
T E C H N O L O G Y I N A C T I O N ™

C Programming
for the PIC
Microcontroller

Demystify Coding with Embedded
Programming
—
Hubert Henry Ward

www.allitebooks.com

http://www.allitebooks.org

C Programming
for the PIC

Microcontroller
Demystify Coding

with Embedded Programming

Hubert Henry Ward

www.allitebooks.com

http://www.allitebooks.org

C Programming for the PIC Microcontroller: Demystify Coding with

Embedded Programming

ISBN-13 (pbk): 978-1-4842-5524-7		 ISBN-13 (electronic): 978-1-4842-5525-4
https://doi.org/10.1007/978-1-4842-5525-4

Copyright © 2020 by Hubert Henry Ward

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5524-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Hubert Henry Ward
Lancashire, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5525-4
http://www.allitebooks.org

Dedicated to my wife Ann

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Introduction���1

Programmable Industrial Controllers���1

Programming Languages���3

Machine Code��3

Assembler Language���5

C Programming Language���5

Different Programming Languages��6

The IDE���7

Summary���8

Chapter 2: Our First Program��9

The PORTS of the PIC���9

Good Programming Practice��10

The Algorithm���10

The Flowchart���11

The Program Listing���11

Using MPLABX IDE���12

Creating the Project in MPLABX���13

The First Program Turning On and Off an Output���23

Table of Contents

About the Author��xiii

About the Technical Reviewer���xv

Introduction���xvii

www.allitebooks.com

http://www.allitebooks.org

vi

The Main Aspects of a ‘C’ Program��23

The Comments and PIC Configuration���23

The TRISA and TRISB��29

A TRIS Example��31

Exercise 2-1���31

Setting the PORTS��31

The ADC (Analogue to Digital Converter)��33

Setting Up the Oscillator��36

Exercise 2-2���39

Waiting for an Input��39

Waiting to Turn the LED Off���42

Exercise 2-3���51

Comments��52

Testing the Program���52

Compiling and Running the Program��56

Testing the Program Practically���59

Summary���62

Exercise Answers���63

Chapter 3: Updating the Program��65

If This Then Do That��65

Saving the Old Program��66

Labels and the Goto Instruction��69

Exercise 3-1���69

While vs. If Then���69

Slowing the Micro Down��70

T0CON Register��71

Table of ContentsTable of Contents

vii

Adding a One-Second Delay��74

Exercise 3-2���75

Delaying the Turn Off��77

Using Subroutines��79

Defining and Calling a Subroutine��79

The delay Subroutine��80

Calling the Subroutine from Within the Main Program�����������������������������������80

The Variable Delay and the For Do Loop��82

Local and Global Variables and Data Types��85

Type Char��85

Type Unsigned char��86

Type int���86

Local Variables���87

Global Variables��87

Exercise 3-3���90

Summary���91

Exercise Answers���91

Chapter 4: Applying What We’ve Learned��93

Controlling a Single Set of Traffic Lights��93

The Algorithm���94

The Configuration Words��100

The Analysis of the Program��101

Downloading the Program to a Prototype Board��106

Extending the Program to the Crossroads Traffic Lights������������������������������109

The Algorithm���110

Summary���118

Table of ContentsTable of Contents

viii

Chapter 5: Real-World Inputs��119

Using Analogue Inputs���119

The ADCON0 Control Register���120

The ADCON1 Register���122

The ADCON2 Register���124

Creating the Required Acquisition Time���128

Example 1���129

Example 2���129

Changing the ADC Input Channels���130

A Basic Setup for the ADC��131

A Basic Program for the ADC���132

The Algorithm���132

Analysis of the Program���134

Summary���135

Chapter 6: Using the LCD���137

The LCD Controller���137

Instruction or Command Mode���137

Data Mode��138

Initializing the LCD���142

The Subroutine lcdOut ()���159

The Subroutine sendInfo ()���159

The New Aspects to PIC Programming in This LCD Program�����������������������������162

Arrays���162

Using Pointers��163

Connecting the LCD in 8-Bit Mode���165

Table of ContentsTable of Contents

ix

The Volt Meter Program���175

The Algorithm���175

Creating Special Characters on the LCD��190

Summary���211

Chapter 7: Creating a Header File��213

Header Files���213

Creating a Header File���213

Including the Header File into Your Program���217

The Global Header File���218

Creating a Header File for Your Configuration Instructions��������������������������������219

Summary���221

Chapter 8: Understanding Some Useful Code������������������������������������223

The Trace Table��224

The Process���224

Lines 1–6��231

Line 7 unsigned char ∗listpointer;��231

Line 10 number1++;��232

Line 11 number1 = number1 + 2;��232

Line 12 number2 = number1 - 2;���232

Line 13 number2 = 0b1111111111110000;���232

Line 17 z = ++y;���233

Line 18 z = y++;���233

Line 19 z = (unsigned char) u;��233

Line 21 y = ~y;���233

Line 23 z = y<<1;���234

Line 24 z = y>>1;���234

Table of ContentsTable of Contents

x

Line 26 y=(a>0) ? a : -1;���235

Line 27 y=(a==0) ? a : -1;��235

Line 28 y=(a>0) ? z : -1;���235

Line 29 listpointer = list;��236

Line 30 ∗listpointer =2;��236

Line 31 listpointer ++;��236

Line 32 ∗listpointer = 5;���236

Line 33 listpointer = list;��237

Line 34 a = a & 0xF0;���237

Line 37 if (t && 7 == t)m = 5;��238

Line 38 else m = 9;���238

Line 39 n = 0b00001000;���238

Line 40 if (n & 0b00001000)m = 5; Line 41 else m = 3;�������������������������������239

Line 42 if (n & 0b00000001)t = 4; Line 43 else t = 2;����������������������������������239

Line 44 n = 10;���239

Line 45 for (a = 0, a < 5, a++;)���239

Line 47 ∗listpointer = n;���240

Line 48 listpointer ++;��240

Line 49 n = n +2;��240

Line 51 while (1);��241

Debugging the Program���241

Compiling the Completed Program���242

Summary���249

Table of ContentsTable of Contents

xi

Appendix: Additional Resources��251

Useful Definitions���251

Mathematical and Logic Operators��252

Keywords���253

Data Types��253

Functions���254

Loops���256

Numbering Systems Within Microprocessor-Based Systems����������������������������256

Binary Numbers��257

Converting Decimal to Binary���257

Adding and Subtracting Binary Numbers���261

Subtracting Binary Numbers��263

The Hexadecimal Number System���264

Index��267

Table of ContentsTable of Contents

xiii

About the Author

Hubert Henry Ward has over 24 years of experience in teaching students

at the Higher National Certificate and the Higher Diploma in Electrical

and Electronic Engineering. Hubert has a 2.1 Honours Bachelor’s Degree

in Electrical & Electronic Engineering. Hubert has also worked as a

college lecturer and consultant in embedded programming. His work

has established his expertise in the assembler language and C, MPLABX,

and designing electronic circuit and PCBs using ECAD software. Hubert

was also the UK technical expert in Mechatronics for 3 years, training the

UK team and taking them to enter in the Skills Olympics in Seoul 2001,

resulting in one of the best outcomes to date for the United Kingdom in

Mechatronics.

xv

About the Technical Reviewer

Leigh Orme is a graduate engineer at SSE plc in Greater Manchester,

United Kingdom. He has an electrical and electronic engineering degree

from Manchester Metropolitan University.

xvii

Introduction

This book looks at programming a PIC microcontroller in C. We’ll study

the following aspects of programming the PIC:

	 1.	 Looking at some of the background to the program

language for micros

	 2.	 Creating a project in the Microchip IDE MPLABX

	 3.	 Configuring the PIC

	 4.	 Setting up the oscillator using the internal oscillator

block

	 5.	 Setting up some digital inputs and outputs

	 6.	 Simulating a simple program using the simulator in

MPLABX

	 7.	 Creating a simple delay and a variable delay

	 8.	 Using the ADC to accommodate an analogue input

to the PIC

	 9.	 Using an LCD in both 4-bit and 8-bit mode to

display data

	 10.	 How to make a header file to save writing the same

instructions again in every project.

	 11.	 Using arrays and controlling how you step through

an array

xviii

�The Aim of the Book
The aim of this book is to introduce the reader to PIC microcontrollers and

writing programs in ‘C’. There is some background information starting

with what a PIC is and some aspects of programming languages. It will

then move onto what an IDE is and how to use MPLABX, one of the most

common industrial IDEs. MPLABX is an IDE that is freely available from

the Microchip web site. The ‘C’ compiler is their free compiler that again

can be downloaded from their web site. Note that I use MPLABX version

5.2 and the XC8 compiler version 2.05 or 1.35. These can be downloaded

from the archive section of their web site.

Then the text moves on to the exciting world of writing programs

for microcontrollers. It is based around the range of microcontrollers,

termed PIC micros, available from Microchip. It will show you how to

write programs without buying any devices or equipment as you can use

the MPLABX simulators that come free with the MPLABX IDE. If you have

access to an ECAD package, such as PROTEUS or Tina, that has the ability

to run 8-bit or 16-bit and so on micros, then it will show you how to use

that software to run your programs, again without buying any equipment.

This book is based around the PIC18F4525 as it has the advantage

of being a 40 pin dual in line package. This means it is quite easy for the

hobbyist to create a practical circuit on vero board or even a small PCB.

My other books cover using the PIC to control a variety of DC motors

such as simple DC motors using PWM to control the speed of the DC

motor, stepper motors, and servo motors. I also have a short book looking

at communications for the 18F4525. Apart from those books, I am writing

another range of books on how to use a 32-bit PIC, but this is a surface

mount device which makes it rather more difficult to build practical

circuits. However, the 32-bit PICs have some very useful additions.

IntroductionIntroduction

xix

The PIC18F4525 is a very useful PIC with 5 ports giving us the use of

36 I/O. It has 4 timers and 3 external interrupt sources. It has a two-CCP

module with the ability to provide two separate PWM outputs, and it has

full bridge drive capabilities. There are more functions available, and they

all make the PIC18F4525 a very useful microcontroller.

�The Objectives of the Book
After reading this book, you should be able to do the following:

•	 Write PIC programs in C

•	 Use the main features of the MPLABX IDE

•	 Interface the PIC to the real world

•	 Design and create useful programs based around the

PIC18F4525

•	 Enjoy delving into the exciting world of embedded

programming

I hope you enjoy reading this book and find it very useful. I firmly

believe that programmers should not just put together blocks of code,

which perform the functions they want, to create a program. To be a good

programmer, with the versatility to alter their programs to cope with the

wide variety of microcontrollers and their different oscillator choices,

you need to know how the code works. In my many years of teaching this

subject, I have often been told that to create a 1-second delay, you simply

write the instruction delay (1000). Well, that only works for a certain

oscillator frequency and timer setting. To be able to create a delay using

any oscillator, you need to understand how your timer counts and at what

frequency it counts. Armed with that sort of deeper understanding, you

will be a better programmer.

IntroductionIntroduction

xx

This book is aimed at giving you the full understanding of the

fundamental aspects of the microcontroller and how it works. Then, with

a deeper understanding of how the different control registers control

the micro, you will become a programmer who will, with experience,

fully control your device and not rely on bits of code, which you don’t

understand, doing the programming for you. It is essential that we have

programmers who have this deep appreciation of their microcontrollers,

and I hope that after reading this book, you are on your way to becoming

one of those programmers.

�The Prerequites for the Book
There are none really, but if you understand ‘C’ programming, it would

be useful. Also, if you understand the binary and hexadecimal number

systems, it would be an advantage, but there is a section in the Appendix

that will help you with that.

IntroductionIntroduction

1© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_1

CHAPTER 1

Introduction
This chapter covers some of the fundamentals of what a microprocessor-

based system is and how a microcontroller is different. It then covers the

historic development of the ‘C’ programming language for PIC controllers.

After reading this chapter, you should appreciate how the micro sees

your instructions and understand the terms machine code, assembler,

compiler, and linker.

�Programmable Industrial Controllers
Programmable Industrial Controllers (PICs) is really just a trademark

for the microcontrollers produced by Microchip, or so I have been led

to believe. Some say it stands for Programmable Industrial Controllers,

or Programmable Intelligent Controller, or Programmable Interface

Controller. However, the term PIC is used by Microchip to cover an

extremely wide range of microcontrollers produced by them. I will simply

refer to the microcontroller as the PIC.

Each PIC will have all the components of a microprocessor-based

system as shown in Figure 1-1, such as

•	 A microprocessor

•	 ROM, RAM

•	 An I/O chip

•	 The associated address, data, and control buses

2

However, all these parts are all on a single chip, not several as with older

microprocessor-based systems. This means it is really a single-chip computer.

As well as all that, the PIC has much more circuitry on the single chip.

This extra circuitry is used to make it into a control system with a micro at the

heart of it. The extra circuit may include an ADC, opamp circuits for compare

and capture, a PWM module, and a UART module. These extra circuits may

not be on all PICs as PICs vary in their makeup for different applications.

One more thing before we move on is that the PIC is a RISC chip as

opposed to a CISC chip. RISC stands for reduced instruction set chip, whereas

CISC stands for complex instruction set chip. Indeed, the instruction set for

PIC micros ranges from 35 to 75 core instructions. However, the 18F4525 has

an extended instruction set at your disposal. The Intel processor, which is a

CISC chip, uses hundreds of instructions. So the PIC is pretty efficient.

Figure 1-1.  The Basic Microprocessor System

Chapter 1 Introduction

3

�Programming Languages
There is a wide variety of programming languages for microprocessor-

based systems. However, all microprocessors only understand

voltage levels, ideally 5V and 0V. These two voltage levels are how all

microprocessors understand logic which has only two states which are

“yes or no,” 5V or 0V, and now 3.3v and 0v as with the 32-bit PICs.

It is because of this that the binary number system is commonly used

in microprocessor-based systems. This is because binary only has two

discrete digits ‘1’ and ‘0’.

Consider the following binary number:

10101001

This really represents

5v0v5v0v5v0v0v5v

The 5v and 0v is really the only language that all microprocessors

understand. However, we can easily use binary to represent the 5v and 0v

as ‘1’ and ‘0’. So writing in binary is easier than writing 5v and 0v.

�Machine Code
This then is the birth of “machine code,” the most basic programming

language termed low level as it is at the level that the micro understands.

Now consider the following:

A9

This is a hexadecimal representation of the 8 binary bits 10101001.

It is used to enable programmers to represent binary numbers in a less

complicated manner to avoid mistakes, as its very easy to write a ‘0’

instead of a ‘1’. However, the early programmers actually wrote their

Chapter 1 Introduction

4

programs in the binary machine code to make them faster. There is a

section in the Appendix that covers the binary and hexadecimal number

systems which is something you need to understand. See Appendix 7.

Now consider the following:

LDA#

This is actually termed “mnemonics” which stands

for an alphanumeric code used to represent the

instruction.

The mnemonic LDA# represents the instruction

LoaD the Accumulator immediately with the number that follows:

‘LD’ for load, ‘A’ for accumulator, and ‘#’ for

immediately.

It is fairly obvious that we, as humans, can learn to understand the

mnemonics quicker than hexadecimal or the binary of the machine code.

However, the microprocessor does not understand these mnemonics.

Somehow the mnemonics has to be converted to the machine code.

Consider the following:

LDA# A9 10101001

The first column is the code or mnemonics; the next two columns

are the conversion to the machine code via hexadecimal and then to

binary. Every instruction in the micros instruction set has its hexadecimal

or binary equivalent. With the EMMA systems, the students actually

converted the mnemonics code to the machine code, but this is very time-

consuming.

The act of converting the mnemonics to machine code is called

“compiling,” and with the EMMAs, we get the students to compile the

mnemonics. In real programming, we use a program called a compiler to

do this.

Chapter 1 Introduction

5

�Assembler Language
Different micros use different mnemonics to represent the instructions in

their instruction set. All these different mnemonics are now collectively

termed assembler language. There are different ones for different systems

such as TASAM for TINA with the EMMAs, MASAM for Microsoft used in

DOS programs, and MPLAB assembler from Microchip.

When using assembler language, all instructions have two parts:

•	 The OPCODE. This is the part that describes the

operation (i.e., LDA Load The Accumulator).

•	 The OPERAND. Where the micro gets the data to be

used in the operation (i.e., ‘#’).

This means that the data is what follows immediately next in the

micros memory.

As this book is based on the C programming language, there is no

real need for the reader to understand the assembly language, but it is

important to realize that all program languages, even visual basic, have to

be converted to the machine code before being loaded into the micro. This

process is called compiling, and it usually involves converting the program

instructions into assembler before going into machine code.

�C Programming Language
C and now C++ are generic programming languages that many

programmers now study. As this has meant that there are a lot of engineers

who can program in this language, then Microchip, the manufactures

of PICs, have produced ‘C’ compilers that can be used to convert a ‘C’

program into the machine code for their PICs. Indeed, as the number of

programmers who write in assembler have reduced and the number of ‘C’

programmers have increased, Microchip has stopped writing assembler

Chapter 1 Introduction

6

compilers for their more advanced PICs such as the 32-bit PICs. Also, I

believe that Siemens is now moving toward programming their PLCs in ‘C’.

The more modern languages such as Python and C# have their roots

in ‘C’.

�Different Programming Languages
Table 1-1 shows some of the more common programming languages.

Table 1-1.  Some Common

Programming Languages

Example Language

Machine code (binary 1s and 0s)

Assembly Language

Cobol

Fortran

C, Pascal

Ada 83

C++,

C#

Python

Basic

Visual Basic

Chapter 1 Introduction

7

�The IDE
The term IDE stands for integrated development environment. It is

actually a collection of the different programs needed to write program

instructions in our chosen language. Then convert them to the actual

machine code that the micro understands, and also link together any bits

of program we may want to use.

The programs we need in the IDE are

•	 A text editor to write the instructions for the program.

Note: The simple text editor “Notepad” could be

used, but the text editor in MPLABX is by far a more

advanced text editor.

•	 A compiler to change the instructions into a format the

micro can understand.

•	 A linker to combine any files the programmer wants to

use.

•	 A driver that will allow the programming tool used to

load the program into the micro.

•	 A variety of simulation tools to allow the programmer

to test aspects of the program.

•	 A variety of debug tools to allow the programmer to test

the program live within the micro.

All these are in the IDE we choose; Microsoft has Visual Studio,

Microchip has MPLABX, and Freescale uses CodeWarrior. Note that

CODEBLOCK is an IDE for writing generic 'C' programs that will run on

your PC. As this book is based on the PIC micro, it will concentrate on

MPLABX. MPLABX has an improved text editor to give the text different

color codes when we save the file as a .asm or .c for c program file such as

light blue for keywords, light gray for comments, and so on.

Chapter 1 Introduction

8

There are some other organization programs within MPLABX such

as the ability to write to the configuration registers for the PIC. There is

also the ability to simulate your programs within the IDE. All this makes

MPLABX a useful tool for programming PICs.

There is also a program called MCC Microchip Code Configurator. This

will actually produce a lot of the code you need, to use various aspects of

the PIC, for you. However, I firmly believe that you should produce the

code you use yourself so that you fully understand the code you use. I will

not cover the use of the MCC. Also, Microchip has not written the MCC for

all their PICs, and the 18F4525 is one they have missed so far.

Really when asked who the programmer is, you should be able to say

that you are and not the MCC. When you take the time to study how to

write your own code, you will find it is not as hard as you first thought.

Also, you will get a better self-reward if you write it all yourself.

The only aspect of the programs that I let Microchip do for me is to

write the code configuration bits that set up the PIC. This is only because it

is so simple to do this and it covers all the #pragma statements.

�Summary
This chapter has given you some background information about

microcontrollers. It has introduced some of the terms and given you an

explanation of what they mean such as

•	 PIC

•	 IDE

The next chapter will take you through creating a project in MPLABX

the IDE from Microchip. It will also allow you to produce your first PIC

program.

Chapter 1 Introduction

9© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_2

CHAPTER 2

Our First Program
After reading this chapter, you should be able to create a project and

write a program that uses inputs from switches and turns on outputs.

We are going to start off by writing a program that will make the PIC wait

until a switch connected to bit 0 of PORTA goes high. It will then light

an LED on bit 0 of PORTB. The PIC will then wait until a second switch,

connected this time to bit 1 of PORTA, goes high. When this happens, the

LED on bit 0 of PORTB will be turned off. Note that both switches will be

single momentary switches, that is, they will stay high only when they are

pressed; when they are released, their logic will go low.

�The PORTS of the PIC
Before I go any further, I think I should explain that the PORTS are the

actual physical connections that the PIC uses to connect to the outside

world. Note that the micros have used the analogy of the real ports, such

as the Port of London or the Port of Liverpool, which actually connect the

country to the outside world taking goods in for the country and sending

goods out of the country.

These PORTS connect internally to registers inside the PIC. The registers

are merely a collection of individual cells which we call bits. In the 18f4525

there are 8 cells or bits connected together to form a register. This is because

the 18f4525 is an 8-bit micro. These bits are numbered from right to left as

bit 0, bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, and bit 7. This is shown in Figure 2-1.

10

The bit 0 is sometimes referred to as the LSB or least significant bit, as

this represents the units column or the ones column; whereas the bit7 is

the MSB, most significant bit, as this represents the 128 column. Note that

a 32-bit micro will have 32 bits in their registers and PORTS.

�Good Programming Practice
All programs should be planned. The programmer should not just start

writing code in the IDE. A good programmer should write an algorithm

then construct a flowchart then write the program listing.

�The Algorithm
This is really simply putting your thoughts, of how you are going to get the

PIC to do what is asked of it, down on paper. The purpose is to focus your

mind on how to complete the task. It will also allow you to choose the right

PIC for the job. The algorithm should cover at least the following:

•	 You should explain the sequence of events you want to

control.

•	 You should then identify all the input and output

devices you will need.

•	 You should then create an allocation list for the control

and identify any special inputs or outputs or controls

you will need, such as analogue inputs, PWM outputs,

and any timers.

Figure 2-1.  An 8-Bit Register

Chapter 2 Our First Program

11

�The Flowchart
This is a diagram using standard symbols to show how the program will

flow through the instructions and so complete the task.

Flowcharts are diagrams that show how any process flow through its

constituent parts. They are very useful diagrams for designing computer

programs. All flowcharts use five basic symbols; there are more, but the

five most common symbols are shown in Figure 2-2.

�The Program Listing
This is a list of the actual instructions written in your chosen language. If

you have constructed your flowchart correctly, then each block in your

flowchart will produce the correct lines of coding in your program listing.

Start or Stop symbol

Input or Output symbol

Data manipulation symbol

Decision symbol

Direction of flow symbol

Figure 2-2.  The Main Flowchart Symbols

Chapter 2 Our First Program

12

�Using MPLABX IDE
Before we go too far into the depths of MPLABX, I will discuss the use of

MCC and MPLAB Harmony. Microchip has realized that there are many

aspects of writing programs for the PIC that have to be carried out within

every program. Therefore, they give you the facility to use their code-

generating programs to write the code for you. MCC, MPLABX Code

Configurator, is the program that does this for you. MPLAB Harmony

does this for the 32-bit micros. Wow, isn’t that great? Well yes and no.

Using MCC creates a myriad of files and functions that are not easy to

understand. If you write all the code for your program yourself, then you

know where all the bits are and you understand how they work. Also this

book teaches you how to use the datasheet to help write the instructions.

You will learn how the PIC actually works and how it uses the simple logic

‘1’s and ‘0’s to control how it works. I firmly believe it is important for you,

as the programmer, to understand what you are controlling and how your

program instructions actually control it. If you use MCC straight off, then

you risk losing this understanding and who the programmer is, you or

Microchip. If you write all your own code, then you are the programmer.

MPLABX is the new IDE from Microchip. It is written in Java, and it

has many improvements from the previous MPLAB. The book is written

around using MPLABX version 5.2.

The text is based around using the PIC18f4525, but it can easily be

adapted for any PIC micro. The 18F4525 PIC is a very versatile PIC in that

it has

•	 36 I/O

•	 13 ADC channels

•	 2 CCP modules as well as a UART and SPI

It has 48 kbytes of program memory as well as internal EEPROM.

Chapter 2 Our First Program

13

All this makes this PIC a very versatile PIC to use. Also, the fact that it is

available in a dual in-line 40pin device means that you can easily make a

prototype board based around this PIC.

�Creating the Project in MPLABX
It is noted that Microchip is forever bringing out new versions of their

IDE. However, the basics do not really change, and if you learn how to

use one version of the IDE, you will very quickly grasp how to move onto

the new version. This book is based around version 5.2 which can be

downloaded from the Microchip web site.

After installing the software and opening the program by clicking on

the ICON , you will be presented with a screen that looks like that in

Figure 2-3.

We need to create a project where all files for the task will be stored;

these will include, among others, the asm or ‘c’, file that we will write and

Figure 2-3.  The Opening Screen for MPLABX

Chapter 2 Our First Program

14

more importantly the hex file that the compiler in MPLABX will create. It is

this hex file that will be loaded into the PIC to make the PIC run our program.

To create a new project, click the mouse on the second symbol, the

orange square with the small green cross, in the menu bar, as shown in

Figure 2-3. Alternatively, you could select file from the menu bar, and

then select “New Project,” the top option from the dropdown menu that

appears. The new project window will open as shown in Figure 2-4.

Click the mouse on the selection “Microchip Embedded” “Standalone

Project” if it is not the default selection. If the “Microchip Embedded”

“Standalone Project” is not highlighted, select it first then select next. You

will now be presented with a window that looks similar to that shown in

Figure 2-5.

Figure 2-4.  The New Project Window

Chapter 2 Our First Program

15

We can now choose which PIC we will actually use. Alongside the

“Family” window, click on the arrow, and select the Advanced 8-bit MCUs

(PIC18) as shown earlier. Then alongside the “Device” window, click the

arrow, and select the PIC18f4525 device as shown. Note that you could

type the PIC number into the device box and the program will move the

window down to the relevant PIC.

Once you are happy with your selection, click Next to move onto the

next window as shown in Figure 2-6.

Figure 2-5.  Select Device Window

Chapter 2 Our First Program

16

From within this window, the programmer can select the type of tool

they want to use to download the program to the PIC and also debug and

run the program. Normally we would be using the ICD 3, but as this is the

first use of this software, we will use the IDE’s simulation tool to examine

the program as it runs. Therefore, select the Simulator option as previously

shown.

Click Next to confirm the selection and move on to the next screen.

This is shown in Figure 2-7.

Figure 2-6.  The Select Tool Window

Chapter 2 Our First Program

17

This window shows what compilers have been installed on your

system. Assuming you have a suitable XC8 compiler, you should be able to

select it as shown in Figure 2-7. Once you have selected it, click Next, and

the window shown in Figure 2-8 is presented.

Figure 2-7.  The Select Compiler Window

Chapter 2 Our First Program

18

This window is where you give a name for your project and decide

where you want to save it. Make sure you know where you are saving your

project, and give it the name “myFirst18F” as shown in Figure 2-8.

Note that I will use the method of using camelFont, to write any labels.

This allows the programmer to write multiple words as one word. The

first letter of the complete word is in lower case, but the first letter of all

subsequent words is in capitals as in “myFirst18F”.

Now click Finish and the project will be created. You will now be

presented with the main window as shown in Figure 2-9.

Figure 2-8.  Naming the Project

Chapter 2 Our First Program

19

We now need to add the text document that will contain all the ‘C’

instructions for the program. This will be the source file, and so we need to

right click the mouse on the item source files in the project tree on the left-

hand side. Now click the mouse on New, and then select main.c from the

pop-out window that appears.

Having selected the main.c from the pop-out window, the following

window shown in Figure 2-10 appears.

Figure 2-9.  The Completed Project

Chapter 2 Our First Program

20

Give the file the name myFirst18FProg and click on Finish. Note that

the extension must be, as shown, ‘.c’ to make it a ‘C’ program file.

Now the main editing window will appear as shown in Figure 2-11.

Figure 2-10.  The New Empty File Window

Chapter 2 Our First Program

21

It is in this screen that you will type all the instructions for your

program.

The software has already inserted some comments from lines 1 to 6.

This is because the software uses intelli-sense which is like predictive text

on your phone. This software also automatically has added an “include”

directive on line 9, and it has included the main loop between lines 11 and

13. More will be said about these later.

If the line numbers are not shown in the text editor and you would like

to see them, as I do, then simply click on the word “View” from the main

menu bar. Then tick the box to “Show Line Numbers” that appears on the

fly-out menu, or un-tick it depending upon your preference. However,

from experience I think it is useful to have line numbers showing as it

helps with finding any errors in your coding.

We can change some of the fonts if you so wish by selecting the word

“Options” from the drop-down menu that appears when you select the

“Tools” choice on the main menu bar. You will get the window as shown in

Figure 2-12.

Figure 2-11.  The Editing Window

Chapter 2 Our First Program

22

Once you are happy with your choice, click OK. I have selected the

Fonts & Colors, then changed the color of the comments to magenta.

You have now created your first project in MPLABX. You should

practice the process of creating a project so that you are comfortable with

the process. It will take some time but it is definitely worth it. Don’t just

modify an old project.

Figure 2-12.  Changing the Comments Font

Chapter 2 Our First Program

23

�The First Program Turning On and Off an
Output
Now we are ready to get down to the real part of this process, writing the

code for the program.

If you have never written a ‘C’ program, then there are some things you

may need to read through at this point.

�The Main Aspects of a ‘C’ Program
The ‘C’ programming language is a generic language in that it can

be applied to many different environments such as DOS, Windows

Applications, and now microcontrollers. The ‘C’ program for PICs has

all the basic functions of a ‘C’ program, but there are also some specific

instructions that are related to PICs, such as PORTAbits.RA0.

The main aspect of a ‘C’ program is that it runs inside a series of loops.

There is a “main” loop from within which all the other loops, sometimes

called functions, but I prefer to call them subroutines, are called from.

The main loop must be there in the program as it is the “main” loop that

the micro must go to at the very beginning of the program to get the first

instruction of the program. The micro then carries out instructions in a

sequential manner one after the other until it gets to the last instruction in

the main loop. Unless this instruction forces the micro to go somewhere

else, the micro will then go back to the first instruction in the loop then

carry out all the instructions again in the same manner.

�The Comments and PIC Configuration
The first program we will look at is a very common task, that of waiting for

a switch to be pressed, or turned on, and then lighting a LED connected to

an output. However, before we can start our program, we should make sure

Chapter 2 Our First Program

24

this program is our own. This is done by inserting some comments into the

editing window. C programs use two main types of comments: single-line

comments, which usually explain what the current instruction is doing,

and multiple lines or a paragraph of comments, which give a more in-

depth explanation.

The single comments are anything written on the current line

following two forward slashes such as //.

Multiple-line comments are anything written between the following

symbols /∗ ∗/ as shown here, for example, /∗ Your Comments go Here∗/

Having created your new ‘C’ file, the first thing you should do is insert

some comments to tell everyone that this is your program and when you

wrote it.

However, as this is a common starting point for programmers, the

intelli-sense has put some comments in already. You may or may not

wish to change them. However, to try and keep everything you see in

your screens the same as they are in my screenshots, I suggest you delete

everything that is currently in the text editing window so that you have

an empty text window in the editor. You should now type in the following

comments and commands so that your screen will be exactly the same as

mine and my references will match up to your screens.

/∗ A basic program to turn on and off a led.

Written by Mr. H. H. Ward dated 28/07/2019 for the

18f4525 PIC

No modifications to date*/

#include <xc.h>

void main (void) {

 return;

}

Chapter 2 Our First Program

25

Obviously, you should use your own name and the current date. Note

also that as you write the text into the text editor, the intelli-sense will give

the text the appropriate colors as there are different colors for different

types of keywords.

These should be put into the top of your program file in the main

editor window. This should take up the first nine lines, and the cursor

should now be flashing at line ten ready for the next input.

Note that you can use these comments to keep track of any

modifications that are being made and when they were made.

The next thing you need to do is tell the PIC how we intend to use

some of its main variable attributes. This is because all PICs are very

versatile in that among other things, they can be run from a wide variety of

oscillators. Note that all instructions in the program and all other actions

are synchronized to a clock signal. This clock signal can get its source

from a wide variety of different oscillators from the simple low-frequency

RC, resistor–capacitor, oscillator to the precise high-frequency crystal

oscillator. These oscillator sources can be either external or internal to

the PIC. The programmer needs to tell the PIC which oscillator they

want to use. There are also other parameters the programmer needs to

choose from. All this is achieved by writing the correct data to the config

registers in the PIC as it is the data in these registers that configure how

we are going to use the PIC. This can be achieved using a special window

in the MPLABX IDE. To open this window, click on the word “Window”

on the main menu bar then select “Target Memory Views” from the drop-

down menu, then select Configuration Bits from the slide-out menu that

appears. Once this is done, your main window will change to that as shown

in Figure 2-13.

Chapter 2 Our First Program

26

You may have to drag the window up to make it larger as shown.

I must apologize at this point, as I will not be showing you how to move the

windows about inside the MPLABX IDE.

This configuration window allows you, as the programmer, to select

some very important options for the PIC, the most important being the

primary oscillator type and source used and if we want the watchdog

timer or not.

There are three main options we need to change at this point. You

should change the OSC to ‘INTIO67’ this is done by selecting the small

arrow alongside the box next to the OSC option. The default setting is

usually RCI06, the resistor–capacitor oscillator with bit 6 on PORTA left

as a normal input–output bit. We need to change this. When you click on

the small arrow, a small window will open. If you move the selection up

to the next one, it will be the one we want, INTIO67, which means use the

internal oscillator block as the primary source and leave bits 6 and 7 on

PORTA as normal input–output bits. Therefore, click the mouse on the

term INTIO67 to change the oscillator to this option.

Figure 2-13.  The Main Editing Window with the Configuration Bits
Window Open

Chapter 2 Our First Program

27

The other changes are simpler as we need to set the WDT to ‘OFF’.

It important to turn the WDT, watchdog timer, off as if nothing happens

for a predefined period of time in a program then the WDT will stop the

program. We don’t want this to happen, so we must turn the WDT off. This

is done by clicking the mouse on the small arrow next to the WDT and

clicking the mouse on the off option.

The final option I usually change is the LVP, “Low-Voltage

Programming” option. I usually turn this off. This is turned off in the same

way as the WDT was turned off

Once you have changed these setting, we can generate the source

code, and then paste this code into our program. Click on “Generate

Source Code to Output” tab shown at the bottom of the IDE. The source

code should appear in the output window on the screen. Use the mouse to

select all this code, then copy it all, and paste it into the “myFirst18FProg.c”

c file you have in the open window. You should paste all the different

configuration words and the comments as well into your ‘C’ file, but you

don’t need to copy the “#include <xc.h> ” line as the intelli-sense has

already put this in. We will learn the importance of that “#include <xc.h> ”

line soon. I have pasted these source instructions into my open file window

starting at line 5 and ending at line 62. This moves the “#include <xc.h> ”

down to line 63. Yours may differ due to what comments you have put in.

Your screen should look like this as shown in Figure 2-14.

Chapter 2 Our First Program

28

The #include <xc.h> is important as we need to tell the compiler

we want to use some labels to represent any addresses we will be using.

