(Pronging
for the PIC
Microcontroller

Demystify Coding with Embedded
Programming

Hubert Henry Ward

Apress:
vvvvw.a]ﬁ”febq%s.com

http://www.allitebooks.org

C Programming
for the PIC
Microcontroller

Demystify Coding
with Embedded Programming

Hubert Henry Ward

Apress’

vww . allitebooks.con

http://www.allitebooks.org

C Programming for the PIC Microcontroller: Demystify Coding with
Embedded Programming

Hubert Henry Ward
Lancashire, UK

ISBN-13 (pbk): 978-1-4842-5524-7 ISBN-13 (electronic): 978-1-4842-5525-4
https://doi.org/10.1007/978-1-4842-5525-4

Copyright © 2020 by Hubert Henry Ward

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5524-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-5525-4
http://www.allitebooks.org

Dedicated to my wife Ann

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUthOrccccmmnimmmnnesnnnss s xiii
About the Technical ReVIEWETccsssesssssssassssnsssnsssassssassssnsssansssnsssas Xv
Introduction........cccccmnsemmmnsnmmsssnsmssssnmsssnsmsssnsssssns s ssnn s nnnnsnnnnnns Xvii
Chapter 1: Introduction...........cccuunnsseeesmmnnnmmmmsssssssssnem s ————" 1
Programmable Industrial CoNtrollersccovevvesrenernsesenesess s 1
Programming LAnQUAQES......ccouverrerrerersenensensesessssessessesssssssessessessssessessessssessessesses 3
MACHINE COEcccovrirrreicri s 3
PACSTSYeT aq] o] (<1 g I 4T 1 Vo S 5

C Programming LANQUAGEccocerernnrnnniesienss e sesse s ssssss s ssessssessesneens 5
Different Programming LANQUAJEScccererereererenmrresmrensesessesessssesessesessssessssesenns 6
TREIDE ...t bbb 7
SUMMANY....ctitieernesrre e e e b s r e r e e b e e e e nnnne e 8
Chapter 2: Our First Programcccccvnnsemmmmmsssssnmsssssssnsssssssssssssssssssnss 9
The PORTS 0f the PIC.......cccciiccccsnriseesese s sssasnas 9
Good Programming PraCtiCeccevevererrerieresessersessessssessessessessssessessesssssssensenees 10
The AIgOrTRM.......co e ———————— 10
The FIOWCHAM........cceceeeeereer e nnenen 11

The Program LiStiNgccccveeeerenernsesrsensnssesessesesesessssesessesesssssssssesssssssssenens 11
USiNg MPLABX IDEccvoerererirserie s sesse e ss et e e e sasssssessesnens 12
Creating the Project in MPLABX..........ccccvvviernnensensenessssessese e ssssessessessessssessesaes 13
The First Program Turning On and Off an Qutput.........cccccvverievvrnrenserenessensenaens 23
v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

The Main Aspects 0f @ ‘C’ Programccceveeverersersersesessessessesssssssessessesssssssessees 23
The Comments and PIC Configurationccccoveevniennnsennscnenesese s eseneens 23
The TRISA and TRISB........cccccourireisnnsrssssrsr s ss s ssssssnns 29
ATRIS EXAMPIE.....coiiiiricrire st n s e 31
EXEICISE 2T e 31
Setting the PORTS........ccorrr s se s saesnes 31
The ADC (Analogue to Digital CONVEIEN)........ccvvrverierrererserseseseesessessessesessessessenes 33
Setting Up the OSCIllAtorccccveerevererrerere s sesse e ssssese e ssesessessesees 36
EXEICISE 2-2......eeeeeeeeereecrerc s e 39
Waiting for an INPUL.........cooeeeece e 39
Waiting to Turn the LED Off........cccoveeineirssrresensse s sessesensnnens 42
EXEICISE 2-3.....ceeeeeeirreeriee s e 51
(001111117 1T 52
Testing the Program..........cocvvivenninninse s ses s se s s s s ssessssssesaesseas 52
Compiling and Running the Program.............cceceerienrnscvnneneniencrssesesesessenes 56
Testing the Program Practicallyccccocrienninininnnnsnc s 59
R0 T o S 62
EXEICISE ANSWENS ...c.vereerreerrssessssssessesessssesssssssssssessssessssssssssssssssesssssnssssnsssanes 63

Chapter 3: Updating the Program............cccivnmssemnnnssssnsnsssssssnsssssssnsnnns 69

If This Then DO That.........covvninre s 65
Saving the Old Program...........ccoccrrvrnicnnesersse s sese e ssssesens 66
Labels and the Goto INStrUCLION.........c.ccceeereeecrerereree s 69
EXEICISE 3-T..riesreereerrne s s 69

WHhile VS. If TREN....coceeccerce e 69

Slowing the MICro DOWNcccvcreererr e ss e s sre e s saesees 70

TOCON REJISIEE ...cverveererrerrererserersesssssssessessessssessessessessssessessessessssessessesssssnsessees 71

TABLE OF CONTENTS

Adding a One-Second DEIAYcccvvereverrerierennsensenese s s ssessssessessenes 74
EXEICISE 2. s 75
Delaying the TUurn Off.......ociircn e 77
USING SUDFOULINEScoveereecrercser e e 79
Defining and Calling a Subrouting..........c.ccovveerecrsssncsnese e 79
The delay SUDFOULINE.......ccccvvvrrrer e 80
Calling the Subroutine from Within the Main Program............ccceveevvveriernene 80
The Variable Delay and the FOr DO LOOPcccceeeverververnererrersee e sesessee e saesnens 82
Local and Global Variables and Data Types.........ccccvvrinnnnnnennesnsensesessssessensens 85
778 L= I 1T T PR 85
Type UNnSIigned Char ... 86
TYPE INE et 86
LOCal Vari@bIEsccvviiiireririnsce s 87
Global VariabIes...........oveererernincr s 87
EXEICISE 33 90
SUMIMANY.....eieeeeeeree e e r e se e e s re e e e e nns 91
EXEICISE ANSWENSceveeereeerereerseesseesessesessssessesessssssessesessssessssesesssssssenessnnes 91
Chapter 4: Applying What We’ve Learned.........cccossmmssansssassssnsssansssass 93
Controlling a Single Set of Traffic LIghtS......c.ccocvcvvrivnrninienesssersene e sessensennns 93
The AlGOritNM ... ——————— 94
The Configuration WOrdSccceeeernvcrnesne s sens 100
The Analysis 0f the Program ... sessesesnenens 101
Downloading the Program to a Prototype Board...........ccccvrererencrnsenenenennnnes 106
Extending the Program to the Crossroads Traffic Lightscccccvrnierennnnns 109
The AIgOFthm ... e 110
SUMMAIY.c.ueiteirierere s sere e sesse s e s e e s e ssesse e s e saesaese e e saesaesae e s e saesaessenennessens 118

vii

TABLE OF CONTENTS

Chapter 5: Real-World INputscccinnssmmmmmmssssnnnssssssssssssssssssssssnns 119
Using Analogue INPULSccoevreinircre s s 119
The ADCONO Control Register ... sessessessens 120
The ADCONT REGISTEr......cceeeereecrererereses e sessssesnnnens 122
The ADCON2 RegiSTercuueerrererrnesrssesessesessssessssesessesessssesssssssssssssssssssssssssssnens 124
Creating the Required AcqUISItion TIMEccuvvvrierenensenseresssessesse s sessesessens 128
6 111][S 129
06 111][129
Changing the ADC Input Channels ... sessessens 130
A Basic Setup for the ADC..........ccovrrrinnrr e 131
A Basic Program for the ADCccoeernvnnenersse s sessssessenens 132
The AlGOrithm ..o ———— 132
Analysis 0f the Programc.ccovcvvevievnninnensessessssessessesessssessessesssssssessessens 134
SUMMAIY.c.veitetrerereses s e s s sre e e e sse s sa e e s e saesaese e e saesaesae e s e saesaesseensesaess 135
Chapter 6: Using the LCD.........ccccnsmmmsanmssasmssnssssnsssassssassssnsssassssanssas 137
The LCD CONTIOIIEY ... e se e 137
Instruction or Command MOdE..........ccoveevrrenerenernsesensese s 137
DAta MOTEcerereereererer e nnen 138
INitializing the LODccvcrcerereer et s e sa s sn e e 142
The Subrouting ICAOUL ()....ccverrererrerrererrerersereresessessesesessssesessesaesessessessens 159
The Subrouting SENAINTO () ..v.cveverrerrerierererrerrererre s e seesessesaens 159
The New Aspects to PIC Programming in This LCD Program.........cccoeeevienuenne. 162
AITAYS ... sesse e se s e e p e e e e R e e e 162
USING POINTETScecvreeerrcerie s 163
Connecting the LCD in 8-Bit MOdE..........ccoverrrinernseninesersse e 165

viii

TABLE OF CONTENTS

The VoIt Meter Programc.cccevvvninneninsinse s sessesssessessessesssesaesannns 175
The AIgOrithm ..o ——— 175
Creating Special Characters on the LCDccccrvviinsniniennsncenesssenennens 190
SUMMANY..c..eeeerercreree s e e pe e e e 211
Chapter 7: Creating a Header File.........c.ccccmmnsssnnmnnnsssnnnnnsssssnsnnssssnns 213
HEAURK FIlES...cvieeeeeeerieert sttt s 213
Creating @ Header Filecovcvvvrerenirrerere s sesse e ses s sse e e sae s ssessesnens 213
Including the Header File into Your Program...........ccccecvvnvnnnneniensensensenenens 217
The Global Header File.........c.covvennrnnesscsenessss s sesnssns 218
Creating a Header File for Your Configuration Instructions..........c.ccccevvcniennene. 219
SUMMANY....eieeerieereree s s e e e e 221
Chapter 8: Understanding Some Useful Codec.cuommurnnnsnsnsnnas 223
The Trace TADIEccveceeereee e 224
THE PrOCESSccvceriicrinceriee s s 224
LINES 16 ... s 231
Line 7 unsigned char #liStpointer;......cccovvrrrriernnnsnierenesserseseseesessessenes 231
Line 10 NUMDBDEITH4; c.eereeeececeree e rerer e se s s see e e s e s e s se s e e snesaesaeens 232
Line 11 numbert = NUMDBEIT + 2}ovvvvererierrerreerererses e seseesaesaessenns 232
Line 12 number2 = NUMDBEIT = 2}cccvvvverererersee s s s see e ssesesssesaessesnas 232
Line 13 number2 = 0b1111111111110000;..........ccorerererermrmssssssssssssnsnnnas 232
LI I T R 233
LINE 18 Z = Y+ eeeereersrsssrsnsrssssssssssssssss e e sssssssssssssssssssasnas 233
Line 19 z = (unsigned Char) U;.........cccnrrinnnininsn e 233
LiNE 21 Y = ~ Y} e 233
LiNE 23 Z = Y<<T e 234
LiNE 24 Z = Y>> i 234

ix

TABLE OF CONTENTS

Line 26 y=(2>0) ? @ : ~1;.evvcrrerrerererrerererss s e ses e e ssssessessesassessesaesaes 235
Line 27 y=(a==0) 2 @ : -1} coecrrrrrrrrerrrerrre s 235
Ling 28 y=(2>0) 7 Z 1 =1 e s 235
Line 29 listpointer = list;cccviinninininnr e 236
Line 30 =liStPOINer =2;ccvviviierererrersee s s sre e sns 236
Line 31 lIStPOINTEr +4;...cvierierere i snes 236
Line 32 #liStPOINtEr = 5;....ccvcererererrerere e sersese s s s sse s e saesessesnesaes 236
Line 33 listpointer = [iSt;ccccvveveririrr e 237
Line 34 @ =2 & 0XFO;cceceeeerereeeeererrer e s s s n e e 237
Line 37 if (1 && 7 ==)M = 5. 238
LiNe 38 €ISE M = 9;.....uevcerceerererree s s e s e sa e sre s s e snesre e e 238
Line 39 n = 0000001000ccceurrrrrrrrrerrrererereresesesesesesesesssssssssssssssssssssssnns 238
Line 40 if (n & 0b00001000)m = 5; Line 41 else M = 3;....cccccvvrvervrerveriennen 239
Line 42 if (n & 0b00000001)t = 4; Line 43 else t = 2;........ceeererrrersesannnnnns 239
LiNE 44 N = 105 ...cveeeeeessssssrsrssssssssssssss e e e e ss s s sssssssssssssssasanas 239
Line 45 for (@ = 0,2 < 5, @++})ccviirnnniniennnnness s ssssesseses 239
Line 47 «listpointer = Nj....cccvcvierennirinr s 240
Line 48 liStPOINter ++;....cccviririerrrinrirene s 240
LINE 49 N =N 425 240
Line 51 WHIIE (1)] c.eueeeeeeeeersrssssssssisise e sssssssasnas 241
Debugging the Program..........cccccvvvveririersnnessersessee e sesessee e sesesssessessessens 241
Compiling the Completed Program...........cccccrrvinnnnnniennnsnsensesssessesenns 242
SUMMANY....eeeerercreree s se s e s nen e 249

TABLE OF CONTENTS

Appendix: Additional ReSOUrCeS......ccuusssmmmmmnmmrrsssssssssssssnssssssssssnnnnns 251
USeful DEfinitioNS.......c..cocvereeeereereereeese e 251
Mathematical and Logic Operators..........c.cccvvvnvniernnnsnseniess s 252
KEBYWOIUS ... e 253
D L B LTSS 253
T (0] TN 254
0 1SS 256
Numbering Systems Within Microprocessor-Based Systems.........cccceevvevrernene 256

Binary NUMDEIS......c.covirerr it sn s s sns e s 257
Converting Decimal t0 BiNaryccccoverrrererenernsesessesese s sesseses e 257
Adding and Subtracting Binary NUMDErScccoovevnenmrnsesnsesenesensssesenns 261
Subtracting Binary NUMDErScccccvvirriennese s 263

The Hexadecimal NUMDEr SYStEMccccvevvrnnnieniennsensere e sessesessessssessessesees 264
1T = 267

About the Author

Hubert Henry Ward has over 24 years of experience in teaching students
at the Higher National Certificate and the Higher Diploma in Electrical
and Electronic Engineering. Hubert has a 2.1 Honours Bachelor’s Degree
in Electrical & Electronic Engineering. Hubert has also worked as a
college lecturer and consultant in embedded programming. His work
has established his expertise in the assembler language and C, MPLABX,
and designing electronic circuit and PCBs using ECAD software. Hubert
was also the UK technical expert in Mechatronics for 3 years, training the
UK team and taking them to enter in the Skills Olympics in Seoul 2001,
resulting in one of the best outcomes to date for the United Kingdom in
Mechatronics.

xiii

About the Technical Reviewer

Leigh Orme is a graduate engineer at SSE plc in Greater Manchester,
United Kingdom. He has an electrical and electronic engineering degree
from Manchester Metropolitan University.

Introduction

This book looks at programming a PIC microcontroller in C. We'll study

the following aspects of programming the PIC:

1.

10.

11.

Looking at some of the background to the program
language for micros

Creating a project in the Microchip IDE MPLABX
Configuring the PIC

Setting up the oscillator using the internal oscillator
block

Setting up some digital inputs and outputs

Simulating a simple program using the simulator in
MPLABX

Creating a simple delay and a variable delay

Using the ADC to accommodate an analogue input
to the PIC

Using an LCD in both 4-bit and 8-bit mode to
display data
How to make a header file to save writing the same

instructions again in every project.

Using arrays and controlling how you step through
an array

xvii

INTRODUCTION

The Aim of the Book

The aim of this book is to introduce the reader to PIC microcontrollers and
writing programs in ‘C’ There is some background information starting
with what a PIC is and some aspects of programming languages. It will
then move onto what an IDE is and how to use MPLABX, one of the most
common industrial IDEs. MPLABX is an IDE that is freely available from
the Microchip web site. The ‘C’ compiler is their free compiler that again
can be downloaded from their web site. Note that I use MPLABX version
5.2 and the XC8 compiler version 2.05 or 1.35. These can be downloaded
from the archive section of their web site.

Then the text moves on to the exciting world of writing programs
for microcontrollers. It is based around the range of microcontrollers,
termed PIC micros, available from Microchip. It will show you how to
write programs without buying any devices or equipment as you can use
the MPLABX simulators that come free with the MPLABX IDE. If you have
access to an ECAD package, such as PROTEUS or Tina, that has the ability
to run 8-bit or 16-bit and so on micros, then it will show you how to use
that software to run your programs, again without buying any equipment.

This book is based around the PIC18F4525 as it has the advantage
of being a 40 pin dual in line package. This means it is quite easy for the
hobbyist to create a practical circuit on vero board or even a small PCB.

My other books cover using the PIC to control a variety of DC motors
such as simple DC motors using PWM to control the speed of the DC
motor, stepper motors, and servo motors. I also have a short book looking
at communications for the 18F4525. Apart from those books, I am writing
another range of books on how to use a 32-bit PIC, but this is a surface
mount device which makes it rather more difficult to build practical
circuits. However, the 32-bit PICs have some very useful additions.

xviii

INTRODUCTION

The PIC18F4525 is a very useful PIC with 5 ports giving us the use of
36 I/0. It has 4 timers and 3 external interrupt sources. It has a two-CCP
module with the ability to provide two separate PWM outputs, and it has
full bridge drive capabilities. There are more functions available, and they
all make the PIC18F4525 a very useful microcontroller.

The Objectives of the Book

After reading this book, you should be able to do the following:
e Write PIC programs in C
e Use the main features of the MPLABX IDE
o Interface the PIC to the real world

e Design and create useful programs based around the
PIC18F4525

» Enjoy delving into the exciting world of embedded
programming

I hope you enjoy reading this book and find it very useful. I firmly
believe that programmers should not just put together blocks of code,
which perform the functions they want, to create a program. To be a good
programmer, with the versatility to alter their programs to cope with the
wide variety of microcontrollers and their different oscillator choices,
you need to know how the code works. In my many years of teaching this
subject, I have often been told that to create a 1-second delay, you simply
write the instruction delay (1000). Well, that only works for a certain
oscillator frequency and timer setting. To be able to create a delay using
any oscillator, you need to understand how your timer counts and at what
frequency it counts. Armed with that sort of deeper understanding, you
will be a better programmer.

Xix

INTRODUCTION

This book is aimed at giving you the full understanding of the
fundamental aspects of the microcontroller and how it works. Then, with
a deeper understanding of how the different control registers control
the micro, you will become a programmer who will, with experience,
fully control your device and not rely on bits of code, which you don'’t
understand, doing the programming for you. It is essential that we have
programmers who have this deep appreciation of their microcontrollers,
and I hope that after reading this book, you are on your way to becoming
one of those programmers.

The Prerequites for the Book

There are none really, but if you understand ‘C’ programming, it would
be useful. Also, if you understand the binary and hexadecimal number
systems, it would be an advantage, but there is a section in the Appendix
that will help you with that.

CHAPTER 1

Introduction

This chapter covers some of the fundamentals of what a microprocessor-
based system is and how a microcontroller is different. It then covers the
historic development of the ‘C’ programming language for PIC controllers.

After reading this chapter, you should appreciate how the micro sees
your instructions and understand the terms machine code, assembler,
compiler, and linker.

Programmable Industrial Controllers

Programmable Industrial Controllers (PICs) is really just a trademark
for the microcontrollers produced by Microchip, or so I have been led
to believe. Some say it stands for Programmable Industrial Controllers,
or Programmable Intelligent Controller, or Programmable Interface
Controller. However, the term PIC is used by Microchip to cover an
extremely wide range of microcontrollers produced by them. I will simply
refer to the microcontroller as the PIC.

Each PIC will have all the components of a microprocessor-based
system as shown in Figure 1-1, such as

e A microprocessor
« ROM, RAM
e Anl/Ochip

o« The associated address, data, and control buses

© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_1

CHAPTER 1 INTRODUCTION

However, all these parts are all on a single chip, not several as with older
microprocessor-based systems. This means it is really a single-chip computer.
As well as all that, the PIC has much more circuitry on the single chip.
This extra circuitry is used to make it into a control system with a micro at the
heart of it. The extra circuit may include an ADC, opamp circuits for compare

and capture, a PWM module, and a UART module. These extra circuits may

not be on all PICs as PICs vary in their makeup for different applications.

13

1' Address Buses # i

pp area

ALU EFROM
Wreg Data Bus Used for
Status reg ger
FiRreg Program
7 2

el —

Special RAM
E:;mm UsedFor

. Storing Dat
Special orngDsla
area of

RAM

The Control Bus m Bhit port
Has not been shown - only 5 for 11O
Fort B
s Sbit port
all used for 1/Or

Figure 1-1. The Basic Microprocessor System

One more thing before we move on is that the PIC is a RISC chip as
opposed to a CISC chip. RISC stands for reduced instruction set chip, whereas
CISC stands for complex instruction set chip. Indeed, the instruction set for
PIC micros ranges from 35 to 75 core instructions. However, the 18F4525 has
an extended instruction set at your disposal. The Intel processor, which is a
CISC chip, uses hundreds of instructions. So the PIC is pretty efficient.

CHAPTER 1 INTRODUCTION

Programming Languages

There is a wide variety of programming languages for microprocessor-
based systems. However, all microprocessors only understand
voltage levels, ideally 5V and 0V. These two voltage levels are how all
microprocessors understand logic which has only two states which are
“yes or no,” 5V or 0V, and now 3.3v and Ov as with the 32-bit PICs.

It is because of this that the binary number system is commonly used
in microprocessor-based systems. This is because binary only has two
discrete digits ‘1’ and ‘0’

Consider the following binary number:
10101001

This really represents
5v0v5v0Ov5vOvOvSY

The 5v and 0v is really the only language that all microprocessors
understand. However, we can easily use binary to represent the 5v and Ov
as ‘1’ and ‘0! So writing in binary is easier than writing 5v and Ov.

Machine Code

This then is the birth of “machine code,” the most basic programming
language termed low level as it is at the level that the micro understands.
Now consider the following:

A9

This is a hexadecimal representation of the 8 binary bits 10101001.
It is used to enable programmers to represent binary numbers in a less
complicated manner to avoid mistakes, as its very easy to write a ‘0’
instead of a ‘1’ However, the early programmers actually wrote their

CHAPTER 1 INTRODUCTION

programs in the binary machine code to make them faster. There is a

section in the Appendix that covers the binary and hexadecimal number

systems which is something you need to understand. See Appendix 7.
Now consider the following:

LDA#

This is actually termed “mnemonics” which stands
for an alphanumeric code used to represent the
instruction.

The mnemonic LDA# represents the instruction
LoaD the Accumulator immediately with the number that follows:

‘LD’ for load, ‘A’ for accumulator, and ‘#’ for
immediately.

It is fairly obvious that we, as humans, can learn to understand the
mnemonics quicker than hexadecimal or the binary of the machine code.
However, the microprocessor does not understand these mnemonics.
Somehow the mnemonics has to be converted to the machine code.

Consider the following:

LDA# A9 10101001

The first column is the code or mnemonics; the next two columns
are the conversion to the machine code via hexadecimal and then to
binary. Every instruction in the micros instruction set has its hexadecimal
or binary equivalent. With the EMMA systems, the students actually
converted the mnemonics code to the machine code, but this is very time-
consuming.

The act of converting the mnemonics to machine code is called
“compiling,” and with the EMMAs, we get the students to compile the
mnemonics. In real programming, we use a program called a compiler to
do this.

CHAPTER 1 INTRODUCTION

Assembler Language

Different micros use different mnemonics to represent the instructions in
their instruction set. All these different mnemonics are now collectively
termed assembler language. There are different ones for different systems
such as TASAM for TINA with the EMMAs, MASAM for Microsoft used in
DOS programs, and MPLAB assembler from Microchip.

When using assembler language, all instructions have two parts:

e The OPCODE. This is the part that describes the
operation (i.e., LDA Load The Accumulator).

e The OPERAND. Where the micro gets the data to be
used in the operation (i.e., ‘#").

This means that the data is what follows immediately next in the
micros memory.

As this book is based on the C programming language, there is no
real need for the reader to understand the assembly language, but it is
important to realize that all program languages, even visual basic, have to
be converted to the machine code before being loaded into the micro. This
process is called compiling, and it usually involves converting the program
instructions into assembler before going into machine code.

C Programming Language

C and now C++ are generic programming languages that many
programmers now study. As this has meant that there are a lot of engineers
who can program in this language, then Microchip, the manufactures

of PICs, have produced ‘C’ compilers that can be used to convert a ‘C’
program into the machine code for their PICs. Indeed, as the number of
programmers who write in assembler have reduced and the number of ‘C’
programmers have increased, Microchip has stopped writing assembler

CHAPTER 1 INTRODUCTION

compilers for their more advanced PICs such as the 32-bit PICs. Also, I
believe that Siemens is now moving toward programming their PLCs in ‘C!

The more modern languages such as Python and C# have their roots
in ‘C!

Different Programming Languages

Table 1-1 shows some of the more common programming languages.

Table 1-1. Some Common
Programming Languages

Example Language

Machine code (binary 1s and 0s)
Assembly Language

Cobol

Fortran

C, Pascal

Ada 83

C++,

C#

Python

Basic

Visual Basic

CHAPTER 1 INTRODUCTION

The IDE

The term IDE stands for integrated development environment. It is
actually a collection of the different programs needed to write program
instructions in our chosen language. Then convert them to the actual
machine code that the micro understands, and also link together any bits
of program we may want to use.

The programs we need in the IDE are

o Atext editor to write the instructions for the program.
Note: The simple text editor “Notepad” could be
used, but the text editor in MPLABX is by far a more
advanced text editor.

o A compiler to change the instructions into a format the
micro can understand.

e Alinker to combine any files the programmer wants to
use.

e Adriver that will allow the programming tool used to
load the program into the micro.

e Avariety of simulation tools to allow the programmer
to test aspects of the program.

e Avariety of debug tools to allow the programmer to test
the program live within the micro.

All these are in the IDE we choose; Microsoft has Visual Studio,
Microchip has MPLABX, and Freescale uses CodeWarrior. Note that
CODEBLOCK is an IDE for writing generic 'C' programs that will run on
your PC. As this book is based on the PIC micro, it will concentrate on
MPLABX. MPLABX has an improved text editor to give the text different
color codes when we save the file as a .asm or .c for c program file such as
light blue for keywords, light gray for comments, and so on.

CHAPTER 1 INTRODUCTION

There are some other organization programs within MPLABX such
as the ability to write to the configuration registers for the PIC. There is
also the ability to simulate your programs within the IDE. All this makes
MPLABX a useful tool for programming PICs.

There is also a program called MCC Microchip Code Configurator. This
will actually produce a lot of the code you need, to use various aspects of
the PIC, for you. However, I firmly believe that you should produce the
code you use yourself so that you fully understand the code you use. I will
not cover the use of the MCC. Also, Microchip has not written the MCC for
all their PICs, and the 18F4525 is one they have missed so far.

Really when asked who the programmer is, you should be able to say
that you are and not the MCC. When you take the time to study how to
write your own code, you will find it is not as hard as you first thought.
Also, you will get a better self-reward if you write it all yourself.

The only aspect of the programs that I let Microchip do for me is to
write the code configuration bits that set up the PIC. This is only because it
is so simple to do this and it covers all the #pragma statements.

Summary

This chapter has given you some background information about
microcontrollers. It has introduced some of the terms and given you an
explanation of what they mean such as

¢ PIC
e IDE

The next chapter will take you through creating a project in MPLABX
the IDE from Microchip. It will also allow you to produce your first PIC
program.

CHAPTER 2

Our First Program

After reading this chapter, you should be able to create a project and
write a program that uses inputs from switches and turns on outputs.

We are going to start off by writing a program that will make the PIC wait
until a switch connected to bit 0 of PORTA goes high. It will then light

an LED on bit 0 of PORTB. The PIC will then wait until a second switch,
connected this time to bit 1 of PORTA, goes high. When this happens, the
LED on bit 0 of PORTB will be turned off. Note that both switches will be
single momentary switches, that is, they will stay high only when they are
pressed; when they are released, their logic will go low.

The PORTS of the PIC

Before I go any further, I think I should explain that the PORTS are the
actual physical connections that the PIC uses to connect to the outside
world. Note that the micros have used the analogy of the real ports, such
as the Port of London or the Port of Liverpool, which actually connect the
country to the outside world taking goods in for the country and sending
goods out of the country.

These PORTS connect internally to registers inside the PIC. The registers
are merely a collection of individual cells which we call bits. In the 18f4525
there are 8 cells or bits connected together to form a register. This is because
the 18f4525 is an 8-bit micro. These bits are numbered from right to left as
bit 0, bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, and bit 7. This is shown in Figure 2-1.

© Hubert Henry Ward 2020 9
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_2

CHAPTER 2 OUR FIRST PROGRAM

b7 b6 b5 b4 b3 b2 b1 b0

Figure 2-1. An 8-Bit Register

The bit 0 is sometimes referred to as the LSB or least significant bit, as
this represents the units column or the ones column; whereas the bit7 is
the MSB, most significant bit, as this represents the 128 column. Note that
a 32-bit micro will have 32 bits in their registers and PORTS.

Good Programming Practice

All programs should be planned. The programmer should not just start
writing code in the IDE. A good programmer should write an algorithm
then construct a flowchart then write the program listing.

The Algorithm

This is really simply putting your thoughts, of how you are going to get the
PIC to do what is asked of it, down on paper. The purpose is to focus your
mind on how to complete the task. It will also allow you to choose the right
PIC for the job. The algorithm should cover at least the following:

e You should explain the sequence of events you want to
control.

¢ You should then identify all the input and output
devices you will need.

¢ You should then create an allocation list for the control
and identify any special inputs or outputs or controls
you will need, such as analogue inputs, PWM outputs,
and any timers.

10

CHAPTER 2 OUR FIRST PROGRAM

The Flowchart

This is a diagram using standard symbols to show how the program will
flow through the instructions and so complete the task.

Flowcharts are diagrams that show how any process flow through its
constituent parts. They are very useful diagrams for designing computer
programs. All flowcharts use five basic symbols; there are more, but the
five most common symbols are shown in Figure 2-2.

Start or Stop symbol

D Input or Output symbol

Data manipulation symbol

Decision symbol

EEE—— Direction of flow symbol

Figure 2-2. The Main Flowchart Symbols

The Program Listing

This is a list of the actual instructions written in your chosen language. If
you have constructed your flowchart correctly, then each block in your
flowchart will produce the correct lines of coding in your program listing.

11

CHAPTER 2 OUR FIRST PROGRAM

Using MPLABX IDE

Before we go too far into the depths of MPLABX, I will discuss the use of
MCC and MPLAB Harmony. Microchip has realized that there are many
aspects of writing programs for the PIC that have to be carried out within
every program. Therefore, they give you the facility to use their code-
generating programs to write the code for you. MCC, MPLABX Code
Configurator, is the program that does this for you. MPLAB Harmony
does this for the 32-bit micros. Wow, isn’t that great? Well yes and no.
Using MCC creates a myriad of files and functions that are not easy to
understand. If you write all the code for your program yourself, then you
know where all the bits are and you understand how they work. Also this
book teaches you how to use the datasheet to help write the instructions.
You will learn how the PIC actually works and how it uses the simple logic
‘1’s and ‘0’s to control how it works. I firmly believe it is important for you,
as the programmer, to understand what you are controlling and how your
program instructions actually control it. If you use MCC straight off, then
you risk losing this understanding and who the programmer is, you or
Microchip. If you write all your own code, then you are the programmer.

MPLABX is the new IDE from Microchip. It is written in Java, and it
has many improvements from the previous MPLAB. The book is written
around using MPLABX version 5.2.

The text is based around using the PIC18f4525, but it can easily be
adapted for any PIC micro. The 18F4525 PIC is a very versatile PIC in that
it has

e« 36I/0
¢ 13 ADC channels
e 2 CCP modules as well as a UART and SPI

It has 48 kbytes of program memory as well as internal EEPROM.

12

CHAPTER 2 OUR FIRST PROGRAM

All this makes this PIC a very versatile PIC to use. Also, the fact that it is
available in a dual in-line 40pin device means that you can easily make a
prototype board based around this PIC.

Creating the Project in MPLABX

It is noted that Microchip is forever bringing out new versions of their
IDE. However, the basics do not really change, and if you learn how to
use one version of the IDE, you will very quickly grasp how to move onto
the new version. This book is based around version 5.2 which can be
downloaded from the Microchip web site.

After installing the software and opening the program by clicking on

the ICON , you will be presented with a screen that looks like that in
Figure 2-3.
B LPLAB 00T A0 .))) = = o x
EOS ¢ B bR oo vk imidcoemt | B OO M an
= =
MPLAB \ MiCROCHIP
l = @

— LEARN & DISCOVER | MY M AT'S NEW

XIDE |

Figure 2-3. The Opening Screen for MPLABX

We need to create a project where all files for the task will be stored;
these will include, among others, the asm or ‘c, file that we will write and

13

CHAPTER 2 OUR FIRST PROGRAM

more importantly the hex file that the compiler in MPLABX will create. It is

this hex file that will be loaded into the PIC to make the PIC run our program.
To create a new project, click the mouse on the second symbol, the

orange square with the small green cross, in the menu bar, as shown in

Figure 2-3. Alternatively, you could select file from the menu bar, and

then select “New Project,” the top option from the dropdown menu that

appears. The new project window will open as shown in Figure 2-4.

B3 New Project X
Steps Choose Project
1. Choose Project Q, Fiter:
- R
Categories: Brogects:
o & Standalone Project
2 Other Embedded & Existing MPLAB IDE v8 Project
-5 Samples & Prebuit (Hex, Loadable Image) Project
& User Makefie Project
& Library Project
& Import START MPLAB Project
& Import Atmel Studio Project
Qesupbon
Creates a new standalone application project. It uses an IDE-generated makefile to buid your
project.
<Back Finish Cancel Help

Figure 2-4. The New Project Window

Click the mouse on the selection “Microchip Embedded” “Standalone
Project” if it is not the default selection. If the “Microchip Embedded”
“Standalone Project” is not highlighted, select it first then select next. You
will now be presented with a window that looks similar to that shown in
Figure 2-5.

14

CHAPTER 2 OUR FIRST PROGRAM

B3 New Project X

&; ‘1’ Select Device

Advanced 8-bit MCUs (PIC18) v

n
i
-

. Select Compier Device: PIC18F4525 v

< | [] [ot | [0

Figure 2-5. Select Device Window

We can now choose which PIC we will actually use. Alongside the
“Family” window, click on the arrow, and select the Advanced 8-bit MCUs
(PIC18) as shown earlier. Then alongside the “Device” window, click the
arrow, and select the PIC18f4525 device as shown. Note that you could
type the PIC number into the device box and the program will move the
window down to the relevant PIC.

Once you are happy with your selection, click Next to move onto the
next window as shown in Figure 2-6.

15

CHAPTER 2 OUR FIRST PROGRAM

B3 New Project X

& j Select Tool (Optional)

Choose Project !
Select Device Hardware Tools ~
@ Atmel-ICE
001D 3
0 ICD 4
@0 PICKt 4
@0 PICKt3
QPM3
@ Real ICE
)
@ Snap
i Alternate Tools
@~ | Microchip Kits
=1-(g#) Other Tools
0 ink

MPLAB o oo

0 SFGGFR SAM-ICF bt

L

< | [] [[| [

Figure 2-6. The Select Tool Window

From within this window, the programmer can select the type of tool
they want to use to download the program to the PIC and also debug and
run the program. Normally we would be using the ICD 3, but as this is the
first use of this software, we will use the IDE’s simulation tool to examine
the program as it runs. Therefore, select the Simulator option as previously
shown.

Click Next to confirm the selection and move on to the next screen.
This is shown in Figure 2-7.

16

CHAPTER 2 OUR FIRST PROGRAM

3 New Project X

Select Compiler

Compiler Toolchains
Cci1a
HI-TECH PICC18-FRO
HI-TECH PICC18-5TD
E-mpasm
© mpasm (v5.84) [C:\Program Files (x86) Microchip \MPLABX v 5. 20\mpasmax]
=-XC8

R1%C8 (v2.05) [C:'\Program Files (x86)\Microchipxc8tv2.05\bin]

< | [] [ot | [0

Figure 2-7. The Select Compiler Window

This window shows what compilers have been installed on your
system. Assuming you have a suitable XC8 compiler, you should be able to
select it as shown in Figure 2-7. Once you have selected it, click Next, and

the window shown in Figure 2-8 is presented.

17

CHAPTER 2 OUR FIRST PROGRAM

B3 New Project X

Steps T Select Project Name and Folder

Select Device Project Name: myFirst16F

Project Location: c:\ Browse...

I T S
.
8
i}
{

. Select Project Name and Project Folder: C:\myFrst18F.X

Overwrite existing project.
Also delete sources.
Set as main project
[[] Use project location as the project folder

v- Encoding: 150-8359-1

Figure 2-8. Naming the Project

This window is where you give a name for your project and decide
where you want to save it. Make sure you know where you are saving your
project, and give it the name “myFirst18F” as shown in Figure 2-8.

Note that I will use the method of using camelFont, to write any labels.
This allows the programmer to write multiple words as one word. The
first letter of the complete word is in lower case, but the first letter of all
subsequent words is in capitals as in “myFirst18F”.

Now click Finish and the project will be created. You will now be
presented with the main window as shown in Figure 2-9.

18

CHAPTER 2 OUR FIRST PROGRAM

EF PLAE X IDE 20 - myFeitF | cefmaht 5 %
Fis Et Veew Maigate Scwnie Refactor Pecduction Debug Tesm Tosh Window Hep [Seardh iCo0

FEES D e I T B . Tk St S e | CoeE— SR

ﬁ\ MICROCHIP

LEARN & DISCOVER | MY MPLAB® X IDE | WHAT'S NEW

::::::

g s e et

Figure 2-9. The Completed Project

We now need to add the text document that will contain all the ‘C’
instructions for the program. This will be the source file, and so we need to
right click the mouse on the item source files in the project tree on the left-
hand side. Now click the mouse on New, and then select main.c from the
pop-out window that appears.

Having selected the main.c from the pop-out window, the following
window shown in Figure 2-10 appears.

19

CHAPTER 2 OUR FIRST PROGRAM

3 New main.c

Steps Name and Location

1. Choose Fie Type

Name: it
2. Name and Location e iy

Extension: ¢ w

Set this Extension as Default

Project: myFirst16F
Folder:

Created Fie: | C:\myFirst18F.X\myFirst18FProg.c

<Back | | Mext> Einish Cancel Help

Figure 2-10. The New Empty File Window

Give the file the name myFirst18FProg and click on Finish. Note that
the extension must be, as shown, ‘c’ to make it a ‘C’ program file.

Now the main editing window will appear as shown in Figure 2-11.

