Pro Processing

for Images and
Computer Vision
with Open(CV

Solutions for Media Artists and
Creative Coders

Teaching your computer to see

Bryan WC Chung

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Pro Processing for
Images and Computer
Vision with OpenCV

Bryan WC Chung

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

Pro Processing for Images and Computer Vision with OpenCV

Bryan WC Chung
Academy of Visual Arts, Kowloon Tong, Hong Kong

ISBN-13 (pbk): 978-1-4842-2774-9 ISBN-13 (electronic): 978-1-4842-2775-6
DOI10.1007/978-1-4842-2775-6

Library of Congress Control Number: 2017951872
Copyright © 2017 by Bryan WC Chung

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www. freepik.com).

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Kathleen Sullivan
Coordinating Editor: Jill Balzano

Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227749. For more
detailed information, please visit waw.apress.com/source-code.

Printed on acid-free paper

[vww allitebooks.cond

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/
rights-permissions
www.apress.com/
rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484227749
www.apress.com/source-code
http://www.allitebooks.org

Contents at a Glance

About the AULNOFcceiiiiieemmmmisssnnmssssn s annn e s annn e e nnnn s Xi
About the Technical REVIEWETcxussesssssanssssanssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss xiii
AcknOWIedgmENtScuurrrmmssssmnnnmmmmmssssssssssnsssssssssssssssssnnsssssssssssssnnnnnssssssssssnnnnnnnnnnss XV
Chapter 1: Getting Started with Processing and OpenCVcccennssennnrnssssssnnnsns 1
Chapter 2: Image Sources and Representationsccccusemmmnsssnnnnnssssssnnsssssnnn 39
Chapter 3: Pixel-Based Manipulationsccccccmmmmrsmsssssssssssnnnssssssssssssssssssssssssnns 71
Chapter 4: Geometry and Transformation.........ccccusseemmnssssnnnnnssssssnsnssssssnesssssnnns 101
Chapter 5: Identification of Structure.........c.ccccinnimmnnn—————— 133
Chapter 6: Understanding Motion..........cccuunneemmmmmmmmmmmsssssssssmmsmssssssssssssssssessnnns 177
Chapter 7: Feature Detection and Matching........c..ccccinnnnnmmnmnssssnnnnssssssnnssssssnnns 219
Chapter 8: Application Deployment and Conclusion.........ccccurersssssssssssnsssssssssnns 263
INAEX.eeiiiiisnnnnnrssssnnnnnssssnnnnnssssnnnnnssssnnnnessssnnnnessssnnnnesssnnnneessssnnnesssssnnnnssssnnnnessssnnnnnssss 289
iii

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AULNOFcceiiiiieemmmmisssnnmssssn s annn e s annn e e nnnn s Xi
About the Technical REVIEWETcxussesssssanssssanssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss xiii
AcknOWIedgmENtSuuerrrmmsssssmmmnnmmmmmsssssssnssnssssssssssssssssnnssssssssssssnnnnnnssssssssssnnnnnnnnnnss XV
Chapter 1: Getting Started with Processing and OpenCVcccevnsseennrnsssssssnnsns 1
PrOCESSING....ccceitririririr st e e n e e n e n e n e nn e n e n e nn s 1
0= 1 2
Processing INStallationc.ceceercrsensnsn s 3
INSTAI PrOCESSINGcveevieiriciresiresnse e e sr e s s r e se e e b e e p e e nenrsae b s e na e e nnenrnnis 3

RUN PrOCESSING......ccuieeiierieerresise s ses e se e s e s se e s s s s b et ae e ae e s Re e et e R e e e ne e s ae e e e nee e nnenrnnin 5
O0penCV INSEAALIONcc.coueeeeecceeer e r e n e sr e r s 7
11 (0L 0 OO RSR 9
WINUOWS ...ttt s b e e b e R A A e e e e A e e R e e e Re A e e e e e b e e ne e nais 17

LINUX ¢ttt e a e s e s e e A e e e e e A e Re A e Re R e e Re R e Re e e ReeAe e Re e e Re e eReneeaeas 28

253 08 1 34
HEIIO WOTIH «..vovovveveeeeseesseessseesssseesssesssssssssessssnsssssnssssesssssessssesssssessssnssssessssenssssessssssssssessssmsssssessssnssans 34
LD = 1 1 o 36

00 o (1 0 o PRSP SRR 37
Chapter 2: Image Sources and Representationsccccusemmmnsssnnnnnssssnnnnsssssnnns 39
Digital Image Fundamentals............cccverirircrcsss s e 39
IMAQES IN PrOCESSING ...cveeveeerrereeirerserse e ssessessesae e ssessesaesnesaesaessssnesnesnesnesassrssnennnsnesnas 40
IMport an EXIErnal IMAQEoveceeeeeeeee et 40
Create an Image iN PrOCESSING......coeoeecrererecrirrseese s sennn s 43

\%

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

GraphiCS ANG IMAQGEScevurerrererrerererererassersesessessssesassessssessesssssssssessssessssessesesssssssessssessssessesesssssssssansens 44
Bufferedimage in PrOCESSINGcccvvireririnirine s ssessesae e ssesasssssssssessssassassassassssssssssssssssssssnns 47
Moving Images in ProCESSINGc.ccucerrerreriessessessessesssssesses s ssssessessesssssssssssssssssssssssssnees 48
DIgItal MOVIESc.eeieccerireecere et s e e s et e e et nesp e e e e nnn s 49
LiVe VIR0 CAPIUIESeeeeerciecrirer ettt st sa e st e s st st e s e e s ne st ne e nae s 51
Matrices and Images in OPENCVcocovceiernnerenrnersse e s ns 53
Image Conversion Between Processing and OpenCV..........cccoeervvennennsesesensessesenens 58
From Processing 10 OPENCVccveverrererrererererersesesesassessesessesessessssessssessesessssssssssssessssessssesssssssssansens 60
From OPENCV 0 PrOCESSINGceevereererereriersesersesersesesessssessesessssessessssessssessessssssssssssssessssessesesssssssssansens 62
(0] 1 [0 [T 0] 3 OSSR 70
Chapter 3: Pixel-Based Manipulationscccccmmmmmsssnnmmssssssssmmssssssssssssssssssssssnnns 1
ViSUAI PrOPEITIEScocevererersirirsis s sn s sn s sn e sn e sn e sn s nnnnnnnn 4l
0L 10 o OSSP 72
3] 7 TP 72
RS 1 o OO SR 73
02T = (o] OO 73
0] 1] OO 73
VIUE ...ttt e e s R e e R e Re e R R e AR R R R e AR e e A e Re e e e Re e e rnnans 74
Pixel Color Manipulation..........c.cecevvernenieniensen s sn s sa e s 74
Color Change With PiXel POSITIONcccceirriererrirnesesssssssesesss s sssesssessssssssesssssssssssssssssssssssseaes 75
Color Change With PiXel DISTANCE............cevrerererrrrnsesesrssssesesesssssssessssesesessssssssesssssssssssssssssssssssssssssssssenes 79
Color Change with Trigonometric FUNCHONS...........ccccviiencnersccscressees e sessssenes 82
RANAOMNESS.......ccoceiererersrnersesse s e e e n e nnn e nn s nn e nnnnnnnnnnnnnnas 86
Drawing with EXiSting IMages.........ccucvvrrriersrsis s sn e e e s 90
Blending MUltiple IMAgES.......ccocrververrrieriirserser e sn s s sassne e nnas 97
00 T (1[0 o SRRSO 100

Chapter 4: Geometry and Transformation.........ccceeinnnmsmssssssnnnnnssmmsssssssssssssssnnns 101
Image TranSformMationccceeeeerererere s sa e nn e snnsnennennns 101
IMmage Orientation.........cocoeeeeecececere e e nenn 104

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

IMAJE RESIZING....ceeeeeeerererr e n e s nn s 108
AfiNe TranSTOrM.......coicceecrerr e e nn s 110
Perspective TranSfOrm..........coeeeeeeeie e sr e sn e e sr e sresnesn s snssnennenns 115
Linear vs. Polar COOrdiNates..........cceerereererssersessessessessessnsnns 118
Three-Dimensional SPACEccvvevverrerrerrerserser s sa e sa s sa s sa e sa e saesne s 120
General Pixel MapPINgccooceeeeeererersessessessessessessesssssesssssssssssssssssssssssssssssssssssssssnsans 130
CONCIUSION......cveeeereerrerreree e rre e sesse s s sae s e s e aesaesae s e sae s e saenaennesaesaesaesaenasnnennennnnnnns 132
Chapter 5: Identification of Structure.........ccccmmmriiirninnn s ————————— 133
IMage Preparation..........ccocoieenseeensssesnsssessssesss e sss s sss s s ssssessesssssssssssssssnsens 133
CONVErSION 0 GIrAYSCAIEcovrveeecererreeeresrse e e e e e e ss e sss s e s sse s e s sse s e nansnnnannnes 133
Conversion to a Black-and-White IMageccccovrrerrirnercrirreeser s 135
Morphological OPErations...........ccoceererueerererrssesesesrsese e ss e s s sssse e e e snsnnnnes 137
BIUF OPEIALIONS.....ccveeccereeeecrerisseee e a s se e e s et sese e e s s ae e e s s ne s e e nnennnnnes 140

0 [0 TN DT (=T o] | OSSR 144
Ling DEteCLIONcceeeeeeeeeeeceecre e e e sae e saesr e nesr e sn e sn e sn e sn e nenn e nnennennnnans 146
Circle DEtECHIONcceeeeceeceereree e sa e sa e sr e sr e sn e sn e sa e snesa e snesnennenens 152
CONTOUIS PrOCESSING ...vevvereereereersersersessessesssssesssssssssssssasssnns 155
FINAING the CONTOUScovverercreecrerere st reserae e res s saese s e e s ss s e sae e sae e saesasaesas e sae e sae e sasnanaesansesasnenes 156
BOUNUING BOXocueuencccecseesesesesesesesesesese e se e e s e e e s s e s s s s s s s s se s s ss s s s s s s s s s sessssnsnas 161
Minimum Area RECLANGIEcceveeereerererererererreserse s raesessesessessesessesessesessesassesassessssessssessssassesassesseneres 162

0] 11 G 164
POIYgON APPrOXiMALON.........coceceeeerecresesese e 165
Testing @ POINE iN CONTOU........covcererercrererere st s s s e sae e sae e ae e sas e sae e saesasae e s e san e saenenans 167
CHECKINgG INTEISECLION........cecereeereeereerere st reres e rse e rae s rae e s e sa s e s s e e sae e sae e sae e saesa s e sae e sae e sae e naeransenanneres 169
Shape DEteCLiONccececercercee e n e n s 172
(0] 1 [0 [T 0] OSSR 175
vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 6: Understanding Motion...........cccccunsemmmnnssnnnmnnssssnmmsssssnmsssssssssssnnns 177
Effects with Moving IMAJES.......c.ccececrrrrerserr s sn s snenne e 177
MOSAIC EffECT......coeieeeeee e 178
Slit-SCaN EffECL.....cviiriiiriiii i ————— 179
SCIOING EFfECT ...cvieeereeeeee e r e r e e ne e nrnne s 180
ViSUNIZAION iN 3D ... e e 183
Frame DifferNCiNg.......ccceeeeerereiere e sse e e ssesse s s e snssnesnssaesnesnssnssnesnenans 186
Background REMOVaL ...t 191
OPLICAL FIOW......ceeereeecererer et e s e 196
MOTION HISTOMYcviceeireen e s 205
003 T 11T 218
Chapter 7: Feature Detection and Matching...........ccccinnnnemmmnnnsnnnmnnssssnnnsssssnnns 219
(00 0 LT g DT (T (o] 219
Sparse OPtiCal FIOW ..ot n s sn s sn s 222
Identify the Feature POINTS..........ccoe i 222
IMPrOVE The ACCUFACYcouieeeicrrecrresise e se e et r e s e b b n e e re e ne e sn e r e e 224
Calculate the OPLiCAl FIOWcoeieriieienene s sae s s saesaesa s e sa s saesa e ss s sa e sa s sn e sn e e s 226
Visualize the FIOW INFOrmMation ... s 229
Feature DeteClion ... s 235
Feature MatChingccccevererererere s sa e e s sa e sa e sa s sa e sa e sa s sa s sa e snenns 240
FACe DELECHON ... 255
People DEteCtionccceeeeeierecer e e sr e sr e sn e a e nn e n e nn e nnenn 260
003 T 1o 261
Chapter 8: Application Deployment and Conclusion.........cccceurremssssssssssnnsssssssssns 263
Developing Libraries in ProCESSINGccvvrverrersersersessessessessessesssssessssssssasssssssssssssssssenns 263
Install the ECliPSE SOTEWANEcocoeeeeecccrecee e 264
Prepare the OpenCV and Processing LIDrariescceovvevrcerrrcreseresresereressesss s sessesessesessesassenes 265
Build the CVIMAQGE LIDIArYcoeeeeeeererercrer e rereeseveesersesesseses e saesessesessesassesassessssessssessssassesassesssnenes 267
viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Exporting Applications from ProCesSing........cccceeeererereesesessessesss s sessssssssesssssssssssenns 278
Using System Commands in ProCeSSING.......cccuvererrrrresrsnssssssssssssssssesssssssssssssssssassenns 280
Optimizing Tracking with the Kalman Filter..........ccooeeecececccee e 284
Other OpenCV MOTUIES..........coeeerrerererrerse e sse e ssesaessesaessessessessssassassassaesassaesnssssnsnns 287
00] o [T [0 o SR STS TS 287
INA@X iiiiiissnnnnnnnnnnnnssssssssnnnnnnnnmessssssssnnnnnnnnnsssssssssnnnnnnnnesssssssssnnnnnnnnssssssssnnnnnnnnnnsssssnnn 289
ix

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Bryan WC Chung is an interactive media artist and design consultant.
He was the grand prize winner of the 19" Japan Media Arts Festival,

Art Division, 2015. In 2009, his consultation work on the Coca-Cola
Happy Whistling Machine won the Media Kam Fan Advertising Award.
Bryan’s works have been exhibited at the World Wide Video Festival,
Multimedia Art Asia Pacific, Stuttgart Film Winter Festival, Microwave
International New Media Arts Festival, and China Media Art Festival. In
the Shanghai Expo 2010, he provided interactive design consultancy to
industry leaders in Hong Kong. Bryan also develops software libraries for
the open source programming language Processing. He is the author of
the book Multimedia Programming with Pure Data. Currently, he is an
associate professor in the Academy of Visual Arts at Hong Kong Baptist
University, where he teaches classes on interactive art, computer graphics,
and multimedia. His personal website can be found at http://www.
magicandlove.com.

xi

[vww allitebooks.cond

http://www.magicandlove.com
http://www.magicandlove.com
http://www.allitebooks.org

About the Technical Reviewer

Kat Sullivan lives somewhere in the intersection between movement

and technology. After double majoring in computer science and dance at
Skidmore College, she worked for several years as a software engineer and
freelanced as a dancer. Not wanting to compartmentalize her life, she went
to the Interactive Telecommunications Program (ITP) and began creating
work involving creative coding, live performance, machine learning, and
more. Upon completing her master’s degree at ITP, she was invited to stay
an additional year as a research resident. Her work has been presented

at Lincoln Center, National Sawdust, Pioneer Works, Flux Factory, South
by Southwest, and the Liberty Science Center. She is currently teaching a
motion capture course at NYU.

xiii

Acknowledgments

I'would like to express my gratitude to my wife, Kimburley, for her support and patience throughout the
writing and creative process.
Thanks to my father for introducing me to the world of arts and craft at an early age.
Thanks to my late brother, Percy, for sharing his inspiration in illustration and graphic design.
Thanks to my mother and sister for their continuous support and caring.
Thanks to my boss, Professor John Aiken, for providing me with a beautiful place to work.

XV

CHAPTER 1

Getting Started with Processing
and OpenCV

The chapter introduces you to Processing and OpenCV and how to install them. By the end of the chapter,
you will have a general understanding about the types of applications you can build by following the
examples in this book. You will also be able to write a “Hello World” program to display version information
for OpenCV within the Processing programming environment.

Processing

Ben Fry and Casey Reas from the former Aesthetic + Computation Group of the MIT Media Lab initiated
the Processing project (http://processing.org) in 2001 to create a programming environment for artists
and designers to learn the fundamentals of computer programming within the context of electronic arts.
Based on the Java programming language, Processing is modeled as an electronic sketchbook for artists and
designers to generate their creative ideas. Processing comes with an integrated development environment
(IDE). Users can directly code in the environment and execute the code to see the visual results in real time.
Processing is equipped with a comprehensive set of frameworks and libraries to provide simple access to
functions for creating 2D and 3D graphics and building animation. Java was chosen as the programming
language to cater to cross-platform compatibility. At the moment, it supports macOS, Windows, and the
major Linux operating systems. Recently, Processing has evolved to include other programming languages
such as JavaScript and Python.

Besides the core functions of the Processing language and the vast number of native Java libraries,
Processing supports user-contributed libraries (https://processing.org/reference/libraries/) from the
community. A lot of the libraries were built to hide the technical details of implementing complex software
such as physics engines and machine-learning algorithms or to support additional hardware devices such
as the Kinect camera. For example, I have developed a wrapper library called Kinect4WinSDK to support the
Kinect version 1 camera with the official Kinect for Windows software development kit (SDK).

In the area of computer graphics, Processing is capable of producing both vector graphics and raster
graphics. In creative applications, algorithmic art and generative art (Figure 1-1) will often make use of
vector graphics. In this book, the focus is on image processing and computer vision. In this case, raster
graphics will be the primary approach to generate images.

© Bryan WC Chung 2017 1
B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_1

http://processing.org/
https://processing.org/reference/libraries/

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

Figure 1-1. Algorithmic art example

OpenCV

Open Source Computer Vision Library (OpenCV, http://opencv.org/) started as an Intel research initiative
around 1999. Now, it is the most popular open source software library for computer vision and machine
learning. In the beginning, it was a set of C library functions for image processing and computer vision.
Now, it has C++, Python, Java, and MATLAB bindings and works on macOS, Windows, Linux, Android,

and i0S, with acceleration support from CUDA and OpenCL. The OpenCV library comes with a collection
of modules. Each of the modules handles a specific group of applications under the umbrella of image
processing, computer vision, and machine learning. The following are the common modules:

e core: Core OpenCV data structures and functionalities

e imgproc:Image processing

e imgcodecs: Image file reading and writing

e videoio: Media input/output routines

e highgui: High-level graphical user interface

e video: Video analysis

e calib3d: Camera calibration and 3D reconstruction

e features2d: Working with 2D features description and matching
e objdetect: Object detection such as faces

e ml: Machine learning

e flann: Clustering and searching in higher-dimensional spaces
e photo: Computational photography

e stitching: Stitching images together

e shape: Shape matching

e superres: Super-resolution enhancement

e videostab: Video stabilization

e viz: 3D visualization

http://opencv.org/

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

OpenCV includes several extra modules that provide additional functionalities, such as text recognition,
surface matching, and 3D depth processing. This book also covers the module optflow, which performs
optical flow analysis.

Processing Installation

This section explains the procedures to download and install the Processing programming environment.
At the time of writing, the latest version of Processing is 3.2.3. It is advised that you use version 3, rather
than previous versions, of Processing for compatibility reasons. Each distribution of Processing also
includes with the Java runtime code. The installation processes for the three platforms are straightforward
and similar.

Install Processing

Download the Processing code from https://processing.org/download/. In this book, I will use the
64-bit versions. If you want to take a look at the Processing source code, you can download it from the
GitHub distribution (https://github.com/processing/processing). The following are the three files for
the macOS, Windows, and Linux platforms:

e processing-3.2.3-macosx.zip
e processing-3.2.3-windows64.zip
e processing-3.2.3-linux64.tgz

Processing does not assume any particular location to install the software. For macOS, you can
download and expand the file into a macOS program named Processing. Copy the program to the
Applications folder similar to other applications you install for macOS. For Windows and Linux, the
compressed file will be expanded into a folder named processing-3.2.3. You can download and expand
the compressed file into any folder you want to maintain the Processing software. In this book, we expand
the folder processing-3.2.3 into the user’s Documents folder. Figure 1-2 shows the contents of the folder. To
run Processing, simply double-click the Processing icon.

Orgiaze » Inchude selected folderin by = Sharewith » Bum New falcer

o . @
Favorises
I Oesinzp I [|
I Downioads | | |]
s Recent places o [i o o | -
e

Timeling Exalaoner
e jma lunchdj I mosts todks procemsing.oa | processing e

core
& Onelsie
S
Documents ===

Fictres

% Homegroma r—
P Eoyan Cung fevigiontba
& Tris P
Iy Desstop
Decuments
Is Dowmicads
by Mhusic
k Pictaes
B Vicext
L BOOTCAME ()
& Macintosh HD ()
« Badap (]
= Fooh 159

Ay Nemuor

Gieems i [=)

Figure 1-2. Processing folder for Windows

https://processing.org/download/
https://github.com/processing/processing

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Figure 1-3 shows the default screen layout of the Processing IDE. The code in the window will be the
first Processing program you are going to test.

void setup() {
size(800, 600);

}

void draw() {
background(100, 100, 100);

}

@ Processing File Edit Sketch Debug Tools Help
® @

Chapter0l_01

void setup() {
size(868, 600);

}

void draw() {
background (160, 100, 100) ;|
}

Figure 1-3. Processing IDE screen

After you have started Processing, it will automatically create a folder in your personal Documents
folder in which it maintains all the Processing programs. For macOS, its name is /Users/bryan/Documents/
Processing. In Windows, the folder name is C: \Users\chung_000\Documents\Processing. In Linux, itis
/home/bryan/sketchbook. (In the example, the username is bryan or chung_000.) Figure 1-4 shows an
example view of the folder contents.

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

® Finder File Edit View Go Window Help - = wxBd [Tue20:81 Bryan Q =
L X N] | Processing
< E oooton v v
Favorites
@ AirDrop
El Al My Files
& iCloud Drive
¥ Applications
[Desktop
@ Documents.
© Downloads Chapter01.1 examples libraries modes
{31 bryan
Tage
@ Red
Orange
Yellow
@ Green
© Blue
@ Purplo
O Gray

templates tools

Al Tags...

AN 9l aBBRO =R TRO@AE T«

Figure 1-4. Processing sketchbook folder contents

Each Processing program is maintained in its own folder within the Processing folder. In addition to
each program, the folder contains other subfolders, such as the libraries folder for downloading external
libraries from the Processing distribution and the modes folder for implementing other languages in
Processing such as Python and JavaScript.

Run Processing

In the top-left corner of the Processing IDE, there are two buttons, Play and Stop. Clicking the Play button
will start the compilation and execution of the program. Figure 1-5 shows the blank screen created with your
first program. Clicking the Stop button at this moment will stop the execution and close the window.

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

% & Chapter01_01

Chapterol_01
 void setup() {
size(8e0, 600);
}

void draw() E
background (100, 100, 100);
d }

Figure 1-5. First Processing program

You need to install an additional library for the exercises in this book. It is the video library that is
built on top of the open source multimedia framework GStreamer (https://gstreamer.freedesktop.org/).
Processing will use it for playing back digital videos such as MP4 files and capturing live video with a
webcam. To install the library (Figure 1-6), choose Sketch » Import Library » Add Library from the main
menu. From the Contribution Manager window, choose the Video library and click the Install button.
The library will then be downloaded to the libraries subfolder of your Processing folder.

% _ Processing File - F ol B Tw2048 Byen O =

[XX Comtribution Marager

 void setup() {
fl size(ees, ee8);
q)

tactu$ | Tactus aids in "

void draw() { Tembeo | Gentrate code to connect to 100+ AP, code ut...
background (186, 18 " " & &

‘B

TimedEvents | A couple of classes for firing o timed eve... Jason Gevsner
tslib | ttslib makes your sketches speak with the help of f. Hikolaus Gradwoh|

UDP | Enables simgle UDP comnunication, as well as mu... Stephans Comsol

Video | &8tremner-based video library for Pracessing. P The Pracessing Foundation
Video Expart | Smple videa fle exporter. Abe Pars

WSyne for g |

Webtockets | Create webiocke! serners and clignts, which_ Lasse Steenbock Vestergand

ExingFer for dec
(T3] wideo 102
L” | The Processing Foundation

Oatrearser-based video libeary for Processing.

TNE o0 aEEBOENL | GROEA =

Figure 1-6. Installing the video library

https://gstreamer.freedesktop.org/

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

In Chapter 2, you will use this library for loading external digital video and capturing live video streams
from webcams. After you have installed the Processing programming environment, you can proceed to
install OpenCV on your system.

OpenCV Installation

The installation for OpenCV is a bit complicated because you are going to build the OpenCV library from
source. The library you are going to build is different from the existing OpenCV for Processing library written
by Greg Borenstein (https://github.com/atduskgreg/opencv-processing). It is better for you to remove
the existing OpenCV for Processing library before proceeding with this installation process. The OpenCV
distribution includes all the core functions. To use other functions for motion analysis, you also need to
build the extra modules that are maintained in the contributed libraries. You are going to download both of
them from the GitHub repositories. The original OpenCV source is at https://github.com/opencv/opency,
and the source for the extra modules is at https://github.com/opencv/opencv_contrib. Note that the
master branch in the OpenCV repository contains only version 2.4. To use version 3.1, which you want to do
for this book, you need to select the 3.1.0 tag, as shown in Figure 1-7. After choosing the right version tag, you
can download the OpenCV source by clicking the “Clone or download” button and then the Download ZIP
button, as shown in Figure 1-8.

@ Chrome Fle Edit View Hisiory Bookmarks People Window Help B - F ool B TwiZis Bren O =
B8 8 /() opneropency: opansource x =]

L © | & GiHub, Inc. [US] hips:ghthub.com/open i

O Tris repository Pull rquests lssues Gist a +-
opency | opency @waich= 1308 dStr 1983 Yrork 0686
43 Code 1lssues 988 Pull reguests 58 Projects o Wiki Pulse Graghs

Open Source Computer Vision Library http:/jopencv.ong

ir 20,101 commits ¥ 2 cranches 48 releoses 41 837 contrizwiors

Eranch:master= | Mew pull request Creats rew s Upload files Findfle |1

nzh Braschenitacs
e Emorph_filer Latest commt A28 21 hours g0

4 manths ago

A00-Exts

200-alha

0-eeird

date configuration for DS

httos:ljgithabs.comfooarcucpensvinee/ 1.0

MOO SN ENEBO = Ra T ERO®E IS TE

Figure 1-7. Selecting the tag 3.1.0

http://dx.doi.org/10.1007/978-1-4842-2775-6_2
https://github.com/atduskgreg/opencv-processing
https://github.com/opencv/opencv
https://github.com/opencv/opencv_contrib

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

M Chrome File Edit View Hisiory Bockmarks People Window Help BB - T ook B TwiZzis Byen O =
LR] 0 JS———— BN o
&= C | i Gakub, Ine. [US] hips:ighthub.comopencyjopency |
O Tris repository Pull rmquests Issues Gist A+ M-
opency [opency @Waich= 130¢ kSt 1043 YFork 0556

< Code 1issues 988 1"l Pull requests 58 Projects o Wiki Pulse |1 Graphs
Open Source Computer Vision Library hitp:jfopencv.ong

i 20,101 commits 2 pranches T 48 releases 11 837 contriowions

Eranch:master= Mew pull request Creats maw Il Uploadfiles Findrie [CERRERE R TR RS

«x, Blaliske Merge pull request #7585 from pengitmonph_fiter Clone with HTTPS @ Use 55H

Uie 61 or chackout with SYN Lsing the wes URL,
migration: github comjopencufopancy

hEtpa1//gitb. confapency fapence.git B
brush up divSaturate of carotere

i apps Merge pul request 47428 from alalek:cmake fix_comailer fll oo on i Bagkion i

i errake Merge pul request #7531 from dimendisscmake_updates diys ago

B data Remaving whitespace to appeass doc builder 3 manths ago
s dot updating pythan tutarials = providing necessary data 13 duys ago
i include Merge pul request 47370 fram souchBSFion amanth ago
| modules Merge pull request #7585 from penglomorph_filter

21 houts ago

27 days ago

Figure 1-8. Downloading the OpenCV source

After you download and extract the OpenCV source, the process will create the opencv-3.1.0 folder.
For the opencv_contrib source, follow the same procedure to select the 3.1.0 tag, download the zip file, and
extract it into your opencv-3.1.0 folder. Figure 1-9 shows the contents of the opencv-3.1.0 folder.

M Finder File Edit View Go Window Help B - T ook B Tw2zd2 Byen O =
(XX [epancy-210

< B=moo @ & a

Favarites
& airbrop
B A1 My Fies
< iCiowd Drive
7 Applications.
[E Deskton
(B Documants Agitconfig 3rdparty apps build cmake
9 Downloads
i bryan

Dwvices
Bl untitied

£ Poch = =

TXT . - -

Shared

) kim-pe ChakeLists.tat CONTRIBUTING.md data doe
Toge

@ Red

& Orange

Yalow

@ Grean

@ e b — - — - —

@ Purple
@ Gray

o AL Tags.

modules opency_contrit-3.1.0 platierms README.md samples

'BEBBEO:Rs - EROBETm

Figure 1-9. Contents of the opencv-3.1.0 folder

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

After you successfully download the OpenCV 3.1.0 source and the extra modules library, you can
create a subfolder named build inside the opencv-3.1.0 folder. All OpenCV libraries will be built into this
folder. Before you start the build process, there is one more step you have to take care of. To build the Java
library that includes the extra module optflow, which you will use for motion analysis, you have to edit
its CMakeLists.txt file. From the opencv_contrib-3.1.0 folder, go into the modules folder and then the
optflow folder. Use any text editor to modify the CMakeLists.txt file in the optflow folder. In the second
line, the original code is as follows:

ocv_define_module(optflow opencv_core opencv_imgproc opencv_video opencv_highgui
opencv_ximgproc WRAP python)

Insert the token java between the two keywords WRAP and python. The new line will be as follows:

ocv_define_module(optflow opencv_core opencv_imgproc opencv_video opencv_highgui
opencv_ximgproc WRAP java python)

The new file will enable the build process to include the optflow module into the Java library that
was built. The following sections describe the different build processes depending on the platform you
are using. Since you are going to build the OpenCV Java library, you should also download and install the
Java Development Kit (JDK) from the Oracle web site at waw.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html. To check whether you already have installed the JDK, you can
go to a Terminal or command-line session and type the following:

javac -version

macOS

You are going to use Homebrew to install the necessary dependent software. The installation process will

be executed from a command-line Terminal session. The Terminal tool is in the /Applications/Utilities
folder. The Homebrew installation instructions are on the official web site at http://brew.sh/. After you
have installed the Homebrew package manager, you can start to install the software required for the OpenCV
build process. In a Terminal session, enter the following:

brew install cmake
brew install ant

These two commands install the software cmake and ant. The cmake tool (http://cmake.org) is an open
source tool to build, test, and package software. The Apache ant tool (http://ant.apache.org) is a utility
to build Java applications. The next step is to start the configuration process with the ccmake interactive
tool. First, navigate to the build folder of the original OpenCV folder, opencv-3.1.0, and issue the ccmake
command, as shown in Figure 1-10.

ccmake ..

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://brew.sh/
http://cmake.org/
http://ant.apache.org/

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

apples-MacBook-Pro:build bryan$ java -version a
java version "1.8.0_112"

Java(TM) SE Runtime Environment (build 1.8.0_112-b16)

Java HotSpot(TM) 64-Bit Server VM (build 25.112-b16, mixed mode)
apples-MacBook-Pro:build bryan$ javac -version

javac 1.8.0_112

apples-MacBook-Pro:build bryan$ ant -version

Apache Ant(TM) version 1.1@.1 compiled on February 2 2017
apples-MacBook-Pro:build bryan$ ccmake ..J|

Figure 1-10. ccmake command, to configure the build process

In the ccmake panel, type c to configure the installation process. Select the appropriate options,
as shown in Figure 1-11. Please note that you should first turn off most of the options on the first page,
including the BUILD_SHARED_LIBS option. Next turn on the BUILD opencv_java option, as shown in
Figure 1-12 and Figure 1-13.

ANT_EXECUTABLE /usr/local/bin/ant
BUILD_CUDA_STUBS
BUILD_DOCS
BUILD_EXAMPLES
BUILD_JASPER
BUILD_JPEG
BUILD_OPENEXR
BUILD_PACKAGE
BUILD_PERF_TESTS
BUILD_PNG
BUILD_SHARED_LIBS
BUILD_TBB

BUILD_TESTS

BUILD_TIFF
BUILD_WITH_DEBUG_INFO
BUILD_WITH_DYNAMIC_IPP
BUILD_ZLIB

BUILD SHARED_LIBS: Build shared libraries (.d11l/.so) instead of static ones (.

Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-11. BUILD_SHARED_LIBS and other options

10

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Page 2 of 8 .

BUILD_opencv_apps fFF

CLAMDBLAS_INCLUDE_DIR CLAMDBLAS_INCLUDE_DIR-NOTFOUND
CLAMDBLAS_ROOT_DIR :CLAMDBLAS_ROOT_DIR-NOTFOUND
CLAMDFFT_INCLUDE_DIR SCLAMDFFT_INCLUDE_DIR-NOTFOUND
CLAMDFFT_ROOT_DIR CLAMDFFT_ROOT_DIR-NOTFOUND
CMAKE_BUILD_TYPE

CMAKE_CONFIGURATION_TYPES Debug;Release

CMAKE_INSTALL_PREFIX i/usr/local
CMAKE_OSX_ARCHITECTURES d
CMAKE_OSX_DEPLOYMENT_TARGET
CMAKE_O0SX_SYSROOT

CUDA_ARCH_BIN 2.0 2.1(2.0) 3.0 3.5

CUDA_ARCH_PTX 3.0

CUDA_FAST_MATH OFF

CUDA_GENERATION

CUDA_HOST_COMPILER }/Applications/Xcode.app/Contents/Developer/
CUDA_SEPARABLE_COMPILATION W0FF

pencv_apps: Build utility applications (used for examp
Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure
Press [h] for help Press [q] to quit without generating
Press [t] to toggle advanced mode (Currently Off)

Figure 1-12. Second page of the build options

Page 3 of 8 =

CUDA_TOOLKIT_ROOT_DIR Ellusr/local/cuda
DOWNLOAD_EXTERNAL_TEST_DATA OFF

EIGEN_INCLUDE_PATH t/usr/local/include/eigen3
ENABLE_AVX d

ENABLE_AVX2
ENABLE_COVERAGE
ENABLE_FAST_MATH
ENABLE_FMA3
ENABLE_IMPL_COLLECTION
ENABLE_NOISY_WARNINGS
ENABLE_POPCNT
ENABLE_PRECOMPILED_HEADERS
ENABLE_PROFILING
ENABLE_SOLUTION_FOLDERS
ENABLE_SSE

ENABLE_SSE2

ENABLE_SSE3

CUDA_TOOLKIT ROOT DIR: Toolkit location.
Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-13. Third page of the build options

11

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

The next important option is OPENCV_EXTRA_MODULES_PATH, which should be set to the path name of the
OpenCV extra modules. Specifically, it should be the folder opencv_contrib-3.1.0/modules, inside your
original opencv-3.1.0 folder, as shown in Figure 1-14.

Page 4 of 8

ENABLE_SSE41
ENABLE_SSE42
ENABLE_SSSE3 :
EXECUTABLE_OUTPUT_PATH i/Users/bryan/Documents/opencv-3.1.0/build/b|

FFMPEG_INCLUDE_DIR FFMPEG_INCLUDE_DIR-NOTFOUND
GENERATE_ABI_DESCRIPTOR sOFF
GIGEAPI_INCLUDE_PATH SGIGEAPI_INCLUDE_PATH-NOTFOUND

GIGEAPI_LIBRARIES GIGEAPI_LIBRARIES-NOTFOUND
INSTALL_CREATE_DISTRIB d

INSTALL_C_EXAMPLES
INSTALL_PYTHON_EXAMPLES
INSTALL_TESTS
INSTALL_TO_MANGLED_PATHS g
M_LIBRARY /usr/1lib/libm.dylib
OPENCV_CONFIG_FILE_INCLUDE_DIR =JQVSEIaFAIg VAol TelIT =T R o T3y Tl e A A TR R G
OPENCV_EXTRA_MODULES_PATH /
OPENCV_WARNINGS_ARE_ERRORS

Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-14. OPENCV_EXTRA_MODULES_PATH option

The rest of the build options are shown in the following images: Figure 1-15, Figure 1-16, Figure 1-17,
and Figure 1-18.

PVAPI_INCLUDE_PATH PVAPI_INCLUDE_PATH-NOTFOUND
PYTHON2_EXECUTABLE /usr/local/bin/python2.7
PYTHON2_INCLUDE_DIR g

PYTHON2_INCLUDE_DIR2
PYTHONZ2_LIBRARY
PYTHON2_LIBRARY_DEBUG g
PYTHON2_NUMPY_INCLUDE_DIRS d/usr/local/lib/python2.7/site-packages/nump|
PYTHONZ_PACKAGES_PATH Hlib/python2.7/site-packages
PYTHON3_EXECUTABLE /usr/local/bin/python3

PYTHON3_INCLUDE_DIR g

PYTHON3_INCLUDE_DIR2
PYTHON3_LIBRARY
PYTHON3_LIBRARY_DEBUG :
PYTHON3_NUMPY_INCLUDE_DIRS /usr/local/lib/python3.6/site-packages/nump

PYTHON3_PACKAGES_PATH ilib/python3.6/site-packages
VTK_DIR s/usr/local/lib/cmake/vtk-7.1
WITH_1394 0

Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-15. OpenCYV build options

12

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Page 6 of 8 .

WITH_CARBON
WITH_CLP
WITH_CUBLAS
WITH_CUDA
WITH_CUFFT
WITH_EIGEN
WITH_FFMPEG
WITH_GDAL
WITH_GIGEAPI
WITH_GPHOTO2
WITH_GSTREAMER
WITH_GSTREAMER_@_10
WITH_IPP
WITH_IPP_A
WITH_JASPER
WITH_JPEG
WITH_LIBVAL

|| Use libv4l for Video 4 Linux support
Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure
Press [h] for help Press [q] to quit without generating
Press [t] to toggle advanced mode (Currently Off)

Figure 1-16. OpenCV build options, continued

WITH_MATLAB
WITH_OPENCL
WITH_OPENCLAMDBLAS
WITH_OPENCLAMDFFT
WITH_OPENCL_SVM
WITH_OPENEXR
WITH_OPENGL
WITH_OPENMP
WITH_OPENNI
WITH_OPENNI2
WITH_PNG
WITH_PTHREADS_PF
WITH_PVAPI

WITH_QT
WITH_QUICKTIME
WITH_TBB

WITH_TIFF

WITH TIFF: Include TIFF support
Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-17. OpenCV build options, continued

13

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Page 8 of 8 ",

WITH_V4L
WITH_VA
WITH_VA_INTEL
WITH_VTK
WITH_WEBP
WITH_XIMEA

Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [gq] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-18. Last page of OpenCV build options

After filling in the first round of build options, type c again to configure the extra modules. First, turn off
the BUILD_FAT_JAVA LIB option, as shown in Figure 1-19.

Page 1 of 11 ",

BUILD_FAT_JAVA_LIB
BUILD_LIBPROTOBUF_FROM_SOURCES
BUILD_opencv_aruco
BUILD_opencv_bgsegm
BUILD_opencv_bicinspired
BUILD_opencv_calib3d
BUILD_opencv_ccalib
BUILD_opencv_contrib_world
BUILD_opencv_core
BUILD_opencv_datasets
BUILD_opencv_dnn
BUILD_opencv_dpm

BUILD opencv_face
BUILD_opencv_features2d
BUILD_opencv_flann
BUILD_opencv_fuzzy
BUILD_opencv_hdf

Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [q] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-19. OpenCV extra modules build options

14

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

To work on with the optical flow examples later in the book, you also should turn on the options
for BUILD_opencv_optflow, BUILD opencv_ximgproc, and BUILD opencv_java, as shown in Figure 1-20
and Figure 1-21.

Page 2 of 11 ",

BUILD_opencv_highgui
BUILD_opencv_imgcodecs
BUILD_opencv_imgproc
BUILD_opencv_java
BUILD_opencv_line_descriptor
BUILD_opencv_ml
BUILD_opencv_objdetect
BUILD_opencv_optflow
BUILD_opencv_photo
BUILD_opencv_plot
BUILD_opencv_reg
BUILD_opencv_rgbd
BUILD_opencv_saliency
BUILD_opencv_shape
BUILD_opencv_stereo
BUILD_opencv_stitching
BUILD_opencv_structured_light

Press [enter] to edit option Press [d] to delete an entry C(Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [q] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-20. Turning on options for Java and optflow

Page 3 of 11 .
BUILD_opencv_superres
BUILD_opencv_surface_matching
BUILD_opencv_text
BUILD_opencv_tracking
BUILD_opencv_video
BUILD_opencv_videoio
BUILD_opencv_videostab
BUILD_opencv_world
BUILD_opencv_xfeatures2d
BUILD_opencv_ximgproc
BUILD_opencv_xobjdetect
BUILD_opencv_xphoto -
Caffe_INCLUDE_DIR sCaffe_INCLUDE_DIR-NOTFOUND

Caffe_LIBS Caffe_LIBS-NOTFOUND
Ceres_DIR iCeres_DIR-NOTFOUND
Glog_LIBS $610g_LIBS-NOTFOUND
HDF5_C_LIBRARY_d1 }/usr/1ib/Llibd1.dylib

_opencv_ximgproc: Include opencv_ximgproc module into the OpenCV build
Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure
Press [h] for help Press [g] to quit without generating
Press [t] to toggle advanced mode (Currently Off)

Figure 1-21. Turning on the option for ximgproc

Complete the rest of the extra modules options, as shown in Figure 1-22.

15

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Page 4 of 11

HDF5_C_LIBRARY_hdf5 Eusr/local/1ib/1ibhdf5.dylib
HDF5_C_LIBRARY_m /usr/Llib/libm.dylib
HDF5_C_LIBRARY sz t/usr/local/lib/libsz.dylib
HDFS5_C_LIBRARY_z i/usr/lib/libz.dylib

HDF5_DIR HDF5_DIR-NOTFOUND
Lept_LIBRARY JLept_LIBRARY-NOTFOUND
OPENCV_HAL_HEADERS :

OPENCV_HAL_LIBS .

Protobuf_LIBS sProtobuf_LIBS-NOTFOUND
Tesseract_INCLUDE_DIR sTesseract_INCLUDE_DIR-NOTFOUND
Tesseract_LIBRARY esseract_LIBRARY-NOTFOUND
opencv_dnn_BUILD_TORCH_IMPORTE =lgd

ANT_EXECUTABLE /usr/local/bin/ant
BUILD_CUDA_STUBS

BUILD_DOCS

BUILD_EXAMPLES
BUILD_JASPER

Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure

Press [h] for help Press [q] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-22. Extra module options

After setting all the options, type c again to finish the last configuration task. Type the option g to generate
the configuration files (Figure 1-23). The ccmake program will quit and take you back to the Terminal window.

Page 1 of 11
ANT_EXECUTABLE flusr/local/bin/ant
BUILD_CUDA_STUBS

BUILD_DOCS

BUILD_EXAMPLES
BUILD_FAT_JAVA_LIB
BUILD_JASPER

BUILD_JPEG
BUILD_LIBPROTOBUF_FROM_SOURCES
BUILD_OPENEXR

BUILD_PACKAGE

BUILD_PERF_TESTS

BUILD_PNG

BUILD_SHARED_LIBS

BUILD_TBB

BUILD_TESTS

BUILD_TIFF
BUILD_WITH_DEBUG_INFO

Press [enter] to edit option Press [d] to delete an entry (Make Version 3.7.2
Press [c] to configure Press [g] to generate and exit

Press [h] for help Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Figure 1-23. Generating the configuration file

Enter the following command to start the build process:
make -j4

When the build process completes successfully, navigate into the bin folder within the build folder. Locate
the opencv-310. jar file. Then navigate into the 1ib folder within the build folder. Locate the 1ibopencv_
java310.so file. Rename it to 1ibopencv_java310.dylib. Copy the two files into a separate folder. You are
going to prepare the Windows and Linux versions and copy them to the same folder to create the multiplatform

16

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

library. The author has tested building the OpenCV 3.1 in the macOS 10.11, El Capitan. For readers using the
new macOS 10.12 Sierra, the building of OpenCV 3.1 will fail due to the removal of QTKit. In this case, it is better
to use OpenCV 3.2 together with macOS 10.12. Please refer to the building note in http: //www.magicandlove.com/
blog/2017/03/02/0pencv-3-2-java-build/ to generate the optflow module properly with OpenCV 3.2.

Windows

On a Windows system, you use the graphical version of cmake to configure the installation process. I have
tested the installation in Windows 8.1 and Windows 10. Download and install the following software
packages for the OpenCV build process:

e Microsoft Visual Studio Community 2015 at https://www.visualstudio.com/
downloads/

e (CMake at https://cmake.org/download/
e Apache Antathttp://ant.apache.org/bindownload.cgi

e OracleJDK 8 at www.oracle.com/technetwork/java/javase/downloads/
jdk8-downloads-2133151.html

e Pythonathttps://www.python.org/downloads/

After the successful installation of the software package dependencies, run the CMake (cmake-gui)
program to start the configuration process. Fill in the source folder name for the OpenCV distribution and
the build folder name, as shown in Figure 1-24. Remember that you need to create the build folder inside the
OpenCV distribution folder.

A CMake 3.8.0-rc1 - C:/Users/Bryan/Documents/opencv-3.1.0/build
File Tools Options Help

Where is the source code: :"C.:}Usersféryanfbommeﬁﬁ,r'.npencv.—é.i..t'l'

Where to build the binaries: :'_C:J’UserszryanfDomrnentsfopencv-3.1.0,i'buiid

Search: |

Name Value

Figure 1-24. Folder names of OpenCV distribution in the CMake window

Click the Configure button to start the configuration. For the first generator panel, choose Visual
Studio 14 2015 Win64 from the pull-down menu and select the “Use default native compilers” radio button,
as shown in Figure 1-25. Click the Finish button to proceed.

17

http://www.magicandlove.com/blog/2017/03/02/opencv-3-2-java-build/
http://www.magicandlove.com/blog/2017/03/02/opencv-3-2-java-build/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://cmake.org/download/
http://ant.apache.org/bindownload.cgi
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.python.org/downloads/

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

‘ CMake 3.8.0-rc1 - C:,f'Use:Sf'Br‘,fan.#'Documents;’opencv-{T'buiid
o 4

File ~aale_Oni Lial Y
7 X
Wh
Whel < A]
Seart
| Spedfy the generator for this project
Nar Value
|Visual Studio 14 2015 Win64 =

Optional toolset to use (argument to -T)

l |
(® Use default native compilers

(O Specify native compilers

(O Speify toolchain file for cross-compiling

O Specify options for cross-compiling

| Finish I Cancel

Figure 1-25. Choosing the default compiler

Follow Figure 1-26 through Figure 1-33 to enter the build options. Make sure to first turn off the
BUILD_SHARED LIBS option, and enter the path name for ant.bat for the ANT_EXECUTABLE option.

Name Value

ANT_EXECUTABLE |t'.:,f' Users/Pryan/Documents/apache-ant-1.10.1/bir

|
[|
|
|
2]
|
[|
|
|
[|
|
|
i |

<

Figure 1-26. Turning off the BUILD_SHARED_LIBS option

18

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Name Value

BUILD_opencv_python3

||
| |

<

Figure 1-27. Second page of OpenCV build options

Name Value

Figure 1-28. Third page of OpenCV build options

19

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

Name ~ Value

CMAKE_SHARED _LINKER _FLAGS L’rnad]ine::\'fid

Figure 1-29. Fourth page of OpenCV build options

Name Value

EENNNNEENEEN

Figure 1-30. Fifth page of OpenCV build options

20

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Name Value

Figure 1-31. Sixth page of OpenCV build options

Name Value

[|
[|
|
|
|
=
|
|
L]

Figure 1-32. Seventh page of OpenCV build options

21

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

Name Value

Figure 1-33. Eighth page of OpenCYV build options

In the next screen (Figure 1-34), enter the path name of the opencv_contrib extra modules for the
OPENCV_EXTRA_MODULES_PATH option. Figures 1-35 through 1-37 show the rest of the settings.

Name Value

OPENCV_EXTRA_MODULES_PATH C:/Users/Bryan/Documents/opency-3.1.0/opencv

Figure 1-34. OPENCV_EXTRA_MODULES_PATH option

22

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Name Value

NEEEEEE

WITH_DIRECTX

Figure 1-35. Tenth page of OpenCV build options

Name Value

EEEENEEEEEENEEEEEEEN

Figure 1-36. Eleventh page of OpenCV build options

23

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

WITH_OPENGL

[|
|
[|
[|
|
[|
[
|
[
[
|
|
||

Press Configure to update and display new values in re
Configure | Generate | Open Project Current Generator: Visual Studio 14 2015 Win64

Install path: C:/Users/Bryan/Documents/opencv-3.1.0/build/install

cveconfig.h is in: C:/Users/Bryan/Documents/opencv-3.1.0/build

Figure 1-37. The last page of OpenCV build options

Click the Configure button to create the configuration details. In the red areas, be sure to enable the
options BUILD opencv_java, BUILD opencv_optflow, and BUILD opencv_ximgproc (Figures 1-38 and 1-39).
Leave the rest of the extra modules with the empty option.

Name Value

BUILD_opencv_java

[|
|
m
[|
[|
|
[
|
|
[]
|
[|
]
[|
[|
|
]

Figure 1-38. BUILD_opencv_java and BUILD_opencv_optflow options

24

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

Name Value

BUILD_opencv_ximgproc

Figure 1-39. BUILD_opencv_ximgproc option

Click the Configure button again to complete the configuration process. After all the configuration
options are set, click the Generate button to create the Visual Studio solution file. When it finishes, quit the
CMake program. In the build folder, start the Visual Studio solution OpenCV.s1n (Figure 1-40).

— e mmearampens

LT INSTALLvexproj
INSTALLvexproj filters

f25 OpenCV.sin

i opencv_modules.vexproj

B opencv_modules.vexproj filters
[] OpenCVConfig.cmake

|] OpenCVConfig-version.cmake
[] OpenCVModules.cmake

[PACKAGE.voxproj

B PACKAGE.voxprojfilters

£ RUN_TESTS.vexproj

B1 RUN_TESTS voxproj filters

[text_config.hpp

[uninstall.vexproj

&1 uninstallvexproj filters

D version_string.tmp

P 7ERA FUECK viminrni

Figure 1-40. OpenCYV Visual Studio solution file

9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:48 AM
9/4/2017 11:16 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:44 AM
9/4/2017 11:49 AM
9/4/2017 11:49 AM
9/4/2017 11:48 AM

Q/AIIN1T 1140 ARA

VC++ Project

VC++ Project Filters F...
Microsoft Visual Stud...

VC++ Project

VC++ Project Filters F...

CMAKE File
CMAKE File
CMAKE File
VC++ Project

VC++ Project Filters F...

VC++ Project

VC++ Project Filters F...

C/C++ Header
VC++ Project

VC++ Project Filters F...

TMP File

VIC L1 Drainct

25

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Inside the Visual Studio program, select Release from the Solution Configurations menu (Figure 1-41);
choose x64 from the Solution Platforms menu.

M OpenCV - Microsoft Visual Studio

File Edit View Project Build Debug Team Tools Test Analyze Window Help

- | Bra u“ v ~ | Release * x64 ~| P Local Windows Debugger ~
Debug

Release

Configuration Manager...

Jaso)dxg Janues

o]}

o
o
-

Figure 1-41. Visual Studio project options

From the Solution Explorer, expand CMakeTargets; then right-click the ALL_BUILD target and choose
Build (Figure 1-42).