The most important addresses we will use are the addresses of the SFRs,

Special Function Registers. It is with these SFRs that the programmer can

control every aspect of the PIC with the ‘1’s and ‘0’s that they write to these

control registers.

The compiler really wants to use the address of the registers. However,

we humans may want to use labels to give the register’s names instead of

using the actual address number.

An example of using a label is PORTA. This is a SFR at the address

0XF80 in this PIC. The compiler only needs the hexadecimal number

“F80”; note that the “0X” stands for hexadecimal. However, to make the

program easier for us humans to read, we would want to use the label

PORTA. To enable this to happen, we have to tell the compiler that this

label, and the others’ labels, represent the correct address of the SFRs.

There is a simple instruction that does this which is

EQU PORTA 0XF80.

Figure 2-14.  The Configuration Listing

Chapter 2 Our First Program

29

This tells the compiler that the label PORTA actually means the

number F80 in hexadecimal format.

To help us do this, and save a lot of work, someone has written the

EQUs for all the labels for all the SFRs we could use. However, to use these

equates, we need to tell the compiler to include them in our program. This

is done by using the “#include <xc.h> ” line in our program. Remember

there is a “Linker” program in the IDE. This links together our own

program and all the header files we tell the Linker program in “include”;

but we MUST tell the linker program to include them.

This is inserted now into our program file. Later we might need to use

other include files. We will explain the importance of this “#include <xc.h>”

with an example later.

We are nearly ready to start writing our program. One very important

thing to remember is that all ‘C’ and ‘C++’ programs use a collection

of loops or functions or subroutines. This means we have to place all

instructions inside these loops. The most important loop is the “main loop”

as this is the first loop the micro goes to when the program is started. From

this main loop, all the other loops, which I will call subroutines, which are

used to carry out different aspects of the program, are called from.

�The TRISA and TRISB
The program is going to use two ports to communicate with the outside

world. We will us PORTA as an input port, to which the two switches will

be connected to, and PORTB as an output port, to which all the LEDS

will be connected to. However, the PIC has no idea which way we want to

use the PORTS. Each port can be either an input or output port. Indeed,

we can mix them up much more as each individual bit in the port can be

either input or output and with the 18F4525, each PORT has 8 bits. We, as

the programmers, need to tell the PIC how we want to use the PORTS and

their bits. This requires setting some of the I/O pins to input and some

Chapter 2 Our First Program

30

to output. Note that all PICs have at least two PORTS that can be used

to allow the PIC to communicate to the outside world. The PORTS are

identified as PORT A, B, C, and so on. Each PORT will have a number of

individual bits that can be set to take data into the PIC, that is, be inputs,

or to send data out of the PIC, that is, be outputs. An 8-bit PIC such as the

18F4525 has up to 8 bits on each PORT, whereas the 32-bit PICS have up to

32 bits per PORT. The PIC does not know which type you want the bits to

be, either input or output.

You as the programmer must tell the PIC, by way of instructions in your

program, which type you want the bits of each port to be. To enable you to

do this, there are some SFRs, Special Function Registers, called TRIS which

allow this to be done. There is a TRIS for each PORT, and each TRIS has the

same number of bits as each PORT. The particular bit of each TRIS maps

onto the same bit in the corresponding PORT as shown in Figure 2-15.

In this way the bits of the TRIS can control the corresponding bits of the

PORT as to whether or not the bit in the PORT is an input or output. If the

bit in the TRIS is a logic ‘1’, then the bit in the PORT would be an input. If

the bit in the TRIS is a logic ‘0’, then the bit in the PORT would be an output.

Figure 2-15.  The Mapping of the TRIS onto the PORT

Chapter 2 Our First Program

31

�A TRIS Example
IF TRISA was set to 00001111, then bits 7, 6, 5, and 4 of PORTA would be

outputs and bits 3, 2, 1, and 0 would be inputs. This assumes that the PORT

has only 8 bits as with an 8-bit micro, and going from left to right, they are

number b7, b6, b5, b4, b3, b2, b1, and b0.

�Exercise 2-1
What data would you have to write, to where, to set PORTC as Out, Out, In,

Out, In, In, In, Out going from B7 down to B0 from left to right? Answers to

all exercises are provided at the end of each chapter.

�Setting the PORTS
In our first program, we will make all the bits on PORTA inputs and all the

bits in PORTB as output.

The following instructions, with their respective comments, will do

what is required.

TRISA = 0xFF; //Make all bits in TRISA a logic '1' which

 makes all bits on PORTA inputs

TRISB = 0x00; //Make all bits in TRISB a logic '0' which

 makes all bits on PORTB outputs

Note that the 0x in front of the data means we are using hexadecimal

numbers. This is because we only need to use 2 digits, as 1 hexadecimal

digit represents 4 binary bits. It does not matter if we use lowercase letters

or capital letters for these numbers.

Note also that we use the semicolon, ‘;’ after the data OXFF. This

indicates the end of the current instruction. Note also the use of single-line

comments to explain what the instruction does; please be aware that in the

text editor in MPLABX, these comments would be on one line.

Chapter 2 Our First Program

32

The latter of the two instructions could have been written as follows:

TRISB = 0; This will make all the bits in TRISB a logic

‘0’ which sets all the bits in PORTB to outputs. This

is using the default radix, or number system, used in

MPLABX, which is decimal. The instruction TRISB = 0;

means the value stored in the TRISB would be zero

which is 0b00000000 or 0X00.

One very important thing to note is that we are using capital letters in

the word TRISA and TRISB; this is because this is how the labels have been

defined in the include file we are using. Really the micro sees TRISA as the

numeric value of 0XF92 which is where the SFR is in the PIC’s memory.

NB: Note that ‘0X’ in front of a number means that is a hexadecimal

number, ‘0b’ means it is a binary number, and no prefix means it is a

decimal number. This is the same concept that MPLABX uses.

The include file has all the labels we will use for the SFRs, and they

are all in capitals. For example, if we want to turn on all the LEDs, or any

devices, connected to PORTB, we would have to write

PORTB = 0b11111111;

Note

portb = 0b11111111; would not work as the label for

PORTB must be in capital letters.

Note that the ‘0b’ stands for binary as we are stating

the number in its binary format.

We could have written PORTB = 255, as this in

decimal equivalent of 0b11111111 and decimal is

the default radix for MPLABX .

Chapter 2 Our First Program

33

�The ADC (Analogue to Digital Converter)
Most PICs, including ours, will have an ADC, Analogue-to-Digital

Converter. This will be assigned to one of the PORTS, and this means that

the inputs to the bits on that PORT could be analogue or digital. We as

programmers must tell the PIC which we want the inputs to be: analogue

or digital. In this case we want all the bits to be digital as they are simply

high or low switches. For our 18f4525 PIC, it is PORTA that is assigned to

the ADC and some of PORTB, as this PIC has 13 analogue channels. This

means that the bits on PORTA, and some of PORTB, could be analogue

or digital. The default setting is that they are all analogue. Note that an

analogue input would be one connected to a transducer such as pressure

or temperature transducer and would be a varying voltage used to

represent the signal being monitored. We want all the bits on PORTA to be

digital, that is, simply on and off signals, which would be logic ‘1’ or logic

‘0’ inputs. Therefore, we need to tell the PIC we want the bits on PORTA to

be digital. Table 2-1 shows us that we can program the PORT to be one of

many variations from all bits being analogue to all bits being digital.

Table 2-1.  The Settings for Bits 3, 2, 1, and 0 of the ADCON0 8-Bit

Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not Used Not Used VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

Bit 7 Not used read as 0

Bit 6 Not used read as 0

Bit 5 1 negative reference from AN2
0 negative reference from VSS

Bit 4 1 negative reference from AN3
0 negative reference from VDD

(continued)

Chapter 2 Our First Program

34

The table refers to the bits in the ADCON1 register which is an 8-bit

register that controls certain aspects of the ADC.

The principle behind the ADC is that there is just one ADC circuit

inside the PIC which can be switched to any one of the 13 inputs that

can have an analogue input connected to it. This is a method termed

“multiplexing” where the 1 ADC serves 13 possible analogue inputs. The

ADC will then create a binary number that represents the actual voltage

Table 2-1.  (continued)

B3 B2 B1 B0 AN1
12

AN1
11

AN
10

AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0

0 0 0 0 A A A A A A A A A A A A A

0 0 0 1 A A A A A A A A A A A A A

0 0 1 0 A A A A A A A A A A A A A

0 0 1 1 D A A A A A A A A A A A A

0 1 0 0 D D A A A A A A A A A A A

0 1 0 1 D D D A A A A A A A A A A

0 1 1 0 D D D D A A A A A A A A A

0 1 1 1 D D D D D A A A A A A A A

1 0 0 0 D D D D D D A A A A A A A

1 0 0 1 D D D D D D D A A A A A A

1 0 1 0 D D D D D D D D A A A A A

1 0 1 1 D D D D D D D D D A A A A

1 1 0 0 D D D D D D D D D D A A A

1 1 0 1 D D D D D D D D D D D A A

1 1 1 0 D D D D D D D D D D D D A

1 1 1 1 D D D D D D D D D D D D D

Chapter 2 Our First Program

35

applied to the input. The ADC used in the PIC is a 10-bit ADC which gives

the programmer a possible resolution of the following:

The resolution of the ADC is the smallest value that it can recognize.

This can be calculated using the following expression.

That is if we used all 10 bits, and as this is an 8-bit micro, there is a

problem with this, but we will look at that later.

The ADC is controlled by three registers; ADCON0, ADCON1, and

ADCON2. The ADCON1 controls what voltage range is used and if the

bit on the port is analogue or digital. The ADCON0 controls if the ADC

is switched on and which bit or channel the ADC is connected to. The

ADCON2 register controls the timing of the ADC; we will look at all these

registers later.

We actually do not want to use the ADC, and we want all bits

connected to PORTA to be digital; therefore, we should turn the ADC off

and make all bits on PORTA and PORTB to be digital.

It is bit 0 of the ADCON0 register that turns the ADC on, that is, bit 0 = 1,

or off, that is, bit 0 = 0. Therefore, make all bits of the ADCON0 register to

logic 0. This will set b0 to a logic ‘0’ and so turn the ADC off.

It is bits 3, 2, 1, and 0 of ADCON1 register that determine if the bits on

PORTA and PORTB are analogue or digital bits. This is shown in Table 2-1.

If the bit in the ADCON1 register is a logic ‘0’, then the input would be an

analogue input. If the bit is a logic ‘1’, then the input would be digital. This

is a good example of how the actual bits are used to control the actions of

the PIC.

As we need all the inputs to be digital, we need to make sure all these

four bits, bits 3, 2, 1, and 0, in the ADCON1 register are set to logic ‘1’.

Chapter 2 Our First Program

36

The following instructions will set the ADC up as we want.

ADCON0 = 0x00; //This turns the ADC off

ADCON1 = 0x0F; //This sets all the bits on PORTA and PORTB as

 digital

Note that these instructions have comments which are separated from

end of the instruction, signified by the semicolon ‘;’, with the use of two

forward slashes ‘//’. This signifies that everything written after these slashes

on that current line are comments and are not compiled by the compiler

software. The comments can be used to help describe what the instruction

is doing.

The combination of the following four instructions will set the two

ports as we want them:

TRISA = 0xFF; //Make all bits in TRISA a logic '1' which

 makes all bits on PORTA inputs

TRISB = 0x00; //Make all bits in TRISB a logic '0' which

 makes all bits on PORTB outputs

ADCON0 = 0x00; //Makes all the bits in the ADCON0 logic '0'

 This turns the ADC off

ADCON1 = 0x0F; //This make bits 7,6,5 and 4 logic '0'

 and bits 3,2,1and 0 logic '1'This sets

 all the bits on PORTA and PORTB as digital

 bits

�Setting Up the Oscillator
We have used the configuration words to tell the PIC we want to use the

internal oscillator block as the primary oscillator source, that is, INTIO67.

However, we have not told the PIC what oscillator we want to use. It is

the bits in the OSCCON , OSCillator CONtrol register, that controls the

Chapter 2 Our First Program

37

internal oscillator block. There are eight possible oscillator frequencies we

can use and it is bits b6, b5, and b4 which control the settings. We will set

the oscillator to 8Mhz and make the frequency stable. To set the oscillator

frequency to 8Mhz, we set the three bits, b6, b5, and b4, to a logic ‘1’. To

make the frequency stable, we set bit 2 to a logic ‘1’.

We need to tell the PIC where it will get the signal for the system

clock. There are three possible options as controlled by bits b1 and b0

of this register. This would give us three options, really four, but we only

want three. However, as we have set the primary oscillator source in the

configuration words to be the internal oscillator, then two options are the

same. We can simply set these two bits to logic’0’ as the primary source is

the internal oscillator block.

Bit 7 of the OSCCON register is the IDLEN bit which

is used for sleep mode. We will not use this mode till

much later; therefore, set this bit to a logic ‘0’.

Bit 3 is actually a signal from the micro to the

programmer so that this too can be set to a logic ‘0’.

This means that the eight bits in the OSCCON register can be set as

follows:

OSCCON = 0b01110100; //�This sets the internal

oscillator to 8MHz and makes

it stable.

Tables 2-2 through 2-4 should help explain these settings

The device enters sleep when asked, and the system clock is from the

primary oscillator. Sleep is a more advanced option, and it will be covered

in my future books.

Chapter 2 Our First Program

38

Table 2-2.  Use of OSCCON0 Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IDLEN IRCF2 IRCF1 IRCF0 IOSTS IOFS SCS1 SCS0

LOGIC 1
Device
enters
sleep

See Table 2-3 Logic 1
Time-out for osc
startup
Primary oscillator
running

Logic 1
Internal
oscillator
is stable

See Table 2-4

Logic 0
device
does not
enter sleep

Logic 0 No time
out primary
oscillator not
running

Logic 0
internal
oscillator
not stable

Table 2-3.  Bits 6, 5, and 4 of OSCON0 Register Setting the Oscillator

Frequency

Bit 6
ICRF2

Bit 5
ICRF1

Bit 4
ICRF0

Oscillator frequency

0 0 0 31kHz1

0 0 1 125kHz

0 1 0 250kHz

0 1 1 500kHz

1 0 0 1Mhz

1 0 1 2MHz

1 1 0 4MHz

1 1 1 8MHz

1The 31kHz can be sourced from main oscillator divided by 256 or directly from
internal RC oscillator

Chapter 2 Our First Program

39

The process of deciding what data is written to the ADCON0, ADCON1,

and the OSCCON shown earlier is an example of how you should

determine what data is written to all the SRFs. You should decide what

function you want the particular SRF to perform and write out on paper

how you can either set it, write a logic ‘1’, or clear it, write a logic ‘0’, to each

bit of the SRF to achieve what you need. Then write out the instruction in

your program. It is a process that needs lots of practice.

�Exercise 2-2
Write down the 8-bit data that you think should be written to the OSCCON

register to set the internal oscillator block to give a frequency of 500kHz,

making the frequency stable and setting the internal oscillator block as the

source for the system clock. The device does not enter sleep mode.

�Waiting for an Input
Now that we have set the PORTS up, we need to make the PIC wait until

the switch connected to bit 0 of PORTA goes to a logic ‘1’. This will happen

if the switch is set up so that when it is pressed, the logic level goes high,

that is, to 5V or logic ‘1’.

Table 2-4.  The Usage of Bit 1 and Bit 0 of OSCCON0 Register to Select

Source of Oscillator Frequency Signal

Bit 1

SCS1

Bit 0

SCS0

Oscillator source

0 0 Primary oscillator as defined in configuration words

0 1 Secondary timer block

1 0 Internal oscillator block

1 1 Internal oscillator block

Chapter 2 Our First Program

40

There are a number of ways to do this, but it is basically testing the bit

to see if it has gone high. The simplest way involves making the micro wait

until the input goes high. Then when the input does go high, move on and

do something.

You might think that you should keep on asking the question has the

input gone high? The problem with this approach is that you must make

the micro go back and ask the question again if the input has not gone high.

However, another way of looking at this test is to say that while the

input is low or not high, do nothing. Indeed, this is the approach that we

use in a ‘C’ program.

This can be done using a while command as shown here:

while (PORTAbits.RA0 == 0)

{

}

The concept of that while instruction is that while the test condition,

written in BOLD only this one time to make it obvious what is meant by the

test, expressed inside the normal brackets is true, carry out the instructions

that are written between the curly brackets. In this case there are no

instructions between the curly brackets, and so the micro does nothing.

We use the double = = sign to say it becomes equal to. This means the

test is while PORTA bit 0 becomes equal to 0, the test is true, and so do

what I say; in this case what is inside the curly brackets, which is nothing.

In this way the instruction is saying that while the input on bit 0 of PORTA

is at logic ‘0’, do nothing.

Note that you can signify the bit of a PORT as shown earlier, that is, RA0

means bit 0 of PORTA.

Note also the specific syntax in specifying the actual bit of the

PORT. This has to be correct or else the compiler will throw up an error.

Chapter 2 Our First Program

41

An alternative way of writing the same instruction is

while (PORTAbits.RA0 == 0) continue; //�Do nothing while the

logic at b0 of PORTA

is at logic '0'.

This does exactly the same. Note also we use the ‘;’ to donate the end

of the instruction, and the only thing we are asking the program to do is

continue which makes the micro go back to the start of the instruction.

Another alternative would be

while (!PORTAbits.RA0) continue;

In this case the Not operator ‘!’ is used. The test is

while the bit is NOT a logic ‘1’ do what I tell you to do.

One final alternative to make the PIC wait until

something happens, such as the logic at the input

bit goes high, is

while (!PORTAbits.RA0) ;

This works in a similar fashion to the first example.

There are no instructions between the closing

normal bracket of the test and the end of the

instruction, signified by the semi-colon ‘;’.

This then tells the micro to do nothing while the test inside the curly

brackets is true. This is a very succinct way of getting the PIC to wait for

something to happen. However, if you unintentionally put a semicolon

after the closing bracket of the test statement, this could cause the program

to get stuck here. Remember this when you are trying to debug a program

that doesn’t do what you want.

Using whatever format you like, the micro would stay in the while loop

until the logic at bit 0 of PORTA went high. The micro would then move on

to the next instruction of the program.

Chapter 2 Our First Program

42

This would be to simply turn on the output at PORTB bit 0. This can be

done using

PORTBbits.RB0 = 1; //�Turn on what is connected to b0

of PORTB

�Waiting to Turn the LED Off
We can now make the PIC wait for a stop switch to be pressed so that the

micro can then turn the output on bit 0 of PORTB off. This can be done as

follows:

while (PORTAbits.RA1 == 0); //�Do nothing while the logic

at bit 1 of PORTA is at

logic '0'.

PORTBbits.RB0 = 0; //�Turn off what is connected

to b0 of PORTB

Note that we must put all the instructions inside the main loop. The

actual program instructions which start at 50 and end at line 58 of the

program in Listing 2-1 should go inside the curly brackets of the editing

window. To help you appreciate, this the screen should end up as shown in

Figure 2-16.

Chapter 2 Our First Program

43

Once we have written all the instructions for the first program, the

editor window should look like the one shown here in Listing 2-1.

Listing 2-1.  The Completed LED Start Stop Program Instructions

1. /*A basic program to turn on and off a led.

2. �Written by Mr H, H. Ward dated 28/07/2019 for the 18F4525 PIC

3. No modifications at this date*/

4.

5. // PIC18F4525 Configuration Bit Settings

6. // C' source line config statements.

7. // CONFIG1H

8. #pragma config OSC = INTIO67 // �Oscillator Selection

bits (Internal

oscillator block, port

function on RA6 and RA7)

9. #pragma config FCMEN = OFF // �Fail-Safe Clock Monitor

Enable bit (Fail-Safe

Clock Monitor disabled)

Figure 2-16.  The Completed Editing Window

Chapter 2 Our First Program

44

10. #pragma config IESO = OFF // �Internal/External

Oscillator Switchover

bit (Oscillator

Switchover mode

disabled)

11. // CONFIG2L

12. #pragma config PWRT = OFF // �Power-up Timer Enable

bit (PWRT disabled)

13. #pragma config BOREN = SBORDIS // �Brown-out Reset Enable

bits (Brown-out Reset

enabled in hardware only

(SBOREN is disabled))

14. #pragma config BORV = 3 // �Brown Out Reset Voltage

bits (Minimum setting)

15. // CONFIG2H

16. #pragma config WDT = OFF // �Watchdog Timer Enable

bit (WDT disabled

(control is placed on

the SWDTEN bit))

17. #pragma config WDTPS = 32768 // �Watchdog Timer Postscale

Select bits (1:32768)

18. // CONFIG3H

19. #pragma config CCP2MX = PORTC // �CCP2 MUX bit (CCP2

input/output is

multiplexed with RC1)

20. #pragma config PBADEN = ON // �PORTB A/D Enable B<4:0>

pins are configured as

analog input channels on

Reset)

Chapter 2 Our First Program

45

21. #pragma config LPT1OSC = OFF // �Low-Power Timer1

Oscillator Enable bit

(Timer1 configured for

higher power operation)

22. #pragma config MCLRE = ON // �MCLR Pin Enable bit

(MCLR pin enabled; RE3

input pin disabled)

23. // CONFIG4L

24. #pragma config STVREN = ON // �Stack Full/Underflow

Reset Enable bit (Stack

full/underflow will

cause Reset)

25.#pragma config LVP = ON // �Single-Supply ICSP

Enable bit (Single-

Supply ICSP enabled)

26. #pragma config XINST = OFF // �Extended Instruction Set

Enable bit (Instruction

set extension and

Indexed Addressing mode

disabled (Legacy mode))

27. // CONFIG5L

28. #pragma config CP0 = OFF // �Code Protection bit

(Block 0 (000800-

003FFFh) not code-

protected)

29. #pragma config CP1 = OFF // �Code Protection bit

(Block 1 (004000-

007FFFh) not code-

protected)

Chapter 2 Our First Program

46

30. #pragma config CP2 = OFF // �Code Protection bit

(Block 2 (008000-00BFFFh)

not code- protected)

31. // CONFIG5H

32. #pragma config CPB = OFF // �Boot Block Code

Protection bit (Boot

block (000000-0007FFh)

not code- protected)

33. #pragma config CPD = OFF // �Data EEPROM Code

Protection bit (Data

EEPROM not code-

protected)

34. // CONFIG6L

35. #pragma config WRT0 = OFF // �Write Protection bit

(Block 0 (000800-

003FFFh) not write-

protected)

36. #pragma config WRT1 = OFF // �Write Protection bit

(Block 1 (004000-

007FFFh) not write-

protected)

37. #pragma config WRT2 = OFF // �Write Protection bit

(Block 2 (008000-00BFFFh)

not write- protected)

38. // CONFIG6H

39. #pragma config WRTC = OFF // �Configuration Register

Write Protection bit

(Configuration registers

(300000-3000FFh) not

write- protected)

Chapter 2 Our First Program

47

40. #pragma config WRTB = OFF // �Boot Block Write

Protection bit (Boot

Block (000000-0007FFh)

not write- protected)

41. #pragma config WRTD = OFF // �Data EEPROM Write

Protection bit (Data

EEPROM not write-

protected)

42. // CONFIG7L

43. #pragma config EBTR0 = OFF // �Table Read Protection

bit (Block 0 (000800-

003FFFh) not protected

from table reads executed

in other blocks)

44. #pragma config EBTR1 = OFF // �Table Read Protection

bit (Block 1 (004000-

007FFFh) not protected

from table reads executed

in other blocks)

45. #pragma config EBTR2 = OFF // �Table Read Protection bit

(Block 2 (008000-00BFFFh)

not protected from table

reads executed in other

blocks)

46. // CONFIG7H

47. #pragma config EBTRB = OFF // �Boot Block Table Read

Protection bit (Boot

Block (000000-0007FFh)

not protected from table

reads executed in other

blocks)

Chapter 2 Our First Program

48

48. #include <xc.h> //�the directive to include the

header file xc.h

49. void main() //�this is where the micro goes to

find the first instruction of the

program

50. { //the opening of the main loop

51. TRISA = 0xFF; //�Make all bits on PORTA inputs

52. TRISB = 0x00; //�Make all bits on PORTB outputs

53. ADCON0 = 0x00; //This turns the ADC off

54. ADCON1 = 0x0F; //�This sets all the bits on PORTA

and PORTB as digital

55. OSCCON = 0b01110100; //�set the internal oscillator to

8Mhz stable

56. while (PORTAbits.RA0 == 0) continue; //�Do nothing while

the logic at b0

of PORTA is at

logic '0' When it

goes to a logic

'1' move to next

instruction.

57. PORTBbits.RB0 = 1; //�Turn on what is

connected to b0

of PORTB

58. while (PORTAbits.RA1 == 0) continue ; //�Do nothing while

the logic at b1

of PORTA is at

logic '0'. When

it goes to a

logic '1' move to

next instruction.

Chapter 2 Our First Program

49

59. PORTBbits.RB0 = 0 ; //�Turn off what is

connected to b0

of PORTB

60. } //the closing of the main loop

Note that this is the only time I will show all the instructions including

the configuration words and the include directive lines 1 to 49. However,

every program will need these configuration words and that #include <xc.h>

line, they must be in all the programs. Later, I will show you how to create a

header file for these instructions.

There is one rather subtle problem in this program. The problem is

when the micro gets to the last instruction in the loop, it will go back to the

first instruction in that loop and start all over again. This means that it will

set up the ports, the ADC, and the oscillator again even though we have

already set them as required, and there is no need to this. To prevent this

from happening again, we can insert an unconditional loop that keeps the

micro using all the other instructions forever but only runs the first five

setup instructions once.

This is done by using another while instruction. The format is shown in

Listing 2-2.

Listing 2-2.  The While (1) Loop Inserted

61. void main() //this is where the micro goes to

62. find the first instruction of the program

63. { //the opening of the main loop

64. TRISA = 0xFF; //Make all bits on PORTA inputs

65. TRISB = 0x00; //Make all bits on PORTB outputs

66. ADCON0 = 0x00; //This turns the ADC off

67. ADCON1 = 0x0F; //This sets all the bits on PORTA

68. as digital

69. OSCCON = 0b01110100; //�set the internal oscillator to

8Mhz stable

Chapter 2 Our First Program

50

70. while (1) //�While the result of the test

is true do what is inside the

curly brackets. Note the result

of the test will be a logic'1'

if it were true and a logic'0'

if it were untrue. The test is

specified inside the normal

brackets. This test is simply a

logic'1' which will always be

true as it is always a logic '1'

This means the micro will always

carry out the instruction inside

the curly brackets. That is why

it is called the forever loop. It

will always be true and the micro

will carryout the instructions

written between the two curly

brackets forever.

71. { //�the opening curly bracket of the

for ever loop

72. while (PORTAbits.RA0 == 0) ; //�Do nothing while the

logic at b0 of PORTA is

at logic '0'

73. PORTBbits.RB0 = 1; //�Turn on what is connected to

b0 of PORTB

74. while (PORTAbits.RA1 == 0) ; //�Do nothing while the

75. logic at b1 of PORTA is at logic '0'.

76. PORTBbits.RB0 = 0; //�Turn on what is connected to

b0 of PORTB

77. } //�the closing of the for ever

loop

78. } //�the closing of the main loop

Chapter 2 Our First Program

51

The while (1) loop, between lines 70 and 80, will carry out the

instructions given inside the curly brackets if there are more than one

instructions as long as the test is true. For the test to be true, the logic result

of the test must be a logic ‘1’. It is fairly obvious that the result of the test (1)

is always going to be a logic ‘1’, and so the micro must always carry out the

instructions written inside the curly brackets. That is, this is a forever loop,

or, more correctly, an unconditional loop.

This means that the micro will carry out the first five instructions

that are outside this while (1) loop, but from then on the micro will be

stuck inside the while (1) loop, and so it will never carry out the first five

instructions again. Great as this is exactly what we want.

Note also that in lines 72 and 74, the word continue has been removed

as it is not needed. The instruction still does nothing, while the test is

true as there are no instructions between the closing bracket, of the test

statement, and the semicolon. Note that the semicolon denotes the end of

the current instruction.

Exercise 2-3
What would happen if we had put a semicolon after the test bracket on line

70 of the listing? For example, we wrote the following:

while (1); at line 70.

You should be aware that the configuration commands and the

#include <xc.h> have been omitted from the program listing shown above,

but they are there as they must be included in your project. Your program

will always need some configuration commands and include commands.

Chapter 2 Our First Program

52

�Comments
It is important to use comments in a good program, as they can explain

what some of the instructions are doing and also give ownership to a

program; after all it is your work so own it.

We can identify comments using the two forward slashes as //.

Everything on that line after the two // is simply a comment, and the

compiler program simply ignores them. In this way, we can identify single-

line comments.

We can also identify a collection of lines such as a paragraph of

comments, as anything that inserted between the following symbols, /∗ ∗/,

will be treated as comments.

In every program you write, you should state your ownership of it and

the date when you wrote it. It is also useful to give a brief description of

what it is doing and what PIC it was written for.

The following is a suggestion of what you should insert at the top of

your c file. Note that the software may have automatically written some of

these in for you, so modify them as you desire.

/∗ A basic on off switch to turn on or off an LED.

Written for the 18f4525 PIC

Written by “Your name”

Dated “To days date” ∗/

�Testing the Program
Obviously we will test most programs with the use of the prototype

board or a suitable ECAD program, but in this instance, we will use the

simulation debug tool to test the program.

Chapter 2 Our First Program

53

To test the program, we need two switches; the ‘on’ switch connected

to RA0 and the ‘off’ switch connected to RA1.

The MPLABX software allows us to define switches using the

“Stimulus” option which we can find from the “Window” option on the

main menu bar and the “Simulator” item from the drop-down menu as

shown in Figure 2-17.

When we select this option, the screen should look like that as shown

in Figure 2-18.

Figure 2-17.  The Stimulus Window Option

Chapter 2 Our First Program

54

We can add the two pins RA0 and RA1 and define what action takes

place when the inputs are fired. To add RA0, simply click the mouse on the

empty box under the word pin. You will be presented with what is shown

in Figure 2-19.

You can scroll the small window down to find the pin RA0. We must set

the action to toggle.

We can now add another row using the second tool icon in the

stimulus window as shown in Figure 2-20.

Figure 2-18.  The Editing Screen with the Stimulus Window Open

Figure 2-19.  Selecting the PIN RA0

Chapter 2 Our First Program

55

You should end up with what is shown in Figure 2-21.

Note that there are two comments, one for each button that describes

what the button does; you should type in a comment for the switch.

We can observe what happens by using the I/O pin option from the

same simulator option from the drop-down menu from the Windows

option in the main menu bar shown in Figure 2-17. Note that it might look

a bit like 10Pin in the menu bar, but it is I O for Input/Output.

When using the I/O pin window, we can add which pins we want to

look at. We should select RA0, RA1, and RB0. This is shown in Figure 2-22.

Figure 2-20.  The Add Row Button

Figure 2-21.  The Completed Stimulus Window

Chapter 2 Our First Program

56

It would be useful if we could see the program window, the stimulus

window, and the I/O Pin window all at the same time. You can drag and

move the stimulus window to try an arrange them as shown in Figure 2-23.

We are now ready to run our program and see what happens.

�Compiling and Running the Program
We have already selected the simulation as the programming tool, which

was done in section “Creating the Project in MPLABX” as shown in

Figure 2-22.  The Input Output PIN Selection Window

Figure 2-23.  Showing All the Active Windows

Chapter 2 Our First Program

57

Figure 2-6. To run the program, we need to compile the program and run

it. Compiling the program will test the syntax of the instructions and throw

up errors, if there are any. It will also run the linker program that ensures

any include files, such as the #include <xc.h>, which are compiled at the

same time. The result will create a hex file that is used to program the

actual PIC. However, in this case it will program MPLABX’s simulator PIC.

We can, if you want, test the syntax of the program first by simply

building the program. This is done by selecting the build option, which is a

hammer symbol, from the main menu bar. This is shown in Figure 2-24.

However, we could build and start the simulation in one operation. To

carry out this process, you simply need to click the mouse on the Debug

Main Project Icon in the menu bar as shown in Figure 2-25.

During compilation a new output window should appear at the bottom

of the MPLABX window. This shows the progress of the compilation. When

it is complete, it will indicate where any errors are if they are any. If the

compilation is successful, it should show that the user program is running.

Figure 2-24.  The Build the Project Icon

Figure 2-25.  The Debug Main Project Icon

Chapter 2 Our First Program

58

We now need to simulate the switching action of the switches and

then examine the reaction of the outputs. We can either add a watch table

to examine the outputs or simply look at the I/O pins. Having successfully

compiled the program, you should be able to test the operation of the program.

Click on the Debug Main Project icon as shown in Figure 2-25, and

wait for the program to successfully compile. If there are errors, you should

go back and check that you have typed everything exactly as shown above

or in the complete program listing shown in the appendix. If an error does

occur, the line would be shown in blue with an error message showing in

the output window. If you click the mouse on that blue line, you should

go directly to that line in the editing window where the error is. You must

be very careful and make sure you have typed everything, apart from any

comments, exactly as shown in the text, as shown in program Listing 2-2.

Assuming your program compiles correctly the output window should

state that the program is running. You now need to fire the start, on,

button and then the stop, off, button. Note that you are trying to simulate

momentary switches that only close as long as you keep your finger on the

button. To simulate this with the stimulus, you need to click the mouse on

the fire button for that switch twice. The first click sends the logic high. The

second click sends the logic back to zero. When you do this, you should

see the I/O pins on RB0 and RA0 go green which means it has turned on.

You now need to click the mouse on the RA0 pin again which will make the

logic at that pin go to logic ‘0’. You should see the green light on the RA0

I/O pin go out but the green light on the RB0 stay green.

In this way you have simulated pressing the momentary start switch.

If you now carry out the same process on the stop switch, you should

see the green light on RB0 go out and the green light on RA1 come on and

then go out.

In this way you have simulated the stop switch being momentarily pressed.

If you now repeat the whole process, you should see the green lamps

on the I/O come on and off correctly. This means you have successfully

created and written your first C PIC program. Well done.

Chapter 2 Our First Program

59

�Testing the Program Practically
This program is probably one of the simplest programs you can write;

I hope you have found it fairly simple. So really there is no need to build a

practical circuit for this. It may be more exciting to build a practical circuit

of a set of traffic lights which is a program we will write very soon.

However, I will use this program to introduce you to the process of

using an ECAD package to test the program. The ECAD package I will use

is PROTEUS with the 8-bit micro package added to it.

This text does not teach you how to use PROTEUS; that is a book of its

own. However, it will show you how to download your program to the PIC

in the software, and it will help explain how you can connect the switches

to the PIC.

The PROTEUS schematics for this first program is shown here in

Figure 2-26.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

START
STOP

MCRL

VCC

R1
1k

R2
1k

R3
1k

VCC

D1
LED-GREEN

R4
280

AC
m
A

+9.25

Figure 2-26.  The Proteus Schematic for myFirst18fProg

Chapter 2 Our First Program

60

To download the program to the PIC in the schematic, you should

click the mouse on the PIC to select it. Note that the simulation should not

be running and the PIC will turn red when selected. Now click the right

mouse button, on the PIC, and select edit properties from the drop-down

menu that appears. You should now have the following window, shown in

Figure 2-27, displayed.