20

CHAPTER 2 OUR FIRST PROGRAM

0 MPLAS XK 1520 - st : et - @ x
Fle Edt Vew Navigie Source Refasee Production Debug Team Tosls Winden Help S se

FES 47 et JH B bR -3 D oo novadce iwodiveko| | COD rondors

e oy PER-E-USFEO FLT G0 08 Dl *

Figure 2-11. The Editing Window

It is in this screen that you will type all the instructions for your
program.

The software has already inserted some comments from lines 1 to 6.
This is because the software uses intelli-sense which is like predictive text
on your phone. This software also automatically has added an “include”
directive on line 9, and it has included the main loop between lines 11 and
13. More will be said about these later.

If the line numbers are not shown in the text editor and you would like
to see them, as I do, then simply click on the word “View” from the main
menu bar. Then tick the box to “Show Line Numbers” that appears on the
fly-out menu, or un-tick it depending upon your preference. However,
from experience I think it is useful to have line numbers showing as it
helps with finding any errors in your coding.

We can change some of the fonts if you so wish by selecting the word
“Options” from the drop-down menu that appears when you select the
“Tools” choice on the main menu bar. You will get the window as shown in
Figure 2-12.

21

CHAPTER 2 OUR FIRST PROGRAM

€3 Options x
- Fiter (Ctrl+F)
1) i = (@ Q, [Fiter (Cri+F)
7 @ B * N e
senerdsdw;macommm bedded Team e Plugns Miscel.
Profile: | NetBeans v DRuplicate ... Restore
Syntax Highightng Apnotations Diff Versioning
Langyage: Al Languages ~
Category:
fault ~ Font: Inherited .
acter z
Forgground: |l Magenta |
;"T"“W“ Background: | Inherited v
or
Field Effects: None ~
Tdentifier P
Keyword) Effect Color:
Preview:
i
Comment.
“
public class JavaExample {
String identifier = "String " + '-' + 1l.2;
}
Eport.. | [Import.. [Toc][ooty | [concel || el

Figure 2-12. Changing the Comments Font

Once you are happy with your choice, click OK. I have selected the
Fonts & Colors, then changed the color of the comments to magenta.

You have now created your first project in MPLABX. You should
practice the process of creating a project so that you are comfortable with
the process. It will take some time but it is definitely worth it. Don’t just
modify an old project.

22

CHAPTER 2 OUR FIRST PROGRAM

The First Program Turning On and Off an
Output

Now we are ready to get down to the real part of this process, writing the
code for the program.

If you have never written a ‘C’ program, then there are some things you
may need to read through at this point.

The Main Aspects of a ‘C’ Program

The ‘C’ programming language is a generic language in that it can

be applied to many different environments such as DOS, Windows
Applications, and now microcontrollers. The ‘C’ program for PICs has
all the basic functions of a ‘C’ program, but there are also some specific
instructions that are related to PICs, such as PORTAbits.RAO.

The main aspect of a ‘C’ program is that it runs inside a series of loops.
There is a “main” loop from within which all the other loops, sometimes
called functions, but I prefer to call them subroutines, are called from.
The main loop must be there in the program as it is the “main” loop that
the micro must go to at the very beginning of the program to get the first
instruction of the program. The micro then carries out instructions in a
sequential manner one after the other until it gets to the last instruction in
the main loop. Unless this instruction forces the micro to go somewhere
else, the micro will then go back to the first instruction in the loop then

carry out all the instructions again in the same manner.

The Comments and PIC Configuration

The first program we will look at is a very common task, that of waiting for
a switch to be pressed, or turned on, and then lighting a LED connected to
an output. However, before we can start our program, we should make sure

23

CHAPTER 2 OUR FIRST PROGRAM

this program is our own. This is done by inserting some comments into the
editing window. C programs use two main types of comments: single-line
comments, which usually explain what the current instruction is doing,
and multiple lines or a paragraph of comments, which give a more in-
depth explanation.

The single comments are anything written on the current line
following two forward slashes such as //.

Multiple-line comments are anything written between the following
symbols /+ */ as shown here, for example, /* Your Comments go Here:/

Having created your new ‘C’ file, the first thing you should do is insert
some comments to tell everyone that this is your program and when you
wrote it.

However, as this is a common starting point for programmers, the
intelli-sense has put some comments in already. You may or may not
wish to change them. However, to try and keep everything you see in
your screens the same as they are in my screenshots, I suggest you delete
everything that is currently in the text editing window so that you have
an empty text window in the editor. You should now type in the following
comments and commands so that your screen will be exactly the same as

mine and my references will match up to your screens.
/% A basic program to turn on and off a led.

Written by Mr. H. H. Ward dated 28/07/2019 for the
18f4525 PIC

No modifications to datex/
#include <xc.h>

void main (void) {
return;

24

CHAPTER 2 OUR FIRST PROGRAM

Obviously, you should use your own name and the current date. Note
also that as you write the text into the text editor, the intelli-sense will give
the text the appropriate colors as there are different colors for different
types of keywords.

These should be put into the top of your program file in the main
editor window. This should take up the first nine lines, and the cursor
should now be flashing at line ten ready for the next input.

Note that you can use these comments to keep track of any
modifications that are being made and when they were made.

The next thing you need to do is tell the PIC how we intend to use
some of its main variable attributes. This is because all PICs are very
versatile in that among other things, they can be run from a wide variety of
oscillators. Note that all instructions in the program and all other actions
are synchronized to a clock signal. This clock signal can get its source
from a wide variety of different oscillators from the simple low-frequency
RC, resistor-capacitor, oscillator to the precise high-frequency crystal
oscillator. These oscillator sources can be either external or internal to
the PIC. The programmer needs to tell the PIC which oscillator they
want to use. There are also other parameters the programmer needs to
choose from. All this is achieved by writing the correct data to the config
registers in the PIC as it is the data in these registers that configure how
we are going to use the PIC. This can be achieved using a special window
in the MPLABX IDE. To open this window, click on the word “Window”
on the main menu bar then select “Target Memory Views” from the drop-
down menu, then select Configuration Bits from the slide-out menu that
appears. Once this is done, your main window will change to that as shown
in Figure 2-13.

25

CHAPTER 2 OUR FIRST PROGRAM

3 MPLAS XK 1520 - st : et - @ x
HFEES O [T B bR -0 B pood novadce iwodiveko| | 5D ronders

i e e B B-0-UBFRN|FLR AN 08 WAl *

Blaaslf

vemary | Confuramon e e]

¥l | cwan sarccode ot]

= 5 oupst | Confguranon By &1 re
A

Figure 2-13. The Main Editing Window with the Configuration Bits
Window Open

You may have to drag the window up to make it larger as shown.

I must apologize at this point, as I will not be showing you how to move the
windows about inside the MPLABX IDE.

This configuration window allows you, as the programmer, to select
some very important options for the PIC, the most important being the
primary oscillator type and source used and if we want the watchdog
timer or not.

There are three main options we need to change at this point. You
should change the OSC to ‘INTIO67’ this is done by selecting the small
arrow alongside the box next to the OSC option. The default setting is
usually RCI06, the resistor-capacitor oscillator with bit 6 on PORTA left
as a normal input-output bit. We need to change this. When you click on
the small arrow, a small window will open. If you move the selection up
to the next one, it will be the one we want, INTIO67, which means use the
internal oscillator block as the primary source and leave bits 6 and 7 on
PORTA as normal input-output bits. Therefore, click the mouse on the
term INTIO67 to change the oscillator to this option.

26

CHAPTER 2 OUR FIRST PROGRAM

The other changes are simpler as we need to set the WDT to ‘OFF:.

It important to turn the WDT, watchdog timer, off as if nothing happens
for a predefined period of time in a program then the WDT will stop the
program. We don’t want this to happen, so we must turn the WDT off. This
is done by clicking the mouse on the small arrow next to the WDT and
clicking the mouse on the off option.

The final option I usually change is the LVP, “Low-Voltage
Programming” option. I usually turn this off. This is turned off in the same
way as the WDT was turned off

Once you have changed these setting, we can generate the source
code, and then paste this code into our program. Click on “Generate
Source Code to Output” tab shown at the bottom of the IDE. The source
code should appear in the output window on the screen. Use the mouse to
select all this code, then copy it all, and paste it into the “myFirst18FProg.c”
c file you have in the open window. You should paste all the different
configuration words and the comments as well into your ‘C’ file, but you
don’t need to copy the “#include <xc.h> " line as the intelli-sense has
already put this in. We will learn the importance of that “#include <xc.h>"
line soon. I have pasted these source instructions into my open file window
starting at line 5 and ending at line 62. This moves the “#include <xc.h>"
down to line 63. Yours may differ due to what comments you have put in.

Your screen should look like this as shown in Figure 2-14.

27

CHAPTER 2 OUR FIRST PROGRAM

€8 MPLAS XK 1520 - st : et - @ x
Fle Edt Vew Navigie Source Refasee Production Debug Team Tosls Winden Help G sewen few1s

FEES DO - < W B bR D oo rovakc iwooiieno| | 3D e
| Projects = 2| Swifee x| mfwstibiprone « e EE
QM:.‘;‘-:-. e mon BER-0-AOSSFEOFLE a4 08 I8 .

i G (5 i

& Dom Corfgumrnn 0 13 s
]

Figure 2-14. The Configuration Listing

The #include <xc.h> is important as we need to tell the compiler
we want to use some labels to represent any addresses we will be using.
The most important addresses we will use are the addresses of the SFRs,
Special Function Registers. It is with these SFRs that the programmer can
control every aspect of the PIC with the ‘1’s and ‘0’s that they write to these
control registers.

The compiler really wants to use the address of the registers. However,
we humans may want to use labels to give the register’s names instead of
using the actual address number.

An example of using a label is PORTA. This is a SFR at the address
0XF80 in this PIC. The compiler only needs the hexadecimal number
“F80”; note that the “0X” stands for hexadecimal. However, to make the
program easier for us humans to read, we would want to use the label
PORTA. To enable this to happen, we have to tell the compiler that this
label, and the others’ labels, represent the correct address of the SFRs.
There is a simple instruction that does this which is

EQU PORTA 0XF80.

28

CHAPTER 2 OUR FIRST PROGRAM

This tells the compiler that the label PORTA actually means the
number F80 in hexadecimal format.

To help us do this, and save a lot of work, someone has written the
EQUs for all the labels for all the SFRs we could use. However, to use these
equates, we need to tell the compiler to include them in our program. This
is done by using the “#include <xc.h> " line in our program. Remember
there is a “Linker” program in the IDE. This links together our own
program and all the header files we tell the Linker program in “include”;
but we MUST tell the linker program to include them.

This is inserted now into our program file. Later we might need to use
other include files. We will explain the importance of this “#include <xc.h>"
with an example later.

We are nearly ready to start writing our program. One very important
thing to remember is that all ‘C’ and ‘C++” programs use a collection
ofloops or functions or subroutines. This means we have to place all
instructions inside these loops. The most important loop is the “main loop”
as this is the first loop the micro goes to when the program is started. From
this main loop, all the other loops, which I will call subroutines, which are
used to carry out different aspects of the program, are called from.

The TRISA and TRISB

The program is going to use two ports to communicate with the outside
world. We will us PORTA as an input port, to which the two switches will
be connected to, and PORTB as an output port, to which all the LEDS

will be connected to. However, the PIC has no idea which way we want to
use the PORTS. Each port can be either an input or output port. Indeed,
we can mix them up much more as each individual bit in the port can be
either input or output and with the 18F4525, each PORT has 8 bits. We, as
the programmers, need to tell the PIC how we want to use the PORTS and
their bits. This requires setting some of the I/O pins to input and some

29

CHAPTER 2 OUR FIRST PROGRAM

to output. Note that all PICs have at least two PORTS that can be used

to allow the PIC to communicate to the outside world. The PORTS are
identified as PORT A, B, C, and so on. Each PORT will have a number of
individual bits that can be set to take data into the PIC, that is, be inputs,
or to send data out of the PIC, that is, be outputs. An 8-bit PIC such as the
18F4525 has up to 8 bits on each PORT, whereas the 32-bit PICS have up to
32 bits per PORT. The PIC does not know which type you want the bits to
be, either input or output.

You as the programmer must tell the PIC, by way of instructions in your
program, which type you want the bits of each port to be. To enable you to
do this, there are some SFRs, Special Function Registers, called TRIS which
allow this to be done. There is a TRIS for each PORT, and each TRIS has the
same number of bits as each PORT. The particular bit of each TRIS maps
onto the same bit in the corresponding PORT as shown in Figure 2-15.

b7 b6 b5 b4 b3 b2 bl b0

PORTA " ’

TRISA

b7 b6 b5 b4 b3 b2 b1 bO
Figure 2-15. The Mapping of the TRIS onto the PORT
In this way the bits of the TRIS can control the corresponding bits of the
PORT as to whether or not the bit in the PORT is an input or output. If the

bit in the TRIS is a logic ‘1, then the bit in the PORT would be an input. If
the bit in the TRIS is a logic ‘0, then the bit in the PORT would be an output.

30

CHAPTER 2 OUR FIRST PROGRAM

A TRIS Example

IF TRISA was set to 00001111, then bits 7, 6, 5, and 4 of PORTA would be
outputs and bits 3, 2, 1, and 0 would be inputs. This assumes that the PORT
has only 8 bits as with an 8-bit micro, and going from left to right, they are
number b7, b6, b5, b4, b3, b2, b1, and b0.

Exercise 2-1

What data would you have to write, to where, to set PORTC as Out, Out, In,
Out, In, In, In, Out going from B7 down to B0 from left to right? Answers to
all exercises are provided at the end of each chapter.

Setting the PORTS

In our first program, we will make all the bits on PORTA inputs and all the
bits in PORTB as output.

The following instructions, with their respective comments, will do
what is required.

TRISA = OxFF; //Make all bits in TRISA a logic '1' which
makes all bits on PORTA inputs
TRISB = 0x00; //Make all bits in TRISB a logic '0' which

makes all bits on PORTB outputs

Note that the 0x in front of the data means we are using hexadecimal
numbers. This is because we only need to use 2 digits, as 1 hexadecimal
digit represents 4 binary bits. It does not matter if we use lowercase letters
or capital letters for these numbers.

Note also that we use the semicolon, ‘;" after the data OXFE This
indicates the end of the current instruction. Note also the use of single-line
comments to explain what the instruction does; please be aware that in the
text editor in MPLABX, these comments would be on one line.

31

CHAPTER 2 OUR FIRST PROGRAM

The latter of the two instructions could have been written as follows:

TRISB = 0; This will make all the bits in TRISB a logic
‘0’ which sets all the bits in PORTB to outputs. This
is using the default radix, or number system, used in
MPLABX, which is decimal. The instruction TRISB = 0;
means the value stored in the TRISB would be zero
which is 0b00000000 or 0X00.

One very important thing to note is that we are using capital letters in
the word TRISA and TRISB; this is because this is how the labels have been
defined in the include file we are using. Really the micro sees TRISA as the
numeric value of 0XF92 which is where the SFR is in the PIC’s memory.

NB: Note that ‘0X’ in front of a number means that is a hexadecimal
number, ‘Ob’ means it is a binary number, and no prefix means it is a
decimal number. This is the same concept that MPLABX uses.

The include file has all the labels we will use for the SFRs, and they
are all in capitals. For example, if we want to turn on all the LEDs, or any
devices, connected to PORTB, we would have to write

PORTB=0b11111111;
Note

portb =0b11111111; would not work as the label for
PORTB must be in capital letters.

Note that the ‘Ob’ stands for binary as we are stating

the number in its binary format.

We could have written PORTB = 255, as this in
decimal equivalent of 0b11111111 and decimal is
the default radix for MPLABX .

32

CHAPTER 2 OUR FIRST PROGRAM

The ADC (Analogue to Digital Converter)

Most PICs, including ours, will have an ADC, Analogue-to-Digital
Converter. This will be assigned to one of the PORTS, and this means that
the inputs to the bits on that PORT could be analogue or digital. We as
programmers must tell the PIC which we want the inputs to be: analogue
or digital. In this case we want all the bits to be digital as they are simply
high or low switches. For our 18{4525 PIC, it is PORTA that is assigned to
the ADC and some of PORTB, as this PIC has 13 analogue channels. This
means that the bits on PORTA, and some of PORTB, could be analogue

or digital. The default setting is that they are all analogue. Note that an
analogue input would be one connected to a transducer such as pressure
or temperature transducer and would be a varying voltage used to
represent the signal being monitored. We want all the bits on PORTA to be
digital, that is, simply on and off signals, which would be logic ‘1’ or logic
‘0’ inputs. Therefore, we need to tell the PIC we want the bits on PORTA to
be digital. Table 2-1 shows us that we can program the PORT to be one of
many variations from all bits being analogue to all bits being digital.

Table 2-1. The Settings for Bits 3, 2, 1, and 0 of the ADCONO 8-Bit
Register

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0

NotUsed NotUsed VCFG1 VCFGO PCFG3 PCFG2 PCFG1 PCFGO

Bit7 Not used read as 0
Bit 6 Not used read as 0
Bit5 1 negative reference from AN2

0 negative reference from VSS

Bit 4 1 negative reference from AN3
0 negative reference from VDD

(continued)

33

CHAPTER 2 OUR FIRST PROGRAM

Table 2-1. (continued)

B3 B2 B1 BO AN1 AN1 AN AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 ANO

12 11 10
0 000 A AAA A AAAAAAA AN\
0001 A A AAAAAAAAAA AN\
001 0OA A AA A A AAAAAANA
0 011D A A A A A A A A A AANA
01 00D D AAAAAAAAAANA
0101D D DAAAAAA AWM AAA ANA
0110D D DDA A AAAA A ANA
0o111D D DD D A A A A A A A A
1 000D D DD D D A A A A A A A
1 001D D DD D D D A A A A A A
1 010D D DD D D D D A A A A A
1 011D D DD D DD D D A A A A
1100D D DD D DD D D D A A A
1101D D DD DD D D D D D A A
i11 0D D DD D DD D D D D D A
i111D D DD D DD D D D D D D

The table refers to the bits in the ADCONT1 register which is an 8-bit
register that controls certain aspects of the ADC.

The principle behind the ADC is that there is just one ADC circuit
inside the PIC which can be switched to any one of the 13 inputs that
can have an analogue input connected to it. This is a method termed
“multiplexing” where the 1 ADC serves 13 possible analogue inputs. The
ADC will then create a binary number that represents the actual voltage

34

CHAPTER 2 OUR FIRST PROGRAM

applied to the input. The ADC used in the PIC is a 10-bit ADC which gives
the programmer a possible resolution of the following:

The resolution of the ADC is the smallest value that it can recognize.
This can be calculated using the following expression.

Resoluion = Range

.. Resoluion = % =4.883mV
2

That is if we used all 10 bits, and as this is an 8-bit micro, there is a
problem with this, but we will look at that later.

The ADC is controlled by three registers; ADCONO, ADCONTI, and
ADCON2. The ADCON1 controls what voltage range is used and if the
bit on the port is analogue or digital. The ADCONO controls if the ADC
is switched on and which bit or channel the ADC is connected to. The
ADCONZ2 register controls the timing of the ADC; we will look at all these
registers later.

We actually do not want to use the ADC, and we want all bits
connected to PORTA to be digital; therefore, we should turn the ADC off
and make all bits on PORTA and PORTB to be digital.

It is bit 0 of the ADCONO register that turns the ADC on, that is, bit0=1,
or off, that is, bit 0 = 0. Therefore, make all bits of the ADCONO register to
logic 0. This will set b, to a logic ‘0’ and so turn the ADC off.

It is bits 3, 2, 1, and 0 of ADCON1 register that determine if the bits on
PORTA and PORTB are analogue or digital bits. This is shown in Table 2-1.
If the bit in the ADCONI1 register is a logic ‘0, then the input would be an
analogue input. If the bit is a logic ‘1, then the input would be digital. This
is a good example of how the actual bits are used to control the actions of
the PIC.

As we need all the inputs to be digital, we need to make sure all these
four bits, bits 3, 2, 1, and 0, in the ADCON1 register are set to logic ‘1’

35

CHAPTER 2 OUR FIRST PROGRAM
The following instructions will set the ADC up as we want.

ADCONO
ADCON1

0x00; //This turns the ADC off
OXOF; //This sets all the bits on PORTA and PORTB as
digital

Note that these instructions have comments which are separated from
end of the instruction, signified by the semicolon ;, with the use of two
forward slashes ‘//’ This signifies that everything written after these slashes
on that current line are comments and are not compiled by the compiler
software. The comments can be used to help describe what the instruction
is doing.

The combination of the following four instructions will set the two
ports as we want them:

TRISA = OxFF; //Make all bits in TRISA a logic '1' which
makes all bits on PORTA inputs

TRISB = 0x00; //Make all bits in TRISB a logic '0' which
makes all bits on PORTB outputs

ADCONO = 0x00; //Makes all the bits in the ADCONO logic 'O'
This turns the ADC off

ADCON1 = OxOF; //This make bits 7,6,5 and 4 logic 'O'

and bits 3,2,1and 0 logic '1'This sets
all the bits on PORTA and PORTB as digital
bits

Setting Up the Oscillator

We have used the configuration words to tell the PIC we want to use the
internal oscillator block as the primary oscillator source, that is, INTIO67.
However, we have not told the PIC what oscillator we want to use. It is

the bits in the OSCCON , OSCillator CONtrol register, that controls the

36

CHAPTER 2 OUR FIRST PROGRAM

internal oscillator block. There are eight possible oscillator frequencies we
can use and it is bits b6, b5, and b4 which control the settings. We will set
the oscillator to 8Mhz and make the frequency stable. To set the oscillator
frequency to 8Mhz, we set the three bits, b6, b5, and b4, to a logic ‘1. To
make the frequency stable, we set bit 2 to a logic ‘1’

We need to tell the PIC where it will get the signal for the system
clock. There are three possible options as controlled by bits b1 and b0
of this register. This would give us three options, really four, but we only
want three. However, as we have set the primary oscillator source in the
configuration words to be the internal oscillator, then two options are the
same. We can simply set these two bits to logic’0’ as the primary source is
the internal oscillator block.

Bit 7 of the OSCCON register is the IDLEN bit which
is used for sleep mode. We will not use this mode till
much later; therefore, set this bit to a logic ‘0’

Bit 3 is actually a signal from the micro to the
programmer so that this too can be set to a logic ‘0.

This means that the eight bits in the OSCCON register can be set as
follows:

OSCCON = 0b01110100; //This sets the internal
oscillator to 8MHz and makes
it stable.

Tables 2-2 through 2-4 should help explain these settings

The device enters sleep when asked, and the system clock is from the
primary oscillator. Sleep is a more advanced option, and it will be covered
in my future books.

37

CHAPTER 2

Table 2-2. Use of OSCCONO Register

OUR FIRST PROGRAM

Bit 7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit1 Bit0
IDLEN IRCF2 IRCF1 IRCFO 10STS IOFS SCS1 SCSo
LOGIC 1 See Table 2-3 Logic 1 Logic 1 See Table 2-4
Device Time-out for os¢ Internal
enters startup oscillator
sleep Primary oscillator is stable
running
Logic 0 Logic 0 No time Logic 0
device out primary internal
does not oscillator not oscillator
enter sleep running not stable

Table 2-3. Bits 6, 5, and 4 of OSCONO Register Setting the Oscillator

Frequency

Bit 6 Bit5 Bit 4 Oscillator frequency
ICRF2 ICRF1 ICRFO

0 0 0 31kHz'
0 0 1 125kHz
0 1 0 250kHz
0 1 1 500kHz
1 0 0 1Mhz

1 0 1 2MHz

1 1 0 4MHz

1 1 1 8MHz

'The 31kHz can be sourced from main oscillator divided by 256 or directly from

internal RC oscillator

38

CHAPTER 2 OUR FIRST PROGRAM

Table 2-4. The Usage of Bit 1 and Bit 0 of OSCCONO Register to Select
Source of Oscillator Frequency Signal

Bit 1 Bit0 Oscillator source

SCS1 SCSO

0 0 Primary oscillator as defined in configuration words
0 1 Secondary timer block

1 0 Internal oscillator block

1 1 Internal oscillator block

The process of deciding what data is written to the ADCONO, ADCON1,
and the OSCCON shown earlier is an example of how you should
determine what data is written to all the SRFs. You should decide what
function you want the particular SRF to perform and write out on paper
how you can either set it, write a logic ‘1, or clear it, write a logic ‘0, to each
bit of the SRF to achieve what you need. Then write out the instruction in
your program. It is a process that needs lots of practice.

Exercise 2-2

Write down the 8-bit data that you think should be written to the OSCCON
register to set the internal oscillator block to give a frequency of 500kHz,
making the frequency stable and setting the internal oscillator block as the
source for the system clock. The device does not enter sleep mode.

Waiting for an Input

Now that we have set the PORTS up, we need to make the PIC wait until
the switch connected to bit 0 of PORTA goes to a logic ‘1. This will happen
if the switch is set up so that when it is pressed, the logic level goes high,
that is, to 5V or logic ‘1’

39

CHAPTER 2 OUR FIRST PROGRAM

There are a number of ways to do this, but it is basically testing the bit
to see if it has gone high. The simplest way involves making the micro wait
until the input goes high. Then when the input does go high, move on and
do something.

You might think that you should keep on asking the question has the
input gone high? The problem with this approach is that you must make
the micro go back and ask the question again if the input has not gone high.

However, another way of looking at this test is to say that while the
input is low or not high, do nothing. Indeed, this is the approach that we
use in a ‘C’ program.

This can be done using a while command as shown here:

while (PORTAbits.RAO == 0)

{
}

The concept of that while instruction is that while the test condition,
written in BOLD only this one time to make it obvious what is meant by the
test, expressed inside the normal brackets is true, carry out the instructions
that are written between the curly brackets. In this case there are no
instructions between the curly brackets, and so the micro does nothing.

We use the double = = sign to say it becomes equal to. This means the
test is while PORTA bit 0 becomes equal to 0, the test is true, and so do
what I say; in this case what is inside the curly brackets, which is nothing.
In this way the instruction is saying that while the input on bit 0 of PORTA
is atlogic ‘0, do nothing.

Note that you can signify the bit of a PORT as shown earlier, that is, RAO
means bit 0 of PORTA.

Note also the specific syntax in specifying the actual bit of the
PORT. This has to be correct or else the compiler will throw up an error.

40

CHAPTER 2 OUR FIRST PROGRAM
An alternative way of writing the same instruction is

while (PORTAbits.RAO == 0) continue; //Do nothing while the
logic at bo of PORTA
is at logic '0'.

This does exactly the same. Note also we use the ‘;’ to donate the end
of the instruction, and the only thing we are asking the program to do is
continue which makes the micro go back to the start of the instruction.

Another alternative would be
while ('PORTAbits.RA0) continue;

In this case the Not operator ‘" is used. The test is
while the bitis NOT alogic ‘1’ do what I tell you to do.

One final alternative to make the PIC wait until
something happens, such as the logic at the input
bit goes high, is

while ('"PORTADbits.RA0) ;

This works in a similar fashion to the first example.
There are no instructions between the closing
normal bracket of the test and the end of the
instruction, signified by the semi-colon .

This then tells the micro to do nothing while the test inside the curly
brackets is true. This is a very succinct way of getting the PIC to wait for
something to happen. However, if you unintentionally put a semicolon
after the closing bracket of the test statement, this could cause the program
to get stuck here. Remember this when you are trying to debug a program
that doesn’t do what you want.

Using whatever format you like, the micro would stay in the while loop
until the logic at bit 0 of PORTA went high. The micro would then move on
to the next instruction of the program.

41

CHAPTER 2 OUR FIRST PROGRAM

This would be to simply turn on the output at PORTB bit 0. This can be
done using

PORTBbits.RBO = 1; //Turn on what is connected to bo
of PORTB

Waiting to Turn the LED Off

We can now make the PIC wait for a stop switch to be pressed so that the
micro can then turn the output on bit 0 of PORTB off. This can be done as

follows:

while (PORTAbits.RA1 == 0); //Do nothing while the logic
at bit 1 of PORTA is at
logic '0'.

PORTBbits.RBO = 0; //Turn off what is connected

to bo of PORTB

Note that we must put all the instructions inside the main loop. The
actual program instructions which start at 50 and end at line 58 of the
program in Listing 2-1 should go inside the curly brackets of the editing
window. To help you appreciate, this the screen should end up as shown in
Figure 2-16.

42

CHAPTER 2 OUR FIRST PROGRAM

3 MPLAS XK +5.20 - eyFcstF : defealt - 9 X
Fle Edt View Mavgite Source Refacter Producion Debug Teamn Toels Window Help Qr Seach (Cwls

FEES 50 e < T BN -0 B oo rovikc midimeko| |l D vwden
= | Progects = B Selee = (] myfestisfprege EE
- :

s Sowce taey W | @

43 AR SELIFLE A eE O *
i 55 dpregm o .

rr

i
J
L1

By Grony

Figure 2-16. The Completed Editing Window

Once we have written all the instructions for the first program, the
editor window should look like the one shown here in Listing 2-1.

Listing 2-1. The Completed LED Start Stop Program Instructions

/%A basic program to turn on and off a led.
Written by Mr H, H. Ward dated 28/07/2019 for the 18F4525 PIC
No modifications at this datex/

// PIC18F4525 Configuration Bit Settings

// C' source line config statements.

// CONFIG1H

#pragma config 0SC = INTIO67 // Oscillator Selection
bits (Internal
oscillator block, port
function on RA6 and RA7)

9. #pragma config FCMEN = OFF // Fail-Safe Clock Monitor

Enable bit (Fail-Safe

Clock Monitor disabled)

0O N O U1 AW N R

43

CHAPTER 2 OUR FIRST PROGRAM

10.

11.
12.

13.

14.

15.
16.

17.

18.
19.

20.

44

#pragma config IESO = OFF
// CONFIG2L
#ipragma config PWRT = OFF

#pragma config BOREN = SBORDIS

#pragma config BORV = 3

// CONFIG2H
#pragma config WDT = OFF

#pragma config WDTPS = 32768

// CONFIG3H

#pragma config CCP2MX = PORTC

ON

#pragma config PBADEN

//

//

//

//

//

//

//

//

Internal/External
Oscillator Switchover
bit (Oscillator
Switchover mode
disabled)

Power-up Timer Enable
bit (PWRT disabled)
Brown-out Reset Enable
bits (Brown-out Reset
enabled in hardware only
(SBOREN is disabled))
Brown Out Reset Voltage
bits (Minimum setting)

Watchdog Timer Enable
bit (WDT disabled
(control is placed on
the SWDTEN bit))
Watchdog Timer Postscale
Select bits (1:32768)

CCP2 MUX bit (CCP2
input/output is
multiplexed with RC1)
PORTB A/D Enable B<4:0>
pins are configured as
analog input channels on
Reset)

21.

22.

23.
24.

25

26.

27.
28.

29.

#pragma config LPT10SC = OFF

#pragma config MCLRE = ON

// CONFIG4L
#pragma config STVREN = ON

.#pragma config LVP = ON

#ipragma config XINST = OFF

// CONFIG5L
#pragma config CPO = OFF
#pragma config CP1 = OFF

//

//

//

//

//

!/

//

CHAPTER 2 OUR FIRST PROGRAM

Low-Power Timerl
Oscillator Enable bit
(Timer1 configured for
higher power operation)
MCLR Pin Enable bit
(MCLR pin enabled; RE3
input pin disabled)

Stack Full/Underflow
Reset Enable bit (Stack
full/underflow will
cause Reset)
Single-Supply ICSP
Enable bit (Single-
Supply ICSP enabled)
Extended Instruction Set
Enable bit (Instruction
set extension and
Indexed Addressing mode
disabled (Legacy mode))

Code Protection bit
(Block 0 (000800-
003FFFh) not code-
protected)

Code Protection bit
(Block 1 (004000-
007FFFh) not code-
protected)

45

CHAPTER 2

30.

31.
32.

33.

34.
35.

36.

37.

38.
39.

46

#pragma config CP2

// CONFIG5H
#pragma config CPB

#pragma config CPD

// CONFIG6L
#pragma config WRTO

#pragma config WRT1

#pragma config WRT2

// CONFIG6H
#pragma config WRTC

OUR FIRST PROGRAM

OFF

OFF

OFF

OFF

OFF

OFF

OFF

//

//

//

//

//

!/

//

Code Protection bit
(Block 2 (008000-00BFFFh)
not code- protected)

Boot Block Code
Protection bit (Boot
block (000000-0007FFh)
not code- protected)
Data EEPROM Code
Protection bit (Data
EEPROM not code-
protected)

Write Protection bit
(Block 0 (000800-
003FFFh) not write-
protected)

Write Protection bit
(Block 1 (004000-
007FFFh) not write-
protected)

Write Protection bit
(Block 2 (008000-00BFFFh)
not write- protected)

Configuration Register
Write Protection bit
(Configuration registers
(300000-3000FFh) not
write- protected)

40.

41.

42.
43.

44.

45.

46.
47.

#pragma config WRTB

#pragma config WRTD

// CONFIG7L
#pragma config EBTRO

#pragma config EBTR1

#pragma config EBTR2

// CONFIG7H
#ipragma config EBTRB

OFF

OFF

OFF

OFF

OFF

OFF

//

//

//

//

//

//

CHAPTER 2 OUR FIRST PROGRAM

Boot Block Write
Protection bit (Boot
Block (000000-0007FFh)
not write- protected)
Data EEPROM Write
Protection bit (Data
EEPROM not write-
protected)

Table Read Protection

bit (Block 0 (000800-
003FFFh) not protected
from table reads executed
in other blocks)

Table Read Protection

bit (Block 1 (004000-
007FFFh) not protected
from table reads executed
in other blocks)

Table Read Protection bit
(Block 2 (008000-00BFFFh)
not protected from table
reads executed in other
blocks)

Boot Block Table Read
Protection bit (Boot
Block (000000-0007FFh)
not protected from table
reads executed in other
blocks)

47

CHAPTER 2 OUR FIRST PROGRAM

48.
49.
50.
51.
52.
53.
54.

55.

56.

57.

58.

48

#include <xc.h> //the directive to include the
header file xc.h

void main() //this is where the micro goes to
find the first instruction of the
program

{ //the opening of the main loop

TRISA = OxFF; //Make all bits on PORTA inputs

TRISB = 0x00; //Make all bits on PORTB outputs

ADCONO = 0x00; //This turns the ADC off

ADCON1 = OxOF; //This sets all the bits on PORTA
and PORTB as digital

OSCCON = 0b01110100; //set the internal oscillator to

8Mhz stable
while (PORTAbits.RAO == 0) continue;

PORTBbits.RBO = 1;

while (PORTAbits.RA1 == 0) continue ;

//Do nothing while
the logic at bo
of PORTA is at
logic '0' When it
goes to a logic
'1" move to next
instruction.

//Turn on what is
connected to bo
of PORTB

//Do nothing while
the logic at b1
of PORTA is at
logic '0'. When
it goes to a
logic "1' move to
next instruction.

CHAPTER 2 OUR FIRST PROGRAM

59. PORTBbits.RBO = 0 ; //Turn off what is
connected to bo
of PORTB

60. } //the closing of the main loop

Note that this is the only time I will show all the instructions including
the configuration words and the include directive lines 1 to 49. However,
every program will need these configuration words and that #include <xc.h>
line, they must be in all the programs. Later, I will show you how to create a
header file for these instructions.

There is one rather subtle problem in this program. The problem is
when the micro gets to the last instruction in the loop, it will go back to the
first instruction in that loop and start all over again. This means that it will
set up the ports, the ADC, and the oscillator again even though we have
already set them as required, and there is no need to this. To prevent this
from happening again, we can insert an unconditional loop that keeps the
micro using all the other instructions forever but only runs the first five
setup instructions once.

This is done by using another while instruction. The format is shown in
Listing 2-2.

Listing 2-2. The While (1) Loop Inserted

61. void main() //this is where the micro goes to
62. find the first instruction of the program

63. { //the opening of the main loop
64. TRISA = OxFF; //Make all bits on PORTA inputs
65. TRISB = 0x00; //Make all bits on PORTB outputs
66. ADCONO = 0x00; //This turns the ADC off

67. ADCON1 = OxOF; //This sets all the bits on PORTA

68. as digital
69. OSCCON = 0b01110100; //set the internal oscillator to
8Mhz stable

49

CHAPTER 2 OUR FIRST PROGRAM

70.

71.

72.

73.
74.
75.
76.

77.

78.

50

while (1)

while (PORTAbits.RAO

PORTBbits.RBO = 1;

while (PORTAbits.RA1
logic at b1 of PORTA
PORTBbits.RBO = 0;

//While the result of the test
is true do what is inside the
curly brackets. Note the result
of the test will be a logic'1'
if it were true and a logic'O'
if it were untrue. The test is
specified inside the normal
brackets. This test is simply a
logic'1' which will always be
true as it is always a logic '1'
This means the micro will always
carry out the instruction inside
the curly brackets. That is why
it is called the forever loop. It
will always be true and the micro
will carryout the instructions
written between the two curly
brackets forever.

//the opening curly bracket of the
for ever loop

== 0) ; //Do nothing while the

logic at bo of PORTA is

at logic 'o'
//Turn on what is connected to
bo of PORTB
== 0) ; //Do nothing while the

is at logic '0'.
//Turn on what is connected to
bo of PORTB
//the closing of the for ever
loop
//the closing of the main loop

CHAPTER 2 OUR FIRST PROGRAM

The while (1) loop, between lines 70 and 80, will carry out the
instructions given inside the curly brackets if there are more than one
instructions as long as the test is true. For the test to be true, the logic result
of the test must be a logic ‘1’ It is fairly obvious that the result of the test (1)
is always going to be a logic ‘1, and so the micro must always carry out the
instructions written inside the curly brackets. That is, this is a forever loop,
or, more correctly, an unconditional loop.

This means that the micro will carry out the first five instructions
that are outside this while (1) loop, but from then on the micro will be
stuck inside the while (1) loop, and so it will never carry out the first five
instructions again. Great as this is exactly what we want.

Note also that in lines 72 and 74, the word continue has been removed
as itis not needed. The instruction still does nothing, while the test is
true as there are no instructions between the closing bracket, of the test
statement, and the semicolon. Note that the semicolon denotes the end of
the current instruction.

Exercise 2-3

What would happen if we had put a semicolon after the test bracket on line
70 of the listing? For example, we wrote the following:

while (1); at line 70.

You should be aware that the configuration commands and the
#include <xc.h> have been omitted from the program listing shown above,
but they are there as they must be included in your project. Your program
will always need some configuration commands and include commands.

51

CHAPTER 2 OUR FIRST PROGRAM

Comments

It is important to use comments in a good program, as they can explain
what some of the instructions are doing and also give ownership to a
program; after all it is your work so own it.

