
Introducing
Maven

A Build Tool for Today’s Java
Developers
—
Second Edition
—
Balaji Varanasi

www.allitebooks.com

http://www.allitebooks.org

Introducing Maven
A Build Tool for Today’s

Java Developers

Second Edition

Balaji Varanasi

www.allitebooks.com

http://www.allitebooks.org

Introducing Maven: A Build Tool for Today's Java Developers

ISBN-13 (pbk): 978-1-4842-5409-7	 ISBN-13 (electronic): 978-1-4842-5410-3	
https://doi.org/10.1007/978-1-4842-5410-3

Copyright © 2019 by Balaji Varanasi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers via the book’s product page, located at www.apress.com/978-1-4842-5409-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Balaji Varanasi
Salt Lake City, UT, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5410-3
http://www.allitebooks.org

For my Vedha

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Chapter 1: Getting Started with Maven���1

Standardized Directory Structure��2

Declarative Dependency Management��2

Plug-ins��3

Uniform Build Abstraction��3

Tools Support���3

Archetypes���4

Open Source��4

Maven Alternatives��5

Ant + Ivy���5

Gradle���7

Maven Components���9

Maven SCM��9

Maven Wagon���9

Maven Doxia���10

Summary���10

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Setting Up Maven���11

Installing on Windows��13

Installing on Mac��13

Testing Installation���14

Getting Help���15

Additional Settings���16

Setting Up a Proxy��19

Securing Passwords���20

IDE Support��21

Summary���21

Chapter 3: Maven Dependency Management��������������������������������������23

Using New Repositories���26

Dependency Identification���28

Transitive Dependencies��29

Dependency Scope��32

Manual Dependency Installation��33

Summary���35

Chapter 4: Maven Project Basics���37

Basic Project Organization���37

Understanding the pom.xml File��40

Building a Project���42

Testing the Project���44

Properties in pom.xml��49

Implicit Properties��50

User-Defined Properties���50

Summary���51

Table of ContentsTable of Contents

vii

Chapter 5: Maven Lifecycle���53

Goals and Plug-ins���53

Lifecycle and Phases���57

Plug-in Development��61

Summary���68

Chapter 6: Maven Archetypes��69

Built-in Archetypes���69

Generating a Web Project���71

Multimodule Project���74

Creating an Archetype��80

Using the Archetype���86

Summary���87

Chapter 7: Documentation and Reporting���89

Using the Site Lifecycle��89

Advanced Site Configuration��94

Generating Javadoc Reports��99

Generating Unit Test Reports���101

Generating Code Coverage Reports���102

Generating the SpotBugs Report��104

Summary���105

Chapter 8: Maven Release���107

Integration with Nexus���107

Project Release��113

Git Client Installation��115

Creating a GitHub Repository���115

Checking in Source Code���116

Table of ContentsTable of Contents

viii

Maven Release���118

Prepare Goal���118

Clean Goal��123

Perform Goal���123

Summary���126

Chapter 9: Continuous Integration���127

Installing Jenkins���128

Maven Project��129

Configuring Jenkins���130

Triggering Build Job���133

Summary���135

Index��137

Table of ContentsTable of Contents

ix

About the Author

Balaji Varanasi is a seasoned technology

leader, author, and speaker. He has over 18

years of experience managing, architecting,

and delivering high-performance, scalable

enterprise applications. During this period,

he has worked in the areas of security, web

accessibility, search, and enterprise portals.

He has a master’s degree in computer

science from Utah State University. He

shares his insights and experiments at

http://blog.inflinx.com.  

http://blog.inflinx.com/

xi

About the Technical Reviewer

Germán González-Morris is a polyglot software architect/engineer with

20+ years in the field, with knowledge in Java(EE), Spring, Haskell, C,

Python, and Javascript, among others. He works with web distributed

applications. Germán loves math puzzles (including reading Knuth) and

swimming. He has tech-reviewed several books, including an application

container book (WebLogic), as well as titles covering various programming

languages (Haskell, TypeScript, WebAssembly, Math for coders, and

regexp). You can find more details at his blog site (https://devwebcl.

blogspot.com/) or twitter account (@devwebcl).

https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=

xiii

Acknowledgments

This book would not have been possible without the support of several

people, and I take this opportunity to sincerely thank them.

Thanks to the amazing folks at Apress: Steve Anglin, Mark Powers,

Matthew Moodie, and many others. I also owe a huge thank you to

Germán González-Morris for his technical review and for the valuable

feedback he provided.

Finally, I want to thank my wife, Sudha, for her constant support and

encouragement. Thank you so much, dear!

xv

Introducing Maven provides a concise introduction to Maven, the de facto

standard for building, managing, and automating Java and JEE-based

projects in enterprises throughout the world. The book starts by explaining

the fundamental concepts of Maven and showing you how to set up and

test Maven on your local machine. It then delves deeply into concepts such

as dependency management, lifecycle phases, plug-ins, and goals. It also

discusses project structure conventions, jump-starting project creation

using archetypes, and documentation and report generation. Finally, it

concludes with a discussion of Maven’s release process and integration

with Jenkins.

�How This Book Is Structured
Chapter 1 starts with a gentle introduction to Maven. It discusses reasons

for adopting Maven, and it provides an overview of its two alternatives: Ant

and Gradle.

Chapter 2 focuses on setting up Maven on your machine and testing

the installation. It also provides an overview of Maven’s settings.

xml file, and it shows you how to run Maven in a HTTP proxy-enabled

environment.

Chapter 3 delves deeply into Maven’s dependency management. It

then discusses the GAV coordinates Maven uses for uniquely identifying

its artifacts. Finally, it covers transitive dependencies and the impact they

have on builds.

Introduction

xvi

Chapter 4 discusses the organization of a basic Maven project and

covers the important elements of a pom.xml file. Then you learn about

testing the project using JUnit.

Chapter 5 provides detailed coverage of Maven’s lifecycle, plug-ins,

build phases, and goals. It then walks you through the process of creating

and using a simple Maven plug-in.

Chapter 6 introduces archetypes’ project templates that enable you

to bootstrap new projects quickly. The built-in archetypes are used to

generate a Java project, a web project, and a multimodule project. You will

then create a custom archetype from scratch and use it to generate a new

project.

Chapter 7 covers the basics of site generation using Maven. It then

discusses report generation and documentation such as Javadocs, test

coverage reports, and SpotBugs reports and how to integrate them into a

Maven site.

Chapter 8 begins with a discussion of the Nexus repository manager

and shows you how it can be integrated with Maven. It then provides

complete coverage of Maven’s release process and its different phases.

Chapter 9 introduces continuous integration (CI) concepts and

discusses installation and configuration on Jenkins, an open source tool

for continuous integration.

�Target Audience
Introducing Maven is intended for developers and automation engineers

who would like to get started quickly with Apache Maven. This book

assumes basic knowledge of Java. No prior experience with Maven is

required.

IntroductionIntroduction

xvii

�Downloading the Source Code
The source code for the examples in this book can be downloaded via

the Download Source Code button located at www.apress.com/978-1-

4842-5409-7.

Once downloaded, unzip the code and place the contents in the

C:\apress\gswm-book folder. The source code is organized by individual

chapters. Where applicable, the chapter folders contain the gswm project

with the bare minimum files to get you started on that chapter’s code

listings. The chapter folders also contain a folder named final, which

holds the expected end state of the project(s).

�Questions
We welcome reader feedback. If you have any questions or suggestions,

you can contact the author at Balaji@inflinx.com.

IntroductionIntroduction

http://www.apress.com/978-1-4842-5409-7
http://www.apress.com/978-1-4842-5409-7

1© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_1

CHAPTER 1

Getting Started
with Maven
Like other craftsmen, software developers rely on their tools to build

applications. Developers’ integrated development environments (IDEs),

bug-tracking tools, build tools, frameworks, containers, and debug tools,

such as memory analyzers, play a vital role in day-to-day development and

maintenance of quality software. This book will discuss and explore the

features of Maven, which we know will become an important tool in your

software development arsenal.

Apache Maven is an open source, standards-based project

management framework that simplifies the building, testing, reporting,

and packaging of projects. Maven's initial roots were in the Apache Jakarta

Alexandria project that took place in early 2000. It was subsequently used

in the Apache Turbine project. Like many other Apache projects at that

time, the Turbine project had several subprojects, each with its own Ant-

based build system. Back then, there was a strong desire for developing

a standard way to build projects and to share generated artifacts easily

across projects. This desire gave birth to Maven. Maven version 1.0 was

released in 2004, followed by version 2.0 in 2005 and version 3.0 in 2010. At

the time of writing this book, 3.6.1 is the current version of Maven.

Maven has become one of the most widely used open source software

programs in enterprises around the world. Let's look at some of the

reasons why Maven is so popular.

2

�Standardized Directory Structure
Often, when we start work on a new project, a considerable amount of time

is spent deciding on the project layout and folder structure needed to store

code and configuration files. These decisions can vary vastly across projects

and teams, which can make it difficult for new developers to understand

and adopt other teams' projects. It can also make it hard for existing

developers to jump between projects and find what they are seeking.

Maven addresses the preceding problems by standardizing the folder

structure and organization of a project. Maven provides recommendations

on where different parts of a project, such as source code, test code, and

configuration files, should reside. For example, Maven suggests that all of

the Java source code should be placed in the src\main\java folder. This

makes it easier to understand and navigate any Maven project.

Additionally, these conventions make it easy to switch to and start

using a new IDE. Historically, IDEs varied with project structure and folder

names. A dynamic web project in Eclipse might use the WebContent folder

to store web assets, whereas IntelliJ IDEA might use web folder for the

same purpose. With Maven, your projects follow a consistent structure and

become IDE agnostic.

�Declarative Dependency Management
Most Java projects rely on other projects and open source frameworks to

function properly. It can be cumbersome to download these dependencies

manually and keep track of their versions as you use them in your project.

Maven provides a convenient way to declare these project

dependencies in a separate, external pom.xml file. It then automatically

downloads those dependencies and allows you to use them in your project.

This simplifies project dependency management greatly. It is important

to note that in the pom.xml file, you specify the what and not the how.

Chapter 1 Getting Started with Maven

3

The pom.xml file can also serve as a documentation tool, conveying your

project dependencies and their versions.

�Plug-ins
Maven follows a plug-in-based architecture, making it easy to augment and

customize its functionality. These plug-ins encapsulate reusable build and

task logic. Today, there are hundreds of Maven plug-ins available that can

be used to carry out tasks ranging from code compilation to packaging to

project documentation generation.

Maven also makes it easy to create your own plug-ins, thereby enabling

you to integrate tasks and workflows that are specific to your organization.

�Uniform Build Abstraction
Maven provides a uniform interface for building projects. You can build

a Maven project by using just a handful of commands. Once you become

familiar with Maven's build process, you can easily figure out how to build

other Maven projects. This frees developers from having to learn build

idiosyncrasies so they can focus more on development.

�Tools Support
Maven provides a powerful command-line interface to carry out different

operations. All major IDEs today provide excellent tool support for Maven.

Additionally, Maven is fully integrated with today's continuous integration

products such as Jenkins and Bamboo.

Chapter 1 Getting Started with Maven

4

�Archetypes
As we already mentioned, Maven provides a standard directory layout

for its projects. When the time comes to create a new Maven project, you

need to build each directory manually, and this can easily become tedious.

This is where Maven archetypes come to rescue. Maven archetypes are

predefined project templates that can be used to generate new projects.

Projects created using archetypes will contain all of the folders and files

needed to get you going.

Archetypes are also a valuable tool for bundling best practices and

common assets that you will need in each of your projects. Consider a

team that works heavily on Spring framework-based web applications.

All Spring-based web projects share common dependencies and require

a set of configuration files. It is also highly possible that all of these web

projects have similar Log4j/Logback configuration files, CSS/Images, and

Thymeleaf page layouts. Maven lets this team bundle these common assets

into an archetype. When new projects get created using this archetype,

they will automatically have the common assets included. No more copy

and pastes of code or drag and drops of files required.

�Open Source
Maven is open source and costs nothing to download and use. It comes

with rich online documentation and the support of an active community.

CONVENTION OVER CONFIGURATION

Convention over configuration (CoC) or coding by convention is one of the

key tenants of Maven. Popularized by the Ruby on Rails community, CoC

emphasizes sensible defaults, thereby reducing the number of decisions to be

made. It saves time and also results in a simpler end product, as the amount

of configuration required is drastically reduced.

Chapter 1 Getting Started with Maven

5

As part of its CoC adherence, Maven provides several sensible defaults for its

projects. It lays out a standard directory structure and provides defaults for

the generated artifacts. Imagine looking at a Maven artifact with the name

log4j-core-2.11.2.jar. At a glance, you can easily see that you are

looking at a log4j-core JAR file, version 2.11.2.

One drawback of Maven's CoC is the rigidness that end users experience

when using it. To address this, you can customize most of Maven's defaults.

For example, it is possible to change the location of the Java source code in

your project. As a rule of thumb, however, such changes to defaults should be

minimized.

�Maven Alternatives
Although the emphasis of this book is on Maven, let's look at a couple of its

alternatives: Ant + Ivy and Gradle.

�Ant + Ivy
Apache Ant (http://ant.apache.org) is a popular open source tool for

scripting builds. Ant is Java based, and it uses Extensible Markup Language

(XML) for its configuration. The default configuration file for Ant is the

build.xml file.

Using Ant typically involves defining tasks and targets. As the name

suggests, an Ant task is a unit of work that needs to be completed. Typical

tasks involve creating a directory, running a test, compiling source code,

building a web application archive (WAR) file, and so forth. A target

is simply a set of tasks. It is possible for a target to depend on other

targets. This dependency lets us sequence target execution. Listing 1-1

demonstrates a simple build.xml file with one target called compile. The

compile target has two echo tasks and one javac task.

Chapter 1 Getting Started with Maven

http://ant.apache.org

6

Listing 1-1.  Sample Ant build.xml File

<project name="Sample Build File" default="compile"

basedir=".">

 <target name="compile" description="Compile Source Code">

 <echo message="Starting Code Compilation"/>

 <javac srcdir="src" destdir="dist"/>

 <echo message="Completed Code Compilation"/>

 </target>

</project>

Ant doesn't impose any conventions or restrictions on your project,

and it is known to be extremely flexible. This flexibility has sometimes

resulted in complex, hard-to-understand, and hard-to-maintain build.

xml files.

Apache Ivy (http://ant.apache.org/ivy/) provides automated

dependency management, making Ant more joyful to use. With Ivy, you

declare the dependencies in an XML file called ivy.xml, as shown in

Listing 1-2. Integrating Ivy with Ant involves declaring new targets in the

build.xml file to retrieve and resolve dependencies.

Listing 1-2.  Sample Ivy Listing

<ivy-module version="2.0">

 <info organisation="com.apress" module="gswm-ivy" />

 <dependencies>

 <�dependency org="org.apache.logging.log4j" name="log4j-api"

rev="2.11.2" />

 </dependencies>

</ivy-module>

Chapter 1 Getting Started with Maven

http://ant.apache.org/ivy/

7

�Gradle
Gradle (http://gradle.org/) is an open source build, project automation

tool that can be used for Java and non-Java projects. Unlike Ant and

Maven, which use XML for configuration, Gradle uses a Groovy-based

domain-specific language (DSL).

Gradle provides the flexibility of Ant, and it uses the same notion of

tasks. Listing 1-3 shows a default build.gradle file.

Listing 1-3.  Default build.gradle File

plugins {

 id 'java'

}

version = '1.0.0'

repositories {

 mavenCentral()

}

dependencies {

 testCompileOnly group: 'junit', name: 'junit',

version: '4.10'

}

Gradle's DSL and its adherence to CoC results in compact build files.

The first line in Listing 1-3 includes a Java plug-in for build's use. Plug-ins

in Gradle provide preconfigured tasks and dependencies to the project.

The Java plug-in, for example, provides tasks for building source files,

running unit tests, and installing artifacts. The dependencies section in

the default.build file instructs Gradle to use JUnit dependency during

the compilation of test source files. Gradle's flexibility and performance

have contributed to its growing popularity. However, the learning curve for

Chapter 1 Getting Started with Maven

http://gradle.org/

8

Gradle and Groovy DSL could be steep. IDE and plug-in support for Gradle

is also less mature when compared to Maven.