You will see the directory symbol alongside the Program File box in the

window. You need to open the directory window by clicking the mouse on

the yellow directory symbol, and then you need to search for the hex file

for the project. If you look at the output window after you have built the

project in MPLABX, you will actually find the location of the hex file you

are looking for. This is shown in Figure 2-28.

Figure 2-27.  The Edit Properties Window for the PIC18f4525

Chapter 2 Our First Program

61

It should be the only hex file in that directory. You should click open

to insert that location into the Program File Box in the properties window

in PROTEUS. Once you have it in there, click the OK button, and you

should return to the schematic window. You should now be able to run the

simulation by clicking the play button. The program should work as expected.

If you have the correct software for PROTEUS, this should become

a very useful method of running your program without buying a lot of

equipment. You can simulate almost any PIC program you write using this

software.

One very important aspect we can learn from the schematic is the use

of the resistors R1, R2, R3, and R4. R1 and R2 are related to the two inputs.

The input to the PIC is digital which means it will be a logic ‘1’, that is, 5V

or a logic ‘0’, that is, 0V. This means there must be a path to either of those

two voltages for the input. One path will become active when the button

is pressed, and the other must be active when the button is not pressed.

Note that you should never leave a bit on the port your program is using

unconnected. This is termed floating. If you do leave it floating, it will

inevitably float to the wrong logic level and may disrupt your program.

With the RA0 input, the input goes to 0V logic ‘0’ if the button is not

pressed. This must be true as no current flows out of the PIC as it is an

input, and so no current flows through R1. This means that the voltage

at the top of R1, that is, at the input RA0, is the same as the voltage at the

bottom of the resistor, as no current flows through it. As the voltage at the

bottom of R1 is ground, then the input voltage to RA0 is also ground or 0V.

Figure 2-28.  The Path for the Hex File to Download to
PROTEUS

Chapter 2 Our First Program

62

When the start button is pressed, the top of R1 which is connected to

the input at RA0 is connected directly to VCC which is +5V. This means the

voltage at RA0 goes to +5V which is the logic ‘1’.

Note the resistor R1 is there to limit the current through the switch to

5mA, and so protect the actual switch itself. This arrangement is termed

pull up as closing the switch pulls the voltage up to VCC when the switch

is closed.

When the start button is pressed, the top of R1 which is connected to

the input at RA0 is connected directly to VCC which is +5V. This means the

voltage at RA0 goes to +5V which is the logic ‘1’.

The same arrangement is used for RA1 and even the MCLR input.

However, the switch at the MCLR input is termed pull down as it pulls the

switch down to 0V when the switch is closed.

With the output, on RB0, the logic ‘1’ condition puts 5V out to the top

the green LED. To actually turn on, the LED drops around 2.2V across it but

only needs around 10mA of forward current to glow. This means that as 2.8

volts is left to be dropped across the resistor R3; then its value is set to 280Ω

to limit the current to 10mA.

NB: As a precaution against sparks or high-frequency noise affecting

the supply to the PIC, you should connect a 100nF capacitor between the

VCC and ground, placing the capacitor very close to the VCC pin of the

PIC. This is not shown in the PROTEUS simulation, but it is there.

�Summary
I know there is a lot to take in, but becoming a real embedded

programmer, who fully understands what they are doing, is a real

challenge. There is a lot of text to read and maybe reread, but if you stick

with it and complete all the tasks inside this book, I am sure you will find

you are well equipped to enter this exciting, challenging, and rewarding

career as an embedded programmer.

Chapter 2 Our First Program

63

In this first task, you have studied the following:

•	 How to create a project in MPLABX.

•	 You have studied how to set up the ports correctly.

•	 How to set up the oscillator.

•	 You have studied how to use the datasheet to

determine the settings for the control registers inside

the PIC.

•	 You have studied how to use MPLABX’s own simulator

to test some aspects of your program.

So you have studied quite a lot, and that is why there is a lot to read and

reread. Note that I say studied not learnt because to learn it, you will have

to practice the procedure again and again. There will be different programs

where you should create new projects, and this will help you learn that

skill. I will not take you through the process again in the text of creating a

project, but I will assume you have carried out that part again from scratch

yourself, the whole process of creating the project and editing the program.

�Exercise Answers
Exercise 2-1: Write 0b00101110 or 0x2E to TRISC

Exercise 2-2: The 8-bit number for the OSCCON is 00110111 or 0X37

Exercise 2-3: The program would stop at this line as the semicolon

denotes the end of the instruction and we are basically, say, forever simply

do nothing.

Chapter 2 Our First Program

65© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_3

CHAPTER 3

Updating the Program
In this chapter, you will be creating two new programs. The first one will

look at creating a simple delay to delay when the lamps turn on and off.

The second will extend the delay by creating a variable delay subroutine.

After reading this chapter, you should be able to save a new updated

version of a program while keeping the old one. You should be able to use

the IF instruction and understand the difference between the IF and the

while instruction. You will be able to use the GOTO instruction and the

“for do” loop instruction.

You will be able to write a program that uses a subroutine with local

and global variables.

�If This Then Do That
This first program can be used to show us how the programmer can use

the IF This Then Do That Else Do something else concept in ‘C’. The two

switches on PORTA.RA0, the start switch, RA1, and the stop switch, give

the user two options. If the start switch is pressed, then turn the output

on. If the stop switch is pressed, then turn the output off. It really gives

a third option which is that if no switches are pressed, then go back

and check again. While this may be obvious, there is a slight difference

in the approach to this program and the first program that used the

66

while statements. The program can be implemented using the IF Else

statements. The text for the instructions follows:

Start: if (PORTAbits.RA0 == 1) goto On;

 if (PORTAbits.RA1 == 1) goto Off;

 else goto Start;

On: PORTBbits.RB0 = 1;

 goto Start;

Off: PORTBbits.RB0 = 0;

Note that there is really no need to include the ‘then’ and the ‘else’

statements as the ‘C’ compiler knows that an ‘If’ keyword uses the ‘then’

and ‘else’ statements. However, there may be times when you should

include the ‘else’ statement, but they are few and far between.

�Saving the Old Program
The preceding text has been put into the program listing overwriting the

existing part of the program that is in the forever loop. Listing 3-1 is what

your second program should look like.

However, it is good practice when changing anything to keep both the

old program and the modified program. This is because sometimes your

changes don’t work and you want to go back to the old program before you

made the changes. Therefore, you should click the “Save As” option and save

the file as mySecond18fprog.c. which is a different name for the program.

Listing 3-1.  The Modified Program

1. void main() //�this is where the micro goes to

find the first instruction of

the program

2. { //the opening of the main loop

3. TRISA = 0xFF; //Make all bits on PORTA inputs

4. TRISB = 0x00; //Make all bits on PORTB outputs

Chapter 3 Updating the Program

67

5. ADCON0 = 0x00; //This turns the ADC off

6. ADCON1 = 0x0F; //This sets all the bits on PORTA

 as digital

7. OSCCON = 0b01110100; //set the internal oscillator to

 8Mhz stable

8. while (1) //the for ever loop

9. { //�the opening of the for ever loop

10. Start: if (PORTAbits.RA0 == 1) goto On;

 //�if RA0 goes to logic '1' goto

the label On

11. if (PORTAbits.RA1 == 1) goto Off;

 //�if RA1 goes to logic '1' goto

the label Off

12. else goto Start;

 //�if none of the switches are

pressed goto to the label Start

13. On: PORTBbits.RB0 = 1;

 //turn the led on

14. goto Start; // goto to the label Start

15. Off: PORTBbits.RB0 = 0; //turn the led off

16. } //�the closing of the for ever loop

17. } //the closing of the main loop

You should be aware that the configuration commands and the

#include <xc.h> have been omitted from the program listing shown

earlier, but they are there as they must be included in your project. Your
program will always need some configuration commands and include
commands.

You will now have two ‘C’ program files in the source files folder for

this project. Don’t worry if you didn’t use the Save As option. It does not

really matter if you have just overwritten the first program and just saved

it over the old one. However, if you have used the Save As option, you will

Chapter 3 Updating the Program

68

have two source files, but the one you have just saved is not showing in

your project tree under source files. You will need to swap the old source

file in the project tree window to the new file you have just created, before

you compile the program again. To do this right, click the mouse on the

source file selection from within the project tree. The follow menu bar will

fly out as shown in Figure 3-1.

Using that fly-out menu, select “Add Existing Item.” This will open

the directory for this project, and you will need to open the ‘C’ file

mySecond18fProg that you have just created. You will now have two ‘C’

files in the source directory in the project tree. You now need to remove

the myFirst18fProg.c. To do this, simply right click the mouse on that file,

and select the remove from project option from the pop-up menu. Note

that the file will still be in your project folder on the hard drive; it just will

not be used in the program. You now have just the mySecond18fProg.c in

the source directory. Like everything new, there is a lot to learn, but after a

few attempts, this process will be quite easy to do, and believe me you will

most likely be very glad you have done it.

You can now rebuild the project by clicking on the debug main project

icon and test the program out with the stimulus and I/O window.

Check it out and confirm it works as expected.

Figure 3-1.  The Source Fly-Out Menu

Chapter 3 Updating the Program

69

�Labels and the Goto Instruction
The second program we have written, mySecond18fProg.c, uses the new

keyword “goto”. Note that the ‘C’ programming language uses keywords,

and the MPLABX IDE software identifies these keywords by writing them

in blue. We will look at keywords more as we use them in later chapters of

the book.

This new keyword, goto, forces the microprocessor to jump out of its

normal sequential operation of the instructions and go to another part of

the program. However, for the microprocessor to know where to go to, the

complete instruction needs a label that corresponds to the section of program

it should go to. In this way, labels and the goto keyword are linked together.

The label associated to the goto is written with the colon placed after

it; look at the two labels, On: and Off:, in the program Listing 3-1 at lines 13

and 15. They both have the colon written after them. Therefore, the label

tells the microprocessor where to go to with the goto keyword. Note that

the full instruction should use the goto with the label as shown in lines 10,

11, 12, and 14 in Listing 3-1.

The goto keyword is a powerful tool, but care must be taken when using it.

�Exercise 3-1
Explain why the instruction goto Start; is required on line 14, between

the ON and the OFF instructions in Listing 3-1. All exercise answers are

provided at the end of the chapter.

�While vs. If Then
The main difference is that with the while instruction, the microprocessor

will always carry out the associated instructions for as long as the test is

true. Whereas with the if then else instruction, the microprocessor will

examine the if then else condition and either carry out the instruction

Chapter 3 Updating the Program

70

written after the if() if the test is true or simply move on to the next

instruction if the test is not true; it does not keep the micro trapped

waiting for the test to become untrue. It is a subtle difference, but it is an

important one.

�Slowing the Micro Down
One of the main problems with writing code for microcontrollers is that

they carry out instructions very fast. With an 8Mhz oscillator, the PIC can

carry out 2 million instructions in 1 second, as the actual clock the micro

uses runs at is a quarter of the oscillator. This is far too fast for us humans.

This really means we need to create a delay. This is not as simple as writing

delay (1000) to create a 1-second delay. You really need to appreciate how

the micro creates a delay.

The concept of how we create a delay is quite simple. If you remember

playing hide and seek, you should appreciate that the seeker delays their

start of looking for those that hide by counting up to a number. Well it is

the same with the micro. All micros have special timer registers that simply

increment their value after each clock cycle. In this way they simply count

clock cycles, and so they can be used to create delays. There are only two

things that control the length of the delay, and they are

	 1.	 The number the timer has to count up to

	 2.	 The rate at which it counts

The 18F4525 has four timer registers that are used in this way. Timer0,

timer1, timer2, and timer3. Each timer has a register that holds the current

value of the timer and is incremented at the specified frequency, based

on the micro’s clock, for that timer. Each timer has a control register that

is used to specify how the timer operates. Timer0 is the main timer for

creating delays, whereas the other three timers have other uses, but they

could also be used for delays if required.

Chapter 3 Updating the Program

71

�T0CON Register
This is the control register for timer0 and it sets out how the timer is used.

To appreciate how to set up the timer, we need to appreciate the following:

•	 Firstly, the clock, which produces the cycles that the

timer counts, runs initially at a quarter of the oscillator.

•	 Timer0 can be set to be an 8-bit register which means it

can only count up to 256 clock cycles, 0 to 255. When it

tries to count the next clock cycle, after reaching 255, it

goes back to 0; this is called “rolling over.” When timer0

first rolls over, a rollover bit will be set, and this can be

used by the programmer if they wished to.

•	 Timer0 can be set to operate as a 16-bit timer which

means it can count up to 65536, that is, 216.

•	 We can also apply pre-scalars to the timer which will

actually slow the rate at which the timer counts by

dividing the clock frequency further.

To help explain the process further, we will go through an example of

creating a 1-second delay using the internal 8 MHz oscillator.

As the clock runs at a quarter of the crystal, the clock runs at 2MHz.

If we set the timer0 to be a 16-bit register, then the highest number it

can count up to is 65536, that is, 216. This means that as the clock is running

at 2Mhz, the timer increments or counts one ever 500ns. Therefore, the

length of the delay would be 65536 times 500ns which would be 32.768ms.

Not long enough. We need to slow the timer down, which we can do by

applying one of the pre-scalars. These are displayed in the datasheet along

with the use of all the bits in the T0CON register as shown in Table 3-1.

Chapter 3 Updating the Program

72

This is an 8-bit register and

Bit 7 is used to either enable the timer or switch it off.

Table 3-1.  T0CON Register (See Data Sheet)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TMR0ON T08BIT T0CS TOSE PSA T0PS2 T0PS1 T0PS0

BIT 7 1 Enables Timer0

0 Disables Timer 0

BIT 6 1 Sets Timer 0 as an 8-bit register

0 Sets Timer 0 as a 16-bit register, that is, two 8-bit

registers together

BIT 5 1 Transition on TOCK1 pin

0 Transition on internal clock cycle (CLKO)

BIT 4 1 means increment on negative edge

0 means increment on positive edge

BIT 3 1 Timer0 is not divided further by selected divide rate.

0 Timer0 is divided further by selected divide rate

BIT 2 - BIT0 BIT 2 BIT 1 BIT 0 Selected Divide Down Rate

0 0 0 Divide Clock Down by 2

0 0 1 Divide Clock Down by 4

0 1 0 Divide Clock Down by 8

0 1 1 Divide Clock Down by 16

1 0 0 Divide Clock Down by 32

1 0 1 Divide Clock Down by 64

1 1 0 Divide Clock Down by 128

1 1 1 Divide Clock Down by 256

Chapter 3 Updating the Program

73

Bit 6 controls whether the timer0 is an 8-bit or a

16-bit register; note that to create a 16-bit register,

the PIC simply connects two 8-bit registers together.

Bit 5 controls which clock it counts.

Bit 4 controls whether it counts on the positive edge

or negative edge of the clock cycle.

Bit 3 controls whether or not the pre-scalar is

applied or not. To divide the clock down, we need to

apply the pre-scalar.

Bits 2, 1, and 0 are used to set the required divide

rate. The 3 bits giving us 8 possible divide rates, that

is, 23 = 8.

To successfully create our 1-second delay, we will select the maximum

divide rate which is divide by 256. This means that timer0 now counts

at a rate of 7821.5 Hz, 2MHz divided by 256. This means that to create a

1-second delay, timer0 needs to count up to 7821.

I prefer to use the timer frequency to determine how long one tick

takes. One tick is simply the periodic time of the timer frequency, normally

symbolized by ‘T’. From what we should know about frequency ‘F’ and

periodic time ‘T’, we can determine the time using

F
T

T
F

T s

=

\ = \ = =

1

1 1

7812 5
128

.
m

This means it takes 128μs to count up to one. Therefore, the time to

count up to 7182 is 7812x128E-6 = 0.999936 second. Near enough especially

when you take into account the time taken to carry out the instructions. If

you needed to be extremely accurate, you would have to take into account

the time it takes to carry out these instructions, but for our purpose, this

simple approach is good enough.

Chapter 3 Updating the Program

74

Therefore, to create a 1-second delay, we need to write the correct 8-bit

word to the T0CON register. This need only be done once so it can be done

in the same part of the program as setting up the ports and oscillator. We

would then write the instructions to make the timer start at 0, and then

count up to 7812 before we do anything else. To illustrate this, we will

simply modify the first program so that the LED will come on 1 second

after pressing the start switch.

�Adding a One-Second Delay
We need to set up the timer0 by writing the required 8-bit data to the

T0CON register. The correct data is

•	 Bit 7 = logic 1 to enable the timer

•	 Bit 6 = logic 0 to make the register a 16-bit register so it

counts up to 65536

•	 Bit 5 = logic 0 as we are using the internal oscillator

•	 Bit 4 = logic 0 to set it up for negative edge triggering

•	 Bit 3 = logic 0 so that we can apply the pre-scalar and so

divide the clock down

•	 Bit 2 = Logic 1

•	 Bit 1 = logic 1

•	 Bit 0 = logic 1 so that we apply the maximum divide rate

of 256

This means that the data we need to write to the T0CON register is

Ob10000111 in binary or 0X87 for hexadecimal.

The instruction to do this is simply

T0CON = 0x87

Chapter 3 Updating the Program

75

Now all that is left to do is after waiting for the start switch to be

pressed, we set timer0 back to 0, and then do nothing until timer0 has

counted up to 7812. The instructions to perform this task are

TMR0 = 0;

While (TMR0 <7812);

The while instruction is a simple one-line instruction which tells

the microprocessor to do nothing, as no instruction is given between

the closing bracket and the semicolon, while the value in TMR0, timer 0

register, is less than 7812.

�Exercise 3-2
As an exercise, determine what data must be written to the T0CON register

to use the timer as an 8-bit register, and apply a divide by 32 rate. How long

would each tick take, and what would the maximum delay be with this

arrangement. The completed set of instructions with this delay written in

is shown Listing 3-2.

Listing 3-2.  One-Second Delay Included

1. void main(void)

2. { //This defines the start of the

 main loop

3. TRISA = 0xFF; //Make all bits on PORTA inputs

4. TRISB = 0x00; //Make all bits on PORTB outputs

5. ADCON0 = 0x00; //This turns the ADC off

6. ADCON1 = 0x0F; //This sets all the bits on PORTA

 as digital

7. OSCCON = 0b01110100; //set the internal oscillator to

 8Mhz stable

Chapter 3 Updating the Program

76

8. T0CON = 0X87; //set TMR0 to on and 16bit with max

 divide rate Freq = 7812.5Hz

 one tick takes 128us.

9. while (1) //The forever loop

10. { //This defines the start of the

 forever loop

11. while (PORTAbits.RA0 == 0) ; //Do nothing while

 the logic at b0

 of PORTA is at

 logic '0'

12. TMR0 =0; //make sure TMR0

 starts counting

 from 0

13. while (TMR0 < 7812); //Do nothing until

 TMR0 has counted

 up to 7812. This

 equates to a one

 second delay

14. PORTBbits.RB0 = 1; //Turn on what is

 �connected to b0

of PORTB

 while (PORTAbits.RA1 == 0) ; //Do nothing while

 the logic at b1 of

 �PORTA is at logic

'0'.

15. PORTBbits.RB0 = 0; //Turn on what is

16. connected to b0

 of PORTB

17. } //This defines the end of the forever loop

18. } //This defines the end of the main loop

Chapter 3 Updating the Program

77

You should be able modify your first program to include the delay and

T0CON instruction. You should then be able to simulate the program and

confirm that it works as expected.

�Delaying the Turn Off
In this modification, we are going to add a one-second delay so that the

lamp turns off one second after the stop switch has been pressed. This

could be done by simply adding the on- second delay instruction after the

wait for the stop switch to be pressed. This is shown in Listing 3-3.

Listing 3-3.  Adding the Second One-Second Delay

1. void main(void)

2. { //This defines the start of the main loop

3. TRISA = 0xFF; //Make all bits on PORTA inputs

4. TRISB = 0x00; //Make all bits on PORTB outputs

5. ADCON0 = 0x00; //This turns the ADC off

6. ADCON1 = 0x0F; //This sets all the bits on

 PORTA as digital

7. OSCCON = 0b01110100; //set the internal oscillator to

 8Mhz stable

8. T0CON = 0X87; //�set TMR0 to on and 16 bit with

max divide rate Freq = 7812.5Hz

one tick takes 128us.

9. while (1) //The Forever Loop

10. { //This defines the start of

 the forever loop

11. while (PORTAbits.RA0 == 0) ; //�Do nothing while

the logic at b0

of PORTA is at

logic '0'

Chapter 3 Updating the Program

78

12. TMR0 =0; //�make sure TMR0

starts counting

from 0

13. while (TMR0 < 7812); //�Do nothing until

TMR0 has counted

up to 7812. This

equates to a one

second delay

14. PORTBbits.RB0 = 1; //�Turn on what is

connected to b0

of PORTB

15. while (PORTAbits.RA1 == 0) ; //�Do nothing while

the logic at b1

of PORTA is at

logic '0'.

16. TMR0 =0; //�make sure TMR0

starts counting

from 0

17. while (TMR0 < 7812); //�Do nothing until

TMR0 has counted

up to 7812. This

equates to a one

second delay

18. PORTBbits.RB0 = 0; //�Turn on what is

connected to b0

of PORTB

19. } //�This defines the end of the

forever loop

20. } //�This defines the end of the main

loop

Chapter 3 Updating the Program

79

This would work fine but it is not the most efficient way of doing this.

�Using Subroutines
Whenever you are going to use the same instructions in EXACTLY the

same way more than once, then instead of writing them in multiple places

in the code as we have done in program Listing 3-3, it is better to write

these lines in the form of a subroutine, which is a small self-contained

section of code that lives outside the main program. The main program has

to “Call” the subroutine from within the main program every time the main

program wants to use the subroutine. Note that in ‘C’ these subroutines are

called “Functions” or “Methods,” but I prefer to call them subroutines.

�Defining and Calling a Subroutine
We define the subroutine in the same way as we define the main loop.

void delay() //�give the subroutine a sensible

name such as delay

{ //�opening curly brackets of the

subroutine

 TMR0 = 0; //ensure timer 0 starts counting

 from zero

 while (TMR0 < 7182); //whilst the value in timer 0

 register is less than 7812 do

 nothing

} //closing brackets of the

 subroutine

Chapter 3 Updating the Program

80

�The delay Subroutine
At this point it would be useful to appreciate that, when we call a

subroutine, we can pass information up to a subroutine and also receive

information back from a subroutine. ‘C’ uses keywords to tell the

program that a subroutine is going to send information back to the main

program from a subroutine. The word “void” is a keyword that means this

subroutine is not going to send any information back to the main program.

Other keywords could be “int” or “char” which means the subroutine will

send an integer, or a char, back to the main program.

The method by which we can show that the subroutine is requiring

information to be sent up to the subroutine is by including it inside the

normal bracket written after the name for the subroutine. An example of

this will be given later.

The keyword “void” at the beginning of this subroutine means that it

will not be sending anything back to the main program.

The next thing to do is give the subroutine an appropriate name. In this

case it is called delay.

There are now two normal brackets, the opening followed by the

closing bracket. These are left empty as this subroutine is not expecting

any information to be sent up to it.

As this subroutine has more than a single-line instruction, there are

the opening and closing curly brackets. The actual instructions of the

subroutine are placed inside these curly brackets.

�Calling the Subroutine from Within the Main
Program
This is quite a simple process; all you have to do is write the name of the

subroutine you want the program to call. This is shown here:

delay (); //this will call the subroutine "delay"

Chapter 3 Updating the Program

81

The normal brackets are required even if you are not sending any

information to the subroutine, and so they must be there. Note that the

semicolon indicates the end of the instruction.

The complete code for the first program with the two delays is shown

in Listing 3-4.

Listing 3-4.  First Program with Two Delays Using the Subroutine

1. void delay() //the delay subroutine

2. { //the opening bracket of the

 subroutine

3. TMR0 = 0; //ensure timer 0 starts counting

 from zero

4. while (TMR0 < 7182); //do nothing while the value of

 timer 0 register is less than 7812

5. } //the closing bracket of the

 subroutine

6. void main(void) //the main program loop

7. { //the opening bracket of the main

 loop

8. TRISA = 0xFF; //Make all bits on PORTA inputs

9. TRISB = 0x00; //Make all bits on PORTB outputs

10. ADCON0 = 0x00; //This turns the ADC off

11. ADCON1 = 0x0F; //This sets all the bits

 on PORTA as digital

12. OSCCON = 0b01110100; //�set the internal oscillator

to 8Mhz stable

13. T0CON = 0X87; //�set TMR0 to on and 16 bit with

max divide rate Freq 7812.5Hz

one tick takes 128us.

14. while (1) //the forever loop

Chapter 3 Updating the Program

82

15. { //the opening bracket of the

 forever loop

16. while (PORTAbits.RA0 == 0) ; //�Do nothing while the

logic at b0 of PORTA

is at logic '0'

17. delay(); //call the delay

 subroutine

18. PORTBbits.RB0 = 1; //�Turn on what is

connected to b0 of

PORTB

19. while (PORTAbits.RA1 == 0) ; //�Do nothing while the

logic at b1 of PORTA

is logic '0'

20. delay(); //call the delay

 subroutine

21. PORTBbits.RB0 = 0; //�Turn off what is

connected to b0 of

PORTB

22. } //the closing bracket of the

 forever loop

23. } //the closing bracket of the main

 loop

�The Variable Delay and the For Do Loop
In this extension of the program, we are going to create a variable delay.

Also, as the version of PROTEUS I have only models 8-bit micros, I will

change the TMR0 to be an 8-bit register as my version of PROTEUS will not

model 16-bit micros. This will also introduce a very powerful loop, the “For

Do Loop.”

Chapter 3 Updating the Program

83

First of all, we need to change TMR0 to an 8-bit register. This is done

by setting bit 6 of the T0CON register to a logic ‘1’. If we leave everything

else as we set earlier, then the 8-bit value we need to write to the T0CON

register is 0b11000111 or 0XC7. The instruction for this is

T0CON = 0XC7;

Now that we are using an 8-bit register, it means that the maximum

value the TMR0 can count up to is 255. This means that the maximum

delay this will give is 256x128E-6 = 32.768ms. The way we can increase this

to make a one-second delay is to repeat this delay approximately 30 times.

Doing this 30 times will produce a delay of 983.04ms, almost 1 second.

If we consider the time that the micro takes to carry out the instructions,

then this delay is close enough to one second.

To make the micro repeat this 32.768-ms delay 30 times, we will make

use of the “for do loop.” The instructions to do this are written below:

for (n = 0; n <30; n++)

 {

 TMR0 = 0;

 while (TMR0 < 255);

 }

There are actually three instructions written inside the normal brackets

of the “for” keyword. They are

n = 0; This sets the value of the variable ‘n’ to 0.

n < 30; This asks the question is n less than 30, and

as long as n is less than 30, do what is written inside

the curly brackets. The two instructions inside the

curly brackets make up the new 32.768ms delay.

Chapter 3 Updating the Program

84

The last instruction inside the normal brackets is n++. This will simply

increment the value of n by one every time the micro carries out the

instructions inside the curly brackets.

To help explain what happens, we can look at the steps that the micro

carries out.

	 1.	 n is loaded with a value of 0.

	 2.	 The micro asks the question is n less than 30, which

of course it is now.

	 3.	 Then the 32.768ms delay is carried out.

	 4.	 Then the value of n is increased by 1.

	 5.	 Then the micro asks the question is n less than 30.

Note that ‘n’ now equals 1.

	 6.	 If it is, then 3, 4, and 5 are carried out again.

There will be a time when n is not less then 30, that is, when it actually

equals 30. At this point the micro will break out of the “for do loop,” and the

subroutine is finished.

This will now produce a one-second delay or very close to a one-

second delay.

This is good, but it is not a variable delay as it is always comparing

n to 30. The modification to make this a variable delay is to change the

subroutine as follows:

void delay(unsigned char m)

{

 for (n = 0; n <m; n++)

 {

 TMR0 = 0;

 while (TMR0 < 255);

 }

}

Chapter 3 Updating the Program

85

Note that there is the term ‘unsigned char m’ inside the normal

bracket. Also, the question inside the “for do loop” is now is n less than m.

This means that the subroutine is asking for an unsigned char, to be passed

up to the subroutine. The subroutine then uses this value to load into the

variable ‘m’. In this way if m was 30, we would have a 1-second delay. If m

was 60, we would have a 2-second delay. Therefore, the length of the delay

is set by the value given to the variable ‘m.’ However, as this is an 8-bit

register, the maximum value we can give to the variable ‘m’ is 255. This is

why the variable is defined as an unsigned char as this uses all 8 bits. An

unsigned int, or integer, would use up 16 bits. See the section on data types

in the Appendix.

One question you should be asking is what are ‘n’ and ‘m’? These are

variables, and the following text should explain what they are.

�Local and Global Variables and Data Types
When we declare a variable, we are really reserving a space in memory

where we can store a value. If the variable is to represent a real quantity

like pump1 speed, then you should give it a meaningful name such as

pump1Speed to the variable.

Each variable will have a specific data type, and there are a wide range

of data types to choose from. The most common ones are “char” “unsigned

char” “int”, unsigned int and “float”, and so on. There is a full description of

the data types in the Appendix. However, it would be useful at this point to

compare the three common data types.

�Type Char
This uses an 8-bit memory location to store a range of values. However, the

most significant bit, the MSB, is not used to determine the number. The

char uses what is termed “signed number representation.” This is where

Chapter 3 Updating the Program

86

the MSB, that is, bit 7, is reserved to show if the number being stored is a

positive or a negative number. If the MSB is a logic ‘0’, then the number is

positive. If the MSB is a logic ‘1’, then the number is a negative number.

Therefore, the value of a type “char” can go from

11111111 which is -127

to

01111111 which is +127.

The MSB is not used to be part of the actual number or value; it is only

used to show if the number is positive or negative.

�Type Unsigned char
The type “unsigned char” does not reserve the MSB to represent the ‘sign’

of the number as all numbers will be positive. This means that a type

“unsigned char” can hold a value from

00000000 = 0

to

11111111 = 255

�Type int
The last type “int” is a 16-bit number, but like the “char,” it reserves the

MSB to represent if the number is positive or negative. Therefore, a type

“int” can hold a value from

1111111111111111 = -32768 to 0111111111111111 = +32768

Chapter 3 Updating the Program

87

It is important to appreciate all the different data types and the

difference between signed and unsigned number representation.

In our program, as my version of PROTEUS only uses 8-bit micros,

I will restrict all my variables to 8-bit variables and use type “unsigned

char” unless I need to store negative numbers.

That is why I have named the variable ‘m’ as an “unsigned char.”

�Local Variables
If we leave the variable ‘m’ being declared as it is, inside the normal

brackets of the subroutine, then it will be a local variable which means it is

only valid for use inside that subroutine. If we try to use the variable inside

any other subroutine or inside the main loop of the program, then the

compiler will say it does not recognize the variable ‘m’.

�Global Variables
The other variable ‘n’ will be declared as a global variable. This means

that the variable ‘n’ can be used anywhere in the program, that is, inside

the main loop and any subroutines that the program uses. The complete

listing to show how to declare these variables is shown in Listing 3-5.

Listing 3-5.  Using the Variable Delay Subroutine

1. //declare all global variables this is just one way of

 breaking up the program listing into different sections.

2. unsigned char n; //�reserve an 8 bit memory

location for the variable 'n'

This is a global variable

3. //define any subroutine this is just one way of

 breaking up the program listing into different sections.

Chapter 3 Updating the Program

88

4. void delay(unsigned char m) //�this subroutine expects

a number to be passed

up to it in the call to

assign to the variable

'm'this is a local

variable

5. { //�opening curly bracket

of the subroutine

6. for (n = 0; n < m ; n++) //�sets n to 0, asks is

n less than m. if

it is carryout the

instruction between the

curly brackets.

7. { //�opening curly bracket

of the for do loop

8. TMR0 = 0; //�set timer 0 register

to 0

9. while (TMR0 < 255); //�do nothing while TMR0

is less than 255 note

an 8 bit register can

only count up to 255

10. } //�closing curly bracket

of the subroutine

11. } //�closing curly bracket

of the for do loop

12. void main(void) //�the start of the main

loop

13. { //�opening curly bracket

of the main loop

14. TRISA = 0xFF; //�Make all bits on PORTA

inputs

Chapter 3 Updating the Program

89

15. TRISB = 0x00; //�Make all bits on PORTB

outputs

16. ADCON0 = 0x00; //�This turns the ADC off

17. ADCON1 = 0x0F; //�This sets all the bits

on PORTA as digital

18. OSCCON = 0b01110100; //�set the internal

oscillator to 8Mhz

stable

19. T0CON = 0XC7; //�set TMR0 to on and 8bit

with max divide rate

Freq = 7812.5Hz one

tick = 128us.

20. while (1) //�the start of the for

ever loop

21. { //�opening curly bracket

of the for ever loop

22. while (PORTAbits.RA0 == 0) ; //�Do nothing while

the logic at b0 of

PORTA is at logic

'0'

23. delay(30); //�call the delay

subroutine making m = 30

24. PORTBbits.RB0 = 1; //�Turn on what is connected

to b0 of PORTB

25. while (PORTAbits.RA1 == 0) ; //�Do nothing while

the logic at b1 of

PORTA is at logic

'0'.

26. delay(15); //�call the delay

subroutine making m = 15

Chapter 3 Updating the Program

90

27. PORTBbits.RB0 = 0; //�Turn off what is

connected to b0

of PORTB

28. } //�closing bracket of

forever loop

29. } //closing bracket

30 of main loop

NB: Note that as with all our programs, the #include <xc.h> and all the

configuration words must be written above the code.

You should change the text in mySecond18fProg.c to that shown in

Listing 3-5 and see how the program works. Note that the program should

wait one second before the LED turns on and just half a second before the

LED turns off. Can you see why?

This is because the delay for turning the LED on sets m to 30 and the

delay for turning the LED off sets m to 15.

�Exercise 3-3
To reinforce the concept of local variables as opposed to global variable,

try writing the following just after the line for PORTBbits.RB0 = 0 as

follows:

m = 10;

Now try and build the program. You should see an error occur which

points to that line. This is because the compiler does not recognize the

variable ‘m’ as it is not a global variable; it is only a local variable for use in

the subroutine delay (unsigned char m).

What would happen and why if you wrote?

n = 10; instead of

m = 10;

Chapter 3 Updating the Program

91

�Summary
This chapter has taken us from simply turning a lamp on and off to

appreciating the complexities of creating a variable delay. It has introduced

to the concept of creating and using subroutines.

This has now got us to the point where we are ready to create a project

and program that control a simple set of traffic lights. This will be covered

in the next chapter.

�Exercise Answers
Exercise 3-1: If that goto was not there, then the micro would simply move

to the Off instruction immediately after carrying out the On instruction.

This means that the micro would turn on the LED connected to RB0, then

immediately afterward, it would turn off the LED connected to RB0. This

means you would not see the LED turn on. The goto instruction forces

the micro to go back to the start after it has turned on the LED. You could

comment this instruction out by placing the two forward slashes ‘//’ before

the word goto, and see what happens when it is commented out.

