
www.allitebooks.com

http://www.allitebooks.org

Unix® for Programmers
and Users

Third Edition

Graham Glass and King Ables

Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

www.allitebooks.com

http://www.allitebooks.org

Library of Congress Cataloging-in-Publication Data
CIP data on file

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Petra Recter
Editorial Assistant: Renee Makras
Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Executive Managing Editor: Vince O’Brien
Assistant Managing Editor: Camille Trentacoste
Production Editor: Lakshmi Balasubramanian
Director of Creative Services: Paul Belfanti
Creative Director: Carole Anson
Art Director: Jayne Conte
Cover Designer: Bruce Kenselaar
Art Editor: Gregory Dulles
Manufacturing Manager: Trudy Pisciotti
Manufacturing Buyer: Lisa McDowell
Marketing Manager: Pamela Shaffer
Marketing Assistant: Barrie Reinhold

© 2003 Pearson Education, Inc.
Pearson Prentice Hall
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form
or by any other means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effective-
ness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. The author and publisher shall not be liable in
any event for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-046553-4

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

www.allitebooks.com

http://www.allitebooks.org

to Truth and Beauty,
wherever they are found
and to Freedom, and all

who have sacrificed for it

www.allitebooks.com

http://www.allitebooks.org

iv

Trademark Information
AIX is a trademark of International Business Machines Corporation.
Ethernet is a registered trademark of Xerox Corporation.
FreeBSD is a trademark of Berkeley Software Design, Inc.
GNU is a trademark of the Free Software Foundation.
HP-UX is a registered trademark of the Hewlett-Packard Company.
Itanium is a registered trademark of Intel Corporation.
IRIX is a registered trademark of Silicon Graphics, Inc.
Java is a trademark of Sun Microsystems, Inc.
KDE and K Desktop Environment are trademarks of KDE e.V.
Linux is a trademark of Linus Torvalds.
MacOS is a registered trademark of Apple Computer.
Microsoft Windows, Windows NT, and Windows 2000 are registered trademarks of
Microsoft Corporation.
Netscape is a registered trademark of Netscape Communications Corporation.
SCO and Unixware are trademarks of Caldera.
Solaris, Sparc, and Open Windows are trademarks of Sun Microsystems, Inc.
Tru64 is a trademark of the Hewlett-Packard Company.
UNIX is a registered trademark of The Open Group.
VMS and Open VMS are registered trademarks of the Hewlett-Packard Company.
X Window System is a trademark of The Open Group.

www.allitebooks.com

http://www.allitebooks.org

v

Preface

ABOUT THE AUTHORS

Graham Glass graduated from the University of Southampton, England, with a bachelor’s
degree in computer science and mathematics in 1983. He emigrated to the United States
and obtained his master’s degree in computer science from the University of Texas at
Dallas in 1985. He then worked as a UNIX/C systems analyst and became heavily in-
volved with research in neural networks and parallel distributed processing. He later
taught at the University of Texas at Dallas, covering a wide variety of courses, including
UNIX, C, assembly language, programming languages, C++, and Smalltalk. He co-
founded a corporation called ObjectSpace and currently trains and consults for such
companies as DSC Corporation, Texas Instruments, Northern Telecom, J.C. Penney,
and Bell Northern Research, using his OOP and parallel systems knowledge to design
and build a parallel object-oriented computer system and language based on the
Inmos T9000 transputer chip. In his spare time, he writes music, scuba dives, skis, and
occasionally sleeps.

King Ables earned his bachelor’s degree in computer science from the Universi-
ty of Texas at Austin in 1982. He has been a UNIX user, developer, systems administra-
tor, or consultant since 1979, working at both small start-up companies and large
corporations. He has provided support and training, developed UNIX product soft-
ware and systems tools, and written product documentation and training materials. In
the 1990s, he was the sole proprietor of a UNIX consulting concern in Austin before
deciding to move to the mountains of Colorado. Prior to this project, he published a
book on UNIX systems administration. He has written many magazine articles on var-
ious UNIX topics and holds a software patent on an e-commerce privacy mechanism.
His professional interests include networking security and Internet privacy, but he
likes hiking and skiing a bit more.

ABOUT THE BOOK

One of my jobs before writing this book was to teach UNIX to a variety of individuals,
including university students, industry C hackers, and, occasionally, friends and col-
leagues. During that time, I acquired a large amount of knowledge, both in my head as
well as in the form of a substantial library, that I often thought would be good to put
into book form. When I began preparing my university lecture series about UNIX, I

www.allitebooks.com

http://www.allitebooks.org

vi Preface

found that none of the available UNIX textbooks suited my purpose—they were either
too unstructured, too specialized, or lacking in suitable exercises and projects for my
students. In response to this situation, I wrote the very first version of the current book.
After a couple of years of using it, I completely rewrote it, giving careful thought to the
organization of the new material. I decided to group the information on the basis of
various typical kinds of UNIX users, allowing the book to be utilized by a good range
of people without completely going over the top (or underneath) anyone’s head. One
tricky decision concerned the level of detail to include about things like utilities and
system calls. Most of these have a large number of specialized options and features that
are rarely used, and to document them all and still cover the range of topics that I had
targeted would result in a book about two feet thick. Because of this, I’ve included in-
formation only about the most common and useful features of utilities, shells, and sys-
tem calls. I include references to other commercially available books for more detail.
This hybrid-book approach seemed like a good compromise; I hope that you agree.

This edition adds a chapter on the Bourne Again Shell (also called “bash”), which
has become more important because of its integral position in Linux. We have also up-
dated the UNIX/Linux version information and X desktop and window manager de-
tails, expanded the existing coverage of vi, perl, and IPv6, and added and improved
some command descriptions, quizzes, and exercises. Many organizational improve-
ments, including new figure numbering, should make the book easier to use, as well.

LAYOUT OF THE BOOK

UNIX is a big thing. To describe it fully requires an explanation of many different top-
ics from several different angles, which is exactly what I’ve tried to do.The book is split
into the following sections, each designed for a particular kind of user:

1. What is UNIX?
2. UNIX Utilities for Nonprogrammers
3. UNIX Utilities for Power Users
4. The UNIX Shells
5. The Bourne Shell
6. The Korn Shell
7. The C Shell
8. The Bourne Again Shell
9. Networking

10. The Internet
11. Windowing Systems
12. C Programming Tools
13. Systems Programming
14. UNIX Internals
15. System Administration
16. The Future

Appendix
Bibliography

www.allitebooks.com

http://www.allitebooks.org

Preface vii

I recommend that the various categories of user read the chapters as follows:

LAYOUT OF THE CHAPTERS

Every chapter in this book has the following standard prologue:

Motivation

Why it’s useful to learn the material that follows.

Prerequisites

What the reader should know in order to negotiate the chapter successfully.

Objectives

A list of the topics presented.

Presentation

A description of the method by which the topics are presented.

Utilities

A list of the utilities covered in the chapter (when appropriate).

System calls

A list of the system calls covered in the chapter (when appropriate).

Shell commands

A list of the shell commands covered in the chapter (when appropriate).

Category of user Chapters

Day-to-day casual users 1, 2

Advanced users 1, 2, 3, 4, 9, 10, 11

Programmers 1 thru 13, 16

System analysts 1 thru 14, 16

Wizards Everything (of course!)

www.allitebooks.com

http://www.allitebooks.org

viii Preface

In addition, every chapter ends with a review section, which contains the follow-
ing items:

Checklist

A recap of the topics.

Quiz

A quick self-test.

Exercises

A list of exercises, rated easy, medium, or hard.

Projects

One or more related projects, rated easy, medium, or hard.

A GUIDE FOR TEACHERS

As I mentioned earlier, this book was originally written for an audience of undergrad-
uate and graduate students. I suggest that a lecture series based on the book could be
designed as follows:

• If the students don’t know the C language, then a medium-paced course could
begin with Chapters 1, 2, 4, and 12.The lecturer could then introduce the students
to C and use the contents of Chapter 13 for class exercises and projects.

• If the students already know the C language, then a medium-paced course could
include Chapters 1, 2, 4, 7, 12, 13, and 14. Projects focusing on parallel processing
and interprocess communication will ensure that the students end up with a good
knowledge of UNIX fundamentals.

• If the students know the C language and are enthusiastic, I suggest that all of the
chapters with the exception of Chapters 3, 5, and 6 be covered in one semester. I
know this is possible, as I’ve taught the class that way!

NOMENCLATURE

Throughout this book, there are references to UNIX utilities, shell commands (i.e.,
commands that are part of a command shell itself), and system calls (UNIX library
functions). It’s quite easy to confuse these three things, so I adopted a consistent way to
differentiate them:

• UNIX utilities are always written in boldface, like this: “The mkdir utility makes
a directory.”

• Shell commands are always written in italics, like this:“The history command lists
your previous commands.”

www.allitebooks.com

http://www.allitebooks.org

Preface ix

• System calls are always followed by parentheses, like this:“The fork () system call
duplicates a process.”

Formal descriptions of utilities, shell commands, and system calls are supplied in a box,
using a modified-for-UNIX Backus–Naur notation. The conventions of this notation
are fairly simple and are described fully in the appendix. As an example, here’s a de-
scription of the UNIX man utility:

All utilities, shell commands, and system calls, including the page numbers of the scripts
and programs that use them, are fully cross-referenced in the appendix.

Sample UNIX sessions are presented in a Courier font. Keyboard input from the
user is always displayed in italics, and annotations are always preceded by ellipses (...).
Here’s an example:

$ ls ... generate a directory listing.
myfile.txt yourfile.txt
$ whoami
glass
$ _ ... a new prompt is displayed.

REFERENCES TO OTHER BOOKS

For the same reason that it’s good to reuse existing code, it’s also good to use other
people’s reference material when it doesn’t interfere with the natural flow of the pre-
sentation. Information that we consider to be too specialized for this book is noted
with a reference to a publication listed in the bibliography at the end of the book. For
example,

“For information concerning a port of UNIX to a 68030 processor, see p. 426 of
Wait 1987.”

The information is usually the name of the primary author and the year of publi-
cation; in the preceding quote, the book is entitled “UNIX papers.” Where we refer-
ence specific pages, it is, of course, possible that future editions of these books will have
different page numbers. In these cases, the reference will hopefully still remain reason-
ably close to the quoted page number.

Utility: man [chapter] word
man -k keyword

The first usage of man displays the manual entry associated with word. A value for
chapter is optional. If no chapter number is specified, the first entry found is
displayed. The second usage of man displays a list of all the manual entries that
contain keyword.

www.allitebooks.com

http://www.allitebooks.org

x Preface

SOURCE CODE AVAILABILITY ON-LINE

Examples of source code used in this edition are available on-line. Short examples are
not included, but examples of any “significant” length can be found on the Web at

ftp://ftp.prenhall.com/pub/esm/the_apt_series.s-042/glass_ables_unix-3e/

(You can type this string into a Web browser, or see Chapter 9,“Networking,” for more
information on FTP.)

ACKNOWLEDGMENTS

The following people were instrumental in bringing forth previous editions of this
book: James F. Peters, III, Fadi Deek, Dr. William Burns, Richard Newman-Wolfe,
David Carver, Bill Tepfenhart, Stephen Rago, and Mark Ellis.

This edition had valuable technical input from Lori Murphy, Lawrence B. Wells,
and Michael D. Breck. As always, the folks at Prentice Hall—especially Petra Recter,
Camille Trentacoste, and Lakshmi Balasubramanian—have been nothing but encour-
aging and supportive.

xi

Table of Contents

CHAPTER 1 What is UNIX? 1

Motivation 1
Prerequisites 1
Objectives 1
Presentation 1
Computer Systems 2
The Hardware 3

Central Processing Unit (CPU) 3
Random-Access Memory (RAM) 3
Read-Only Memory (ROM) 3
Disk 3
CD-ROM Drive 3
Monitor 3
Graphics Card 3
Keyboard 3
Mouse 4
Printer 4
Tape 4
Modem 4
Ethernet Interface 4
Other Peripherals 4

Operating Systems 4
The Software 5
Sharing Resources 6
Communication 6
Utilities 7
Programmer Support 7
Standards 7
List of UNIX Features (A Recap) 8
UNIX Philosophies 8
UNIX Yesterday 10
UNIX Today 11

xii Table of Contents

UNIX Tomorrow 12
The Rest of this Book 12
Chapter Review 13

Checklist 13
Quiz 13
Exercise 13
Project 13

CHAPTER 2 UNIX Utilities for Nonprogrammers 14

Motivation 14
Prerequisites 14
Objectives 14
Presentation 14
Utilities 15
Shell Command 15
Obtaining an account 15
Logging In 15
Shells 16
Running a Utility 17
Input, Output, and Error Channels 18
Obtaining On-Line Help: man 18
Special Characters 20

Terminating a Process: Control-C 20
Pausing Output: Control-S/Control-Q 21
End of Input: Control-D 21

Setting Your Password: passwd 22
Logging Out 22
Poetry in Motion: Exploring the File System 23
Printing Your Shell’s Current Working Directory: pwd 24
Absolute and Relative Pathnames 25
Creating a File 26
Listing the Contents of a Directory: ls 27
Listing a File: cat/more/page/head/tail 29
Renaming a File: mv 31
Making a Directory: mkdir 31
Moving to a Directory: cd 32
Copying a File: cp 33
Editing a File: vi 34
Deleting a Directory: rmdir 35
Deleting a File: rm 36
Printing a File: lp/lpstat/cancel 37
Printing a File: lpr/lpq/lprm 39

Table of Contents xiii

Counting the Words in a File: wc 41
File Attributes 41

File Storage 42
Filenames 42
File Modification Time 43
File Owner 43
File Group 43
File Types 43
File Permissions 44
Hard Link Count 46

Groups 47
Listing Your Groups: Groups 47
Changing a File’s Group: chgrp 48
Changing a File’s Permissions: chmod 48
Changing a File’s Owner: chown 51
Changing Groups: newgrp 51
Poetry in Motion: Epilogue 52
Determining Your Terminal’s Type: tset 52

C shell 55
Bourne/Korn/Bash shell 55
C shell 55
Bourne/Korn/Bash shell 55

Changing a Terminal’s Characteristics: stty 56
Editing a File: vi 57

Starting vi 57
Text Entry Mode 58
Command Mode 59
Memory Buffer and Temporary Files 60
Common Editing Features 61
Cursor Movement 61
Deleting Text 62
Replacing Text 63
Pasting Text 63
Searching 64
Searching and Replacing 65
Saving and Loading Files 66
Miscellaneous 67
Customizing vi 68
Keeping Your Customizations 69
For More Information 69
Editing a File: emacs 69
Starting emacs 69
emacs Commands 70
Getting Out of Trouble 71

xiv Table of Contents

Getting Help 71
Leaving emacs 71
emacs Modes 71
Entering Text 72
Common Editing Features 72
Moving the Cursor 72
Deleting, Pasting, and Undoing 72
Searching 74
Search and Replace 75
Saving and Loading Files 75
Miscellaneous 75
For More Information 75

Electronic Mail: mail/mailx 75
Sending Mail 78
Reading Mail 78
Contacting the System Administrator 80

Chapter Review 80
Checklist 80
Quiz 81
Exercises 81
Project 81

CHAPTER 3 UNIX Utilities for Power Users 82

Motivation 82
Prerequisites 82
Objectives 82
Presentation 82
Utilities 82
Introduction 83
Filtering Files 84

Filtering Patterns: egrep/fgrep/grep 84
Removing Duplicate Lines: uniq 87

Sorting Files: sort 88
Comparing Files 91

Testing for Sameness: cmp 92
File Differences: diff 93

Finding Files: find 95
Archives 97

Copying Files: cpio 98
Tape Archiving: tar 100
Incremental Backups: dump and restore 103

Scheduling Commands 104
Periodic Execution: cron/crontab 104
One-Time Execution: at 106

Table of Contents xv

Programmable Text Processing: awk 108
awk Programs 109
Accessing Individual Fields 110
Begin and End 110
Operators 111
Variables 111
Control Structures 112
Extended Regular Expressions 112
Condition Ranges 112
Field Separators 113
Built-In Functions 113

Hard and Soft Links: ln 114
Identifying Shells: whoami 116
Substituting a User: su 116
Checking for Mail: biff 117
Transforming Files 118

Compressing Files: compress/uncompress and gzip/gunzip 118
File Encryption: crypt 120
Stream Editing: sed 120
Translating Characters: tr 124
Converting Underline Sequences: ul 126
Looking at Raw File Contents: od 126
Mounting File Systems: mount/umount 128
Identifying Terminals: tty 129
Text Formatting: nroff/troff/style/spell 129
Timing Execution: time 130

Rolling Your Own Programs: Perl 130
Getting Perl 131
Printing Text 131
Variables, Strings, and Integers 132
Arrays 132
Mathematical and Logical Operators 134
String Operators 135
Comparison Operators 135
If, While, For, and Foreach Loop Constructs 136
File I/O 137
Functions 138
Library Functions 138
Command-Line Arguments 140
A Real-World Example 140

Chapter Review 143
Checklist 143
Quiz 143
Exercises 144
Projects 144

xvi Table of Contents

CHAPTER 4 The UNIX Shells 145

Motivation 145
Prerequisites 145
Objectives 145
Presentation 145
Utilities 146
Shell Commands 146
Introduction 146
Shell Functionality 146
Selecting a Shell 147
Shell Operations 148
Executable Files Versus Built-In Commands 149

Displaying Information: echo 149
Changing Directories: cd 150

Metacharacters 150
Redirection 151

Output Redirection 151
Input Redirection 152

Filename Substitution (Wildcards) 153
Pipes 154
Command Substitution 156
Sequences 157

Conditional Sequences 158
Grouping Commands 158
Background Processing 159
Redirecting Background Processes 160

Redirecting Output 160
Redirecting Input 161

Shell Programs: Scripts 161
Subshells 162
Variables 163
Quoting 166
Here Documents 167
Job Control 167

Process Status: ps 168
Signaling Processes: kill 171
Waiting for Child Processes: wait 173

Finding a Command: $PATH 173
Overloading Standard Utilities 174
Termination and Exit Codes 175
Common Core Built-Ins 176

eval 176
exec 176

Table of Contents xvii

shift 177
umask 178

Chapter Review 179
Checklist 179
Quiz 179
Exercises 180
Project 180

CHAPTER 5 The Bourne Shell 181

Motivation 181
Prerequisites 181
Objectives 181
Presentation 181
Utilities 181
Shell Commands 182
Introduction 182
Start-Up 182
Variables 183