Despite growing competition from other tools, Maven continues

to dominate the build tool space. This is evident in Figure 1-1 that

shows the results of a 2018 survey by Synk.io (https://snyk.io/blog/

jvm-ecosystem-report-2018-tools/) on the build tools used by Java

developers.

60%
60%

19%

11%

4%
6%

50%

40%

30%

20%

10%

0%
Maven Gradle Ant Other None

Figure 1-1.  Survey results of build tool usage

The Polyglot for Maven Project (https://github.com/takari/
polyglot-maven) allows you to create Maven's POM files in
dialects other than XML. Supported languages include Groovy, Ruby,
Scala, YAML, and Java.

Chapter 1 Getting Started with Maven

https://snyk.io/blog/jvm-ecosystem-report-2018-tools/
https://snyk.io/blog/jvm-ecosystem-report-2018-tools/
https://github.com/takari/polyglot-maven
https://github.com/takari/polyglot-maven

9

�Maven Components
Maven relies on several components to get its job done. Though you

might not interact with these components directly, an overview of these

components helps understand the internal workings of Maven and better

equip you to troubleshoot Maven errors.

�Maven SCM
Maven interacts with several source control/code management (SCM)

systems to perform operations such as checking out code or creating

a branch or a tag. The Maven SCM (http://maven.apache.org/scm/)

project provides a common API to perform such operations. The Maven

release plug-in discussed in Chapter 8 heavily relies on Maven SCM

components. Maven SCM currently supports several popular code

management systems such as Git, Subversion, and Perforce.

�Maven Wagon
As discussed earlier, Maven automatically downloads project dependencies

such as JAR files from different locations such as FTPs, file systems, and

web sites. The Maven Wagon (https://maven.apache.org/wagon/)

project provides a transport abstraction that enables Maven to interact

with different transport protocols easily and retrieve dependencies. Maven

Wagon supports some of the popular protocols such as

	 a)	 File: Allows retrieval of dependencies using file

system protocol.

	 b)	 HTTP: Allows retrieval of dependencies using HTTP/

HTTPS protocols. Two implementation variations

are provided – one that uses Apache HttpClient and

the other that uses standard Java library.

	 c)	 FTP: Allows retrieval of dependencies using File

Transfer Protocol.

Chapter 1 Getting Started with Maven

http://maven.apache.org/scm/
https://maven.apache.org/wagon/

10

�Maven Doxia
Maven Doxia (https://maven.apache.org/doxia/) is a content

generation framework that can be used to generate static/dynamic content

such as PDF files and web pages. Doxia supports several popular markup

languages such as Markdown, Apt, XHTML, and Confluence. Maven relies

heavily on Doxia to generate project documentation and reports (more on

this in Chapter 7).

�Summary
Apache Maven greatly simplifies the build process and automates project

management tasks. This chapter provided a gentle introduction to Maven

and described the main reasons for adopting it. We also looked at Maven's

close peers: Ant + Ivy and Gradle.

In the next chapter, you will learn about the setup required to get up

and running with Maven.

Chapter 1 Getting Started with Maven

https://maven.apache.org/doxia/

11© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_2

CHAPTER 2

Setting Up Maven
Maven installation is an easy and straightforward process. This chapter will

explain how to install and set up Maven using the Windows 10 and Mac

operating systems. You can follow similar procedure with other operating

systems.

Note  Maven is a Java-based application and requires the Java
Development Kit (JDK) to function properly. Maven version 3.6
requires JDK 1.7 or above. Before proceeding with Maven installation,
make sure that you have Java installed. If not, install the JDK (not
just Java Runtime Environment [JRE]) from www.oracle.com/
technetwork/java/javase/downloads/index.html. Ensure
that you have the JAVA_HOME environment variable set and pointing
to the JDK installation. In this book, we will be using JDK 8.

You will begin the installation process by downloading the latest version

of Maven from the Apache Maven web site (http://maven.apache.org/

download.html). At the time of this writing, the latest version is 3.6.1.

Download the Maven 3.6.1 binary .zip file as shown in Figure 2-1.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html

12

Figure 2-1.  Maven archive download

Once the download is complete, unzip the distribution to a local

directory on your computer. It will create a folder named apache-maven-

3.6.1-bin and the contents of the folder are shown in Figure 2-2.

Figure 2-2.  Maven install directory contents

The bin folder contains platform-specific Maven executables – mvn.

cmd file for Windows and mvn.sh for Mac and Unix/Linux platforms that

you can use to launch Maven. The debug versions of these executables –

mvnDebug.cmd and mvnDebug.sh – include debugging arguments

that allow you to attach an IDE to a running Maven process for remote

debugging.

That boot folder contains the “plexus-classworlds-2.5.2.jar” file. Maven

uses Plexus Classworlds framework (https://codehaus-plexus.github.

io/plexus-classworlds/) to build its classloader graph.

Chapter 2 Setting Up Maven

https://codehaus-plexus.github.io/plexus-classworlds/
https://codehaus-plexus.github.io/plexus-classworlds/

13

The conf folder contains configuration files that you can use to

alter Maven’s default behaviors. An important file in this folder is the

settings.xml file which we will cover later in the chapter. Another file

is the simplelogger.properties file that allows you to control Maven's

logging. For example, the log level can be changed to debug by setting the

defaultLogLevel property to debug. Similarly, you can change the logFile

property to write log output from “System.out” to a file.

Finally, the lib folder contains the libraries that are essential for Maven

and its plug-ins to run properly.

�Installing on Windows
Move the contents of the apache-maven-3.6.0-bin to a new directory

c:\tools\maven. The next step is to add the Maven executable to the PATH

Environment variable so that you can run Maven commands from the

command line. In Windows Search box, search for “Environment Variable”

and select “Edit the system environment variables”. In the resulting

window, click the Environment Variables button, and select the PATH

variable and click Edit. Click New and enter the value “C:/tools/maven/

bin” and click OK.

�Installing on Mac
Move the contents of the apache-maven-3.6.0-bin folder into $HOME/

tools/maven where $HOME is your home directory on Mac. Edit .bash_

profile file by running the command nano ~/.bash_profile . Add Maven

executable to the PATH variable by adding the following line to .bash_

profile:

export PATH=$HOME/tools/maven/bin:$PATH

Chapter 2 Setting Up Maven

14

This completes the Maven installation. If you have any open

command-line windows/terminals, close them and reopen a new

command-line window. When environment variables are added or

modified, new values are not propagated to open command-line windows

automatically.

MAVEN_OPTS ENVIRONMENT VARIABLE

When using Maven, especially in a complex project, chances are that you

will run into OutOfMemory errors. This may happen, for example, when you

are running a large number of JUnit tests or when you are generating a large

number of reports. To address this error, increase the heap size of the Java

virtual machine (JVM) used by Maven. This is done globally by creating a new

environment variable called MAVEN_OPTS. To begin, we recommend using the

value -Xmx512m.

�Testing Installation
Now that Maven is installed, it’s time to test and verify the installation.

Open a Command Prompt and run the following command:

mvn –v

On a Windows machine, this command should output information

similar to the following:

C:\> mvn –v

Apache Maven 3.6.1 (d66c9c0b3152b2e69ee9bac180bb8fcc8e6af555;

2019-04-04T13:00:29-06:00)

Maven home: C:\tools\maven\bin\..

Java version: 1.8.0_144, vendor: Oracle Corporation, runtime:

C:\Java\jdk1.8.0_144\jre

Chapter 2 Setting Up Maven

15

Default locale: en_US, platform encoding: Cp1252

OS name: "windows 10", version: "10.0", arch: "amd64", family:

"windows"

The –v command-line option tells the path where Maven is installed

and what Java version it is using. You would also get the same results by

running the expanded command mvn --version.

�Getting Help
You can get a list of Maven’s command-line options by using the -h or

--help options. Running the following command will produce output

similar to that shown in Figure 2-3.

mvn -h

Figure 2-3.  Results of running Maven Help command

Chapter 2 Setting Up Maven

16

�Additional Settings
The installation steps we have provided so far are enough to get you started

with Maven. However, for most enterprise uses, you need to provide

additional configuration information. This user-specific configuration is

provided in a settings.xml file. Maven looks for the settings.xml file in

two locations – in the conf folder of Maven’s installation and .m2 folder in

the user’s home directory. The settings.xml file under conf folder is called

global settings, and the file under .m2 folder is referred to as user settings.

If both files exist, Maven will merge the contents of two files and the user

settings will take precedence.

Note T he .m2 folder is important to Maven’s smooth operation.
Among many things, this folder houses a settings.xml file and a
repository folder. The repository folder contains plug-in JAR files and
metadata that Maven requires. It also contains the project-dependent
JAR files that Maven downloaded from the Internet. We will take a
closer look at this folder in Chapter 3. 

By default, the .m2 folder is located in your home directory. In
Windows, this directory is usually c:\Users\<<your_user_
name>>. On Mac, this directory is usually /Users/<<your_
user_name>>/.m2/repository. You can run the command mvn
help:evaluate -Dexpression=settings.localRepository to identify the
local repository location. 

When you run a Maven command, Maven automatically creates the
.m2 folder. If you don’t see this folder on your computer, however, go
ahead and create one.

Chapter 2 Setting Up Maven

17

Out of the box, the .m2 folder does not contain a settings.xml file.

In the .m2 folder on your local computer, create a settings.xml file

and copy the contents of the skeleton settings.xml file as shown in

Listing 2-1. We will cover some of these elements in the coming chapters.

A brief description of some of the elements is provided in Table 2-1.

Listing 2-1.  Skeleton Settings.xml Contents

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

 �http://maven.apache.org/xsd/settings--

1.0.0.xsd">

 <localRepository/>

 <interactiveMode/>

 <offline/>

 <pluginGroups/>

 <servers/>

 <mirrors/>

 <proxies/>

 <profiles/>

 <activeProfiles/>

</settings>

Chapter 2 Setting Up Maven

18

Table 2-1.  Details of the settings.xml Elements

Element Name Description

localRepository Maven stores copies of plug-ins and dependencies

locally in the c:\Users\<<your_user_name>>

\.m2\repository folder. The localRepository element

can be used to change the path of the local repository.

For example, <localRepository>c:\mavenrepo

</localRepository> will change the repository location

to the mavenrepo folder.

interactiveMode As the name suggests, when this value is set to true, Maven

interacts with the user for input. If the value is false, Maven

will try to use sensible defaults. The default is true.

offline When set to true, this configuration instructs Maven to not

connect to network and operate in an offline mode. With

offline mode set to true, Maven will not attempt to download

new dependencies or updates to dependencies. The default

is false.

servers Maven can interact with a variety of servers, such as Git servers,

build servers, and remote repository servers. This element

allows you to specify security credentials, such as the username

and password, which you need to connect to those servers.

mirrors As the name suggests, mirrors allow you to specify alternate

locations for downloading dependencies from remote

repositories. For example, your organization might have

mirrored a public repository on their internal network. The

mirror element allows you to force Maven use the internal

mirrored repository instead of the public repository.

proxies Proxies contain the HTTP proxy information needed to

connect to the Internet.

Chapter 2 Setting Up Maven

19

�Setting Up a Proxy
As we will discuss in detail in Chapter 3, Maven requires an Internet

connection to download plug-ins and dependencies. Some companies

employ HTTP proxies to restrict access to the Internet. In those scenarios,

running Maven will result in Unable to download artifact errors. To

address this, edit the settings.xml file and add the proxy information

specific to your company. A sample configuration is shown in Listing 2-2.

Listing 2-2.  Settings.xml with Proxy Content

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

 �http://maven.apache.org/xsd/settings-

1.0.0.xsd">

 <proxies>

 <proxy>

 <id>companyProxy</id>

 <active>true</active>

 <protocol>http</protocol>

 <host>proxy.company.com</host>

 <port>8080</port>

 <username>proxyusername</username>

 <password>proxypassword</password>

 <nonProxyHosts />

 </proxy>

 </proxies>

 </settings>

Chapter 2 Setting Up Maven

20

�Securing Passwords
The password to connect to the proxy server in section 2-2 is stored in clear

text in the settings.xml file. If you were to accidentally share your settings.

xml file, your password will be compromised. To address this, Maven

provides a mechanism to encrypt the passwords that get stored in settings.

xml file.

We begin the encryption process by creating a master password using

the following code:

 mvn -emp mymasterpassword

{LCWw0+NAqw0HuYH9HNz+1D7aElXM242PtuyoDXDAuelxjwZC8MyXaACkHSy7

tZwU}

Maven requires the newly generated master password to be saved in a

settings-security.xml file under .m2 folder. Create a new settings-security.

xml file under .m2 folder and copy the following contents into that file.

<settingsSecurity>

<master>{LCWw0+NAqw0HuYH9HNz+1D7aElXM242PtuyoDXDAuelxjwZC8MyXaA

CkHSy7tZwU}</master>

</settingsSecurity>

Run the following command to encrypt the “proxypassword”

password. Once the command completes, copy the output and replace the

clear text password in settings.xml file with it:

mvn -ep proxypassword

{i4RnaIHgxqgHyKYySxor+cvshmHweTAvNjuORNYyu5w=}

Though the preceding process encrypts the passwords and avoids

the need to save passwords in clear text, it is important to remember that

anyone that has access to settings-security.xml file can easily decode the

Chapter 2 Setting Up Maven

21

master password and subsequently decrypt the passwords in the settings.

xml file. One mechanism to address this is to store the settings-security.

xml file in an external device such as USB drive.

�IDE Support
Throughout this book, we will be using the command line to create and

build sample applications. If you are interested in using an IDE, the good

news is that all modern IDEs come with full Maven integration without

needing any further configuration.

�Summary
This chapter walked you through the setup of Maven on your local

computer. You learned that Maven downloads the plug-ins and artifacts

needed for its operation. These artifacts are stored in the .m2\repository

folder. The .m2 folder also contains the settings.xml file, which can be

used to configure Maven’s behavior.

In the next chapter, we will take a deeper look at Maven’s dependency

management.

Chapter 2 Setting Up Maven

23© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_3

CHAPTER 3

Maven Dependency
Management
Enterprise-level projects typically depend on a variety of open source

libraries. Consider the scenario where you want to use Log4J for your

application logging. To accomplish this, you would go to the Log4J

download page, download the JAR file, and put it in your project’s lib

folder or add it to the project’s class path. There are a couple of problems

with this approach:

	 1.	 The JAR file you downloaded might depend on a few

other libraries. You would now have to hunt down

all of those dependencies (and their dependencies)

and add them to your project.

	 2.	 When the time comes to upgrade the JAR file, you

need to start the process all over again.

	 3.	 You need to add JAR files to source control along

with your source code so that your projects can

be built on a computer other than your own. This

increases project size, checkout, and build time.

	 4.	 Sharing JAR files across teams within your

organization becomes difficult.

24

To address these problems, Maven provides declarative dependency

management. With this approach, you declare your project’s dependencies

in an external file called pom.xml. Maven will automatically download

those dependencies and hand them over to your project for the purpose of

building, testing, or packaging.

Figure 3-1 shows a high-level view of Maven’s dependency

management. When you run your Maven project for the first time, Maven

connects to the network and downloads artifacts and related metadata

from remote repositories. The default remote repository is called Maven

Central, and it is located at repo.maven.apache.org and uk.maven.org.

Maven places a copy of these downloaded artifacts in its local repository.

In subsequent runs, Maven will look for an artifact in its local repository;

and upon not finding the artifact, Maven will attempt to download it from

remote repository.

Figure 3-1.  Maven dependency management

Although the architecture shown in Figure 3-1 works in the majority

of cases, it poses a few problems in an enterprise environment. The first

problem is that sharing company-related artifacts between teams is not

Chapter 3 Maven Dependency Management

25

possible. Because of security and intellectual property concerns, you

wouldn’t want to publish your enterprise’s artifacts on Maven Central.

Another problem concerns legal and licensing issues. Your company might

want the teams only to use officially approved open source software, and

this architecture would not fit in that model. The final issue concerns

bandwidth and download speeds. In times of heavy load on Maven

Central, the download speeds of Maven artifacts are reduced, and this

might have a negative impact on your builds. Hence, most enterprises

employ the architecture shown in Figure 3-2.

Figure 3-2.  Enterprise Maven repository architecture

The internal repository manager acts as a proxy to remote repositories.