Exercise 3-2: TOCON = 0b11000100 one tick = 16

microseconds max delay = 256x16u = 4.096msec.

Exercise 3-3: With n = 10; the program compiles

correctly as n is a global variable.

Chapter 3 Updating the Program

93© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_4

CHAPTER 4

Applying What We’ve
Learned
In this chapter we are going to apply what we have learnt in a simple

program. It is probably the most common program that all new embedded

programmers start with. It will take you through a structured approach to

design programs.

After reading this chapter, you will be able to program a simple model

of a set of traffic lights. You will be able to call subroutines from within the

main program loop.

�Controlling a Single Set of Traffic Lights
Hopefully it should not be too much of a problem to design a program

that would control a set of three lights, Red, Amber, and Green, to mimic a

single set of traffic lights.

The first thing we need is a sequence of events and they are

•	 The RED lamp should come on when the program

starts.

•	 Then 5 seconds later, the AMBER lamp should come on

as well.

94

•	 Then 2 seconds later, the RED and AMBER lamps

should go out, and the GREEN lamp should come on.

•	 Then 5 seconds later, the GREEN lamp goes out, and

the AMBER lamp comes back on by itself.

•	 Then two seconds later, the AMBER lamps goes out,

the RED lamp comes on, and the whole sequence starts

again.

�The Algorithm
This task will require the following I/0:

•	 Three outputs for the three lamps of the traffic lights.

•	 It will use one timer to create a variable delay.

•	 We can use the internal oscillator block with the 8MHz

internal oscillator.

•	 There is no need for the WDT, watchdog timer, as

the watchdog timer is something that an industrial

production line would need, not the sort of programs

we will be writing.

•	 The main process of the program will be to set up the

PIC and the ports, oscillator, and timer 0.

The program will continually go through the following sequence:

	 1.	 Light the RED lamp.

	 2.	 Call a 5-second delay.

	 3.	 Light the AMBER lamp.

	 4.	 Call a 2-second delay.

Chapter 4 Applying What We’ve Learned

95

	 5.	 Turn off the RED and AMBER lamp, and turn on the

GREEN lamp.

	 6.	 Call a 5-second delay.

	 7.	 Turn off the GREEN lamp, and turn on the AMBER

lamp.

	 8.	 Call a 2-second delay.

	 9.	 Then turn off the AMBER lamp, and repeat the

sequence again.

The flowchart for the program is shown in Figure 4-1.

Figure 4-1.  The Flowchart for the Single Traffic Light

Chapter 4 Applying What We’ve Learned

96

Flowcharts are an aid to designing programs as they split up the

program into smaller sections that can be completed either with existing

blocks of program or by different programmers.

They show how the program should flow from one part to the other.

The connecting arrows should show the direction of flow from one block to

the next. Each shape of the block has a special meaning.

When a flowchart extends across a page, then connecting symbols,

which are circles with letters in them, can be used.

You should construct a flowchart for every program you design as if

constructed fully, each block in the flowchart links into its own section of

program listing and instructions.

However, to save space I will only show flowcharts for this program and

the next one.

Listing 4-1 provides program listing.

Listing 4-1.  The Complete Program for a Single Set of Traffic Lights

1. �/*Definitions it is useful to allocate symbolic names to

the actual bits on the I/O. The symbolic names should

give some suggestion as to what the I/O is used for. Now

wherever the compiler sees the symbolic name, it knows

what I/O it really means. Doing this also makes it easier

to change the allocation list if needed. Note that the

line with the definition does not end with the semicolon.

This is because it is not an instruction for the program,

it is just a statement for the compiler software to be

aware of.*/

2. #define redLamp1 PORTBbits.RB0 //�defines the

symbolic name

redLamp1 to mean

bit 0 of PORTB

Chapter 4 Applying What We’ve Learned

97

3. #define amberLamp1 PORTBbits.RB1 //�defines the

symbolic name

amberLamp1 to

mean bit 1 of

PORTB

4. #define greenLamp1 PORTBbits.RB2 //�defines the

symbolic name

greenLamp1 to

mean bit 2 of

PORTB

5. //Global variables //�These are variables for anywhere in

the program

6. unsigned char n; //�This reserves a memory

location for the 8 bit

variable 'n' using all 8 bits

for the number

7. //Subroutine

8. void delay(unsigned char t) //�This is the start of

a subroutine called

delay. It expects a

value to be passed

up to the subroutine

which it copies into

the local variable

't'.

9. { //�opening curly bracket of delay

subroutine

10. for (n = 0; n < t; n++) //�sets up a for do loop

which controls how many

times the micro carries

out the instructions

inside the curly brackets.

Chapter 4 Applying What We’ve Learned

98

11. { //�opening curly bracket for the

for do loop

12. TMR0 = 0; //�set TMR0 to 0. start value for

count

13. while (TMR0 < 255); //�while value of TMR0 is less

than 255 do nothing. Lines 12

and 13 create a 32.77msec delay

14. } //�closing curly bracket for the

for do loop

15. } //�closing curly bracket for the

delay subroutine

16. void main() //start of the main loop

17. { //�opening curly bracket for main loop

18. PORTA = 0; //�these few lines turn off all bits on

the PORTS

19. PORTB = 0;

20. PORTC = 0;

21. PORTD = 0;

22. PORTE = 0;

23. TRISB = 0; //�This sets all bits on PORTB as outputs

24. ADCON0 = 0; //turn ADC off

25. ADCON1 = 0x0F; //make all bits digital

26. OSCCON = 0x74; //set osc to 8Mhz with stable output

27. T0CON = 0xC7; //�set TMR0 to 8 bit reg with divide

by 256 rate so runs at 7812.5 Hz

one tick = 128uS

28. while (1) //�start of the for ever loop so micro

only carries out lines 16 to 27

only once

29. { //�opening curly bracket of for ever

loop

30. redLamp1 = 1; //turns the redLamp1 on

Chapter 4 Applying What We’ve Learned

99

31. delay (153); //�calls the subroutine delay and pass

the value 153 up to the subroutine.

This creates a 5 second delay.

32. amberLamp1 = 1; //turns the amberLamp1 on

33. delay (61); //�calls the subroutine delay

and pass the value 61 up to

the subroutine. This creates

a 2 second delay.

34. redLamp1 = 0; //turns the redLamp1 off

35. amberLamp1 = 0; //turns the amberLamp1 off

36. greenLamp1 = 1; //turns the greenLamp1 on

37. delay (153); //�calls the subroutine delay

and pass the value 153 up to

the subroutine. This creates

a 5 second delay.

38. greenLamp1 = 0; //turns the greenLamp1 off

39. amberLamp1 = 1; //turns the amberLamp1 on

40. delay (61); //�calls the subroutine delay

and pass the value 61 up to

the subroutine. This creates

a 2 second delay

41. amberLamp1 = 0; //�turns the amberLamp1 off.

Micro now goes back up to

line 28 and repeats the loop.

42. } //�closing bracket of for ever

loop

43. } //�closing bracket of for main

loop

The PROTEUS simulation is shown in Figure 4-2.

Chapter 4 Applying What We’ve Learned

100

The following sections provide analysis and instructions to explain

how the program works.

�The Configuration Words
I should point out that the same configuration words have to be placed in

the ‘c’ file as always and so does the include <xc.h>. This must be included

in all your projects.

The configuration words are very important as they define how the PIC

sets up its main properties. The most important of which is the primary

oscillator source. All the PICs you will come across can use a variety of

different oscillator sources from the slow external RC, resistor–capacitor,

oscillator to very high-frequency 19.08Mhz external crystal oscillator; note

that newer PICs can run at much higher frequencies.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

PIC18F4525

VDD

Figure 4-2.  The Proteus Simulation of North–South Traffic Lights

Chapter 4 Applying What We’ve Learned

101

Most PICs also have an internal oscillator block of circuitry that can be

used as the primary oscillator source. I prefer to use this internal oscillator

block as it saves on the cost of a crystal and saves on available I/O, as there

is no need to use RA6 and RA7 as inputs for the external oscillator circuit.

However, you may want to do otherwise, so you should appreciate that

these configuration words have to be used, and you should know how to

set them up. An example of setting these configuration words is explained

in Chapter 2.

�The Analysis of the Program
The following is an analysis of the Listing 4-1. Each new instruction will be

looked at to explain how they work and what they are trying to do.

Line 1

This is when the directive #define is explained. This

directive allows the programmer to create a phrase

that can represent a single program instruction or a

series of instructions. They can be likened to macros

in other programs. Note that these defines are not

instructions for the program; they are directives for the

compiler. Therefore, there is no need for the semicolon

at the end of the definition.

In line 2 the directive is

#define redlamp PORTBbits.RB0

This tells the compiler software that wherever it sees

the phrase redlamp, it really means the instruction

PORTBbits.RB0. So when the compiler sees the

instruction

Chapter 4 Applying What We’ve Learned

102

redlamp = 1;

the compiler knows we mean make bit 0 of PORTB a

logic ‘1’, and so turn on whatever is connected to it.

Note that MPLABX uses different colors to help

identify the different types of keywords. The default

color for the directive “#define” is light green, and the

default color for the phrase, in this case “redlamp”, is

light blue. These colors should become evident when

using the IDE editor in MPLABX.

The same concept is used in lines 3 and 4 except that the

phrases are linked to different bits on PORTB. The idea

is to makes the program more readable. However, there

is also another advantage in that if we wanted to change

the allocation list and connect the lamps to PORTD,

we need only make the changes here at the definitions

rather than search for every occurrence of the I/O in the

program. Much more efficient programming.

At line 5, I am simply using comments to split the

program listing up into different sections. Here we are

going to declare any variables the program will use.

Note that when we declare a variable, we are simply

reserving an area in memory where we can store data.

The size of the area reserved depends upon the data

type we are using. We give the variable a name so that

we can refer to it in the program. These variables will

be global in that they can be used anywhere in the

program. This is opposed to local variables which can

only be used in the subroutine that they are declared in.

Chapter 4 Applying What We’ve Learned

103

In line 6 we simply reserve a global variable that is

an 8-bit memory location referred to as ‘n.’ This is

an unsigned char which means all 8 bits are used to

represent the number from 0 to 255. There can be no

negative numbers.

Line 7 simply splits the listing up into a section for any

subroutines we want to create.

Line 8 declares a subroutine called “delay”. The word

void means it does not pass any data back down to

the main program. Inside the normal brackets, the

subroutine declares a local variable of type unsigned

char named “t”. This variable is only valid for use

inside this subroutine.

Line 9 sets up the opening curly bracket for this

subroutine.

Line 10 declares a for do loop. Inside the bracket

is makes the variable n = 0; it then asks if n<t; if it

is less than ‘t’, then the micro must carry out the

instructions inside the curly brackets that follow. It will

automatically increment ‘n’ after it has carried out the

instructions inside the curly brackets. It will then ask

the question, is n < t? When ‘n’ is not less than ‘t’, the

micro will break out of the for do loop. Note that when

the programmer calls this subroutine “delay,” it will

have to pass a value that will be loaded into the local

variable ‘t’. In this way this delay becomes a variable

delay whose length of delay depends upon the value

passed up to it which is then loaded into the variable

‘t’. However, you should appreciate that the largest

value you can assign to the local variable ‘t’ is 255. This

is because it is an 8-bit memory location.

Chapter 4 Applying What We’ve Learned

104

Line 11 sets up the opening curly bracket for this for

do loop.

Line 12 simply loads the value ‘0’ into the TMR0

register. This is so that the TMR0 starts to count from 0.

Line 13 states that while Timer0 is less than 255, do

nothing. This creates a 33-ms delay with Timer0

counting at 7812.5Hz one tick = 128us, that is, 256 x

128us = 32.77ms.

Line 14 is the closing curly bracket of the for do loop.

Line 15 is the closing curly bracket of the for the delay

subroutine.

Line 16 declares the main loop. This is where the

micro goes to get the very first instruction of the

program.

Line 17 sets up the opening curly bracket for the main

loop.

Lines 18 to 22 simply make sure that all the ports are at

logic ‘0’ on all their bits. This is to make sure nothing is

turned on by accident.

Line 23 makes sure that all the bits in the SFR, Special

Function Register, TRISB are at logic ‘0.’ This makes all

bits in PORTB output.

This program only uses PORTB, so we are not

bothered about the other TRIS SFRs.

Line 24 makes all the bits in SFR ADCON0 go to logic

‘0’. This keeps the ADC connected to channel ‘0’ but

more important is that it turns the ADC off as we are

not using it.

Chapter 4 Applying What We’ve Learned

105

Line 25 makes the bits in the ADCON1 SFR go to

0b00001111. It is bits 3, 2, 1, and 0 that have been set

to logic ‘1’ that makes all the inputs digital and not

analogue.

Line 26 sets the internal oscillator to 8Mhz and makes

it stable.

Line 27 turns Timer0 on. It makes it an 8-bit timer with

a maximum divide rate which means it counts at a rate

of 7812.5Hz making one tick = 128μS.

Line 28 declares a forever loop as the test inside the

while brackets will always be true as it is always a logic

‘1’. This means the micro will carry out the instructions

inside the following curly brackets forever. This is to

stop the micro from carrying out the instructions from

line 17 to 26 again.

Line 29 sets up the opening curly bracket of the forever

loop.

Line 30 turns on the redlamp.

Line 31 calls the delay subroutine and passes the

number 153 to be loaded into the local variable ‘t’ in

the subroutine. This creates a 5-second delay.

Line 32 turns on the amberlamp.

Line 33 calls a 2-second delay.

Line 34 turns off the redlamp.

Line 35 turns off the amberlamp.

Line 36 turns on the greenlamp.

Line 37 calls the 5-second delay.

Chapter 4 Applying What We’ve Learned

106

Line 38 turns off the greenlamp.

Line 39 turns on the amberlamp.

Line 40 calls the 2-second delay.

Line 41 turns off the amberlamp. As this is the last

instruction in this forever loop, the micro goes back to

line 30, via lines 28 and 29, to start the process again.

Line 42 is the closing curly bracket of the forever loop.

Line 43 is the closing curly bracket of the for the main

loop.

I hope this explains how the program works and what each instruction

is doing. With respect to future program listings, I will analyze only the

new instructions. In this way I hope you will be able to learn how all the

instructions we use in these programs work.

�Downloading the Program to a Prototype
Board
It would be useful at this point to show you how to download your program

to an actual PIC on a prototype board. There are a range of prototype

boards you can use. One that I use for my programs is from Microchip,

and it is the PIC Demo board. To connect to the board, I normally use the

ICD3 can. These can be found on the Microchip web site. However, to use

any programming tool, you must specify which hardware tool you want to

use as shown in Figure 2-6, when you create your project in the first place.

However, if you have already created your project, you can change the

hardware tool by right clicking the project name in the project view tree.

You should then see a fly-out window appear from which you can select

the word Properties. After selecting Properties, you will be presented with

a pop-up window as shown in Figure 4-3.

Chapter 4 Applying What We’ve Learned

107

Having made sure you have selected your programming tool and

connected to your prototype board, you can download the program to the

PIC by clicking the green down arrow from the main menu bar as shown

in Figure 4-4. Note that when we were using the simulator tool, these two

arrows were not available to us before.

The following picture should help show how to connect the ICD3 can

to the PIC prototype board and the laptop. I use two types of prototype

boards, one from Matrix Multimedia and one from Microchip. However,

Figure 4-3.  The Properties Window for an Existing Project

Figure 4-4.  The Downloading to the PIC

Chapter 4 Applying What We’ve Learned

108

Matrix seems to have moved away from their versatile PIC programming

board that I like, and so I will show you how to connect to the Microchip

development board I use. You will have to decide which board you prefer.

You connect the ICD3 can to one of your USB ports on the laptop, and

connect the ICD3 can to the programming board using the RJ11 cable and

connector on the board. This principle is shown in Figure 4-5.

From now on the programs in the book will be simulated with the use

of the ECAD software PROTEUS. Those who use PROTEUS may be aware

that you can write your PIC programs in PROTEUS as well as use their

extensive debugging tools. This book will not go into that aspect of using

PROTEUS as that is a book in itself.

Figure 4-5.  Downloading to a Prototype Board

Chapter 4 Applying What We’ve Learned

109

�Extending the Program to the Crossroads Traffic
Lights
The natural extension to this program would be to write a program that

models the full crossroads set of traffic lights, that is, both the North South

and the East West set of lights. The timing sequence for this task is as

follows (note that N/S lamps are numbered Red1, Amber1, and Green1,

whereas E/W are numbered Red2, Amber2, and Green2):

	 1.	 The sequence starts with both red lamps on.

	 2.	 Five seconds later, Amber1 comes on as well.

	 3.	 Two seconds later, Red1 and Amber1 go out, and

Green1 comes on.

	 4.	 Five seconds later, Green1 goes out, and Amber1

comes back on by itself.

	 5.	 Two seconds later, Amber1 goes out, and Red1

comes back on. Note that all this time, Red2 has

been on.

	 6.	 One second later, Amber2 comes on as well.

	 7.	 Two seconds later, Red2 and Amber2 go out, and

Green2 comes on.

	 8.	 Five seconds later, Green2 goes out, and Amber2

comes back on by itself.

	 9.	 Two seconds later, Amber2 goes out, and Red2

comes back on. Note that all this time, Red1 has

been on.

	 10.	 The cycle now repeats.

Chapter 4 Applying What We’ve Learned

110

�The Algorithm
The diagram shown in Figure 4-6 was created from the sequence for the

traffic lights. Each of the rectangles represents one second in time. Once

the timing diagram had been created, it became clear that the 20-second

period shown as repeat time zone was, as its name suggest, repeated

every 20 seconds. This then means that the only sequence that needed to

be programmed was the sequence listed between this repeat time zone

periods.

The next step was to list all the important time steps and what we need

to have happen at those times. The list is as shown below:

•	 Time 0. This is the start time in the sequence, and at

this time, both Red1 and Red2 should come on.

•	 Time 1. This is one second later, and at this time,

Amber2 should come.

•	 Time 2. This is two seconds after time 1, and at this

time, Amber2 and Red2 should go out, and Green2

should turn on.

•	 Time 3. This is five seconds after time2, and at this time,

Green2 turns off, and Amber2 comes back on again.

Figure 4-6.  The Timing Diagram for the Crossroads Traffic
Lights

Chapter 4 Applying What We’ve Learned

111

•	 Time4. This is 2 seconds after time3, and at this time

Amber2 turns off, and Red2 turns back on again.

•	 Time5. This is 1 second after time4, and at this time,

Amber1 is turned on

•	 Time 6. This is 2 seconds after time5, and this is when

Red1, which has been lit all this time, is turned off and

Amber1 turns off as well as Green1 is turned on.

•	 Time 7. This is 5 seconds after time6; at this time

Green1 turns off, and Amber1 turns back on again.

•	 Time 8. This is 2 seconds after time7, and at this time,

Amber1 turns off, and the cycle goes back to time0 and

starts to repeat the whole sequence.

The program has to create these time steps and turn on and off the

appropriate lights at those times.

The program needs 6 outputs to connect the 6 lamps t. Note that there

will actually be 12 lamps, but the north and south work together and so

does the east and west lamps.

There is no real need for an input, but we will include a start switch

that starts the whole sequence.

The program will make use of a variable delay to create the various

time steps.

The next step is to draw the flowchart shown in Figure 4-7.

Chapter 4 Applying What We’ve Learned

112

Figure 4-7.  The Flowchart for the Crossroads Traffic Light Program

Chapter 4 Applying What We’ve Learned

113

The program listing for the crossroads traffic light is shown in Listing 4-2.

Listing 4-2.  The Crossroads Traffic Lights

1. #define red1 PORTBbits.RB0 //�defines the

symbolic name

red1 to mean bit

0 of PORTB

2. #define amber1 PORTBbits.RB1 //�defines the

symbolic name

amber1 to mean

bit 1 of PORTB

3. #define green1 PORTBbits.RB2 //�defines the

symbolic name

green1 to mean

bit 2 of PORTB

4. #define red2 PORTBbits.RB3 //�defines the

symbolic name

red2 to mean bit

3 of PORTB

5. #define amber2 PORTBbits.RB4 //�defines the

symbolic name

amber2 to mean

bit 4 of PORTB

6. #define green2 PORTBbits.RB5 //�defines the

symbolic name

green2 to mean

bit 5 of PORTB

7. #define startButton PORTAbits.RA0 //�defines the

symbolic name

startButton to

mean bit 0 of

PORTA

Chapter 4 Applying What We’ve Learned

114

8. //Global variables //�These are variables for

anywhere in the program

9. unsigned char n; //�This reserves a memory

location for the 8 bit

variable 'n' using all 8

bits for the number

10. //Subroutine

11. void delay(unsigned char t) //�This is the start

of a subroutine

called delay. It

expects a value to

be passed up to the

subroutine which

it copies into the

local variable 't'.

12. { //�opening curly bracket of

delay subroutine

13. for (n = 0; n < t; n++) //�sets up a for do loop which

controls how many times

the micro carries out the

instructions inside the

curly brackets.

14. { //�opening curly bracket for

the for do loop

15. TMR0 = 0; //�set TMR0 to 0. start value

for count

16. while (TMR0 < 255); //�while value of TMR0 is

less than 255 do nothing.

Lines 15 and 16 create a

32.77msec delay

17. } //�closing curly bracket for

the for do loop

Chapter 4 Applying What We’ve Learned

115

18. } //�closing curly bracket for

the delay subroutine

19. void main() //start of the main loop

20. { //�opening curly bracket for

main loop

21. PORTA = 0; //�these few lines turn off

all bits on the PORTS

22. PORTB = 0;

23. PORTC = 0;

24. PORTD = 0;

25. PORTE = 0;

26. TRISA = 0X0F; //�This makes the first four

bits on PORTA input and the

last four bits are output

27. TRISB = 0; //�This sets all bits on PORTB

as outputs

28. ADCON0 = 0; //turn ADC off

29. ADCON1 = 0x0F; //make all bits digital

30. OSCCON = 0x74; //�set osc to 8Mhz with stable

output

31. T0CON = 0xC7; //�set TMR0 to 8 bit reg with

divide by 256 rate so runs

at 7812.5 Hz one tick =

128uS

32. while (!startButton); //�wait for start Button to be

pressed

33. while (1) //�start of the for ever loop

so micro only carries out

lines 19 to 32 only once

34. { //�Opening curly bracket for

while loop

Chapter 4 Applying What We’ve Learned

116

35. red1 = 1; //turn red1 on

36. red2 = 1; //turn red2 on

37. delay (30); //wait 1 second

38. amber2 = 1; //turn amber2 on

39. delay (61); //wait 2 seconds

40. red2 = 0; //turn red2 off

41. amber2 = 0; //turn amber2 off

42. green2 = 1; //turn green2 on

43. delay (153); //wait 5 seconds

44. green2 = 0; //turn green2 off

45. amber2 = 1; //turn amber2 off

46. delay(61); //wait 2 seconds

47. amber2 = 0; //turn amber2 off

48. red2 = 1; //turn red2 on

49. delay (30); //wait 1 second

50. amber1 = 1; //turn amber1 on

51. delay (61); //wait 2 seconds

52. red1 = 0; //turn red1 off

53. amber1 = 0; //turn amber1 off

54. green1 = 1; //turn green1 on

55. delay(153); //wait 5 seconds

56. green1 = 0; //turn green1 off

57. amber1 = 1; //turn amber1 on

58. delay(61); //wait 2 seconds

59. amber1 = 0; //turn amber1 off

60. }

61. }

The circuit for the simulation is shown in Figure 4-8.

Chapter 4 Applying What We’ve Learned

117

�The Program Analysis

With program Listing 4-2, there are only three new instructions. They are

Line 7 where we define the phrase startButon to

mean the input at PORTAbits.RA0.

Line 26 where we declare that TRISA = 0X0F; this

makes the first four bits in PORTA inputs and the

remaining four bits are outputs.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

R1
1k

R2
1k

Figure 4-8.  The Simulated Crossroads Circuit

Chapter 4 Applying What We’ve Learned

118

Line 32 where we make the micro wait for the logic

at PORTAbit0 to go to a logic ‘1.’ This means nothing

will happen until the start button is pressed. Note

that this instruction is before the forever loop

because if it was inside the forever loop, the program

would wait at this instruction, until someone

pressed the start button, before it can repeat the

sequence.

This completes the analysis for both the programs in this chapter.

I hope you have been able to learn how to use each of the instructions and

you understand what they do.

�Summary
In this chapter we have reinforced the principles behind tuning on and

off outputs and the concept of how to create and use a variable delay

subroutine. We have seen how useful these subroutines are in saving

repeating instructions. This then saves on program memory. In the next

chapter, we learn about the ADC and how to use analogue inputs.

Chapter 4 Applying What We’ve Learned

119© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_5

CHAPTER 5

Real-World Inputs
In this chapter we will look at using the PIC to measure real-world signals

such as signals from pressure, temperature, and speed. It will cover using

the three registers that control the ADC and receiving an analogue input

and displaying it as a binary value.

After reading this chapter, you will be able to use analogue inputs.

�Using Analogue Inputs
As well as digital inputs, which are usually just on or off, 5v or 0V, PICs can

use analogue inputs. These are inputs that can ideally take up any voltage

within the range of the PIC, normally any voltage between 0 and 5V. I

say ideally because the voltage will increase in discrete steps according

to the resolution of the ADC. There is one ADC in the PIC and it is a 10-

bit ADC. If the range of voltage is the normal 0 to 5v, then knowing the

resolution of the ADC can be calculated using;

resolution
range

n
=

2
Equation 1 Resolution of An ADC

where ‘n’ is the

number of bits of the ADC

The resolution of the ADC is

\ = = = =resolution
range

mV
n2

5

2

5

1024
4 883

10
. Equation 2 Resolution of

10 bit ADC

120

What this means is that the ADC will see 0V, and then the next

higher voltage will be 4.883mV, and the next would be 9.766mv, and so

on. Therefore, the PIC cannot really see every possible voltage from 0 to

5V. However, the result will be close enough for us humans.

The fact that the PIC can use analogue inputs, indeed the PIC18f4525

has up to 13 analogue inputs available to it, means we as programmers

must learn how to use them. There are three control registers that control

how we use the ADC inputs. They are

•	 ADCON0

•	 ADCON1

•	 ADCON2

�The ADCON0 Control Register
The main purpose of this control register is to allow the programmer to

choose which analogue input, or channel, is connected to the ADC. Note

that this is a form of multiplexing where many inputs feed into one device

one at a time. The choice is controlled by the data in bits 5, 4, 3, and 2 of

the ADCON0 register; see Table 5-1. Note that bits 7 and 6 are not used, so

they are set to logic ‘0’.

Table 5-1.  The ADCON0 Register (See Data Sheet)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not Used Not Used CHS3 CHS2 CHS1 CHS0 GO/DONE ADON

Bit 7 Not Used read as 0

Bit 6 Not Used read as 0

(continued)

Chapter 5 Real-World Inputs

121

Table 5-1.  (continued)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bits 5 to Bit 2 Bit 5 Bit 4 Bit 3 Bit 2 ADC Channel
Selected

0 0 0 0 Channel 0 AN0

0 0 0 1 Channel 1 AN1

0 0 1 0 Channel 2 AN2

0 0 1 1 Channel 3 AN3

0 1 0 0 Channel 4 AN4

0 1 0 1 Channel 5 AN5

0 1 1 0 Channel 6 AN6

0 1 1 1 Channel 7 AN7

1 0 0 0 Channel 8 AN8

1 0 0 1 Channel 9 AN9

1 0 1 0 Channel 10 AN10

1 0 1 1 Channel 11 AN11

1 1 0 0 Channel 12 AN12

1 1 0 1 Not Used

1 1 1 0 Not Used

1 1 1 1 Not Used

BIT 1 1 Start a conversion, and a conversion is now taking place

0 A conversion has finished

BIT 0 1 Enable the ADC

0 Disable the ADC

Chapter 5 Real-World Inputs

122

Bit 0 is the bit that actually turns the ADC on or not. A logic ‘1’ means

the ADC is enabled, whereas a logic ‘0’ means it is disabled.

The last remaining bit, bit 1, is used to start the ADC conversion

and tell the programmer when the conversion is finished or done. The

programmer must set this bit to a logic 1 to start the ADC conversion. Then

when the conversion is finished, the microprocessor sets this bit back to

a logic’0’ automatically. This is a signal to tell the programmer the ADC

conversion has finished.

�The ADCON1 Register
This register mostly controls whether the 13 inputs are to be used as

analogue or digital. It is the first four bits, b0, b1, b2, and b3, that do this.

Table 5-2 clearly shows how this is achieved.

Table 5-2.  The ADCON1 Register (See Data Sheet)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not Used Not Used VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

Bit 7 Not Used read as 0

Bit 6 Not Used read as 0

Bit 5 1 negative reference from AN2
0 negative reference from VSS

Bit 4 1 positive reference from AN3
0 positive reference from VDD

(continued)

Chapter 5 Real-World Inputs

123

Table 5-2.  (continued)

B3 B2 B1 B0 AN1
12

AN1
11

AN
10

AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0

0 0 0 0 A A A A A A A A A A A A A

0 0 0 1 A A A A A A A A A A A A A

0 0 1 0 A A A A A A A A A A A A A

0 0 1 1 D A A A A A A A A A A A A

0 1 0 0 D D A A A A A A A A A A A

0 1 0 1 D D D A A A A A A A A A A

0 1 1 0 D D D D A A A A A A A A A

0 1 1 1 D D D D D A A A A A A A A

1 0 0 0 D D D D D D A A A A A A A

1 0 0 1 D D D D D D D A A A A A A

1 0 1 0 D D D D D D D D A A A A A

1 0 1 1 D D D D D D D D D A A A A

1 1 0 0 D D D D D D D D D D A A A

1 1 0 1 D D D D D D D D D D D A A

1 1 1 0 D D D D D D D D D D D D A

1 1 1 1 D D D D D D D D D D D D D

The ADC needs a reference voltage to help determine the level of the

analogue input. Bits 4 controls where the PIC gets the positive reference.

The default, and so normal setting, is to use the supply to the PIC, that is,

VCC or VDD.

Bit 5 controls where the PIC gets the negative reference. The default,

and so normal setting, is to use the supply to the PIC, that is, VSS or ground.

Bits 6 and 7 are not used.

Chapter 5 Real-World Inputs

124

�The ADCON2 Register
The ADCON2 control register is used to firstly decide what format the

result of the ADC is stored in (Table 5-3). This is because the ADC returns

a 10-bit binary number as the result of a conversion. The problem is

that this PIC is an 8-bit PIC which means it only has 8-bit registers. This

means that the PIC uses two registers to store the result: ADRESH and

ADRESL. Therefore 8 bits of the result can be stored in one register; the

other 2 bits are stored in the other register.

Table 5-3.  The ADCON2 Register (See Data Sheet)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ADFM Not Used ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

BIT 7 1 Right justify 2 bits in ADRESH (b1 b0) 8 bits in ADRESL

0 Left justify 8 bits in ADRESH 2 bits in ADRESL (b7 b6)

BIT 6 Not used

Bit 5 - Bit 3 BIT 5 BIT 4 BIT 3 Selected TADs

0 0 0 0 TAD

0 0 1 2 TAD

0 1 0 4 TAD

0 1 1 6 TAD

1 0 0 8 TAD

1 0 1 12 TAD

1 1 0 16 TAD

1 1 1 20 TAD

(continued)

Chapter 5 Real-World Inputs

125

The diagram shown in Figure 5-1 helps to explain what is meant by

right and left justification.

The top diagram where the ADFM or B7 is a logic ‘0’ is termed left

justification. Right justification is shown in the bottom diagram. I normally

choose left justification.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BIT 2 - BIT0 BIT 2 BIT 1 BIT 0 AD Clock Select Bits

0 0 0 FOsc/2

0 0 1 FOsc/8

0 1 0 FOsc/32

0 1 1 FRC (RC Clock)

1 0 0 FOsc/4

1 0 1 FOsc/16

1 1 0 FOsc/64

1 1 1 FRC (RC Clock)

Table 5-3.  (continued)

Figure 5-1.  The Storing of the 10-bit Result of the ADC Conversion

Chapter 5 Real-World Inputs

126

To understand the other use of the ADCON2 control register, you need

to appreciate what has to happen when you turn the ADC on and try to get

an ADC conversion result.

When you start a conversion, the PIC will connect the ADC to the

particular input, or ADC channel, that is measuring the physical analogue

input. Then, once the ADC is connected to the input, it will use the voltage

at that input to charge up a capacitor in what is termed a sample and hold

circuit. It will take a finite time for the capacitor to charge up to the voltage

at that input. This charge up will depend upon the value of the capacitor

in the sample and hold circuit and the resistance at the input. This will

change depending upon the particular PIC you are using. For the 18F4525

the capacitor has a value of 25pF; see Section 19 in the data sheet. Using

this value, an approximate acquisition time for the capacitor to charge up

is 2.4μs; see Section 19 in the data sheet.

This basically means you must get the PIC to wait this 2.4μs before the

ADC starts its conversion; if it doesn’t wait this time, then the result could

be inaccurate. Microchip offer two ways of creating this delay. You could

manually create a delay routine that you run every time before you start

an ADC conversion. To use this method, bits 5, 4, and 3 of the ADCON2

register must be set to logic ‘0’. However, you as the programmer, must

make sure you use this delay before starting a conversion and it is long

enough. Note that to start a conversion, you simply have to set bit 1 of the

ADCON2 register to a logic ‘1.’

Microchip offers an approach that creates this delay automatically

every time you start a conversion. To use this method, you need to know

the period ‘T’ of the frequency of the timing waveform controlling the ADC

conversion process. Microchip calls this period the “TAD”. Microchip offers

a variety of options for choosing the frequency of the timing waveform.

This is because Microchip offers the user a wide variety of oscillator

sources for the PIC. Therefore bits 2, 1, and 0 offer the choice of using the

RC oscillator as the timing source for the ADC or dividing the oscillator

frequency by 2, 4, 8, 16, 32, or 64. The idea is to create a 2.4-μs delay.

Chapter 5 Real-World Inputs

127

The process is best explained with an example. However, to appreciate

what we are trying to create, it would be useful to consider the timing

waveform shown in Figure 5-2.

Figure 5-2 depicts what happens when the PIC goes through an ADC

conversion. Firstly, the ADC is connected to the relevant analogue input.

The voltage at that input is acquired. This means that the input is switched

onto the sample and hold circuit inside the PIC and the capacitor in that

circuit is charged up to the voltage at the input. This charge-up time is

termed the acquisition time, and the PIC must wait long enough for the

capacitor to fully charge up. The time that the PIC will wait is set by the

chosen number of TAD periods that you, as the programmer, select. You

must select enough TAD periods for the capacitor to fully charge up. This

then means you must know how long each TAD period is. This is again

chosen by you, the programmer.

The TAD period is set using the bits 0, 1, and 2 of the ADCON2 register.

These bits are named ADCS0, ADCS1, and ADCS2. With these bits you, can

chose the frequency at which the ADC system runs and so the TAD time

for the system. Table 5-3 shows the possible selections you can choose.