Creating/Assigning a Variable 183
Accessing a Variable 184
Reading a Variable from Standard Input 185
Exporting Variables 186
Read-Only Variables 187
Predefined Local Variables 188
Predefined Environment Variables 189

Arithmetic 190
Conditional Expressions 192
Control Structures 194

case .. in .. esac 194
for .. do .. done 196
if .. then .. fi 196
trap 197
until .. do .. done 198
while .. done 199

Sample Project: track 200
Miscellaneous Built-Ins 203

Read Command: . 204
null Command 204
Setting Shell Options: set 204

Enhancements 206
Sequenced Commands 207

Command-Line Options 207
Chapter Review 208

Checklist 208

xviii Table of Contents

Quiz 208
Exercises 208
Projects 209

CHAPTER 6 The Korn Shell 210

Motivation 210
Prerequisites 210
Objectives 210
Presentation 210
Shell Commands 210
Introduction 211
Start-Up 211
Aliases 213

Aliasing Built-In Commands 213
Removing an Alias 214
Predefined Aliases 214
Some Useful Aliases 215
Tracked Aliases 215
Sharing Aliases 216

History 216
Numbered Commands 217
Storage of Commands 217
Command Reexecution 217
Editing Commands 218

Editing Commands 219
The Built-In vi Editor 220
The Built-In emacs/gmacs Editor 222

Arithmetic 222
Preventing Metacharacter Interpretation 223
Return Values 224

Tilde Substitution 224
Menus: select 225
Functions 226

Using Parameters 227
Returning from a Function 228
Context 228
Local Variables 228
Recursion 229
Sharing Functions 230

Enhanced Job Control 230
Jobs 231
Specifying a Job 232
bg 232
fg 233
kill 233

Table of Contents xix

Enhancements 234
Redirection 234
Pipes 235
Command Substitution 235
Variables 236
Formatting 240
Case 240
Type 241
Miscellaneous 241
Built-Ins 243

Sample Project: Junk 249
The Restricted Shell 252
Command-Line Options 252
Chapter Review 253

Checklist 253
Quiz 253
Exercises 253
Projects 253

CHAPTER 7 The C Shell 255

Motivation 255
Prerequisites 255
Objectives 255
Presentation 255
Shell Commands 255
Introduction 256
Start-Up 256
Variables 258

Creating and Assigning Simple Variables 258
Accessing a Simple Variable 259
Creating and Assigning List Variables 259
Accessing a List Variable 259
Building Lists 260
Predefined Local Variables 261
Creating and Assigning Environment Variables 263
Predefined Environment Variables 263

Expressions 263
String Expressions 263
Arithmetic Expressions 264
File-Oriented Expressions 266

Filename Completion 267
Aliases 267

Removing an Alias 269
Useful Aliases 269

xx Table of Contents

Sharing Aliases 269
Parameterized Aliases 270

History 270
Numbered Commands 270
Storage of Commands 271
Reading History 271
Command Reexecution 272
Accessing Pieces of History 272
Accessing Portions of Filenames 273
History Substitution 274

Control Structures 274
foreach .. end 275
goto 275
if .. then .. else .. endif 276
onintr 277
repeat 278
switch .. case .. endsw 279
while .. end 280

Sample Project: Junk 281
Enhancements 283

Command Reexecution: A Shortcut 284
Metacharacters: {} 284
Filename Substitution 284
Piping 286
Job Control 287
Terminating a Login Shell 289

Built-Ins 289
chdir 289
glob 289
source 289

The Directory Stack 291
The Hash Table 292

Command-Line Options 293
Chapter Review 294

Checklist 294
Quiz 294
Exercises 294
Project 294

CHAPTER 8 The Bourne Again Shell 295

Motivation 295
Prerequisites 295
Objectives 295
Presentation 295

Table of Contents xxi

Shell Commands 296
Introduction 296

Getting Bash 296
Start-Up 297
Variables 297

Creating and Assigning a Simple Variable 297
Accessing Simple Variables 298
Creating and Assigning a List Variable 299
Accessing List Variables 299
Building Lists 300
Destroying Lists 301
Exporting Variables 301
Predefined Variables 302

Command Shortcuts 302
Aliases 303
Command History 304
Autocompletion 306

Arithmetic 306
Conditional Expressions 307

Arithmetic Tests 308
String Comparisons 308
File-Oriented Expressions 309

Control Structures 310
case .. in .. esac 310
if .. then .. elif .. then .. else .. fi 311
for .. do .. done 312
while/until .. do .. done 312

Directory Stack 313
Job Control 314
Functions 315
Miscellaneous Built-In Commands 316
Command-Line Options 318
Chapter Review 318

Checklist 318
Quiz 318
Exercise 319
Project 319

CHAPTER 9 Networking 320

Motivation 320
Prerequisites 320
Objectives 320
Presentation 320
Commands 321

xxii Table of Contents

Introduction 321
Building a Network 321

Ethernets 322
Bridges 322
Routers 323
Gateways 324

Internetworking 324
Packet Switching 324
Internet Addresses 325
Naming 325
Routing 326
Security 326
Ports and Common Services 327
Network Programming 327

Users 327
Listing Users: users/rusers 328
More User Listings: who/rwho/w 329
Your Own Host Name: hostname 330
Personal Data: finger 331

Communicating with Users 332
Shielding Yourself from Communication: mesg 332
Sending a Line at a Time: write 333
Interactive Conversations: talk 334
Messages to Everyone: wall 335

Distributing Data 335
Copying Files between Two UNIX Hosts: rcp 336
Copying Files between Non-UNIX Hosts: ftp 336

Distributing Processing 339
Remote Logins: rlogin 339
Executing Remote Commands: rsh 340
Remote Connections: telnet 340

Network File System: NFS 343
For More Information… 344
Chapter Review 344

Checklist 344
Quiz 344
Exercises 344
Project 345

CHAPTER 10 The Internet 346

Motivation 346
Prerequisites 346
Objectives 346
Presentation 346

Table of Contents xxiii

The Evolution of the Internet 347
In the Beginning: The 1960s 347
Standardizing the Internet: The 1970s 348
Rearchitecting and Renaming the Internet: The 1980s 350
The Web: The 1990s 354

Using Today’s Internet 358
URLs 359

Chapter Review 361
Checklist 361
Quiz 361
Exercises 361
Project 362

CHAPTER 11 Windowing Systems 363

Motivation 363
Prerequisites 363
Objectives 363
Presentation 363
Utilities 364
Introduction 364

Graphical User Interfaces 364
Mit 364

X Servers 365
Screen Geometry 365
Security and Authorization 366

X Window Managers 367
Focus 367
Program Start-Up 367
Open and Closed Windows 368
Choices of Window Managers 369

Widgets 370
Menus 370
Push Buttons 370
Check Boxes and Radio Buttons 371
Scroll Bars 372

Motif Window Manager Functions 372
Bringing Up the Root Menu 372
Opening a Window 373
Closing a Window 373
Moving a Window 373
Resizing a Window 373
Raising or Lowering a Window 373
Bringing Up a Window Menu 373

Client Applications 373

xxiv Table of Contents

xclock 374
xbiff 374
xterm 375

Standard X Client Arguments 376
Geometry 376
Foreground and Background 377
Title 377
Iconic 377

Advanced Topics 377
Copy and Paste 377
Networking Capabilities 379
Application Resources 379
Configuration and Start-Up 382

A (Limited) Survey of Other X-Compatible Desktops 384
CDE 384
Gnome 384
KDE 384
OpenWindows 385
VUE 385

Chapter Review 385
Checklist 385
Quiz 385
Exercises 386
Project 386

CHAPTER 12 C Programming Tools 387

Motivation 387
Prerequisites 387
Objectives 387
Presentation 387
Utilities 388
The C Language 388
C Compilers 388
Single-Module Programs 389

Compiling a C Program 390
A Listing of the Corrected Reverse Program 390
Running a C Program 391
Overriding the Default Executable Name 392

Multimodule Programs 392
Reusable Functions 392
Preparing a Reusable Function 392
Compiling and Linking Modules Separately 394
The Stand-Alone Loader: ld 394
Reusing the Reverse Function 395
Maintaining Multimodule Programs 397

Table of Contents xxv

The UNIX File Dependency System: make 397
Make Files 398
The Order of Make Rules 399
Executing a Make 400
Make Rules 400
Writing Your Own Rules 401
Touch 401
Macros 402
Other Make Facilities 403

The UNIX Archive System: ar 403
Creating an Archive 404
Adding a File 404
Appending a File 404
Obtaining a Table of Contents 405
Deleting a File 405
Extracting a File 405
Maintaining an Archive from the Command Line 405
Maintaining an Archive by Using Make 406
Ordering Archives 407
Creating a Table of Contents: ranlib 407
Shared Libraries 408

The UNIX Source Code Control System: SCCS 409
Creating an SCCS File 410
Checking Out a File 411
Monitoring SCCS Activity 412
Undoing a Checkout and Returning a File 412
Creating a New Delta 413
Obtaining a File’s History 414
SCCS Identification Keywords 414
Creating a New Release 415
Checking Out Read-Only Copies of Previous Versions 416
Checking Out Editable Copies of Previous Versions 416
Editing Multiple Versions 416
Deleting Versions 417
Compressing SCCS Files 418
Restricting Access to SCCS Files 419
Locking Releases 419

The UNIX Profiler: prof 420
Double-Checking Programs: lint 421
The UNIX Debugger: dbx 422

Preparing a Program for Debugging 423
Entering the Debugger 423
Running a Program 424
Tracing a Program 424
Tracing Variables and Function Calls 425
The Bug 426

xxvi Table of Contents

Breakpoints 426
Single Stepping 427
Accessing Variables 427
Listing a Program 428
Leaving the Debugger 428
Summary 429

When You’re Done: strip 429
Chapter Review 429

Checklist 429
Quiz 430
Exercises 430
Projects 430

CHAPTER 13 Systems Programming 431

Motivation 431
Prerequisites 431
Objectives 431
Presentation 431
System Calls and Library Routines 431
Introduction 432
Error Handling: perror () 434
Regular File Management 435

A File Management Primer 436
First Example: reverse 438
How reverse Works 439
reverse.c: Listing 440
Opening a File: open () 444
Reading from a File: read () 446
Writing to a File: write () 447
Moving in a File: lseek () 448
Closing a File: close () 450
Deleting a File: unlink () 450
Second Example: monitor 451
How monitor Works 452
monitor.c: Listing 453
Obtaining File Information: stat () 460
Reading Directory Information: getdents () 462
Miscellaneous File Management System Calls 462
Changing a File’s Owner or Group: chown () and fchown () 462
Changing a File’s Permissions: chmod () and fchmod () 464
Duplicating a File Descriptor: dup () and dup2 () 465
File Descriptor Operations: fcntl () 466
Controlling Devices: ioctl () 467

Table of Contents xxvii

Creating Hard Links: link () 467
Creating Special Files: mknod () 468
Flushing the File System Buffers: sync () 469
Truncating a File: truncate () and ftruncate () 470
STREAMS 470

Process Management 472
Creating a New Process: fork () 474
Orphan Processes 475
Terminating a Process: exit () 476
Zombie Processes 477
Waiting for a Child: wait () 478
Differentiating a Process: exec () 480
Changing Directories: chdir () 481
Changing Priorities: nice () 482
Accessing User and Group IDs 483
Sample Program: Background Processing 484
Sample Program: Disk Usage 484
Threads 486
Redirection 488

Signals 489
The Defined Signals 490
A List of Signals 490
Terminal Signals 491
Requesting an Alarm Signal: alarm () 492
Handling Signals: signal () 492
Protecting Critical Code and Chaining Interrupt Handlers 494
Sending Signals: kill () 495
Death of Children 496
Suspending and Resuming Processes 497
Process Groups and Control Terminals 498

IPC 502
Pipes 502
Sockets 509
Shared Memory 529
Semaphores 530

The Internet Shell 531
Restrictions 531
Command Syntax 531
Starting the Internet Shell 531
Built-In Commands 532
Some Regular Examples 532
Some Internet Examples 533
How It Works 535
The Main Command Loop 535

xxviii Table of Contents

Parsing 535
Executing a Command Sequence 536
Executing Pipelines 536
Executing a Simple Command 537
Redirection 537
Extensions 537

Chapter Review 558
Checklist 558
Quiz 559
Exercises 559
Projects 561

CHAPTER 14 UNIX Internals 563

Motivation 563
Prerequisites 563
Objectives 563
Presentation 563
Introduction 564
Kernel Basics 564

Kernel Subsystems 564
Processes and Files 565
Talking to the Kernel 566
System Calls 566
User Mode and Kernel Mode 566
Synchronous versus Asynchronous Processing 569
Interrupting Interrupts 569

The File System 572
Disk Architecture 573
Interleaving 575
Storing a File 575
Block I/O 575
Inodes 576
Inode Contents 577
The Block Map 578
File System Layout 578
The Superblock 579
Bad Blocks 580
Directories 581
Translating Pathnames into Inode Numbers 581
Sample Pathname-to-Inode Translation 582
Mounting File Systems 582
File System I/O 584

Process Management 584
Executable Files 584
The First Processes 584

Table of Contents xxix

Kernel Processes and User Processes 585
The Process Hierarchy 586
Process States 586
Process Composition 586
The User Area 587
The Process Table 587
The Scheduler 588
Scheduling Rules 589
Memory Management 591
Memory Pages 591
Page Tables and Regions 592
The RAM Table 592
Loading an Executable File: exec () 592
Address Translation 593
Illustration of MMU Algorithm 595
The MMU and the Page Table 595
The Memory Layout after the First Instruction 596
The Page Daemon 597
Swap Space 598
The Page Daemon Algorithm 598
The Memory Layout after Some Page Outs 599
Accessing a Page That’s Stored in Swap Space 599
Duplicating a Process: fork () 600
Processing References to Shared RAM and Swap Pages 602
Thrashing and Swapping 602
Terminating a Process: exit () 603
Signals 603

Input/Output 606
I/O Objects 606
I/O System Calls 606
I/O Buffering 607
Regular File I/O 609
Directory File I/O 613
Mounting File Systems 615
Translation of Filenames 615
Special File I/O 617
Terminal I/O 621
Streams 623

Interprocess Communication 623
Pipes 623
Sockets 625

Chapter Review 627
Checklist 627
Quiz 627
Exercises 628
Projects 628

www.allitebooks.com

http://www.allitebooks.org

xxx Table of Contents

CHAPTER 15 System Administration 629

Motivation 629
Prerequisites 629
Objectives 629
Presentation 629
Utilities 629
Introduction 630
Becoming a Superuser 630
Starting UNIX 631
Stopping the System 632
Maintaining the File System 634

File System Integrity 634
Disk Usage 634
Assigning Quotas 637
Creating New File Systems 637
Backing Up File Systems 638

Maintaining User Accounts 638
The Password File 638
The Group File 639

Installing Software 640
Peripheral Devices 641

Installing a Device 642
Terminal Files 643

The Network Interface 643
Automating Tasks 644
Accounting 645
Configuring the Kernel 645
Security Issues 646
Chapter Review 647

Checklist 647
Quiz 648
Exercises 648
Project 648

CHAPTER 16 The Future 649

Motivation 649
Prerequisites 649
Objectives 649
Presentation 649
Introduction 650
Current and Near-Future Influences on UNIX 650

Object-Oriented Programming 650
Open Source Software 652

Table of Contents xxxi

Parallel, Distributed, and Multiprocessor Systems 653
The Year-2000 “Bug” 654
Sixty-Four-Bit Systems 657
Internet Addressing: IPv6 657
High-Bandwidth Networks 658
Fault-Tolerant Systems 658

Survey of Current Popular Versions of UNIX 659
AIX 660
Caldera SCO/Unixware 660
FreeBSD 660
HP-UX 661
IRIX 661
Linux 661
NetBSD 662
OpenBSD 662
Tru64 UNIX 663
Solaris 663

Chapter Review 664
Checklist 664
Quiz 664
Exercise 664
Project 664

Appendix 665

Bibliography 673

Index 675

This page intentionally left blank

1

C H A P T E R 1

What is UNIX?

MOTIVATION

UNIX is a popular operating system in the engineering world and has been growing in
popularity lately in the business world. Knowledge of its functions and purpose will
help you to understand why so many people choose to use UNIX and will make your
own use of it more effective.

PREREQUISITES

To fully understand this chapter, you should have a little experience with a computer
and a familiarity with basic computer terms such as program, file, and CPU.

OBJECTIVES

In this chapter, I describe the basic components of a computer system, define the term
operating system, and explain why UNIX is so successful. I also present UNIX from
several different perspectives, ranging from that of a nonprogrammer to that of an ad-
vanced systems programmer.

PRESENTATION

To begin with, I describe the main bits and pieces that make up a typical computer sys-
tem. I then show how a special program called an operating system is needed to control
these pieces effectively and present a short list of operating system facilities. Following
this discussion is a description of the basic UNIX philosophy, which acts as a frame-
work for the information presented in the rest of the book. Finally, I present a short
history of UNIX and a glimpse of where I believe it is heading.

2 Chapter 1 What is UNIX?

COMPUTER SYSTEMS

A typical single-user computer system is built out of many parts, including a central
processing unit (CPU), memory, disks, a monitor, and a keyboard. Small systems like
this may be connected together to form larger computer networks, enabling tasks to be
distributed among individual computers. Figure 1.1 is an illustration of such a network.

The hardware that goes to make up a computer network is only half the story; the soft-
ware that runs on the computers is equally important. Let’s take a closer look at the
various hardware and software components of a computer system.

RAM ROM

Coprocessor

Ethernet
cardModem

Ethernet

Monitor and
keyboard

Telephone
network

Mouse

Disks

Printer

CPUs
Tape

FIGURE 1.1

A typical computer network.

The Hardware 3

THE HARDWARE

Computer systems, whether large or small, multiuser or singleuser, or expensive or
cheap, include many pieces of hardware.

Central Processing Unit (CPU)

The CPU reads machine code (instructions in a form that a computer can understand)
from memory and executes the code.A CPU is often said to be the “brain” of a computer.

Random-Access Memory (RAM)

RAM holds the machine code and data that are accessed by the CPU. RAM normally
“forgets” everything it holds when the power is turned off.