This allows you to cache artifacts from remote repositories resulting in

faster artifact downloads and build performance improvements. Because

you have full control over the internal repository, you can regulate the

Chapter 3 Maven Dependency Management

26

types of artifacts allowed in your company. Additionally, you can also push

your organization’s artifacts onto the repository manager, thereby enabling

collaboration. There are several open source repository managers as

shown in Table 3-1.

�Using New Repositories
In order to use a new repository, you need to modify your settings.

xml file. Listing 3-1 shows Spring and JBoss repositories added to the

settings.xml file. In this same way, you can add your company’s

repository manager.

Note  Information regarding repositories can be provided in the
settings.xml or the pom.xml file. There are pros and cons to
each approach. Putting repository information in the pom.xml file
can make your builds portable. It enables developers to download
projects and simply build them without any further modifications
to their local settings.xml file. The problem with this approach
is that when artifacts are released, the corresponding pom.xml
files will have the repository information hard coded in them. If the
repository URLs were ever to change, consumers of these artifacts

Table 3-1.  Open Source Repository Managers

Repository Manager URL

Nexus Repository OSS www.sonatype.com/nexus-repository-oss

Apache Archiva http://archiva.apache.org/

Artifactory Open Source https://jfrog.com/open-

source/#artifactory

Chapter 3 Maven Dependency Management

http://www.sonatype.com/nexus-repository-oss
http://archiva.apache.org/
https://jfrog.com/open-source/#artifactory
https://jfrog.com/open-source/#artifactory

27

will run into errors due to broken repository paths. Putting repository
information in the settings.xml file addresses this problem, and
because of the flexibility it provides, the settings.xml approach is
typically recommended in an enterprise setting.

Listing 3-1.  Adding Repositories in settings.xml

<?xml version="1.0" encoding="UTF-8" ?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

 <profiles>

 <profile>

 <id>your_company</id>

 <repositories>

 <repository>

 <id>spring_repo</id>

 <url>http://repo.spring.io/release/</url>

 </repository>

 <repository>

 <id>jboss_repo</id>

 <url>https://repository.jboss.org/</url>

 </repository>

 </repositories>

 </profile>

 </profiles>

Chapter 3 Maven Dependency Management

28

 <activeProfiles>

 <activeProfile>your_company</activeProfile>

 </activeProfiles>

</settings>

�Dependency Identification
Maven dependencies are typically archives such as JAR, WAR, enterprise

archive (EAR), and ZIP. Each Maven dependency is uniquely identified

using the following group, artifact, and version (GAV) coordinates:

groupId: Identifier of the organization or group that

is responsible for this project. Examples include

org.hibernate, log4j, org.springframework and

com.companyname.

artifactId: Identifier of the artifact being

generated by the project. This must be unique

among the projects using the same groupId.

Examples include hibernate-tools, log4j, spring-

core, and so on.

version: Indicates the version number of the

project. Examples include 1.0.0, 2.3.1-SNAPSHOT,

and 5.4.2.Final.

type: Indicates the packing of the generated artifact.

Examples include JAR, WAR, and EAR.

Artifacts that are still in development are labeled with a SNAPSHOT in

their versions. An example version is 1.0-SNAPSHOT. This tells Maven to

look for an updated version of the artifact from remote repositories on a

daily frequency.

Chapter 3 Maven Dependency Management

29

Dependencies are declared in pom.xml file using the dependencies tag

as shown in the following:

<dependencies>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-tools</artifactId>

 <version>5.4.2.Final</version>

 </dependency>

</dependencies>

�Transitive Dependencies
Dependencies declared in your project’s pom.xml file often have their own

dependencies. Such dependencies are called transitive dependencies. Take

the example of Hibernate Core. For it to function properly, it requires JBoss

Logging, dom4j, javaassist, and so forth. The Hibernate Core declared in

your pom.xml file is considered a direct dependency, and dependencies

such as dom4j and javaassist are considered your project’s transitive

dependencies. A key benefit of Maven is that it automatically deals with

transitive dependencies and includes them in your project.

Figure 3-3 provides an example of transitive dependencies. Notice that

transitive dependencies can have their own dependencies. As you might

imagine, this can quickly get complex, especially when multiple direct

dependencies pull different versions of the same JAR file.

Maven uses a technique known as dependency mediation to resolve

version conflicts. Simply stated, dependency mediation allows Maven

to pull the dependency that is closest to the project in the dependency

tree. In Figure 3-3, there are two versions of dependency B: 0.0.8 and

1.0.0. In this scenario, version 0.0.8 of dependency B is included in the

project, because it is a direct dependency and closest to the tree. Now look

at the three versions of dependency F: 0.1.3, 1.0.0, and 2.2.0. All three

Chapter 3 Maven Dependency Management

30

dependencies are at the same depth. In this scenario, Maven will use the

first-found dependency, which would be 0.1.3, and not the latest 2.2.0

version. If you want Maven to use the latest 2.2.0 version of artifact F, you

need to explicitly add that version dependency to pom.xml file.

Figure 3-3.  Transitive dependencies

Although highly useful, transitive dependencies can cause problems

and unpredictable side effects, as you might end up including unwanted

JAR files or older versions of JAR files. Maven provides a handy dependency

plug-in that allows you to visualize project dependency tree. Listing 3-2

shows the output of running the dependency tree goal on a sample project.

You can see that the project depends on 4.11 version of JUnit JAR file. The

JUnit JAR itself depends on 1.3 version of hamcrest JAR file.

Listing 3-2.  Maven Dependency Tree Plug-in

[sudha]$mvn dependency:tree

[INFO] Scanning for projects...

[INFO] --- maven-dependency-plugin:2.8:tree (default-cli) @ gswm

Chapter 3 Maven Dependency Management

31

[INFO] com.apress.gswmbook:gswm:jar:1.0.0-SNAPSHOT

[INFO] \- junit:junit:jar:4.11:test

[INFO] \- org.hamcrest:hamcrest-core:jar:1.3:test

[INFO] ---

[INFO] BUILD SUCCESS

There are times where you don’t want to include certain transitive

dependency JARs in the final archive. For example, when deploying an

application inside a container such as Tomcat or WebLogic, you might

want to exclude certain JAR files such as servlet-api or javaee-api as they

would conflict with versions loaded by containers. Maven provides an

“excludes” tag to exclude a transitive dependency. Listing 3-3 shows the

code to exclude the hamcrest library from JUnit dependency. As you can

see, the exclusion element takes the groupId and artifactId coordinates

of the dependency that you would like to exclude.

Listing 3-3.  JUnit Dependency with Exclusion

<dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>${junit.version}</version>

 <scope>test</scope>

 <exclusions>

 <exclusion>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

</dependencies>

Chapter 3 Maven Dependency Management

32

�Dependency Scope
Consider a Java project that uses JUnit for its unit testing. The JUnit JAR file

you included in your project is only needed during testing. You really don’t

need to bundle the JUnit JAR in your final production archive. Similarly,

consider the MySQL database driver, mysql-connector-java.jar file. You

need the JAR file when you are running the application inside a container

such as Tomcat but not during code compilation or testing. Maven uses the

concept of scope, which allows you to specify when and where you need a

particular dependency.

Maven provides the following six scopes:

compile: Dependencies with the compile scope are

available in the class path in all phases on a project

build, test, and run. This is the default scope.

provided: Dependencies with the provided scope

are available in the class path during the build and

test phases. They don’t get bundled within the

generated artifact. Examples of dependencies that

use this scope include Servlet api, JSP api, and so on.

runtime: Dependencies with the runtime scope

are not available in the class path during the build

phase. Instead they get bundled in the generated

artifact and are available during runtime.

test: Dependencies with the test scope are

available during the test phase. JUnit and TestNG

are good examples of dependencies with the

test scope.

Chapter 3 Maven Dependency Management

33

system: Dependencies with the system scope are

similar to dependencies with the provided scope,

except that these dependencies are not retrieved

from the repository. Instead, a hard-coded path

to the file system is specified from which the

dependencies are used.

import: The import scope is applicable for .pom

file dependencies only. It allows you to include

dependency management information from a

remote .pom file. The import scope is available only

in Maven 2.0.9 or later.

�Manual Dependency Installation
Ideally, you will be pulling dependencies in your projects from public

repositories or your enterprise repository manager. However, there will be

times where you need an archive available in your local repository so that

you can continue your development. For example, you might be waiting on

your system administrators to add the required JAR file to your enterprise

repository manager.

Maven provides a handy way of installing an archive into your local

repository with the install plug-in. Listing 3-4 installs a test.jar file

located in the c:\apress\gswm-book\chapter3 folder.

Listing 3-4.  Installing Dependency Manually

C:\apress\gswm-book\chapter3>mvn install:install-file

-DgroupId=com.apress.gswmbook -DartifactId=test -Dversion=1.0.0

-Dfile=C:\apress\gswm-book\chapter3\test.jar -Dpackaging=jar

-DgeneratePom=true

[INFO] Scanning for projects...

Chapter 3 Maven Dependency Management

34

[INFO]

[INFO] ------------< org.apache.maven:standalone-pom >---------

[INFO] Building Maven Stub Project (No POM) 1

[INFO] -------------------------[pom]------------------------

[INFO]

[INFO] --- maven-install-plugin:2.4:install-file (default-cli)

@ standalone-pom ---

[INFO] Installing C:\apress\gswm-book\chapter3\test.jar to C:\

Users\bavara\.m2\repository\com\apress\gswmbook\test\1.0.0\

test-1.0.0.jar

[INFO] Installing C:\Users\bavara\AppData\Local\Temp\

mvninstall5971068007426768105.pom to C:\Users\bavara\.m2\

repository\com\apress\gswmbook\test\1.0.0\test-1.0.0.pom

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 0.439 s

[INFO] Finished at: 2019-09-01T00:05:21-06:00

[INFO] --

After seeing the BUILD SUCCESS message, you can verify the installation

by going to your local Maven repository, as shown in Figure 3-4.

Figure 3-4.  Dependency added to repository

Chapter 3 Maven Dependency Management

35

�Summary
Dependency management is at the heart of Maven. Every nontrivial

Java project relies on open source or external artifacts, and Maven’s

dependency management automates the process of retrieving those

artifacts and including them at the right stages of the build process. You

also learned that Maven uses GAV coordinates to identify its artifacts.

In the next chapter, you will learn about the organization of a basic

Maven project.

Chapter 3 Maven Dependency Management

37© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_4

CHAPTER 4

Maven Project Basics
Maven provides conventions and a standard directory layout for all of

its projects. As discussed in Chapter 1, this standardization provides a

uniform build interface, and it also makes it easy for developers to jump

from one project to another. This chapter will explain the basics of a Maven

project and the pom.xml file.

�Basic Project Organization
The best way to understand Maven project structure is to look at one.

Figure 4-1 illustrates a bare-bones Maven-based Java project.

Figure 4-1.  Maven Java project structure

38

Now let’s look at each of the components in the project:

•	 The gswm is the root folder of the project. Typically,

the name of the root folder matches the name of the

generated artifact.

•	 The src folder contains project-related artifacts such as

source code or property files, which you typically would

like to manage in a source control management (SCM)

system, such as SVN or Git.

•	 The src/main/java folder contains the Java

source code.

•	 The src/test/java folder contains the Java unit

test code.

•	 The target folder holds generated artifacts, such as

.class files. Generated artifacts are typically not stored

in SCM, so you don’t commit the target folder and its

contents into SCM.

•	 The LICENSE.txt file contains license information

related to project.

•	 The README.txt file contains information/instructions

about the project.

•	 The NOTICE.txt file contains notices required by third-

party libraries used by this project.

•	 Every Maven project has a pom.xml file at the root of the

project. It holds project and configuration information,

such as dependencies and plug-ins.

In addition to the src/main and src/test directories, Maven

recommends several other directories to hold additional files and resources.

Table 4-1 lists those directories along with the content that goes into them.

Chapter 4 Maven Project Basics

39

Maven provides archetypes (as discussed in Chapter 6) to bootstrap

projects quickly. However, in this chapter, you will manually assemble a

Maven-based Java project. Use the instructions that follow to create the

project:

	 1.	 Using a command line, go to the folder where you

would like to create the project. In this book, we

assume that directory to be c:\apress\gswm-book\

chapter4.

	 2.	 Run the command mkdir gswm.

Table 4-1.  Maven Directories

Directory Name Description

src/main/resources Holds resources, such as Spring configuration files

and velocity templates, that need to end up in the

generated artifact.

src/main/config Holds configuration files, such as Tomcat context files,

James Mail Server configuration files, and so on.

These files will not end up in the generated artifact.

src/main/scripts Holds any scripts that system administrators and

developers need for the application.

src/test/resources Holds configuration files needed for testing.

src/main/webapp Holds web assets such as .jsp files, style sheets,

and images.

src/it Holds integration tests for the application.

src/main/db Holds database files, such as SQL scripts.

src/site Holds files required during the generation of the

project site.

Chapter 4 Maven Project Basics

40

	 3.	 cd into the newly created directory and create an

empty pom.xml file.

	 4.	 Create the src directory under gswm, then create the

main directory in src, and finally create the java

directory under main.

The starting project structure should resemble that shown in Figure 4-2.

�Understanding the pom.xml File
The pom.xml file is the most important file in a Maven project. As we have

discussed so far in the book, the pom.xml file holds the configuration

information needed by Maven. Listing 4-1 shows the pom.xml file with

the basic project information. We start the pom.xml file with the project

element. Then we provide the groupId, artifactId, and version

coordinates. The packaging element tells Maven that it needs to create a

JAR archive for this project. Finally, we use the developers element to add

information about the developers who are working on this project.

Listing 4-1.  pom.xml File Configuration

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

Figure 4-2.  Starting project structure

Chapter 4 Maven Project Basics

41

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>Getting Started with Maven</name>

 <url>http://apress.com</url>

 <developers>

 <developer>

 <id>balaji</id>

 <name>Balaji Varanasi</name>

 <email>balaji@inflinx.com</email>

 <properties>

 <active>true</active>

 </properties>

 </developer>

 <developer>

 <id>sudha</id>

 <name>Sudha Belida</name>

 <email>sudha@inflinx.com</email>

 <properties>

 <active>true</active>

 </properties>

 </developer>

 </developers>

</project>

We will be looking at other elements in the pom.xml file later in this

chapter and throughout the rest of the book.

Chapter 4 Maven Project Basics

42

MAVEN VERSIONING

It is recommended that Maven projects use the following conventions for

versioning:

<major-version>.<minor-version>.<incremental-version>-qualifier

The major, minor, and incremental values are numeric, and the qualifier can

have values such as RC, alpha, beta, and SNAPSHOT. Some examples that

follow this convention are 1.0.0, 2.4.5-SNAPSHOT, 3.1.1-RC1, and so forth.

The SNAPSHOT qualifier in the project’s version carries a special meaning. It

indicates that the project is in a development stage. When a project uses a

SNAPSHOT dependency, every time the project is built, Maven will fetch and

use the latest SNAPSHOT artifact.

Most repository managers accept release builds only once. However, when

you are developing an application in a continuous integration environment,

you want to build often and push your latest build to the repository manager.

Thus, it is the best practice to suffix your version with SNAPSHOT during

development.

�Building a Project
Before we look at building a project, let’s add the HelloWorld Java

class under src/main/java folder. Listing 4-2 shows the code for the

HelloWorld class.

Listing 4-2.  Code for HelloWorld Java Class

public class HelloWorld {

 public void sayHello() {

 System.out.print("Hello World");

 }

}

Chapter 4 Maven Project Basics

43

Figure 4-3 shows the project structure after adding the class.

Figure 4-3.  Project structure with Java class added

Now you’re ready to build the application, so let’s run the mvn package

from gswm. You should see output similar to that shown in Listing 4-3.

Listing 4-3.  Output for Maven Package Command for Building the

Application

C:\apress\gswm-book\chapter4\gswm>mvn package

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Getting Started with Maven 1.0.0-SNAPSHOT

[INFO] --

...................

[INFO] Compiling 1 source file to C:\apress\gswm-book\chapter4\

gswm\target\classes

...................

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ gswm ---

[INFO] Building jar: C:\apress\gswm-book\chapter4\gswm\target\

gswm-1.0.0-SNAPSHOT.jar

[INFO] --

[INFO] BUILD SUCCESS

Chapter 4 Maven Project Basics

44

Note I f this is your first time running Maven, it will download the
plug-ins and dependencies required for it to run. Thus, your first build
might take longer than you would expect.