Note the TAD time is equal to the periodic time ‘T’ of the chosen frequency

you select using bits 0, 1, and 2 of the ADCON2 register.

Figure 5-2.  The Timing for the ADC Operation of the PIC

Chapter 5 Real-World Inputs

128

This then means that it is the combination of the number of TADs

used to create the acquisition time and the actual TAD period you have

chosen that controls how long the PIC waits while the capacitor is allowed

to charge up. The one overriding consideration is that the TAD and the

minimum number of TADs which is 2TAD must create a time that is equal

to or greater than the acquisition time. This means that if the TAD time

that you choose worked out to be 500ns and the acquisition time was

2.4μs, then the system could possibly throw up an error as the minimum

2TAD time would 2x500ns = 1μs, not long enough. Of course, you would

not choose the 2TAD; you would choose the 6TAD as 6TAD would make

the PIC wait 3μs which is greater than the 2.4μs acquisition time for the

PIC18F4525. However, you must be aware of the problem.

This is rather a lot to appreciate, and so to help you understand the

process, I will go through two examples.

�Creating the Required Acquisition Time
These two examples are to help you appreciate the importance of this

acquisition time and how to use and create the TAD time.

The first example is fine as the chosen TAD time is within the specified

parameters for the PIC. However, the second example is not recommended

as the minimum 2TAD would not produce a long enough acquisition time.

Indeed, the minimum divide rate for the 20-Mhz oscillator is divide by 32

as this would give a TAD time of 1.6μS making the minimum 2TAD 3.2μs.

Table 19.1 in the data sheet does give you some suggestion as to the

recommended TAD time. However, I must say that Microchip has to give

the user the information for the PIC in the data sheet, but they do not make

it very clear as to how to use that information.

Chapter 5 Real-World Inputs

129

�Example 1
In this example we will be using the 8-Mhz oscillator, and then choosing a

divide by 8 makes the frequency of the ADC operation 1Mhz. This in turn

means that the period, known as TAD, is 1μs, that is, 1/1E6 = 1E-6 = 1μs.

Therefore, to create the required acquisition time of 2.4μS, we would need

a 2.4TAD time for the delay, that is, 2.4E-6/1E-6.= 2.4.

Using bits 5, 4, and 3 of the ADCON2 register, we have options of using

2, 4, 6, 8, 12, 16, and 20 TAD time period. To obtain the required 2.4μs, you

should select the 4 TAD option, the closest to 2.4μs while still be greater

then 2.4μs. Note that this 2.4μs is the minimum, not the maximum time the

PIC should allow for the acquisition time; however, you should make this

delay time the shortest you can.

To select this option, we need to write

•	 b5 = 0

•	 b4 = 1

•	 b3 = 0 4TAD

•	 b2 = 0

•	 b1 = 0’

•	 b0 = 1 divide by 8

�Example 2
In this example we will be using the 20-Mhz oscillator. Then choosing a

divide by 4 makes the frequency of the ADC operation 5Mhz. This in turn

means that the period, known as TAD, is 200ns. Therefore, to create the

required acquisition time of 2.4μS, we would need a 12 TAD time for the

delay, that is, 2.4E-6/2E-9 =12.

Chapter 5 Real-World Inputs

130

Using bits 5, 4, and 3 of the ADCON2 register, we have options of using

2, 4, 6, 8, 12, 16, and 20 TAD time period. To obtain the required 2.4μs, you

should select the 16 TAD option. Note that 12 TAD would equal the 2.4μs.

However, this 2.4μs is the minimum, not the maximum, and it is safer to

make the acquisition time slightly longer than is required. If it is too short,

the result may not be accurate enough. To select this option, we need to

write

•	 b5 = 1

•	 b4 = 1

•	 b3 = 0 16TAD

•	 b2 = 1

•	 b1 = 0’

•	 b0 = 0 divide by 4

I feel I should also add that the preceding description of how to create

and use the TAD time for the ADC is my own interpretation. Although I

have found it to work well in all my programs that use the ADC; I cannot

guarantee that my interpretation is 100% correct. However, I do think it is.

This TAD time is one of the most confusing aspects of the PIC that you as a

programmer need to calculate. My interpretation is the best one I have come

across, and it makes total sense to me. You must make up your own mind.

�Changing the ADC Input Channels
There is the possibility that you, as the programmer, will ask the ADC to

switch to a different channel. This will take a finite amount of time, and

even though this may only be few microseconds, you must wait until the

ADC has changed channels before starting the ADC conversion. It is the

data in the ADCON0 register that determines what channel the ADC is

connected to; see Table 5-1.

Chapter 5 Real-World Inputs

131

�A Basic Setup for the ADC
I believe it is better to use left justification, B7 = logic ‘0’, as this means that

the two least significant bits are stored in ADRESL; see Figure 5-1. For all

but the most accurate uses, the programmer can ignore these two bits as

they only represent voltages from 0 to 20mV approximately, at 5mv/bit.

Indeed, if you ignore these two bits, it really means that you are using an

8-bit ADC instead of a 10 bit. The resolution then reduces to around 19mV

per bit.

Using these three control registers, ADCON0, ADCON1, and ADCON2,

it is fairly easy to set the ADC up. As an example, suppose you had an

analogue input connected to AN0 or bit 0 of PORTA. Assuming you were

using VCC and 0V as the reference for the ADC. To set up the ADC, but

not start a conversion yet, you would write the following data to the three

control registers. The 10-bit result is stored across two 8-bit registers,

ADRESH and ADRESL. We will use left justify for the ADC result, which

means the 8 most significant bits go into ADRESH and the 2 least significant

bits go into b7 and b6 of ADRESL. We set this by making B7 of ADCON2 a

logic ‘0.’ We use the oscillator divide by 8 option and the 4TAD option.

Inside the initialization, we will set up the ADC using the following

instructions:

ADCON0 = 0x01; //Enable the ADC and select channel 0 and

 turn the ADC on.

ADCON1 = 0x0E; //make all bits digital except RA0.

ADCON2 = 0x11; // Select 4TAD and divide the oscillator by 8.

To start an ADC conversion, we must set bit 1 of the ADCON0 register,

the GO bit, to a logic ‘1’. Then wait until the ADC has finished. This is

indicated by bit 1 of the ADCON0 register going low to logic ‘0’. Note that

this will happen automatically once the ADC conversion has finished.

The result will then be in the ADRESH and ADRESL.

Chapter 5 Real-World Inputs

132

�A Basic Program for the ADC
Listing 5-1 is a program that has a variable voltage applied to AN0, that

is, channel 0. The program will continually read the voltage at this input

and display the binary value from the result of the ADC on eight LEDs

connected to PORTB of the PIC.

�The Algorithm
The PIC will use the ADC; therefore, this has to be turned on, and channel

0 must be selected as this is the input that the voltage is connected to.

The PIC will use eight LEDs connected to PORTB.

Therefore, PORTA must be set as inputs with at least RA0 set as

analogue the rest could be set as digital.

PORTB must be set as output, and those used as possible analogue

should be set as digital.

The program will constantly get the result of the ADC and display it on

PORTB.

Listing 5-1.  The Basic ADC Program

1. void main () //The start of the main loop

2. { //�the opening curly bracket of

the main loop

3. PORTA = 0; //�just make sure nothing connected

to will be turned on PORTA

4. PORTB = 0; //�just make sure nothing connected

to will be turned on PORTB

5. TRISA = 0x0f; //�Set b0 to b3 of TRISA to logic

'1' making them inputs, Set

rest to logic '0' making them

outputs

Chapter 5 Real-World Inputs

133

6. TRISB = 0x00; //�Set all bits in TRISB to

logic'0' making all in PORTB

outputs.

7. OSCCON = 0x74; //�set osc to 8Mhz with stable

output

8. ADCON0 = 0x01; //�Turn the ADC on and select

channel 0.

9. ADCON1 = 0x0E; //�Make all bits digital except

RA0 which will be analogue.

10. ADCON2 = 0b00010001; //�Select left justify

and 4TAD and divide

oscillator by 8

11. while (1) // �Always do what is within the

following curly brackets.

12. { //�the opening curly bracket of

the forever loop

13. ADCON0bits.GO_DONE = 1; //Start the ADC conversion

14. while (ADCON0bits.GO_DONE ==1); //�Do nothing until

the conversion

has finished

15. PORTB = ADRESH; //�Write the contents of

ADRESH to PORTB so PORTB

displays the result of

the conversion.

16. } //�The closing curly brackets

of the forever loop

17. } //�The closing curly bracket

of the main loop

Note that the normal configuration words and the include directives

have been included in the project but are not shown here.

The circuit created in PROTEUS is shown in Figure 5-3.

Chapter 5 Real-World Inputs

134

�Analysis of the Program
Most of the instructions have already been analyzed with Listing 4-1.

Therefore, I will only look at the new instructions. These are as follows.

Line 9 Here the ADCON1 SFR is loaded with 0x0E. This is the binary

number 0b00001110. It is the four bits 0, 1, 2, and 3 that determine if the

inputs are digital or analogue. If you examine Table 5-1, you will see that

this combination makes all inputs digital except bit 0 of PORTA. This is set

to analogue.

Line 13 Here we set the bit 1 of the ADCON2 SFR to a logic ‘1’. This

will tell the PIC to start an ADC conversation after the PIC has waited the

specified number of TAD periods.

Line 14 Here we tell the PIC to do nothing, while bit 1 of the

ADCON2 SFR is a logic ‘1’. This makes the program wait until the ADC

conversion has finished. Note that when the ADC completes, the PIC will

automatically reset bit 1 of the ADCON2 SFR back to a logic ‘0’ and load

the result of the ADC into the ADRESH and ADRESL according to the

justification we chose with bit 7 of the SFR ADCON2.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

PIC18F4525

VDD

49
%

RV1

1k

R1
1k

C1
100nFD1

LED-RED
D2
LED-RED

D3
LED-RED

D4
LED-RED

D5
LED-RED

D6
LED-RED

D7
LED-RED

D8
LED-RED

R2
220

R3
220

R4
220

R5
220

R6
220

R7
220

R8
220

R9
220

Figure 5-3.  The Simulation Circuit for the Basic ADC

Chapter 5 Real-World Inputs

135

Line 15 All we do here is load the output PORT, PORTB, with a copy

of the data that has been loaded into the ADRESH as a result of the ADC

operation. As we have chosen left justification, this will be the 8 most

significant bits of the ADC result.

I hope this analysis is sufficient for you to understand the program

instructions. You should now feel confident in using the ADC inside the PIC.

�Summary
In this chapter we have learnt how to set up the ADC, analogue to digital

Converter. We have learnt how to use it to measure the analogue signal at

one of the PICs inputs and display it on eight LEDs on PORTB.

In the next chapter, we will learn how to set up an LCD, liquid crystal

display. Then use that LCD to display the value of an analogue voltage

applied to an input on the PIC.

Chapter 5 Real-World Inputs

137© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_6

�CHAPTER 6

Using the LCD
This chapter shows you how to set up the liquid crystal display (LCD)

to show text and numbers on it. You’ll then create your own characters

to be displayed on the LCD. The chapter concludes by reviewing how

to use arrays and pointers. At that point, the LCD should display 2 lines

of 16 characters. But let’s first review how most LCDs work and how the

programmer can control them and so use them.

�The LCD Controller
This description will be based around the LM016L LCD.

Most LCDs use either the Samsung KS0066U or Hitachi HD44780

driver which converts your binary digits into the required signals.

The LCD we will use has 2 lines of 16 characters.

The LCD has 8 data lines, but to enable programmers to save I/O, it can

be set up to use all 8 data lines or just 4 data lines.

There are two modes of communicating with the LCD, instruction

mode and data mode.

�Instruction or Command Mode
This is used to initialize the LCD and then move the cursor positions such:

•	 Send cursor to line 2.

•	 Shift cursor to the right or left a number of characters.

138

•	 Move the cursor 1 bit to the right after each character

or not.

•	 Send the cursor to the home position.

•	 Clear the screen.

•	 Blink or not blink the cursor.

�Data Mode
The LCD is programmed to recognize characters using ASCII code for each

character. Basically, the LCD has memory locations, which are nonvolatile;

the memory keeps the data even when the power is removed, where the

pixel information to draw any one of the ASCII characters are stored. The

address of each of these pixel maps corresponds to the same address found

in the ASCII character standard table shown in Table 6-1. In other words,

the address of where the pixel map is stored corresponds to the ASCII for

that character.

Table 6-1.  The Main ASCII Character Set

High Nibble 0000
CG.Ram Location

0010 0011 0100 0101 0110 0111
Low nibble

xxxx

0000

1 0 @ P \ p

xxxx

0001

2 ! 1 A Q a q

xxxx

0010

3 “ 2 B R b r

xxxx

0011

4 # 3 C S c s

(continued)

Chapter 6 Using the LCD

139

Table 6-1.  (continued)

High Nibble 0000
CG.Ram Location

0010 0011 0100 0101 0110 0111
Low nibble

xxxx

0100

5 $ 4 D T d t

xxxx

0101

6 % 5 E U e u

xxxx

0110

7 & 6 F V f v

xxxx

0111

8 ’ 7 G W g w

xxxx

1000

1 < 8 H X h x

xxxx

1001

2 > 9 I Y i y

xxxx

1010

3 * : J Z j z

xxxx

1011

4 + ; K [k {

xxxx

1100

5 ‘ < L l |

xxxx

1101

6 - = M] m }

xxxx

1110

7 . > N ^ n

xxxx

1111

8 / ? O _ o

Chapter 6 Using the LCD

140

Using the table, it can be seen that the 8-bit number that stands for the

character ‘0’ is 00110000. Note that the horizontal information along the

top of the table is the four bits B7, B6, B5, and B4, that is, the high nibble,

while the information along the vertical at the side of the table is the four

bits, B3, B2, B1, and B0, the low nibble. For example, the ASCII for the

character ‘a’ is 01100001.

To call up these characters from within the LCD’s memory and so

display them on the LCD, the programmer has to write the address

of where the pixel map is stored in the LCD’s memory. The address

corresponds to the number in the ASCII character set. This means that to

display the number ‘0’, the programmer has to send the address number

00110000 to the LCD. The LCD control program then opens this address

where it finds the pixel map for the character ‘0’. Also, to display the

character ‘a’, they would send the information 01100001 to open up that

location and find the pixel map for the letter ‘a’.

This level of understanding will be put to good use when we look at

creating special characters.

Each set of information, be it data or instructions, must be sent on

either all 8 data lines or just 4 data lines. We will use just 4 lines. This

means that the info must be sent in two nibbles, the high nibble first

followed by the low nibble.

Note that a nibble stands for just 4 bits, whereas a byte stands for 8 bits,

and a word stands for 16 bits.

We will connect the LCD to PORTB, but really any port would do

except perhaps PORTA as this is used for the analogue inputs.

Data 4 on the LCD goes to b0 on PORTB of the PIC.

Data 5 on the LCD goes to b1 on PORTB of the PIC.

Data 6 on the LCD goes to b2 on PORTB of the PIC.

Data 7 on the LCD goes to b3 on PORTB of the PIC.

Chapter 6 Using the LCD

141

Data pins D0 to D3 are not connected as we will set

the LCD to 4-bit operation.

The RS pin on the LCD is connected to b4 on PORTB. Note that it is

the RS pin on the LCD that is used to distinguish between instructions to

the LCD or data to be displayed on the LCD. The RS pin goes to logic ‘0’ for

instructions, and the RS pin goes to logic ‘1’ for data to be displayed.

The ‘E’ pin is connected to b5 on PORTB. This pin should simply go

high then low with no time in between. This action is to tell the driver

inside the LCD that some new information has been sent to the LCD and it

should deal with it.

A variable voltage can be connected to the VEE pin of the LCD to

control the contrast of the LCD. However, I find that using two resistors to

divide the voltage down to around 300mv works fine.

The R/W pin, which is the Read/Write pin, should be connected to 0v

or ground as it is a logic ‘0’ at this pin that tells the driver we want to write

to the LCD.

The full pin connection is shown in Figure 6-1.

Figure 6-1.  Connecting the LCD

Chapter 6 Using the LCD

142

�Initializing the LCD
We must ensure that power has been applied to the LCD for at least 30ms

before we send any information, data, or instruction to the LCD. This is

to allow the circuitry of the LCD to settle down and be ready to receive

instructions or data.

This can be done using a small LCD delay routine.

Then we can set up the LCD.

To do this we must send the following data in this order:

1. 0b00110011 // First data

2. 0b00110011 // Second data a repeat of the

 first data

3. 0b00110010 //LCD set up for 4 bit operation

4. 0b00101100 //LCD set up for 2 lines

5. 0b00000110 //�Increment the position of the cursor

after each character, i.e. move the

cursor one place to the right.

6. 0b00001100 //Cursor does not blink

7. 0b00000001 //Clear the screen

8. 0b00000010 //Return cursor to home position.

This information has been derived from the LCD instruction set shown

in Table 6-2.

Chapter 6 Using the LCD

143

Table 6-2.  The LCD Instruction Set

Function B7 B6 B5 B4 B3 B2 B1 B0 Execution
Time

Clear Screen 0 0 0 0 0 0 0 1 1.53ms

Description Clear all display data. It also sends the cursor back to

the start of the display. Sets the DDRAM address to 0

Return Home 0 0 0 0 0 0 1 x 1.53ms

Description This sends the cursor back to the start of the display.

Sets the DDRAM address to 0. The ‘x’ means it does not

care what logic is in that bit

Entry Mode 0 0 0 0 0 1 I/D SH 39μs

Description This sets the cursor movement after entry (I/D); logic

‘0’ in this bit means cursor is decremented; logic ‘1’

means cursor is incremented

In the SH bit logic ‘0’ means don’t shift the cursor; logic

‘1’ means shift the cursor

39μs

Display Control 0 0 0 0 1 D C B 39μs

Description D bit logic ‘0’ display is off logic ‘1’ display is on

C bit logic ‘0’ cursor is off

Logic ‘1’ cursor is on

B bit logic ‘0’ cursor blink is off

Logic ‘1’ cursor blink is on

Cursor/Display

Shift

0 0 0 1 S/C R/L X x 39μs

Description S/C bit logic ‘0’ means the cursor is shifted

Logic ‘1’ means the display is shifted

R/L bit logic ‘0’ means shift left; logic ‘1’ means shift right

(continued)

Chapter 6 Using the LCD

144

To make sure the LCD realizes that this information, being sent to it, is

a set of instructions, we must make sure that the RS pin goes low. Note that

this means that bit 4 of PORTB must go low.

When using the LCD in 4-bit operation, it is the high nibble that should

be sent to the LCD first.

The first 4 bits of PORTB must have the information. This does

present a problem in that the four bits, b0, 1, 2, and 3, of information

must be sent at the same time as the other bits of PORTB, which includes

b4 which is the RS pin. This RS pin must be set to a logic ‘0’ if the

information is an instruction or logic ‘1’ if the information is data to be

displayed. The process by which this is done is by performing a logic ‘OR’

operation, with the information waiting to go to the LCD and a variable.

We will call this variable rsOR. This must be done before the information

is sent to the LCD.

Table 6-2.  (continued)

Function B7 B6 B5 B4 B3 B2 B1 B0 Execution
Time

Function Set 0 0 0 1 1 0 X x 39μs

Description Configuration data to set up the LCD (Send First)

Set CGRAM

Address

0 1 A5 A4 A3 A2 A1 A0

Set DDRAM

Addess

1 A6 A5 A4 A3 A2 A1 A0

Write Data

CGRAM or

DDRAM

RS Pin Is a

Logic ‘1’

D7 D6 D5 D4 D3 D2 D1 D0 43μs

Chapter 6 Using the LCD

145

Following is an outline of the process:

	 1.	 Consider sending the information to display the

character ‘b’. The information is 01100010 (Table 6-1).

	 2.	 We firstly have to get just the high nibble, that is, ‘0110’;

as we send the high nibble first, then the low nibble.

	 3.	 Note that we must save the information, 01100010, as

well so that we can get the low nibble later.

	 4.	 We then have to make sure that b4 of the information

being sent to PORTB is a logic 1. To achieve this,

we can create another variable called rsOR. As the

information is data to be displayed, we must make

sure b4 of the variable rsOR is at logic ‘1’. Therefore,

use the instruction rsOR = 0x10, that is, 0b00010000.

	 5.	 Once the data has been sent to the LCD, we must

make sure the ‘E’ pin which is connected to b5 of

PORTB goes high then low.

The following set of instructions should achieve this.

lcdInfo = 0b01100010;

//this loads lcdInfo with the information for the character 'b'.

lcdTempInfo = lcdInfo;

//This saves a copy of icdInfo in lcdTempInfo

rsOr = 0x10;

//this makes sure bit4 of rsOr is logic '1'

lcdTempInfo = (lcdTempInfo << 4 | lcdTempInfo >>4);

 //�this will swap the nibbles around in lcdTempInfo ready

to send to the LCD after this data in lcdTempInfo =

0b00100110

lcdInfo = lcdTempInfo & 0x0F;

Chapter 6 Using the LCD

146

//� this basically ignores the last four bits of the lcdTempInfo

b4, b5, b6 and b7 will always be logic '0' and loads the result

into lcdInfo after this the data in lcdInfo = 0b00000110

lcdInfo = lcdInfo | rsOr;

//� This performs a logical OR with lcdInfo and rsOr. This

allows us to determine if the info is an instruction or data

after this data in lcdInfo = 0b00010110 i.e. bit 4 is a logic

'1' the information is data to be displayed on the LCD

lcdPort = lcdInfo;

// this sends the info to the LCD

eBit = 1;

eBit = 0;

//� this is to tell the driver that new info has arrived and the

lcd should deal with it.

This is quite a complex set of requirements to understand, but if you

read through it a few times, it should help. Also, when you look through the

program listing, you should start to understand the process.

Hopefully this goes someway toward explaining how the program can

distinguish between sending instructions and data to the LCD.

If the LCD was being used in 8-bit mode, then the RS line and the E

line would be connected to another PORT and the corresponding bits of

that PORT would have to be set high and low appropriately. Also, there

would be no need to split the information up into the high and low nibbles,

and OR it as we do with the 4-bit operation.

The reason why we are using the LCD in 4-bit operation is just to save

I/O pins. A complete program to use the LCD in 4-bit mode is described in

Listing 6-1.

Listing 6-1.  The Complete Program for 4bit LCD

1. //�Use some comments to try and split the program listing

up into different sections.

2. //Create any definitions

Chapter 6 Using the LCD

147

3. #define firstbyte 0b00110011

4. #define secondbyte 0b00110011

5. #define fourBitOp 0b00110010 //�this sets the LCD up

for 4 bit operation

instead of 8 bit

6. #define twoLines 0b00101100 //�This sets the LCD to

2 lines mode

7. #define incPosition 0b00000110 //�This tells the LCD to

increment the cursor

position after any

data is displayed

8. #define cursorNoBlink 0b00001100 //�this turns the cursor

off so we don't see

it flashing

9. #define clearScreen 0b00000001 //�this clears the

screen of all display

10. #define returnHome 0b00000010 //�this sends the

cursor back to start

position on the

display

11. #define lineTwo 0b11000000 //�this will send the

cursor to the start

of line 2 on the

display

12. #define doBlink 0b00001111 //�this turns the cursor

on and makes it blink

13. #define shiftLeft 0b00010000 //�this shifts the

cursor one position

to the left

14. #define shiftRight 0b00010100 //�this shifts the

cursor one position

to the right

Chapter 6 Using the LCD

148

15. #define lcdPort PORTB //�this sets which the

LCD is connected to

port

16. #define eBit PORTBbits.RB5 //�this sets the bit

for the E pin on

the LCD

17. #define rspin PORTBbits.RB4 //�this sets the bit

for the RS pin on

the LCD

18. //�some variables These comments are just to split the

listing up into its logical sections

19. unsigned char lcdInfo, lcdTempInfo, rsOr;

 //�this reserves 3 8 bit memory

Locations 1 for each variable

20. unsigned char n; //�this reserves an 8 bit

memory location for the

variable 'n'

21. char str[80]; //�This sets up 80 memory

locations one after

the other in an array.

This array is used for

sending a string to the

LCD

22. char lcdInitialise [8] = //�This sets up 8 memory

locations in an array

and loads each location

with some initial data

in each location

23. { //�The opening bracket of

the array

Chapter 6 Using the LCD

149

24. firstbyte, //� note the data in each

location is one of the

set up instructions for

the LCD

25. secondbyte, //�just a repeat of the

first byte

26. fourBitOp, //�puts the lcd into 4bit

mode not 8 bit

27. twoLines, //�set the lcd up for

using two lines of 16

characters

28. incPosition, //�sets the lcd up for

moving the cursor one

place to the right

every time a character

is displayed

29. cursorNoBlink, //�sets the lcd up to not

show the cursor on the

screen

30. clearScreen, //�clears all characters

from the lcd display

31. returnHome, //�sends the cursor to the

beginning of line 1

32. }; //�This is the closing

bracket of the array.

Note the semi colon

is needed as this is

the end of a program

instruction

33. //the subroutine

34. void sendInfo () //� a subroutine to send

Info to the lcd.

Chapter 6 Using the LCD

150

35. { //�opening curly bracket

of the sendInfo

subroutine

36. lcdTempInfo = (lcdTempInfo << 4 | lcdTempInfo >>4);

 //�this will swap the

nibbles around in

lcdTempInfo ready to

send to the LCD

37. lcdInfo = lcdTempInfo & 0x0F; //� this basically ignores

the last four bits of

the lcdTempInfo b4, b5,

b6 and b7 will always

be logic '0'and loads

the result into lcdInfo

38. lcdInfo = lcdInfo | rsOr; //� This performs a logical

OR with lcdInfo and

rsOr. this allows us to

determine if the info is

an instruction or data

39. lcdPort = lcdInfo; //� this sends the info to

the LCD

40. eBit = 1; //� this is to tell the

driver that new info

has arrived at the lcd

41. eBit = 0;

42. TMR0 = 0;

43. while (TMR0 < 16); //�this is a 2mS delay at

7812.5Hz long enough

for the lcd to process

any information see

Table 6-2

Chapter 6 Using the LCD

151

44. } //�closing curly bracket

of the sendInfo

subroutine

45. void lcdOut () //�this subroutine gets

the data ready to go to

the sendInfo

46. { //�opening curly bracket

of the lcdOut

subroutine

47. lcdTempInfo = lcdInfo; //� store the information

in a temporary location

48. sendInfo (); //�this calls the

subroutine sendInfo to

send the high nibble

first

49. sendInfo (); //�this calls the

subroutine sendInfo

again to send the low

nibble next

50. } //�closing curly bracket

of the lcdOut

subroutine

51. void setUpTheLCD () //�This is a subroutine to

set up the lcd

52. { //�opening curly bracket

of the setUpTheLCD

subroutine

53. TMR0 = 0; while (TMR0 <255); //�a 32ms delay this is

the time required by

the driver circuit to

settle down

Chapter 6 Using the LCD

152

54. n = 0; //�load the variable 'n'

with the starting value

of 0

55. rsOr = 0X00; //� this ensures bit 4

or the RS pin will be

logic '0' as these are

instructions

56. while (n < 8) //�while the value in

the variable 'n' is

less than 8 do what

is inside the curly

brackets.

57. { //�the opening bracket for

the while instruction

58. lcdInfo = lcdInitialise [n]; //�load the variable

"lcdInfo" with what is

in location 'n' in the

lcdInitialise array.

As 'n' starts out at 0

this will be the first

location in the array.

See lines 22 to 32

above.

59. lcdOut (); //�call the subroutine

lcdOut see lines 45 to

50

60. n ++; //�add one to the value

of 'n' the micro will

now go back to line 56.

Note the value of 'n'

will eventually get to

8. When this happens

Chapter 6 Using the LCD

153

and the micro goes to

line 56 the micro will

jump to line 62 after

executing line 56 as

the condition in the

brackets is untrue.

61. } //�closing curly bracket

of the while

62. rsOr = 0x10; //�this ensures bit 4 of

the rsOr is a logic '1'

for data

63. } //�closing curly bracket

of setUp subroutine

64. void line2 () //� a subroutine to send

the cursor of the lcd

to the start of line 2

65. { //�opening curly bracket

of Line2 subroutine

66. rsOr = 0X00; //� this ensures bit 4

or the RS pin will be

logic '0' as these are

instructions

67. lcdInfo = lineTwo; //�loads the variable

"lcdInfo" with the

instruction to send the

cursor to line two

68. lcdOut (); //�call the subroutine

lcdOut

69. rsOr = 0x10; //�this ensures bit 4 of

the rsOr is a logic '1'

for data

Chapter 6 Using the LCD

154

70. } //�closing curly bracket

of Line2 subroutine

71. void clearTheScreen () //�a subroutine to

clearTheScreen

72. { //�opening curly bracket

for clearTheScreen

Subroutine

73. rsOr = 0X00; //� this ensures bit 4

or the RS pin will be

logic '0' as these are

instructions

74. lcdInfo = clearScreen; //�load the variable

"lcdInfo" with the

instruction to clear

the lcd display

75. lcdOut (); //�call the subroutine

"lcdOut"

76. lcdInfo = returnHome; //�load the variable

"lcdInfo" with the

instruction to return

the cursor to the

beginning of line 1 on

the lcd display

77. lcdOut (); //�call the subroutine

"lcdOut"

78. rsOr = 0x10; //�this ensures bit 4 of

the rsOr is a logic '1'

for data

79. } //�closing curly bracket

of clearScreen

subroutine

Chapter 6 Using the LCD

155

80. void writeString (const char *words) //�this is a

subroutine that

will display a

whole string of

characters on

the display.

81. { //�opening curly bracket

for writeString

Subroutine

82. while (*words) //� while the *words

pointer is not pointing

to the NULL char do

what is inside the

curly brackets

83. { //�opening curly bracket

for the while

84. lcdInfo = *words; //�load what the *words

pointer is pointing

to into the variable

lcdInfo

85. lcdOut (); //� call the subroutine to

pass the data to the

LCD

86. *words ++; //� increment the contents

of the pointer so that

it is pointing to the

next char in the array

87. } //�closing curly bracket

for the while

88. } //�closing curly bracket

for the writeString

subroutine

Chapter 6 Using the LCD

156

89. void main ()

90. { //�this is the opening

brackets of the main

loop

91. PORTA = 0; //�this makes sure the

PORTS don't turn

anything on

92. PORTB = 0;

93. PORTC = 0;

94. PORTD = 0;

95. TRISA = 0Xff; //�set all bits on PORTA

to inputs

96. TRISB = 0x00; //�set all bits on PORTB

to outputs

97. TRISC = 0x00; //�set all bits on PORTC

to outputs

98. TRISD = 0x00; //�set all bits on PORTD

to outputs

99. ADCON0 = 0b00000001; //�bit 0 = '1' means adc

on bits 5,4,3&2 = '0'

means channel 0 AN0 is

selected

100. ADCON1 = 0b00001011; //�bits A0 to A3 are

analogue rest are

digital

101. ADCON2 = 0b00010001; //�select left justify

4TAD Clock = FOSC/8 i.e

1MHz TOSC = 1mS 2.4u/1m

= 2.4 4x1m = 4ms

102. OSCTUNE = 0x00; //�don't use any of the

fine tuning aspects for

the oscillator

Chapter 6 Using the LCD

157

103. OSCCON = 0x74; //�this sets the internal

oscillator to 8MHz

stable

104. T0CON = 0XC7; //�this turns timer 0

on, makes it an 8 bit

timer with the maximum

dived rate

105. setUpTheLCD (); //�call the subroutine to

set up the LCD

106. while (1) //�this is the forever

loop to ensure lines 91

to 105 are only carried

out once.

107. { //�opening curly bracket

for the forever loop

108. writeString ("Hello World"); //� this sends the

string "Hello World"

to the LCD

109. line2 (); //�call the subroutine

line2 to move the

cursor to the beginning

of line two on the LCD

110. lcdInfo = 0b00110101; //�this is the ascii

character for the

number 5

111. lcdOut (); //�call the subroutine to

send the number out to

the LCD

112. lcdInfo = 0b00110111; //�this is the ascii

character for the

number 7

Chapter 6 Using the LCD

158

113. lcdOut (); //�call the subroutine to

send the number out to

the LCD

114. lcdInfo = 0b00111001; //�this is the ascii

character for the

number 9

115. lcdOut (); //�call the subroutine to

send the number out to

the LCD

116. while (1); //�this is another forever

loop used to make the

program halt at this

point as the PIC will

for ever do nothing

117. } //�closing brackets for

the first forever loop

118. } //�this is the closing

brackets of the main

loop

Note that the config and include sections of the project are not shown

here, but they must be included in the project.

This program listing will introduce a number of different techniques

for programming the PICs, all of which make the programming easier

to understand and more efficient. However, before we look at those new

techniques, we will see how the program performs what is required of it.

The main loop starts at line 89 and ends at line 118. You should

understand that the line numbers in the preceding text do not correspond

exactly to the line numbers in MPLABX as the configuration and include

commands are not shown above. Note how MPLABX links all the lines

inside this boundary with a straight line. Line 89 starts with a box, in the

editing window of the IDE, inside which is the small ‘-’ minus symbol.

Chapter 6 Using the LCD

159

This gives the programmer the ability to close all these groups of lines and

shrink them away, thus taking up less room on the editing window. The ‘-’

minus sign is then replaced with ‘+’ plus sign which allows you to expand

upon all the lines in the boundary. It is a useful tool if you are confident

the lines don’t need any editing. This is only visible in the MPLABX editing

window, not in the text shown above.

The first few lines up to and including line 105 simply set up the PIC as

we want. The define declaration has been explained in program Listing 4-1.

�The Subroutine lcdOut ()
This is between lines 45 and 50 .

Line 47 loads the variable lcdTempInfo with the contents of lcdInfo.

Line 48 calls the subroutine sendInfo () for the first time which will

send the high nibble of the information along with the correct value in b4,

to the LCD.

Line 49 calls the subroutine sendInfo () for the second time which will

send the low nibble of the information along with the correct value in b4,

to the LCD.

�The Subroutine sendInfo ()
This is between lines 34 and 44.

Line 36 swaps the 2 nibbles in the variable lcdTempInfo over as we

need to send the high nibble first.

Line 37 reloads the variable lcdInfo with the result of the logical AND

operation of lcdTempInfo and the binary value 0b00001111. This ensures

that b7, b6, b5, and b4 of the result are logic ‘0’s The other four bits are the

same as b3, b2, b1, and b0 of lcdTempInfo.

Line 38 performs the logical ‘OR’ operation of the variables lcdInfo

and rsOR. In this instance, because b4 of lcdInfo and b4 of rsOR are both

logic ‘0’, then nothing changes as this is an instruction. However, if b4 of

Chapter 6 Using the LCD

160

rsOR had been changed to a logic ‘1’, then the result would be that b4 of the

variable lcdInfo would now go to a logic ‘1’ indicating that the information

about to be sent to the LCD was data to be displayed.

Line 39 sends the contents of lcdInfo to PORTB which is the port that

the LCD is connected to.

Line 40 sends the ‘E’ to a logic ‘1’.

Line 41 sends the ‘E’ to a logic ‘0’. The purpose of these two lines are to

tell the LCD that it must do something with the information at its data pins.