Read-Only Memory (ROM)

ROM holds both machine code and data. Its contents may not be changed and are “re-
membered” even when the power is turned off.

Disk

Disks hold large amounts of data and code on a magnetic or optical medium and “re-
member” it all even when the power is turned off. Floppy disks are generally remov-
able, whereas hard disks are not. Hard disks can hold a lot more information than
floppy disks can.

CD-ROM Drive

CD-ROM drives allow digitally published information on a compact disc to be read by
the computer. The information may be in a data stream or may constitute a file system
the operating system can read as if it were on a hard disk drive.

Monitor

Monitors display information and come in two flavors: monochrome and color. Mono-
chrome monitors are rare in newer computer systems.

Graphics Card

Graphic cards allow the CPU to display information on a monitor. Some graphics
cards can display characters only, whereas others support graphics.

Keyboard

A keyboard allows a user to enter alphanumeric information. Several different kinds
of keyboards are available, depending partly on the language of the user. For example,
Japanese keyboards are much larger than Western keyboards, as their alphabet is much
larger. The Western keyboards are often referred to as QWERTY keyboards, as these
are the first six letters on the upper left-hand side of the keyboard.

4 Chapter 1 What is UNIX?

Mouse

A mouse allows a user to position things easily on the screen by short movements of
the hand. Most mice have “tails” that connect them to the computer, but some have
radio or infrared connections that make the tail unnecessary. I recommend some form
of cordless mouse to anyone who has a cat (I kid you not!), as cats tend to get tangled
up with a mouse cord very easily.

Printer

A printer allows a user to obtain hard copies of information. Some printers print char-
acters only, whereas others print graphics.

Tape

Tapes are generally used for making backup copies of information stored on disks.
They are slower than disks, but store large amounts of data in a fairly cheap way.

Modem

A modem allows you to communicate with other computers across a telephone line.
Different modems allow different rates of communication. Most modems even correct
for errors that occur due to a poor telephone connection.

Ethernet Interface

An Ethernet is a medium (typically some wires) that allows computers to communi-
cate at high speeds. Computers attach to an Ethernet by a special piece of hardware
called an Ethernet interface.

Other Peripherals

There are many other kinds of peripherals that computer systems can support, includ-
ing graphics tablets, optical scanners, array processors, sound cards, voice recognition
cards, and synthesizers (to name a few).

You cannot just connect these pieces of hardware together and have a working
computer system: You must also have some software that controls and coordinates all
the pieces. The ability to share peripherals, to share memory, to communicate between
machines, and to run more than one program at a time is made possible by a special
kind of program called an operating system. You may think of an operating system as a
“superprogram” that allows all of the other programs to operate. Let’s take a closer
look at operating systems.

OPERATING SYSTEMS

As you’ve already seen, a computer system can’t function without an operating system.
There are many different operating systems available for PCs, minicomputers, and
mainframes, the most common ones being Windows NT and 2000, VMS, MacOS, and
variations of UNIX. UNIX is available for many different hardware platforms, where-
as most other operating systems are tied to a specific hardware family.This is one of the

The Software 5

first good things about UNIX: It’s available for just about any machine. Of the forego-
ing operating systems, only UNIX and VMS allow more than one user to use the com-
puter system at a time, which is an obvious requirement for business systems. Many
businesses buy a powerful minicomputer with 20 or more terminals and then use
UNIX as the operating system that shares the CPUs, memory, and disks among the
users. If we assume that we pick UNIX as the operating system for our computer sys-
tem, what can we do with it? Let’s take a look now at the software side of things.

THE SOFTWARE

One way to describe the hardware of a computer system is to say that it provides a
framework for executing programs and storing files.The kinds of programs that run on
UNIX platforms vary widely in size and complexity, but tend to share certain common
characteristics. Here is a list of useful facts concerning UNIX programs and files:

• A file is a collection of data that is usually stored on disk, although some files are
stored on tape. UNIX treats peripherals as special files, so that terminals, printers,
and other devices are accessible in the same way as disk-based files.

• A program is a collection of bytes representing code and data that are stored in a
file.

• When a program is started, it is loaded from disk into RAM. (Actually, only parts
of it are loaded, but we’ll come to that later.) When a program is running, it is
called a process.

• Most processes read and write data from files.
• Processes and files have an owner and may be protected against unauthorized

access.
• UNIX supports a hierarchical directory structure.
• Files and processes have a “location” within the directory hierarchy. A process

may change its own location or the location of a file.
• UNIX provides services for the creation, modification, and destruction of pro-

grams, processes, and files.

Figure 1.2 is an illustration of a tiny UNIX directory hierarchy that contains four files
and a process running the “sort” utility.

/ (Root directory)

home bin

glass tim

sortmyfile.txt afile.txt

who sort

Denotes a file
Denotes a process

FIGURE 1.2

Directory hierarchy.

6 Chapter 1 What is UNIX?

SHARING RESOURCES

Another operating system function that UNIX provides is the sharing of limited re-
sources among competing processes. Limited resources in a typical computer system
include CPUs, memory, disk space, and peripherals such as printers. Here is a brief out-
line of how these resources are shared:

• UNIX shares CPUs among processes by dividing each second of CPU time into
equal-sized “slices” (typically 1/10 second) and then allocating them to processes
on the basis of a priority scheme. Important processes are allocated more slices
than others.

• UNIX shares memory among processes by dividing RAM up into thousands of
equal-sized “pages” of memory and then allocating them to processes on the basis
of a priority scheme. Only those portions of a process that actually need to be in
RAM are ever loaded from disk. Pages of RAM that are not accessed for a while
are saved back to disk so that the memory may be reallocated to other processes.

• UNIX shares disk space among users by dividing the disks into thousands of
equal-sized “blocks” and then allocating them to users according to a quota sys-
tem. A single file is built out of one or more blocks.

Chapter 14,“UNIX Internals,” contains more details on how these sharing mechanisms
are implemented. We’ve now looked at every major role that UNIX plays as an oper-
ating system except one—as a medium for communication.

COMMUNICATION

The components of a computer system cannot achieve very much when they work in
isolation, as illustrated by the following examples:

• A process may need to talk to a graphics card to display output.
• A process may need to talk to a keyboard to get input.
• A network mail system needs to talk to other computers to send and receive mail.
• Two processes need to talk to each other in order to collaborate on a single problem.

UNIX provides several different ways for processes and peripherals to talk to each
other, depending on the type and the speed of the communication. For example, one
way that a process can talk to another process is via an interprocess communication
mechanism called a “pipe”—a one-way medium-speed data channel that allows two
processes on the same machine to talk. If the processes are on different machines con-
nected by a network, then a mechanism called a “socket” may be used instead. A sock-
et is a two-way high-speed data channel.

It is becoming quite common nowadays for different pieces of a problem to be
tackled by different processes on different machines. For example, there is a graphics
system called the X Window System that works by using something termed a
“client–server” model. One computer (the X “server”) is used to control a graphics
terminal and to draw the various lines, circles, and windows, while another computer
(the X “client”) generates the data that are to be displayed. Arrangements like this

Standards 7

are examples of distributed processing, in which the burden of computation is spread
among many computers. In fact, a single X server may service many X clients. Figure 1.3
is an illustration of an X-based system.

We will discuss the X Window System further in Chapter 11.

UTILITIES

Even the most powerful operating system isn’t worth too much to the average user, un-
less there is a good chunk of useful software that is available for it. Due to the relative-
ly old age of UNIX and its perceived market value, there is no shortage of good
utilities. Standard UNIX comes complete with at least 200 small utility programs, usu-
ally including a couple of editors, a C compiler, a sorting utility, a graphical user inter-
face, some shells, and some text-processing tools. Popular packages like spreadsheets,
compilers, and desktop publishing tools are also commercially available. In addition,
plenty of free software is available from computer sites all over the world via the In-
ternet, which we examine in Chapter 10.

PROGRAMMER SUPPORT

UNIX caters very well to programmers. It is an example of an “open” system, which
means that the internal software architecture is well documented and available in
source code form, either free of charge or for a relatively small fee. The features of
UNIX, such as parallel processing, interprocess communication, and file handling, are
all easily accessible from a programming language such as C via a set of library rou-
tines known as “system calls.” Many facilities that were difficult to use on older operat-
ing systems are now within the reach of every systems programmer.

STANDARDS

UNIX is a fairly standard operating system, with a historical lineage consisting of two
main paths. As you’ll see shortly, UNIX was created in AT&T’s Bell Laboratories and
subsequently evolved into what is currently known as “System V” UNIX. The Univer-
sity of California at Berkeley obtained a copy of UNIX early on in its development and
spawned another major version, known as Berkeley Standard Distribution (BSD)

X
Server

X
Client

X
Client

Control X-server Control X-serverService X-clients
Ethernet

FIGURE 1.3

An X server with X clients.

8 Chapter 1 What is UNIX?

UNIX. Both System V and BSD UNIX have their own strengths and weaknesses, as
well as a large amount of commonality. Two consortiums of leading computer manufac-
turers gathered behind these two versions of UNIX, each believing its own version to be
the best. UNIX International, headed by AT&T and Sun, backed the latest version of
System V UNIX, called System V Release 4. The Open Software Foundation (OSF),
headed by IBM, Digital Equipment Corporation, and Hewlett-Packard, attempted to
create a successor to BSD UNIX called OSF/1. Both groups tried to comply with a set
of standards set by the Portable Operating System Interface (POSIX) Committee and
other such organizations. The OSF project has fallen by the wayside in recent years,
leaving System V as the apparent “winner” of the “UNIX wars,” although most of the
best features of BSD UNIX have been rolled into most System V-based versions of
UNIX. Hence, Solaris (from Sun Microsystems), HP-UX (from Hewlett-Packard),AIX
(from IBM), and IRIX (from Silicon Graphics, Inc.), while all System V-based, also in-
clude most of the different features of BSD UNIX at varying levels of completeness.

UNIX is written mostly in the C language, which makes it relatively easy to port
to different hardware platforms. This portability is an important benefit and has con-
tributed a great deal to the proliferation and success of UNIX.

LIST OF UNIX FEATURES (A RECAP)

Here is a recap of the features that UNIX provides:

• It allows many users to access a computer system at the same time.
• It supports the creation, modification, and destruction of programs, processes,

and files.
• It provides a directory hierarchy that gives a location to processes and files.
• It shares CPUs, memory, and disk space in a fair and efficient manner among

competing processes.
• It allows processes and peripherals to talk to each other, even if they’re on differ-

ent machines.
• It comes complete with a large number of standard utilities.
• There are plenty of high-quality, commercially available software packages for

most versions of UNIX.
• It allows programmers to access operating features easily via a well-defined set of

system calls that are analogous to library routines.
• It is a portable operating system and thus is available on a wide variety of platforms.

Now that we’ve covered the main features of UNIX, it’s time to examine some of the
philosophies behind it and explore both its past and its future.

UNIX PHILOSOPHIES

The original UNIX system was lean and mean. It had a very small number of utilities
and virtually no network or security functionality. The original designers of UNIX had

Unix Philosophies 9

some pretty strong notions about how utilities should be written:A program should do
one thing, it should do it well, and complex tasks should be performed by using these
utilities together. To this end, the designers built a special mechanism called a “pipe”
into the heart of UNIX to support their vision. A pipe allows a user to specify that the
output of one process is to be used as the input to another process. Two or more
processes may be connected in this fashion, resulting in a “pipeline” of data flowing
from the first process through to the last as shown in Figures 1.4 and 1.5.

The nice thing about pipelines is that many problems can be solved by such an arrange-
ment of processes. Each process in the pipeline performs a set of operations upon the data
and then passes the results on to the next process for further processing. For example,
imagine that you wish to obtain a sorted list of all the users on the UNIX system.There is
a utility called who that outputs an unsorted list of the users and another utility called sort
that outputs a sorted version of its input. These two utilities may be connected together
with a pipe so that the output from who passes directly into sort, resulting in a sorted list
of users. This is a more powerful approach to solving problems than writing a fresh pro-
gram from scratch every time or using two programs, but having to store the intermediate
data in a temporary file in order for the next program to have access to the data.

The UNIX philosophy for solving problems can be stated thus:

• If you can solve the problem by using pipes to combine multiple existing utilities,
do it; otherwise

• Ask people on the network if they know how to solve the problem. If they do,
great; otherwise

• If you could solve the problem with the aid of some other handwritten utilities,
write the utilities yourself and add them into the UNIX repertoire. Design each
utility to do one thing well and one thing only, so that each may be reused to solve
other problems. If more utilities won’t do the trick,

• Write a program to solve the problem (typically in C, C++, or Java).

Data Data
Process 1 Process 2 Process 3

FIGURE 1.4

A pipeline.

Data Data
who sort Terminal

FIGURE 1.5

A pipeline that sorts.

10 Chapter 1 What is UNIX?

1Compiler technology has also improved greatly since then, so the code most compilers produce is much
more efficient.

Inside UNIX is hidden another more subtle philosophy that is slowly eroding. The
original system was designed by programmers who liked to have the power to access
data or code anywhere in the system, regardless of who the owner was. To support this
capability, they built the concept of a “superuser” into UNIX, which meant that certain
privileged individuals could have special access rights. For example, the administrator
of a UNIX system always has the capability of becoming a superuser so that he or she
may perform cleanup tasks such as terminating rogue processes or removing unwanted
users from the system. The concept of a superuser has security implications that are a
little frightening: Anyone with the right password could wipe out an entire system or
extract top-security data with relative ease. Some of the research versions of UNIX do
away entirely with the superuser concept and instead subdivide privileged tasks among
several different “slightly super” users.

UNIX YESTERDAY

A computer scientist named Ken Thompson at Bell Laboratories built the first version
of UNIX. Ken was interested in building a video game called “Space Wars,” which re-
quired a fairly fast response time. The operating system that he was using, MULTICS,
didn’t give him the performance that he needed, so he decided to build his own oper-
ating system. He called it UNIX because the “UNI” part of the name implied that it
would do one thing well, as opposed to the “MULTI” part of the “MULTICS” name,
which he felt tried to do many things without much success. He wrote the system in as-
sembly language, and the first version was very primitive: It was only a single-user sys-
tem, it had no network capability, and it had a poor management system for sharing
memory among processes. However, it was efficient, compact, and fast, which was ex-
actly what Ken wanted.

A few years later, a colleague of Ken’s, Dennis Ritchie, suggested that they
rewrite UNIX using the C language, which Dennis had recently developed from a lan-
guage called B. The idea that an operating system could be written in a high-level lan-
guage was an unusual approach at that time. Most people felt that compiled code
would not run fast enough1 and that only the direct use of machine language was suffi-
cient for such an important component of a computer system. Fortunately, C was slick
enough that the conversion was successful, and the UNIX system suddenly had a huge
advantage over other operating systems: Its source code was understandable. Only a
small percentage of the original source code remained in assembly language, which
meant that porting the operating system to a different machine was possible.As long as
the target machine had a C compiler, most of the operating system would work with no
changes; only the assembly language sections had to be rewritten.

Bell Laboratories started using this prototype version of UNIX in its patent de-
partment, primarily for text processing, and a number of UNIX utilities that are found
in modern UNIX systems—for example, nroff and troff—were originally designed dur-
ing this period. But because at that time AT&T was prohibited from selling software by

Unix Today 11

antitrust regulations, Bell Laboratories licensed UNIX source code to universities free
of charge, hoping that enterprising students would enhance the system and further its
progress into the marketplace. Indeed, graduate students at the University of Califor-
nia at Berkeley took the task to heart and made some huge improvements over the
years, including creating the first good memory management system and the first real
networking capability.The university started to market its own version of UNIX, called
Berkeley Standard Distribution (BSD) UNIX, to the general public. The differences
between these versions of UNIX can be seen in many of today’s versions.

UNIX TODAY

Many companies produce and market their own versions of UNIX, usually to run on their
own hardware platforms.A more recent entry into the UNIX world is Linux, an operating
system that behaves2 very much like UNIX. LINUX was written by many programmers
around the world and is now marketed and supported by several different companies.
Older versions of UNIX are derived from either System V or BSD, whereas the newer
versions tend to contain features from both. Figure 1.6 shows an abbreviated genealogy.

2Technically, Linux is not UNIX, since it shares no common code (and therefore no licensing restrictions),
but to even the experienced UNIX user, it looks and acts the same.

As Linux is a complete reimplementation, it shares no common code with any version
of UNIX and therefore does not connect to the “family tree.” Still, very strong philo-
sophical connections and influences in Linux are derived from all versions of UNIX.

System V
series

BSD
series

UNIX

IBM
AIX

OSF/1

V.2

V.3

V.4

V.4.1

4.2

4.3
Apollo

Sun OS
(Solaris)

HP/UX

FIGURE 1.6

An abbreviated UNIX genealogy.

12 Chapter 1 What is UNIX?

We’ll see what versions of UNIX are available for various hardware platforms in
Chapter 16.

UNIX TOMORROW

It is likely that future versions of UNIX will follow a philosophy similar to that of con-
temporary versions of UNIX—for example, incorporating the idea that you can build
an application from a collection of interconnected utilities. In addition, UNIX will
need to embrace some of the newer trends in computing, such as parallel processing
and object-oriented programming. We’ll take a look at some of these future-related is-
sues in Chapter 16.

THE REST OF THIS BOOK

As you can probably tell by now, UNIX is a fairly substantial topic and can be proper-
ly digested only in small portions. In order to aid this process and to allow individual
readers to focus on the subjects that they find most applicable, I decided to write the
book’s chapters with reference to the different kinds of UNIX user there are. These
users tend to fall into one of several categories:

• Nonprogrammers, who occasionally want to perform simple tasks like sending
and receiving electronic mail, use a spreadsheet, or do some word processing.

• Shell users, who use background processing and write small scripts from within a
convenient interface.

• Advanced Nonprogrammers, who use more complex facilities like file encryp-
tion, stream editors, and file processing.

• Advanced-shell users, who write programs in a high-level shell language (a little
like job control language, or JCL) to perform useful tasks such as backing up files
automatically, monitoring disk usage, and performing software installation.

• Programmers, who write programs in a general-purpose language such as C for
speed and efficiency.

• System programmers, who require a good knowledge of the underlying computer
system in order to write programs such as network communication programs and
advanced file access programs.

• System architects, who invent better computer systems.These people provide a vi-
sion and a framework for the future.