We can identify comments using the two forward slashes as //.
Everything on that line after the two // is simply a comment, and the
compiler program simply ignores them. In this way, we can identify single-
line comments.

We can also identify a collection of lines such as a paragraph of
comments, as anything that inserted between the following symbols, /3 x/,
will be treated as comments.

In every program you write, you should state your ownership of it and
the date when you wrote it. It is also useful to give a brief description of
what it is doing and what PIC it was written for.

The following is a suggestion of what you should insert at the top of
your c file. Note that the software may have automatically written some of
these in for you, so modify them as you desire.

/% A basic on off switch to turn on or off an LED.
Written for the 18f4525 PIC
Written by “Your name”

Dated “To days date” */

Testing the Program

Obviously we will test most programs with the use of the prototype
board or a suitable ECAD program, but in this instance, we will use the
simulation debug tool to test the program.

52

CHAPTER 2 OUR FIRST PROGRAM

To test the program, we need two switches; the ‘on’ switch connected
to RAO and the ‘off’ switch connected to RAL.

The MPLABX software allows us to define switches using the
“Stimulus” option which we can find from the “Window” option on the
main menu bar and the “Simulator” item from the drop-down menu as
shown in Figure 2-17.

Configurn Windew
Reset Windows

Cloie Window CabeW
Close Al Documents Gl Shift+ W
(4 Close Other Documents
E Decumnant Groups
Decuments... Shifte F

Figure 2-17. The Stimulus Window Option

When we select this option, the screen should look like that as shown
in Figure 2-18.

53

CHAPTER 2

OUR FIRST PROGRAM

3 MPLAS XIDE w520 - st - defealt
Fle [t Vew Navigie Source Refasee Production Debug Team Tosls Winden Hel

fEES D

e s

%

etn = .3

Propects = = || swtrese x| mrfstibfarone o

S mon PIEE-E

E

i e faguier Acheed Advsced nitiegiie (S Stmda Rapiie Pyeten
[
-

cton akoe [

ERFaEENEO

5
g
|
|
¥
n
!

’

T -0 B pood novake waaiseko| |

FASSFELOIFLE Y eE Ol

D vowden

o 25

re

Figure 2-18. The Editing Screen with the Stimulus Window Open

We can add the two pins RA0 and RA1 and define what action takes
place when the inputs are fired. To add RAO, simply click the mouse on the

empty box under the word pin. You will be presented with what is shown
in Figure 2-19.

Stwnin o] et | Condbgurstion Bts

D derchircn g i Ao et (el Smka Segedm o

e ™ e v e

IO REEE

Figure 2-19. Selecting the PIN RAO

54

You can scroll the small window down to find the pin RA0. We must set
the action to toggle.

We can now add another row using the second tool icon in the
stimulus window as shown in Figure 2-20.

CHAPTER 2 OUR FIRST PROGRAM

Figure 2-20. The Add Row Button

You should end up with what is shown in Figure 2-21.

e e
;

i 3| s | g s

U derdvwon P dous Kicwrsl iefage Ot Swka Segts i

tFEEDn

Figure 2-21. The Completed Stimulus Window

Note that there are two comments, one for each button that describes
what the button does; you should type in a comment for the switch.

We can observe what happens by using the I/0 pin option from the
same simulator option from the drop-down menu from the Windows
option in the main menu bar shown in Figure 2-17. Note that it might look
a bit like 10Pin in the menu bar, but it is I O for Input/Output.

When using the I/O pin window, we can add which pins we want to
look at. We should select RAO, RA1, and RBO. This is shown in Figure 2-22.

55

CHAPTER 2 OUR FIRST PROGRAM

[
o

EEEIdIZ
2

Figure 2-22. The Input Output PIN Selection Window

It would be useful if we could see the program window, the stimulus
window, and the I/O Pin window all at the same time. You can drag and
move the stimulus window to try an arrange them as shown in Figure 2-23.

11

e
-
“
]
I|
H

Arccena rnn bl S St et

& pvwatin [e © reponns Tt Contguraten Ben [T . n %

Figure 2-23. Showing All the Active Windows

We are now ready to run our program and see what happens.

Compiling and Running the Program

We have already selected the simulation as the programming tool, which
was done in section “Creating the Project in MPLABX” as shown in

56

CHAPTER 2 OUR FIRST PROGRAM

Figure 2-6. To run the program, we need to compile the program and run
it. Compiling the program will test the syntax of the instructions and throw
up errors, if there are any. It will also run the linker program that ensures
any include files, such as the #include <xc.h>, which are compiled at the
same time. The result will create a hex file that is used to program the
actual PIC. However, in this case it will program MPLABX’s simulator PIC.
We can, if you want, test the syntax of the program first by simply
building the program. This is done by selecting the build option, which is a
hammer symbol, from the main menu bar. This is shown in Figure 2-24.

I MPLARKIOE v - e 0F | At o =

Figure 2-24. The Build the Project Icon

However, we could build and start the simulation in one operation. To
carry out this process, you simply need to click the mouse on the Debug
Main Project Icon in the menu bar as shown in Figure 2-25.

Fie 61 Ve Mewgite Ssct Refuibie R Debag Tevs Tesd Windiw lotp a

R T 8-

Figure 2-25. The Debug Main Project Icon

During compilation a new output window should appear at the bottom
of the MPLABX window. This shows the progress of the compilation. When
itis complete, it will indicate where any errors are if they are any. If the
compilation is successful, it should show that the user program is running.

57

CHAPTER 2 OUR FIRST PROGRAM

We now need to simulate the switching action of the switches and
then examine the reaction of the outputs. We can either add a watch table
to examine the outputs or simply look at the I/O pins. Having successfully
compiled the program, you should be able to test the operation of the program.

Click on the Debug Main Project icon as shown in Figure 2-25, and
wait for the program to successfully compile. If there are errors, you should
go back and check that you have typed everything exactly as shown above
or in the complete program listing shown in the appendix. If an error does
occur, the line would be shown in blue with an error message showing in
the output window. If you click the mouse on that blue line, you should
go directly to that line in the editing window where the error is. You must
be very careful and make sure you have typed everything, apart from any
comments, exactly as shown in the text, as shown in program Listing 2-2.

Assuming your program compiles correctly the output window should
state that the program is running. You now need to fire the start, on,
button and then the stop, off, button. Note that you are trying to simulate
momentary switches that only close as long as you keep your finger on the
button. To simulate this with the stimulus, you need to click the mouse on
the fire button for that switch twice. The first click sends the logic high. The
second click sends the logic back to zero. When you do this, you should
see the I/0 pins on RB0 and RAO go green which means it has turned on.
You now need to click the mouse on the RAO pin again which will make the
logic at that pin go to logic ‘0’ You should see the green light on the RAO
I/0 pin go out but the green light on the RBO stay green.

In this way you have simulated pressing the momentary start switch.

If you now carry out the same process on the stop switch, you should
see the green light on RB0 go out and the green light on RA1 come on and
then go out.

In this way you have simulated the stop switch being momentarily pressed.

If you now repeat the whole process, you should see the green lamps
on the I/0 come on and off correctly. This means you have successfully
created and written your first C PIC program. Well done.

58

CHAPTER 2 OUR FIRST PROGRAM

Testing the Program Practically

This program is probably one of the simplest programs you can write;
I'hope you have found it fairly simple. So really there is no need to build a
practical circuit for this. It may be more exciting to build a practical circuit
of a set of traffic lights which is a program we will write very soon.

However, I will use this program to introduce you to the process of
using an ECAD package to test the program. The ECAD package I will use
is PROTEUS with the 8-bit micro package added to it.

This text does not teach you how to use PROTEUS; that is a book of its
own. However, it will show you how to download your program to the PIC
in the software, and it will help explain how you can connect the switches
to the PIC.

The PROTEUS schematics for this first program is shown here in
Figure 2-26.

vce

U1

1IN- RCO/T10SO/T13CKI %
RA1/AN1/C2IN- RC1/T10SICCP2B (=
RA/AN2/C2IN+/VREF-/CVREF RC2/CCP1/PIA (=L
RA3/AN3/C1IN+/VREF+ RC3/SCK/SCL [—=
RA4/TOCKI/C10UT RC4/SDI/SDA B
RA5/AN4/SS/HLVDIN/C20UT RC5/SDO =25
RA6/0SC2/CLKO RCB/TX/CK [=22
RA7/0SC1/CLKI RC7/RX/DT === vee
RBO/AN12/FLTO/INTO RDO/PSPO %
RB1/AN10/INT1 RD1/PSP1 |22
RB2/ANS/INT2 RD2/PSP2 22
RB3/AN9/CCP2A RD3/PSP3 [=22
RB4/KBIO/AN11 RD4/PSP4 (=25
RBS5/KBI1/PGM RDS/PSPS/P1B |22 L
RB6/KBI2/PGC RDB/PSPEPIC (=== R3
RB7/KBI3/PGD RD7/PSP7/P1D [—= ®
REORRD/ANS =5~
RE1/WRIANG [— J
D1 RE2/CS/ANT |
LED-GREEN RE3/MCLRVPP
PIC18F4525 u
o
R4 MCRL
280
Je

Figure 2-26. The Proteus Schematic for myFirst18fProg

59

CHAPTER 2 OUR FIRST PROGRAM

To download the program to the PIC in the schematic, you should
click the mouse on the PIC to select it. Note that the simulation should not
be running and the PIC will turn red when selected. Now click the right
mouse button, on the PIC, and select edit properties from the drop-down
menu that appears. You should now have the following window, shown in
Figure 2-27, displayed.

Edit Component ? »
Part Beference: IE]] | Hidden: []
Part Malue: PIC18F4525 | Hidden: (] Help
Element: New Data
PCB Package: \DIL40 v|?| HideAl || HiddenPins
Progeam Fils |- AmyFirst18F X\dist\defaut\pre [3] [Hide At | | [Edit Fitmware
Processor Clock Frequency: |4MHz | Hide All ~ Carcol
Advanced Properties:

Force ADC Breakpoint At Sample Time? ~ [Default) ~ | Hide &l ~

Other Properties:

(] Exclude from Simulation
[] Exclude from PCB Layout
[] Exclude from Bill of Materials

[[] Attach hierarchy module
Hide common pins
[CJ Edit 2ll propeities as text

Figure 2-27. The Edit Properties Window for the PIC18f4525

You will see the directory symbol alongside the Program File box in the

window. You need to open the directory window by clicking the mouse on

the yellow directory symbol, and then you need to search for the hex file

for the project. If you look at the output window after you have built the

project in MPLABX, you will actually find the location of the hex file you

are looking for. This is shown in Figure 2-28.

60

CHAPTER 2 OUR FIRST PROGRAM

p— — 2t st

B & PRAL Tosepe 0 P
F

Cubput

W Cantig Btu Semrce w Debugger Conace ® Simelstne ® reySwet 0 (i, Load,) #F w el [BF O Losd) @

Figure 2-28. The Path for the Hex File to Download to
PROTEUS

It should be the only hex file in that directory. You should click open
to insert that location into the Program File Box in the properties window
in PROTEUS. Once you have it in there, click the OK button, and you
should return to the schematic window. You should now be able to run the
simulation by clicking the play button. The program should work as expected.

If you have the correct software for PROTEUS, this should become
a very useful method of running your program without buying a lot of
equipment. You can simulate almost any PIC program you write using this
software.

One very important aspect we can learn from the schematic is the use
of the resistors R1, R2, R3, and R4. R1 and R2 are related to the two inputs.
The input to the PIC is digital which means it will be a logic ‘1, that is, 5V
or a logic ‘0, that is, OV. This means there must be a path to either of those
two voltages for the input. One path will become active when the button
is pressed, and the other must be active when the button is not pressed.
Note that you should never leave a bit on the port your program is using
unconnected. This is termed floating. If you do leave it floating, it will
inevitably float to the wrong logic level and may disrupt your program.
With the RAO input, the input goes to 0V logic ‘0’ if the button is not
pressed. This must be true as no current flows out of the PIC as it is an
input, and so no current flows through R1. This means that the voltage
at the top of R1, that is, at the input RAO, is the same as the voltage at the
bottom of the resistor, as no current flows through it. As the voltage at the
bottom of R1 is ground, then the input voltage to RAO is also ground or 0V.

61

CHAPTER 2 OUR FIRST PROGRAM

When the start button is pressed, the top of R1 which is connected to
the input at RA0 is connected directly to VCC which is +5V. This means the
voltage at RAO goes to +5V which is the logic ‘1!

Note the resistor R1 is there to limit the current through the switch to
5mA, and so protect the actual switch itself. This arrangement is termed
pull up as closing the switch pulls the voltage up to VCC when the switch
is closed.

When the start button is pressed, the top of R1 which is connected to
the input at RAO is connected directly to VCC which is +5V. This means the
voltage at RAO goes to +5V which is the logic ‘1’

The same arrangement is used for RA1 and even the MCLR input.
However, the switch at the MCLR input is termed pull down as it pulls the
switch down to 0V when the switch is closed.

With the output, on RBO, the logic ‘1’ condition puts 5V out to the top
the green LED. To actually turn on, the LED drops around 2.2V across it but
only needs around 10mA of forward current to glow. This means that as 2.8
volts is left to be dropped across the resistor R3; then its value is set to 280€2
to limit the current to 10mA.

NB: As a precaution against sparks or high-frequency noise affecting
the supply to the PIC, you should connect a 100nF capacitor between the
VCC and ground, placing the capacitor very close to the VCC pin of the
PIC. This is not shown in the PROTEUS simulation, but it is there.

Summary

I know there is a lot to take in, but becoming a real embedded
programmer, who fully understands what they are doing, is a real
challenge. There is a lot of text to read and maybe reread, but if you stick
with it and complete all the tasks inside this book, I am sure you will find
you are well equipped to enter this exciting, challenging, and rewarding
career as an embedded programmer.

62

CHAPTER 2 OUR FIRST PROGRAM

In this first task, you have studied the following:
¢ How to create a project in MPLABX.
¢ You have studied how to set up the ports correctly.
e How to set up the oscillator.

e You have studied how to use the datasheet to
determine the settings for the control registers inside
the PIC.

¢ You have studied how to use MPLABX’s own simulator
to test some aspects of your program.

So you have studied quite a lot, and that is why there is a lot to read and
reread. Note that I say studied not learnt because to learn it, you will have
to practice the procedure again and again. There will be different programs
where you should create new projects, and this will help you learn that
skill. I will not take you through the process again in the text of creating a
project, but I will assume you have carried out that part again from scratch
yourself, the whole process of creating the project and editing the program.

Exercise Answers

Exercise 2-1: Write 0b00101110 or 0x2E to TRISC
Exercise 2-2: The 8-bit number for the OSCCON is 00110111 or 0X37
Exercise 2-3: The program would stop at this line as the semicolon
denotes the end of the instruction and we are basically, say, forever simply
do nothing.

63

CHAPTER 3

Updating the Program

In this chapter, you will be creating two new programs. The first one will
look at creating a simple delay to delay when the lamps turn on and off.
The second will extend the delay by creating a variable delay subroutine.
After reading this chapter, you should be able to save a new updated
version of a program while keeping the old one. You should be able to use
the IF instruction and understand the difference between the IF and the
while instruction. You will be able to use the GOTO instruction and the
“for do” loop instruction.

You will be able to write a program that uses a subroutine with local
and global variables.

If This Then Do That

This first program can be used to show us how the programmer can use
the IF This Then Do That Else Do something else concept in ‘C! The two
switches on PORTA.RAO, the start switch, RA1, and the stop switch, give
the user two options. If the start switch is pressed, then turn the output
on. If the stop switch is pressed, then turn the output off. It really gives

a third option which is that if no switches are pressed, then go back

and check again. While this may be obvious, there is a slight difference
in the approach to this program and the first program that used the

© Hubert Henry Ward 2020 65
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_3

CHAPTER 3 UPDATING THE PROGRAM

while statements. The program can be implemented using the IF Else
statements. The text for the instructions follows:

Start: if (PORTAbits.RAO == 1) goto On;
if (PORTAbits.RA1 == 1) goto Off;
else goto Start;

On: PORTBbits.RBO = 1;
goto Start;
Off: PORTBbits.RBO = 0;

Note that there is really no need to include the ‘then’ and the ‘else’
statements as the ‘C’ compiler knows that an ‘If” keyword uses the ‘then’
and ‘else’ statements. However, there may be times when you should
include the ‘else’ statement, but they are few and far between.

Saving the Old Program

The preceding text has been put into the program listing overwriting the
existing part of the program that is in the forever loop. Listing 3-1 is what
your second program should look like.

However, it is good practice when changing anything to keep both the
old program and the modified program. This is because sometimes your
changes don’t work and you want to go back to the old program before you
made the changes. Therefore, you should click the “Save As” option and save
the file as mySecond18fprog.c. which is a different name for the program.

Listing 3-1. The Modified Program

1. void main() //this is where the micro goes to
find the first instruction of
the program

2. | //the opening of the main loop
3. TRISA = OxFF; //Make all bits on PORTA inputs
4. TRISB = 0x00; //Make all bits on PORTB outputs

66

9.

10.

11.

12.

13.

14.
15.
16.
17.

CHAPTER 3 UPDATING THE PROGRAM

ADCONO = 0x00; //This turns the ADC off

ADCON1 = OxOF; //This sets all the bits on PORTA
as digital

OSCCON = 0b01110100; //set the internal oscillator to
8Mhz stable

while (1) //the for ever loop

{ //the opening of the for ever loop

Start: if (PORTAbits.RAO == 1) goto On;
//if RAO goes to logic '1' goto
the label On
if (PORTAbits.RA1 == 1) goto Off;
//if RA1 goes to logic '1' goto
the label Off
else goto Start;
//if none of the switches are
pressed goto to the label Start
On: PORTBbits.RBO = 1;
//turn the led on

goto Start; // goto to the label Start

Off: PORTBbits.RBO = 0; //turn the led off

} //the closing of the for ever loop
} //the closing of the main loop

You should be aware that the configuration commands and the

#include <xc.h> have been omitted from the program listing shown

earlier, but they are there as they must be included in your project. Your

program will always need some configuration commands and include

commands.

You will now have two ‘C’ program files in the source files folder for

this project. Don’t worry if you didn’t use the Save As option. It does not

really matter if you have just overwritten the first program and just saved

it over the old one. However, if you have used the Save As option, you will

67

CHAPTER 3 UPDATING THE PROGRAM

have two source files, but the one you have just saved is not showing in
your project tree under source files. You will need to swap the old source
file in the project tree window to the new file you have just created, before
you compile the program again. To do this right, click the mouse on the
source file selection from within the project tree. The follow menu bar will
fly out as shown in Figure 3-1.

O MR K D8 30 - bt et
e Bt Wiow Novigits Seusce Rafucssr Producion Dubwy Temm Toshi Windew
@ ' o 9% -H-
Pitei sl | [o] W myrestimmegs =
e i Sorce oot B
y BB E-E-05
feisuri L o

v
i

t
ot e =
o £

568

P ey =

B o

Hew
Sl e N Logia Feide
S R P P -

A Liating nerms fosn Felrs_
P

Prpeas

Figure 3-1. The Source Fly-Out Menu

Using that fly-out menu, select “Add Existing Item.” This will open
the directory for this project, and you will need to open the ‘C’ file
mySecond18fProg that you have just created. You will now have two ‘C’
files in the source directory in the project tree. You now need to remove
the myFirst18fProg.c. To do this, simply right click the mouse on that file,
and select the remove from project option from the pop-up menu. Note
that the file will still be in your project folder on the hard drive; it just will
not be used in the program. You now have just the mySecond18fProg.c in
the source directory. Like everything new, there is a lot to learn, but after a
few attempts, this process will be quite easy to do, and believe me you will
most likely be very glad you have done it.

You can now rebuild the project by clicking on the debug main project
icon and test the program out with the stimulus and I/O window.

Check it out and confirm it works as expected.

68

CHAPTER 3 UPDATING THE PROGRAM

Labels and the Goto Instruction

The second program we have written, mySecond18{Prog.c, uses the new
keyword “goto”. Note that the ‘C’ programming language uses keywords,
and the MPLABX IDE software identifies these keywords by writing them
in blue. We will look at keywords more as we use them in later chapters of
the book.

This new keyword, goto, forces the microprocessor to jump out of its
normal sequential operation of the instructions and go to another part of
the program. However, for the microprocessor to know where to go to, the
complete instruction needs a label that corresponds to the section of program
it should go to. In this way, labels and the goto keyword are linked together.

The label associated to the goto is written with the colon placed after
it; look at the two labels, On: and Off, in the program Listing 3-1 at lines 13
and 15. They both have the colon written after them. Therefore, the label
tells the microprocessor where to go to with the goto keyword. Note that
the full instruction should use the goto with the label as shown in lines 10,
11, 12, and 14 in Listing 3-1.

The goto keyword is a powerful tool, but care must be taken when using it.

Exercise 3-1

Explain why the instruction goto Start; is required on line 14, between
the ON and the OFF instructions in Listing 3-1. All exercise answers are
provided at the end of the chapter.

While vs. If Then

The main difference is that with the while instruction, the microprocessor
will always carry out the associated instructions for as long as the test is
true. Whereas with the if then else instruction, the microprocessor will
examine the if then else condition and either carry out the instruction

69

CHAPTER 3 UPDATING THE PROGRAM

written after the if() if the test is true or simply move on to the next
instruction if the test is not true; it does not keep the micro trapped
waiting for the test to become untrue. It is a subtle difference, but it is an

important one.

Slowing the Micro Down

One of the main problems with writing code for microcontrollers is that
they carry out instructions very fast. With an 8Mhz oscillator, the PIC can
carry out 2 million instructions in 1 second, as the actual clock the micro
uses runs at is a quarter of the oscillator. This is far too fast for us humans.
This really means we need to create a delay. This is not as simple as writing
delay (1000) to create a 1-second delay. You really need to appreciate how
the micro creates a delay.

The concept of how we create a delay is quite simple. If you remember
playing hide and seek, you should appreciate that the seeker delays their
start of looking for those that hide by counting up to a number. Well it is
the same with the micro. All micros have special timer registers that simply
increment their value after each clock cycle. In this way they simply count
clock cycles, and so they can be used to create delays. There are only two
things that control the length of the delay, and they are

1. The number the timer has to count up to
2. The rate at which it counts

The 18F4525 has four timer registers that are used in this way. Timero0,
timerl, timer2, and timer3. Each timer has a register that holds the current
value of the timer and is incremented at the specified frequency, based
on the micro’s clock, for that timer. Each timer has a control register that
is used to specify how the timer operates. Timer0 is the main timer for
creating delays, whereas the other three timers have other uses, but they
could also be used for delays if required.

70

CHAPTER 3 UPDATING THE PROGRAM

TOCON Register

This is the control register for timer0 and it sets out how the timer is used.

To appreciate how to set up the timer, we need to appreciate the following:

Firstly, the clock, which produces the cycles that the
timer counts, runs initially at a quarter of the oscillator.

Timer0 can be set to be an 8-bit register which means it
can only count up to 256 clock cycles, 0 to 255. When it
tries to count the next clock cycle, after reaching 255, it
goes back to 0; this is called “rolling over” When timer0
first rolls over, a rollover bit will be set, and this can be
used by the programmer if they wished to.

Timer0 can be set to operate as a 16-bit timer which
means it can count up to 65536, that is, 2!°.

We can also apply pre-scalars to the timer which will
actually slow the rate at which the timer counts by
dividing the clock frequency further.

To help explain the process further, we will go through an example of

creating a 1-second delay using the internal 8 MHz oscillator.

As the clock runs at a quarter of the crystal, the clock runs at 2MHz.

If we set the timer0 to be a 16-bit register, then the highest number it

can count up to is 65536, that is, 2'°. This means that as the clock is running

at 2Mhz, the timer increments or counts one ever 500ns. Therefore, the
length of the delay would be 65536 times 500ns which would be 32.768ms.
Not long enough. We need to slow the timer down, which we can do by

applying one of the pre-scalars. These are displayed in the datasheet along
with the use of all the bits in the TOCON register as shown in Table 3-1.

71

CHAPTER 3 UPDATING THE PROGRAM

Table 3-1. TOCON Register (See Data Sheet)

Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TMROON TO8BIT TOCS TOSE PSA TOPS2 TOPS1 TOPSO

BIT7 1 Enables Timer0
0 Disables Timer 0

BIT 6 1 Sets Timer 0 as an 8-bit register
0 Sets Timer 0 as a 16-bit register, that is, two 8-bit
registers together

BIT 5 1 Transition on TOCK1 pin
0 Transition on internal clock cycle (CLKO)

BIT 4 1 means increment on negative edge
0 means increment on positive edge

BIT 3 1 TimerO is not divided further by selected divide rate.
0 Timer0 is divided further by selected divide rate

BIT 2 - BITO BIT 2 BIT 1 BITO Selected Divide Down Rate
0 0 0 Divide Clock Down by 2
0 0 1 Divide Clock Down by 4
0 1 0 Divide Clock Down by 8
0 1 1 Divide Clock Down by 16
1 0 0 Divide Clock Down by 32
1 0 1 Divide Clock Down by 64
1 1 0 Divide Clock Down by 128
1 1 1 Divide Clock Down by 256

This is an 8-bit register and

Bit 7 is used to either enable the timer or switch it off.

72

CHAPTER 3 UPDATING THE PROGRAM

Bit 6 controls whether the timer0 is an 8-bit or a
16-bit register; note that to create a 16-bit register,
the PIC simply connects two 8-bit registers together.

Bit 5 controls which clock it counts.

Bit 4 controls whether it counts on the positive edge
or negative edge of the clock cycle.

Bit 3 controls whether or not the pre-scalar is
applied or not. To divide the clock down, we need to
apply the pre-scalar.

Bits 2, 1, and 0 are used to set the required divide
rate. The 3 bits giving us 8 possible divide rates, that
is, 23=8.

To successfully create our 1-second delay, we will select the maximum
divide rate which is divide by 256. This means that timer0 now counts
at a rate of 7821.5 Hz, 2MHz divided by 256. This means that to create a
1-second delay, timer0 needs to count up to 7821.

I prefer to use the timer frequency to determine how long one tick
takes. One tick is simply the periodic time of the timer frequency, normally
symbolized by ‘T’ From what we should know about frequency ‘F’ and
periodic time ‘T, we can determine the time using

1
F=—

T= 1 s T = ! =1
F 7812.5
This means it takes 128us to count up to one. Therefore, the time to
count up to 7182 is 7812x128E*° = 0.999936 second. Near enough especially

when you take into account the time taken to carry out the instructions. If

28us

you needed to be extremely accurate, you would have to take into account
the time it takes to carry out these instructions, but for our purpose, this
simple approach is good enough.

73

CHAPTER 3 UPDATING THE PROGRAM

Therefore, to create a 1-second delay, we need to write the correct 8-bit
word to the TOCON register. This need only be done once so it can be done
in the same part of the program as setting up the ports and oscillator. We
would then write the instructions to make the timer start at 0, and then
count up to 7812 before we do anything else. To illustrate this, we will
simply modify the first program so that the LED will come on 1 second
after pressing the start switch.

Adding a One-Second Delay

We need to set up the timer0 by writing the required 8-bit data to the
TOCON register. The correct data is

e Bit7=logic 1 to enable the timer

e Bit 6 =logic 0 to make the register a 16-bit register so it
counts up to 65536

e Bit5=logic 0 as we are using the internal oscillator
e Bit4 =logic 0 to set it up for negative edge triggering

e Bit 3 =logic 0 so that we can apply the pre-scalar and so
divide the clock down

e Bit2=_Logicl
e Bitl=logicl

e Bit0=1logic 1 so that we apply the maximum divide rate
of 256

This means that the data we need to write to the TOCON register is
Ob10000111 in binary or 0X87 for hexadecimal.

The instruction to do this is simply

TOCON = 0x87

74

CHAPTER 3 UPDATING THE PROGRAM

Now all that is left to do is after waiting for the start switch to be
pressed, we set timer0 back to 0, and then do nothing until timer0 has
counted up to 7812. The instructions to perform this task are

TMRO = 0;
While (TMRO <7812);

The while instruction is a simple one-line instruction which tells
the microprocessor to do nothing, as no instruction is given between
the closing bracket and the semicolon, while the value in TMRO, timer 0
register, is less than 7812.

Exercise 3-2

As an exercise, determine what data must be written to the TOCON register
to use the timer as an 8-bit register, and apply a divide by 32 rate. How long
would each tick take, and what would the maximum delay be with this
arrangement. The completed set of instructions with this delay written in
is shown Listing 3-2.

Listing 3-2. One-Second Delay Included

1. void main(void)

2. { //This defines the start of the
main loop

3. TRISA = OxFF; //Make all bits on PORTA inputs

4. TRISB = 0x00; //Make all bits on PORTB outputs

5. ADCONO = 0x00; //This turns the ADC off

6. ADCON1 = OxOF; //This sets all the bits on PORTA
as digital

7. OSCCON = 0b01110100; //set the internal oscillator to

8Mhz stable

75

CHAPTER 3 UPDATING THE PROGRAM

8. TOCON = 0X87; //set TMRO to on and 16bit with max
divide rate Freq = 7812.5Hz
one tick takes 128us.
9. while (1) //The forever loop
10. { //This defines the start of the
forever loop
11. while (PORTAbits.RAO == 0) ; //Do nothing while
the logic at bo
of PORTA is at
logic '0'
12. TMRO =0; //make sure TMRO
starts counting
from 0
13. while (TMRO < 7812); //Do nothing until
TMRO has counted
up to 7812. This
equates to a one
second delay
14. PORTBbits.RBO = 1; //Turn on what is
connected to bo
of PORTB
while (PORTAbits.RA1 == 0) ; //Do nothing while
the logic at b1l of
PORTA is at logic
'o'.
15. PORTBbits.RBO = 0; //Turn on what is
16. connected to bo
of PORTB
17. } //This defines the end of the forever loop
18. } //This defines the end of the main loop

76

CHAPTER 3 UPDATING THE PROGRAM

You should be able modify your first program to include the delay and
TOCON instruction. You should then be able to simulate the program and
confirm that it works as expected.

Delaying the Turn Off

In this modification, we are going to add a one-second delay so that the
lamp turns off one second after the stop switch has been pressed. This
could be done by simply adding the on- second delay instruction after the
wait for the stop switch to be pressed. This is shown in Listing 3-3.

Listing 3-3. Adding the Second One-Second Delay

1. void main(void)
2. { //This defines the start of the main loop
3. TRISA = OxFF; //Make all bits on PORTA inputs
4. TRISB = 0x00; //Make all bits on PORTB outputs
5. ADCONO = 0x00; //This turns the ADC off
6. ADCON1 = OxOF; //This sets all the bits on
PORTA as digital
7. OSCCON = 0b01110100; //set the internal oscillator to
8Mhz stable
8. TOCON = 0X87; //set TMRO to on and 16 bit with
max divide rate Freq = 7812.5Hz
one tick takes 128us.
9. while (1) //The Forever Loop
10. { //This defines the start of
the forever loop
11. while (PORTAbits.RAO == 0) ; //Do nothing while

the logic at bo
of PORTA is at
logic '0'

77

CHAPTER 3

12.

13.

14.

15.

16.

17.

18.

19.

20.

78

UPDATING THE PROGRAM

TMRO =0;

while (TMRO < 7812);

PORTBbits.RBO = 1;

while (PORTAbits.RA1 == 0) ;

TMRO =0;

while (TMRO < 7812);

PORTBbits.RBO = 0;

//make sure TMRO
starts counting
from 0

//Do nothing until
TMRO has counted
up to 7812. This
equates to a one
second delay

//Turn on what is
connected to bo
of PORTB

//Do nothing while
the logic at b1
of PORTA is at
logic '0'.

//make sure TMRO
starts counting
from 0

//Do nothing until
TMRO has counted
up to 7812. This
equates to a one
second delay

//Turn on what is
connected to bo

of PORTB
} //This defines the end of the
forever loop
} //This defines the end of the main

loop

CHAPTER 3 UPDATING THE PROGRAM

This would work fine but it is not the most efficient way of doing this.

Using Subroutines

Whenever you are going to use the same instructions in EXACTLY the
same way more than once, then instead of writing them in multiple places
in the code as we have done in program Listing 3-3, it is better to write
these lines in the form of a subroutine, which is a small self-contained
section of code that lives outside the main program. The main program has
to “Call” the subroutine from within the main program every time the main
program wants to use the subroutine. Note that in ‘C’ these subroutines are
called “Functions” or “Methods,” but I prefer to call them subroutines.

Defining and Calling a Subroutine

We define the subroutine in the same way as we define the main loop.

void delay() //give the subroutine a sensible
name such as delay
{ //opening curly brackets of the
subroutine
TMRO = 0; //ensure timer O starts counting
from zero

while (TMRO < 7182); //whilst the value in timer 0
register is less than 7812 do
nothing

} //closing brackets of the
subroutine

79

CHAPTER 3 UPDATING THE PROGRAM

The delay Subroutine

At this point it would be useful to appreciate that, when we call a
subroutine, we can pass information up to a subroutine and also receive
information back from a subroutine. ‘C’ uses keywords to tell the
program that a subroutine is going to send information back to the main
program from a subroutine. The word “void” is a keyword that means this
subroutine is not going to send any information back to the main program.
Other keywords could be “int” or “char” which means the subroutine will
send an integer, or a char, back to the main program.

The method by which we can show that the subroutine is requiring
information to be sent up to the subroutine is by including it inside the
normal bracket written after the name for the subroutine. An example of
this will be given later.

The keyword “void” at the beginning of this subroutine means that it
will not be sending anything back to the main program.

The next thing to do is give the subroutine an appropriate name. In this
case it is called delay.

There are now two normal brackets, the opening followed by the
closing bracket. These are left empty as this subroutine is not expecting
any information to be sent up to it.

As this subroutine has more than a single-line instruction, there are
the opening and closing curly brackets. The actual instructions of the
subroutine are placed inside these curly brackets.

Calling the Subroutine from Within the Main
Program

This is quite a simple process; all you have to do is write the name of the
subroutine you want the program to call. This is shown here:

delay (); //this will call the subroutine "delay"

80

CHAPTER 3 UPDATING THE PROGRAM

The normal brackets are required even if you are not sending any

information to the subroutine, and so they must be there. Note that the

semicolon indicates the end of the instruction.

in Listing 3-4.

The complete code for the first program with the two delays is shown

Listing 3-4. First Program with Two Delays Using the Subroutine

N

10.
11.

12.

13.

14.

void delay()
{

TMRO = 0;

while (TMRO < 7182);

void main(void)

{

TRISA
TRISB

OXFF;
0x00;
ADCONO
ADCON1

0x00;
OxOF;

OSCCON

TOCON = 0X87;

while (1)

//the delay subroutine
//the opening bracket of the
subroutine
//ensure timer 0 starts counting
from zero
//do nothing while the value of
timer 0 register is less than 7812
//the closing bracket of the
subroutine
//the main program loop
//the opening bracket of the main
loop
//Make all bits on PORTA inputs
//Make all bits on PORTB outputs
//This turns the ADC off
//This sets all the bits
on PORTA as digital

0b01110100; //set the internal oscillator

to 8Mhz stable

//set TMRO to on and 16 bit with
max divide rate Freq 7812.5Hz
one tick takes 128us.

//the forever loop

81

CHAPTER 3 UPDATING THE PROGRAM

15. { //the opening bracket of the
forever loop
16. while (PORTAbits.RAO == 0) ; //Do nothing while the

logic at bo of PORTA
is at logic 'o0'

17. delay(); //call the delay
subroutine
18. PORTBbits.RBO = 1; //Turn on what is
connected to bo of
PORTB
19. while (PORTAbits.RA1 == 0) ; //Do nothing while the
logic at b1 of PORTA
is logic '0'
20. delay(); //call the delay
subroutine
21. PORTBbits.RBO = 0; //Turn off what is
connected to bo of
PORTB
22. } //the closing bracket of the
forever loop
23. } //the closing bracket of the main
loop

The Variable Delay and the For Do Loop

In this extension of the program, we are going to create a variable delay.
Also, as the version of PROTEUS I have only models 8-bit micros, I will
change the TMRO to be an 8-bit register as my version of PROTEUS will not
model 16-bit micros. This will also introduce a very powerful loop, the “For
Do Loop”

82

CHAPTER 3 UPDATING THE PROGRAM

First of all, we need to change TMRO to an 8-bit register. This is done
by setting bit 6 of the TOCON register to a logic ‘1. If we leave everything
else as we set earlier, then the 8-bit value we need to write to the TOCON
register is 0b11000111 or 0XC7. The instruction for this is

TOCON = OXC7;

Now that we are using an 8-bit register, it means that the maximum
value the TMRO can count up to is 255. This means that the maximum
delay this will give is 256x128E° = 32.768ms. The way we can increase this
to make a one-second delay is to repeat this delay approximately 30 times.
Doing this 30 times will produce a delay of 983.04ms, almost 1 second.

If we consider the time that the micro takes to carry out the instructions,
then this delay is close enough to one second.

To make the micro repeat this 32.768-ms delay 30 times, we will make
use of the “for do loop.” The instructions to do this are written below:

for (n = 0; n <30; n++)

{

TMRO = 0;

while (TMRO < 255);
}

There are actually three instructions written inside the normal brackets
of the “for” keyword. They are

n = 0; This sets the value of the variable ‘n’ to 0.

n < 30; This asks the question is n less than 30, and
as long as n is less than 30, do what is written inside
the curly brackets. The two instructions inside the
curly brackets make up the new 32.768ms delay.

83

CHAPTER 3 UPDATING THE PROGRAM

The last instruction inside the normal brackets is n++. This will simply
increment the value of n by one every time the micro carries out the
instructions inside the curly brackets.

To help explain what happens, we can look at the steps that the micro
carries out.

1. nisloaded with a value of 0.

2. The micro asks the question is n less than 30, which
of course it is now.

3. Then the 32.768ms delay is carried out.
4. Then the value of n is increased by 1.

5. Then the micro asks the question is n less than 30.
Note that ‘n’ now equals 1.

6. Ifitis, then 3, 4, and 5 are carried out again.

There will be a time when n is not less then 30, that is, when it actually
equals 30. At this point the micro will break out of the “for do loop,” and the
subroutine is finished.

This will now produce a one-second delay or very close to a one-
second delay.

