOC 6 declares a char type array msgOriginal. The size of all arrays is 100.
LOCs 7-12 consist of six function prototypes.

LOCs 13-42 consist of definition of the function main(). LOCs 15-18 consist of a do-while
loop. This loop asks the user to enter the serial number S of the first prime number where
S is an integer in the range 10 to 40. The number entered by user is read in the LOC 17
and is stored in the variable s. In LOC 19, call is made to function findPrime() and s is
passed to it as an input argument. Function findPrime() finds the sth prime number and
returns it and returned value is assigned to variable p. In LOC 20, the value of first prime
number p is displayed on the screen. LOCs 21-26 contain the code that is similar to code
in the LOCs 15-20. Only difference is that code in the LOCs 15-20 is related to first prime
number p and code in the LOCs 21-26 is related to the second prime number q. LOC 27
asks the user to enter the plaintext. The plaintext entered by user is read in the LOC 28
and is assigned to the variable msgOriginal. LOCs 30-31 consist of a for loop that copies
the array msgOriginal to array msgDecrypt. This is done to facilitate some computations
in the function encryptMsg(). In function decryptMsg(), however, the contents of
msgDecrypt are overwritten.

In LOC 32, value of n is computed. In LOC 33, value of t is computed. In LOC 34,
function computeKeys () is called. Permissible values of e and d are displayed on the
screen in the LOCs 35-37. Sample public key and sample private key are displayed on the
screen in the LOCs 38-39. In the LOC 40, function encryptMsg() is called that converts
plaintext into ciphertext. In the LOC 41, function decryptMsg() is called that retrieves the
plaintext from the ciphertext.

346

CHAPTER 10 CRYPTOGRAPHIC SYSTEMS

LOCs 43-64 consist of definition of the function findPrime (). This function finds
the sth prime number and s is passed to it as an input argument. First prime number is 2,
second prime number is 3, third prime number is 5, and so on. This function starts with
integer 2 (see LOC 46, variable f is used for this integer) and then goes to check every
next integer for its primeness. If that integer is prime and its serial number is s then it is
returned (see LOC 58).

LOCs 65-74 consist of definition of the function prime(). Long integer variable pr
is passed to this function as an input argument. This function checks whether pr is prime
number or not; if pr is prime number then it returns 1 (see LOC 73), otherwise it returns 0
(see LOC 71).

LOCs 75-94 consist of definition of the function computeKeys (). LOCs 95-103 consist
of definition of the function cd(). These two functions together compute the permissible
values of d and e using the standard formulae in RSA cipher method.

LOCs 104-126 consist of definition of the function encryptMsg(). This function
converts the plaintext into ciphertext. In this function plaintext is converted into
ciphertext using the standard formulae in RSA cipher method. Ciphertext is stored in the
variable msgEncrypt. Encrypted message is displayed on the screen in the LOCs 123-125.

LOCs 127-147 consist of definition of the function decryptMsg(). This function
retrieves the plaintext from the ciphertext using the standard formulae in RSA cipher
method. Retrieved plaintext (i.e., decrypted message) is stored in variable msgDecrypt.
Decrypted message is displayed on the screen in the LOCs 143-145.

347

CHAPTER 11

Numerical Methods

We use numerical methods to solve the equations and integrations for which exact
solutions are not possible. Using numerical methods we find approximate solutions
to these problems. Most of the real life problems fall in this category. While solving a

problem using numerical methods, one has to perform a large number of computations

by hand. Fortunately, computers are number crunchers, and hence, since the arrival
of computers, this task has been mostly done by the computers. In this chapter, few
numerical methods - listed below - are discussed in the context of C programming.

Bisection Method to find the roots of an equation.

Regula Falsi Method to find the roots of an equation.
Muller’s Method to find the roots of an equation.

Newton Raphson Method to find the roots of an equation.

Newton’s Forward Method of interpolation to construct the new
data points.

Newton’s Backward Method of interpolation to construct the new
data points.

Gauss’s Forward Method of interpolation to construct the new
data points.

Gauss’s Backward Method of interpolation to construct the new
data points.

Stirling’s Method of interpolation to construct the new data points.

Bessel’s Method of interpolation to construct the new data points.

Laplace Everett’s Method of interpolation to construct the new
data points.

Lagrange’s Method of interpolation to construct the new data
points.

Trapezoidal Method to compute the value of integration.

Simpson’s 3/8th Method to compute the value of integration.

© Shirish Chavan 2017
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_11

349

CHAPTER 11 I NUMERICAL METHODS

e Simpson’s 1/3rd Method to compute the value of integration.
e Modified Euler’s Method to solve a differential equation.

¢ Runge Kutta Method to solve a differential equation.

11-1. To Find the Roots of an Equation Using the
Bisection Method

Problem

You want to find the roots of an equation using the Bisection Method.
Merits:

e Itis always convergent.

e Theroot bracket gets halved with each iteration and this is
guarenteed.

Demerits:
e Convergence is slow

e Ifone of the initial guesses is close to the root, the convergence is
slower.

Solution

Write a C program that finds the roots of an equation using the Bisection Method, with
the following specifications:

e Program defines the function bisect() that computes the roots of
equation.

e Setthe value of EPS (epsilon) to 0.00001.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename numrc1.c:

/* This program implements a Bisection method to find the roots of
an equation. */

/* BL */
#include <stdio.h> /* L1 */
#tinclude <math.h> /* L2 */
/* BL */
#define EPS 0.00001 /* L3 */

350

CHAPTER 11 = NUMERICAL METHODS

#define F(x) (5*x*x) * log10(x) - 5.3 /* L4 */
/* BL */

void bisect(); /* L5 */
/* BL */

int kount = 1, intN; /* L6 */
float root = 1; /* L7 */
/* BL */

void main() /* L8 */
{ /* L9 */
printf("\nSolution of Equation by Bisection Method. "); /* L10 */
printf("\nEquation: "); /* L1 */
printf(" (5*x*x) * log10(x) - 5.3 = 0"); /* L12 */
printf("\nEnter the number of iterations: "); /* L13 */
scanf("%d", &intN); /* L14 */
bisect(); /* L15 */

} /* L16 */
/* BL */

void bisect() /* L17 */
{ /* L18 */
float x1, x2, x3, funci, func2, func3; /* L19 */
X3 = 1; /* L20 */
do{ /* L21 */
func3 = F(x3); /* L22 */

if (func3z > 0) { /* L23 */
break; /* L24 */

} /* L25 */
X3++; /* L26 */

} while(1); /* L27 */
X2 = X3 - 1; /* 128 */
do{ /% 129 */
func2 = F(x2); /* L30 */
if(func2 < 0) { /* L31 */
break; /* 132 */

} /* L33 */
X3--; /* L34 */

} while(1); /* L35 */
while (kount <= intN) { /* L36 */
x1 = (x2 + x3) / 2.0; /* L37 */
funcl = F(x1); /* 138 */
if(funcl == 0) { /* L39 */
root = x1; /* L4o */

} /* L41 */
if(funcl * func2 <0) { /* L42 */

X3 = x1; /* L43 */

} /* L44 */
else { /* L45 */

X2 = X1; /* L46 */

351

CHAPTER 11 I NUMERICAL METHODS

func2 = funci; /* L47 */

} /* L48 */
printf("\nIteration No. %d", kount); /* L49 */
printf(" : Root, x = %f",x1); /* L50 */
if(fabs((x2 - x3) / x2) < EPS) { /* L51 */
printf("\n\nTotal No. of Iterations: %d", kount); /* L52 */
printf("\nRoot, x = %f", x1); /* L53 */
printf("\n\nThank you.\n"); /* L54 */
exit(0) ; /* L55 */

} /* L56 */
kount++; /* L57 */

} /¥ 158 */
printf("\n\nTotal No. of Iterations = %d", kount-1); /* L59 */
printf("\nRoot, x = %8.6f", x1); /* L60 */
printf("\n\nThank you.\n"); /* L61 */
} /* L62 */

Compile and execute this program. A run of this program is given below:

Solution of Equation by Bisection Method.
Equation: (5*x*x) * log10(x) - 5.3 =0
Enter the number of iterations: 40

Iteration No. 1 : Root, x = 1.500000
Iteration No. 2 : Root, x = 1.750000
Iteration No. 15 : Root, x = 1.928131
Iteration No. 16 : Root, x = 1.928116

Total No. of Iterations: 16
Root, x = 1.928116
Thank you.

How It Works

Let the equation of curve be y = f(x). The problem is to find the value of x for which y is
zero and this value of x is termed as root. In Bisection Method intermediate value property
is repeatedly applied till the root is found. Let f(x) be continuous function between a and
b where a and b define the boundary values for x. Value of x is to be found for which y is
zero. Let f(a) and f(b) be values of y forx = aand x = b, respectively. For definiteness,
let us assume that f(a) is negative and f(b) is positive. If both f(a) and f(b) are either
positive or negative then root doesn’t exist in the interval a to b.

352

CHAPTER 11 = NUMERICAL METHODS

Now the first approximation to the rootis x1 = 1/2(a+b). Next, three cases arise as
follows:

Case (a): if f(x1) = 0then x1 is the root.
Case (b): if f(x1) is positive then root lies between a and x1.
Case (c): if f(x1) is negative then root lies between x1 and b.

If case (a) occurs then we repeat this process (of bisecting the interval) with the
new boundaries a and x1. If case (b) occurs then we repeat this process (of bisecting the
interval) with the new boundaries x1 and b.

And the process is repeated till the root is found. Benefit of bisection method is that
in iterative process convergence is guarenteed. The order of convergence of the Bisection
Method is 0.5.

In the LOCs 3-4 the values of EPS and F(x) are defined. In the LOC 5, function
bisect() is declared. In the LOCs 6-7, few variables are declared. LOCs 8-16 consist
of definition of the main() function. LOCs 17-62 consist of definition of the bisect()
function.

In the main() function LOCs 10-12 display the equation. In LOC 13 user is asked to
enter the number of iterations. The number entered by user is read in the LOC 14 and
stored in the int variable intN. In LOC 16 function bisect() is called. This function
computes the roots of the given equation using the procedure stated above. LOCs 49-54
and LOCs 59-61 display the results on the screen.

11-2. To Find the Roots of an Equation Using the
Regula Falsi Method

Problem

You want to find the roots of an equation using the Regula Falsi (False Position) Method.
Merits:

¢ Bound to converge, like Bisection method

¢ Astheinterval becomes small, the interior point is generally
becomes much closer to root.

e Faster convergence than bisection.
Demerits:
e Itcannot predict number of iterations to reach a given precision.

e Itcan beless precise than bisection. No strict precision is
guaranteed.

353

CHAPTER 11 I NUMERICAL METHODS

Solution

Write a C program that finds the roots of an equation using the Regula Falsi (Falose

Position) Method, with the following specifications:

e Program defines the function falsePosition() that computes
the roots of equation.

e Set the value of EPS to 0.00001.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename numrc2.c:

/* This program implements the Regula Falsi method to find the roots of

equation. */

#tinclude<stdio.h>
#include<math.h>

#define EPS 0.00001
#define f(x) 3*x*x*x + 5*x*x + 4*cos(x) - 2*exp(x)

void falsePosition();

void main()

{
printf("\nSolution of Equation by False Position Method\n");
printf("\nEquation : ");
printf("3*x*x*x + 5*x*x + 4*cos(x) - 2*exp(x) = 0");
falsePosition();

}

void falsePosition()
{
float funi, fun2, fun3;
float x1, x2, x3;
int iterations;
int i;
printf("\nEnter the Number of Iterations: ");
scanf("%d", &iterations);
X2 = 0.0,
do {
fun2 = f(x2);
if(fun2 > 0) {
break;

}

354

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
L2
BL
L3
L4
BL
L5
BL
L6
L7
L8
L9
L10
L11
L12
BL
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
123
L24
L25
L26

an

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

}

else {
X2 = X2 + 0.1;

}
while(1);

X1 = X2 - 0.1;
funl = f(x1);
printf("\nIteration No.\t\tx\t\tF(x)\n");

1

=0,

while (i < iterations) {

}

x3 = x1 - ((x2 - x1) / (fun2 - funl)) * funy;
fun3 = f(x3);
if(fun1 * fun3 > 0) {
X2 = X3;
fun2 = fun3;
}
else {
x1 = x3;
funl = fun3;
}
printf("\n%d\t\t\t%f\t%f\n", i+1, x3, fun3);
if (fabs(fun3) <= EPS)
break;
i++;

printf("\n\nTotal No. of Iterations: %d", i+1);
printf("\nRoot, x = %8.6f \n", x3);
printf("\nThank you.\n");

CHAPTER 11

NUMERICAL METHODS

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Compile and execute this program. A run of this program is given below:

Solution by False Position Method

Equation :

Enter the Number of Iterations: 30 «

Iteration No. X F(x)
1 0.920209 3.974567
2 -1.387344 1.843082
12 -1.599190 0.000014
13 -1.599192 -0.000004

Total No. of Iterations: 15
Root, x = -1.599192

Thank you.

3kxkx*Ex + 5Fx*x + 4*cos(x) - 2*exp(x) = 0

L27
L28
L29
L30
131
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
Laa
L4s
L46
L47
L48
L49
L50
L51
Ls52
L53
L54

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

355

CHAPTER 11 I NUMERICAL METHODS

How It Works

Let the equation of curve bey = f(x). The problem is to find the value of x for which y is
zero and this value of x is termed as root. In the preceding recipe, the bisection method
is discussed. The convergence process in the bisection method is very slow. It depends
on the choice of boundaries a and b. Let the midpoint of a and b be c. Then f(x) has no
role in determining the point c. Refula Falsi Method represents an improvemet in the
bisection method in this matter.

Let a and b be the boundaries of initial interval. Let f(a) be positive and f(b) be
negative. Let (a, f(a)) bepointAand (b, (b)) be pointB. The graphy = f(x) is
actually a curve between the points A and B and cutting the X-axis somewhere between
the points a and b. The essence of this method is to consider the chord AB instead of
curve AB and then to take the point of intersection of the chord with the X-axis as an
approximation to root. The equation of chord is given by the following expression:

y - f(a) = (f(b) - £(a)) * (x-a) / (b-a)

Puttingy = 0in this expression we get the point where chord cuts the X-axis and this
point represents the first approximation to the root. Let ¢ be the x-coordinate of this point
and it is given by:

c=a- ((b-a)* (f(a))) / (f(b) - £(a))

The next smaller interval which contains the root can be obtained by inspecting the
value of f(a)*f(b). Now the three cases arise as follows:

Case (a): If f(a)*f(b) = 0then cis the root.
Case (b): If f(a)*f(b) is negative then root lies between a and c.
Case (c): If f(a)*f(b) is positive then root lies between b and c.

And the process is repeated till the root is found. Benefit of bisection method is that
in iterative process convergence is guarenteed. The order of convergence of the Regula
Falsi method is 1.618.

In the LOCs 3-4 the values of EPS and f(x) are defined. In the LOC 5, function
falsePosition() is declared. LOCs 6-12 consist of definition of the main() function.
LOCs 13-54 consist of definition of the falsePosition() function.

Inside the main() function LOCs 8-10 display the equation. LOC 11 calls the function
falsePosition().

Inside the falsePosition() function, in the LOCs 15-18 few variables are declared.
LOC 19 asks the user to enter the number of iterations. The number entered by user is
read in the LOC 20 and stored in the int variable iterations. Results are computed
using the standard formulae of Regula Falsi method stated above. LOCs 33, 46, 51-53
display the results on the screen.

356

CHAPTER 11 = NUMERICAL METHODS

11-3. To Find the Roots of an Equation Using
Muller’s Method

Problem

You want to find the roots of an equation using Muller’s Method.
Merits:

e This method can find imaginary roots
e In this method, there is no need to use derivatives.
Demerits:
¢ Lengthy computations. Troublesome to implement and debug.

e Extraneous roots can be found.

Solution

Write a C program that finds the roots of an equation using Muller’s Method, with the
following specifications:

e Program defines the function f() that computes the value of
equation.

e Set the value of EPS to 0.00001.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc3.c:

/* This program implements Muller's method to find the roots of an equation. */

/* BL */

#include<stdio.h> /¥ L1 */
#include<math.h> /¥ L2 */
/* BL */

#define EPS 0.00001 /* L3 */
/* BL */

float f(float x) /* L4 */
{ /* L5 */
return (x*x*x)-(2*x)-5; /* L6 */

} /* L7 */
/* BL */

main () /* L8 */
{ /* L9 */
int i, itr, maxItr; /* L10 */

357

CHAPTER 11

float x[4], m, n, p, q, T;
printf("\nSolution of Equation by Muller's Method.");
printf("\nEquation: x*x*x - 2*x - 5 =0 \n");
printf("\n\n Enter the first initial guess: ");
scanf("%f", &x[0]);
printf("\nEnter the second initial guess: ");
scanf("%f", 8x[1]);
printf("\nEnter the third initial guess: ");
scanf("%f", &x[2]) ;
printf("\nEnter the maximum number of iterations: ");
scanf("%d", &maxItr);
1; itr <= maxItr; itr++)
m = (x[2] - x[1]) / (x[1] - x[0]);
n = (x[2] - x[0]) / (x[1] - x[0]);
p = f(x[0])*m*m - F(x[1])*n*n + f(x[2])*(n+m);
q = sqrt ((p*p - 4*F(x[2])*n*m*(f(x[0])*m - F(x[1])*n + f(x[2]))));
if (p < 0)

r = (2F(x[2])*n)/(-p+q);

(2 (x[2])*0)/(-p-q);

x[2] + r*(x[2] - x[1]);

printf("Iteration No. : %d,

if (fabs (x[3] - x[2]) < EPS) {
printf("\nTotal No. of Iterations: %d\n", itr);
printf("\Root, x
printf("Thank you.\n");
return 0;

for (itr

else
r =
x[3]

}

for (i=0; i<3; i++)
x[1] = x[i+1];

}

printf("\nSolution Doesn't Converge or Iterations are Insufficient.\n");
printf("Thank you.\n");
return(1);

Compile and execute this program. A run of this program is given below:

Solution of Equation by Muller's Method.
X*¥x*¥x - 2*¥x - 5 =10
first initial guess: 1
second initial guess: 2
third initial guess: 3
maximum number

Equation:
Enter the
Enter the
Enter the
Enter the
Iteration
Iteration
Iteration

358

NUMERICAL METHODS

x = %8.6f\n", itr, x[3]);

%8.6f\n", x[3]);

of iterations: 30

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

L42 */

L43
La4
L4s

*/
*/
*/

CHAPTER 11 = NUMERICAL METHODS

Iteration No. : 4, X = 2.094552
Total No. of Iterations: 4

Root, x = 2.094552

Thank you.

How It Works

Let the equation of curve bey = f(x). The problem is to find the value of x for which y is
zero and this value of x is termed as root. Muller’s Method is based on secant method. In
secant method two points on the curve y = f(x) are picked as initial approximations to
the root which may or may not bracket the root. However, these approximations should
be reasonably close to the root. A chord is constructed through these two points. Then
with every iteration, next approximation moves closer to the root.

In Muller’s Method, instead of two points, three points on the curvey = f(x) are
picked as initial approximations to the root. Then, instead of a chord, a parabola is
constructed passing through these three points. Next, intersection of this parabola with
the X-axis is taken as the next approximation.

Let (x1, y1), (x2, y2)and (x3, y3) be the three distinct points as initial
approximations to root. The approximation to next point x4 is given by the following
expression:

—B+\B*—4%A*y3
x4—-x3=

2% A

Here, A and B are given by the following expressions:

- (¥1-x8)*(y2-y8)—(x2-x3)*(y1-3)
(x2—x1)*(x2-x2)*(x1-x3)

and

(x1-x3)"*(y2-y3)—(x2-x3)"*(y1-y3)

B= (x1-x2)#(x2-x3)*(x1-x3)

The order of convergence of Muller’s Method is approximately 1.84.

In the LOC 3 the value of EPS is defined. LOCs 4-7 define the function f(). LOCs 8-45
define the function main(). Inside the main() function, in LOCs 10-11, few variables are
declared. LOC 13 displays the equation. LOCs 14, 16 and 18 ask the user to enter the first,
second and third intial guess respectively. The guesses entered by user are stored in the
array X.

LOC 20 asks the user to enter the maximum number of iterations. The numbered
entered by user is stored in the variable maxItr. LOCs 22-41 consist of a for loop and
results are computed in this for loop using the standard formuale for Muller’s Method
stated above. LOCs 34-35 and 42-43 display the results on the screen.