The package suffix after the mvn command is a Maven phase that

compiles Java code and packages it into the JAR file. The packaged JAR file

ends up in the gswm\target folder, as shown in Figure 4-4.

�Testing the Project
Now that you have completed the project build, let’s add a JUnit test that tests

the sayHello() method. Let’s start this process by adding JUnit dependency

to the pom.xml file. You accomplish this by using the dependencies element.

Listing 4-4 shows the updated pom.xml file with JUnit dependency.

Listing 4-4.  Updated POM with JUnit Dependency

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

Figure 4-4.  Packaged JAR located under the target folder

Chapter 4 Maven Project Basics

45

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>Getting Started with Maven</name>

 <url>http://apress.com</url>

 <developers>

 <developer>

 <id>balaji</id>

 <name>Balaji Varanasi</name>

 <email>balaji@inflinx.com</email>

 <properties>

 <active>true</active>

 </properties>

 </developer>

 <developer>

 <id>sudha</id>

 <name>Sudha Belida</name>

 <email>sudha@inflinx.com</email>

 <properties>

 <active>true</active>

 </properties>

 </developer>

 </developers>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

Chapter 4 Maven Project Basics

46

 <version>4.12</version>

 <scope>test</scope>

 </dependency>

</dependencies>

</project>

Notice that you have used the scope test, indicating that the

JUnit .jar is needed only during the testing phase. Let’s make sure

that this dependency has been successfully added by running mvn

dependency:tree in the command line. Listing 4-5 shows the output of

this operation.

Listing 4-5.  Maven Tree Command Output

C:\apress\gswm-book\chapter4\gswm>mvn dependency:tree

[INFO] --- maven-dependency-plugin:2.8:tree (default-cli)

@ gswm ---

[INFO] com.apress.gswmbook:gswm:jar:1.0.0-SNAPSHOT

[INFO] \- junit:junit:jar:4.12:test

[INFO] \- org.hamcrest:hamcrest-core:jar:1.3:test

[INFO] --

[INFO] BUILD SUCCESS

The tree goal in the dependency plug-in displays the project’s

dependencies as tree. Notice that the JUnit dependency pulled in a

transitive dependency named hamcrest, which is an open source project

that makes it easy to write matcher objects.

Now that you have the JUnit dependency in the class path, let’s add a

unit test HelloWorldTest.java to the project. Create the folders test/java

under src and add HelloWorldTest.java beneath it. The updated project

structure is shown in Figure 4-5.

Chapter 4 Maven Project Basics

47

The source code for HelloWorldTest is shown in Listing 4-6.

Listing 4-6.  Code for HelloWorldTest Java Class

import java.io.ByteArrayOutputStream;

import java.io.PrintStream;

import org.junit.After;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

public class HelloWorldTest {

 �private final ByteArrayOutputStream outStream =

new ByteArrayOutputStream();

 @Before

 public void setUp() {

 System.setOut(new PrintStream(outStream));

 }

 @Test

 public void testSayHello() {

 HelloWorld hw = new HelloWorld();

 hw.sayHello();

Figure 4-5.  Maven structure with test class

Chapter 4 Maven Project Basics

48

 �Assert.assertEquals("Hello World", outStream.

toString());

 }

 @After

 public void cleanUp() {

 System.setOut(null);

 }

}

You now have everything set up in this project, so you can run the mvn

package one more time. After you run it, you will see an output similar to

that shown in Listing 4-7.

Listing 4-7.  Output for Maven Command for Building the Project

C:\apress\gswm-book\chapter4\gswm>mvn package

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-

compile) @ gswm ---

[INFO] Nothing to compile - all classes are up to date

[INFO]

[INFO] --- maven-resources-plugin:2.6:testResources (default-

testResources) @ gswm ---

[INFO] Surefire report directory: C:\apress\gswm-book\chapter4\

gswm\target\surefire-reports

 T E S T S

Running HelloWorldTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.038 sec

Chapter 4 Maven Project Basics

49

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ gswm ---

[INFO] Building jar: C:\apress\gswmbook\chapter4\gswm\target\

gswm-1.0.0-SNAPSHOT.jar

[INFO] --

[INFO] BUILD SUCCESS

Note the Tests section in Listing 4-7. It shows that Maven has run the

test and that it has successfully completed.

Figure 4-6 shows the updated target folder. You can see that you now

have a test-classes folder with their associated reports in that folder.

Figure 4-6.  Target folder with test classes

�Properties in pom.xml
Maven provides properties AKA placeholders that can be used inside

pom.xml file. Maven properties are referenced in pom.xml file using the

${property_name} notation. There are two types of properties – implicit

and user-defined properties.

Chapter 4 Maven Project Basics

50

�Implicit Properties
Implicit properties are properties that are available by default to any

Maven project. For example, Maven exposes its Project Object Model

properties using the “project.” prefix. To access the artifactId value inside

the pom.xml file, you can use the ${project. artifactId} as shown in the

following:

<build>

 <finalName>${project.artifactId}</finalName>

</build>

Simillarly, to access properties from settings.xml file, you can use

the “settings.” prefix. Finally, the “env.” prefix can be used to access

environment variable values. For example, ${env.PATH} will return the

value of PATH environment variable.

�User-Defined Properties
Maven allows you to declare custom properties in the pom.xml file using

the <properties /> element. These properties are highly useful for

declaring dependency versions. Listing 4-8 shows the updated pom.xml

file with the JUnit version declared as a property. This is especially useful

when pom.xml has a lot of dependencies and you need to know or change a

version of a particular dependency.

Listing 4-8.  pom.xml File with Properties

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 �<modelVersion>4.0.0</modelVersion>

Chapter 4 Maven Project Basics

51

 <groupId>com.apress.gswmbook</groupId>

 <!-- Removed for brevity -->

 <properties>

 <junit.version>4.12</junit.version>

 </properties>

 <developers>

 <!-- Removed for brevity -->

 </developers>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>${junit.version}</version>

 <scope>test</scope>

 </dependency>

</dependencies>

</project>

�Summary
Maven’s CoC prescribes a standard directory layout for all of its projects.

It provides several sensible directories such as src\main\java and src\

test, along with recommendations on the content that goes into each one

of them. You learned about the mandatory pom.xml file and some of its

elements, which are used to configure Maven project’s behavior.

In the next chapter, you will look at Maven’s lifecycle, plug-ins, build

phases, goals, and how to leverage them effectively.

Chapter 4 Maven Project Basics

53© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_5

CHAPTER 5

Maven Lifecycle
Central to Maven is its lifecycle that provides a uniform interface for

building and distributing projects. In this chapter, we will review the

lifecycle and building blocks that make up the lifecycle.

�Goals and Plug-ins
Build processes generating artifacts such as JAR or WAR files typically

require several steps and tasks to be completed successfully in a well-

defined order. Examples of such tasks include compiling source code,

running unit tests, and packaging of the artifact. Maven uses the concept of

goals to represent such granular tasks.

To better understand what a goal is, let’s look at an example.

Listing 5-1 shows the compile goal executed on gswm project code under

C:\apress\gswm-book\chapter5\gswm. As the name suggests, the compile

goal compiles source code. The compile goal identifies the Java class

HelloWorld.java under src/main/java, compiles it, and places the

compiled class file under the target\classes folder.

Listing 5-1.  Maven compile Goal

C:\apress\gswm-book\chapter5\gswm>mvn compiler:compile

[INFO] Scanning for projects...

[INFO] --- maven-compiler-plugin:3.1:compile (default-cli)

@ gswm ---

54

[INFO] Compiling 1 source file to C:\apress\gswm-book\chapter5\

gswm\target\classes

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

Goals in Maven are packaged in plug-ins, which are essentially a

collection of one or more goals. In Listing 5-1, the compiler is the plug-in

that provides the goal compile.

Listing 5-2 introduces a pretty nifty goal called clean. As mentioned

earlier, the target folder holds Maven-generated temporary files and

artifacts. There are times when the target folder becomes huge or when

certain files that have been cached need to be cleaned out of the folder.

The clean goal accomplishes exactly that, as it attempts to delete the target

folder and all its contents.

Listing 5-2.  Maven clean Goal

C:\apress\gswm-book\chapter5\gswm>mvn clean:clean

[INFO] Scanning for projects...

[INFO] --- maven-clean-plugin:2.5:clean (default-cli)

@ gswm ---

[INFO] Deleting C:\apress\gswm-book\chapter5\gswm\target

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

Notice, the format of the command clean:clean in Listing 5-2. The

clean before the colon (:) represents the clean plug-in, and the clean

following the colon represents the clean goal. By now it should be obvious

that running a goal in the command line requires the following syntax:

mvn plugin_identifier:goal_identifier

Chapter 5 Maven Lifecycle

55

Maven provides an out-of-the box Help plug-in that can be used to

list available goals in a given plug-in. Listing 5-3 shows the Help plug-in’s

describe goal to display goals inside the compiler plug-in.

Listing 5-3.  Maven Help Plug-in

mvn help:describe -Dplugin=compiler

[INFO] Scanning for projects...

Name: Apache Maven Compiler Plugin

Description: The Compiler Plugin is used to compile the sources

of your project.

Group Id: org.apache.maven.plugins

Artifact Id: maven-compiler-plugin

Version: 3.8.1

Goal Prefix: compiler

This plugin has 3 goals:

compiler:compile

 Description: Compiles application sources

compiler:help

 Description: Display help information on maven-compiler-plugin.

 �Call mvn compiler:help -Ddetail=true -Dgoal=<goal-name> to

display parameter details.

compiler:testCompile

 Description: Compiles application test sources.

Plug-ins and their behavior can be configured using the plug-in section

of pom.xml. Consider the case where you want to enforce that your project

must be compiled with Java 8. As of version 3.8, the Maven compiler plug-

in compiles the code against Java 1.6. Thus, you will need to modify the

behavior of this plug-in in the pom.xml file, as shown in Listing 5-4.

Chapter 5 Maven Lifecycle

56

Listing 5-4.  Plug-in Element in the pom.xml File

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <!-- Project details omitted for brevity -->

 <dependencies>

 <!-- Dependency details omitted for brevity -->

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.8.1</version>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Now if you were to run the mvn compiler:compile command, the

generated class files will be of Java version 1.8.

Chapter 5 Maven Lifecycle

57

Note T he <build /> element in pom.xml has a very useful
child element called finalName. By default, the name of the
Maven-generated artifact follows the <<project_artifiact_
id>>-<<project_version>> format. However, sometimes you
might want to change the name of the generated artifact without
changing the artifactId. You can accomplish this by declaring the
finalName element as <finalName>new_name</finalName>.

�Lifecycle and Phases
Maven goals are granular and typically perform one task. Multiple goals

need to be executed in an orderly fashion to perform complex operations

such as generating artifacts or documentation. Maven simplifies these

complex operations via lifecycle and phase abstractions such that build-

related operations could be completed with a handful of commands.

Maven’s build lifecycle constitutes a series of stages that get executed

in the same order, independent of the artifact being produced. Maven

refers to the stages in a lifecycle as phases. Every Maven project has the

following three built-in lifecycles:

default: This lifecycle handles the compiling,

packaging, and deployment of a Maven project.

clean: This lifecycle handles the deletion of

temporary files and generated artifacts from the

target directory.

site: This lifecycle handles the generation of

documentation and site generation.

Chapter 5 Maven Lifecycle

58

To better understand the build lifecycle and its phases, let’s look at

some of the phases associated with the default lifecycle:

validate: Runs checks to ensure that the project is

correct and that all dependencies are downloaded

and available.

compile: Compiles the source code.

test: Runs unit tests using frameworks. This step

doesn’t require that the application be packaged.

package: Assembles compiled code into a

distributable format, such as JAR or WAR.

install: Installs the packaged archive into a local

repository. The archive is now available for use by

any project running on that machine.

deploy: Pushes the built archive into a remote

repository for use by other teams and team

members.

Maven lifecycle is an abstract concept and can’t be directly executed.

Instead, you execute one or more phases. For example, the command mvn

package will execute the package phase of the default lifecycle. In addition

to clearly defining the ordering of phases in a lifecycle, Maven also

automatically executes all the phases prior to a requested phase. So, when

the mvn package command is run, Maven will run all prior phases such as

compile and test.

A number of tasks need to be performed in each phase. For that to

happen, each phase is associated with zero or more goals. The phase

simply delegates those tasks to its associated goals. Figure 5-1 shows the

association between lifecycle, phases, goals, and plug-ins.

Chapter 5 Maven Lifecycle

59

It is valid for a Maven phase to not have any goals associated with it.

In that case, Maven will skip the phase execution. Such phases serve as

placeholders for users and third-party vendors to associate their custom-

built goals.

Figure 5-1.  Association between lifecycle, phases, goals, and plug-ins

Chapter 5 Maven Lifecycle

60

The <packaging /> element in the pom.xml file will automatically

assign the right goals for each of the phases without any additional

configuration. Remember that this is a benefit of CoC. For example, if the

packaging element is jar, then the package phase will be bound to the jar

goal in the jar plug-in. Similarly, for a WAR artifact, pom.xml will bind the

package to a war goal in the war plug-in. Figure 5-2 shows a portion of the

internal lifecycle associated with a WAR project.

Figure 5-2.  Default lifecycle for WAR project

Chapter 5 Maven Lifecycle

61

SKIPPING TESTS

As discussed earlier, when you run the package phase, the test phase is also

run and all of the unit tests get executed. If there are any failures in the test

phase, the build fails. This is the desired behavior. However, there are times,

for example, when dealing with a legacy project, where you would like to skip

compiling and running the tests so you can build a project successfully. You

can achieve this using the maven.test.skip property. Here is an example of

using this property:

mvn package –Dmaven.test.skip=true

�Plug-in Development
Developing custom plug-ins for Maven is very straightforward. As

discussed earlier, a plug-in is simply a collection of goals. Thus, when

we talk about plug-in development, we are essentially talking about

developing goals. In Java, these goals are implemented using MOJOs,

which stands for Maven Old Java Object, and it is similar to Java’s Plain Old

Java Object (POJO).

This section explains how to develop a SystemInfoPlugin that displays

system information such as Java version, operating system, and the like, on

the console running Maven command.

Let’s start this plug-in development by creating a Maven Java project,

named gswm-maven-plugin, as shown in Figure 5-3.

Chapter 5 Maven Lifecycle

62

Note I n this chapter, we are manually creating the plug-in project.
Maven provides a mavan-archetype-mojo, which would jumpstart your
plug-in development. We will learn about Maven archetypes in Chapter 6.

The content of the pom.xml file is shown in Listing 5-5. Notice that the

packaging type is maven-plugin. We added the maven-plugin-api and

maven-plugin-annotations dependencies, because they are needed for

plug-in development. We will be leveraging Apache Commons Lang to get

system information. Hence, we have also added the Apache Commons

Lang 3 dependency.

Listing 5-5.  The pom.xml with Dependencies

<?xml version="1.0" encoding="UTF-8"?>

<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.plugins</groupId>

 <artifactId>gswm-maven-plugin</artifactId>

 <version>1.0.0</version>

 <packaging>maven-plugin</packaging>

 <description>System Info Plugin</description>

Figure 5-3.  Maven project for plug-in development

Chapter 5 Maven Lifecycle

63

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.apache.maven</groupId>

 <artifactId>maven-plugin-api</artifactId>

 <version>3.6.1</version>

 </dependency>

 <dependency>

 <groupId>org.apache.maven.plugin-tools</groupId>

 <artifactId>maven-plugin-annotations</artifactId>

 <version>3.6.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.commons</groupId>

 <artifactId>commons-lang3</artifactId>

 <version>3.9</version>

 </dependency>

 </dependencies>

 <!-- Use the latest version of Plugin -->

 <build>

 <plugins>

 <plugin>

 �<groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-plugin-plugin</artifactId>

 <version>3.6.0</version>

 </plugin>

Chapter 5 Maven Lifecycle

64

 </plugins>

 </build>

</project>

The next step in the development process is creating the MOJO.

Listing 5-6 shows the code for SystemInfoMojo. The @Mojo annotation

marks the SystemInfoMojo class as a Mojo with “systeminfo” as the goal

name. The execute method contains that goal logic. In SystemInfoMojo,

we simply log several pieces of system information to the console.