This is good, but it is not a variable delay as it is always comparing
n to 30. The modification to make this a variable delay is to change the

subroutine as follows:

void delay(unsigned char m)

{
for (n = 0; n <m; n++)
{
TMRO = 0;
while (TMRO < 255);
}
}

84

CHAPTER 3 UPDATING THE PROGRAM

Note that there is the term ‘unsigned char m’ inside the normal
bracket. Also, the question inside the “for do loop” is now is n less than m.
This means that the subroutine is asking for an unsigned char, to be passed
up to the subroutine. The subroutine then uses this value to load into the
variable ‘m! In this way if m was 30, we would have a 1-second delay. If m
was 60, we would have a 2-second delay. Therefore, the length of the delay
is set by the value given to the variable ‘m. However, as this is an 8-bit
register, the maximum value we can give to the variable ‘m’ is 255. This is
why the variable is defined as an unsigned char as this uses all 8 bits. An
unsigned int, or integer, would use up 16 bits. See the section on data types
in the Appendix.

One question you should be asking is what are ‘n’ and ‘m’? These are
variables, and the following text should explain what they are.

Local and Global Variables and Data Types

When we declare a variable, we are really reserving a space in memory
where we can store a value. If the variable is to represent a real quantity
like pump1 speed, then you should give it a meaningful name such as
pumplSpeed to the variable.

Each variable will have a specific data type, and there are a wide range

” u

of data types to choose from. The most common ones are “char” “unsigned

char” “int’; unsigned int and “float’, and so on. There is a full description of
the data types in the Appendix. However, it would be useful at this point to

compare the three common data types.

Type Char

This uses an 8-bit memory location to store a range of values. However, the
most significant bit, the MSB, is not used to determine the number. The
char uses what is termed “signed number representation.” This is where

85

CHAPTER 3 UPDATING THE PROGRAM

the MSB, that is, bit 7, is reserved to show if the number being stored is a
positive or a negative number. If the MSB is a logic ‘0; then the number is
positive. If the MSB is a logic ‘1, then the number is a negative number.
Therefore, the value of a type “char” can go from

11111111 which is -127
to
01111111 which is +127.

The MSB is not used to be part of the actual number or value; it is only
used to show if the number is positive or negative.

Type Unsigned char

The type “unsigned char” does not reserve the MSB to represent the ‘sign’
of the number as all numbers will be positive. This means that a type
“unsigned char” can hold a value from

00000000 = O
to
11112111 = 255

Type int

The last type “int” is a 16-bit number, but like the “char,’ it reserves the
MSB to represent if the number is positive or negative. Therefore, a type
“int” can hold a value from

1111111111111111 = -32768 to 0111111111111111 = +32768

86

CHAPTER 3 UPDATING THE PROGRAM

It is important to appreciate all the different data types and the
difference between signed and unsigned number representation.

In our program, as my version of PROTEUS only uses 8-bit micros,
I will restrict all my variables to 8-bit variables and use type “unsigned
char” unless I need to store negative numbers.

That is why I have named the variable ‘m’ as an “unsigned char”

Local Variables

If we leave the variable ‘m’ being declared as it is, inside the normal
brackets of the subroutine, then it will be a local variable which means it is
only valid for use inside that subroutine. If we try to use the variable inside
any other subroutine or inside the main loop of the program, then the
compiler will say it does not recognize the variable ‘m’

Global Variables

The other variable ‘n’ will be declared as a global variable. This means
that the variable ‘n’ can be used anywhere in the program, that is, inside
the main loop and any subroutines that the program uses. The complete
listing to show how to declare these variables is shown in Listing 3-5.

Listing 3-5. Using the Variable Delay Subroutine

1. //declare all global variables this is just one way of
breaking up the program listing into different sections.

2. unsigned char n; //reserve an 8 bit memory
location for the variable

Inl
This is a global variable
3. //define any subroutine this is just one way of

breaking up the program listing into different sections.

87

CHAPTER 3 UPDATING THE PROGRAM

4.

10.

11.

12.

13.

14.

88

void delay(unsigned char m)

for (n = 0; n<m; n+t)

TMRO = 0;

while (TMRO < 255);

void main(void)

TRISA = OxFF;

//this subroutine expects
a number to be passed
up to it in the call to
assign to the variable
'm'this is a local
variable

//opening curly bracket
of the subroutine

//sets n to 0, asks is
n less than m. if
it is carryout the
instruction between the
curly brackets.

//opening curly bracket
of the for do loop

//set timer 0 register
to 0

//do nothing while TMRO
is less than 255 note
an 8 bit register can
only count up to 255

//closing curly bracket
of the subroutine

//closing curly bracket
of the for do loop

//the start of the main
loop

//opening curly bracket
of the main loop

//Make all bits on PORTA
inputs

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

CHAPTER 3 UPDATING THE PROGRAM

TRISB = 0x00; //Make all bits on PORTB
outputs

ADCONO = 0x00; //This turns the ADC off

ADCON1 = OxOF; //This sets all the bits
on PORTA as digital

0SCCON = 0b01110100; //set the internal
oscillator to 8Mhz
stable

TOCON = 0XC7; //set TMRO to on and 8bit

with max divide rate

Freq = 7812.5Hz one
tick = 128us.

while (1) //the start of the for
ever loop

{ //opening curly bracket

of the for ever loop
while (PORTAbits.RAO == 0) ; //Do nothing while
the logic at b0 of
PORTA is at logic

IOI
delay(30); //call the delay
subroutine making m = 30
PORTBbits.RBO = 1; //Turn on what is connected

to b0 of PORTB
while (PORTAbits.RA1 == 0) ; //Do nothing while
the logic at b1l of
PORTA is at logic
'o'.
delay(15); //call the delay
subroutine making m = 15

89

CHAPTER 3 UPDATING THE PROGRAM

27. PORTBbits.RBO = 0; //Turn off what is
connected to bo
of PORTB

28. } //closing bracket of
forever loop

29. } //closing bracket

30 of main loop

NB: Note that as with all our programs, the #include <xc.h> and all the
configuration words must be written above the code.

You should change the text in mySecond18fProg.c to that shown in
Listing 3-5 and see how the program works. Note that the program should
wait one second before the LED turns on and just half a second before the
LED turns off. Can you see why?

This is because the delay for turning the LED on sets m to 30 and the
delay for turning the LED off sets m to 15.

Exercise 3-3

To reinforce the concept of local variables as opposed to global variable,
try writing the following just after the line for PORTBbits.RB0 = 0 as
follows:

m = 10;

Now try and build the program. You should see an error occur which
points to that line. This is because the compiler does not recognize the
variable ‘m’ as it is not a global variable; it is only a local variable for use in
the subroutine delay (unsigned char m).

What would happen and why if you wrote?

n = 10; instead of

m=10;

90

CHAPTER 3 UPDATING THE PROGRAM

Summary

This chapter has taken us from simply turning a lamp on and off to
appreciating the complexities of creating a variable delay. It has introduced
to the concept of creating and using subroutines.

This has now got us to the point where we are ready to create a project
and program that control a simple set of traffic lights. This will be covered
in the next chapter.

Exercise Answers

Exercise 3-1: If that goto was not there, then the micro would simply move
to the Off instruction immediately after carrying out the On instruction.
This means that the micro would turn on the LED connected to RBO, then
immediately afterward, it would turn off the LED connected to RBO. This
means you would not see the LED turn on. The goto instruction forces

the micro to go back to the start after it has turned on the LED. You could
comment this instruction out by placing the two forward slashes ‘//’ before
the word goto, and see what happens when it is commented out.

Exercise 3-2: TOCON = 0b11000100 one tick = 16
microseconds max delay = 256x16u = 4.096msec.

Exercise 3-3: With n = 10; the program compiles
correctly as n is a global variable.

91

CHAPTER 4

Applying What We’ve
Learned

In this chapter we are going to apply what we have learnt in a simple
program. It is probably the most common program that all new embedded
programmers start with. It will take you through a structured approach to
design programs.

After reading this chapter, you will be able to program a simple model
of a set of traffic lights. You will be able to call subroutines from within the
main program loop.

Controlling a Single Set of Traffic Lights

Hopefully it should not be too much of a problem to design a program
that would control a set of three lights, Red, Amber, and Green, to mimic a
single set of traffic lights.

The first thing we need is a sequence of events and they are

e The RED lamp should come on when the program
starts.

¢ Then 5 seconds later, the AMBER lamp should come on

as well.

© Hubert Henry Ward 2020 93
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_4

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

e Then 2 seconds later, the RED and AMBER lamps
should go out, and the GREEN lamp should come on.

e Then 5 seconds later, the GREEN lamp goes out, and
the AMBER lamp comes back on by itself.

e Then two seconds later, the AMBER lamps goes out,
the RED lamp comes on, and the whole sequence starts

again.

The Algorithm

This task will require the following I/0:
e Three outputs for the three lamps of the traffic lights.
o Itwill use one timer to create a variable delay.

¢ We can use the internal oscillator block with the 8SMHz
internal oscillator.

e There is no need for the WDT, watchdog timer, as
the watchdog timer is something that an industrial
production line would need, not the sort of programs
we will be writing.

e The main process of the program will be to set up the
PIC and the ports, oscillator, and timer 0.

The program will continually go through the following sequence:
1. Light the RED lamp.
2. Call a 5-second delay.
3. Light the AMBER lamp.

4. Call a2-second delay.

94

5.
GREEN lamp.
6. Call a 5-second delay.
7.
lamp.
8. (Call a2-second delay.
9. Then turn off the AMBER

sequence again.

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Turn off the RED and AMBER lamp, and turn on the

Turn off the GREEN lamp, and turn on the AMBER

lamp, and repeat the

The flowchart for the program is shown in Figure 4-1.

| Star

-

|
— ¥

Write the
Configuration
words

r—— e

Initialise The
PIC Set up
the timers

N S
/ /
/ Light The

,»”x Red lamp /
/

/ Light the
/ amber lamp
f '
/ /

|
*

ki

Call
delay for
Ssec

of

call
delay for
2 sec

/; 7
/ Tumredand /
—'!’ amber off light /
green lamp

i/

f

/ /
/ /
/

f—l—
Call ‘

delay for
Ssec

/ 7
/ /
/Tum green lamp off

x" and amber lamp nn

J’

/[/
B

call
delay for

2 sec

/_*—'

4 turn off /
f" amber Iamp

‘—r—’

Figure 4-1. The Flowchart for the Single Traffic Light

95

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Flowcharts are an aid to designing programs as they split up the
program into smaller sections that can be completed either with existing
blocks of program or by different programmers.

They show how the program should flow from one part to the other.
The connecting arrows should show the direction of flow from one block to
the next. Each shape of the block has a special meaning.

When a flowchart extends across a page, then connecting symbols,
which are circles with letters in them, can be used.

You should construct a flowchart for every program you design as if
constructed fully, each block in the flowchart links into its own section of
program listing and instructions.

However, to save space I will only show flowcharts for this program and
the next one.

Listing 4-1 provides program listing.

Listing 4-1. The Complete Program for a Single Set of Traffic Lights

1. /«Definitions it is useful to allocate symbolic names to
the actual bits on the I/0. The symbolic names should
give some suggestion as to what the I/0 is used for. Now
wherever the compiler sees the symbolic name, it knows
what I/0 it really means. Doing this also makes it easier
to change the allocation list if needed. Note that the
line with the definition does not end with the semicolon.
This is because it is not an instruction for the program,
it is just a statement for the compiler software to be
aware of.x/

2. #define redLamp1 PORTBbits.RBO //defines the
symbolic name
redLampl to mean
bit 0 of PORTB

96

10.

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

#define amberLampl PORTBbits.RB1 //defines the
symbolic name
amberLampl to
mean bit 1 of
PORTB

#define greenLampl PORTBbits.RB2 //defines the
symbolic name
greenlLampl to
mean bit 2 of
PORTB

//Global variables //These are variables for anywhere in

the program

unsigned char n; //This reserves a memory

location for the 8 bit
variable 'n' using all 8 bits
for the number

//Subroutine

void delay(unsigned char t) //This is the start of

a subroutine called
delay. It expects a
value to be passed
up to the subroutine
which it copies into
the local variable
"t
{ //opening curly bracket of delay
subroutine
for (n = 0; n< t; nt+) //sets up a for do loop

which controls how many

times the micro carries

out the instructions

inside the curly brackets.

97

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

11.

12.

13.

14.

15.

16.
17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
27.

28.

29.

30.

98

{ //opening curly bracket for the
for do loop

TMRO = 0; //set TMRO to 0. start value for
count

while (TMRO < 255); //while value of TMRO is less
than 255 do nothing. Lines 12
and 13 create a 32.77msec delay

} //closing curly bracket for the
for do loop
} //closing curly bracket for the

delay subroutine
void main() //start of the main loop
//opening curly bracket for main loop

PORTA = 0; //these few lines turn off all bits on
the PORTS

PORTB = 0;

PORTC = 0;

PORTD = 0;

PORTE = 0;

TRISB = 0; //This sets all bits on PORTB as outputs

ADCONO = 0; //turn ADC off

ADCON1 = OxOF; //make all bits digital

OSCCON = 0x74; //set osc to 8Mhz with stable output

TOCON = 0xC7; //set TMRO to 8 bit reg with divide
by 256 rate so runs at 7812.5 Hz
one tick = 128uS

while (1) //start of the for ever loop so micro
only carries out lines 16 to 27
only once

//opening curly bracket of for ever
loop

redlampl = 1; //turns the redlLampl on

31.

32.
33.

34.
35.
36.

37.

38.
39.
40.

41.

42.

43.

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

delay (153); //calls the subroutine delay and pass
the value 153 up to the subroutine.
This creates a 5 second delay.
amberLampl = 1; //turns the amberLampl on
delay (61); //calls the subroutine delay
and pass the value 61 up to
the subroutine. This creates
a 2 second delay.
redLampl = 0; //turns the redLampl off
amberLamp1 //turns the amberLampi off

1
= O
e

-

greenLamp1 //turns the greenlLampl on
delay (153); //calls the subroutine delay
and pass the value 153 up to

the subroutine. This creates
a 5 second delay.

greenlLamp1 //turns the greenlLampl off

Il
= O
-

-

amberLamp1 //turns the amberLampl on

delay (61); //calls the subroutine delay
and pass the value 61 up to
the subroutine. This creates
a 2 second delay

amberLampl = 0; //turns the amberLampl off.
Micro now goes back up to
line 28 and repeats the loop.

} //closing bracket of for ever
loop

} //closing bracket of for main
loop

The PROTEUS simulation is shown in Figure 4-2.

99

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

VDD
N

;2;_ RAO/ANO/C1IN- RCO/T10SO/T13CKI +g
=31 RAT/ANT/C2IN- RC1/T10SICCP28 (=18
—4{ RA2IAN2IC2IN+VREF-/CVREF ~ RC2ICCP1/P1A |—L
—2-{ RAYAN3/C1IN+VREF+ RC3/SCKISCL (15
= Ragrmockic1OUT RC4/SDI/SDA (=22
—5 RAS/AN4/SS/HLVDIN/C20UT RC5/SDO |22
121 ras/oscaiciko RCETX/CK (=22
RA7/OSC1/CLKI RC7/RX/DT |=2
‘ L gi: RBO/AN12/FLTO/INTO RDO/PSPO _;g
e RB1/ANTOINT RD1/PSP1 |20
. 3 | RB2IANS/INT2 RD2IPSP2 |21
O 302 | RB3/AN9/CCP2A RD3/PSP3 |22
3| RB4/KBIO/AN1 RD4/PSP4 |21
. 38 e | RBS/KBI1/PGM RD5/PSP5P1B (—28
‘ 3 e | RBEIKBI2IPGC RDG/PSPGPIC [—22
RB7/KBI3/PGD RD7/PSP7/PID =30
REO/RD/ANS —g

RE1/WRIANG |5

RE2/CS/ANT |

RE3/MCLR/N/PP
PIC18F4525

Figure 4-2. The Proteus Simulation of North-South Traffic Lights

The following sections provide analysis and instructions to explain
how the program works.

The Configuration Words

I should point out that the same configuration words have to be placed in
the ‘c’ file as always and so does the include <xc.h>. This must be included
in all your projects.

The configuration words are very important as they define how the PIC
sets up its main properties. The most important of which is the primary
oscillator source. All the PICs you will come across can use a variety of
different oscillator sources from the slow external RC, resistor-capacitor,
oscillator to very high-frequency 19.08Mhz external crystal oscillator; note
that newer PICs can run at much higher frequencies.

100

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Most PICs also have an internal oscillator block of circuitry that can be
used as the primary oscillator source. I prefer to use this internal oscillator
block as it saves on the cost of a crystal and saves on available 1/0, as there
is no need to use RA6 and RA7 as inputs for the external oscillator circuit.
However, you may want to do otherwise, so you should appreciate that
these configuration words have to be used, and you should know how to
set them up. An example of setting these configuration words is explained
in Chapter 2.

The Analysis of the Program

The following is an analysis of the Listing 4-1. Each new instruction will be
looked at to explain how they work and what they are trying to do.

Line 1

This is when the directive #define is explained. This
directive allows the programmer to create a phrase
that can represent a single program instruction or a
series of instructions. They can be likened to macros

in other programs. Note that these defines are not
instructions for the program; they are directives for the
compiler. Therefore, there is no need for the semicolon
at the end of the definition.

In line 2 the directive is
#define redlamp PORTBbits.RBO

This tells the compiler software that wherever it sees
the phrase redlamp, it really means the instruction
PORTBbits.RB0. So when the compiler sees the
instruction

101

CHAPTER 4 APPLYING WHAT WE'VE LEARNED
redlamp = 1;

the compiler knows we mean make bit 0 of PORTB a
logic ‘1, and so turn on whatever is connected to it.

Note that MPLABX uses different colors to help
identify the different types of keywords. The default
color for the directive “#define” is light green, and the
default color for the phrase, in this case “redlamp’, is
light blue. These colors should become evident when
using the IDE editor in MPLABX.

The same concept is used in lines 3 and 4 except that the
phrases are linked to different bits on PORTB. The idea
is to makes the program more readable. However, there
is also another advantage in that if we wanted to change
the allocation list and connect the lamps to PORTD,

we need only make the changes here at the definitions
rather than search for every occurrence of the I/O in the
program. Much more efficient programming.

Atline 5, I am simply using comments to split the
program listing up into different sections. Here we are
going to declare any variables the program will use.
Note that when we declare a variable, we are simply
reserving an area in memory where we can store data.
The size of the area reserved depends upon the data
type we are using. We give the variable a name so that
we can refer to it in the program. These variables will
be global in that they can be used anywhere in the
program. This is opposed to local variables which can
only be used in the subroutine that they are declared in.

102

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

In line 6 we simply reserve a global variable that is
an 8-bit memory location referred to as ‘n. This is

an unsigned char which means all 8 bits are used to
represent the number from 0 to 255. There can be no
negative numbers.

Line 7 simply splits the listing up into a section for any

subroutines we want to create.

Line 8 declares a subroutine called “delay” The word
void means it does not pass any data back down to
the main program. Inside the normal brackets, the
subroutine declares a local variable of type unsigned
char named “t” This variable is only valid for use
inside this subroutine.

Line 9 sets up the opening curly bracket for this

subroutine.

Line 10 declares a for do loop. Inside the bracket

is makes the variable n = 0; it then asks if n<t; if it

is less than ‘t; then the micro must carry out the
instructions inside the curly brackets that follow. It will
automatically increment ‘n’ after it has carried out the
instructions inside the curly brackets. It will then ask
the question, is n < t? When ‘n’ is not less than ‘t, the
micro will break out of the for do loop. Note that when
the programmer calls this subroutine “delay,” it will
have to pass a value that will be loaded into the local
variable ‘t! In this way this delay becomes a variable
delay whose length of delay depends upon the value
passed up to it which is then loaded into the variable
‘t However, you should appreciate that the largest
value you can assign to the local variable ‘t’ is 255. This
is because it is an 8-bit memory location.

103

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

104

Line 11 sets up the opening curly bracket for this for
do loop.

Line 12 simply loads the value ‘0" into the TMRO
register. This is so that the TMRO starts to count from 0.

Line 13 states that while Timer0 is less than 255, do
nothing. This creates a 33-ms delay with Timer0
counting at 7812.5Hz one tick = 128us, that is, 256 x
128us = 32.77ms.

Line 14 is the closing curly bracket of the for do loop.

Line 15 is the closing curly bracket of the for the delay
subroutine.

Line 16 declares the main loop. This is where the
micro goes to get the very first instruction of the
program.

Line 17 sets up the opening curly bracket for the main
loop.

Lines 18 to 22 simply make sure that all the ports are at
logic ‘0’ on all their bits. This is to make sure nothing is
turned on by accident.

Line 23 makes sure that all the bits in the SFR, Special
Function Register, TRISB are at logic ‘0. This makes all
bits in PORTB output.

This program only uses PORTB, so we are not
bothered about the other TRIS SFRs.

Line 24 makes all the bits in SFR ADCONO go to logic
‘0’ This keeps the ADC connected to channel ‘0" but
more important is that it turns the ADC off as we are
not using it.

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Line 25 makes the bits in the ADCON1 SFR go to
0b00001111. Itis bits 3, 2, 1, and 0 that have been set
to logic ‘1’ that makes all the inputs digital and not
analogue.

Line 26 sets the internal oscillator to 8Mhz and makes
it stable.

Line 27 turns TimerO0 on. It makes it an 8-bit timer with
a maximum divide rate which means it counts at a rate
of 7812.5Hz making one tick = 128pS.

Line 28 declares a forever loop as the test inside the
while brackets will always be true as it is always a logic
‘1’ This means the micro will carry out the instructions
inside the following curly brackets forever. This is to
stop the micro from carrying out the instructions from
line 17 to 26 again.

Line 29 sets up the opening curly bracket of the forever
loop.

Line 30 turns on the redlamp.

Line 31 calls the delay subroutine and passes the
number 153 to be loaded into the local variable ‘t’ in
the subroutine. This creates a 5-second delay.

Line 32 turns on the amberlamp.
Line 33 calls a 2-second delay.
Line 34 turns off the redlamp.
Line 35 turns off the amberlamp.
Line 36 turns on the greenlamp.

Line 37 calls the 5-second delay.

105

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Line 38 turns off the greenlamp.
Line 39 turns on the amberlamp.
Line 40 calls the 2-second delay.

Line 41 turns off the amberlamp. As this is the last
instruction in this forever loop, the micro goes back to
line 30, via lines 28 and 29, to start the process again.

Line 42 is the closing curly bracket of the forever loop.

Line 43 is the closing curly bracket of the for the main
loop.

I hope this explains how the program works and what each instruction
is doing. With respect to future program listings, I will analyze only the
new instructions. In this way I hope you will be able to learn how all the
instructions we use in these programs work.

Downloading the Program to a Prototype
Board

It would be useful at this point to show you how to download your program
to an actual PIC on a prototype board. There are a range of prototype
boards you can use. One that I use for my programs is from Microchip,
and it is the PIC Demo board. To connect to the board, I normally use the
ICD3 can. These can be found on the Microchip web site. However, to use
any programming tool, you must specify which hardware tool you want to
use as shown in Figure 2-6, when you create your project in the first place.
However, if you have already created your project, you can change the
hardware tool by right clicking the project name in the project view tree.
You should then see a fly-out window appear from which you can select
the word Properties. After selecting Properties, you will be presented with
a pop-up window as shown in Figure 4-3.

106

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

x Project Properties - bookExplained *
Cakegories: Configuration
+- @ General
N - f: [defauit] il Dek=;
o Semdotor Al Famies | |PICIBFasZS v
@ Loadng
o Lbraries Supported Debug Header: Supported Plugin Board.
@ Bulding Mona None
& XCB global options
g: Hardware Tool: Compier Tockhain:
N Hardware Tools Compler Toolchans
o2 ICD 3 15 {None found)
o0 PICKRZ HI-TECH PICCIE-PRO (None Found)
©0 PICKE3 HI-TECH PICC18-5TD (None Found)

Q@ PMI

- MpasT
& mpasm (v5.58) [C:\Program Fias (xB6)Microchy

< >

*Tip: double click on serial number (SN) to use a friendly name (FN) instesd.
| Cancel foply Unlock Help
Figure 4-3. The Properties Window for an Existing Project

Having made sure you have selected your programming tool and
connected to your prototype board, you can download the program to the
PIC by clicking the green down arrow from the main menu bar as shown
in Figure 4-4. Note that when we were using the simulator tool, these two
arrows were not available to us before.

63 MPLAB X IDE ¥5.20 - myFirst 187 : cefaut
File Edit View Navigate Source Refactor Production Debug Tesm Took Window Help

Q_ﬁﬁm B @ hr v "“u" "‘E' b -8 -‘1'@&' PC: 0w [novrdec switn:bank0| B (0B rowder

& Projects x| = [SrtPage o [mPrstisferogc x
g-‘ﬂémwm Source | Haney |9 - -
g 8 tcontFie 1d

i) Lnker Fies =
i k) Source Fies a

- [oym— . -

Figure 4-4. The Downloading to the PIC

The following picture should help show how to connect the ICD3 can
to the PIC prototype board and the laptop. I use two types of prototype
boards, one from Matrix Multimedia and one from Microchip. However,

107

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Matrix seems to have moved away from their versatile PIC programming
board that I like, and so I will show you how to connect to the Microchip
development board I use. You will have to decide which board you prefer.

You connect the ICD3 can to one of your USB ports on the laptop, and
connect the ICD3 can to the programming board using the RJ11 cable and
connector on the board. This principle is shown in Figure 4-5.

The RJ1 AConnector
The RJ11 Cable

The ICD 3 Can The USB connection to
laptop

Figure 4-5. Downloading to a Prototype Board

From now on the programs in the book will be simulated with the use
of the ECAD software PROTEUS. Those who use PROTEUS may be aware
that you can write your PIC programs in PROTEUS as well as use their
extensive debugging tools. This book will not go into that aspect of using
PROTEUS as that is a book in itself.

108

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Extending the Program to the Crossroads Traffic
Lights

The natural extension to this program would be to write a program that
models the full crossroads set of traffic lights, that is, both the North South
and the East West set of lights. The timing sequence for this task is as

follows (note that N/S lamps are numbered Red1, Amberl, and Greenl,
whereas E/W are numbered Red2, Amber2, and Green2):

1. The sequence starts with both red lamps on.
2. Five seconds later, Amberl comes on as well.

3. Two seconds later, Red1 and Amber1 go out, and

Greenl comes on.

4. Five seconds later, Greenl goes out, and Amberl
comes back on by itself.

5. Two seconds later, Amber1 goes out, and Red1
comes back on. Note that all this time, Red2 has
been on.

6. One second later, Amber2 comes on as well.

7. Two seconds later, Red2 and Amber?2 go out, and
Green2 comes on.

8. Five seconds later, Green2 goes out, and Amber2
comes back on by itself.

9. Two seconds later, Amber2 goes out, and Red2
comes back on. Note that all this time, Red1 has

been on.

10. The cycle now repeats.

109

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

-

[4]

HIE1E]

Repeat Time Zone

Figure 4-6. The Timing Diagram for the Crossroads Traffic
Lights

The Algorithm

The diagram shown in Figure 4-6 was created from the sequence for the
traffic lights. Each of the rectangles represents one second in time. Once
the timing diagram had been created, it became clear that the 20-second
period shown as repeat time zone was, as its name suggest, repeated
every 20 seconds. This then means that the only sequence that needed to
be programmed was the sequence listed between this repeat time zone
periods.

The next step was to list all the important time steps and what we need
to have happen at those times. The list is as shown below:

e Time 0. This is the start time in the sequence, and at
this time, both Red1 and Red2 should come on.

o Time 1. This is one second later, and at this time,
Amber2 should come.

o Time 2. This is two seconds after time 1, and at this
time, Amber2 and Red2 should go out, and Green2
should turn on.

o Time 3. This is five seconds after time2, and at this time,
Green2 turns off, and Amber2 comes back on again.

110

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

o Time4. This is 2 seconds after time3, and at this time
Amber2 turns off, and Red2 turns back on again.

o Timeb. This is 1 second after time4, and at this time,
Amberl is turned on

o Time 6. This is 2 seconds after time5, and this is when
Red1, which has been lit all this time, is turned off and

Amberl turns off as well as Greenl is turned on.

o« Time 7. This is 5 seconds after time6; at this time
Greenl turns off, and Amber1 turns back on again.

o Time 8. This is 2 seconds after time7, and at this time,
Amberl1 turns off, and the cycle goes back to time0 and
starts to repeat the whole sequence.

The program has to create these time steps and turn on and off the
appropriate lights at those times.

The program needs 6 outputs to connect the 6 lamps t. Note that there
will actually be 12 lamps, but the north and south work together and so
does the east and west lamps.

There is no real need for an input, but we will include a start switch
that starts the whole sequence.

The program will make use of a variable delay to create the various
time steps.

The next step is to draw the flowchart shown in Figure 4-7.

111

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

>

Configure
the PIC

Set up
the PIC

Turn Redl
and Red2

Tum off Red2 A“'“‘ oft
mberl
Amber2 off and Red] Tumn
turn on Green2 of
Greenl
Call 5 Call 5
second delay second delay

Turn off Green2

Turmn on amber2

Turn Off
Greenl Turn
on Amberl

Call 2
second delay

Call 2
second delay

Call the 1
second delay

Turn off
Amber 2

Turn on

Call 2 second
delay

Call 1
second delay

Call2 #
second delay

Figure 4-7. The Flowchart for the Crossroads Traffic Light Program

112

Listing 4-2. The Crossroads Traffic Lights

1.

ttdefine redi1

ttdefine amberi

#define greeni

ttdefine red2

ttdefine amber2

#define green2

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

PORTBbits.RBO

PORTBbits.RB1

PORTBbits.RB2

PORTBbits.RB3

PORTBbits.RB4

PORTBbits.RB5

ttdefine startButton PORTAbits.RAO

The program listing for the crossroads traffic light is shown in Listing 4-2.

//defines the
symbolic name
redl to mean bit
0 of PORTB

//defines the
symbolic name
amber1l to mean
bit 1 of PORTB

//defines the
symbolic name
greenl to mean
bit 2 of PORTB

//defines the
symbolic name
red2 to mean bit
3 of PORTB

//defines the
symbolic name
amber2 to mean
bit 4 of PORTB

//defines the
symbolic name
green2 to mean
bit 5 of PORTB

//defines the
symbolic name
startButton to
mean bit 0 of
PORTA

113

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

8. //Global variables //These are variables for
anywhere in the program

9. unsigned char n; //This reserves a memory
location for the 8 bit

variable 'n' using all 8
bits for the number
10. //Subroutine
11. void delay(unsigned char t) //This is the start
of a subroutine
called delay. It
expects a value to
be passed up to the
subroutine which
it copies into the
local variable 't'.
12. { //opening curly bracket of
delay subroutine
13. for (n = 0; n < t; n++) //sets up a for do loop which
controls how many times
the micro carries out the
instructions inside the
curly brackets.

14. | //opening curly bracket for
the for do loop

15. TMRO = O; //set TMRO to 0. start value
for count

16. while (TMRO < 255); //while value of TMRO is

less than 255 do nothing.
Lines 15 and 16 create a
32.77msec delay

17. } //closing curly bracket for
the for do loop

114

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

}

void main()

{

PORTA = 0;
PORTB = 0;
PORTC = 0;
PORTD = 0;
PORTE = 0;
TRISA = OXOF;
TRISB = 0;
ADCONO = 0;
ADCON1 = OxOF;
0SCCON = 0x74;

TOCON = OXC7;

while (!startButton);

while (1)

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

//closing curly bracket for
the delay subroutine

//start of the main loop

//opening curly bracket for
main loop

//these few lines turn off
all bits on the PORTS

//This makes the first four
bits on PORTA input and the
last four bits are output

//This sets all bits on PORTB
as outputs

//turn ADC off

//make all bits digital

//set osc to 8Mhz with stable
output

//set TMRO to 8 bit reg with
divide by 256 rate so runs
at 7812.5 Hz one tick =
128uS

//wait for start Button to be
pressed

//start of the for ever loop
so micro only carries out
lines 19 to 32 only once

//0pening curly bracket for
while loop

115

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

116

redl = 1;
red2 = 1;
delay (30);
amber2 = 1;
delay (61);
red2 = 0;
amber2

0;

green2 = 1;

delay (153);

green2 = 0O;
amber2 = 1;
delay(61);
amber2 = 0;
red2 = 1;

delay (30);
amberl = 1;
delay (61);
redl = 0;

amber1

0;
greenl = 1;
delay(153);
greenl = 0;
amberl = 1;
delay(61);
amber1l = 0;
}

}

)

//turn
//turn
//wait
//turn
//wait
//turn
//turn
//turn
//wait
//turn
//turn
//wait
//turn
//turn
//wait
//turn
//wait
//turn
//turn
//turn
//wait
//turn
//turn
//wait
//turn

redl on
red2 on

1 second
amber2 on
2 seconds
red2 off
amber2 off
green2 on
5 seconds
green2 off
amber2 off
2 seconds
amber2 off
red2 on

1 second
amber1 on
2 seconds
red1 off
amber1 off
greeni on
5 seconds
greenl off
amber1 on
2 seconds
amber1 off

The circuit for the simulation is shown in Figure 4-8.

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

U1
RAO/ANO/CAIN- RCOT10SOM13CKI (=13
RA1/AN1/C2IN- RC1/T10SICCP28 (=12
RAZIAN2/C2IN+VREF-/CVREF RC2/CCP1/PIA (=12
RA3/AN3/C1IN+/VREF+ Rea/sckiscL (18
RA4/TOCKIC10UT RCA/SDISDA | =22
RA5/AN4/SS/HLVDIN/C20UT RC5/SDO (=24
1481 RABIOSC2/CLKO RC6MCK (23
. RA7/0SCA/CLKI RC7/RX/DT =28
RBO/AN12/FLTO/INTO RDOPSPO (=13
. RB1/AN10/INT1 RD1/PSP1 (20
RB2/ANS/INT2 RD2PsP2 =21
RB3/ANO/CCP2A RD3PSP3 (~22
. RB4/KBIO/ANT1 RD4/PSP4 (~2L
RB5/KBI1/PGM RDS/PSPSP1B (=23
RB6/KBI2/PGC RDGIPSPEPIC =22
4081 RB7/KBI3PGD RD7/PSP7/PID |22
REO/RD/ANS —g
REIWRIANG (=9
RE2/CS/AN7 (=10
RE3/MCLR\VPP
PIC18F4525

Figure 4-8. The Simulated Crossroads Circuit

The Program Analysis

With program Listing 4-2, there are only three new instructions. They are

Line 7 where we define the phrase startButon to
mean the input at PORTADbits.RAO.

Line 26 where we declare that TRISA = 0XOF; this
makes the first four bits in PORTA inputs and the
remaining four bits are outputs.

117

CHAPTER 4 APPLYING WHAT WE'VE LEARNED

Line 32 where we make the micro wait for the logic
at PORTADitO to go to a logic ‘1! This means nothing
will happen until the start button is pressed. Note
that this instruction is before the forever loop
because if it was inside the forever loop, the program
would wait at this instruction, until someone
pressed the start button, before it can repeat the
sequence.

This completes the analysis for both the programs in this chapter.
I hope you have been able to learn how to use each of the instructions and
you understand what they do.

Summary

In this chapter we have reinforced the principles behind tuning on and
off outputs and the concept of how to create and use a variable delay
subroutine. We have seen how useful these subroutines are in saving
repeating instructions. This then saves on program memory. In the next
chapter, we learn about the ADC and how to use analogue inputs.

118

CHAPTER 5

Real-World Inputs

In this chapter we will look at using the PIC to measure real-world signals
such as signals from pressure, temperature, and speed. It will cover using
the three registers that control the ADC and receiving an analogue input
and displaying it as a binary value.

After reading this chapter, you will be able to use analogue inputs.

Using Analogue Inputs

As well as digital inputs, which are usually just on or off, 5v or 0V, PICs can
use analogue inputs. These are inputs that can ideally take up any voltage
within the range of the PIC, normally any voltage between 0 and 5V. I

say ideally because the voltage will increase in discrete steps according

to the resolution of the ADC. There is one ADC in the PIC and itis a 10-
bit ADC. If the range of voltage is the normal 0 to 5v, then knowing the
resolution of the ADC can be calculated using;

resolution = ""'6¢ Equation 1 Resolution of An ADC where ‘n’ is the
2"

number of bits of the ADC

The resolution of the ADC is

5 5
- resolution =""€¢ _ —5=——=4.883mV Equation 2 Resolution of
2" 2 1024

10 bit ADC

© Hubert Henry Ward 2020 119
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4 5

CHAPTER 5 REAL-WORLD INPUTS

What this means is that the ADC will see 0V, and then the next
higher voltage will be 4.883mV, and the next would be 9.766mv, and so
on. Therefore, the PIC cannot really see every possible voltage from 0 to
5V. However, the result will be close enough for us humans.

The fact that the PIC can use analogue inputs, indeed the PIC18f4525
has up to 13 analogue inputs available to it, means we as programmers
must learn how to use them. There are three control registers that control
how we use the ADC inputs. They are

e ADCONO
e ADCONI1
e ADCON2

The ADCONO Control Register

The main purpose of this control register is to allow the programmer to
choose which analogue input, or channel, is connected to the ADC. Note
that this is a form of multiplexing where many inputs feed into one device
one at a time. The choice is controlled by the data in bits 5, 4, 3, and 2 of
the ADCONO register; see Table 5-1. Note that bits 7 and 6 are not used, so
they are set to logic ‘0’

Table 5-1. The ADCONO Register (See Data Sheet)

Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit 0

NotUsed NotUsed CHS3 CHS2 CHS1 CHSO GO/DONE ADON

Bit 7 Not Used read as 0
Bit 6 Not Used read as 0

(continued)

120

Table 5-1. (continued)

CHAPTER 5 REAL-WORLD INPUTS

Bit 7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit 0
Bits 5 to Bit 2 Bit5 Bit4 Bit3 Bit2 ADC Channel
Selected
0 0 0 0 Channel 0 ANO
0 0 0 1 Channel 1 AN1
0 0 1 0 Channel 2 AN2
0 0 1 1 Channel 3 AN3
0 1 0 0 Channel 4 AN4
0 1 0 1 Channel 5 AN5
0 1 1 0 Channel 6 AN6
0 1 1 1 Channel 7 AN7
1 0 0 0 Channel 8 AN8
1 0 0 1 Channel 9 AN9
1 0 1 0 Channel 10 AN10
1 0 1 1 Channel 11 AN11
1 1 0 0 Channel 12 AN12
1 1 0 1 Not Used
1 1 1 0 Not Used
1 1 1 1 Not Used
BIT 1 1 Start a conversion, and a conversion is now taking place
0 A conversion has finished
BITO 1 Enable the ADC

0 Disable the ADC

121

CHAPTER 5 REAL-WORLD INPUTS

Bit 0 is the bit that actually turns the ADC on or not. A logic ‘1’ means
the ADC is enabled, whereas a logic ‘0’ means it is disabled.