359

CHAPTER 11 I NUMERICAL METHODS

11-4. To Find the Roots of an Equation Using the
Newton Raphson Method

Problem

You want to find the roots of an equation using the Newton Raphson Method.
Merits:

e One of the fastest convergences to the root.

e Converges on the root quadratially.

e Easyto convert to multiple dimensions.
Demerits:

e Derivative of function f(x) is needed.

e Poor global convergence properties.

e Computation is dependent on initial guess.

Solution

Write a C program that finds the roots of an equation using the Newton Raphson Method,
with the following specifications:

e Program defines the function newtonRaphson() that computes
the roots of equation.

e Set the value of EPS to 0.00001.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename numrc4.c:

/* This program implements Newton Raphson method to find the roots of an
equation. */

/* BL */
#include<stdio.h> /¥ L1 */
#include<math.h> /* L2 */
/* BL */
#define EPS 0.00001 /% 13 */
#define f(x) 17*x*x*x - 13*x*x - 7*x - 2973 /* L4 */
#define df(x) 51*x*x - 26*x - 7 /* L5 */
/* BL */
void newtonRaphson(); /* L6 */
/* BL */

360

CHAPTER 11 = NUMERICAL METHODS

void main() /* L7 */

{ /* L8 */
printf ("\nSolution of Equation by Newton Raphson method.\n"); /* L9 */
printf ("\nEquation is: 17*x*x*x - 13*x*x - 7%x - 2973 = 0 \n\n"); /* L10 */

newtonRaphson(); /* L11 */
/* L12 */

/¥ BL */

void newtonRaphson() /* L13 */
{ /* L14 */
long float x1, x2, f1, f2, df; /* L15 */
int i=1, iterations; /* L16 */
float error; /* L17 */
X2 = 0; /* L18 */
do { /* L19 */
2 = f(x2); /* L20 */
if (f2 > 0) /* L21 */
break; /* L22 */

X2 += 0.01; /* L23 */

} while (1); /* L24 */
X1 = x2 - 0.01; /* L25 */
f1 = f(x1); /* 126 */
printf("Enter the number of iterations: "); /* L27 */
scanf(" %d",&iterations); /* 128 */
x1 = (x1 + x2) / 2; /* L29 */
while (i <= iterations) { /* L30 */
f1 = f(x1); /* 131 */
df = df(x1); /* 132 */
x2 = x1 - (f1/df); /* L33 */
printf("\nThe %d th approximation, x = %f", i, x2); /* L34 */
error = fabs(x2 - x1); /* L35 */
if(error < EPS) /* L36 */
break; /* L37 */

X1 = X2; /* 138 */
i++; /* L39 */

} /* L4o */
if(error > EPS) /* L41 */
printf("Solution Doesn't Converge or No.of Iterations Insufficient."); /* L42 */
printf("\nRoot, x = %8.6F ", x2); /* L43 */
printf("\nThank you.\n"); /* Lag */
} /* 145 */

361

CHAPTER 11 I NUMERICAL METHODS

Compile and execute this program. A run of this program is given below:

Solution of Equation by Newton Raphson Method.
Equation is: 17*x*x*x - 13*x*x - 7*x - 2973 = 0

Enter the number of iterations: 10 «

The 1 th approximation, x = 5.884717
The 2 th approximation, x = 5.884717
Root, x = 5.884717

Thank you.

How It Works

Let the equation of curve bey = f(x). The problem is to find the value of x for which

y is zero and this value of x is termed as root. In Newton Raphson Method, a single
point (say, X0, y0)is picked as an initial approximation to the root. At this point

(x0, yo0) atangent to curve is drawn. The point at which this tangent line crosses the
X-axis represents a better estimate of root than x0. Let this point be (x1, 0).Draw a
tangent to curve at (x1, y1). Let this tangent crosses the X-axis at point x2. Now, x2
represents the better estimate of root than x1. Draw a tangent to curve at (x2, y2), and
so on. This procedure need to be repeated till a root is found. If xn is known then next
value of x, say x(n+1), can be computed using following formula:

x(n+1) = xn - f(xn)/f'(xn)

where ' (xn) is nothing but derivative of f(xn). The order of convergence of Newton
Raphson Method is 2. However, there is no guranteed convergence in case of Newton
Raphon Method.

In the LOC 3 the value of EPS is defined. In LOC 4, the equation f(x) is defined.
In LOC 5, the derivative of f(x), df(x) is defined. LOC 6 consists of declaration of the
function newtonRaphson(). LOCs 7-12 consist of the definition of the function main().
LOCs 13-45 consist of the definition of the function newtonRaphson(). Inside the main()
function, in the LOCs 9-10, equation f(x) = 0 is displayed on the screen. In the LOC 11,
function newtonRaphson() is called.

Inside the function newtonRaphson(), in the LOCs 15-17, few variables are declared.
In the LOC 27, user is asked to enter the number of iterations. The number entered by
user is read in the LOC 28 and stored in the variable iterations.

Results are computed in this function using the standard procedure and formula of
the Newton Raphson Method, stated above. Finally, results are displayed on the screen in
the LOCs 34, 42-44.

362

CHAPTER 11 = NUMERICAL METHODS

11-5. To Construct the New Data Points Using
Newton’s Forward Method of Interpolation

Problem

You want to construct the new data points using Newton’s Forward Method of
Interpolation.
Merits:

e Particularly useful for interpolating the values of f(x) near the
beginning of the set of values given.

e Newton forward method of interpolation is more efficient than
Lagrange method of interpolation and is easily implemented.

Demerits:

e Method has a constraint that function f(x) must be continuous
and differentiable.

Solution

Write a C program that constructs the new data points using Newton’s Forward Method
of Interpolation, with the following specifications:

e Let the maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc5. c:

/* This program implements Newton's Forward Method of Interpoloation. */

/* BL */

#include<stdio.h> /* L1 */
/* BL */

#define MAX 20 /* L2 */
/* BL */

void main() /* L3 */
{ /* L4 */
float ax[MAX], ay[MAX], diff[MAX][5]; /* L5 */
float nr = 1.0, dr=1.0, x, p, h, yp; /* L6 */
int terms, i, j, k; /* L7 */
printf("\nInterpolation by Newton's Forward Method."); /* L8 */
printf("\nEnter the number of terms (Maximum 20): "); /* L9 */

363

CHAPTER 11

scanf("%d", &terms);
printf("\nEnter the values of x upto 2 decimal points.\n");

NUMERICAL METHODS

for (i=0; ic<terms; i++) {

printf("Enter the value of x%d: ", i+1);
scanf("%f",8ax[1]);

}

/*
/*
/*
/*
/*
/*

printf("\nNow enter the values of y upto 4 decimal points.\n"); /*
for (i=0; ic<terms; i++) {

printf("Enter the value of y%d: ", i+1);

scanf("%f", &ay[i]);

}

/*
/*
/*
/*

printf("\nEnter the value of x for which the value of y is wanted: "); /*
scanf("%f", &x);
h = ax[1] - ax[0];

for (i = 0; 1 < terms-1; i++)

diff[i][1]

for (j=2; j<=4; j++)
for(i=0; i<=terms-j; i++)
diff[i][j] = diff[i+1][]-1] - diff[i][j-1];

i=0;
do {

i++;

} while (ax[i] < x);

i--;

p = (x - ax[il) / h;

yp = ay[i];
for (k=1; k <= 4; k++)
nr *=p - k + 1;
dr *= k;

yp += (nr/dr) * diff[i][k];

ay[i+1] - ay[i];

printf("\nFor x
printf("\nThank you.\n");

}

Compile and execute this program. A run of this program is given below:

Interpolation by Newton's Forward Method.
the number of terms (Maximum 20): 5

Enter

Enter
Enter
Enter
Enter
Enter
Enter

364

the
the
the
the
the
the

values of x upto 2 decimal points.
x1:
X2:
X3:
X4:
X5:

value
value
value
value
value

of
of
of
of
of

%6.2f,

10.11
20.22
30.33
40.44
50.55

y = %6-4f";X,YP)}

-

tttt

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

L21 */

L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11 NUMERICAL METHODS

Now enter the values of y upto 4 decimal points.
Enter the value of y1: 35.3535 «

Enter the value of y2: 45.4545
Enter the value of y3: 55.5555
Enter the value of y4: 65.6565
Enter the value of y5: 75.7575

tttt

Enter the value of x for which the value of y is wanted: 36.67

For x = 36.67, y = 61.3494
Thank you.

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4),and
(x5, y5). Using these data points you are required to create the new data points (xi, yi)
such that (x1 < xi < x5)and (y1 < yi < y5).

In Newton’s Forward Method of Interpolation, the formula shown in Figure 11-1 is used
to construct the new data points. Here (x) is polynomial of the nth degree. This formula is
particularly useful when f(x) is required near the beginning of the table of data points.

u(u-1)
f(a+hu) = f(a) tuaf(a) E— Atf(a)+ ...

vtfu-D@u-2)...(u-n+1) .
*f(a)

n!

where y = f(x) 1s a function of x which assumes the values f(a), f(a +h), f(a + 2h), ...,
f(a + nh) for (n + 1) equidistant values a, a + h, a + 2h, ..., a + nh of the independent
variable x. Also,f(ath)-f(a) = Af(a) and u = (x-a)/h.

Figure 11-1. Formula for Newton'’s Forward Method of interpolation

LOC 2 defines the symbolic constant MAX with the value of 20. LOCs 3-43 define
the function main(). In LOCs 5-7 few variables are declared. LOC 9 asks the user to
enter the number of terms. The number entered by user is read in the LOC 10 and
it is stored in the variable terms. LOC 11 asks the user to enter the values of x. The
values entered by user are read in the for loop spanning the LOCs 12-15. LOC 16 asks
the user to enter the values of y. The values entered by user are read in the for loop
spanning the LOCs 17-20.

LOC 21 asks the user to enter the value of x for which the value of y is wanted. The value
- afloating point number - entered by user is read in the LOC 22 and stored in the variable x.
In the LOCs 23-40, the corresponding value of y is computed. Thus (x, y) represents the
newly constructed data point. The result is displayed on the screen in the LOC 41.

365

CHAPTER 11 I NUMERICAL METHODS

11-6. To Construct the New Data Points Using
Newton’s Backward Method of Interpolation

Problem

You want to construct the new data points using Newton’s Backward Method of
Interpolation.
Merits:

e Particularly useful for interpolating the values of f(x) near the end
of the set of values given.

e Newton backward method of interpolation is more efficient than
Lagrange method of interpolation and is easily implemented.

Demerits:

e Method has a constraint that function f(x) must be continuous
and differentiable.

Solution

Write a C program that constructs the new data points using Newton’s Backward Method
of Interpolation, with the following specifications:

e Let the maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename numrcé. c:

/* This program implements Newton's Backward Method of Interpoloation. */

/* BL */

include <stdio.h> /* L1 */
include <ma th.h> /¥ L2 */
/* BL */

define MA X 20 /* L3 */
/* BL */

void main () /* L4 */
{ /* L5 */
int i, j, k, terms; /* L6 */
float ax[MAX], ay[MAX], x, x0 = 0, yo, sum, h, store, p; /* L7 */
float diff[MAX][5], y1, y2, y3, v4; /* L8 */
printf("\nInterpolation by Newton's Backward Method."); /* L9 */

366

printf("\nEnter the number of terms (Maximum 20): ");

scanf("%d", &terms) ;

printf("\nEnter the values of x upto 2 decimal points.\n");

for (i=0; i<terms; i++) {
printf("Enter the value of x%d: ", i+1);
scanf("%f",8ax[i]);

}

printf("\nNow enter the values of y upto 4 decimal points.\n");

for (i=0; i < terms; i++) {
printf("Enter the value of y%d: ", i+1);
scanf("%f", 8ay[i]);

}

printf("\nEnter the value of x for which the value of y is wanted: ");

scanf("%f", 8x);

h = ax[1] - ax[o0];

for(i=0; i < terms-1; i++) {
diff[i][1] = ay[i+1] - ay[i];

for (j=2; j<=4; j++) {
for (i=0; i<terms-j; i++) {

}
}
i=0;
while(lax[i] > x) {
i++;
}
X0 = ax[i];
sum = 0;
yo = ay[i];
store = 1;
p=(x - x0) / h;
sum = yo0;
for (k=1; k <= 4; k++) {
store = (store * (p-(k-1)))/k;
sum = sum + store * diff[i][k];

}

diff[i][j] = diff[i+1][]j-1] - diff[i][]-1];

printf ("\nFor x = %6.2f, y = %6.4f", x, sum);

printf("\nThank you.\n");

Compile and execute this program. A run of this program is given below:

Interpolation by Newton's Backward Method.
Enter the number of terms (Maximum 20): 5

-

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
L44
L45
L46
L47
L48
L50

NUMERICAL METHODS

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

367

CHAPTER 11 I NUMERICAL METHODS

Enter the values of x upto 2 decimal points.
Enter the value of x1: 10.11 «

Enter the value of x2: 20.22
Enter the value of x3: 30.33
Enter the value of x4: 40.44
Enter the value of x5: 50.55

tttt

Now enter the values of y upto 4 decimal points.
Enter the value of y1: 35.3535

Enter the value of y2: 45.4545
Enter the value of y3: 55.5555
Enter the value of y4: 65.6565
Enter the value of y5: 75.7575

tttt

Enter the value of x for which the value of y is wanted: 46.82

For x = 46.82, 'y = 72.0308
Thank you.

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4),and
(x5, y5). Using these data points you are required to create the new data points (xi,
yi) such that (x1 < xi < x5)and (y1 < yi < y5).

In Newton'’s Backward Method of Interpolation, the formula shown in Figure 11-2
is used to construct the new data points. Here f(x) is polynomial of the nth degree. This
formula is particularly useful when f(x) is required near the end of the table.

u(u+l)
f(a+nh+uh) = f(a+nh)+tuaf(atnh) - A f(a+nh)+ ..

.. -1
u(u+1)...(u+n)«_\“f(aﬂlh)

n!

where y = £ (x) is a function of x which assumes the values ' (a), f(a + h), f(a + 2h), ...,
f(a +nh) for (n+ 1) equidistant values a, a +h, a+ 2h, ..., a + nh of the independent
variable x. Also,f(a+h) f(a) = Af(a) and uw = (x a)/h

Figure 11-2. Formula for Newton’s Backward Method of interpolation

368

CHAPTER 11 = NUMERICAL METHODS

LOC 3 defines the symbolic constant MAX with the value of 20. LOCs 4-50 define the
function main(). In LOCs 6-8 few variables are declared. LOC 10 asks the user to enter
the number of terms. The number entered by user is read in the LOC 11 and it is stored
in the variable terms. LOC 12 asks the user to enter the values of x. The values entered by
user are read in the for loop spanning the LOCs 13-16. LOC 17 asks the user to enter the
values of y. The values entered by user are read in the for loop spanning the LOCs 18-21.

LOC 22 asks the user to enter the value of x for which the value of y is wanted. The
value - a floating point number - entered by user is read in the LOC 23 and stored in
the variable x. In the LOCs 24-46, the corresponding value of y is computed using the
standard formula for Newton'’s Backward Method of Interpolation stated above. Thus
(x, y) represents the newly constructed data point. The result is displayed on the
screen in the LOC 47.

11-7. To Construct the New Data Points Using
Gauss’s Forward Method of Interpolation

Problem

You want to construct the new data points using Gauss’s Forward Method of
Interpolation.
Merits:

e This formula is particulary useful when u lies between 0 and 0.5.

e This formula is suited for interpolation near the middle of the set
of values given.

Demerits:
¢ Lengthy computations. Troublesome to implement and debug.

e Not much useful when u is less than zero or greater than 0.5.

Solution

Write a C program that constructs the new data points using Gauss’s Forward Method of
Interpolation, with the following specifications:

e Letthe maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

369

CHAPTER 11 I NUMERICAL METHODS

The Code

Code of C program written with these specifications is given below. Type the following C
program in a text editor and save it in the folder C: \Code with the filename numrc7.c:

/* This program implements Gauss's Forward Method of Interpoloation.

include <stdio.h>
define MAX 20

void main()
{
int i, j, terms;
float ax[MAX], ay[MAX], x, y = 0, h, p;
float diff[MAX][5], y1, y2, y3, y4;
printf("\nInterpolation by Gauss's Forward Method.");
printf("\nEnter the number of terms (Maximum 20): ");
scanf("%d", &terms);
printf("\nEnter the values of x upto 2 decimal points.\n");
for (i=0; i<terms; i++) {
printf("Enter the value of x%d: ", i+1);
scanf("%f",8ax[1]);
}
printf("\nNow enter the values of y upto 4 decimal points.\n");
for (i=0; i < terms; i++) {
printf("Enter the value of y%d: ", i+1);
scanf("%f", &ay[i]);
}
printf("\nEnter the value of x for which the value of y is wanted:");
scanf("%f", 8x);
h = ax[1] - ax[0];
for(i=0; i < terms-1; i++)
diff[i][1] = ay[i+1] - ay[i];
for(j=2; j <= 4; j++)
for(i=0; i < terms-j; i++)
diff[i][j] = diff[i+1][]-1] - diff[i][j-1];
i=o0;
do {
i++;
} while(ax[i] < x);
1--5
p=(x - ax[i]) / h;
yl = p * diff[i][1] ;
y2 = p * (p - 1) * diff[i - 1][2] / 2;
y3 = (p+1) *p*(p-1)*diff[i - 2][3] / 6;

370

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/
BL
L1
BL
L2
BL
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
121
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11 NUMERICAL METHODS

yd=(p+1) *p*(p-1)*(p-2) *diff[i - 3][4] / 24; /* 138 */

y = ay[i] + y1 + y2 + y3 + y4; /* L39 */
printf("\nFor x = %6.2f, y = %6.4f ", X, y); /* L4o */
printf("\nThank you.\n"); /* La1 */
} /* L42 */

Compile and execute this program. A run of this program is given below:

Interpolation by Gauss's Forward Method.
Enter the number of terms (Maximum 20): 7 «

Enter the values of x upto 2 decimal points.
Enter the value of x1: 1.22
Enter the value of x2: 2.33
Enter the value of x3: 3.44
Enter the value of x4: 4.55
Enter the value of x5: 5.66
Enter the value of x6: 6.77
Enter the value of x7: 7.88

t

tttrtt

~N O

Now enter the values of y upto 4 decimal points.
Enter the value of y1: 100.1111
Enter the value of y2: 200.2222
Enter the value of y3: 300.3333
Enter the value of y4: 400.4444
Enter the value of y5: 500.5555
Enter the value of y6: 600.6666
Enter the value of y7: 700.7777

t

tttrtttt

Enter the value of x for which the value of y is wanted: 6.12

For x = 6.12, y = 542.0430
Thank you.

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4),
and (x5, y5). Using these data points you are required to create the new data points
(xi, yi)suchthat (x1 < xi < x5)and (y1 < yi < y5).

In Gauss'’s Forward Method of Interpolation, the formula shown in Figure 11-3 is
used to construct the new data points. Here (x) is polynomial of the nth degree. This
formula is useful when u is between 0 and 1/2.

371

CHAPTER 11 I NUMERICAL METHODS

(u-1) (u+ 1)1]'(11 1) S

£(u) = £(0) +uaf(0)+ ‘T Nf(-1)+

N (utDu-1)(u-2) AFC2) +

41

where y = £ (x) is a function of X which assumes the values f(a), f(a+h), f(a+2h), ...,
f(a+nh) for (n + 1) equidistant values a, a + h, a + 2h, ..., a + nh of the independent
variable x. Also,f(a+h)-f(a) = Af(a) and vw= (x-a)/h

Figure 11-3. Formula for Gauss’s Forward Method of interpolation

LOC 2 defines the symbolic constant MAX with the value of 20. LOCs 3-42 define the
function main(). In LOCs 5-7 few variables are declared. LOC 9 asks the user to enter the
number of terms. The number entered by user is read in the LOC 10 and it is stored in
the variable terms. LOC 11 asks the user to enter the values of x. The values entered by
user are read in the for loop spanning the LOCs 12-15. LOC 16 asks the user to enter the
values of y. The values entered by user are read in the for loop spanning the LOCs 17-20.

LOC 21 asks the user to enter the value of x for which the value of y is wanted. The
value - a floating point number - entered by user is read in the LOC 22 and stored in
the variable x. In the LOCs 23-39, the corresponding value of y is computed using the
standard formula for Gauss’s Forward Method of Interpolation stated above. Thus (x, y)
represents the newly constructed data point. The result is displayed on the screen in the
LOC 40.