Listing 5-6.  SystemInfoMojo Java Class

package com.apress.plugins;

import org.apache.commons.lang3.SystemUtils;

import org.apache.maven.plugin.AbstractMojo;

import org.apache.maven.plugin.MojoExecutionException;

import org.apache.maven.plugin.MojoFailureException;

import org.apache.maven.plugins.annotations.Mojo;

@Mojo(name = "systeminfo")

public class SystemInfoMojo extends AbstractMojo {

@Override

 �public void execute() throws MojoExecutionException,

MojoFailureException {

 getLog().info("Java Home: " + SystemUtils.JAVA_HOME);

 �getLog().info("Java Version: "+ SystemUtils.JAVA_

VERSION);

 getLog().info("OS Name: " + SystemUtils.OS_NAME);

 �getLog().info("OS Version: " + SystemUtils.OS_

VERSION);

 �getLog().info("User Name: " + SystemUtils.USER_NAME);

}

}

Chapter 5 Maven Lifecycle

65

The final step in this process is installing the plug-in in the Maven

repository. Run the mvn install command at the root of the directory and

you should get the output shown in Listing 5-7.

Listing 5-7.  Maven install Command

C:\apress\gswm-book\chapter5\gswm-maven-plugin>mvn install

[INFO] Scanning for projects...

[INFO]

[INFO] --------< com.apress.plugins:gswm-maven-plugin >--------

[INFO] Building gswm-maven-plugin 1.0.0

[INFO] -------------------[maven-plugin]---------------------

[INFO]

[INFO] --- maven-resources-plugin:2.6:resources (default-

resources) @ gswm-maven-plugin

[INFO] java-annotations mojo extractor found 1 mojo descriptor.

[INFO] --- maven-install-plugin:2.4:install (default-install)

@ gswm-maven-plugin ---

[INFO] Installing C:\apress\gswm-book\chapter5\gswm-maven-

plugin\target\gswm-maven-plugin-1.0.0.jar to C:\Users\<<USER_

NAME>>\.m2\repository\com\apress\plugins\gswm-plugin\1.0.0\

gswm-maven-plugin-1.0.0.jar

[INFO] Installing C:\apress\gswm-book\chapter5\gswm-maven-

plugin\pom.xml to C:\Users\<<USER_NAME>>\.m2\repository\com\

apress\plugins\gswm-maven-plugin\1.0.0\gswm-maven-plugin--

1.0.0.pom

[INFO] --

[INFO] BUILD SUCCESS

Chapter 5 Maven Lifecycle

66

Now you’re ready to start using this plug-in. Remember that the syntax

to run any goal is mvn pluginId:goal-name. Listing 5-8 shows this plug-in

in action. Notice system information displayed on the console.

Listing 5-8.  Running the SystemInfoMojo Plug-in

C:\apress\gswm-book\chapter5\gswm-plugin>mvn com.apress.

plugins:gswm-maven-plugin:systeminfo

[INFO] Scanning for projects...

[INFO] --- gswm-maven-plugin:1.0.0:systeminfo (default-cli)

@ gswm-maven-plugin ---

[INFO] Java Home: C:\java\jdk-11

[INFO] Java Version: 11.0.1

[INFO] OS Name: Windows

[INFO] OS Version: 10

[INFO] User Name: Balaji

[INFO] --

The newly developed plug-in is also ready to be used in other

Maven projects. Listing 5-9 shows a portion of the POM file that attaches

systeminfo goal to the validate phase.

Listing 5-9.  POM File Using systeminfo Goal

<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.plugins</groupId>

 <artifactId>gswm-plugin-test</artifactId>

 <version>1.0.0</version>

 <packaging>jar</packaging>

 <description>Plugin Test</description>

Chapter 5 Maven Lifecycle

67

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 </properties>

 <dependencies />

 <build>

 <plugins>

 <plugin>

 <groupId>com.apress.plugins</groupId>

 �<artifactId>gswm-maven-plugin

</artifactId>

 <version>1.0.0</version>

 <executions>

 <execution>

 <phase>validate</phase>

 <goals>

 �<goal>systeminfo

</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

When the Maven phase such as compile or package is invoked, you will

see the output of the systeminfo goal as shown in Listing 5-10.

Chapter 5 Maven Lifecycle

68

Listing 5-10.  Compile Phase Output

mvn compile

[INFO] Scanning for projects...

[INFO] Building gswm-plugin-test 1.0.0

[INFO] Java Home: C:\java\jdk-11

[INFO] Java Version: 11.0.1

[INFO] OS Name: Windows

[INFO] OS Version: 10

[INFO] User Name: Balaji

[INFO] --- maven-resources-plugin:2.6:resources (default-resources)

@ gswm-plugin-test ---

�Summary
Maven uses plug-in-based architecture that allows its functionality to be

extended easily. Each plug-in is a collection of one or more goals that can

be used to execute tasks, such as compiling source code or running tests.

Maven ties goals to phases. Phases are typically executed in a sequence as

part of a build lifecycle. You also learned the basics of creating a plug-in.

In the next chapter, you will be introduced to archetypes and learn

about multimodule projects.

Chapter 5 Maven Lifecycle

69© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_6

CHAPTER 6

Maven Archetypes
Up to this point in the book, you have created Maven projects manually,

generating the folders and creating the pom.xml files from scratch. This can

become tedious, especially when you frequently have to create projects.

To address this issue, Maven provides archetypes. Maven archetypes are

project templates that allow users to generate new projects easily.

Maven archetypes also provide a great platform to share best practices

and enforce consistency beyond Maven’s standard directory structure.

For example, an enterprise can create an archetype with the company’s

branded cascading style sheets (CSS), approved JavaScript libraries,

and reusable components. Developers using this archetype to generate

projects will automatically conform to the company’s standards.

�Built-in Archetypes
Maven provides hundreds of out-of-the-box archetypes for developers

to use. Additionally, a lot of open source projects provide additional

archetypes that you can download and use. Maven also provides an

archetype plug-in with goals to create new archetypes and generate

projects from existing archetypes.

The archetype plug-in’s generate goal allows you to view and select

an archetype for use. Listing 6-1 shows the results of running the generate

goal at the command line. At the time of writing this book, there are couple

thousand archetypes to choose from. This chapter will look at using a few

of these archetypes.

70

Listing 6-1.  Maven generate Goal

$mvn archetype:generate

[INFO] Scanning for projects...

[INFO] Generating project in Interactive mode

[INFO] No archetype defined. Using maven-archetype-quickstart

(org.apache.maven.archetypes:maven-archetype-quickstart:1.0)

Choose archetype:

1: remote -> am.ik.archetype:elm-spring-boot-blank-archetype

(Blank multi project for Spring Boot + Elm)

2: remote -> am.ik.archetype:maven-reactjs-blank-archetype

(Blank Project for React.js)

3: remote -> am.ik.archetype:msgpack-rpc-jersey-blank-archetype

(Blank Project for Spring Boot + Jersey)

...........................

...........................

2460: remote -> ws.osiris:osiris-archetype (Maven Archetype for

Osiris)

2461: remote -> xyz.luan.generator:xyz-gae-generator (-)

2462: remote -> xyz.luan.generator:xyz-generator (-)

2463: local -> com.inflinx.book.ldap:practical-ldap-empty-

archetype (-)

2464: local -> com.inflinx.book.ldap:practical-ldap-archetype (-)

2465: local -> com.apress.gswm:gswm-web-archetype (gswm-web-

archetype)

Choose a number or apply filter (format: [groupId:]artifactId,

case sensitive contains): 1398:

Chapter 6 Maven Archetypes

71

�Generating a Web Project
Maven provides the maven-archetype-webapp archetype for generating a

web application. Let’s generate the application by running the following

command in the C:\apress\gswm-book\chapter6 folder:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-

webapp

The command runs in interactive mode. Enter the following

information for the requested inputs:

Define value for property 'groupId': : com.apress.gswmbook

Define value for property 'artifactId': : gswm-web

Define value for property 'version': 1.0-SNAPSHOT: :

<<Hit Enter>>

Define value for property 'package': com.apress.gswmbook: : war

Confirm the properties configuration:

groupId: com.apress.gswmbook

artifactId: gswm-web

version: 1.0-SNAPSHOT

package: war

 Y: <<Hit Enter>>

The generated directory structure should resemble the one shown in

Figure 6-1.

Chapter 6 Maven Archetypes

72

The pom.xml file is minimal and only has a JUnit dependency. Maven

makes it easier to run your web application using embedded web servers,

such as Tomcat and Jetty. Listing 6-2 shows the modified pom.xml file with

a Jetty plug-in added.

Listing 6-2.  Modified pom.xml with Embedded Jetty Plug-in

<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm-web</artifactId>

 <packaging>war</packaging>

 <version>1.0-SNAPSHOT</version>

 <name>gswm-web Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

Figure 6-1.  Maven web project structure

Chapter 6 Maven Archetypes

73

 <build>

 <finalName>gswm-web</finalName>

 <plugins>

 <plugin>

 <groupId>org.eclipse.jetty</groupId>

 <artifactId>jetty-maven-plugin</artifactId>

 <version>9.4.12.RC2</version>

 </plugin>

 </plugins>

 </build>

</project>

In order to launch the web application using Jetty server, run the

following command at the root directory of the project:

mvn jetty:run

You will see the project deployed and view output similar to that

shown in Listing 6-3.

Listing 6-3.  Output from the Jetty run Command

[INFO] Started o.e.j.m.p.JettyWebAppContext@e38f0b7{Archetype

Created Web Application,/,file: C:/apress/gswm-book/chapter6/

gswm-web/src/main/webapp/,AVAILABLE}{file:///C:/apress/gswm-

book/chapter6/gswm-web/src/main/webapp/}

[INFO] Started ServerConnector@5a0e0886{HTTP/1.1,[http/1.1]}

{0.0.0.0:8080}

[INFO] Started @5120ms

[INFO] Started Jetty Server

Now launch the browser and navigate to http://localhost:8080/.

You should see the web page as shown in Figure 6-2.

Chapter 6 Maven Archetypes

74

�Multimodule Project
Java Enterprise Edition (JEE) projects are often split into several modules

to ease development and maintainability. Each of these modules produces

artifacts such as Enterprise JavaBeans (EJBs), web services, web projects,

and client jars. Maven supports development of such large JEE projects by

allowing multiple Maven projects to be nested under a single Maven project.

The layout of such a multimodule project is shown in Figure 6-3. The parent

project has a pom.xml file and individual Maven projects inside it.

Figure 6-2.  Web project launched in browser

Figure 6-3.  Multimodule project structure

Chapter 6 Maven Archetypes

75

In the rest of this section, we will explain how to build a multimodule

project for the scenario where you have to split your large project into

a web application (WAR artifact) that provides a user interface, a service

project (JAR artifact) that holds service layer code, and a persistence

project that holds your repository layer code. Figure 6-4 provides a visual

representation of this scenario.

Let’s start the process by generating the parent project. To do this, run

the following command at the command line under C:\apress\gswm-

book\chapter6:

mvn archetype:generate -DgroupId=com.apress.gswmbook

-DartifactId=gswm-parent -Dversion=1.0.0-SNAPSHOT

-DarchetypeGroupId=org.codehaus.mojo.archetypes

-DarchetypeArtifactId=pom-root

The archetype pom-root creates the gswm-parent folder and a pom.xml

file underneath it. As you can see in Listing 6-4, the generated pom.xml file

has minimal content. Notice that the packaging of the parent project is set

to type pom.

Figure 6-4.  Maven multimodule project

Chapter 6 Maven Archetypes

76

Listing 6-4.  Parent pom.xml File

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm-parent</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <packaging>pom</packaging>

 <name>gswm-parent</name>

</project>

Then create the web project by running the following command in the

C:\apress\gswm-book\chapter6\gswm-parent folder:

mvn archetype:generate -DgroupId=com.apress.gswmbook

-DartifactId=gswm-web -Dversion=1.0.0-SNAPSHOT -Dpackage=war

-DarchetypeArtifactId=maven-archetype-webapp

During this web project generation, you are providing Maven

coordinates, such as groupId, version, and so on, as parameters to the

generate goal. This created the gswm-web project.

The next step is to create the service project. Run the following

command under C:\apress\gswm-book\chapter6\gswm-parent:

mvn archetype:generate -DgroupId=com.apress.gswmbook

-DartifactId=gswm-service -Dversion=1.0.0-SNAPSHOT

-DarchetypeArtifactId=maven-archetype-quickstart

-DinteractiveMode=false

Notice that you didn’t provide the package parameter, as the maven-

archetype-quickstart produces a JAR project by default. Also, notice the

Chapter 6 Maven Archetypes

77

use of the interactiveMode parameter. This instructs Maven to simply run

the command without prompting the user for input.

Similar to the previous step, create another Java project gswm-

repository by running the following command under C:\apress\gswm-

book\chapter6\gswm-parent:

mvn archetype:generate -DgroupId=com.apress.gswmbook

-DartifactId=gswm-repository -Dversion=1.0.0-SNAPSHOT

-DarchetypeArtifactId=maven-archetype-quickstart

-DinteractiveMode=false

Now that you have all of the projects generated, let’s look at the pom.

xml file under gswm-parent. Listing 6-5 shows the pom.xml file.

Listing 6-5.  Parent pom.xml File with Modules

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm-parent</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <packaging>pom</packaging>

 <name>gswm-parent</name>

 <modules>

 <module>gswm-web</module>

 <module>gswm-service</module>

 <module>gswm-repository</module>

 </modules>

</project>

Chapter 6 Maven Archetypes

78

The modules element allows you to declare child modules in a

multimodule project. As you generated each module, Maven intelligently

registered them as a child module. Additionally, it modified the individual

module’s pom.xml file and added the parent pom information. Listing 6-6

shows gswm-web project’s pom.xml file with the parent pom elements.

Listing 6-6.  The pom.xml File for the Web Module

<?xml version="1.0"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd"

xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm-parent</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </parent>

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm-web</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <packaging>war</packaging>

 <name>gswm-web Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

Chapter 6 Maven Archetypes

79

 <build>

 <finalName>gswm-web</finalName>

 </build>

</project>

With all of the infrastructure set up, you are ready to build the next

project. To accomplish this, simply run the mvn package command under

gswm-project, as shown in Listing 6-7.

Listing 6-7.  Maven Package Run on the Parent Project

C:\apress\gswm-book\chapter6\gswm-parent>mvn package

[INFO] Scanning for projects...

[INFO] --

[INFO] Reactor Build Order:

[INFO]

[INFO] gswm-parent

[INFO] gswm-web Maven Webapp

[INFO] gswm-service

[INFO] gswm-repository

[INFO] --

[INFO] Reactor Summary:

[INFO]

[INFO] gswm-parent SUCCESS [0.001s]

[INFO] gswm-web Maven Webapp SUCCESS [1.033s]

[INFO] gswm-service SUCCESS [0.552s]

[INFO] gswm-repository SUCCESS [0.261s]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

Chapter 6 Maven Archetypes

80

�Creating an Archetype
Maven provides several ways to create a new archetype. Here we will use

an existing project to generate an archetype.

Let’s start by creating a prototype project that you will use as the seed

for archetype creation. This project will be Servlet 4.0 compatible and has

a Status Servlet that returns a HTTP status code 200. Instead of creating a

web project from scratch, copy the previously generated gswm-web project

code and create gswm-web-prototype under C:\apress\gswm-book\

chapter6. Make the following changes to the newly copied project:

	 1.	 Remove target folder and other resources, such as

integrated development environment (IDE)-specific

files (.project, .classpath, and so forth), that you

don’t want to end up in the archetype.

	 2.	 Replace the contents of the web.xml file under the

webapp/WEB-INF folder with the following code. This

will upgrade the web application to use Servlet 4.0.

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="4.0" xmlns="http://xmlns.jcp.org/xml/ns/

javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd">

 �<display-name>Archetype Created Web Application

</display-name>

</web-app>

	 3.	 Add the Servlet 4.0 dependency to the pom.xml file.

The updated pom.xml is shown in Listing 6-8.