The last remaining bit, bit 1, is used to start the ADC conversion
and tell the programmer when the conversion is finished or done. The
programmer must set this bit to a logic 1 to start the ADC conversion. Then
when the conversion is finished, the microprocessor sets this bit back to
alogic’0” automatically. This is a signal to tell the programmer the ADC
conversion has finished.

The ADCON1 Register

This register mostly controls whether the 13 inputs are to be used as
analogue or digital. It is the first four bits, b0, b1, b2, and b3, that do this.
Table 5-2 clearly shows how this is achieved.

Table 5-2. The ADCONI Register (See Data Sheet)

Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

NotUsed NotUsed VCFG1 VCFGO PCFG3 PCFG2 PCFG1 PCFGO

Bit 7 Not Used read as 0
Bit 6 Not Used read as 0
Bit5 1 negative reference from AN2

0 negative reference from VSS

Bit 4 1 positive reference from AN3
0 positive reference from VDD

(continued)

122

CHAPTER 5 REAL-WORLD INPUTS

Table 5-2. (continued)

B3 B2 B1 BO AN1 AN1 AN AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 ANO

12 11 10
0000A A AA A A A A A A A A A
0 001A A AA A A A A A A A A A
001 0A A AA A A A A A A A A A
o011D A AA A A A A A A A A A
0o100D D AA A A A A A A A A A
o101D DDA A A A A A A A A A
o110D D DD A A A A A A A A A
111D D DD D A A A A A A A A
i1o000D D DD D D A A A A A A A
i1001D D DD D D D A A A A A A
i1o01o0D D DD D D D D A A A A A
1 011D D DD D D D D D A A A A
i100D D DD D D D D D D A A A
i101D D DD D D D D D D D A A
i110D D DD D D D D D D D D A
i111D D DD D D D D D D D D D

The ADC needs a reference voltage to help determine the level of the
analogue input. Bits 4 controls where the PIC gets the positive reference.
The default, and so normal setting, is to use the supply to the PIC, that s,
VCC or VDD.

Bit 5 controls where the PIC gets the negative reference. The default,
and so normal setting, is to use the supply to the PIC, that is, VSS or ground.

Bits 6 and 7 are not used.

123

CHAPTER 5 REAL-WORLD INPUTS

The ADCON2 Register

The ADCON2 control register is used to firstly decide what format the
result of the ADC is stored in (Table 5-3). This is because the ADC returns
a 10-bit binary number as the result of a conversion. The problem is

that this PIC is an 8-bit PIC which means it only has 8-bit registers. This
means that the PIC uses two registers to store the result: ADRESH and
ADRESL. Therefore 8 bits of the result can be stored in one register; the
other 2 bits are stored in the other register.

Table 5-3. The ADCONZ Register (See Data Sheet)

Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ADFM NotUsed ACQT2 ACQT1 ACQTO ADCS2 ADCS1 ADCSO

BIT7 1 Right justify 2 bits in ADRESH (b1 b0) 8 bits in ADRESL

0 Left justify 8 bits in ADRESH 2 bits in ADRESL (b7 b6)
BIT 6 Not used
Bit 5 - Bit 3 BIT5 BIT 4 BIT 3 Selected TADs

0 0 0 0TAD

0 0 1 2TAD

0 1 0 4 TAD

0 1 1 6 TAD

1 0 0 8 TAD

1 0 1 12 TAD

1 1 0 16 TAD

1 1 1 20 TAD

(continued)

124

CHAPTER 5 REAL-WORLD INPUTS

Table 5-3. (continued)

Bit7 Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
BIT 2 - BITO BIT 2 BIT 1 BITO AD Clock Select Bits

0 0 0 FOsc/2

0 0 1 FOsc/8

0 1 0 FOsc/32

0 1 1 FRC (RC Clock)

1 0 0 FOsc/4

1 0 1 FOsc/16

1 1 0 FOsc/64

1 1 1 FRC (RC Clock)

The diagram shown in Figure 5-1 helps to explain what is meant by
right and left justification.

ADRESH ADRESL
ADFM
B7(ADCOND =0 [VB°H LS
BE7 BO EB7 BO
ADRESH ADRESL
ADFM
B7(ADCONI) =1 |MSEI LB
B7 B7 Bo

|:| Eits not used to store result.
These will read as'0’
Figure 5-1. The Storing of the 10-bit Result of the ADC Conversion

The top diagram where the ADFM or B7 is a logic ‘0’ is termed left
justification. Right justification is shown in the bottom diagram. I normally

choose left justification.

125

CHAPTER 5 REAL-WORLD INPUTS

To understand the other use of the ADCONZ2 control register, you need
to appreciate what has to happen when you turn the ADC on and try to get
an ADC conversion result.

When you start a conversion, the PIC will connect the ADC to the
particular input, or ADC channel, that is measuring the physical analogue
input. Then, once the ADC is connected to the input, it will use the voltage
at that input to charge up a capacitor in what is termed a sample and hold
circuit. It will take a finite time for the capacitor to charge up to the voltage
at that input. This charge up will depend upon the value of the capacitor
in the sample and hold circuit and the resistance at the input. This will
change depending upon the particular PIC you are using. For the 18F4525
the capacitor has a value of 25pF; see Section 19 in the data sheet. Using
this value, an approximate acquisition time for the capacitor to charge up
is 2.4ps; see Section 19 in the data sheet.

This basically means you must get the PIC to wait this 2.4ps before the
ADC starts its conversion; if it doesn’t wait this time, then the result could
be inaccurate. Microchip offer two ways of creating this delay. You could
manually create a delay routine that you run every time before you start
an ADC conversion. To use this method, bits 5, 4, and 3 of the ADCON2
register must be set to logic ‘0’ However, you as the programmer, must
make sure you use this delay before starting a conversion and it is long
enough. Note that to start a conversion, you simply have to set bit 1 of the
ADCON?2 register to a logic ‘1)

Microchip offers an approach that creates this delay automatically
every time you start a conversion. To use this method, you need to know
the period ‘T’ of the frequency of the timing waveform controlling the ADC
conversion process. Microchip calls this period the “TAD”. Microchip offers
a variety of options for choosing the frequency of the timing waveform.
This is because Microchip offers the user a wide variety of oscillator
sources for the PIC. Therefore bits 2, 1, and 0 offer the choice of using the
RC oscillator as the timing source for the ADC or dividing the oscillator
frequency by 2, 4, 8, 16, 32, or 64. The idea is to create a 2.4-ps delay.

126

CHAPTER 5 REAL-WORLD INPUTS

The process is best explained with an example. However, to appreciate
what we are trying to create, it would be useful to consider the timing
waveform shown in Figure 5-2.

The Capacitor starts to The sample and hold circuit disconnects
charge at this point. from the input and the conversion stars The 10bit result is stored in the
ADRESH and ADRESL

| |

This 15 the time required to convert the voltage across
the holding capacitor to the 10bit ADC result.
It takes approximately 11.5 TADS to do this.

This is the acquisition time.
It is spproximately 2.4us
You should specify enough TAD

timed to create this time period.

Figure 5-2. The Timing for the ADC Operation of the PIC

Figure 5-2 depicts what happens when the PIC goes through an ADC
conversion. Firstly, the ADC is connected to the relevant analogue input.
The voltage at that input is acquired. This means that the input is switched
onto the sample and hold circuit inside the PIC and the capacitor in that
circuit is charged up to the voltage at the input. This charge-up time is
termed the acquisition time, and the PIC must wait long enough for the
capacitor to fully charge up. The time that the PIC will wait is set by the
chosen number of TAD periods that you, as the programmer, select. You
must select enough TAD periods for the capacitor to fully charge up. This
then means you must know how long each TAD period is. This is again
chosen by you, the programmer.

The TAD period is set using the bits 0, 1, and 2 of the ADCONZ2 register.
These bits are named ADCS0, ADCS1, and ADCS2. With these bits you, can
chose the frequency at which the ADC system runs and so the TAD time
for the system. Table 5-3 shows the possible selections you can choose.
Note the TAD time is equal to the periodic time ‘T’ of the chosen frequency
you select using bits 0, 1, and 2 of the ADCON2 register.

127

CHAPTER 5 REAL-WORLD INPUTS

This then means that it is the combination of the number of TADs
used to create the acquisition time and the actual TAD period you have
chosen that controls how long the PIC waits while the capacitor is allowed
to charge up. The one overriding consideration is that the TAD and the
minimum number of TADs which is 2TAD must create a time that is equal
to or greater than the acquisition time. This means that if the TAD time
that you choose worked out to be 500ns and the acquisition time was
2.4ps, then the system could possibly throw up an error as the minimum
2TAD time would 2x500ns = 1ps, not long enough. Of course, you would
not choose the 2TAD; you would choose the 6TAD as 6TAD would make
the PIC wait 3ps which is greater than the 2.4ps acquisition time for the
PIC18F4525. However, you must be aware of the problem.

This is rather a lot to appreciate, and so to help you understand the
process, I will go through two examples.

Creating the Required Acquisition Time

These two examples are to help you appreciate the importance of this
acquisition time and how to use and create the TAD time.

The first example is fine as the chosen TAD time is within the specified
parameters for the PIC. However, the second example is not recommended
as the minimum 2TAD would not produce a long enough acquisition time.
Indeed, the minimum divide rate for the 20-Mhz oscillator is divide by 32
as this would give a TAD time of 1.6puS making the minimum 2TAD 3.2ps.

Table 19.1 in the data sheet does give you some suggestion as to the
recommended TAD time. However, I must say that Microchip has to give
the user the information for the PIC in the data sheet, but they do not make
it very clear as to how to use that information.

128

CHAPTER 5 REAL-WORLD INPUTS

Example 1

In this example we will be using the 8-Mhz oscillator, and then choosing a
divide by 8 makes the frequency of the ADC operation 1Mhz. This in turn
means that the period, known as TAD, is 1ps, thatis, 1/1E® = 1E*® = 1ps.
Therefore, to create the required acquisition time of 2.4puS, we would need
a 2.4TAD time for the delay, that is, 2.4E¢/1E*.= 2.4.

Using bits 5, 4, and 3 of the ADCONZ2 register, we have options of using
2,4,6, 8,12, 16, and 20 TAD time period. To obtain the required 2.4ps, you
should select the 4 TAD option, the closest to 2.4ps while still be greater
then 2.4ps. Note that this 2.4ps is the minimum, not the maximum time the
PIC should allow for the acquisition time; however, you should make this
delay time the shortest you can.

To select this option, we need to write

e b5=0
e bd=1
e b3=04TAD
e b2=0
e bl=0

« b0=1divideby8

Example 2

In this example we will be using the 20-Mhz oscillator. Then choosing a
divide by 4 makes the frequency of the ADC operation 5Mhz. This in turn
means that the period, known as TAD, is 200ns. Therefore, to create the
required acquisition time of 2.4pS, we would need a 12 TAD time for the
delay, that is, 2.4E5/2E*° =12.

129

CHAPTER 5 REAL-WORLD INPUTS

Using bits 5, 4, and 3 of the ADCONZ2 register, we have options of using
2,4,6, 8,12, 16, and 20 TAD time period. To obtain the required 2.4ps, you
should select the 16 TAD option. Note that 12 TAD would equal the 2.4ps.
However, this 2.4ps is the minimum, not the maximum, and it is safer to
make the acquisition time slightly longer than is required. If it is too short,
the result may not be accurate enough. To select this option, we need to
write

e b5=1

e bd=1

e b3=016TAD

e b2=1

e bl=0

e b0=0divide by 4

I feel I should also add that the preceding description of how to create
and use the TAD time for the ADC is my own interpretation. Although I
have found it to work well in all my programs that use the ADC; I cannot
guarantee that my interpretation is 100% correct. However, I do think it is.
This TAD time is one of the most confusing aspects of the PIC that you as a
programmer need to calculate. My interpretation is the best one I have come
across, and it makes total sense to me. You must make up your own mind.

Changing the ADC Input Channels

There is the possibility that you, as the programmer, will ask the ADC to
switch to a different channel. This will take a finite amount of time, and
even though this may only be few microseconds, you must wait until the
ADC has changed channels before starting the ADC conversion. It is the
data in the ADCONO register that determines what channel the ADC is
connected to; see Table 5-1.

130

CHAPTER 5 REAL-WORLD INPUTS

A Basic Setup for the ADC

I believe it is better to use left justification, B7 = logic ‘0, as this means that
the two least significant bits are stored in ADRESL; see Figure 5-1. For all
but the most accurate uses, the programmer can ignore these two bits as
they only represent voltages from 0 to 20mV approximately, at 5mv/bit.
Indeed, if you ignore these two bits, it really means that you are using an
8-bit ADC instead of a 10 bit. The resolution then reduces to around 19mV
per bit.

Using these three control registers, ADCONO, ADCON1, and ADCONZ2,
it is fairly easy to set the ADC up. As an example, suppose you had an
analogue input connected to ANO or bit 0 of PORTA. Assuming you were
using VCC and 0V as the reference for the ADC. To set up the ADC, but
not start a conversion yet, you would write the following data to the three
control registers. The 10-bit result is stored across two 8-bit registers,
ADRESH and ADRESL. We will use left justify for the ADC result, which
means the 8 most significant bits go into ADRESH and the 2 least significant
bits go into b7 and b6 of ADRESL. We set this by making B7 of ADCON2 a
logic ‘0. We use the oscillator divide by 8 option and the 4TAD option.

Inside the initialization, we will set up the ADC using the following

instructions:

ADCONO = 0Ox01; //Enable the ADC and select channel 0 and
turn the ADC on.

ADCON1 = OxOE; //make all bits digital except RAO.

ADCON2 = 0x11; // Select 4TAD and divide the oscillator by 8.

To start an ADC conversion, we must set bit 1 of the ADCONO register,
the GO bit, to a logic ‘1’ Then wait until the ADC has finished. This is
indicated by bit 1 of the ADCONO register going low to logic ‘0. Note that
this will happen automatically once the ADC conversion has finished.

The result will then be in the ADRESH and ADRESL.

131

CHAPTER 5 REAL-WORLD INPUTS

A Basic Program for the ADC

Listing 5-1 is a program that has a variable voltage applied to ANO, that
is, channel 0. The program will continually read the voltage at this input
and display the binary value from the result of the ADC on eight LEDs
connected to PORTB of the PIC.

The Algorithm

The PIC will use the ADC; therefore, this has to be turned on, and channel
0 must be selected as this is the input that the voltage is connected to.

The PIC will use eight LEDs connected to PORTB.

Therefore, PORTA must be set as inputs with at least RAO set as
analogue the rest could be set as digital.

PORTB must be set as output, and those used as possible analogue
should be set as digital.

The program will constantly get the result of the ADC and display it on
PORTB.

Listing 5-1. The Basic ADC Program

1. void main () //The start of the main loop

2. { //the opening curly bracket of
the main loop

3. PORTA = 0; //just make sure nothing connected
to will be turned on PORTA

4. PORTB = 0; //just make sure nothing connected
to will be turned on PORTB

5. TRISA = oxof; //Set bo to b3 of TRISA to logic

'1' making them inputs, Set
rest to logic '0' making them
outputs

132

CHAPTER 5 REAL-WORLD INPUTS

6. TRISB = 0x00; //Set all bits in TRISB to
logic'0' making all in PORTB
outputs.

7. OSCCON = 0x74; //set osc to 8Mhz with stable
output

8. ADCONO = 0x01; //Turn the ADC on and select
channel 0.

9. ADCON1 = OxOE; //Make all bits digital except
RAO which will be analogue.

10. ADCON2 = 0b00010001; //Select left justify

and 4TAD and divide
oscillator by 8

11. while (1) // Always do what is within the

following curly brackets.

12. { //the opening curly bracket of
the forever loop

13. ADCONObits.GO DONE = 1; //Start the ADC conversion

14. while (ADCONObits.GO DONE ==1); //Do nothing until

the conversion
has finished

15. PORTB = ADRESH; //Write the contents of

ADRESH to PORTB so PORTB
displays the result of
the conversion.

16. } //The closing curly brackets

of the forever loop

17. } //The closing curly bracket

of the main loop

Note that the normal configuration words and the include directives

have been included in the project but are not shown here.
The circuit created in PROTEUS is shown in Figure 5-3.

CHAPTER 5 REAL-WORLD INPUTS

RAO/ANO/CTIN- RCOT10SO13CKI
RAT/AN1/C2IN- RC1/T10SICCP28
RA/AN2/C2IN+VREF-/CVREF RC2ICCP1/P1A
RAS/ANS/C1IN+VREF+ RC3/SCKISCL
RA4/TOCKIC1OUT RC4/SDUSDA
RAS/AN4/SS/HLVDIN/C20UT RC5/SDO
RAB/OSC2/CLKO RCBITX/CK
RATIOSC1/CLKI RC7/RX/DT

—{ RBO/AN12IFLTO/INTO RDO/PSPO
= RBI/AN10/INT! RD1/PSP1

RD2/PSP2
28 RD3/PSP3

)
"

37m
38m
39m
[aom

RD4/PSP4
RDS/PSP5P1B
RD6/PSPEPIC
RD7/PSP7/P1D

U n n n n n u I REO/RD/ANS

Flelele Tlleklelekl BRRIEH

D8 D7 D6 D5 D4 D3 D2 D1 ';i‘%:ﬁ
LEDRS LED LED-RS LED LEDRS LEDRS LED-RS LED-RED RESaTRPE [
IC18F4525
R9 R8 R7 R6 R5 R4 R3 R2
220 220 220 220 220 220 220 220

Figure 5-3. The Simulation Circuit for the Basic ADC

Analysis of the Program

Most of the instructions have already been analyzed with Listing 4-1.
Therefore, I will only look at the new instructions. These are as follows.

Line 9 Here the ADCONT1 SFR is loaded with 0xOE. This is the binary
number 0b00001110. It is the four bits 0, 1, 2, and 3 that determine if the
inputs are digital or analogue. If you examine Table 5-1, you will see that
this combination makes all inputs digital except bit 0 of PORTA. This is set
to analogue.

Line 13 Here we set the bit 1 of the ADCON2 SFR to a logic ‘1! This
will tell the PIC to start an ADC conversation after the PIC has waited the
specified number of TAD periods.

Line 14 Here we tell the PIC to do nothing, while bit 1 of the
ADCONZ2 SFR s a logic ‘1’ This makes the program wait until the ADC
conversion has finished. Note that when the ADC completes, the PIC will
automatically reset bit 1 of the ADCONZ2 SFR back to a logic ‘0’ and load
the result of the ADC into the ADRESH and ADRESL according to the
justification we chose with bit 7 of the SFR ADCON2.

134

CHAPTER 5 REAL-WORLD INPUTS

Line 15 All we do here is load the output PORT, PORTB, with a copy
of the data that has been loaded into the ADRESH as a result of the ADC
operation. As we have chosen left justification, this will be the 8 most
significant bits of the ADC result.

I hope this analysis is sufficient for you to understand the program
instructions. You should now feel confident in using the ADC inside the PIC.

Summary

In this chapter we have learnt how to set up the ADC, analogue to digital
Converter. We have learnt how to use it to measure the analogue signal at
one of the PICs inputs and display it on eight LEDs on PORTB.

In the next chapter, we will learn how to set up an LCD, liquid crystal
display. Then use that LCD to display the value of an analogue voltage
applied to an input on the PIC.

135

CHAPTER 6

Using the LCD

This chapter shows you how to set up the liquid crystal display (LCD)
to show text and numbers on it. You'll then create your own characters
to be displayed on the LCD. The chapter concludes by reviewing how
to use arrays and pointers. At that point, the LCD should display 2 lines
of 16 characters. But let’s first review how most LCDs work and how the
programmer can control them and so use them.

The LCD Controller

This description will be based around the LM016L LCD.

Most LCDs use either the Samsung KS0066U or Hitachi HD44780
driver which converts your binary digits into the required signals.

The LCD we will use has 2 lines of 16 characters.

The LCD has 8 data lines, but to enable programmers to save I/0, it can
be set up to use all 8 data lines or just 4 data lines.

There are two modes of communicating with the LCD, instruction
mode and data mode.

Instruction or Command Mode

This is used to initialize the LCD and then move the cursor positions such:
e Send cursor to line 2.
o Shift cursor to the right or left a number of characters.

© Hubert Henry Ward 2020 137
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_6

CHAPTER6 USING THE LCD

e Move the cursor 1 bit to the right after each character
or not.

e Send the cursor to the home position.
e C(lear the screen.

¢ Blink or not blink the cursor.

Data Mode

The LCD is programmed to recognize characters using ASCII code for each
character. Basically, the LCD has memory locations, which are nonvolatile;
the memory keeps the data even when the power is removed, where the
pixel information to draw any one of the ASCII characters are stored. The
address of each of these pixel maps corresponds to the same address found
in the ASCII character standard table shown in Table 6-1. In other words,
the address of where the pixel map is stored corresponds to the ASCII for
that character.

Table 6-1. The Main ASCII Character Set

High Nibble 0000 0010 0011 o100 0101 0110 0111
Low nibble CG.Ram Location
XXXX 1 0 @ P \ p
0000
XXXX 2 ! 1 A Q a q
0001
XXXX 3 “ 2 B R b r
0010
XXXX 4 # 3 C S c S
0011

(continued)

138

CHAPTER6 USING THE LCD

Table 6-1. (continued)

High Nibble 0000 0010 0011 o100 0101 0110 0111
Low nibble = CG.Ram Location

XXXX 5 $ 4 D T d t
0100

XXXX 6 % 5 E U e u
0101

XXXX 7 & 6 F Vv f v
0110

XXXX 8 ’ 7 G w g w
0111

XXXX 1 < 8 H X h X
1000

XXXX 2 > 9 | Y i y
1001

XXXX 3 * : J Z i z
1010

XXXX 4 + ; K [k {
1011

XXXX 5 ¢ < L | |
1100

XXXX 6 - = M] m }
1101

XXXX 7 . > N A n

1110

XXXX 8 / ? 0 _ 0

1111

139

CHAPTER6 USING THE LCD

Using the table, it can be seen that the 8-bit number that stands for the
character ‘0’ is 00110000. Note that the horizontal information along the
top of the table is the four bits B7, B6, B5, and B4, that is, the high nibble,
while the information along the vertical at the side of the table is the four
bits, B3, B2, B1, and B0, the low nibble. For example, the ASCII for the
character ‘@’ is 01100001.

To call up these characters from within the LCD’s memory and so
display them on the LCD, the programmer has to write the address
of where the pixel map is stored in the LCD’s memory. The address
corresponds to the number in the ASCII character set. This means that to
display the number ‘0; the programmer has to send the address number
00110000 to the LCD. The LCD control program then opens this address
where it finds the pixel map for the character ‘0. Also, to display the
character ‘a, they would send the information 01100001 to open up that
location and find the pixel map for the letter ‘a

This level of understanding will be put to good use when we look at
creating special characters.

Each set of information, be it data or instructions, must be sent on
either all 8 data lines or just 4 data lines. We will use just 4 lines. This
means that the info must be sent in two nibbles, the high nibble first
followed by the low nibble.

Note that a nibble stands for just 4 bits, whereas a byte stands for 8 bits,
and a word stands for 16 bits.

We will connect the LCD to PORTB, but really any port would do
except perhaps PORTA as this is used for the analogue inputs.

Data 4 on the LCD goes to b0 on PORTB of the PIC.
Data 5 on the LCD goes to bl on PORTB of the PIC.
Data 6 on the LCD goes to b2 on PORTB of the PIC.

Data 7 on the LCD goes to b3 on PORTB of the PIC.

140

CHAPTER6 USING THE LCD

Data pins DO to D3 are not connected as we will set
the LCD to 4-bit operation.

The RS pin on the LCD is connected to b4 on PORTB. Note that it is
the RS pin on the LCD that is used to distinguish between instructions to
the LCD or data to be displayed on the LCD. The RS pin goes to logic ‘0’ for
instructions, and the RS pin goes to logic ‘1’ for data to be displayed.

The ‘E’ pin is connected to b5 on PORTB. This pin should simply go
high then low with no time in between. This action is to tell the driver
inside the LCD that some new information has been sent to the LCD and it
should deal with it.

A variable voltage can be connected to the VEE pin of the LCD to
control the contrast of the LCD. However, I find that using two resistors to
divide the voltage down to around 300mv works fine.

The R/W pin, which is the Read/Write pin, should be connected to Ov
or ground as it is a logic ‘0’ at this pin that tells the driver we want to write
to the LCD.

The full pin connection is shown in Figure 6-1.

LMO16L

+5V

O 0OO0C

v/
)
L
P
b
\

god +5V

b4 god 5 b0 bl b2 b3

o

Figure 6-1. Connecting the LCD

141

CHAPTER6 USING THE LCD

Initializing the LCD

We must ensure that power has been applied to the LCD for at least 30ms
before we send any information, data, or instruction to the LCD. This is
to allow the circuitry of the LCD to settle down and be ready to receive
instructions or data.

This can be done using a small LCD delay routine.

Then we can set up the LCD.

To do this we must send the following data in this order:

1. 0b00110011 // First data

2. 0b00110011 // Second data a repeat of the
first data

3. 0b00110010 //LCD set up for 4 bit operation

4. 0b00101100 //LCD set up for 2 lines

5. 0b00000110 //Increment the position of the cursor
after each character, i.e. move the
cursor one place to the right.

6. 0b00001100 //Cursor does not blink

0b00000001 //Clear the screen
8. 0b00000010 //Return cursor to home position.

This information has been derived from the LCD instruction set shown
in Table 6-2.

142

CHAPTER 6 USING THE LCD
Table 6-2. The LCD Instruction Set
Function B7 B6 B5 B4 B3 B2 Bt BO Execution
Time

Clear Screen 0 0 0 0 0 0 0 1 1.53ms
Description Clear all display data. It also sends the cursor back to

the start of the display. Sets the DDRAM address to 0
Return Home 0 0 0 0 0 0 1 X 1.53ms

Description This sends the cursor back to the start of the display.
Sets the DDRAM address to 0. The ‘X’ means it does not
care what logic is in that bit
Entry Mode 0 0 0 0 0 1 /D SH 39us
Description This sets the cursor movement after entry (I/D); logic 39us
‘0’ in this bit means cursor is decremented; logic ‘1’
means cursor is incremented
In the SH bit logic ‘0’ means don’t shift the cursor; logic
‘1’ means shift the cursor
Display Control 0 0 0 0 1 D C B 39us
Description D bit logic ‘0’ display is off logic ‘1’ display is on
C bit logic ‘0’ cursor is off
Logic ‘1’ cursor is on
B bit logic ‘0’ cursor blink is off
Logic 1’ cursor blink is on
Cursor/Display 0 0 0 1 SIC RL X X 39us
Shift
Description S/C bit logic ‘0’ means the cursor is shifted
Logic ‘1’ means the display is shifted
R/L bit logic ‘0’ means shift left; logic ‘1’ means shift right
(continued)

143

CHAPTER6 USING THE LCD

Table 6-2. (continued)

Function B7 B6 B5 B4 B3 B2 Bt BO Execution
Time

FunctionSet 0 0 0 1 1 0 X X 39us
Description Configuration data to set up the LCD (Send First)

Set CGRAM 0 1 A5 A4 A3 A2 A A0
Address

Set DDRAM 1 A6 A5 A4 A3 A2 Al A0
Addess

Write Data Dr D6 D5 D4 D3 D2 D1 DO 43ps
CGRAM or
DDRAM
RS Pinls a
Logic ‘1’

To make sure the LCD realizes that this information, being sent to it, is
a set of instructions, we must make sure that the RS pin goes low. Note that
this means that bit 4 of PORTB must go low.

When using the LCD in 4-bit operation, it is the high nibble that should
be sent to the LCD first.

The first 4 bits of PORTB must have the information. This does
present a problem in that the four bits, b0, 1, 2, and 3, of information
must be sent at the same time as the other bits of PORTB, which includes
b4 which is the RS pin. This RS pin must be set to a logic ‘0’ if the
information is an instruction or logic ‘1’ if the information is data to be
displayed. The process by which this is done is by performing a logic ‘OR’
operation, with the information waiting to go to the LCD and a variable.
We will call this variable rsOR. This must be done before the information
is sent to the LCD.

144

CHAPTER6 USING THE LCD

Following is an outline of the process:

1. Consider sending the information to display the
character ‘b. The information is 01100010 (Table 6-1).

2. We firstly have to get just the high nibble, that is, ‘0110’;
as we send the high nibble first, then the low nibble.

3. Note that we must save the information, 01100010, as
well so that we can get the low nibble later.

4. We then have to make sure that b4 of the information
being sent to PORTB is a logic 1. To achieve this,
we can create another variable called rsOR. As the
information is data to be displayed, we must make
sure b4 of the variable rsOR is at logic ‘1. Therefore,
use the instruction rsOR = 0x10, that is, 0b00010000.

5. Once the data has been sent to the LCD, we must
make sure the ‘E’ pin which is connected to b5 of
PORTB goes high then low.

The following set of instructions should achieve this.

lcdInfo = 0b01100010;

//this loads lcdInfo with the information for the character 'b'.
lcdTempInfo = lcdInfo;

//This saves a copy of icdInfo in lcdTempInfo

rsOr = 0x10;

//this makes sure bit4 of rsOr is logic '1'

lcdTempInfo = (lcdTempInfo << 4 | lcdTempInfo >>4);

//this will swap the nibbles around in lcdTempInfo ready
to send to the LCD after this data in lcdTempInfo =
0b00100110

lcdInfo = lcdTempInfo & OxOF;

145

CHAPTER6 USING THE LCD

// this basically ignores the last four bits of the lcdTempInfo
b4, b5, b6 and b7 will always be logic '0' and loads the result
into lcdInfo after this the data in lcdInfo = 0b00000110

lcdInfo = lcdInfo | rsOr;

// This performs a logical OR with lcdInfo and rsOr. This
allows us to determine if the info is an instruction or data
after this data in lcdInfo = 0b00010110 i.e. bit 4 is a logic
'1' the information is data to be displayed on the LCD

lcdPort = lcdInfo;

// this sends the info to the LCD

eBit = 1;

eBit = 0;

// this is to tell the driver that new info has arrived and the
lcd should deal with it.

This is quite a complex set of requirements to understand, but if you
read through it a few times, it should help. Also, when you look through the
program listing, you should start to understand the process.

Hopefully this goes someway toward explaining how the program can
distinguish between sending instructions and data to the LCD.

If the LCD was being used in 8-bit mode, then the RS line and the E
line would be connected to another PORT and the corresponding bits of
that PORT would have to be set high and low appropriately. Also, there
would be no need to split the information up into the high and low nibbles,
and OR it as we do with the 4-bit operation.

The reason why we are using the LCD in 4-bit operation is just to save
I/0 pins. A complete program to use the LCD in 4-bit mode is described in
Listing 6-1.

Listing 6-1. The Complete Program for 4bit LCD

1. //Use some comments to try and split the program listing
up into different sections.
2. //Create any definitions

146

10.

11.

12.

13.

14.

ttdefine
ttdefine
ttdefine

ttdefine

ttdefine

ttdefine

ttdefine

ttdefine

ttdefine

ttdefine

ttdefine

ttdefine

firstbyte
secondbyte
fourBitOp

twolLines

incPosition

cursorNoBlink

clearScreen

returnHome

lineTwo

doBlink

shiftLeft

shiftRight

0b00110011
0b00110011
0b00110010

0b00101100

0b00000110

0b00001100

0b00000001

0b00000010

0b11000000

0b00001111

0b00010000

0b00010100

CHAPTER6 USING THE LCD

//this sets the LCD up
for 4 bit operation
instead of 8 bit

//This sets the LCD to
2 lines mode

//This tells the LCD to
increment the cursor
position after any
data is displayed

//this turns the cursor
off so we don't see
it flashing

//this clears the
screen of all display

//this sends the
cursor back to start
position on the
display

//this will send the
cursor to the start
of line 2 on the
display

//this turns the cursor
on and makes it blink

//this shifts the
cursor one position
to the left

//this shifts the
cursor one position
to the right

147

CHAPTER6 USING THE LCD

15.

16.

17.

18.

19.

20.

21.

22.

23.

148

ttdefine lcdPort

ttdefine eBit

#define rspin

unsigned char n;

char str[80];

char lcdInitialise [8]

//this sets which the
LCD is connected to
port

PORTBbits.RB5 //this sets the bit

for the E pin on
the LCD

PORTBbits.RB4 //this sets the bit

for the RS pin on
the LCD

//some variables These comments are just to split the
up into its logical sections
unsigned char lcdInfo, lcdTempInfo, rsOr;

//this reserves 3 8 bit memory

Locations 1 for each variable

//this reserves an 8 bit
memory location for the
variable 'n'

//This sets up 80 memory
locations one after
the other in an array.
This array is used for
sending a string to the
LCD

//This sets up 8 memory
locations in an array
and loads each location
with some initial data
in each location

//The opening bracket of
the array

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

firstbyte,

secondbyte,
fourBitOp,

twolines,

incPosition,

cursorNoBlink,

clearScreen,

returnHome,

};

//the subroutine
void sendInfo ()

CHAPTER6 USING THE LCD

// note the data in each
location is one of the
set up instructions for
the LCD

//just a repeat of the
first byte

//puts the lcd into 4bit
mode not 8 bit

//set the lcd up for
using two lines of 16
characters

//sets the lcd up for
moving the cursor one
place to the right
every time a character
is displayed

//sets the lcd up to not
show the cursor on the
screen

//clears all characters
from the lcd display

//sends the cursor to the
beginning of line 1

//This is the closing
bracket of the array.
Note the semi colon
is needed as this is
the end of a program
instruction

// a subroutine to send
Info to the lcd.

149

CHAPTER6 USING THE LCD

35.

36.

37.

38.

39.

40.

41.
42.
43.

150

{

//opening curly bracket
of the sendInfo
subroutine

lcdTempInfo = (lcdTempInfo << 4 | lcdTempInfo >>4);

lcdInfo

lcdInfo

lcdPort

eBit

eBit =
TMRO =

lcdTempInfo & OxOF;

lcdInfo | rsOr;

lcdInfo;

while (TMRO < 16);

//this will swap the
nibbles around in
lcdTempInfo ready to
send to the LCD

// this basically ignores
the last four bits of
the lcdTempInfo b4, bs,
b6 and b7 will always
be logic '0'and loads
the result into lcdInfo

// This performs a logical
OR with lcdInfo and
rsOr. this allows us to
determine if the info is
an instruction or data

// this sends the info to
the LCD

// this is to tell the
driver that new info
has arrived at the lcd

//this is a 2mS delay at
7812.5Hz long enough
for the lcd to process
any information see
Table 6-2

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

void lcdout ()

lcdTempInfo = lcdInfo;

sendInfo ();

sendInfo ();

void setUpThelLCD ()

TMRO = 0; while (TMRO <255);

CHAPTER6 USING THE LCD

//closing curly bracket
of the sendInfo
subroutine

//this subroutine gets
the data ready to go to
the sendInfo

//opening curly bracket
of the lcdOut
subroutine

// store the information
in a temporary location

//this calls the
subroutine sendInfo to
send the high nibble
first

//this calls the
subroutine sendInfo
again to send the low
nibble next

//closing curly bracket
of the lcdOut
subroutine

//This is a subroutine to
set up the lcd

//opening curly bracket
of the setUpThelL(CD
subroutine

//a 32ms delay this is
the time required by
the driver circuit to
settle down

151

CHAPTER6 USING THE LCD

55.

56.

57.

58.

59.

60.

152

1rsOr = 0X00;

while (n < 8)

lcdInfo = lcdInitialise [n];

lcdout ();

n ++;

//load the variable 'n'
with the starting value
of 0

// this ensures bit 4
or the RS pin will be
logic '0' as these are
instructions

//while the value in
the variable 'n' is
less than 8 do what
is inside the curly
brackets.

//the opening bracket for
the while instruction

//load the variable
"lcdInfo" with what is
in location 'n' in the
lcdInitialise array.
As 'n' starts out at 0
this will be the first
location in the array.
See lines 22 to 32
above.

//call the subroutine
lcdOut see lines 45 to
50

//add one to the value
of 'n' the micro will
now go back to line 56.
Note the value of 'n'
will eventually get to
8. When this happens

61.

62.

63.

64.

65.

66.

67.

68.

69.

1s0r = 0x10;

void line2 ()

1s0r = 0X00;

lcdInfo = lineTwo;

lcdout ();

1rsOr = 0x10;

CHAPTER6 USING THE LCD

and the micro goes to
line 56 the micro will
jump to line 62 after
executing line 56 as
the condition in the
brackets is untrue.

//closing curly bracket
of the while

//this ensures bit 4 of
the rsOr is a logic '1'
for data

//closing curly bracket
of setUp subroutine

// a subroutine to send
the cursor of the lcd
to the start of line 2

//opening curly bracket
of Line2 subroutine

// this ensures bit 4
or the RS pin will be
logic '0' as these are
instructions

//loads the variable
"lcdInfo" with the
instruction to send the
cursor to line two

//call the subroutine
lcdOut

//this ensures bit 4 of
the rsOr is a logic '1'
for data

153

CHAPTER6 USING THE LCD

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

154

}

void clearTheScreen ()

1rsO0r = 0X00;

lcdInfo = clearScreen;

lcdout ();

lcdInfo = returnHome;

lcdout ();
rsOr = 0x10;
}

//closing curly bracket
of Line2 subroutine

//a subroutine to
clearTheScreen

//opening curly bracket
for clearTheScreen
Subroutine

// this ensures bit 4
or the RS pin will be
logic '0' as these are
instructions

//load the variable
"lcdInfo" with the
instruction to clear
the lcd display

//call the subroutine
"lcdOut”

//load the variable
"lcdInfo" with the
instruction to return
the cursor to the
beginning of line 1 on
the lcd display

//call the subroutine
"lcdOut™

//this ensures bit 4 of
the rsOr is a logic '1'
for data

//closing curly bracket
of clearScreen
subroutine

80.

81.

82.

83.

84.

85.

86.

87.

88.

CHAPTER6 USING THE LCD

void writeString (const char xwords) //this is a

while (xwords)

lcdInfo = *words;

lcdout ();

*Words ++;

subroutine that
will display a
whole string of
characters on
the display.
//opening curly bracket
for writeString
Subroutine
// while the xwords
pointer is not pointing
to the NULL char do
what is inside the
curly brackets
//opening curly bracket
for the while
//load what the xwords
pointer is pointing
to into the variable
lcdInfo
// call the subroutine to
pass the data to the
LCD
// increment the contents
of the pointer so that
it is pointing to the
next char in the array
//closing curly bracket
for the while
//closing curly bracket
for the writeString
subroutine

155

CHAPTER6 USING THE LCD

89.
90.

91.

92.
93.
94.
95.
96.
97.

98.

99.

100.

101.

102.