Lines 41 and 42 create a 2-ms delay. This is to ensure that the LCD can

process the data at its input before we present any new information to the

LCD; see Table 6-2.

As this is the last instruction in this subroutine, the micro then goes

back to the lcdOut subroutine as this is where this subroutine was called

from.

The micro will now carry out the instruction on line 49 which calls the

subroutine sendInfo () a second time and the above sequence repeats.

However, as the bits in lcdTempInfo are again swapped, it will be the low

nibble of the information that is sent to the LCD.

In this way all 8 bits of the information can be sent to the LCD in two

4-bit nibbles.

The microprocessor will now return to the lcdOut subroutine, but as it

will have now completed all its instructions, it will now return back to the

main loop via the lcdSetUp() subroutine.

This process is involved, and it uses what is termed “Nested

Subroutines.” You should be aware that there is a limit as to how many

subroutines can be nested together in this way. This is restricted by what is

termed “The Stack.” So be careful when nesting subroutines like this.

One other important thing to remember about nested subroutines is

that if a subroutine is to call another subroutine, the other subroutine must

be written into the editing window before the subroutine that calls it. This

is why the sendinfo subroutine is written before the lcdout subroutine as

the lcdout subroutine will call the sendinfo subroutine.

Chapter 6 Using the LCD

161

Now we are back in the main loop, and the next line, line 108, calls

another subroutine called writeString (“Hello World”).

Note that this time, the brackets associated with this call are not empty.

This is because this subroutine is expecting parameters to be sent down to

it. This subroutine is one that has not been written by me but one that is

termed “open source,” and it is freely available for programmers to use. It

basically creates a variable length array which the micro goes through one

at a time to get information which on line 84 I have loaded into my variable

lcdInfo.

Then on line 85, I call the subroutine lcdOut which sends the contents

of lcdInfo to the LCD.

Note that the lettering inside the normal bracket of the subroutine call

on line 108 is orange when viewed in MPLABX. This is because MPLABX

uses colors to help distinguish different types of data. What actually

happens with the orange text is that the ASCII character number for each

character starting with ‘H’, in this case, is sent to the array. This is all done

in the background by the compiler software. Note that to use this open

source subroutine, you must include the stdio.h header file. This is done

with the #include <stdio.h> in the program.

Note that on line 106, I create the forever loop as I don’t want the micro

to carry out all the above instructions again. Inside this loop, I send the

characters 5, 7, and 9 out to the LCD; this is just to try and show you how

numbers are sent to the LCD. Note that the ASCII for 5 is 0b00110101. The

high nibble 0011 or 3 in hexadecimal. This puts us in the third column of

the ASCII character table shown in Table 6-1. This is the column where

the ASCII for the numbers 0 to 9 are listed and a few more. The numbers

start at 0000 to 1001 which is the binary for 0 to 9. Therefore, to display a

number 0 to 9, you simply set the high nibble to 0011 or 0X3 and use the

low nibble to express what number you want to display, that is, 0000 to

1001 or 0X0 to 0X9.

Chapter 6 Using the LCD

162

I know the above description is very wordy, but it is quite difficult

to explain in words how a program works. I hope I have gone someway

toward explaining how the program and the instructions control and use

the LCD. It is very important to be able to use the LCD. Of course, you

could simply use the instructions without reading the explanation, but I

feel it is important to understand how the instructions work.

�The New Aspects to PIC Programming
in This LCD Program
There are some new aspects of PIC programming that I have introduced in

this example, and I want to try and explain what they do.

�Arrays
This is a method by which you can create a list of variables and store them

in locations one after the other. Then use them sequentially one at a time

or randomly. It is very important to appreciate that the memory locations

are set up one after the other in order. The array can store a variable using

all the common data types, that is, unsigned char, integer, float, etc. To

create an array, you simply declare it using the data type you want to use,

then give it a sensible name followed by the ‘[6] ‘ square bracket. Inside the

square bracket, you state how many memory locations you want to place

in your array. When the compiler program compiles the program, it will

place the start of the array in a memory location and then create the total

number of memory locations immediately after the start location, one after

the other. There are two arrays used in the LCD program above, and line 21

is where the first one is created char str[80]. This creates an array, named

‘str’, of 80 memory locations long in which data type char, 8 bits long using

B7 to indicate the sign, positive or negative, of the number are stored.

Chapter 6 Using the LCD

163

At line 22 I have declared the second array. It is of data type unsigned

char, and it has 8 locations. This is where I will store the 8 instructions to

set up the LCD in the order that I want to use them. Note that by declaring

the array as follows, unsigned char lcdInitialise [8] = , I have stated, by

using the ‘=’ sign, that I will define what should be stored in those 8

memory locations at the same time as declaring the array. That is why

there is the ‘;’ semicolon at the end of the defining curly bracket; the whole

sequence of text is a program instruction. Try removing the ‘;’ semicolon,

and see what happens.

There is a comma after each statement of what is stored in this array.

This is because this is a list, not a set of instructions; therefore, don’t use

the semicolon.

You can access the data in this array in two ways, one using a pointer,

which is explained in the next section of the book, or one by calling

the array in a similar way to calling a subroutine, but the array is not a

subroutine, as follows:

lcdInfo = lcdInitialise [4] will pull up the contents of location 4 in the

array and place a copy of it in lcdInfo. Note that the number of the first

location in the array is always ‘0’, so location [4] is the fifth item in the array.

�Using Pointers
Pointers can be used to point to locations inside an array. To create a

pointer, it is best to create an array then create the pointer with the same

name and type as the array. This is best explained by going through some

example instructions as shown in the following.

Unsigned char dataStore [10]; // This creates an array of 10 locations

one after the other, each being 8-bit memory locations.

Unsigned char ∗dataPointer; this creates a memory location that can

be loaded with the particular address of a location in the dataStore array.

Chapter 6 Using the LCD

164

The array and pointer have now been created. The next step is to load

the pointer with the address of the first memory location in the array. This

is done with the following instruction:

dataPointer = dataStore; //�This will load the dataPointer with

the address of where the first

memory location of the dataStore

array is in memory. This means that

the dataPointer is now pointing to

the first location in the dataStore

array.

Now we can load some variables with the contents of the array using

the following instructions:

Data0 = *dataPointer; //�This loads the variable Data0 with

the contents of the memory location

that dataPointer is pointing to.

In this case it is pointing to the

first location in the dataStore

array

dataPointer++; //�This increments the contents of

the dataPointer which means it now

points to the next location in the

dataStore array.

Data1 = *dataPointer; //� This loads Data1 with the contents

of the next memory location in the

dataStore array.

dataPointer++; //�This increments the contents of

the dataPointer which means it now

points to the next location in the

dataStore array.

Chapter 6 Using the LCD

165

�Connecting the LCD in 8-Bit Mode
If the programmer has sufficient I/O, then they can use the LCD in 8-bit

mode. This would have the main advantage of saving an extra visit to

memory to get the full information to display on the LCD and save having

to call the sendInfo subroutine twice.

The main differences are explained in Listing 6-2.

Listing 6-2.  Using the LCD in 8-Bit Mode

1. //some definitions for some instructions

2. #define firstbyte 0b00110011 //�define the binary

for first byte

3. #define secondbyte 0b00110011 //�define the binary

for second byte

4. #define lines2bits8 0b00111100 //�define the binary

for lines2bits8

5. #define eightBitOp 0b00111000 //�define the binary

for eightBitOp

6. #define twoLines 0b00101100 //�define the binary

for twoLines

7. #define incPosition 0b00000110 //�define the binary

for incPosition

8. #define cursorNoBlink 0b00001100 //�define the binary

for cusorNoBlink

9. #define clearScreen 0b00000001 //�define the binary

for clearScreen

10. #define returnHome 0b00000010 //�define the binary

for returnHome

11. #define lineTwo 0b11000000 //�define the binary

for lineTwo

12. #define doBlink 0b00001111 //�define the binary

for doBlink

Chapter 6 Using the LCD

166

13. #define shiftLeft 0b00010000 //�define the binary

for shiftLeft

14. #define shiftRight 0b00010100 //�define the binary

for

15. shiftRight

16. #define lcdPort PORTB //�define which PORT

LCD is connected to

17. #define eBit PORTAbits.RA0 //�define which bit

the LCD eBit is

connected to

18. #define RSpin PORTAbits.RA1 //�define which bit

the LCD RSpin is

connected to

19. //�some variables set up memory locations for the

following variables

20. unsigned char lcdInfo, lcdTempInfo, rsLine;

21. unsigned char n;

22. char lcdInitialis [7] = //�set up an array with 7

memory locations and load

the memory locations

with the following LCD

instructions

23. { //�opening curly bracket of

array setup

24. firstbyte, //the first instruction

25. secondbyte, //�the second instruction

which is a copy of the

first

26. lines2bits8, //�the instruction to use

2 lines of characters

and set up for 8 bit

operation not 4 bit

Chapter 6 Using the LCD

167

27. incPosition, //�Instruction to make the

cursor move one place

to right after each

data has been displayed

on LCD

28. doBlink, //�instruction to make

cursor blink in current

position

29. clearScreen, //�instruction to clear

all data from LCD

display

30. returnHome, //�instruction to send

back to first position

on line 1 of LCD

31. }; //�end of array brackets. Note the

semi colon is needed as the whole

sequence is a program instruction.

32. //�some subroutine these one line comments helps split the

program up

33. void lcdOut () //�start of lcdOut

subroutine

34. { //�opening curly bracket

of lcdOut subroutine

35. lcdPort = lcdInfo; //�send info to LCD

36. eBit = 1; //�set eBit to logic '1'

37. eBit = 0; //�set eBit to logic '0'

These two make the

LCD aware that new

information has come to

its input pins.

Chapter 6 Using the LCD

168

38. TMR0 = 0; while (TMR0 < 15); //�this is a 1.92mS

delay at 7812.5Hz

39. } //�closing curly bracket

of lcdOut subroutine

40. void setUpTheLCD () //�start of subroutine to

set up the LCD

41. { //�opening curly bracket

of setUp subroutine

42. TMR0 = 0; //�set TMR0 back to 0

43. while (TMR0 < 255); //�wait until TMR0 has

reached 255 an initial

32.6ms delay before

sending any info to lcd

44. RSpin = 0; //�set RSpin to logic

'0' to tell LCD

information coming is

an instruction

45. n = 0; //�set the variable 'n' to

0 ready next loop

46. while (n < 7) //�set up while loop for

sending instructions to

LCD

47. { //�opening curly bracket

for LCD loop

48. lcdInfo = lcdInitialis [n]; //�load variable lcdInfo

with first instruction

in array lcdInitialis

49. lcdOut (); //�call subroutine lcdOut

to send instruction to

LCD

Chapter 6 Using the LCD

169

50. n ++; //�add 1 to value of 'n'

ready to get next

instruction if n is less

than 7

51. } //�closing curly bracket for

LCD loop

52. RSpin = 1; //�set RSpin back to logic

'1' as next information to

go to LCD will most likely

be data to be displayed

53. } //�closing curly bracket for

LCD loop

54. void line2 () //�start of subroutine to

send cursor to start of

line 2 on LCD

55. { //�opening curly bracket for

line2 loop

56. RSpin = 0; //�set RSpin to logic '0'

to tell LCD information

coming is an instruction

57. lcdInfo = lineTwo; //�Load variable lcdInfo

with instruction to go to

lineTwo

58. lcdOut (); //�call lcdOut subroutine to

send instruction to LCD

59. RSpin = 1; //�set RSpin back to logic

'1' as next information to

go to LCD will most likely

be data to be displayed

60. } //�closing curly bracket for

line2 loop

Chapter 6 Using the LCD

170

61. �void writeString

(const char *words) //�this is subroutine that

will display a whole

string of characters on

the display.

62. { //�opening curly bracket

for writeString loop

63. while (*words) //� while the *words

pointer is not pointing

to the NULL char do

what is inside the

curly brackets

64. {

65. lcdInfo = *words; //�load what the *words

pointer is pointing

to into the variable

lcdInfo

66. lcdOut (); //�call the subroutine to

pass the Info to the LCD

67. *words ++; //�increment the contents

of the pointer so that

it is pointing to the

next char in the array

68. } //�closing bracket of the

while loop

69. } //�closing curly bracket

for writeString loop

70. void clearTheScreen () //�This is a subroutine

that clears all data

from the display and

sends the cursor back

to start of screen

Chapter 6 Using the LCD

171

71. { //�opening curly bracket

for clearTheScreen loop

72. RSpin = 0; //�set RSpin to logic

'0' to tell LCD

information coming is

an instruction

73. lcdInfo = clearScreen; //�Copy the data for

clearScreen instruction

into lcdInfo

74. lcdOut (); //�call the lcdOut

subroutine to send

instruction to LCD

75. lcdInfo = returnHome; //�Copy the data for

returnHome instruction

into lcdInfo

76. lcdOut (); //�call the lcdOut

subroutine to send

instruction to LCD

77. RSpin = 1; //�set RSpin back to logic

'1' as next information

to go to LCD will most

likely be data to be

displayed

78. } //�closing curly bracket

for clearTheScreen loop

79. void main () //�The main program loop

80. { //�opening curly bracket

for main loop

81. PORTA = 0; //Turn all outputs off

82. PORTB = 0;

83. PORTC = 0;

84. PORTD = 0;

Chapter 6 Using the LCD

172

85. TRISA = 0X00; //�make all of PORTA

outputs

86. TRISB = 0x00; //�make all of PORTB

outputs

87. TRISC = 0x00; //�make all of PORTC

outputs

88. TRISD = 0x00; //�make all of PORTD

outputs

89. ADCON0 = 0x00; //turns off the adc

90. ADCON1 = 0x0F; //�sets all bits to

digital mode

91. OSCTUNE = 0b10000000; //�this just sets the 8MHz

as source for 31.25kHz

92. OSCCON = 0b01110000; //�this selects the

internal 8MHz frequency

uses the primary osc as

clock source

93. T0CON = 0b11000111; //�this enables TMR0, sets

it as 8 bit and max

divide giving a clock

tick of 128us

94. setUpTheLCD (); //�This calls the

subroutine to

setUpTheLCD

95. clearTheScreen (); //�This calls the

subroutine to

clearTheScreen

96. while (1) //�This is the forever

loop so that lines 81

to 96 are only carried

out once

Chapter 6 Using the LCD

173

97. { //�This is the opening

curly bracket for the

forever loop

98. writeString ("Working 8Bit LCD"); //�This calls the

writeString

subroutine with

the phrase

Working 8Bit LCD

99. line2 (); //�This calls the

subroutine to move the

cursor to the start of

line 2 on the LCD

100. lcdInfo = 0x33; //�This loads the variable

lcdInfo with the ASCII

for the number 3.

101. lcdOut (); //�This calls the

subroutine to send the

data in lcdInfo to the

LCD

102. while (1); //�This for ever loop just

makes the program halt

at this point and there

are no instructions in

this loop. Note this is a

one line instruction and

there are no instructions

before the end of

instruction terminator

the semi-colon.

Chapter 6 Using the LCD

174

103. } //�closing bracket of

the first while (1)

loop

104. } //�closing bracket of

the main loop

With the 8-bit operating mode of the LCD, there is no need to swap

the nibbles of the data or instruction before sending it to the LCD. This

approach uses two more I/O as well as the eight outputs for the data to the

LCD. The two extra I/O are for the RSPIN and the EPIN of the LCD. Overall

the approach may be simpler but you do need the extra I/O pins.

The circuit layout for the 8-bit LCD is shown in Figure 6-2.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

D
7

14
D
6

13
D
5

12
D
4

11
D
3

10
D
2

9
D
1

8
D
0

7

E
6

RW
5

R
S

4

VS
S

1

V
D
D

2

VE
E

3

LCD1
LM016L

R1
10k

R2
330

R3
1k

C1
1nF

Figure 6-2.  The 8-Bit LCD Circuit Note RA0 Is Connected to the EPIN
and RA1 the RSPIN

Chapter 6 Using the LCD

175

�The Volt Meter Program
In this extension of the previous program, we are going to combine the

ADC with the use of the LCD. We are going to use the ADC to measure a

variable voltage across a resistor and display the voltage on the LCD. This

program will use the sprintf function that is freely available for us to use. It

is a function that has been written as open source so that we can use it to

display a floating point-type variable on any type of display.

�The Algorithm
The program will make use of the ADC to convert an analogue input on

PORTA RA0 to a digital value.

•	 It will convert this value to represent a voltage from 0v

to 5v.

•	 It will then use the 4-bit LCD program and the sprintf

function to display the voltage measured on the LCD

screen.

•	 It will constantly measure the voltage at the input.

•	 It will need one input PORTA RA0.

•	 It will need eight outputs to connect to the LCD. This

will be via PORTB.

The program is shown in Listing 6-3.

Listing 6-3.  The Volt Meter Program

1. //some definitions

2. #define firstbyte 0b00110011

3. #define secondbyte 0b00110011

Chapter 6 Using the LCD

176

4. #define fourBitOp 0b00110010 //�this sets the

LCD up for 4

bit operation

instead of 8 bit

5. #define twoLines 0b00101100 //�This sets the

LCD to 2 lines

mode

6. #define incPosition 0b00000110 //�This tells the

LCD to increment

the cursor

position after

any data is

displayed

7. #define cursorNoBlink 0b00001100 //�this turns the

cursor off so

we don't see it

flashing

8. #define clearScreen 0b00000001 //�this clears the

screen of all

display

9. #define returnHome 0b00000010 //�this sends the

cursor back to

start position

on the display

10. #define lineTwo 0b11000000 //�this will send

the cursor to

the start of

line 2 on the

display

11. #define doBlink 0b00001111 //�this turns the

cursor on and

makes it blink.

Chapter 6 Using the LCD

177

12. #define shiftLeft 0b00010000 //�this shifts

the cursor one

position to the

left

13. #define shiftRight 0b00010100 //�this shifts

the cursor one

position to the

right

14. #define lcdPort PORTB //�this sets which

port the LCD is

connected to

15. #define eBit PORTBbits.RB5 //�this sets

the bit for

the E pin on

the LCD

16. #define rspin PORTBbits.RB4 //�this sets

the bit for

the RS pin

on the LCD

17. //some variables

18. unsigned char lcdData, lcdTempData, rsLine;

19. unsigned char n;

20. char str[80];

21. float sysVoltage;

22. //the subroutine

23. void initialiseThePic ()

24. {

25. PORTA = 0;

26. PORTB = 0;

27. PORTC = 0;

28. PORTD = 0;

Chapter 6 Using the LCD

178

29. TRISA = 0Xff;

30. TRISB = 0x00;

31. TRISC = 0x00;

32. TRISD = 0x00;

33. ADCON0 = 0b00000001; //�bit 0 = '1' means adc on

bits 5,4,3&2 = '0' means

channel 0 AN0 is selected

34. ADCON1 = 0b00001011; //�bits A0 to A3 are analogue

rest are digital

35. ADCON2 = 0b00010001; //�select left justify 4TAD

Clock = FOSC/8 i.e 1MHz

TAD = 1uS

36. OSCTUNE = 0x00;

37. OSCCON = 0x74; //�this sets the internal

oscillator to 8MHz stable

38. T0CON = 0XC7; //�this turns timer 0 on,

makes it an 8 bit timer

with the maximum divide

rate

39. }

40. char lcdInitialise [8] = //�This creates a array 8

locations long and loads

each location with the

following data

41. {

42. firstbyte,

43. secondbyte,

44. fourBitOp,

45. twoLines,

46. incPosition,

47. cursorNoBlink,

Chapter 6 Using the LCD

179

48. clearScreen,

49. returnHome,

50. };

51. void sendData ()

52. {

53. lcdTempData = (lcdTempData << 4 | lcdTempData >>4);

 //�this will swop the nibbles around in

lcdTempData ready to send to the LCD

54. lcdData = lcdTempData & 0x0F; //� this basically

ignores the last

four bits of the

lcdTempData

55. lcdData = lcdData | rsLine; //� this allows us

to determine if

the info is an

instruction or data

56. lcdPort = lcdData; //� this sends the info

to the LCD

57. eBit = 1; //�These next two

instructions are to

tell the LCD new

data has arrived and

it should deal with

it.

58. eBit = 0;

59. TMR0 = 0; while (TMR0 < 20); //�this is a 2.56mS

delay at 7812.5Hz

60. }

61. void lcdOut ()

62. {

63. lcdTempData = lcdData; //� store the information in a

temporary location

Chapter 6 Using the LCD

180

64. sendData (); //�this sends the

high nibble of the

information to the

LCD

65. sendData (); //�this sends the

low nibble of the

information to the

LCD

66. }

67. void setUpTheLCD ()

68. {

69. TMR0 = 0; while (TMR0 <255); //a 32ms delay

70. n = 0; //�This makes the

variable 'n' = 0

ready for the while

loop at line 72

71. rsLine = 0x00; //� this ensures bit 4

or the RS pin will be

logic '0' as these

are instructions

72. while (n < 8) //�whilst 'n' is less

than 8 do what is

inside the curly

brackets.

73. {

74. lcdData = lcdInitialise [n]; //�Load the variable lcdData

with particular contents

of the memory location in

the array lcdInitialise

the pointer is currently

pointing to.

Chapter 6 Using the LCD

181

75. lcdOut (); //�send that information to

the LCD.

76. n ++;

77. }

78. rsLine = 0x10; //�this ensures bit 4 of the

rsLIne is a logic '1' for

data

79. }

80. void line2 ()

81. {

82. rsLine = 0x00; //� this ensures bit 4 or the

RS pin will be logic '0' as

these are instructions

83. lcdData = lineTwo;

84. lcdOut ();

85. rsLine = 0x10;; //�this ensures bit 4 of the

rsLIne is a logic '1' for

data

86. }

87. void clearTheScreen () //�This creates the subroutine

cleaTheScreen

88. {

89. rsLine = 0x00; //� this ensures bit 4 or the

RS pin will be logic '0' as

these are instructions

90. lcdData = clearScreen; //�this loads the variable

lcdData with the

instruction to clear the

screen

91. lcdOut (); //�This sends the instruction

to the LCD

Chapter 6 Using the LCD

182

92. lcdData = returnHome; //�this loads the variable

lcdData with the

instruction to return

the cursor to the home

position.

93. lcdOut (); //�This sends the instruction

to the LCD

94. rsLine = 0x10; //�this ensures bit 4 of the

rsLIne is a logic '1' for

data

95. }

96. void gohome () //�This creates the

subroutine gohome

97. {

98. rsLine = 0x00; //� this ensures bit 4 or the

RS pin will be logic '0'

as these are instructions

99. lcdData = returnHome; //�this loads the variable

lcdData with the

instruction to return

the cursor to the home

position.

100. lcdOut (); //�This sends the instruction

to the LCD

101. rsLine = 0x10; //�this ensures bit 4 of the

rsLIne is a logic '1' for

data

102. }

103. void writeString (const char *words)

104. {

Chapter 6 Using the LCD

183

105. while (*words) //� while the *words pointer

is not pointing to the NULL

char do what is inside the

curly brackets

106. {

107. lcdData = *words; //�load what the *words pointer

is pointing to into the

variable lcdData

108. lcdOut (); //� call the subroutine to pass

the data to the LCD

109. *words ++; //� increment the contents of

the pointer so that it is

pointing to the next char in

the array

110. }

111. }

112. void systemVoltage () //�This creates a subroutine to

use the ADC to measure the

voltage

113. {

114. ADCON0bits.GODONE = 1; //This starts an ADC process

115. while (ADCON0bits.GODONE); //�This waits till the ADC

has finished

116. sysVoltage = (ADRESH*0.01953+ (ADRESL >>6)*0.0049);

 //�This converts the binary

value from the ADC to the

actual voltage.

117. }

118. void displayVoltage(float dp) //�This creates a

subroutine to

display the voltage

on the LCD

Chapter 6 Using the LCD

184

119. {

120. sprintf(str, "%.2f", dp); //�This use the function

sprintf to display the

floating point value using

2 decimal points

121. writeString(str); //�This calls the writeSring

subroutine to send the value

to the LCD

122. writeString(" Volts"); //�This calls the writeSring

subroutine to send the word

Volts to the LCD

123. }

124. //The main program

125. void main ()

126. {

127. initialiseThePic (); //�This calls the

subroutine to initialise

the PIC

128. setUpTheLCD (); //�This calls the

subroutine to set up the

LCD

129. while (1) This is a for ever loop

130. {

131. writeString ("The Voltage is"); //� this sends the

string "the voltage

is" to the LCD

132. line2 (); //� call the subroutine line2

to move the cursor to the

beginning of line two on

the LCD

Chapter 6 Using the LCD

185

133. systemVoltage (); //�This calls the subroutine

systemVoltage to go and

measure the voltage

134. displayVoltage (sysVoltage);//�This calls the subroutine

displayVoltage to display

the voltage on the LCD

135. gohome (); //�This calls the subroutine

gohome to send the cursor

on the LCD back to the home

position.

136. }

137. }

�The New Aspects of the Program

The following sections highlight some of the new aspects of the program

via three new subroutines.

�The gohome Subroutine

1. void gohome () //�This creates the

subroutine gohome

2. {

3. rsLine = 0x00; //� this ensures bit 4 or the

 RS pin will be logic '0' as

 these are instructions

4. lcdData = returnHome; //�this loads the variable

lcdData with the

instruction to return

the cursor to the home

position.

Chapter 6 Using the LCD

186

5. lcdOut (); //�This sends the instruction

to the LCD

6. rsLine = 0x10; //�this ensures bit 4 of the

rsLIne is a logic '1' for

data

�The sysVoltage Subroutine

1. void systemVoltage () //� This subroutine starts a

conversion and stores the

result into a variable called

sysVoltage. Note sysVoltage must

be of type float as it will be a

decimal number

2. { //�opening curly brackets of the

systemVoltage subroutine

3. ADCON0bits.GODONE = 1; //�This starts the ADC conversion by

setting bit 1 of ADCON0

4. while (ADCON0bits.GODONE); //�This waits for bit 1 of

the ADCONO register to go

to logic'0' This happens

automatically when the

conversion ends

5. sysVoltage = (ADRESH*0.01953 + (ADRESL >>6)*0.0049);

 //�this line is explained

below.

6. } //�closing curly brackets of the

systemVoltage subroutine

Line 5 is used to convert the 10-bit result of the ADC conversion into

an actual voltage reading. Firstly, you should remember that the 10 bit is

split into an 8-bit number and a 2-bit number. Using left justification, the 8

Chapter 6 Using the LCD

187

bit is stored in the ADRESH register, and the other 2 bits are stored in bit 7

and bit 6 of the ADRESL register; see Figure 5-1. The 8 bits in the ADRESH

have a resolution of 19.53mV, whereas the 2 bits in the ADRESL register

have a resolution of 4.9mV; that is why both binary values have been

multiplied as shown. However, before the 2 bits in the ADRESL register

can be multiplied, they must be shifted 6 places to the right to move bit6 to

bit0 and bit7 to bit1; that is why there is the symbol “ >>6”. In this way, you

can use all 10 bits of the ADC instead of just the 8 bits in the ADRESH. This

makes the result much more accurate.

It should be pointed out that the variable sysVoltage must be declared

as a float in the variable declarations.

�The displayVoltage Subroutine

1. void displayVoltage(float dp) //This subroutine uses

 the sprinf function to

 display the contents of

 a float onto the LCD

 display

2. { //opening curly brackets of the displayVoltage

 subroutine

3. sprintf(str, "%.2f", dp); //�This calls the sprintf

function with the float

that has been passed down

to the subroutine

4. writeString(str); //�This sends the result of

the spintf function, str,

to the display by calling

the writeString subroutine

Chapter 6 Using the LCD

188

5. writeString(" Volts"); //�This calls the writeString

subroutine to display the

word Volts with a space

before it

6. } //�closing curly brackets of the

displayVoltage subroutine

NB: To use the sprintf function, we must include the library that this

function is written in. This is in the stdio.h header file. This means we must

have the following include instruction as shown here:

#include < stdio.h>

This is added with the other include files and all the configuration

words as is with all projects.

�Changing the Main Part of the Program

I have created a subroutine called initialiseThePic. This is just another

way of making sure we only run these instructions once as we only call

this subroutine once. However, you must make sure the calling of this

subroutine is the first thing your program does.

1. while (1) //the forever loop

2. { //�opening curly brackets of the while (1)

3. writeString ("the voltage is"); //� this sends the

string "the voltage

is" to the LCD

4. line2 (); //� call the subroutine line2

to move the cursor to the

beginning of line two on the

LCD

Chapter 6 Using the LCD

189

5. systemVoltage (); //�This calls the subroutine

systemVoltage where the adc

is started and the result

is store in the variable

sysVoltage

6. displayVoltage (sysVoltage); //�This calls the subroutine

displayVoltage and passes

the variable sysVoltge to it

7. gohome (); //�This calls the subroutine to

send the LCD cursor back to

the beginning of the display

8. } //closing curly brackets of the while (1)

Figure 6-3 is the PROTEUS circuit with the PIC measuring and

displaying the voltage.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

D
7

14
D
6

13
D
5

12
D
4

11
D
3

10
D
2

9
D
1

8
D
0

7

E
6

RW
5

R
S

4

VS
S

1

V
D
D

2

VE
E

3

LCD1
LM016L

R1
10k

R2
330

35
%

RV1

1k

Volts
+1.75

Figure 6-3.  The Proteus Simulation

Chapter 6 Using the LCD

190

�Creating Special Characters on the LCD
This program works on the concept that the LCD displays the different

characters by turning on and off different pixels in a grid of pixels. The

size of the pixel grid depends on the resolution of the LCD display. The

resolution of the LCD in this exercise can be either 5 by 8 or 5 by 16

depending on whether or not we use 2 rows of 16 characters or 1 row of 16

characters on the LCD display. For our programs, we will use 2 rows of 16

characters; therefore, the resolution of each character is a 5 by 8 grid. The

empty grid is shown in Figure 6-4.

Each of the memory locations holds an array of 8 bytes, one for each

row in the LCD display grid. Note that a byte is made up of 8 single bits, b7,

b6, b5, b4, b3, b2, b1, and b0 going from left to right. The first five bits of

each byte controls the five pixels in each row of the grid. B0 maps on to A,

B1 maps on to B, B2 maps on to C, B3 maps onto D, and B4 maps onto E.

To enable programmers to design their own characters, the LCD has

16 empty memory areas known as CGRAM. The actual addresses of this

memory area are 00000000 to 00001111.

The programmer can write their own 8 bytes to be stored in these

memory areas. However, to do this, the programmer must send an

Figure 6-4.  The Empty 5-by-8 Grid

Chapter 6 Using the LCD

191

instruction to the LCD to tell it that we want to write data to be stored in

this area. The 8-bit binary code for this instruction is 0b01000000 or 0X40.

This is an instruction that the next information that follows is to be written

into the first area of the CGRAM. There must now follow 8 bytes of data,

and the first five bits of each byte defines which pixel will be turned on or

off; a logic ‘1’ means turn on the pixel, and logic ‘0’ means turn the pixel

off. There must be 8 bytes as with a resolution of 5 by 8, there will be 8

bytes in each memory area. When the eighth byte has been sent, the LCD

will automatically open up the next area of the CGRAM. The LCD will

now expect another 8 bytes of data until it has been told you have finished

writing to the CGRAM.

To tell the LCD you have finished writing to the CGRAM, you must

send the following instruction: 0b10000000 or 0X80. Note that the codes

0X40 and 0X80 are instructions and the LCD has to be put into that mode,

whereas the following 8 bytes after the 0X40 instruction are data and the

LCD must be put into that mode.

To try and help appreciate how the 8 bytes can define the pixel map

for one special character, the following 8 bytes can be used to define the

special character shown in Figure 6-5.

Figure 6-5.  The Pixel Map for a Special Character to Display
on the LCD

Chapter 6 Using the LCD

192

The bytes are shown in Table 6-3.

I hope this example goes someway to explaining how you can

create some special characters to display on the LCD. To complete the

explanation, I will write a program to display a series of special characters

on the LCD.

The program is shown in Listing 6-4.

Listing 6-4.  The Special Characters Program

1. //�*This is a basic program to control the LCD using the

PIC 18F4525

2. Written by H H Ward dated 31/10/15.

3. It is for use with the matrix multimedia prototype board

4. using 4 bit operation on PORTB

5. �Extended to include creating special characters 27/03/16*/

6. //some definitions

Table 6-3.  The 8 Bytes for Pixel Map Shown in Figure 6-5

ROW B7 B6 B5 B4 B3 B2 B1 B0
E D C B A

1 0 0 0 0 0 1 0 0

2 0 0 0 0 1 1 1 0

3 0 0 0 0 0 1 0 0

4 0 0 0 0 0 1 0 0

5 0 0 0 0 0 1 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 1 1 1 0

8 0 0 0 0 0 1 0 0

Chapter 6 Using the LCD

193

7. #define firstbyte 0b00110011 // The first

 �instruction to be

sent to the LCD

8. #define secondbyte 0b00110011 // The second

 �instruction to be

sent to the LCD

9. #define fourBitOp 0b00110010 // Instruction to put

 �the LCD into 4 bit

data mode

10. #define twoLines 0b00101100 //�Instruction to set

the LCD into 2 lines

of characters

11. #define incPosition 0b00000110 //Instruction to make

 LCD to automatically

 move the cursor one

 position after

 displaying a

 character

12. #define cursorNoBlink 0b00001100 //Instruction to make

 �not show the cursor

on the LCD

13. #define clearScreen 0b00000001 //Instruction to make

 �clear the contents

of the display

14. #define returnHome 0b00000010 //�Instruction to make

 �cursor to move to

the start of the

display

15. #define lineTwo 0b11000000 //�Instruction to make

 �cursor go to start

of line 2 on the

display.

Chapter 6 Using the LCD

194

16. #define doBlink 0b00001111 //Instruction to make

 display the cursor

 as a Blinking

 �rectangle on the

display.

17. #define shiftLeft 0b00010000 //�Instruction to send

 �the cursor one

place to the left.

18. #define shiftRight 0b00010100 //�Instruction to

send the cursor one

place to the right

19. #define lcdPort PORTB //�tells the compiler

the LCD is

connected tO portB

20. #define eBit PORTBbits.RB5 //�tells the compiler

the ebit is on bit5

of portb

21. #define startButton PORTAbits.RA0 //�tells the compiler

the waitbutton is

on bit0 of porta

22. //some variables this idea is to use comments to split

 the program up into different sections.

23. unsigned char lcdData, lcdTempData, rsLine; //�declare some

variables

as unsigned

char

24. unsigned char n; //�declare some variables

as unsigned char

25. //the subroutine

Chapter 6 Using the LCD

195

26. char lcdInitialis [8] = //�This sets up an array

of 8 memory locations

and loads each location

with one of the

instructions to set up

the LCD

27. { //�the opening bracket of the

array

28. firstbyte,

29. secondbyte,

30. fourBitOp,

31. twoLines,

32. incPosition,

33. cursorNoBlink,

34. clearScreen,

35. returnHome,

36. }; //�the closing bracket of

the array

37. void sendData () //� a subroutine to send data

to the LCD

38. { //�the opening bracket of the

subroutine

39. lcdTempData = (lcdTempData <<4 | lcdTempData >>4);

 //this swaps the two nibbles around.