_(F Quick Launch (Ctrl+Q) PE= (=7 X

Bryan Chung ~

Solution Explorer
@ o-s @ -
Search Solution Explorer (Ctrl+;) R~

b [opencv java &

b & opencv_python2

b [opencv_python3
4 CMakeTargets
ALL BUILD
& INSTALL
®] PACKAGE
] RUN_TESTS
& uninstall
%] ZERO_CHECK

v v v v Vi

Figure 1-42. Choosing the OpenCV build target
26

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

After the successful build of the solution, quit Visual Studio and navigate into the build folder. Inside

the bin folder, you will see the opencv-310. jar file, as shown in Figure 1-43.

\Bryan\Documents\opencv-3.1.0\build\bin

re View

This PC » Documents *» opencv-3.1.0 » build > bin

A
~

Name

Release
|£ | opencv-310jar
[] opencv-310jar.dephelper

Figure 1-43. OpenCV Windows build file

Date modified

9/4/2017 12:20 PM
9/4/2017 12:20 PM
9/4/2017 12:20 PM

Type "\

File folder
Executable Jar File

DEPHELPER File

Size

Double-click to open the Release folder inside the bin folder; the OpenCV Windows native library
opencv_java310.d11 will reside there, as shown in Figure 1-44.

Bryan\Documents\opencv-3.1.0\build\bin\Release

e View

This PC *» Documents » opencv-3.1.0 » build > bin > Release

~
~

Name

[®7 opencv_annotation.exe

& opencv_annotation.pdb
[®] opencv_createsamples.exe
&) opencv_createsamples.pdb
%] opencv_java310.dll

[®] opencv_traincascade.exe

&) opencv_traincascade.pdb

Figure 1-44. OpenCV Windows native library file

Date modified

9/4/2017 12:19 PM
9/4/2017 12:19 PM
9/4/2017 12:20 PM
9/4/2017 12:20 PM
9/4/2017 12:20 PM
9/4/2017 12:20 PM
9/4/2017 12:20 PM

Type

Application

Program Debug Data...

Applicaticr]

Program/i_/Eea:_ug Data...

Application ewnsion
Application

Program Debug Data...

Size

26,
29,7
35,
29,(

8.
27.¢

27

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Linux

The Linux distribution tested in the book is Ubuntu 16.04. For Linux systems, you can use the apt-get
command to install the dependent software packages. The OpenCV 3.1.0 documentation has a page
describing the detailed installation process. You can find the reference at http://docs.opencv.org/3.1.0/
d7/d9f/tutorial linux_install.html. Before installing OpenCV, you need to set up the proper Java
environment. In the book, you will use Oracle JDK 8 in the Linux installation. To obtain the proper version,
enter the following in a Terminal session:

sudo add-apt-repository ppa:webupd8team/java

sudo apt-get update

sudo apt-get install oracle-java8-installer

After the Java installation, you need to set up the proper environment variable, JAVA_HOME, for the
OpenCV build process. Use the text editor to edit the environment file.

sudo gedit /etc/environment

At the end of the file, insert the following line:
JAVA_HOME="/usr/1ib/jvm/java-8-oracle"

Save and exit the environment file and reload it with the following:
source /etc/environment

Verify whether the environment variable was set correctly by using the echo command. It should return
the proper location for the Java installation.

echo $JAVA _HOME

After the successful installation of the JDK, you can proceed to install the dependent software packages
for OpenCV with apt-get.

sudo apt-get install ant build-essential cmake git libgtk-2.0-dev pkg-config libavcodec-dev,
libavformat-dev libswscale-dev python-dev execstack

To simplify the build process, you can install the graphical user interface for cmake such that you can use
ccmake to build the OpenCV.

sudo apt-get install cmake-curses-gui

First, you navigate to the build folder inside the OpenCV distribution folder, opencv-3.1.0. Start the
configuration process by using the ccmake command.

ccmake ..

28

http://docs.opencv.org/3.1.0/d7/d9f/tutorial_linux_install.html
http://docs.opencv.org/3.1.0/d7/d9f/tutorial_linux_install.html

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

At the menu screen, type c to start the automatic configuration process. Fill in the options as shown in
the following screenshots, starting with Figure 1-45.

Page 1 of 9
W/ usr/binfant

.50) instead of static ones
CMake 1

o}
*
”
B
B
i3
¥
=

out generating

Figure 1-45. BUILD_SHARED_LIBS option

Please make sure to turn on the BUILD_opencv_java option, as shown in Figure 1-46.

QN EDPD Jﬂ]mf

CMa

hout generating

Figure 1-46. BUILD_opencv_java option

29

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Then enter the path information for the OpenCV extra modules in the OPENCV_EXTRA_MODULES_PATH
option (Figure 1-47).

uEHEP-
GIGEAPI_
GIGEAPL LL"

MEs-CsYERIPD oo

Figure 1-47. OPENCV_EXTRA_MODULES_PATH option

Include GTK support for the configuration by turning on the WITH_GTK option (Figure 1-48).

Page 7 of 9

r”.”l
WITH_FFMPEG

RN EDDD oo

Figure 1-48. WITH _GTK option

30

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

Continue with the rest of the configuration options, as shown in Figure 1-49 and Figure 1-50.

WITH_JAS
WITH_
WITH

WITH_ CLAMDBLAS
WITH CLAMDFFT
WITH_OP SVM
WITH_OP

WITH_OPE

WITH_OF

ITH LIBV4L: Use libv4l for Video 4 Linux support

dit option CHake \

Press [q] to ¢ t ut generating
vanced mode (Currently Off)

3

s
)
=]

B

"
*

b
E.
A

biryan,
Page 9 of 9
WITH_PNG

WITH_TIFF
WITH_UNICA
WITH
WITH_VA
WITH_

WITH

WITH_XI

ITH V4L: Include Video 4 Linux support
€ ption

Press [q] to
= advanced mo (Currently

Figure 1-50. WITH_V4L option

31

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

After entering the last build option, type c to run the configuration with the extra modules. Choose
OFF for the BUILD_FAT JAVA LIB option (Figure 1-51). Enter the ON options for BUILD opencv_optflow and
BUILD_opencv_ximgproc.

Page 1 of 11
BUIL
BUTL
BUIL

&
"
»
=]
B
S
%

Figure 1-51. BUILD_FAT JAVA_LIB and BUILD_opencv_optflow options

Keep the rest of the extra modules set to OFF (Figure 1-52).

Page 2 of 11

WEDPD ;"HI]G!?_

$Glog_LIBS-NOTFOUND
gHDFS_DIR-NOTFOUND

2 Press to quit without generating
Press [t] to toggle advanced mode (Currently Of

Figure 1-52. BUILD_opencv_ximgproc option

32

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

Type c again to run the final configuration. Type g to generate all the build files and quit (Figure 1-53).

B

BUILD
BUILD
BUILD
BUILD

BUILD

O EELEFELLIEELCE

BUILD_

flusr/bin/ant

PNG
SHARED_LIBS

TIFF
WITH_DEBUG_INFO

Figure 1-53. Final configuration

Start the build process by entering the following command:

make -j4

After the successful build of OpenCV, navigate into the bin folder within the current build folder
(Figure 1-54). Spot the opencv-3.1.0. jar file.

tota
-rW-rW-T
-rW-rw-

Figure 1-54. Location of opencv-310.jar

33

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

Then change the directory to the 1ib folder within the build folder. Find the 1ibopencv_java310.so
file. In the Terminal session, run execstack against the OpenCV library file to clear the executable stack flag
(Figure 1-55).

execstack -c ./libopencv_java310.so

&
F
)
2
B
7
5
=
@.
[

Figure 1-55. Location of libopencv_java310.so

Test Run

After you install Processing and build the Java version of OpenCV, you can start to write two programs to
verify the installation and try the functionalities of the OpenCV library. The first program is a “Hello World”
exercise to display the version information of the OpenCV library. The second program will define an
OpenCV matrix data structure.

Hello World

Create a new Processing sketch named Chapter01_02. In the menu bar of the IDE, select Sketch » Show
Sketch Folder, as shown in Figure 1-56.

34

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

& Processing File Edit Iaﬂzﬁl Debug Tools Help
[] @

Run R _ Chapter01_02 | Processin
Present ¥R
Tweak 08T
Stop
Chaptagi 1 Import Library... >
inport org. open TR TTME
Add File...

void setup() { chapteroi_oz (Java)
size(640, 480);
println{Core.NATIVE_LIBRARY_NAME);
println{Core.VERSION);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
}

void draw() [

background (160, 160, 108);
A

Figure 1-56. Show Sketch Folder menu item in Processing IDE

In the pop-up window, create a new folder named code. Copy all the OpenCV Java library files into
it. It should contain the following files. You can just keep one of the opencv-310. jar files from the three
platforms generated. Alternatively, you can copy only the related native library for the operating system you
are using, such as libopencv_java310.dylib for macOS, 1ibopencv_java310.so for Linux, or
opencv_java310.d11 for Windows.

e opencv-310.jar

e libopencv_java310.dylib
e libopencv_java310.so

e opencv_java310.dll

In the IDE main window, type the following code and click the Play button to execute:
import org.opencv.core.Core;

void setup() {
size(640, 480);
println(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
}

void draw() {
background(100, 100, 100);

}

35

CHAPTER 1 © GETTING STARTED WITH PROCESSING AND OPENCV

This will return the OpenCV native library name of opencv_java310 and the version number of
3.1.0 at the bottom of the IDE window. This location is the console window, and it’s where messages will
be displayed, as shown in Figure 1-57. The first import statement imports the OpenCV core module for
subsequent reference. Within the setup function, the size function defines the size of the Java window for
the program. The two println statements display the content of the two constants, Core.NATIVE_LIBRARY
NAME and Core.VERSION. The next statement, System.loadlLibrary, loads the native library from the code
folder. The draw routine has only one function to paint the window background in gray.

% @ Chapter01_02

Chapter01_02

| import org.opencv.core.Core;

void setup() {
size(640, 4808);
println(Core.NATIVE_LIBRARY,
println{Core.VERSION);
System. loadLibrary(Core.NATI
}

B void draw() {
background(180, 100, 100);

o |

Figure 1-57. Displaying OpenCV information in Processing

Matrix Example

From the previous “Hello world” exercise, select the File menu; choose Save As to save the program with a
new name, Chapter01_03. In this case, the content in the code folder will be duplicated in the new program.
Use the following code for this exercise:

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.CvType;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
Mat m = Mat.eye(3, 3, CvType.CV_8UC1);
println("Content of the matrix m is:");
println(m.dump());

36

CHAPTER 1 * GETTING STARTED WITH PROCESSING AND OPENCV

void draw() {
background(100, 100, 100);

}

The three import statements include the definition of the OpenCV Core components, the Matrix data
class, and the data type for the matrix elements. The new statement defines a matrix m and is an identity
matrix with three rows and three columns.

Mat m = Mat.eye(3, 3, CvType.CV_8UC1);

Each data element in the matrix is an 8-bit unsigned character (one byte). The second println
statement will dump the contents of the matrix m. (The next chapter will have a more detailed explanation
about the matrix data structure and its representation and usage).

println(m.dump());

Figure 1-58 shows what the println statements display in the Processing window.

Craptard1 03

chaptercs oz [

t org.opency.core.Core;
t org.opencv.core.Hat;
t org.cpency.core. CvType;

setup() {
size(640, 488);
System. loadLibrary(Core NATIVE_LIBRARY_NAME) ;
Mat m = Mat.eye(3, 3, CvType.CV_8SUCL);
println{"Content of the matrix m is:");
printin{m.dunp());

}

void drow() {
background (100, 108, 100);

Figure 1-58. Displaying matrix information

Conclusion

This chapter guided you through the setup processes to install both Processing and OpenCV on the three
most common platforms, macOS, Microsoft Windows, and Ubuntu Linux. At this point, you should be able
to prepare the environment to proceed with working on image-processing and computer vision tasks. The
next chapter will describe the representation of digital images in both Processing (Java) and OpenCV.

37

CHAPTER 2

Image Sources and Representations/

The chapter explains the process of creating digital images in Processing and the internal representations
of raster images in both Processing and OpenCV. It demonstrates how you can import external images into
your programs and how to use different types of image manipulation functions. As an extended form of
digital image, the use of digital video and live video streams are covered in the later sections of the chapter.
The following are the basic concepts this chapter covers:

e Digital image fundamentals

e Images in Processing

e Moving images in Processing

e Matrices and images in OpenCV

e Image conversion between Processing and OpenCV

Digital Image Fundamentals

I usually use the metaphor of a grid to represent a digital image. The dimensions of an image equate to the
size of the grid, with the width representing the number of columns and the height representing the number
of rows. Therefore, the number of cells within the grid is equal to width x height. Each cell in the grid is a
colored pixel. For a grayscale image, a pixel is a number representing the intensity of the gray tone. If you
use one byte of data to represent each pixel, the grayscale will be within the range of 0 to 255. Figure 2-1
represents a grayscale image with eight columns and six rows.

100 200 10 5 77 22 34 75
255 200 100 90 10 33 66 55
123 45 46 47 1 99 0 23
3 5 8 13 21 10 I 4
167 84 256 222 123 21 17 5
23 22 180 250 a9 16 81 66

Figure 2-1. Grayscale image representation

© Bryan WC Chung 2017 39
B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_2

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

For a color image, a pixel is a group of numbers representing the intensity of individual color channels.
Common color representations are RGB (red, green, blue) and HSB (hue, saturation, brightness).
To bridge color formats between Processing and OpenCYV, this book mainly adopts the ARGB representation.
Each color pixel has four separate color channels, namely, alpha (transparency), red, green, and blue.
For example, a fully opaque red will be (255, 255, 0, 0), or in hex notation #FFFF0000.

To summarize, you use width and height to describe the dimension of a digital image, channel to
describe the number of color elements in each pixel, and depth to describe how many bits of data to
represent each color.

Images in Processing

The main class in Processing that you use to handle digital images is PImage (https://processing.org/
reference/PImage.html). It is modeled around the BufferedImage class (https://docs.oracle.com/
javase/8/docs/api/java/awt/image/BufferedImage.html) in Java. Rather than asking you to study the
Javadoc for the PImage class, I will walk you through the common image-processing tasks to do the following:

e Import an external image
e (Create an image in Processing
e Display an image

e Exportanimage

Import an External Image

For this sequence of exercises, first create a Processing sketch (program) called Chapter02_01. The simplest
way to add an external image is to drag the image directly onto the Processing IDE window. The process will
create a data folder within your Processing sketch folder. Alternately, you can manually create a data folder
inside your Processing sketch folder and copy the image into the data folder. Processing will automatically
search this folder for external images, movies, and other data files such as Extensible Markup Language
(XML) files. Inspect your data folder for the external image. The image used in this exercise is HongKong. png,
as shown in Figure 2-2. The following code will load the image and display it in the Processing window. In
this example, the size of the Processing window, 640x480, is the same as the size of the image. Cropping and
padding may appear when they are of different sizes.

PImage img;
void setup() {
size(640, 480);

img = loadImage("HongKong.png");
noLoop();

void draw() {
image(img, 0, 0);

40

https://processing.org/reference/PImage.html
https://processing.org/reference/PImage.html
https://docs.oracle.com/javase/8/docs/api/java/awt/image/BufferedImage.html
https://docs.oracle.com/javase/8/docs/api/java/awt/image/BufferedImage.html

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

L Chapter02_01 | Processing 32.3 =™

FImage img; i
Chaptert2_01
joid setup() {
size(640, 488);
img = loadImage("HongKong.png");
noLoop();

}

void draw() {
image(img, @, 0);

}

Figure 2-2. Loading an external image

The first statement defines an instance, img, of the PImage class and is the container for the external
image. The statement inside the setup() function, as shown here, performs the actual loading of the image
file HongKong . png into the img variable:

img = loadImage("HongKong.png");

The only statement inside the draw() function, as shown here, displays the image in the Processing
graphic window at offset (0, 0):

image(img, 0, 0);

Note that there is a noLoop () statement inside the setup() function. It will perform the draw() function
once instead of looping it in an animation mode.

In the next exercise, you will load an external image from the Internet (Figure 2-3). Create another
Processing sketch called Chapter02_02. Enter the following code. Modify the String variable fName to point
to the URL of any external image you want to import.

PImage img;
String fName;

void setup() {
size(640, 480);
background(255, 200, 200);
fName = "http://www.magicandlove.com/blog/wp-content/uploads/2011/10/BryanChung-225x300.png";
img = requestImage(fName);

41

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

void draw() {
if (img.width > 0 && img.height > 0) {
image(img, 360, 100);

L] Chapter02_02 | Processing 323 i

= img; i
12 fName; =
A ° Chapterdz_02 - ~IEa

oid setup() {

size(640, 480);

background(255, 200, 200);

fName = "http://www.magicandlove.com/blog/wp-content
img = requestImage(fName);

void draw() {
f (img.width > @ && img.height > @) {
image(img, 360, 100);

Figure 2-3. Loading an image from the Internet

In this exercise, you use the function requestImage() to load an external image, usually residing on
some server on the Internet. The function performs asynchronous loading with another thread. It does not,
however, come with a callback upon successful loading. You can make use of the two properties, width and
height, of the PImage class to check whether the loading is complete. During the loading process, the values
of the width and height properties of the image are 0. Upon successful completion of the loading, the values
become the dimensions of the image loaded. The following code shows how to modify the previous code to
print the values of width and height in the draw() function so you can check their values:

void draw() {
println(img.width + ", " + img.height);
if (img.width > 0 && img.height > 0) {
image(img, 360, 100);

If you purposely change the URL to a wrong address, you may find that the values for img.width and
img.height both become -1.

42

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

Create an Image in Processing

In addition to loading an external image (Figure 2-4), you can create a digital image from scratch within
Processing. The function to do so is createImage(), which will return an instance of the PImage class. The
next program, Chapter02_ 03, will create an empty image and change all its pixels to yellow:

PImage img;

void setup() {
size(640, 480);
background(100, 100, 100);
img = createImage(width, height, ARGB);
color yellow = color(255, 255, 0);
for (int y=0; y<img.height; y++) {
for (int x=0; x<img.width; x++) {
img.set(x, y, yellow);
}
}
}

void draw() {
image(img, 0, 0);

& chwptaroz0n GOOD O W mbs FitdeeM bynches O @

Chaptersz 03 [
img;

ChapterdE 03

setup(}) {
, 480);
(180, 188, 108);

(. 1t
= color (255, 255, 8);
¥=8; y<img. AR
x=8; x<img. ; x+e) {
img.setix, y, yellow);

&

GUANNBERE T SCC ¥y A oesEEn 100 $THC fmmmeE

Figure 2-4. Creating a yellow image within Processing

The following statement creates a digital image of size width x height:

img = createImage(width, height, ARGB);

43

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

The variable width refers to the Processing window width as specified in the size() function. Its value
is 640. Similarly, the variable height is 480, as defined in the size() function. The parameter ARGB defines
a four-channel image (i.e., alpha, red, green, and blue). You can also define a three-channel image with RGB
and a single alpha channel image with ALPHA. Nevertheless, the internal representation of the PImage class
will remain as ARGB. The next statement defines a color variable named yellow:

color yellow = color(255, 255, 0);

Its value is yellow with maximum intensity (255) for the red and green channels. The nested for loops
with indices y and x simply go through all the pixels of the image, img, and change the pixel color to yellow.
Note the use of the set () function to modify the individual pixel color. This is a handy way to alter the pixel
color at a specific point in the image with the use of the horizontal and vertical indices. The set () function
is, however, not the most efficient way to do pixel manipulation. I will introduce other ways to achieve the
effect later in this chapter.

img.set(x, y, yellow);

Graphics and Images

In the next exercise, Chapter02_04, you will look into the internal structure of the Processing canvas. The
class PGraphics is the main graphics and rendering context. It is also a subclass of PImage. In this case,
you can use the same image() function to display this graphics context. The following code will first draw
arectangle at the top-left corner of the canvas and then display the canvas by an offset. You will see two
rectangles after the execution.

PGraphics pg;

void setup() {
size(640, 480);
background(100, 100, 100);
pg = getGraphics();
noLoop();

}

void draw() {
rect(0, 0, 200, 120);
image(pg, 200, 120);

Figure 2-5 shows the result of the execution. The first rectangle on the top left is the result of the
rect() statement within the draw() function. The image () statement offsets the whole canvas by 200 pixels
horizontally and 120 pixels vertically and displays the whole canvas. The technique is useful when you need
to capture the current drawing canvas as an image.

44

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

& Chapter02.04 RN TLld ¥xEE FiR4TPM DyanCheg O @ IE

Chaptert? 04 S
PGraphics pg;

d setup() {

sire(640, 480);

background (188, 186, 168);
PE = getGraphics();
noLoop();

1

d drawi() {
rect{g, @, 200, 128);
fmage(pg, 209, 120);

B G| 4
Mo T TaBAABESRS C==C_# - o [

Figure 2-5. Use of PGraphics as PImage

In this exercise, Chapter02_05, you'll study the general use of the PGraphics class. You can consider
a PGraphics instance a separate canvas such that you can draw on it off-screen. Whenever it is ready to
display, you can use the image() function to display it in the Processing window.

PGraphics pg;
boolean toDraw;

void setup() {
size(640, 480);
background(0);
pg = createGraphics(width, height);
toDraw = false;

}

void draw() {
if (toDraw)
image(pg, 0, 0);

void mouseDragged() {
pg.beginDraw();
pg.noStroke();
pg.fill(255, 100, 0);
pg.ellipse(mouseX, mouseY, 20, 20);
pg.endDraw();

45

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

void mousePressed() {
pg.beginDraw();
pg.background(0);
pg.endDraw();
toDraw = false;

}

void mouseReleased() {
toDraw = true;

}

Figure 2-6 shows the result of a sample run of the sketch.

L] Chapter02_05 | Processing 3.2.3 -0

PE;
toDraw; o Chapter02_05 - oIl

id setup() {

size(640, 480);

background(@);

Pg = createGraphics(width, height);
toDraw = false;

id draw() {
f (toDraw)
image(pg, @, @);

oid mouseDragged() {
pE.beginDraw();
pg.noStroke();
pg. Fill(255, 100, 8);
or.ellinsal =ek. mo

Figure 2-6. Use of createGraphics() and the PGraphics

Note the use of the following createGraphics () function to create an instance of the PGraphics class
that is the same size as the Processing window. It will be used as an off-screen buffer to store the drawing
that you made by dragging the mouse. The three callback functions, mousePressed(), mouseDragged(), and
mouseReleased(), will be triggered whenever you press, drag, and release the mouse button. If you want to
create any graphics in the PGraphics instance pg, you have to put the commands inside the pg.beginDraw()
and pg.endDraw() block. Note also that you can specify grayscale color by putting in only one number, such
as in the background(0) function, which clears the background with black. In the following line of code,
the pair of variables mouseX and mouseY will return the current mouse position in the Processing graphic
window, measured in pixels:

pg.ellipse(mouseX, mouseY, 20, 20);
In this statement, an ellipse/circle is drawn on the off-screen buffer pg in the current mouse position.
Processing also provides another pair of variables, pmouseX and pmouseY, that store the previous mouse

position in the last frame of the animation. The two pairs of mouse position variables will be useful when
you need to draw a line segment from the previous mouse position to the current one.

46

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

BufferedImage in Processing

In previous sections, you learned how to use the main image-processing class in Processing, PImage. For
those who are familiar with Java image processing, the class BufferedImage (https://docs.oracle.com/
javase/8/docs/api/java/awt/image/BufferedImage.html) is important for programmers to be able to
manipulate images in Java. In Processing, you can also perform a conversion between the PImage class and
the BufferedImage class. Sometimes it will be useful for you to incorporate other Java image-processing
libraries in Processing that return a BufferedImage class. The following code demonstrates the conversion
between a PImage class and a BufferedImage class in Processing:

import java.awt.image.BufferedImage;

PImage img;
BufferedImage bim;

void setup() {
size(640, 480);
noLoop();

}

void draw() {
background(0);
// create the PImage instance img
img = createImage(width, height, ARGB);
// create the BufferedImage instance bim from img
bim = (BufferedImage) img.getNative();
println(bim.getWidth() + ", " + bim.getHeight());
// create a new PImage instance nim from BufferedImage bim
PImage nim = new PImage(bim);

println(nim.width + ", " + nim.height);

First, you use import java.awt.image.BufferedImage to include the reference of BufferedImage
to your Processing sketch. Within the draw() function, you use the createImage() function to create an
empty PImage instance, img. By using the getNative() method, you can create a copy of the original image
in BufferedImage format. Given a BufferedImage, bim, you can again create a PImage out of it by using the
new PImage(bim) command. In the following example, Chapter02 06, you can see a practical use of this
conversion for a creative result:

import java.awt.Robot;
import java.awt.image.BufferedImage;
import java.awt.Rectangle;

Robot robot;

void setup() {
size(640, 480);
try {
robot = new Robot();
}
catch (Exception e) {
println(e.getMessage());
}
}

47

https://docs.oracle.com/javase/8/docs/api/java/awt/image/BufferedImage.html
https://docs.oracle.com/javase/8/docs/api/java/awt/image/BufferedImage.html

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

void draw() {
background(0);
Rectangle rec = new Rectangle(mouseX, mouseY, width, height);
BufferedImage imgl = robot.createScreenCapture(rec);
PImage img2 = new PImage(imgl);
image(img2, 0, 0);

This Processing sketch mainly uses the Java Robot class (https://docs.oracle.com/javase/8/docs/
api/java/awt/Robot.html) to do a screen capture. The output from the screen capture (Figure 2-7) is a
BufferedImage that you can convert to a PImage for display within the draw() function. In the setup()
function, you initialize the robot instance inside a try block to capture an AWTException. In the draw()
function, you first use a Rectangle object to define the offset and size of the screen region to capture.

The robot.createScreenCapture(rec) will perform the actual screen capture with the resulting image
stored in img1, which is an instance of BufferedImage. The next statement converts the img1 instance to
another PImage instance, img2, for display with an image () function. When you move the mouse within the
Processing window, you can find a funny result similar to the feedback effect in video art. It is the image()
function that modifies the screen content in every frame contributing to this feedback loop.

- E

1 setupi) [Q) Chugrenta 23
size(648, 488);

L

robot = nen Rabot(); O ozt

ch (Exception e) { .
println(e. gethessage() 5
}

O chpteis 22

{ . Chuptent 2
nget)) 2

id dram{} { i

Background (@) nee ()

Rectangle rec = new Rectd

Bufferedinage isgl = robg bys
imgz = new PImaged | pre())

imsge(ingz, 8, 8);

O Chaptostd 22

10 Chastetl 22

= roba a:,c T © apreniz 22
xeage(. | %)

= robg

Inage
sed Recta

t robd

. Py
hee)3 o

Chaptart? 22

Figure 2-7. Screen capture with PImage

Moving Images in Processing

The external video library for Processing (https://processing.org/reference/libraries/video/index.html)
that you installed in the previous chapter provides the necessary functions for video playback and capture.

It is based on the Java binding in the GStreamer multimedia framework. The library contains two separate
classes: Movie for video playback and Capture for live video capture. Both are subclasses of PImage. You can
use similar methods to manipulate the pixel data.

48

https://docs.oracle.com/javase/8/docs/api/java/awt/Robot.html
https://docs.oracle.com/javase/8/docs/api/java/awt/Robot.html
https://processing.org/reference/libraries/video/index.html

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

Digital Movies

The next exercise, Chapter02_07, will perform a loop playback of the sample video, transit.mov, distributed
in the video library. Like adding an image to the Processing sketch, you can simply drag the digital video file
onto the Processing IDE window. Or you can create a data folder inside the sketch folder and copy the video
file there. The following code performs an asynchronous playback of the digital video. Whenever a new
frame is ready, the callback movieEvent () will be triggered to read the frame.

import processing.video.*;
Movie mov;

void setup() {
size(640, 360);
background(0);
mov = new Movie(this, "transit.mov");
mov.loop();

}

void draw() {
image(mov, 0, 0);

}

void movieEvent(Movie m) {
m.read();

}

Processing will automatically generate the first import statement when you select Sketch » Import
Library » Video from the main menu. The next step is to define the Movie class instance, mov. The following
statement will then create the new instance with the name of the video:

mov = new Movie(this, "transit.mov");

The keyword this refers to the current Processing sketch (i.e., Chapter02_07), which is necessary for
the callback function movieEvent () to refer to it. Figure 2-8 shows the running sketch.

49

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

® Chapter02_06 | Processing 323 e

import processing.video.*;

Movie mov;

o Chapteriz_06 - HEN

void setup() {
size(B40, 360);
background(8);
mov = new Movie(this, "transit.mov");
mov . loop()}

otd draw() {
image({mov, @, 0);

void movieEvent{Movie m) {
m.read();

Figure 2-8. Digital video playback example

The next example, Chapter02_08, provides an alternative way to read the digital video. In this version,
the sketch in each animation frame checks the availability of the new frame and reads it synchronously.

import processing.video.*;
Movie mov;

void setup() {
size(640, 360);
background(0);
mov = new Movie(this, "transit.mov");
mov.1loop();
frameRate(30);

}

void draw() {
if (mov.available()) {
mov.read();

}

image(mov, 0, 0);

}

Note in the setup() function there is a new frameRate() statement that specifies the frame rate per
second for the draw() function. For slower computers, the actual frame rate may be slower than what is
specified here.

50

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

AsMovie is a subclass of PImage, you can use the get () method of PImage to retrieve the pixel color data
from any frame of the video. The next Processing sketch, Chapter02_09, will demonstrate this:

import processing.video.*;
Movie mov;

void setup() {
size(640, 360);
background(0);
mov = new Movie(this, "transit.mov");
mov. loop();
frameRate(30);

}

void draw() {
if (mov.available()) {
mov.read();
}
image(mov, 0, 0);

}

void mouseClicked() {
color c = mov.get(mouseX, mouseY);

println(red(c) + ", " + green(c) + ", " + blue(c));

In this exercise, you display the color information of the pixel that you click. This is done within the
mouseClicked() callback function. You provide the horizontal and vertical positions of the pixel inside the
mov frame. It returns the color data in the variable c. By using the red(), green(), and blue() functions, you
can retrieve the three primary color components from it. The range of the numbers will be within 0 to 255.

Live Video Captures

In addition to digital video playback, Processing provides the class Capture to enable the live capture of
video streams from regular webcams or capture devices. Like when using the Movie class, you need to
import the video library, as shown in the following exercise, Chapter02_10:

import processing.video.*;
Capture cap;
void setup() {
size(640, 480);
background(0);

cap = new Capture(this, width, height);
cap.start();

51

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

void draw() {
image(cap, 0, 0);

}

void captureEvent(Capture c) {
c.read();

}

You use the Capture class with the instance cap. The new statement creates a new instance of the class
and assigns it to cap. It also needs a start() method to start the capture device. Similar to the Movie class,
the Capture class comes with the callback function called captureEvent () where the capture device can
asynchronously notify the main Processing sketch to read in any new video frame available. Since Capture is
a subclass of PImage, you can use the same image() function to display the capture frame in the Processing

window.

In the next exercise, Chapter02_11, you use a synchronous read of the capture frame within the
draw() function. At the same time, you introduce the mask() function to mask out a portion of the image by

interactively drawing on a mask image.
import processing.video.*;

Capture cap;
PGraphics pg;

void setup() {
size(640, 480);
background(0);

cap = new Capture(this, width, height);

cap.start();

pg = createGraphics(width, height);

pg.beginDraw();
pg.noStroke();
pg.fill(255);
pg.background(0);
pg.endDraw();

}

void draw() {
if (cap.available()) {
cap.read();

tint(255, 0, 0, 40);

cap.mask(pg);
image(cap, 0, 0);

void mouseDragged() {
pg.beginDraw();

pg.ellipse(mouseX, mouseY, 20, 20);

pg.endDraw();
}

52

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

In this exercise, you use a PGraphics instance called pg to serve as an off-screen buffer. In the
mouseDragged () callback function, the user can create a white circular mark on the black background. In
the draw() function, you introduce two new functions. The first one is tint (), where you tint the resulting
image with red (255, 0, 0) and a bit of transparency, as indicated in the fourth parameter, 40. The second one
is the mask () function, where you apply the mask, pg, to the original image (Figure 2-9), cap. The result is an
interactive experience where you can drag the mouse to reveal the underlying live video stream.

processing.video.*;

 Copture cap:
PE;
setup() {
size(640,
back,

id draw{) {
f (cap.available()) {

cap.read();

Figure 2-9. Live video capture with a mask

Matrices and Images in OpenCV

Now that I've finished introducing how to use external images, video, and live streaming for Processing, I will
switch back to OpenCV to help you understand how it represents digital images. Before you start, remember
to create a code folder in your next Processing sketch, Chapter02_12. Inside the code folder, put the OpenCV
library files that you created in the previous chapter. The following are the OpenCV files in the folder:

e opencv-310.jar

e libopencv_java310.dylib (for macOS)

e libopencv_java310.so (for Linux, such as Ubuntu)

e opencv_java310.dll (for Windows)

In this exercise, you will define a number of empty matrices, Mat, with different options so you can
understand the internal structure of the Mat class. The different classes I will cover are Mat, Size, CvType,
and Scalar.

import org.opencv.core.*;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
noLoop();

}

53

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

void draw() {
background(0);
Mat m1 = new Mat();
println(mi.dump());
Mat m2 = new Mat(3, 4, CvType.CV_8UC1, Scalar.all(0));
println(m2.dump());
Mat m3 = new Mat(3, 4, CvType.CV_8UC3, Scalar.all(255));
println(m3.dump());
Mat m4 = new Mat(new Size(4, 3), CvType.CV_8UC3, new Scalar(o, 255, 0));
println(m4.dump());

In this exercise, you have defined four matrices. The first matrix, m1, is an empty matrix without
dimension information. The method m1.dump () will return a printable form of the matrix content.
The second matrix, m2, has three rows and four columns, so the total number of elements is twelve. Each element
is a number of 8 bits unsigned (CvType.CV_8UC1). The values of the elements are 0 (Scalar.all(0)) when the
matrix is first created. The method m2.. dump () will display 12 elements of 0 in three rows by four columns.
The third matrix, m3, has the same dimensions as m2. Nevertheless, each element in m3 consists of three separate
numbers or channels (CvType.CV_8UC3). All the elements will have a value of 255 (Scalar.all(255)).
You use a different method to define the dimensions of the fourth matrix, m4. The new Size(4, 3) defines
anew object instance of Size with a width of 4 and a height of 3, which is equivalent to a matrix with three
rows and four columns. Each matrix element is the same with three channels. In m4, you initialize the matrix
element with a Scalar instance with the value (0, 255, 0).

Before moving on with the next exercise, let’s look at how the CvType class works. The data type
specification after CvType is as follows:

CV_[bits][type]C[channels]

Here is an explanation:
. [bits] indicates the number of bits to represent each data element. It can be 8, 16, or 32.
° [type] indicates the type of data representation. It can be unsigned, U; signed, S; or float, F.

e [channels] indicates the number of channels for each data element in the matrix.
Itcanbel, 2, 3, or 4.

In the next exercise, Chapter02_13, you will explore a number of methods in the Mat class to understand
the data type and representation of the matrix elements:

import org.opencv.core.*;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
noLoop();

void draw() {
background(0);
Mat m1 = new Mat(new Size(4, 3), CvType.CV _8UC3, new Scalar(o, 100, 0));
println(mi.dump());
println(mi.rows() + ", " + mi.cols());
println(mi.width() + ", " + mi.height());

54

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

println("Size: " + mi.size());
println("Dimension: " + mi.dims());
println("Number of elements: " + mi.total());
println("Element size: " + mi.elemSize());
println("Depth: " + mi.depth());

println("Number of channels: " + mi.channels());

You should obtain the following output from your Processing console window:

[o, 100, o0, o0, 1200, O, 0, 100, 0, 0, 100, O0;
0, 100, 0, 0, 100, O, 0, 100, 0, 0, 100, 0;
]

o, 100, o0, o0, 100, 0, 0, 100, 0, 0, 100, O
3, 4
4, 3
Size: 4x3

Dimension: 2

Number of elements: 12
Element size: 3

Depth: 0

Number of channels: 3

Most of the information is straightforward. The element size is the number of bytes that each matrix
element contains. The depth is the data type indicator of each channel. A value of 0 indicates the data type is
8-bit unsigned integers that you mainly use between Processing and OpenCV. Besides obtaining information
from an existing matrix, the next exercise, Chapter02_14, will show how you can retrieve information from
individual elements of a matrix, using the get () method:

import org.opencv.core.*;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
noLoop();

}

void draw() {
background(0);
Mat m1 = new Mat(new Size(4, 3), CvType.CV_8UC4, new Scalar(100, 200, 80, 255));
double [] result = mi.get(0, 0);
printArray(result);
byte [] data = new byte[mi.channels()];
mi.get(2, 2, data);
for (byte b : data) {
int i = (b < 0) ? b + 256 : b;
println(i);

Note in the previous code that the following statement uses the get () method to retrieve the data element
located at row 0 and column 0 in m1. The returned data will be stored in a double array named result.

double [] result = mi.get(o, 0);

55

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

You may discover that even though each data element in the matrix is defined as a byte (8 bits), the
result from the get () method with this syntax will always return a double array. The length of the double
array result is 4, which is the number of channels defined in CV_8UC4. If you define the data element as
CV_8UC1 (i.e., with only a single channel), the result returned will also be a double array with a length equal
to 1. The second half of the exercise demonstrates that you can also explicitly define a byte array called data
of length 4, use different syntax with the get () method to retrieve the data element from position row 2
column 2, and directly store it into the byte array data. Within the for loop, you also need to cater for the fact
that Java does not have an unsigned byte data type. For a negative number, you have to add 256 to convert it
to the original number that is greater than 127.

After the get () method, the next exercise, Chapter02_15, explores the put () method to change the content
of a data element in the matrix. It demonstrates two ways of using the put () method. The first one updates the
data element with a byte array. The second one updates the data element with a list of double numbers.

import org.opencv.core.*;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
noLoop();

void draw() {
background(0);
Mat m1 = new Mat(new Size(4, 3), CvType.CV_8UC4, new Scalar(100, 200, 80, 255));
byte [] datal = new byte[mi.channels()];
byte [] data2 = new byte[mi.channels()];
mi.get(1, 1, data1i);

data2[0] = datai[3];
dataz2[1] = datai[2];
data2[2] = datai[1];
data2[3] = datai[o0];

mi.put(1, 1, data2);
printArray(mi.get(1, 1));
mi.put(2, 2, 123, 234, 200, 100);
printArray(mi.get(2, 2));

The first part of this exercise is to retrieve the data element at row 1 column 1 into the data1 array.
You then reorder the datal array into the data2 array, which is the same length. The first put () method
stores the data2 array into the same data element. You then use the printArray() function to display
the individual channel information of that data element. In the second part of the exercise, you simply
list the four numbers for the four-channel values in the put() method. They will be stored at row 2
column 2, as shown in the second printArray() statement. The result from the console window of the
sketch is as follows:

[0] 255.0
[1] 80.0
[2] 200.0
[3] 100.0
[0] 123.0
[1] 234.0
[2] 200.0
[3] 100.0

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

Before ending this session, you are going to study another feature of the put() and get () functions,
which is to do bulk information update and retrieval. The feature is essential when writing code to convert
image data between Processing and OpenCV. In the upcoming exercise, Chapter02_ 16, you use a byte array
and a sequence of numbers that is of the size of the matrix for bulk update and retrieval.

import org.opencv.core.*;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
noLoop();

void draw() {
background(0);
Mat m1 = new Mat(new Size(3, 2), CvType.CV_8UC1);
for (int r=0; r<mi.rows(); r++) {
for (int c=0; c<mi.cols(); c++) {
mi.put(r, c, floor(random(100)));

}

}

println(mi.dump());

byte [] data = new byte[mi.rows()*m1.cols()*mi.channels()];
mi.get(0, 0, data);

printArray(data);

Mat m2 = new Mat(new Size(3, 2), CvType.CV_8UC2, Scalar.all(0));
m2.put(o, 0, 1, 2, 3, 4, 5, 6, 7, 8);
println(m2.dump());

The first part of the exercise defines a small matrix with two rows and three columns. Each data element is
a single-channel number stored in one byte. The for loop initializes the matrix m1 with random integer values
smaller than 100. You then define an empty byte array called data that has a size determined by the matrix
m1 size (i.e., 2 x 3 x 1 = 6). After the get () method, all the matrix content is dumped into the data array. In the
second part of the exercise, you define another matrix, m2, with two rows and three columns. Each data element
is a two-channel number pair, as shown in CV_8UC2. The put () method will store the number sequence into
the first four data elements of the array. The sequence will be in row order. The cells affected are (0, 0), (0, 1),
(0, 2), (1, 0). The first number inside the brackets is the row number, while the second number is the column.
The following statement will store (1, 2), (3, 4), (5, 6), (7, 8) into the locations at (0, 0), (0, 1), (0, 2), (1, 0):

mz’pUt(OJ o) 1) 2’ 3) 4) 5) 6’ 7) 8);

57

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

The remaining data elements will not be affected. Figure 2-10 shows the original and new matrices after
the operation.

Original matrix New matrix
0 1 2 0 1 2
0 0,0 (0,0) 0.0 0 (1,2) (34) (5.6)
1 0,0 (0,0 ©,0 1 (7.8) (0,0) (0,0

Figure 2-10. Operation of the matrix put() function

You may note that even though you specify one matrix element in the get() and put () functions, the
functions can affect the rest of the matrix content if the byte array you use covers more than the size of one
element. You will use this technique to convert data between Processing’s PImage and OpenCV’s Mat in the
next section.

Image Conversion Between Processing and OpenCV

This section is important for any applications that you want to use Processing with OpenCV. To use
OpenCYV, you have to convert the raw images that you create in the Processing environment, such as still
photos, digital videos, or live webcam feeds, to the Mat format that OpenCV can operate on. After you have
performed the OpenCV operations on the images, the last step is to convert them to the PImage format that
Processing can display in its window.

At the beginning of this chapter, you learned that an image in Processing is a two-dimensional array of
color pixels. The horizontal dimension is the width, and the vertical dimension is the height. Each pixel is of the
data type color. The internal representation of a color pixel is an integer of 32 bits. The hex notation of a color
instance is 0XAARRGGBB, corresponding to the alpha, red, green, and blue color channels. The range of value
for each color channel is from 0 to 255. To define the color yellow, for instance, you can write the following:

color yellow = color(255, 255, 0);

If you just specify three color channels, the default alpha value will be set to 255 automatically. You can
also write colors in hex notation like this:

color yellow = OXFFFFFF0O;

The following code segment will demonstrate the use of the color variable and the different ways to
retrieve the color channel values from it:

color col = color(200, 100, 40);
println("Color value as integer");
println(col);

println("RGB from bitwise operations");
println(col & 0x000000FF);

58

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

println((col & 0x0000FF00) >> 8);
println((col & 0x00FF0000) >> 16);
println("RGB from functions");
println(red(col));
println(green(col));
println(blue(col));

Processing internally does not store the image as a two-dimensional array. Instead, it is stored as a one-
dimensional integer array named pixels[]. The length of the array is the total number of pixels of the image
as defined by its width x height. For the pixel at row y and column x in the image, the index to the pixels[]
array is as follows:

index = y * width + x;

For example, when you have an image with just two rows and three columns as shown here, the two-
dimensional array is as follows:

0 (0, 0) 1(0,1) 2(0,2)
3(1,0) 4(1,1) 5(1,2)

The two numbers inside the parentheses are the column and row indices. The single number outside
the parentheses is the index in the one-dimensional array, pixels[], storing the image in Processing.

0(0, 0) 1(0,1) 2(0,2) 3(1,0) 4(1,1) 5(1,2)

Within the pixels[] array, each cell is the color information of the pixel, stored as an integer with the
format 0OXAARRGGBB. Each integer consists of 4 bytes. Each byte within the integer stores a separate color
channel for the pixel in ARGB order.

AARRGGBB AARRGGBB AARRGGBB AARRGGBB AARRGGBB AARRGGBB

In OpenCV, the color pixel formats are more flexible, as shown in the previous section. To make
OpenCV compatible with Processing, you will stick to the CV_8UC4 format so that you can have the same
amount of storage to exchange between Processing and OpenCV. Nevertheless, a number of OpenCV
functions rely on the use of a grayscale image (i.e., CV_8UC1) and a three-channel color image, such as
(Cv_8UC3) in BGR order. In this case, let’s build in the flexibility to enable conversion into three channels and
a single-channel color image.

Taking the same example with two rows and three columns you used for Processing, the OpenCV
representation is as follows:

BB GG RRAA BB GG RRAA BB GG RR AA BB GG RR AA BB GG RR AA BB GG RR AA

The total number of cells iswidth x height x channels, which is 24 in this example.

The two-dimensional image matrix will be stored as a linear array of 24 bytes, or 48 hex characters.
Four consecutive bytes make up a pixel with a channel order of BGRA. The byte array will be the
internal representation of the image matrix for OpenCV.

Now you have two arrays. The first one is an integer array of size (width x height) from Processing; the
second one is a byte array of size (width x height x channels) from OpenCV. The problem is how you can
perform conversion between the two of them. The Java ByteBuffer and IntBuffer classes are the solution
to the problem.

59

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

From Processing to OpenCV

You need to have a source image in the Processing environment. You will use the Capture class to retrieve a

video frame for this exercise, Chapter02_17. In each run of the draw() function, you try to convert the frame
into an OpenCV Mat. To verify whether the conversion is valid, the Processing sketch will allow users to click
anywhere within the video frame to display its pixel color in the upper-right corner of the window.

import processing.video.*;
import org.opencv.core.*;
import java.nio.ByteBuffer;

Capture cap;
String colStr;
Mat fm;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width, height);
cap.start();
frameRate(30);
colStr = "";
fm = new Mat();

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
fm = imgToMat(cap);
image(cap, 0, 0);
text(nf(round(frameRate), 2), 10, 20);
text(colStr, 550, 20);
}

Mat imgToMat(PImage m) {
Mat f = new Mat(new Size(m.width, m.height), CvType.CV_8UC4,
Scalar.all(0));
ByteBuffer b = ByteBuffer.allocate(f.rows()*f.cols()*f.channels());
b.asIntBuffer().put(m.pixels);
b.rewind();
f.put(0, 0, b.array());
return f;

}

void mouseClicked() {
int x = constrain(mouseX, 0, width-1);
int y = constrain(mouseY, 0, height-1);
double [] px = fm.get(y, x);
colStr = nf(round((float)px[1]), 3) + ", " +
nf(round((float)px[2]), 3) + ", " +
nf(round((float)px[3]), 3);

60

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

There are three global variables. The first one, cap, is the video capture object. The second one, fm,
is the temporary OpenCV Mat storing the current frame of the webcam image. The third one is a String
variable, colStr, keeping the RGB color value of a pixel where the user clicked. Within the draw() function,
the program passes the current webcam image, cap, to the function imgToMat (). The function returns an
OpenCV Mat to be stored in the variable fm. Whenever the user clicks the screen, the callback function
mouseClicked() will obtain the pixel color data from the fm object by using the get(y, x) function. It will
then return a double array called px[] that keeps the color pixel information in ARGB order. Note that you
have not performed the channel reordering process to change from ARGB order in Processing to BGRA order
in OpenCV.

The core of the program is the imgToMat () function. It accepts an input parameter of type PImage. The
first statement defines a temporary OpenCV Mat f with the same size as the input, m. The second statement
creates a ByteBuffer variable b with the size 640 x 480 x 4 = 1228800. It is the key buffer to exchange data
between the Processing PImage and the OpenCV Mat. The next statement treats ByteBuffer as IntBuffer
and puts the integer array m. pixels to itself as the content. After the put action, you rewind the buffer b so
that the pointer will go back to its beginning for subsequent access. The last step is to put the content of the
byte array buffer b to the Mat f with the following statement:

f.PUt(o) o, b-afra)/())§

Figure 2-11 shows a sample screenshot of the test run of this Processing sketch to convert from a
Processing video capture image to OpenCV. In the next section, you will go in the opposite direction to
convert an OpenCV matrix to a Processing image.

Fie L1 Shesch Dubup Took Melp

t processing.video.*;
GFT OFE.GPENCY.Core.*]
import java.nio.ByteBuffer;

Capture cap;
5 eolStr;
 Hot fn;

Jid setupl) {

size(g40, 486);

Systen. loadLibrary{Core. NATIVE_LTBRARY_NAME) ;
i ight);

cap = now Copture{this, widtn,
cap.atare();

froneRate(30) ;

colstr = "}

fm = new Hot():

oid dram(}) {
it (leap. available())

Figure 2-11. Conversion from Processing to OpenCV

61

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

From OpenCV to Processing

In the next exercise, Chapter02_18, you will simply define a four-channel OpenCV matrix of solid color and
convert it directly to a Processing PImage for display.

import org.opencv.core.*;
import java.nio.ByteBuffer;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
noLoop();

}

void draw() {
background(0);
Mat fm = new Mat(new Size(width, height), CvType.CV_8UC4, new Scalar(255, 255, 200, 0));
PImage img = matToImg(fm);
image(img, 0, 0);

}

PImage matToImg(Mat m) {
PImage im = createImage(m.cols(), m.rows(), ARGB);
ByteBuffer b = ByteBuffer.allocate(m.rows()*m.cols()*m.channels());
m.get(0, 0, b.array());
b.rewind();
b.asIntBuffer().get(im.pixels);
im.updatePixels();
return im;

The core function for this program is matToImg(). It takes an OpenCV Mat as the only parameter and
outputs a Processing PImage as the return value. The logic is just the opposite as in the previous section. It
again makes use of a ByteBuffer class as a temporary storage location. The first statement of the function
creates a temporary PImage variable, im, of the same size as the input Mat parameter m. The second statement
defines the temporary storage of 1,228,800 bytes. The third statement uses the get () method of Mat to load
the content into the ByteBuffer b. The fourth statement rewinds the ByteBuffer after loading. The next
statement treats the ByteBuffer as IntBuffer and transfers its content as an integer array to the pixels
of the temporary PImage variable im. You then do a updatePixels() for the PImage to refresh its content
and return it to the caller. The result of this sketch will be a window filled with orange color as defined in
Scalar(255, 255, 200, 0) in ARGB order.

In the next exercise, Chapter02_19, you will do a video capture in OpenCV and convert the Mat picture
frame into a Processing PImage for display. There are a few new features that I will cover in this exercise. The
first one is the videoio (video input-output) module in OpenCV that performs the video capture task. The
second one is the imgproc (image-processing) module that helps you to perform color conversion. You use
the same matToImg() function as in the previous exercise.

import org.opencv.core.*;

import org.opencv.videoio.*;
import org.opencv.imgproc.*;
import java.nio.ByteBuffer;

62

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

VideoCapture cap;
Mat fm;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
cap = new VideoCapture();
cap.set(Videoio.CAP_PROP_FRAME_WIDTH, width);
cap.set(Videoio.CAP_PROP_FRAME_HEIGHT, height);
cap.open(Videoio.CAP_ANY);
fm = new Mat();
frameRate(30);

}

void draw() {
background(0);
Mat tmp = new Mat();
cap.read(tmp);
Imgproc.cvtColor(tmp, fm, Imgproc.COLOR _BGR2RGBA);
PImage img = matToImg(fm);
image(img, 0, 0);
text(nf(round(frameRate), 2), 10, 20);
tmp.release();

}

PImage matToImg(Mat m) {
PImage im = createImage(m.cols(), m.rows(), ARGB);
ByteBuffer b = ByteBuffer.allocate(m.rows()*m.cols()*m.channels());
m.get(0, 0, b.array());
b.rewind();
b.asIntBuffer().get(im.pixels);
im.updatePixels();
return im;

The first step is to import all the new modules from OpenCV (i.e., org.opencv.videoio.* and
org.opencv.imgproc.*) that you are going to use in this exercise. The new statements inside the setup()
function are for the VideoCapture object instance cap. It needs the definitions for its capture frame size
and the default camera available in the computer, Videoio.CAP_ANY. Inside the draw() function, the
cap.read(tmp) statement grabs and retrieves the new video frame to a temporary Mat tmp. Unfortunately,
the number of color channels in tmp is only three and arranged in BGR order. If you're interested, you can
try to display the number of channels by using its channels () method. The next statement uses the imgproc
module to convert the color space from BGR to RGBA and keep the new image in the matrix variable fm:

Imgproc.cvtColor(tmp, fm, Imgproc.COLOR _BGR2RGBA);
If you check out the Javadoc for OpenCV 3.1.0 (http://docs.opencv.org/java/3.1.0/), you actually
will not find a color space conversion from BGR to ARGB directly. In this exercise, you can settle and see how

the webcam image will look. You will learn how to deal with this in the next exercise. Figure 2-12 shows this
Processing sketch.