11-8. To Construct the New Data Points Using
Gauss’s Backward Method of Interpolation

Problem

You want to construct the new data points using Gauss’s Backward Method of
Interpolation.
Merits:

e This formula is particularly useful when u lies between -0.5 and 0.

e This formula is suited for interpolation near the middle of the set
of values given.

Demerits:
e Lengthy computations. Troublesome to implement and debug.

¢ Not much useful when u is less than -0.5 or greater than zero.

372

CHAPTER 11 = NUMERICAL METHODS

Solution

Write a C program that constructs the new data points using Gauss’s Backward Method of
Interpolation, with the following specifications:

e Let the maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc8.c:

/* This program implements Gauss's Backward Method of Interpoloation. */

/* BL */

include <stdio.h> /* L1 */
/* BL */

define MAX 20 /* L2 */
/* BL */

void main() /* L3 */
{ /% L4 */
int i, j, terms; /* L5 */
float ax[MAX], ay[MAX], x, y = 0, h, p; /* L6 */
float diff[MAX][5], y1, y2, y3, y4; /¥ L7 */
printf("\nInterpolation by Gauss's Backward Method."); /* L8 */
printf("\nEnter the number of terms (Maximum 20): "); /* L9 */
scanf("%d", &terms); /* L10 */
printf("\nEnter the values of x upto 2 decimal points.\n"); /* L1 */
for (i=0; i<terms; i++) { /* L12 */
printf("Enter the value of x%d: ", i+1); /* L13 */
scanf("%f",8ax[1i]); /* L14 */

} /* L15 */
printf("\nNow enter the values of y upto 4 decimal points.\n"); /* L16 */
for (i=0; i < terms; i++) { /* L17 */
printf("Enter the value of y%d: ", i+1); /* L18 */
scanf("%f", &ay[i]); /* L19 */

} /* L20 */
printf("\nEnter the value of x for which the value of y is wanted:"); /* L21 */
scanf("%f", 8&x); /* 122 */

h = ax[1] - ax[0]; /* L23 */
for(i=0; i < terms-1; i++) /* L24 */
diff[i][1] = ay[i+1] - ay[i]; /* L25 */
for(j=2; j <= 4; j++) /* 126 */
for(i=0; i < terms-j; i++) /* L27 */
diff[i][]j] = diff[i+1][j-1] - diff[i][]-1]; /* L28 */

373

CHAPTER 11 I NUMERICAL METHODS

i=o0;
do {
i++;
} while (ax[i] < x);
i--;
p = (x - axi]) / h;

yl = p * diff[i-1][1];

y2 = p *(p+1) * diff[i-1][2]/2;

y3 = (p+1) * p * (p-1) * diff[i-2][3]/6;

y4 = (p+2) * (p+1) * p * (p-1) * diff[i-3][4]/24;
y = ay[i] + y1 + y2 + y3 + y4;

printf("\nFor x = %6.2f, y = %6.4F ", X, y);
printf("\nThank you.\n");

Compile and execute this program. A run of this program is given below:

Interpolation by Gauss's Backward Method.
Enter the number of terms (Maximum 20): 7 «

Enter the values of x upto 2 decimal points.
Enter the value of x1: 1.22
Enter the value of x2: 2.33
Enter the value of x3: 3.44
Enter the value of x4: 4.55
Enter the value of x5: 5.66
Enter the value of x6: 6.77
Enter the value of x7: 7.88

t

tttrtttt

Now enter the values of y upto 4 decimal points.
Enter the value of y1: 100.1111
Enter the value of y2: 200.2222
Enter the value of y3: 300.3333
Enter the value of y4: 400.4444
Enter the value of y5: 500.5555
Enter the value of y6: 600.6666
Enter the value of y7: 700.7777

t

tttrtt

Enter the value of x for which the value of y is wanted: 7.16

For x = 7.16, y = 635.8408
Thank you.

374

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11 NUMERICAL METHODS

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4),and
(x5, y5). Using these data points you are required to create the new data points (xi,
yi) such that (x1 < xi < x5)and (y1 < yi < y5).

In Gauss'’s Backward Method of Interpolation, the formula shown in Figure 11-4 is
used to construct the new data points. Here f(x) is polynomial of the nth degree. This
formula is useful when u is between -1/2 and 0.

(u+Du " (u+1):ll(u 1) REC2)+

f(u) = £f(0) tuaf(-1) }T A*f(-1)

.

@) @E+hHE-D) NECD) +

41

where y = f'(x) is a function of x which assumes the values f'(a), f(a +h), f(a+2h), ...,
f(a +nh) for (n + 1) equidistant values a, a + h, a + 2h, ..., a + nh of the independent
variable x. Also,f(ath)-f(a) = Af(a) and u= (x-a)/h.

Figure 11-4. Formula for Gauss’s Backward Method of interpolation

LOC 2 defines the symbolic constant MAX with the value of 20. LOCs 3-42 define
the function main(). In LOCs 5-7 few variables are declared. LOC 9 asks the user to
enter the number of terms. The number entered by user is read in the LOC 10 and
itis stored in the variable terms. LOC 11 asks the user to enter the values of x. The
values entered by user are read in the for loop spanning the LOCs 12-15. LOC 16
asks the user to enter the values of y. The values entered by user are read in the
for loop spanning the LOCs 17-20.

LOC 21 asks the user to enter the value of x for which the value of y is wanted.
The value - a floating point number - entered by user is read in the LOC 22 and
stored in the variable x. In the LOCs 23-39, the corresponding value of y is computed
using the standard formula for Gauss’s Backward Method of Interpolation stated
above. Thus (x, y) represents the newly constructed data point. The result is
displayed on the screen in the LOC 40.

375

CHAPTER 11 I NUMERICAL METHODS

11-9. To Construct the New Data Points Using
Stirling’s Method of Interpolation

Problem

You want to construct the new data points using Stirling’s Method of Interpolation.
Merits:

e Forward or backward difference formulae use the oneside
information of the function where as Stirling’s formula uses the
function values on both sides of f(x).

e Gives the best estimate when -0.25 < u < 0.25
Demerits:

¢ Formula is not much useful when u is less than -0.5 or greater
than 0.5.

Solution

Write a C program that constructs the new data points using Stirling’s Method of
Interpolation, with the following specifications:

e Let the maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

The Code

Code of C program written with these specifications is given below. Type the following

C program in a text editor and save it in the folder C:\Code with the filename numzc9.

/* This program implements Stirling's Method of Interpoloation. */

/* BL

#include<stdio.h> /* L1
/* BL

define MAX 20 /* L2
/* BL

void main() /* L3
{ /* L4
int i, j, terms; /* L5
float ax[MAX], ay[MAX], x, y, h, p; /* L6
float diff[MAX][5], y1, y2, y3, y4; /% L7
printf("\nInterpolation by Stirling Method."); /* L8
printf("\nEnter the number of terms (Maximum 20): "); /* L9

376

C:

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11

scanf("%d", &terms);

printf("\nEnter the values of x upto 2 decimal points.\n");

for (i=0; i<terms; i++) {
printf("Enter the value of x%d: ", i+1);
scanf("%f",8ax[i]);

}

printf("\nNow enter the values of y upto 4 decimal points.\n");

for (i=0; i < terms; i++) {
printf("Enter the value of y%d: ", i+1);
scanf("%f", 8ay[i]);

}

printf("\nEnter the value of x for which the value of y is wanted: ");

scanf("%f", &x);
h = ax[1] - ax[o0];
for(i=0; i < terms-1; i++)

diff[i][1] = ay[i+1] - ay[i];
for(j=2; j <= 4; j++)

for(i=0; i < terms-j; i++)

diff[i][]j] = diff[i+1][]j-1] - diff[i][]-1];

i=o0;

do {
i++;
} while(ax[i] < x);
i--;
p = (x - ax[i])/h;
yl = p * (diff[i][1] + diff[i-1][1])/2;
y2 = p * p * diff[i-1][2]/2;
y3 = p * (p*p-1) * (diff[i-1][3] + diff[i-2][3])/6;

y4 = p * p * (p*p-1) * diff[i-2][4]/24;
y = ay[i] +y1 +y2 +y3 + ya4;
printf("\n\nFor x = %6.2f,
printf("\nThank you. \n);

y = %6.4f", x, y))

Compile and execute this program. A run of this program is given below:

Interpolation by Stirling Method.
Enter the number of terms (Maximum 20): 5 «

Enter the values of x upto 2 decimal points.

Enter the value of x1: 1.22 «
Enter the value of x2: 2.33 «
Enter the value of x3: 3.44 «
Enter the value of x4: 4.55 «
Enter the value of x5: 5.66 «

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42

NUMERICAL METHODS

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

377

CHAPTER 11 I NUMERICAL METHODS

Now enter the values of y upto 4 decimal points.
Enter the value of y1: 100.1111

Enter the value of y2: 200.2222
Enter the value of y3: 300.3333
Enter the value of y4: 400.4444
Enter the value of y5: 500.5555

tttt

Enter the value of x for which the value of y is wanted: 3.87

For x = 3.87, y = 339.1151
Thank you.

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4), and
(x5, y5).Using these data points you are required to create the new data points (xi, yi)
such that (x1 < xi < x5)and (y1 < yi < y5).

In Stirling’s Method of Interpolation, the formula shown in Figure 11-5 is used to
construct the new data points. Here f(x) is polynomial of the nth degree. This formula is
useful when -0.5 < u < 0.5.Itgives quite accurate results when -0.25 < u < 0.25.

Af(0)+gf(-1)1+i_ﬂ.(_])

2 /[21

(u+Du(u-1) AP +HAM(-2) uw(u'-1)
= 3! 2 !

f(u) =1f(0) +u

A (-2)+ ...

where y = f(x) is a function of x which assumes the values f'(a), f(a + h), f(a + 2h), ...,
f(a +nh) for (n + 1) equidistant values a,a + h, a + 2h, ..., a I nh of the independent
variable x. Also,f(ath)-f(a) = Af(a) and u= (x-a)/h.

Figure 11-5. Formula for Stirling’s Method of interpolation

LOC 2 defines the symbolic constant MAX with the value of 20. LOCs 3-41 define
the function main(). In LOCs 5-7 few variables are declared. LOC 9 asks the user to
enter the number of terms. The number entered by user is read in the LOC 10 and
it is stored in the variable terms. LOC 11 asks the user to enter the values of x. The
values entered by user are read in the for loop spanning the LOCs 12-15. LOC 16 asks
the user to enter the values of y. The values entered by user are read in the for loop
spanning the LOCs 17-20.

378

CHAPTER 11 = NUMERICAL METHODS

LOC 21 asks the user to enter the value of x for which the value of y is wanted. The
value - a floating point number - entered by user is read in the LOC 22 and stored in
the variable x. In the LOCs 23-39, the corresponding value of y is computed using the
standard formula for Gauss'’s Backward Method of Interpolation stated above. Thus (x, y)
represents the newly constructed data point. The result is displayed on the screen in the
LOC 40.

11-10. To Construct the New Data Points Using

Bessel’s Method of Interpolation
Problem

You want to construct the new data points using Bessel’s Method of Interpolation.
Merits:

e Itis most useful when u=0.5.

e Itisused mainly to compute entry against any argument between
Oand 1.

Demerits:

e Notmuch useful when u is less than 0.25 or greater than 0.75.

Solution

Write a C program that constructs the new data points using Bessel’s Method of
Interpolation, with the following specifications:

e Let the maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc10.c:

/* This program implements Bessel's Method of Interpoloation. */

/* BL */
#include<stdio.h> /* L1 */
/* BL */
define MAX 20 /* L2 */
/* BL */
void main() /* L3 */
{ /% L4 */

379

CHAPTER 11 I NUMERICAL METHODS

int i, j, terms;
float ax[MAX], ay[MAX], x, y, h, p;
float diff[MAX][5], y1, y2, y3, y4;
printf("\nImplementation of Interpolation by Bessel's Method.");
printf("\nEnter the number of terms (Maximum 20): ");
scanf("%d", &terms);
printf("\nEnter the values of x upto 2 decimal points.\n");
for (i=0; ic<terms; i++) {

printf("Enter the value of x%d: ", i+1);

scanf("%f",8ax[1]);
}
printf("\nNow enter the values of y upto 4 decimal points.\n");
for (i=0; i < terms; i++) {

printf("Enter the value of y%d: ", i+1);

scanf("%f", &ay[i]);
}
printf("\nEnter the value of x for which the value of y is wanted: ");
scanf("%f", &x);
h = ax[1] - ax[0];
for(i=0; i < terms-1; i++)

diff[i][1] = ay[i+1] - ay[i];
for(j=2; j <= 4; j++)

for(i=0; i < terms-j; i++)

diff[i][]j] = diff[i+1][]-1] - diff[i][]-1];

i=o0;
do {

i++;
} while (ax[i] < x);
i--5
p = (x-ax[i])/h;
y1 = p * (diff[i][1]);
y2 = p * (p-1) * (diff[i][2] + diff[i-1][2])/4;
y3 = p * (p-1) * (p-0.5) * (diff[i-1][3])/6;
y4 = (p+1) * p * (p-1) * (p-2) * (diff[i-2][4] + diff[i-1][4])/48;
y = ay[i] + y1 +y2 + y3 + y4;
printf("\For x = %6.2f, y = %6.4f ", X, y);
printf("\nThank you.\n");

Compile and execute this program. A run of this program is given below:

Implementation of Interpolation by Bessel's Method.
Enter the number of terms (Maximum 20): 5 «

Enter the values of x upto 2 decimal points.
Enter the value of x1: 1.22 +«
Enter the value of x2: 2.33 «~
Enter the value of x3: 3.44 «

380

L5

L6

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11 NUMERICAL METHODS

Enter the value of x4: 4.55 «
Enter the value of x5: 5.66 «

Now enter the values of y upto 4 decimal points.
Enter the value of y1: 100.1111

Enter the value of y2: 200.2222
Enter the value of y3: 300.3333
Enter the value of y4: 400.4444
Enter the value of y5: 500.5555

tttt

Enter the value of x for which the value of y is wanted: 4.87

For x = 4.87, y = 429.3052
Thank you.

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4),and
(x5, y5). Using these data points you are required to create the new data points (xi,

yi) such that (x1 < xi < x5) and (y1 < yi < y5).

In Bessel’s Method of Interpolation, the formula shown in Figure 11-6 is used to
construct the new data points. Here f(x) is polynomial of the nth degree. This formula is

most useful when u = 0.5. It gives quite accurate results when 0.25 < u < 0.75.

£(0)+£(1) o u(u-1) A (=D +AME(0)
f(u) = — + (u-0.5)Af(0) + 51 5

(u-1(-05u)
+ = A1)

+Du@-1)(u-2) AT (-2)+ A (-1) i
41 2

f(a+nh) for (n + 1) equidistant values a, a +h, a + 2h, ..., a + nh of the independent
variable x. Also,f(a+h)-f(a) = Af(a) and u= (x-a)/h.

where y = f(x) is a function of x which assumes the values f'(a), f(a + h), f(a + 2h), ..

}

Figure 11-6. Formula for Bessel’s Method of interpolation

381

CHAPTER 11 I NUMERICAL METHODS

LOC 2 defines the symbolic constant MAX with the value of 20. LOCs 3-42 define the
function main(). In LOCs 5-7 few variables are declared. LOC 9 asks the user to enter the
number of terms. The number entered by user is read in the LOC 10 and it is stored in
the variable terms. LOC 11 asks the user to enter the values of x. The values entered by
user are read in the for loop spanning the LOCs 12-15. LOC 16 asks the user to enter the
values of y. The values entered by user are read in the for loop spanning the LOCs 17-20.

LOC 21 asks the user to enter the value of x for which the value of y is wanted.

The value - a floating point number - entered by user is read in the LOC 22 and stored
in the variable x. In the LOCs 23-39, the corresponding value of y is computed using

the standard formula for Bessel’s Method of Interpolation stated above. Thus (x, y)
represents the newly constructed data point. The result is displayed on the screen in the
LOC 40.

11-11. To Construct the New Data Points Using
Laplace Everett’s Method of Interpolation

Problem

You want to construct the new data points using Laplace Everett’s Method of
Interpolation.
Merits:

e Itgives the good estimate when u > 0.5.

e Itisused to compute any entry against any argument
between 0 and 1.

e Itis useful when intervening values in successive intervals
are required.

Demerits:

e Not much useful when u is less than 0.5.

Solution

Write a C program that constructs the new data points using Laplace Everett’s Method of
Interpolation, with the following specifications:

e Let the maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

382

CHAPTER 11 = NUMERICAL METHODS

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc11.c:

/* This program implements Laplace Everett's Method of Interpoloation.

include <stdio.h>
define MAX 20

void main()
{
int i, j, terms;
float ax[MAX], ay[MAX], x, y = 0, h, p, q;
float diff[MAX][5], y1, y2, y3, y4, pyl, py2, py3, py4;
printf("\nInterpolation by Laplace Everett's Method.");
printf("\nEnter the number of terms (Maximum 20): ");
scanf("%d", &terms);
printf("\nEnter the values of x upto 2 decimal points.\n");
for (i=0; i<terms; i++) {
printf("Enter the value of x%d: ", i+1);
scanf("%f",&ax[i]);
}
printf("\nNow enter the values of y upto 4 decimal points.\n");
for (i=0; i < terms; i++) {
printf("Enter the value of y%d: ", i+1);
scanf("%f", 8ay[i]);
}
printf("\nEnter the value of x for which the value of y is wanted: ");
scanf("%f", 8x);
h = ax[1] - ax[0];
for(i=0; i < terms-1; i++)
diff[i][1] = ay[i+1] - ay[i];
for(j=2; j <= 4; j++)

for(i=0; i < terms-j; i++)
diff[i][j] = diff[i+1][]j-1] - diff[i][]-1];

i=o0;
do {

i++;
} while(ax[i] < x);
i--;
p = (x - ax[i])/h;
q=1-p;

q * (ay[il);

y2 = q * (q*q-1) * diff[i-1][2]/6;

y3 = q * (g*g-1) * (g*q-4) * (diff[i-2][4])/120;
pyl = p * ay[i+1];

<
[y
1}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1

BL

L2

BL

L3

L4

L5

L6

L7

L8

L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

383

CHAPTER 11 © NUMERICAL METHODS
py2 = p * (p*p-1) * diff[i][2]/6; /* L40 */
py3 = p * (p*p-1) * (p*p-4) * (diff[i-1][4])/120; /* La1 */
y =yl +y2+y3+yd+pyl + py2 + py3; /* L42 */
printf("\nFor x = %6.2f, y = %6.4F ", X, y); /* L43 */
printf("\nThank you.\n"); /* L4g */

/* L45 */

Compile and execute this program. A run of this program is given below:

Interpolation by Laplace Everett's Method.

Enter the

Enter the
Enter the
Enter the
Enter the
Enter the
Enter the

Now enter
Enter the
Enter the
Enter the
Enter the
Enter the

Enter the

For x = 3

number of terms (Maximum 20): 5 «

values of x upto 2 decimal points.
value of x1: 1.22 «

value of x2: 2.33
value of x3: 3.44
value of x4: 4.55
value of x5: 5.66

tttt

the values of y upto 4 decimal points.
value of y1: 100.1111 «

value of y2: 200.2222
value of y3: 300.3333
value of y4: 400.4444
value of y5: 500.5555

tttt

value of x for which the value of y is wanted: 3.89

.89, y = 340.9189
Thank you.

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4),and
(x5, y5). Using these data points you are required to create the new data points (xi,
yi) such that (x1 < xi < x5)and (y1 < yi < y5).

In Laplace Everett’s Method of Interpolation, the formula shown in Figure 11-7 is
used to construct the new data points. Here f(x) is polynomial of the nth degree. It gives
quite accurate results whenu > 0.5.

384

CHAPTER 11 NUMERICAL METHODS

¢ 1 1
- {uiey LD v

, @DEHDUE-DE-D) 1>+,A,}

51
+ {wf(U) + (—W I l):(w l)a\"}f(—])

. (w+2)(w+Dw(w-1)(w-2) AT(2) + ..
5!

where y = f(x) is a function of x which assumes the values f'(a), f(a +h), f(a+2h), ...,
f(a + nh) for (n + 1) equidistant values a,a + h, a + 2h, ..., a nh of the independent
variable x. Also,f(a th)-f(a) = Af(a), u = (x-a)/h,andw=1-u

Figure 11-7. Formula for Laplace Everett’s Method of interpolation

LOC 2 defines the symbolic constant MAX with the value of 20. LOCs 3-45 define the
function main(). In LOCs 5-7 few variables are declared. LOC 9 asks the user to enter the
number of terms. The number entered by user is read in the LOC 10 and it is stored in
the variable terms. LOC 11 asks the user to enter the values of x. The values entered by
user are read in the for loop spanning the LOCs 12-15. LOC 16 asks the user to enter the
values of y. The values entered by user are read in the for loop spanning the LOCs 17-20.