156

void main ()

{

PORTA

PORTB
PORTC
PORTD
TRISA
TRISB
TRISC

TRISD

OXff;

0x00;

0x00;

0x00;

ADCONO = 0b00000001;

ADCON1 = 0b00001011;

ADCON2 = 0b00010001;

OSCTUNE = 0x00;

//this is the opening
brackets of the main
loop

//this makes sure the
PORTS don't turn
anything on

//set all bits on PORTA
to inputs

//set all bits on PORTB
to outputs

//set all bits on PORTC
to outputs

//set all bits on PORTD
to outputs

//bit 0 = '"1' means adc
on bits 5,4,382 = '0'
means channel 0 ANO is
selected

//bits A0 to A3 are
analogue rest are
digital

//select left justify
ATAD Clock = FOSC/8 i.e
1MHz TOSC = 1mS 2.4u/1m
= 2.4 4xdm = 4ms

//don't use any of the
fine tuning aspects for
the oscillator

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

0SCCON = 0x74;

TOCON = OXC7;

setUpTheL(CD ();

while (1)

CHAPTER6 USING THE LCD

//this sets the internal
oscillator to 8MHz
stable

//this turns timer 0
on, makes it an 8 bit
timer with the maximum
dived rate

//call the subroutine to
set up the LCD

//this is the forever
loop to ensure lines 91
to 105 are only carried
out once.

//opening curly bracket
for the forever loop

writeString ("Hello World"); // this sends the

line2 ();

lcdInfo = 0b00110101;

lcdout ();

lcdInfo = 0b00110111;

string "Hello World"
to the LCD
//call the subroutine
line2 to move the
cursor to the beginning
of line two on the LCD
//this is the ascii
character for the
number 5
//call the subroutine to
send the number out to
the LCD
//this is the ascii
character for the
number 7

157

CHAPTER6 USING THE LCD

113. lcdout (); //call the subroutine to
send the number out to
the LCD

114. lcdInfo = 0b00111001; //this is the ascii
character for the
number 9

115. lcdout (); //call the subroutine to
send the number out to
the LCD

116. while (1); //this is another forever
loop used to make the
program halt at this
point as the PIC will
for ever do nothing

117. } //closing brackets for
the first forever loop

118. } //this is the closing
brackets of the main
loop

Note that the config and include sections of the project are not shown
here, but they must be included in the project.

This program listing will introduce a number of different techniques
for programming the PICs, all of which make the programming easier
to understand and more efficient. However, before we look at those new
techniques, we will see how the program performs what is required of it.

The main loop starts at line 89 and ends at line 118. You should
understand that the line numbers in the preceding text do not correspond
exactly to the line numbers in MPLABX as the configuration and include
commands are not shown above. Note how MPLABX links all the lines
inside this boundary with a straight line. Line 89 starts with a box, in the
editing window of the IDE, inside which is the small ‘-” minus symbol.

158

CHAPTER6 USING THE LCD

This gives the programmer the ability to close all these groups of lines and
shrink them away, thus taking up less room on the editing window. The ‘-’
minus sign is then replaced with ‘+” plus sign which allows you to expand
upon all the lines in the boundary. It is a useful tool if you are confident
the lines don’t need any editing. This is only visible in the MPLABX editing
window, not in the text shown above.

The first few lines up to and including line 105 simply set up the PIC as
we want. The define declaration has been explained in program Listing 4-1.

The Subroutine lcdOut ()

This is between lines 45 and 50 .

Line 47 loads the variable lcdTempInfo with the contents of lcdInfo.
Line 48 calls the subroutine sendInfo () for the first time which will
send the high nibble of the information along with the correct value in b4,

to the LCD.

Line 49 calls the subroutine sendInfo () for the second time which will
send the low nibble of the information along with the correct value in b4,
to the LCD.

The Subroutine sendinfo ()

This is between lines 34 and 44.

Line 36 swaps the 2 nibbles in the variable lcdTempInfo over as we
need to send the high nibble first.

Line 37 reloads the variable lcdInfo with the result of the logical AND
operation of lcdTempInfo and the binary value 0b00001111. This ensures
that b7, b6, b5, and b4 of the result are logic ‘0’s The other four bits are the
same as b3, b2, b1, and b0 of lcdTempInfo.

Line 38 performs the logical ‘OR’ operation of the variables lcdInfo
and rsOR. In this instance, because b4 of IcdInfo and b4 of rsOR are both
logic ‘0, then nothing changes as this is an instruction. However, if b4 of

159

CHAPTER6 USING THE LCD

rsOR had been changed to a logic ‘1, then the result would be that b4 of the
variable lcdInfo would now go to a logic ‘1’ indicating that the information
about to be sent to the LCD was data to be displayed.

Line 39 sends the contents of lcdInfo to PORTB which is the port that
the LCD is connected to.

Line 40 sends the ‘E’ to a logic ‘1’

Line 41 sends the ‘E’ to a logic ‘0’ The purpose of these two lines are to
tell the LCD that it must do something with the information at its data pins.

Lines 41 and 42 create a 2-ms delay. This is to ensure that the LCD can
process the data at its input before we present any new information to the
LCD; see Table 6-2.

As this is the last instruction in this subroutine, the micro then goes
back to the lcdOut subroutine as this is where this subroutine was called
from.

The micro will now carry out the instruction on line 49 which calls the
subroutine sendInfo () a second time and the above sequence repeats.
However, as the bits in lcdTempInfo are again swapped, it will be the low
nibble of the information that is sent to the LCD.

In this way all 8 bits of the information can be sent to the LCD in two
4-bit nibbles.

The microprocessor will now return to the lcdOut subroutine, but as it
will have now completed all its instructions, it will now return back to the
main loop via the lcdSetUp() subroutine.

This process is involved, and it uses what is termed “Nested
Subroutines.” You should be aware that there is a limit as to how many
subroutines can be nested together in this way. This is restricted by what is
termed “The Stack.” So be careful when nesting subroutines like this.

One other important thing to remember about nested subroutines is
that if a subroutine is to call another subroutine, the other subroutine must
be written into the editing window before the subroutine that calls it. This
is why the sendinfo subroutine is written before the lcdout subroutine as
the lcdout subroutine will call the sendinfo subroutine.

160

CHAPTER6 USING THE LCD

Now we are back in the main loop, and the next line, line 108, calls
another subroutine called writeString (“Hello World”).

Note that this time, the brackets associated with this call are not empty.
This is because this subroutine is expecting parameters to be sent down to
it. This subroutine is one that has not been written by me but one that is
termed “open source,” and it is freely available for programmers to use. It
basically creates a variable length array which the micro goes through one
at a time to get information which on line 84 I have loaded into my variable
lcdInfo.

Then on line 85, I call the subroutine lcdOut which sends the contents
of lcdInfo to the LCD.

Note that the lettering inside the normal bracket of the subroutine call
on line 108 is orange when viewed in MPLABX. This is because MPLABX
uses colors to help distinguish different types of data. What actually
happens with the orange text is that the ASCII character number for each
character starting with ‘H, in this case, is sent to the array. This is all done
in the background by the compiler software. Note that to use this open
source subroutine, you must include the stdio.h header file. This is done
with the #include <stdio.h> in the program.

Note that on line 106, I create the forever loop as I don’t want the micro
to carry out all the above instructions again. Inside this loop, I send the
characters 5, 7, and 9 out to the LCD; this is just to try and show you how
numbers are sent to the LCD. Note that the ASCII for 5 is 0b00110101. The
high nibble 0011 or 3 in hexadecimal. This puts us in the third column of
the ASCII character table shown in Table 6-1. This is the column where
the ASCII for the numbers 0 to 9 are listed and a few more. The numbers
start at 0000 to 1001 which is the binary for 0 to 9. Therefore, to display a
number 0 to 9, you simply set the high nibble to 0011 or 0X3 and use the
low nibble to express what number you want to display, that is, 0000 to
1001 or 0XO0 to 0X9.

161

CHAPTER6 USING THE LCD

I know the above description is very wordy, but it is quite difficult
to explain in words how a program works. I hope I have gone someway
toward explaining how the program and the instructions control and use
the LCD. It is very important to be able to use the LCD. Of course, you
could simply use the instructions without reading the explanation, butI
feel it is important to understand how the instructions work.

The New Aspects to PIC Programming
in This LCD Program

There are some new aspects of PIC programming that I have introduced in
this example, and I want to try and explain what they do.

Arrays

This is a method by which you can create a list of variables and store them
in locations one after the other. Then use them sequentially one at a time
or randomly. It is very important to appreciate that the memory locations
are set up one after the other in order. The array can store a variable using
all the common data types, that is, unsigned char, integer, float, etc. To
create an array, you simply declare it using the data type you want to use,
then give it a sensible name followed by the ‘[6] square bracket. Inside the
square bracket, you state how many memory locations you want to place
in your array. When the compiler program compiles the program, it will
place the start of the array in a memory location and then create the total
number of memory locations immediately after the start location, one after
the other. There are two arrays used in the LCD program above, and line 21
is where the first one is created char str[80]. This creates an array, named
‘str, of 80 memory locations long in which data type char, 8 bits long using
B7 to indicate the sign, positive or negative, of the number are stored.

162

CHAPTER6 USING THE LCD

Atline 22 I have declared the second array. It is of data type unsigned
char, and it has 8 locations. This is where I will store the 8 instructions to
set up the LCD in the order that I want to use them. Note that by declaring
the array as follows, unsigned char lcdInitialise [8] =, I have stated, by
using the ‘=’ sign, that I will define what should be stored in those 8
memory locations at the same time as declaring the array. That is why
there is the ‘;’ semicolon at the end of the defining curly bracket; the whole
sequence of text is a program instruction. Try removing the ‘;’ semicolon,
and see what happens.

There is a comma after each statement of what is stored in this array.
This is because this is a list, not a set of instructions; therefore, don’t use
the semicolon.

You can access the data in this array in two ways, one using a pointer,
which is explained in the next section of the book, or one by calling
the array in a similar way to calling a subroutine, but the array is not a
subroutine, as follows:

lcdInfo = IcdInitialise [4] will pull up the contents of location 4 in the
array and place a copy of it in lcdInfo. Note that the number of the first
location in the array is always ‘0, so location [4] is the fifth item in the array.

Using Pointers

Pointers can be used to point to locations inside an array. To create a
pointer, it is best to create an array then create the pointer with the same
name and type as the array. This is best explained by going through some
example instructions as shown in the following.

Unsigned char dataStore [10]; // This creates an array of 10 locations
one after the other, each being 8-bit memory locations.

Unsigned char xdataPointer; this creates a memory location that can
be loaded with the particular address of a location in the dataStore array.

163

CHAPTER6 USING THE LCD

The array and pointer have now been created. The next step is to load

the pointer with the address of the first memory location in the array. This

is done with the following instruction:

dataPointer = dataStore;

//This will load the dataPointer with
the address of where the first
memory location of the dataStore
array is in memory. This means that
the dataPointer is now pointing to
the first location in the dataStore
array.

Now we can load some variables with the contents of the array using

the following instructions:

Data0 = xdataPointer;

dataPointer++;

Datal = xdataPointer;

dataPointer++;

164

//This loads the variable Data0 with
the contents of the memory location
that dataPointer is pointing to.

In this case it is pointing to the
first location in the dataStore
array

//This increments the contents of
the dataPointer which means it now
points to the next location in the
dataStore array.

// This loads Datal with the contents
of the next memory location in the
dataStore array.

//This increments the contents of
the dataPointer which means it now
points to the next location in the
dataStore array.

CHAPTER6 USING THE LCD

Connecting the LCD in 8-Bit Mode

If the programmer has sufficient I/O, then they can use the LCD in 8-bit
mode. This would have the main advantage of saving an extra visit to
memory to get the full information to display on the LCD and save having
to call the sendInfo subroutine twice.

The main differences are explained in Listing 6-2.

Listing 6-2. Using the LCD in 8-Bit Mode

1. //some definitions for some instructions
#define firstbyte 0b00110011 //define the binary

for first byte

3. #define secondbyte 0b00110011 //define the binary
for second byte

4. #define lines2bits8 0b00111100 //define the binary
for lines2bits8

5. #define eightBitOp 0b00111000 //define the binary
for eightBitOp

6. #define twolines 0b00101100 //define the binary
for twolines

7. #define incPosition 0b00000110 //define the binary

for incPosition
8. #define cursorNoBlink 0b00001100 //define the binary
for cusorNoBlink

9. #define clearScreen 0b00000001 //define the binary
for clearScreen

10. #define returnHome 0b00000010 //define the binary
for returnHome

11. #define lineTwo 0b11000000 //define the binary
for lineTwo

12. #define doBlink 0b00001111 //define the binary

for doBlink

165

CHAPTER6 USING THE LCD

13. #define shiftleft 0b00010000 //define the binary
for shiftleft

14. #define shiftRight 0b00010100 //define the binary
for

15. shiftRight

16. #define lcdPort PORTB //define which PORT
LCD is connected to

17. #define eBit PORTAbits.RAO //define which bit

the LCD eBit is
connected to

18. #define RSpin PORTAbits.RA1 //define which bit

the LCD RSpin is
connected to

19. //some variables set up memory locations for the

following variables

20. unsigned char lcdInfo, lcdTempInfo, rslLine;

21. unsigned char n;

22. char lcdInitialis [7] = //set up an array with 7
memory locations and load
the memory locations
with the following LCD

instructions
23. { //opening curly bracket of
array setup
24. firstbyte, //the first instruction
25. secondbyte, //the second instruction
which is a copy of the
first
26. lines2bits8, //the instruction to use

2 lines of characters
and set up for 8 bit
operation not 4 bit

166

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

incPosition,

doBlink,

clearScreen,

returnHome,

};

CHAPTER6 USING THE LCD

//Instruction to make the
cursor move one place
to right after each
data has been displayed
on LCD

//instruction to make
cursor blink in current
position

//instruction to clear
all data from LCD
display

//instruction to send
back to first position
on line 1 of LCD

//end of array brackets. Note the
semi colon is needed as the whole
sequence is a program instruction.

//some subroutine these one line comments helps split the

program up
void lcdout ()

lcdPort = lcdInfo;
eBit = 1;
eBit = 0;

//start of lcdOut
subroutine

//opening curly bracket
of lcdOut subroutine

//send info to LCD

//set eBit to logic "1’

//set eBit to logic '0'
These two make the
LCD aware that new
information has come to
its input pins.

167

CHAPTER6 USING THE LCD

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

168

TMRO = 0; while (TMRO < 15);

void setUpThelLCD ()

TMRO = 0;
while (TMRO < 255);

while (n < 7)

lcdInfo = lcdInitialis [n];

lcdOut ();

//this is a 1.92mS
delay at 7812.5Hz

//closing curly bracket
of lcdOut subroutine

//start of subroutine to
set up the LCD

//opening curly bracket
of setUp subroutine

//set TMRO back to 0

//wait until TMRO has
reached 255 an initial
32.6ms delay before
sending any info to lcd

//set RSpin to logic
'0' to tell LCD
information coming is
an instruction

//set the variable 'n' to
0 ready next loop

//set up while loop for
sending instructions to
LCD

//opening curly bracket
for LCD loop

//load variable lcdInfo
with first instruction
in array lcdInitialis

//call subroutine lcdOut
to send instruction to
LCD

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

void line2 ()

lcdInfo = lineTwo;

lcdout ();

CHAPTER6 USING THE LCD

//add 1 to value of 'n'
ready to get next
instruction if n is less
than 7

//closing curly bracket for
LCD loop

//set RSpin back to logic
'1' as next information to
go to LCD will most likely
be data to be displayed

//closing curly bracket for
LCD loop

//start of subroutine to
send cursor to start of
line 2 on LCD

//opening curly bracket for
line2 loop

//set RSpin to logic 'o0'
to tell LCD information
coming is an instruction

//Load variable lcdInfo
with instruction to go to
lineTwo

//call lcdOut subroutine to
send instruction to LCD

//set RSpin back to logic
'1' as next information to
go to LCD will most likely
be data to be displayed

//closing curly bracket for
line2 loop

169

CHAPTER6 USING THE LCD

61.

62.

63.

64.
65.

66.

67.

68.

69.

70.

170

void writeString
(const char xwords)

while (xwords)

{

lcdInfo = *words;

lcdOut ();

*Words ++;

void clearTheScreen ()

//this is subroutine that
will display a whole
string of characters on
the display.

//opening curly bracket
for writeString loop

// while the xwords
pointer is not pointing
to the NULL char do
what is inside the
curly brackets

//load what the xwords
pointer is pointing
to into the variable
lcdInfo

//call the subroutine to
pass the Info to the LCD

//increment the contents
of the pointer so that
it is pointing to the
next char in the array

//closing bracket of the
while loop

//closing curly bracket
for writeString loop

//This is a subroutine
that clears all data
from the display and
sends the cursor back
to start of screen

71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

81.
82.
83.
84.

RSpin = 0;

lcdInfo = clearScreen;

lcdout ();

lcdInfo = returnHome;

lcdout ();
RSpin = 1;

}

void main ()
{

PORTA = 0;
PORTB = 0;
PORTC = 0;
PORTD = 0;

CHAPTER6 USING THE LCD

//opening curly bracket
for clearTheScreen loop

//set RSpin to logic
'0' to tell LCD
information coming is
an instruction

//Copy the data for
clearScreen instruction
into lcdInfo

//call the lcdOut
subroutine to send
instruction to LCD

//Copy the data for
returnHome instruction
into lcdInfo

//call the lcdOut
subroutine to send
instruction to LCD

//set RSpin back to logic
'1' as next information
to go to LCD will most
likely be data to be
displayed

//closing curly bracket
for clearTheScreen loop

//The main program loop

//opening curly bracket
for main loop

//Turn all outputs off

171

CHAPTER6 USING THE LCD

85. TRISA = 0X00;
86. TRISB = 0x00;
87. TRISC = 0x00;
88. TRISD = 0x00;

89. ADCONO = 0x00;
90. ADCON1 = OxOF;

91. OSCTUNE = 0b10000000;

92. 0OSCCON = 0b01110000;

93. TOCON = 0b11000111;

94. setUpThelLCD ();

95. clearTheScreen ();

96. while (1)

172

//make all of PORTA
outputs

//make all of PORTB
outputs

//make all of PORTC
outputs

//make all of PORTD
outputs

//turns off the adc

//sets all bits to
digital mode

//this just sets the 8MHz
as source for 31.25kHz

//this selects the
internal 8MHz frequency
uses the primary osc as
clock source

//this enables TMRO, sets
it as 8 bit and max
divide giving a clock
tick of 128us

//This calls the
subroutine to
setUpTheLCD

//This calls the
subroutine to
clearTheScreen

//This is the forever
loop so that lines 81
to 96 are only carried
out once

97.

98.

99.

100.

101.

102.

CHAPTER6 USING THE LCD

//This is the opening
curly bracket for the
forever loop

writeString ("Working 8Bit LCD"); //This calls the

line2 ();

lcdInfo = 0x33;

lcdout ();

while (1);

writeString
subroutine with
the phrase
Working 8Bit LCD

//This calls the
subroutine to move the
cursor to the start of
line 2 on the LCD

//This loads the variable
lcdInfo with the ASCII
for the number 3.

//This calls the
subroutine to send the
data in lcdInfo to the
LCD

//This for ever loop just
makes the program halt
at this point and there
are no instructions in
this loop. Note this is a
one line instruction and
there are no instructions
before the end of
instruction terminator
the semi-colon.

173

CHAPTER6 USING THE LCD

103. } //closing bracket of
the first while (1)
loop

104. } //closing bracket of

the main loop

With the 8-bit operating mode of the LCD, there is no need to swap
the nibbles of the data or instruction before sending it to the LCD. This
approach uses two more I/0 as well as the eight outputs for the data to the
LCD. The two extra I/O are for the RSPIN and the EPIN of the LCD. Overall
the approach may be simpler but you do need the extra I/O pins.

The circuit layout for the 8-bit LCD is shown in Figure 6-2.

LCD1
LMo16L.

alala] ala]a] =[=]aa]=[a]a]=
LS = N E L B L
L |
R1
10k U1
u 1IN- RCOTI0SO/M3CKI 312
RA1/AN1/C2IN- RC1/T10SI/CCP2B w17
—— RA2/AN2/C2IN+/VREF-/CVREF RC2/CCP1/P1A OB
—— RA3/AN3/C1IN+/VREF+ RC3/SCK/SCL =
51 RA4/TOCKI/C10UT RC4/SDI/SDA =
| RAS/ANAISS/HLVDINIC20UT RC/SDO (22t "
142] rasioscaicLko RCOMICK (52 RS
1321 RA7/OSCH/CLKI RC7/RX/DT [222
| 1k
R2 32| RBOANTZFLTOINTO RDOPSPO (=13
= { RBUANTOINTI RD1/PSPT (220 "
330 = ™ RD2PSP2 (21 —~
z CCP2A RD3/PSP3 (522
u o 11 RD4/PSP4 [220
=] resiaiteci RDS/PSPSP1B (225
2 RDGIPSPGPIC 52
L RE D RD7/PSP7PID [230
REO/RD/ANS %
RE1/WRIANG [=5
RE2/CS/AN7 ON
RE3/MCLRNVPP
PIC18F4525

Figure 6-2. The 8-Bit LCD Circuit Note RAO Is Connected to the EPIN
and RAI the RSPIN

174

CHAPTER6 USING THE LCD

The Volt Meter Program

In this extension of the previous program, we are going to combine the
ADC with the use of the LCD. We are going to use the ADC to measure a
variable voltage across a resistor and display the voltage on the LCD. This
program will use the sprintf function that is freely available for us to use. It
is a function that has been written as open source so that we can use it to
display a floating point-type variable on any type of display.

The Algorithm

The program will make use of the ADC to convert an analogue input on
PORTA RAO to a digital value.

o Itwill convert this value to represent a voltage from Ov
to 5v.

o Itwill then use the 4-bit LCD program and the sprintf
function to display the voltage measured on the LCD

screen.
o It will constantly measure the voltage at the input.
e Itwill need one input PORTA RAO.

o Itwill need eight outputs to connect to the LCD. This
will be via PORTB.

The program is shown in Listing 6-3.

Listing 6-3. The Volt Meter Program

1. //some definitions
2. #define firstbyte 0b00110011
3. #define secondbyte 0b00110011

175

CHAPTER6 USING THE LCD

4. ttdefine
5. ttdefine
6. ttdefine
7. ttdefine
8. ttdefine
9. ttdefine

10. #define

11. #define

176

fourBitOp

twolLines

incPosition

cursorNoBlink

clearScreen

returnHome

lineTwo

doBlink

0b00110010

0b00101100

0b00000110

0b00001100

0b00000001

0b00000010

0b11000000

0b00001111

//this sets the
LCD up for 4
bit operation
instead of 8 bit

//This sets the
LCD to 2 lines
mode

//This tells the
LCD to increment
the cursor
position after
any data is
displayed

//this turns the
cursor off so
we don't see it
flashing

//this clears the
screen of all
display

//this sends the
cursor back to
start position
on the display

//this will send
the cursor to
the start of
line 2 on the
display

//this turns the
cursor on and
makes it blink.

12.

13.

14.

15.

16.

17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.

CHAPTER6 USING THE LCD

#define shiftleft 0b00010000 //this shifts
the cursor one
position to the
left
#define shiftRight 0b00010100 //this shifts
the cursor one
position to the
right
#define lcdPort PORTB //this sets which
port the LCD is
connected to
#define eBit PORTBbits.RB5 //this sets
the bit for
the E pin on
the LCD
#define rspin PORTBbits.RB4 //this sets
the bit for
the RS pin
on the LCD
//some variables
unsigned char lcdData, lcdTempData, rsline;
unsigned char n;
char str[80];
float sysVoltage;
//the subroutine

void initialiseThePic ()
{

PORTA
PORTB
PORTC
PORTD

1] 1 1]
o O O O
e we e

-

177

CHAPTER6 USING THE LCD

29. TRISA = OXff;

30. TRISB = 0x00;

31. TRISC = 0x00;

32. TRISD = 0x00;

33. ADCONO = 0b00000001; //bit 0 = '"1' means adc on
bits 5,4,382 = '0' means
channel 0 ANO is selected

34. ADCON1 = 0b00001011; //bits A0 to A3 are analogue
rest are digital

35. ADCON2 = 0b00010001; //select left justify 4TAD
Clock = FOSC/8 i.e 1MHz
TAD = 1uS

36. OSCTUNE = 0x00;

37. OSCCON = 0x74; //this sets the internal
oscillator to 8MHz stable

38. TOCON = 0XC7, //this turns timer 0 on,

makes it an 8 bit timer
with the maximum divide

rate

39. }

40. char lcdInitialise [8] = //This creates a array 8
locations long and loads
each location with the
following data

41. |

42. firstbyte,

43. secondbyte,
44. fourBitOp,

45. twolines,

46. incPosition,
47. cursorNoBlink,

178

48.
49.
50.
51.
52.
53.

54.

55.

56.

57.

58.
59.

60.
61.
62.
63.

CHAPTER6 USING THE LCD

clearScreen,

returnHome,

};

void sendData ()

{

lcdTempData = (lcdTempData << 4 | lcdTempData >>4);
//this will swop the nibbles around in

lcdTempData ready to send to the LCD

lcdData = lcdTempData & OxOF; // this basically
ignores the last
four bits of the
lcdTempData

lcdData = lcdData | rsline; // this allows us
to determine if
the info is an
instruction or data

lcdPort = lcdData; // this sends the info
to the LCD

eBit = 1; //These next two
instructions are to
tell the LCD new
data has arrived and
it should deal with
it.

eBit = 0;

TMRO = 0; while (TMRO < 20); //this is a 2.56mS
delay at 7812.5Hz

}

void lcdOut ()

{

lcdTempData = lcdData; // store the information in a

temporary location

179

CHAPTER6 USING THE LCD

64. sendData ();

65. sendData ();

66. }
67. void setUpThelL(D ()
68. {

69. TMRO = 0; while (TMRO <255);
70. n=0;

71. rsline = 0x00;

72. while (n < 8)

73. |
74. lcdData = lcdInitialise [n];

180

//this sends the
high nibble of the
information to the
LCD

//this sends the
low nibble of the
information to the
LCD

//a 32ms delay

//This makes the
variable 'n' =0
ready for the while
loop at line 72

// this ensures bit 4
or the RS pin will be
logic '0' as these
are instructions

//whilst 'n' is less
than 8 do what is
inside the curly
brackets.

//Load the variable lcdData
with particular contents
of the memory location in
the array lcdInitialise
the pointer is currently
pointing to.

75.

76.
77.
78.

79.
80.
81.
82.

83.
84.
85.

86.

87.

88.

89.

90.

91.

lcdout ();

n ++;

}

rsLine = 0x10;

}

void line2 ()

{

rsLine = 0x00;

lcdData = lineTwo;
lcdout ();
rsLine = 0x10;;

}

void clearTheScreen ()
{

rsLine = 0x00;

lcdData = clearScreen;

lcdout ();

CHAPTER6 USING THE LCD

//send that information to
the LCD.

//this ensures bit 4 of the
rsLIne is a logic '1' for
data

// this ensures bit 4 or the
RS pin will be logic '0' as
these are instructions

//this ensures bit 4 of the
rsLIne is a logic '1' for
data

//This creates the subroutine
cleaTheScreen

// this ensures bit 4 or the
RS pin will be logic '0' as
these are instructions

//this loads the variable
lcdData with the
instruction to clear the
screen

//This sends the instruction
to the LCD

181

CHAPTER6 USING THE LCD

92.

93.

94.

95.
96.

97.
98.

99.

100.

101.

102.

103.
104.

182

lcdData = returnHome;

lcdout ();

rsLine = 0x10;

}

void gohome ()
{

rsLine = 0x00;

lcdData = returnHome;

lcdout ();

rsLine = 0x10;

}

//this loads the variable
lcdData with the
instruction to return
the cursor to the home
position.

//This sends the instruction
to the LCD

//this ensures bit 4 of the
rsLIne is a logic '1' for
data

//This creates the
subroutine gohome

// this ensures bit 4 or the
RS pin will be logic '0'
as these are instructions

//this loads the variable
lcdData with the
instruction to return
the cursor to the home
position.

//This sends the instruction
to the LCD

//this ensures bit 4 of the
rsLIne is a logic '1' for
data

void writeString (const char xwords)

{

105.

106.

107.

108.

109.

110.
111.
112.

113.
114.
115.

116.

117.
118.

CHAPTER6 USING THE LCD

while (xwords) // while the xwords pointer
is not pointing to the NULL
char do what is inside the
curly brackets

{

lcdData = xwords; //load what the xwords pointer
is pointing to into the
variable lcdData

lcdout (); // call the subroutine to pass
the data to the LCD

*Words ++; // increment the contents of
the pointer so that it is
pointing to the next char in
the array

}

}

void systemVoltage () //This creates a subroutine to
use the ADC to measure the
voltage

{

ADCONObits.GODONE = 1; //This starts an ADC process
while (ADCONObits.GODONE); //This waits till the ADC
has finished
sysVoltage = (ADRESHx0.01953+ (ADRESL >>6)x0.0049);
//This converts the binary
value from the ADC to the
actual voltage.
}
void displayVoltage(float dp) //This creates a
subroutine to
display the voltage
on the LCD

183

CHAPTER6 USING THE LCD

119.
120.

121.

122.

123.
124.
125.
126.
127.

128.

129.
130.
131.

132.

184

{

sprintf(str, "%.2f", dp);

writeString(str);

writeString(" Volts");

}

//The main program
void main ()

{

initialiseThePic ();

setUpTheLCD ();

while (1)
{

//This use the function
sprintf to display the
floating point value using
2 decimal points

//This calls the writeSring
subroutine to send the value
to the LCD

//This calls the writeSring
subroutine to send the word

Volts to the LCD

//This calls the
subroutine to initialise
the PIC

//This calls the
subroutine to set up the
LCD

This is a for ever loop

writeString ("The Voltage is"); // this sends the

line2 ();

string "the voltage
is" to the LCD
// call the subroutine line2
to move the cursor to the
beginning of line two on
the LCD

133.

134.

135.

136.
137.

systemVoltage ();

CHAPTER6 USING THE LCD

//This calls the subroutine

systemVoltage to go and
measure the voltage

displayVoltage (sysVoltage);//This calls the subroutine

gohome ();

}
}

displayVoltage to display
the voltage on the LCD

//This calls the subroutine

gohome to send the cursor
on the LCD back to the home
position.

The New Aspects of the Program

The following sections highlight some of the new aspects of the program

via three new subroutines.

The gohome Subroutine

1.

void gohome ()

{

rsline = 0x00;

lcdData = returnHome;

//This creates the
subroutine gohome

// this ensures bit 4 or the
RS pin will be logic '0' as
these are instructions

//this loads the variable
lcdData with the
instruction to return
the cursor to the home
position.

185

CHAPTER6 USING THE LCD

5. lcdout (); //This sends the instruction
to the LCD

6. rsLine = 0x10; //this ensures bit 4 of the
rsLIne is a logic '1' for
data

The sysVoltage Subroutine

1. void systemVoltage () // This subroutine starts a
conversion and stores the
result into a variable called
sysVoltage. Note sysVoltage must
be of type float as it will be a
decimal number
2. { //opening curly brackets of the
systemVoltage subroutine
3. ADCONObits.GODONE = 1; //This starts the ADC conversion by
setting bit 1 of ADCONO
4. while (ADCONObits.GODONE); //This waits for bit 1 of
the ADCONO register to go
to logic'0' This happens
automatically when the
conversion ends
5. sysVoltage = (ADRESHx0.01953 + (ADRESL >>6)%0.0049);
//this line is explained
below.
6. } //closing curly brackets of the
systemVoltage subroutine

Line 5 is used to convert the 10-bit result of the ADC conversion into
an actual voltage reading. Firstly, you should remember that the 10 bit is
splitinto an 8-bit number and a 2-bit number. Using left justification, the 8

186

CHAPTER6 USING THE LCD

bit is stored in the ADRESH register, and the other 2 bits are stored in bit 7
and bit 6 of the ADRESL register; see Figure 5-1. The 8 bits in the ADRESH
have a resolution of 19.53mV, whereas the 2 bits in the ADRESL register
have a resolution of 4.9mV; that is why both binary values have been
multiplied as shown. However, before the 2 bits in the ADRESL register
can be multiplied, they must be shifted 6 places to the right to move bit6 to
bit0 and bit7 to bitl; that is why there is the symbol “ >>6" In this way, you
can use all 10 bits of the ADC instead of just the 8 bits in the ADRESH. This
makes the result much more accurate.

It should be pointed out that the variable sysVoltage must be declared
as a float in the variable declarations.

The displayVoltage Subroutine

1. void displayVoltage(float dp) //This subroutine uses
the sprinf function to
display the contents of
a float onto the LCD

display
2. { //opening curly brackets of the displayVoltage
subroutine
3. sprintf(str, "%.2f", dp); //This calls the sprintf

function with the float
that has been passed down
to the subroutine

4. writeString(str); //This sends the result of
the spintf function, str,
to the display by calling
the writeString subroutine

187

CHAPTER6 USING THE LCD

5. writeString(" Volts"); //This calls the writeString
subroutine to display the
word Volts with a space
before it

6. } //closing curly brackets of the

displayVoltage subroutine

NB: To use the sprintf function, we must include the library that this
function is written in. This is in the stdio.h header file. This means we must
have the following include instruction as shown here:

#include < stdio.h>

This is added with the other include files and all the configuration
words as is with all projects.

Changing the Main Part of the Program

I have created a subroutine called initialiseThePic. This is just another
way of making sure we only run these instructions once as we only call
this subroutine once. However, you must make sure the calling of this
subroutine is the first thing your program does.

1. while (1) //the forever loop
2. { //opening curly brackets of the while (1)
writeString ("the voltage is"); // this sends the

string "the voltage
is" to the LCD
4. line2 (); // call the subroutine line2
to move the cursor to the
beginning of line two on the
LCD

188

CHAPTER6 USING THE LCD

5. systemVoltage (); //This calls the subroutine
systemVoltage where the adc
is started and the result
is store in the variable
sysVoltage

6. displayVoltage (sysVoltage); //This calls the subroutine

displayVoltage and passes
the variable sysVoltge to it

7. gohome (); //This calls the subroutine to
send the LCD cursor back to
the beginning of the display

8. } //closing curly brackets of the while (1)

Figure 6-3 is the PROTEUS circuit with the PIC measuring and
displaying the voltage.

LCD1
LMo16L

U1

—{ RAD/ANOICTIN- RCOT10SOMTI3CKI =
= RAT/ANT/C2IN- RC1/T10SICCP28 =
| RAZIAN2ICZIN+VREF-ICVREF RC2ICCP1IPIA |
| RAG/ANS/CTIN+VREF+ RCI/SCKISCL |-
= RA4ITOCKICTOUT RCA/SDUSDA I
- RASIAN4/SS/HLVDINIC20UT RC5/SDO |-
= RAGIOSC2/CLKO RCBITXICK |
RATIOSCH/CLKI RC7IRX/DT

—{ RBO/AN12IFLTO/INTO RDO/PSPO |-

= RBI/ANTOINT! RO1PSP1 |
RO2IPSP2

RO3/PSP3

RO4/PSP4 |
RDS/PSPSP1B

= RB6/KBI2IPGC =
RB7/KBI3IPGD RO7IPSP7P1D

REO/RD/ANS (=
RE1WRIANG =
RE2ICSIANT |-
u| REINMCLRVPP

IC18F4525

Tl
Flalel= [elBlRIRRIER [BBIRERERERE

Figure 6-3. The Proteus Simulation

189

CHAPTER6 USING THE LCD

Creating Special Characters on the LCD

This program works on the concept that the LCD displays the different
characters by turning on and off different pixels in a grid of pixels. The
size of the pixel grid depends on the resolution of the LCD display. The
resolution of the LCD in this exercise can be either 5 by 8 or 5 by 16
depending on whether or not we use 2 rows of 16 characters or 1 row of 16
characters on the LCD display. For our programs, we will use 2 rows of 16
characters; therefore, the resolution of each character is a 5 by 8 grid. The
empty grid is shown in Figure 6-4.

EDCBA

0 -1 S th & WY =

Figure 6-4. The Empty 5-by-8 Grid

Each of the memory locations holds an array of 8 bytes, one for each
row in the LCD display grid. Note that a byte is made up of 8 single bits, b7,
b6, b5, b4, b3, b2, b1, and b0 going from left to right. The first five bits of
each byte controls the five pixels in each row of the grid. BO maps on to A,
B1 maps on to B, B2 maps on to C, B3 maps onto D, and B4 maps onto E.

To enable programmers to design their own characters, the LCD has
16 empty memory areas known as CGRAM. The actual addresses of this
memory area are 00000000 to 00001111.

The programmer can write their own 8 bytes to be stored in these
memory areas. However, to do this, the programmer must send an

190

CHAPTER6 USING THE LCD

instruction to the LCD to tell it that we want to write data to be stored in
this area. The 8-bit binary code for this instruction is 0b01000000 or 0X40.
This is an instruction that the next information that follows is to be written
into the first area of the CGRAM. There must now follow 8 bytes of data,
and the first five bits of each byte defines which pixel will be turned on or
off; alogic ‘1’ means turn on the pixel, and logic ‘0’ means turn the pixel
off. There must be 8 bytes as with a resolution of 5 by 8, there will be 8
bytes in each memory area. When the eighth byte has been sent, the LCD
will automatically open up the next area of the CGRAM. The LCD will
now expect another 8 bytes of data until it has been told you have finished
writing to the CGRAM.

To tell the LCD you have finished writing to the CGRAM, you must
send the following instruction: 0b10000000 or 0X80. Note that the codes
0X40 and 0X80 are instructions and the LCD has to be put into that mode,
whereas the following 8 bytes after the 0X40 instruction are data and the
LCD must be put into that mode.

To try and help appreciate how the 8 bytes can define the pixel map
for one special character, the following 8 bytes can be used to define the
special character shown in Figure 6-5.

EDCBA

Q0 -1 A th & W N =

Figure 6-5. The Pixel Map for a Special Character to Display
on the LCD

191

CHAPTER6 USING THE LCD

The bytes are shown in Table 6-3.

Table 6-3. The 8 Bytes for Pixel Map Shown in Figure 6-5

ROW B7 B6 B5 B4 B3 B2 B1 BO

E D C B A
1 0 0 0 0 1 0
2 0 0 0 0 1 1 1 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0 0
6 0 0 0 0 0 1 0 0
7 0 0 0 0 1 1 1 0
8 0 0 0 0 0 1 0 0

I hope this example goes someway to explaining how you can
create some special characters to display on the LCD. To complete the
explanation, I will write a program to display a series of special characters
on the LCD.

The program is shown in Listing 6-4.

Listing 6-4. The Special Characters Program

1. //%This is a basic program to control the LCD using the
PIC 18F4525

Written by H H Ward dated 31/10/15.