63

http://docs.opencv.org/java/3.1.0/

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

* java.nio.ByteBuffer;

l videoCapture cap;
q Mot fn;

id setup{} {

size(g4e, 486);

System, loadLibrary{Core. NATIVE_LTBRARY _NAME) 3
cap = new VideoCapture();
cap.set{Videoio.CAP_PROP_FRAME_WIDTH, dth);
cap.set{Vvidecio.CAP_PROP_FRAME_HEIGHT, hoightd;
cap.open(Videoio.CAP_ANY);

fm o= new Hat():

franeRate(30);

id dram{} {

background(8);

Hat tmp = new Nat{);

cap.read(tmp) ;

Taansas curfalasften Fa Tesneas C01AD QACAGARAY -

Figure 2-12. Conversion from OpenCV to Processing

As expected, the color is not natural because of the wrong order of the color channels. You'll fix it in the
next exercise, Chapter02_20, by rearranging the order of the color channels:

import org.opencv.core.*;

import org.opencv.videoio.*;
import org.opencv.imgproc.*;
import java.nio.ByteBuffer;
import java.util.Arraylist;

VideoCapture cap;
Mat fm;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new VideoCapture();
cap.set(Videoio.CAP_PROP_FRAME_WIDTH, width);
cap.set(Videoio.CAP_PROP_FRAME_HEIGHT, height);
cap.open(Videoio.CAP_ANY);
fm = new Mat();
frameRate(30);

}

void draw() {
background(0);
Mat tmp = new Mat();
Mat src = new Mat();
cap.read(tmp);
Imgproc.cvtColor(tmp, src, Imgproc.COLOR_BGR2RGBA);
fm = src.clone();

64

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

Arraylist<Mat> srclList = new ArraylList<Mat>();
Arraylist<Mat> dstlList = new ArraylList<Mat>();
Core.split(src, srclist);

Core.split(fm, dstList);
Core.mixChannels(srclList, dstlList, new MatOfInt(o, 1, 1, 2, 2, 3, 3, 0));
Core.merge(dstList, fm);

PImage img = matToImg(fm);

image(img, 0, 0);

text(nf(round(frameRate), 2), 10, 20);
src.release();

tmp.release();

}

PImage matToImg(Mat m) {
PImage im = createImage(m.cols(), m.rows(), ARGB);
ByteBuffer b = ByteBuffer.allocate(m.rows()*m.cols()*m.channels());
m.get(0, 0, b.array());
b.rewind();
b.asIntBuffer().get(im.pixels);
im.updatePixels();
return im;

The new functions you use in this exercise to rearrange the color channels are split(), mixChannels(),
and merge(). You also use the ArraylList class in Java to handle the individual color channels for the image.
Inside the draw() function, after the function Imgproc.cvtColor() converts the BGR color matrix to the
RGBA color matrix, src, you plan to copy the Mat src to the destination Mat fm, with the color channels
rearranged in the ARGB order. First, you duplicate the src matrix to fm. Second, you split the source
Mat srcinto anArraylist of four Mat, srcList. Each member of the list is a Mat with data type CV_8UC1,
corresponding to a single-color channel. Third, you split the destination Mat fm into another ArraylList of
Mat, named dstList. Fourth, the function Core.mixChannels () rearranges the order of the color channels,
using the information specified in the MatOfInt parameter. MatOfInt is a subclass of Mat. It is similar to
avector in C++. The MatOfInt instance in this exercise is a matrix with one row and eight columns. The
content of this matrix is four pairs of numbers, mapping the source channel position to the destination
channel position. The original color channel order in src and srcList is RGBA. The destination color
channel order in fmand dstList is ARGB.

o Source: R(0), G(1), B(2), A(3)
e Destination: A(0), R(1), G(2), B(3)

Source channel 0 maps to destination channel 1 for red. Source channel 1 maps to destination channel 2
for green. Source channel 2 maps to destination 3 for blue. Source channel 3 maps to destination 0 for alpha.
This is exactly what the new MatOfInt(o, 1, 1, 2, 2, 3, 3, 0) command specifies. After the
Core.mixChannels() function, the ArrayList called dstList contains the four single-channel matrices
with the correct color order. The next function, Core.merge(), will combine the four matrices into a single
matrix with four color channels in ARGB order. The program then applies the matToImg() function to fm and
returns a PImage instance to img, which is shown in the window through the image() function. Figure 2-13
shows how to run the sketch in Processing.

65

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

O Chaptetiz 16

T Org.opency.core.*;
t org.opency.videsio.*;

org.opency.imgproc.®;
© java.mio.Byt
t java.util.

VidecCapture cap;
Nat fn;

Y void setup() {
size(648, 488);
System. loadLibrary(Core.NATIVE _LIBRARY _NAME);
cap = new VideoCapture();
cap.set{Videoio. CAP_PROP_FRAME_WIDTH, w
cap.set {Videoio. CAP_PROP_FRAME_HEIGHT,
cap.open{Videoia. CAP_ANY);
fm = new Hat();
franeRate(30);

f void draw() {
background (8) ;
Hat tap = now Nat();

Figure 2-13. Conversion from OpenCV to Processing with correct color channel order

For the last exercise in this chapter, Chapter02_21, you will encapsulate the conversion between Processing
and OpenCV in a Java class so that you do not need to explicitly invoke them in subsequent exercises in the book.
Since the conversion functions ride on the class PImage in Processing, it is convenient to extend the PImage class
to define a subclass of it. In the exercise, you name the new class CVImage. In the Processing IDE, you can add a
new tab to create a new class, as shown in Figure 2-14. Name the new tab CVImage.

Chapterd2_21 | Processing 3.2.3

2
size(640, %D
System.lo

pravious Tab age. P TIVE_LIBRARY_NAWE) ;
Mext Tab TH—
void draw() sketch_170613b

backgrouﬂd?@);
1

Figure 2-14. Adding a new tab to create a class in Processing

66

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

The content of the class CVImage is as follows:

import org.opencv.core.*;
import org.opencv.imgproc.*;
import java.nio.ByteBuffer;
import java.util.Arraylist;

public class CVImage extends PImage {
final private MatOfInt BGRA2ARGB = new MatOfInt(o, 3, 1, 2, 2, 1, 3, 0);
final private MatOfInt ARGB2BGRA = new MatOfInt(o, 3, 1, 2, 2, 1, 3, 0);
// cvIimg - OpenCV Mat in BGRA format
// pixCnt - number of bytes in the image
private Mat cvImg;
private int pixCnt;

public CVImage(int w, int h) {
super(w, h, ARGB);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
pixCnt = w*h*4;
cvImg = new Mat(new Size(w, h), CvType.CV_8UC4, Scalar.all(0));
}

public void copyTo() {
// Copy from the PImage pixels array to the Mat cvImg
Mat tmp = new Mat(new Size(this.width, this.height), CvType.CV_8UC4, Scalar.all(0));
ByteBuffer b = ByteBuffer.allocate(pixCnt);
b.asIntBuffer().put(this.pixels);
b.rewind();
tmp.put(0, 0, b.array());
cvImg = ARGBTOBGRA(tmp);
tmp.release();

}

public void copyTo(PImage i) {
// Copy from an external PImage to here
if (i.width != this.width || i.height != this.height) {
println("Size not identical");
return;
}
PApplet.arrayCopy(i.pixels, this.pixels);
this.updatePixels();
copyTo();
}

public void copyTo(Mat m) {
// Copy from an external Mat to both the Mat cvImg and PImage pixels array
if (m.rows() != this.height || m.cols() != this.width) {
println("Size not identical");
return;

}

67

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

Mat out = new Mat(cvImg.size(), cvImg.type(), Scalar.all(0));
switch (m.channels()) {
case 1:
// Greyscale image
Imgproc.cvtColor(m, cvImg, Imgproc.COLOR_GRAY2BGRA);
break;
case 3:
// 3 channels colour image BGR
Imgproc.cvtColor(m, cvImg, Imgproc.COLOR BGR2BGRA);
break;
case 4:
// 4 channels colour image BGRA
m.copyTo(cvImg);
break;
default:
println("Invalid number of channels
return;

+ m.channels());

}
out = BGRATOARGB(cvImg);

ByteBuffer b = ByteBuffer.allocate(pixCnt);
out.get(0, 0, b.array());

b.rewind();
b.asIntBuffer().get(this.pixels);
this.updatePixels();

out.release();

}

private Mat BGRATOARGB(Mat m) {
Mat tmp = new Mat(m.size(), CvType.CV_8UC4, Scalar.all(0));
Arraylist<Mat> in = new ArraylList<Mat>();
Arraylist<Mat> out = new ArraylList<Mat>();
Core.split(m, in);
Core.split(tmp, out);
Core.mixChannels(in, out, BGRA2ARGB);
Core.merge(out, tmp);
return tmp;

}

private Mat ARGBToBGRA(Mat m) {
Mat tmp = new Mat(m.size(), CvType.CV_8UC4, Scalar.all(0));
ArrayList<Mat> in = new ArraylList<Mat>();
Arraylist<Mat> out = new ArraylList<Mat>();
Core.split(m, in);
Core.split(tmp, out);
Core.mixChannels(in, out, ARGB2BGRA);
Core.merge(out, tmp);
return tmp;

68

CHAPTER 2 * IMAGE SOURCES AND REPRESENTATIONS

public Mat getBGRA() {
// Get a copy of the Mat cvImg
Mat mat = cvImg.clone();
return mat;

}

public Mat getBGR() {
// Get a 3 channels Mat in BGR
Mat mat = new Mat(cvImg.size(), CvType.CV_8UC3, Scalar.all(0));
Imgproc.cvtColor(cvImg, mat, Imgproc.COLOR BGRA2BGR);
return mat;

}

public Mat getGrey() {
// Get a greyscale copy of the image
Mat out = new Mat(cvImg.size(), CvType.CV_8UC1, Scalar.all(0));
Imgproc.cvtColor(cvImg, out, Imgproc.COLOR_BGRA2GRAY);
return out;
}
}

The most important part of the class definition is the Mat variable cvImg. It maintains a copy of the
OpenCV matrix with type CV_8UC4 and a color channel order in BGRA. There are three versions of the
copyTo() method. The first one without a parameter copies the current local pixels array to the OpenCV
matrix cvImg. The second one with a PImage parameter copies the input parameter pixels array to the local
PImage pixels array and updates cvImg as well. The third one with a Mat parameter is the most complex one.
Depending on the number of channels of the input parameter, the method first converts the input Mat into
the standard four-color channel in BGRA format to store in cvImg, with the use of the Imgproc.cvtColor()
function. At the same time, with the use of a ByteBuffer b, it copies the image content to the internal
pixels array with ARGB color channel order for use in Processing. The remaining three methods return
the different types of OpenCV Mat to the caller. The getGrey() method returns a grayscale image with type
CV_8UC1. The getBGR () method returns a color image with the OpenCV standard three-color channel in BGR
order. The getBGRA() method returns a color image Mat stored as cvImg with four channels in BGRA order.

To demonstrate its usage, the main program will use the video capture class to start the webcam image
stream and obtain a grayscale image from the CVImage object instance, img. The grayscale image is copied
back to the instance for display. The final display in the Processing window will be a grayscale version of the
original webcam image.

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(640, 480);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
cap = new Capture(this, width, height);
cap.start();
img = new CVImage(cap.width, cap.height);
frameRate(30);

69

CHAPTER 2 © IMAGE SOURCES AND REPRESENTATIONS

void draw() {

if (!cap.available())
return;

background(0);
cap.read();
img.copyTo(cap);
Mat grey = img.getGrey();
img.copyTo(grey);
image(img, 0, 0);
text(nf(round(frameRate), 2), 10, 20);
grey.release();

Let’s add one more function to the previous code before concluding the chapter. You will often want to
save the content of an image for later use. To do that, you can use the save() method in the PImage class in
Processing. The parameter for the save() method is the full path name of the image file you want to save. It
can accept the TARGA, TIFF, JPEG, and PNG formats. The following code will save the image with the name
screenshot. jpg to the data folder of the sketch whenever the user presses the left mouse button:

void mousePressed() {
img.save(dataPath("screenshot.jpg"));
}

Conclusion

This chapter explained the different image representations in both Processing and OpenCV. By following
the exercises, you have acquired the essential skills to create and manipulate images in the Processing
environment. You learned how to convert images between Processing and OpenCV. The class defined in the
last exercise will form the base of the book for you to learn OpenCV and Processing without going back into
the tedious details related to format conversion. In the next chapter, you will start to manipulate individual
pixels of images to generate creative pictures.

70

CHAPTER 3

Pixel-Based Manipulations

This chapter introduces the different ways to manipulate individual pixel color values and thus create
interesting effects for images. You will learn how to work on individual pixels in both algorithmic and
interactive ways. In this chapter, you will focus on changing only the color value of the pixels, not their
positions and total numbers within an image. Before you work on the technical details of image processing,
the chapter will also introduce the basic graphical properties commonly used in art and design. This chapter
will cover the following topics:

e Visual properties

e Pixel color manipulation

e Randomness

e Drawing with existing images

¢ Blending multiple images

Visual Properties

In visual art and design, you study how to create visual materials and create compositions of them. For any
visual material, you can often describe its properties with the following:

e Position

e Size

e Shape

e Orientation
e Color

e Value

In the classic book Semiology of Graphics, Jacque Bertin used the term retinal variables to describe
the similar properties of visual elements. Let’s go through these properties to see whether any one of them
relates to the discussion of pixel color manipulation.

© Bryan WC Chung 2017 71
B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_3

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Position

Each pixel in an image has a position. As shown in Figure 3-1, the origin of measurement is in the top-left
corner, instead of the bottom-left corner as you might have learned in school. The horizontal position is the
x-axis, with the value increasing as it goes toward the right side. The vertical position is the y-axis, with the
value increasing as it goes toward the bottom.

0,0

120, 380

620, 480

Figure 3-1. Pixel position in an image

You can change the pixel color information according to its position within an image to achieve a
gradation effect. Figure 3-2 shows a typical example.

Figure 3-2. Gradation effect

Size

A pixel does not have any size information. To be precise, each pixel is of the size 1 by 1. You can imagine
increasing the size of a pixel by changing the adjacent pixels around it to the same color. This is the mosaic
effect you are probably familiar with, as shown in Figure 3-3.

72

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Figure 3-3. Mosaic effect

Shape

It is difficult to describe the shape of a pixel. In fact, since its size is only one pixel, it is meaningless to
describe the shape of a pixel. Conceptually, in a rectangular grid representation, you can consider a pixel as
a tiny square or a tiny circle.

Orientation

If a pixel has no definite shape, you cannot describe its orientation (i.e., the amount of rotation on a
two-dimensional plane). You can, however, describe the orientation/rotation of a digital image as a whole.
In this case, you are transforming the position of the pixels in the image, which will be the topics of the next
chapter.

Color

The color information of a pixel is the main concern in this chapter. You are going to see in different ways
how you can modify the color. You can use color to communicate information in an image. If two images
have two different solid colors, you can easily conclude that they are different. As shown in Figure 3-4, you
cannot tell instantly which one is “higher” or “lower” if you choose the colors arbitrarily.

Figure 3-4. Color difference

73

CHAPTER 3 PIXEL-BASED MANIPULATIONS

Value

The value is sometimes referred to as the intensity or brightness of the color. This makes more sense if you
just use a grayscale image, as shown in Figure 3-5. Unlike the arbitrary use of colors, it creates a comparison
to suggest order information. For example, using dark and light gray may suggest a weight comparison to
indicate that one is heavier or lighter. In Processing, besides using RGB as the default color representation,
you can use HSB (hue, saturation, brightness). In this case, if you keep the hue and saturation constant and
change only the brightness, you can create a comparison that suggests order.

Figure 3-5. Grayscale image with value comparison

Pixel Color Manipulation

In the previous chapter, you used the get () and set() methods of PImage in Processing to obtain and
update pixel color information. The PImage object has an internal array to store the color information for
each pixel. In this chapter, I will introduce a direct way to update the internal array, pixels[], of the PImage
object. In the first exercise, Chapter03_01, the sketch just creates a solid color image by changing all the
pixels to one color using the pixels[] array.

PImage img;

void setup() {
size(750, 750);
background(0);
img = createImage(width, height, ARGB);
noLoop();
}

void draw() {
img.loadPixels();
color orange = color(255, 160, 0);
for (int i=0; i<img.pixels.length; i++) {
img.pixels[i] = orange;

img.updatePixels();
image(img, 0, 0);

74

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Note that the code uses a PImage object instance called img. It is created using the createImage()
function in that setup. You also use the noLoop () function to run the draw() function once, without looping.
In the draw() function, you use the loadPixels() method to load the image data into the pixels array
for img, and you use a updatePixels () method to make the color change after updating the pixels array
elements in the for loop. In the for loop, you perform repetition with index i from 0 until the length of the
pixels array. Each pixel will have the same color as defined in the variable, orange. The pixels[] array is an
integer array with a size equal towidth x height of the PImage (i.e., the number of pixels in the image). Each
pixel is a 32-bit integer storing the four color channels in ARGB format. Instead of writing an integer directly
for a color, you can use the color () function to specify a color with four numbers as color(red, green,
blue, alpha).By default, each of the red, green, blue, and alpha values is a number in the range of 0 to 255.

Color Change with Pixel Position

In the next exercise, Chapter03_02, you will take into account the pixel position to alter its color. The
resulting image it creates will be the gradation effect you learned about in the “Visual Properties” section.

PImage img;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
noLoop();

void draw() {
background(0);
img.loadPixels();
float xStep = 256.0/img.width;
float yStep = 256.0/img.height;
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
img.pixels[rows+x] = color(x*xStep, 0, y*yStep);

}

img.updatePixels();
image(img, 0, 0);

75

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Figure 3-6 shows the result of running the Processing sketch.

® T - x

i Plrage 1ug;

id setup() {

size(750, 758);

img = createlnage(width, height, ARGE);
noLoop();

id dram{}) {
nd(@);

adPixels();
xSTep = 256.8/Img.wid

int rows = y*
for (int x=0; x<ing.width) xee) {
img.pixels[rows+x] = color(x*xSvep, @, y*yStep);

1
img.updatePicels();
imoge(ing, @, 0);

Figure 3-6. Gradation image in two colors, red and blue

In the previous exercise, you changed the color RGB components according to the linear change of
the position of the pixel. You can, however, try another, nonlinear approach to see the differences. In the
following exercise, Chapter03_03, you can see a demonstration of this approach:

PImage img;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
noLoop();

}

void draw() {
background(0);
img.loadPixels();
float colStep = 256.0/colFunc(img.height);
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
color col = color(colFunc(y)*colStep);
for (int x=0; x<img.width; x++) {
img.pixels[rows+x] = col;
}
}
img.updatePixels();
image(img, 0, 0);

}

float colFunc(float v) {
return v;
}

76

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

In the first version, you use a linear color gradation, which was actually a grayscale gradation in the
y-axis. For the sake of flexibility, you use a separate function called colFunc() to calculate the relation
between the color change and the y position of the pixel. In the first run, you just return the y position value
as the output from the function. In the draw() function, you define the variable colStep by dividing by 256,
which is the maximum value for grayscale with colFunc(img.height), the maximum value from colFunc().
In each step of the for loop of the y-axis, the color variable col is calculated by multiplying colFunc(y) with
the colStep value. In this case, the minimum value for col is 0 when the y position is 0, and the maximum
value for col is 255 when the y position is img.height - 1.Figure 3-7 shows the result of running the
Processing sketch.

[L

noLoop();

id draw() {
ckground(@);
adPizels();
leat colStep = 256.0/colfunclimg.neigntl;
or (int ym; yeimg.height; yes) {
int rows = y*img.width;
lor eol = coler{colFunc{y) colStep);
for (int x28; xcimg.width; xee) {
iag.pixels[rowsex] = col;
}
}
img.updatePixels();
imege(ing, @, 0);

float colfunc(flons v) {
eturn v;

Figure 3-7. Grayscale gradation with linear function

In the second version, you can modify the colFunc() function by returning, for example, the square of v,
as shown here:

float colFunc(float v) {
return v*v;

}

Figure 3-8 shows the result of this version with the nonlinear change of grayscale according to the
y position.

77

CHAPTER 3 PIXEL-BASED MANIPULATIONS

img = createlnage{width, neight

noLoop();

adPixels();
colStep = 256.8/colFunc(img.neight);
1 y=0; yeimgoheightl yeed {
nt rows = y*img.width;
col = color{colFunc{y)*colStep);
for x=0; x<ing.wideng xes) {

dag.pizels[rows+x] = col;
¥

s

img.updatePixels();

image(ing, @, @);

at ealFunc{floss v) {
Tars Ve

Figure 3-8. Grayscale gradation with nonlinear change, y-square

In the last version of this exercise, you replace the colFunc() function with a more general
mathematical function called pow() with a non-integer value. You can try, for example, taking the parameter
v to the power of 1.5. The new colFunc() definition is as follows:

float colFunc(float v) {
return (float) Math.pow(v, 1.5);

}

Figure 3-9 is included here so you can compare it with the last two.

O chaei il

img = createlnage{width, neight

noloop ()3

colStep = 256.8/colFunc(img.neight);
1t y=0; yeimgoheight] yeed {
nt rows = y*img.uioth;
col = color({colFunc(y)*colStep);
for (x=0; x<ing.wideng xes)
dmg.pizels[rowssx] = eol
¥
g
img.updatePixels();
image(ing, @, @);

st colFunc{floss v)
eturn (Tleat) Math.pew(v, 1.5);

Figure 3-9. Grayscale gradation with nonlinear change, y to the power of 1.5

78

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Color Change with Pixel Distance

In addition to changing the color value according to the pixel’s position, you can change the color value
according to the pixel’s distance from another position on the screen. In the following exercises, you will
experiment with different distance functions and positions and also see the results. First, try to compare the
distance of a pixel from the center of the image with this exercise, Chapter03_04:

PImage img;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
noLoop();

}

void draw() {
background(0);
img.loadPixels();
float colStep = 256.0/max(img.width/2, img.height/2);
PVector ctr = new PVector(img.width/2, img.height/2);
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
float d = distance(ctr, new PVector(x, y));
color col = color(d*colStep, 0, 255-d*colStep);
img.pixels[rows+x] = col;

}
img.updatePixels();
image(img, 0, 0);

}

float distance(PVector p1, PVector p2) {
float d = abs(p1l.x-p2.x) + abs(pl.y-p2.y);
return d;

}

Note the use of a custom distance function in the program called distance(). It has two parameters of
type PVector (https://processing.org/reference/PVector.html), which is a useful class in Processing
to simplify the use of vector calculation. A PVector has three attributes: x, y, and z. These correspond to the
position in three-dimensional space. For this exercise, you only use the x and y in 2D graphics. This version
of the distance function uses the sum of the absolute values of the differences between the x and y positions
of the two points. In the draw() function, you calculate the distance of every pixel from the center of the
image and use it to compute the red and blue color components. Figure 3-10 shows the result of running the
Processing sketch.

79

https://processing.org/reference/PVector.html

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

8- - 213 0 Chapeas 04 - x

Fie D81 Shesch Dubup Took Help

il Pimage img;

void setup() {
size(758, 758);
img = createlnmage{width, nedight, ARGE);
noloop();

void dram{) {
background(e);
img. loadPizels();
float colStep = 256.9/max(img.width/2, ing.n
tor etr = new Plector (img.widehf2, fng.h
(int y=0; ye<img.n yes)
t rows = y*img.w
for (int xs0) x<img.width) xee) {
d = distance(ctr, new PVector(x, ¥));
col = color{d*colStep, 0, 255-d"colStep);
iag.pizelsrows+x] = col;
}
1
img.updatePixels();
image(ing, @, 8);
1

Figure 3-10. Color change with distance from center

You can modify the distance() function to use the more common Euclidean distance to test the result.
The following is the new definition of the distance() function:

float distance(PVector p1, PVector p2) {
float d = p1.dist(p2);
return d;

}

It employs the built-in dist() method of PVector to calculate the distance between two points in
two-dimensional space. The resulting image (shown in Figure 3-11) will resemble a circle instead of a
diamond shape.

® i @ craprerci = 7% |

Fde D1 Shesch Dubup Took ey

e fug;

void setup() {
size(758, 758);
img = createlmage{width, neight, ARGE);
noLoop(};

vaid dram{) {
background(e@);
img.loadPizels();
A colstep = 256.0/max(img.
tor eer = new Plector(d

or (int y=0} yoimg.hoighty yes)
int rows = y*img.widt
for (int w0 x<ing.width] xes) {
d = distance(ectr, new PVecter(x, ¥));
¢ ol = color{d*colStep, 0, 255-d*colStep);
ag.oirels[rowssx] = col}

mg.updatePicels()}
image(ing, @, 8);
1

Figure 3-11. Color change with distance from center

80

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

In the next exercise, Chapter03 05, you enhance the computation within the draw() function so that
you can make use of some nice features in Processing to simplify your code:

PImage img;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
noLoop();

}

void draw() {
background(0);
img.loadPixels();
float distMax = max(img.width/2, img.height/2);
PVector ctr = new PVector(img.width/2, img.height/2);
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
float d = distance(ctr, new PVector(x, y));
float ¢ = map(d, 0, distMax, 0, 255);
color col = color(c, 0, 255-C);
img.pixels[rows+x] = col;
}
}
img.updatePixels();
image(img, 0, 0);

}

float distance(PVector p1, PVector p2) {
float d = p1.dist(p2);
return d;

}

The new feature used is the map() function. It takes in the variable d in the example and maps it
from the source range of 0 to distMax to the destination range of 0 to 255. It simplifies the linear mapping
calculation for a lot of applications,

A quick variation of the program is to introduce interactivity to the variable ctr. Imagine if it could
follow the movement of the mouse; you could generate an interactive version of it by using the mouseX and
mouseY variables.

PImage img;
float distMax;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
img.loadPixels();
distMax = max(img.width, img.height);
}

81

CHAPTER 3 PIXEL-BASED MANIPULATIONS

void draw() {
background(0);
PVector ctr = new PVector(mouseX, mouseY);
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
float d = distance(ctr, new PVector(x, y));
float ¢ = map(d, 0, distMax, 0, 255);
color col = color(c, 0, 255-c);
img.pixels[rows+x] = col;

}
img.updatePixels();

image(img, 0, 0);

float distance(PVector p1, PVector p2) {
float d = p1.dist(p2);
return d;

}

Color Change with Trigonometric Functions

Trigonometric functions refer to the sine, cosine, and tangent functions you learned about in school.

The sine and cosine functions have a periodic nature in terms of their output values. Processing has the
built-in sin() and cos() functions adopted from Java. They have one input value, measured in radians.

The normal range of the input value is within the range of -PI to PI to complete a cycle. The output range

of both functions is within the range of -1 to 1. In the next exercise, Chapter03_07, you map the input range
(i.e., the distance between a pixel and the mouse position) to between -PI and PI and, at the same time, map
the output range between -1 to 1 to the color range of 0 to 255.

PImage img;
float num;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
img.loadPixels();
num = 8;

}

void draw() {
background(0);
PVector mouse = new PVector(mouseX, mouseY);
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
PVector dist = distance(mouse, new PVector(x, y));
float xRange = map(dist.x, -img.width, img.width, -PI*num, PI*num);
float yRange = map(dist.y, -img.height, img.height, -PI*num, PI*num);
float xCol = map(cos(xRange), -1, 1, 0, 255);

82

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

float yCol = map(sin(yRange), -1, 1, 0, 255);
color col = color(xCol, 0, yCol);
img.pixels[rows+x] = col;

}
img.updatePixels();
image(img, 0, 0);

PVector distance(PVector p1, PVector p2) {
return PVector.sub(p1, p2);

}

You modify the distance() function to return a PVector storing the subtraction result from the two
input vectors. In the input range, you also introduce a new variable, num, to extend the original range
(-PI, PI). The image will then consist of more repetitions. Figure 3-12 shows the result of the test run.

Chapterta o7 I
img = ateInage(width, height, ARGE);
img. loadPizels();

nn = 8;

B

id draw{} {

ew PWector(mouseX, mouse¥);
Py {

HE LI
tor d = distance(mouse, new P
it xRange = nap{d.x, -
»at yRange = map(d.y, -
float xVal = map{cos({xRange)
loat y¥al = mep(sin(yRenge), -1, 1, 8, 258);
color col = color(x¥al, &, yval);
img.oixels[rowsex] = col;
¥
1
img.updatePixels();
image(ing, 8, 8);

Figure 3-12. Color change with trigonometric functions

To enhance the complexity of the image, you can simply add the x and y for loop variables into the
input range calculation, as shown in the next exercise, Chapter03_08. At the same time, you need to reduce
the value for the variable num so that the xRange and yRange values will not become too large.

PImage img;
float num;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
img.loadPixels();
num = 0.1;

83

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

void draw() {
background(0);
PVector mouse = new PVector(mouseX, mouseY);
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
PVector dist = distance(mouse, new PVector(x, y));
float xRange = map(dist.x, -img.width, img.width, -PI*num*y, PI*num*x);
float yRange = map(dist.y, -img.height, img.height, -PI*num*x, PI*num*y);
float xCol = map(cos(xRange), -1, 1, 0, 255);
float yCol = map(sin(yRange), -1, 1, 0, 255);
color col = color(xCol, 0, yCol);
img.pixels[rows+x] = col;
}
}
img.updatePixels();
image(img, 0, 0);

PVector distance(PVector p1, PVector p2) {
return PVector.sub(p1, p2);

}

This will generate a more psychedelic effect similar to the optical art graphics commonly found in the
1960s and 1970s, as shown in Figure 3-13. Since you include both the x and y values in the calculation of the
xRange and yRange values, the result will be less predictable.

void setup() {
size(750, T50);
img = createlnage{width
img.loadPixels();
TR EN

id dram{) {
background(e) ;
PYector mouse = new Plector{mouseX, mouse¥)]
for (int y=@; y<img.he t;
nt rows = y*img.width;
for (int x=0; xcing.eidohy xss
P dist = distance(mouse,

float xRange = map(dist.x, -img

float yRange = map(dist.y, -ing ght,

float xCol = map(cos(xRange), =1, 1, 8, 255);

loat yCol = map(sin{yRange), -1, 1, 8, 255);
ar eol = color{xCol, 8, yCol);
spizels[rows+x] = col}

AuraDivalefis

Figure 3-13. Another example with trigonometric function

In the next exercise, Chapter03_09, you simplify the distance() function and use only a single value,
dist, in the draw() function to generate the input range to the sine and cosine functions. The modification is
not substantial, but the visual result differs a lot from the previous one.

84

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

PImage img;
float num;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
img.loadPixels();
num = 2;

}

void draw() {
background(0);
PVector mouse = new PVector(mouseX, mouseY);
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
float dist = distance(mouse, new PVector(x, y));
float range = map(dist, -img.width, img.width, -PI*num*y, PI*num*x);
float xCol = map(sin(range), -1, 1, 0, 255);
float yCol = map(cos(range), -1, 1, 0, 255);
color col = color(o, 255-xCol, yCol);
img.pixels[rows+x] = col;
}
}
img.updatePixels();
image(img, 0, 0);

}

float distance(PVector p1, PVector p2) {
return pi.dist(p2);
}

Both the xCol and yCol color variables share the same input range value but use different trigonometric

functions. The visual result may resemble a circle because you know that a circle can be represented as

follows:

e x = radius * cos(angle)

radius * sin(angle)

Yy

In this exercise, the image is much more complex because the input range, indicated as angle here,

does not just range from -PI to PI. Figure 3-14 shows the image after running the program.

85

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Fe D81 Shesch Dubup Took ey

W oid setup() {
size(750, T5@);
img = createlnage{width, height, ARGB);
img. loadPizels():
num = 2;

1

l void draw() {

background{#);

Py mouse = new Plector{nousel,
for (int y=@; y<img.he yead {

ousel) 3

int rows = y*img.r
for (int x=0] xcing.widong xes) [
f dist = distance(mouse, new Flector{x, y));
range = map(dist, -img.width, mg.width, -PIY
xCol = map(sin{range), -1, 1, @, 288);
ylol = map{cos{range), -1, 1, 8, 255};
color ol = color(@, 255-xCol, yCol);
dag.pizels[rowssx] = col;
}
¥
img.updatePixels();
™

tmsaniinn & &

Figure 3-14. Color change with more trigonometric function

You can have a lot of fun playing with trigonometric functions in image processing. Feel free to explore
more variations. In the next section, I will start to explain how the idea of randomness can help you generate
interesting images.

Randomness

Processing provides a random number generator based on the java.util.Random class. You can create
various types of random color images using the random() function. For the next exercise, Chapter03_10, you
use random numbers to fill in an image with grayscale color:

PImage img;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
img.loadPixels();
noLoop();

void draw() {
background(0);
for (int i=0; i<img.pixels.length; i++) {
img.pixels[i] = color(floor(random(0, 256)));

img.updatePixels();
image(img, 0, 0);

86

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

The for loop within the draw() function traverses all the pixels in the PImage and sets the color to a
random value between 0 to 255, using the function random(0, 256). The resulting image is completely
chaotic, without any identifiable patterns, as shown in Figure 3-15.

@ _ Chapter03,010 £ 29 80 | OQd wxBE Moni37PM BnanChung O @ =
Chapter03_010

Plmage img;

void setup() {

size(758, 750);

img = createlmage(width, height, ARGB);
Fag. LoadPixels();

noLoop();

}

void draw() {
background(8); 5
for (int 1=8; i<img.pixels.length; 4++4) {
Jmg.pixels[i] = color{floor{random({@,
}
img.updatePixels();
image(img, @, 8);

Figure 3-15. Random grayscale image

If you want to create a more visually pleasant image with randomness, you can reduce the degree of
randomness by imposing rules in the color information. The next exercise, Chapter03_11, will initialize the
first pixel in the image with a random gray tone. The next pixel will either increase or decrease the gray tone
value by a random portion. Compare the two results to see whether there are any patterns in the second
version.

PImage img;
float valuei;
float range;

void setup() {
size(750, 750);
img = createImage(width, height, ARGB);
img.loadPixels();
valuel = floor(random(0, 256));
range = 50;
noLoop();
}

void draw() {
background(0);
for (int i=0; i<img.pixels.length; i++) {
float v = random(-range, range);
valuel += v;

87

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

valuel = constrain(valuei, 0, 255);
img.pixels[i] = color(valuel);

img.updatePixels();
image(img, 0, 0);

}

The code basically uses the random(-range, range) statement to introduce a controlled version of
randomness in the draw() function. The image will consist of random gray tone pixels, but the randomness
is controlled within a smaller range and at the same time depends on the previous pixel, as shown in
Figure 3-16.

& Chapter03.011 220 9 T d wosEE Mon143PM BrmnChung G, @ =
L] Chaptertd_011

i float range;
void setup() {
size(758, 758);
img = createImage{width, height, ARGE);
img. loadPixels();
valuel = floor(random(@, 256));
range = 58;
noLoop();
}
M void draw() {
background(8);
for {int 1=8; i<img.pixels.length; 1++) {
float v = random(-range, range);
valuel #= v;
valuel = constrain(valuel, 8, 255);
img.pixels[i] = color{valuel);
}
img.updatePixels{};
image(img, @, 8);

Figure 3-16. Random grayscale image with patterns

As the pixel color information is dependent on the last one with a certain degree of randomness, you
can easily identify the horizontal texture of the image because the arrangement of pixels in the array is sorted
in row order first.

The next exercise, Chapter03_12, uses the noise() function in Processing to explore randomness. This
is the Perlin noise function developed by Ken Perlin. The output from the function displays a more natural
and smooth sequence of numbers. Processing provides up to three dimensions of the Perlin noise function.
In this exercise, you use the two-dimensional version of the noise values to fill up an image with gray tone.

PImage img;
float xScale, yScale;

void setup() {
size(750, 750);
background(0);
img = createImage(width, height, ARGB);
img.loadPixels();

88

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

xScale = 0.01;
yScale = 0.01;
noLoop();

void draw() {
for (int y=0; y<img.height; y++) {
int rows = y*img.width;
for (int x=0; x<img.width; x++) {
img.pixels[rows+x] = color(floor(noise(x*xScale, y*yScale)*256));

}
img.updatePixels();
image(img, 0, 0);

Note that for the x and y positions of the pixel, you use the xScale and yScale variables to reduce the
range to achieve a smoother noise effect in the image, as shown in Figure 3-17.

& Chapter03_12 ¥$a@DH < G4 wonBE Mon2:55PM BranChung O, @ =
ae Chapter0d_12

Chapteroz_12 [
PImage img;
float xScale, yScale;

void setup() {
size(750, 7508);
background (8);
img = createImage(width, height, ARGE});
img. loadPixels();
xScale = 0.01;
yScale = 9.081;
noLoop();

void draw() {
for (int y=0; y<img

for (int x=8; x<img.width; x++) {
dimg.pixels[rows+x] = lor(floor (nois|
}
}
img.updatePixels();
image(img, 8, 8);
}

Figure 3-17. Grayscale color with Perlin noise

So far, you have created an image using algorithmic ways to fill in the color for each pixel. And you
learned how to create an image with random colors in the pixels. In the next section, you will import an
existing image and use the steps from previous sections to manipulate the pixel colors.

89

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 3 PIXEL-BASED MANIPULATIONS

Drawing with Existing Images

The next exercise, Chapter03_13, with an existing image is to convert a color image into gray tone. Of course,
you can use the built-in functions from both Processing and OpenCV to do the conversion. You can use this
exercise as a starting point to learn how simple image processing can be coded.

PImage imgl, img2;

void setup() {
size(1500, 750);

background(0);

imgl = loadImage("landscape.png");
img1.loadPixels();

img2 = createlmage(imgl.width, imgi.height, ARGB);
img2.loadPixels();

noLoop();

}

void draw() {
for (int i=0; i<imgl.pixels.length; i++) {
color col = imgl.pixels[i];
img2.pixels[i] = color((red(col) + green(col) + blue(col))/3);

img2.updatePixels();
image(img1, 0, 0);
image(img2, imgl.width, 0);

In the program, you define the Processing window to be double the width of the photo to lay out the
original and modified images side by side. You use two PImage variables. The first one, img1, loads the external
image. The second one, img2, makes a copy of the first one with the color pixels converted into a single gray
tone color, using a simple average of the red, green, and blue colors. Figure 3-18 shows the conversion.

Figure 3-18. Color to grayscale conversion with simple averaging

90

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

There is another approach to calculate the luminance of a grayscale image from the original RGB
one. The visual perception does not detect RGB with equal intensity. In this version of the exercise,
Chapter03_14, you use the following formula to come up with the luminance value:

img2.pixels[i] = color(0.2*red(col) + 0.7*green(col) + 0.1*blue(col));

Figure 3-19 shows the resulting image for comparison.

Figure 3-19. Color to grayscale conversion with relative luminance

For the next exercise, Chapter03_15, you write an inverse filter to invert all the red, green, and blue color
channels of the original color image. To achieve the effect, you use 255 and subtract all three color channel
values. The formula is as follows:

img2.pixels[i] = color(255-red(col), 255-green(col), 255-blue(col));

91

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Figure 3-20 shows the resulting image.

Figure 3-20. Color change with inverse effect

You can also swap the three color channels to mix them in a different order to obtain other effects that
can be found in Photoshop. Here is one example, Chapter03_16, that swaps the order of the three channels
and inverts the original red channel:

img2.pixels[i] = color(blue(col), 255-red(col), green(col));

Figure 3-21 shows the output using the same image.

Figure 3-21. Color change by swapping different color channels

92

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Processing has a filter() function (https://processing.org/reference/filter_.html)
that provides a number of image-processing presets such as the following:

THRESHOLD
GRAY
OPAQUE
INVERT
POSTERIZE
BLUR
ERODE
DILATE

In addition to these presets, you can implement your own. The following exercises will illustrate how
you can draw on the canvas based on an existing image. The first preset you are going to test is the mosaic
effect found in Photoshop. The mosaic effect is essentially a reduction in the image resolution while keeping
the size of the image. Let’s take a look at the code of this exercise, Chapter03_17:

PImage img;

int step;

void setup() {
size(1500, 750);
background(0);
img = loadImage("landscape.png");
img.loadPixels();

step =

10;

noStroke();
noLoop();

}

void draw() {
for (int y=0; y<img.height; y+=step) {
int rows = y*img.width;
for (int x=0; x<img.width; x+=step) {
color col = img.pixels[rows+x];
fill(col);
rect(x+img.width, y, step, step);

}
}

image(img, 0, 0);

}

93

https://processing.org/reference/filter_.html

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

Note that in the nested for loops, you do not go through every single pixel. Instead, you increment the
indices with a value in the variable called step. You then sample the color for these pixels and use it as the
£i11() color for the squares. Figure 3-22 shows both the original photograph and the mosaic image together.

Figure 3-22. Mosaic effect example

If you replace the rect() command with the ellipse() command, you can achieve the circular mosaic
effect, as shown in Figure 3-23.

Figure 3-23. Mosaic effect with circles

94

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

The previous two exercises use the fi11() color for the rectangles and circles. If you use stroke() color
to draw lines instead, you can have a different rendering of the same photograph, similar to Figure 3-24.

Figure 3-24. Mosaic effect with short line segments

In the draw() function, you use a random mechanism, floor(random(2)), to select which direction of
the line segment will be drawn. Its result will be either 0 or 1. You use it to determine the direction of your
diagonal line segments.

PImage img;
int step;

void setup() {
size(1500, 750);
background(0);
img = loadImage("landscape.png");
img.loadPixels();
step = 10;
smooth();
noFill();
noLoop();
}

void draw() {
for (int y=0; y<img.height; y+=step) {

int rows = y*img.width;

for (int x=0; x<img.width; x+=step) {
color col = img.pixels[rows+x];
stroke(col);
int num = floor(random(2));
if (num == 0) {

line(x+img.width, y, x+img.width+step, y+step);

} else {

95

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

line(x+img.width+step, y, x+img.width, y+step);
}
}
}
image(img, 0, 0);

}

The next exercise, Chapter03_20, explores a common barcode effect in image processing. Famous
designers such as Irma Boom have also sampled old classic paintings and represented them in vertical color
bars, similar to what you plan to do in this exercise. First, you take a color photograph and add a horizontal
line across the middle of it (Figure 3-25).

Figure 3-25. Sample photograph with a horizontal line

Along that horizontal line, you sample each pixel on the line and retrieve its color value. By using the
color value, you draw a vertical line for each of the pixels along the horizontal line. Here is the code:

PImage img;

void setup() {
size(1200, 900);
background(0);
img = loadImage("christmas.png");
img.loadPixels();
noFill();
noLoop();

96

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

void draw() {
int y = img.height/2;
for (int x=0; x<img.width; x++) {
color c = img.pixels[y*img.width+x];
stroke(c);
line(x, 0, x, img.height-1);
}
}

The program is straightforward. The visual result is a barcode representation of the original photograph,
as shown in Figure 3-26.

Figure 3-26. Barcode effect example

You can experiment with an interactive version of this program by changing the variable y to mouseY
and removing the noLoop () function. In this case, the result is a beautiful animation generated by just one
photograph.

So far, you have explored various ways to create new imagery based on an existing image, either by
replacing the pixel color or by drawing on the canvas referring to the pixel color. In the next section, you will
learn how to combine two images.

Blending Multiple Images

Processing has a blend() function (https://processing.org/reference/blend .html) that provides
a number of options to combine two images. The working mechanism is similar to the layer options in
Photoshop. This section will not explain each option in detail. The exercises in this section will illustrate the

97

https://processing.org/reference/blend_.html

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

underlying logic of combining two images. The following exercise, Chapter03_21, demonstrates the use of
the blend() function in Processing with the option ADD:

PImage imgl, img2;

void setup() {
size(1200, 900);
background(0);
img1 = loadImage("hongkong.png");
img2 = loadImage("sydney.png");
noLoop();

}

void draw() {
img1.blend(img2, 0, 0, img2.width, img2.height,
0, 0, imgl.width, imgi.height, ADD);
image(img1, 0, 0);

}

You have two PImage instances, img1 and img2, each loaded with an external image from the data
folder. In the draw() function, the img2 instance will be blended into the img1 instance through the method
img1.blend(). The rest of the parameters are the source offset (x, y)and dimension (width, height),
destination offset (x, y)and dimension (width, height), and the blend option, ADD. Note that, after the
blend() function, the content of img1 will change. The two images used in the exercise have the same size
(1200%x900 pixels). The blend() function here, however, will alter the resolution of img2 if the two images do
not have the same size. Figure 3-27 shows the resulting image.

Figure 3-27. Blending two images with the ADD option

98

CHAPTER 3 ' PIXEL-BASED MANIPULATIONS

You can also perform this blending effect in Processing with your own code. For the ADD option, you can
just add the two pixel-color components from the two images. Since the valid range for RGB is 0 to 255, you
can constrain the values in this range. Here is the source for the exercise, Chapter03_22. In this version, you
assume the two images have the same size (1200x900 pixels).

PImage imgl, img2, img3;

void setup() {
size(1200, 900);
background(0);
img1 = loadImage("hongkong.png");
img2 = loadImage("sydney.png");
img3 = createImage(imgl.width, imgi.height, ARGB);
noLoop();

}

void draw() {

for (int i=0; i<imgl.pixels.length; i++) {
color c1 = imgl.pixels[i];
color c2 = img2.pixels[i];
float r = constrain(red(c1) + red(c2), 0, 255);
float g = constrain(green(c1) + green(c2), 0, 255);
float b = constrain(blue(c1) + blue(c2), 0, 255);
img3.pixels[i] = color(r, g, b);

}

img3.updatePixels();

image(img3, 0, 0);

}

The logic is simple. The draw() function has a for loop to go through all the pixels in img1 and img2.
The three color components are added together and constrained within the range of 0 to 255. The third
PImage instance, img3, stores all the new pixel color values and displays the image on-screen.

As a demonstration, the last exercise in the section, Chapter03_23, will also present a version done in
OpenCV. To use OpenCV in the Processing environment, remember to copy the code folder into your sketch
folder and re-create the CVImage class in a new tab, as shown in the previous chapter. You'll create three
instances of the CVImage class to maintain hongkong.png, sydney.png, and the resulting image. The sample
code for the main program is shown here. Again, you assume the two source images have the same size
(1200x900 pixels).

CVImage imgl, img2, img3;

void setup() {
size(1200, 900);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
background(0);
PImage tmp = loadImage("hongkong.png");
imgl = new CVImage(tmp.width, tmp.height);
img2 = new CVImage(tmp.width, tmp.height);
img3 = new CVImage(tmp.width, tmp.height);
img1.copyTo(tmp);
tmp = loadImage("sydney.png");

99

CHAPTER 3 PIXEL-BASED MANIPULATIONS

img2.copyTo(tmp);
noLoop();
}

void draw() {
Mat m1 = imgl.getBGR();
Mat m2 = img2.getBGR();
Mat m3 = new Mat(mi.size(), mi.type());
Core.add(m1, m2, m3);
img3.copyTo(m3);
image(img3, 0, 0);
mi.release();
m2.release();
m3.release();

The main command of the program is the Core.add() function. It adds the first two source matrices
to the third one as the destination. It also relies on the CVImage class that you developed in the previous
chapter. The image objects use the copyTo() and getBGR() methods to convert between the Processing and
OpenCV formats.

Conclusion

This chapter went through the basic tasks of image processing by changing the individual pixel color.

You now understand how to implement simple image filters such as the grayscale and invert filters.

You also learned how to create graphical images from scratch and modify existing images for creative outputs.
In the next chapter, you are going to change the pixels’ position so you can achieve more dynamic
image-processing effects.

100

CHAPTER 4

Geometry and Transformation W,

In this chapter, you'll continue to work on the transformation of digital images. In the previous chapter,
you modified mainly the pixel color information for an image, using the built-in and custom functions in
Processing. In this chapter, you will focus on deforming the pixel grid of the image without changing the
image content. Essentially, this changes the position of each pixel within an image and thus modifies the
geometry of the original image. As the Processing language lacks such functions, you will use OpenCV to
work on the exercises. At the same time, you will explore the three-dimensional features in Processing

to achieve a geometric transform of digital images. The following are the topics covered in this chapter:

e Image transformation

e Image orientation

e Image resizing

e Affine transform

e Perspective transform

e Linearvs. polar coordinates
e Three-dimensional space

e General pixel mapping

Image Transformation

The first type of image transformation is the translation. In this type, as shown in Figure 4-1, the whole
digital image, as defined by its rectangular grid, is moved in a horizontal or vertical direction. The size and
orientation of the image remain the same before and after the transformation.

© Bryan WC Chung 2017 101
B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_4

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

Figure 4-1. Image translation

The second and third types of transformation shown in this chapter alter the orientation of the image.
They are rotation and flipping. In rotation, the image rotates on the 2D plane, along the imaginary z-axis,
without any size changes or deformation, as shown in Figure 4-2. In Processing, the anchor point for rotation
is the top-left corner at (0, 0).

Figure 4-2. Image rotation

Flipping is the reflection along the x-axis and/or y-axis. In the exercise that you are going to work on,
you can flip an image in a single axis or both. Figure 4-3 shows a vertical flip of a square image.

102

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

Figure 4-3. Image flipping

These three types of transformations preserve the size and shape of the original image. The next type of
transformation, shown in Figure 4-4 will, however, alter the size of the image. It is a resize transform.

Figure 4-4. Image resize

The previous four types of transformation covered preserve the shape of the image. The next type, affine
transform, will distort the original shape, but it still preserves parallel lines. The rectangular pixel grid will
transform into a parallelogram, as shown in Figure 4-5.

103

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

Figure 4-5. Affine transform

The last type of geometric transform I will cover is a perspective transform. It converts the rectangular
image grid into any four-point convex polygon. The transform also corresponds to the perspective projection
where the 3D object is projected onto a 2D plane with a nearby camera. Figure 4-6 shows an example of a
perspective transform.

Figure 4-6. Perspective transform

Image Orientation

By image orientation, I am referring to tasks such as flipping and rotating an image in a two-dimensional
plane. Flipping, or reflecting, an image is easy to achieve in OpenCV by using the f1ip() function. In two-
dimensional graphics, you can have flipping along the horizontal axis, the vertical axis, or both axes. The
syntax and parameters for the f1ip() function are as follows:

public static void flip(Mat src, Mat dst, int flipCode);

104

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

The command will flip the src matrix to the dst matrix, according to what is specified in the f1ipCode
value. A zero value for flipCode will flip along the x-axis, a positive value will flip along the y-axis, and a
negative value will flip along both axes. The following exercise, Chapter04_01, demonstrates the use of
flipping in Processing with OpenCV. Remember, as covered in Chapter 1, to include the code folder in the
Processing sketch and the CVImage class definition. The code folder contains all the necessary OpenCV Java
and native files. The Processing window size caters to displaying two images side by side. The original image
(600x600 pixels) will be on the left, and the flipped image will be on the right.

import org.opencv.core.*;

PImage img;
CVImage cv;

void setup() {
size(1200, 600);

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
img = loadImage("hongkong.png");
cv = new CVImage(img.width, img.height);
noLoop();

}

void draw() {
background(0);
cv.copyTo(img);
Mat mat = cv.getBGR();
Core.flip(mat, mat, -1);
cv.copyTo(mat);
image(img, 0, 0);
image(cv, img.width, 0);
mat.release();

The resulting image from the program contains two parts, as shown in Figure 4-7. The left side is the
original image, and the right side is the flipped one along both axes.