LOC 21 asks the user to enter the value of x for which the value of y is wanted. The
value - a floating point number - entered by user is read in the LOC 22 and stored in the
variable x. In the LOCs 23-42, the corresponding value of y is computed using the standard
formula for Laplace Everett’s Method of Interpolation stated above. Thus (x, y) represents
the newly constructed data point. The result is displayed on the screen in the LOC 43.

11-12. To Construct the New Data Points Using
Lagrange’s Method of Interpolation

Problem

You want to construct the new data points using Lagrange’s Method of Interpolation.
Merits:

e Doesnotrequire function values at equal intervals.
Demerits:

e Degree of the approximating polynomial must be chosen at the outset.

385

CHAPTER 11 I NUMERICAL METHODS

Solution

Write a C program that constructs the new data points using Lagrange’s Method of

Interpolation, with the following specifications:
e Let the maximum number of terms be 20.
e Accept the values of x upto 2 decimal point accurate.

e Accept the values of y upto 4 decimal point accurate.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C:\Code with the filename numrc12.c:

/* This program implements Lagrange's Method of Interpoloation. */

/*

#include<stdio.h> /*
/*

define MAX 20 /*
/*

void main() /*
{ r*
int i, j, terms; /*
float ax[MAX], ay[MAX], nr, dr, x, y = 0; /*
printf("\nImplementation of Interpolation by Lagrange's Method."); /*
printf("\nEnter the number of terms (Maximum 20): "); /*
scanf("%d", &terms); /*
printf("\nEnter the values of x upto 2 decimal points.\n"); /*
for (i=0; i < terms; i++) { /*
printf("Enter the value of x%d: ", i+1); /*
scanf("%f", &ax[i]); /*

} r*
printf("\nNow enter the values of y upto 4 decimal points.\n"); /*
for (i=0; i < terms; i++) { /*
printf("Enter the value of y%d: ", i+1); /*
scanf("%f", &ay[i]); /*

} r*
printf("\nEnter the value of x for which the value of y is wanted: "); /*
scanf("%f", &x); /*
for(i=0; i < terms; i++) { /*
nr = 1; /*

dr = 1; /*
for(j=0; j < terms; j++) { /*
if(j 1= 1) { /*

nr = nr * (x - ax[j]); /*

dr = dr * (ax[i] - ax[j]); /*

386

BL
L1
BL
L2
BL
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11 NUMERICAL METHODS

} /% 129 */

} /* L30 */

y =y + ((nr/dr) * ay[i]); /* L31 */

/* 132 */

printf("\nFor x = %6.2f, y = %6.4f", x, y); /* L33 */
printf("\nThank you.\n"); /* L34 */

} /* L35 */

Compile and execute this program. A run of this program is given below:

Interpolation by Lagrange's Method.
Enter the number of terms (Maximum 20): 5 «

Enter the values of x upto 2 decimal points.
Enter the value of x1: 1.22 «

Enter the value of x2: 2.33
Enter the value of x3: 3.44
Enter the value of x4: 4.55
Enter the value of x5: 5.66

tttt

Now enter the values of y upto 4 decimal points.
Enter the value of y1: 100.1111

Enter the value of y2: 200.2222
Enter the value of y3: 300.3333
Enter the value of y4: 400.4444
Enter the value of y5: 500.5555

tttt

Enter the value of x for which the value of y is wanted: 1.98

For x = 1.98, y = 168.6557
Thank you.

How It Works

In interpolation, instead of an equation of type y = f(x), a set of few data points is
provided and using this set you are required to construct the new data points. Suppose
the following five data points are provided: (x1, y1), (x2, y2), (x3, y3), (x4, y4),and
(x5, y5). Using these data points you are required to create the new data points (xi, yi)
such that (x1 < xi < x5)and (y1 < yi < y5).

In Lagrange’s Method of Interpolation, the formula shown in Figure 11-8 is used to
construct the new data points. Here f(x) is polynomial of the nth degree.

387

CHAPTER 11 I NUMERICAL METHODS

HK-x)(x-%)...(x-X)
f(x) = = f(x)
(%= %) (%, = %) e (%, - %)

(X—xu)(X—X__.] e (X=X)
x)(x—x) (x -X)

o 3 5c 38 5T 5 3y

i-‘(x“)
(=X (X = %) e (X=X,)
where £(x,), [(x), ..., [(x) be (n+1) entries ofa function y = £(x), where (x) is a
polynomial of con‘espondmﬂ to arguments X, X, X, ..., X .

Figure 11-8. Formula for Lagrange’s Method of interpolation

LOC 2 defines the symbolic constant MAX with the value of 20. LOCs 3-35 define the
function main(). In LOCs 5-6 few variables are declared. LOC 8 asks the user to enter
the number of terms. The number entered by user is read in the LOC 9 and it is stored in
the variable terms. LOC 10 asks the user to enter the values of x. The values entered by
user are read in the for loop spanning the LOCs 11-14. LOC 15 asks the user to enter the
values of y. The values entered by user are read in the for loop spanning the LOCs 16-19.

LOC 20 asks the user to enter the value of x for which the value of y is wanted. The
value - a floating point number - entered by user is read in the LOC 21 and stored in the
variable x. LOCs 22-32 consist of a for loop. In this for loop the corresponding value of
y is computed using the standard formula for Lagrange’s Method of Interpolation stated
above. Thus (x, Yy) represents the newly constructed data point. The result is displayed
on the screen in the LOC 33.

11-13. To Compute the Value of Integration Using

Trapezoidal Method of Numerical Integration
Problem

You want to compute the value of integration using Trapezoidal Method of Numerical
Integration.
Merits:

e Based on simple logic. Easy to implement.
e Gives accurate results for piecewise linear function.
Demerits:

e Notas accurate as Simpson’s method when the underlying
function is smooth.

e Convergence is slow compared to Simpson’s method.

388

CHAPTER 11 = NUMERICAL METHODS

Solution

Write a C program that computes the value of integration using Trapezoidal Method of

Numerical Integration, with the following specifications:

e Program defines the function trapezoid() that computes the
value of f(x).

e Width of trapezium should be such that maximum number of
subintervals be 50.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc13.c:

/* This program implements Trapezoidal Method of Numerical Integration.

/*

#include<stdio.h> /*
/*

define MAX 50 /*
/*

float trapezoid(float x) /*
{ r*
return (1/(1+x*x)); /*

} r*
/*

void main() /*
{ *
int i, num; /*
float a, b, h, x[MAX], y[MAX], sumOdd, sumEven, result; /*
printf("\nTrapezoidal Method of Numerical Integration."); /*
printf("\nIntegrand: f(x) = 1/(1+x*x) \n"); /*
printf("\nEnter the lower limit of integration, a : "); /*
scanf("%f", 8a); /*
printf("Enter the upper 1limit of integration, b : "); /*
scanf("%f", 8&b); /*
printf("Enter the width of trapezium, h : "); /*
scanf("%f", 8&h); /*
num = (b - a) / h; /*
if(num%2 == 1) /*
num = num + 1; /*
h=(b-a)/ num /*

printf("Refined value of h, the width of trapezium : %5.3f", h); /*

printf("\nRefined value of num, the number of trapaziums : %d\n", num); /*
for(i=0; i <= num; i++) { /*
x[i] =a + 1 * h; /*
y[i] = trapezoid(x[i]); /*
} r*

BL
L1
BL
L2
BL
L3
L4
L5
L6
BL
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

389

CHAPTER 11 I NUMERICAL METHODS

sumOdd = 0; /* 129 */
sumEven = 0; /* L30 */
for(i=1; i < num; i++) { /* L31 */
if(i%2 == 1) /* 132 */
sumOdd = sumOdd + y[i]; /* L33 */
else /* L34 */
sumEven = sumEven + y[i]; /* L35 */

} /* L36 */
result = h / 3 * (y[0o] + y[num] + 4 * sumOdd + 2 * sumEven); /* L37 */
printf("\nValue of Integration : %5.3f", result); /* L38 */
printf("\nThank you.\n"); /* 139 */
} /* L40 */

Compile and execute this program. A run of this program is given below:

Trapezoidal Method of Numerical Integration.
Integrand: f(x) = a/(1+x*x)

Enter the lower limit of integration, a : 1 «~
Enter the upper limit of integration, b : 4 «~
Enter the width of trapezium, h : 0.1 «

Refined value of h, the width of trapezium : 0.100
Refined value of num, the number of trapeziums : 30

Value of Integration : 0.540
Thank you.

How It Works

In numerical integration, you are given a set of tabulated values of the integrand f(x)

and you are required to compute the value of [f(x)dx. Geometrically, integration can be
represented as area enclosed between the curvey = f(x), the X-axis, and the linesy = a
andy = bwhere a and b are lower and upper limits of integration respectively. This area
is divided into n number of strips parallel to Y-axis and width of each strip is h. Figure 11-9
shows the formula for Trapezoidal Method of Numerical Integration.

x_+nh

f(x) dx J}th+yg+ln/—x—nn—>.‘ﬂ

X
0

The limits of integration ‘a’ and ‘b’ are typically writtenas a=x_ and b=x_+nh. The

‘h’ represents the width of strip and the “n’ represents the number of strips. Area of first

strip 1s X * y,, arca of second strip is x, * y,,, and arca of n® .
t

stripis x_* y.

Also, x =x +h, x,=x, +2h,..,x =x +nh

Figure 11-9. Formula for Trapezoidal Method of numerical integration

390

CHAPTER 11 = NUMERICAL METHODS

In LOC 2, the symbolic constant MAX is defined with the value of 50. LOCs 3-6 consist
of definition of the function trapezoid(). LOCs 7-40 consist of definition of the function
main().In LOCs 9-10 few variables are declared. LOC 13 asks the user to enter the lower
limit of integration. The number entered by user is stored in the float variable a, in the
LOC 14. LOC 15 asks the user to enter the upper limit of integration. The number entered
by user is stored in the float variable b, in the LOC 16.

LOC 17 asks the user to enter the width of trapezium. The number entered by user
is stored in the float variable h, in the LOC 18. In the LOCs 19-37, the result is computed
using the standard formula for Trepezoidal Method of Numerical Integration, stated
above. LOC 38 displays the result on the screen.

11-14. To Compute the Value of Integration Using

Simpson’s 3/8th Method of Numerical Integration
Problem

You want to compute the value of integration using Simpson’s 3/8th Method of Numerical
Integration.
Merits:

e Accuracy is good compared to other methods.
Demerits:

e Works under the constraint that the given interval of integratin
must be divided into sub-intervals whose number n is mutliple of 3.

Solution

Write a C program that computes the value of integration using Simpson’s 3/8th Method
of Numerical Integration, with the following specifications:

e Program defines the function simpson() that computes the value
of f(x).

e Let the maximum number of subintervals be 50.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc14.c:

/* This program implements Simpson's 3/8th Method of Numerical Integration. */

/* BL */
#include<stdio.h> /* L1 */
/* BL */
define MAX 50 /* L2 */

391

CHAPTER 11 I NUMERICAL METHODS

Compile and execute this program. A run of this program is given below:

Simpson's 3/8th Method of Computation of Integral.
Integrand: f(x) = 1/(1+x*x)

Enter the lower limit of integration, a : 1 «~
Enter the upper limit of integration, b : 4 «~
Enter the number of subintervals, num : 50 «

/* BL

float simpson(float x) /* L3
/* L4

return (1/(1+x*x)); /* L5

} /% L6
/* BL

void main() /* L7
{ /% L8
int i, j, num; /* L9
float a, b, h, x[MAX], y[MAX], sum, result = 1; /* L10
printf("\nSimpson's 3/8th Method of Computation of Integral."); /* Li1
printf("\nIntegrand: f(x) = 1/(1+x*x) \n"); /* L12
printf("\nEnter the lower limit of integration, a : "); /* L13
scanf("%f", &a); /* L14
printf("Enter the upper limit of integration, b : "); /* L15
scanf("%f", &b); /* L16
printf("Enter the number of subintervals, num : "); /* L17
scanf("%d" ,8&num); /* 118

h = (b - a)/num; /* L19
sum = 0; /* L20
sum = simpson(a) + simpson(b); /* L21
for(i=1; i < num; i++) { /* 122
if(i%3 == 0) { /* L23
sum += 2*simpson(a + i*h); /* L24

} /* L25
else { /* L26

sum += 3*simpson(a + i*h); /* L27

} /* 128

} /* L29
result = sum * 3 * h / §; /* 130
printf("\nValue of Integration : %5.3f", result); /* 131
printf("\nThank you.\n"); /* 132

} /* L33

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Value of Integration : 0.540
Thank you.

392

CHAPTER 11 NUMERICAL METHODS

How It Works

In numerical integration, you are given a set of tabulated values of the integrand (x)

and you are required to compute the value of [f (x)dx. Geometrically, integration can be
represented as area enclosed between the curvey = f(x), the X-axis, and the linesy = a
andy = bwhere a and b are lower and upper limits of integration respectively. This area is
divided into h number of strips parallel to Y-axis and width of each strip is h. Figure 11-10
shows the formula for Simpson’s 3/8th Method of Numerical Integration.

x,+nh

3
f(x)dx = % [~y 30 Y, R S b Yooy 55)

X,
0

+2F,+¥t oty)]

The limits of integration ‘a” and ‘b’ are typically writtenas a=x_ and b=x_ +nh. The
“h’ represents the width of strip and the ‘n’ represents the number of strips. Area of first
strip is X, * y,, area of second strip is X, ¥ y,,, and area of n" strip is x * y .

Also, x, =x +h, x,=x +2h, ..., x =x, +nh.

Figure 11-10. Formula for Simpson’s 3/8th Method of numerical integration

In LOC 2, the symbolic constant MAX is defined with the value of 50. LOCs 3-6 consist
of definition of the function simpson(). LOCs 7-33 consist of definition of the function
main().In LOCs 9-10 few variables are declared. LOC 13 asks the user to enter the lower
limit of integration. The number entered by user is stored in the float variable a, in the
LOC 14. LOC 15 asks the user to enter the upper limit of integration. The number entered
by user is stored in the float variable b, in the LOC 16.

LOC 17 asks the user to enter the number of subintervals. The number entered
by user is stored in the int variable num, in the LOC 18. In the LOCs 19-30, the result
is computed using the standard formula for Simpson’s 3/8th Method of Numerical
Integration, stated above. LOC 31 displays the result on the screen.

11-15. To Compute the Value of Integration Using
Simpson’s 1/3rd Method of Numerical Integration
Problem

You want to compute the value of integration using Simpson’s 1/3rd Method of Numerical
Integration.
Merits:

e Computations are less cumbersome compared to other methods.

393

CHAPTER 11 I NUMERICAL METHODS

Demerits:

e Works under the constraint that the given interval of integration
must be divided into sub-intervals whose number n is even.

Solution

Write a C program that computes the value of integration using Simpson’s 1/3rd Method

of Numerical Integration, with the following specifications:

e Program defines the function simpson() that computes the
value of f(x).

e Let the maximum number of subintervals be 50.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc15.c:

/* This program implements Simpson's 1/3rd Method of Numerical Integration.

#include<stdio.h>
define MAX 50
float simpson(float x)

return (1/(14x*x));

}
void main()

int i, j, num;
float a, b, h, x[MAX], y[MAX], sum, result = 1;

printf("\nSimpson's 1/3rd Method of Computation of Integral.");

printf("\nIntegrand: f(x) = 1/(1+x*x) \n");
printf("\nEnter the lower limit of integration, a : ");
scanf("%f", &a);

printf("Enter the upper limit of integration, b : ");
scanf("%f", 8b);

printf("Enter the number of subintervals, num : ");
scanf("%d" ,&num);

h = (b - a)/num;

sum = 0;

sum = simpson(a) + 4 * simpson(a + h) + simpson(b);
for(i=3; i < num; i+=2) {

394

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

BL
L1
BL
L2
BL
L3
L4
L5
L6
BL
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11 ' NUMERICAL METHODS

sum += 2 * simpson(a + (i-1) * h) + 4 * simpson(a + i * h); /* L23 */

} /% L24 */
result = sum * h / 3; /* L25 */
printf("\nValue of Integration : %5.3f", result); /* 126 */
printf("\nThank you.\n"); /* L27 */
} /¥ 128 */

Compile and execute this program. A run of this program is given below:

Simpson's 1/3rd Method of Computation of Integral.
Integrand: f(x) = 1/(14x*x)

Enter the lower limit of integration, a : 1«
Enter the upper limit of integration, b : 4 «~
Enter the number of subintervals, num : 50 «

Value of Integration : 0.540
Thank you.

How It Works

In numerical integration, you are given a set of tabulated values of the integrand f(x)

and you are required to compute the value of [f (x)dx. Geometrically, integration can be
represented as area enclosed between the curvey = f(x), the X-axis, and the linesy = a
andy = bwhere a and b are lower and upper limits of integration respectively. This area is
divided into n number of strips parallel to Y-axis and width of each strip is h. Figure 11-11
shows the formula for Simpson’s 1/3rd Method of Numerical Integration.

x,+nh

I
f(x)dx Tll(." V) FAQ Y HY,) +2(, Y Y,)]

n-1

Xo

The limits of integration ‘a” and ‘b’ are typically writtenas a=x_, and b=x_ +nh. The
‘h’ represents the width of strip and the “n’ represents the number of strips. Area of first

strip 1s x, * y , area of second strip is x, * y,, and area of n" strip is x_* y .

Also, x, =x,+h, x,=x +2h,..,x =x +nh

Figure 11-11. Formula for Simpson’s 1/3rd Method of numerical integration

395

CHAPTER 11 I NUMERICAL METHODS

In LOC 2, the symbolic constant MAX is defined with the value of 50. LOCs 3-6 consist
of definition of the function simpson(). LOCs 7-28 consist of definition of the function
main().In LOCs 9-10 few variables are declared. LOC 13 asks the user to enter the lower
limit of integration. The number entered by user is stored in the float variable a, in the
LOC 14. LOC 15 asks the user to enter the upper limit of integration. The number entered
by user is stored in the float variable b, in the LOC 16.

LOC 17 asks the user to enter the number of subintervals. The number entered
by user is stored in the int variable num, in the LOC 18. In the LOCs 19-25, the result
is computed using the standard formula for Simpson’s 1/3rd Method of Numerical
Integration, stated above. LOC 26 displays the result on the screen.

11-16. To Solve a Differential Equation Using
Modified Euler’s Method

Problem

You want to solve a differential equation using Modified Euler’s Method.
Merits:

e Improved Accuarcy. Error is of the order of h*3.
Demerits:

e Needs to perform more computations compared to other
methods.

Solution

Write a C program that solves a differential equation using Modified Euler’s Method, with
the following specifications:

e Value of subinterval should be such that maximum number of
subintervals be 50.

¢ Result should consist of at least three pairs of values of x and y.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc16.c:

/* This program implements Modified Euler's Method to Solve a Differential Equation. */

/* BL */
#include<stdio.h> /* L1 */
/* BL */
define MAX 50 /* L2 */
/* BL */

396

float euler(float p, float q)

{
float r;

r=p*p+aq;
return(r);

}

void main()

{

int i =1, j, k;

float x[MAX], y[MAX], storei[MAX], store2[MAX];

float b, h, u, v, w;

CHAPTER 11

NUMERICAL METHODS

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

printf("\nModified Euler's Method to Solve a Differential Equation."); /*
printf("\nFunction for calculation of slope: y' = x * x + y\n"); /*

printf("Enter the initial value of the variable x, x0: ");

scanf("%f", &x[0]);

printf("Enter the final value of the variable x, xn: ");

scanf("%f", 8b);

printf("Enter the initial value of the variable y, yo: ");

scanf("%f", &y[0]);

printf("Enter the value of subinterval, h: ");

scanf("%f", 8&h);
store2[0] = y[o0];
while(x[i-1] < b) {
w = 100.0;
x[i] = x[i-1] + h;
store1[i] = euler(x[i-1], y[i-1]);
k =0;
while(w > 0.0001) {
u = euler(x[i], store2[k]);
v = (storei[i] + u)/2;
store2[k+1] = y[i-1] + v * h;
w = store2[k] - store2[k+1];
w = fabs(w);
k =k + 1;
}
y[i] = store2[k];
i=1+1;
}
printf("\nThe Values of X and Y are: \n");
printf("\nX-values Y-values\n");
for(j=0; j < i; j++) {
printf("%f %n”, x5, y[31);

}
printf("\nThank you.\n");

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L3

L4

Ls

L6

L7

L8

BL

L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
131
L32
133
L34
L35
L36
L37
138
139
L40
L41
L42
L43
L44
L45
L46
L47

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

397

CHAPTER 11 I NUMERICAL METHODS

Compile and execute this program. A run of this program is given below:

Modified Euler's Method to Solve a Differential Equation.
Function for calculation of slope: y' = x * x +y

Enter the initial value of the variable x, x0: 0 «
Enter the final value of the variable x, xn: 0.1 «
Enter the initial value of the variable y, yo: 1«
Enter the value of subinterval, h: 0.025 «

The Values of X and Y are:

X-values Y-values
0.000000 1.000000
0.025000 1.025008
0.050000 1.050359
0.075000 1.076091
0.100000 1.102237
Thank you.
How It Works

Formula for Modified Euler’s Method is given below:

y (x + h) =y(x) +h*f(x +h/2, y+ hf/2)
where,

dy/dx = f(x,y)

is the differential equation to be solved subjected to the boundary condition:

y(x0) = yo

Also, h is nothing but the small increment in x. In this recipe, the differential
equation to be solved is:

dy/dx = x * x +y

In LOC 2, the symbolic constant MAX is defined with the value of 50. LOCs 3-8 consist
of definition of the function euler(). LOCs 9-47 consist of definition of the function
main().In LOCs 11-13 few variables are declared.