40. lcdData = lcdTempData & 0x0F; //�this loads the variable

lcdData with the swapped

around data in lcdTempData

but only with the first 4

bits.

Chapter 6 Using the LCD

196

41. lcdData = lcdData | rsLine; //�this performs a logical

OR with lcdData and rsLine

this is the control what

bit 4 of the lcdData is

42. lcdPort = lcdData; //�send info to LCD

43. eBit = 1; //this sets the eBit to a

 logic '1'

44. eBit = 0; //this sets the eBit to a

 �logic '0' done to tell

the LCD it has some

new data

45. TMR0 = 0; while (TMR0 < 20); //this is a 2.56mS delay

 at 7812.5Hz

46. } //closing bracket if the

 sendData subroutine

47. void lcdOut () //� a subroutine to

manipulate the data in

variable lcdOut

48. { //�the opening bracket of

the subroutine

49. lcdTempData = lcdData; //saves a copy of

 lcdData in lcdTempData

50. sendData (); //�calls the subroutine

send Data for first

time

51. sendData (); //�calls the

subroutine send Data

for second time

52. } //�the closing bracket of

the subroutine

53. void setUpTheLCD () //�sets up the subroutine

to set Up the LCD

Chapter 6 Using the LCD

197

54. { //�the opening bracket of

the subroutine

55. rsLine = 0x00; //� this loads the

variable rsLine with

0. This is done to

make sure bit 4 is

a logic '0' to tell

the LCD the next

information is an

instruction.

56. n = 0; //�this loads 0 into

the variable 'n'

done to make sure

the following while

instruction starts

with n = 0

57. while (n < 8) //�sets up the while loop

which is carried out 8

times

58. { //�opening bracket of the

while loop

59. lcdData = lcdInitialis [n]; //�this loads variable

lcdData with data

from the lcdInitialis

array. This will be

the data in the first

location in the array

if n = 0 but it is

controlled by the

value of n

60. lcdOut (); //�this calls the

subroutine lcdOut

Chapter 6 Using the LCD

198

61. n ++; //�this adds 1 to the value of

n to make sure we use the

next location in the array

lcdInitials unless n = 8

62. } //�this is the closing

brackets of the while loop

63. rsLine = 0x10; //�this loads the variable

rsLine with 0x10. This

makes sure but 4 is now a

logic '1' ready to tell the

LCD the next information

will be data to be

displayed.

64. } //�this is the closing

bracket of the setUpTheLcd

subroutine.

65. void line2 () //� a subroutine named line2.

This is a routine to send

the cursor to the beginning

of line2 on the LCD

66. { //�the opening bracket of the

subroutine

67. rsLine = 0x00; //�load rsLine with 0 to make

sure we tell the LCD the

next information is an

instruction.

68. lcdData = lineTwo; //�loads the variable lcdData

with the instruction to

move cursor to beginning of

line 2

Chapter 6 Using the LCD

199

69. lcdOut (); //�call the subroutine lcdOut

to send the instruction to

the LCD

70. rsLine = 0x10; //�load rsLine with 0b00010000

to make sure we bit 4 is a

logic '1'this will tell the

LCD the next information is

data to be display

71. } //�the closing bracket of the

subroutine

72. �void writeString

(const char *words) //�a subroutine to send a

string of characters to the

LCD

73. { //�the opening bracket of the

subroutine

74. while (*words) //�the while instruction that

states that while we are

not at the end of the array

pointed to be the pointer

*words then do what is

between the curly brackets.

75. { //�the opening bracket of the

while statement

76. lcdData = *words; //�load the variable lcdData

with the contents of the

array memory location

the pointer 8words is

pointing to.

77. lcdOut (); //�call the subroutine lcdOut

to send the instruction to

the LCD

Chapter 6 Using the LCD

200

78. *words ++; //�increment the pointer

*words to ensure it is now

pointing to the next memory

location in the array

words.

79. } //�the closing bracket of the

while statement

80. } //�the closing bracket of the

subroutine

81. char firstCharacter [8] = //�this sets up an array of

8 locations and loads each

location with the data to

create the pixel map for

the character shown above

in Figure 6-5

82. { //�the following 8 bytes are

the data for the character

in Figure 6-5

83. 0b00000100,

84. 0b00001110,

85. 0b00000100,

86. 0b00000100,

87. 0b00000100,

88. 0b00000100,

89. 0b00001110,

90. 0b00000100,

91. };

92. char secondCharacter [8] = //�this sets up an array of

8 locations and loads each

location with the data to

create the pixel map for

the next character

Chapter 6 Using the LCD

201

93. {

94. 0b00010101,

95. 0b00010101,

96. 0b00010101,

97. 0b00010101,

98. 0b00010101,

99. 0b00010101,

100. 0b00010001,

101. 0b00010001,

102. };

103. char thirdCharacter [8] = //�this sets up an array

of 8 locations and

loads each location

with the data to create

the pixel map for the

next character

104. {

105. 0b00000001,

106. 0b00000001,

107. 0b00000001,

108. 0b00000011,

109. 0b00000011,

110. 0b00000011,

111. 0b00000011,

112. 0b00000011,

113. };

114. char fourthCharacter [8] = //�this sets up an array

of 8 locations and

loads each location

with the data to create

the pixel map for the

next character

Chapter 6 Using the LCD

202

115. {

116. 0b00010001,

117. 0b00010001,

118. 0b00000100,

119. 0b00000100,

120. 0b00011011,

121. 0b00011011,

122. 0b00011111,

123. 0b00001110,

124. };

125. void clearTheScreen () //�a subroutine to get the

LCd to clear the acreen

126. {

127. rsLine = 0x00; //instruction mode

128. lcdData = clearScreen; //�load the variable lcdDat

with the instruction to

clear the screen

129. lcdOut (); //�send the instruction to

the LCD

130. lcdData = returnHome; //�instruction to send the

cursor to the beginning

of the screen

131. lcdOut ();

132. rsLine = 0x10; //data mode

133. }

134. void writeToGram () //�this is a subroutine to

write code to the CGram

locations in the LCD

135. {

Chapter 6 Using the LCD

203

136. rsLine = 0x00; // ready for instruction.

137. lcdData = 0x40; //�tells the LCD to open the

first address in CGRAM

area ready for us to write

data into them

138. lcdOut (); //�calls the subroutine to

send info to LCD

139. rsLine = 0x10; //� ready for data as we

have finished sending

instructions.

140. n = 0; //�load n with 0 ready for

the following while loop

141. while (n < 8) //�do the following whilst n

is less than 8

142. {

143. lcdData = firstCharacter [n]; //�loads lcdData with

the data from the

array identified by

the variable 'n'

144. lcdOut (); //�calls the subroutine to start sending the

information to the LCD

145. n ++; //�increment the variable n so it is looking

at the next location in the array.

146. }

147. n = 0; //�loads n with zero ready to send the

next character to the LCD

148. while (n < 8)

149. {

150. lcdData = secondCharacter [n];

151. lcdOut ();

152. n ++;

153. }

Chapter 6 Using the LCD

204

154. n = 0; //�loads n with zero ready to send

the next character to the LCD

155. while (n < 8)

156. {

157. lcdData = thirdCharacter [n];

158. lcdOut ();

159. n ++;

160. }

161. n = 0; //�loads n with zero ready to send

the next character to the LCD

162. while (n < 8)

163. {

164. lcdData = fourthCharacter [n];

165. lcdOut ();

166. n ++;

167. }

168. rsLine = 0x00; //get ready for instruction

169. lcdData = 0x80; //command to go to DDRAM address

170. lcdOut ();

171. rsLine = 0x10; //ready for data

172. }

173. void main () //the start of the main loop

174. {

175. PORTA = 0; //�the following 4 instructions loads 0

into the 4 ports just to make sure they

are not turning anything on

176. PORTB = 0;

177. PORTC = 0;

178. PORTD = 0;

179. TRISA = 0Xff; //� loads logic '1' to all bits in TRISA

thus making all porta inputs

Chapter 6 Using the LCD

205

180. TRISB = 0x00; //� loads logic '0' to all bits in TRISB

thus making all portb outputs

181. TRISC = 0x00; //� loads logic '0' to all bits in TRISC

thus making all portc outputs

182. TRISD = 0x00; //� loads logic '0' to all bits in TRISD

thus making all portd outputs

183. ADCON0 = 0x00; //turns off the adc

184. ADCON1 = 0x0F; //sets all bits to digital mode

185. OSCTUNE = 0b10000000; //�this just sets the 8MHz as

source for 31.25kHz

186. OSCCON = 0b01110100; //�this selects the internal

8MHz frequency stable uses

the primary osc as clock

source

187. T0CON = 0b11000111; //�this enables TMR0, sets

it as 8 bit and max divide

giving T812.5Hz therefore

128usec per tic

188. TMR0 = 0; //�this load 0 into the TMR0

register to ensure we start

counting from 0

189. while (TMR0 < 255); //�whilst TMR0 is less that

255 do nothing. This is an

initial 32.6ms delay before

sending any info to lcd

190. setUpTheLCD (); //�call the setUpTheLCD

subroutine.

191. clearTheScreen (); //�call the subroutine to

clear the screen and send

cursor back to start of the

display.

Chapter 6 Using the LCD

206

192. writeToGram (); //�call the subroutine to

write the data for the

special characters to the

Gram of the LCD

193. while (!startButton); //�make the program wait until

the start button on porta

has been pressed and so

gone to a logic '1'

194. while (1) //�set up the forever loop so

that the PIC does not do

the previous instructions

again.

195. { //�opening bracket of the

forever loop

196. writeString ("Special Chars"); //�calls the subroutine

writeString and sends

the string Special

Chars to be displayed

on the LCD

197. lcdData = 0x31; //�this loads the variable

lcdData with value 0x31

this is the ASCII for the

number 1.

198. lcdOut (); //sends the data to the LCD

199. lcdData = 0x32; //�this loads the variable

lcdData with value 0x32

this is the ASCII for the

number 2.

200. lcdOut ();

Chapter 6 Using the LCD

207

201. lcdData = 0x33; //�this loads the variable

lcdData with value 0x33

this is the ASCII for the

number 3.

202. lcdOut ();

203. line2 (); //�calls the subroutine to move

the cursor to beginning of

line 2 on the LCD display

204. lcdOut ();

205. lcdData = 0x00; //�this loads the variable

lcdData with the value 0

this is the address of the

first area in the CGram of

the LCD.

206. lcdOut ();

207. lcdData = 0x01; //�this loads the variable

lcdData with the value 1

this is the address of the

second area in the CGram of

the LCD.

208. lcdOut ();

209. lcdData = 0x02; //�this loads the variable

lcdData with the value 2

this is the address of the

third area in the CGram of

the LCD.

210. lcdOut ();

211. lcdData = 0x03; //�this loads the variable

lcdData with the value 3

this is the address of the

fourth area in the CGram of

the LCD.

Chapter 6 Using the LCD

208

212. lcdOut ();

213. lcdData = 0x20; //�this loads the variable

lcdData with the ASCII for

the space see Table 6-1

214. lcdOut ();

215. lcdData = 0x48; //�this loads the variable

lcdData with the ASCII for

capital H see Table 6-1

216. lcdOut ();

217. lcdData = 0x2E; //�this loads the variable

lcdData with the ASCII

for the full stop, see

Table 6-1.

218. lcdOut ();

219. lcdData = 0x57; //�this loads the variable

lcdData with the ASCII for

capital W

220. lcdOut ();

221. lcdData = 0x2E; //�this loads the variable

lcdData with the ASCII for

the full stop.

222. lcdOut ();

223. rsLine = 0x00; //�sets the variable rsLine to

0 ready to tell the LCD the

next info is an instruction

224. lcdData = returnHome; //�loads the variable lcdData

with the instruction to

return the cursor back to

the beginning of the LCD

225. lcdOut ();

Chapter 6 Using the LCD

209

226. rsLine = 0x10; //�sets the variable rsLine

to 1 ready to tell the LCD

the next info is data to be

displayed

227. } //the closing brackets of the forever loop

228. } //the closing brackets of the main loop

This program should help reinforce the principle that when we

send information to the LCD, we are actually sending a number which

represents the address of an area in the LCDs ram. Note that there are

two areas of the LCDs ram that of the CGRAM where the user can store

bytes that define the bytes of any special characters that the user wants to

display. The other area of ram, the DDRAM, is where the manufacturers

have stored the bytes for all the ASCII characters.

If you examine line 205 in Listing 6-4, you will see that we are loading

the variable lcdData with the value 00000000 or 0x00. This is the address of

the first area in the CGRAM where we have written the 8 bytes that define

the pixel map for our first special character. Then in line 213, we load the

value of 0010000 or 0x20. This is the address in the DDRAM where the

manufacturer has stored the 8 bytes that define the pixel map for space or

empty character. Again, it should be noted that the address in the DDRAM

corresponds to the actual ASSCII character the memory area stores the

pixel map data.

This is a very wordy description of how the LCD works and how we

construct the ‘C’ commands to control the LCD. I think it is important

that you understand how you construct your instructions and how you

use them. By increasing your understanding, you will become a better

programmer.

The array defined from lines 114 to 124 defines the map for the special

character shown in Figure 6-6.

Chapter 6 Using the LCD

210

It should be noted that it is only the first 5 bits; b4, b3, b2, b1, and b0

and a logic ‘1’ will turn the corresponding pixel on, whereas a logic ‘0’ will

turn it off. This concept is reinforced in Figure 6-6.

The simulation of this program is shown in Figure 6-7.

Figure 6-6.  The Character Map for My Face

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

D
7

14
D
6

13
D
5

12
D
4

11
D
3

10
D
2

9
D
1

8
D
0

7

E
6

RW
5

R
S

4

VS
S

1

V
D
D

2

VE
E

3

LCD1
LM016L

R1
10k

R2
330

R3
1k

R4
10k

C1
100nF

Figure 6-7.  The Special Characters Simulation

Chapter 6 Using the LCD

211

�Summary
In this chapter we have studied how to set up the LCD and how to use the

LCD to display the ASCII characters. We have also learnt how to display

special characters that we can design ourselves.

We have also learnt how to use the ADC and use the sprint function to

display the results of the ADC on the display.

The next chapter looks at the very useful concept of creating and using

header files.

Chapter 6 Using the LCD

213© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_7

CHAPTER 7

Creating a Header File
This chapter covers how to create a header file. It then uses a header file in

a program to control the LCD in 4-bit mode.

�Header Files
These can be used to reduce the size of a program listing and split a

program up into different sections for different members of a team to

work on. These header files will all be brought together using the #include

statement in the main program.

One of the most useful applications of header files is when a lot of

programs are going to use a peripheral device in exactly the same way

in all the programs. One of the main peripheral devices we will use in

our programs is the LCD screen. The approach would be to put the

instructions for the LCD into a header file with the extension .h. Then

include the header file in all the programs you want to use it in. You should

realize that in all the programs; so far we have already used a header file;

this is the xc.h file we have included in all our programs so far.

�Creating a Header File
To create a header file, we simply copy the instructions we want and place

in a new file with the .h extension. You should give the header file a useful

214

name that explains what it is to be used for. The following will explain how

to create a header file using the instructions from the volt meter program

we have just created.

Make sure the project window with the project tree is visible as shown

in Figure 7-1.

If the project tree is not visible, then click on the “Window” option in

the main menu, and select the project option from the drop-down menu

that appears. You may have to move the window around the screen. This is

something you will have to practice as it is not my intention to explain how

to use every aspect of MPLABX; that is a book in itself.

With the project tree visible, right click on the Header File section

as shown in Figure 7-1. Then select new, and then select the “New xc8_

header.h” option. The window, as shown in Figure 7-2, should appear.

Give the file a suitable name that goes someway to describing what

the header file is for and give it the extension .h; you must give it the

correct extension. I have given it the name “LCD4bitOnPortb” as shown in

Figure 7-2.

Figure 7-1.  The Main Screen with the Project Tree Visible

Chapter 7 Creating a Header File

215

When you are happy with the file name, simply click finish, and you will

be presented with the file ready for you to insert the instructions you want

to put it in it. However, Microchip will have inserted a lot of text. I tend to

delete all this so that I have an empty file. This is shown in Figure 7-3.

Figure 7-2.  The New Empty File Window for the Header File

Figure 7-3.  The Header File Editing Window

Chapter 7 Creating a Header File

216

Now select the tab that will open the program ‘c’ file, which contains

the instructions you want to use. This is what the red arrow is pointing to.

This ‘c’ file should now be visible in the editing window. Now, using the

mouse, select all the instructions that you will use to set up and control the

LCD. You should also select all the definitions and all subroutines used for

the LCD. These instructions will become the contents of the header file.

This is shown in Figure 7-4.

Note that the first instruction that should be selected is the start of the

definitions used for the instructions to set up the LCD. This is shown in

Figure 7-5.

Figure 7-4.  Selecting the Instructions to Copy into the Header File

Chapter 7 Creating a Header File

217

Now that you have selected all the required instructions, cut all of them

out of your program file. Then reopen the new header file, and paste the

instructions into this file. You will need to save the contents of the new

header file.

�Including the Header File into Your Program
Now that you have cut all the LCD instructions from the ‘c’ program file,

we need to tell this ‘c’ file where it can find the newly created header file.

There are two ways of doing this; one involves a local header file and the

other involves a global header file.

A local header file is like the one we have just created. It is one that is

saved inside the project we want to use it in, as with the current situation.

To include this type of header file, all we need to do is add the following

#include instruction to the compiler.

#include “LCD4bitOnPortb.h” You must write the quotation marks as

shown.

Figure 7-5.  The Start of the Selection of the Instructions for the
Header File

Chapter 7 Creating a Header File

218

Note that as you type the phrase “#include”, the MPLABX software

should recognize what you are doing and give you some suggestions of

the file you may want to include, especially when you type the opening

quotation mark. Your header file should be one of them.

I try to place all my include commands together; therefore, I will add

this alongside the #include <xc.h> already in the ‘c’ file. Therefore, my ‘c’

file should look like that shown in Figure 7-6.

I hope this clearly shows you how to create and include a local header

file. If you now compile the project, it should compile without errors.

If your compilation throws up some errors, then go through the steps

again carefully, and make sure you cut all the instructions for the LCD.

�The Global Header File
The more general way of using header files is to make them global.

However, this will involve saving all the header files you create in the main

include directory that the compiler software, which you are using, goes to

find all the include files. If you do save them in the correct directory, then

Figure 7-6.  The Include Command for the New Header File

Chapter 7 Creating a Header File

219

the header files will be available to all other projects you write. The path to

where you should save your header files may be

C:\Program Files(x86)\Microchip\xc8\v1.32\include

or

C:\Program Files(x86)\Microchip\xc8\v2.10\pic\include

This may vary slightly, but you should be able to find the correct

include directory.

If you save the header file this way, then to include them into your

project you would have to write:

#include <LCD4bitOnPortb.h> Note the use of the

greater and less than symbols.

If you successfully save the file in the global location, you should be

able to delete it from the local project directory. Having done so, it should

still compile safely as the compiler program will successfully find the

header file you want to include.

Having done this, you will now have a header file that should be

globally available for all your projects.

�Creating a Header File for Your
Configuration Instructions
The configuration words are instructions that allow us to set up the PIC in

general terms. The main instruction is deciding where the PIC will get its

primary oscillator source. There are a variety of options including a high-

speed oscillator, HS, a lower-speed oscillator, XC, and RC oscillator and the

internal oscillator block. Also, it can program the PIC to turn off the WDT

and the LVP among many other aspects. In all the projects in this book, we

will use the internal oscillator block and turn the WDT and the LVP off.

Chapter 7 Creating a Header File

220

As long as you will do this for all your projects, you can create a header

file for this configuration. Note: Give it a useful name that explains what it

does, and save it in the global include directory.

I have done this for the rest of the projects I will use in this book. Open

a new empty file under the Header Files in the project tree as before.

The window shown in Figure 7-7 should open.

Note I have chosen a very descriptive name for this header file

conFigIntOscWdtOffLvpOff.h. Once you are happy with it, you should

close the window by clicking finish. The editing window will open with the

header file waiting to be written to. Simply paste in all the configuration

instructions into the file, and save the file.

You should have now created a local header file for your configuration

commands. If you save it in the global include directory, you will have a

Figure 7-7.  The New Empty File Window

Chapter 7 Creating a Header File

221

global header file for use in all the projects you want to configure the PIC

in that same precise manner.

To include this global header file, we simply have to add the command:

#include <conFigIntOscWdtOffLvpOff.h>

The main ‘c’ program file is now much reduced, but you will have

configured the PIC as you require.

�Summary
In this chapter we have studied header files. We have learnt what they are

and how to create a global header file that can be used in all your projects.

In the next chapter, we will study a series of specific C programming

commands. Then we will learn how to use one of the powerful debugging

tools within MPLABX so that we can analyze what those programming

commands do.

Chapter 7 Creating a Header File

223© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_8

CHAPTER 8

Understanding Some
Useful Code
This chapter involves some detailed analysis of the instructions. It will

involve describing what the instruction should do and so predict the result

of the instruction. It will then explain how you can single step through

the program while watching the variables to see if the result is what we

predicted. This chapter will also look at one of the very powerful debug

facilities of the MPLABX IDE.

We will examine some of the main operations in ‘C’ code. The

following is a list of the coding we will look at:

•	 Pointers; what they are and how to initialize them and

how to use them

•	 The logical AND function, both individual bits and

whole bytes. What is the difference and what they can

be used for

•	 The simple increment and decrement

•	 The greater than and the less than

•	 A range of comparison instructions

After reading this chapter, you should have a good understanding of the

above instructions and some possible application of the instruction. You will

224

also know how to use the debug tools in MPLABX to step through a program

one instruction at a time and use a watch window to see what happens.

�The Trace Table
A good debugging method is used to create a trace table of what would be

the result of the instructions in a program on all the SFRs and variables

the program used. Then you would step through the instructions and

monitor the SFRs and variables to check that the instructions worked as

you thought. This chapter will give you a good insight to this powerful

debugging technique.

�The Process
Listing 8-1 is the program used to discuss each instruction. We’ll then go

through each instruction’s method of using the debug tools in MPLABX to

check that our concepts are correct.

Listing 8-1.  Sample Program

1. unsigned char number1 = 0x0f, t, m, a, n, b;

 //�this creates 6 8 bit

memory locations but

loads number1 with

15 or 0b00001111

2. int y = 2; //�this creates a 16

bit memory location;

2 8 bits one after

the other, called y

and loads it with

the value 2

Chapter 8 Understanding Some Useful Code

225

3. int number2 = 0xffff, z; //�this creates

2 more 16 but

locations and

loads number2 with

all logic '1's

4. float u = 2.55; //�this creates a

variable 'u' that

can store decimal

numbers and loads

it with 2.55

5. unsigned int number3 = 0xffff; //�this creates a

16 bit number,

'number3' where

all 16 bits are

used for the value

and loads it all

logic '1's = 65535

6. unsigned char list [5]; //�this creates an

array of 5 8 bit

memory locations

one after the

other

7. unsigned char *listpointer; //�this creates a

16 bit memory

location that can

be used to store

the address of a

location in an

array. This is

16bits as it holds

an address which

is 16 bits long

Chapter 8 Understanding Some Useful Code

226

8. void main() //�This is the main loop

in the program

9. { //�the opening bracket

for the main loop

10. number1++; //�this adds 1 to the

value in number1

11. number1 = number1 + 2; //�this makes number1

= itself but with 2

added to it

12. number2 = number1 - 2; //�this will load number

2 with what was in

number 1 but takes 2

off it

13. number2 = 0b1111111111110000; //�this will change

the value stored in

number2 to -16

14. m = 0; //this loads m with 0

15. a = 0; //this loads a with 0

16. y = 5; //this loads y with 5

17. z = ++y; //� 'y' is incremented

first then z = what y

has become

18. z = y++; //� z equal what y was

then y is incremented

19. z = (unsigned char) u; //� z changes to an

unsigned char to show

all 8 bits which equal

251 in decimal. This

is called "Casting"

20. y = 7; //y is now set to 7

Chapter 8 Understanding Some Useful Code

227

21. y = ~y; //�this will simply invert

all the bits in the

variable 'y'

22. y = 7; //this makes y = 7

23. z = y<<1; //� z is back as an

integer and its value

is what was in y but

shifted left one bit Y

is unchanged

24. z = y>>1; //� z is what was in y but

shifted right one bit

but Y is unchanged Note

with the shift right

instruction the LSB is

simply lost. With the

shift left instruction

the MSB is lost.

25. a = 0b00010011; //this makes a = 19

26. y=(a>0) ? a : -1; //� This a test. Is 'a'

greater than 0. If the

test is true then 'y'

will = 'a'. If the

test is Untrue then

'y' will = -1

27. y=(a==0) ? a : -1; //� This a test. Is 'a'

equal to 0. If the

test is true then 'y'

will = 'a'. If the

test is Untrue then

'y' will = -1

Chapter 8 Understanding Some Useful Code

228

28. y=(a>0) ? z : -1; //� This a test. Is 'a'

greater than 0. If the

test is true then

'y' will = 'z'. If the

test is Untrue then

'y' will = -1

29. listpointer = list; //�this loads the pointer

listpointer with the

address of the first

location in the list

array

30. *listpointer =2; //�this will load the

first location in the

list array with the

value 2

31. listpointer ++; //�this will increment the

value in *listpointer.

This means it will be

pointing to the next

location in the array

list

32. *listpointer = 5; //�this will load the

second location in the

array list with 5

33. listpointer = list; //�this loads the pointer

listpointer with the

address of the first

location in the array

list

Chapter 8 Understanding Some Useful Code

229

34. a = a & 0xF0; //�this will force the

first 4 bits of a to

logic '0' and the last

four bits will only be

a logic '1' if the last

four bits in 'a' are

already a logic '1'

35. //� this is termed bit

masking or bit testing,

testing to see if a

bit in a variable is a

logic '1'

36. t = 5; //�this loads the

variable t with the

value '5'

37. if (t && 7 == t)m = 5; //�this tests to see if

the value of 't' is

the same as 7. If it

is then m = 5 if it is

not then m = 9. This

is anding the byte

38. else m = 9; //�this is the else

statement for the if

then else instruction.

Note you don’t always

need to write the else

keyword but in this

case we do need the

else

39. n = 0b00001000; //�this loads the value 8

into the variable 'n'

40. if (n & 0b00001000)m = 5;

Chapter 8 Understanding Some Useful Code

230

41. else m = 3; //�this is a test to

see if bit 3 of the

variable 'n' is at a

logic '1' if it is

then m = 5, if its Not

m = 3. This is bit

anding

42. if (n & 0b00000001)t = 4;

43. else t = 2; //�this is a test to

see if bit 0 of the

variable 'n' is at a

logic '1' if it is then

t = 4, if its not t = 2

44. n = 10; //�This loads the

variable 'n'with 10

45. for (a = 0, a < 5, a++;) //�this creates a for do

loop that goes through

it 5 times

46. { //�opening bracket for

the for do loop

47. *listpointer = n; //�this loads the

current location that

the listpointer is

pointing to with the

value that is in 'n'

48. listpointer ++; //�this increments the

pointer listpointer so

that it is pointing to

the next location in

the array

49. n = n + 2; //�this increases the

value of n by 2

Chapter 8 Understanding Some Useful Code

231

50. } //�the closing bracket of

the for do loop

51. while (1); //�this is a for ever

loop that forces the

micro to stop at this

instruction as it will

do nothing forever

52. } //�the closing bracket of

the main loop

�Lines 1–6
I am hoping that the comments for lines 1–6 do describe what the

instructions will do. Just note that with some of the variables, we are

loading them with an initial value as in line 1 “number1 = 0x0f”; this

creates an 8 bit memory location and loads it with the initial value of 0x0f

which is 15 in decimal.

�Line 7 unsigned char ∗listpointer;
In line 7 we are creating a pointer which is a variable that points to

something. In this case we will make it point to a memory location in an

array. This means that the 16-bit number in the pointer will be the actual

address of one of the memory locations in the array. We will see this work

later in the program. Note that the ‘∗’ is there to tell the compiler this is not

a simple variable; it is a pointer.

Lines 8 and 9 are fairly straightforward, and the comments describe

what they are.

Chapter 8 Understanding Some Useful Code

232

�Line 10 number1++;
This will simply increase the value of number1 by 1. As number1 was

loaded initially with 15, after this instruction, it will be 16.

�Line 11 number1 = number1 + 2;
If you want to increase the value of a variable by more than 1, it can

be done this way. Therefore, this instruction will add 2 to the variable

number1. After this instruction, the value stored in number1 will be 18.

�Line 12 number2 = number1 - 2;
This will change the value stored in number2, which was 32767, with 16.

This is 2 less than the value stored in number1. Note also that the value on

number1 will be unchanged.

I have not shown the instruction number2 --; as this will simply

subtract 1 from the current value in number2.

�Line 13 number2 = 0b1111111111110000;
This changes the value that is in number2 from 16 to -16. This works

because the MSB bit15 of number2 is not part of the value. It tells the

compiler that the number is either positive, when bit 15 is a logic ‘0’, or

negative when bit 15 is a logic ‘1’. In this case, bit 15 is a logic ‘1’, so the

number is a negative number. However, to determine what the value is, the

compiler must carry out a 2s compliment on the 16 bits in the instruction.

In this way the binary value 0b1111111111110000 means -16. See the

Appendix for an explanation of what 2s compliment is.

Lines 14 through 16 are fairly straightforward, and the comments

describe what they are.

Chapter 8 Understanding Some Useful Code

233

�Line 17 z = ++y;
This increments the value of ‘y’ by 1, making it 6, and then copies this

value into ‘z.’ Therefore, after this instruction, both ‘y’ and ‘z’ will be 6.

�Line 18 z = y++;
This instruction makes ‘z’ the same value that is stored in ‘y’ and then

increments the value of ‘y’. Therefore, after this instruction, ‘z’ will again

be 6, but ‘y’ will be 7.

�Line 19 z = (unsigned char) u;
This instruction changes the data type of the variable ‘z.’ This is called

casting. Note that the change in type only lasts for this instruction. The data

type for the variable ‘u’ is a float, and the value is 2.55. However, this is stored

in ‘z’ as an unsigned char. This means the numbers after the decimal point

will be lost. Therefore, after this instruction, the value in ‘z’ will be 2, not 2.55

Line 20 is a fairly straightforward, and the comments describe what it is.

�Line 21 y = ~y;
This instruction will simply invert all the bits in the variable. This means

the bits that where logic ‘1’ become logic ‘0’ and what were logic ‘0’

become logic ‘1’.

Therefore, before this instruction the bits in ‘y’ were

0000000000000111

After this instruction, they will be

Chapter 8 Understanding Some Useful Code

234

1111111111111000. Note that this is will become -8

when the 2s compliment has finished. Note that ‘y’

is an int or integer which means the MSB is not part

of the number.

Line 22 is a fairly straightforward, and the comments

describe what it is. After this instruction, the value in

‘y’ will be 7.

�Line 23 z = y<<1;
This moves a copy of what is in ‘y’ into ‘z,’ but before the value is copied,

the bits are shifted one bit to the right. The value in ‘y’ is in binary.

0000000000000111

Before this is copied into ‘z’, the bits are shifted one

place to the right. Therefore, the bits in ‘z’ will be

0000000000001110 which is 14. Note that shifting

bits 1 bit to the left simply multiplies by 2. Moving

the bits 1 bit to the right simply divides by 2.

Note that the value in ‘y’ is unchanged. The number of places the bits

are shifted is specified by the value after the >>, in this case 1, but it could

be 2, 3, 4, and so on.

�Line 24 z = y>>1;
This does a similar action as with line 23 but shifts the bits one place to the

left before copying the value into ‘z’.

The bits in ‘z’ will now be

0000000000000011 which is 3.

Chapter 8 Understanding Some Useful Code

235

Note that the value in ‘y’ will be unchanged at 7.

Line 25 is fairly straightforward and the comments describe what it is.

After this instruction, the value in ‘a’ will be 19.

�Line 26 y=(a>0) ? a : -1;
This is the first type of instruction with a bracket. When brackets are used,

we are using a test, and the result of the test will either be true, a logic ‘1’,

or untrue a logic ‘0’. The expression inside the bracket is defining the test

as “is ‘a’ greater than 0.” In line 25 we set the value as ‘a’ to 19, and so it is

greater than 0. This means the test is true, and so ‘y’ will become a copy of

‘a’. Therefore, in this case the test is true, and after this instruction, ‘y’ will

be 19 the same as ‘a’.

If the test was found to be untrue, then ‘y’ would take on the other

value stated in this instruction which in this case is -1.

�Line 27 y=(a==0) ? a : -1;
The test in this instruction is “is a equal to 0.” Well the value stored in ‘a’

is still 19 which means the test is untrue, and so after this instruction, the

value in ‘y’ will be -1. Note that the value in ‘a’ will be unchanged.

�Line 28 y=(a>0) ? z : -1;
The test is the same as that in line 26. The result is again true, but this

time the variable ‘y’ will take on the value of that stored in ‘z’ and not ‘a’.

This means after this instruction, the value of ‘y’ will be 3 as this is what is

stored in ‘z’ from before in the program.

Chapter 8 Understanding Some Useful Code

236

�Line 29 listpointer = list;
This is the first instruction that uses the pointer listpointer. Note that I have

given the pointer this name as the array that I will be using this to point to

has been given the name list; see line 6 where I created the array list having

5 memory locations each 8-bit-long as they are to store unsigned chars.

This instruction loads the memory location listpointer with the first

address of the array list. This means the listpointer is pointing to the first

location in that array. Note that the variables window will most likely show

the address of the first location in the array in hexadecimal format, for

example, 0X13. This is the same as 19 in decimal or 0000000000010011 in

binary. This is why you need to appreciate decimal, binary, and

hexadecimal. These numbers systems are explained in the Appendix.

�Line 30 ∗listpointer =2;
This will load the memory location that the listpointer is pointing to with

the value of 2. As with line 29, we made the listpointer point to the first

location in the list array; then after this instruction, the value of the first

location in the list array will have be 2. Remember that the first location in

the array is location ‘0’.

�Line 31 listpointer ++;
This simply increases the value stored in the listpointer by 1. As the values in

the pointer are the addresses inside the array list, then after this instruction,

the listpointer will be pointing to the next location in the array list.

�Line 32 ∗listpointer = 5;
This will load the current memory location that the listpointer is pointing

to with the value 5. Therefore, after this instruction, the first location in the

array list will have the value 2 and the second will have the value 5.

Chapter 8 Understanding Some Useful Code

237

�Line 33 listpointer = list;
This simply is a repeat of the instruction at line 29. After this instruction

the contents of the listpointer will be the address of the first location in the

array list.

This is to get the listpointer pointing to the first address in the array list

ready for the for do loop at line 44.

�Line 34 a = a & 0xF0;
This is the first of a type of instruction termed bit masking or bit testing.

This is actually bit masking where the idea is to mask out the first 4 bits,

termed the low nibble. This works on the principle of the logic AND

function where a ‘1’ AND a ‘1’ result in a logic ‘1’. However, a ‘1’ AND a ‘0’

produces a logic ‘0’.