Chapter 6 Maven Archetypes

81

Listing 6-8.  The pom.xml with Servlet Dependency

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm-web</artifactId>

 <packaging>war</packaging>

 <version>1.0-SNAPSHOT</version>

 <name>gswm-web Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <dependencies>

 <dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>javax.servlet-api</artifactId>

 <version>4.0.1</version>

 <scope>provided</scope>

 </dependency>

 </dependencies>

 <build>

 <finalName>gswm-web</finalName>

 <plugins>

 <plugin>

 <groupId>org.eclipse.jetty</groupId>

 <artifactId>jetty-maven-plugin</artifactId>

 <version>9.4.12.RC2</version>

 </plugin>

 </plugins>

 </build>

</project>

Chapter 6 Maven Archetypes

82

	 4.	 Because you will be doing Java web development,

create a folder named java under src/main.

Similarly, create test/java and test/resources

folders under src.

	 5.	 Create the AppStatusServlet.java file in the com.

apress.gswmbook.web.servlet package under src/

main/java. The package com.apress.gswmbook.

web.servlet translates to folder structure com\

apress\gswmbook\web\servlet. The source code

for AppStatusServlet.java is shown in Listing 6-9.

Listing 6-9.  AppStatusServlet Java Class Source Code

package com.apress.gswmbook.web.servlet;

import javax.servlet.annotation.WebServlet;

import javax.servlet.∗;
import javax.servlet.http.∗;
import java.io.∗;

@WebServlet("/status")

public class AppStatusServlet extends HttpServlet {

 �public void doGet(HttpServletRequest request,

HttpServletResponse response) throws IOException {

 PrintWriter writer = response.getWriter();

 writer.println("OK");

 response.setStatus(response.SC_OK);

 }

}

The prototype project will be similar to the structure shown in

Figure 6-5.

Chapter 6 Maven Archetypes

83

Using the command line, navigate to the project folder gswm-web-

prototype and run the following command:

mvn archetype:create-from-project

Upon completion of the command, you should see the message

Archetype created in target/generated-sources/archetype. The newly

created archetype is now under gswm-web-prototype/target/generated-

sources/archetype.

Figure 6-5.  Generated prototype project

Chapter 6 Maven Archetypes

84

The next step is to move the newly created archetype into a separate

folder gswm-web-archetype so that it can be tweaked before it is published.

To accomplish this, follow these steps:

	 1.	 Create folder gswm-web-archetype in the

C:\apress\gswm-book\chapter6 folder.

	 2.	 Copy pom.xml and src directory and its files from

the C:\apress\gswm-book\chapter6\gswm-web-

prototype\target\generated-sources\archetype

folder to the gswm-web-archetype folder.

The directory structure for gswm-web-archetype should be similar to

that shown in Figure 6-6.

Figure 6-6.  Web archetype project structure

Chapter 6 Maven Archetypes

85

Let’s start the modification process with the pom.xml file located at

the root of gswm-web-archetype folder. Change the artifactId to “gswm-

web-archetype” in the pom file. Next we will modify the pom.xml file

located at gswm-web-archetype\src\main\resources\archetype-

resources. Change the <finalName> in the pom.xml file from gswm-web

to ${artifactId}. During project creation, Maven will replace the

${artifactId} expression with the user-supplied artifactId value.

When a project is created from an archetype, Maven prompts the user

for a package name. It will create the directories corresponding to the

package under the src/main/java folder of the newly created project.

It then moves all of the contents under the archetype’s archetype-

resources/src/main/java folder into that package. Because you would

like the AppStatusServlet under the subpackage web.servlet, create the

folder web/servlet and move AppStatusServlet.java under the newly

created folder. The new location of the AppStatusServlet.java is shown

in Figure 6-7.

Open AppStatusServlet.java and change the package name from

package ${package}; to package ${package}.web.servlet;.

Figure 6-7.  AppStatusServlet under the web.servlet package

Chapter 6 Maven Archetypes

86

The final step in creating the archetype is to run the following at the

command line inside the folder gswm-web-archetype:

mvn clean install

�Using the Archetype
Once the archetype is installed, the easiest way to create a project from it is

to run the following command under C:\apress\gswm-book\chapter6:

mvn archetype:generate -DarchetypeCatalog=local

Enter the values shown in Listing 6-10 for the Maven prompts, and you

will see a test-project created.

Listing 6-10.  Creating a New Project Using Archetype

C:\apress\gswm-book\chapter6>mvn archetype:generate

-DarchetypeCatalog=local

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO] Generating project in Interactive mode

[INFO] No archetype defined. Using maven-archetype-quickstart

(org.apache.maven.archetypes:maven-archetype-quickstart:1.0)

Choose archetype:1: local -> com.apress.gswmbook:gswm-web-

archetype (gswm-web-archetype)

Choose a number or apply filter (format: [groupId:]artifactId,

case sensitive contains): : 1

Define value for property 'groupId': : com.apress.gswmbook

Define value for property 'artifactId': : test-project

Chapter 6 Maven Archetypes

87

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.apress.gswmbook: :

Confirm properties configuration:

groupId: com.apress.gswmbook

artifactId: test-project

version: 1.0-SNAPSHOT

package: com.apress.gswmbook

 Y: :

project

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

Because the pom.xml file for the test-project already has the

embedded Jetty plug-in, run mvn jetty:run in the command line under

the folder C:\apress\gswm-book\chapter6\test-project to launch the

project. Open a browser and navigate to http://localhost:8080/status.

You will see the string OK displayed.

�Summary
Maven archetypes are project templates that allow you to bootstrap new

projects quickly. This chapter used built-in archetypes for generating

advanced Maven projects, such as web projects and multimodule projects.

You also looked at creating and using a custom archetype.

In the next chapter, you will learn the basics of site generation and

creating documentation and reports using Maven.

Chapter 6 Maven Archetypes

89© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_7

CHAPTER 7

Documentation
and Reporting
Documentation and reporting are key aspects of any project. This is

especially true for enterprise and open source projects, where many

people collaborate to develop the project. This chapter looks at some of

Maven’s tools and plug-ins, which make publishing and maintenance of

online documentation a breeze.

In this chapter, you will once again be working with the gswm Java

project you built in earlier chapters. The gswm project is also available in

the C:\apress\gswm-book\chapter7 folder.

�Using the Site Lifecycle
As discussed in Chapter 5, Maven provides the site lifecycle that can

be used to generate a project’s documentation. Let’s run the following

command from the gswm directory:

mvn site

The site lifecycle uses Maven’s site plug-in to generate project’s

site. Once this command completes, a site folder gets created under the

project’s target folder. Figure 7-1 shows the contents of the site folder.

90

Open the index.html file in a browser to view the generated site.

Maven automatically applies a default skin to the site and generates the

corresponding images and CSS files. Figure 7-2 shows the generated

index.html file.

Clicking the “Dependencies” link at the bottom of the left navigation

will take you to the Project Dependencies page. The Project Dependencies

page provides valuable information regarding the project’s direct and

transitive dependencies. It also provides the licensing information

associated with those dependencies, as shown in Figure 7-3.

Figure 7-1.  Generated site folder

Figure 7-2.  Generated index page

Chapter 7 Documentation and Reporting

91

Maven allows you to add information to pom.xml file so that the

generated site contains useful information. Listing 7-1 shows the updated

pom.xml file. For the site to successfully generate, we are explicitly

declaring the latest version of the maven-site-plugin.

Listing 7-1.  The pom.xml File with Project Information

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

Figure 7-3.  Project dependencies page

Chapter 7 Documentation and Reporting

92

 <groupId>com.apress.gswmbook</groupId>

 <artifactId>gswm</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>Getting Started with Maven</name>

 <url>http://apress.com</url>

 <description>

 �This project acts as a starter project for the Introducing

Maven book (http://www.apress.com/9781484208427) published

by Apress.

 </description>

 <mailingLists>

 <mailingList>

 <name>GSWM Developer List</name>

 <subscribe>gswm-dev-subscribe@apress.com</subscribe>

 <unsubscribe>gswm-dev-unsubscribe@apress.com</unsubscribe>

 <post>developer@apress.com</post>

 </mailingList>

 </mailingLists>

 <licenses>

 <license>

 <name>Apache License, Version 2.0</name>

 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>

 </license>

 </licenses>

 <!--- Developer and Dependency removed for brevity --->

 <build>

 <plugins>

 <plugin>

Chapter 7 Documentation and Reporting

93

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.8.1</version>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-site-plugin</artifactId>

 <version>3.8.2</version>

 </plugin>

 </plugins>

</build>

</project>

In Listing 7-1, we use the description element to provide a

description of the project. The mailingList element information about

different mailing lists associated with the project, and the license element

includes the project’s license. With updated pom.xml file in place, let’s

regenerate the site by running the following command:

mvn clean site

Launch the index.html file under the newly generated target\

site folder. Figures 7-4A and 7-4B show the new About and Project

License pages, respectively. Notice that Maven uses the URL declared in

the license element to download the license text and include it in the

generated web site.

Chapter 7 Documentation and Reporting

94

�Advanced Site Configuration
In the preceding section, project information was specified in the pom.

xml file for Maven to use during site generation. For larger projects, this

approach would result in bloated and hard-to-maintain pom.xml files.

Also, enterprises typically prefer to use their branding and logos in the

Figure 7-4A.  Generated About page

Figure 7-4B.  Generated Project Licenses page

Chapter 7 Documentation and Reporting

95

generated site rather than the default Maven skin. To address these

concerns, Maven allows you to specify content and configuration for site

generation under the aptly named src/site folder. Figure 7-5 shows the

directory structure for a simple site folder.

The site.xml file, also known as the site descriptor, is used to

customize the generated site. We will look at this file in just a second.

The apt folder contains site content written in Almost Plain Text (APT)

format. The APT format allows documentation to be created in a syntax

that resembles plain text. More information about the APT format can

be found on the Maven web site (http://maven.apache.org/doxia/

references/apt-format.html). In addition to APT, Maven supports other

formats, such as FML, Xdoc, and Markdown.

Maven provides several archetypes that allow you to generate site

structure automatically. To update the existing gswm project, run the

following command in the C:\apress\gswm-book\chapter7\gswm folder.

When prompted, enter the values for groupId, artifactId, and package.

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.

archetypes -DarchetypeArtifactId=maven-archetype-site-simple

-DarchetypeVersion=1.4

Define value for property 'groupId': : com.apress.gswmbook

Define value for property 'artifactId': : gswm

Define value for property 'version': 1.0-SNAPSHOT: :

1.0.0-SNAPSHOT

Define value for property 'package': com.apress.gswmbook: :

 <<Press Enter>>

Figure 7-5.  Site folder directory structure

Chapter 7 Documentation and Reporting

http://maven.apache.org/doxia/references/apt-format.html
http://maven.apache.org/doxia/references/apt-format.html

96

Upon successful completion of the command, you will see the site

folder created under gswm\src with the site.xml and apt folders. Let’s

start by adding the project description to index.apt. Replace the contents

of the index.apt file with the code from Listing 7-2.

Listing 7-2.  The index.apt File Contents

 Getting Started with Maven

 Apress

 08-10-2019

This project acts as a starter project for the Introducing

Maven book published by Apress. For more information, check out

the Apress site: www.apress.com.

The first three sections contain the document’s title, author, and date.

The following block of text contains the project description. Running mvn

clean site results in a new About page, as shown in Figure 7-6.

Chapter 7 Documentation and Reporting

97

The site.xml file allows you to customize the generated site such as

changing the title and overriding default navigation and look and feel.

To better understand site.xml capability, let’s change the generated site

logo. Static assets, such as images and HTML files, are placed in the site/

resources folder. When Maven builds the site, it copies the assets in the

resources folder to the root of the generated site. Copy the company logo

company.png from the C:\apress\gswm-book\chapter7 folder and place it

in the gswm/src/site/resources/images folder.

Replace the site.xml file with the contents of Listing 7-3. Notice that

the src element for the logo includes the relative path images/company.

png. The menu element is used to create links to custom web pages/

content/Wiki pages you want to include in the site.

Listing 7-3.  The site.xml File Contents

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name="${artifactId}" xmlns="http://maven.apache.org/

DECORATION/1.8.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

Figure 7-6.  About page with new content

Chapter 7 Documentation and Reporting

98

 �xsi:schemaLocation="http://maven.apache.org/DECORATION/1.8.0

http://maven.apache.org/xsd/decoration-1.8.0.xsd">

 <bannerLeft>

 <name>Apress</name>

 <src>images/company.png</src>

 <href>http://apress.com</href>

 </bannerLeft>

 <skin>

 <groupId>org.apache.maven.skins</groupId>

 <artifactId>maven-fluido-skin</artifactId>

 <version>1.7</version>

 </skin>

 <body>

 <links>

 <item name="Maven" href="https://maven.apache.org/"/>

 </links>

 <menu name="Documentation">

 <item name="Apache Site" href="http://www.apache.org"/>

 </menu>

 <menu ref="reports" />

 </body>

</project>

Running mvn clean site generates the site with the new logo and

additional navigation item, as shown in Figure 7-7.

Chapter 7 Documentation and Reporting

99

�Generating Javadoc Reports
Javadoc is the de facto standard for documenting Java code. It helps

developers understand what a class or a method does. Javadoc also

highlights deprecated classes, methods, or fields.

Maven provides a Javadoc plug-in, which uses the Javadoc tool for

generating Javadocs. Integrating the Javadoc plug-in simply involves

declaring it in the reporting element of pom.xml file, as shown in Listing 7-4.

Plug-ins declared in the pom reporting element are executed during site

generation.

Listing 7-4.  The pom.xml Snippet with Javadoc Plug-in

<project>

 <!—Content removed for brevity-->

 <reporting>

Figure 7-7.  About page with the new logo

Chapter 7 Documentation and Reporting

100

 <plugins>

 <plugin>

 <artifactId>maven-javadoc-plugin</artifactId>

 </plugin>

 </plugins>

 </reporting>

</project>

Now that you have the Javadoc plug-in configured, let’s run mvn clean

site to generate the Javadoc. After the command successfully runs, you

will notice the apidocs folder created under gswm /target/site. Launch

index.html file under site, and navigate to Project Reports ➤ Javadoc.

Figure 7-8 shows the Javadoc generated for the gswm project.

Figure 7-8.  Generated Javadoc page

Chapter 7 Documentation and Reporting

101

�Generating Unit Test Reports
Test-driven development has become the norm in enterprises today. Unit

tests provide immediate feedback to developers and allow them to build

quality code. Considering how important tests are, Maven executes all of

the tests for each build. Any test failure results in a failed build.

Maven offers the Surefire plug-in that provides a uniform interface

for running tests created by frameworks such as JUnit or TestNG. It also

generates execution results in various formats such as XML and HTML.

These published results enable developers to find and fix broken tests

quickly.

The Surefire plug-in is configured in the same way as the Javadoc plug-

in in the reporting section of the pom file. Listing 7-5 shows the Surefire

plug-in configuration.

Listing 7-5.  The pom.xml Snippet with Surefire Plug-in

<project>

 <!—Content removed for brevity-->

 <reporting>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-report-plugin</artifactId>

 <version>2.17</version>

 </plugin>

 </plugins>

 </reporting>

</project>

Now that Surefire is configured, let’s generate a Maven site by running

mvn clean site command. Upon successful execution of the command,

you will see a Surefire Reports folder generated under gswm\target.

Chapter 7 Documentation and Reporting

102

It contains the test execution results in XML and TXT formats. The same

information will be available in HTML format in the surefire-report.

html file under site folder. Launch index.html file under site, and navigate

to Project Reports ➤ Surefire Report. Figure 7-9 shows Surefire Report for

the gswm project.

�Generating Code Coverage Reports
Code coverage is a measurement of how much source code is being

exercised by automated tests. Essentially, it provides an indication of the

quality of your tests. JaCoCo (open source) and Atlassian’s Clover are two

popular code coverage tools for Java.

In this section, you will use JaCoCo for measuring this project’s code

coverage. Listing 7-6 shows JaCoCo plugin configuration. The prepare-

agent goal sets a property pointing to JaCoCo runtime environment

that gets passed as a VM argument when unit tests are run. The report

goal generates the code coverage reports after the unit test execution is

complete.