LOC 16 asks the user to enter the initial value of x. The number entered by user is
stored in the first cell of float type array x, i.e., in x[0], in LOC 17. LOC 18 asks the user
to enter the final value of x. The number entered by user is stored in the float variable b,
in LOC 19. In LOC 20, user is asked to enter the initial value of y. The number entered by
user is stored in the first cell of the float type array y, i.e., in y[0], in LOC 21. LOC 22 asks
the user to enter the value of subinterval. The number entered by user is stored in the
float variable h, in LOC 23.

In the LOCs 24-40, the results are computed using the standard formulae for
Modified Euler’s Method to solve a differential equation. In the LOCs 41-45, the results
are displayed on the screen.

398

CHAPTER 11 = NUMERICAL METHODS

11-17. To Solve a Differential Equation Using
Runge Kutta Method

Problem

You want to solve a differential equation using Runge Kutta Method.
Merits:

e One step method. Global error is of the same order as local order.
e Derivative of f(x) is not needed
Demerits:

¢ Method does not contain in itself any simple means for estimating
the error or for detecting computation mistakes.

e Each step requires four susbstitutions into the differential
equation. For the complicated equations, this demands excessive
amount of computations.

Solution

Write a C program that solves a differential equation using Runge Kutta Method, with the
following specifications:

e Value of subinterval should be accurate upto 2 decimal points.

¢ Result should consist of at least three pairs of values of x and y.

The Code

Code of C program written with these specifications is given below. Type the following
C program in a text editor and save it in the folder C: \Code with the filename numrc17.c:

/* This program implements Runge Kutta Method to Solve a Differential
Equation. */

/* BL */

#include<stdio.h> /* L1 */
/* BL */

#define F(x,y) (2*x-y)/(x+y) /* L2 */
/* BL */

void main() /* L3 */
{ /* L4 */
int i, n; /* L5 */
float x0, yo, h, xn, ki, k2, k3, k4, x, y, k; /* L6 */
printf("\nRunge Kutta Method to Solve a Differential Equation."); /* L7 */
printf("\nEquation: y' = (2*x-y)/(x+y) "); /* L8 */
printf("\nEnter initial value of the variable x, x0: "); /* L9 */

399

CHAPTER 11

NUMERICAL METHODS

scanf("%f", &x0);

printf("Enter initial value of the variable y, yo: ");
scanf("%f", &y0);

printf("Enter final value of the variable x, xn: ");
scanf("%f", &xn);

printf("Enter the subinterval, h: ");

scanf("%f", 8&h);

n = (xn - x0)/h;

X = X0;

y = y0;

i=o0

while (i
ki = h

k2
k3
k4

)

<=n) {

* F(%,y);

h * F(x+h/2.0, y+k1/2.0);
h * F(x+h/2.0, y+k2/2.0);
h * F(x+h, y+k3);

k = (k1 + (k2+k3) * 2.0 + k4) / 6.0;
printf("\nX = %f Y = %f", x, y);

X =
y =
i=

}

X + h;
y +k;
i+ 1

printf("\n\nThank you.\n");

}

Compile and execute this program. A run of this program is given below:

Runge Kutta Method to Solve a Differential Equation.
Equation: y' = (2*x-y)/(x+y)

Enter initial value of x, x0: 0 «

Enter initial value of y, yo: 1«

Enter final value of x, xn: 0.25 «

Enter the subinterval, h: 0.05 +

X = 0.000000 Y = 1.000000
X = 0.050000 Y = 0.950000
X = 0.100000 Y = 0.907856
X = 0.150000 Y = 0.873379
X = 0.200000 Y = 0.846212
Thank you.

400

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CHAPTER 11 = NUMERICAL METHODS

How It Works

Formula for Runge Kutta Method is given below:
y (x +h) =y(x) +h*£(x, y)
where,
dy/dx = f(x,y)
is the differential equation to be solved subjected to the boundary condition:

y(x0) = yo

Also, h is nothing but the small increment in x. In this recipe, the differential
equation to be solved is:

dy/dx = (2*x-y)/(x+y)

LOC 2 defines the symbolic constant F(x, y).LOCs 3-33 consist of definition of the
function main(). In the LOCs 5-6 few variables are declared. LOC 9 asks the user to enter
the initial value of x. The number entered by user is stored in the float variable x0, in
LOC 10. LOC 11 asks the user to enter the initial value of y. The number entered by user is
stored in the float variable y, in LOC 12. LOC 13 asks the user to enter the final value of x.
The number entered by user is stored in the float variable xn, in LOC 14.

LOC 15 asks the user to enter the value of subinterval. The number entered by user
is stored in the float variable h, in LOC 16. The results are computed in the LOCs 17-31
using the standard formulae of Runge Kutta Method to solve a differential equation. The
results are displayed on the screen in the LOC 27.

401

APPENDIX A

Reference Tables

Table A-1. Escape Sequences in C

Character Escape Sequence ASCll value
bell (alert) \a 007
backspace \b 008
tab \t 009
newline (line feed) \n 010
form feed \f 012
carriage return \r 013
double quote, inserts a double quote \" 034
single quote, inserts a single quote \' 039
question mark, inserts a question mark \? 063
backslash, inserts a backslash \\ 092
null \0 000

Table A-2. Basic Data Types in C

Basic Data Type Size in Bits Range of Values

char 8 -128to 127

int 16 -32,768 to 32,767

float 32 -3.4e-38to -3.4e+38, 0, 3.4e-38 to 3.4e+38

double 64 -1.7e-307 to -1.7e+308, 0, 1.7e-307 to 1.7e+308

© Shirish Chavan 2017 403

S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5

APPENDIX A REFERENCE TABLES

Table A-3. Qualified Basic Data Types in C

Basic Data Type Size in Bits Range of Values

signed char 8 -128 to 127

unsigned char 8 0to 255

signed int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short int or signed short int 8 -128to 127

unsigned short int 8 0to 255

long int or signed long int 32 -2,147,483,648 to 2,147,483,647
unsigned long int 32 0 to 4,294,967,295

long double 80 -3.4e-4932 to -1.1e+4932, 0, 3.4e-4932

to 1.1e+4932

Table A-4. Additional Basic Data Types in C

Additional Basic Data Type Size in Bits Range of Values
Void 0 No value
Enum 16 -32,768 to 32,767

Table A-5. Number of Digits and Digits in the Various Number Systems

System No. of Digits Digits

Binary 0,1

Octal 8 0,1,2,3,4,5,6,7

Decimal 10 0123,4,56,7,8,9

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

404

Table A-6. Prefixes for Variable Names in C as per

Hungarian Naming Convention

Data Type / Qualifiers Prefix
char chr
int int
float flt
double dbl
unsigned un
signed sgn
short sht
long Ing

Table A-7. Arithmetic Operators in C

APPENDIXA " REFERENCE TABLES

No. Operator Meaning Example Result
1 + Addition 5+3 8
2 - 1) Subtraction 5-3 2
2) Unary minus -(6) -6
-(-8) 8
3 * Multiplication 5%3 15
4 / 1) Integer Division 5/3 1
2) Floating Point Division 5.0/3.0 1.67
5 % Modulus 5%3 2

405

APPENDIX A REFERENCE TABLES

Table A-8. Precedence and Associativity of Operators in C

Operators Associativity
O ->. left to right
!~ ++-- + - * & (type) sizeof right to left
/% left to right
+ - left to right
<< >> left to right
<<= >>= left to right
== I= left to right
& left to right
A left to right
| left to right
&& left to right
I left to right
% right to left
=+=-=%= [=%=&=N"=|=<<=>>= right to left
, left to right

Table A-9. Relational and Equality Operators in C

Operator Name Example Result Meaning
> Greater than 9>1 1 True
2>9 0 false
>= Greater than or equal to 8>=8 1 True
6>=1 1 true
2>=9 0 false
< Less than 1<9 1 True
8<3 0 false
<= Less than or equal to 1<=1 1 true
2<=9 1 true
7<=2 0 false
== Equal to 4==4 1 true
5== 0 false
1= Not equal to 31=8 1 true
7=7 0 false

406

Table A-10. Logical Operators in C

APPENDIXA " REFERENCE TABLES

Operator Name Example Result Meaning
&& logical AND 1&&1 1 True
1&&0 0 False
0&&1 0 False
0&&0 0 False
I logical OR 11 1 True
1/|0 1 true
0|1 1 true
0jlo 0 false
! logical NOT 1 0 false
10 1 true

Table A-11. Truth Table Used in Logic

Operation Result
true AND true true
true AND false false
false AND true false
false AND false false
true OR true true
true OR false true
false OR true true
false OR false false
NOT true false
NOT false true

407

APPENDIX A REFERENCE TABLES

Table A-12. Bitwise Operators in C

Operator Name Description

~ Bitwise unary NOT It inverts the value of bit

& Bitwise AND Result is 1 if both bits are 1, otherwise result is 0.

| Bitwise OR Result is 0 if both bits are 0, otherwise resultis 1.

A Bitwise XOR Result is 1 if one bit is 1 and other bit is 0, otherwise
resultis 0

<< Left shift Shift the bits to left and fill the vacated bits with 0.

>> Right shift Shift the bits to right and : (a) in case of unsigned

quantity fills the vacated bits with 0, and (b) in
case of signed quantity fills the vacated bits with 0
(logical shift) on some machines and with sign bits
(arithmetic shift) on other machines.

Table A-13. Bitwise Operations Using the Operators ~, &, |, and »

M N ~M M&N M|N MAN
1 1 0 1 1 0
0 0 1 0 0 0
1 0 0 0 1 1
0 1 1 0 1 1

Table A-14. Assignment Operators in C

Operator Example Expanded Version, if any
= var = expr No expansion
+= var += expr var = var + expr
-= var -= expr var = var - expr
*= var *= expr var = var * expr
/= var /= expr var = var / expr
Y%= var %= expr var = var % expr
&= var &= expr var = var & expr
|= var |= expr var = var | expr
A= var A= expr var = var A expr
>>= var >>= expr var = var >> expr
<<= var <<= expr var = var << expr

408

APPENDIXA " REFERENCE TABLES

Table A-15. Permissible sizes of one-dimensional
arrays for various basic types

Type Range

char 1 <=N<=65535
int 1 <=N<=32767
float 1<=N<=16383
double 1<=N<=8191

Table A-16. Table of Standard Input and Ouput Functions

Function Formatted/Unformatted Purpose

scanf() formatted input of all types
printf() formatted output of all types
getchar() unformatted for char type input
gets() unformatted for string input
putchar() unformatted for char type output
puts() unformatted for string output

Table A-17. Conversion Specifications (C.S.) for function scanf()

C.S. Input Data and Supported Types

%cC character. The default width of input field is 1. White space characters are also
treated as data by this conversion specification. Types: char.

%d decimal integer. Types: short int, int, signed int, signed short int, unsigned
short int.

%hd decimal integer. Types: short int, signed short int, unsigned short int.

%l1d decimal integer. Types: long int, signed long int.

%i integer. The integer may be octal (leading 0) or hexadecimal (leading
0x or 0X). Types: short int, int, signed int, signed short int, unsigned short int.

%li integer. The integer may be octal (leading 0) or hexadecimal (leading
0x or 0X). Types: long int, signed long int.

%0 octal integer, with or without leading zero. Types: unsigned short int, unsigned int.

%lo octal integer, with or without leading zero. Types: unsigned long int.

%u unsigned decimal integer. Types: unsigned int.

%lu decimal integer. Types: unsigned long int.

%X hexadecimal integer, with or without leading 0x or 0X. unsigned short int,

unsigned int.

(continued)

409

APPENDIX A REFERENCE TABLES

Table A-17. (continued)

C.S. Input Data and Supported Types

%lx hexadecimal integer, with or without leading 0x or 0X. unsigned long int.

%S string of non-white space characters which is not delimited by double quotes.

%f floating-point number. Accepts number in standard form. Types: float.

%e floating-point number. Accepts number in exponent form. Types: float.

%g floating-point number. Accepts number in exponent form. Types: float.

%lf floating-point number. Accepts number in standard form. Types: double.

%le floating-point number. Accepts number in exponent form. Types: double.

%lg floating-point number. Accepts number in exponent form. Types: double.

%Lf floating-point number. Accepts number in standard form. Types: long double.

%Le floating-point number. Accepts number in exponent form. Types: long double.

%Lg floating-point number. Accepts number in exponent form. Types: long double.

%p pointer value as printed by printf(“%p”);

%n writes into the argument the number of characters read so far by this call.

%|[...] matches the longest non-empty string of input characters from the set between
square brackets.

%[A...] matches the longest non-empty string of input characters not from the set

between square brackets.

Table A-18. Conversion Specifications (C.S.) for function printf()

C.S. Output Data and Supported Types

%cC character. Types: char.

%d decimal integer. Types: short int, int, signed int, signed short int, unsigned
short int.

%hd decimal integer. Types: short int, signed short int, unsigned short int.

%ld decimal integer. Types: long int, signed long int.

%i octal, hexadecimal, or decimal integer. Types: short int, int, signed int,
signed short int, unsigned short int.

%li octal, hexedecimal, or decimal integer. Types: long int, signed long int.

%0 octal integer. Types: unsigned short int, unsigned int.

%lo octal integer. Types: unsigned long int.

%u unsigned decimal integer. Types: unsigned int.

%lu decimal integer. Types: unsigned long int.

410

(continued)

APPENDIXA " REFERENCE TABLES

Table A-18. (continued)

C.S. Output Data and Supported Types

%X hexadecimal integer. unsigned short int, unsigned int.

%lx hexadecimal integer. unsigned long int.

%s string of non-white space characters which is not delimted by double quotes.

%f floating-point number. Displays number in standard form. Types: float.

%e floating-point number. Displays number in exponent form. Types: float.

%g floating-point number. Displays number in exponent form. Suppresses
trailing zeros after decimal point. Types: float.

%lf floating-point number. Displays number in standard form. Types: double.

%le floating-point number. Displays number in exponent form. Types: double.

%lg floating-point number. Displays number in exponent form. Suppresses
trailing zeros after decimal point. Types: double.

%Lf floating-point number. Displays number in standard form. Types: long double.

%Le floating-point number. Displays number in exponent form. Types: long double.

%Lg floating-point number. Displays number in exponent form. Suppresses

trailing zeros after decimal point. Types: long double.

Table A-19. Flags used in conversion specifications in function printf()

Flag Meaning

- (hyphen) It causes the data to be displayed be left justified within its field.
Spaces are postfixed to data.

+ It causes a positive or negative sign to be prefixed to a numeric datum.
Without this flag, only negative datums are prefixed with sign.

0 (zero) It causes leading zeros to appear instead of leading blanks to fill the
extra space. Applies only to numeric datums which are right justified.

"' (blank space) It causes a blank space to be prefixed to a positive numeric datum.
This flag is overridden by + flag, if both flags are present.

When used with conversion specifications %o and %x, it causes the
octal and hexadecimal datums to be preceded by 0 and 0x respectively.

When used with conversion specifications %f, %e, and %g, it causes a
decimal point to be present in all floating-point datums, even if datum
is a whole number. It also prevents the truncation of trailing zeros
after decimal point in conversion specification %g.

411

APPENDIX A REFERENCE TABLES

Table A-20. Various File Opening Modes in C

Mode string Description

“._n

T

“ rb ”

“ rtv

“.,.n

I+

ur+bn

“ ”

r+t

U, n

“Wb"

«u. ”
wt

“W+b”

”

w+t

]

uabn

”

«, at

ua+bn

”

a+t

Existing text file is opened for reading only. If specified text file doesn’t
exist then error is reported.

Existing binary file is opened for reading only. If specified binary file
doesn’t exist then error is reported.

Same as “1’.

Existing text file is opened for reading as well as writing. If specified text
file doesn’t exist then error is reported.

Existing binary file is opened for reading as well as writing. If specified
binary file doesn’t exist then error is reported.

Same as “r+”.

Contents of specified text file are deleted and then it is opened for
writing. If specified text file doesn’t exist then it is created.

Contents of specified binary file are deleted and then it is opened for
writing. If specified binary file doesn’t exist then it is created.

Same as “w’”.

Contents of specified text file are deleted and then it is opened for writing
as well as reading. If specified text file doesn’t exist then it is created.

Contents of specified binary file are deleted and then it is opened for writing
as well as reading. If specified binary file doesn’t exist then it is created.

Same as “w+”.

Specified text file is opened for writing at the end of file (i.e., appending).
If specified text file doesn’t exist then it is created.

Specified binary file is opened for writing at the end of file
(i.e., appending). If specified binary file doesn’t exist then it is created.

Same as mode “a”.

Specified text file is opened for reading as well as writing at the end of file
(i.e., appending). If specified text file doesn’t exist then it is created.

Specified binary file is opened for reading as well as writing at the end of
file (i.e., appending). If specified binary file doesn’t exist then it is created.

Same as “a+”.

412

APPENDIXA " REFERENCE TABLES

Table A-21. Predefined Pointers to FILE Constants for Device Files in C

Pointer to FILE Constants Device File
stdin keyboard
stdout monitor
stderr monitor

Note: The header file <stdio.h> consists of the declaration of FILE structure as shown

below:

typedef struct {
int
unsigned
char
unsigned char
int
unsigned char
unsigned char
unsigned
short

} FILE;

level;
flags;
fd;
hold;
bsize;
*puffer;
*curp;
istemp;
token;

/* fill/empty level of buffer */

/* File status flags */
/* File descriptor */
/* Ungetc char if no buffer */
/* Buffer size */
/* Data transfer buffer */
/* Current active pointer */

/* Temporary file indicator */
/* Used for validity checking */
/* This is the FILE object */

Table A-22. Table of Trigraph Sequences and Equivalent Characters in C

Trigraph Sequence Equivalent Character
?27= #
22/ \
2?2’ n
22([
??)]
271 |
< {
7 }
?22- ~

413

APPENDIX B

Library Functions

In this appendix, we have included the library functions falling under the catetories:
e Character testing and processing functions,
e String processing functions,
e Mathematical functions, and

e Utility functions

Character Testing and Processing Functions

In order to use any of these functions you are required to #include the file <ctype.h>.
For each function, an argument is int and return type is also int. Argument represents
a character or EOF, if underlying condition is satisfied then function returns nonzero
(true) value, otherwise it returns zero (false) value. The names of these functions and
underlying conditions are listed below:

Name of function Underlying condition

isupper(ch) ch should represent upper case letter

islower(ch) ch should represent lower case letter.

isalpha(ch) ch should represent upper or lower case letter.

isdigit(ch) ch should represent a decimal digit (0, 1, 2, 4, 5, 6, 7, 8, or 9).

isalnum(ch) ch should represent upper case letter, lower case letter or decimal digit.

iscntrl(ch) ch should represent a control character. Notice that characters with
ASCII values 0 to 31 are treated as control characters.

isgraph(ch) ch should represent a printing character except space.

isprint(ch) ch should represent a printing character including space.

ispunct(ch) ch should represent a printing character except space, letter, or digit.

isspace(ch) ch should represent a space, formfeed, newline, carriage return, tab,
or vertical tab.

isxdigit(ch) ch should represent a hexadecimal digit.