• System administrators, who make sure that the computer system runs smoothly
and that users are generally satisfied.

To begin with, read the chapters that interest you the most. Then go back and fill in the
gaps when you have the time. If you’re unsure about which chapters are most appro-
priate for your skill level, read the introductory section, “About This Book,” for some
hints.

Chapter Review 13

CHAPTER REVIEW

Checklist

In this chapter, I mentioned

• the main hardware components of a computer system
• the purpose of an operating system
• the meaning of the terms program, process, and file
• the layout of a hierarchical directory structure
• that UNIX shares CPUs, memory, and disk space among competing processes
• that UNIX supports communication between processes and peripherals
• that UNIX comes complete with a multitude of standard utilities
• that most major software packages are available on UNIX systems
• that UNIX is an “open” system
• that UNIX has a rosy future

Quiz

1. What are the two main versions of UNIX, and how did each begin?
2. Write down five main functions of an operating system.
3. What is the difference between a process and a program?
4. What is the UNIX philosophy?
5. Who created UNIX?
6. What makes UNIX an “open” system?

Exercise

1.1 Obtain a list of currently popular operating systems other than UNIX, and deter-
mine whether any of them could be serious contenders to UNIX. [level: medium]

Project

Investigate the MULTICS system, and find the similarities and differences be-
tween it and the UNIX system. [level: medium]

C H A P T E R 2

UNIX Utilities for
Nonprogrammers

MOTIVATION

This section contains the absolute basics that you really need to know in order to be
able to do anything useful with UNIX.

PREREQUISITES

In order to understand this chapter, you must have already read Chapter 1. It also
helps if you have access to a UNIX system so that you can try out the various UNIX
features that I discuss.

OBJECTIVES

In this chapter, I’ll show you how to log on and off a UNIX system, how to change your
password, how to get on-line help when you’re stuck, how to stop a program, and how
to use the file system. I’ll also introduce you to the mail system so that you can enter
the world of computer networking.

PRESENTATION

The information in this section is presented in the form of a couple of sample UNIX
sessions. If you don’t have access to a UNIX account, march through the sessions any-
way and try them out later.

14

Logging In 15

UTILITIES

This section introduces the following utilities, listed in alphabetical order:

cancel head mv wc
cat lp newgrp
chgrp lpr page
chmod lprm passwd
chown lpq pwd
clear lpstat rm
cp ls rmdir
date mail stty
emacs man tail
file mkdir tset
groups more vi

SHELL COMMAND

This section introduces the following shell command:

cd

OBTAINING AN ACCOUNT

If you can’t just go buy your own UNIX computer, then you’ll need to get an account
on someone else’s. If you’re a student, the best way to get access to a UNIX account is
to enroll in a UNIX course or an account from a professor. If you’re a professional, it’s
likely that your company already has some UNIX facilities, in which case it’s a matter
of contacting either the training staff or a suitable manager. If you have a little cash and
a PC, you can download one of several distributions of Linux or buy it at many com-
puter stores. If you have more cash, you could buy a commercial version of UNIX.
We’ll check out the versions of UNIX that are currently available, both free and com-
mercial, in Chapter 16.The good thing about having your own UNIX system is that you
can be a superuser, since you’re the one who owns the system. Most companies won’t
let a nonguru near the superuser password.

LOGGING IN

In order to use a UNIX system, you must first log in with a suitable username—a
unique name that distinguishes you from the other users of the system. For example,
my own username is “glass.” Your username and initial password are assigned to you
by the system administrator or are set to something standard if you bought your own
UNIX system. It’s sometimes necessary to press the Enter key (also known as the
Return key) a couple of times to make the system give you a login prompt. Doing this
effectively tells UNIX that “somebody’s waiting to log in.” UNIX first asks you for
your username by prompting you with the line “login:” and then asks for your pass-
word. When you enter your password, the letters that you type are not displayed on
your terminal, for security reasons. UNIX is case sensitive, so make sure that the case

16 Chapter 2 UNIX Utilities for Nonprogrammers

of the letters is matched exactly. Depending on how your system is set up, you should
then see either a $ or a % prompt. Here’s sample login:

UNIX(r) System V Release 4.0
login: glass
Password: ...what I typed here is secret and doesn't show.
Last login: Sun Feb 15 18:33:26 from dialin
$ _

It’s quite common for the system to immediately ask you which kind of terminal you’re
using, so that it can set special characters like the backspace and cursor movement keys
to their correct values. You are usually allowed to press the Enter key for the default
terminal setting, and I suggest that you do this when you log in for the first time. I’ll
show you later how to change the terminal type if necessary. Other events that might
occur when you log in are as follows:

• A help system recognizes that you’re a first-time user and asks you whether
you’d like a guided tour of UNIX.

• The “news of the day” messages are displayed to your screen, informing you of
scheduled maintenance times and other useful information.

Here’s an example of a slightly more complex login sequence that asked me what my
terminal type was. I pressed the Enter key to select the default terminal type, a “vt100”:

UNIX(r) System V Release 4.0
login: glass
Password: ...secret.
Last login: Sun Feb 15 21:26:13 from dialin
You have mailthe system tells me I have mail.
TERM = (vt100) ...I pressed Enter.
$ _

SHELLS

The $ or % prompt that you see when you first log into UNIX is displayed by a special
kind of program called a shell—a program that acts as a middleman between you and the
raw UNIX operating system. A shell lets you run programs, build pipelines of processes,
save output to files, and run more than one program at the same time.A shell executes all
of the commands that you enter.The following are the four most popular shells:

• the Bourne shell
• the Korn shell
• the C shell
• the Bourne Again shell (a.k.a. Bash)

All of these shells share a similar set of core functionality, together with some special-
ized properties.The Korn shell is a superset of the Bourne shell, and thus users typically
no longer use the Bourne shell as their login shell. I personally favor the Korn shell, as

Running a Utility 17

Utility: date [yymmddhhmm [.ss]]

Without any arguments, date displays the current date and time. If arguments are
provided, date sets the date to the setting supplied, where yy is the last two digits of
the year, the first mm is the number of the month, dd is the number of the day, hh is
the number of hours (use the 24-hour clock), and the last mm is the number of min-
utes. The optional ss is the number of seconds. Only a superuser may set the date.

FIGURE 2.1

Description of the date command.

it’s easy to program and has the best command line interface.This book contains infor-
mation on how to use all four shells, each discussed in a separate chapter. Chapter 4 de-
scribes the core functionality found in all UNIX command shells, and Chapters 5
through 8 describe the specialized features of each shell.

Each shell has its own programming language. One reasonable question to ask
is,Why would you write a program in a shell language rather than a language like C or
Java? The answer is that shell languages are tailored to manipulating files and
processes in the UNIX system, which makes them more convenient in many situa-
tions. In this chapter, the only shell facilities that I use are the abilities to run utilities
and to save the output of a process to a file. Let’s go ahead and run a few simple
UNIX utilities.

RUNNING A UTILITY

To run a utility, simply enter its name and press the Enter key. From now on, when I say
that you should enter a particular bit of text, I also implicitly mean that you should
press the Enter key after the text. This tells UNIX that you’ve entered the command
and that you wish it to be executed.

Not all systems have exactly the same utilities, so if a particular example doesn’t
work, don’t be flustered. I’ll try to point out the utilities that vary a lot from system to
system. One utility that every system has is called date, which displays the current date
and time:

$ date ... run the date utility.
Thu Mar 12 10:41:50 MST 1998
$ _

Whenever I introduce a new utility, I’ll write a small synopsis of its typical operation in
the format shown in Figure 2.1. It’s self-explanatory, as you can see. I use a modified-
for-UNIX (Backus–Naur form (BNF)) notation to describe the syntax.This notation is
fully documented in the appendix.

Note that I do not list every different kind of option or present a particularly de-
tailed description. Those are best left to the pages of the manual for your particular
version of UNIX and to books that focus almost entirely on UNIX utilities.

www.allitebooks.com

http://www.allitebooks.org

18 Chapter 2 UNIX Utilities for Nonprogrammers

Utility: clear

This utility clears your screen.

FIGURE 2.2

The clear command.

Another useful utility, shown in Figure 2.2, is clear, which clears your screen.

INPUT, OUTPUT, AND ERROR CHANNELS

In the example of the date command in the previous section, the output was written to
the terminal. UNIX can write to files, but there are three default I/O channels that are
always assumed to be active for every command or program:

• Standard input, known as “stdin,” whereby a program expects to find input
• Standard output, known as “stdout,” whereby a program writes its output by default
• Standard error, known as “stderr,” whereby a program writes error messages

By default, all three I/O channels are the terminal running the command or program.
This arrangement enables commands to interact with the terminal easily and still use
input from other places and write output to other places when necessary. The default
I/O channels can be easily changed on the command line by using “redirection.” We’ll
see examples of I/O redirection later in this chapter. For details on how the UNIX I/O
channels work, see Chapter 13.

OBTAINING ON-LINE HELP: man

There are bound to be many times when you’re at your terminal and you can’t quite re-
member how to use a particular utility.Alternatively, you may know what a utility does
but not remember what it’s called. You may also want to look up an argument not de-
scribed in this text or one that differs slightly among different versions of UNIX. All
UNIX systems have a utility called man (short for “manual page”) that puts this infor-
mation at your fingertips. man works as described in Figure 2.3.

Utility: man [[-s] section] word

man -k keyword
The manual pages are on-line copies of the original UNIX documentation, which is
usually divided into eight sections.The pages contain information about utilities, sys-
tem calls, file formats, and shells.When man displays help about a given utility, it indi-
cates in which section the entry appears.

The first usage of man displays the manual entry associated with word. A few
versions of UNIX use the –s argument to indicate the section number. If no section
number is specified, the first entry that man finds is displayed. The second usage of
man displays a list of all the manual entries that contain keyword.

FIGURE 2.3

The man command.

Obtaining On-Line Help: man 19

The typical division of topics in manual page sections is as follows:

1. Commands and application programs
2. System calls
3. Library functions
4. Special files
5. File formats
6. Games
7. Miscellaneous
8. System administration utilities

Sometimes, there is more than one manual entry for a particular word. For example,
there is a utility called chmod and a system call called chmod (), and there are manual
pages for both (in Sections 1 and 2). By default, man displays the manual pages for the
first entry that it finds, so it will display the manual page for the chmod utility. In case
other entries exist, the manual page of the first entry will state “SEE ALSO...,” with the
other entries listed, followed by their section numbers.

Here’s an example of man in action:

$ man -k mode ...search for keyword "mode".
chmod (1V) - change the permissions mode of a file
chmod, fchmod (2V) - change mode of file
getty (8) - set terminal mode
ieeeflags (3M) - mode and status function
umask (2V) - set file creation mode mask
$ man chmod ...select the first manual entry.
CHMOD(1V) USER COMMANDSCHMOD (1V)
NAME

chmod - change the permissions mode of a file
SYNOPSIS

chmod C -fR V mode filename ...
...the description of chmod goes here.
SEE ALSO

csh(1), ls(1V), sh(1), chmod(2V), chown(8)
$ man 2 chmod ...select the manual entry from section 2.
CHMOD(2V) SYSTEM CALLS CHMOD(2V)
NAME

chmod, fchmod - change mode of file
SYNOPSIS

#include <sys/stat.h>
int chmod(path, mode)
char *path;
mode_t mode;

...the description of chmod () goes here.
SEE ALSO

chown(2V), open(2V), stat(2V), sticky(8)
$ _

20 Chapter 2 UNIX Utilities for Nonprogrammers

SPECIAL CHARACTERS

Some characters are interpreted specially when typed at a UNIX terminal. These
characters are sometimes called metacharacters and may be listed by using the stty
utility with the -a (all) option. The stty utility is discussed fully at the end of this chap-
ter. Here’s an example:

$ stty -a ...obtain a list of terminal metacharacters
speed 38400 baud; -parity hupcl
rows = 24; columns = 80; ypixels = 0; xpixels = 0;
-inpck -istrip ixoff imaxbel
crt tostop iexten
erase kill werase rprnt flush lnext susp intr quit stop
eof
H ^U ^W ^R ^O ^V ^Z/^Y ^C ^\ ^S/^Q ^D
$ _

The ^ in front of each letter means that the Control key must be pressed at the same
time as the letter. The default meaning of each option is shown in Figure 2.4.

Some of the characters just listed won’t mean much to you until you read some
more chapters of the book, but a few are worth mentioning now.

Option Meaning

erase Backspace one character.

kill Erase all of the current line.

werase Erase the last word.

rprnt Reprint the line.

flush Ignore any pending input and reprint the line.

lnext Don’t treat the next character specially.

susp Suspend the process for a future awakening.

intr Terminate (interrupt) the foreground job with no core dump.

quit Terminate the foreground job and generate a core dump.

stop Stop/restart terminal output.

eof End of input.

FIGURE 2.4

stty options.

Terminating a Process: Control-C

Sometimes you run a program and then wish to stop it before it’s finished. The stan-
dard way to do this in UNIX is to press the keyboard sequence Control-C. Although

Special Characters 21

there are a few programs that are immune to this form of termination of a process,
most processes are immediately killed, and your shell prompt is returned. Here’s an
example:

$ man chmod
CHMOD(1V) USER COMMANDS CHMOD(1V)
NAME

chmod - change the permissions mode of a file
SYNOPSIS
^C ...terminate the job and go back to the shell.
$ _

Pausing Output: Control-S/Control-Q

If the output of a process starts to scroll rapidly up the screen, you may pause it by
typing Control-S. To resume generating the output, you may either type Control-S
again or type Control-Q. This sequence of control characters is sometimes called
XON/XOFF protocol. Here’s an example:

$ man chmod
CHMOD(1V) USER COMMANDS CHMOD(1V)
NAME

chmod - change the permissions mode of a file
^S ...suspend terminal output.
^Q ...resume terminal output.
SYNOPSIS

chmod C -fR V mode filename ...
...the rest of the manual page is displayed here.
SEE ALSO

csh(1), ls(1V), sh(1), chmod(2V), chown(8)
$ _

End of Input: Control-D

Many UNIX utilities take their input from either a file or the keyboard. If you instruct
a utility to do the latter, you must tell the utility when the input from the keyboard is
finished. To do this, type Control-D on a line of its own after the last line of input.
Control-D means “end of input.” For example, the mail utility allows you to send mail
from the keyboard to a named user:

$ mail tim ...send mail to my friend Tim.
Hi Tim, ...input is entered from the keyboard.
I hope you get this piece of mail. How about building a country
one of these days?
- with best wishes from Graham
^D ...tell the terminal that there’s no more input.
$ _

The mail utility is described fully later in the chapter.

22 Chapter 2 UNIX Utilities for Nonprogrammers

SETTING YOUR PASSWORD: PASSWD

After you first log into a UNIX system, it’s a good idea to change your initial password.
(Someone set it, so you know that at least one other person knows it.) Passwords
should generally be at least six letters long and should not be a word from a dictionary
or a proper noun. This is because it’s quite easy for someone to set up a computer
program that runs through all the words in a standard dictionary and tries them as
your password. I know this firsthand, as I’ve had someone break into my account
using the very same technique. My password is now something like “GWK145W.” Get
the idea?

To set your password, use the passwd utility, which works as shown in Figure 2.5.
Here’s an example, with the passwords shown. Note that you wouldn’t normally be
able to see the passwords, as UNIX turns off the keyboard echo when you enter them.

Utility: passwd

passwd allows you to change your password. You are prompted for your old pass-
word and then twice for the new one. (Since what you type isn’t shown on the
screen, you would not know if you made a typo.) The new password may be stored in
an encrypted form in the password file “/etc/passwd” or in a “shadow” file (for more
security), depending on your version of UNIX. Your particular version may store
the password in a remote database as well.

FIGURE 2.5

Description of the passwd command.

$ passwd
Current password: penguin
New password (? For help): GWK145W
New password (again): GWK145W
Password changed for glass
$ _

If you forget your password, the only thing to do is contact your system administrator
and ask for a new password.

LOGGING OUT

To leave the UNIX system, type the keyboard sequence Control-D at your shell
prompt.1 This tells your login shell that there is no more input for it to process, causing
it to disconnect you from the UNIX system. Most systems then display a “login:”
prompt and wait for another user to log in. Here’s an example:

1The C-shell can be set to ignore ^D for logout, since you might type it by accident. In this case, you must
type the “logout” command instead.

Poetry in Motion: Exploring the File System 23

$ ^D ...I'm done!
UNIX(r) System V Release 4.0
login: ...wait for another user to log in.

Congratulations! You’ve now seen how you can log into a UNIX system, execute a
few simple utilities, change your password, and then log out. In the next few sections,
I’ll describe some more utilities that allow you to explore the directory hierarchy and
manipulate files.

POETRY IN MOTION: EXPLORING THE FILE SYSTEM

I decided that the best way to illustrate some common UNIX utilities was to describe a
session that used them in a natural fashion. One of my hobbies is to compose music,
and I often use the UNIX system to write lyrics for my songs. The next few sections of
this chapter are a running commentary on the UNIX utilities that I used to create a
final version of one of my song’s lyrics, called “Heart To Heart.” Figure 2.6 shows the
approximate series of events that took place, together with the utility that I used at
each stage.

Action Utility

I displayed my current working directory. pwd

I wrote the first draft and stored it in a file called “heart.” cat

I listed the directory contents to see the size of the file. ls

I displayed the “heart” file, using several utilities. cat, more, page,
head, tail

I renamed the first draft “heart.ver1.” mv

I made a directory called “lyrics” to store the first draft. mkdir

I moved “heart.ver1” into the “lyrics” directory. mv

I made a copy of “heart.ver1” called “heart.ver2.” cp

I edited the “heart.ver2” file. vi

I moved back to my home directory. cd

I made a directory called “lyrics.final.” mkdir

I renamed the “lyrics” directory to “lyrics.draft.” mv

I copied the “heart.ver5” file from “lyrics.draft” to
“lyrics.final,” renaming it “heart.final.” cp

I removed all the files from the “lyrics.draft” directory. rm

I removed the “lyrics.draft” directory. rmdir

FIGURE 2.6

Script of upcoming examples.