Figure 7-9.  Generated Surefire Report

Chapter 7 Documentation and Reporting

103

Listing 7-6.  The pom.xml Snippet with the JaCoCo Plug-in

<project>

 <build>

 <plugins>

 <!--Content removed for brevity-->

 <plugin>

 <groupId>org.jacoco</groupId>

 �<artifactId>jacoco-maven-plugin

</artifactId>

 <version>0.8.4</version>

 <executions>

 <execution>

 <id>jacoco-init</id>

 <goals>

 <goal>prepare-agent</goal>

 </goals>

 </execution>

 <execution>

 <id>jacoco-report</id>

 <phase>test</phase>

 <goals>

 <goal>report</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 <build>

</project>

Chapter 7 Documentation and Reporting

104

Now that the plug-in is configured, let’s generate the site using the

mvn clean site command. Upon successful completion of the command,

JaCoCo will create a jacoco folder under gswm\target\site. Launch the

code coverage report by double-clicking the index.html file under jacoco

folder. The report should be similar to the one shown in Figure 7-10.

�Generating the SpotBugs Report
SpotBugs is a tool for detecting defects in Java code. It uses static analysis

to detect bug patterns, such as infinite recursive loops and null pointer

dereferences. Listing 7-7 shows the SpotBugs configuration.

Listing 7-7.  The pom.xml Snippet with SpotBugs Plug-in

<project>

 <!—Content removed for brevity-->

 <reporting>

 <plugins>

 <plugin>

 <groupId>com.github.spotbugs</groupId>

 <artifactId>spotbugs-maven-plugin</artifactId>

 <version>3.1.12</version>

 </plugin>

 </plugins>

 </reporting>

</project>

Figure 7-10.  Generated JaCoCo report

Chapter 7 Documentation and Reporting

105

Once the Maven site gets generated, open index.html file under site

folder and navigate to Project Reports ➤ SpotBugs to view the SpotBugs

report. It should be similar to the one shown in Figure 7-11.

�Summary
The documentation and reporting capabilities provided by Maven play

an important role in creating maintainable, quality software. This chapter

explained the basics of using the site lifecycle and the configuration

needed to produce documentation. You also looked at generating

Javadocs, test coverage, and SpotBugs reports.

In the next chapter, we will explain how to integrate Maven with Nexus

and Git. You will also learn about Maven’s release process.

Figure 7-11.  Generated SpotBugs Bug Detector Report

Chapter 7 Documentation and Reporting

107© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_8

CHAPTER 8

Maven Release
Maven provides the release plugin that automates steps involved with

releasing software. Before we deep dive into the Maven release process,

we will set up and configure Nexus repository and use Maven to publish

artifacts to Nexus.

�Integration with Nexus
Repository managers are a key part of Maven deployment in enterprises.

Repository managers act as a proxy of public repositories, facilitate artifact

sharing and team collaboration, ensure build stability, and enable the

governance of artifacts used in the enterprise.

Sonatype Nexus repository manager is a popular open source software

that allows you to maintain internal repositories and access external

repositories. It allows repositories to be grouped and accessed via a single

URL. This enables the repository administrator to add and remove new

repositories behind the scenes without requiring developers to change the

configuration on their computers. Additionally, it provides hosting capabilities

for sites generated using Maven site and artifact search capabilities.

Before we look at integrating Maven with Nexus, you will need to install

Nexus on your local machine. Nexus is distributed as an archive, and it

comes bundled with a Jetty instance. Download the Nexus distribution

(.zip version for Windows) from Sonatype’s web site at https://help.

sonatype.com/repomanager3/download. At the time of this writing,

https://help.sonatype.com/repomanager3/download
https://help.sonatype.com/repomanager3/download

108

version 3.18.1-01 of Nexus is available. Unzip the file, and place the

contents on your machine. In this book, we assume the contents to be

under C:\tools\nexus folder.

Note  Most enterprises typically have repository managers installed
and available on a central server. If you already have access to a
repository manager, skip this part of the installation.

Launch your command line in administrator mode and navigate to the

bin folder located under C:\tools\nexus\nexus-3.18.1-01. Then run the

command nexus /install Nexus_Repo_Manager. You will see the success

message as illustrated in Figure 8-1.

Note  Nexus 3.18 requires JRE 8 to function properly. Make sure
you have version 8 of JDK/JRE installed on your local machine. Also,
make sure that JAVA_HOME is pointing to version 8 of the JDK.

On the same command line, run the command nexus start to launch

Nexus. Figure 8-2 shows the result of running this command.

Figure 8-1.  Success message when installing Nexus

Figure 8-2.  Starting Nexus

By default, Nexus runs on port 8081. Launch a web browser and navigate

to Nexus at http://localhost:8081/. It will take several minutes, but

eventually you should see the Nexus launch screen as shown in Figure 8-3.

Chapter 8 Maven Release

109

Click the “Sign In” link on the top-right corner to log in to Nexus. You

will be presented with a login modal containing the location to the file with

autogenerated admin password as shown in Figure 8-4.

Log in to Nexus with the username admin and password copied from

admin.password file. You will be asked to change the password as shown

in Figure 8-5. For the exercises in this book, I changed the password to

admin123.

Figure 8-3.  Nexus launch screen

Figure 8-4.  Nexus login modal

Chapter 8 Maven Release

110

Now that Nexus is installed and running, let’s modify the gwsm project

located under C:\apress\gswm-book\chapter8. You will start by adding a

distributionManagement element in the pom.xml file, as shown in Listing 8-1.

This element is used to provide repository information on where the

project’s artifacts will be deployed. The repository subelement indicates

the location where the released artifacts will be deployed. Similarly, the

snapshotRepository element identifies the location where the SNAPSHOT

versions of the project will be stored.

Listing 8-1.  The pom.xml with distributionManagement

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

 <dependencies>

 <!-- Content removed for brevity -->

 </dependencies>

 <distributionManagement>

 <repository>

 <id>nexusReleases</id>

 <name>Releases</name>

Figure 8-5.  Nexus change password screen

Chapter 8 Maven Release

111

 �<url>http://localhost:8081/repository/maven-releases

</url>

 </repository>

 <snapshotRepository>

 <id>nexusSnapshots</id>

 <name>Snapshots</name>

 �<url>http://localhost:8081/repository/maven-

snapshots</url>

 </snapshotRepository>

 </distributionManagement>

 <build>

 <!-- Content removed for brevity -->

 </build>

</project>

Note  Out of the box, Nexus comes with Releases and Snapshots
repositories. By default, SNAPSHOT artifacts will be stored in the
Snapshots Repository, and release artifacts will be stored in the
Releases repository.

Like most repository managers, deployment to Nexus is a protected

operation. For Maven to interact and deploy artifacts on Nexus, you need

to provide user with the right access roles in the settings.xml file.

Listing 8-2 shows the settings.xml file with the server information.

As you can see, we are using admin user information to connect to

Nexus. Notice that the IDs declared in the server tag – nexusReleases

and nexusSnapshots – must match the IDs of the repository and

snapshotRepository declared in the pom.xml file. Replace the contents of

the settings.xml file in the C:\Users\<<USER_NAME>>\.m2 folder with the

code in Listing 8-2.

Chapter 8 Maven Release

112

Listing 8-2.  Settings.xml File with Server Information

<?xml version="1.0" encoding="UTF-8" ?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

<servers>

 <server>

 <id>nexusReleases</id>

 <username>admin</username>

 <password>admin123</password>

 </server>

 <server>

 <id>nexusSnapshots</id>

 <username>admin</username>

 <password>admin123</password>

 </server>

</servers>

</settings>

This concludes the configuration steps for interacting with Nexus.

At the command line, run the command mvn deploy under the directory

C:\apress\gswm-book\chapter8\gswm. Upon successful execution of

the command, you will see the SNAPSHOT artifact under Nexus at

http://localhost:8081/#browse/browse:maven-snapshots, as shown in

Figure 8-6.

Chapter 8 Maven Release

113

�Project Release
Releasing a project is a complex process, and it typically involves the

following steps:

•	 Verify that there are no uncommitted changes on the

local machine.

•	 Remove SNAPSHOT from the version in the pom.xml file.

•	 Make sure that project is not using any SNAPSHOT

dependencies.

•	 Check in the modified pom.xml file to your source

control.

•	 Create a source control tag of the source code.

Figure 8-6.  SNAPSHOT artifact under Nexus

Chapter 8 Maven Release

114

•	 Build a new version of the artifact, and deploy it to a

repository manager.

•	 Increment the version in the pom.xml file, and prepare

for the next development cycle.

Maven has a release plug-in that provides a standard mechanism for

executing the preceding steps and releasing project artifacts. As you can

see, as part of its release process, Maven heavily interacts with the source

control system. In this section, you will be using Git as the source controls

system and GitHub as the remote server that houses repositories. A typical

interaction between Maven and GitHub is shown in Figure 8-7. Maven

releases are typically performed on a developer or build machine. Maven

requires Git client to be installed on such machines. These command-line

tools allow Maven to interact with GitHub and perform operations such as

checking out code, creating tags, and so forth.

Before we delve deeper into the Maven release process, you need to set

up the environment by completing the following steps:

	 1.	 Install Git client on your local machine.

	 2.	 Create a new remote repository on GitHub.

	 3.	 Check the project you will be using into the remote

repository.

Figure 8-7.  Interaction between Maven and GitHub

Chapter 8 Maven Release

115

�Git Client Installation
There are several Git clients that make it easy to interact with Git

repositories. Popular ones include SourceTree (www.sourcetreeapp.com/)

and GitHub Desktop (https://desktop.github.com/). In this book, we

will be using the client that comes with Git SCM distribution. Navigate to

https://git-scm.com/downloads and download the Windows version

of Git distribution. Double-click the downloaded exe file and accept the

default installation options. After the installation is complete, open a new

command-line window and type git --version. You should see a message

similar to Figure 8-8.

�Creating a GitHub Repository
GitHub is a collaborative development platform that allows you to host

public and private Git repositories for free. Before you can create a new

repository on GitHub, you need to create an account at https://github.

com/join. Once you have logged into GitHub using your credentials,

navigate to https://github.com/new and create a new repository as

shown in Figure 8-9.

Figure 8-8.  Git version

Chapter 8 Maven Release

http://www.sourcetreeapp.com/
https://desktop.github.com/
https://git-scm.com/downloads
https://github.com/join
https://github.com/join
https://github.com/new

116

�Checking in Source Code
The final step in getting your environment ready for Maven release is

checking in the gswm project under C:\apress\gswm-book\chapter8\

gswm to the newly created remove repository. Using your command line,

navigate to the C:\apress\gswm-book\chapter8\gswm folder and run the

following commands sequentially. Make sure you use the right remote

Figure 8-9.  New GitHub repository

Chapter 8 Maven Release

117

repository URL by replacing your GitHub account in the following remote

add command:

git init

git add .

git commit -m "Initial commit"

git remote add origin https://github.

com/<<your_git_hub_account>>/intro-maven.git

git push -u origin master

The Git push command will prompt you for your GitHub username

and password. Successful completion of the push command should give

the output shown in Figure 8-10.

Using your browser, navigate to your remote repository on GitHub and

you will see the checked-in code. Figure 8-11 shows the expected browser

screen.

Figure 8-10.  Output from the Git initial commit

Chapter 8 Maven Release

118

The preceding commands have pushed the code into the mater branch

on GitHub. However, Maven release plug-in interacts with the code in

the release branch. So, the final step in this setup is to create a new local

release branch and push it to GitHub by running the following commands:

git checkout –b release

git push origin release

�Maven Release
Releasing an artifact using Maven’s release process requires using two

important goals: prepare and perform. Additionally, the release plug-in

provides a clean goal that comes in handy when things go wrong.

�Prepare Goal
The prepare goal, as the name suggests, prepares a project for release.

As part of this stage, Maven performs the following operations:

•	 check-poms: Checks that the version in the pom.xml file

has SNAPSHOT in it.

•	 scm-check-modifications: Checks if there are any

uncommitted changes.

Figure 8-11.  Project checked into GitHub

Chapter 8 Maven Release

119

•	 check-dependency-snapshots: Checks the pom file to see

if there are any SNAPSHOT dependencies. It is a best

practice for your project to use released dependencies.

Any SNAPSHOT dependencies found in the pom.xml

file will result in release failure.

•	 map-release-versions: When prepare is run in an

interactive mode, the user is prompted for a release

version.

•	 map-development-versions: When prepare is run in

an interactive mode, the user is prompted for the next

development version.

•	 generate-release-poms: Generates the release pom file.

•	 scm-commit-release: Commits the release of the pom file

to the SCM.

•	 scm-tag: Creates a release tag for the code in the SCM.

•	 rewrite-poms-for-development: The pom file is updated

for the new development cycle.

•	 remove-release-poms: Deletes the pom file generated for

the release.

•	 scm-commit-development: Submits the pom.xml file

with the development version.

•	 end-release: Completes the prepare phase of the

release.

To facilitate this, you would provide the SCM information in the

project’s pom.xml file. Listing 8-3 shows the pom.xml file snippet with the

SCM information.

Chapter 8 Maven Release

120

Listing 8-3.  The pom.xml with SCM Information

<project>

 <modelVersion>4.0.0</modelVersion>

 <!-- Content removed for brevity -->

 <scm>

 �<connection>scm:git:https://github.com/bava/intro-maven.

git</connection>

 �<developerConnection>scm:git:https://github.com/bava/

intro-maven.git</developerConnection>

 <url>https://github.com/bava/intro-maven</url>

 </scm>

 <!-- Content removed for brevity -->

</project>

Once you have updated the pom.xml file on your local machine,

commit the modified file to GitHub by running the following commands:

git commit . -m "Added SCM Information"

git push origin release

In order for Maven to communicate successfully with the GitHub, it

needs GitHub credentials. You provide that information in the settings.xml

file, as shown in Listing 8-4. The ID for the server element is declared as

GitHub, as it must match the hostname.

Listing 8-4.  The settings.xml with GitHub Details

<?xml version="1.0" encoding="UTF-8" ?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

Chapter 8 Maven Release

121

<servers>

 <server>

 <id>nexusReleases</id>

 <username>admin</username>

 <password>admin123</password>

 </server>

 <server>

 <id>nexusSnapshots</id>

 <username>admin</username>

 <password>admin123</password>

 </server>

 <server>

 <id>github</id>

 <username>[your_github_account_name]</username>

 <password>[your_github_account_password]</password>

 </server>

 </servers>

</settings>

You now have all of the configuration required for Maven’s prepare

goal. Listing 8-5 shows the results of running the prepare goal. Because

the prepare goal was run in interactive mode, Maven will prompt you

for the release version, release tag or label, and the new development

version. Accept Maven’s proposed default values by pressing Enter for each

prompt.

Listing 8-5.  Maven prepare Command

C:\apress\gswm-book\chapter8\gswm>mvn release:prepare

[INFO] Scanning for projects...

[INFO]

[INFO] --------------< com.apress.gswmbook:gswm >--------------

[INFO] Building Getting Started with Maven 1.0.0-SNAPSHOT

Chapter 8 Maven Release

122

[INFO] --- maven-release-plugin:2.5.3:prepare (default-cli)

@ gswm ---

[INFO] Verifying that there are no local modifications...

[INFO] Executing: cmd.exe /X /C "git rev-parse --show-toplevel"

[INFO] Working directory: C:\apress\gswm-book\chapter8\gswm

[INFO] Executing: cmd.exe /X /C "git status --porcelain ."

What is the release version for "Getting Started with Maven"?

(com.apress.gswmbook:gswm) 1.0.0: :

What is SCM release tag or label for "Getting Started with

Maven"? (com.apress.gswmbook:gswm) gswm-1.0.0: :

What is the new development version for "Getting Started with

Maven"? (com.apress.gswmbook:gswm) 1.0.1-SNAPSHOT: :

[INFO] Checking in modified POMs...

[INFO] Tagging release with the label gswm-1.0.0...

[INFO] Executing: cmd.exe /X /C "git tag -F C:\Users\bavara\

AppData\Local\Temp\maven-scm-73613791.commit gswm-1.0.0"

[INFO] Executing: cmd.exe /X /C "git push https://github.com/

bava/intro-maven.git refs/tags/gswm-1.0.0"

[INFO] Release preparation complete.

[INFO] BUILD SUCCESS

Notice the Git commands getting executed as part of the prepare goal.

Successful completion of the prepare goal will result in the creation of a

Git tag, as shown in Figure 8-12. The pom.xml file in the gswm project will

now have version 1.0.1-SNAPSHOT.

Chapter 8 Maven Release

123

�Clean Goal
The prepare goal performs a lot of activities and generates temporary files,

such as release.properties and pom.xml.releaseBackup, as part of its

execution. Upon successful completion, it cleans up those temporary files.