© Shirish Chavan 2017 415

S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5

APPENDIX B I LIBRARY FUNCTIONS

Also, there are two character processing functions that convert the case of letters, as
follows:

Name of function Underlying condition

int tolower(int ch) If ch represent uppercase letter then it is converted to

lowercase, otherwise it is returned without any change.

int toupper(int ch) If ch represents lowercase letter then it is converted to

uppercase, otherwise it is returned without any change.

String Processing Functions

The string processing functions are listed below along with their description. In order
to use these functions you are required to #include the header file <string.h>.Itis
assumed that s and t are of type char *; cs and ct are of type const char *;nis of type
int; and c is of type int, however, it is converted to char when passed as an argument

to function.

Function name

Description

char *strcpy (s, ct)
char *strncpy (s, ct, n)
char *strcat (s, ct)
char *strncat (s, ct, n)

int strcmp (cs, ct)

int strncmp (cs, ct, n)

char *strchr (cs, c)

char *strrchr (cs, c)

int strspn (cs, ct)

String ct is copied to string s including terminating
null character. Return value is s.

At most n characters are copied from string ct to string
s.Return value is s.

String ct is appended (concatenated) to string s.
Return value is s.

At most n characters are appended (concatenated)
from string ct to string s. Return value is s.

String cs is compared to string ct. Return value is
negative if cs < ct, return value is zero if cs == ct,
return value is positive if cs > ct.

At most n characters from string ct are compared to
string cs. Return value is: negative if cs < ct, zero if
c¢s == ct, and positiveifcs > ct.

String cs is searched for the occurrence of c. Return
value is pointer to first occurrence of ¢ in cs or NULL
value if ¢ is not found in cs.

String cs is searched for the occurrence of c. Return
value is pointer to last occurrence of c in c¢s or NULL
value if ¢ is not found in cs.

String cs is searched for any of the characters not
available in string ct. Return value is the index of the
first character in cs which is not available in ct.

416

(continued)

APPENDIX B " LIBRARY FUNCTIONS

Function name Description

int strcspn (cs, ct) String cs is searched for the occurrence of any of the
characters in string ct. Return value is the index of the
first character in cs which is also available in ct.

char *strpbrk (cs, ct) String cs is searched for the occurrence of any of the
characters in string ct. Return value is pointer to first
occurrence of any character of ct in cs, or NULL if no
character of ct is found in cs.

char *strstr (cs, ct String cs is searched for the occurrence of string ct.
g g
Return value is pointer to first occurrence of ct in cs,
or NULL if ct not found in cs.

int strlen (cs) Length of string cs is computed and it is returned.

Mathematical Functions

The mathematical functions are listed below along with their description. The header file
<math.h> contains the declarations of mathematical functions and macros, and needs to
be #included in the source code. In order to catch the errors, the header file <errno.h>
should also be #included. Two types of errors occur in these functions: (a) domain error
and (b) range error. Domain error occurs if an argument is out of range. Range error
occurs if result of the function cannot be expressed as double type value. Macros EDOM
and ERANGE are used to signal domain and range errors respectively. If result overflows
then return value is HUGE_VAL with appropriate sign. If the result underflows then return
value is zero. HUGE_VAL is a macro and it represents a double, positive value.

It is assumed that u and v are expressions that evaluate to double type constant, m
is an expression that evaluates to int type constant. Return type of all these functions is
double. Unit of angles is radians.

Function Description

name

sin(u) Computes the sine of u and returns it. Here, u is angle in radians.
cos(u) Computes the cosine of u and returns it. Here, u is angle in radians.
tan(u) Computers the tangent of u and returns it. Here, u is angle in radians.
asin(u) Computes the arcsine of u and returns it. Here, u is sine value between

-1.0 and +1.0. Return value is angle between -n/2 and +rn/2 radians. If
domain error is detected, value 0.0 is returned.

acos(u) Computes the arccosine of u and returns it. Here, u is cosine value
between -1.0 and +1.0. Return value is angle between 0 and = radians.
If domain error is detected, value 0.0 is returned.

atan(u) Computes the arctangent of u and returns it. Here, u is signed tangent
value. Return value is angle between -rn/2 and +x/2 radians.

(continued)

417

APPENDIX B I LIBRARY FUNCTIONS

Function
name

Description

atan2(u, v)
sinh(u)
cosh(u)
tanh(u)

exp(u)

log(u)

log10(u)

pow(u, v)

sqrt(u)
ceil(u)
floor (u)
fabs(u)

ldexp(u, m)

fmod(u, v)

Computes the arctangent of u/v. Here, u and v represent any signed values.
Return value is angle between -n and +r radians whose tangent value is u/v.

Computes the hyperbolic sine of u and returns it. Here, u is angle in
radians. If an overflow occurs then value of +(HUGE_VAL) is returned.

Computes the hyperbolic cosine of u and returns it. Here, u is an angle
in radians. If an overflow occurs then value of +(HUGE_VAL) is returned.

Computes the hyperbolic tangent of u and returns it. Here, u is an angle
in radians.

Computes the e" where e = 2.7182818. It is called exponential function.
Here, u represents any signed value. Return value is exponential of u.
If an underflow occurs then a value of 0.0 is returned. If an overflow
occurs then a value of HUGE_VAL is returned.

Computes the natural logarithm of u. Here, u represents a positive
floating point value. Return value is natural or base-e logarithm of u. If
argument U is zero or negative, then a value of - (HUGE_VAL) is returned.

Computes the base 10 logarithm of u. Here, u represents a positive
floating point value. Return value is base-10 logarithm of u. If argument u
is zero or negative, then a value of - (HUGE_VAL) is returned.

Computes the u'. Domain error occurs ifu == 0andv <= 0, orif

u < 0and visnotan integer. Here, u represents a nonzero floating
point value; and v represents a signed, floating point power of u up to
264. Returned value is u". If both u and v are 0.0, then returned value is
also 0.0. If u is nonzero and v is 0.0, then 1.0 is returned. If u is negative
and v is not integral then 0.0 is returned. If u is 0.0 and v is negative,
then 0.0 is returned. If an overflow occurs, then value of +(HUGE_VAL) is
returned.

Computes the square root of u. Here, u is nonnegative number (u >= 0).
Return value is square root of u. If u is negative then zero is returned.

Computes the smallest integer that is greater than or equal to u. Return
value is the smallest integer that is greater than or equal to u.

Computes the largest integer that is smaller than or equal to u. Return
value is the largest integer that is smaller than or equal to u.

Computes the absolute value of u, i.e., | u |. Return value is the absolute
value of u.

Computes u x 2™, Here, u is any signed value (usually between 0.5

and 1.0). As told earlier, m is an expression that evaluates to int type
constant. Return value is u x 2™ and its type is double. If overflow occurs
then return value is +(HUGE_VAL).

Computes the remainder of u/v. Return value is remainder of u/v.
If value v is 0.0 then return value is also 0.0.

418

APPENDIX B " LIBRARY FUNCTIONS

Utility Functions

The various utility functions available in C are listed below along with their description.
The header file <stdlib.h> contains the declarations of these utility functions, and needs
to be #included in the source code.

Function name Description

double atof (const char *str) Converts string str to a number of type double and
returns it. For example, string "24.36" is converted
to number 24.36 and then this number is returned.

int atoi (const char *str) Converts string str to a number of type int and
returns it. For example, string "2537" is converted
to number 2537 and then this number is returned.

long atol (const char *str) Converts string str to a number of type long and
returns it. For example, string "123456" is converted
to number 123456 and then this number is returned.

int rand (void) Returns a pseudorandom integer in the range 0
to RAND_MAX. The value of constant RAND_MAX is at
least 32,767.

void srand (unsigned int Uses seed (this seed is nothing but an integer) as

seed) a seed for generating new random numbers by
function rand().

void abort (void) Causes the abnormal termination of program.

void exit (int status) Causes normal termination of program. Integer

status is passed to this function to indicate the
status of program. For example, integer 0 is passed
to indicate the successful termination of program.
Predefined constants EXIT_SUCCESS and EXIT_
FAILURE are also passed to this function to indicate
success and failure of program respectively.

int abs (int num) Returns the absolute value of int argument num,
ie., | num|.

long labs (long num) Returns the absolute value of long argument num,
ie., | num|.

419

APPENDIX C

C Idioms

Some statements in C are quite popular among the programmers and are respectfully
referred to as C idioms. In this appendix you will find a good collection of C idioms.
CIdiom No. 1. This C idiom, given below, copies input to output:

int ch;
ch = getchar();
while(ch != EOF) {

putchar(ch);
ch = getchar();
}
C Idiom No. 2. This C idiom also, given below, copies input to output:
int ch;
while((ch = getchar()) != EOF)
putchar(ch);

CIdiom No. 3. This C idiom, given below, counts number of characters in input:

long count = 0;

while(getchar() != EOF)
++count;

printf("%1d\n", count);

C Idiom No. 4. This C idiom also, given below, counts number of characters in input:

double count;

for(count = 0; getchar() != EOF; ++count)
5 /* null statement */

printf("%.0f\n", count);

© Shirish Chavan 2017 421
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5

APPENDIX C " C IDIOMS

CIdiom No. 5. This C idiom, given below, counts number of lines in input:

int ch, count = 0;
while((ch = getchar()) != EOF)
if(ch == "\n")
++count;
printf("%d\n", count);

C Idiom No. 6. This C idiom, given below, counts number of lines, words, and
characters in input:

define IN 1 /* inside a word */
define OUT 0 /* outside a word */
int ch, lines, words, chars, state;

state = OUT;

lines = words = chars = 0;
while ((ch = getchar()) != EOF) {

++chars;
if (ch == "\n")

++lines;
if (ch == " " || ch == "\n" || ch == "\t")

state = OUT;
else if (state == OUT) {

state = IN;

++words;
}

printf("%d %d %d\n", lines, words, chars);

CIdiom No. 7. This C idiom, given below, represented as function, raises base to nth
power where n is greater than or equal to zero:

int power(int base, int n)
{
int po;
for(po = 1; n > 0; --n)
po = po * base;
return(po);

}

CIdiom No. 8. This C idiom, given below, represented as function, reads a line of
text into a char array q and returns its length:

int getline(char q[], int limit)

{

int ch, j;

for(j=0; j<limit-1 88 (ch=getchar())!=EOF &3 ch!="\n"; ++j)
q[j] = ch;

if(ch == "\n'){

422

APPENDIX C * C IDIOMS

qlj] = ch;
++J;
qlj] = "\o';
return j;

}

C Idiom No. 9. This C idiom, given below, represented as function, copies char array
source to char array target:

void copy(char target[], char source[])

int j = 0;
while((target[j] source[j]) != "\0")
++J;

CIdiom No. 10. This C idiom, given below, represented as function, returns a length
of the string str:

int strlen(char str[])
{
int j = 0;
while(str[j] != "\0")
++J;
return j;

}

CIdiom No. 11. This C idiom, given below, represented as function, converts a string
of digits str into an equivalent integer:

int atoi(char str[])
{
int j, n = 0;
for(j=0; str[j] >= '0' && str[j] <= '9'; ++j)
n =10 * 0+ (stafj] - '0);
return n;

}

CIdiom No. 12. This C idiom, given below, represented as function, converts an
upper case letter into a lower case letter, and leaves lower case letter unchanged:

int lower(int ch)
if (ch >= 'A" 8&% ch <= 'Z")
return ch + 'a' - 'A";

else
return ch;

423

APPENDIX C " C IDIOMS

CIdiom No. 13. This C idiom, given below, represented as function, removes all
occurrences of the character ch from the string str:

void remove(char str[], int ch)
{

int j, k;
for(j = k = 0; str[j] != "\0'; j++)
if(str[j] != ch)

str[k++] = str[j];
str[k] = "\o';
}

CIdiom No. 14. This C idiom, given below, represented as function, concatenates
string str2 to end of string str1; string str1 must be big enough so as to accommodate
the string str2:

void strcat(char stri[], str2[])

{
int j = k = 0;
while(stra[j] != "\o0") /* find end of stri */
J++;
while((stri[j++] = str2[k++]) != "\0") /* copy str2 to stri */
5 /* null statement */
}

CIdiom No. 15. This C idiom, given below, represented as function, counts the
number of 1-bits in its integer argument:

int bitcounter(unsigned int y)
{
int g;
for(g = 0; y !=0; y >=1)
if(y & 01)
g+t;
return g;

}

CIdiom No. 16. This C idiom, given below, represented as function, performs binary
search and finds integer y in int array w such that array is sorted and its elements consist
of int values in increasing order:

int binsearch(int y, int w[], int p)
{
int low = 0, high, mid;
high = p - 1;
while(low <= high){
mid = (low + high) / 2;
if(y < w[mid])

424

APPENDIX C * C IDIOMS

high = mid - 1;
else if (y > w[mid])
low = mid + 1;
else
return mid;
}

return -1;

}

CIdiom No. 17. This C idiom, given below, represented as function, converts a string
of digits str into an equivalent integer. This version is more generic than C Idiom No. 11,
in that now optional white spaces and optional + or - sign is taken into account. You are
also required to #include the file <cype.h>:

int atoi(char str[])
{
int j, p, sign;
for(j = 0; isspace(str[j]); j++)
] /* null statement */

sign = (str[j] == ') 7 -1 ¢ 1;
if(str[j] == "+ || str[j] == '-")
I+

for(p = 0; isdigit(str[j]); j++)
p =10 * p + (str[j] - '0');
return sign * p;

C Idiom No. 18. This C idiom, given below, represented as function, sorts an int
array into increasing order. This method is known as shellsort as it is invented by D. L.
Shell in 1959:

void shellsort(int w[], int p)
{
int gap, j, k, temp;
for(gap = p/2; gap > 0; gap /= 2)
for(j = gap; j < p; j++)
for(k = j - gap; k >= 0 8& w[k] > w[k + gap]; k -= gap) {
temp = wl[k];
wlk] = w[k + gap];
wlk + gap] = temp;

}

CIdiom No. 19. This C idiom, given below, represented as function, reverses the
contents of string str.

void reverse(char str[])

{
int ch, j, k;

425

APPENDIX C " C IDIOMS

for(j = 0, k = strlen(str) - 1; j < k; j++, k--){
ch = str[j];
str[j] = str[k];
str[k] = ch;

}

}

C Idiom No. 20. This C idiom also, given below, represented as function, reverses the
contents of string str. You are required to #include the header file <string.h>.

void reverse(char str[])
{
int ch, j, k;
for(j = 0, k = strlen(str) - 1; j < k; j++, k--)
ch = str[j], str[j] = str[k], str[k] = ch;

C Idiom No. 21. This C idiom, given below, represented as function, converts an
integer into a string of digits:

void itoa(int p, char str[])

{
int j, sign;
if((sign = p) < 0)

do{

str[j++] = p % 10 + '0";
twhile((p /= 10) > 0);
if(sign < 0)

str[j++] = '-';
str[j] = "\o';
reverse(str);

CIdiom No. 22, This C idiom, given below, represented as function, removes trailing
blanks, tabs, and newlines from string str:

int trim(char str[])

{
int p;
for(p = strlen(str) - 1; p >= 0; p--)
if(str[p] != ' ' 8& str[p] !'= "\t' 8& str[p] !'= "\n")
break;
str[p + 1] = "\0';
return p;
}

426

APPENDIX C * C IDIOMS

C Idiom No. 23. This C idiom, given below, represented as function, returns index of
string s2 in string s1 and returns -1 if no substring s2 is found in s1.

int strindex(char si[], char s2[])

{

int j, k, m;

for(j = 0; s1[j] !'= "\o'; j++){
for(k = j, m=0; s2[m] != '"\0' & si[k] == si[m]; k++, m++)
5 /* null statement */
if(m > 0 8% s2[m] == '\o0")
return j;
}
return -1;

}

CIdiom No. 24. This C idiom, given below, represented as function, converts a string
of digits into a double type number. You are required to #include the header file
<ctype.h>:

double atof(char str[])
{
double value, power;
int j, sign;
for(j = 0; isspace(str[j]); j++)
; /* null statement */

Sié” = (str[j] == "-") ? -1 : 1;
if(str[j] == "+ [] str[j] == '-")
J++;

for(value = 0.0; isdigit(str[j]); j++)
value = 10.0 * value + (str[j] - '0");

if(str[j] == "'.")
J++s

for(power = 1.0; isdigit(str[j]); j++){
value = 10.0 * value + (str[j] - '0");
power = power * 10.0;

}

return sign * value / power;

}

C Idiom No. 25. This C idiom, given below, represented as function, sorts an int
array into an increasing order using the method quicksort invented by C. A. R. Hoare in
1962:

void gsort(int w[], int left, int right)
{
int j, last;
void swap(int w[], int j, int k);
if(left >= right)

427

APPENDIX C " C IDIOMS

return;
swap(w, left, (left + right)/2);
last = left;
for(j = left + 1; j <= right; j++)
if(w[j] < w[left])
swap(w, ++last, j);
swap(w, left, last);
gsort(w, left, last - 1);
gsort(w, last+1, right);
}
void swap(int w[], int j, int k)
{
int temp;
temp = w[j];
w(j] = wlk];
w[k] = temp;
}

C Idiom No. 26. This C idiom, given below, represented as function, computes the
length of string str. This is pointer based version:

int strlen(char *str)

{
int p;
for(p = 0; *str != '"\0'; str++)
p++;
return p;
}

CIdiom No. 27. This C idiom, given below, represented as function, copies string
source to string target. This is an array subscript based version:

void strcpy(char *target, char *source)

int j = 0;
while((target[j] = source[]j]) != "\0")
J++s

CIdiom No. 28. This C idiom also, given below, represented as function, copies
string source to string target. This is pointer based version:

void strcpy(char *target, char *source)

while((*target = *source) != '\0'){
target++;
source++;

}
}

428

APPENDIX C * C IDIOMS

CIdiom No. 29. This C idiom also, given below, represented as function, copies
string source to string target. This is pointer based another version:

void strcpy(char *target, char *source)
while((*target++ = *source++) != '\0")
; /* null statement */
CIdiom No. 30. This C idiom also, given below, represented as function, copies
string source to string target. This is pointer based still another version:
void strcpy(char *target, char *source)
while(*target++ = *source++)

5 /* null statement */

CIdiom No. 31. This C idiom, given below, represented as function, compares
character strings str1 and str2, and returns negative, zero, or positive if str1 is
lexicographically less than, equal to, or greater than str2, respectively:

int strcomp(char *stri, char *str2)

{
int j;
for(j = 0; stra[j] == str2[j]; j++)
if(str1[j] == "\0")
return 0;
return stri[j] - str2[j];
}

CIdiom No. 32. This C idiom also, given below, represented as function, compares
character strings str1 and str2, and returns negative, zero, or positive if str1 is
lexicographically less than, equal to, or greater than str2, respectively. This is pointer
based version:

int strcomp(char *stri, char *str2)

{
for(; *stri == *str2; stri++, str2++)
if(*str1 == *str2)
return 0;
return *strl - *str2;
}

429

APPENDIX D

Glossary of Terms

Activity diagram: A flowchart as per the specifications of Unified Modelling Language.
Address operator: It is used to retrieve the address of a variable. It is denoted by &.

Array: A list of items of same data type and name, but different subscripts or indices.
A derived data type.

Argument: Datum that is passed to function through function-call.

Assembler: An assembler is a program or software that translates an assembly language
program into a machine language program.

Assembly language: An assembly language is a low-level computer language one step
above the machine language. In assembly language the phrases (such as ADD, SUB,
MUL, etc.) are provided as synonyms of sequences of 1s and 0s (such as 10101, 10001,
etc.). A typical instruction in assembly language may look something like shown below:

ADD NUM1, NUM2

Assignment operator: An operator used in assignment expression. It is denoted by =.

Associativity of operator: Associativity of operator is either from left to right or from right
to left. Associativity of operators decide in which direction a given expression is to be
evaluated - whether from left to right or from right to left.

Automatic type conversion: See implicit type conversion.

Automatic variable: A variable that is declared inside a block without any storage class
specifier or with storage class specifier auto.

Basic type: A type that is fundamental. Basic types in C are: chay, int, enum, float, double,
and void.

Batch program: In batch program, user doesn’t interfere with program during its
execution. Batch program executes from start to finish without expecting any intervention
from user.

Binary operator: An operator which operates on two operands is called as binary
operator.

© Shirish Chavan 2017 431
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5

APPENDIX D ** GLOSSARY OF TERMS

Bit-field: A set of adjacent bits within a single storage unit.

Bitwise logical operator: An operator which operates on individual bits and performs
logical operation in a given number.

Bitwise shift operator: An operator which shifts the individual bits - either to left or to
right - in a given number.

Block: A group of statements grouped together inside a pair of curly braces. A block may
contain another block.