Figure 4-7. Transform with flip in both axes
105

http://dx.doi.org/10.1007/978-1-4842-2775-6_1

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

The next exercise, Chaptero4 02, will help you study the commands for image rotation. There are two
steps you need to follow to rotate an image. The first step is to compute the rotation transform matrix. The
second step is to apply the rotation transform matrix to the source image. The syntax for the first command
to obtain the rotation matrix is as follows:

public static Mat Imgproc.getRotationMatrix2D(Point center, double angle, double scale)

The first parameter, center, is the coordinate of the center point of the rotation in the source image.
The second parameter, angle, is the rotation angle measured in degrees. Note that Processing rotation is
measured in radians, while OpenCV rotation is in degrees. The third parameter, scale, is the scaling factor
applied in the transformation. The function will output a two-by-three matrix as follows:

a b (1-a)*center.x-b*center.y
-b a b*center.x+(1-a)*center.y

Here, a = scale*cos(angle) andb = scale*sin(angle).
Once you have the rotation transform matrix, you can apply the matrix to the source image with the
warpAffine() function. The syntax is as follows:

public static void Imgproc.warpAffine(Mat src, Mat dst, Mat m, Size dsize)

The first parameter, src, is the source image. The second parameter, dst, is the destination image with
the same type as src and the same size as what was specified in the fourth parameter, dsize. The third
parameter, m, is the rotation transform matrix you obtained from the previous step. The fourth parameter,
dsize, is the size of the destination image. Again, make sure the code folder, with the OpenCV libraries and
the CVImage class, are in the Processing sketch folder. The original image is 600x600 pixels. The rotated
image will be displayed on the right side of the original one. The complete source code for the exercise,
Chapter04_02, is as follows:

import org.opencv.core.*;
import org.opencv.imgproc.*;

CVImage cvout;
Mat in;
PImage img;
Point ctr;
float angle;

void setup() {
size(1200, 600);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
img = loadImage("hongkong.png");
CVImage cvin = new CVImage(img.width, img.height);
cvout = new CVImage(cvin.width, cvin.height);
cvin.copyTo(img);
in = cvin.getBGR();
ctr = new Point(img.width/2, img.height/2);
angle = 0;
frameRate(30);

106

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void draw() {
background(0);
Mat rot = Imgproc.getRotationMatrix2D(ctr, angle, 1.0);
Mat out = new Mat(in.size(), in.type());
Imgproc.warpAffine(in, out, rot, out.size());
cvout.copyTo(out);
image(img, 0, 0);
image(cvout, img.width, 0);
angle += 0.5;
angle %= 360;
out.release();
rot.release();

In the code you use CVImage cvout to maintain the rotated image. Mat in keeps the input image
in OpenCV matrix format. The OpenCV class Point ctr is the center of the image as the pivot point for
rotation. float angle is the current rotation angle. It will be incremented by half a degree for every turn
in the draw() function. Figure 4-8 shows a sample of the Processing window running the sketch.

Figure 4-8. Rotation transform with digital image

By using the Processing tint() function, you can have more fun with the rotation display. Before the
image() function, you can alter the transparency of the fill color by specifying an alpha value less than 255,
such as tint (255, 20).Inthe draw() function, if you remove background(0) and add two tint() functions,
you can achieve a motion blur effect in the rotating image. The new draw() function is as follows:

void draw() {
// background(0);
Mat rot = Imgproc.getRotationMatrix2D(ctr, angle, 1.0);
Mat out = new Mat(in.size(), in.type());
Imgproc.warpAffine(in, out, rot, out.size());
cvout.copyTo(out);
tint(255, 255);
image(img, 0, 0);
tint(255, 20);

107

CHAPTER 4 GEOMETRY AND TRANSFORMATION

image(cvout, img.width, 0);
angle += 0.5;
angle %= 360;
out.release();
rot.release();

The tint(255, 20) function before image(cvout, img.width, 0) will set the fill color with
transparency. In this case, only the rotating image will have the motion blur effect, not the original image on
the left side. Figure 4-9 shows the result.

Figure 4-9. Rotation transform with motion blur

Image Resizing

In the previous section, the transformations flip and rotation do not change the size/area of the image. If you
want to change the image size while maintaining its shape, you can use the resize transform. The function is
resize() from the OpenCV Imgproc module, as shown here:

public static void Imgproc.resize(Mat src, Mat dst, Size dsize)

The first parameter, src, is the source image. The second parameter, dst, is the destination image.
The third parameter, dsize, is the size of the destination image. It belongs to the OpenCV Size class. The
following sketch, Chapter04 03, demonstrates the use of the resize() function for a graphic composition.
The size of the original image in the program is 800x600 pixels.

import org.opencv.core.*;
import org.opencv.imgproc.*;

PImage img;
CVImage cv;

void setup() {

size(1200, 600);
System.loadLibrary(Core.NATIVE LIBRARY NAME);

108

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

img = loadImage("hongkong.png");

cv = new CVImage(img.width, img.height);
cv.copyTo(img);
noLoop();

}

void draw() {
background(0);
Mat in = cv.getBGR();
Mat out = new Mat(new Size(img.width*0.5, img.height*0.5), in.type());
Imgproc.resize(in, out, out.size());
CVImage small = new CVImage(out.cols(), out.rows());
small.copyTo(out);
image(img, 0, 0);
tint(255, 100, 100);
image(small, img.width, 0);
tint(100, 100, 255);
image(small, img.width, small.height);

The program created a copy of the original image img, with half the width and height. The smaller
image, small, is displayed twice with different color tints on the right side of the Processing window, as
shown in Figure 4-10.

Figure 4-10. Resize transform with color tint

Without using OpenCV, you can also achieve the same result with the copy () method of the PImage
class. The next exercise, Chapter0o4_04, will show how you can create the same composition with the copy ()
method. The size of the image for testing is 800x600 pixels.

PImage img;
void setup() {
size(1200, 600);

img = loadImage("hongkong.png");
noLoop();

109

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void draw() {

background(0);

PImage small = createImage(round(img.width*0.5),
round(img.height*0.5), ARGB);

small.copy(img, 0, 0, img.width, img.height,
0, 0, small.width, small.height);

small.updatePixels();

image(img, 0, 0);

tint(255, 100, 100);

image(small, img.width, 0);

tint(100, 100, 255);

image(small, img.width, small.height);

The copy () method copies the pixels from the original image, img, to the destination, small. Other
than the source image, the parameters also include the offset (x, y)and size (width, height) of the source
image and the destination image.

Affine Transform

The next geometric transform is the affine transform that can preserve parallel lines in the transformation.
To define the transformation matrix, you need to have three points in the source image and their
corresponding positions in the destination image. In the next exercise, Chapter04 05, you will use the
top-left, top-right, and bottom-right corners of the image to define the transformation. Assume you have the
original image, img. The three points from the source image are as follows:

e 0,0
e img.width-1, 0
e img.width-1, img.height-1

After the affine transform, you assume that the three points will be moved to the following positions,
respectively:

e 50, 50
e img.width-100, 100
e img.width-50, img.height-100

In this program, you need to compute the transform matrix based on the mapping of the six corner
points. With the matrix, you apply it to the whole image to create the output image. The image size used for
testing is 600x600 pixels. Here is the code:

import org.opencv.core.*;
import org.opencv.imgproc.*;

PImage img;
CVImage cv;

110

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void setup() {
size(1200, 600);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
img = loadImage("hongkong.png");
cv = new CVImage(img.width, img.height);
cv.copyTo(img);
noLoop();

}

void draw() {
background(0);

MatOfPoint2f srcMat = new MatOfPoint2f(new Point(0, 0),
new Point(img.width-1, 0),
new Point(img.width-1, img.height-1));

MatOfPoint2f dstMat = new MatOfPoint2f(new Point(50, 50),
new Point(img.width-100, 100),
new Point(img.width-50, img.height-100));

Mat affine = Imgproc.getAffineTransform(srcMat, dstMat);
Mat in = cv.getBGR();

Mat out = new Mat(in.size(), in.type());
Imgproc.warpAffine(in, out, affine, out.size());
cv.copyTo(out);

image(img, 0, 0);

image(cv, img.width, 0);

in.release();

out.release();

affine.release();

There are two steps in the draw() function. The first one is to compute the transform matrix based on
the six corner points. This is done with the Imgproc.getAffineTransform() function.

public static Mat Imgproc.getAffineTransform(MatOfPoint2f src, MatOfPoint2f dst)

The first parameter consists of the three points in the source image. The second parameter consists
of the three corresponding points in the destination image. Both parameters belong to the OpenCV class
MatOfPoint2f. Itis similar to vector in C++ and ArraylList in Java. You can consider it as an ordered
collection of the base class, Point. The second step is to apply an affine matrix to the source image, in, and
generate the destination matrix, out, using the warpAffine() function you learned in the previous section.
Figure 4-11 shows the resulting image displayed in the Processing window.

111

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

Figure 4-11. Affine transform

The next exercise, Chapter04_06, is a more practical usage of the affine transform in image processing.
The program will allow users to alter the anchor points to manipulate the degree of transformation. In the
source code, you will introduce one more class, Corner, to represent each of the anchor points that you can
drag around to change the transformation. The definition of the Corner class is as follows:

public class Corner {
float radius;
PVector pos;
boolean picked;

public Corner(float x, float y) {
pos = new PVector(x, y);
radius = 10.0;
picked = false;

}

PVector getPos() {
return pos;

}

void drag(float x, float y) {
if (picked) {
PVector p = new PVector(x, y);
pos.set(p.x, p.y);
}
}

void pick(float x, float y) {
PVector p = new PVector(x, y);
float d = p.dist(pos);
if (d < radius) {
picked = true;
pos.set(p.x, p.y);

112

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void unpick() {
picked = false;
}

void draw() {
pushStyle();
fil1(255, 255, 0, 160);
noStroke();
ellipse(pos.x, pos.y, radius*2, radius*2);
popStyle();

The class will display a circle to indicate the corners of the digital image. In an affine transform, you use
only three corners. For the exercise, you use the top-left, top-right, and bottom-right corners. Users can click
and drag to move the corner points. You will reuse the class when you work with the perspective transform
in the next section. The main program for Chapter04 06 is shown here:

import org.opencv.core.*;
import org.opencv.imgproc.*;

PImage img;

CVImage cvout;

PVector offset;
MatOfPoint2f srcMat, dstMat;
Mat in;

Corner [] corners;

void setup() {
size(720, 720);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
img = loadImage("hongkong.png");
CVImage cvin = new CVImage(img.width, img.height);
cvin.copyTo(img);
in = cvin.getBGR();
cvout = new CVImage(img.width, img.height);
offset = new PVector((width-img.width)/2, (height-img.height)/2);
srcMat = new MatOfPoint2f(new Point(0, 0),
new Point(img.width-1, 0),
new Point(img.width-1, img.height-1));
dstMat = new MatOfPoint2f();
corners = new Corner[srcMat.rows()];
corners[0] = new Corner(o+offset.x, O+offset.y);
corners[1] = new Corner(img.width-1+offset.x, O+offset.y);
corners[2] = new Corner(img.width-1+offset.x, img.height-1+offset.y);

}

void draw() {
background(0);
drawFrame();
Point [] points = new Point[corners.length];
for (int i=0; i<corners.length; i++) {
PVector p = corners[i].getPos();

113

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

points[i] = new Point(p.x-offset.x, p.y-offset.y);
}
dstMat.fromArray(points);
Mat affine = Imgproc.getAffineTransform(srcMat, dstMat);
Mat out = new Mat(in.size(), in.type());
Imgproc.warpAffine(in, out, affine, out.size());
cvout.copyTo(out);
image(cvout, offset.x, offset.y);
for (Corner c : corners) {

c.draw();
}
out.release();
affine.release();

}

void drawFrame() {
pushStyle();
noFill();
stroke(100);
line(offset.x-1, offset.y-1,
img.width+offset.x, offset.y-1);
line(img.width+offset.x, offset.y-1,
img.width+offset.x, img.height+offset.y);
line(offset.x-1, img.height+offset.y,
img.width+offset.x, img.height+offset.y);
line(offset.x-1, offset.y-1,
offset.x-1, img.height+offset.y);
popStyle();
}

void mousePressed() {
for (Corner c : corners) {
c.pick(mouseX, mouseY);
}
}

void mouseDragged() {
for (Corner c : corners) {

if (mouseX<offset.x ||
mouseX>offset.x+img.width ||
mouseY<offset.y ||
mouseY>offset.y+img.height)
continue;

c.drag(mouseX, mouseY);

}

void mouseReleased() {
for (Corner c : corners) {
c.unpick();

114

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

The program adds the mouse event handlers to manage the mouse click actions with the anchor points
as defined by the Corner class. Within the draw() function, you use another method to initialize the dstMat
matrix. You have defined points as an array of Point. In every frame, you copy the anchor points information
from corners to points and use the fromArray() method to initialize dstMat for subsequent processing. The
rest of the program is similar to the last one. Figure 4-12 shows the visual display of the program.

Figure 4-12. Interactive affine transform

Perspective Transform

The usage of a perspective transform is similar to the affine transform in the previous section, except that
you need to use four points to define the transform rather than three points. After the transformation, it
cannot preserve parallel lines as that in the affine transform. The function to generate the perspective
transform matrix is as follows:

public static Mat Imgproc.getPerspectiveTransform(MatOfPoint2f src, MatOfPoint2f dst)

The first parameter, src, is the collection (MatOfPont2f) of the four anchor points from the source
image. In the exercise, Chapter0o4_07, you use the four corners of the input image, img. They are as follows:

e 0, 0:Top-left corner

e img.width-1, 0:Top-right corner

e img.width-1, img.height-1:Bottom-right corner
e 0, img.height-1:Bottom-left corner

The second parameter, dst, is the collection (MatOfPoint2f) of the four corner points of the output
image after the transformation. You adopt the class Corner from the previous exercise. Users can click/drag
the corner points to interactively change the transform matrix. The source code is similar to the previous
one. You merely replace the affine transform with the perspective transform and use four points instead of
three. The size of the original image you use here is 700x700 pixels.

PImage img;

CVImage cvout;

PVector offset;

MatOfPoint2f srcMat, dstMat;
Mat in;

Corner [] corners;

115

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void setup() {
size(720, 720);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
img = loadImage("hongkong.png");
CVImage cvin = new CVImage(img.width, img.height);
cvin.copyTo(img);
in = cvin.getBGR();
cvout = new CVImage(img.width, img.height);
offset = new PVector((width-img.width)/2, (height-img.height)/2);
srcMat = new MatOfPoint2f(new Point(0, 0),
new Point(img.width-1, 0),
new Point(img.width-1, img.height-1),
new Point(0, img.height-1));
dstMat = new MatOfPoint2f();
corners = new Corner[srcMat.rows()];
corners[0] = new Corner(o+offset.x, O+offset.y);
corners[1] = new Corner(img.width-1+offset.x, O+offset.y);
corners[2] = new Corner(img.width-1+offset.x, img.height-1+offset.y);
corners[3] = new Corner(O+offset.x, img.height-1+offset.y);

}

void draw() {
background(0);
drawFrame();
Point [] points = new Point[corners.length];
for (int i=0; i<corners.length; i++) {
PVector p = corners[i].getPos();
points[i] = new Point(p.x-offset.x, p.y-offset.y);
}
dstMat.fromArray(points);
Mat transform = Imgproc.getPerspectiveTransform(srcMat, dstMat);
Mat out = new Mat(in.size(), in.type());
Imgproc.warpPerspective(in, out, transform, out.size());
cvout.copyTo(out);
image(cvout, offset.x, offset.y);
for (Corner c : corners) {
c.draw();
}
out.release();
transform.release();

}

void drawFrame() {

pushStyle();

noFill();

stroke(100);

line(offset.x-1, offset.y-1,
img.width+offset.x, offset.y-1);

line(img.width+offset.x, offset.y-1,
img.width+offset.x, img.height+offset.y);

line(offset.x-1, img.height+offset.y,
img.width+offset.x, img.height+offset.y);

116

CHAPTER 4

line(offset.x-1, offset.y-1,
offset.x-1, img.height+offset.y);

popStyle();

void mousePressed() {
for (Corner c : corners) {
c.pick(mouseX, mouseY);
}
}

void mouseDragged() {
for (Corner c : corners) {
if (mouseX<offset.x ||
mouseX>offset.x+img.width ||
mouseY<offset.y ||
mouseY>offset.y+img.height)
continue;
c.drag(mouseX, mouseY);
}
}

void mouseReleased() {
for (Corner c : corners) {
c.unpick();

GEOMETRY AND TRANSFORMATION

To perform the perspective transform, you use the new warpPerspective() function with the matrix
transform, which was generated from the last getPerspectiveTransform() matrix, as shown in Figure 4-13.

Figure 4-13. Perspective transform with interactivity

Note that when users click/drag the corner points, you do not check whether the new shape is convex.

When the new shape is not convex, a distorted image may result.

117

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

Linear vs. Polar Coordinates

The x, y coordinate system you are using is linear, or Cartesian coordinate. The two axes are straight lines
perpendicular to each other. Besides the linear coordinate system, you can also represent a point (x, y) in a
two-dimensional plane by using the measurements of radius and angle, as shown in Figure 4-14.

Figure 4-14. Linear and polar coordinates

OpenCV provides the transformation functions to convert an image in linear coordinate space to polar
coordinate space, with the image-processing module Imgproc. The function is as follows:

public static void Imgproc.linearPolar(Mat src, Mat dst, Point center, double maxRadius,
int flags)

The first parameter, src, is the source image. The second parameter, dst, is the destination image with
the same size and type as the source. The third parameter, center, is the transformation center. You usually
set it to the center of the image. The fourth parameter, maxRadius, is the radius of the bounding circle to
transform. The fifth parameter, flags, is a combination of interpolation methods. You use the bilinear
interpolation, INTER_LINEAR, and fill all the destination pixels, WARP_FILL OUTLIERS. In the demonstration
exercise, Chaptero4_08, you will use a live webcam as the input image and show both the source image and
the transformed image side by side.

import processing.video.*;
import org.opencv.core.*;
import org.opencv.imgproc.*;

Capture cap;
CVImage img, out;
int capW, capH;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
capW = width/2;
capH = height;
cap = new Capture(this, capW, capH);
cap.start();
img = new CVImage(cap.width, cap.height);
out = new CVImage(cap.width, cap.height);

118

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copyTo(cap);

Mat linear = img.getBGR();

Mat polar = new Mat();

Point ctr = new Point(cap.width/2, cap.height/2);

double radius = min(cap.width, cap.height)/2.0;

Imgproc.linearPolar(linear, polar, ctr, radius,
Imgproc.INTER_LINEAR+Imgproc.WARP_FILL_OUTLIERS);

out.copyTo(polar);

image(cap, 0, 0);

image(out, cap.width, 0);

linear.release();

polar.release();

In the exercise, you set the radius to half the height of the video image. Figure 4-15 shows the Processing
window image.

Figure 4-15. Linear to polar transform

OpenCV also provides another polar coordinate transform, logPolar(). It is similar to the
linearPolar() function except that it uses the natural logarithm of the distance. The following exercise,
Chaptero4 09, shows how you can use the logPolar () function with the webcam image:

import processing.video.*;
import org.opencv.core.*;
import org.opencv.imgproc.*;

Capture cap;
CVImage img, out;
int capW, capH;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);

119

CHAPTER 4 GEOMETRY AND TRANSFORMATION

capW = width/2;

capH = height;

cap = new Capture(this, capW, capH);

cap.start();

img = new CVImage(cap.width, cap.height);

out = new CVImage(cap.width, cap.height);
}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat linear = img.getBGR();
Mat polar = new Mat();
Point ctr = new Point(cap.width/2, cap.height/2);
double radius = (double)min(cap.width, cap.height)/2.0;
double m = (double)cap.width/log((float)radius);
Imgproc.logPolar(linear, polar, ctr, m,
Imgproc.INTER_LINEAR+Imgproc.WARP_FILL OUTLIERS);
out.copyTo(polar);
image(cap, 0, 0);
image(out, cap.width, 0);
linear.release();
polar.release();

The function claims to emulate the human “foveal” vision and appears to be more “natural.” Figure 4-16
shows the resulting image.

N

Figure 4-16. Linear to log polar transform

Three-Dimensional Space

Besides using the image-processing module in OpenCV, you can use the 3D graphical features in Processing
to transform images. In most of this book’s exercises, you are using the image() function to display the
PImage object instance directly on the screen. In Processing, there are other ways to display the image.

120

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

The following exercise, Chapter04_10, demonstrates how to use the PShape class (https://processing.org/
reference/PShape.html) with a PImage class as the mapped texture. The exercise is a composition of two
images. The first one is the background image from a PImage instance. The second one is the foreground
image from the Capture instance. The rotation in 3D space simulates a perspective transform.

import processing.video.*;

Capture cap;
PImage img;
PShape canvas;
int capW, capH;
float angle;

void setup() {
size(800, 600, P3D);
hint(DISABLE DEPTH_TEST);
capW = 640;
capH = 480;
cap = new Capture(this, capW, capH);
cap.start();
img = loadImage("hongkong.png");
canvas = createShape(RECT, 0, 0, cap.width, cap.height);
canvas.setStroke(false);
canvas.setTexture(cap);
shapeMode (CENTER);
angle = 0;

}

void draw() {

if (!cap.available())
return;

cap.read();
background(0);
image(img, 0, 0);
translate(width/2, height/2, -100);
rotateX(radians(angle));
shape(canvas, 0, 0);
angle += 0.5;
angle %= 360;

The first change in the program is the size() function. It has an additional parameter, P3D, to indicate that
you are now in 3D display mode. Advanced users can use the OpenGL hint function to control the rendering
parameters (https://processing.org/tutorials/rendering/). The hint() function you used here has a
parameter to disable a depth test in the rendering, such that the surface in the front will not occlude that in the
back. In the setup() function, you define the PShape instance canvas with the following function:

createShape(RECT, 0, 0, cap.width, cap.height);
This creates a shape as a rectangle, RECT, with the top-left corner at (0, 0) and the width and height
equal to the webcam capture’s width and height. The next statement disables the stroke color. You also use

canvas.setTexture(cap) to associate PImage cap from the webcam as the texture for the shape, canvas.

121

https://processing.org/reference/PShape.html
https://processing.org/reference/PShape.html
https://processing.org/tutorials/rendering/

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

In the draw() function, you first clear the background to black and then display directly the background
image, img, onto the Processing window. The translate() function displaces the drawing to the center of
the screen and also with negative value in the z direction. The rotateX() function rotates the drawing by the
amount specified in angle along the X axis. Note that the rotation takes radians as the unit of measurement.
If you are using degrees, you need to use the radians() function to do the conversion. The final step is to use
the shape() function to display the PShape instance canvas in the center (0, 0). Note also that in the setup()
function, you set shapeMode to CENTER, rather than the top-left corner. The sample display will be similar to
what is shown in Figure 4-17.

Figure 4-17. Perspective transform in Processing by rotation

In the previous exercise, you define the shape using a built-in rectangular shape. In fact, you can define
your own vertices. The following exercise, Chapter04_11, will define the same shape using a sequence of
vertex() commands. After that, you can retrieve the individual vertex and alter its position to achieve a
more dynamic animation.

import processing.video.*;

Capture cap;
PImage img;
PShape canvas;
int capW, capH;
float angle;
int vCnt;

void setup() {
size(800, 600, P3D);
hint(DISABLE DEPTH_TEST);
capW = 640;
capH = 480;
cap = new Capture(this, capW, capH);
cap.start();
img = loadImage("hongkong.png");
canvas = createShape();
canvas.beginShape();
canvas.textureMode (NORMAL) ;
canvas.texture(cap);
canvas.noStroke();
canvas.vertex(0, 0, 0, 0, 0);
canvas.vertex(cap.width, 0, 0, 1, 0);

122

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

canvas.vertex(cap.width, cap.height, o, 1, 1);
canvas.vertex(0, cap.height, 0, 0, 1);
canvas.endShape (CLOSE);

shapeMode (CENTER) ;

angle = 0;

vCnt = canvas.getVertexCount();

}

void draw() {

if (!cap.available())
return;

cap.read();

background(0);

image(img, 0, 0);

for (int i=0; i<vCnt; i++) {
PVector pos = canvas.getVertex(i);

if (i <2)

pos.z = 100*cos(radians(angle*3));
} else {

pos.z = 100*sin(radians(angle*s));
}

canvas.setVertex(i, pos);

translate(width/2, height/2, -100);
rotateY(radians(angle));
shape(canvas, 0, 0);

angle += 0.5;

angle %= 360;

Figure 4-18 shows the result.

Figure 4-18. Perspective transform with custom shape

The previous exercises use only four corners of the rectangle to specify the rectangle. The image is not
distorted too much. If you use a wireframe grid as the skeleton for the texture mapping, you can modify each
point to further distort the image. Figure 4-19 shows the grid and the image mapped on top of it.

123

CHAPTER 4 GEOMETRY AND TRANSFORMATION

Figure 4-19. Image text-mapped on a grid

To define the grid in Processing, you use the QUAD_STRIP shape. First, you define a GROUP shape for the
whole grid. Second, you create each row of the grid as a QUAD_STRIP shape. To create a cell in the QUAD_STRIP,
you have to define the points in this order: top-left, bottom-left, top-right, and bottom-right. Third, you add
each row to the GROUP shape as a child. Figure 4-20 explains the detailed configuration of this shape.

GROUP PShape

QUAD STRIP

QUAD_STRIP [|

QUAD_STRIP

QUAD_STRIP

QUAD_STRIP [

[]
T
=]
T
[]
[

L1]
[T
[T]
o sme [T
1]
T

Figure 4-20. A GROUP shape with QUAD_STRIP as children

The next exercise, Chapter04_12, shows how you can use a GROUP PShape called canvas to define the
grid for the detailed texture mapping:

import processing.video.*;

Capture cap;
PShape canvas;
int capW, capH;
float step;

void setup() {
size(800, 600, P3D);
hint(DISABLE DEPTH_TEST);

capW = 640;
capH = 480;
step = 40;

cap = new Capture(this, capW, capH);
cap.start();

initShape();

shapeMode (CENTER);

124

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void initShape() {
// initialize the GROUP PShape grid
canvas = createShape(GROUP);
int nRows = floor(cap.height/step) + 1;
int nCols = floor(cap.width/step) + 1;
for (int y=0; y<nRows-1; y++) {
// initialize each row of the grid
PShape tmp = createShape();
tmp.beginShape (QUAD_STRIP);
tmp.texture(cap);
for (int x=0; x<nCols; x++) {
// initialize the top-left, bottom-left points
int x1 = (int)constrain(x*step, 0, cap.width-1);
int y1 = (int)constrain(y*step, 0, cap.height-1);
int y2 = (int)constrain((y+1)*step, 0, cap.height-1);
tmp.vertex(x1, y1, 0, x1, y1);
tmp.vertex(x1, y2, 0, x1, y2);
}
tmp.endShape();
canvas.addChild(tmp);
}
}

void draw() {

if (!cap.available())
return;

cap.read();
background(100);
translate(width/2, height/2, -80);
rotateX(radians(20));
shape(canvas, 0, 0);

The difficult part is done in the initShape() function. You first define PShape for the whole grid as
canvas = createShape(GROUP)

Then you loop through every cell in the grid. Note that you need to take care of the right and bottom
margins by adding 1 to the total number of rows, nRows, and the total number of columns, nCols. For each
row, you define the temporary variable tmp as a QUAD_STRIP shape. After you create all the vertices in the
QUAD_STRIP, you add it to the canvas shape by using canvas.addChild(tmp). Now you can map the video
capture image onto the grid as a texture. Nevertheless, you are not going to stop here. Your intention is to alter
the z position of the vertices on the screen, such that you can have a distorted image of the video capture.

The next exercise, Chapter04_13, will maintain a two-dimensional array of vertices in the grid. Also, you
will set a random initial z position for each of the vertices.

import processing.video.*;

Capture cap;

PShape canvas;

int capW, capH;
float step;

PVector [][] points;
float angle;

125

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void setup() {
size(800, 600, P3D);
hint(DISABLE DEPTH_TEST);

capW = 640;
capH = 480;
step = 20;

cap = new Capture(this, capW, capH);
cap.start();

initGrid();

initShape();

shapeMode (CENTER) ;

angle = 0;

}

void initGrid() {

// initialize the matrix of points for texture mapping

points = new PVector[floor(cap.height/step)+1][floor(cap.width/step)+1];

for (int y=0; y<points.length; y++) {

for (int x=0; x<points[y].length; x++) {

float xVal = constrain(x*step, 0, cap.width-1);
float yVal = constrain(y*step, 0, cap.height-1);
// random z value
points[y][x] = new PVector(xVal, yVal, noise(x*0.2, y*0.2)*60-30);

}
}

void initShape() {
// initialize the GROUP PShape grid
canvas = createShape(GROUP);
for (int y=0; y<points.length-1; y++) {
// initialize each row of the grid
PShape tmp = createShape();
tmp.beginShape(QUAD_STRIP);
tmp.noStroke();
tmp.texture(cap);
for (int x=0; x<points[y].length; x++) {
PVector p1 = points[y][x];
PVector p2 = points[y+1][x];
tmp.vertex(pl.x, pi.y, pl.z, pl.x, pl.y);
tmp.vertex(p2.x, p2.y, p2.z, p2.X, p2.y);

}
tmp.endShape();
canvas.addChild(tmp);
}
}

void draw() {
if (!cap.available())
return;
cap.read();
lights();

126

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

background(100);

translate(width/2, height/2, -100);
rotateX(radians(angle*1.3));
rotateY(radians(angle));
shape(canvas, 0, 0);

angle += 0.5;

angle %= 360;

The 2D array of PVector, called points, maintains all the vertices of the grid. The function initGrid()
initializes the position information. For the z position, you use the Perlin noise function to initialize it.
The initShape() function will copy the information in the points array to create the GROUP PShape, canvas,
with proper texture mapping. Note that you also use the 1ights() function to enable the default lighting
condition in the draw() function. The resulting image (shown in Figure 4-21) will resemble a 3D terrain with
the webcam image mapped on top of it.

Figure 4-21. Texture map with irregular surface

In the previous exercise, notice that the vertices in the grid do not move. They are created once in the
setup() function, without any further changes. In the next exercise, Chapter04 14, you will try to animate
the vertices according to the webcam image so that you can achieve an interactive viewing experience.
Instead of putting a random number for the z position of each vertex, you intend to change its value by using
color information from the webcam. In Processing, the default color mode is RGB. You can, however, switch
it to HSB (hue, saturation, brightness) if you want to make explicit use of the brightness information. In this
exercise, you will aim to swap the vertex’s z position with the brightness information of that pixel.

The function you can use is brightness().

import processing.video.*;

Capture cap;

int capW, capH;
float step;

PVector [][] points;
float angle;

PShape canvas;

void setup() {
size(800, 600, P3D);
hint(DISABLE DEPTH TEST);
capW = 640;

127

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

capH = 480;

step = 10;

cap = new Capture(this, capW, capH);
cap.start();

initGrid();

initShape();

shapeMode (CENTER) ;

angle = 0;

}

void initGrid() {

// initialize the matrix of points for texture mapping

points = new PVector[floor(cap.height/step)+1][floor(cap.width/step)+1];

for (int y=0; y<points.length; y++) {

for (int x=0; x<points[y].length; x++) {

float xVal = constrain(x*step, 0, cap.width-1);
float yVal = constrain(y*step, 0, cap.height-1);
points[y][x] = new PVector(xVal, yVal, 0);

}
}

void initShape() {
canvas = createShape(GROUP);
for (int y=0; y<points.length-1; y++) {
// initialize each row of the grid
PShape tmp = createShape();
tmp.beginShape(QUAD_STRIP);
tmp.noFill();
for (int x=0; x<points[y].length; x++) {
PVector p1 = points[y][x];
PVector p2 = points[y+1][x];
tmp.vertex(p1l.x, pl.y, pl.z);
tmp.vertex(p2.x, p2.y, p2.z);

}
tmp.endShape();
canvas.addChild(tmp);
}
}

color getColor(int x, int y) {
// obtain color information from cap
int x1 = constrain(floor(x*step), 0, cap.width-1);
int y1 = constrain(floor(y*step), 0, cap.height-1);
return cap.get(x1, y1);

}

128

CHAPTER 4

void updatePoints() {
// update the depth of vertices using color
// brightness from cap
float factor = 0.3;
for (int y=0; y<points.length; y++) {
for (int x=0; x<points[y].length; x++) {
color c = getColor(x, y);
points[y][x].z = brightness(c)*factor;
}
}
}

void updateShape() {
// update the color and depth of vertices
for (int i=0; i<canvas.getChildCount(); i++) {
for (int j=0; j<canvas.getChild(i).getVertexCount(); j++) {
PVector p = canvas.getChild(i).getVertex(j);
int x = constrain(floor(p.x/step), 0, points[o0].length-1);
int y = constrain(floor(p.y/step), 0, points.length-1);
p.z = points[y][x].z;
color c = getColor(x, y);
canvas.getChild(i).setStroke(j, c);
canvas.getChild(i).setVertex(j, p);
}
}
}

void draw() {

if (!cap.available())
return;

cap.read();
updatePoints();
updateShape();
background(0);
translate(width/2, height/2, -100);
rotateX(radians(angle));
shape(canvas, 0, 0);
angle += 0.5;
angle %= 360;

GEOMETRY AND TRANSFORMATION

The initGrid() function initializes the points array. The initShape() function uses the information
from the points array to initialize PShape canvas. In the function, you do not set the texture directly in each
of the QUAD_STRIP children. You enable the stroke color but disable the fill color for the child shapes. In the
draw() function, you write the updatePoints () function to update the vertices’ z position according to the
color brightness. The updateShape() function goes through all the children of PShape canvas and updates
the vertices’ z position and the stroke color. Figure 4-22 shows a sample of the display window.

129

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

Figure 4-22. 3D effect using brightness as depth

Note that in the image those areas with darker color will appear to be deeper, while the lighter areas
will be higher in the grid plane. If you change the tmp.noFill() statement in the initShape() function to
tmp.noStroke() and change the canvas.getChild(i).setStroke(j, c) statement in the updateShape()
function to canvas.getChild(i).setFill(j, c), you can switch the wireframe display to a solid filled
version, as shown in Figure 4-23.

Figure 4-23. 3D effect with brightness as depth

General Pixel Mapping

In addition to the built-in functions in Processing and OpenCV for image transformation, you can write
the generic image transform algorithm by mapping pixel by pixel from the source image to the destination
image. In the last exercise, Chapter04_15, of this chapter, you will try to work on copying individual pixels
from the first image, img1, to the second image, img2. The transformation will be based on the harmonic
motion generated from the sine and cosine functions. The size of the image used here is 600x600 pixels.

PImage imgl, img2;
float angle;

void setup() {
size(1200, 600);
imgl = loadImage("hongkong.png");
img2 = createlmage(imgl.width, imgi.height, ARGB);
angle = 0;

130

CHAPTER 4 © GEOMETRY AND TRANSFORMATION

void draw() {
// Variables rx, ry are for the radii of the sine/cosine functions
// Variables ax, ay are for the angles of the sine/cosine functions
background(0);
for (int y=0; y<img2.height; y++) {
float ay = y*angle/img2.height;
float ry = y*angle/360.0;
for (int x=0; x<img2.width; x++) {
float ax = x*angle/img2.width;
float rx = x*angle/360.0;
int x1 = x + (int)(rx*cos(radians(ay)));
int y1 = y + (int)(ry*sin(radians(ax)));
x1 = constrain(x1, 0, imgl.width-1);
yl = constrain(y1, 0, imgl.height-1);
img2.pixels[y*img2.width+x] = imgl.pixels[y1*imgl.width+x1];
}
}
angle += 1;
angle %= 360;
img2.updatePixels();
image(img1, 0, 0);
image(img2, imgl.width, 0);

The first image, img1, is the source image. The second image, img2, is of the same size as img1. Within
the nested for loops in the draw() function, you go from the opposite direction through each pixel in the
destination image, img2. For each pixel, you find from the source image which pixel you should copy from it
to the destination. For the source pixel, you adopt the sine and cosine functions with variables affecting the
radii and angles. The overall result is an animation of a warping effect working on the source image, shown
in Figure 4-24. Figure 4-24 and Figure 4-25 shows two sample displays at different points of time.

Figure 4-24. General mapping of pixels sample 1

131

CHAPTER 4 GEOMETRY AND TRANSFORMATION

It is the second moment you capture from the animation (Figure 4-25).

Figure 4-25. General mapping of pixels sample 2

The reason why you work from the destination back to the source image is not to leave any of the
destination pixels empty. This is common practice when developing a pixel-mapping transformation.

Conclusion

This chapter described the steps to modify an image by changing its pixels’ position and thus altering its
geometry. Both Processing and OpenCV have geometric transform functionalities. You can choose which one
to use according to the application requirements in order to simplify the coding tasks. Alternately, you can
write your own image transform functions by specifying all the pixels in the destination image and where they
come from in the source image. So far, you have modify images for creative results only. You have not tried to
understand the images yet. In the next chapter, you will start to make sense of the content in the image.

132

CHAPTER 5

Ildentification of Structure

After working on image processing in the previous two chapters, you will start to explore computer vision
with Processing and OpenCV. In previous chapters, a webcam image was the source material for creative
outputs. You have not attempted to make sense of the content of the image. In this chapter, you can use the
concepts of computer vision to identify structures in the image. Through the structures, you will make more
sense of the content of the image. The topics this chapter will cover are as follows:

e Image preparation

e Edge detection

e Line detection

e Circle detection

e Contours processing

e Shape detection

Image Preparation

Before you send a source image for detection, it is often necessary to optimize the image. By optimization,

I am referring to the process of reducing unnecessary information in the raw image. For example, when you
want to identify straight lines in an image, you often do not need to have a color image. A grayscale one will
do. Sometimes a black-and-white image may just be enough to serve the purpose of shape detection.

The following are the steps to follow to prepare the image for detection:

1. Conversion to grayscale
Conversion to a black-and-white image

Morphological operations (erode, dilate)

Eal

Blur operations (smoothing)

Conversion to Grayscale

You learned how to convert a color RGB image into grayscale by changing each pixel in Chapter 2. In the
following exercises, you will explore different ways in Processing and OpenCV to achieve the same effect.
The first exercise, Chaptero5 01, will use the filter() function in Processing. The size of the sample image
used in this exercise is 600x600 pixels.

© Bryan WC Chung 2017 133
B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_5

http://dx.doi.org/10.1007/978-1-4842-2775-6_2

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

PImage source, grey;

void setup() {
size(1200, 600);
source = loadImage("sample0o4.jpg");
grey = createImage(source.width, source.height, ARGB);
noLoop();

void draw() {
background(0);
arrayCopy(source.pixels, grey.pixels);
grey.updatePixels();
grey.filter(GRAY);
image(source, 0, 0);
image(grey, source.width, 0);

The program also demonstrates the use of the arrayCopy() function to efficiently copy from one array
to another of the same size. The actual function to convert the image is grey.filter (GRAY). The program
will display the original image and the grayscale one side by side for comparison, as shown in Figure 5-1.

Figure 5-1. Grayscale conversion in Processing

The next version, Chaptero5_02, will use the OpenCV function to perform the grayscale conversion.
Note that in the CVImage class defined in the Chapter 2 example, Chapter02_21, you have already written
the getGrey () method to return a grayscale image matrix. Please remember to copy the code folder and the
CVImage definition to the sketch folder before using OpenCV in Processing. The size of the sample image is
600x600 pixels.

PImage source;
CVImage srccv, greycv;

void setup() {

size(1200, 600);
System.loadLibrary(Core.NATIVE_LIBRARY NAME);

134

http://dx.doi.org/10.1007/978-1-4842-2775-6_2

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

source = loadImage("sampleo4.jpg");

srcev = new CVImage(source.width, source.height);
srccv.copyTo(source);
greycv = new CVImage(source.width, source.height);

noLoop();

}

void draw() {
background(0);
Mat mat = srccv.getGrey();
greycv.copyTo(mat);
image(source, 0, 0);
image(greycv, source.width, 0);
mat.release();

}

In the program, you use the CVImage instance greycv to keep the grayscale image after the conversion
by the getGrey() method.

Conversion to a Black-and-White Image

The grayscale image you obtained in the previous section usually contains 256 levels of gray tone. In

some applications, you may want to have just two levels, simply black and white. In this case, you can use
the following methods to further convert the grayscale image into a black-and-white one. The exercise,
Chapter05_03, will show you how to use the Processing filter () function to do so. The size of the sample
image in this exercise is 600x600 pixels.

PImage source, grey, bw;

void setup() {
size(1800, 600);
source = loadImage("sampleo1.jpg");
grey = createImage(source.width, source.height, ARGB);
bw = createImage(source.width, source.height, ARGB);
noLoop();

}

void draw() {
background(0);
arrayCopy(source.pixels, grey.pixels);
grey.updatePixels();
grey.filter(GRAY);
arrayCopy(grey.pixels, bw.pixels);
bw.updatePixels();
bw.filter (THRESHOLD, 0.5);
image(source, 0, 0);
image(grey, source.width, 0);
image(bw, source.width+grey.width, 0);

135

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

I often refer to the black-and-white conversion as thresholding. A pixel with a grayscale value higher
than a threshold will be considered as white and black when its grayscale value is lower than the threshold.
The function you use here is bw.filter (THRESHOLD, 0.5), where the number 0.5 is the threshold value.
Figure 5-2 shows the display window.

Welk WuUell UL

Figure 5-2. Black-and-white image conversion with thresholding

The image on the left side is the original photograph. The middle one is the grayscale version after the
first filter () function. The one on the right side is the black-and-white image after the second filter()
function, this time with the option THRESHOLD. The next exercise, Chapter0o5_04, will illustrate a version done
in OpenCV:

PImage source;
CVImage srccv, bwcv;

void setup() {
size(1800, 600);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
source = loadImage("sample04.jpg");
srccv = new CVImage(source.width, source.height);
bwcv = new CVImage(source.width, source.height);
srccv.copyTo(source);
noLoop();

}

void draw() {
background(0);
Mat grey = srccv.getGrey();
Mat bw = new Mat();
Imgproc.threshold(grey, bw, 127, 255, Imgproc.THRESH BINARY);
bwcv. copyTo(bw);
srccv.copyTo(grey);
image(source, 0, 0);
image(srccv, source.width, 0);
image(bwcv, source.width+srccv.width, 0);
grey.release();
bw.release();

136

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

The following is the OpenCV function to perform the threshold operation:
Imgproc.threshold(grey, bw, 127, 255, Imgproc.THRESH BINARY);

In the function, the first number, 127, is the midpoint within the 0 to 255 range. It is the threshold value.
The second number, 255, is the maximum number for the grayscale level.

Morphological Operations

Morphological operations in image processing are the transformations that modify the shape of a pattern in
an image. In this section, I cover only the erode and dilate operations. The following exercise, Chaptero5_05,
shows how you can do them in Processing:

PImage source, grey, bw, dilate, erode;

void setup() {
size(1800, 600);
source = loadImage("sample02.jpg");
grey = createImage(source.width, source.height, ARGB);
bw = createImage(source.width, source.height, ARGB);
dilate = createImage(source.width, source.height, ARGB);
erode = createImage(source.width, source.height, ARGB);
noLoop();

}

void draw() {
background(0);
arrayCopy(source.pixels, grey.pixels);
grey.updatePixels();
grey.filter(GRAY);
arrayCopy(grey.pixels, bw.pixels);
bw.updatePixels();
bw.filter (THRESHOLD, 0.5);
arrayCopy(bw.pixels, erode.pixels);
arrayCopy(bw.pixels, dilate.pixels);
erode.updatePixels();
dilate.updatePixels();
dilate.filter(DILATE);
erode.filter(ERODE);
image(bw, 0, 0);
image(erode, bw.width, 0);
image(dilate, bw.width+erode.width, 0);

The resulting display contains three images, as shown in Figure 5-3. The left one is the black-and-white
image from the THRESHOLD filter. The middle one is the ERODE version. The right one is the DILATE version.

137

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Figure 5-3. Erode and dilate filters in Processing

The ERODE filter reduces the number of white areas, while the DILATE filter increases the number of
white areas. For applications that would like to remove the dark, tiny noise patterns, the DILATE filter would
be a good choice to start with. For an OpenCV version, please refer to the following exercise, Chapter05_06:

PImage source;
CVImage srccv, bwcv, erodecv, dilatecv;

void setup() {
size(1800, 600);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
source = loadImage("sample02.jpg");
srccv = new CVImage(source.width, source.height);
bwcv = new CVImage(source.width, source.height);
erodecv = new CVImage(source.width, source.height);
dilatecv = new CVImage(source.width, source.height);
srccv.copyTo(source);
noLoop();

}

void draw() {
background(0);
Mat grey = srccv.getGrey();
Mat bw = new Mat();
Imgproc.threshold(grey, bw, 127, 255, Imgproc.THRESH_BINARY);
Mat erode = new Mat();
Mat dilate = new Mat();
Mat elem = Imgproc.getStructuringElement(Imgproc.MORPH RECT, new Size(3,
Imgproc.erode(bw, erode, elem);
Imgproc.dilate(bw, dilate, elem);
bwcv. copyTo(bw);
erodecv.copyTo(erode);
dilatecv.copyTo(dilate);
image(bwcv, 0, 0);
image(erodecv, bwcv.width, 0);
image(dilatecv, bwcv.width+erodecv.width, 0);
grey.release();

138

3));

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

bw.release();
erode.release();
dilate.release();

}

The program uses the former Imgproc.threshold() function to change the grayscale image into a
black-and-white one first. The subsequent Imgproc.erode() and Imgproc.dilate() functions will perform,
respectively, the erode and dilate morphological operations. Before working on the erode and dilate
operations, you need another matrix, called elem, which is the structuring element or kernel describing the
morphological operations. It usually comes with three shapes.

e Imgproc.MORPH_RECT
e Imgproc.MORPH_CROSS
e Imgproc.MORPH_ELLIPSE

The content of elem with different shape parameters is shown here:

MORPH_RECT (3x3)

1 1 1
1 1 1
1 1 1

0 1 0
1 1 1
0 1 0

0 1 0
1 1 1
0 1 0

You will find that the MORPH_CROSS and MORPH_ELLIPSE effects are identical when the size is 3x3. For
a larger size, they will be different. MORPH_CROSS will have 1 only in the middle row and column, while the
MORPH_ELLIPSE will approximate a circular shape with 1. The filter operation will scan through the source
image with the matrix elem. Only those pixels with the value 1 in elem will be collected for calculation. The
DILATE filter will replace the original image pixel with the maximum value among the neighborhood pixels
defined in elem. The ERODE filter will replace the original image pixel with the minimum value among the
neighborhood. You can find details of the three shapes in the OpenCV documentation at http://docs.
opencv.org/3.1.0/d4/d86/group _imgproc_ filter.html#gac2db39b56866583a95a5680313c314ad.
For the Size() parameter, the larger the size, the more obvious the transformation effect. In general, it is a
square with a pair of odd numbers.

139

http://docs.opencv.org/3.1.0/d4/d86/group__imgproc__filter.html#gac2db39b56866583a95a5680313c314ad
http://docs.opencv.org/3.1.0/d4/d86/group__imgproc__filter.html#gac2db39b56866583a95a5680313c314ad

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Blur Operations

To further reduce the noise or unnecessary details in an image, you can consider using a blurring effect.
Both Processing and OpenCV have a blur filter or functions. The next exercise, Chapter05_07, uses the blur
filter in Processing to perform the operation:

PImage source, blur;

void setup() {
size(1200, 600);
source = loadImage("sample03.jpg");
blur = createImage(source.width, source.height, ARGB);
noLoop();

}

void draw() {
background(0);
arrayCopy(source.pixels, blur.pixels);
blur.updatePixels();
blur.filter(BLUR, 3);
image(source, 0, 0);
image(blur, source.width, 0);

The program is straightforward. It uses the filter () function with the BLUR option. The number after
the option is the amount of blur. The larger the number, the more blurred the image will be. Figure 5-4 shows
the resulting display window from the program.

Figure 5-4. Blur filter in Processing

For OpenCV, there are a few blur functions. In the next exercise, Chaptero5_08, you will explore a
number of them and compare the results. It uses the blur (), medianBlur(), and GaussianBlur() functions
in the imgproc module of OpenCV. The first blur () function is the local averaging operation where the new
image pixel is the average value of its neighborhood pixels. The GaussianBlur () function puts a higher
weight on the closer pixels when calculating the average value, which is more effective to remove visible
noise. The medianBlur () function employs the median instead of the average to calculate the new pixel
value, which is more effective to preserve edges/boundaries while removing noise.

140

CHAPTER 5

PImage source;
CVImage srccv, blurcv, mediancv, gaussiancv;

void setup() {

size(1800, 600);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

source = loadImage("sample03.jpg");

srcev = new CVImage(source.width, source.height);
blurcv = new CVImage(source.width, source.height);
mediancv = new CVImage(source.width, source.height);
gaussiancv = new CVImage(source.width, source.height);
srccv.copyTo(source);

noLoop();

void draw() {

background(0);

Mat mat = srccv.getBGR();

Mat blur = new Mat();

Mat median = new Mat();

Mat gaussian = new Mat();

Imgproc.medianBlur(mat, median, 9);
Imgproc.blur(mat, blur, new Size(9, 9));
Imgproc.GaussianBlur(mat, gaussian, new Size(9, 9), 0);
blurcv.copyTo(blur);

mediancv.copyTo(median);
gaussiancv.copyTo(gaussian);

image(blurcv, 0, 0);

image(mediancv, blurcv.width, 0);
image(gaussiancv, blurcv.width+mediancv.width, 0);
mat.release();

blur.release();

median.release();

gaussian.release();

IDENTIFICATION OF STRUCTURE

The blurred images from the three functions are displayed side by side, as shown in Figure 5-5.

Figure 5-5. Three blurring functions in OpenCV

141

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

To conclude this section, you will combine the operations to build a practical application to convert the
live webcam image into a binary black-and-white image for later processing. The first version is written in
pure Processing for the exercise, Chapter05_09, shown here:

import processing.video.*;
Capture cap;

void setup() {
size(1280, 480);
cap = new Capture(this, width/2, height);
cap.start();

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
PImage tmp = createImage(cap.width, cap.height, ARGB);
arrayCopy(cap.pixels, tmp.pixels);
tmp.filter(GRAY);
tmp.filter(BLUR, 2);
tmp.filter (THRESHOLD, 0.25);
tmp.filter(DILATE);

image(cap, 0, 0);
image(tmp, cap.width, 0);
text(nf(round(frameRate), 2), 10, 20);

In the program, you combine the blur, grayscale, threshold, and erode operations. For a pure Processing
implementation, the performance is not good. You add the text () function to display the current frame rate
on the screen for comparison. Figure 5-6 shows the Processing display window.

Figure 5-6. Image preparation in Processing
For an OpenCV implementation, in the exercise Chapter05_10, you also combine the image operations
into one single program with the live webcam image as input. The performance is much better than the pure

Processing version.

142

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.GaussianBlur(tmp1, tmp2, new Size(5, 5), 0);
Imgproc.threshold(tmp2, tmp1, 80, 255, Imgproc.THRESH BINARY);
Mat elem = Imgproc.getStructuringElement(Imgproc.MORPH RECT, new Size(3, 3));
Imgproc.dilate(tmp1, tmp2, elem);
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(tmp2);
image(cap, 0, 0);
image(out, cap.width, 0);
tmpl.release();
tmp2.release();
elem.release();
text(nf(round(frameRate), 2), 10, 20);

Figure 5-7 shows the Processing display window image. The frame rate is significantly higher than the

Processing version.