It is for use with the matrix multimedia prototype board

using 4 bit operation on PORTB

Extended to include creating special characters 27/03/16x/

//some definitions

S UV B WN

192

10.

11.

12.

13.

14.

15.

#define firstbyte

#define secondbyte

#fdefine fourBitOp

#tdefine twolLines

#tdefine incPosition

0b00110011

0b00110011

0b00110010

0b00101100

0b00000110

#define cursorNoBlink 0b00001100

#define clearScreen

0b00000001

#define returnHome 0b00000010

#tdefine lineTwo 0b11000000

CHAPTER6 USING THE LCD

// The first
instruction to be
sent to the LCD

// The second
instruction to be
sent to the LCD

// Instruction to put
the LCD into 4 bit
data mode

//Instruction to set
the LCD into 2 lines
of characters

//Instruction to make
LCD to automatically
move the cursor one
position after
displaying a
character

//Instruction to make
not show the cursor
on the LCD

//Instruction to make
clear the contents
of the display

//Instruction to make
cursor to move to
the start of the
display

//Instruction to make
cursor go to start
of line 2 on the
display.

193

CHAPTER6 USING THE LCD

16. #define doBlink

17. #define shiftLeft

18. #define shiftRight

19. #define lcdPort

20. #define eBit

21. #define startButton

0bo0o001111

0b00010000

0b00010100

PORTB

PORTBbits.RB5

PORTAbits.RAO

//Instruction to make
display the cursor
as a Blinking
rectangle on the
display.

//Instruction to send
the cursor one
place to the left.

//Instruction to
send the cursor one
place to the right

//tells the compiler
the LCD is
connected tO portB

//tells the compiler
the ebit is on bits
of portb

//tells the compiler
the waitbutton is
on bito of porta

22. //some variables this idea is to use comments to split

the program up into different sections.
23. unsigned char lcdData, lcdTempData, rsLine; //declare some

24. unsigned char n;

25. //the subroutine

194

variables
as unsigned
char

//declare some variables

as unsigned char

26.

27.

28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.

39.

40.

char lcdInitialis [8]

firstbyte,
secondbyte,
fourBitOp,
twolines,
incPosition,
cursorNoBlink,
clearScreen,
returnHome,

s

void sendData ()

CHAPTER6 USING THE LCD

//This sets up an array
of 8 memory locations
and loads each location
with one of the
instructions to set up
the LCD

//the opening bracket of the
array

//the closing bracket of
the array

// a subroutine to send data
to the LCD

//the opening bracket of the
subroutine

lcdTempData = (lcdTempData <<4 | lcdTempData >>4);
//this swaps the two nibbles around.

lcdData = lcdTempData & OxOF;

//this loads the variable
lcdData with the swapped
around data in lcdTempData
but only with the first 4
bits.

195

CHAPTER6 USING THE LCD

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

196

lcdData = lcdData | rsLine;

lcdPort = lcdData;

eBit = 1;
eBit = 0;
TMRO = 0; while (TMRO < 20);

void lcdOut ()

lcdTempData = lcdData;

sendData ();

sendData ();

void setUpTheL(CD ()

//this performs a logical
OR with lcdData and rsLine
this is the control what
bit 4 of the lcdData is
//send info to LCD

//this sets the eBit to a
logic '1'

//this sets the eBit to a
logic '0' done to tell
the LCD it has some
new data

//this is a 2.56mS delay
at 7812.5Hz

//closing bracket if the
sendData subroutine

// a subroutine to
manipulate the data in
variable lcdOut

//the opening bracket of
the subroutine

//saves a copy of
lcdData in lcdTempData

//calls the subroutine
send Data for first
time

//calls the
subroutine send Data
for second time

//the closing bracket of
the subroutine

//sets up the subroutine
to set Up the LCD

54.

55.

56.

57.

58.

59.

60.

rsline = 0x00;

while (n < 8)

lcdData = lcdInitialis [n];

lcdout ();

CHAPTER6 USING THE LCD

//the opening bracket of
the subroutine

// this loads the
variable rslLine with
0. This is done to
make sure bit 4 is
a logic '0' to tell
the LCD the next
information is an
instruction.

//this loads 0 into
the variable 'n'
done to make sure
the following while
instruction starts
with n =0

//sets up the while loop
which is carried out 8
times

//opening bracket of the
while loop

//this loads variable
lcdData with data
from the lcdInitialis
array. This will be
the data in the first
location in the array
if n =0 but it is
controlled by the
value of n

//this calls the
subroutine lcdOut

197

CHAPTER6 USING THE LCD

61.

62.

63.

64.

65.

66.

67.

68.

198

n ++;

rsline = 0x10;

void line2 ()

rsline = 0x00;

lcdData = 1lineTwo;

//this adds 1 to the value of
n to make sure we use the
next location in the array
lcdInitials unless n = 8

//this is the closing
brackets of the while loop

//this loads the variable
rslLine with 0x10. This
makes sure but 4 is now a
logic '1' ready to tell the
LCD the next information
will be data to be
displayed.

//this is the closing
bracket of the setUpThelLcd
subroutine.

// a subroutine named line2.
This is a routine to send
the cursor to the beginning
of line2 on the LCD

//the opening bracket of the
subroutine

//load rslLine with 0 to make
sure we tell the LCD the
next information is an
instruction.

//loads the variable lcdData
with the instruction to
move cursor to beginning of
line 2

69.

70.

71.

72.

73.

74.

75.

76.

77.

lcdout ();

rsline = 0x10;

void writeString
(const char xwords)

while (*words)

lcdData = *words;

lcdout ();

CHAPTER6 USING THE LCD

//call the subroutine lcdOut
to send the instruction to
the LCD

//load rsLine with 0b00010000
to make sure we bit 4 is a
logic '1'this will tell the
LCD the next information is
data to be display

//the closing bracket of the
subroutine

//a subroutine to send a
string of characters to the
LCD

//the opening bracket of the
subroutine

//the while instruction that
states that while we are
not at the end of the array
pointed to be the pointer
sxwords then do what is
between the curly brackets.

//the opening bracket of the
while statement

//load the variable lcdData
with the contents of the
array memory location
the pointer 8words is
pointing to.

//call the subroutine lcdOut
to send the instruction to
the LCD

199

CHAPTER6 USING THE LCD

78.

79.

80.

81.

82.

83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

200

*words ++; //increment the pointer
xwords to ensure it is now
pointing to the next memory
location in the array

words.

} //the closing bracket of the
while statement

} //the closing bracket of the
subroutine

char firstCharacter [8] = //this sets up an array of

8 locations and loads each
location with the data to
create the pixel map for
the character shown above
in Figure 6-5

{ //the following 8 bytes are
the data for the character
in Figure 6-5

0b00000100,

0b00001110,

0b00000100,

0b00000100,

0b00000100,

0b00000100,

0b00001110,

0b00000100,

}s

char secondCharacter [8] = //this sets up an array of
8 locations and loads each
location with the data to
create the pixel map for
the next character

93.
9.
95.
96.
97.
98.
99.

100.
101.
102.
103.

104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

CHAPTER6 USING THE LCD

{

0b00010101,

0b00010101,

0b00010101,

0b00010101,

0b00010101,

0b00010101,

0b00010001,

0b00010001,

};

char thirdCharacter [8] = //this sets up an array
of 8 locations and
loads each location
with the data to create
the pixel map for the
next character

{

0b00000001,

0b00000001,

0b00000001,

0b00000011,

0b00000011,

0b00000011,

0b00000011,

0b00000011,

};

char fourthCharacter [8] = //this sets up an array
of 8 locations and
loads each location
with the data to create
the pixel map for the
next character

201

CHAPTER6 USING THE LCD

115. {

116. 0b00010001,
117. 0b00010001,
118. 0b00000100,
119. 0b00000100,
120. 0b00011011,
121. 0b00011011,
122. 0b0o0011111,
123. 0b00001110,
124. };

125. void clearTheScreen ()

126. {

127. 1zrsline = 0x00;

128. lcdData = clearScreen;
129. lcdout ();

130. lcdData = returnHome;
131. lcdout ();

132. 1rsline = 0x10;

133. }
134. void writeToGram ()

135. {

202

//a subroutine to get the
LCd to clear the acreen

//instruction mode

//load the variable lcdDat
with the instruction to
clear the screen

//send the instruction to
the LCD

//instruction to send the
cursor to the beginning
of the screen

//data mode
//this is a subroutine to

write code to the CGram
locations in the LCD

136.
137.

138.

139.

140.

141.

142.
143.

144.

145.

146.
147.

148.
149.
150.
151.
152.
153.

CHAPTER6 USING THE LCD

rsLine = 0x00; // ready for instruction.

lcdData = 0x40; //tells the LCD to open the
first address in CGRAM
area ready for us to write
data into them

lcdout (); //calls the subroutine to
send info to LCD
rsLine = 0x10; // ready for data as we
have finished sending
instructions.
n=0; //load n with 0 ready for
the following while loop
while (n < 8) //do the following whilst n
is less than 8
{
lcdData = firstCharacter [n]; //1loads lcdData with
the data from the
array identified by
the variable 'n'
lcdout (); //calls the subroutine to start sending the
information to the LCD
n ++; //increment the variable n so it is looking
at the next location in the array.
}
n=0; //loads n with zero ready to send the

next character to the LCD
while (n < 8)
{

lcdData = secondCharacter [n];
lcdout ();
n ++;

}

203

CHAPTER6 USING THE LCD

155.
156.
157.
158.
159.
160.
161.

162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.

176.
177.
178.
179.

204

n=0; //loads n with zero ready to send
the next character to the LCD

while (n < 8)

{

lcdData = thirdCharacter [n];

lcdOut ();

n ++;

n=0; //loads n with zero ready to send
the next character to the LCD
while (n < 8)

{

lcdData = fourthCharacter [n];

lcdOut ();

n ++;

}

rsLine = 0x00; //get ready for instruction

lcdData = 0x80; //command to go to DDRAM address

lcdout ();

rsline = 0x10; //ready for data

}

void main () //the start of the main loop

{

PORTA = 0; //the following 4 instructions loads 0
into the 4 ports just to make sure they
are not turning anything on

PORTB = 0;

PORTC = 0;

PORTD = 0;

TRISA = OXff; // loads logic '1' to all bits in TRISA

thus making all porta inputs

180.
181.
182.
183.
184.

185.

186.

187.

188.

189.

190.

191.

CHAPTER6 USING THE LCD

TRISB = 0x00; // loads logic '0' to all bits in TRISB
thus making all portb outputs
TRISC = 0x00; // loads logic '0' to all bits in TRISC
thus making all portc outputs
TRISD = 0x00; // loads logic '0' to all bits in TRISD
thus making all portd outputs
ADCONO = 0x00; //turns off the adc
ADCON1 = OxOF; //sets all bits to digital mode
OSCTUNE = 0b10000000; //this just sets the 8MHz as
source for 31.25kHz
0SCCON = 0b01110100; //this selects the internal
8MHz frequency stable uses
the primary osc as clock
source
TOCON = 0b11000111; //this enables TMRO, sets

it as 8 bit and max divide
giving T812.5Hz therefore
128usec per tic

TMRO = 0; //this load 0 into the TMRO
register to ensure we start
counting from 0

while (TMRO < 255); //whilst TMRO is less that
255 do nothing. This is an
initial 32.6ms delay before
sending any info to lcd

setUpTheLCD (); //call the setUpThel(D
subroutine.
clearTheScreen (); //call the subroutine to

clear the screen and send
cursor back to start of the
display.

205

CHAPTER6 USING THE LCD

192.

193.

194.

195.

196.

197.

198.
199.

200.

206

writeToGram (); //call the subroutine to
write the data for the
special characters to the
Gram of the LCD
while (!startButton); //make the program wait until
the start button on porta
has been pressed and so
gone to a logic '1'
while (1) //set up the forever loop so
that the PIC does not do
the previous instructions
again.
{ //opening bracket of the
forever loop
writeString ("Special Chars"); //calls the subroutine
writeString and sends
the string Special
Chars to be displayed
on the LCD
lcdData = 0x31; //this loads the variable
lcdData with value 0x31
this is the ASCII for the

number 1.
lcdout (); //sends the data to the LCD
lcdData = 0x32; //this loads the variable

lcdData with value 0x32
this is the ASCII for the
number 2.

lcdout ();

201.

202.
203.

204.

205.

206.
207.

208.
209.

210.
211.

lcdData = 0x33;

lcdout ();
line2 ();

lcdout ();

lcdData = 0x00;

lcdout ();
lcdData = 0x01;

lcdout ();
lcdData = 0x02;

lcdout ();
lcdData = 0x03;

CHAPTER6 USING THE LCD

//this loads the variable
lcdData with value 0x33
this is the ASCII for the
number 3.

//calls the subroutine to move
the cursor to beginning of
line 2 on the LCD display

//this loads the variable
lcdData with the value 0
this is the address of the
first area in the CGram of
the LCD.

//this loads the variable
lcdData with the value 1
this is the address of the
second area in the CGram of
the LCD.

//this loads the variable
lcdData with the value 2
this is the address of the
third area in the CGram of
the LCD.

//this loads the variable
lcdData with the value 3
this is the address of the
fourth area in the CGram of
the LCD.

207

CHAPTER6 USING THE LCD

212. lcdout ();
213. lcdData = 0x20;

214. lcdout ();
215. lcdData = 0x48;

216. lcdout ();
217. lcdData = Ox2E;

218. lcdout ();
219. lcdData = 0x57;

220. lcdout ();
221. lcdData = Ox2E;

222. lcdout ();
223. 1rsline = 0x00;

224. lcdData = returnHome;

225. lcdout ();

208

//this loads the variable
lcdData with the ASCII for
the space see Table 6-1

//this loads the variable
lcdData with the ASCII for
capital H see Table 6-1

//this loads the variable
lcdData with the ASCII
for the full stop, see
Table 6-1.

//this loads the variable
lcdData with the ASCII for
capital W

//this loads the variable
lcdData with the ASCII for
the full stop.

//sets the variable rslLine to
0 ready to tell the LCD the
next info is an instruction

//loads the variable lcdData
with the instruction to
return the cursor back to
the beginning of the LCD

CHAPTER6 USING THE LCD

226. 1rsline = 0x10; //sets the variable rslLine
to 1 ready to tell the LCD
the next info is data to be

displayed
227. '} //the closing brackets of the forever loop
228. } //the closing brackets of the main loop

This program should help reinforce the principle that when we
send information to the LCD, we are actually sending a number which
represents the address of an area in the LCDs ram. Note that there are
two areas of the LCDs ram that of the CGRAM where the user can store
bytes that define the bytes of any special characters that the user wants to
display. The other area of ram, the DDRAM, is where the manufacturers
have stored the bytes for all the ASCII characters.

If you examine line 205 in Listing 6-4, you will see that we are loading
the variable lcdData with the value 00000000 or 0x00. This is the address of
the first area in the CGRAM where we have written the 8 bytes that define
the pixel map for our first special character. Then in line 213, we load the
value of 0010000 or 0x20. This is the address in the DDRAM where the
manufacturer has stored the 8 bytes that define the pixel map for space or
empty character. Again, it should be noted that the address in the DDRAM
corresponds to the actual ASSCII character the memory area stores the
pixel map data.

This is a very wordy description of how the LCD works and how we
construct the ‘C’ commands to control the LCD. I think it is important
that you understand how you construct your instructions and how you
use them. By increasing your understanding, you will become a better
programmer.

The array defined from lines 114 to 124 defines the map for the special
character shown in Figure 6-6.

209

CHAPTER6 USING THE LCD

EDCBA

00010001
00010001
00000100
00000100
00011011
00011011
00011111
00001110

~1 QN B W N
00 -1 A B W =

[#.2]

Figure 6-6. The Character Map for My Face

It should be noted that it is only the first 5 bits; b4, b3, b2, b1, and b0
and a logic ‘1’ will turn the corresponding pixel on, whereas a logic ‘0’ will
turn it off. This concept is reinforced in Figure 6-6.

The simulation of this program is shown in Figure 6-7.

LCD1

LMot6L

u1

28 | RADANOICTIN- RCOTIOSOTIaCKI 412
=1 RAT/ANTIC2IN- RC1TIOSICCP28 (210
=] RAZIAN2/C2IN*VREF-ICVREF RC2ICCP1P1A 1L
2] RAJANSICIIN®VREF+ RCaISCKsCL (218
821 Rasrmockuciout RC4/SDUSDA (222

= RasiANAISSHLVDINIC20UT Ress00 (222 ul
2= rasioscaciko RCSITXICK |22

1321 raziosciicLki RC7RXIDT (222 R4
10k

— TOINTO ROOPSPO (=18

1 RO1PSP1 (220 =
KT RD2IPSP2 [22
3om 77
RD3/PSP3 (222

i RDA4/PSP4 (=20 'l
Som 528

" | Re6IKBI2PGC RDG/PSPEPIC (322 l] "
40e] D RD CES)
R2 e —C
330 REORD/ANS (=8~ q 100nF
REIWRANG [=3 u
ul RE2ICSIANT (=10
RE3MCLRIVPP
TCTara525

Figure 6-7. The Special Characters Simulation

210

CHAPTER6 USING THE LCD

Summary

In this chapter we have studied how to set up the LCD and how to use the
LCD to display the ASCII characters. We have also learnt how to display
special characters that we can design ourselves.

We have also learnt how to use the ADC and use the sprint function to
display the results of the ADC on the display.

The next chapter looks at the very useful concept of creating and using
header files.

211

CHAPTER 7

Creating a Header File

This chapter covers how to create a header file. It then uses a header file in
a program to control the LCD in 4-bit mode.

Header Files

These can be used to reduce the size of a program listing and split a
program up into different sections for different members of a team to
work on. These header files will all be brought together using the #include
statement in the main program.

One of the most useful applications of header files is when a lot of
programs are going to use a peripheral device in exactly the same way
in all the programs. One of the main peripheral devices we will use in
our programs is the LCD screen. The approach would be to put the
instructions for the LCD into a header file with the extension .h. Then
include the header file in all the programs you want to use it in. You should
realize that in all the programs; so far we have already used a header file;
this is the xc.h file we have included in all our programs so far.

Creating a Header File

To create a header file, we simply copy the instructions we want and place
in a new file with the .h extension. You should give the header file a useful

© Hubert Henry Ward 2020 213
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_7

CHAPTER 7 CREATING A HEADER FILE

name that explains what it is to be used for. The following will explain how
to create a header file using the instructions from the volt meter program
we have just created.

Make sure the project window with the project tree is visible as shown
in Figure 7-1.

& GOk & F ke Do i n e
_

Figure 7-1. The Main Screen with the Project Tree Visible

If the project tree is not visible, then click on the “Window” option in
the main menu, and select the project option from the drop-down menu
that appears. You may have to move the window around the screen. This is
something you will have to practice as it is not my intention to explain how
to use every aspect of MPLABX; that is a book in itself.

With the project tree visible, right click on the Header File section
as shown in Figure 7-1. Then select new, and then select the “New xc8_
header.h” option. The window, as shown in Figure 7-2, should appear.

Give the file a suitable name that goes someway to describing what
the header file is for and give it the extension .h; you must give it the
correct extension. I have given it the name “LCD4bitOnPortb” as shown in
Figure 7-2.

214

CHAPTER 7 CREATING A HEADER FILE

3 New xc8_headerh .
Steps Name and Locati
L. Choose Fie Type File Name: lcd4bitOnPorth

2. Name and Location
Extension: h v

Set this Extension as Default

Praject: voltMeterPORTE
Folder: Browse...

Created File: C:\voltMetesPortB.Xjed4bitOnPorth.h

<Back Next > Cancel Help

Figure 7-2. The New Empty File Window for the Header File

When you are happy with the file name, simply click finish, and you will
be presented with the file ready for you to insert the instructions you want
to put it in it. However, Microchip will have inserted a lot of text. I tend to
delete all this so that I have an empty file. This is shown in Figure 7-3.

100 AR X108 .20 - et AT - ettt

Fie Bt Virw Mavigete Sowce Relschor Proecion Debug Teim Toch Window Helo [l Sear
FEES DO R R R A R N R o et L = BCTY

B prets o FRE N T

b ———g R IERELTE LFeSaen uaid
2 :

(Frm B Clees

-
e

] o

Figure 7-3. The Header File Editing Window

215

CHAPTER 7 CREATING A HEADER FILE

Now select the tab that will open the program ‘c’ file, which contains
the instructions you want to use. This is what the red arrow is pointing to.
This ‘c’ file should now be visible in the editing window. Now, using the
mouse, select all the instructions that you will use to set up and control the
LCD. You should also select all the definitions and all subroutines used for
the LCD. These instructions will become the contents of the header file.
This is shown in Figure 7-4.

10 WPLAR XIDE A0 velrerPORTE - detaut. - a x
[80 Vi Mngte S Rfuctr Braticnon Doy lanm Tooh Wendon oy |]

5 as Feod e wariea] | W 0 i’

] e
ey BB B0 \‘0“1"&\1!!:“ L0 Y

REEE

by —— .

SEEHEEREEERE:

L

B veid spnestieliepe ()
PO

« s
5 Giome |5 § be Do) mames o
— —

Figure 7-4. Selecting the Instructions to Copy into the Header File

Note that the first instruction that should be selected is the start of the
definitions used for the instructions to set up the LCD. This is shown in
Figure 7-5.

216

CHAPTER 7 CREATING A HEADER FILE

o O @ F i Do

Figure 7-5. The Start of the Selection of the Instructions for the
Headler File

Now that you have selected all the required instructions, cut all of them
out of your program file. Then reopen the new header file, and paste the

instructions into this file. You will need to save the contents of the new
header file.

Including the Header File into Your Program

Now that you have cut all the LCD instructions from the ‘c’ program file,
we need to tell this ‘c’ file where it can find the newly created header file.
There are two ways of doing this; one involves a local header file and the
other involves a global header file.

Alocal header file is like the one we have just created. It is one that is
saved inside the project we want to use it in, as with the current situation.
To include this type of header file, all we need to do is add the following
#include instruction to the compiler.

#include “LCD4bitOnPortb.h” You must write the quotation marks as
shown.

217

CHAPTER 7 CREATING A HEADER FILE

Note that as you type the phrase “#include’, the MPLABX software
should recognize what you are doing and give you some suggestions of
the file you may want to include, especially when you type the opening
quotation mark. Your header file should be one of them.

I try to place all my include commands together; therefore, I will add
this alongside the #include <xc.h> already in the ‘c’ file. Therefore, my ‘c’
file should look like that shown in Figure 7-6.

3 MPLAB X IDE v.20 - volthMeterPORTE : defauit

File Edt View Mavigate Source Refactor Production Debug Team Took Window Help

bl | “ B 5@ (e - T -8 e, Wit A & - b o0 novzdee rwensbako| B (D mwsr

| Projects = O || StwtPage x| [volatMetPORTC x|] datOrPorth x

o S oy BRE-8ABSFEL|CPLT (A0 B L
) Header Fles =t

g @ edtronborbh 1 Tnis is & basic program to centzol the LCD uisng the PIC LeFssas
i i voorantFies =

i i B Lo s 3

i) D) Source Fles 4

1 volatMetePORTE ¢ s

;‘ i [l Ubrares -

X [Losdsbies

=

i

10| [//#inol
11
12
11
4
15
16
17

config O5C = INTIDET
config FOMEN = CFF
config IESO = GFF

Figure 7-6. The Include Command for the New Header File

I'hope this clearly shows you how to create and include a local header
file. If you now compile the project, it should compile without errors.

If your compilation throws up some errors, then go through the steps
again carefully, and make sure you cut all the instructions for the LCD.

The Global Header File

The more general way of using header files is to make them global.
However, this will involve saving all the header files you create in the main
include directory that the compiler software, which you are using, goes to
find all the include files. If you do save them in the correct directory, then

218

CHAPTER 7 CREATING A HEADER FILE

the header files will be available to all other projects you write. The path to
where you should save your header files may be

C:\Program Files(x86)\Microchip\xc8\v1.32\include
or
C:\Program Files(x86)\Microchip\xc8\v2.10\pic\include

This may vary slightly, but you should be able to find the correct
include directory.

If you save the header file this way, then to include them into your
project you would have to write:

#include <LCD4bitOnPortb.h> Note the use of the
greater and less than symbols.

If you successfully save the file in the global location, you should be
able to delete it from the local project directory. Having done so, it should
still compile safely as the compiler program will successfully find the
header file you want to include.

Having done this, you will now have a header file that should be
globally available for all your projects.

Creating a Header File for Your
Configuration Instructions

The configuration words are instructions that allow us to set up the PIC in
general terms. The main instruction is deciding where the PIC will get its
primary oscillator source. There are a variety of options including a high-
speed oscillator, HS, a lower-speed oscillator, XC, and RC oscillator and the
internal oscillator block. Also, it can program the PIC to turn off the WDT
and the LVP among many other aspects. In all the projects in this book, we
will use the internal oscillator block and turn the WDT and the LVP off.

219

CHAPTER 7 CREATING A HEADER FILE

As long as you will do this for all your projects, you can create a header
file for this configuration. Note: Give it a useful name that explains what it
does, and save it in the global include directory.

I have done this for the rest of the projects I will use in this book. Open
a new empty file under the Header Files in the project tree as before.

The window shown in Figure 7-7 should open.

3 New xc8_headerh .
Steps Name and Locati
L. Choose Fie Type File Name: configIntOscwdtDfLvpOff
2. Name and Location £ fo o
Extension: h v
Set this Extension as Default
Project: voltMeterPORTE
Folder: Browse...
Created File: | C:\vol or tB.X \configintOscWdtOffLvpOff.h

Figure 7-7. The New Empty File Window

Note I have chosen a very descriptive name for this header file
conFigIntOscWdtOffLvpOff.h. Once you are happy with it, you should
close the window by clicking finish. The editing window will open with the
header file waiting to be written to. Simply paste in all the configuration
instructions into the file, and save the file.

You should have now created a local header file for your configuration
commands. If you save it in the global include directory, you will have a

220

CHAPTER 7 CREATING A HEADER FILE

global header file for use in all the projects you want to configure the PIC
in that same precise manner.
To include this global header file, we simply have to add the command:

#include <conFigIntOscWdtOffLvpOff.h>

The main ‘c’ program file is now much reduced, but you will have
configured the PIC as you require.

Summary

In this chapter we have studied header files. We have learnt what they are
and how to create a global header file that can be used in all your projects.

In the next chapter, we will study a series of specific C programming
commands. Then we will learn how to use one of the powerful debugging
tools within MPLABX so that we can analyze what those programming
commands do.

221

CHAPTER 8

Understanding Some
Useful Code

This chapter involves some detailed analysis of the instructions. It will
involve describing what the instruction should do and so predict the result
of the instruction. It will then explain how you can single step through
the program while watching the variables to see if the result is what we
predicted. This chapter will also look at one of the very powerful debug
facilities of the MPLABX IDE.

We will examine some of the main operations in ‘C’ code. The
following is a list of the coding we will look at:

o Pointers; what they are and how to initialize them and
how to use them

e Thelogical AND function, both individual bits and
whole bytes. What is the difference and what they can
be used for

e The simple increment and decrement
e The greater than and the less than
e Arange of comparison instructions

After reading this chapter, you should have a good understanding of the
above instructions and some possible application of the instruction. You will

© Hubert Henry Ward 2020 223
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_8

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

also know how to use the debug tools in MPLABX to step through a program
one instruction at a time and use a watch window to see what happens.

The Trace Table

A good debugging method is used to create a trace table of what would be
the result of the instructions in a program on all the SFRs and variables
the program used. Then you would step through the instructions and
monitor the SFRs and variables to check that the instructions worked as
you thought. This chapter will give you a good insight to this powerful
debugging technique.

The Process

Listing 8-1 is the program used to discuss each instruction. We'll then go
through each instruction’s method of using the debug tools in MPLABX to
check that our concepts are correct.

Listing 8-1. Sample Program

1. unsigned char numberi = oxof, t, m, a, n, b;

//this creates 6 8 bit
memory locations but
loads number1l with
15 or 0b00001111

2. int y = 2; //this creates a 16
bit memory location;
2 8 bits one after
the other, called y
and loads it with
the value 2

224

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

int number2 = oxffff, z;

float u = 2.55;

unsigned int number3 = Oxffff;

unsigned char list [5];

unsigned char xlistpointer;

//this creates
2 more 16 but
locations and
loads number2 with
all logic '1's

//this creates a
variable 'u' that
can store decimal
numbers and loads
it with 2.55

//this creates a
16 bit number,
"number3' where
all 16 bits are
used for the value
and loads it all
logic '1's = 65535

//this creates an
array of 5 8 bit
memory locations
one after the
other

//this creates a
16 bit memory
location that can
be used to store
the address of a
location in an
array. This is
16bits as it holds
an address which
is 16 bits long

225

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

8.

10.

11.

12.

13.

14.
15.
16.
17.

18.

19.

20.

226

void main()

{

number1++;

numberl = numberl + 2;
number2 = numberi - 2;
number2 = 0b1111111111110000;
m= 0,

a = 0;

y =5;

Z = ++y;

Z = y+4;

z = (unsigned char) u;
y =175

//This is the main loop
in the program

//the opening bracket
for the main loop

//this adds 1 to the
value in number1

//this makes number1
= itself but with 2
added to it

//this will load number
2 with what was in
number 1 but takes 2
off it

//this will change
the value stored in
number2 to -16

//this loads m with 0

//this loads a with 0

//this loads y with 5

// 'y' is incremented
first then z = what y
has become

// z equal what y was
then y is incremented

// z changes to an
unsigned char to show
all 8 bits which equal
251 in decimal. This
is called "Casting"

//y is now set to 7

21. y ="7Y;s

22. y =7;

23. Z = y<1;

24. z = y>>1;

25. a = 0b00010011;
26. y=(a>0) ? a : -1;
27 y=(a==0) ? a : -1;

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

//this will simply invert

all the bits in the
variable 'y’

//this makes y = 7
// z is back as an

integer and its value
is what was in y but
shifted left one bit Y
is unchanged

// z is what was in y but

shifted right one bit
but Y is unchanged Note
with the shift right
instruction the LSB is
simply lost. With the
shift left instruction
the MSB is lost.

//this makes a = 19
// This a test. Is 'a’

greater than 0. If the
test is true then 'y’
will = 'a'. If the
test is Untrue then

'yt will = -1

// This a test. Is 'a'

equal to 0. If the
test is true then 'y’
will = 'a'. If the
test is Untrue then

'yt will = -1

227

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

28.

29.

30.

31.

32.

33.

228

y=(a»0) ? z : -1;

listpointer = list;

xlistpointer =2;

listpointer ++;

xlistpointer = 5;

listpointer = list;

// This a test. Is 'a’
greater than 0. If the
test is true then
'y' will = 'z'. If the
test is Untrue then
'yt will = -1

//this loads the pointer
listpointer with the
address of the first
location in the list
array

//this will load the
first location in the
list array with the
value 2

//this will increment the
value in xlistpointer.
This means it will be
pointing to the next
location in the array
list

//this will load the
second location in the
array list with 5

//this loads the pointer
listpointer with the
address of the first
location in the array
list

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

34. a = a & 0xFo; //this will force the
first 4 bits of a to
logic '0" and the last
four bits will only be
a logic '1' if the last
four bits in 'a' are
already a logic '1'

35. // this is termed bit
masking or bit testing,
testing to see if a
bit in a variable is a

logic '1'

36. t=75; //this loads the
variable t with the
value '5'

37. if (187 ==1)m=-5; //this tests to see if

the value of 't' is
the same as 7. If it
is then m = 5 if it is
not then m = 9. This
is anding the byte

38. elsem =9; //this is the else
statement for the if
then else instruction.
Note you don’t always
need to write the else
keyword but in this
case we do need the
else

39. n = 0b00001000; //this loads the value 8
into the variable 'n’

40. if (n & 0b00001000)m = 5;

229

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

41. else m = 3; //this is a test to
see if bit 3 of the
variable 'n' is at a
logic '1' if it is
then m = 5, if its Not
m = 3. This is bit
anding

42. if (n & 0b00000001)t = 4;

43. else t = 2; //this is a test to
see if bit 0 of the
variable 'n' is at a
logic '1' if it is then
t =4, if its not t =2

44. n = 10; //This loads the
variable 'n'with 10

45. for (a =0, a <5, at+;) //this creates a for do
loop that goes through
it 5 times

46. { //opening bracket for
the for do loop

47. xlistpointer = n; //this loads the
current location that
the listpointer is
pointing to with the
value that is in 'n’

48. listpointer ++; //this increments the
pointer listpointer so
that it is pointing to
the next location in
the array

49. n=n+2; //this increases the
value of n by 2

230

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

50. } //the closing bracket of
the for do loop
51. while (1); //this is a for ever

loop that forces the
micro to stop at this
instruction as it will
do nothing forever

52. } //the closing bracket of
the main loop

Lines 1-6

I am hoping that the comments for lines 1-6 do describe what the
instructions will do. Just note that with some of the variables, we are
loading them with an initial value as in line 1 “number1 = 0x0f”; this
creates an 8 bit memory location and loads it with the initial value of 0x0f
which is 15 in decimal.

Line 7 unsigned char :=listpointer;

In line 7 we are creating a pointer which is a variable that points to
something. In this case we will make it point to a memory location in an
array. This means that the 16-bit number in the pointer will be the actual
address of one of the memory locations in the array. We will see this work
later in the program. Note that the ‘+’ is there to tell the compiler this is not
a simple variable; it is a pointer.

Lines 8 and 9 are fairly straightforward, and the comments describe

what they are.

231

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Line 10 number!++;

This will simply increase the value of numberl by 1. As numberl was
loaded initially with 15, after this instruction, it will be 16.

Line 11 number1 = number1 + 2;

If you want to increase the value of a variable by more than 1, it can
be done this way. Therefore, this instruction will add 2 to the variable
numberl. After this instruction, the value stored in number1 will be 18.

Line 12 number2 = number1 - 2;

This will change the value stored in number2, which was 32767, with 16.
This is 2 less than the value stored in numberl. Note also that the value on
number] will be unchanged.

I'have not shown the instruction number?2 --; as this will simply
subtract 1 from the current value in number2.

Line 13 number2 = 0b1111111111110000;

This changes the value that is in number2 from 16 to -16. This works
because the MSB bitl5 of number?2 is not part of the value. It tells the
compiler that the number is either positive, when bit 15 is a logic ‘0, or
negative when bit 15 is a logic ‘1! In this case, bit 15 is a logic ‘1, so the
number is a negative number. However, to determine what the value is, the
compiler must carry out a 2s compliment on the 16 bits in the instruction.
In this way the binary value 0b1111111111110000 means -16. See the
Appendix for an explanation of what 2s compliment is.

Lines 14 through 16 are fairly straightforward, and the comments
describe what they are.

232

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Line 17 z = ++y;

This increments the value of ‘y’ by 1, making it 6, and then copies this
value into ‘z’ Therefore, after this instruction, both ‘y’ and ‘z’ will be 6.

Line 18 z = y++;

This instruction makes ‘z’ the same value that is stored in ‘y’ and then
increments the value of ‘y. Therefore, after this instruction, ‘z’ will again
be 6, but ‘y’ will be 7.

Line 19 z = (unsigned char) u;

This instruction changes the data type of the variable ‘z! This is called
casting. Note that the change in type only lasts for this instruction. The data
type for the variable ‘u’ is a float, and the value is 2.55. However, this is stored
in ‘z" as an unsigned char. This means the numbers after the decimal point
will be lost. Therefore, after this instruction, the value in ‘2’ will be 2, not 2.55
Line 20 is a fairly straightforward, and the comments describe what it is.

Line21y = ~y;

This instruction will simply invert all the bits in the variable. This means
the bits that where logic ‘1’ become logic ‘0’ and what were logic ‘0’

become logic ‘1’
Therefore, before this instruction the bits in ‘y’ were
0000000000000111

After this instruction, they will be

233

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

1111111111111000. Note that this is will become -8
when the 2s compliment has finished. Note that ‘y’
is an int or integer which means the MSB is not part
of the number.

Line 22 is a fairly straightforward, and the comments
describe what it is. After this instruction, the value in
‘v’ will be 7.

Line 23 z = y<<1;

This moves a copy of what is in ‘y" into ‘z, but before the value is copied,
the bits are shifted one bit to the right. The value in ‘y’ is in binary.

0000000000000111

Before this is copied into ‘z, the bits are shifted one
place to the right. Therefore, the bits in ‘2’ will be

0000000000001110 which is 14. Note that shifting
bits 1 bit to the left simply multiplies by 2. Moving
the bits 1 bit to the right simply divides by 2.

Note that the value in ‘y’ is unchanged. The number of places the bits
are shifted is specified by the value after the >>, in this case 1, but it could
be 2, 3, 4, and so on.

Line 24 z = y>>1;

This does a similar action as with line 23 but shifts the bits one place to the

left before copying the value into ‘z!
The bits in ‘z’ will now be

0000000000000011 which is 3.

234

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Note that the value in ‘y’ will be unchanged at 7.

Line 25 is fairly straightforward and the comments describe what it is.
After this instruction, the value in ‘a’ will be 19.

Line 26 y=(a>0) ? a: -1;

This is the first type of instruction with a bracket. When brackets are used,
we are using a test, and the result of the test will either be true, a logic ‘1,
or untrue a logic ‘0’ The expression inside the bracket is defining the test
as “is ‘a’ greater than 0.” In line 25 we set the value as ‘a’ to 19, and so it is
greater than 0. This means the test is true, and so ‘y’ will become a copy of
‘a’ Therefore, in this case the test is true, and after this instruction, ‘y’ will
be 19 the same as ‘a’

If the test was found to be untrue, then ‘y’ would take on the other
value stated in this instruction which in this case is -1.

Line 27 y=(a==0) ?a: -1,

The test in this instruction is “is a equal to 0.” Well the value stored in ‘@’
is still 19 which means the test is untrue, and so after this instruction, the
value in ‘y’ will be -1. Note that the value in ‘a’ will be unchanged.

Line 28 y=(a>0) ? z: -1;

The test is the same as that in line 26. The result is again true, but this
time the variable ‘y’ will take on the value of that stored in ‘z’ and not ‘a
This means after this instruction, the value of ‘y’ will be 3 as this is what is
stored in ‘z’ from before in the program.

235

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Line 29 listpointer = list;

This is the first instruction that uses the pointer listpointer. Note that I have
given the pointer this name as the array that I will be using this to point to
has been given the name list; see line 6 where I created the array list having
5 memory locations each 8-bit-long as they are to store unsigned chars.
This instruction loads the memory location listpointer with the first
address of the array list. This means the listpointer is pointing to the first
location in that array. Note that the variables window will most likely show
the address of the first location in the array in hexadecimal format, for
example, 0X13. This is the same as 19 in decimal or 0000000000010011 in
binary. This is why you need to appreciate decimal, binary, and
hexadecimal. These numbers systems are explained in the Appendix.