Called function: If function A calls function B then function B is called function.
Caller function: If function A calls function B then function A is caller function.
Cast: An operator used in casting.

Casting: Explicit type conversion.

Code: Program. To code means to write a program. Coding is the process of writing a
program according to some design.

Coercion: Coercion is nothing but explicit type conversion.

Compiler: A compiler is a program or software that translates a high-level language
program into a machine language program.

Compound statement: See block.

Computer: A computer is a device that accepts the input data, processes it, and then
returns the processed data as output.

Constant: Constant is a named item that retains a consistent value throughout the
execution of a program, as opposed to a variable, which can have its value changed
during the execution of a program.

Constant expression: An expression that is combination of constants only. A variable
cannot be included in a constant expression. Constant expression is evaluated at
compile-time.

Control string for function printf(): A string of characters that is passed to function
printf and it may contain ordinary characters, escape sequences, and conversion
specifications.

Control string for function scanf(): A string of characters that is passed to function scanf
and it may contain white spaces, ordinary characters, and conversion specifications.

Conversion specification for function printf(): It consists of a percent symbol %,
followed by an optional flag, followed by an optional minimum field width specifier
which is nothing but an unsigned integral number, followed by a dot, followed by an
optional precision specifier which is nothing but an unsigned integral number, followed
by an optional target width specifier, followed by a conversion character.

Conversion specification for function scanf(): It consists of a percent symbol %,
followed by an optional assignment suppression character *, followed by an optional
maximum field width specifier which is nothing but an unsigned integral number,

432

APPENDIX D I GLOSSARY OF TERMS
followed by an optional target width specifier which is nothing but h,], or L, followed by a
conversion character.

C’s model of a file: A file is a transmitter or receiver of stream of characters (or bytes) to
or from the central processing unit, respectively.

Decrement operator: An operator which decreases the value of numeric variable by 1.
It is denoted by --.

Dereferencing operator: See indirection operator.

Derived type: A type that is derived from basic type(s). Derived types in C are: arrays,
functions, pointers, structures, and unions.

Destination type: In type conversion, type of1 value is called destination type.
Device-file: Keyboard and monitor are device files.
Disk-file: A collection of data that is named and saved on the secondary storage.

Documentation: Documentation is the collection of organized and stored records that
describe the purpose, use, structure, details, and operational requirements of a program,
for the purpose of making this information easily available to user.

Dynamic memory allocation: Process of allocation of contiguous block of memory to
program for data storage during run-time.

Explicit type conversion: When type conversion is performed using cast then it is called
explicit type conversion. Also called casting or coercion.

Expression: Any combination of variables and/or constants that evaluates to a constant,
after assigning suitable values to variables.

Expression statement: An expression postfixed with semicolon.

External variable: A variable that is defined outside of any function and without any
storage class specifier.

False value: If result of relational expression is 0 then it is treated as false value.
File: See disk-file, device-file, and C’s model of file.

Flowchart: A graphical representation of all possible paths of computer control.
Function: A subprogram delimited by braces.

Function-definition: Return type, function-name, comma separated list of arguments,
and body of function constitute function-definition.

Function-prototype: A statement which is placed before main() function and which
informs the compiler that definition of this function is included in this program.

Global variable: See external variable.

GUI: The GUI stands for Graphical User Interface. It is an operating system that makes
liberal use of graphics.

Hardware: The physical, tangible, and permanent components of a computer.

433

APPENDIX D © GLOSSARY OF TERMS
Header file: It contains prototypes of functions, macro definitions, and type definitions.
It has extension .h.

High-level language: A language in which each instruction or statement correspond to
several machine language instructions. For example, FORTRAN, Pascal, C, C++, and Java
are high-level languages.

Identifier: Identifier means nothing but a name.

Implicit type conversion: When type conversion occurs automatically - i.e., without
using cast - it is called implicit type conversion.

Increment operator: An operator which increases the value of numeric variable by 1.
Itis denoted by ++.

Indirection operator: An operator which is required while declaring pointer variable
and also while retrieving the value of variable to which pointer variable is pointing.
It is denoted by *.

Infinite loop: A loop that iterates indefinitely as there is no provision for termination of
loop.

Initializer: A datum that is used to initialize a variable.

Interactive program: In interactive program, intervention of user is expected during the
execution of former.

Internal variable: A variable that is created inside of some function. Generally speaking
internal variable denotes automatic variable, register variable, or static automatic
variable. Some writers equate internal variable with automatic variable only.

Interpreter: An interpreter is a program or software that translates and executes each
source program statement before proceeding to the next one.

Iteration statement: A statement used to execute a group of statements repeatedly, finite
number of times.

Jump statement: A statement used to jump from one statement to another by overriding
linear flow of computer-control.

Keyword: Keyword is a reserved word having some predefined meaning. As it is reserved
word, it cannot be used as user-defined identifier.

1value: 1 value is defined as the term that appears on left side in an assignment statement.
Labelled statement: A named statement.

Library function: A precompiled function that comes with compiler. There are standard
and non-standard library functions.

Lifetime of a variable: It refers to the period from its creation to destruction during the
execution of program.

Literal: Literal is a value, used in a program, that is expressed as itself rather than as a
variable’s value or the result of an expression.

434

APPENDIX D © GLOSSARY OF TERMS

LOC: Line Of Code. A single line of code in a source program.
Local variable: See automatic variable.

Logical expression: An expression that involves one of the three logical operators,
namely && (AND), || (OR), and ! (NOT).

Low-level language: A low-level language is a computer language consisting of
mnemonics that directly correspond to machine language instructions. For example,
assembly language is a low-level language.

Machine language: The machine language is a language that consists of only two
alphabets: 0 and 1. Also, a program in machine language can be readily executed by a
computer. A typical instruction in machine language may look something like shown
below:

11001101010101001

Macro: See macro name.

Macro name: A user-defined identifier that appears in macro expansion directive which
in turn begins with preprocessor directive #define.

Main function: A function that is named main. It is coded by user. Every C program
consists of one and only one main function. Execution of C program is nothing but
execution of main function.

Maintenance: Program maintenance means: (i) fixing the errors in a program during its
lifetime and (ii) modifying a program so as to expand its capability.

Narrowing type conversion: If range of destination type is narrower than range of source
type then this type of type conversion is called narrowing type conversion.

Non-standard library function: A library function that is not supported by ANSI or ISO
standard.

Operating system: An operating system is a set of programs that is responsible for
handling the components of computer, so that user can use the computer efficiently. Also
called as an executive system or a monitor system.

Parameter: It appears in function-definition and informs about the datum that will be
passed to function in function-call.

Pdl: See Program design language.

Platform: A machine loaded with some operating system is termed as platform. If there
are two IBM PCs, one loaded with LINUX and another loaded with Windows, then you
are having two different platforms.

Pointer variable: A sort of variable that stores address of ordinary variable. Pointer
variable is said to point to ordinary variable whose address it stores.

435

APPENDIX D ** GLOSSARY OF TERMS

Population sequence: Population sequence begins with 1 and 2, and every successive
term is a product of the two preceding terms. By definition, first term is 1 and second
term is 2. Third term is 2. Fourth term is 4. Fifth term is 8. And so on. See page 193.

Portability: Portability is a property of a computer program to run on different platforms.

Precedence of operator: Precedence and priority are synonyms. Precedence of operator
tells us which operation in a given expression is to be performed first and which one later.
Suppose a given expression consists of two operators: operator A with precedence 1 and
operator B with precedence 2 then operation involving operator A should be performed
first, and so on.

Preprocessor: Preprocessor converts source code file with extension .c (say, hello.c) to
intermediate file with extension .i (say, hello.i), which in turn is fed to compiler to convert
itinto an executable file with extension .exe (say, hello.exe).

Priority of operator: See precedence of operator.
Program: A program (i.e., computer-program) is a set of instructions which tells the
computer what to do. Alternatively, Niklaus Wirth has defined a program as follows:

algorithm + data structures = program.

(Throughout this book we use the term “program” as a synonym of “computer-program.”)

Program design language: A language developed as an aid in designing programming
systems. It is mix of plain English and standard control structures.

Programmer: A programmer is a person who writes a program.

Programming language: The language used by a programmer to write a program for a
computer.

r value: r value is defined as the term that appears on right side in an assignment
statement.

Recursion: A process in which function calls itself either directly or indirectly through
some other function.

Register variable: A variable that is declared inside some block and with storage class
specifier register.

Relational expression: An expression that involves one of the six relational operators,
namely > (greater than), >= (greater than or equal to), < (less than), <= (less than or equal
to), == (equal to), and != (not equal to).

Scope of variable: It refers to the parts of a program in which that variable is accessible.

Selection statement: A statement used to choose one of the several flows of computer-
control.

Self-referential structure: A structure in which one of its members is a pointer to that
structure itself.

436

APPENDIX D © GLOSSARY OF TERMS

Software: Software is defined as follows:
Software = program + portability + documentation + maintenance.

Alternatively, Joseph Fox has defined software as a set of programs that interact with each
other.

Source program: A source program is a program written by a programmer on paper.
It can be entered in a computer using a suitable text editor.

Source type: In type conversion, type of r value is called source type.

Standard input device: Keyboard.

Standard output device: Monitor.

Standard library function: A library function that is supported by ANSI or ISO standard.
Static variable: A variable that is declared with storage class specifier static.

Static external variable: See static global variable.

Static global variable: A variable that is declared outside of any function and with storage
class specfier static.

Static automatic variable: See static local variable.
Static internal variable: See static local variable.

Static local variable: A variable that is declared inside of some block and with storage
class specifier static.

Storage class: An attribute of a variable (or function) which decides scope and lifetime of
variable (or function).

String constant: A char type array that is terminated with null character ‘\0.

Strongly typed language: Language that does not allow the mixing of different types at all
is called a strongly typed language or language with strong typing.

Structure: A collection of one or more variables of different data types, in general,
grouped together under a single name for convenient handling. A derived data type.

Ternary operator: An operator which operates on three operands is called as ternary
operator.

Token: Tokens are basic elements of a program. What bricks are to a wall, tokens are to a
program.

True value: If result of relational expression is 1 then it is interpreted as true value.

Two’s complement: A method used to represent the negative numbers in some
machines.

Type checking: When compiler compiles assignment statement, it checks the types of
both sides of assignment statement for equality. This duty of compiler is termed as type
checking.

437

APPENDIX D ** GLOSSARY OF TERMS

Type conversion: Type conversion occurs in an assignment statement if types of r value
and | value are not same. In type conversion, type of value of right side is changed to that
of left side before assignment.

UML: See Unified Modelling Language.

Unary operator: An operator which operates on only one operand is called as unary
operator.

Unified Modelling Language: A language developed by computer scientists - mainly
by Grady Booch, James Rumbaugh, and Ivar Jacobson - to construct the models of
programming systems.

Union: A derived data type which resembles structure. However, unlike structure, all
members of union share same memory segment.

User-defined function: A function that is coded and named by user (here, user means
programmer).

User-defined identifier: User-defined identifier is nothing but a specific term that is used
to denote variable name, constant name, function name, or label name, provided that
these items (e.g., variable, constant, label, etc.) are created by a user (programmer).

Variable: Variable is nothing but a named location in memory and when you assign some
value to that variable, that value is stored in that memory location.

Variable declaration: In the context of internal variables (i.e., automatic, register, and
static local), variable declaration consists of creation of a variable. In the context of
external and static global variables, variable declaration consists of announcement that
this variable exists and it is defined elsewhere.

Variable definition: In the context of internal variables (i.e., automatic, register, and
static local), this term is not used. In the context of external variables, variable declaration
consists of creation of a variable.

Weakly typed language: Language that freely allows the mixing of different types without
any restriction is called a weakly typed language or language with weak typing.

Widening type conversion: If range of destination type is wider than range of source type
then this type of type conversion is called widening type conversion.

438

Index

A

Abstraction, 3
Activity diagram, 431
Addition of matrices, 63
Address operator, 431
Affine cipher method, 302

code, 321-322

problem, 320

solution, 321

working, 323-324
ALU. See Arithmetic and logic unit (ALU)
Argument, 431
Arithmetic and logic unit (ALU), 2
Array, 40, 254-257, 431
Assembler, 2, 431
Assembly language, 2, 431
Assignment operator, 431
Associativity of operator, 431
Automatic type conversion, 8, 431
Automatic variable, 431

Backtracking algorithm, 57
Basic type, 39, 431
Batch program, 431
BCPL, 1
Bell Laboratories, 1
Bessel’s Method of
Interpolation, 379-380, 382

Binary operator, 431
Binary search

code, 281-282

problem, 280

solution, 280

working, 282-283
bisect(), 350, 353

© Shirish Chavan 2017

Bisection method, 350, 352
Bit-field, 432
Bitwise logical operator, 432
Bitwise shift operator, 432
Block, 432
Block comments, 7
Bombed, program, 10
Bubble sort

code, 284-285

problem, 283

solution, 283

working, 285

C

Caesar cipher method, 301
code, 308-310
problem, 307
solution, 307
working, 310-311
Called function, 432
Caller function, 432
calloc() function, 215
Case-sensitive language, 6
Cast, 432
Casting, 10, 432
Central processing unit (CPU), 2
changeCreditCount() function, 121
C idioms
binary search, 424-425
char array, 422, 423
copies input to output, 421
counts number of characters, 421
counts number of lines, words, and
characters, 422
string of digits into a double type
number, 427

439

S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5

INDEX

C idioms(cont.)
equivalent integer, 425
length of string str, 423, 428-429
nth power, 422
returns index of string, 427
shellsort, 425
string of digits str into equivalent
integer, 423
string str, 425-426
upper case letter into a lower case
letter, 423
Circular queue, 271-275
Code, 4, 432
Coercion, 10, 432
combination() function, 60
Communications of ACM, 3
Compilation, 4-5
Compiled language, 4-5
Compiler, 3, 432
Compound statement, 432
Computer, 432
Computer program, 2
Constant, 432
Constant expression, 432
Control statements
iteration statement, 13
jump statements, 13
problems
cosine function, 27
factorial of a number, 16-18
Fibonacci sequence, 18-21
given number is prime, 21-24
print geometrical pattern, 33-34
reverse of an integer, 31-32
roots of quadratic equation, 29-31
sine function, 25-26
sum of 1 to N numbers, 14-16
table of FVIFs, 35-37
selection statement, 13
Control string for printf (), 432
Control string for scanf (), 432
Conversion specification for printf (), 432
Conversion specification for scanf (), 432-433
Cosine function, 27-29
C programming language, 151
additional basic data types, 404
arithmetic operators, 405
assignment operators, 408
basic data types, 403
bitwise operations using operators, 408
bitwise operators, 408

440

built-in functions, 7
and C++, early history, 1
escape sequences in, 403
explicit type conversion, 10
features, 7
file opening modes, 412
implicit type conversion, 8
logical operators, 407
model of a file, 433
one-dimensional arrays, 409
portable language, 7
precedence and associativity of
operators, 406
predefined pointers to FILE
constants, 413
prefixes for variable names, 405
printf(), conversion
specifications, 410-411
sample program, 6
qualified basic data types, 404
relational and equality operators, 406
scanf(), conversion
specifications, 409-410
standard input and output
functions, 409
trigraph sequences and equivalent
characters, 413
truth table, 407
C89 programming language, 1
C90 programming language, 1
C99 programming language, 1
cptr, 165
Cryptographic systems
Affine cipher method
code, 321-322
problem, 320
solution, 321
working, 323-324
Caesar cipher method
code, 308-310
problem, 307
solution, 307
working, 310-311
multiplicative cipher method
code, 316-318
problem, 315
solution, 316
working, 318-320
one-time pad cipher method
code, 336-339
problem, 335

solution, 336
working, 339-340
reverse cipher method
code, 304-306
problem, 303
solution, 304
working, 306-307
RSA cipher method
code, 341-344
problem, 340
solution, 341
working, 345-347
simple substitution cipher method
code, 325-328
problem, 324-325
solution, 325
working, 328-330
transposition cipher method
code, 312-314
problem, 311
solution, 311
working, 314-315
Vigenere cipher method
code, 331-333
problem, 330
solution, 330
working, 334-335

D

Data files
copy, binary file, 194-196
copying, 191-194
deletion, 190-191
device’s standard input, 206-208
handle errors, 154-157
integers, 168-170, 174-175
integers, binary file, 179-181
integers written, binary file, 184-185
primary/secondary memory, 149
read, file, 197-198
read structures store, 176-178
rename, file, 189
string, 163-165
structures, text file, 171-173
structures written, binary file, 186-188
text file
batch mode, 157-159
character, 149-154, 166-168
desired character, 199-201, 203-205
interactive mode, 160-163

INDEX

write, file, 197-198
write structures, binary
file, 181-183
Data stored in nested structures
arrow operator, 126-129
C program, 123-125
diagrammatic representation of
structure biodata, 123
dot operator, 126
secret agents, 122
structure diagrammatically, 122
Decrement operator, 433
deleteCircQue() function, 271, 275
Dereferencing operator, 433
Derived type, 39, 433
Destination type, 433
Device-file, 433
Disk-file, 433
displayCircQue() function, 271, 275
displayMenu() function, 271
Documentation, 2, 433
Dynamic memory allocation, 433

E

Eight queens problem, 57
Explicit type conversion, 10, 433
Expression, 433

Expression statement, 433
External variable, 433

F

fact() function, 51
Factorial computation,
using recursion, 51

Factorial of a number, 16-18

falsePosition() function, 354, 356

False value, 433

feof() function, 156

ferror() function, 156

fflush() function, 162

fgetc() function, 149, 152

fib() function, 49

Fibonacci sequence, 18-21
using recursion, 49

File, 433

FILE variables, 151, 207

fillPre() function, 270

First in first out (FIFO), 253

Flowchart, 433

441

INDEX

fopen() function, 151
Forward and backward traversing,
249-251
fprintf() function, 170, 173, 183
fputs() function, 157
fread() function, 183
Front end, 253
fscanf() function, 175
fseek() function, 201
ftell() function, 202
Function-definition, 433
Function-prototype, 433
Functions, 433
combination() function, 60
fact() function, 51
fib() function, 49
largest() function, 52
library functions, 40
main() function, 40
permutation() function, 60
queen() function, 57
rand(), 43
sieve(), 46
summation() function, 46
user-defined functions, 40
Functions and structures with pointers
building structure, 129-131
display data stored (see Data stored in
nested structures)
interactive mode, store and retrieve
data, 139-142
invoke function,
pointer-to-function, 142-146
modifying data structure
passing pointer-to-structure, 134-136
passing to function, 131-133
pass arguments by reference, 119-121
store and retrieve data, 136-139
text-based menu system, 146-148
Future value interest factors (FVIFs),
35-37
fwrite() function, 180, 183

G

Gauss’s Backward Method of
Interpolation, 372-375

Gauss’s Forward Method, 369, 371

Geometrical pattern, nested loops, 33-34

getchar() function, 153

Global variable, 433

Graphical user interface (GUI), 2, 433

442

H

Hardware, 433
Header file, 434
High-level language, 434

Identifier, 434
Implicit type conversion, 8, 434
Increment operator, 434
Indirection operator, 434
Infinite loop, 434
Infix expression to postfix expression,
263-267
Infix expression to prefix expression,
267-270

Information hiding, 3
Initializer, 434
insertCircQue() function, 275
insertCirQue() function, 271
Insertion sort

code, 286-287

problem, 286

solution, 286

working, 287-288
Integers, 168-170, 174-175
Interactive program, 434
Intermediate level code, 5
Internal variable, 434
Interpretation, 4-5
Interpreted language, 4-5
Interpreter, 434
Iteration statement, 13, 434

J

Jump statement, 13, 434

K

Keyword, 434

L

Labelled statement, 434

Lagrange’s Method of Interpolation, 386, 388

Laplace Everett’s Method of
Interpolation, 382-385

Largest element search, array of integers, 52

largest() function, 52

Last in first out (LIFO), 253

Library functions, 40, 434
character testing and processing
functions, 415
mathematical functions, 417-418
string processing functions, 416
utility functions, 419
Lifetime of a variable, 434
Linear linked list process
coding, 239-247
forward and backward traversing,
249-251
specifications, 238-239
user-defined functions
create(), 247
delete(), 248
display(), 247
insert(), 248
location(), 248
menu(), 247
Linear search
code, 278-279
problem, 278
solution, 278
working, 280
Line comments, 7
Line of code (LOC), 435
Linked list, 258-263
creation
anonymous variables, 216-219
forward and backward
traversing, 249-251
interactive session, 232-236, 238
delete component, 220-225
insert component, 225-229, 231
Literal, 434
Local variable, 435
Logical expression, 435
Low-level language, 435
lowPriority() function, 263, 270
1 value, 434

Machine language, 2, 435
Macro. See Macro name
Macro name, 435

main() function, 40

Main function, 435
Maintenance, 2, 435
malloc() function, 216, 218
Mathematical constant pi, 41
Matrix multiplication, 69

INDEX

Matrix summation, 63
Matrix transposal, 67
Merge sort

code, 291-293

problem, 291

solution, 291

working, 293-294
Microprocessor, 2
Modified Euler’s Method, 396-398
Modularity, 3
Muller’s method, 357-359
Multics operating system, 1
Multi-line comments, 7
Multiplication of matrices, 69
Multiplicative cipher method, 302

code, 316-318

problem, 315

solution, 316

working, 318-320

N

Narrowing type conversion, 8, 435
newtonRaphson() function, 360, 362
Newton Raphson Method, 360-362
Newton’s Backward Method of
Interpolation, 366-367, 369
Newton’s Forward Method of
Interpolation, 363-365
Non-standard library
function, 435
Numerical methods
Bessel’s Method of
Interpolation, 379-380, 382
bisection method, 350, 352
C programming, 349-350
Gauss’s Backward Method of
Interpolation, 372-375
Gauss’s Forward Method of
Interpolation, 369, 371
Lagrange’s Method of
Interpolation, 386, 388
Laplace Everett's Method of
Interpolation, 382-385
Modified Euler’s Method, 396-398
Muller’s method, 357-359
Newton Raphson Method, 360-362
Newton’s Backward Method of
Interpolation, 366-367, 369
Newton’s Forward Method of
Interpolation, 363-365
Regula Falsi Method, 353-356

443

INDEX

Numerical methods(cont.)