24 Chapter 2 UNIX Utilities for Nonprogrammers

PRINTING YOUR SHELL’S CURRENT WORKING DIRECTORY: PWD

Every UNIX process has a location in the directory hierarchy, termed its current
working directory. When you log into a UNIX system, your shell starts off in a partic-
ular directory called your “home directory.” In general, every user has a different
home directory, which often begins with the prefix “/home.” For example, my own
home directory is called “/home/glass.”The system administrator assigns home directo-
ry values. To display your shell’s current working directory, use the pwd utility, which
works as shown in Figure 2.7. To illustrate this utility, here’s what happened when I
logged into UNIX to start work on my song’s lyrics:

Action Utility

I moved into the “lyrics.final” directory. cd

I printed the “heart.final” file. lpr

I counted the words in “heart.final.” wc

I listed the file attributes of “heart.final.” ls

I looked at the file type of “heart.final.” file

I obtained a list of my groups. groups

I changed the group of “heart.final.” chgrp

I changed the permissions of “heart.final.” chmod

FIGURE 2.6 (Continued)

Utility: pwd

Prints the current working directory.

FIGURE 2.7

Description of the pwd command.

UNIX(r) System V Release 4.0
login: glass
Password: ...secret.
$ pwd
/home/glass
$ _

Figure 2.8 is a diagram that indicates the location of my login Korn shell in the directory
hierarchy.

Absolute and Relative Pathnames 25

ABSOLUTE AND RELATIVE PATHNAMES

Before I continue with the sample UNIX session, it’s important to introduce you to the
idea of pathnames.

Two files in the same directory may not have the same name, although it’s per-
fectly OK for several files in different directories to have the same name. For example,
Figure 2.9 shows a small hierarchy that contains a “ksh” process and three files called
“myFile”.

/

home bin

glass tim

ksh The glass login
Korn shell

FIGURE 2.8

The login shell starts at the user’s home directory.

/

home bin

glass tim

ksh

myFile

B

myFile

A

myFile

C

FIGURE 2.9

Different files may have the same name.

Although these files have the same name, they may be unambiguously specified by
their pathname relative to “/”, the root of the directory hierarchy. A pathname is a se-
quence of directory names that leads you through the hierarchy from a starting direc-
tory to a target file. A pathname relative to the root directory is often termed an
absolute or full pathname. Figure 2.10 shows the absolute pathnames of the “A,” “B,”
and “C” instances of “myFile”.

26 Chapter 2 UNIX Utilities for Nonprogrammers

A process may also unambiguously specify a file by using a pathname relative to its cur-
rent working directory. The UNIX file system supports the special fields shown in
Figure 2.11 that may be used when supplying a relative pathname. For example,
Figure 2.12 shows the pathnames of the three instances of “myFile” relative to the
“ksh” process located in the “/home/glass” directory. Note that the pathname “myFile”
is equivalent to “./myFile,” although the second form is rarely used because the leading
“.” is redundant.

CREATING A FILE

I already had an idea of what the first draft of my song’s lyrics would look like, so I de-
cided to store them in a file called “heart.” Ordinarily, I would use a UNIX editor such
as vi or emacs to create the file, but this is a beginner’s chapter, so I used a simpler util-
ity called cat to achieve the same result. Figure 2.13 shows how cat works.

File Absolute PathName

A /home/glass/myFile

B /usr/myFile

C /bin/myFile

FIGURE 2.10

Absolute pathnames.

Field Meaning

. current directory

.. parent directory

FIGURE 2.11

Current and parent directories.

File Relative PathName

A myFile

B ../myFile

C ../../bin/myFile

FIGURE 2.12

Relative pathnames.

Listing the Contents of a Directory: ls 27

By default, the standard input of a process is the keyboard and the standard output is the
screen. We can send the standard output of a process to a file instead of the screen by
making use of a shell facility called output redirection. If you follow a command by a >
character and the name of a file, the output from the command is saved to the file. If
the file doesn’t already exist, it is created; otherwise, its previous contents are overwrit-
ten. Right now, use this feature without worrying about how it works; Chapter 4 ex-
plains it all in detail. To create the first draft of my lyrics, I entered the following text at
the shell prompt:

$ cat > heart ...store keyboard input a the file "heart".
I hear her breathing,
I'm surrounded by the sound.
Floating in this secret place,
I never shall be found.
^D ...tell cat that the end-of-input has been reached.
$ _

LISTING THE CONTENTS OF A DIRECTORY: ls

Once the “heart” file was created, I wanted to confirm its existence in my home direc-
tory and see how many bytes of storage it used. To do this, I used the ls utility, which
lists information about a file or a directory. ls works as shown in Figure 2.14.

Utility: cat -n { fileName }*

The cat utility takes its input from standard input or from a list of files and displays
them to standard output. The -n option adds line numbers to the output. cat is short
for “concatenate” which means “to connect in a series of links.”

FIGURE 2.13

Description of the cat command.

Utility: ls -adglsFR { fileName }* { directoryName }*

With no arguments at all, ls lists all of the files in the current working directory in
alphabetical order, excluding files whose name starts with a period. The -a option
causes such files to be included in the listing. Files that begin with a period are some-
times known as “hidden” files. To obtain a listing of directories other than the cur-
rent directory, place their names after the options. To obtain listings of specific files,
place their names after the options. The -d option causes the details, rather than the

FIGURE 2.14

Description of the ls command.

28 Chapter 2 UNIX Utilities for Nonprogrammers

Some of the ls options just described won’t mean a lot right now, but will become in-
creasingly relevant as this book progresses.

Here’s an example of ls:

$ ls ...list all files in current directory.
heart
$ ls -l heart ...long listing of "heart."
-rw-r--r-- 1 glass 106 Jan 30 19:46 heart
$ _

I’ll describe the exact meaning of each field in the long directory listing later in this
chapter, but for now Figure 2.15 will give you a brief overview. You may obtain even
more information by using the following additional options:

contents, of the directories to be listed.The -g option lists a file’s group.The -l option
generates a long listing, including permission flags, the file’s owner, and the last time
the file was modified.The -s option causes the number of disk blocks that the file oc-
cupies to be included in the listing. (A block is typically between 512 and 4K bytes.)
The -F option causes a character to be placed after the file’s name, to indicate the
type of the file: * means an executable file, / means a directory file, @ means a sym-
bolic link, and = means a socket. The -R option recursively lists the contents of a
directory and its subdirectories.

FIGURE 2.14 (Continued)

Field # Field value Meaning

1 -rw-r--r-- the type and permission mode of the file, which
indicates who can read, write, and execute the file

2 1 the hard link count (discussed much later in the
book)

3 glass the username of the owner of the file

4 106 the size of the file, in bytes

5 Jan 30 19:46 the last time the file was modified

6 heart the name of the file

FIGURE 2.15

Description of output from the ls command.

Listing a File: cat/more/page/head/tail 29

$ ls -algFs ...extra-long listing of current dir.
total 3 ...total number of blocks of storage.
1 drwxr-xr-x 3 glass cs 512 Jan 30 22:52 ./
1 drwxr-xr-x 12 root cs 1024 Jan 30 19:45 ../
1 -rw-r--r-- 1 glass cs 106 Jan 30 19:46 heart
$ _

The -s option generates an extra first field that tells you how many disk blocks the
file occupies. On my UNIX system, each disk block is 1024 bytes long, which implies
that my 106-byte file actually takes up 1024 bytes of physical storage. This is a result
of the physical implementation of the file system, which is described in Chapter 14.
The -a option causes ls to include a listing of all hidden files, which are files whose
names begin with a period. For example, “.” and “..” are hidden files that correspond
to the current directory and its parent directory, respectively. The -F option appends
a / to all files that are directories, and the -g option displays the file’s group.

LISTING A FILE: cat/more/page/head/tail

To check the contents of the “heart” file that I had created in my home directory,
“/home/glass,” I directed its contents to the screen using the cat utility. Notice that I
supplied cat with the name of the file that I wanted to display:

$ cat heart ...list the contents of the "heart" file.
I hear her breathing,
I'm surrounded by the sound.
Floating in this secret place,
I never shall be found.
$ _

cat can actually take any number of files as arguments, in which case they are listed
together, one following the other. cat is good for listing small files, but doesn’t pause
between full screens of output. The more and page utilities are better suited for larg-
er files and contain advanced facilities such as the ability to scroll backward through a
file. Figures 2.16 and 2.17 provide some notes on each utility.

Utility: more -f [+lineNumber] { fileName }*

The more utility allows you to scroll through a list of files, one page at a time. By
default, each file is displayed starting at line 1, although the + option may be used
to specify the starting line number. The -f option tells more not to fold long lines.
After each page is displayed, more displays the message “--More--” to indicate that
it’s waiting for a command. To list the next page, press the space bar. To list the next
line, press the Enter key. To quit more, press the q key. To obtain help on the multi-
tude of other commands, press the h key.

FIGURE 2.16

Description of the more command.

30 Chapter 2 UNIX Utilities for Nonprogrammers

While we’re on the topic of listing files, there are a couple of handy utilities called head
and tail that allow you to peek at the start and end of a file, respectively. Figures 2.18
and 2.19 show how they work.

In the following example, I displayed the first two lines and last two lines of my
“heart” file:

$ head -2 heart ...list the first two lines
I hear her breathing,
I'm surrounded by the sound.
$ tail -2 heart ...list the last two lines
Floating in this secret place,
I never shall be found.
$ _

Utility: page -f [+lineNumber] { fileName]*

The page utility works just like more, except that it clears the screen before displaying
each page. This sometimes makes the listing display a little more quickly.

FIGURE 2.17

Description of the page command.

Utility: head -n { fileName }*

The head utility displays the first n lines of a file. If n is not specified, head defaults
to 10. If more than one file is specified, a small header identifying each file is dis-
played before its contents are.

FIGURE 2.18

Description of the head command.

Utility: tail -n { fileName }*

The tail utility displays the last n lines of a file. If n is not specified, tail defaults to 10. If
more than one file is specified, a small header identifying each file is displayed before
its contents are.

FIGURE 2.19

Description of the tail command.

Making a Directory: mkdir 31

RENAMING A FILE: mv

Now that I’d created the first draft of my lyrics, I wanted to create a few more experimen-
tal versions. To indicate that the file “heart” was really the first generation of many ver-
sions to come, I decided to rename it “heart.ver1” by using the mv utility, which works as
shown in Figure 2.20. Here’s how I renamed the file using the first form of the mv utility:

Utility: mv -i oldFileName newFileName

mv -i {fileName}* directoryName

mv -i oldDirectoryName newDirectoryName

The first form of mv renames oldFileName as newFileName. If the label
newFileName already exists, it is replaced. The second form allows you to move a
collection of files to a directory, and the third allows you to move an entire directo-
ry. None of these options actually moves the physical contents of a file if the desti-
nation location is within the same file system as the original; instead, they just move
labels around the hierarchy. mv is therefore a very fast utility. The -i option prompts
you for confirmation if newFileName already exists.

FIGURE 2.20

Description of the mv command.

$ mv heart heart.ver1 ...rename to "heart.ver1".
$ ls
heart.ver1
$ _

The second and third forms of the mv utility are illustrated later in the chapter.

MAKING A DIRECTORY: mkdir

Rather than clog up my home directory with the many versions of “heart,” I decided to
create a subdirectory called “lyrics” in which to keep them all. To do this, I used the
mkdir utility, which works as shown in Figure 2.21. Here’s how I did it:

Utility: mkdir [-p] newDirectoryName

The mkdir utility creates a directory.The -p option creates any parent directories in the
newDirectoryName pathname that do not already exist. If newDirectoryName already
exists, an error message is displayed and the existing file is not altered in any way.

FIGURE 2.21

Description of the mkdir command.

32 Chapter 2 UNIX Utilities for Nonprogrammers

$ mkdir lyrics ...create a directory called "lyrics".
$ ls -lF ...confirm.
-rw-r--r-- 1 glass 106 Jan 30 23:28 heart.ver1
drwxr-xr-x 2 glass 512 Jan 30 19:49 lyrics/
$ _

The letter “d” at the start of the permission flags of “lyrics” indicates that it’s a directory
file.

In general, you should keep related files in their own separate directory. If you
name your directories sensibly, it’ll make it easy to track down files weeks, or even
years, after you create them.

Once the “lyrics” directory was created, the next step was to move the “heart.ver1”
into its new location.To do this, I used mv and confirmed the operation by using ls:

$ mv heart.ver1 lyrics ...move into "lyrics"
$ ls ...list the current directory.
lyrics/ ..."heart.ver1" has gone.
$ ls lyrics ...list the "lyrics" directory.
heart.ver1 ..."heart.ver1" has moved.
$ _

MOVING TO A DIRECTORY: cd

Although I could remain in my home directory and access the various versions of my
lyric files by preceding them with the prefix “lyrics/”, doing this would be rather incon-
venient. For example, to edit the file “heart.ver1” with the UNIX vi editor, I’d have to
do the following:

$ vi lyrics/heart.ver1 ...invoke the vi editor.

In general, it’s a good idea to move your shell into a directory if you intend to do a lot of
work there.To do this, use the cd command. cd isn’t actually a UNIX utility, but instead is
an example of a shell built-in command.Your shell recognizes cd as a special keyword and
executes it directly. Notice that I write shell commands using italics, in adherence to the
nomenclature that I described at the start of the book. Figure 2.22 shows how cd works.

Shell Command: cd [directoryName]

The cd (change directory) shell command changes a shell’s current working directo-
ry to directoryName. If the directoryName argument is omitted, the shell is moved to
its owner’s home directory.

FIGURE 2.22

Description of the cd shell command.

Copying a File: cp 33

The following example shows how I moved into the “lyrics” directory and con-
firmed my new location by using pwd:

$ pwd ...display where I am.
/home/glass
$ cd lyrics ...move into the "lyrics" directory.
$ pwd ...display where I am now.
/home/glass/lyrics
$ _

Figure 2.23 is an illustration of the shell movement caused by the previous cd command.

Since “.” and “..” refer to your shell’s current working directory and parent directory, re-
spectively, you may move up one directory level by typing “cd ..”. Here’s an example:

$ pwd ...display current position.
/home/glass/lyrics
$ cdmove up one level.
$ pwd ...display new current position.
/home/glass
$ _

COPYING A FILE: cp

After moving into the “lyrics” directory, I decided to work on a second version of my
lyrics. I wanted to keep the first version for posterity, so I copied “heart.ver1” into a
new file called “heart.ver2” and then edited the new file. To copy the file, I used the cp
utility, which works as shown in Figure 2.24.

/

home bin

glass
ksh

ksh

Shell moves to /home/glass/lyricslyrics

FIGURE 2.23

cd moves a shell.

34 Chapter 2 UNIX Utilities for Nonprogrammers

cp actually does two things:

• It makes a physical copy of the original file’s contents.
• In the directory hierarchy, it creates a new label that points to the copied file.

The new copy of the original file can therefore be edited, removed, and otherwise ma-
nipulated without having any effect on the original file. Here’s how I copied the
“heart.ver1” file:

$ cp heart.ver1 heart.ver2 ...copy to "heart.ver2".
$ ls -l heart.ver1 heart.ver2 ...confirm.
-rw-r--r-- 1 glass 106 Jan 30 23:28 heart.ver1
-rw-r--r-- 1 glass 106 Jan 31 00:12 heart.ver2
$ _

EDITING A FILE: vi

At this point, I edited the “heart.ver2” file, using a UNIX editor called vi.The way that the
vi editor works is described later in the chapter, together with information about another
editor called emacs. For the time being, assume that I edited “heart.ver2” to look like this:

$ vi heart.ver2 ...edit the file.
... editing session takes place here.
$ cat heart.ver2 ...list the file.
I hear her breathing,
I'm surrounded by the sound.
Floating in this secret place,
I never shall be found.
She pushed me into the daylight,
I had to leave my home.
But I am a survivor,
And I'll make it on my own.
$ _

Utility: cp -i oldFileName newFileName

cp -ir { fileName }* directoryName

The first form of cp copies oldFileName to newFileName. If the label newFileName
already exists, it is replaced. The -i option prompts you for confirmation if
newFileName already exists. The second form of cp copies a list of files into
directoryName. The -r option causes any source files that are directories to be re-
cursively copied, thus copying the entire directory structure.

FIGURE 2.24

Description of the cp command.

Deleting a Directory: rmdir 35

After creating five versions of my song’s lyrics, my work was done. I moved back to my
home directory and created a subdirectory called “lyrics.final” in which to store the
final version of the lyrics. I also renamed the original “lyrics” directory to “lyrics.draft,”
which I felt was a better name. The commands to do all this is as follows:

$ cd ...move back to my home directory.
$ mkdir lyrics.final ...make the final lyrics directory.
$ mv lyrics lyrics.draft ...rename the old lyrics dir.
$ _

The final version of my lyrics was stored in a file called “heart.ver5” in the “lyrics.draft”
directory, which I then copied into a file called “heart.final” in the “lyrics.final” directory:

$ cp lyrics.draft/heart.ver5 lyrics.final/heart.final
$ _

DELETING A DIRECTORY: rmdir

Although posterity is a good reason for keeping old things around, it can interfere with
your disk usage in a multiuser system. I therefore decided to remove the “lyrics.draft”
directory, to avoid exceeding my modest disk quota. Before I removed it, though, I
archived its contents using the cpio utility, which is described in Chapter 3. To remove
the directory, I used the rmdir utility, which works as shown in Figure 2.25.

Utility: rmdir { directoryName }+

The rmdir utility removes all of the directories from the list of directory names. A
directory must be empty before it can be removed. To remove a directory and all of
its contents recursively, use the rm utility with the -r option (described shortly).

FIGURE 2.25

Description of the rmdir command.

I tried to remove the “lyrics.draft” directory while it still contained the draft versions,
and I received the following error message:

$ rmdir lyrics.draft
rmdir: lyrics.draft: Directory not empty
$ _

To remove the files from the “lyrics.draft” directory, I made use of the rm utility, described
next.

36 Chapter 2 UNIX Utilities for Nonprogrammers

DELETING A FILE: rm

The rm utility allows you to remove a file’s label from the hierarchy. When no more
labels reference a file, UNIX removes the file itself. In most cases, every file has only
one label, so the act of removing the label causes the file’s physical contents to be
deallocated. However, in Chapter 3, I’ll show you some occasions wherein a single file
has more than one label. In these cases, a label may be removed without affecting the
file that it refers to. Figure 2.26 provides a description of rm.