This instruction uses the single ‘&’ symbol which means this is a bit

AND. With this type of instruction each, individual bit of the stated variable

is ANDED with the data expressed in the instruction.

The data in the instruction is

0XF0 which in binary is 11110000

The data in the variable that the AND is ANDED

with is

‘a’ which has the binary value of 00010011 which is

19. See line 25.

This means the first 4 bits in the variable ‘a’ will be masked out and

result in 4 logic ‘0’s as they will be ANDED with a logic ‘0.’ The next four

bits, the high nibble, bits 4, 5, 6, and 7, will be a copy of the four high bits in

the variable ‘a’.

Line 35 is just an extra set of comments.

Line36 simple loads t with the value of 5.

Chapter 8 Understanding Some Useful Code

238

�Line 37 if (t && 7 == t)m = 5;
This instruction combines the test with a bit instruction. However, the

double ‘&&’ sign means the ANDing is done on all 8 bits of the variable

and data. This means the test “is the result of the full byte AND of the

variable ‘t’ with the value 7 the same as the value in ‘t’”. If the test is true,

then value of the variable ‘m’ will go to 5.

�Line 38 else m = 9;
This else is connected to the if instruction in line 37. We know what will

happen if the results of the test are true. This else instruction tells us what

will happen if the test is untrue. It the test is untrue, then the value of the

variable ‘m’ will go to 9.

As ‘t’ was loaded with 5 at line 36, then the test will be untrue, and so

after this instruction, the value of ‘m’ will change to 9, because of the else

statement on line 38.

An application of this type of instruction could be with entry to a room

via a keypad. The result of a 4-digit number entered in via a keypad could

be stored in the variable ‘t’. It could then be matched to a pre-stored 4-digit

code using this type of instruction, and the door could be opened if the

result is true or not if the result was untrue.

�Line 39 n = 0b00001000;
This is loading the variable ‘n’ with the number 8. It is really setting bit 4 to

a logic ‘1’. This is ready for the next bit test in lines 40 and 41.

Chapter 8 Understanding Some Useful Code

239

�Line 40 if (n & 0b00001000)m = 5;

�Line 41 else m = 3;
This is an individual bit test to see if bit 4 of the variable ‘n’ is a logic ‘1’. If

it is, the test is true, and the value of m is set to 5. If bit 4 of the variable ‘n’

is not a logic ‘1’, the test will be untrue, and the variable ‘m’ will be set to 3.

Note that the value of the variable ‘n’ will remain unchanged. We know that

the test will be true, and so after this instruction, the value of m will be 5.

�Line 42 if (n & 0b00000001)t = 4;

�Line 43 else t = 2;
This is the same type of test as described in lines 40 and 41 except that the bit

that is being tested in line 42 is bit 0 of the variable ‘n’. We know from before

that bit 0 of the variable ‘n’ is a logic ‘0’, not a logic ‘1’. This means that the test

will be untrue. Therefore, after this instruction, the value of the variable ‘t’

will be 2, not the 4 that it would have been if the result of the test was true.

�Line 44 n = 10;
This simply loads the variable ‘n’ with the value 10 ready for the next

instructions.

�Line 45 for (a = 0, a < 5, a++;)
This sets up a for do loop that is carried out 5 times. The loop is described

between the opening bracket at 45 and 50. The instructions inside the

bracket, note that this is not a normal test bracket, firstly load the variable

‘a’ with the value 0. Then it carries out the test is ‘a’ less than 5, which it

Chapter 8 Understanding Some Useful Code

240

is. As the test is true, the micro will then carry out the instructions listed

inside the curly brackets. Then the value of ‘a’ is incremented. The loop

starts again until a = 5 and the test a < 5 becomes untrue. When it is untrue,

the micro moves outside the loop.

Line 46 is simply the opening curly bracket of the for do loop.

�Line 47 ∗listpointer = n;
This loads the memory location that the listpointer is pointing to with the

value stored in the variable ‘n’ which at this time is 10.

You should remember that in line 33, we made the pointer listpointer

point to the first location in the array list. This then means after this

instruction, the data in the first location of the array list will be 10.

�Line 48 listpointer ++;
With this instruction we simply increase the value stored in listpointer

by 1. This means that the pointer listpointer will now be pointing to the

second memory location in the array list.

�Line 49 n = n +2;
Now we simply add 2 to the value that is stored in the variable ‘n’. Therefore,

after this instruction, the values stored in the variable ‘n’ will be 12.

The micro will now go through the instructions of the for do loop

another 4 times. In this way we can load the 5 memory locations in the

array list with the data from Table 8-1.

Chapter 8 Understanding Some Useful Code

241

This is quite a succinct way of filling the memory locations in an array

with data. Note that arrays can have a large number of memory locations.

Line 50 is the closing bracket of the for do loop.

�Line 51 while (1);
This sets up a forever loop as the result of the test described in the

bracket will always be true a logic ‘1’. This simply halts the program at this

instruction as the micro will forever do nothing.

Line 52 is the closing bracket of the main loop.

�Debugging the Program
The best way to show how to use the debug tools in MPLABX is to go

through the instructions of the program would and show them in a video.

I have produced such a video that can be used to show the process.

However, what I will do in this chapter is show some screenshots to show

you the main points of the process.

Table 8-1.  The Contents of the Array List After the For Do Loop Has

Finished

Location in List Array Identifier for the Location Value in The Location

1st 0 10

2nd 1 12

3rd 2 14

4th 3 16

5th 4 18

Chapter 8 Understanding Some Useful Code

242

�Compiling the Completed Program
After writing the complete program, the first thing to do is to build and run

the program. To do this, click the mouse on the Debug Main Project icon in

the main menu bar shown in Figure 8-1.

Figure 8-1.  The Debug Main Project Icon

This will build the program which tests the syntax of the program for

errors, and assuming there are no errors, the program will be loaded into the

PIC. If you have chosen the simulator as the tool as shown in Figure 2-6, then

the simulated PIC will be loaded with the program. If you have downloaded

the program to a practical PIC using the ICD3 or ICD4 can, the process will

be the same. In this example, I have used the MPLABX simulator PIC

While the program compiles and the program is loaded to the PIC, the

output window should be visible during this process. Once the program

loads successfully, the screen should look something like what is shown in

Figure 8-2.

Chapter 8 Understanding Some Useful Code

243

The output window should be visible on the screen. You will see a

small ‘x’ next to a small dot in the right-hand corner of the output window.

If you click the mouse on the small dot, the window will now be fastened

inside the editing area of the screen as shown in Figure 8-3.

Figure 8-3.  The Output Window Now Moved into the Editing Area

Figure 8-2.  The Completed Output Window

Chapter 8 Understanding Some Useful Code

244

There will now be a small minimize icon in the right-hand corner of

the output window. If you click on this, the output window will drop into

the low menu bar at the bottom of the screen. The program is still running

in the back ground. You should minimize the output window.

If you select the small ‘x’ instead of the small dot, the output window

will disappear, but you can get it back by either hitting the control key and

the number 4, Crtl4, together, or by selecting the word window from the

main menu bar and selecting the word output from the drop-down menu

bar that appears. I prefer to have the output window minimized to the

bottom menu bar, as shown in Figure 8-4.

Once you have placed the output window out of the way, we now need

to select the variables that we want to look at as the program progresses.

To do this select the word windows from the main menu bar, then select

the word debugging from the drop-down menu, and select variables from

the fly-out menu that appears as shown in Figure 8-5.

Figure 8-4.  The Output Window Minimized

Chapter 8 Understanding Some Useful Code

245

You could have selected the Watches window from the fly-out menu

as there is not much difference between the two options; it is down to

experience and personnel choice. Having selected the variables, the screen

should look something like this shown in Figure 8-6.

Figure 8-6.  The Variables Window

Figure 8-5.  The Variables Fly-Out Menu

Chapter 8 Understanding Some Useful Code

246

You may have to change the size of the window by selecting the

boarders, and when the mouse changes to a double arrow, move the

window accordingly.

Now we need to select what variables we want to look at. Really it

should be all the variables we have created in the program. In other

programs, you may want to be more selective. To select the variables, you

want to simply click the mouse on the small blue diamond shape with the

plus sign on it on the side menu in the variables window. An empty row

should appear, and the small diamond that was grayed out should now

be blue. Click the mouse on this now visible diamond, and the new watch

window will appear. You should then click the mouse on the variable

named ‘a’, then while holding the control key, select the names of all the

other variables you want to look at. They should be highlighted blue as

shown in Figure 8-7.

Note that the unsigned char number3 will not be visible in the new watch

window. This is because this variable is not actually used in the program

even though we have defined it and loaded it with 0XFFFF which 65535.

Figure 8-7.  The New Watch Window

Chapter 8 Understanding Some Useful Code

247

Once you have selected all the variables you want to watch, simply

click OK, and the variables will appear inside the variables window.

You can decide what type of information you want to display in the

variable window by clicking the right-hand button on the mouse on any

of the titled boxes at the top of the variable list. The fly-out menu will now

be visible as shown in Figure 8-8. You should tick or un-tick the type of

information you want displayed.

You now need to pause and reset the program so that it will start at the

first instruction. To do this click the mouse on the orange pause symbol on

the menu bar. When this happens the blue circle with the two white arrows

becomes visible. If you now click the mouse on this button, the program

will reset, and the screen should now look like the one shown in Figure 8-9.

Figure 8-8.  The Variable Type Fly-Out menu

Chapter 8 Understanding Some Useful Code

248

There should be the green highlighted instruction as shown in

Figure 8-9. This should be the first instruction in the program. The IDE is

now waiting for you to either run the program by pressing the green circle

with the white arrow inside it, something we don’t want to do this time,

or get the program to single step through the instructions one at a time.

This is what we want to do so that we can examine the variables as they

change according to the instructions of the program. To do this we must

click the mouse on the blue square with the curved orange arrow pointing

down. The program will now step through the instructions of the program

one at a time each time you press this button, but it will not step into the

instructions of a function or subroutine.

Note that there is a blue square with a straight orange arrow pointing

vertically down. This is to allow you to step into a function or subroutine if

you want to.

Well I know it is not ideal trying to describe this process in a textbook,

but I hope I have described it well enough for you to use this powerful

Figure 8-9.  The Program Reset

Chapter 8 Understanding Some Useful Code

249

debug option in MPLABX. You should now step through each of the

instructions and see if the results of the instructions agree with the analysis

of the instructions in section.

You will need to take your time and maybe need to reread the

description.

�Summary
I hope you have found this chapter useful and you have been able to step

through the program. Understanding what the instructions actually do

and how they work is very important to the programmer. Also being able

to use the debugging tools of the IDE is essential to solving problems in a

program. Both aspects will help you become a better programmer.

In this final chapter, we have studied some specific C programming

instructions. We have also studied how to use one of the debugging tools

within MPLABX to study the outcome of those instructions to confirm that

they do what we expected them to do.

Chapter 8 Understanding Some Useful Code

251© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4

APPENDIX

�Additional Resources
�Useful Definitions
Bit operators

Operator Description

& AND each bit

| OR each bit (inclusive OR)

^ EXOR each bit (exclusive OR)

<<n Shift left n places

>>n Shift right n places

~ One’s compliment (invert each bit)

For xample, if ‘x’ = 1111 1111, then:

Operation Result

x & 0X0F 0000 1111

x | OXOF 1111 1111

x^0X0F 1111 0000

x = x<<2 1111 1100

x = x>>4 0000 1111

x = ~x 0000 0000

https://doi.org/10.1007/978-1-4842-5525-4

252

�Mathematical and Logic Operators

Operator Description

+ Leaves the variable as it was

- Creates the negative of the variable

++ Increments the variable by 1

-- Decrements the variable by 1

∗ Multiplies the two variables y = a∗b

/ Divides y= a/b

% Used to get the remainder of a division of two variables m = a%b

< Less than if (y < a) means y is less than a

<= Less than or equal to if (y < =a)

means y is less than or equal to a

> Greater than if (y > a)

means y is greater than a

>= Greater than or equal to if (y > =a)

means y is greater than or equal to a

= Makes the variable equal to y = 3

After this y takes on the value of 3

! Not if (!PORTBbits.RB0) not bit0 of portb which means if bit0 of portb is

logic 0

&& Whole register AND

|| Whole register OR

? This is a test operator y=(a>0) ? a : -1

This test to see if ‘a’ is greater than 0. If it is, then y becomes equal to ‘a’;

if it’s not, then y = -1

APPENDIX Additional Resources

253

�Keywords

Keyword What It Does

typedef Allows the programmer to define any phrase to represent an existing type

#ifndef This checks to see if a label you want to use has not been defined in any

include files you want to use

If it has, it does not allow you to define it now. If it hasn’t, you are allowed

to define it now

#define You can define what your label means here

#endif This denotes the end of your definition after the #ifndef code

sizeof Returns the size in number of bytes of a variable

Global variables are variables that once declared can be read from or

written to anywhere from within the program.

�Data Types

Type Size Minimum Value Maximum Value

Char 8 bits -128 127

unsigned char 8 bits 0 255

int 16 bits -32,768 32,767

unsigned int 16 bits 0 65,535

short 16 bits -32,768 32,767

unsigned short 16 bits 0 65,535

short long 24 bits -8,388,608 8,388,607

unsigned short long 24 bits 0 16,777,215

APPENDIX Additional Resources

254

Type Size Minimum Value Maximum Value

long 32 bits -2,147,483,648 2,147.483,647

unsigned long 32 bits 0 4,294,967,295

Float 32 bits

Floating point numbers

Type Size Min Exponent Max Exponent Min Normalized Max Normalized

float 32 -126 128 2-126 2128

Double 32 -126 128 2-126 2128

Functions
Functions are similar to subroutines in that they are small sections of

program code that are used to perform a specific function. They can be set

up to return a particular type of variable, or they can be set up to return no

variable.

Example

Char getvalue ()

This function will return a char value at the end of its instructions.

unsigned int age ()

{

}

This function will return an unsigned int value at the end of its

instructions.

APPENDIX Additional Resources

255

void motoron ()

{

}

This function will not return a value when it ends.

Functions, just like subroutines, have to be called from the main

program. In ‘C’ this is done by stating the name of the function as follows:

getvalue ();

age ();

motoron ();

These will call the specified function.

Parameters

Some functions may require parameters that can be used within the

function. This is true for both void and non-void functions. If a function

needs a parameter that it will use within the function, it needs to be

expressed when the function is declared. The following is an example of

such a function:

void delay250 (char x)

 {

 while (x>0)

 {

 TMR4 = 0;

 while (TMR4<35211);

 x--;

 }

 }

To call this function, use

delay250 (4);

APPENDIX Additional Resources

256

This will assign the value 4 to the char ‘x’, and so this will create a total

of a 1-second delay.

Loops
All ‘C’ programs are a collection of loops. The loops will be carried out

either once as in subroutines or for as long as their test condition is true.

The most common loops are while loops. For example:

While (a == 1)

{

Do what is inside the curly brackets.

}

The test condition is that ‘a’ becomes equal to 1. While this test is true,

that is, a is 1, then do what is inside the curly brackets.

�Numbering Systems Within Microprocessor-
Based Systems
As will become evident in the study to come, microprocessor-based

systems use the binary number system. This is because the binary number

system can only have one of two digits, either a ‘0’ or a ‘1’. These states have

been called logic ‘0’ or logic ‘1’ as in electronic devices. Note also that all

the logic operations such as AND, OR, NAND, NOR, NOT, and EXOR all

work using binary format. The binary format can be used to mimic the

logic states of “TRUE” or “FALSE” precisely; and best of all, they can be

represented by voltage, that is, 0V for logic ‘0’ and +5V for logic ‘1’.

APPENDIX Additional Resources

257

Therefore, it is essential that the modern engineer gains a full

understanding of the binary number system. This appendix is aimed at

teaching the reader all they need to know about binary numbers.

�Binary Numbers
These are a series of ‘0s’ and ‘1s’ that represent numbers. With respect

to microprocessor-based systems, the numbers they are representing

are themselves representing codes for instructions and data used within

microprocessor-based programs. We, as humans, cannot easily interpret

binary numbers as we use the deanery number system. The deanery

number system uses the base number 10 which means all the columns we

put our digits in to form numbers are based on powers of 10. For example,

the thousand column is based on 103, and the hundreds column is based

on 102. The tens is on 101 and the units is 100. Try putting 100 in on your

calculator using the xy button, and you will find it equals 1; in fact, any

number raised to the power 0 will equal 1.

�Converting Decimal to Binary
Probably the first step to understanding binary numbers is in creating

them, that is, converting decimal to binary. There are numerous ways of

doing this, but I feel that the most straightforward is to repeatedly divide

the decimal number by 2, the base number of binary. This is shown here:

APPENDIX Additional Resources

258

Example 1

Convert 66 to binary.

Simply keep on dividing the number by 2, putting

the answer underneath as shown, with the

remainder to the side. You should note that all the

remainders are either 0 or 1. These digits actually

make up the binary number. Note also the last

division always results in an answer ‘1’; we stop

there, no more dividing.

APPENDIX Additional Resources

259

To create the binary number, we take the top of

the remainders, as shown, and put it into the least

significant bit, or column, for the binary number.

The other remainder digits follow on thus making

up the complete 7-digit number.

Converting from Binary to Decimal

It would be useful to determine if the binary number

shown does actually relate to 66 in decimal. This is

done by converting back into decimal the binary

number 1 0 0 0 0 1 0. To do this, we must realize that

numbers are displayed in columns. The columns are

based on the base number of the system used. With

binary numbers, the base number is 2; therefore, the

columns are based on powers of 2. This is shown in

the following table:

Base No. 27 26 25 24 23 22 21 20

Decimal
Equivalent

128 64 32 16 8 4 2 1

Binary
Number

1 0 0 0 0 1 0

To complete the conversion, we simply sum all the decimal equivalents

where there is a 1 in the binary column.

In this case the sum is 64+2 = 66

APPENDIX Additional Resources

260

Example 2

Convert 127 to binary and check the result.

Base No. 27 26 25 24 23 22 21 20

Decimal
Equivalent

128 64 32 16 8 4 2 1

Binary
Number

0 1 1 1 1 1 1 1

To complete the conversion, we simply sum all the decimal equivalents

where there is a 1 in the binary column.

In this case the sum is: 64+32+16+8+4+2+1 = 127

APPENDIX Additional Resources

261

Exercise 1

Covert the following numbers to binary, and check your results by

converting back to decimal. Show all workings out.

99

255

137

�Adding and Subtracting Binary Numbers
Adding and subtracting numbers are perhaps the most basic operations

we can carry out on numbers. Binary numbers follow the same rules

as decimal, but there are only 2 allowable digits. Also, computers don’t

actually subtract numbers as the following will show.

Exercise 2

Add the following decimal numbers in 8-bit binary

notation. Note: Check your answers.

23+21, 35+123, 125+75

Worked example

Remember binary numbers have only two digits: ‘0’

or ‘1’.

Add 23 to 21 in 8-bit binary.

APPENDIX Additional Resources

262

Method:

Convert to 8-bit binary, and add; remember the

following four rules:

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 0 with 1 to carry

23 in 8 bit binary is

 �0 0 0 1 0 1 1 1 note we must state all 8 bits as it

is 8 bit binary.

By the same process 21 in binary is 0 0 0 1 0 1 0 1

 Therefore the sum is 0 0 0 1 0 1 1 1

 + 0 0 0 1 0 1 0 1

 ─────────────────
 0 0 1 0 1 1 0 0

 ─────────────────

To check your answer, put the result into the lookup table, then add the

decimal equivalent.

Power 27 26 25 24 23 22 21 20

Decimal Equivalent 128 64 32 16 8 4 2 1

Binary Number 0 0 1 0 1 1 0 0

Sum is 32 + 8 +4 = 44.

APPENDIX Additional Resources

263

�Subtracting Binary Numbers
Exercise 3

Microprocessor-based systems actually subtract numbers using a method

which is addition. This involves using the 2s compliment of a number, and

it is best explained by the following example.

Subtract the following decimal numbers using 8-bit

binary 2s compliment; check your answers:

128 - 28, 79 - 78, 55 - 5, 251 - 151

Worked example

Convert the two numbers to binary using the

method shown previously.

128 in 8-bit binary is 10000000. NOTE that we
MUST use ALL 8 bits.

28 in 8-bit binary is 00011100.

Take the 2s compliment of 00011100 as this is the

number that we are subtracting from 128.

Only create the 2s compliment of the subterand, the number we are
subtracting with.

NOTE: We must use a full 8-bit number putting extra 0 in where

needed.

To take the 2s compliment, firstly take the compliment, and then add

binary 1 to the compliment: the compliment of the binary number is found

by simply flipping all the bits, that is, a ‘0’ becomes a ‘1’ and a ‘1’ becomes

a ‘0’.

APPENDIX Additional Resources

264

Compliment of 00011100 is 1 1 1 0 0 0 1 1

add binary 1 + 0 0 0 0 0 0 0 1

 ─────────────────
 1 1 1 0 0 1 0 0

 ─────────────────

Now add the 2s compliment to the first binary number as shown:

 1 0 0 0 0 0 0 0

 + 1 1 1 0 0 1 0 0

 ─────────────────
result is 0 1 1 0 0 1 0 0

 ─────────────────

NOTE: THE LAST CARRY INTO THE NINTH DIGIT IS DISCARDED
AS THERE CAN ONLY BE THE SPECIFIED NUMBER OF DIGITS, 8 IN
THIS CASE. Don’t forget we added 1 so we should give it back.

The binary result converts to 100 in decimal. This is the correct result.

Check your answers in the usual way.

Note that computers subtract in this method because we can only

create an adder circuit in logic.

�The Hexadecimal Number System
Microprocessor-based system can only recognize data that is in binary

format. In its most basic form, this means that all data inputted at the

keyboard should be in binary format. This is quite a formidable concept.

Just think every letter of every word must be inputted as a binary number.

It takes at least 4 binary digits to represent a letter, and so typing words into

a computer would be very difficult indeed. Thankfully, word-processing

programs take ASCII characters to represent the letters you press at the

keyboard.

APPENDIX Additional Resources

265

With the type of programs we will be writing into microcomputers,

we will actually be typing in 2 characters to represent the codes for the

instructions or data of the programs we will write. If we were to type these

in as binary numbers, it would take 8 binary bits to make each code. This

would be very time-consuming and difficult to make sure we get right. To

make things easier, we will use the hexadecimal numbering system. This

system has 16 unique digits which are

0 1 2 3 4 5 6 7 8 9

After this we cannot use 10 as this uses two digits: a 1 and a 0.

Therefore, we must use 6 more unique digits. To do this. we use the first 6

letters of the alphabet. Therefore, the full 16 digits are

0 1 2 3 5 6 7 8 9 A B C D E F

Remember we are going to use the hexadecimal number to represent

binary digits and this revolves round the idea that 1 hexadecimal digit

represents 4 binary digits as the 4 binary bits in decimal go from 0 to

15, that is, 16 numbers. Therefore, every 8-bit binary number can be

represented by 2 hexadecimal digits. This makes typing in the code for

programs much quicker and more secure than using the full binary

numbers that computers use. Note that to accommodate the user typing

inputs as hexadecimal digits, there is a program in micro’s ROM to convert

the hexadecimal to binary for us. However, we will look at converting

binary to hexadecimal.

Exercise 4

Convert the following 8-bit binary numbers to

hexadecimal:

10011110, 10101010, 11111111, 11110000, 00001111,

and 11001101

APPENDIX Additional Resources

266

Worked example

Method: Split the 8 bits into two 4-bit numbers.

Convert each 4 bit into the decimal equivalent, then

look up the hexadecimal for the decimal equivalent

in the lookup table: NOTE: Treat each four binary
bits as a separate binary number.

 Convert 1 0 0 1 │ 1 1 1 0
 Dec 9 │ 14
 Hex 9 │ E
 Answer 10011110 in Hex is 9E

In this way 8-bit binary numbers can be converted into 2 hexadecimal

digits.

APPENDIX Additional Resources

267© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4

Index

A, B
Acquisition time

8-Mhz oscillator, 129
20-Mhz oscillator, 129, 130

ADC input channels
algorithm, 132, 133
instructions analysis, 134
setup, 131
simulation circuit, 134
variable voltage, 132

ADCON0 control
register, 120–122

ADCON1 register, 122, 123
ADCON2 control register

ADC conversion, 125
ADC operation

timing, 127
capacitor, 126
conversion result, 124
justification, 125
Microchip, 126
TAD periods, 127, 128

Analogue inputs, 119, 120
Analogue to Digital Converter

(ADC), 33–36
Assembler language, 5

C
Casting, 226, 233
Comments, 24, 27, 52
Complex instruction set chip

(CISC), 2
‘C’ programming language, 5, 23

D
Data mode, LCD controller

analogue inputs, 140
ASCII character set, 138, 139
connection, 141
RS pin, 141
VEE pin, 141

Debug tools
drop-down menu bar, 244
editing area, 243
fly-out menu, 244, 245, 247
function/subroutine, 248, 249
menu bar, 242
MPLABX simulator PIC, 242
new watch window, 246
program reset, 248
tick/un-tick information, 247
variables window, 245, 246

https://doi.org/10.1007/978-1-4842-5525-4

268

E
ECAD package, 52, 59
8-Bit register, 10

F
Flowchart, 11
For Do Loop, 82–85

G
Global header file, 218, 219
Global variables, 87–90
Goto instruction, 69

H
Header files

configuration instructions,
219–221

creation
editing window, 215
instructions to copy, 216
new empty file window, 215
project tree visible, 214
selection of instructions, 217

description, 213
global, 218, 219
include command, 217, 218

I, J, K
IF This Then Do That Else Do, 65
Integrated development

environment (IDE), 7, 8
Internal oscillator block, 101

L
LED start stop program

instructions, 43–49
Liquid crystal display (LCD)

4bit, 146–158
8-bit mode, 165–174
controller, 137

data mode (see Data mode,
LCD controller)

instruction/command
mode, 137

initialization, 142
instruction set, 143, 145
MPLABX links, 158
process outline, 145
sending data, 142
special character (see Special

characters, LCD controller)
Subroutine lcdOut (), 159
Subroutine sendInfo (), 159–161

Local variables, 87

M
Machine code, 3, 4
MCC Microchip

Code Configurator, 8
Microchip, 1, 5, 12
Microchip embedded, 14
Microprocessor-based system, 1, 3
Microprocessor system, 2
MPLABX, 12

IDE, 12, 13
project creation

INDEX

269

comments font, changing, 22
compiler window selection, 17
completed project, 19
device window, selection, 15
editing window, 21
naming, project, 18
new empty file window, 20
opening screen, 13
tool window, selection, 16

MPLABX, instruction
∗listpointer =2, 236
∗listpointer = 5, 236
∗listpointer = n, 240
a = a & 0xF0, 237
else m = 3, 239
else m = 9, 238
else t = 2, 239
if (n & 0b00000001)t = 4, 239
if (n & 0b00001000)m = 5, 239
if (t && 7 == t)m = 5, 238
initial value, load, 231
listpointer ++, 236, 240
listpointer = list, 236, 237
for (a = 0, a < 5, a++;), 239, 240
n = 0b00001000, 238
n = 10, 239
n = n +2, 240, 241
number1++, 232
number1 = number1 + 2, 232
number2 =

0b1111111111110000, 232
number2 = number1-2, 232
sample program, 224–226,

228, 230

unsigned char ∗listpointer, 231
while (1), 241
y = ~y, 233
y=(a==0) ? a :-1, 235
y=(a>0) ? a :-1, 235
y=(a>0) ? z :-1, 235
z = ++y, 233
z = (unsigned char) u, 233
z = y++, 233
z = y>>1, 234, 235
z = y<<1, 234

MPLABX software, 53
mySecond18fProg.c, 68

N
Nested subroutines, 160

O
One-second delay, 74–78
OPCODE, 5
OPERAND, 5
OSCCON0 register, 38, 39
OSCCON register, 37, 39
Oscillator block, 26, 36–39
OSCillator CONtrol register, 36
Oscillator frequency, 37–39

P, Q
PIC configuration, 23–29
PIC programming, LCD, 162

array, 162, 163
pointer, 163, 164

INDEX

270

PORTS, 9, 30
PIC, 9, 10
setting, 31, 32

Programmable industrial
controllers (PICs), 1, 2

Programmable interface controller, 1
Programming languages, 3, 5, 6
Program testing

active windows, 56
add row button, 55
compiling and running, 56–58
completed stimulus window, 55
editing screen, 54
Input Output PIN Selection

Window, 56
PIN RA0, selection, 54
practical, 59–62
Proteus schematic,

myFirst18fProg, 59
stimulus window option, 53

PROTEUS schematics, 59
Prototype board

algorithm, 110, 111
crossroads set, traffic lights, 109,

110, 113, 115
debugging tools, 108
flowchart, crossroads set, 111, 112
hardware tool, 106
instructions, 117, 118
Matrix Multimedia, 107
Microchip web site, 106
RJ11 cable, 108
simulator, 116, 117
window properties, 107

R
Real-world signals, 119

S
Source Fly-Out Menu, 68
Special characters, LCD controller

character map, 210
DDRAM, 209
8-bit binary code, 191
Empty 5-by-8 grid, 190
pixel map, 191, 192
program, 192–209
simulation, 210

The Stack, 160
Standalone project, 14
Subroutine lcdOut (), 159
Subroutines

defining and calling, 79
delay, 80
first program with

two delays, 81, 82
Subroutine sendInfo (), 159

ASCII character table, 161
nested subroutines, 160
open source, 161

T, U
T0CON register, 71–75
Trace table, 224
Traffic lights

algorithm, 94
configuration words, 100, 101
controlling, 93, 94

INDEX

271

flowchart, 95, 96
program instruction, 101–106
Proteus simulation, 100
single set program, 96, 98, 99

TRIS, 30
TRISA, 31, 32
TRISB, 32
Type Char, 85
Type int, 86
Type Unsigned char, 86, 103, 163

V
Variable delay, 82–85
Variable delay subroutine, 87, 88, 90

Volt meter program, 175
algorithm, 175–185
displayVoltage

subroutine, 187, 188
gohome subroutine, 185
initialiseThePic, 188
Proteus simulation, 189
sysVoltage

subroutine, 186, 187

W, X, Y, Z
while command, 40
While vs. If Then, 69

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction
	Programmable Industrial Controllers
	Programming Languages
	Machine Code
	Assembler Language
	C Programming Language
	Different Programming Languages
	The IDE

	Summary

	Chapter 2: Our First Program
	The PORTS of the PIC
	Good Programming Practice
	The Algorithm
	The Flowchart
	The Program Listing

	Using MPLABX IDE
	Creating the Project in MPLABX
	The First Program Turning On and Off an Output
	The Main Aspects of a ‘C’ Program
	The Comments and PIC Configuration
	The TRISA and TRISB
	A TRIS Example
	Exercise 2-1

	Setting the PORTS
	The ADC (Analogue to Digital Converter)
	Setting Up the Oscillator
	Exercise 2-2

	Waiting for an Input
	Waiting to Turn the LED Off
	Exercise 2-3

	Comments
	Testing the Program
	Compiling and Running the Program

	Testing the Program Practically
	Summary
	Exercise Answers

	Chapter 3: Updating the Program
	If This Then Do That
	Saving the Old Program
	Labels and the Goto Instruction
	Exercise 3-1

	While vs. If Then
	Slowing the Micro Down
	T0CON Register
	Adding a One-Second Delay
	Exercise 3-2

	Delaying the Turn Off
	Using Subroutines
	Defining and Calling a Subroutine
	The delay Subroutine
	Calling the Subroutine from Within the Main Program

	The Variable Delay and the For Do Loop
	Local and Global Variables and Data Types
	Type Char
	Type Unsigned char
	Type int
	Local Variables
	Global Variables
	Exercise 3-3

	Summary
	Exercise Answers

	Chapter 4: Applying What We’ve Learned
	Controlling a Single Set of Traffic Lights
	The Algorithm
	The Configuration Words

	The Analysis of the Program
	Downloading the Program to a Prototype Board
	Extending the Program to the Crossroads Traffic Lights
	The Algorithm
	The Program Analysis

	Summary

	Chapter 5: Real-World Inputs
	Using Analogue Inputs
	The ADCON0 Control Register

	The ADCON1 Register
	The ADCON2 Register
	Creating the Required Acquisition Time
	Example 1
	Example 2

	Changing the ADC Input Channels
	A Basic Setup for the ADC
	A Basic Program for the ADC
	The Algorithm
	Analysis of the Program

	Summary

	Chapter 6: Using the LCD
	The LCD Controller
	Instruction or Command Mode
	Data Mode

	Initializing the LCD
	The Subroutine lcdOut ()
	The Subroutine sendInfo ()

	The New Aspects to PIC Programming in This LCD Program
	Arrays
	Using Pointers

	Connecting the LCD in 8-Bit Mode
	The Volt Meter Program
	The Algorithm
	The New Aspects of the Program
	The gohome Subroutine
	The sysVoltage Subroutine
	The displayVoltage Subroutine
	Changing the Main Part of the Program

	Creating Special Characters on the LCD
	Summary

	Chapter 7: Creating a Header File
	Header Files
	Creating a Header File
	Including the Header File into Your Program
	The Global Header File
	Creating a Header File for Your Configuration Instructions
	Summary

	Chapter 8: Understanding Some Useful Code
	The Trace Table
	The Process
	Lines 1–6
	Line 7 unsigned char ∗listpointer;
	Line 10 number1++;
	Line 11 number1 = number1 + 2;
	Line 12 number2 = number1 - 2;
	Line 13 number2 = 0b1111111111110000;
	Line 17 z = ++y;
	Line 18 z = y++;
	Line 19 z = (unsigned char) u;
	Line 21 y = ~y;
	Line 23 z = y<<1;
	Line 24 z = y>>1;
	Line 26 y=(a>0) ? a : -1;
	Line 27 y=(a==0) ? a : -1;
	Line 28 y=(a>0) ? z: -1;
	Line 29 listpointer = list;
	Line 30 ∗listpointer =2;
	Line 31 listpointer ++;
	Line 32 ∗listpointer = 5;
	Line 33 listpointer = list;
	Line 34 a = a & 0xF0;
	Line 37 if (t && 7 == t)m = 5;
	Line 38 else m = 9;
	Line 39 n = 0b00001000;
	Line 40 if (n & 0b00001000)m = 5;
	Line 41 else m = 3;
	Line 42 if (n & 0b00000001)t = 4;
	Line 43 else t = 2;
	Line 44 n = 10;
	Line 45 for (a = 0, a < 5, a++;)
	Line 47 ∗listpointer = n;
	Line 48 listpointer ++;
	Line 49 n = n +2;
	Line 51 while (1);

	Debugging the Program
	Compiling the Completed Program

	Summary

	Appendix: Additional Resources

	Useful Definitions
	Mathematical and Logic Operators
	Keywords
	Data Types
	Functions
	Loops
	Numbering Systems Within Microprocessor-Based Systems
	Binary Numbers
	Converting Decimal to Binary
	Adding and Subtracting Binary Numbers
	Subtracting Binary Numbers
	The Hexadecimal Number System

	Index