Runge Kutta Method, 399-401

Simpson’s 1/3rd Method of Numerical
Integration, 394, 396

Simpson’s 3/8th Method of Numerical
Integration, 391-394

Stirling’s Method of
Interpolation, 376-378

Trapezoidal Method of Numerical
Integration, 389-391

(0

Object-oriented programming, 3
One-time pad cipher method, 303
code, 336-339
problem, 335
solution, 336
working, 339-340
Operating system, 2, 435
Out-of-bounds array elements, 82-84

P

Parameter, 435
PDP-7 computer, 1
permutation() function, 60
Permutations and combinations, 60
Platform, 435
Platform independent programs, 5
Pointers and arrays
access, out-of-bounds array
elements, 82-83
addresses of elements, two-
dimensional array, 91-92
base addresses of rows, two-
dimensional array, 93-94
pass arguments, command
line, 110-111, 113
retrieve data
array name, 77-79
array of pointers, 100-101
char and double type arrays, 80, 82
char and double type arrays, 80-81
int type array, 75-76
int type array, 76
two-dimensional array, 95-96
two-dimensional array,
array name, 97-99
retrieve stored strings, pointer to a
pointer, 113-117
store strings

444

coding, 85
interactive session, 89-90, 108-109
memory level, 86
name and pname, 86
without initializations, 87-89
swap strings
logically, 104-107
physically, 102-104
Pointer variable, 435
popltem() function, 258
popOpr() function, 263, 270
Population sequence, 436
Portability, 2, 436
Precedence of operator, 436
Preprocessor, 436
Prime number program, 21-24
Prime numbers, 43
Priority of operator, 436
Problems and solutions
eight queens problem, 57
factorial computation, using recursion, 51
Fibonacci sequence, using recursion, 49
largest element search, array of
integers, 52
mathematical constant pi, 41
matrix summation, 63
permutations and combinations, 60
prime numbers, 43
product of matrices, 69
summation of numbers, using recursion, 46
towers of Hanoi, 54
transpose of matrix, 67
Procedural language, 3
Program, 2, 436
Program bombed, 10
Program design language (Pdl), 435, 436
Programmer, 436
Programming language, 436
object-oriented, 3
structured, 3
Programs, platform independent, 5
pushOpr() function, 263, 270
puts() function, 159

Q

queen() function, 57
Quick sort
code, 297-298
problem, 296
solution, 296
working, 298-299

R

rand() function, 43
rearCell, 275
Rear end, 253
Recursion, 436
eight queens problem, 57
factorial computation, 51
Fibonacci sequence, 49
summation of numbers, 46
towers of Hanoi, 54
Register variable, 436
Regula Falsi Method, 353-356
Relational expression, 436
Reverse cipher method, 301
code, 304-306
problem, 303
solution, 304
working, 306-307
Reverse of an integer, 31-32
Roots of quadratic equation, 29-31
RSA cipher method, 303
code, 341-344
problem, 340
solution, 341
working, 345-347
Runge Kutta Method, 399-401
r value, 436

S

scanf() function, 175
Scope of variable, 436
Searching, 277
binary search
code, 281-282
problem, 280
solution, 280
working, 282-283
linear search
code, 278-279
problem, 278
solution, 278
working, 280
Selection sort
code, 289-290
problem, 288
solution, 288
working, 290-291
Selection statement, 13, 436
Self-referential structure, 436

INDEX

component delete, linked list, 220-225
component insert,
linked list, 225-229, 231
linear linked list. Linear
linked list process
linked list, anonymous
variables, 216-219
linked list creation, interactive
session, 232-236, 238
list of numbers, generation, 213-215
struct tag, 213
syntax, 213
Shell sort, 425
code, 294-295
problem, 294
solution, 294
working, 296
showbackward() function, 249
showforward() function, 249
sieve() function, 46
Simple substitution cipher method, 302
code, 325-328
problem, 324-325
solution, 325
working, 328-330
simpson() function, 393
Simpson’s 1/3rd Method of Numerical
Integration, 394, 396
Simpson’s 3/8th Method of Numerical
Integration, 391-394
SIMULA 4, 67
Sine function, 25-26
Single-line comments, 7
Smalltalk, 4
Software, 2, 437
Sorting, 277
bubble sort
code, 284-285
problem, 283
solution, 283
working, 285
insertion sort
code, 286-287
problem, 286
solution, 286
working, 287-288
merge sort
code, 291-293
problem, 291
solution, 291
working, 293-294

445

INDEX

Sorting(cont.)
quick sort
code, 297-298
problem, 296
solution, 296
working, 298-299
selection sort
code, 289-290
problem, 288
solution, 288
working, 290-291
shell sort
code, 294-295
problem, 294
solution, 294
working, 296
Source program, 437
Source type, 437
stackMenu() function, 258, 263
Stacks, 253
applications, 253
array, 254-257
front end, 253
infix expression to postfix
expression, 263-267
infix expression to prefix
expression, 267-270
linked list, 258-263
Standard input device, 437
Standard library function, 437
Standard output device, 437
Static automatic variable, 437
Static external variable, 437
Static global variable, 437
Static internal variable, 437
Static local variable, 437
Static variable, 437
Stirling’s Method of Interpolation, 376-378
Storage class, 437
Store and retrieve data, array of
structures, 136-139
Store strings, 84-87
String, 163-165
String constant, 437
Strongly typed language, 10, 437
Structure, 437
Structured programming, 3
summation() function, 46
Summation of numbers, using recursion, 46
Sum of 1 to N numbers, 14-16
Swap strings logically, 104-107
Swap strings physically, 102-104

446

T

Ternary operator, 437
Text-based menu system, 146-148
Token, 437
Towers of Hanoi problem, 54
Transpose of matrix, 67
Transposition cipher method, 301
code, 312-314
problem, 311
solution, 311
working, 314-315
Trapezoidal Method of Numerical
Integration, 389-391
True value, 437
Two’s complement, 437
Type checking, 8, 437
Type conversion, 438
explicit, 10
implicit, 8

U

Unary operator, 438

Unified modelling language
(UML), 438

Union, 438

UNIX, 1

User-defined function, 40, 438

User-defined identifier, 438

Utility functions, 419

\'

Variable, 438
Variable declaration, 438
Variable definition, 438
Vigenere cipher method, 302

code, 331-333

problem, 330

solution, 330

working, 334-335
Virtual machine, 5

w

Weakly typed language, 10, 438
Widening type conversion, 8, 438

XY, Z

X3J11 committee, 1

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Welcome to C
	Programs, Software, and Operating System
	Machine Language and Assembly Language
	Procedural Languages
	Object-Oriented Languages
	Terminology in Computers
	Compiled and Interpreted Languages
	Compilation
	Interpretation

	Your First C Program
	Salient Features of C
	Implicit Type Conversion
	Explicit Type Conversion

	Chapter 2: Control Statements
	Selection Statements
	Iteration Statements
	Jump Statements
	2-1. Sum 1 to N Numbers
	Problem
	Solution
	The Code

	How It Works

	2-2. Compute the Factorial of a Number
	Problem
	Solution
	The Code

	How It Works

	2-3. Generate a Fibonacci Sequence
	Problem
	Solution
	The Code

	How It Works

	2-4. Determine Whether a Given Number Is Prime
	Problem
	Solution
	The Code

	How It Works

	2-5. Compute the Sine Function
	Problem
	Solution
	The Code

	How It Works

	2-6. Compute the Cosine Function
	Problem
	Solution
	The Code

	How It Works

	2-7. Compute the Roots of Quadratic Equation
	Problem
	Solution
	The Code

	How It Works

	2-8. Compute the Reverse of an Integer
	Problem
	Solution
	The Code

	How It Works

	2-9. Print a Geometrical Pattern Using Nested Loops
	Problem
	Solution
	The Code

	How It Works

	2-10. Generate a Table of Future Value Interest Factors
	Problem
	Solution
	The Code

	How It Works

	Chapter 3: Functions and Arrays
	3-1. Determine the Value of Pi
	Problem
	Solution
	The Code

	How It Works

	3-2. Pick the Prime Numbers from a List of Numbers
	Problem
	Solution
	The Code

	How It Works

	3-3. Sum Numbers Using Recursion
	Problem
	Solution
	The Code

	How It Works

	3-4. Compute the Fibonacci Sequence Using Recursion
	Problem
	Solution
	The Code

	How It Works

	3-5. Compute the Factorial of a Number Using Recursion
	Problem
	Solution
	The Code

	How It Works

	3-6. Search the Largest Element in an Array of Integers
	Problem
	Solution
	The Code

	How It Works

	3-7. Solve the Classic Problem of the Towers of Hanoi
	Solution
	The Code

	How It Works

	3-8. Solve the Eight Queens Problem
	Problem
	Solution
	How It Works

	3-9. Compute Permutations and Combinations of a Given Set of Objects
	Problem
	Solution
	The Code

	How It Works

	3-10. Perform the Summation of Two Matrices
	Problem
	Solution
	The Code

	How It Works

	3-11. Compute the Transpose of a Matrix
	Problem
	Solution
	The Code

	How It Works

	3-12. Compute the Product of Matrices
	Problem
	Solution
	The Code

	How It Works

	Chapter 4: Pointers and Arrays
	4-1. Retrieve Data from an Array with the int Type Data
	Problem
	Solution
	The Code

	How It Works

	4-2. Retrieve Data from an Array Using the Array Name
	Problem
	Solution
	The Code

	How It Works

	4-3. Retrieve Data from an Array with char and double Type Data
	Problem
	Solution
	The Code

	How It Works

	4-4. Access the Out-of-Bounds Array Elements
	Problem
	Solution
	The Code

	How It Works

	4-5. Store Strings
	Problem
	Solution
	The Code

	How It Works

	4-6. Store Strings Without Initialization
	Problem
	Solution
	The Code

	How It Works

	4-7. Store Strings in an Interactive Session
	Problem
	Solution
	The Code

	How It Works

	4-8. Retrieve the Addresses of Elements in a Two-Dimensional Array
	Problem
	Solution
	The Code

	How It Works

	4-9. Retrieve the Base Addresses of Rows in a Two-Dimensional Array
	Problem
	Solution
	The Code

	How It Works

	4-10. Retrieve Data from a Two-Dimensional Array
	Problem
	Solution
	The Code

	How It Works

	4-11. Retrieve Data from a Two-Dimensional Array Using an Array Name
	Problem
	Solution
	The Code

	How It Works

	4-12. Retrieve Data from an Array Using an Array of Pointers
	Problem
	Solution
	The Code

	How It Works

	4-13. Swap Strings Physically
	Problem
	Solution
	The Code

	How It Works

	4-14. Swap Strings Logically
	Problem
	Solution
	The Code

	How It Works

	4-15. Store Strings Interactively
	Problem
	Solution
	The Code

	How It Works

	4-16. Pass Arguments to a Program from the Command Line
	Problem
	Solution
	The Code

	How It Works

	4-17. Retrieve Stored Strings Using a Pointer to a Pointer
	Problem
	Solution
	The Code

	How It Works

	Chapter 5: Functions and Structures with Pointers
	5-1. Pass Arguments by Reference to a Function
	Problem
	Solution
	The Code

	How It Works

	5-2. Display Data Stored in Nested Structures
	Problem
	Solution
	The Code

	How It Works
	Dot Operator
	Arrow Operator

	5-3. Build a Structure Using a Function
	Problem
	Solution
	The Code

	How It Works

	5-4. Modify the Data in a Structure by Passing It to a Function
	Problem
	Solution
	The Code

	How It Works

	5-5. Modify the Data in a Structure by Passing a Pointer-to-Structure to a Function
	Problem
	Solution
	The Code

	How It Works

	5-6. Store and Retrieve Data Using an Array of Structures
	Problem
	Solution
	The Code

	How It Works

	5-7. Store and Retrieve Data Using an Array of Structures in Interactive Mode
	Problem
	Solution
	The Code

	How It Works

	5-8. Invoke a Function Using a Pointer-to-Function
	Problem
	Solution
	The Code

	How It Works

	5-9. Implement a Text-Based Menu System
	Problem
	Solution
	The Code

	How It Works

	Chapter 6: Data Files
	6-1. Read a Text File Character by Character
	Problem
	Solution
	The Code

	How It Works

	6-2. Handle Errors When File Opening Fails
	Problem
	Solution
	The Code

	How It Works

	6-3. Write to a Text File in Batch Mode
	Problem
	Solution
	The Code

	How It Works

	6-4. Write to a Text File in Interactive Mode
	Problem
	Solution
	The Code

	How It Works

	6-5. Read a Text File String by String
	Problem
	Solution
	The Code

	How It Works

	6-6. Write to a Text File Character by Character
	Problem
	Solution
	The Code

	How It Works

	6-7. Write Integers to a Text File
	Problem
	Solution
	The Code

	How It Works

	6-8. Write Structures to a Text File
	Problem
	Solution
	The Code

	How It Works

	6-9. Read Integers Stored in a Text File
	Problem
	Solution
	The Code

	How It Works

	6-10. Read Structures Stored in a Text File
	Problem
	Solution
	The Code

	How It Works

	6-11. Write Integers to a Binary File
	Problem
	Solution
	The Code

	How It Works

	6-12. Write Structures to a Binary File
	Problem
	Solution
	The Code

	How It Works

	6-13. Read Integers Written to a Binary File
	Problem
	Solution
	The Code

	How It Works

	6-14. Read Structures Written to a Binary File
	Problem
	Solution
	The Code

	How It Works

	6-15. Rename a File
	Problem
	Solution
	The Code

	How It Works

	6-16. Delete a File
	Problem
	Solution
	The Code

	How It Works

	6-17. Copy a Text File
	Problem
	Solution
	The Code

	How It Works

	6-18. Copy a Binary File
	Problem
	Solution
	The Code

	How It Works

	6-19. Write to a File and Then Read from That File
	Problem
	Solution
	The Code

	How It Works

	6-20. Position a Text File to a Desired Character
	Problem
	Solution
	The Code

	How It Works

	6-21. Read from the Device File Keyboard
	Problem
	Solution
	The Code

	How It Works

	6-22. Write Text to the Device File Monitor
	Problem
	Solution
	The Code

	How It Works

	6-23. Read Text from the Device File Keyboard and Write It to the Device File Monitor
	Problem
	Solution
	The Code

	How It Works

	Chapter 7: Self-Referential Structures
	7-1. Generate Lists of Numbers in an Interactive Manner
	Problem
	Solution
	The Code

	How It Works

	7-2. Create a Linked List Using Anonymous Variables
	Problem
	Solution
	The Code

	How It Works

	7-3. Delete a Component from a Linked List
	Problem
	Solution
	The Code

	How It Works

	7-4. Insert a Component into a Linked List
	Problem
	Solution
	The Code

	How It Works

	7-5. Create a Linked List in an Interactive Session
	Problem
	Solution
	The Code

	How It Works

	7-6. Process a Linear Linked List
	Problem
	Solution
	The Code

	How It Works

	7-7. Create a Linear Linked List with Forward and Backward Traversing
	Problem
	Solution
	The Code

	How It Works

	Chapter 8: Stacks and Queues
	8-1. Implement a Stack as an Array
	Problem
	Solution
	The Code

	How It Works

	8-2. Implement a Stack as a Linked List
	Problem
	Solution
	The Code

	How It Works

	8-3. Convert an Infix Expression to a Postfix Expression
	Problem
	Solution
	The Code

	How It Works

	8-4. Convert an Infix Expression to a Prefix Expression
	Problem
	Solution
	The Code

	How It Works

	8-5. Implement a Circular Queue as an Array
	Problem
	Solution
	The Code

	How It Works

	Chapter 9: Searching and Sorting
	9-1. Find a Data Element Using a Linear Search
	Problem
	Solution
	The Code

	How It Works

	9-2. Find a Data Element Using a Binary Search
	Problem
	Solution
	The Code

	How It Works

	9-3. Sort a Given List of Numbers Using a Bubble Sort
	Problem
	Solution
	The Code

	How It Works

	9-4. Sort a Given List of Numbers Using an Insertion Sort
	Problem
	Solution
	The Code

	How It Works

	9-5. Sort a Given List of Numbers Using a Selection Sort
	Problem
	Solution
	The Code

	How It Works

	9-6. Sort a Given List of Numbers Using a Merge Sort
	Problem
	Solution
	The Code

	How It Works

	9-7. Sort a Given List of Numbers Using a Shell Sort
	Problem
	Solution
	The Code

	How It Works

	9-8. Sort a Given List of Numbers Using a Quick Sort
	Problem
	Solution
	The Code

	How It Works

	Chapter 10: Cryptographic Systems
	10-1. Use the Reverse Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-2. Use the Caesar Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-3. Use the Transposition Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-4. Use the Multiplicative Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-5. Use the Affine Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-6. Use the Simple Substitution Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-7. Use the Vigenère Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-8. Use the One-Time Pad Cipher Method
	Problem
	Solution
	The Code

	How It Works

	10-9. Use the RSA Cipher Method
	Problem
	Solution
	The Code

	How It Works

	Chapter 11: Numerical Methods
	11-1. To Find the Roots of an Equation Using the Bisection Method
	Problem
	Solution
	The Code

	How It Works

	11-2. To Find the Roots of an Equation Using the Regula Falsi Method
	Problem
	Solution
	The Code

	How It Works

	11-3. To Find the Roots of an Equation Using Muller’s Method
	Problem
	Solution
	The Code

	How It Works

	11-4. To Find the Roots of an Equation Using the Newton Raphson Method
	Problem
	Solution
	The Code

	How It Works

	11-5. To Construct the New Data Points Using Newton’s Forward Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-6. To Construct the New Data Points Using Newton’s Backward Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-7. To Construct the New Data Points Using Gauss’s Forward Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-8. To Construct the New Data Points Using Gauss’s Backward Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-9. To Construct the New Data Points Using Stirling’s Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-10. To Construct the New Data Points Using Bessel’s Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-11. To Construct the New Data Points Using Laplace Everett’s Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-12. To Construct the New Data Points Using Lagrange’s Method of Interpolation
	Problem
	Solution
	The Code

	How It Works

	11-13. To Compute the Value of Integration Using Trapezoidal Method of Numerical Integration
	Problem
	Solution
	The Code

	How It Works

	11-14. To Compute the Value of Integration Using Simpson’s 3/8th Method of Numerical Integration
	Problem
	Solution
	The Code

	How It Works

	11-15. To Compute the Value of Integration Using Simpson’s 1/3rd Method of Numerical Integration
	Problem
	Solution
	The Code

	How It Works

	11-16. To Solve a Differential Equation Using Modified Euler’s Method
	Problem
	Solution
	The Code

	How It Works

	11-17. To Solve a Differential Equation Using Runge Kutta Method
	Problem
	Solution
	The Code

	How It Works

	Appendix A: Reference Tables
	Appendix B: Library Functions
	Character Testing and Processing Functions
	String Processing Functions
	Mathematical Functions
	Utility Functions

	Appendix C: C Idioms
	Appendix D: Glossary of Terms
	Index