Utility: rm -fir {fileName} *

The rm utility removes a file’s label from the directory hierarchy. If the filename
doesn’t exist, an error message is displayed. The -i option prompts the user for
confirmation before deleting a filename; press y to confirm your request and n
otherwise. If fileName is a directory, the -r option causes all of its contents, including
subdirectories, to be recursively deleted. The -f option inhibits all error messages
and prompts.

FIGURE 2.26

Description of the rm command.

To remove every file in the “lyrics.draft” directory, I moved into the “lyrics.draft” di-
rectory and used rm:

$ cd lyrics.draft ...move to "lyrics.draft" dir.
$ rm heart.ver1 heart.ver2 heart.ver3 heart.ver4 heart.ver5
$ ls ...nothing remains.
$ _

Now that all the files were erased, I moved back to my home directory and erased the
draft directory:

$ cd ...move to my home directory.
$ rmdir lyrics.draft ...this time it works.
$ _

As you’ll see in Chapter 4, there’s a much easier way to erase a collection of files when
you’re using a shell. I could have written the following instead:

$ cd lyrics.draft ...move into "lyrics.draft" directory.
$ rm * ...erase all files in current dir.

Printing a File: lp/lpstat/cancel 37

Even better, I could have used the more advanced -r option of rm to delete the
“lyrics.draft” directory and all of its contents with just one command:

$ cd ...move to my home directory.
$ rm -r lyrics.draft ...recursively delete directory.
$ _

PRINTING A FILE: lp/lpstat/cancel

Now that the hard work was done, I wanted to obtain a printout of my lyrics to sing
from. I used the UNIX print utility called lp, which works as shown in Figure 2.27. lp
causes a numbered print job to be started for the specified files. You may find the sta-
tus of a particular job or printer by using the lpstat utility, which works as shown in
Figure 2.28.

Utility: lp [-d destination] [-n copies] { fileName }*

lp prints the named files to the printer specified by the -d option. If no files are
specified, standard input is printed instead. By default, one copy of each file is
printed, although this action may be overridden by using the -n option.

FIGURE 2.27

Description of the lp command.

Utility: lpstat [destination]

lpstat displays the status of all print jobs sent to any printer with the lp command. If
a printer destination is specified, lpstat reports queue information for that printer
only. lpstat displays information about the user, information about the name and
size of the job, and a print request ID.

FIGURE 2.28

Description of the lpstat command.

If, for some reason, you wish to cancel a print job, you may do so by using the cancel
utility shown in Figure 2.29.

38 Chapter 2 UNIX Utilities for Nonprogrammers

You will need the request ID displayed by lpstat. You may obtain a list of the printers
on your system from your system administrator.

In the following example, I started by ordering a printout of “heart.final” from
the “lwcs” printer. I then decided to order two more copies and obtained a printer sta-
tus. Finally, I changed my mind and canceled the last print job. The commands to do all
this are as follows:

$ lp –d lwcs heart.final ...order a printout.
request id is lwcs-37 (1 file)
$ lpstat lwcs ...look at the printer status.
printer queue for lwcs
lwcs-36 ables priority 0 Mar 18 17:02 on lwcs

inventory.txt 457 bytes
lwcs-37 glass priority 0 Mar 18 17:04 on lwcs

heart.final 213 bytes
$ lp –n 2 –d lwcs heart.final ...order two more copies.
request id is lwcs-38 (1 file)
$ lpstat lwcs ...look at the printer status again.
printer queue for lwcs
lwcs-37 glass priority 0 Mar 18 17:04 on lwcs

heart.final 213 bytes
lwcs-38 glass priority 0 Mar 18 17:05 on lwcs

heart.final 2 copies 213 bytes
$ cancel lwcs-38 ...remove the last job.
request "lwcs-38" cancelled
$ _

In the next example, I used the keyboard to compose a quick message for the printer:

$ lp –d lwcs ...print from standard input.
Hi there,
This is a test of the print facility.
- Graham
^D ...end of input.
request id is lwcs-42 (standard input)
$ _

Utility: cancel { request-ID }+

cancel removes all of the specified jobs from the printer queue. If you’re a superuser,
then you may cancel any queued job.

FIGURE 2.29

Description of the cancel command.

Printing a File: lpr/lpq/lprm 39

PRINTING A FILE: lpr/lpq/lprm

The commands above are on most UNIX systems and come from the System V family
of UNIX. BSD UNIX provided its own print commands, which are still supported in
many versions of UNIX with a strong BSD background as well as in Linux.These com-
mands cover the same basic functions of printing, checking the queue, and canceling
the job, but have different names and arguments.

To print my file by using such a system, I employ the lpr utility, which works as
shown in Figure 2.30. lpr causes a numbered print job to be started for the specified
files.You may find the status of a particular job or printer by using the lpq utility, which
works as shown in Figure 2.31.

Utility: lpr –m [-Pprinter] [-#copies] { fileName }*

lpr prints the named files to the printer specified by the –P option. If no printer is
specified, the printer in the environment variable $PRINTER is used. (For more in-
formation about environment variables, refer to Chapter 4.) If no files are specified,
standard input is printed instead. By default, one copy of each file is printed, al-
though this may be overridden using the -# option. The –m option causes mail to be
sent to you when printing is complete.

FIGURE 2.30

Description of the lpr command.

Utility: lpq –l [-Pprinter] { job# }* {userId }*

lpq displays the status of jobs on the printer specified by the –P option. If no printer
is specified, the printer in the environment variable $PRINTER is used. lpq displays
information pertaining to the specified jobs or the jobs of the specified users. If no
jobs or users are specified, the statuses of all jobs on the specified printer are displayed.
The –l option generates extra information.

FIGURE 2.31

Description of the lpq command.

If, for some reason, you wish to cancel a print job, you may do so by using the lprm util-
ity shown in Figure 2.32.You may obtain a list of the printers on your system from your
system administrator.

40 Chapter 2 UNIX Utilities for Nonprogrammers

As in our previous example, I started by ordering a printout of “heart.final” from the
“lwcs” printer. I then decided to order two more copies and obtained a printer status. Fi-
nally, I changed my mind and canceled the last print job.The commands are as follows:

$ lpr -Plwcs heart.final ...order a printout.
$ lpq –Plwcs glass ...look at the printer status.
lwcs is ready and printing
Rank Owner Job Files Total Size
active glass 731 heart.final 213 bytes
$ lpr -#2 –Plwcs heart.final ...order two more copies.
$ lpq –Plwcs glass ...look at the printer status again.
lwcs is ready and printing
Rank Owner Job Files Total Size
active glass 731 heart.final 213 bytes
active glass 732 heart.final 426 bytes
$ lprm –Plwcs 732 ...remove the last job.
centaur: dfA732vanguard dequeued
centaur: cfA732vanguard.utdallas.edu dequeued
$ _

In the next example, I used the keyboard to compose a quick message for the printer
and requested that I be notified by e-mail upon completion of the job:

$ lpr –m –Plwcs ...print from standard input.
Hi there,
This is a test of the print facility.
- Graham
^D ...end of input.
$...wait a little.
$ mail ...read my mail.
Mail version SMI 4.0 Sat Oct 13 20:32:29 PDT 1990 Type ? for help.
>N 1 daemon@utdallas.edu Fri Jan 31 16:59 15/502 printer job
& 1 ...read the first mail message.
From: daemon@utdallas.edu

Utility: lprm [-Pprinter] [-] { job# }* { userId }*

lprm cancels all of the specified jobs on the printer specified by the –P option. If no
printer is specified, the printer in the environment variable $PRINTER is used.The
– option cancels all of the print jobs started by you. If you are the superuser, you
may cancel all of the jobs owned by a particular individual by specifying his or her
user id.

FIGURE 2.32

Description of the lprm command.

File Attributes 41

To: glass@utdallas.edu
Subject: printer job
Date: Wed, 18 Mar 1998 18:04:32 -0600
Your printer job (stdin)
Completed successfully
& q ...quit out of mail.
$ _

COUNTING THE WORDS IN A FILE: wc

I was quite interested in finding out how many characters, words, and lines were in the
“heart.final” file (even though printing it gave me a byte count). To do this, I used the
wc utility, which works as shown in Figure 2.33. Here’s an example of wc:

$ wc heart.final ...obtain a word count.
9 43 213 heart.final

$ _

FILE ATTRIBUTES

Now that I’ve introduced you to some of the common file-oriented utilities, it’s time to
look at the various file attributes. I used ls to obtain a long listing of “heart.final,” and
got the following output:

$ ls -lgsF heart.final
1 -rw-r--r-- 1 glass cs 213 Jan 31 00:12 heart.final
$ _

Each field is the value of a file attribute, described in Figure 2.34.

Utility: wc -lwc { fileName }*

The wc utility counts the lines, words, or characters in a list of files. If no files are
specified, standard input is used instead. The -l option requests a line count, the -w
option requests a word count, and the -c option requests a character count. If no
options are specified, then all three counts are displayed. A word is defined by a se-
quence of characters surrounded by tabs, spaces, or newlines.

FIGURE 2.33

Description of the wc command.

42 Chapter 2 UNIX Utilities for Nonprogrammers

2Some nonprintable characters are valid in filenames, but can result in unexpected behavior when displayed
or used, so their use is discouraged.

The next few sections describe the meaning of the individual fields, in increasing order
of difficulty.

File Storage

The number of blocks of physical storage is shown in field 1 and is useful if you want to
know how much actual disk space a file is using. It’s possible to create sparse files that
seem to be very large in terms of field 6, but actually take up very little physical stor-
age. Sparse files are discussed in detail in Chapter 13.

Filenames

The name of the file is shown in field 8. A UNIX filename may be up to 255 characters
in length. You may use any printable2 characters you want in a filename except the
slash (/), although I recommend that you avoid the use of any character that is special
to a shell (like <, >, *, ?, or the tab), as these can confuse both the user and the shell.
Unlike some operating systems, there’s no requirement that a file end in an extension
such as “.c” and “.h,” although many UNIX utilities (e.g., the C compiler) will accept
only files that end with a particular suffix.Thus, the filenames “heart” and “heart.final”
are both perfectly valid. The only filenames that you definitely can’t choose are “.” and
“..”, as these are predefined filenames that correspond to your current working direc-
tory and its parent directory, respectively.

Field # Field value Meaning

1 1 the number of blocks of physical storage occupied
by the file

2 -rw-r--r-- the type and permission mode of the file, which in-
dicates who can read, write, and execute the file

3 1 the hard link count (discussed in Chapter 3)

4 glass the username of the owner of the file

5 cs the group name of the file

6 213 the size of the file, in bytes

7 Jan 31 00:12 the time that the file was last modified

8 heart.final the name of the file

FIGURE 2.34

File attributes.

File Attributes 43

File Modification Time

Field 7 shows the time that the file was last modified and is used by several utilities. For
example, the make utility, described in Chapter 12, uses the last modification time of
files to control its dependency checker. The find utility, described in Chapter 3, may be
used to find files on the basis of their last modification time.

File Owner

Field 3 tells you the owner of the file. Every UNIX process has an owner, which is typ-
ically the same as the username of the person who started it. For example, my login
shell is owned by “glass,” which is my username. Whenever a process creates a file, the
file’s owner is set to the process’ owner. This means that every file that I create from
my shell is owned by “glass,” the owner of the shell itself. Chapter 13 contains more in-
formation on processes and ownership.

Note that while the text string known as the username is typically how we refer
to a user, internally UNIX represents this as an integer known as the user ID. The
username is easier for humans to understand than a numeric ID.Therefore, I will refer
to the textual name as username and use user ID to refer to the numeric value itself.

File Group

Field 5 shows the file’s group. Every UNIX user is a member of a group.This membership
is initially assigned by the system administrator and is used as part of the UNIX security
mechanism. For example, my group name is “cs.” Every UNIX process also belongs to a
specific group, usually the same as that of the user which started the process. My login
shell belongs to the group name “cs.” Because each file created by a process is assigned
to the same group as that of the process that created the file, every file that I create
from my shell has the group name “cs.” Chapter 13 contains more information on
processes and groups.The use of groups in relation to the UNIX security mechanism is
described in the next few sections.

As with the user ID, the group is usually referenced by the text string name, but is
represented internally as an integer value called the group ID.Therefore, I will refer to
the textual name as group name and use group ID to refer to the numeric value itself.

File Types

Field 2 describes the file’s type and permission settings. For convenience, here’s the
output from the previous ls example:

1 -rw-r--r-- 1 glass cs 213 Jan 31 00:12 heart.final

The first character of field 2 indicates the type of the file, which is encoded as shown in
Figure 2.35. In the example, the type of “heart.final” is indicated as a regular file.You’ll
encounter symbolic links in Chapter 3 pipes and sockets in Chapter 13, and buffered
and unbuffered special files in Chapter 14.

44 Chapter 2 UNIX Utilities for Nonprogrammers

A file’s type can often be determined by using the file utility, which works as shown in
Figure 2.36. For example, when I ran file on “heart.final,” I saw this:

$ file heart.final ...determine the file type.
heart.final: ascii text
$ _

3While file is quite useful, it is not 100% accurate and can be fooled by some file formats.

File Permissions

The next nine characters of field 2 indicate the file’s permission settings. In the current
example, the permission settings are “rw-r--r--”:

1 -rw-r--r-- 1 glass cs 213 Jan 31 00:12 heart.final

These nine characters should be thought of as being arranged in three groups of three
characters, as shown in Figure 2.37, where each cluster of three letters has the same
format. If a dash occurs instead of a letter, then permission is denied. The meaning of

Character File type

- regular file

d directory file

b buffered special file (such as a disk drive)

c unbuffered special file (such as a terminal)

l symbolic link

p pipe

s socket

FIGURE 2.35

File types.

Utility: file { fileName }+

The file utility attempts3 to describe the contents of the fileName arguments, includ-
ing the language that any text is written in. When using file on a symbolic link file,
file reports on the file that the link is pointing to, rather than the link itself.

FIGURE 2.36

Description of the file command.

File Attributes 45

the read, write, and execute permissions depends on the type of the file, as shown in
Figure 2.38.

When a process executes, it has four values related to file permissions:

1. a real user ID
2. an effective user ID
3. a real group ID
4. an effective group ID

When you log in, your login shell process has its real and effective user IDs set to your
own user ID and its real and effective group IDs set to your group ID. When a process
runs, the file permissions apply as follows:

• If the process’ effective user ID is the same as the owner of the file, the User per-
missions apply.

Read permission Write permission Execute permission

r w x

FIGURE 2.37

File permissions.

User (owner) Group Others

rw- r-- r--

Regular file Directory file Special file

read The process may The process may read the The process may read
change the contents. directory (i.e., list the from the file, using the

names of the files that it read () system call.
contains).

write The process may The process may add files The process may write to
change the to or remove files from the the file, using the write ()
contents. directory. system call.

execute The process may The process may access No meaning.
execute the file (which files in the directory or
makes sense only if the any of its subdirectories.
file is a program)

FIGURE 2.38

Permission meanings for file types.

46 Chapter 2 UNIX Utilities for Nonprogrammers

• If the process’ effective user ID is different from the owner of the file, but its ef-
fective group ID matches the file’s group ID, then the Group permissions apply.

• If neither the process’ effective user ID nor the process’ effective group ID
matches, the Others permissions apply.

The permission system is therefore a three-tier arrangement that allows you to protect
your files from general users, but at the same time allows access by certain groups.
Later on in the chapter, I’ll illustrate the use of permission settings to good effect and
describe the utilities that are used to alter them.

Note that only a process’ effective user and group IDs affect its permissions;
its real user and group IDs are only used for accounting purposes. Note also that
a process’ access rights ordinarily depend on who executes the process and not on
who owns the executable file. Sometime, though, this is undesirable. For example,
there is a game called rogue that comes with some UNIX systems and that main-
tains a file of the best scores of previous players. Obviously, the rogue process
must have permission to alter this file when it is executing, but the player that ex-
ecutes rogue should not. This seems impossible on the basis of the permission
rules that I just described. To get around the problem, the designers of UNIX
added two special file permissions called “set user ID” and “set group ID.” When
an executable file with “set user ID” permission is executed, the process’ effec-
tive user ID becomes that of the executable file. Similarly, when an executable
file with “set user ID” permission is executed, the process’ effective group ID is
copied from the executable file. In both cases, the real user or group ID is unaf-
fected. In the case of the rogue game, the executable file and the score file are
both owned by the user “rogue,” and the rogue executable file has “set user ID”
permission. The score file has only write permission for its owner, thus protecting
general users from modifying it. When a player executes rogue, the player
process executes with the effective user ID of rogue and thus is able to modify
the score file.

“Set user ID” and “set group ID” permissions are indicated by an “s” instead of
an “x” in the user and group clusters, respectively. They may be set using the chmod
utility, described shortly, and by the chmod () system call, described in Chapter 13.

Here are a few other notes relating to file permissions:

• When a process creates a file, the default permissions given to that file are modi-
fied by a special value called the umask. The value of umask is usually set to a
sensible default, so we will wait to discuss it further in Chapter 4.

• The superuser automatically has all access rights, regardless of whether they’re
granted or not.

• It’s perfectly possible, although unusual, for the owner of a file to have fewer per-
missions than the group or anyone else.

Hard Link Count

Field 3 shows the file’s hard link count, which indicates how many labels in the hierar-
chy are pointing to the same physical file. Hard links are rather advanced and are dis-
cussed in conjunction with the ln utility in Chapter 3.

Listing Your Groups: Groups 47

GROUPS

Now that you’ve read about file permissions, it’s time to see how they can come in
handy. Recall that the “heart.final” file’s user and group names were “glass” and “cs,”
respectively, inherited from my login shell:

$ ls -lg heart.final
-rw-r--r-- 1 glass cs 213 Jan 31 00:12 heart.final
$ _

The original permission flags allow anyone to read the file, but only the owner to write
it. What I really wanted to do was set up a new group called “music” and allow anyone
in the group to read my work. I, the owner, would retain read and write permissions,
and anyone else would be denied all access rights.

The only way to create a new group is to ask the system administrator to add
it. The actual way that a new group is added is described in Chapter 15. After a new
group is added, any user who wants to be a part of that group must also ask the sys-
tem administrator. At this time, I mailed a request to the system administrator for a
new “music” group and asked for myself and my friend Tim to be added to the
group. When I received a confirmation of the request, it was time to update my file
attributes.