Figure 5-7. Image preparation in Processing with OpenCV

143

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Edge Detection

After understanding the steps to prepare an image, the first structure you will discover is the edge, or
outline, of any objects in an image. A computer actually does not understand any image content. It can only
systematically scan each pixel and its neighbors. For those pixels with a significant color difference from
their neighbors, you can conclude those pixels belong to the outline that may separate two objects or an
object against its background.

Processing does not have an edge detection filter, though it is not difficult to implement. For OpenCYV,
you can use the famous Canny edge detector developed by John F. Canny in 1986. To run the edge detection,
it is often beneficial to perform a blur operation to remove the noise and convert the color image to
grayscale. The next exercise, Chaptero5_11, will illustrate the steps:

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.GaussianBlur(tmp1, tmp2, new Size(7, 7), 1.5, 1.5);
Imgproc.Canny(tmp2, tmpl, 10, 30);
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(tmp1);
image(cap, 0, 0);
image(out, cap.width, 0);
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();
tmp2.release();

The following is the major function for the edge detection:
Imgproc.Canny(tmp2, tmpl, 10, 30);
The image tmp2 is the blurred grayscale image. The image tmp1 is the one to contain the edge image.

The function has two threshold values. The first number is the lower threshold. If a pixel’s gradient value
is below the lower threshold, it will be rejected. The second number is the upper threshold. If the pixel’s

144

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

gradient value is larger than the upper threshold, it will be accepted as an edge pixel. If the pixel’s gradient
value is between the two threshold values, it will be accepted as edge only if it is connected to another pixel
that is above the upper threshold. It is also recommended by Canny that the second one is between two to
three times the value of the first one. The larger the values, the fewer edges that will be detected in the image.
Figure 5-8 shows the detection result.

Figure 5-8. Canny edge detection

For comparison, you can also convert the grayscale image to a black-and-white image with the
threshold() function. After that, you can perform edge detection with the black-and-white image. The next
exercise, Chapter05 12, demonstrates this approach:

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.GaussianBlur(tmp1, tmp2, new Size(7, 7), 1.5, 1.5);
Imgproc.threshold(tmp2, tmp1, 110, 255, Imgproc.THRESH_BINARY);
Imgproc.Canny(tmp1, tmp2, 10, 30);
CvImage out = new CVImage(cap.width, cap.height);
out.copyTo(tmp2);

145

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

img.copyTo(tmp1);

image(img, 0, 0);

image(out, img.width, 0);
text(nf(round(frameRate), 2), 10, 20);
tmp1.release();

tmp2.release();

The resulting image is more abstract, as shown in Figure 5-9. There will be fewer details and noise in the
final image.

Figure 5-9. Canny edge detection with black-and-white image

Line Detection

Besides detecting the edge or boundary of shapes in an image, you can detect straight line segments,

using the Hough line transform in OpenCV. The official OpenCV documentation has details about the
mathematics behind the Hough line transform; you can find the documentation at http://docs.opencv.org/
3.1.0/d9/dbo/tutorial hough_lines.html. The following exercise, Chapter05_ 13, is a simple
implementation in Processing:

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
noStroke();

}

void draw() {
if (!cap.available())
return;

146

http://docs.opencv.org/3.1.0/d9/db0/tutorial_hough_lines.html
http://docs.opencv.org/3.1.0/d9/db0/tutorial_hough_lines.html

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.Canny(tmp1, tmp2, 50, 150);
MatOfPoint2f lines = new MatOfPoint2f();
Imgproc.HoughLines(tmp2, lines, 1, PI/180, 100);
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(tmp2);
image(cap, 0, 0);
image(out, cap.width, 0);
Point [] points = lines.toArray();
pushStyle();
noFill();
stroke(255);
for (Point p : points) {
double rho = p.x;
double theta = p.y;
double a = cos((float)theta);
double b = sin((float)theta);
PVector pti, pt2;
double x0 = rho*a;
double yo = rho*b;
ptl = new PVector((float)(x0 + cap.width*(-b)), (float)(yo + cap.width*(a)));
pt2 = new PVector((float)(x0 - cap.width*(-b)), (float)(yo - cap.width*(a)));
line(pt1.x, pti.y, pt2.x, pt2.y);
}
popStyle();
text(nf(round(frameRate), 2), 10, 20);
tmp1.release();
tmp2.release();
lines.release();

The main command for the line detection is the Imgproc.HoughLines() function. The first parameter
is the black-and-white image after the Canny edge detection. The second parameter is the output matrix
storing all the detected line information. Since it is a 1xN two-channel matrix, you use the subclass
MatOfPoint2f for convenience’s sake. The rest of the parameters will determine the accuracy of detection.
From high-school algebra, you probably understand a line can be represented by the following:

y=m*x+c

In the HoughLines () function, the same line is represented by another formula.
rho = x * cos (theta) + y * sin(theta)

Here, rho is the perpendicular distance from the origin of the image to the line, and theta is the angle
formed by the perpendicular line and the horizontal x-axis. The HoughLines () function keeps a 2D array;

the first dimension is the value of rho, measured in pixels, and the second dimension is the value of theta
measured in degrees.

147

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

The third parameter is the pixel resolution for the measurement of rho. The value 1 in this example
indicates the resolution for rho is 1 pixel. A larger value will usually generate more lines with less accuracy.
The fourth parameter is the angle resolution for the measurement of theta. The value PI/180 in this
example indicates the resolution for theta is 1 degree. The fifth parameter determines how well the lines will
be detected. In this example, only those lines with more than 100 points passing through will be reported.
After the line detection, you convert the 1ines matrix into an array of Point. Each member in the array will
be a line. You use the calculation inside the for loop to compute the two endpoints of each line, and finally
the 1ine() function draws the line in white.

Figure 5-10 shows the Processing window. The detected lines are drawn over the live webcam image.

Figure 5-10. Hough line transform detection

OpenCV has another function for line detection called HoughLinesP() that is more efficient and
friendlier to use. It will return the two endpoints of each line segment. The following exercise, Chapter05_ 14,
illustrates the use of this function:

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.Canny(tmp1, tmp2, 50, 150);
Mat lines = new Mat();

148

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Imgproc.HoughLinesP(tmp2, lines, 1, PI/180, 80, 30, 10);
CvImage out = new CVImage(cap.width, cap.height);
out.copyTo(tmp2);
image(out, cap.width, 0);
pushStyle();
i11(100);
rect(0, 0, cap.width, cap.height);
noFill();
stroke(0);
for (int i=0; i<lines.rows(); i++) {
double [] pts = lines.get(i, 0);
float x1 = (float)pts[o];
float y1 = (float)pts[1];
float x2 = (float)pts[2];
float y2 = (float)pts[3];
line(x1, y1, x2, y2);
}
popStyle();
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();
tmp2.release();
lines.release();

For the parameters of the HoughLinesP () function, the first one is the image matrix. The second
parameter is the output matrix lines storing all the line segment information. The third parameter, 1, is the
pixel resolution, while the fourth one, PI/180, is the angle resolution in degrees. The fifth parameter, 80, is
the threshold value. The sixth parameter, 30, is the minimum line length. The seventh parameter, 10, is the
maximum line gap. The output, lines, is a one-dimensional matrix, with only one column and multiple
rows. In the for loop inside the draw() function, you loop through all the rows from 1ines. Each element is
actually another array of size 4. The first two of them are the x and y positions of the first endpoint. The third
and fourth elements of the array are the x and y positions of the second endpoint. With the two endpoints,
you use the line() function to draw a straight line between them. Figure 5-11 shows the resulting image.

Figure 5-11. Hough line transform detection

In the next exercise, Chapter05_15, you will modify the previous one using a common technique often
employed in creative image processing. For every line segment, you calculate its midpoint and sample the
pixel color information. Using this color, you change the stroke color of that line segment. The result will
resemble the color sketching technique in drawing.

149

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.Canny(tmp1, tmp2, 20, 60);
Mat lines = new Mat();
Imgproc.HoughLinesP(tmp2, lines, 1, PI/180, 70, 30,
image(cap, 0, 0);
pushStyle();
noFill();
for (int i=0; i<lines.rows(); i++) {
double [] pts = lines.get(i, 0);
float x1 = (float)pts[o];
float y1 = (float)pts[1];
float x2 = (float)pts[2];
float y2 = (float)pts[3];

10);

int mx = (int)constrain((x1+x2)/2, 0, cap.width-1);
int my = (int)constrain((y1+y2)/2, 0, cap.height-1);

color c = cap.pixels[my*cap.width+mx];
stroke(c);
strokeWeight(random(1, 5));
line(x1+cap.width, y1, x2+cap.width, y2);
}
popStyle();
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();
tmp2.release();
lines.release();

150

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Note that you also introduce a strokeWeight(random(1, 5)) command to use a different stroke
thickness for the line segments. Figure 5-12 shows the output display.

Figure 5-12. Line detection as drawing

OpenCV has a LineSegmentDetector class implementing Rafael Grompone von Gioi’s line segment
detector. This method will first detect image gradient directions in a very small area, such as 2x2 pixels.
Similar directions are concatenated together to determine whether it can be a line segment. The next
exercise, Chapter05_16, re-creates the previous exercise using the new method:

import processing.video.*;

Capture cap;
CVImage img;
LineSegmentDetector line;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
line = Imgproc.createlLineSegmentDetector();

}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copyTo(cap);

Mat tmpl = img.getGrey();

Mat lines = new Mat();

line.detect(tmp1, lines);

pushStyle();

for (int i=0; i<lines.rows(); i++) {
double [] pts = lines.get(i, 0);
float x1 = (float)pts[o];
float y1 = (float)pts[1];

151

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

float x2 = (float)pts[2];

float y2 = (float)pts[3];

int mx = (int)constrain((x1+x2)/2, 0, cap.width-1);
int my = (int)constrain((yi+y2)/2, 0, cap.height-1);
color col = cap.pixels[my*cap.width+mx];
stroke(col);

strokeWeight(random(1, 3));

line(x1+cap.width, y1, x2+cap.width, y2);

}

popStyle();

image(cap, 0, 0);
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();

lines.release();

You first define the global variable 1ine as an instance of the LineSegmentDetector. In the setup()
function, you initialize the instance using the static function Imgproc.createlineSegmentDetector() with
the default settings. In the draw() function, the detection is simple. It is done using the 1ine.detect()
method, with the input matrix, tmp1, and the output result, lines, as parameters. The structure of the lines
matrix is similar to the previous exercise. Each entry contains the two endpoints’ x and y positions. The
result display looks different from that of the previous exercise, as shown in Figure 5-13.

Figure 5-13. Line detection with the OpenCV LineSegmentDetector

Circle Detection

Similar to line detection, the OpenCV image-processing module, imgproc, also includes a circle detection
method using the Hough circle transform, HoughCircles(). In the next exercise, Chapter05_17, you will
explore this function to detect circular shapes from the prepared image from the live webcam:

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);

152

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

cap = new Capture(this, width/2, height);

cap.start();

img = new CVImage(cap.width, cap.height);
}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.GaussianBlur(tmpl, tmp2, new Size(9, 9), 1);
Imgproc.Canny(tmp2, tmpl, 100, 200);
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(tmp1);
MatOfPoint3f circles = new MatOfPoint3f();
Imgproc.HoughCircles(tmpl, circles, Imgproc.HOUGH GRADIENT, 1, tmpl.rows()/8, 200, 45, 0, 0);
Point3 [] points = circles.toArray();
image(cap, 0, 0);
image(out, cap.width, 0);
pushStyle();
noStroke();
fill(o, 0, 255, 100);
for (Point3 p : points) {
ellipse((float)p.x, (float)p.y, (float)(p.z*2), (float)(p.z*2));

popStyle();

text(nf(round(frameRate), 2), 10, 20);
tmpl.release();

tmp2.release();

circles.release();

The program prepares the image first by changing it to grayscale, then by applying the Gaussian blur
filter, and finally by detecting the edges. The Canny edge image is then sent to the HoughCircles() function
for circle detection. The first parameter, tmp1, is the input image. The second parameter, circles, is the
output result. The third parameter, Imgproc.HOUGH_GRADIENT, is the only option for circle detection. The
fourth parameter is the inverse ratio of resolution. It is normally 1. The fifth parameter, tmp1.rows()/8, is the
minimum distance between circles being detected. The sixth parameter, 200, is the upper threshold of the
internal Canny edge detector. The seventh parameter, 45, is the threshold of center detection. The smaller the value,
the more circles it will detect. The rest of the parameters are the minimum and maximum values for the
radius. They default to 0. The result, circles, is a one-dimensional matrix. You use a Mat0fPoint3f to store
its value. Each entry will contain an array of three values, corresponding to the circle center (X, y positions)
and the radius. The for loop goes through all the circles and displays them in a semitransparent blue color.
Figure 5-14 shows the resulting image.

153

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

ﬁ"n[l “.AI.:

Figure 5-14. Hough circle transform for circle detection

You can play around with the circle detection program by overdoing the detection. In the following
exercise, Chapter05_18, you purposely put a small value in the seventh parameter of the HoughCircles()
function such that it generates a lot of false detection. Here is the source of the program:

import processing.video.*;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
MatOfPoint3f circles = new MatOfPoint3f();
Imgproc.HoughCircles(img.getGrey(), circles, Imgproc.HOUGH GRADIENT, 1, img.height/1o0,
200, 20, 0, 0);
Point3 [] points = circles.toArray();
pushStyle();
noStroke();
for (Point3 p : points) {
int x1 = constrain((int)p.x, 0, cap.width-1);
int y1 = constrain((int)p.y, 0, cap.height-1);
color col = cap.pixels[yi*cap.width+x1];
fill(color(red(col), green(col), blue(col), 160));
ellipse(xi+cap.width, y1, (float)(p.z*2), (float)(p.z*2));

154

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

popStyle();

image(cap, 0, 0);
text(nf(round(frameRate), 2), 10, 20);
circles.release();

You also remove the preparation steps with a hope to generate more circles. Within the for loop, you
use the former technique to color the circle. In this version, you also use a semitransparent color for each
circle. Figure 5-15 shows the resulting display.

Figure 5-15. Drawing with Hough circle transform

The image is an abstract rendering of the original webcam image. You can recognize the similarity in
terms of color use and the position of the circles. For the shapes, you can hardly relate them with the original.

Contours Processing

In previous sections, you employed the OpenCV image-processing module, imgproc, to identify specific
shapes from a digital image. In contours processing, you use the same module to identify more general
outlines of the graphical shapes. It involves finding the contours and ways to interpret the contour
information. Since the functions will work only on binary images, you have to prepare the images so that
they contain only black-and-white information. I will cover the following steps in contours processing:

e Finding the contours

¢ Bounding box

e Minimum area rectangle
e Convexhull

e Polygon approximation

e Testing a point in contour

e Checking intersection

155

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Finding the Contours

In the next exercise, Chapter05_19, the program first blurs the grayscale image and then extracts the edges
with the Canny () function, before sending it to the findContours() function:

import processing.video.*;
import java.util.Arraylist;
import java.util.Iterator;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmpl, tmp2, new Size(3, 3));
Imgproc.Canny(tmp2, tmpl, 50, 100);
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);
image(cap, 0, 0);
pushStyle();
noFill();
stroke(255, 255, 0);
Iterator<MatOfPoint> it = contours.iterator();
while (it.hasNext()) {
Point [] pts = it.next().toArray();
for (int i=0; i<¢pts.length-1; i++) {
Point p1 = pts[i];
Point p2 = pts[i+1];
line((float)pi.x+cap.width, (float)pl.y, (float)p2.x+cap.width, (float)p2.y);
}
}
popStyle();
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();
tmp2.release();

156

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

In the findContours () function, the first parameter is the black-and-white image. The second
parameter is the output contours data structure. The third parameter is the hierarchy information keeping
track of the relationship of the outer edges and the inner holes. The fourth parameter, Imgproc.RETR_LIST,
retrieves contours information without keeping track of the hierarchy relationship. The fifth parameter,
Imgproc.CHAIN_APPROX_SIMPLE, compresses the contour line segments into two endpoints only. You will
use other options in later exercises. The major output, contours, is a Java ArrayList of MatOfPoint. Each
MatOfPoint is converted into an array of Point. The for loop draws a line segment from one Point to the
next. Figure 5-16 shows the resulting image.

Figure 5-16. Contours processing with black-and-white Canny image

Instead of using a Canny edge detected image, the next exercise, Chapter05_20, uses a black-and-white
image prepared by the threshold() function:

import processing.video.*;
import java.util.Arraylist;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmp1, tmp2, new Size(5, 5));
Imgproc.threshold(tmp2, tmp1, 80, 255, Imgproc.THRESH BINARY);
ArraylList<MatOfPoint> contours = new ArraylList<MatOfPoint>();

157

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Mat hierarchy = new Mat();
tmpl = tmp2.clone();
Imgproc.findContours(tmpl, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(tmp1);
image(out, 0, 0);
pushStyle();
noFill();
stroke(255, 255, 0);
for (MatOfPoint ps : contours) {
Point [] pts = ps.toArray();
for (int i=0; i<pts.length-1; i++) {
Point p1 = pts[i];
Point p2 = pts[i+1];
line((float)pl.x+cap.width, (float)pil.y, (float)p2.x+cap.width, (float)p2.y);
}
}
popStyle();
text(nf(round(frameRate), 2), 10, 20);
tmpi.release();
tmp2.release();

The exercise employs the threshold() function to convert the gray image into pure black-and-white.
The findContours () function can immediately perform contour tracing on top of the black-and-white
image. In the two exercises, I also demonstrate the different ways to traverse the Java List of MatOfPoint
using both a for loop and iterator. Figure 5-17 shows the resulting image.

BBt

Figure 5-17. Contours processing with threshold image

In the coming exercise, Chapter05_21, you use another option in the findContours () function to retrieve
only the external outlines without returning those inner holes. You replace the original option Imgproc.RETR_LIST
with Imgproc.RETR_EXTERNAL. The rest remains the same. The new statement is as follows:

Imgproc.findContours(tmp2, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX _
SIMPLE);

158

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

As shown in Figure 5-18, the inner contours of the Chinese characters are not visible with the new option.

Figure 5-18. Contours processing with the RETR_EXTERNAL option

You will now further explore other options in the contour retrieve mode. The next exercise,
Chapter05_22, will use a more complex one, RETR_CCOMP. It organizes all contours into two levels. All
external boundaries will be in the top level. The holes will be in the second level. For any contours inside
a hole will also be in the top level. In the exercise, you can make use of such information to fill the external
contours and holes with two different colors. The source image size used in the program is 600x600 pixels.

import java.util.Arraylist;

CVImage cvimg;
PImage img;

void setup() {
size(1200, 600);
System.loadLibrary(Core.NATIVE_LIBRARY NAME);
img = loadImage("chinese.png");
cvimg = new CVImage(img.width, img.height);
noLoop();

}

void draw() {
background(0);
cvimg.copyTo(img);
Mat tmpl = new Mat();
Imgproc.blur(cvimg.getGrey(), tmpl, new Size(3, 3));
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_CCOMP, Imgproc.CHAIN APPROX SIMPLE);
image(img, 0, 0);
pushStyle();
stroke(255);
for (int i=0; i<contours.size(); i++) {
Point [] pts = contours.get(i).toArray();
int parent = (int)hierarchy.get(o, i)[3];
// parent -1 implies it is the outer contour.
if (parent == -1) {

159

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

fill(200);
} else {
fil11(100);
}
beginShape();
for (Point p : pts) {
vertex((float)p.x+img.width, (float)p.y);
}
endShape (CLOSE) ;
}
popStyle();
tmp1.release();
hierarchy.release();

Besides changing the retrieve mode to RETR_CCOMP, you use the hierarchy matrix. It is a one-
dimensional matrix. Each column corresponds to one entry in the contours matrix, with the same index
arrangement. Each entry in the hierarchy is an array with four values. Each value is an index to the entry in
the contours matrix. The mapping of the index is as follows:

e hierarchy.get(0, i)[0]: The next sibling contour
e hierarchy.get(0, i)[1]: The previous sibling contour
e hierarchy.get(0, i)[2]: The first child contour
e hierarchy.get(0, i)[3]: The parent contour
Avalue of -1 in the index indicates the corresponding entry is not available. If you take a look at the for
loop inside the draw() function, the statement inspects the parent index of the current contour at position i.

int parent = (int)hierarchy.get(o, 1)[3];

If it does not have any parent (-1), you color it with a lighter gray (if it does, you color it with darker gray).
Figure 5-19 shows the resulting image. The Chinese characters on the left are from the original image.
The image on the right is the rendering of the contours with two shades of gray tone.

Figure 5-19. Contours processing with option RETR_CCOMP

160

CHAPTER 5

IDENTIFICATION OF STRUCTURE

There is also one more retrieve mode, RETR_TREE, where it will store in the hierarchy matrix the complete
tree relationship of parent and children for each contour. Owing to its complexity, I will not cover it in this book.

After you detect the contours of the graphical shapes, drawing the contours will not be your only
concern. You may want to determine the interaction among moving graphical shapes or to check
overlapping regions. In the coming sections, you will investigate how you can make sense of the contour

information detected from the image.

Bounding Box

The first information you can obtain from the contour information is its bounding box. You use the
boundingRect () function from the OpenCV image-processing module. The input parameter is one contour,
as maintained by a MatOfPoint class instance. The output is the OpenCV rectangle class, Rect.

import processing.video.*;
import java.util.Arraylist;
import java.util.Iterator;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmpl, tmp2, new Size(3, 3));
Imgproc.Canny(tmp2, tmpl, 80, 160);

Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();

Mat hierarchy = new Mat();
Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);
image(cap, 0, 0);
pushStyle();
noStroke();
Iterator<MatOfPoint> it = contours.iterator();
while (it.hasNext()) {
Rect r = Imgproc.boundingRect(it.next());
int cx = (int)(r.x + r.width/2);
int cy = (int)(r.y + r.height/2);
cx = constrain(cx, 0, cap.width-1);

161

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

cy = constrain(cy, 0, cap.height-1);

color col = cap.pixels[cy*cap.width+cx];

fill(color(red(col), green(col), blue(col), 200));
rect((float)r.x+cap.width, (float)r.y, (float)r.width, (float)r.height);

popStyle();

text(nf(round(frameRate), 2), 10, 20);
tmpl.release();

tmp2.release();

In this program, Chapter05_23, once you obtain each of the bounding box’s data as a Rect, you use the
Processing function rect () to draw the rectangle. The Rect class contains four attributes: x, y, width, and
height. You also obtain the color information from the center of the rectangle and use it to color the rectangle
with transparency. The result is an abstract rendering of the original image, as shown in Figure 5-20.

Figure 5-20. Bounding rectangle for contours

Minimum Area Rectangle

The OpenCV image-processing module has another function, minAreaRect (), to compute the minimum-
area bounding rectangle of the contour. In the next exercise, Chapter05_24, you will obtain the minimum
area’s rotated rectangles for the contours. The result is a rotated rectangle of the class RotatedRect.

import processing.video.*;
import java.util.Arraylist;
import java.util.Iterator;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

162

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmpl, tmp2, new Size(3, 3));
Imgproc.Canny(tmp2, tmp1, 100, 200);
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);
image(cap, 0, 0);
pushStyle();
rectMode (CENTER);
noFill();
strokeWeight(2);
Tterator<MatOfPoint> it = contours.iterator();
while (it.hasNext()) {
RotatedRect r = Imgproc.minAreaRect(new MatOfPoint2f(it.next().toArray()));
int cx = constrain((int)r.center.x, 0, cap.width-1);
int cy = constrain((int)r.center.y, 0, cap.height-1);
color col = cap.pixels[cy*cap.width+cx];
stroke(col);
Point [] pts = new Point[4];
r.points(pts);
beginShape();
for (int i=0; i<pts.length; i++) {
vertex((float)pts[i].x+cap.width, (float)pts[i].y);

endShape (CLOSE) ;

popStyle();

text(nf(round(frameRate), 2), 10, 20);
tmp1.release();

tmp2.release();

The minAreaRect () function accepts a parameter in the format of MatOfPoint2f. Each member from
the contours output is an instance of MatOfPoint. In this case, you have to convert it to the proper class,
MatOfPoint2f, before it can be used in the minAreaRect () function. The following statement can perform
the conversion:

new MatOfPoint2f(it.next().toArray())

The RotatedRect instance, 1, has the property center that maintains the center position of the rotated
rectangle. You use the center point to find out the color information for the drawing of the rectangle. To draw
the rectangle, you use the points() method to compute the four corner points of the rotated rectangle. The
result is a Point array, pts. With the four corner points, you can use the beginShape () and endShape(CLOSE)
methods to draw the rectangle, by specifying the vertices. Figure 5-21 shows the output image.

163

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Figure 5-21. Minimume-area rectangle of contour

Convex Hull

In addition to the bounding box, you can use OpenCV to find the convex hull of the contour information.
The function that you use is convexHull (). It takes the MatOfPoint contour information and outputs a
MatOfInt matrix, hull. The outputis actually a Point array of the indices to the contour. In principle, the
number of entries in the hull is less than the Point array, pts, because it contains only the points making up
the convex shape.

import java.util.Arraylist;
import java.util.Iterator;

CVImage cv;
PImage img;

void setup() {
size(1200, 600);
background(50);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
img = loadImage("chinese.png");
cv = new CVImage(img.width, img.height);
noLoop();

}

void draw() {
cv.copyTo(img);
Mat tmpl = cv.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmp1, tmp2, new Size(3, 3));
Imgproc.Canny(tmp2, tmpl, 100, 200);
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmpl, contours, hierarchy,

Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);

image(img, 0, 0);
pushStyle();
noFill();
stroke(250);
Iterator<MatOfPoint> it = contours.iterator();

164

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

while (it.hasNext()) {
MatOfInt hull = new MatOfInt();
MatOfPoint mPt = it.next();
Point [] pts = mPt.toArray();
Imgproc.convexHull(mPt, hull);
int [] indices = hull.toArray();
beginShape();
for (int i=0; i<indices.length; i++) {
vertex((float)pts[indices[i]].x+img.width, (float)pts[indices[i]].y);

endShape (CLOSE);
hull.release();
mPt.release();
}
popStyle();
tmpi.release();
tmp2.release();

In this program, Chapter05_25, you use the Chinese characters for testing. The result will be more
obvious. Within the while loop, you go through each contour and create a closed shape using the vertices
from the hull array. Figure 5-22 shows the resulting image for reference. The characters on the left side
are the originals, while the figures on the right side are convex hulls from the contours.

Figure 5-22. Convex hull processing in OpenCV

Polygon Approximation

In addition to using the convex hull to simplify a contour, OpenCV provides other methods to streamline a
contour. The next exercise, Chaptero5_26, introduces a way to approximate a polygon for a given contour.
The function is approxPolyDP ().

import processing.video.*;

import java.util.Arraylist;
import java.util.Iterator;

165

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmpl, tmp2, new Size(3, 3));
Imgproc.Canny(tmp2, tmpl, 100, 200);
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);
image(cap, 0, 0);
pushStyle();
noFill();
Iterator<MatOfPoint> it = contours.iterator();
while (it.hasNext()) {
strokeWeight(random(5));
stroke(255, random(160, 256));
MatOfPoint2f poly = new MatOfPoint2f();
Imgproc.approxPolyDP(new MatOfPoint2f(it.next().toArray()), poly, 3, true);
Point [] pts = poly.toArray();
beginShape();
for (int i=0; i<pts.length; i++) {
vertex((float)pts[i].x+cap.width, (float)pts[i].y);

endShape(CLOSE);
}
popStyle();
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();
tmp2.release();

166

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Within the while loop, you pass each of the contours to the approxPolyDP () function. The first
parameter is the contour information converted to MatOfPoint2f. The second parameter, poly, is the output
polygon information stored as another Mat0fPoint2f. The third parameter is the approximation accuracy.

A smaller value will have a closer approximation. The true value in the fourth parameter shows that the
approximated curve is closed. Note that you also vary the stroke weight and stroke color to simulate a hand-
drawn animation effect. Figure 5-23 shows the resulting image.

Figure 5-23. Polygon approximation

Testing a Point in Contour

The next exercise, Chapter05_27, is an interactive one because you can use the mouse to change the fil11()
color of the contours. Within the draw() function, before you draw each contour, you perform a test to see if
the current mouse position, mouseX and mouseY, is inside it, by using the function pointPolygonTest(). As
you are using the right side of the window, you have to subtract the mouseX value by half of the window size,
i.e., cap.width. To use the pointPolygonTest () function, you first convert your current contour information,
mp, by converting it from MatOfPoint to MatOfPoint2f and pass it as the first parameter. The second
parameter is the mouse position stored in a Point object instance. The third Boolean parameter indicates
whether you want to return the distance data. For this exercise, you use false to return an indicator to show
whether the point is inside or outside the contour. A positive value indicates that the point is inside the
contour, a negative value is outside, and zero is just on an edge.

import processing.video.*;
import java.util.Arraylist;
import java.util.Iterator;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

167

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

void draw() {
if (!cap.available())
return;
background(250);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmpl, tmp2, new Size(3, 3));
Imgproc.Canny(tmp2, tmpl, 80, 160);
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);
image(cap, 0, 0);
pushStyle();
stroke(50);
Iterator<MatOfPoint> it = contours.iterator();
while (it.hasNext()) {
MatOfPoint mp = it.next();
Point [] pts = mp.toArray();
boolean inside = true;
if (mouseX < cap.width) {
noFill();
} else {
int mx = constrain(mouseX-cap.width, 0, cap.width-1);
int my = constrain(mouseY, 0, cap.height-1);
double result = Imgproc.pointPolygonTest(new MatOfPoint2f(pts),
new Point(mx, my), false);
if (result > 0) {
fill(255, 0, 0);
} else {
noFill();
}
}
beginShape();
for (int i=0; i<pts.length; i++) {
vertex((float)pts[i].x+cap.width, (float)pts[i].y);

endShape(CLOSE);
}
popStyle();
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();
tmp2.release();
hierarchy.release();

In this program, you set the fil1() color to red when the mouse position is inside the contour.
Otherwise, it will be noFill(). Figure 5-24 shows the moment when the mouse position is inside the hole
formed by the fingers.

168

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

A

Figure 5-24. Testing whether a point is inside a contour with pointPolygonTest

Checking Intersection

Before moving on to the general shape-matching section, I will summarize the use of contour processing
with one more exercise, Chapter05_28. In this exercise, you will refer to the use of RotatedRect in the former
exercise, Chapter05_ 24, and perform the detection between a fixed rectangular region and the rotated
rectangles generated from the live webcam image on the screen.

import processing.video.*;
import java.util.Arraylist;
import java.util.Iterator;

Capture cap;

CVImage img;

float minArea, maxArea;
RotatedRect rRect;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
minArea = 50;
maxArea = 6000;
// This is the fixed rectangular region of size 200x200.
1Rect = new RotatedRect(new Point(cap.width/2, cap.height/2),
new Size(200, 200), 0);
rectMode (CENTER);
}

void draw() {

if (!cap.available())
return;

background(0);
cap.read();
img.copyTo(cap);
Mat tmpl = img.getGrey();
Mat tmp2 = new Mat();

169

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Imgproc.blur(tmpl, tmp2, new Size(3, 3));

Imgproc.Canny(tmp2, tmpl, 100, 200);

ArraylList<MatOfPoint> contours = new ArraylList<MatOfPoint>();

Mat hierarchy = new Mat();

Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);

// Draw the fixed rectangular region.

pushStyle();

fill(255, 20);

stroke(0, 0, 255);

rect((float)rRect.center.x+cap.width,
(float)rRect.center.y, (float)rRect.size.width,
(float)rRect.size.height);

popStyle();

pushStyle();
Iterator<MatOfPoint> it = contours.iterator();
while (it.hasNext()) {
MatOfPoint ctr = it.next();
float area = (float)Imgproc.contourArea(ctr);
// Exclude the large and small rectangles
if (area < minArea || area > maxArea)
continue;
// Obtain the rotated rectangles from each contour.
RotatedRect r = Imgproc.minAreaRect(new MatOfPoint2f(ctr.toArray()));
Point [] pts = new Point[4];
r.points(pts);
stroke(255, 255, 0);
noFill();
// Draw the rotated rectangles.
beginShape();
for (int i=0; i<pts.length; i++) {
vertex((float)pts[i].x+cap.width, (float)pts[i].y);

endShape(CLOSE) ;
// Compute the intersection between the fixed region and
// each rotated rectangle.
MatOfPoint2f inter = new MatOfPoint2f();
int rc = Imgproc.rotatedRectangleIntersection(r, rRect, inter);
// Skip the cases with no intersection.
if (rc == Imgproc.INTERSECT NONE)
continue;
// Obtain the convex hull of the intersection polygon.
MatOfInt idx = new MatOfInt();
MatOfPoint mp = new MatOfPoint(inter.toArray());
Imgproc.convexHull(mp, idx);
int [] idArray = idx.toArray();
Point [] ptArray = mp.toArray();
// Fill the intersection area.
noStroke();
fil1(255, 100);

170

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

beginShape();

for (int i=0; i<idArray.length; i++) {
Point p = ptArray[idArray[i]];
vertex((float)p.x+cap.width, (float)p.y);

endShape(CLOSE) ;
inter.release();
idx.release();
mp.release();
}
popStyle();
image(cap, 0, 0);
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();
tmp2.release();
hierarchy.release();

The program first defines a fixed region using a RotatedRect instance, rRect. It position is at the center
of the video capture screen with the size of 200x200 pixels. In the draw() function, you first retrieve all the
contours from the webcam image. For each contour, you screen out those with a size either too small or too
large. For the remaining ones, you compute the minimum-area rotated rectangles stored in the variable r.
With each rotated rectangle r, you check it against the fixed region rRect with this statement:

int rc = Imgproc.rotatedRectangleIntersection(r, rRect, inter);

If there is intersection between them, the vertex information will be in the MatOfPoint2f variable inter.
The return code, rc, will actually tell you the type of interaction that occurred. The possible values for rc are
as follows:

e Imgproc.INTERSECT NONE (no overlapping area)
e Imgproc.INTERSECT PARTIAL (with overlapping area)
e Imgproc.INTERSECT FULL (one rectangle inside the other)

You can find a detailed description of the check at http://docs.opencv.org/3.1.0/d3/dc0/group__
imgproc__shape.html. For those cases with intersection, you try to draw the overlapping area with a
semitransparent fill color. Nevertheless, you find that the order of vertices returned from the variable, inter,
does not guarantee a convex shape. In the program, you add a few lines to find the convex hull from the vertices
in inter before you draw them on the screen. Figure 5-25 shows the sample output display from the program.

Figure 5-25. Finding intersection between rotated rectangles

171

http://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html
http://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Shape Detection

In this last section of this chapter, I introduce the shape-matching function, matchShapes(), in the OpenCV
image-processing module. The working mechanism for the exercise, Chapter05_29, is to build a shape
template that you would like to match the live webcam image with. In this case, you will use the Chinese
character shown in Figure 5-26. You can also create your own patterns. Any white shapes on top of a black
background will usually work well. The size of this pattern image is 640x480 pixels.

Figure 5-26. Sample Chinese character to match with

The program will load the image from the data folder and build the contour with the findContours ()
function you learned about in the previous sections. Since you have prior knowledge of this character that
it contains only one contour, you just store the first contour in a MatOfPoint variable. The prepareChar()
function in the following source code performs this function:

import processing.video.*;
import java.util.Arraylist;
import java.util.Iterator;

Capture cap;
PImage img;
CVImage cv;
MatOfPoint ch;
float maxVal;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, width/2, height);
cap.start();
img = loadImage("chinese.png");
ch = prepareChar(img);
cv = new CVImage(cap.width, cap.height);
maxVal = 5;

}

MatOfPoint prepareChar(PImage i) {
CVImage chr = new CVImage(i.width, i.height);
chr.copyTo(i);
Mat tmpl = chr.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmpl, tmp2, new Size(3, 3));
Imgproc.threshold(tmp2, tmp1, 127, 255, Imgproc.THRESH_BINARY);

172

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Mat hierarchy = new Mat();

ArraylList<MatOfPoint> contours = new ArraylList<MatOfPoint>();

Imgproc.findContours(tmpl, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);

tmpl.release();

tmp2.release();

hierarchy.release();

return contours.get(0);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
cv.copyTo(cap);
Mat tmpl = cv.getGrey();
Mat tmp2 = new Mat();
Imgproc.blur(tmpl, tmp2, new Size(3, 3));
Imgproc.Canny(tmp2, tmpl, 100, 200);
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmp1, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN APPROX_SIMPLE);
Iterator<MatOfPoint> it = contours.iterator();
pushStyle();
while (it.hasNext()) {
MatOfPoint cont = it.next();
double val = Imgproc.matchShapes(ch, cont, Imgproc.CV_CONTOURS MATCH I1, 0);
if (val > maxval)
continue;
RotatedRect r = Imgproc.minAreaRect(new MatOfPoint2f(cont.toArray()));
Point ctr = r.center;
noStroke();
fill(255, 200, 0);
text((float)val, (float)ctr.x+cap.width, (float)ctr.y);
Point [] pts = cont.toArray();
noFill();
stroke(100);
beginShape();
for (int i=0; i<pts.length; i++) {
vertex((float)pts[i].x+cap.width, (float)pts[i].y);

endShape (CLOSE) ;

popStyle();

image(cap, 0, 0);
text(nf(round(frameRate), 2), 10, 20);
tmpl.release();

tmp2.release();

hierarchy.release();

173

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Within the draw() function, you go through each contour from the live webcam image. You use the
matchShapes () function to perform the matching. The first two parameters are the Chinese character
contour and each of the live webcam image contours. The rest are the matching method and a dummy
parameter. The return value, val, indicates how close the matching is; the smaller the value, the better.

You also exclude those contours with a return value larger than the threshold maxVal. You employ the
minAreaRect () function to find out the center of the contour in order to display the matching value on the
screen. The rest of the program is similar to those in previous sections to draw each contour.

In the test shown in Figure 5-27, the sample characters are not the same as the stored one. The matching
values range from 1.5 to 3.5.

Figure 5-27. Shape-matching test with other characters

In the next test, shown in Figure 5-28, one out of the three characters is the correct one. The matching
value for the correct character is around 0.6.

Figure 5-28. Shape-matching test with one correct character

In the next test, shown in Figure 5-29, you use the same three characters but with an upside-down
orientation. The matching value for the correct character is around 0.4.

174

CHAPTER 5 ' IDENTIFICATION OF STRUCTURE

Figure 5-29. Shape-matching test with upside-down characters

In the next test, shown in Figure 5-30, you use a hand-drawn character. The matching value for the
sample character is around 1.0. You can explore the matching method parameter in the matchShapes ()
function. Different methods may produce a different range of return values. It is necessary to test and
experiment to find the one suitable for the application.

Figure 5-30. Shape-matching test with hand-drawn character

Conclusion

In this chapter, you began some computer vision tasks to identify and analyze structural elements in digital
images. You start by preparing your images and extracting the edges. From the edge information, you detect
geometrical elements such as straight lines and circles. Through the tasks with general contours processing,
you developed a simple application to detect more complex shapes in a live webcam video stream. In the
next chapter, I will introduce the ideas of detecting and analyzing motion from prerecorded or live videos.

175

CHAPTER 6

Understanding Motion

In the previous chapter, you learned how to make sense of the content within one frame of an image. In this
chapter, you will start to understand motion across multiple frames of digital video or a live webcam stream.
As a simple explanation, you identify motion whenever there are differences between two consecutive
frames. In computer vision, you try to use various methods to make sense of those differences in order to
understand phenomena such as the movement direction and foreground-background separation. To begin
the chapter, I will introduce existing approaches that digital artists have been using to work with moving
images in Processing. The topics I will cover are as follows:

e Effects with moving images
e Frame differencing

e Background removal

e Optical flow

e Motion history

Effects with Moving Images

In the 1990s, multimedia designers mainly employed the software Director to create interactive content,
delivered through the CD-ROM platform. Digital video materials at that time consisted mainly of prerecorded
content. Nevertheless, Director is capable of extending its functionalities with extras or plug-ins. One of these
extras is TrackThemColors, developed by Daniel Rozin. The extras enable Director to capture and analyze
digital images captured from a webcam. Around 1999, John Maeda’s Reactive Books series, Mirror Mirror, also
used video input as an interactive feature. In addition, Josh Nimoy’s Myron library (consisting of WebCamXtra
and JMyron) provided access to webcams from Director, Java, and Processing. The library was named
after the Myron Krueger, the great American computer researcher and artist who created the early form of
augmented reality applications with a live video stream in the 1970s. Another reference is the freeze-frame
motion study from the great English photographer Eadweard Muybridge, where he displayed a sequence of
still photographs to illustrate continuous movement, such as a horse running.

With the use of the video library in Processing, you have a consistent set of functions to work with
moving images. Media artists and designers have been exploring ways to generate creative visual effects
in Processing with moving images. The following sections will implement a number of common effects in
Processing to illustrate the creative concepts behind such effects. I will cover the following:

e Mosaic effect
e Slit-scan photography
e Scrolling effect
e Visualization in 3D
© Bryan WC Chung 2017 177

B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_6

CHAPTER 6 © UNDERSTANDING MOTION

Mosaic Effect

The first exercise, Chapter06_01, is a modified version of the mosaic effect you completed in Chapter 3.
Instead of using a single solid color for each cell in the grid, you will create a smaller version of the original
image, in this case, the live webcam video stream, for each cell. The effect has been used in a lot of digital art
and advertising materials. The following is the program source:

// Mosaic effect
import processing.video.*;

final int CELLS = 40;
Capture cap;

PImage img;

int idx;

int rows, cols;

void setup() {
size(960, 720);
background(0);
cap = new Capture(this, 640, 480);
cap.start();
rows = CELLS;
cols = CELLS;
img = createImage(width/cols, height/rows, ARGB);
idx = 0;

}

void draw() {

if (!cap.available())
return;

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

int px = idx % cols;

int py = idx / cols;

int ix = px*cap.width/cols;

int iy = py*cap.height/rows;

color col = cap.pixels[iy*cap.width+ix];

tint(col);

image(img, px*img.width, py*img.height);

idx++;

idx %= (rows*cols);

Within the draw() function, each frame of the program will copy a snapshot of the webcam video image to
a smaller PImage called img. It will go through the whole screen from left to right and from top to bottom to paste
the latest frame onto each cell of the grid. Before it pastes the img, it uses the tint () function to alter the color,
reflecting the color information from the top-left corner of that cell. As a result, the final display will resemble the
live image while each cell is a separate frame in time. Figure 6-1 shows a sample of the display screen.

178

http://dx.doi.org/10.1007/978-1-4842-2775-6_3

CHAPTER 6 © UNDERSTANDING MOTION

Figure 6-1. Mosaic with live camera input

Slit-Scan Effect

Slit-scan is a photographic technique to expose only a slit of an image at a time. For digital image processing,
you can rework it to include only one line of pixels at a time. For the next exercise, Chapter06_02, you will

copy only one vertical line of pixels from each frame of the webcam live stream. This is a common technique

to generate still image from moving images. Golan Levin provides a comprehensive information catalog of
slit-scan artwork at http: //www. flong.com/texts/lists/slit_scan/. The following listing is the source of the
exercise:

// Slit-scan effect
import processing.video.*;

Capture cap;
PImage img;
int idx, mid;

void setup() {
size(1280, 480);
background(0);
cap = new Capture(this, width/2, height);
cap.start();
img = createImage(1, cap.height, ARGB);
idx = 0;
mid = cap.width/2;

}

void draw() {

if (!cap.available())
return;

cap.read();

img.copy(cap, mid, 0, 1, cap.height,
0, 0, img.width, img.height);

image(img, idx, 0);

idx++;

idx %= width;

179

http://www.flong.com/texts/lists/slit_scan/

CHAPTER 6 © UNDERSTANDING MOTION

The program is simple. In the draw() function, you take a vertical line of pixels in the center of the capture
video and copy it to a horizontally moving location, indicated by idx. In this case, each vertical line on the
screen represents a separate moment in time, moving from left to right. Figure 6-2 shows the resulting image.

Figure 6-2. Slit-scan effect with Processing

Scrolling Effect

Again, back in the 1990s, the English multimedia art group Antirom (http://www.antirom.com/) made
popular the scrolling effect of a filmstrip. In the age of Flash, the Japanese designer Yugop Nakamura also
experimented heavily with the scrolling strip as an interface element. The idea behind this is simple. First
you construct a long strip of multiple images, similar to an analog filmstrip. The images are usually still
snapshots of a continuous movement. Then you animate the filmstrip with a scrolling movement, either
horizontally or vertically. When the scrolling speed reaches a certain threshold, each cell in the filmstrip
seems to animate by itself, producing an effect similar to early cinema. You will implement a Processing
version in the following exercise, Chapter06_03:

// Scrolling effect
import processing.video.*;

// Processing modes for the draw() function
public enum Mode {
WAITING, RECORDING, PLAYING

}

final int FPS = 24;
Capture cap;

Mode mode;

PShape [] shp;
PImage [] img;
PShape strip;

int dispW, dispH;
int recFrame;

float px, vx;

void setup() {
size(800, 600, P3D);
background(0);
cap = new Capture(this, 640, 480);

180

http://www.antirom.com/

CHAPTER 6

cap.start();
// Frame size of the film strip
dispW = 160;
dispH = 120;
// Position and velocity of the film strip
px = 0;
VX = 0;
prepareShape();
mode = Mode.WAITING;
recFrame = 0;
frameRate(FPS);
noStroke();
fi11(255);
}

void prepareShape() {

// Film strip shape

strip = createShape(GROUP);

// Keep 24 frames in the PImage array

img = new PImage[FPS];

int extra = ceil(width/disph);

// Keep 5 more frames to compensate for the

// continuous scrolling effect

shp = new PShape[FPS+extra];

for (int i=0; i<FPS; i++) {
img[i] = createImage(dispW, dispH, ARGB);
shp[i] = createShape(RECT, 0, 0, dispW, dispH);
shp[i].setStroke(false);
shp[i].setFill(color(255));
shp[i].setTexture(img[i]);
shp[i].translate(i*img[i].width, 0);
strip.addChild(shp[i]);

}

// The 5 extra frames are the same as the

// first 5 ones.

for (int i=FPS; i<shp.length; i++) {
shp[i] = createShape(RECT, 0, 0, dispW, dispH);
shp[i].setStroke(false);
shp[i].setFill(color(255));
int j = i % img.length;
shp[i].setTexture(img[j]);
shp[i].translate(i*img[j].width, 0);
strip.addChild(shp[i]);

}

}

void draw() {
switch (mode) {
case WAITING:
waitFrame();
break;
case RECORDING:

UNDERSTANDING MOTION

181

CHAPTER 6 © UNDERSTANDING MOTION

recordFrame();
break;
case PLAYING:
playFrame();
break;
}
}

void waitFrame() {
// Display to live webcam image while waiting
if (!cap.available())
return;
cap.read();
background(0);
image(cap, (width-cap.width)/2, (height-cap.height)/2);

void recordFrame() {
// Record each frame into the PImage array
if (!cap.available())
return;
if (recFrame »= FPS) {
mode = Mode.PLAYING;
recFrame = 0;
println("Finish recording");
return;

cap.read();

img[recFrame].copy(cap, 0, 0, cap.width, cap.height,
0, 0, img[recFrame].width, img[recFrame].height);

int sw = 80;

int sh = 60;

int tx = recFrame % (width/sw);

int ty = recFrame / (width/sw);

image(img[recFrame], tx*sw, ty*sh, sw, sh);

recFrame++;

}

void playFrame() {
background(0);
// Compute the scrolling speed
vx = (width/2 - mouseX)*0.6;
pX += VX;
// Check for 2 boundary conditions
if (px < (width-strip.getwidth())) {
px = width - strip.getWidth() - px;
} else if (px > 0) {
px = px - strip.getWidth() + width;
}
shape(strip, px, 250);

182

CHAPTER 6 © UNDERSTANDING MOTION

void mousePressed() {
// Press mouse button to record
if (mode != Mode.RECORDING) {
mode = Mode.RECORDING;
recFrame = 0;
background(0);
println("Start recording");
}
}

The program has three states, represented by the enum type mode. The first one is the WAITING state where
the live webcam is displayed on the screen. Once the user presses the mouse button, the program proceeds to
the RECORDING state. In this state, it records 24 frames into the PImage array called img. The user also gets the
feedback of the layout of 24 small frames on the screen within that second. After the recording, it moves on to
the PLAYING state, where a long horizontal filmstrip is displayed. It will scroll either left or right depending on
the mouse location. The user can also alter the scrolling speed by moving the mouse toward the left or right
margin. To create the illusion that the filmstrip scrolls in a continuous loop, you add 5 more extra frames to
the end of the original 24 frames. These five frames make up of the width of the display screen (800 pixels).
When the filmstrip scrolls beyond its boundaries, you simply place the other end of the strip within the screen
window, as shown in the playFrame() function. The whole filmstrip is kept in the strip PShape consisting of
the 29 frames in the shp array. Figure 6-3 shows a sample screenshot for reference.

Figure 6-3. Scrolling effect of filmstrip

Visualization in 3D

You can further extend your experiments into the three-dimensional space. In the next exercise,
Chapter06_04, you will display a collection of 24 frames together in the Processing display window. The
program will visualize 24 consecutive frames simultaneously in a translucent block of 24 picture frames,
rotating slowly in the three-dimensional space.

// 3D effect
import processing.video.*;

final int FPS = 24;
final int CAPW = 640;
final int CAPH = 480;

183

CHAPTER 6 © UNDERSTANDING MOTION

Capture cap;
PImage [] img;
PShape [] shp;
int idx;

float angle;

int dispW, dispH;

void setup() {

}

size(800, 600, P3D);

cap = new Capture(this, CAPW, CAPH, FPS);

cap.start();

idx = 0;

angle = 0;

frameRate(FPS);

// Keep the 24 frames in each img array member

img = new PImage[FPS];

// Keep the 24 images in a separate PShape

shp = new PShape[FPS];

dispW = cap.width;

dispH = cap.height;

for (int i=0; i<FPS; i++) {
img[i] = createImage(dispW, dispH, ARGB);
shp[i] = createShape(RECT, 0, 0, dispW, dispH);
shp[i].setStroke(false);
shp[i].setFill(color (255, 255, 255, 80));
shp[i].setTint(color(255, 255, 255, 80));
shp[i].setTexture(img[i]);

}

void draw() {

if (!cap.available())
return;
background(0);
lights();
cap.read();
// Copy the latest capture image into the
// array member with index - idx
img[idx].copy(cap, 0, 0, cap.width, cap.height,
0, 0, img[idx].width, img[idx].height);
pushMatrix();
translate(width/2, height/2, -480);
rotateY(radians(angle));
translate(-dispW/2, -dispH/2, -480);
displayAll();
popMatrix();

184

CHAPTER 6 © UNDERSTANDING MOTION

// Loop through the array with the idx

idx++;

idx %= FPS;

angle += 0.5;

angle %= 360;

text(nf(round(frameRate), 2), 10, 20);
}

void displayAll() {
// Always display the first frame of
// index - idx
pushMatrix();
int i = idx - FPS + 1;
if (i < 0)
i += FPS;
for (int j=0; j<FPS; j++) {
shape(shp[i], 0, 0);
i++;
i %= FPS;
translate(0, 0, 40);
}
popMatrix();

Each rectangular picture frame corresponds to one out of the 24 frames in a second. The one on top
is always the latest frame. You can actually see the motion propagate down to other frames, one by one.
Since the frames are translucent, you can see through them as the motion sinks downward. I have used
this effect in my artwork Movement in Time, Part 1 (http://www.magicandlove.com/blog/artworks/
movement-in-time-v-1/). With this effect, a cinematic jump cut will turn into a smooth transition. The trick
is in the displayAll() function. The variable idx represents the latest frame. The oldest frame will then be
calculated from the following statement, with an additional adjustment because of the negative value:

int i = idx - FPS + 1;

The for loop afterward will display each frame in the correct order. To keep all 24 frames in a second,
you use two arrays, img and shp. The array img stores each video frame as a PImage, which will be used as
a texture mapped on top of each member of the array shp, as PShape. The draw() function manages the
rotation of the whole picture-frame block, as shown in Figure 6-4.