Sometimes the prepare goal might fail (e.g., is unable to connect to Git)

and leave the project in a dirty state. This is where the release plug-in’s

clean goal comes into the picture. As the name suggests, it deletes any

temporary files generated as part of release execution.

Note T he release plug-in’s clean goal must be used only when the
prepare goal fails.

�Perform Goal
The perform goal is responsible for checking out code from the newly

created tag and builds and deploys the released code into the remote

repository.

The following phases are executed as part of perform goal:

•	 verify-completed-prepare-phases: This validates that a

prepare phase has been executed prior to running the

perform goal.

Figure 8-12.  Git tag created upon prepare execution

Chapter 8 Maven Release

124

•	 checkout-project-from-scm: Checks out the released

code from the SCM tag.

•	 run-perform-goal: Executes the goals associated with

perform. The default goal is deploy.

The output of running the perform goal on gswm project is shown in

Listing 8-6.

Listing 8-6.  Maven perform Command

C:\apress\gswm-book\chapter8\gswm>mvn release:perform

[INFO] Scanning for projects...

[INFO] -------------< com.apress.gswmbook:gswm >---------------

[INFO] Building Getting Started with Maven 1.0.1-SNAPSHOT

[INFO] --------------------[jar]-----------------------------

[INFO] --- maven-release-plugin:2.5.3:perform (default-cli)

@ gswm ---

[INFO] Checking out the project to perform the release ...

[INFO] Executing: cmd.exe /X /C "git clone --branch gswm-1.0.0

https://github.com/bava/intro-maven.git C:\apress\gswm-book\

chapter8\gswm\target\checkout"

[INFO] Invoking perform goals in directory C:\apress\gswm-book\

chapter8\gswm\target\checkout

[INFO] Executing goals 'deploy'...

 [INFO] Building jar: C:\apress\gswm-book\chapter8\gswm\target\

checkout\target\gswm-1.0.0-javadoc.jar

 [INFO] --- maven-install-plugin:2.4:install (default-install)

@ gswm ---

Chapter 8 Maven Release

125

 [INFO] Installing C:\apress\gswm-book\chapter8\gswm\target\

checkout\target\gswm-1.0.0.jar to C:\Users\bavara\.m2\

repository\com\apress\gswmbook\gswm\1.0.0\gswm-1.0.0.jar

 [INFO] --- maven-deploy-plugin:2.7:deploy (default-deploy)

@ gswm ---

[INFO] Uploading to nexusReleases: http://localhost:8081/

repository/maven-releases/com/apress/gswmbook/gswm/1.0.0/

gswm-1.0.0.jar

[INFO] Uploaded to nexusReleases: http://localhost:8081/

repository/maven-releases/com/apress/gswmbook/gswm/1.0.0/

gswm-1.0.0.jar (2.4 kB at 14 kB/s)

[INFO] Uploading to nexusReleases: http://localhost:8081/

repository/maven-releases/com/apress/gswmbook/gswm/1.0.0/

gswm-1.0.0.pom

[INFO] Uploaded to nexusReleases: http://localhost:8081/

repository/maven-releases/com/apress/gswmbook/gswm/1.0.0/

gswm-1.0.0-javadoc.jar (22 kB at 84 kB/s)

[INFO] BUILD SUCCESS

This completes the release of the 1.0.0 version of the gswm project. The

artifact ends up in the Nexus repository manager, as shown in Figure 8-13.

Chapter 8 Maven Release

126

�Summary
Internal repository managers such as Nexus allow enterprises to adopt Maven

completely. In addition to serving as public repository proxies, they enable

component sharing and governance. This chapter looked at integrating Maven

with Nexus and walked you through the process of deploying an artifact to

Nexus. You also learned Maven’s release process and its different phases.

In the next chapter, we will learn the concepts of continuous

integration (CI) and install and configure Jenkins – a popular open source

CI tool.

Figure 8-13.  Nexus with released artifact

Chapter 8 Maven Release

127© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3_9

CHAPTER 9

Continuous
Integration
Continuous integration or CI is a software development best practice

where developers integrate changes to their code into a common

repository several times a day. Each committed change would result in

an automatic build that would compile the code, run tests, and generate

a new version of the artifact. Any errors during the build process will

be immediately reported to the development team. This frequent code

integration allows developers to catch and resolve integration issues early

in the development cycle.

A visual representation of continuous integration along with the

components involved is shown in Figure 9-1. The CI flow gets kicked off

with a developer submitting her changes to a source control system such

as Git or SVN. A CI server gets notified or watches/polls for new code

changes and upon finding a change will check out the source code and

starts the build process. On a successful build, the CI server can publish

the artifact to a repository or to a test server. As the last step, notifications

on build status get sent to the development team.

128

Jenkins is a popular open source CI server that integrates well with

Maven. Other popular CI servers include Bamboo, TeamCity, and GitLab.

In this chapter, we will install and configure Jenkins to trigger automatic

builds for a Maven-based project.

�Installing Jenkins
Jenkins is distributed in several flavors – native installers, Docker

containers, and as an executable WAR file. In this book, we will be using

the long-term support (LTS) executable WAR file version that you can

download at https://jenkins.io/download/. Save the downloaded

version at c:\tools\jenkins.

Once the download is complete, using command line, navigate to the

downloaded folder and run the command: java –jar jenkins.war. Upon

Figure 9-1.  CI components

Chapter 9 Continuous Integration

https://jenkins.io/download/

129

successful execution of the command, open a browser and navigate to

http://localhost:8080. You will be prompted to locate and enter the

autogenerated administrator password from the “initialAdminPassword”

file. On the next screen, select “Install Suggested Plugins” and wait for

the setup to complete plug-in installation. On the “Create First Admin

User” screen, enter “admin” as username and “admin123” as password

and fill in the rest of the details on the form. Upon completion of Jenkin’s

configuration, you should see Jenkins dashboard similar to Figure 9-2.

�Maven Project
For us to understand Jenkins support for Maven, we need a sample Maven

project on a source control server. In this chapter, we will use a gwsm-

jenkins project hosted on GitHub at https://github.com/bava/gswm-

jenkins. For you to follow along the rest of the chapter, you need to fork

the gswm-jenkins repository under your own account. You can do that by

logging into GitHub and clicking the fork button as shown in Figure 9-3.

Figure 9-2.  Jenkins dasboard

Chapter 9 Continuous Integration

https://github.com/bava/gswm-jenkins
https://github.com/bava/gswm-jenkins

130

�Configuring Jenkins
To begin Jenkins configuration, click the “New Item” link on the

dashboard. On the New Item screen, select Freestyle project and enter the

name “gswm-jenkins-integration” as shown in Figure 9-4.

On the next screen, in the General section, select the “GitHub project”

checkbox and enter the project URL. This should be the URL to your forked

project location on your GitHub account.

Figure 9-3.  Fork gswm-jenkins repository

Figure 9-4.  New Item screen

Figure 9-5.  New Item - General section

Chapter 9 Continuous Integration

131

On the “Source Code Management” section, select the “Git” radio

button and enter the URL to your GitHub repository as shown in Figure 9-6.

This is the GitHub clone URL that you can find by clicking “Clone or

download” under repository name.

For Jenkins to checkout your code, you need to provide your GitHub

credentials. You do that by clicking the “Add” button next to Credentials

and enter your username and password as shown in Figure 9-7.

Figure 9-6.  New Item Source Code Management section

Figure 9-7.  GitHub credential input

Chapter 9 Continuous Integration

132

In the Build Triggers section, select “Poll SCM” option and enter “H/15

∗ ∗ ∗ ∗” as value as shown in Figure 9-8. This indicates that Jenkins need to

poll GitHub repo for changes every 15 minutes.

Under the “Build” section, click “Add build step” and select “Invoke

top-level Maven targets”. Enter “clean install” as Goals value as shown in

Figure 9-9.

Finally, in the Post-build Actions section, click “Add post-build action”

and select “Archive the artifacts”. Enter ∗∗/∗.jar as the value for Files to

Archive as shown in Figure 9-10.

Figure 9-8.  Build Trigger poll schedule

Figure 9-9.  Build step for Maven

Chapter 9 Continuous Integration

133

Click the “Add post-build action” button one more time and select

“Publish JUnit test result report”. Enter “target/surefire-reports/∗.xml”

as Test report XMLs value as shown in Figure 9-11. Click Save to save the

configuration.

�Triggering Build Job
We now have everything set up to get Jenkins build our project. On the

project job page, click “Build Now” link to trigger a new build. This would

start a new build with a numerical number that you can access from the

Build History section on the bottom-left corner of the page. Click the drop-

down arrow next to the Build number and select “Console Output”. This

will take you to the output screen similar to Figure 9-12.

Figure 9-10.  Archive artifacts section

Figure 9-11.  Publish JUnit results

Chapter 9 Continuous Integration

134

Upon successful completion of the job, you will see the built artifact on

the project page as shown in Figure 9-13.

The test results from the run are also available on the project page

under “Latest Test Result”.

Figure 9-12.  Job console output screen

Figure 9-13.  Jenkins Project page - Build Artifact

Chapter 9 Continuous Integration

135

�Summary
In this chapter, you learned about continuous integration and configured

Jenkins to interact with a Maven project.

This discussion brings us to the end of our journey. Throughout the

book, you have learned the key concepts behind Maven. We hope you will

use your newly found Maven knowledge to automate and improve your

existing build and software development processes.

Chapter 9 Continuous Integration

137© Balaji Varanasi 2019
B. Varanasi, Introducing Maven, https://doi.org/10.1007/978-1-4842-5410-3

Index

A, B
Ant + Ivy
Archetypes

built-in, 69, 70
creation

AppStatusServlet
java file, 82, 85

gswm-web-archetype, 84
gswm-web-prototype, 80, 83
pom.xml, 80, 81
project structure, 82, 83
Servlet 4.0, 80

defined, 69
test-project, 86, 87

C
Code coverage, 102–104
Continuous integration (CI)

components, 127, 128
Jenkins

archive artifacts, 132
build trigger, 132
configuration, item

screen, 130
GitHub credentials, 131, 132
GitHub project, 130

installation, 128, 129
JUnit test, 133

Maven, 129
triggering build job, 133, 134

Convention over configuration
(CoC), 4, 5

D
Dependency scope, 32, 33
Dependency installation

add, repository, 34
manual, 33

Dependency management
architecture, 24
dependency

identification, 28, 29
Maven central, 24
repository manager, 25, 26
Spring/JBoss repositories, 27, 28
transitive dependencies, 29–31

E, F
Enterprise archive (EAR), 28
Enterprise JavaBeans (EJBs), 74
Extensible markup

language (XML), 5

https://doi.org/10.1007/978-1-4842-5410-3

138

G, H
Global settings, 16
Goal, Maven Lifecycle

clean, 54
compile, 53, 54
Help plug-in, 55
plug-ins, 54
pom.xml file, 55, 56

Gradle, 7
Group, artifact, and zversion

(GAV), 28

I
Integrated development

environments (IDEs), 1

J, K
Java Development Kit (JDK), 11
Javadoc, 99, 100
Java Enterprise Edition (JEE), 74
Java Runtime Environment (JRE), 11
Java’s Plain Old Java

Object (POJO), 61
Java virtual machine (JVM), 14
Jenkins, 128, 129
JUnit/TestNG, 101

L
Lifecycle

built-in, 57, 58
goals, 58, 59

phases, 57–59
WAR project, 60
packaging element, 60

M, N, O
Maven, 129

Ant + Ivy, 5
Ant build.xml File, 6
compile, 5
Ivy listing, 6
target, 5
task, 5

archetypes, 4
archive download, 12
artifact errors, 19
CoC, 4, 5
dependency management, 2
directory structure, 2
Doxia, 10
Gradle, 7

default build.gradle file, 7
build tool usage, 8
DSL, 7

help command, 15
IDE, 21
installation

directory contents, 12
Mac, 13
testing, 14
windows, 13

open source, 4
plug-ins, 3
proxy, setup, 19

INDEX

139

securing passwords, 20
settings.xml file, 16–18
skeleton settings.xml file, 17
source control/code

management (SCM), 9
tool support, 3
wagon, 9

Maven Doxia, 10
Maven Old Java Object (MOJOs), 61
Maven release

clean goal, 123
Git client installation, 115
GitHub repositories, 115, 116
interacting with GitHub, 114
Nexus

distributionManagement
element, 110

installation, 108
login modal, 109
repository managers, 107
server information, 111
SNAPSHOT artifact, 112

perform goal
command, 124, 125
Nexus, 126
phases, 123

prepare goal
command, 121
execution, 122
GitHub details, 120
operations, 118
SCM information, 119

source code checking, 116–118

maven.test.skip property, 61
mkdir gswm command, 39
Multimodule project

interactiveMode
parameter, 77

mvn package command, 79
Parent pom.xml file, 76, 77
service project, 76
structure, 74
visual representation, 75
web module, 78, 79

mvn package command, 58

P, Q, R
Plug-ins

Apache Commons Lang, 62
Maven Java project, 61, 62
mvn install command, 65
pom.xml, 62–64
systeminfo goal, 66–68
SystemInfoMojo, 64, 66
SystemInfoPlugin, 61

pom.xml file, 24, 40, 41
implicit properties, 50
user-defined

properties, 50, 51
Project

building
HelloWorld class, 42
packaged JAR file, 44
Maven Package, 43
project structure, 43

Index

140

testing
HelloWorldTest, 47, 49
JUnit dependency, 44, 46
structure, 47
target folder, 49
Tree command, 46

organization
components, 38
create, project, 39, 40
directories, 39
structure, 37

S
Site lifecycle

configuration
archetypes, 95
directory structure, 94, 95
file contents, 96, 97
logo, 98

contents, 89
dependencies, 90
description

element, 92, 93
generated web site, 93
index page, 90

SNAPSHOT qualifier, 42
Source control/code management

(SCM) systems, 9, 38
SpotBugs, 104, 105

T, U, V
Test driven development

Surefire plug-in
configuration, 101

Surefire report, 101, 102
Transitive dependencies, 29

dependency mediation, 29
JUnit, 31
tree plug-in, 30

W, X, Y, Z
Web application archive (WAR), 5
Web project

browser, 73, 74
inputs, information, 71
Jetty plug-in, 72, 73
Jetty run Command, 73
maven-archetype-webapp, 71
Jetty run Command, 73
structure, 71, 72

Project (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Maven
	Standardized Directory Structure
	Declarative Dependency Management
	Plug-ins
	Uniform Build Abstraction
	Tools Support
	Archetypes
	Open Source
	Maven Alternatives
	Ant + Ivy
	Gradle

	Maven Components
	Maven SCM
	Maven Wagon
	Maven Doxia

	Summary

	Chapter 2: Setting Up Maven
	Installing on Windows
	Installing on Mac
	Testing Installation
	Getting Help
	Additional Settings
	Setting Up a Proxy
	Securing Passwords

	IDE Support
	Summary

	Chapter 3: Maven Dependency Management
	Using New Repositories
	Dependency Identification
	Transitive Dependencies
	Dependency Scope
	Manual Dependency Installation
	Summary

	Chapter 4: Maven Project Basics
	Basic Project Organization
	Understanding the pom.xml File
	Building a Project
	Testing the Project
	Properties in pom.xml
	Implicit Properties
	User-Defined Properties

	Summary

	Chapter 5: Maven Lifecycle
	Goals and Plug-ins
	Lifecycle and Phases
	Plug-in Development
	Summary

	Chapter 6: Maven Archetypes
	Built-in Archetypes
	Generating a Web Project
	Multimodule Project
	Creating an Archetype
	Using the Archetype
	Summary

	Chapter 7: Documentation and Reporting
	Using the Site Lifecycle
	Advanced Site Configuration
	Generating Javadoc Reports
	Generating Unit Test Reports
	Generating Code Coverage Reports
	Generating the SpotBugs Report
	Summary

	Chapter 8: Maven Release
	Integration with Nexus
	Project Release
	Git Client Installation
	Creating a GitHub Repository
	Checking in Source Code
	Maven Release
	Prepare Goal
	Clean Goal
	Perform Goal

	Summary

	Chapter 9: Continuous Integration
	Installing Jenkins
	Maven Project
	Configuring Jenkins
	Triggering Build Job
	Summary

	Index