LISTING YOUR GROUPS: GROUPS

Before changing my file’s group setting, I wanted to confirm that I was now an official
member of the “music” group. The groups utility allows you to list all of the groups of
which you’re a member, and it works as shown in Figure 2.39. Here’s what I saw when
I executed groups:

$ groups ...list my groups.
cs music
$ _

Utility: groups [userId]

When invoked with no arguments, the groups utility displays a list of all the groups
of which you are a member. If the name of a user is specified, a list of that user’s
groups is displayed.

FIGURE 2.39

Description of the groups command.

48 Chapter 2 UNIX Utilities for Nonprogrammers

CHANGING A FILE’S GROUP: chgrp

The first step toward protecting my lyrics was to change the group name of
“heart.final” from “cs” to “music.” I did this by using the chgrp utility, which works as
shown in Figure 2.40. I used chgrp like this:

$ ls -lg heart.final
-rw-r--r-- 1 glass cs 213 Jan 31 00:12 heart.final
$ chgrp music heart.final ...change the group.
$ ls -lg heart.final ...confirm it changed.
-rw-r--r-- 1 glass music 213 Jan 31 00:12 heart.final
$ _

You may also use chgrp to change the group of a directory.

CHANGING A FILE’S PERMISSIONS: chmod

Now that the file’s group was changed, it was necessary to update its permissions in
order to deny all access rights to general users. To do this, I used the chmod utility,
which works as shown in Figure 2.41. To remove read permission from others, I used
chmod as follows:

$ ls -lg heart.final ...before.
-rw-r--r-- 1 glass music 213 Jan 31 00:12 heart.final
$ chmod o-r heart.final ...remove read for others.
$ ls -lg heart.final ...after.
-rw-r--1 glass music 213 Jan 31 00:12 heart.final
$ _

Figure 2.42 shows some other examples of the use of chmod. I recommend that you pro-
tect your login directory from unauthorized access by not granting write permission for

Utility: chgrp -R groupname { fileName }*

The chgrp utility allows a user to change the group of files that he or she owns.A su-
peruser can change the group of any file. All of the files that follow the groupname
argument are affected. The -R option recursively changes the group of the files in a
directory.

FIGURE 2.40

Description of the chgrp command.

Changing a File’s Permissions: chmod 49

anyone but yourself and by restricting read and execute permission to yourself and
members of your group. Here’s an example of how to do that:

$ cd ...change to home directory.
$ ls -ldlist attributes of home dir.
drwxr-xr-x 45 glass 4096 Apr 29 14:35 .
$ chmod o-rx ...update permissions.
$ ls -ld ...confirm.
drwxr-x--- 45 glass 4096 Apr 29 14:35 .
$ _

Utility: chmod -R change { , change }*{ fileName }+

The chmod utility changes the modes of the specified files according to the change
parameters, which may take any of the forms

clusterSelection+newPermissions (add permissions)

clusterSelection-newPermissions (subtract permissions)

and

clusterSelection=newPermissions (assign permissions absolutely)

where clusterSelection is any combination of

• u (user/owner)
• g (group)
• o (others)
• a (all)

and newPermissions is any combination of

• r (read)
• w (write)
• x (execute)
• s (set user ID/set group ID)

The -R option recursively changes the modes of the files in directories. (See the text
that follows for examples.) Changing a directory’s permission settings doesn’t
change the settings of the files that the directory contains.

FIGURE 2.41

Description of the chmod command.

50 Chapter 2 UNIX Utilities for Nonprogrammers

Note that I used the -d option of ls to ensure that the attributes of my home directory,
rather than the attributes of its files, were displayed.

The chmod utility allows you to specify the new permission setting of a file as an
octal number. Each octal digit represents a permission triplet. For example, if you
wanted a file to have the permission settings

rwxr-x---

then the octal permission setting would be 750, calculated as shown in Figure 2.43. The
octal permission setting would be supplied to chmod as follows:

$ chmod 750update permissions.
$ ls -ld ...confirm.
drwxr-x--- 45 glass 4096 Apr 29 14:35 .
$ _

Requirement Change parameters

Add group write permission. g+w

Remove user read and write permission. u-rw

Add execute permission for user, group, and others. a+x

Give the group just read permission. g=r

Add write permission for user, and remove read
permission from group. u+w, g-r

FIGURE 2.42

File permission specifications for the chmod command.

User Group Others

setting rwx r-x --

binary 111 101 000

octal 7 5 0

FIGURE 2.43

Permissions of 750 for the chmod command.

Changing Groups: newgrp 51

CHANGING A FILE’S OWNER: chown

If, for some reason, you ever want to relinquish ownership of a file, you may do so by
using the chown utility, which works as shown in Figure 2.44. Some versions of UNIX
allow only a superuser to change the ownership of a file, whereas some allow the
owner to reassign ownership to another user. The latter is generally not allowed on a
system in which disk quotas (limiting disk space for each user) are in effect. Several
occasions when the system administrator needs to use chown are described in
Chapter 15.

If I were a superuser, I could have executed the following sequence of commands to
change the ownership of “heart.final” to “tim” and then back to “glass” again:

$ ls -lg heart.final ...before.
-rw-r---- 1 glass music 213 Jan 31 00:12 heart.final
$ chown tim heart.final ...change the owner to "tim".
$ ls -lg heart.final ...after.
-rw-r---- 1 tim music 213 Jan 31 00:12 heart.final
$ chown glass heart.final ...change the owner back.
$ _

CHANGING GROUPS: newgrp

If you’re a member of several groups and then you create a file, to what group does the
file belong? Well, although you may be a member of several groups, only one of them
is your effective group at any given time. When a process creates a file, the group ID of
the file is set to the process’ effective group ID. This means that when you create a file
from the shell, the group ID of the file is set to the effective group ID of your shell. In
the sample session currently under discussion, I was a member of the “cs” and “music”
groups, and my login shell’s effective group name was “cs.”

The system administrator is the person who chooses which one of your groups is
used as your login shell’s effective group ID. The only way to permanently alter your
login shell’s effective group ID is to ask the system administrator to change it. However,
you may create a shell with a different effective group ID by using the newgrp utility,
which works as shown in Figure 2.45.

Utility: chown -R newUserId { fileName }+

The chown utility allows a superuser to change the ownership of files. All of the files
that follow the newUserId argument are affected. The -R option recursively changes
the owner of the files in directories.

FIGURE 2.44

Description of the chown command.

52 Chapter 2 UNIX Utilities for Nonprogrammers

In the next example, I created a file called “test1” from my login shell, which had an ef-
fective group of “cs.” I then created a temporary shell with an effective group of
“music,” and after that I created a file called “test2.” Finally, I terminated the shell and
went back to the original shell and obtained a long listing of both files:

$ date > test1 ...create from a "cs" group shell.
$ newgrp music ...create a "music" group shell.
$ date > test2 ...create from a "music" group shell.
^D ...terminate the new shell.
$ ls -lg test1 test2 ...look at each file's attributes.
-rw-r--r-- 1 glass cs 29 Jan 31 22:57 test1
-rw-r--r-- 1 glass music 29 Jan 31 22:57 test2
$ _

POETRY IN MOTION: EPILOGUE

During the now-completed “Poetry in Motion” series of examples, you were intro-
duced to many useful UNIX concepts and utilities. I recommend that you try them out
thoroughly before progressing further through this book; doing so will help you re-
tain and understand the UNIX basics. The remainder of the chapter covers the two
most popular UNIX editors and explains how you can alter your terminal settings so
that they work correctly. It also contains some information on using the UNIX e-mail
system.

DETERMINING YOUR TERMINAL’S TYPE: tset

Several UNIX utilities, including the two standard editors vi and emacs, need to
“know” what kind of terminal you’re using so that they can control the screen correct-
ly.The type of your terminal is stored by your shell in something called an environment
variable. (See Chapter 4.) You may think of environment variables as being rather like
global variables that hold strings.

Utility: newgrp [-] [groupname]

The newgrp utility, when invoked with a group name as an argument, creates a new
shell with an effective group ID corresponding to the group name. The old shell
sleeps until you exit the newly created shell. You must be a member of the group
that you specify. If you use a dash (-) instead of a filename as the argument, a shell is
created with the same settings as the shell that was created when you logged into the
system.

FIGURE 2.45

Description of the newgrp command.

Determining Your Terminal’s Type: tset 53

Before vi or emacs can work correctly, your shell’s TERM environment variable
must be set to your terminal type. Common settings for this variable include “vt100”
and “vt52.” There are several ways to set TERM:

• Your shell start-up file, described in the next section, can set TERM directly by
containing a line of the form ‘setenv TERM vt100’ (C shell) or ‘TERM=vt100 ;
export TERM’ (for Bourne, Korn, and Bash shells). This method of setting
TERM is practical only if you know the type of your terminal in advance and you
always log into the same terminal.

• Your shell start-up file can invoke the tset utility, which looks at the communica-
tions port that you’re connected to and then examines a special file called
“/etc/ttytab,” which contains a table of port–terminal mappings. In most cases,
tset can find out what kind of terminal you’re using from this table and set TERM
accordingly. If tset can’t find the terminal type, it can be told to prompt you for
that information when you log in.

• You can manually set TERM from a shell.

The rest of this section describes the operation of tset. Before using vi or emacs, you
should be sure to read the section that follows, which describes the operation of a re-
lated utility called stty.

The best way to set TERM is to use tset from your login shell. tset works as
shown in Figure 2.46. The “/etc/ttytab” file contains lines of the following form:

Utility: tset -s [-ec] [-ic] {-m portId:[?]terminalType}*

tset is a utility that tries to determine your terminal’s type and then resets it for stan-
dard operation.

If the -s option is not used, tset assumes that your terminal type is already stored
in the TERM environment variable. tset then resets the type, using terminal capabil-
ity information stored in “/etc/termcap” or the terminfo database, depending on your
version of UNIX.

If you use the -s option, tset examines the “/etc/ttytab” file and tries to map your
terminal’s port to a terminal type. If the type is found, tset initializes your terminal with
an appropriate initialization sequence from the “/etc/termcap” file. The -s option also
causes tset to generate shell commands to standard output.When executed, these com-
mands cause the TERM and TERMCAP environment variables to be set properly. tset
uses the contents of the SHELL environment variable to determine which kind of shell
commands to generate. Filename expansion must be temporarily inhibited during the
execution of the command sequence that tset generates, since there could be special
characters that might be misinterpreted by the shell. Examples of this inhibition fol-
low shortly.

FIGURE 2.46
Description of the tset command.

54 Chapter 2 UNIX Utilities for Nonprogrammers

tty0f "usr/etc getty std.9600" vt100 off local
ttyp0 none network off secure
ttyp1 none network off secure

The first field contains the names of ports, and the third field contains the names of
terminal types. For example, if I was logged on via port tty0f, my terminal type would
be read from this file as a vt100. In environments in which terminals are hardwired
(i.e., directly connected to a specific port), this convention works nicely, since the ter-
minal is always on the same port. In a network environment, it doesn’t work very well,
as we will see shortly. In the following example, I found out my actual port name by
using the tty utility (described in Chapter 3) and then examined the output from the
tset command:

$ tty ...display my terminal's port id.
/dev/ttyp0
$ tset -s ...call tset.
set noglob; ...shell commands generated by tset.
TERM=network;
export TERM;
TERMCAP='sa;cent;network:li#24:co#80:am:do=^J: ';
export TERMCAP;
unset noglob;
Erase is Ctrl-H
$ _

The previous example is provided only to illustrate how tset does its stuff. To actually
make tset change the TERM and TERMCAP variables, which, after all, is the reason
for using it in the first place, you must “eval” its output. The eval shell command is de-
scribed fully in the next chapter. Here’s a more realistic example of tset:

The -e option sets the terminal’s erase character to c in place of the default
Control-H setting. Control characters may be indicated either by typing the charac-
ter directly or by preceding the character by a ^ (i.e., use ^h to indicate Control-H).

The -i option sets the terminal’s interrupt character to c in place of the default
Control-C setting. Control characters may be indicated as described in the previous
paragraph.

The “/etc/ttytab” mappings may be overridden or supplemented by using the
-m option.The sequence “-m pp:tt” tells tset that if the terminal’s port type is pp, then
it should assume that the terminal is of type tt. If a question mark (?) is placed after
the colon (:), tset displays tt and asks the user either to press Enter to confirm that the
terminal type is indeed tt or to enter the actual terminal type that tset should use.

FIGURE 2.46 (Continued)

Determining Your Terminal’s Type: tset 55

$ set noglob ...temporarily inhibit filename expansion.
$ eval 'tset -s' ...evaluate output from tset.
Erase is Backspace ...message from tset.
$ unset noglob ...reenable filename expansion.
$ echo $TERM ...look at the new value of TERM.
network ...the terminal type that tset found.
$ _

Unfortunately, the terminal type network is not very useful, as it assumes that my termi-
nal has almost no capabilities at all.The tset command may be presented with a rule that
tells it, “If the terminal type is discovered to be network, assume that the terminal is a
vt100 and prompt the user for confirmation.” Here is the variation of tset that does this:

$ set noglob ...disable filename expansion.
$ eval ’tset -s -m 'network:vt100'’ ...provide rule.
TERM = (vt100) <Enter> ...I pressed the Enter key.
Erase is Backspace
$ unset noglob ...reenable filename expansion.
$ echo $TERM ...display new TERM setting.
vt100 ...this is the terminal type that tset used.
$ _

In sum, it’s wise to contain a command in your shell’s start-up file that calls tset to set
your terminal type. Shell start-up files are described in Chapter 4. The simplest form of
tset is the following:

C shell

setenv TERM vt100
tset

Bourne/Korn/Bash shell

TERM=vt100; export TERM
tset

The more sophisticated form of tset searches the “/etc/ttytab” file for your terminal
type and should look somewhat like this:

C shell

set noglob
eval ’tset -s -m 'network:?vt100'’
unset noglob

Bourne/Korn/Bash shell

eval ’tset -s -m 'network:?vt100'’

56 Chapter 2 UNIX Utilities for Nonprogrammers

CHANGING A TERMINAL’S CHARACTERISTICS: stty

All terminals have the ability to process certain characters in a special manner; these
characters are called metacharacters. Examples of metacharacters include the back-
space character and the Control-C sequence, which is used to terminate programs. The
default metacharacter settings may be overridden by using the stty utility, which works
as shown in Figure 2.47.

Utility: stty -a { option }* { metacharacterString <value>} *

The stty utility allows you to examine and set a terminal’s characteristics. stty supports
the modification of over 100 different settings, so I’ve listed only the most common
ones here. Consult man for more details. To list a terminal’s current settings, use the
-a option. To alter a particular setting, supply one or more of the following options:

Option Meaning

-echo Don’t echo typed characters.

echo Echo typed characters.

-raw Enable the special meaning of metacharacters.

raw Disable the special meaning of metacharacters.

-tostop Allow background jobs to send output to the terminal.

tostop Stop background jobs that try to send output to the terminal.

sane Set the terminal characteristics to sensible default values.

You may also set the mapping of a metacharacter by following the name of its cor-
responding string with its new value. A control character may be indicated by pre-
ceding the character with a ̂ or by typing a \, followed by the actual control character
itself. Here are the common metacharacter strings, together with their meanings:

Option Meaning

erase Backspace one character.

kill Erase all of the current line.

lnext Don’t treat the next character as if it were a special character.

susp Suspend the current process temporarily.

intr Terminate (interrupt) the foreground job with no core dump.

quit Terminate the foreground job with a core dump.

stop Stop/restart terminal output.

eof End of input.

FIGURE 2.47

Description of the stty command.

Editing a File: vi 57

Here’s an example of stty in action:

$ stty -a ...display current terminal settings.
speed 38400 baud, 24 rows, 80 columns
parenb -parodd cs7 -cstopb -hupcl cread -clocal -crtscts
-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr -igncr icrnl -iuclc
ixon -ixany -ixoff imaxbel
isig iexten icanon -xcase echo echoe echok -echonl -noflsh -tostop
echoctl -echoprt echoke
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel
erase kill werase rprnt flush lnext susp intr quit stop eof
^H ^U ^W ^R ^O ^V ^Z/^Y ^C ^\ ^S/^Q ^D
$ stty erase ^b ...set erase key to Control-B.
$ stty erase ^h ...set erase key to Control-H
$ _

Invoke stty from your shell’s start-up file if your favorite metacharacter mappings dif-
fer from the norm. stty is useful in building shells that need to turn keyboard echoing
on and off; an example of such a script is included in Chapter 7. Here’s an example that
uses stty to turn off keyboard echoing:

$ stty -echo ...turn echoing off.
$ stty echo ...turn echoing back on again.
$ _

Note that the last line of input (stty echo) would not ordinarily be seen, due to the inhi-
bition of echoing caused by the preceding line!

Now that you’ve seen how to set your terminal type and alter its settings, it’s time
to take a look at the two most popular UNIX editors: vi and emacs.

EDITING A FILE: vi

The two most popular UNIX text editors are vi and emacs. It’s handy to be reasonably
proficient in vi, which is found on nearly every version of UNIX. By contrast, emacs is
not shipped with every version (although it is available with almost every version).This
section and the next contain enough information about each editor to allow you to per-
form essential editing tasks. They also contain references to other books for obtaining
more advanced information.

Starting vi

Bill Joy of Sun Microsystems, Inc., originally developed the vi editor for BSD UNIX
while he was at the University of California at Berkeley. vi proved so popular in the
UNIX world that it later was adopted as a standard utility for System V and most other
versions of UNIX. Today, vi is found on virtually every UNIX system. vi stands for
visual editor.

To start vi with a blank slate, enter the command vi without any parameters. To
edit an existing file, supply the name of the file as a command line parameter. When

58 Chapter 2 UNIX Utilities for Nonprogrammers

your screen is initialized, blank lines are indicated by tildes (~). vi then enters
command mode and awaits instructions. To conserve space, I’ll draw screens that are
only six lines long. For example, when I executed vi with no parameters, I saw the
screen shown in Figure 2.48.

~

~

~

~

~

~

FIGURE 2.48

Example of the screen when starting vi.

Command mode is one of the two modes that vi may be in; the other mode is called text
entry mode. Since it’s easier to describe command mode when there’s some text on the
screen, I’ll start by describing text entry mode.