Figure 6-4. Video frames in 3D

185

http://www.magicandlove.com/blog/artworks/movement-in-time-v-1/
http://www.magicandlove.com/blog/artworks/movement-in-time-v-1/

CHAPTER 6 © UNDERSTANDING MOTION

Frame Differencing

Now that you have seen a number of examples that work with frames in moving images, you can proceed to
understand how motion is detected in computer vision. The basic principle is that you can realize motion
only when there are changes across two picture frames. By comparing two frames, you can tell briefly

what type of motion has happened between these two frames. The way to compare two frames is to use

the blend() function, covered in Chapter 3, in Processing. In the next exercise, Chapter06_05, you will
implement frame differencing between the live webcam stream and a static image:

// Difference between video and background
import processing.video.*;

final int CAPW
final int CAPH

640,
480;

Capture cap;
PImage back, img, diff;
int dispW, dispH;

void setup() {
size(800, 600);
cap = new Capture(this, CAPW, CAPH);
cap.start();
dispW = width/2;
dispH = height/2;
back = createImage(dispW, dispH, ARGB);
img = createImage(dispW, dispH, ARGB);
diff = createImage(dispW, dispH, ARGB);
}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

// Get the difference image.

diff.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

diff.filter (GRAY);

diff.blend(back, 0, 0, back.width, back.height,
0, 0, diff.width, diff.height, DIFFERENCE);

// Obtain the threshold binary image.

img.copy(diff, 0, 0, diff.width, diff.height,
0, 0, img.width, img.height);

img.filter (THRESHOLD, 0.4);

image(cap, 0, 0, dispW, dispH);

image(back, dispW, 0, dispW, dispH);

image(diff, 0, dispH, dispW, dispH);

image(img, dispW, dispH, dispW, dispH);

text(nf(round(frameRate), 2), 10, 20);

186

http://dx.doi.org/10.1007/978-1-4842-2775-6_3

CHAPTER 6 © UNDERSTANDING MOTION

void mousePressed() {
// Update the background image.
back.copy(cap, 0, 0, cap.width, cap.height,
0, 0, back.width, back.height);
back.filter(GRAY);

}

In this program, you can press the mouse button to record a static image from the webcam live stream
and store it as a background frame in the PImage variable called back. In each frame, within the draw()
function, it compares the current frame with the background using the blend() function and stores the
difference in the PImage variable diff. A threshold filter is further applied to generate the binary PImage
called img. In the Processing display window, you show the current video frame in the top-left corner, the
background image in the top-right corner, the difference image in the bottom-left corner, and the threshold
binary image in the bottom-right corner. In the threshold image, the white regions indicate where the
motion occurs. Figure 6-5 shows a sample screenshot for reference.

NV

Figure 6-5. Frame difference between live video and background

For applications that are unable to obtain a static background image, you can consider comparing two
consecutive frames to obtain the difference. The following exercise, Chapter06 06, demonstrates the pure
Processing implementation to obtain the difference across two frames:

// Difference between consecutive frames
import processing.video.*;

final int CNT = 2;

// Capture size
final int CAPW = 640;
final int CAPH = 480;

Capture cap;

// Keep two frames to use alternately with
// array indices (prev, curr).

PImage [] img;

int prev, curr;

// Display image size

int dispW, dispH;

187

CHAPTER 6 © UNDERSTANDING MOTION

void setup() {

}

size(800, 600);
dispW = width/2;
dispH = height/2;
cap = new Capture(this, CAPW, CAPH);
cap.start();
img = new PImage[CNT];
for (int i=0; i<img.length; i++) {
img[i] = createImage(dispW, dispH, ARGB);

0;
1;

prev
curr

void draw() {

if (!cap.available())
return;
background(0);
cap.read();
// Copy video image to current frame.
img[curr].copy(cap, 0, 0, cap.width, cap.height,
0, 0, img[curr].width, img[curr].height);
// Display current and previous frames.
image(img[curr], 0, 0, dispW, dispH);
image(img[prev], dispW, 0, dispW, dispH);
PImage tmp = createImage(dispW, dispH, ARGB);
arrayCopy(img[curr].pixels, tmp.pixels);
tmp.updatePixels();
// Create the difference image.
tmp.blend(img[prev], 0, 0, img[prev].width, img[prev].height,
0, 0, tmp.width, tmp.height, DIFFERENCE);
tmp.filter (GRAY);
image(tmp, 0, dispH, dispW, dispH);
// Convert the difference image to binary.
tmp.filter (THRESHOLD, 0.3);
image(tmp, dispW, dispH, dispW, dispH);
text(nf(round(frameRate), 2), 10, 20);
// Swap the two array indices.
int temp = prev;
prev = curr;
curr = temp;

The program keeps a PImage buffer array, img, to maintain the previous and current frames from the

video stream, by swapping the two pointer indices, prev and curr. The rest of the code is similar to the
former program. It uses the blend() function to retrieve the DIFFERENCE image and the THRESHOLD filter to
extract the black-and-white binary image. Figure 6-6 shows a sample screenshot of the program.

188

CHAPTER 6 © UNDERSTANDING MOTION

Figure 6-6. Difference between two frames in Processing

With the black-and-white difference image, the next step is to derive meaningful information from it.
In Chapter 5, you learned how to retrieve the contour information from the white areas against the black
background. In the next exercise, Chapter06_07, you will use the same technique to find out the bounding
boxes of the contours identified from the black-and-white image. This program will use OpenCV. Remember to
add the code folder with the OpenCYV libraries and the CVImage class definition to the Processing sketch folder.

// Difference between 2 consecutive frames
import processing.video.*;
import java.util.Arraylist;
import java.util.Iterator;

final int CNT = 2;

// Capture size

final int CAPW = 640;

final int CAPH = 480;

// Minimum bounding box area
final float MINAREA = 200.0;

Capture cap;

// Previous and current frames in Mat format
Mat [] frames;

int prev, curr;

CVImage img;

// Display size

int dispW, dispH;

void setup() {
size(800, 600);
dispW = width/2;
dispH = height/2;
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, CAPW, CAPH);
cap.start();
img = new CVImage(dispW, dispH);
frames = new Mat[CNT];
for (int i=0; i<CNT; i++) {
frames[i] = new Mat(img.height, img.width,
CvType.CV_8UC1, Scalar.all(0));

189

http://dx.doi.org/10.1007/978-1-4842-2775-6_5

CHAPTER 6 © UNDERSTANDING MOTION

}

prev
curr

0;
1;

void draw() {

if (!cap.available())
return;
background(0);
cap.read();
PImage tmp0 = createImage(dispW, dispH, ARGB);
tmpo.copy(cap, 0, 0, cap.width, cap.height,
0, 0, tmpo.width, tmpo.height);
// Display current frame.
image(tmpo, 0, 0);
img.copyTo(tmpo);
frames[curr] = img.getGrey();
CvImage out = new CVImage(dispW, dispH);
out.copyTo(frames[prev]);
// Display previous frame.
image(out, dispW, 0, dispW, dispH);
Mat tmpl = new Mat();
Mat tmp2 = new Mat();
// Difference between previous and current frames
Core.absdiff(frames[prev], frames[curr], tmp1);
Imgproc.threshold(tmp1, tmp2, 90, 255, Imgproc.THRESH BINARY);
out.copyTo(tmp2);
// Display threshold difference image.
image(out, 0, dispH, dispW, dispH);
// Obtain contours of the difference binary image
Arraylist<MatOfPoint> contours = new ArraylList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(tmp2, contours, hierarchy,
Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
Iterator<MatOfPoint> it = contours.iterator();
pushStyle();
fill(255, 180);
noStroke();
while (it.hasNext()) {
MatOfPoint cont = it.next();
// Draw each bounding box
Rect rct = Imgproc.boundingRect(cont);
float area = (float)(rct.width * rct.height);
if (area < MINAREA)
continue;
rect((float)rct.x+dispW, (float)rct.y+dispH,
(float)rct.width, (float)rct.height);
}

popStyle();

text(nf(round(frameRate), 2), 10, 20);
int temp = prev;

prev = curr;

curr = temp;

190

CHAPTER 6 © UNDERSTANDING MOTION

hierarchy.release();
tmp1.release();
tmp2.release();

}

The program is similar to the former one except that you use the OpenCV Mat instance called frames
to store the previous and current frames. You also employ the Core.absdiff() function to compute the
difference image and use Imgproc.threshold() to generate the black-and-white binary image. When you
loop through the contours data structure, you first calculate the bounding box area to filter those contours
with smaller areas. For the rest, you display the rectangles in the bottom-right corner of the display window,
as shown in Figure 6-7.

Figure 6-7. Simple tracking with frame differencing

Background Removal

In the previous frame differencing exercise, if you observe long enough, the static background will remain
black. Only the moving objects in the foreground will be white. Background removal or background
subtraction in OpenCV means separating the foreground moving objects from the static background image.
You do not need to provide a static background image as in the exercise, Chapter06_05. In the video module
of OpenCV, the BackgroundSubtractor class will learn from a sequence of input images for generating a
foreground mask by performing a subtraction between the current frame and a background model, which
contains the static background of the scene. The next exercise, Chapter06_08, illustrates the basic operations
of the background subtraction:

// Background subtraction
import processing.video.*;
import org.opencv.video.*;
import org.opencv.video.Video;

// Capture size
final int CAPW
final int CAPH

640;
480;

Capture cap;

CVImage img;

PImage back;

// OpenCV background subtractor
BackgroundSubtractorMOG2 bkg;

191

CHAPTER 6 © UNDERSTANDING MOTION

// Foreground mask
Mat fgMask;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, CAPW, CAPH);
cap.start();
img = new CVImage(cap.width, cap.height);
bkg = Video.createBackgroundSubtractorMoG2();
fgMask = new Mat();

}

void draw() {

if (!cap.available())
return;

background(0);
cap.read();
img.copyTo(cap);
Mat capFrame = img.getBGRA();
bkg.apply(capFrame, fgMask);
CVImage out = new CVImage(fgMask.cols(), fgMask.rows());
out.copyTo(fgMask);
image(cap, 0, 0);
// Display the foreground mask
image(out, cap.width, 0);
text(nf(round(frameRate), 2), 10, 20);
capFrame.release();

The program uses the Gaussian mixture-based background/foreground segmentation algorithm by Zoran
Zivkovic. The class definition is in the video module of OpenCV. Note the use of additional import statements to
include the class definitions. The class instance is created by the Video.createBackgroundSubtractorM0G2 ()
function. To use the object, you pass the video frame and a foreground mask Mat, fgMask, to the apply()
function for each frame in the draw() function. The BackgroundSubtractor object, bkg, will learn from each
frame what the static background should be and generate the foreground mask. The foreground mask, fgMask,
is a black-and-white image, where the black area is the background and the white regions are the foreground
objects. The program will display the original video frame on the left side and the foreground mask on the right
side, as shown in Figure 6-8.

Figure 6-8. Background subtraction in OpenCV
192

CHAPTER 6 © UNDERSTANDING MOTION

With the foreground mask, you can combine it with the video frame to retrieve the foreground image
from the background. The following exercise, Chapter0o6_09, will use this method to implement the effect,
which is similar to chroma key in video production:

// Background subtraction
import processing.video.*;
import org.opencv.video.*;
import org.opencv.video.Video;

// Capture size
final int CAPW
final int CAPH

640;
480;

Capture cap;

CVImage img;

PImage back;
BackgroundSubtractorKNN bkg;
Mat fgMask;

int dispW, dispH;

void setup() {
size(800, 600);
dispW = width/2;
dispH = height/2;
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, CAPW, CAPH);
cap.start();
img = new CVImage(dispW, dispH);
bkg = Video.createBackgroundSubtractorKNN();
fgMask = new Mat();
// Background image
back = loadImage("background.png");

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
PImage tmp = createImage(dispW, dispH, ARGB);
// Resize the capture image
tmp.copy(cap, 0, 0, cap.width, cap.height,
0, 0, tmp.width, tmp.height);
img.copyTo(tmp);
Mat capFrame = img.getBGRA();
bkg.apply(capFrame, fgMask);
// Combine the video frame and foreground
// mask to obtain the foreground image.
Mat fgImage = new Mat();
capFrame.copyTo(fgImage, fgMask);
CvImage out = new CVImage(fgMask.cols(), fgMask.rows());

193

CHAPTER 6 © UNDERSTANDING MOTION

// Display the original video capture image.
image(tmp, 0, 0);

// Display the static background image.
image(back, dispW, 0);
out.copyTo(fgMask);

// Display the foreground mask.
image(out, 0, dispH);
out.copyTo(fgImage);

// Display the foreground image on top of
// the static background.

image(back, dispW, dispH);

image(out, dispW, dispH);
text(nf(round(frameRate), 2), 10, 20);
capFrame.release();

fgImage.release();

In this program, you display four images. The top-left one is the live video stream. The top-right one is
a static background image, stored in a PImage instance called back. The bottom-left one is the foreground
mask, as shown in the previous exercise. The bottom-right one is the foreground image displayed on top of
the background image. You also experiment with another background subtraction method, the K-nearest
neighbor’s background subtraction, BackgroundSubtractorKNN. This method is more efficient when there
are fewer foreground pixels within the image. Inside the draw() function, the program defines a new variable
called fgImage to store the foreground image. You copy the current video image, capFrame, to the fgImage
with the foreground mask fgMask.

capFrame.copyTo(fgImage, fgMask);

In this case, only the white areas in the mask will be copied. Figure 6-9 shows the overall resulting image.

Figure 6-9. Background subtraction and foreground extraction

In addition to the foreground image, the OpenCV BackgroundSubtractor can also retrieve the
background image with the getBackgroundImage() function. The next exercise, Chapter06_ 10, will
demonstrate its usage.

// Background subtraction
import processing.video.*;
import org.opencv.video.*;
import org.opencv.video.Video;

194

CHAPTER 6

// Capture size
final int CAPW = 640;
final int CAPH = 480;

Capture cap;

CVImage img;

PImage back;
BackgroundSubtractorKNN bkg;
// Foreground mask object
Mat fgMask;

int dispW, dispH;

void setup() {
size(800, 600);
dispW = width/2;
dispH = height/2;
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, CAPW, CAPH);
cap.start();
img = new CVImage(dispW, dispH);
bkg = Video.createBackgroundSubtractorKNN();
fgMask = new Mat();
// Background image
back = loadImage("background.png");

}

void draw() {

if (!cap.available())

return;
background(0);
cap.read();
PImage tmp = createImage(dispW, dispH, ARGB);
// Resize the capture image
tmp.copy(cap, 0, 0, cap.width, cap.height,

0, 0, tmp.width, tmp.height);
img.copyTo(tmp);
Mat capFrame = img.getBGR();
bkg.apply(capFrame, fgMask);
// Background image object
Mat bkImage = new Mat();
bkg.getBackgroundImage(bkImage);
CvImage out = new CVImage(fgMask.cols(), fgMask.rows());
// Display the original video capture image.
image(tmp, 0, 0);
out.copyTo(bkImage);
// Display the background image.
image(out, dispW, 0);
out.copyTo(fgMask);
// Display the foreground mask.
image(out, 0, dispH);
// Obtain the foreground image with the PImage
// mask method.

UNDERSTANDING MOTION

195

CHAPTER 6 © UNDERSTANDING MOTION

tmp.mask(out);

// Display the forground image on top of
// the static background.

image(back, dispW, dispH);

image(tmp, dispW, dispH);
text(nf(round(frameRate), 2), 10, 20);
capFrame.release();

Inside the draw() function, you define a new Mat variable called bkImage and use the
getBackgroundImage (bkImage) method to pass the background image matrix to the bkImage variable.
The program also explains another way to perform the mask operation using the Processing PImage class’s
mask () method. Figure 6-10 shows a sample screenshot.

Figure 6-10. Background image retrieval

Optical Flow

OpenCV has another approach to find out the motion details in moving images: the optical flow features in
the video module. To put it in simple terms, optical flow is the analysis of how the pixels move across two
consecutive frames, as illustrated in Figure 6-11.

Frame 1 Frame 2

o o

Figure 6-11. Optical flow

From Frame 2, you can scan each pixel one by one and try to match it with the pixels in Frame 1, around
the original neighborhood. If you find a match, you can claim that the pixel in Frame 1 flows to the new position
in Frame 2. The arrow you identified for that pixel will be the optical flow information. To work with optical
flow, you can assume the following: that the pixel intensities of a moving object do not change much between
consecutive frames, that neighboring pixels have similar motion, and that the object does not move too fast.

196

CHAPTER 6 © UNDERSTANDING MOTION

In the OpenCV implementation, there are two types of optical flow analysis: sparse and dense. In this chapter,
you will study the dense optical flow first. The sparse optical flow involves feature point identification, which is
the topic for the next chapter. In general, dense optical flow is the calculation of optical flow information for each
single pixel in the image. It is resource intensive. Normally, you reduce the size of the video frame to enhance the
performance. The first optical flow exercise, Chapter06_11, will implement the dense optical flow algorithm based
on the 2003 “Two-Frame Motion Estimation Based on Polynomial Expansion” paper by Gunnar Farneback.

// Dense optical flow

import processing.video.*;
import org.opencv.video.*;
import org.opencv.video.Video;

// Capture size
final int CAPW = 640;
final int CAPH = 480;

Capture cap;
CVImage img;
float scaling;
int w, h;

Mat last;

void setup() {
size(1280, 480);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
cap = new Capture(this, CAPW, CAPH);
cap.start();
scaling = 10;
w = floor(CAPW/scaling);
h = floor(CAPH/scaling);
img = new CVImage(w, h);
last = new Mat(h, w, CvType.CV_8UC1);
}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
Mat grey = img.getGrey();
Mat flow = new Mat(last.size(), CvType.CV_32FC2);
Video.calcOpticalFlowFarneback(last, grey, flow,
0.5, 3, 10, 2, 7, 1.5, Video.OPTFLOW FARNEBACK GAUSSIAN);
grey.copyTo(last);
drawFlow(flow);
image(cap, 0, 0);
grey.release();
flow.release();
text(nf(round(frameRate), 2), 10, 20);

197

CHAPTER 6 © UNDERSTANDING MOTION

void drawFlow(Mat f) {
// Draw the flow data.
pushStyle();
noFill();
stroke(255);
for (int y=0; y<f.rows(); y++) {
float py = y*scaling;
for (int x=0; x<f.cols(); x++) {
double [] pt = f.get(y, x);
float dx = (float)pt[o];
float dy = (float)pt[1];
// Skip areas with no flow.
if (dx == 0 && dy == 0)
continue;
float px = x*scaling;
dx *= scaling;
dy *= scaling;
line(px+cap.width, py, px+cap.width+dx, py+dy);
}

}
popStyle();

Figure 6-12 shows the resulting screenshot.

Figure 6-12. Farneback dense optical flow

198

CHAPTER 6 © UNDERSTANDING MOTION

Instead of drawing the flow line in white, you can retrieve the color information from the video capture
frame and color the lines in the original color. In this case, you can easily generate an interactive rendering of
the live webcam image, as shown in Figure 6-13.

Figure 6-13. Dense optical flow in color

In this version, Chapter06_12, the only changes you need to make is in the drawFlow() function.
Instead of using the stroke(255) function outside the for loops, you compute the pixel color and assign it to
the stroke() function. You have used this technique in previous chapters.

void drawFlow(Mat f) {
// Draw the flow data.
pushStyle();
noFill();
for (int y=0; y<f.rows(); y++) {
int py = (int)constrain(y*scaling, 0, cap.height-1);
for (int x=0; x<f.cols(); x++) {
double [] pt = f.get(y, x);
float dx = (float)pt[o];
float dy = (float)pt[1];
// Skip areas with no flow.
if (dx == 0 & dy == 0)
continue;
int px = (int)constrain(x*scaling, 0, cap.width-1);
color col = cap.pixels[py*cap.width+px];
stroke(col);
dx *= scaling;
dy *= scaling;
line(px+cap.width, py, px+cap.width+dx, py+dy);
}
}
popStyle();

199

CHAPTER 6 © UNDERSTANDING MOTION

In addition to using the optical flow information to render the webcam image, you can use it for
interaction design. For example, you can define a virtual hotspot on the display screen together with the live
image from the webcam. When you wave a hand across the virtual hotspot, you can trigger an event for the
program, such as playing back a short sound clip. It is quite common to design such an air drum kit or piano
in interaction design. The following exercise, Chapter06_13, will implement such a virtual hotspot using
optical flow information. To simplify the program, you will define an additional class, Region, to encapsulate
the code to implement the hotspot. The following is the definition of Region:

import java.awt.Rectangle;
import java.lang.reflect.Method;

// The class to define the hotspot.

class Region {
// Threshold value to trigger the callback function.
final float FLOW THRESH = 20;
Rectangle rct; // area of the hotspot
Rectangle screen; // area of the live capture
float scaling; // scaling factor for optical flow size
PVector flowInfo; // flow information within the hotspot
PApplet parent;
Method func; // callback function
boolean touched;

public Region(PApplet p, Rectangle r, Rectangle s, float f) {

parent = p;
// Register the callback function named regionTriggered.
try {

func = p.getClass().getMethod("regionTriggered",
new Class[]{this.getClass()});

catch (Exception e) {
println(e.getMessage());

screen = s;
rct = (Rectangle)screen.createIntersection(r);
scaling = f;

flowInfo = new PVector(o, 0);

touched = false;

}

void update(Mat f) {
Rect sr = new Rect(floor(rct.x/scaling), floor(rct.y/scaling),
floor(rct.width/scaling), floor(rct.height/scaling));
// Obtain the submatrix - region of interest.
Mat flow = f.submat(sr);
flowInfo.set(0, 0);
// Accumulate the optical flow vectors.
for (int y=0; y<flow.rows(); y++) {
for (int x=0; x<flow.cols(); x++) {
double [] vec = flow.get(y, x);
PVector item = new PVector((float)vec[0], (float)vec[1]);
flowInfo.add(item);

200

CHAPTER 6 © UNDERSTANDING MOTION

}

flow.release();
// When the magnitude of total flow is larger than a
// threshold, trigger the callback.
if (flowInfo.mag()>FLOW_THRESH) {
touched = true;
try {
func.invoke(parent, this);
}
catch (Exception e) {
println(e.getMessage());

}
} else {
touched = false;
}
}

void drawBox() {
// Draw the hotspot rectangle.
pushStyle();
if (touched) {
stroke(255, 200, 0);
fill(o, 100, 255, 160);
} else {
stroke(160);
noFill();

rect((float) (rct.x+screen.x), (float)(rct.y+screen.y),
(float)rct.width, (float)rct.height);

popStyle();

void drawFlow(Mat f, PVector o) {
// Visualize flow inside the region on
// the right hand side screen.
Rect sr = new Rect(floor(rct.x/scaling), floor(rct.y/scaling),
floor(rct.width/scaling), floor(rct.height/scaling));
Mat flow = f.submat(sr);
pushStyle();
noFill();
stroke(255);
for (int y=0; y<flow.rows(); y++) {
float y1 = y*scaling+rct.y + o.y;
for (int x=0; x<flow.cols(); x++) {
double [] vec = flow.get(y, x);
float x1 = x*scaling+rct.x + 0.X;
float dx = (float)(vec[0]*scaling);
float dy = (float)(vec[1]*scaling);
line(x1, y1, x1+dx, yi+dy);

201

CHAPTER 6 © UNDERSTANDING MOTION

popStyle();
flow.release();

}

float getFlowMag() {
// Get the flow vector magnitude.
return flowInfo.mag();

}

void writeMsg(PVector o, String m) {
// Display message on screen.
int px = round(o.x + rct.x);
int py = round(o.y + rct.y);
text(m, px, py-10);
}
}

In the class definition of Region, you use a Java Rectangle called rct to define the hotspot area. Another
Rectangle is the video capture window, called screen. You use the Java Rectangle instead of the OpenCV
Rect because it provides you with an additional method to compute the intersection between two rectangles
for fear that the definition of rct will be outside screen, as demonstrated in the following statement:

rct = (Rectangle)screen.createIntersection(r);

In the constructor of Region, you also use the Java Method class to register the method regionTriggered
from the main program. In the update() method, you receive the optical flow matrix from the parameter
f. Since you downsample the video capture image by the amount given in scaling, to compute the optical
flow, you also need to downsample the Region rectangle by the same amount. After that, you calculate the
submatrix within the original optical flow matrix using the Region rectangle with the following statement:

Mat flow = f.submat(sr);

In the two nested for loops, you accumulate all the flow vectors into the variable flowInfo. If its
magnitude is greater than a threshold, you can conclude that something is moving in front of the camera
and thus invoke the callback function, regionTriggered, in the main program. The other methods are
straightforward. They simply draw the rectangle and the flow lines.

For the main program, you have defined two hotspots for testing. In the draw() function, after you compute
the optical flow information, you loop through the regions array to update and draw the necessary information.
As a callback function, you have defined a function called regionTriggered. The hotspot that causes the trigger
will be passed to the callback as a Region object instance. It first retrieves the magnitude of all the flow vectors
inside the region and then calls the method writeMsg() to display the number on top of the region.

// Interaction design with optical flow
import processing.video.*;

import org.opencv.video.*;

import org.opencv.video.Video;

import java.awt.Rectangle;

// Capture size
final int CAPW = 640;
final int CAPH = 480;

202

CHAPTER 6

Capture cap;

CVImage img;

float scaling;

int w, h;

Mat last;

Region [] regions;

// Flag to indicate if it is the first frame.
boolean first;

// Offset to the right hand side display.
PVector offset;

void setup() {

size(1280, 480);

System.loadLibrary(Core.NATIVE LIBRARY NAME);

cap = new Capture(this, CAPW, CAPH);

cap.start();

scaling = 20;

w = floor(CAPW/scaling);

h = floor(CAPH/scaling);

img = new CVImage(w, h);

last = new Mat(h, w, CvType.CV_8UC1);

Rectangle screen = new Rectangle(0, 0, cap.width, cap.height);

// Define 2 hotspots.

regions = new Region[2];

regions[0] = new Region(this, new Rectangle(100, 100, 100, 100),
screen, scaling);

regions[1] = new Region(this, new Rectangle(500, 200, 100, 100),
screen, scaling);

first = true;

offset = new PVector(cap.width, 0);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
Mat grey = img.getGrey();
if (first) {
grey.copyTo(last);
first = false;
return;
}
Mat flow = new Mat(last.size(), CvType.CV_32FC2);
Video.calcOpticalFlowFarneback(last, grey, flow,
0.5, 3, 10, 2, 7, 1.5, Video.OPTFLOW_FARNEBACK GAUSSIAN);
grey.copyTo(last);
image(cap, 0, 0);
drawFlow(flow);

UNDERSTANDING MOTION

203

CHAPTER 6 © UNDERSTANDING MOTION

// Update the hotspots with the flow matrix.
// Draw the hotspot rectangle.
// Draw also the flow on the right hand side display.
for (Region rg : regions) {
rg.update(flow);
rg.drawBox();
rg.drawFlow(flow, offset);
}
grey.release();
flow.release();
text(nf(round(frameRate), 2), 10, 20);

}

void drawFlow(Mat f) {
// Draw the flow data.
pushStyle();
noFill();
stroke(255);
for (int y=0; y<f.rows(); y++) {
int py = (int)constrain(y*scaling, 0, cap.height-1);
for (int x=0; x<f.cols(); x++) {
double [] pt = f.get(y, x);
float dx = (float)pt[o];
float dy = (float)pt[1];
// Skip areas with no flow.
if (dx == 0 & dy == 0)
continue;
int px = (int)constrain(x*scaling, 0, cap.width-1);
dx *= scaling;
dy *= scaling;
Line(px, py, px+dx, py+dy);
}
}
popStyle();

void regionTriggered(Region r) {
// Callback function from the Region class.
// It displays the flow magnitude number on
// top of the hotspot rectangle.
int mag = round(r.getFlowMag());
r.writeMsg(offset, nf(mag, 3));

}

Figure 6-14 shows a sample screenshot for reference. Note that one of the hotspots is activated by
waving in front of the webcam. It is filled with semitransparent color and with the optical flow magnitude
value shown on the right of the display.

204

CHAPTER 6 © UNDERSTANDING MOTION

Figure 6-14. Virtual hotspots with optical flow interaction

Motion History

In the optical flow analysis, notice that the function uses just two frames to compute the flow information.
OpenCV provides other functions that accumulate more frames to analyze the motion history in detail.
Nevertheless, starting from version 3.0, the functions are no longer in the standard distribution of OpenCV. It
is now distributed in the extra modules of the opencv_contrib repository at https://github.com/opencv/
opencv_contrib. This is the reason that in Chapter 1 you built the OpenCV library with the extra module
optflow. The following are the functions related to motion history:

e calcGlobalOrientation
e calcMotionGradient

e segmentMotion

e updateMotionHistory

The next exercise, Chapter06_14, is based on the motempl. cpp sample in the opencv_contrib
distribution. Since it is slightly complicated, you will build it up step-by-step. I will review the technique to
compare two consecutive frames to create the threshold difference image that was covered in the previous
section of the chapter.

// Display threshold difference image.
import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

final int CNT = 2;
Capture cap;
CVImage img;

Mat [] buf;

Mat silh;

int last;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);

205

https://github.com/opencv/opencv_contrib
https://github.com/opencv/opencv_contrib
http://dx.doi.org/10.1007/978-1-4842-2775-6_1

CHAPTER 6 © UNDERSTANDING MOTION

cap.start();

img = new CVImage(cap.width, cap.height);

last = 0;

// Two frames buffer for comparison

buf = new Mat[CNT];

for (int i=0; i<CNT; i++) {

buf[i] = Mat.zeros(cap.height, cap.width,

CvType.CV_8UC1);

// Threshold difference image
silh = new Mat(cap.height, cap.width, CvType.CV 8UC1,
Scalar.all(o));
}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

Mat grey = img.getGrey();

grey.copyTo(buf[last]);

int idx1, idx2;

idx1 = last;
idx2 = (last + 1) % buf.length;
last = idx2;

silh = buf[idx2];

// Create the threshold difference image between two frames.
Core.absdiff(buf[idx1], buf[idx2], silh);
Imgproc.threshold(silh, silh, 30, 255, Imgproc.THRESH_BINARY);
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(silh);

image(img, 0, 0);

image(out, cap.width, 0);

text(nf(round(frameRate), 2), 10, 20);

grey.release();

The program uses a Mat array called buf to maintain the two consecutive frames from the webcam.
Basically, it makes use of the Core.absdiff() and Imgproc.threshold() functions to compute the threshold
difference image for each frame in the draw() function. Figure 6-15 shows a sample screenshot.

206

CHAPTER 6 © UNDERSTANDING MOTION

Figure 6-15. Threshold difference image

The result is like what you did in Figure 6-6 with Processing. Since the threshold difference image
contains information with just two frames, the next step, Chapter06_15, is to accumulate a few of these
images to construct a motion history image.

// Display motion history image.
import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;
import org.opencv.optflow.Optflow;
import java.lang.System;

final int CNT = 2;

// Motion history duration is 5 seconds.
final double MHI_DURATION = 5;

Capture cap;

CVImage img;

Mat [] buf;

Mat mhi, silh, mask;

int last;

double timeo;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
last = 0;
// Maintain two buffer frames.
buf = new Mat[CNT];
for (int i=0; i<CNT; i++) {
buf[i] = Mat.zeros(cap.height, cap.width,
CvType.CV_8UC1);

207

CHAPTER 6 © UNDERSTANDING MOTION

// Initialize the threshold difference image.

silh = new Mat(cap.height, cap.width, CvType.CV_8UC1,
Scalar.all(0));

// Initialize motion history image.

mhi = Mat.zeros(cap.height, cap.width, CvType.CV_32FC1);

mask = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);

// Store timestamp when program starts to run.

time0 = System.nanoTime();

}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

Mat grey = img.getGrey();

grey.copyTo(buf[last]);

int idx1, idx2;

idx1 = last;
idx2 = (last + 1) % buf.length;
last = idx2;

silh = buf[idx2];
// Get current timestamp in seconds.
double timestamp = (System.nanoTime() - time0)/1e9;
// Create binary threshold image from two frames.
Core.absdiff(buf[idx1], buf[idx2], silh);
Imgproc.threshold(silh, silh, 30, 255, Imgproc.THRESH BINARY);
// Update motion history image from the threshold.
Optflow.updateMotionHistory(silh, mhi, timestamp, MHI_DURATION);
mhi.convertTo(mask, CvType.CV_8UC1,

255.0/MHI_DURATION,

(MHI_DURATION - timestamp)*255.0/MHI_DURATION);
// Display the greyscale motion history image.
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(mask);
image(img, 0, 0);
image(out, cap.width, 0);
text(nf(round(frameRate), 2), 10, 20);
grey.release();

After you obtain the threshold difference image of the silhouette, silh, you use the OpenCV extra
module, optflow, to create the motion history image with the function Optflow.updateMotionHistory().
The first parameter is the input silhouette image. The second parameter is the output motion history image.
The third parameter is the current timestamp in seconds. The last parameter is the maximum duration
(measured in seconds) of motion details you intend to maintain, which is five seconds in this case. The
motion history image, mhi, is then converted back to 8 bits, called mask, for display. The bright areas are
the recent movement, and they will fade to black when there are no more movements. Figure 6-16 shows a
sample screenshot.

208

Figure 6-16. Motion history image

CHAPTER 6 © UNDERSTANDING MOTION

The next step, Chapter06_16, will further analyze the motion history image to find out the motion gradient.
That is in which direction the pixels are moving between frames. The optical flow module provides another
function, calcMotionGradient(), to compute the motion direction for each pixel in the motion history image.

// Display global motion direction.
import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;
import org.opencv.optflow.Optflow;
import java.lang.System;

final int CNT = 2;

// Define motion history duration.
final double MHI DURATION = 5;
final double MAX TIME DELTA = 0.5;
final double MIN_TIME DELTA = 0.05;
Capture cap;

CVImage img;

Mat [] buf;

Mat mhi, mask, orient, silh;

int last;

double timeo;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
last = 0;
// Image buffer with two frames.
buf = new Mat[CNT];
for (int i=0; i<CNT; i++) {

}

buf[i] = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);

209

CHAPTER 6 © UNDERSTANDING MOTION

// Motion history image

mhi = Mat.zeros(cap.height, cap.width, CvType.CV _32FC1);

// Threshold difference image

silh = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
mask = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
orient = Mat.zeros(cap.height, cap.width, CvType.CV_32FC1);
// Program start time

time0 = System.nanoTime();

smooth();

}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

Mat grey = img.getGrey();

grey.copyTo(buf[last]);

int idx1, idx2;

idx1 = last;
idx2 = (last + 1) % buf.length;
last = idx2;

silh = buf[idx2];
// Get current time in seconds.
double timestamp = (System.nanoTime() - time0)/1e9;
// Compute difference with threshold.
Core.absdiff(buf[idx1], buf[idx2], silh);
Imgproc.threshold(silh, silh, 30, 255, Imgproc.THRESH BINARY);
// Update motion history image.
Optflow.updateMotionHistory(silh, mhi, timestamp, MHI_DURATION);
mhi.convertTo(mask, CvType.CV _8UC1,
255.0/MHI_DURATION,
(MHI_DURATION - timestamp)*255.0/MHI_DURATION);
// Display motion history image in 8bit greyscale.
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(mask);
image(img, 0, 0);
image(out, cap.width, 0);
// Compute overall motion gradient.
Optflow.calcMotionGradient(mhi, mask, orient,
MAX_TIME_DELTA, MIN TIME DELTA, 3);
// Calculate motion direction of whole frame.
double angle = Optflow.calcGlobalOrientation(orient, mask,
mhi, timestamp, MHI DURATION);
// Skip cases with too little motion.
double count = Core.norm(silh, Core.NORM L1);
if (count > (cap.width*cap.height*0.1)) {
pushStyle();
noFill();

210

CHAPTER 6 © UNDERSTANDING MOTION

stroke(255, 0, 0);

float radius = min(cap.width, cap.height)/2.0;

ellipse(cap.width/2+cap.width, cap.height/2, radius*2, radius*2);

stroke(0, 0, 255);

// Draw the main direction of motion.

line(cap.width/2+cap.width, cap.height/2,
cap.width/2+cap.width+radius*cos(radians((float)angle)),
cap.height/2+radius*sin(radians((float)angle)));

popStyle();

fill(0);
text(nf(round(frameRate), 2), 10, 20);
grey.release();

Inside the draw() function, the statement takes the motion history image, mhi, and produces two output
images.

Optflow.calcMotionGradient(mhi, mask, orient, MAX TIME DELTA, MIN TIME DELTA, 3);

The first one, mask, indicates which pixels have valid motion gradient information. The second one,
orient, shows the motion direction angle in degrees for each pixel. Note that the output Mat, called mask,
will overwrite the original content from the previous steps. The next statement calculates the average motion
direction from the results of the previous statement:

double angle = Optflow.calcGlobalOrientation(orient, mask, mhi, timestamp, MHI DURATION);

It will return the motion angle measured in degrees, with a value from 0 to 360. The program also skips
those cases when there is too little motion on the screen. In the end, the program draws a big circle and a
straight line from the circle center toward the direction of the motion detected. Figure 6-17 shows a sample
screenshot with a blue line pointing to the motion direction.

Figure 6-17. Global motion direction

211

CHAPTER 6 © UNDERSTANDING MOTION

Once you have the global motion direction, you can use it for gestural interaction. The next exercise,
Chapter06_17, demonstrates a simple usage of the motion direction, as obtained from the variable angle:

// Gestural interaction demo
import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;
import org.opencv.optflow.Optflow;
import java.lang.System;

final int CNT = 2;

// Define motion history duration.
final double MHI_DURATION = 3;
final double MAX_TIME DELTA = 0.5;
final double MIN TIME DELTA = 0.05;
Capture cap;

CVImage img;

Mat [] buf;

Mat mhi, mask, orient, silh;

int last;

double timeo;

float rot, vel, drag;

void setup() {
// Three dimensional scene
size(640, 480, P3D);
background(0);
// Disable depth test.
hint(DISABLE DEPTH_TEST);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width, height);
cap.start();
img = new CVImage(cap.width, cap.height);
last = 0;
// Image buffer with two frames.
buf = new Mat[CNT];
for (int i=0; i<CNT; i++) {
buf[i] = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
}
// Motion history image
mhi = Mat.zeros(cap.height, cap.width, CvType.CV _32FC1);
// Threshold difference image
silh = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
mask = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
orient = Mat.zeros(cap.height, cap.width, CvType.CV_32FC1);
// Program start time
time0 = System.nanoTime();
smooth();
// Rotation of the cube in Y direction
rot = 0;

212

CHAPTER 6

// Rotation velocity
vel = 0;
// Damping force
drag = 0.9;

}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

Mat grey = img.getGrey();

grey.copyTo(buf[last]);

int idx1, idx2;

idx1 = last;
idx2 = (last + 1) % buf.length;
last = idx2;

silh = buf[idx2];

// Get current time in seconds.

double timestamp = (System.nanoTime() - time0)/1e9;

// Compute difference with threshold.

Core.absdiff(buf[idx1], buf[idx2], silh);
Imgproc.threshold(silh, silh, 30, 255, Imgproc.THRESH BINARY);
// Update motion history image.
Optflow.updateMotionHistory(silh, mhi, timestamp, MHI_DURATION);
mhi.convertTo(mask, CvType.CV_8UC1,

255.0/MHI_DURATION,

(MHI_DURATION - timestamp)*255.0/MHI_DURATION);
// Display motion history image in 8bit greyscale.
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(mask);
image(img, 0, 0);

// Compute overall motion gradient.
Optflow.calcMotionGradient(mhi, mask, orient,

MAX_TIME_DELTA, MIN TIME DELTA, 3);

// Calculate motion direction of whole frame.

double angle = Optflow.calcGlobalOrientation(orient, mask,
mhi, timestamp, MHI DURATION);

// Skip cases with too little motion.

double count = Core.norm(silh, Core.NORM L1);

if (count > (cap.width*cap.height*0.1)) {

// Moving to the right

if (angle < 10 || (360 - angle) < 10) {

vel -= 0.02;
// Moving to the left
} else if (abs((float)angle-180) < 20) {
vel += 0.02;
}
}

UNDERSTANDING MOTION

213

CHAPTER 6 ' UNDERSTANDING MOTION

// Slow down the velocity

vel *= drag;

// Update the rotation angle

rot += vel;

fill(o);

text(nf(round(frameRate), 2), 10, 20);
// Draw the cube.

pushMatrix();

pushStyle();

fi11(255, 80);

stroke(255);

translate(cap.width/2, cap.height/2, 0);
rotateY(rot);

box(200);

popStyle();

popMatrix();

grey.release();

The structure of the program remains the same. You add a 3D scene with a semitransparent cube in the
center of the screen. When you move horizontally in front of the webcam, you spin the cube along its y-axis.
You treat the motion as an acceleration force to alter the velocity of spinning. Figure 6-18 shows a screenshot
of the program.

.

Figure 6-18. Gestural interaction with motion direction

Besides retrieving the global motion direction, you can segment the motion gradient image to identify
individual motion regions. The next exercise, Chapter0o6_18, will show how you can use the function
segmentMotion() to split the overall motion information into separate areas:

// Motion history with motion segment
import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;
import org.opencv.optflow.Optflow;
import java.lang.System;

import java.util.Arraylist;

214

CHAPTER 6

final int CNT = 2;

// Minimum region area to display
final float MIN_AREA = 300;

// Motion history duration
final double MHI_DURATION = 3;
final double MAX_TIME DELTA = 0.5;
final double MIN TIME DELTA = 0.05;

Capture cap;

CVImage img;

Mat [] buf;

Mat mhi, mask, orient, segMask, silh;
int last;

double timeo, timestamp;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
last = o;
buf = new Mat[CNT];
for (int i=0; i<CNT; i++) {
buf[i] = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
}
// Motion history image
mhi = Mat.zeros(cap.height, cap.width, CvType.CV_32FC1);
mask = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
orient = Mat.zeros(cap.height, cap.width, CvType.CV_32FC1);
segMask = Mat.zeros(cap.height, cap.width, CvType.CV _32FC1);
// Threshold difference image
silh = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
// Program start time
time0o = System.nanoTime();
timestamp = 0;
smooth();
}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

Mat grey = img.getGrey();

grey.copyTo(buf[last]);

UNDERSTANDING MOTION

215

CHAPTER 6 © UNDERSTANDING MOTION

int idx1, idx2;

idx1 = last;
idx2 = (last + 1) % buf.length;
last = idx2;

silh = buf[idx2];

double timestamp = (System.nanoTime() - time0)/1e9;

// Create threshold difference image.

Core.absdiff(buf[idx1], buf[idx2], silh);
Imgproc.threshold(silh, silh, 30, 255, Imgproc.THRESH BINARY);
// Update motion history image.
Optflow.updateMotionHistory(silh, mhi, timestamp, MHI_DURATION);
// Convert motion history to 8bit image.

mhi.convertTo(mask, CvType.CV_8UC1,

255.0/MHI_DURATION,

(MHI_DURATION - timestamp)*255.0/MHI_DURATION);
// Display motion history image in greyscale.
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(mask);

// Calculate overall motion gradient.
Optflow.calcMotionGradient(mhi, mask, orient,

MAX_TIME_DELTA, MIN TIME DELTA, 3);

// Segment general motion into different regions.

MatOfRect regions = new MatOfRect();

Optflow.segmentMotion(mhi, segMask, regions,
timestamp, MAX TIME DELTA);

image(img, 0, 0);

image(out, cap.width, 0);

// Plot individual motion areas.

plotMotion(regions.toArray());

pushStyle();

fill(o);

text(nf(round(frameRate), 2), 10, 20);

popStyle();

grey.release();

regions.release();

}

void plotMotion(Rect [] rs) {
pushStyle();
il1(0, 0, 255, 80);
stroke(255, 255, 0);
for (Rect r : 1s) {
// Skip regions of small area.
float area = r.width*r.height;
if (area < MIN_AREA)
continue;
// Obtain submatrices from motion images.
Mat silh roi = silh.submat(r);
Mat mhi_roi = mhi.submat(r);
Mat orient roi = orient.submat(r);
Mat mask_roi = mask.submat(r);

216

CHAPTER 6 © UNDERSTANDING MOTION

// Calculate motion direction of that region.
double angle = Optflow.calcGlobalOrientation(orient roi,
mask_roi, mhi roi, timestamp, MHI_DURATION);
// Skip regions with little motion.
double count = Core.norm(silh_roi, Core.NORM_L1);
if (count < (r.width*r.height*0.05))
continue;
PVector center = new PVector(r.x + r.width/2,
r.y + r.height/2);
float radius = min(r.width, r.height)/2.0;
ellipse(center.x, center.y, radius*2, radius*2);
line(center.x, center.y,
center.x+radius*cos(radians((float)angle)),
center.y+radius*sin(radians((float)angle)));
silh roi.release();
mhi_roi.release();
orient roi.release();
mask roi.release();

}
popStyle();

After you finish the statement to calculate the motion gradient image, you segment the motion
information with the following statement:

Optflow.segmentMotion(mhi, segMask, regions, timestamp, MAX_TIME DELTA);

The major input is the motion history image, mhi. In this case, you do not have a segment mask.
The second parameter, segMask, is just an empty image. The result of the operation will be stored in the
MatOfRect variable regions. You wrote the function plotMotion() to go through each Rect from regions.
In the function, it skips the regions with areas too small to use. You use the same calcGlobalOrientation()
function to find out the motion direction. The only difference is that you use a submatrix as a region of
interest for each of the images mhi, orient, and mask. The rest is the same as what you did in the exercise
Chapter06_16. Figure 6-19 shows a sample screenshot for reference.

Figure 6-19. Segment motion demonstration

217

CHAPTER 6 © UNDERSTANDING MOTION

Each circle on the left side of the image is the motion segment region. The size of the circle is defined
by the shorter side of the region’s width and height. The straight line inside the circle points to the motion
direction from the center.

Conclusion

In this chapter, you investigated how to work creatively with motion to generate visual effects. In addition,
you also learned how to identify motion from a sequence of frames and how such information can be used
for interface design with gestural interactions. In the next chapter, you will continue your study of motion
by first identifying points of interest and then track them across image frames to understand more about the
movement.

218

CHAPTER 7

Feature Detection and Matching -

This chapter continues the exploration of motion from the previous chapter with more sophisticated
tracking methods. In the previous chapter, you compared and analyzed the whole image between frames
to identify movement information. As a result, the motion details tracked from these methods are general,
without making use of the specific structural elements in the image. In this chapter, you will first investigate
how to locate the points of interest for detection. The common term for them is feature points. Then you
will try to track how these feature points move between frames. The functions are mainly provided in the
features2d module in OpenCV. In addition to the feature points, you will explore how to detect facial
features and people using the objdetect module. The following are the topics covered in this chapter:

Corner detection
Sparse optical flow
Feature detection
Feature matching
Face detection

People detection

Corner Detection

In previous chapters, you learned that, in the imgproc module, the Canny () function can effectively detect
edges in a digital image. In this chapter, you will go a step further to detect corner points in a digital
image. The concept is like edge detection. As shown in Figure 7-1, corner points are those pixels that have
significant changes in color in different directions.

© Bryan WC Chung 2017 219
B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_7

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Figure 7-1. Corner detection

The first exercise, Chapter07_01, demonstrates the Harris corner detection method created by Chris
Harris and Mike Stephens in 1988. To speed up the execution, you will scale down the original webcam
image by a scaling factor of 10 in this exercise. After the corner detection, you normalize the result matrix to
8-bit resolution and loop through it to identify the corner pixels with values higher than the threshold.

// Harris corner detection

import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

// Threshold value for a corner

final int THRESH = 140;

Capture cap;

CVImage img;

// Scale down the image for detection.
float scaling;

int w, h;

void setup() {
size(640, 480);
background(0);
scaling = 10;
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width, height);
cap.start();
w = floor(cap.width/scaling);
h = floor(cap.height/scaling);
img = new CVImage(w, h);
smooth();

220

CHAPTER 7 * FEATURE DETECTION AND MATCHING

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
Mat grey = img.getGrey();
// Output matrix of corner information
Mat corners = Mat.zeros(grey.size(), CvType.CV_32FC1);
Imgproc.cornerHarris(grey, corners, 2, 3, 0.04,
Core.BORDER _DEFAULT);
// Normalize the corner information matrix.
Mat cor norm = Mat.zeros(grey.size(), CvType.CV_8UC1);
Core.normalize(corners, cor_norm, 0, 255,
Core.NORM_MINMAX, CvType.CV_8UC1);
image(cap, 0, 0);
pushStyle();
noFill();
stroke(255, 0, 0);
strokeleight(2);
// Draw each corner with value greater than threshold.
for (int y=0; y<cor_norm.rows(); y++) {
for (int x=0; x<cor norm.cols(); x++) {
if (cor_norm.get(y, x)[0] < THRESH)
continue;
ellipse(x*scaling, y*scaling, 10, 10);
}
}
fi11(0);
text(nf(round(frameRate), 2), 10, 20);
popStyle();
grey.release();
corners.release();
cor_norm.release();

The major function is the cornerHarris() function from the imgproc module. The first parameter is
the input grayscale image, grey. The second parameter is the output matrix, corners, that indicates how
likely each pixel will be a corner point. The technical explanation of the rest of the parameters is beyond the
scope of this book. If you're interested, you can find the official OpenCV tutorial at http://docs.opencv.
org/3.1.0/d4/d7d/tutorial_harris_detector.html. The third parameter is the 2x2 neighborhood size
for calculating the gradient (change of pixel intensity). The fourth parameter is the 3x3 aperture size of the
Sobel derivative, as shown in the OpenCV documentation at http://docs.opencv.org/3.1.0/d2/d2c/
tutorial sobel derivatives.html. The fifth parameter is the Harris detector parameter, shown in the
previously mentioned Harris detector tutorial, and the last parameter is the border type indicator. Figure 7-2
shows a sample run of the program.

221

http://docs.opencv.org/3.1.0/d4/d7d/tutorial_harris_detector.html
http://docs.opencv.org/3.1.0/d4/d7d/tutorial_harris_detector.html
http://docs.opencv.org/3.1.0/d2/d2c/tutorial_sobel_derivatives.html
http://docs.opencv.org/3.1.0/d2/d2c/tutorial_sobel_derivatives.html

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Figure 7-2. Harris corner detection

Sparse Optical Flow

You learned how to use the dense optical flow feature in Chapter 6. In this section, I will explain how you can
use the sparse optical flow for motion detection. In dense optical flow, you inspect and trace all the pixels
from a downsampled image, whereas in sparse optical flow, you inspect only a selected number of pixels.
Those are the points you are interested in tracking, called feature points. In general, they are the corner
points. The following are the steps you need to follow:

1.

> e n

Identify the feature points.
Improve the accuracy of the points.
Calculate the optical flow of the points.

Visualize the flow information.

Identify the Feature Points

The next exercise, Chapter07_02, will use the function goodFeaturesToTrack() developed by Jianbo Shi and
Carlo Tomasi in 1994. The function returns the most prominent corners in a digital image.

// Feature points detection
import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE_LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();

222

http://dx.doi.org/10.1007/978-1-4842-2775-6_6

CHAPTER 7

img = new CVImage(cap.width, cap.height);
smooth();
}

void draw() {

if (!cap.available())
return;

background(0);

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

Mat grey = img.getGrey();

MatOfPoint corners = new MatOfPoint();

// Identify the good feature points.