Line 30 =listpointer =2;

This will load the memory location that the listpointer is pointing to with
the value of 2. As with line 29, we made the listpointer point to the first
location in the list array; then after this instruction, the value of the first
location in the list array will have be 2. Remember that the first location in
the array is location ‘0’

Line 31 listpointer ++;

This simply increases the value stored in the listpointer by 1. As the values in
the pointer are the addresses inside the array list, then after this instruction,
the listpointer will be pointing to the next location in the array list.

Line 32 =listpointer = 5;

This will load the current memory location that the listpointer is pointing
to with the value 5. Therefore, after this instruction, the first location in the
array list will have the value 2 and the second will have the value 5.

236

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Line 33 listpointer = list;

This simply is a repeat of the instruction at line 29. After this instruction
the contents of the listpointer will be the address of the first location in the
array list.

This is to get the listpointer pointing to the first address in the array list
ready for the for do loop at line 44.

Line 34 a = a & OxFO0;

This is the first of a type of instruction termed bit masking or bit testing.
This is actually bit masking where the idea is to mask out the first 4 bits,
termed the low nibble. This works on the principle of the logic AND
function where a ‘1’ AND a ‘1’ result in a logic ‘1. However, a ‘1’ AND a ‘0’
produces a logic ‘0’

This instruction uses the single ‘&’ symbol which means this is a bit
AND. With this type of instruction each, individual bit of the stated variable
is ANDED with the data expressed in the instruction.

The data in the instruction is

0XF0 which in binary is 11110000

The data in the variable that the AND is ANDED
with is

‘a’ which has the binary value of 00010011 which is
19. See line 25.

This means the first 4 bits in the variable ‘a’ will be masked out and
result in 4 logic ‘0’s as they will be ANDED with a logic ‘0. The next four
bits, the high nibble, bits 4, 5, 6, and 7, will be a copy of the four high bits in
the variable ‘a

Line 35 is just an extra set of comments.

Line36 simple loads t with the value of 5.

237

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Line 37 if (1 && 7 == t)m = 5;

This instruction combines the test with a bit instruction. However, the
double ‘&&’ sign means the ANDing is done on all 8 bits of the variable
and data. This means the test “is the result of the full byte AND of the
variable ‘t’ with the value 7 the same as the value in ‘t” If the test is true,
then value of the variable ‘m’ will go to 5.

Line 38 else m = 9;

This else is connected to the if instruction in line 37. We know what will
happen if the results of the test are true. This else instruction tells us what
will happen if the test is untrue. It the test is untrue, then the value of the
variable ‘m’ will go to 9.

As ‘t’ was loaded with 5 at line 36, then the test will be untrue, and so
after this instruction, the value of ‘m’ will change to 9, because of the else
statement on line 38.

An application of this type of instruction could be with entry to a room
via a keypad. The result of a 4-digit number entered in via a keypad could
be stored in the variable ‘t’ It could then be matched to a pre-stored 4-digit
code using this type of instruction, and the door could be opened if the
result is true or not if the result was untrue.

Line 39 n = 0b00001000;

This is loading the variable ‘n’ with the number 8. It is really setting bit 4 to
alogic ‘1’ This is ready for the next bit test in lines 40 and 41.

238

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Line 40 if (n & 0b00001000)m = 5;
Line 41 else m = 3;

This is an individual bit test to see if bit 4 of the variable ‘n’ is a logic ‘1" If
itis, the test is true, and the value of m is set to 5. If bit 4 of the variable ‘n’

is not a logic ‘1, the test will be untrue, and the variable ‘m’” will be set to 3.
Note that the value of the variable ‘n” will remain unchanged. We know that
the test will be true, and so after this instruction, the value of m will be 5.

Line 42 if (n & 0b00000001)t = 4;
Line 43 else t = 2;

This is the same type of test as described in lines 40 and 41 except that the bit
that is being tested in line 42 is bit 0 of the variable ‘n! We know from before
that bit 0 of the variable 1’ is a logic ‘0, not a logic ‘1. This means that the test
will be untrue. Therefore, after this instruction, the value of the variable ‘t’
will be 2, not the 4 that it would have been if the result of the test was true.

Line 44 n = 10;

This simply loads the variable ‘n’ with the value 10 ready for the next
instructions.

Line 45 for (a = 0, a < 5, a++))

This sets up a for do loop that is carried out 5 times. The loop is described
between the opening bracket at 45 and 50. The instructions inside the
bracket, note that this is not a normal test bracket, firstly load the variable
‘a’ with the value 0. Then it carries out the test is ‘a’ less than 5, which it

239

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

is. As the test is true, the micro will then carry out the instructions listed
inside the curly brackets. Then the value of ‘a’ is incremented. The loop
starts again until a = 5 and the test a < 5 becomes untrue. When it is untrue,
the micro moves outside the loop.

Line 46 is simply the opening curly bracket of the for do loop.

Line 47 =listpointer = n;

This loads the memory location that the listpointer is pointing to with the
value stored in the variable ‘n’ which at this time is 10.

You should remember that in line 33, we made the pointer listpointer
point to the first location in the array list. This then means after this
instruction, the data in the first location of the array list will be 10.

Line 48 listpointer ++;

With this instruction we simply increase the value stored in listpointer
by 1. This means that the pointer listpointer will now be pointing to the
second memory location in the array list.

Line49n=n +2;

Now we simply add 2 to the value that is stored in the variable ‘n’ Therefore,
after this instruction, the values stored in the variable ‘n’ will be 12.

The micro will now go through the instructions of the for do loop
another 4 times. In this way we can load the 5 memory locations in the
array list with the data from Table 8-1.

240

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Table 8-1. The Contents of the Array List After the For Do Loop Has
Finished

Location in List Array Identifier for the Location Value in The Location

1st 0 10
2nd 1 12
3rd 2 14
4th 3 16
5th 4 18

This is quite a succinct way of filling the memory locations in an array
with data. Note that arrays can have a large number of memory locations.
Line 50 is the closing bracket of the for do loop.

Line 51 while (1);

This sets up a forever loop as the result of the test described in the
bracket will always be true a logic ‘1. This simply halts the program at this
instruction as the micro will forever do nothing.

Line 52 is the closing bracket of the main loop.

Debugging the Program

The best way to show how to use the debug tools in MPLABX is to go
through the instructions of the program would and show them in a video.
I'have produced such a video that can be used to show the process.
However, what I will do in this chapter is show some screenshots to show
you the main points of the process.

241

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Compiling the Completed Program

After writing the complete program, the first thing to do is to build and run
the program. To do this, click the mouse on the Debug Main Projecticon in
the main menu bar shown in Figure 8-1.

Figure 8-1. The Debug Main Project Icon

This will build the program which tests the syntax of the program for
errors, and assuming there are no errors, the program will be loaded into the
PIC. If you have chosen the simulator as the tool as shown in Figure 2-6, then
the simulated PIC will be loaded with the program. If you have downloaded
the program to a practical PIC using the ICD3 or ICD4 can, the process will
be the same. In this example, I have used the MPLABX simulator PIC

While the program compiles and the program is loaded to the PIC, the
output window should be visible during this process. Once the program
loads successfully, the screen should look something like what is shown in

Figure 8-2.

242

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

SB-D00Omuadd d B2 Pt nerme ot | B 1 eesn

EXI TN Pyt ey — Lo, - [|

Figure 8-2. The Completed Output Window

The output window should be visible on the screen. You will see a
small ‘x’ next to a small dot in the right-hand corner of the output window.
Ifyou click the mouse on the small dot, the window will now be fastened
inside the editing area of the screen as shown in Figure 8-3.

e T el I A CT

B [T - T s -

Figure 8-3. The Output Window Now Moved into the Editing Area

243

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

There will now be a small minimize icon in the right-hand corner of
the output window. If you click on this, the output window will drop into
the low menu bar at the bottom of the screen. The program is still running
in the back ground. You should minimize the output window.

If you select the small ‘x’ instead of the small dot, the output window
will disappear, but you can get it back by either hitting the control key and
the number 4, Crtl4, together, or by selecting the word window from the
main menu bar and selecting the word output from the drop-down menu
bar that appears. I prefer to have the output window minimized to the
bottom menu bar, as shown in Figure 8-4.

& O1ome F B emis [Clves @ Besern D)o i e, Lo, . D T ™

Figure 8-4. The Output Window Minimized

Once you have placed the output window out of the way, we now need
to select the variables that we want to look at as the program progresses.
To do this select the word windows from the main menu bar, then select
the word debugging from the drop-down menu, and select variables from
the fly-out menu that appears as shown in Figure 8-5.

244

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

O MPLAR XIDE V30 i et

8 x
it £ Vi oty Sonmn Refvcter Srohcnon Doty Yawm Tosin Wikl taop wil
CHAS D E - Tl e DO O ki W40 [EE W rooen cwenc wiimns| o 5 ewar
& P o1 . -
- D R o2 e
! B UEFEEF LR Cen o L
1 o B et o3 RIslis * - .
- F e ey
¥ 'S Dot i
o B3 Hrsigaten w7 o [
H =t Acton Catet wus ot
; 0 Tei CodSrmed " "
= D Oupt et o g
- -0 Snarn s
oy Bebugyry B ow *he ¥ bew
e ™ G Namshim MRS eieiie in e &
o T 1D Weke - -
o Tarpn Minrscey e) cama amemay
(R O g anmay

: e

3 Pt e o fnscvacd

a0l | cor s a<neaon Gmoiee cobw |2 O

1 Chooe 48 Docurmemts Cobhme |2

53 Clove Db Bocumrarts a “eldns

a3 Ok i F

o Pe— e A e

ue | s o =

' B Dobugyer Corssin

& Owem & F veia [oot U Seivors ot O wnte a3l e,) - &£ L L

Figure 8-5. The Variables Fly-Out Menu

You could have selected the Watches window from the fly-out menu
as there is not much difference between the two options; it is down to
experience and personnel choice. Having selected the variables, the screen
should look something like this shown in Figure 8-6.

O LA K06 0 T - o
Fie £ VMoo St Refuckes Prochucnen Doy leww Tooh Wisdou Help G
FES D = AT -E-P-RX-L-UE- D000 0l W0 0 Bt 8 Fooem cera: imiiins) g 1 wear
= darblen « CHESL] Bl |
jrc'- e darve e oma ey Wt FE-ARFRGIFLL AU eE el *
i " - : T
® "
[" -
i "
1] "
"
i -
"
L "
s e
i an
i i
L] A=
™
1
Lo
108
"
=) R v i
i
aa
[t
1
us "
i
17 whil
e
o S A mbe 1] Cded O e T s) S e L | - " s

Figure 8-6. The Variables Window

245

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

You may have to change the size of the window by selecting the
boarders, and when the mouse changes to a double arrow, move the
window accordingly.

Now we need to select what variables we want to look at. Really it
should be all the variables we have created in the program. In other
programs, you may want to be more selective. To select the variables, you
want to simply click the mouse on the small blue diamond shape with the
plus sign on it on the side menu in the variables window. An empty row
should appear, and the small diamond that was grayed out should now
be blue. Click the mouse on this now visible diamond, and the new watch
window will appear. You should then click the mouse on the variable
named ‘a, then while holding the control key, select the names of all the
other variables you want to look at. They should be highlighted blue as
shown in Figure 8-7.

Note that the unsigned char number3 will not be visible in the new watch
window. This is because this variable is not actually used in the program
even though we have defined it and loaded it with OXFFFF which 65535.

-]

r
E
°

] T R e b e Y e

T B

% adeE DAl

ol
.{_
i
£
i
i
i

-
1=

o
i

S 3| ffsean e ®

EITTNEE Y P P re— T e Bl Lo, |

Figure 8-7. The New Watch Window

246

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

Once you have selected all the variables you want to watch, simply
click OK, and the variables will appear inside the variables window.

You can decide what type of information you want to display in the
variable window by clicking the right-hand button on the mouse on any
of the titled boxes at the top of the variable list. The fly-out menu will now
be visible as shown in Figure 8-8. You should tick or un-tick the type of
information you want displayed.

T-8-r-R-T-00- 0000 6 8@ W 4 ¥ ol & Moo snicc mminms) 1 rwsr

F Gloe ¢ F eis [cdmes O Sescers o ©mate e, Lo,) | b

Figure 8-8. The Variable Type Fly-Out menu

You now need to pause and reset the program so that it will start at the
first instruction. To do this click the mouse on the orange pause symbol on
the menu bar. When this happens the blue circle with the two white arrows
becomes visible. If you now click the mouse on this button, the program
will reset, and the screen should now look like the one shown in Figure 8-9.

247

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

F Gloe ¢ F eis [cdmes O Sescers o ©mate e, Lo,) | b e

Figure 8-9. The Program Reset

There should be the green highlighted instruction as shown in
Figure 8-9. This should be the first instruction in the program. The IDE is
now waiting for you to either run the program by pressing the green circle
with the white arrow inside it, something we don’t want to do this time,
or get the program to single step through the instructions one at a time.
This is what we want to do so that we can examine the variables as they
change according to the instructions of the program. To do this we must
click the mouse on the blue square with the curved orange arrow pointing
down. The program will now step through the instructions of the program
one at a time each time you press this button, but it will not step into the
instructions of a function or subroutine.

Note that there is a blue square with a straight orange arrow pointing
vertically down. This is to allow you to step into a function or subroutine if
you want to.

Well I know it is not ideal trying to describe this process in a textbook,
but I hope I have described it well enough for you to use this powerful

248

CHAPTER 8 UNDERSTANDING SOME USEFUL CODE

debug option in MPLABX. You should now step through each of the
instructions and see if the results of the instructions agree with the analysis
of the instructions in section.

You will need to take your time and maybe need to reread the
description.

Summary

I hope you have found this chapter useful and you have been able to step
through the program. Understanding what the instructions actually do
and how they work is very important to the programmer. Also being able
to use the debugging tools of the IDE is essential to solving problems in a
program. Both aspects will help you become a better programmer.

In this final chapter, we have studied some specific C programming
instructions. We have also studied how to use one of the debugging tools
within MPLABX to study the outcome of those instructions to confirm that
they do what we expected them to do.

249

APPENDIX

Additional Resources

Useful Definitions

Bit operators

Operator Description

& AND each bit

| OR each bit (inclusive OR)

A EXOR each bit (exclusive OR)
<<n Shift left n places

>>N Shift right n places

~ One’s compliment (invert each bit)

For xample, if ‘x’ = 1111 1111, then:

Operation Result

x & OXOF 0000 1111
x| OXOF 11111111
x\OXOF 1111 0000
X=x<<2 11111100
x=x>>4 0000 1111
X=~X 0000 0000

© Hubert Henry Ward 2020 251
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4

https://doi.org/10.1007/978-1-4842-5525-4

APPENDIX ADDITIONAL RESOURCES

Mathematical and Logic Operators

Operator Description

+ Leaves the variable as it was
- Creates the negative of the variable
++ Increments the variable by 1

-- Decrements the variable by 1

* Multiplies the two variables y = a:xb

/ Divides y= a/b

% Used to get the remainder of a division of two variables m = a%b
< Less than if (y < @) means y is less than a

<= Less than or equal to if (y < =a)

means y is less than or equal to a

> Greater than if (y > a)
means y is greater than a

>= Greater than or equal to if (y > =a)
means y is greater than or equal to a

= Makes the variable equaltoy = 3
After this y takes on the value of 3

! Not if ('PORTBbits.RB0) not bit0 of portb which means if bit0 of portb is

logic 0
&& Whole register AND
Il Whole register OR
? This is a test operator y=(a>0) ? a : -1

This test to see if ‘a’ is greater than 0. If it is, then y becomes equal to ‘a’;
if it’s not, then y = -1

252

APPENDIX ADDITIONAL RESOURCES

Keywords

Keyword What It Does

typedef Allows the programmer to define any phrase to represent an existing type

#ifndef This checks to see if a label you want to use has not been defined in any
include files you want to use
If it has, it does not allow you to define it now. If it hasn't, you are allowed
to define it now

#define You can define what your label means here
#endif This denotes the end of your definition after the #ifndef code

sizeof Returns the size in number of bytes of a variable

Global variables are variables that once declared can be read from or
written to anywhere from within the program.

Data Types

Type Size Minimum Value Maximum Value
Char 8 hits -128 127

unsigned char 8 bits 0 255

int 16 bits -32,768 32,767

unsigned int 16 bits 0 65,535

short 16 bits -32,768 32,767

unsigned short 16 bits 0 65,535

short long 24 bits -8,388,608 8,388,607
unsigned short long 24 bits 0 16,777,215

253

APPENDIX ADDITIONAL RESOURCES

Type Size Minimum Value Maximum Value
long 32 bits -2,147,483,648 2,147.483,647
unsigned long 32 bits 0 4,294,967,295
Float 32 bits

Floating point numbers

Type Size Min Exponent Max Exponent Min Normalized Max Normalized

float 32 -126 128 2126 2128
Double 32 -126 128 21% 2128
Functions

Functions are similar to subroutines in that they are small sections of
program code that are used to perform a specific function. They can be set
up to return a particular type of variable, or they can be set up to return no
variable.

Example
Char getvalue ()

This function will return a char value at the end of its instructions.

unsigned int age ()

}
This function will return an unsigned int value at the end of its
instructions.

254

APPENDIX ADDITIONAL RESOURCES

void motoron ()

{
}

This function will not return a value when it ends.
Functions, just like subroutines, have to be called from the main
program. In ‘C’ this is done by stating the name of the function as follows:

getvalue ();

age ();
motoron ();

These will call the specified function.
Parameters

Some functions may require parameters that can be used within the
function. This is true for both void and non-void functions. If a function
needs a parameter that it will use within the function, it needs to be
expressed when the function is declared. The following is an example of
such a function:

void delay250 (char x)

{
while (x>0)
{
TMR4 = 0;
while (TMR4<35211);
X--3
}
}

To call this function, use

delay250 (4);

255

APPENDIX ADDITIONAL RESOURCES

This will assign the value 4 to the char ‘x; and so this will create a total
of a 1-second delay.

Loops

All ‘C’ programs are a collection of loops. The loops will be carried out
either once as in subroutines or for as long as their test condition is true.
The most common loops are while loops. For example:

While (a == 1)

{

Do what is inside the curly brackets.
}

The test condition is that ‘a’ becomes equal to 1. While this test is true,
thatis, a is 1, then do what is inside the curly brackets.

Numbering Systems Within Microprocessor-
Based Systems

As will become evident in the study to come, microprocessor-based
systems use the binary number system. This is because the binary number
system can only have one of two digits, either a ‘0’ or a ‘1! These states have
been called logic ‘0’ or logic ‘1’ as in electronic devices. Note also that all
the logic operations such as AND, OR, NAND, NOR, NOT, and EXOR all
work using binary format. The binary format can be used to mimic the
logic states of “TRUE” or “FALSE” precisely; and best of all, they can be
represented by voltage, that is, 0V for logic ‘0’ and +5V for logic ‘1!

256

APPENDIX ADDITIONAL RESOURCES

Therefore, it is essential that the modern engineer gains a full
understanding of the binary number system. This appendix is aimed at
teaching the reader all they need to know about binary numbers.

Binary Numbers

These are a series of ‘0s’ and ‘1s’ that represent numbers. With respect

to microprocessor-based systems, the numbers they are representing

are themselves representing codes for instructions and data used within
microprocessor-based programs. We, as humans, cannot easily interpret
binary numbers as we use the deanery number system. The deanery
number system uses the base number 10 which means all the columns we
put our digits in to form numbers are based on powers of 10. For example,
the thousand column is based on 10°, and the hundreds column is based
on 10% The tens is on 10' and the units is 10°. Try putting 10° in on your
calculator using the x¥ button, and you will find it equals 1; in fact, any
number raised to the power 0 will equal 1.

Converting Decimal to Binary

Probably the first step to understanding binary numbers is in creating
them, that is, converting decimal to binary. There are numerous ways of
doing this, but I feel that the most straightforward is to repeatedly divide
the decimal number by 2, the base number of binary. This is shown here:

257

APPENDIX ADDITIONAL RESOURCES

Example 1
Convert 66 to binary.
The remainders

_/ v

216610 100001 0
The MSB The LSB
21331
2116 |0
2| 810
214 |0
21 210
NB you must use the last '1' from
: the divide 2 by 2 or 2 by 3

Simply keep on dividing the number by 2, putting
the answer underneath as shown, with the
remainder to the side. You should note that all the
remainders are either 0 or 1. These digits actually
make up the binary number. Note also the last
division always results in an answer ‘1’; we stop
there, no more dividing.

258

APPENDIX ADDITIONAL RESOURCES

To create the binary number, we take the top of
the remainders, as shown, and put it into the least
significant bit, or column, for the binary number.
The other remainder digits follow on thus making
up the complete 7-digit number.

Converting from Binary to Decimal

It would be useful to determine if the binary number
shown does actually relate to 66 in decimal. This is
done by converting back into decimal the binary
number 100001 0. To do this, we must realize that
numbers are displayed in columns. The columns are
based on the base number of the system used. With
binary numbers, the base number is 2; therefore, the

columns are based on powers of 2. This is shown in

the following table:
Base No. 2 26 2° 2 23 22 2! 20
Decimal 128 64 32 16 8 4 2 1
Equivalent
Binary 1 0 0 0 0 1 0
Number

To complete the conversion, we simply sum all the decimal equivalents

where there is a 1 in the binary column.

In this case the sum is 64+2 = 66

259

APPENDIX ADDITIONAL RESOURCES

Example 2

Convert 127 to binary and check the result.

The remainders

— f___—___-—qﬂ'--hx

[v

2 (127 1 1111111
The MSB The LSB
2163 |1
21311
21151
21 7|1
213 |1
NB you must use the last '1' from
: the divide 2 by 2 or 2 by 3
Base No. 2 2 2° 2t 22 22 2 2

Decimal 128 64 32 16 8 4 2 1
Equivalent

Binary 0 1 1 1 1 1 1 1
Number

To complete the conversion, we simply sum all the decimal equivalents
where there is a 1 in the binary column.
In this case the sum is: 64+32+16+8+4+2+1 =127

260

APPENDIX ADDITIONAL RESOURCES

Exercise 1
Covert the following numbers to binary, and check your results by
converting back to decimal. Show all workings out.

99
255
137

Adding and Subtracting Binary Numbers

Adding and subtracting numbers are perhaps the most basic operations
we can carry out on numbers. Binary numbers follow the same rules
as decimal, but there are only 2 allowable digits. Also, computers don’t
actually subtract numbers as the following will show.

Exercise 2

Add the following decimal numbers in 8-bit binary
notation. Note: Check your answers.

23+21, 35+123, 125+75

Worked example

Remember binary numbers have only two digits: ‘0’
or ‘L.

Add 23 to 21 in 8-bit binary.

261

APPENDIX ADDITIONAL RESOURCES

Method:

Convert to 8-bit binary, and add; remember the

following four rules:

0+0 = 0

0+1 =1

140 = 1

1+1 = 0 with 1 to carry

23 in 8 bit binary is

00010111 note we must state all 8 bits as it

is 8 bit binary.

By the same process 21 in binary is

Therefore the sum is

00010101
00010111
+00010101

00101100

To check your answer, put the result into the lookup table, then add the

decimal equivalent.

Power 2 25 25
Decimal Equivalent 128 64 32
Binary Number 0 0 1

24 23 22 2 2°
16 8 4 2 1
0 1 1 0 0

Sumis 32 + 8 +4 = 44.

262

APPENDIX ADDITIONAL RESOURCES

Subtracting Binary Numbers

Exercise 3

Microprocessor-based systems actually subtract numbers using a method
which is addition. This involves using the 2s compliment of a number, and
it is best explained by the following example.

Subtract the following decimal numbers using 8-bit
binary 2s compliment; check your answers:

128 - 28,79 - 78,55 -5,251 - 151
Worked example

Convert the two numbers to binary using the
method shown previously.

128 in 8-bit binary is 10000000. NOTE that we
MUST use ALL 8 bits.

28 in 8-bit binary is 00011100.

Take the 2s compliment of 00011100 as this is the
number that we are subtracting from 128.

Only create the 2s compliment of the subterand, the number we are
subtracting with.

NOTE: We must use a full 8-bit number putting extra 0 in where
needed.

To take the 2s compliment, firstly take the compliment, and then add
binary 1 to the compliment: the compliment of the binary number is found
by simply flipping all the bits, that is, a ‘0’ becomes a ‘1’ and a ‘1’ becomes
a‘o

263

APPENDIX ADDITIONAL RESOURCES

Compliment of 00011100 is 11100011
add binary 1 + 00000001

11100100

Now add the 2s compliment to the first binary number as shown:

10000000
+ 11100100

result is 01100100

NOTE: THE LAST CARRY INTO THE NINTH DIGIT IS DISCARDED
AS THERE CAN ONLY BE THE SPECIFIED NUMBER OF DIGITS, 8 IN
THIS CASE. Don’t forget we added 1 so we should give it back.

The binary result converts to 100 in decimal. This is the correct result.

Check your answers in the usual way.

Note that computers subtract in this method because we can only
create an adder circuit in logic.

The Hexadecimal Number System

Microprocessor-based system can only recognize data that is in binary
format. In its most basic form, this means that all data inputted at the
keyboard should be in binary format. This is quite a formidable concept.
Just think every letter of every word must be inputted as a binary number.
It takes at least 4 binary digits to represent a letter, and so typing words into
a computer would be very difficult indeed. Thankfully, word-processing
programs take ASCII characters to represent the letters you press at the
keyboard.

264

APPENDIX ADDITIONAL RESOURCES

With the type of programs we will be writing into microcomputers,
we will actually be typing in 2 characters to represent the codes for the
instructions or data of the programs we will write. If we were to type these
in as binary numbers, it would take 8 binary bits to make each code. This
would be very time-consuming and difficult to make sure we get right. To
make things easier, we will use the hexadecimal numbering system. This
system has 16 unique digits which are

0123456789

After this we cannot use 10 as this uses two digits: a 1 and a 0.
Therefore, we must use 6 more unique digits. To do this. we use the first 6
letters of the alphabet. Therefore, the full 16 digits are

012356789ABCDEF

Remember we are going to use the hexadecimal number to represent
binary digits and this revolves round the idea that 1 hexadecimal digit
represents 4 binary digits as the 4 binary bits in decimal go from 0 to
15, that is, 16 numbers. Therefore, every 8-bit binary number can be
represented by 2 hexadecimal digits. This makes typing in the code for
programs much quicker and more secure than using the full binary
numbers that computers use. Note that to accommodate the user typing
inputs as hexadecimal digits, there is a program in micro’s ROM to convert
the hexadecimal to binary for us. However, we will look at converting
binary to hexadecimal.

Exercise 4

Convert the following 8-bit binary numbers to
hexadecimal:

10011110, 10101010, 11111111, 11110000, 00001111,
and 11001101

265

APPENDIX ADDITIONAL RESOURCES

Worked example

Method: Split the 8 bits into two 4-bit numbers.
Convert each 4 bit into the decimal equivalent, then
look up the hexadecimal for the decimal equivalent
in the lookup table: NOTE: Treat each four binary
bits as a separate binary number.

Convert 1001 | 1110
Dec 9 | 14
Hex 9 | E

Answer 10011110 in Hex is 9E

In this way 8-bit binary numbers can be converted into 2 hexadecimal
digits.

266

Index

A, B
Acquisition time
8-Mhz oscillator, 129
20-Mhz oscillator, 129, 130
ADC input channels
algorithm, 132, 133
instructions analysis, 134
setup, 131
simulation circuit, 134
variable voltage, 132
ADCONO control
register, 120-122
ADCONTI register, 122, 123
ADCONZ2 control register
ADC conversion, 125
ADC operation
timing, 127
capacitor, 126
conversion result, 124
justification, 125
Microchip, 126
TAD periods, 127, 128
Analogue inputs, 119, 120
Analogue to Digital Converter
(ADC), 33-36
Assembler language, 5

© Hubert Henry Ward 2020

C

Casting, 226, 233

Comments, 24, 27, 52

Complex instruction set chip
(CISC), 2

‘C’ programming language, 5, 23

D

Data mode, LCD controller
analogue inputs, 140
ASCII character set, 138, 139
connection, 141
RS pin, 141
VEE pin, 141

Debug tools
drop-down menu bar, 244
editing area, 243
fly-out menu, 244, 245, 247

function/subroutine, 248, 249

menu bar, 242
MPLABX simulator PIC, 242
new watch window, 246
program reset, 248

tick/un-tick information, 247

variables window, 245, 246

H. H. Ward, C Programming for the PIC Microcontroller,

https://doi.org/10.1007/978-1-4842-5525-4

https://doi.org/10.1007/978-1-4842-5525-4

INDEX

E

ECAD package, 52, 59
8-Bit register, 10

F

Flowchart, 11
For Do Loop, 82-85

G

Global header file, 218, 219
Global variables, 87-90
Goto instruction, 69

H

Header files
configuration instructions,
219-221

creation
editing window, 215
instructions to copy, 216
new empty file window, 215
project tree visible, 214
selection of instructions, 217

description, 213

global, 218, 219

include command, 217, 218

,J,K

IF This Then Do That Else Do, 65

Integrated development
environment (IDE), 7, 8

Internal oscillator block, 101

268

L

LED start stop program
instructions, 43-49
Liquid crystal display (LCD)
4bit, 146-158
8-bit mode, 165-174
controller, 137
data mode (see Data mode,
LCD controller)
instruction/command
mode, 137
initialization, 142
instruction set, 143, 145
MPLABX links, 158
process outline, 145
sending data, 142
special character (see Special
characters, LCD controller)
Subroutine lcdOut (), 159
Subroutine sendInfo (), 159-161
Local variables, 87

Machine code, 3, 4
MCC Microchip
Code Configurator, 8

Microchip, 1, 5, 12
Microchip embedded, 14
Microprocessor-based system, 1, 3
Microprocessor system, 2
MPLABX, 12

IDE, 12,13

project creation

comments font, changing, 22
compiler window selection, 17
completed project, 19
device window, selection, 15
editing window, 21
naming, project, 18
new empty file window, 20
opening screen, 13
tool window, selection, 16
MPLABX, instruction
xlistpointer =2, 236
xlistpointer = 5, 236
«listpointer = n, 240
a=a & 0xFo0, 237
elsem =3, 239
elsem =9, 238
elset=2,239
if (n & 0b00000001)t = 4, 239
if (n & 0b00001000)m =5, 239
if(t&&7==t)m=>5,238
initial value, load, 231
listpointer ++, 236, 240
listpointer = list, 236, 237
for (a=0, a<5, a++;), 239, 240
n =0b00001000, 238
n =10, 239
n=n+2, 240, 241
numberl++, 232
numberl = numberl + 2, 232
number2 =
0b1111111111110000, 232
number2 = numberl-2, 232
sample program, 224-226,
228, 230

INDEX

unsigned char =listpointer, 231
while (1), 241
y=-~vy, 233
y=(a==0)?a:-1, 235
y=(a>0)?a:-1,235
y=(a>0) ?z:-1, 235
Z = ++y, 233
z = (unsigned char) u, 233
Z=y++, 233
z=y>>1, 234, 235
z=y<<1, 234
MPLABX software, 53
mySecond18fProg.c, 68

N

Nested subroutines, 160

O

One-second delay, 74-78
OPCODE, 5

OPERAND, 5

OSCCONO register, 38, 39
OSCCON register, 37, 39
Oscillator block, 26, 36-39
OSCillator CONtrol register, 36
Oscillator frequency, 37-39

P, Q
PIC configuration, 23-29
PIC programming, LCD, 162
array, 162, 163
pointer, 163, 164

269

INDEX

PORTS, 9, 30 R
PICf > 19 Real-world signals, 119
setting, 31, 32

Programmable industrial S

controllers (PICs), 1, 2

Programmable interface controller, 1 Source Fly-Out Menu, 68

Special characters, LCD controller
character map, 210
DDRAM, 209
8-bit binary code, 191
Empty 5-by-8 grid, 190
pixel map, 191, 192
program, 192-209
simulation, 210

Programming languages, 3, 5, 6
Program testing
active windows, 56
add row button, 55
compiling and running, 56-58
completed stimulus window, 55
editing screen, 54
Input Output PIN Selection

Window, 56 The Stack, 160
PIN RAO, selection, 54 Standalone project, 14
practical, 59-62 Subroutine lcdOut (), 159
Proteus schematic, Subroutines
myFirst18fProg, 59 defining and calling, 79
stimulus window option, 53 Qelay, 80 .
PROTEUS schematics, 59 first program with

Prototype board two delays, 81, 82
algorithm, 110, 111 Subroutine sendInfo (), 159

crossroads set, traffic lights, 109, ASCII character table, 161
110,113,115 nested subroutines, 160

debugging tools, 108 open source, 161

flowchart, crossroads set, 111, 112

hardware tool, 106 Ts U

instructions, 117, 118 TOCON register, 71-75

Matrix Multimedia, 107 Trace table, 224

Microchip web site, 106 Traffic lights

RJ11 cable, 108 algorithm, 94

simulator, 116, 117 configuration words, 100, 101
window properties, 107 controlling, 93, 94

270

flowchart, 95, 96
program instruction, 101-106
Proteus simulation, 100
single set program, 96, 98, 99

TRIS, 30

TRISA, 31, 32

TRISB, 32

Type Char, 85

Type int, 86

Type Unsigned char, 86, 103, 163

\"

Variable delay, 82-85

Variable delay subroutine, 87, 88, 90

INDEX

Volt meter program, 175
algorithm, 175-185
displayVoltage

subroutine, 187, 188
gohome subroutine, 185
initialiseThePic, 188
Proteus simulation, 189
sysVoltage

subroutine, 186, 187

W XY,Z
while command, 40
While vs. If Then, 69

271

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction
	Programmable Industrial Controllers
	Programming Languages
	Machine Code
	Assembler Language
	C Programming Language
	Different Programming Languages
	The IDE

	Summary

	Chapter 2: Our First Program
	The PORTS of the PIC
	Good Programming Practice
	The Algorithm
	The Flowchart
	The Program Listing

	Using MPLABX IDE
	Creating the Project in MPLABX
	The First Program Turning On and Off an Output
	The Main Aspects of a ‘C’ Program
	The Comments and PIC Configuration
	The TRISA and TRISB
	A TRIS Example
	Exercise 2-1

	Setting the PORTS
	The ADC (Analogue to Digital Converter)
	Setting Up the Oscillator
	Exercise 2-2

	Waiting for an Input
	Waiting to Turn the LED Off
	Exercise 2-3

	Comments
	Testing the Program
	Compiling and Running the Program

	Testing the Program Practically
	Summary
	Exercise Answers

	Chapter 3: Updating the Program
	If This Then Do That
	Saving the Old Program
	Labels and the Goto Instruction
	Exercise 3-1

	While vs. If Then
	Slowing the Micro Down
	T0CON Register
	Adding a One-Second Delay
	Exercise 3-2

	Delaying the Turn Off
	Using Subroutines
	Defining and Calling a Subroutine
	The delay Subroutine
	Calling the Subroutine from Within the Main Program

	The Variable Delay and the For Do Loop
	Local and Global Variables and Data Types
	Type Char
	Type Unsigned char
	Type int
	Local Variables
	Global Variables
	Exercise 3-3

	Summary
	Exercise Answers

	Chapter 4: Applying What We’ve Learned
	Controlling a Single Set of Traffic Lights
	The Algorithm
	The Configuration Words

	The Analysis of the Program
	Downloading the Program to a Prototype Board
	Extending the Program to the Crossroads Traffic Lights
	The Algorithm
	The Program Analysis

	Summary

	Chapter 5: Real-World Inputs
	Using Analogue Inputs
	The ADCON0 Control Register

	The ADCON1 Register
	The ADCON2 Register
	Creating the Required Acquisition Time
	Example 1
	Example 2

	Changing the ADC Input Channels
	A Basic Setup for the ADC
	A Basic Program for the ADC
	The Algorithm
	Analysis of the Program

	Summary

	Chapter 6: Using the LCD
	The LCD Controller
	Instruction or Command Mode
	Data Mode

	Initializing the LCD
	The Subroutine lcdOut ()
	The Subroutine sendInfo ()

	The New Aspects to PIC Programming in This LCD Program
	Arrays
	Using Pointers

	Connecting the LCD in 8-Bit Mode
	The Volt Meter Program
	The Algorithm
	The New Aspects of the Program
	The gohome Subroutine
	The sysVoltage Subroutine
	The displayVoltage Subroutine
	Changing the Main Part of the Program

	Creating Special Characters on the LCD
	Summary

	Chapter 7: Creating a Header File
	Header Files
	Creating a Header File
	Including the Header File into Your Program
	The Global Header File
	Creating a Header File for Your Configuration Instructions
	Summary

	Chapter 8: Understanding Some Useful Code
	The Trace Table
	The Process
	Lines 1–6
	Line 7 unsigned char ∗listpointer;
	Line 10 number1++;
	Line 11 number1 = number1 + 2;
	Line 12 number2 = number1 - 2;
	Line 13 number2 = 0b1111111111110000;
	Line 17 z = ++y;
	Line 18 z = y++;
	Line 19 z = (unsigned char) u;
	Line 21 y = ~y;
	Line 23 z = y<<1;
	Line 24 z = y>>1;
	Line 26 y=(a>0) ? a : -1;
	Line 27 y=(a==0) ? a : -1;
	Line 28 y=(a>0) ? z: -1;
	Line 29 listpointer = list;
	Line 30 ∗listpointer =2;
	Line 31 listpointer ++;
	Line 32 ∗listpointer = 5;
	Line 33 listpointer = list;
	Line 34 a = a & 0xF0;
	Line 37 if (t && 7 == t)m = 5;
	Line 38 else m = 9;
	Line 39 n = 0b00001000;
	Line 40 if (n & 0b00001000)m = 5;
	Line 41 else m = 3;
	Line 42 if (n & 0b00000001)t = 4;
	Line 43 else t = 2;
	Line 44 n = 10;
	Line 45 for (a = 0, a < 5, a++;)
	Line 47 ∗listpointer = n;
	Line 48 listpointer ++;
	Line 49 n = n +2;
	Line 51 while (1);

	Debugging the Program
	Compiling the Completed Program

	Summary

	Appendix: Additional Resources

	Useful Definitions
	Mathematical and Logic Operators
	Keywords
	Data Types
	Functions
	Loops
	Numbering Systems Within Microprocessor-Based Systems
	Binary Numbers
	Converting Decimal to Binary
	Adding and Subtracting Binary Numbers
	Subtracting Binary Numbers
	The Hexadecimal Number System

	Index