Imgproc.goodFeaturesToTrack(grey, corners,
100, 0.01, 10);

Point [] points = corners.toArray();

pushStyle();

noStroke();

// Draw each feature point according to its

// original color of the pixel.

for (Point p : points) {
int x = (int)constrain((float)p.x, 0, cap.width-1);
int y = (int)constrain((float)p.y, 0, cap.height-1);
color ¢ = cap.pixels[y*cap.width+x];
fill(c);
ellipse(x+cap.width, y, 10, 10);

}

image(img, 0, 0);

fi11(0);

text(nf(round(frameRate), 2), 10, 20);

popStyle();

grey.release();

corners.release();

FEATURE DETECTION AND MATCHING

Inside the draw() function, after you obtain the grayscale image, you pass it to the
goodFeaturesToTrack() function. It will return the feature point information in the MatOfPoint variable
called corners. The remaining three parameters are the maximum number of points detected, the quality
level for detection, and the minimum distance between each feature point. After you convert the corners
variable into the array of Point called points, you loop through it to draw each corner as a circle, with the
color taken from the original video capture image. Figure 7-3 shows a sample screenshot of the program.

223

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Figure 7-3. Good features to track

Improve the Accuracy

After you obtain the list of feature points, you can use an OpenCV function to enhance the accuracy of the
position of the points. Even though you are working on a digital image with pixels at an integer position, the
corners can occur at positions between two adjacent pixels. That is at subpixel position. The following exercise,
Chapter07_03, explores this function, cornerSubPix(), to enhance the accuracy of the corner point position:

// Feature points detection with subpixel accuracy
import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

Capture cap;

CVImage img;
TermCriteria term;
int w, h;

float xRatio, yRatio;

void setup() {
size(800, 600);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
W = 640;
h = 480;
xRatio = (float)width/w;
yRatio = (float)height/h;
cap = new Capture(this, w, h);
cap.start();
img = new CVImage(cap.width, cap.height);
term = new TermCriteria(TermCriteria.COUNT | TermCriteria.EPS,
20, 0.03);
smooth();

224

CHAPTER 7 * FEATURE DETECTION AND MATCHING

void draw() {

if (!cap.available())
return;

background(200);

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

Mat grey = img.getGrey();

MatOfPoint corners = new MatOfPoint();

// Detect the initial feature points.

Imgproc.goodFeaturesToTrack(grey, corners,
100, 0.01, 10);

MatOfPoint2f c2 = new MatOfPoint2f(corners.toArray());

Imgproc.cornerSubPix(grey, c2,
new Size(5, 5),
new Size(-1, -1), term);

Point [] points = corners.toArray();

pushStyle();

noFill();

stroke(100);

// Display the original points.

for (Point p : points) {
ellipse((float)p.x*xRatio, (float)p.y*yRatio, 20, 20);

points = c2.toArray();

stroke(0);

// Display the more accurate points.

for (Point p : points) {
ellipse((float)p.x*xRatio, (float)p.y*yRatio, 20, 20);

}

fil11(0);

text(nf(round(frameRate), 2), 10, 20);

popStyle();

grey.release();

corners.release();

c2.release();

In the program, you use a bigger sketch canvas size and a smaller video capture size to reveal the difference
between the old (pixel-level) and new (subpixel-level) corners position. In the draw() function, after the
goodFeaturesToTrack() function, you get a list of feature points in the MatOfPoint variable called corners. The
new function, cornerSubPix (), will use the same inputs, the grey image and the corners matrix. The corners
will be used as both the input and the output to store the new feature points with subpixel accuracy. To enable
the enhanced accuracy, the input corners must be in a new floating-point format of MatOfPoint2f. For the
cornerSubPix() function, the third parameter, Size(5, 5), is half the search window size. The fourth one,
Size(-1, -1),ishalfthe size of the zone in the search window that no search is done. The negative values
indicate no such zone. The last one, term, is the termination criteria for the iterative process. It determines when
an iterative process, such as the cornerSubPix () will end, either the maximum count 20 is reached or the desired
accuracy of 0.03 pixel is achieved. In this example, you specify it in the setup() function with a maximum count
20 and the desired accuracy of 0.03 pixel. Figure 7-4 shows a screenshot of the running program. The gray circles
indicate the pixel-level corners, while the black circles indicate the subpixel-level corners.

225

CHAPTER 7 * FEATURE DETECTION AND MATCHING

O () @ Qj
& 0O @°
oC 006} Q &
~ |:)-=> (R 8
e {00 ;’W}%
S o
o)
o) < é%g%xdﬁi
" B o o o
AR L8

Figure 7-4. Subpixel accuracy feature points

Calculate the Optical Flow

After you have the accurate positions of the feature points, the next program, Chapter07_04, will track

the flow of such feature points. The main function is calcOpticalFlowPyrLK() from the video module of
OpenCV. It is the implementation based on the 2000 paper “Pyramidal Implementation of the Lucas Kanade
Feature Tracker” by Jean-Yves Bouguet.

// Sparse optical flow

import processing.video.*;

import org.opencv.core.*;

import org.opencv.video.Video;
import org.opencv.imgproc.Imgproc;

final int CNT = 2;

// Threshold to recalculate the feature points
final int MIN_PTS = 20;

// Number of points to track

final int TRACK PTS = 150;

Capture cap;

CVImage img;

TermCriteria term;

// Keep the old and new frames in greyscale.
Mat [] grey;

// Keep the old and new feature points.
MatOfPoint2f [] points;

// Keep the last index of the buffer.
int last;

// First run of the program

boolean first;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);

226

CHAPTER 7 * FEATURE DETECTION AND MATCHING

println(Core.VERSION);

cap = new Capture(this, width/2, height);

cap.start();

img = new CVImage(cap.width, cap.height);

term = new TermCriteria(TermCriteria.COUNT | TermCriteria.EPS,
20, 0.03);

// Initialize the image and keypoint buffers.

grey = new Mat[CNT];

points = new MatOfPoint2f[CNT];

for (int i=0; i<CNT; i++) {
grey[i] = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
points[i] = new MatOfPoint2f();

}
last = 0;
first = true;
smooth();

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
if (first) {
// Initialize feature points in first run.
findFeatures(img.getGrey());
first = false;
return;
}
int idx1, idx2;
idx1 = last;
idx2 = (idx1 + 1) % grey.length;
last = idx2;
grey[idx2] = img.getGrey();
// Keep status and error of running the
// optical flow function.
MatOfByte status = new MatOfByte();
MatOfFloat err = new MatOfFloat();
Video.calcOpticalFlowPyrLK(grey[idx1], grey[idx2],
points[idx1], points[idx2], status, err);
Point [] pts = points[idx2].toArray();
byte [] statArr = status.toArray();
pushStyle();
noStroke();
int count = 0;
for (int i=0; i<pts.length; i++) {
// Skip error cases.
if (statArr[i] == 0)
continue;

227

CHAPTER 7 * FEATURE DETECTION AND MATCHING

int x = (int)constrain((float)pts[i].x, 0, cap.width-1);
int y = (int)constrain((float)pts[i].y, 0, cap.height-1);
color ¢ = cap.pixels[y*cap.width+x];
fill(c);
ellipse(x+cap.width, y, 10, 10);
count++;
}
// Re-initialize feature points when valid points
// drop down to the threshold.
if (count < MIN_PTS)
findFeatures(img.getGrey());
image(img, 0, 0);
fi11(0);
text(nf(round(frameRate), 2), 10, 20);
popStyle();
status.release();
err.release();

}

void findFeatures(Mat g) {
// Find feature points given the greyscale image g.
int idx1, idx2;

idx1 = last;
idx2 = (idx1 + 1) % grey.length;
last = idx2;

grey[idx2] = g;
MatOfPoint pt = new MatOfPoint();
// Calculate feature points at pixel level.
Imgproc.goodFeaturesToTrack(grey[idx2], pt,
TRACK_PTS, 0.01, 10);
points[idx2] = new MatOfPoint2f(pt.toArray());
// Recalculate feature points at subpixel level.
Imgproc.cornerSubPix(grey[idx2], points[idx2],
new Size(10, 10),
new Size(-1, -1), term);
grey[idx2].copyTo(grey[idx1]);
points[idx2].copyTo(points[idx1]);
pt.release();
}

void keyPressed() {
if (keyCode == 32) {
// Press SPACE to initialize feature points.
findFeatures(img.getGrey());
}
}

228

CHAPTER 7 - FEATURE DETECTION AND MATCHING

Regarding the data structures, the program maintains two consecutive frames in grayscale stored
in the array variable called grey. It also needs to keep two consecutive feature point lists stored in the
MatOfPoint2f array called points. You use the integer variable last to keep track of which index in the array
is the last image frame data. The boolean variable, first, indicates whether it is the first time to run the
draw() loop. In the case of the first run, it will find the feature points by calling findFeatures() and update
both the previous and current frame information. The function findFeatures() is the same as what you did
in the previous exercise, Chapter07_03.

In the draw() function, you update the index 1dx1 to the last frame and idx2 to the current frame.
After the update, you use the major function Video.calcOpticalFlowPyrLK() to compute the optical flow
information between the last frame and current frame. The four input parameters to the functions are
the previous frame, current frame, previous frame feature points, and current frame feature points. There
are two outputs from the function. The first one is a MatOfByte variable, status, that returns 1 when the
corresponding flow is found and 0 otherwise. The second output is the error measure that is not used in
the current exercise. The for loop will then go through all the valid flow and draw tiny circles at the current
frame feature points. The program also counts the valid flow data, and if the number drops below the
threshold, MIN_PTS, it will initiate the findFeatures () function to recalculate the feature points for the
current video image. Figure 7-5 is a sample screenshot of the program.

Figure 7-5. Optical flow visualization

Visualize the Flow Information

Instead of drawing the current feature points on the screen, you can generate a more creative visualization
of the optical flow information. The next example, Chapter07_05, is an interactive animation of flow
information. The logic is simple. You connect each pair of feature points from the previous position to its
current position.

// Optical flow animation

import processing.video.*;

import org.opencv.core.*;

import org.opencv.video.Video;
import org.opencv.imgproc.Imgproc;

final int CNT = 2;

final int TRACK_PTS = 200;
final int MAX_DIST = 100;

229

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Capture cap;

CVImage img;

TermCriteria term;

// Keep two consecutive frames and feature
// points list.

Mat [] grey;

MatOfPoint2f [] points;

int last;

boolean first;

void setup() {

size(1280, 480);

background(0);

System.loadLibrary(Core.NATIVE LIBRARY NAME);

println(Core.VERSION);

cap = new Capture(this, width/2, height);

cap.start();

img = new CVImage(cap.width, cap.height);

term = new TermCriteria(TermCriteria.COUNT | TermCriteria.EPS,
20, 0.03);

grey = new Mat[CNT];

points = new MatOfPoint2f[CNT];

for (int i=0; i<CNT; i++) {
grey[i] = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
points[i] = new MatOfPoint2f();

}

last = 0;

first = true;

smooth();

}

void draw() {

if (!cap.available())
return;

fillBack();

cap.read();

img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);

img.copyTo();

if (first) {
findFeatures(img.getGrey());
first = false;
return;

}

int idx1, idx2;

idx1 = last;

idx2 = (idx1 + 1) % grey.length;
last = idx2;

grey[idx2] = img.getGrey();
MatOfByte status = new MatOfByte();
MatOfFloat err = new MatOfFloat();

230

CHAPTER 7

Video.calcOpticalFlowPyrLK(grey[idx1], grey[idx2],
points[idx1], points[idx2], status, err);
// pt1 - last feature points list
// pt2 - current feature points list
Point [] pt1 = points[idx1].toArray();
Point [] pt2 = points[idx2].toArray();
byte [] statArr = status.toArray();
PVector p1 = new PVector(0, 0);
PVector p2 = new PVector(o, 0);
pushStyle();
stroke(255, 200);
noFill();
for (int i=0; i<pt2.length; i++) {
if (statArr[i] == 0)
continue;
// Constrain the points inside the video frame.
pl.x = (int)constrain((float)pti[i].x, 0, cap.width-1);
pl.y = (int)constrain((float)pti[i].y, 0, cap.height-1);
p2.x = (int)constrain((float)pt2[i].x, 0, cap.width-1);
p2.y = (int)constrain((float)pt2[i].y, 0, cap.height-1);
// Discard the flow with great distance.
if (p1.dist(p2) > MAX_DIST)
continue;
line(p1.x+cap.width, pi.y, p2.x+cap.width, p2.y);
}
// Find new feature points for each frame.
findFeatures(img.getGrey());
image(img, 0, 0);
£i11(0);
text(nf(round(frameRate), 2), 10, 20);
popStyle();
status.release();
err.release();

}

void findFeatures(Mat g) {
grey[last] = g;
MatOfPoint pt = new MatOfPoint();
Imgproc.goodFeaturesToTrack(grey[last], pt,
TRACK_PTS, 0.01, 10);
points[last] = new MatOfPoint2f(pt.toArray());
Imgproc.cornerSubPix(grey[last], points[last],
new Size(5, 5),
new Size(-1, -1), term);
pt.release();
}

void fillBack() {
// Set background color with transparency.
pushStyle();
noStroke();
fill(o, o0, 0, 80);

FEATURE DETECTION AND MATCHING

231

CHAPTER 7 * FEATURE DETECTION AND MATCHING

rect(cap.width, 0, cap.width, cap.height);
popStyle();

To create a motion blur effect, you do not clear the background color to black completely. In the
fillBack() function, you fill the background with a rectangle of semitransparent color to create the motion
trail of the lines. Figure 7-6 shows a screenshot of the animation.

Figure 7-6. Optical flow animation

In creative coding, you often do not have correct and definite answers. In most cases, you just keep on
asking the “what if?” question. Starting from the previous exercise, you can ask, what if you do not clear the
screen to black? What if you pick up color for the lines from the video image? What if you use a different
stroke weight? The next exercise, Chapter07_06, illustrates the ideas by accumulating the flow animation
into a form of gesture painting. You can easily associate the effects to action paintings from painters such as
Jackson Pollock.

// Optical flow drawing

import processing.video.*;

import org.opencv.core.*;

import org.opencv.video.Video;
import org.opencv.imgproc.Imgproc;

final int CNT = 2;
final int TRACK_PTS = 150;
final int MAX_DIST = 100;

Capture cap;

CVImage img;
TermCriteria term;

Mat [] grey;
MatOfPoint2f [] points;
int last;

boolean first;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);

232

CHAPTER 7 * FEATURE DETECTION AND MATCHING

println(Core.VERSION);

cap = new Capture(this, width/2, height);

cap.start();

img = new CVImage(cap.width, cap.height);

term = new TermCriteria(TermCriteria.COUNT | TermCriteria.EPS,
20, 0.03);

// Initialize the buffers for the 2 images and 2 keypoint lists.

grey = new Mat[CNT];

points = new MatOfPoint2f[CNT];

for (int i=0; i<CNT; i++) {
grey[i] = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
points[i] = new MatOfPoint2f();

}

last = 0;

first = true;

smooth();

}

void draw() {
// Note that we do not clear the background.
if (!cap.available())
return;
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();

if (first) {
findFeatures(img.getGrey());
first = false;
return;
}
int idx1, idx2;
idx1 = last;
idx2 = (idx1 + 1) % grey.length;
last = idx2;
grey[idx2] = img.getGrey();
MatOfByte status = new MatOfByte();
MatOfFloat err = new MatOfFloat();
Video.calcOpticalFlowPyrLK(grey[idx1], grey[idx2],
points[idx1], points[idx2], status, err);
Point [] pt2 = points[idx2].toArray();
Point [] pt1 = points[idx1].toArray();
byte [] statArr = status.toArray();
PVector p1 = new PVector(0, 0);
PVector p2 = new PVector(0, 0);
pushStyle();
noFill();
for (int i=0; i<pt2.length; i++) {
if (statArr[i] == 0)
continue;

233

CHAPTER 7 * FEATURE DETECTION AND MATCHING

pl.x = (int)constrain((float)pti[i].x, 0, cap.width-1);
pl.y = (int)constrain((float)ptl[l] , 0, cap.height-1);
p2.x = (int)constrain((float)pt2[i].x, 0, cap.width-1);
p2.y = (int)constrain((float)pt2[i]. y, 0, cap.height-1);

if (p1.dist(p2) > MAX DIST)
continue;

color c = cap.pixels[(int)p2.y*cap.width+(int)p2.x];
stroke(red(c), green(c), blue(c), (int)random(100, 160));
strokeWeight(random(3, 6));
line(p1.x+cap.width, pi.y, p2.x+cap.width, p2.y);
¢ = cap.pixels[(int)p1.y*cap.width+(int)p1.x];
stroke(red(c), green(c), blue(c), (int)random(120, 240));
strokeWeight(random(1, 4));
line(pl.x+cap.width, pi.y, p2.x+cap.width, p2.y);

}

findFeatures(img.getGrey());

image(img, 0, 0);

£i11(0);

text(nf(round(frameRate), 2), 10, 20);

popStyle();

status.release();

err.release();

}

void findFeatures(Mat g) {
// Re-initialize the feature points.
grey[last] = g;
MatOfPoint pt = new MatOfPoint();
Imgproc.goodFeaturesToTrack(grey[last], pt,
TRACK_PTS, 0.01, 10);
points[last] = new MatOfPoint2f(pt.toArray());
Imgproc.cornerSubPix(grey[last], points[last],
new Size(10, 10),
new Size(-1, -1), term);
pt.release();
}

The program is like the last one, except that you do not clear the background. Within the for loop to
draw the flow data, you first pick up color from the live video image, and then you draw two lines instead
of just one. The first line is a thicker one with more transparent color. The second line is thinner and more
opaque. It creates a more painterly effect. Figure 7-7 contains two screenshots of the rendering with optical
flow painting. My artwork Movement in Time, Part 1 (http://www.magicandlove.com/blog/artworks/
movement-in-time-v-1/)is an example of using sparse optical flow to generate gestural paintings from
classic Hollywood film sequences.

234

http://www.magicandlove.com/blog/artworks/movement-in-time-v-1/
http://www.magicandlove.com/blog/artworks/movement-in-time-v-1/

CHAPTER 7 - FEATURE DETECTION AND MATCHING

Figure 7-7. Optical flow drawing

Feature Detection

In the previous sections, you tried to locate key feature points through the use of the Harris corner method
and the goodFeaturesToTrack() function with the Shi and Tomasi method. OpenCV provides generalized
key point processing for you to detect them, describe them, and match them between consecutive frames.
In this section, you will first study how to identify the key points using the FeatureDetector class in the
features2d module. The next exercise, Chapter07_07, will demonstrate the basic operation of the class:

// Features detection

import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

import org.opencv.features2d.FeatureDetector;

final float MIN_RESP = 0.003;
Capture cap;

CVImage img;

FeatureDetector fd;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);

235

CHAPTER 7 * FEATURE DETECTION AND MATCHING

// Create the instance of the class.
fd = FeatureDetector.create(FeatureDetector.ORB);
smooth();

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
Mat grey = img.getGrey();
MatOfKeyPoint pt = new MatOfKeyPoint();
// Detect keypoints from the image.
fd.detect(grey, pt);
image(cap, 0, 0);
CVImage out = new CVImage(cap.width, cap.height);
out.copyTo(grey);
tint(255, 100);
image(out, cap.width, 0);
noTint();
pushStyle();
noFill();
stroke(255, 200, 0);
KeyPoint [] kps = pt.toArray();
for (KeyPoint kp : kps) {
// Skip the keypoints that are less likely.
if (kp.response < MIN RESP)
continue;
float x1 = (float)kp.pt.x;
float y1 = (float)kp.pt.y;
float x2 = x1 + kp.size*cos(radians(kp.angle))/2;
float y2 = y1 + kp.size*sin(radians(kp.angle))/2;
// size is the diameter of neighborhood.
ellipse(xi+cap.width, y1, kp.size, kp.size);
// Draw also the orientation direction.
line(x1+cap.width, y1, x2+cap.width, y2);
}
fill(o);
text(nf(round(frameRate), 2), 10, 20);
popStyle();
grey.release();
pt.release();

236

CHAPTER 7 - FEATURE DETECTION AND MATCHING

You use the FeatureDetector class instance fd to work on the major tasks. In the setup() function, you
create the instance fd with the FeatureDetector.create() function. The parameter indicates the type of
detector you use. In the Java build of OpenCV 3.1, you have the following types:

AKAZE, DYNAMIC_AKAZE, GRID_AKAZE, PYRAMID_ AKAZE,

BRISK, DYNAMIC_BRISK, GRID_BRISK, PYRAMID_BRISK,

FAST, DYNAMIC FAST, GRID FAST, PYRAMID FAST,

GFTT, DYNAMIC_GFTT, GRID_GFTT, PYRAMID, GFTT,

HARRIS, DYNAMIC HARRIS, GRID_HARRIS, PYRAMID_ HARRIS,

MSER, DYNAMIC_MSER, GRID_MSER, PYRAMID MSER,

ORB, DYNAMIC_ORB, GRID_ORB, PYRAMID_ORB,

SIMPLEBLOB, DYNAMIC SIMPLEBLOB, GRID_SIMPLEBLOB, PYRAMID SIMPLEBLOB

In the current exercise, you will use the type FeatureDetector.ORB. Detailed descriptions of the various
detector types are beyond the scope of this book. Nevertheless, you can refer to Figure 7-9 later in the
chapter for a comparison of various detector types.

In the draw() function, you use the method fd.detect(grey, pt) to perform the key point detection
and store the result in the MatOfKeyPoint instance called pt. After you convert pt into a KeyPoint array, kps,
you use a for loop to go through each KeyPoint object. For each KeyPoint, the property pt is the position
of the point. The property response describes how likely it is a key point. You compare it with a threshold of
MIN_RESP to skip those with smaller values. The property size is the diameter of the key point neighborhood.
The property angle shows the key point orientation. You use a circle to indicate the key point and its
neighborhood size and a straight line to show the direction. Figure 7-8 shows a sample screenshot. The
grayscale image is displayed in darker tones to create a higher contrast with the key point circles.

Figure 7-8. Feature detection in features2d

237

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Figure 7-9 shows a collection of the key points detected using different FeatureDetector types.

Figure 7-9. Comparison of different FeatureDetector types

You can use the key point information for creative visualization. In the next section, you will, however,
study generalized feature matching in OpenCV for subsequent tracking purposes. Before you can work with
feature matching, there is one more step: key point description. You will use the DescriptorExtractor class
from the features2d module to compute the descriptor of the key points. The next exercise, Chapter07_08,
will illustrate the use of the descriptor:

// Keypoint descriptor

import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

import org.opencv.features2d.FeatureDetector;

Capture cap;

CVImage img;
FeatureDetector fd;
DescriptorExtractor de;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
fd = FeatureDetector.create(FeatureDetector.AKAZE);
// Create the instance for the descriptor
de = DescriptorExtractor.create(DescriptorExtractor.AKAZE);
smooth();

238

CHAPTER 7 * FEATURE DETECTION AND MATCHING

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
Mat grey = img.getGrey();
image(cap, 0, 0);
CvImage out = new CVImage(cap.width, cap.height);
out.copyTo(grey);
tint (255, 200);
image(out, cap.width, 0);
noTint();
MatOfKeyPoint pt = new MatOfKeyPoint();
fd.detect(grey, pt);
Mat desc = new Mat();
// Compute the descriptor from grey and pt.
de.compute(grey, pt, desc);
pushStyle();
noFill();
stroke(255, 200, 0);
KeyPoint [] kps = pt.toArray();
for (KeyPoint kp : kps) {
float x = (float)kp.pt.x;
float y = (float)kp.pt.y;
ellipse(x+cap.width, y, kp.size, kp.size);

popStyle();

pt.release();

grey.release();

desc.release();

i11(0);

text(nf(round(frameRate), 2), 10, 20);

The program is like the last one. It only adds a new class, DescriptorExtractor, and its instance, de.
It uses the DescriptorExtractor.create() method to create an instance in the setup() function. In the
draw() function, it uses the compute() method to create the descriptor in the Mat called desc. The display
in the Processing window is similar to Figure 7-8 except that you generate more key points on the screen
because you do not skip those key points with a low response. For each key point in pt, there will be one
entry in desc for the description of that key point. Once you have the descriptor information in desc, you are
ready to proceed to matching in the next section.

239

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Feature Matching

Feature matching usually involves two sets of information. The first set consists of the feature points and
the descriptor of a known image. You can refer it as the trained set. The second one consists of the feature
points and the descriptor coming from a new image, usually from the live capture image. You can refer it as
the query set. The job of feature matching is to perform the feature point matching between the trained set
and the query set. The purpose of doing the feature matching is to identify a known pattern from the trained
set and track where that pattern moves in the query set. In the coming exercises, you will first perform a
general feature matching between two snapshots from the live video stream, and in the second exercise, you
interactively select a pattern in a snapshot and try to track where it moves in the live video stream.

The next exercise, Chapter07_09, is the preparation of the matching. It will display the trained snapshot
image and the live query image, together with the key point information. You can press the mouse button to
toggle the training action.

// Features matching

import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

import org.opencv.features2d.FeatureDetector;

Capture cap;

CVImage img;

FeatureDetector fd;
DescriptorExtractor de;

// Two sets of keypoints: train, query
MatOfKeyPoint trainKp, queryKp;

// Two sets of descriptor: train, query
Mat trainDc, queryDc;

Mat grey;

// Keep if training started.

boolean trained;

// Keep the trained image.

PImage trainImg;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
trainImg = createImage(cap.width, cap.height, ARGB);
fd = FeatureDetector.create(FeatureDetector.BRISK);
de = DescriptorExtractor.create(DescriptorExtractor.BRISK);
trainkKp = new MatOfKeyPoint();
queryKp = new MatOfKeyPoint();
trainDc = new Mat();
queryDc = new Mat();
grey = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
trained = false;
smooth();

240

CHAPTER 7

void draw() {
if (!cap.available())
return;
background(0);
cap.read();

if (trained) {
image(trainImg, 0, 0);
image(cap, trainImg.width, 0);
img.copy(cap, 0, 0, cap.width, cap.height,

0, 0, img.width, img.height);

img.copyTo();
grey = img.getGrey();
fd.detect(grey, queryKp);
de.compute(grey, queryKp, queryDc);
drawTrain();
drawQuery();

} else {
image(cap, 0, 0);
image(cap, cap.width, 0);

pushStyle();
fil11(0);
text(nf(round(frameRate), 2), 10, 20);
popStyle();
}

void drawTrain() {
// Draw the keypoints for the trained snapshot.
pushStyle();
noFill();
stroke(255, 200, 0);
KeyPoint [] kps = trainKp.toArray();
for (KeyPoint kp : kps) {
float x = (float)kp.pt.x;
float y = (float)kp.pt.y;
ellipse(x, y, kp.size, kp.size);
}
popStyle();

void drawQuery() {

// Draw the keypoints for live query image.

pushStyle();

noFill();

stroke(255, 200, 0);

KeyPoint [] kps = queryKp.toArray();

for (KeyPoint kp : kps) {
float x = (float)kp.pt.x;
float y = (float)kp.pt.y;
ellipse(x+trainImg.width, y, kp.size, kp.size);

}

FEATURE DETECTION AND MATCHING

241

CHAPTER 7 * FEATURE DETECTION AND MATCHING

popStyle();

void mousePressed() {
// Press mouse button to toggle training.
if (!trained) {
arrayCopy(cap.pixels, trainImg.pixels);
trainImg.updatePixels();
img.copy(trainImg, 0, 0, trainImg.width, trainImg.height,
0, 0, img.width, img.height);
img.copyTo();
grey = img.getGrey();
fd.detect(grey, trainKp);
de.compute(grey, trainkp, trainDc);
trained = true;
} else {
trained = false;
}
}

The program is relatively straightforward. You keep two pairs of the data structure. The first pair is the
MatOfKeyPoint for the trained image, trainKp, and the query image, queryKp. The second pair consists of
the descriptors, trainDc and queryDC. When users press the mouse button, it will take a snapshot of the
current video stream and use the image to compute the trained key points, trainKp, and the descriptor,
trainDc. In the draw() function, if there is a trained image, the program will compute the query key points,
queryKp, and the descriptor, queryDc, from the live video image. Both images and the key point information
will be displayed in the Processing window.

Figure 7-10 shows a sample screenshot of running the program. The left image is the still image and its
trained key points. The right image is the live video image and its query key points.

Figure 7-10. Feature points from the trained and query images

The next exercise, Chaptero7_10, will introduce matching to identify the corresponding key points
between the trained and query images.

// Features matching
import processing.video.*;
import java.util.Arrays;
import org.opencv.core.*;

242

CHAPTER 7 * FEATURE DETECTION AND MATCHING

import org.opencv.imgproc.Imgproc;

import org.opencv.features2d.FeatureDetector;
import org.opencv.features2d.DescriptorExtractor;
import org.opencv.features2d.DescriptorMatcher;

final int MAX_DIST = 200;
Capture cap;

CVImage img;
FeatureDetector fd;
DescriptorExtractor de;
MatOfKeyPoint trainKp, queryKp;
Mat trainDc, queryDc;
DescriptorMatcher match;
Mat grey;

boolean trained;

PImage trainImg;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
trainImg = createImage(cap.width, cap.height, ARGB);
fd = FeatureDetector.create(FeatureDetector.ORB);
de = DescriptorExtractor.create(DescriptorExtractor.ORB);
match = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE L1);
trainKp = new MatOfKeyPoint();
queryKp = new MatOfKeyPoint();
trainDc = new Mat();
queryDc = new Mat();
grey = Mat.zeros(cap.height, cap.width, CvType.CV_8UC1);
trained = false;
smooth();

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();

if (trained) {
image(trainImg, 0, 0);
image(cap, trainImg.width, 0);
img.copy(cap, 0, 0, cap.width, cap.height,

0, 0, img.width, img.height);

img.copyTo();
grey = img.getGrey();
fd.detect(grey, queryKp);

243

CHAPTER 7 * FEATURE DETECTION AND MATCHING

de.compute(grey, queryKp, queryDc);
MatOfDMatch pairs = new MatOfDMatch();
// Perform key point matching.
match.match(queryDc, trainDc, pairs);

KeyPoint [] tKp = trainKp.toArray();
KeyPoint [] gKp = queryKp.toArray();
// Connect the matched key points.
for (DMatch d : dm) {
// Skip those with large distance.
if (d.distance>MAX DIST)
continue;
KeyPoint t = tKp[d.trainIdx];
KeyPoint q = gKp[d.queryIdx];
line((float)t.pt.x, (float)t.pt.y,
(float)q.pt.x+cap.width, (float)q.pt.y);

DMatch [] dm = pairs.toArray();
]
]

drawTrain();
drawQuery();
pairs.release();

} else {
image(cap, 0, 0);
image(cap, cap.width, 0);

pushStyle();
£i11(0);
text(nf(round(frameRate), 2), 10, 20);
popStyle();
}

void drawTrain() {

pushStyle();

noFill();

stroke(255, 200, 0);

KeyPoint [] kps = trainKp.toArray();

for (KeyPoint kp : kps) {
float x = (float)kp.pt.x;
float y = (float)kp.pt.y;
ellipse(x, y, kp.size, kp.size);

}
popStyle();

void drawQuery() {
pushStyle();
noFill();
stroke(255, 200, 0);
KeyPoint [] kps = queryKp.toArray();
for (KeyPoint kp : kps) {
float x = (float)kp.pt.x;
float y = (float)kp.pt.y;

244

CHAPTER 7 © FEATURE DETECTION AND MATCHING
ellipse(x+trainImg.width, y, kp.size, kp.size);

}
popStyle();

void mousePressed() {

if (!trained) {
arrayCopy(cap.pixels, trainImg.pixels);
trainImg.updatePixels();
img.copy(trainImg, 0, 0, trainImg.width, trainImg.height,

0, 0, img.width, img.height);

img.copyTo();
grey = img.getGrey();
fd.detect(grey, trainKp);
de.compute(grey, trainkp, trainDc);
trained = true;

} else {
trained = false;

Most of the code is identical to the previous program, Chapter07_09. Nevertheless, you have a few new
entries in this code. In the setup() function, you have to initialize the DescriptorMatcher class instance,
match, with the following statement:

match = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE L1);

The parameter inside the static create() method is the matching method. The following variations of the
brute-force method are supported: BRUTEFORCE, BRUTEFORCE_HAMMING, BRUTEFORCE_HAMMINGLUT, BRUTEFORCE L1,
and BRUTEFORCE_SL2. If you click inside the Processing image, the following statement will be executed inside the
draw() function:

match.match(queryDc, trainDc, pairs);

The match() function will perform the matching between the key point descriptor from the live image,
queryDc, and the key point descriptor from the stored image on the left side, trainDc. The variable, pairs,
will store all the matching key point pairs as a MatOfDMatch instance. DMatch is a data structure to maintain
the matching indices of the key points, queryIdx and trainIdx, stored in the query and trained key point
lists, queryKp and trainKp. The for loop afterward will enumerate all the key point matching pairs and
draw the matching lines for those with the matching distance, d.distance, shorter than the threshold of
MAX_DIST. Figure 7-11 shows the resulting screenshot of the execution.

245

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Figure 7-11. Feature matching

In many cases, you will not use the whole image through the webcam as the training image pattern. You
may just select part of the image as the pattern you would like to track. In the next exercise, Chapter07_11,
you will use the mouse to draw a rectangle to select only part of the live image for tracking purposes. This is
similar to the Rectangular Marquee tool in most graphic software. You click and drag to define a rectangular
area as the trained image and use only those key points inside this area to match against those in the query
image from the live video. To simplify the main program, you define a separate class, Dragging, to handle the
mouse interaction from here.

import org.opencv.core.Rect;

// Define 3 states of mouse drag action.
public enum State {
IDLE,
DRAGGING,
SELECTED
}
// A class to handle the mouse drag action
public class Dragging {
PVector p1, p2;
Rect roi;
State state;

public Dragging() {
pl = new PVector(Float.MAX VALUE, Float.MAX VALUE);
p2 = new PVector(Float.MIN VALUE, Float.MIN VALUE);
roi = new Rect(o, 0, 0, 0);
state = State.IDLE;

}

void init(PVector m) {

empty(m);
state = State.DRAGGING;

}

void update(PVector m) {
p2.set(m.x, m.y);
roi.x = (int)min(pi.x, p2.x);
roi.y = (int)min(pi.y, p2.y);

246

CHAPTER 7 * FEATURE DETECTION AND MATCHING

roi.width = (int)abs(p2.x-p1.x);
roi.height = (int)abs(p2.y-pl.y);
}

void move(PVector m) {
update(m);
}

void stop(PVector m) {
update(m);
state = State.SELECTED;
}

void empty(PVector m) {
pl.set(m.x, m.y);
p2.set(m.x, m.y);
roi.x = (int)m.x;
roi.y = (int)m.y;
roi.width = 0;
roi.height = 0;

}

void reset(PVector m) {

empty(m);
state = State.IDLE;

}

boolean isDragging() {
return (state == State.DRAGGING);

}

boolean isSelected() {
return (state == State.SELECTED);

}

boolean isIdle() {
return (state == State.IDLE);

}

Rect getRoi() {
return roi;
}
}

The class defines three states of mouse interaction: IDLE, when no selection is initiated; DRAGGING, when
user has clicked and started dragging the mouse; and SELECTED, when the user has released the mouse button to
confirm the selection rectangle, roi. The class maintains two PVector objects: p1, the top-left corner of
the selection rectangle, and p2, the bottom-right corner of the selection rectangle. When the user starts the
click-drag action, the program will call the init() method. During the drag action, it will call the move () method.
When user stops and releases the mouse button, it will call the stop() method. When the user clicks without
any dragging, it will clear the selection by calling the reset () method. The class also provides three Boolean
methods (isIdle(), isDragging(), and isSelected()) for the users to query the state of the interaction.

247

CHAPTER 7 * FEATURE DETECTION AND MATCHING

The main program is similar to the Chapter07_10 exercise, except that you have additional code to
handle the selection interaction and the ways to eliminate the key points outside the selection rectangle.

// Features matching with selection

import processing.video.*;

import java.util.Arrays;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;

import org.opencv.features2d.FeatureDetector;
import org.opencv.features2d.DescriptorExtractor;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.calib3d.Calib3d;

Capture cap;

CVImage img;

// Feature detector, extractor and matcher
FeatureDetector fd;

DescriptorExtractor de;

DescriptorMatcher match;

// Key points and descriptors for train and query
MatOfKeyPoint trainKp, queryKp;

Mat trainDc, queryDc;

// Buffer for the trained image

PImage trainImg;

// A class to work with mouse drag & selection
Dragging drag;

Mat hg;

MatOfPoint2f trainRect, queryRect;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
trainImg = createImage(cap.width, cap.height, ARGB);
fd = FeatureDetector.create(FeatureDetector.ORB);
de = DescriptorExtractor.create(DescriptorExtractor.ORB);
match = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
trainKp = new MatOfKeyPoint();
queryKp = new MatOfKeyPoint();
trainDc = new Mat();
queryDc = new Mat();
hg = Mat.eye(3, 3, CvType.CV_32FC1);
drag = new Dragging();
smooth();
trainRect = new MatOfPoint2f();
queryRect = new MatOfPoint2f();

248

CHAPTER 7 * FEATURE DETECTION AND MATCHING

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
Mat grey = img.getGrey();
image(trainImg, 0, 0);
image(cap, trainImg.width, 0);

if (drag.isDragging()) {
drawRect (cap.width);

} else if (drag.isSelected()) {
drawRect(0);
matchPoints(grey);
drawTrain();
drawQuery();

}

pushStyle();

i11(80);

text(nf(round(frameRate), 2), 10, 20);
popStyle();

grey.release();

}

void matchPoints(Mat im) {
// Match the trained and query key points.
fd.detect(im, queryKp);
de.compute(im, queryKp, queryDc);
// Skip if the trained or query descriptors are empty.
if (!queryDc.empty() &&
ItrainDc.empty()) {
MatOfDMatch pairs = new MatOfDMatch();
match.match(queryDc, trainDc, pairs);
DMatch [] dm = pairs.toArray();
// Convert trained and query MatOfKeyPoint to array.
KeyPoint [] tKp = trainKp.toArray();
KeyPoint [] gKp = queryKp.toArray();
float minDist = Float.MAX VALUE;
float maxDist = Float.MIN VALUE;
// Obtain the min and max distances of matching.
for (DMatch d : dm) {
if (d.distance < minDist) {
minDist = d.distance;
}
if (d.distance > maxDist) {
maxDist = d.distance;
}
}

249

CHAPTER 7 * FEATURE DETECTION AND MATCHING

float thresval = 2*minDist;
ArraylList<Point> trainlist = new ArraylList<Point>();
ArraylList<Point> querylList = new ArraylList<Point>();
pushStyle();
noFill();
stroke(255);
for (DMatch d : dm) {
if (d.queryIdx >= gKp.length ||
d.trainIdx >= tKp.length)
continue;
// Skip match data with distance larger than
// 2 times of min distance.
if (d.distance > thresval)
continue;
KeyPoint t = tKp[d.trainIdx];
KeyPoint q = qKp[d.queryIdx];
trainList.add(t.pt);
querylist.add(q.pt);
// Draw a line for each pair of matching key points.
line((float)t.pt.x, (float)t.pt.y,
(float)q.pt.x+cap.width, (float)q.pt.y);

MatOfPoint2f trainM = new MatOfPoint2f();
MatOfPoint2f queryM = new MatOfPoint2f();
trainM.fromList(trainList);
queryM.fromList(querylist);
// Find the homography matrix between the trained
// key points and query key points.
// Proceed only with more than 5 key points.
if (trainList.size() > 5 88&
querylist.size() > 5) {
hg = Calib3d.findHomography(trainM, queryM, Calib3d.RANSAC, 3.0);
if (hg.empty()) {
// Perform perspective transform to the
// selection rectangle with the homography matrix.
Core.perspectiveTransform(trainRect, queryRect, hg);

pairs.release();
trainM.release();
queryM.release();
hg.release();
}
if (!queryRect.empty()) {
// Draw the transformed selection matrix.
Point [] out = queryRect.toArray();
stroke(255, 255, 0);
for (int i=0; i<out.length; i++) {
int j = (i+1) % out.length;
Point p1 = out[i];
Point p2 = out[j];
line((float)p1.x+cap.width, (float)pi.y,
(float)p2.x+cap.width, (float)p2.y);

250

CHAPTER 7

}
}
}
popStyle();

void drawRect(float ox) {
// Draw the selection rectangle.
pushStyle();
noFill();
stroke(255, 255, 0);
rect(drag.getRoi().x+ox, drag.getRoi().y,
drag.getRoi().width, drag.getRoi().height);
popStyle();
}

void drawTrain() {
// Draw the trained key points.
pushStyle();
noFill();
stroke(255, 200, 0);
KeyPoint [] kps = trainKp.toArray();
for (KeyPoint kp : kps) {
float x = (float)kp.pt.x;
float y = (float)kp.pt.y;
ellipse(x, y, 10, 10);

}
popStyle();

void drawQuery() {
// Draw live image key points.
pushStyle();
noFill();
stroke(255, 200, 0);
KeyPoint [] kps = queryKp.toArray();
for (KeyPoint kp : kps) {
float x = (float)kp.pt.x;
float y = (float)kp.pt.y;
ellipse(x+trainImg.width, y, 10, 10);

popStyle();

void mouseClicked() {
// Reset the drag rectangle.
drag.reset(new PVector(o, 0));

}

FEATURE DETECTION AND MATCHING

251

CHAPTER 7 * FEATURE DETECTION AND MATCHING

void mousePressed() {

// Click only on the right hand side of the window

// to start the drag action.

if (mouseX < cap.width || mouseX >= cap.width*2)
return;

if (mouseY < 0 || mouseY >= cap.height)
return;

drag.init(new PVector(mouseX-cap.width, mouseY));

}

void mouseDragged() {
// Drag the selection rectangle.
int x = constrain(mouseX, cap.width, cap.width*2-1);
int y = constrain(mouseY, 0, cap.height-1);
drag.move(new PVector(x-cap.width, y));

void mouseReleased() {
// Finalize the selection rectangle.
int x = constrain(mouseX, cap.width, cap.width*2-1);
int y = constrain(mouseY, 0, cap.height-1);
drag.stop(new PVector(x-cap.width, y));

// Compute the trained key points and descriptor.
arrayCopy(cap.pixels, trainImg.pixels);
trainImg.updatePixels();
CVImage tBGR = new CVImage(trainImg.width, trainImg.height);
tBGR. copy(trainImg, 0, 0, trainImg.width, trainImg.height,
0, 0, tBGR.width, tBGR.height);
tBGR. copyTo();
Mat temp = tBGR.getGrey();
Mat tTrain = new Mat();
// Detect and compute key points and descriptors.
fd.detect(temp, trainKp);
de.compute(temp, trainKp, tTrain);
// Define the selection rectangle.
Rect r = drag.getRoi();
// Convert MatOfKeyPoint to array.
KeyPoint [] iKpt = trainKp.toArray();
Arraylist<KeyPoint> oKpt = new ArraylList<KeyPoint>();
trainDc.release();
// Select only the key points inside selection rectangle.
for (int i=0; i<iKpt.length; i++) {
if (r.contains(ikpt[i].pt)) {
// Add key point to the output list.
oKpt.add(ikpt[i]);
trainDc.push_back(tTrain.row(i));
}
}

252

CHAPTER 7 * FEATURE DETECTION AND MATCHING

trainKp.fromList(oKpt);

// Compute the selection rectangle as MatOfPoint2f.
ArraylList<Point> quad = new ArraylList<Point>();
quad.add(new Point(r.x, r.y));

quad.add(new Point(r.x+r.width, r.y));
quad.add(new Point(r.x+r.width, r.y+r.height));
quad.add(new Point(r.x, r.y+r.height));
trainRect.fromList(quad);

queryRect.release();

tTrain.release();

temp.release();

In the Processing window, there will be two images on the screen. The left one is the trained image
when the user has performed a selection through the mouse drag action. The right side is the live video
image. When the user wants to make a selection, the user needs to click and drag on the right live image.
When the selection rectangle is confirmed, it will be sent to the left side along with the snapshot of the
live video image. The Processing event handlers mouseClicked(), mousePressed(), mouseDragged(),
and mouseReleased() manage the interactive selection process. In the mouseReleased() method, you
have additional code to first detect the key points from a grayscale version of the live video image; second
compute the descriptors of the key points; third go through all the key points and choose only those inside
the selection rectangle, drag.getRoi(); fourth prepare the trained key point list, trainKp, and descriptor,
trainDc; and finally convert the selection rectangle as a MatOfPoint2f variable called trainRect.

Inside the draw() function, you just draw the temporary selection rectangle during the DRAGGING
state. In the SELECTED state, you will call the matchPoints() function, which is the most complex function
in the program. In this function, it first detects the key points from the live video image and computes the
descriptor. When both the trained and query descriptors are not empty, it performs the key point matching.
Note that the trained descriptor, trainDc, contains only the key point descriptions within the selection
rectangle. After the matching, the function will go through all the matching pairs to find out the minimum
and maximum distances within the MatOfDMatch object named pairs. In the subsequent loop, you process
only the matching pairs with a distance less than two times the minimum distance value. After the for
loop, you will have drawn the lines connecting all the matching key points and created two additional
MatOfPoint2f variables, trainM and queryM, from the key point lists. When both trainM and queryM contain
more than five key points each, you proceed to compute the transformation matrix (homography), hg, from
the two key point lists, with the Calib3d.findHomography() method. Through the homography matrix, hg,
you perform a perspective transform, Core.perspectiveTransform(), to convert the selection rectangle,
which is stored in trainRect, to the queryRect. The queryRect shape consists of the four coordinates of the
corners of the transformed rectangle, located on the right side of the window. Essentially, the four corners
will define the rectangle of the tracked pattern. The last part of the matchPoints () function draws the four
straight lines connecting the four corners found in queryRect.

Figure 7-12 shows the resulting screenshot. The quad on the right side is the region that was tracked
by using the pattern detected from the static trained image on the left side. For best results, the pattern
you select should contain a high-contrast visual texture. You should also avoid a similar texture in the
background. In the matchPoints() function, you establish a threshold to skip the matched key points with
a discrepancy larger than two times the minimum distance. You can lower the threshold to reduce noise
conditions.

253

CHAPTER 7 * FEATURE DETECTION AND MATCHING

Figure 7-12. Key point matching with a selection rectangle

Besides drawing the quad’s outline, the next exercise, Chapter07_12, will perform a texture mapping
onto the quad drawn over the live webcam image. Instead of listing the whole source code of the exercise
here, I just highlight the changes from the original version in Chapter07_11. You define a global PImage
variable, photo, to keep the image that you would like to map on top of the tracked pattern. In the setup()
function, you use the P3D render as size(1280, 480, P3D) and also set the texture mode to normal as
textureMode (NORMAL). Toward the end of the matchPoints() function, you have the following code to draw
the quad in the previous exercise, Chapter07_11:

if (!queryRect.empty()) {
// Draw the transformed selection matrix.
Point [] out = queryRect.toArray();
stroke(255, 255, 0);
for (int i=0; i<out.length; i++) {
int j = (i+1) % out.length;
Point p1 = out[i];
Point p2 = out[j];
line((float)pl.x+cap.width, (float)pi.y,
(float)p2.x+cap.width, (float)p2.y);

}

In this new version, Chapter07_12, you draw the quad by using the beginShape() and endShape()
functions. Within the shape definition, you use four vertex() functions to draw the quad with the texture
mapping option.

if (!queryRect.empty()) {
// Draw the transformed selection matrix.
Point [] out = queryRect.toArray();
noStroke();
fi11(255);
beginShape();
texture(photo);
vertex((float)out[0].x+cap.width, (float)out[0].y, 0, 0, 0);
vertex((float)out[1].x+cap.width, (float)out[1].y, 0, 1, 0);
vertex((float)out[2].x+cap.width, (float)out[2].y, 0, 1, 1);
vertex((float)out[3].x+cap.width, (float)out[3].y, 0, 0, 1);
endShape (CLOSE) ;

254

CHAPTER 7 - FEATURE DETECTION AND MATCHING

The resulting image will be similar to what is shown in Figure 7-13.

Figure 7-13. Key points matching with texture mapped onto the rectangle

You may find that the previous exercises are the foundation to build marker-less augmented reality
applications. In more advanced use, the PImage variable photo will be replaced by a three-dimensional
object. Nevertheless, it is outside the scope of this book to cover the details. If you're interested, you can look
for 3D pose estimation in OpenCV-related documentation.

Face Detection

In interactive media production, often artists and designers turn to OpenCV for its face detection feature.
The function is one of the features in the OpenCV objdetect module. The implementation is based on the
2001 paper “Rapid Object Detection Using a Boosted Cascade of Simple Features” by Paul Viola and Michael
Jones. Face detection is a machine learning process. This means that before you can perform face detection,
you need to train the program to learn what valid and invalid faces are. In OpenCV, however, the distribution
includes the pretrained information maintained in the data/haarcascades folder. You can use any one of
the XML files to detect features such as frontal face, profile face, eye, and even expression such as smile.

In the next exercise, Chapter07_13, you will detect the frontal face of the user with the parameter
file haarcascade_frontalface_default.xml. The file is located inside the OpenCV distribution folder at
opencv-3.1.0/data/haarcascades. You need to copy this file from the OpenCV distribution to the data
folder of the Processing sketch.

// Face detection
import processing.video.*;

import org.opencv.core.*;
import org.opencv.objdetect.CascadeClassifier;

// Detection image size

final int W = 320, H = 240;
Capture cap;

CVImage img;

CascadeClassifier face;

// Ratio between capture size and
// detection size

float ratio;

255

CHAPTER 7 * FEATURE DETECTION AND MATCHING

void setup() {
size(640, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width, height);
cap.start();
img = new CVImage(W, H);
// Load the trained face information.
face = new CascadeClassifier(dataPath("haarcascade frontalface default.xml"));
ratio = float(width)/W;

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
image(cap, 0, 0);
Mat grey = img.getGrey();
// Perform face detction. Detection
// result is in the faces.
MatOfRect faces = new MatOfRect();
face.detectMultiScale(grey, faces);
Rect [] facesArr = faces.toArray();
pushStyle();
fill(255, 255, 0, 100);
stroke(255);
// Draw each detected face.
for (Rect r : facesArr) {
rect(r.x*ratio, r.y*ratio, r.width*ratio, r.height*ratio);
}
grey.release();
faces.release();
noStroke();
fill(0);
text(nf(round(frameRate), 2, 0), 10, 20);
popStyle();

The parameter that you work with in face detection belongs to the CascadeClassifier class. First, you
have to define an instance, face, of this class. In the setup() function, you create the new instance with the
trained frontal face details from the file haarcascade_frontalface_default.xml, which you copied into the
data folder. You also use the Processing function dataPath() to return the absolute path of the data folder.
To optimize the performance, you use a smaller-size (320x240) grayscale image, grey, for detection in the
following statement:

face.detectMultiScale(grey, faces);

256

CHAPTER 7 - FEATURE DETECTION AND MATCHING

The first parameter is the grayscale image that you want to detect faces. The result will be in the second
parameter, which is the MatOfRect variable faces. By converting it into a Rect array, facesArr, you can use a
for loop to display all the bounding rectangles. Figure 7-14 shows a sample display from the program.

Figure 7-14. Face detection

Once you detect a face, you can further detect the facial features within the bounding rectangle of the
face. In the following exercise, Chapter07_14, you will perform a smile detection within a face. This program
is like the last one. After you detect a face, you create a smaller image using the bounding rectangle and detect
the smile facial feature within it. To test the program, you also need to copy the haarcascade_smile.xml file
from the OpenCV distribution to the data folder of the Processing sketch.

// Smile detection
import processing.video.*;

import org.opencv.core.*;
import org.opencv.objdetect.CascadeClassifier;

// Face detection size

final int W = 320, H = 240;

Capture cap;

CVImage img;

// Two classifiers, one for face, one for smile
CascadeClassifier face, smile;

float ratio;

void setup() {
size(640, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width, height);
cap.start();
img = new CVImage(W, H);
face = new CascadeClassifier(dataPath("haarcascade frontalface default.xml"));
smile = new CascadeClassifier(dataPath("haarcascade_smile.xml"));
ratio = float(width)/W;

257

CHAPTER 7 * FEATURE DETECTION AND MATCHING

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
noStroke();
image(cap, 0, 0);
Mat grey = img.getGrey();
MatOfRect faces = new MatOfRect();
// Detect the faces first.
face.detectMultiScale(grey, faces, 1.15, 3,
Objdetect.CASCADE_SCALE_IMAGE,
new Size(60, 60), new Size(200, 200));
Rect [] facesArr = faces.toArray();
pushStyle();
for (Rect r : facesArr) {
fil1(255, 255, 0, 100);
stroke(255, 0, 0);
float cx = r.x + r.width/2.0;
float cy = r.y + r.height/2.0;
ellipse(cx*ratio, cy*ratio,
r.width*ratio, r.height*ratio);
// For each face, obtain the image within the bounding box.
Mat fa = grey.submat(r);
MatOfRect m = new MatOfRect();
// Detect smiling expression.
smile.detectMultiScale(fa, m, 1.2, 25,
Objdetect.CASCADE_SCALE_IMAGE,
new Size(30, 30), new Size(80, 80));
Rect [] mArr = m.toArray();
stroke(o, 0, 255);
noFill();
// Draw the line of the mouth.
for (Rect sm : mArr) {
float yy = sm.y+r.y+sm.height/2.0;
line((sm.x+r.x)*ratio, yy*ratio,
(sm.x+r.x+sm.width)*ratio, yy*ratio);
}
fa.release();
m.release();
}
noStroke();
fill(0);
text(nf(round(frameRate), 2, 0), 10, 20);
popStyle();
grey.release();
faces.release();

258

CHAPTER 7 - FEATURE DETECTION AND MATCHING

In the setup() function, you initialize two classifiers, one for the face that you used in the former
exercise. The second classifier is a new one, with the trained information in haarcascade_smile.xml. In the
draw() function, you also use another version of the detectMultiScale() function. The first two parameters
are the same. The third parameter is the scaling factor that the image is reduced at each scale. The larger the
number, the faster the detection, but this comes at the cost of being less accurate. The fourth parameter is
the minimum number of neighbors retained. A larger number will eliminate more false detection. The fifth
parameter is a dummy one. The last two parameters are the minimum and maximum sizes of the objects
(face or smile) you want to detect.

Within the first for loop, you display all faces with elliptical shapes. For each face, you create a
submatrix (region of interest), fa, using the bounding rectangle r. Then you detect the smile within this
smaller image and draw a horizontal line in the center of the detection. Figure 7-15 illustrates a successful
smile detection.

Figure 7-15. Successful smile detection

Figure 7-16 shows another trial with an unsuccessful smile detection.

Figure 7-16. Unsuccessful smile detection

259

CHAPTER 7 * FEATURE DETECTION AND MATCHING

People Detection

In addition to regular facial feature detection, the objdetect module in OpenCV provides a people detection
function via the HOGDescriptor (histogram of oriented gradients) class. You can use this class to detect the
whole human body from a digital image. The following exercise, Chapter07_15, will demonstrate the usage
of the HOGDescriptor function to detect a human body from a live video image. For best results, you need to
detect the full body with a relatively clear background.

// People detection

import processing.video.*;

import org.opencv.core.*;

import org.opencv.objdetect.HOGDescriptor;

// Detection size

final int W = 320, H = 240;
Capture cap;

CVImage img;

// People detection descriptor
HOGDescriptor hog;

float ratio;

void setup() {
size(640, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width, height);
cap.start();
img = new CVImage(W, H);
// Initialize the descriptor.
hog = new HOGDescriptor();
// User the people detector.
hog.setSVMDetector (HOGDescriptor.getDefaultPeopleDetector());
ratio = float(width)/W;

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
image(cap, 0, 0);
Mat grey = img.getGrey();
MatOfRect found = new MatOfRect();
MatOfDouble weight = new MatOfDouble();
// Perform the people detection.
hog.detectMultiScale(grey, found, weight);
Rect [] people = found.toArray();

260

CHAPTER 7 - FEATURE DETECTION AND MATCHING

pushStyle();
fi11(255, 255, 0, 100);
stroke(255);
// Draw the bounding boxes of people detected.
for (Rect r : people) {
rect(r.x*ratio, r.y*ratio, r.width*ratio, r.height*ratio);
}
grey.release();
found.release();
weight.release();
noStroke();
fill(0);
text(nf(round(frameRate), 2, 0), 10, 20);
popStyle();

Compared to face detection, the program is simpler. You do not need to load any trained data files. You
just initialize the HOGDescriptor class instance hog and set the default people descriptor information with
the following statement:

hog.setSVMDetector (HOGDescriptor.getDefaultPeopleDetector());
In the draw() function, you use the detectMultiScale() method to identify people from the grayscale

image grey, and you keep the result in the MatOfRect variable found. The last parameter is a dummy one. In
the for loop, you draw each bounding box, 1, with a rectangle. Figure 7-17 shows a screenshot of the program.

Figure 7-17. People detection

Conclusion

In this chapter, you saw the different ways you can identify key points from an image. Using the key points
identified from two consecutive frames, you can perform sparse optical flow analysis or general key point
descriptor matching to track a visual pattern between the frames. This technique is useful for augmented
reality applications. In addition to key point tracking, you explored the simple use of facial features and
whole body detection in OpenCV. These methods are beneficial to artists and designers working with
embodied interaction through computer vision. In the next chapter, you will learn about the professional
practices of using Processing in deploying your applications.

261

CHAPTER 8

Application Deployment and
Conclusion

This last chapter will conclude what you have learned so far when using OpenCV with the Processing

programming environment. It also points out the remaining modules that were not covered in the book and
where you can obtain additional resources. In addition, the chapter provides the production know-how that
you can use to deploy the applications developed in Processing. This chapter will cover the following topics:

e Developing libraries in Processing

e Exporting applications from Processing

e Using system commands in Processing

e Optimizing tracking with the Kalman filter

e Other OpenCV modules

Developing Libraries in Processing

You may find that whenever you use OpenCV in Processing, you have to include the code folder along
with the CVImage class definition in each Processing program or sketch. It would be much better if you
could offload this process. This is where the Processing library can help. On the official Processing web
site, you can find a number of community-contributed libraries at https://processing.org/reference/
libraries/. Those are the third-party contributions approved by Processing. If you are interested, you can
refer to the guidelines at https://github.com/processing/processing/wiki/Library-Guidelines for how
to develop and distribute libraries in Processing. In this section, I will take you through the steps to prepare
a temporary library named CVImage with the open source software Eclipse (http://www.eclipse.org/),
a Java software development tool.

To install the centrally distributed Processing library, you can use the Processing IDE window. The
installed library is located in the 1ibraries folder within the Processing or Sketchbook folder, depending on
what operating system you are using. For each library, it usually contains the following subfolders:

e examples
e library
e reference

L SIC

© Bryan WC Chung 2017 263
B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6_8

https://processing.org/reference/libraries/
https://processing.org/reference/libraries/
https://github.com/processing/processing/wiki/Library-Guidelines
http://www.eclipse.org/

CHAPTER 8 = APPLICATION DEPLOYMENT AND CONCLUSION

The essential one is the 1ibrary folder, which contains all the Java JAR files and native libraries
(.d1l1, .dylib, or .so files) building up the library. For the CVImage example, you will create just the 1ibrary
folder with the existing components that you put in the Processing code folder. You need to prepare the
library only once. It can then be used on different operating systems. The following procedure will show how
to use the macOS environment to prepare the library.

Install the Eclipse Software

First you install the open source Java development environment Eclipse, from http://www.eclipse.org/.
At the time of this writing, the download button will take you to the download for the Eclipse Neon installer.
After unzipping/decompressing the file, you can use the Eclipse installer to install the Eclipse IDE for Java
Developers. Before you start the installation, you have to update the installer with the latest content, as
shown in Figure 8-1.

& Finder File Edit View Go Window Help

i)
eclipseinstaller . o =
Q
© UPPATE
Eclipse IDE for Java Developers ADVANCED MODE...
@ The essential toois for any Java developer, inchuding a java IDE, a GA cliert, BUNDLE POOLS...

XML Editor, Mylyn, Maven and Gradle integration

EXIT

ﬁ Eclipse IDE for Java EE Developers

Tools for Java developers creating Java EE and Web applications, including
a Java IDE, tools for Java EE, JPA, JSF, Mylyn, EGIt and others.

@ Eclipse IDE for C/C++ Developers
es

An IDE for CC++ developers with Mylyn integration.

9 Eclipse IDE for JavaScript and Web Developers

The essential tools for any JavaScript developer, including JavaScript,
HTML, CS5, XML languages support, Git client, and Mylyn.

Figure 8-1. Updating the Eclipse installer

After the successful update, you can choose to install the Eclipse IDE for Java Developers and leave the
installation folder location as the default (Figure 8-2).

264

http://www.eclipse.org/

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

& Eclipse-inst

eclipseinstaller

/ Eclipse IDE for Java Developers
e,

The essential tools for any Java developer, including a Java IDE, a Git
client, XML Editor, Mylyn, Maven and Gradle integration.

v

Installation Folder MUsers/brya merhwqava-rmr!

Start instaling the product into '[Users/bryan/

app/Contents)

Eclipse’

Figure 8-2. Installing the Eclipse IDE for Java developers

When you first launch the Eclipse IDE, it will create the default workspace for you. The location is
usually in the user’s default home folder or the Documents folder.

Prepare the OpenCV and Processing Libraries

In the workspace folder, you can create a new folder named 1ibs (Figure 8-3).

® Finder File Edit View Go Window Help

[N workspace
{ = 0w Byl v a

Favorites

@) airdrop
B Al My Files
& iCloud Drive
#; Applications ibs k
[Desktop
[Documents
© Downloads
Devices
Remote Disc
D PoohSan a
Shared
W kim-pc
Tags
® Red
Orange
Yellow

Figure 8-3. Creating the libs folder inside the workspace folder
265

CHAPTER 8 = APPLICATION DEPLOYMENT AND CONCLUSION

Inside the 1ibs folder, you are going to copy the necessary Processing and OpenCV libraries.
The first one is the Processing core library. On macOS, it is a bit complex. You need to locate the Processing
application. Right-click it and choose Show Package Contents, as shown in Figure 8-4.

@ Finder File Edit View Go Window Help

Show Package Contents

Move to Trash

Get Info

Rename

Compress “Processing”
Duplicate

Make Alias

Quick Look “Processing”
Share

Copy “Processing”

Clean Up Selection
Show View Options

Tags...
@ @000

Reveal in Finder

Figure 8-4. Searching for the macOS Processing core library

Within the Contents folder, go in the Java folder. Locate the core. jar file. Copy it to the 1libs
folder you just created in the previous step. At the same time, copy the OpenCV library content of the
previous code folder to the 1ibs folder, as shown in Figure 8-5. The core. jar and opencv-310. jar files are
essential for all operating systems. The other three files are platform specific: 1ibopencv_java310.dylib
(macOS 64-bit), 1ibopencv_java310.so (Linux 64-bit), and opencv_java310.d11 (Windows 64-bit). For
the Linux and Windows operating systems, the core. jar file is inside the Processing application folder at
processing-3.2.3/core/library.

266

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

@ Finder File Edit View Go Window Help

libs
=m ol By - Q Search

N L
O s 3
AR AR

libopencv_java310 libopencv_java310 opencv_java310.d opencv-310.jar core.jar
.dylib 50]

Figure 8-5. Content of the libs folder

Build the CVImage Library

Create a new Java project in Eclipse (Figure 8-6).

& Eclipse Iau Edit Source Refactor MNavigate Search Project Run W

000 w Fil LRN > £ Java Project
3 w et T e . ™ Project...
("} Open Projects from File System...
[# Package Explore| # Package
Close @l
Close All ks
@ Interface
Save & Enum
Save As... @ Annotation
Save All &9 Source Folder
Revert 14 Java Working Set
Move... Ci F.older
“. Rename... File
&) Refresh - ‘' Untitled Text File
Convert Line Delimiters To 3 E7 JUnit Test Case
T Task
Print...
™ Example...
Switch Workspace >
Restart ™4 Other... 3N
L Import...
o/s Fynnrt

Figure 8-6. Creating a Java project in Eclipse
267

CHAPTER 8 = APPLICATION DEPLOYMENT AND CONCLUSION

Name the project CVImage (Figure 8-7). Then click the Next button.

@ Eclipse
@ ® A New Java Project
= h
~ Create a Java Project - £
[§ Create a Java project in the workspace or in an external location. 7

Project name: | CVimage

Use default location

Location:
JRE
© Use an execution environment JRE: JavaSE-1.8
Use a project specific JRE: Java SE 8 [1.8.0_121] 2
Use default JRE (currently ‘Java SE 8 [1.8.0_121]) Configure JRES..,
Project layout

Use project folder as root for sources and class files

© create separate folders for sources and class files Configure default...
Figure 8-7. Naming the project CVImage
In the Java settings, add the corresponding external libraries’ JAR files (Figure 8-8).

@ Eclipse

® © New Java Project

Java Settings o
Define the Java build settings.

(@ Source [=bProjects &, Order and Export
JARs and class folders on the build path:
» m\ JRE System Library [JavaSE-1.8]

-
e
>

Add JARs...
Add External JARS... *
Add Variable...
Add Library...
Add Class Folder...

Add External Class Folder...

Figure 8-8. Adding external library JAR files
268

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

From the 1ibs folder within the workspace, choose core. jar and opencv-310. jar (Figure 8-9).

® Eclipse
New lava Praiact
T s =) = libs & ol =
B Favorites e >
) | . > libopencv_java310.dylib
@ SRy ERe libopencv_java310.s0
¢ iCloud Drive opencv_java310.dll
yﬁ: Applications Q opency-310.jar
[Desktop
. [Documents
© Downloads
Devices
O Remote Disc
Q PoohSan &
Shared
jar;.zip
New Folder Options Ca

Figure 8-9. Choosing the Processing and OpenCV JAR files

In the library definition of opencv-310. jar, click the triangle to choose the native library location
(Figure 8-10). Then click Edit and choose External Folder.

@ Eclipse
® o New Java Project

[java Settings
i Define the Java build settings. 2

(@ Source [Projects &, Order and Export
JARs and class folders on the build path:
> core.jar - [Users/bryan/Documents/workspace/libs
¥ »s opencv-310.jar - [Users/bryan/Documents/workspace/libs
{i] Source attachment: (None)
(@) Javadoc location: (None)
@9 External annotations: (None)

2 Native library location: (None)
(8 Access rules: (No restrictions)
» B\ JRE System Library [JavaSE-1.8]

Edit...

Figure 8-10. Specifying the native library location for opencv-310.jar
269

CHAPTER 8 = APPLICATION DEPLOYMENT AND CONCLUSION

Choose the 1ibs folder again for the native library location for opencv-310. jar because you have put all
the native libraries, including for macOS, Windows, and Linux, there (Figure 8-11).

@ Eclipse
[i Choose a directory containing native libraries:
I D < 2 =) = libs 3 0]
I Favorites 2 L CVimage > = core.jar
: Instaler CIC oo
All My Files).8_osx_release » M libopency
¢ iCloud Drive sing > opencv_jé
- - ncv-3
Yéﬂ Applications sing-...-0257-3.3 » opencv-3
ace >
[Desktop
M Documents
0 Downloads
Devices
(©) Remote Disc
[poohsan =
| Shared
New Folder Car

e
Figure 8-11. Choosing libs for the native library location

After clicking Finish to confirm all the information for the external libraries, you can add the new class
to the project. From the Package Explorer, right-click the CVImage project to add a new package. Specify the
package name, cvimage, for the project (Figure 8-12).

270

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

& Eclipse

® o New Java Package

! Java Package
Create a new Java package. 5

Creates folders corresponding to packages.

Source folder: CVimage/src Browse...

Name: cvimage

Create package-info.java

Figure 8-12. Specifying the package name

The next piece of information is the class name, CVImage, for the project (Figure 8-13). Again, from the
Package Explorer, right-click the package cvimage to add a new class.

® Eclipse

® o New Java Class

Java Class —
Create a new Java class. Q
Source folder: CVimage/src Browse...
Packag imag Browse...

Enclosing type:
Name: CVimage|
Modifiers: © public package L
abstract final

Superclass: java.lang.Object Browse...
Interfaces: Add...

Which method stubs would you like to create?

Figure 8-13. Specifying the class name of the project

271

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

After you fill in all the necessary information for the CVImage project, Eclipse will show you the empty
file of CVImage. java. You can copy the original class definition from CVImage.pde, inside any Processing
sketch folder that you have used throughout the book, to this file. Nevertheless, there are a few lines that you
need to modify to cater for the Eclipse environment. The full code is as follows:

package cvimage;

import processing.core.*;
import org.opencv.core.*;
import org.opencv.imgproc.*;
import java.nio.ByteBuffer;
import java.util.Arraylist;

public class CVImage extends PImage {
final private MatOfInt BGRA2ARGB = new MatOfInt(o, 3, 1, 2, 2, 1, 3, 0);
final private MatOfInt ARGB2BGRA = new MatOfInt(o, 3, 1, 2, 2, 1, 3, 0);
// cvImg - OpenCV Mat in BGRA format
// pixCnt - number of bytes in the image
private Mat cvImg;
private int pixCnt;

public CVImage(int w, int h) {
super(w, h, ARGB);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
pixCnt = w*h*4;
cvImg = new Mat(new Size(w, h), CvType.CV_8UC4, Scalar.all(o0));
}

public void copyTo() {
// Copy from the PImage pixels array to the Mat cvImg
Mat tmp = new Mat(new Size(this.width, this.height), CvType.CV_8UC4, Scalar.all(0));
ByteBuffer b = ByteBuffer.allocate(pixCnt);
b.asIntBuffer().put(this.pixels);
b.rewind();
tmp.put(0, 0, b.array());
cvImg = ARGBTOBGRA(tmp);
tmp.release();

}

public void copyTo(PImage i) {

// Copy from an external PImage to here

if (i.width != this.width || i.height != this.height) {
System.out.println("Size not identical");
return;

}

PApplet.arrayCopy(i.pixels, this.pixels);

this.updatePixels();

copyTo();

272

CHAPTER 8 * APPLICATION DEPLOYMENT AND CONCLUSION

public void copyTo(Mat m) {
// Copy from an external Mat to both the Mat cvImg and PImage pixels array
if (m.rows() != this.height || m.cols() != this.width) {
System.out.println("Size not identical");
return;
}
Mat out = new Mat(cvImg.size(), cvImg.type(), Scalar.all(0));
switch (m.channels()) {
case 1:
// Greyscale image
Imgproc.cvtColor(m, cvImg, Imgproc.COLOR_GRAY2BGRA);
break;
case 3:
// 3 channels colour image BGR
Imgproc.cvtColor(m, cvImg, Imgproc.COLOR BGR2BGRA);
break;
case 4:
// 4 channels colour image BGRA
m.copyTo(cvImg);
break;
default:
System.out.println("Invalid number of channels
return;
}
out = BGRATOARGB(cvImg);
ByteBuffer b = ByteBuffer.allocate(pixCnt);
out.get(0, 0, b.array());
b.rewind();
b.asIntBuffer().get(this.pixels);
this.updatePixels();
out.release();

}

private Mat BGRATOARGB(Mat m) {
Mat tmp = new Mat(m.size(), CvType.CV 8UC4, Scalar.all(0));
Arraylist<Mat> in = new ArraylList<Mat>();
Arraylist<Mat> out = new ArraylList<Mat>();
Core.split(m, in);
Core.split(tmp, out);
Core.mixChannels(in, out, BGRA2ARGB);
Core.merge(out, tmp);
return tmp;

+ m.channels());

273

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

private Mat ARGBToBGRA(Mat m) {
Mat tmp = new Mat(m.size(), CvType.CV_8UC4, Scalar.all(0));
ArraylList<Mat> in = new ArraylList<Mat>();
Arraylist<Mat> out = new ArraylList<Mat>();
Core.split(m, in);
Core.split(tmp, out);
Core.mixChannels(in, out, ARGB2BGRA);
Core.merge(out, tmp);
return tmp;

}

public Mat getBGRA() {
// Get a copy of the Mat cvImg
Mat mat = cvImg.clone();
return mat;

}

public Mat getBGR() {
// Get a 3 channels Mat in BGR
Mat mat = new Mat(cvImg.size(), CvType.CV_8UC3, Scalar.all(0));
Imgproc.cvtColor(cvImg, mat, Imgproc.COLOR BGRA2BGR);
return mat;

}

public Mat getGrey() {
// Get a greyscale copy of the image
Mat out = new Mat(cvImg.size(), CvType.CV_8UC1, Scalar.all(0));
Imgproc.cvtColor(cvImg, out, Imgproc.COLOR_BGRA2GRAY);
return out;

In the first line, you add the package cvimage statement to specify that the class is inside this package.
The other modifications are the println() functions, which are changed to System.out.println()
because the class is not in the Processing environment in this case. There are three such cases in both the
copyTo(PImage i) and copyTo(Mat m) methods. Build the project by choosing Project » Build Project from
the menu bar. After you build the project, you can export the output as a JAR file (Figure 8-14). From the
Package Explorer, you can first right-click the project name CVImage and choose Export.

274

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

| ¥ @cv New » fport processing.core.*;
v Go Into sport org.opencv.core.*;
v fport org.opencv.imgproc.*;
Open in New Window pport java.nio.ByteBuffer;
> B . sport java.util.Arraylist;
val Open Type Hierarchy
» Showln X#8W > blic class (VImage extends PImage {
> final private MatOfInt BGRAZARGB = new b
& Copy 38C final private MatOfInt ARGBZ2BGRA = new ¥
e // cvimg - OpenCV Mat in BGRA format
i Copy Qualified Hame // pixCnt - number of bytes in the image
(T3 Paste #Y private Mat cvImg;
Delete B private int pix(Cnt;

Remove from Context
super(w, h, ARGB);

public C¥Image(int w, int h) {

Build Path L System, loadLibrary(Core . NATIVE_LIBRAR'

Source X#ES » pixCnt = w*h*4;

Refactor TRT > cvIimg = new Mat(new Size(w, h), CvType
}

£ Import...

public void copyTo() {
IEETIN /. ccy fron the Pnage pixels array |

Mat tmp = new Mat(new Size(this.width,

Build Project ByteBuffer b = ByteBuffer.allocate(pis
< Refresh fs b.asIntBuffer().put(this.pixels);
cl Project b.rewind();

s LLIC tmp.put(@, @, b.array());

Assign Working Sets... cvImg = ARGBToBGRA(tmp);

Figure 8-14. Exporting the output JAR file

First, you select to export the Java JAR file (Figure 8-15) and then specify where to export it (Figure 8-16).

& Eclipse

® o Export

Select /-‘

Export resources into a JAR file on the local file system, | g E l

Select an export wizard:

» (= General
» (= Install
¥ (= Java

@1Javadoc l

[Runnable JAR file
P (= Run/Debug
» (= Tasks
» (= Team
> (= XML
» (= Other

Figure 8-15. Choosing to export the Java JAR file

mage {

RGB = new M
GRA = new M
format

n the image

{
IVE_LIBRARY

h), CvType

275

CHAPTER 8 = APPLICATION DEPLOYMENT AND CONCLUSION

JAR File Specification

v ¥
Define which resources should be exported into the JAR.
1
Select the resources to export:
B ¥l CVimage X, .classpath
¥ (@ src \X] .project
f# cvimage
> (= .settings
ge {
B = new b
A = new b
ormat
the image
Export generated class files and resources
Export all output folders for checked projects
Export Java source files and resources
Export refactorings for checked projects. Selec E-LIBRAR]
D, CvType
Select the export destination:
JAR file: | JUsers/bryan/Desktop/CVimage.jar ﬂ Browse...
s array t
Pinslanas is.width.

Figure 8-16. Selecting the export destination

To prepare your new Processing library, you need to create a folder named CVImage. Inside this folder,
you create a subfolder named library. After the export action shown in the previous paragraph, copy the
exported JAR file, CVImage. jar, to the 1ibrary folder. Inside the library folder, copy all the files from the

existing code folder there, as shown in Figure 8-17. You can also decide to copy only the native library for
your own operating system.

276

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

@ Finder File Edit View Go Window Help

library
B = 0D ol By v
L3

- -

JAR JAR
CVimage.jar libopencv_java310 libopencv_java310 opencv_java310.d opencv-310.jar

dylib .50 Il

export.txt

Figure 8-17. Packaging the library content

Inside the library folder, create a new text file, named export.txt, with the following content. It will
instruct Processing what files it will copy to the exported application, which I will cover in the next section.

name = CVImage

application.macosx=CVImage.jar,opencv-310.jar,libopencv_java310.dylib
application.windows64=CVImage.jar,opencv-310.jar,opencv_java310.dll
application.linux64=CVImage.jar,opencv-310.jar,libopencv_java310.so

You also need to put the library folder inside another folder named CVImage. It will be the main folder
for your newly created Processing library. You'll put the CVImage folder inside the libraries folder within
your local Processing or Sketchbook folder where you keep all of your Processing sketches. From now on,
you do not need to include the code folder and the CVImage class definition in your Processing programs that
use the OpenCV library. In any new Processing program, you can just use the menu item Sketch » Import
library » CVImage to include the CVImage library into your code (Figure 8-18).

277

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

® Processing File Edit Debug Tools Help

® & Run #R
Present {+8R
Tweak 8T
Stop

TestMyLib001 | Process

Import Library... Add Library...

Show Sketch Folder 3K
Add File... OXF: Export
. Network
void setup() { TestMyLib001 (Java) PDF Export
size (640, 480); Serial
} SVG Export
) Sound
A void draw() { \idso
background(0);
} CVimage

Figure 8-18. Inserting the newly created library

This will automatically generate the following statement:
import cvimage.*;

After the statement, you can continue to use all your code as demonstrated in previous chapters.

Exporting Applications from Processing

Until now, you have executed your Processing programs inside the IDE. In a production environment, it

will be desirable to create a stand-alone native application for your program. The Processing IDE provides
this function in the menu item File » Export Application. By going through the options, you can choose to
create the application for different platforms, such as Windows, macOS, and Linux. You can create either a
full-screen application or one with a window of the size specified in your size() function. On the macOS
platform, you can also choose to embed Java 8 in the application. In the following example, Chaptero8 01,
you can test run the export application process with an existing Processing program to display both the color
and grayscale images from a webcam:

// Greyscale image

import processing.video.*;

import org.opencv.core.*;

import org.opencv.imgproc.Imgproc;
import cvimage.*;

278

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

Capture cap;
CVImage img;

void setup() {
size(1280, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width/2, height);
cap.start();
img = new CVImage(cap.width, cap.height);
smooth();

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
Mat grey = img.getGrey();
img.copyTo(grey);
image(cap, 0, 0);
image(img, cap.width, 0);
grey.release();

Note the use of the import cvimage.*; statement in the program. You can proceed to export the
application by choosing File » Export Application in the Processing IDE. After you export the application,
depending on your choice of operating system, the Processing IDE will generate these application folders:

e application.linux64
e application.macosx64
e application.windows64

Since you have only the 64-bit version of the library, you will not generate the 32-bit version
in the export. As I am using the macOS operating system for demonstration, I can go inside the
application.macosx64 folder and double-click the icon Chapter08_01 to start the application. Figure 8-19
shows a sample display.

279

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

Figure 8-19. Full-screen application

Note that I have chosen black as the background color and have placed a “stop” button.

Using System Commands in Processing

In a production environment, in addition to building a stand-alone application, it may be necessary for you
to perform system tasks within your Processing application. A common task is to shut down the computer
after you quit the Processing application. The next example, Chapter08_02, will attempt to call the system
command to shut down the computer within the Processing application. It is the macOS version of the code.

// Shutdown computer
import java.lang.Process;
import java.lang.Runtime;
import java.io.*;

import java.util.Arrays;

String comm;
String pw;

void setup() {
size(640, 480);
// Shutdown command
comm = "sudo -S shutdown -h now";
pw = "password";

280

CHAPTER 8

void draw() {
background(0);

}

void mousePressed() {
shutdown();

}

void shutdown() {
try {
// Execute the shutdown command.
Process proc = Runtime.getRuntime().exec(comm);
BufferedReader buf = new BufferedReader(
new InputStreamReader(proc.getInputStream()));
BufferedReader err = new BufferedReader(
new InputStreamReader(proc.getErrorStream()));
BufferedWriter out = new BufferedWriter(
new OutputStreamWriter(proc.getOutputStream()));
char [] pwc = pw.toCharArray();
// Send out the sudo password.
out.write(pwc);
out.write('\n");
out.flush();
// Erase the password.
Arrays.fill(pwc, '\0');
pw ="
// Print out messages.
String line;
println("Output message");
while ((line = buf.readLine()) != null) {
println(line);

println("Error message");
while ((line = err.readlLine()) != null) {
println(line);

int rc = proc.exitValue();
println(xc);
System.exit(0);

}

catch (IOException e) {
println(e.getMessage());
System.exit(-1);

APPLICATION DEPLOYMENT AND CONCLUSION

281

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

The program uses the Runtime class of Java to execute the shell command. Since it requires the sudo
password to execute the command, you have to put the password in the String variable pw. For the Windows
operating system, in the following example, Chapter08 03, you can simplify the code as follows:

// Shutdown computer in Windows.
import java.lang.Process;

import java.lang.Runtime;

import java.io.*;

String comm;

void setup() {
size(640, 480);
// Command string
comm = "shutdown -s -t 0";

}

void draw() {
background(0);
}

void mousePressed() {
shutdown();
}

void shutdown() {
try {
// Execute the shutdown command.
Process proc = Runtime.getRuntime().exec(comm);
BufferedReader buf = new BufferedReader(
new InputStreamReader(proc.getInputStream()));
BufferedReader err = new BufferedReader(
new InputStreamReader(proc.getErrorStream()));
// Print out the messages.
String line;
println("Output message");
while ((line = buf.readlLine()) != null) {
println(line);

println("Error message");
while ((line = err.readLine()) != null) {
println(line);

int rc = proc.exitValue();
println(xc);
System.exit(0);

}

catch (IOException e) {
println(e.getMessage());
System.exit(-1);

}

}

282

CHAPTER 8 * APPLICATION DEPLOYMENT AND CONCLUSION

The command string is different, but you do not need to supply the password to execute the command.
For Linug, it is similar to the macOS version, but again you do not need to have the sudo password part.

// Shutdown computer in Linux.
import java.lang.Process;
import java.lang.Runtime;
import java.io.*;

import java.util.Arrays;

String comm;

void setup() {
size(640, 480);
// Command string
comm = "shutdown -h now";

}
void draw() {
background(0);
}
void mousePressed() {
shutdown();
}
void shutdown() {
try {
// Execute the shutdown command.
Process proc = Runtime.getRuntime().exec(comm);
BufferedReader buf = new BufferedReader(
new InputStreamReader(proc.getInputStream()));
BufferedReader err = new BufferedReader(
new InputStreamReader(proc.getErrorStream()));
// Print any messages.
String line;
println("Output message");
while ((line = buf.readlLine()) != null) {
println(line);
println("Error message");
while ((1line = err.readlLine()) != null) {
println(line);
int rc = proc.exitValue();
println(xc);
System.exit(0);
}
catch (IOException e) {
println(e.getMessage());
System.exit(-1);
}
}

283

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

Now you can export the application from the Processing IDE. Depending on the operating system,
navigate inside the appropriate application folder such as application.linux64, application.macosx64, or
application.windows64. Double-click the application Chapter08 02. Note that by clicking the application
window, it will shut down the computer.

Optimizing Tracking with the Kalman Filter

In the previous chapter, you saw an example of face detection. In the example, you used a rectangle to
indicate the region where a face is detected. If you observe the tracking result, it is easy to find that the
movement of the rectangle is quite jagged. In the video module of OpenCV, the KalmanFilter class can
provide the way to smoothen the tracking result. The following exercise will provide the code to smoothen
the face detection tracking result. If you want an in-depth explanation of the Kalman filter, you can refer to
the documentation at https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf. Essentially, the
KalmanFilter class can help you to predict numeric results based on previous measurements. The exercise,
Chapter08 04, will include a separate class, KFilter, that encapsulates the processing of the KalmanFilter
class in OpenCV.

// Kalman filter
import org.opencv.video.KalmanFilter;

public class KFilter {
KalmanFilter kf;
MatOfFloat measurement;
int numS;
int numM;

public KFilter(int s, int m) {
// Initialize the Kalman filter with
// number of states and measurements.
// Our measurements are the x, y location of
// the face rectangle and its width and height.
numS = s;
numM = m;
kf = new KalmanFilter(numS, numM, 0, CvType.CV_32F);
float [] tmp = new float[numM];
for (int i=0; i<tmp.length; i++) {
tmp[i] = 0;
}

measurement = new MatOfFloat(tmp);

}

void initFilter(int fps) {
// Initialize the state transition matrix.
double dt1 = 1.0/fps;
Mat tmp = Mat.eye(numS, numS, CvType.CV_32F);
tmp.put(0, 4, dti);
tmp.put(1, 5, dti);
tmp.put(2, 6, dt1);
tmp.put(3, 7, dt1);
kf.set_transitionMatrix(tmp);

284

https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

CHAPTER 8 * APPLICATION DEPLOYMENT AND CONCLUSION

// Initialize the measurement matrix.

tmp = kf.get measurementMatrix();

for (int i=0; i<numM; i++) {
tmp.put(i, i, 1);

kf.set_measurementMatrix(tmp);

tmp = kf.get processNoiseCov();
Core.setIdentity(tmp, Scalar.all(le-5));
kf.set_processNoiseCov(tmp);

tmp = kf.get measurementNoiseCov();
Core.setIdentity(tmp, Scalar.all(le-2));
kf.set_measurementNoiseCov(tmp);

tmp = kf.get errorCovPost();
Core.setIdentity(tmp, Scalar.all(1));
kf.set_errorCovPost(tmp);

tmp.release();

}

MatOfFloat updateFilter(float x, float y, float w, float h) {
// Update the Kalman filter with latest measurements on
// x, y locations and width, height.
Mat prediction = kf.predict();
measurement.fromArray(new float[]{x, y, w, h});
MatOfFloat estimated = new MatOfFloat(kf.correct(measurement));
prediction.release();
// Return the estimated version of the 4 measurements.
return estimated;

The measurement that you are going to predict is the specification of the rectangle that indicates the
face being tracked. It has four numbers: x position, y position, width, and height of the rectangle. For every
frame, you use the method updateFilter() to update the Kalman filter with the recent information of
the face rectangle and obtain an estimate of it. In the following main program, notice how you just use the
information of a single face and draw the estimated position of the face rectangle:

// Face detection

import processing.video.*;

import cvimage.*;

import org.opencv.core.*;

import org.opencv.objdetect.CascadeClassifier;

// Detection image size

final int W = 320, H = 240;
Capture cap;

CVImage img;

CascadeClassifier face;

// Ratio between capture size and
// detection size

float ratio;

KFilter kalman;

285

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

void setup() {
size(640, 480);
background(0);
System.loadLibrary(Core.NATIVE LIBRARY NAME);
println(Core.VERSION);
cap = new Capture(this, width, height);
cap.start();
img = new CVImage(W, H);
// Load the trained face information.
face = new CascadeClassifier(dataPath("haarcascade frontalface default.xml"));
ratio = float(width)/W;
kalman = new KFilter(8, 4);
frameRate(30);
kalman.initFilter(30);

}

void draw() {
if (!cap.available())
return;
background(0);
cap.read();
img.copy(cap, 0, 0, cap.width, cap.height,
0, 0, img.width, img.height);
img.copyTo();
image(cap, 0, 0);
Mat grey = img.getGrey();
// Perform face detction. Detection
// result is in the faces.
MatOfRect faces = new MatOfRect();
face.detectMultiScale(grey, faces);
Rect [] facesArr = faces.toArray();
pushStyle();
fi11(255, 255, 0, 100);
stroke(255);
// Draw only one single face.
if (facesArr.length == 1) {
Rect r = facesArr[0];
float [] tmp = kalman.updateFilter(r.x, r.y, r.width, r.height).toArray();
rect(tmp[0]*ratio, tmp[1]*ratio, tmp[2]*ratio, tmp[3]*ratio);

grey.release();

faces.release();

noStroke();

fil11(0);

text(nf(round(frameRate), 2, 0), 10, 20);
popStyle();

286

CHAPTER 8 ' APPLICATION DEPLOYMENT AND CONCLUSION

The main program is similar to the exercise you did in the previous chapter. In the draw() function,
you draws only a single face. Before drawing the rectangle, the function updates the Kalman filter with the
rectangle information and obtains an estimated (smoothened) version for actual display. When you run the
program, you will notice that the movement of the face rectangle will be much smoother.

Other OpenCV Modules

In this book, you have basically used the calib3d, core, features2d, imgproc, objdetect, and video
modules in OpenCV. Besides these modules, there are a lot of other modules that you have not yet seen.
For example, you use the Processing functionalities of image input/output and graphical display but have
not used the OpenCV imgcodecs and highgui modules. Also, I have not touched on any topics related to
computational photography (photo) and machine learning (m1). In 3D reconstruction, I covered only one
exercise. With the use of a depth camera, such as the Microsoft Kinect, OpenCV is capable of obtaining a
depth image from the videoio module using OpenNI2 (https://structure.io/openni) and also the Intel
RealSense technology (www.intel.com/content/www/us/en/architecture-and-technology/realsense-
overview.html). In the opencv_contrib repository, you just use the optflow module. The repository also
contains modules for deep neural networks (dnn), 3D reconstruction through structure from motion (sfm),
text recognition (text), and many more. In the future, it is expected that deep learning, 3D vision, and virtual
and augmented reality will be areas with significant development.

Conclusion

In this chapter, I concluded the coverage of how to use OpenCV in creative application development

using Processing. With this production know-how, artists and designers can deploy applications in more
professional ways. Throughout this book, you learned various approaches to perform image-processing
tasks and the fundamentals of object/feature detection and tracking, with the aim of enhancing the human
computer interaction experience. Besides just providing a technical demonstration of OpenCV, the exercises
in the book also hint at a creative thinking process that artists and designers may find helpful. With the
CVImage library you built in this chapter, you can now use OpenCV without dealing with the tedious tasks of
format conversion and data migration. At the same time, the library does not intend to hide every OpenCV
function; feel free to explore OpenCV to better understand the essential concepts of image processing and
computer vision.

287

https://structure.io/openni
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html

Index

A point testing, 155, 167-169
polygon approximation, 165-167
Affine transform threshold(), 157-158
warpAffine(), 111 Convex hull, 164-165
CVImage library
B Class name, 271
class content, 277
Background subtraction, 191, 192 export destination, 276
basic operations, 191-192 export Java JAR file, 275
chroma key, 193-194 external libraries’ JAR files, 268-269
getBackgroundImage(), 194 getGrey(), 134, 135
Barcode effect, 96-97 name project, 268
Black-and-white image, conversion to native libraries, 270
filter(), 135-136 opencv-310.jar, 270
thresholding, 136 package name, 270, 271
Blending multiple images, 97-100 println(), 274
Blur Operations, 140-143 Specify class name, 271
blur(), 140
filter(), 140
GaussianBlur(), 140, 141, 143-145, 153 D
image preparation in processing, 142-143 Dense optical flow, 197-198
medianBlur(), 140, 141 Digital image fundamentals, 39
text(), 142 dimensions, 39, 40
Bounding box, 161-162 3D visualization, 183-185
C E
Canny edge detector Eclipse software
black-and-white, 145-146 install, 264
circle detection method, 152-155 update, 264
conversion, 145 Edge detection, 144
Circle Detection, 133, 152-155 Canny edge detector, 144-147, 157
HoughCircles(), 152-154
Circle detection method, 152 F
Contours processing, 155-171
bounding box, 161-162 Face detection, 255-259, 261, 284
check interaction, 169-171 detectMultiScale(), 259
convex hull, 164-165 frontal face, 255, 256
findContours(), 156-161, 163, 164, 166, 168, 170 program, 285-287
minimum area rectangle, 162-164 smile detection, 257-259
© Bryan WC Chung 2017 289

B. WC. Chung, Pro Processing for Images and Computer Vision with OpenCV,
DOI 10.1007/978-1-4842-2775-6

INDEX

Feature detection
basic operation, 235-237
goodFeaturesToTrack(), 235
KeyPoint, 237-239
OpenCV 3.1, 237
types, 237-238
Feature matching, 219-261
homography, 250, 253
interaction design, 200, 246-248, 261
preparation of, 240-242
quad, 254-255
query set, 240-245
texture mapping, 254, 255
trained set, 240-245
vertex(), 254-255
Feature points, 222-223
Frame differencing, 186-191
blend(), 186, 187
consecutive frames, 177, 187-188, 196
video and background, 186-187
Frontal face, 255-256

G

General pixel mapping, 130-132
warping effect, 131
Geometric transform
affine, 110-114
perspective, 115-117
Global motion direction, 209-211
Grayscale
color change with pixel position, 77-78
conversion
filter(), 133-136
getGrey() method, 134
with relative luminance, 91
image representation, 39

H

Harris corner detection
method, 219-221

Image(s)
blending multiple, 97-100
drawing with existing, 90-97
barcode effect, 96, 97
grayscale, 74, 77, 78, 86
inverse 91, 92
Mosaic 72-73
swapping channels, 92
orientation, 104-108
preparation, 133-143

290

resizing, 108-110
transformation, 101-104
Image Conversion, 58-70
color pixel, 58-59
conversion to black-and-white
image, 135-137
conversion to grayscale, 133-135
CV_8UC4, 56, 69
OpenCV representation, 59
OpenCV to processing, 62-70
color channels, 64-66
CVImage, 67-69
grayscale version, 69
matTolmg(), 62
PImage, 62
save(), 70
processing to OpenCYV, 60-61
Image preparation, 133-143
Image transformation
affine transform, 110-115
flipping, 102-105
perspective transform, 115-117
resize, 103, 108, 109
rotation, 102, 106-108
translation, 101, 102
Images in processing
BufferedImage, 47-48
createGraphics(), 46
createlmage(), 43, 47
creation, 43-44
get(), 51, 55, 56
getGraphics(), 44
getNative(), 47
graphics and images, 44-46

importing external
image, 40-42

mask(), 52-53
pixels(], 59
set(), 44

Intel RealSense, 287
J

Java, 1,9, 28

BufferedImage, 47-48
ByteBulffer, 61, 62
IntBuffer, 59, 61, 62
JDK, 9, 28

K

Kalman filter
face detection, 285-287
OpenCV, 284-285
Kinect4WinSDK, 1

L

Linear vs. polar coordinates, 118-120
Line detection, 146-152
HoughLinesP(), 147-149
Hough line transform, 146, 148, 149
HoughLines(), 147
rho, 147
theta, 147
Linux, shutdown computer in, 283-284

M, N
macOS, shutdown computer in, 280-281
Matrices and images, 53-58
Microsoft Kinect, 287
Minimum area rectangle, 162-164
Morphological operations, 137-139
dilate filters, 137-138
Erode filters, 137-139
OpenCV, 138-144, 146, 151, 152, 161, 165
structuring element, 139
Mosaic effect, 178
Motion history, 205-218
angle, 212-214
calcMotionGradient(), 209-211
frame differencing, 186-191
gestural interaction, 212, 214
global motion direction, 209-211, 214
segment motion, 214-218
Moving images
captureEvent(), 52
digital movies, 49-51
3D visualization, 183-185
live video captures, 51-53
mosaic effect, 178
movieEvent(), 49
scrolling effect, 180-183
slit-scan effect, 179-180

(0

OpenCV
absdiff(), 191, 206
approxPolyDP(), 165, 167
BackgroundSubtractorMOG2, 192
BGRA, 59, 61, 69
blur(), 140
boundingRect(), 161
calcMotionGradient(), 209
calcOpticalFlowPyrLK(), 226, 229
CascadeClassifier, 256
convexHull(), 164
cornerSubPix(), 224, 225
CvType, 53, 54
detectMultiScale(), 259, 261

INDEX

dilate(), 139
erode(), 139
FeatureDetector, 235-239
findHomography(), 253
GaussianBlur(), 140
get(), 51, 55-58, 62
goodFeaturesToTrack(), 222, 223, 225, 235
HOGDescriptor, 260-261
IDE, 35
KalmanFilter 284
KeyPoint, 237
libopencv_java310.dylib, 53
libopencv_java310.so, 53
linear vs. polar coordinates, 118-119
linearPolar(), 119
Linux installation
BUILD_opencv_java option, 29
BUILD_opencv_ximgproc option, 32
BUILD_SHARED_LIBS option, 29
JDK, 28
libopencv_java310.so, 34
opencv-310.jar, 33
OPENCV_EXTRA_MODULES_PATH
option, 30
WITH_GTK option, 30
WITH_LIBV4L option, 31
WITH_V4L option, 31
logPolar(), 119
macOS installation
build options, 11-14
cmake and ant, 9, 10
configuration file, 16
extra module options, 16
Java and optflow, 15
Mat, 37, 53, 54, 58, 61, 62, 69
matchShapes(), 172, 174, 175
MatOfDMatch, 245, 253
MatOfRect, 257, 261
medianBlur(), 140
minAreaRect(), 162, 163, 174
modules, 2-3
opencv-310.jar, 53
opencv_java310.dll, 53
OpenNI2, 287
perspectiveTransform(), 253
pointPolygonTest(), 167
processing libraries, 265-266
put(), 56-58
scalar, 53, 54, 62
segmentMotion(), 205, 214
size, 39, 40, 43, 44, 46, 48, 54, 55, 57, 58, 61-63
tag 3.1.0, 7-8
updateMotionHistory(), 208
videoio, 62, 63
warpAffine(), 106, 111
Windows installation

201

INDEX

OpenCV (cont.)
build option, 19-24
BUILD_SHARED_LIBS option, 18
build target, 26-27
cmake, 17
compiler, 18
native library file, 27
Visual Studio
solution file, 25-26
OpenCV installation
Linux, 28-34
Ant, 28
build option, 32
CMake, 28
libopencv_java310.so, 34
Microsoft Visual Studio, 17
native library file, 27
optflow, 32
Python, 28
ximgproc, 32
macOS
Ant, 9
build option, 9-14
CMake, 9, 10, 16
libopencv_java310.dylib, 16
Microsoft Visual Studio, 17
native library file, 17
optflow, 15, 17
Python, 17
ximgproc, 15
Windows
Ant, 17
build option, 18-24
CMake, 17, 25, 26
Microsoft Visual Studio, 17
native library file, 27
opencv_java310.dll, 27
opencv-310.jar, 27
optflow, 24
Python, 17
ximgproc, 24, 25
Optical flow, 196-205, 209
dense optical flow, 197-198
interaction design, 202-204
sparse optical flow, 197

P

People detection, HOGDescriptor, 260-261
Perlin noise function, 127

292

Photoshop, 93, 97
Pixel color manipulation

pow(), 78
trigonometric functions, 82-85

Polygon approximation, 165-167
Processing

algorithmic art, 2

ARGSB, 40, 44, 59, 61-63, 65, 69
arrayCopy(), 134
brightness(), 127

copy(), 109, 110

dataPath(), 256

dilate filter, 138, 139

Erode filter, 138, 139
execution, 5-6

export applications, 278-279
folder contents, 4

greyscale image, 278-279
IDE, 1, 4

installation, 3

line(), 148, 149

loadPixels(), 75

map(), 81

noise(), 88

OpenCV library, 2, 7, 17, 34
P3D, 121

Perlin noise, 88, 89, 127
pow(), 78

PShape, 121, 122, 124, 125, 127, 129
PVector, 79, 80, 83

radians(), 122

random(), 86

tint(), 107

updatePixels(), 75

video library, 6

Processing library

CVImage library, 267-278
export.txt, 277
libs folder, 269, 270
native libraries, 264, 270
Eclipse software, 264-265
libs folder, 265-267
macOS, 266
OpenCV, 265-266

Processing programs

export applications, 278-280
system commands, 280-284
Linux, 283-284
macOS, 280
Windows, 282

Q

Quad, 124, 253-254
Query set, 240-245

R

Randomness, 86-89
draw(), 87-88
noise(), 88-89
Perlin noise, 88, 89, 127

S

Scrolling effect, 180-183
Segment motion, 214-217
Shape detection, 172-175
findContours(), 172
matchShapes(), 172-175
minAreaRect(), 174
Shutdown computer
Linux, 283
macOS version, 280, 282
Windows, 282
Slit-scan effect, 179-180
Smile detection, 257-259
Sparse optical flow, 197, 222-235
animation, 229-232
calculate, 226-228
feature points, 222-223
gesture painting, 232-235
subpixel accuracy, 224-226
visualization
Motion blur, 232
System commands
Linux, 283-284
macQOS, 280, 282
Windows, 282, 283

INDEX

T, U

Three-dimensional space, 120-130

brightness(), 127
canvas, 124

GROUP shape, 124
hint(), 121

lights(), 127
QUAD_STRIP shape, 124
radians(), 122
rotateX(), 122
shape(), 122

size(), 121

translate(), 122
vertex(), 122
visualization, 183, 185

Trained set, 240-245
Trigonometric functions

cosine, 82, 84
sine, 82, 84

Vv

Visual properties

color, 73

loadPixels() method, 75
orientation, 73

position, 72

shape, 73

size, 72

updatePixels() method, 75
value, 74

W, XY,Z

Warping effect, 131
Windows, shutdown computer in, 282-283

293

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started with Processing and OpenCV
	Processing
	OpenCV
	Processing Installation
	Install Processing
	Run Processing

	OpenCV Installation
	macOS
	Windows
	Linux

	Test Run
	Hello World
	Matrix Example

	Conclusion

	Chapter 2: Image Sources and Representations
	Digital Image Fundamentals
	Images in Processing
	Import an External Image
	Create an Image in Processing
	Graphics and Images
	BufferedImage in Processing

	Moving Images in Processing
	Digital Movies
	Live Video Captures

	Matrices and Images in OpenCV
	Image Conversion Between Processing and OpenCV
	From Processing to OpenCV
	From OpenCV to Processing

	Conclusion

	Chapter 3: Pixel-Based Manipulations
	Visual Properties
	Position
	Size
	Shape
	Orientation
	Color
	Value

	Pixel Color Manipulation
	Color Change with Pixel Position
	Color Change with Pixel Distance
	Color Change with Trigonometric Functions

	Randomness
	Drawing with Existing Images
	Blending Multiple Images
	Conclusion

	Chapter 4: Geometry and Transformation
	Image Transformation
	Image Orientation
	Image Resizing
	Affine Transform
	Perspective Transform
	Linear vs. Polar Coordinates
	Three-Dimensional Space
	General Pixel Mapping
	Conclusion

	Chapter 5: Identification of Structure
	Image Preparation
	Conversion to Grayscale
	Conversion to a Black-and-White Image
	Morphological Operations
	Blur Operations

	Edge Detection
	Line Detection
	Circle Detection
	Contours Processing
	Finding the Contours
	Bounding Box
	Minimum Area Rectangle
	Convex Hull
	Polygon Approximation
	Testing a Point in Contour
	Checking Intersection

	Shape Detection
	Conclusion

	Chapter 6: Understanding Motion
	Effects with Moving Images
	Mosaic Effect
	Slit-Scan Effect
	Scrolling Effect
	Visualization in 3D

	Frame Differencing
	Background Removal
	Optical Flow
	Motion History
	Conclusion

	Chapter 7: Feature Detection and Matching
	Corner Detection
	Sparse Optical Flow
	Identify the Feature Points
	Improve the Accuracy
	Calculate the Optical Flow
	Visualize the Flow Information

	Feature Detection
	Feature Matching
	Face Detection
	People Detection
	Conclusion

	Chapter 8: Application Deployment and Conclusion
	Developing Libraries in Processing
	Install the Eclipse Software
	Prepare the OpenCV and Processing Libraries
	Build the CVImage Library

	Exporting Applications from Processing
	Using System Commands in Processing
	Optimizing Tracking with the Kalman Filter
	Other OpenCV Modules
	Conclusion

	Index