Text Entry Mode

To enter text entry mode from command mode, press one of the keys shown in
Figure 2.49. Each key enters you into text entry mode in a slightly different way, also
shown in the figure. Any text that you enter at this point will be displayed on the
screen. To move to the next line, press the Enter key. You may use the backspace key
to delete the last character that you entered. You may not move around the screen
with the cursor keys when you’re in text entry mode. In text entry mode, cursor keys
are interpreted as regular ASCII characters, and their control codes are entered as
normal text. This takes many users by surprise, so beware.

Key Action

i Text is inserted in front of the cursor.

I Text is inserted at the beginning of the current line.

a Text is added after the cursor.

A Text is added to the end of the current line.

o Text is added after the current line.

O Text is inserted before the current line.

R Text is replaced (overwritten).

FIGURE 2.49

Text input commands in vi.

Editing a File: vi 59

To go from command mode to text entry mode, press the Esc, or Escape, key.
To enter a short four-line poem, I pressed the a key to add characters in text entry

mode, entered the text of the poem, and then pressed the Esc key to return to com-
mand mode. Figure 2.50 shows what I ended up with.

The next section describes the editing features of vi that allowed me to change this
poem to something a little more appealing.

Command Mode

To edit text, you must enter command mode. To travel from text entry mode to
command mode, press the Esc key. If you accidentally press the Esc key when you
are in command mode, nothing bad happens. (Depending on your terminal settings,
you may hear a beep or bell which tells you that you are already in command
mode.)

vi’s editing features are selected by pressing special character sequences. For ex-
ample, to erase a single word, position the cursor at the beginning of a particular word
and press the d key and then the w key (delete word).

Some editing features require parameters and are accessed by pressing the colon
(:) key, followed by the command sequence, followed by the Enter key.When the colon
key is pressed, the remainder of the command sequence is displayed at the bottom of
the screen. In the next example, the Enter key is indicated as <Enter>. The characters
< and > act as delimiters and should not be entered. For example, to delete lines 1
through 3, you’d enter the following command sequence:

:1,3d<Enter>

Some editing features, such as the block delete command that I just described, act upon
a range of lines. vi accepts a couple of formats for a line range:

• To select a single line, state its line number.
• To select a block of lines, state the first and last line numbers inclusively, separated

by a comma.

I always remember standing in the rains,

On a cold and damp september,

Brown Autumn leaves were falling softly to the ground,

Like the dreams of a life as they slide away.

~

~

FIGURE 2.50

Editing a file with vi.

60 Chapter 2 UNIX Utilities for Nonprogrammers

vi allows you to use $ to denote the line number of the last line in the file and . to de-
note the line number of the line currently containing the cursor. vi also allows you to
use arithmetic expressions when stating line numbers. For example, the sequence

:.,.+2d<Enter>

would delete the current line and the two lines that follow it. Figure 2.51 shows some
other examples of line ranges.

In what follows, the term <range> indicates a range of lines in the format just
described.

Memory Buffer and Temporary Files

As you edit your file, vi stores a copy of it in memory and makes the changes you
specify to that copy of your file. The disk file is not modified until you explicitly tell
vi to write the file or you exit vi with one of the commands that also writes the file
(discussed shortly). For this reason, I recommend that you not spend hours and
hours editing a file without either writing or exiting vi and getting back in on a reg-
ular basis. If your system were to crash (for whatever reason) while you were edit-
ing, all changes you made since the last time you either wrote the file or started vi
would be lost.

Even if the system does crash while you are editing, all may not be lost. vi also
uses a temporary file to manage the in-memory copy of your file while you edit. (If
your file is very large, it won’t all be kept in memory at the same time.) vi may be able
to recover the file using the –r argument (“vi –r filename”). Some versions of UNIX
will even send you an e-mail message telling you how to recover the contents of the file
you were editing. While this is a nice feature, it is much safer to not depend on it and
just write the file periodically. Even though today’s UNIX systems are much more reli-
able, it is still wise to save your work often.

Range Selects
1,$ all of the lines in the file
1,. all of the lines from the start of the file to the

current line, inclusive
.,$ all of the lines from the current line to the

end of the file, inclusive
.-2 the single line that’s two lines before the

current line

FIGURE 2.51

Specifying a line range in vi.

Editing a File: vi 61

Common Editing Features

The most common vi editing features can be grouped into the following categories:

• moving the cursor
• deleting text
• replacing text
• pasting text
• searching through text
• searching and replacing text
• saving or loading files
• miscellaneous (including how to quit vi)

These categories are described and illustrated in the subsections that follow, using the
sample poem that I entered at the start of this section.

Cursor Movement

Figure 2.52 shows the common cursor movement commands. For example, to insert the
word “Just” before the word “Like” on the fourth line, I moved the cursor to the fourth
line, pressed the i key to enter text entry mode, entered the text, and pressed the Esc
key to return to command mode. To move the cursor to the fourth line, I used the key
sequence :4<Enter> (or I could have used 4G).

Movement Key sequence

Up one line <cursor up> or k

Down one line <cursor down> or j

Right one character <cursor right> or l (will not wrap around)

Left one character <cursor left> or h (will not wrap around)

To start of line ^

To end of line $

Back one word b

Forward one word w

Forward to end of current e
word

To top of screen H

To middle of screen M

To bottom of screen L

Down a half screen Control-D

FIGURE 2.52

Cursor movement commands in vi.

62 Chapter 2 UNIX Utilities for Nonprogrammers

Deleting Text

Figure 2.53 shows the common text deletion commands. For example, to delete the
word “always,” I typed :1<Enter> to move to the start of line 1, pressed w to move for-
ward one word, and then typed the letters dw. To delete the trailing “s” on the end of
“rains” on the first line, I moved my cursor over the letter “s” and then pressed the x
key. My poem now looked like Figure 2.54.

Forward one screen Control-F

Up a half screen Control-U

Back one screen Control-B

To line nn :nn<Enter> (nnG also works)

To end of file G

FIGURE 2.52 (Continued)

Item to delete Key sequence

Character Position the cursor over the character and then press x.

Word Position the cursor at start of the word and then press dw.

Line Position the cursor anywhere in the line and then press dd.
(Typing a number ahead of dd will cause vi to delete the
specified number of lines, beginning with the current line.)

Current position to
end of current line Press D.

Block of lines :<range>d<Enter>

FIGURE 2.53

Commands that delete text in vi.

I remember standing in the rain,

On a cold and damp september,

Brown Autumn leaves were falling softly to the ground,

Just Like the dreams of a life as they slide away.

~

~

FIGURE 2.54

Our file after deleting some text.

Editing a File: vi 63

Replacing Text

Figure 2.55 shows the common text replacement commands. For example, to replace
the word “standing” by “walking,” I moved to the start of the word and typed the let-
ters cw. I then typed the word “walking” and pressed the Esc key. To replace the low-
ercase “s” of “september” by an uppercase “S,” I positioned the cursor over the “s,”
pressed the r key, and then pressed the “S” key.

I then performed a few more tidy-up operations, replacing “damp” by “dark,” “slide”
by “slip,” and the “L” of “like” by “l”. Figure 2.56 shows the final version of the poem.

Item to replace Key sequence

Character Position the cursor over the character, press r, and then type
the replacement character.

Word Position the cursor at start of the word, press cw, and then
type the replacement text followed by Esc.

Line Position the cursor anywhere in line, press cc, and then type
the replacement text followed by Esc.

FIGURE 2.55

Commands that replace text in vi.

I remember walking in the rain,

On a cold and dark September,

Brown Autumn leaves were falling softly to the ground,

Just like the dreams of a life as they slip away.

~

~

FIGURE 2.56

Our file after replacing text.

Pasting Text

vi maintains a paste buffer that may be used for copying and pasting text between
areas of a file. Figure 2.57 shows the most common pasting operations. For example, to

64 Chapter 2 UNIX Utilities for Nonprogrammers

copy the first two lines into the paste buffer and then paste them after the third line, I
entered the following two commands:

:1,2y
:3pu

Action Key sequence

Copy (yank) lines into :<range>y<Enter>
paste buffer.

Copy (yank) current line Y
into paste buffer.

Insert (put) paste buffer p or :pu<Enter> (contents of paste buffer are
after current line. unchanged)

Insert paste buffer after :nnpu<Enter> (contents of paste buffer are
line nn. unchanged)

FIGURE 2.57

vi commands that paste text.

The poem then looked like Figure 2.58.

I remember walking in the rain,

On a cold and dark September,

Brown Autumn leaves were falling softly to the ground,

I remember walking in the rain,

On a cold and dark September,

Just like the dreams of a life as they slip away.

FIGURE 2.58

Our file after pasting text.

To restore the poem, I typed :4,5d<Enter>.

Searching

vi allows you to search forward and backward through a file, relative to the current
line, for a particular substring. Figure 2.59 shows the most common search operations.
The trailing “/” and “?” in the first two searches are optional. (vi figures out what you
mean when you type Enter, but using “/” and “?” is a good habit to adopt, since you can
add other commands after those symbols, rather than simply hitting Enter.)

Editing a File: vi 65

For example, I searched for the substring “ark” from line 1 of the poem by entering the
following commands:

:1<Enter>
/ark/<Enter>

vi positioned the cursor at the start of the substring “ark” located in the word “dark” on
the second line, as shown in Figure 2.60

Searching and Replacing

You may perform a global “search-and-replace” operation by using the commands
shown in Figure 2.61. For example, to replace every occurrence of the substring “re” by
“XXX,” I entered the command displayed in Figure 2.62.

Action Key sequence

Search forward from current position for string sss. /sss/<Enter>

Search backward from current position for string sss. ?sss?<Enter>

Repeat last search. n

Repeat last search in the opposite direction. N

FIGURE 2.59

Search commands in vi.

I remember walking in the rain,

On a cold and dark September,

Brown Autumn leaves were falling softly to the ground,

Just like the dreams of a life as they slip away.

~

~

FIGURE 2.60

Searching in vi.

66 Chapter 2 UNIX Utilities for Nonprogrammers

Saving and Loading Files

Figure 2.63 shows the most common save and load file commands. For example, I saved
the poem in a file called “rain.doc” by entering the command displayed in Figure 2.64.

Action Key sequence

Replace the first occurrence of sss on each line :<range>s/ sss/ ttt/<Enter>
with ttt.

Relace every occurrence of sss on each :<range>s/ sss/ ttt/g<Enter>
line with ttt (global replace).

FIGURE 2.61

Searching and replacing in vi.

I XXXmember walking in the rain,

On a cold and dark September,

Brown Autumn leaves weXXX falling softly to the ground,

Just like the dXXXams of a life as they slip away.

~

:1,$s/re/XXX/g

FIGURE 2.62

Example of searching and replacing in vi.

Action Key sequence

Save file as <name>. :w <name> <Enter>

Save file with current name. :w<Enter>

Save file with current name and exit. :wq<Enter> (ZZ also works)

Save only certain lines to another file. :<range> w <name> <Enter>

Read in contents of another file at :r <name> <Enter>
current position.

Edit file <name> instead of current file. :e <name> <Enter>

Edit next file on initial command line. :n<Enter>

FIGURE 2.63

Commands that write to and read from files in vi.

Editing a File: vi 67

I remember walking in the rain,

On a cold and dark September,

Brown Autumn leaves were falling softly to the ground,

Just like the dreams of a life as they slip away.

~

:w rain.doc

FIGURE 2.64

Example of writing a buffer to a file in vi.

vi tells you how many bytes a file occupies when you save it. Note that you can’t acci-
dentally quit vi without saving the current file. If you place more than one file on the
command line when you first invoke vi, vi starts by loading up the first file. You may
edit the next file by using the key sequence :n.

Miscellaneous

Figure 2.65 shows the most common miscellaneous commands, including the commands
for quitting vi. Control-L is particularly useful for refreshing the screen if a message
pops up and messes up your screen or if some static interferes with your modem con-
nection during a vi session.

Action Key sequence

Redraw screen. Control-L

Undo the last operation. u

Undo multiple changes made on the current line. U

Join the next line with the current line. J

Repeat the last operation. .

Execute command in a subshell and then return to vi. :!<command> <Enter>

Execute command in a subshell and read its output :r !<command> <Enter>
into the edit buffer at the current position.

Quit vi if work is saved. :q<Enter>

Quit vi and discard unsaved work. :q!<Enter>

FIGURE 2.65

Miscellaneous vi commands.

www.allitebooks.com

http://www.allitebooks.org

68 Chapter 2 UNIX Utilities for Nonprogrammers

Finally, to quit vi after saving the final version of the poem, I typed the command illus-
trated in Figure 2.66

Customizing vi

vi can be customized by setting options that determine its behavior in certain situations.
The complete list of available options varies, depending on the version and platform,
but we will discuss the most often used options.

The “:set” command is used to set and unset vi’s options. After typing “:set all”,
you will see a list of all the options supported by your version of vi and their current
settings. Settings are either toggled (on or off) or set to a numeric or string value. The
most commonly used options are shown in Figure 2.67.

I remember walking in the rain,

On a cold and dark September,

Brown Autumn leaves were falling softly to the ground,

Just like the dreams of a life as they slip away.

~

:q

FIGURE 2.66

Quitting vi.

Default
Option Description setting

autoindent When set, subsequent lines you type are indented off
the same amount as the previous line.

ignorecase When set, during searches and substitutions, the upper- off
and lowercase characters both satisfy the criteria
required for a match.

number When set, vi displays line numbers on the left-hand side off
of the screen.

showmode Causes vi to indicate when you are in a text input mode off
(open, insert, append, or replace), rather than the normal
command mode.

showmatch Causes vi to briefly move the cursor back to the opening off
parenthesis or brace when you type the matching closing
one.

FIGURE 2.67

Commands to customize vi.

Editing a File: vi 69

To turn autoindent on, type “:set autoindent<Enter>”. To turn autoindent off
again, type “:set noautoindent<Enter>”.

Keeping Your Customizations

You don’t want to have to type every “:set” command you want every time you
enter vi. You would quickly decide that most settings weren’t worth that much ef-
fort. But you can create a special file in your home directory that vi recognizes, and
you can put your preferred settings there. Then, every time you run vi, your settings
will be the way you want them (and you can always modify the file as you find oth-
ers you like).

To set autoindent and ignorecase every time we run vi, create a file called
“.exrc”. (Note that the filename begins with a period: this is a special convention that
we will see again later when we look at command shells.) In that file, put the following
lines:

set autoindent
set ignorecase
set nonumber

We don’t really need to set “nonumber,” since its initial value is “off,” but the example
shows how you would turn an option off if the default was that it was set.

Now every time you start vi, autoindent and ignorecase will be set.

For More Information

For more information about vi, I recommend Christian (1988).

Editing a File: emacs

Emacs (Editor MACroS) is a popular editor that is found on many UNIX systems (and
for those in which it is not included, a version is probably available for download on
the Internet). Emacs had its start in the Lisp-based artificial intelligence community. In
1975, Richard Stallman and Guy Steele wrote the original version that has evolved into
the version now distributed for free and in source code form through the Free Soft-
ware Foundation (FSF). Open Source and the Free Software Foundation are discussed
further in Chapter 16.

Starting emacs

To start emacs with a blank file, enter the command emacs with no parameters. To edit
an existing file, specify its name as a command line parameter. Assuming that you sup-
ply no parameters, your screen will initially look something like Figure 2.68, depending
on your version of emacs.

70 Chapter 2 UNIX Utilities for Nonprogrammers

I’ll draw screens that are only about six lines long to conserve space. The second-from-
bottom line is called the mode line and contains information in the following left-to-
right order:

• If the first three dashes contain a **, then the current file has been modified.
• The name that follows “Emacs:” is the name of the current file. If no file is cur-

rently loaded, the name *scratch* is used instead.
• The current editing mode is then shown between parentheses. In this case, it’s

Fundamental, which is the standard editing mode.
• The next entry indicates your relative position in the file as a percentage of the

entire file. If the file is very small and fits completely on the screen, then All is dis-
played. If you’re at the top or the bottom of a file, then Top and Bot are respec-
tively displayed.

emacs Commands

Unlike vi, emacs doesn’t distinguish between text entry mode and command mode. To
enter text, simply start typing. The initial emacs welcome banner automatically disap-
pears when you type the first letter. Long lines are not automatically broken, so you
must press the Enter key when you wish to start a new line. Lines longer than the width
of the screen are indicated by a \ character at the end of the screen, with the remainder
of the line “wrapped” onto the next line, as shown in Figure 2.69.

GNU Emacs 19.34.1

Copyright (C) 1996 Free Software Foundation, Inc.

Type C-x C-c to exit Emacs.

Type C-h for help; C-x u to undo changes.

Type C-h t for a tutorial on using Emacs.

– Emacs: *scratch* (Fundamental) --- All -----------

FIGURE 2.68

Example of starting emacs.

This is a very long line that illustrates the way that unbroken lines a \

re displayed.

This is a much shorter line.

– Emacs: *scratch*(Fundamental) -- All -----------

FIGURE 2.69

How emacs wraps long lines.

Editing a File: vi 71

emacs’s editing features are accessed via either a control sequence or a metase-
quence. I’ll indicate control sequences by appending the prefix Control- to the name of
the key. For example, the sequence

Control-H t

means “Press and hold the Control key and then press the H key. (For control se-
quences, it doesn’t matter whether you use uppercase or lowercase, so I suggest that
you use lowercase, as it’s easier.) Then release both keys and press the t key on its
own.” Similarly, metasequences use the Esc key. For example, the sequence

Esc x

means “Press the Esc key (but don’t hold it) and then press the x key.” The next few
sections contain many examples of emacs command sequences. If you ever acciden-
tally press Esc followed by Esc, emacs warns you that you’re trying to do something
advanced and suggests that you press the n key to continue. Unless you’re a seasoned
emacs user, it’s good advice.

Getting Out of Trouble

Whenever you’re learning a new editor, it’s quite easy to get lost and confused. Here
are a couple of useful command sequences to return you to a sane state:

• The command sequence Control-G terminates any emacs command, even if it’s
only partially entered, and returns emacs to a state in which it’s waiting for a new
command.

• The command sequence Control-X 1 closes all emacs windows except your main
file window. This action is useful, as several emacs options create a new window
to display information, and it’s important to know how to close them once you’ve
read their contents.

Getting Help

There are several ways to obtain help information about emacs. One of the best ways to
get started with emacs is to read the self-describing help tutorial. I suggest that you do
this before anything else. To read the tutorial, use the command sequence Control-H t.
The tutorial will appear and give you directions on how to proceed.

Leaving emacs

To leave emacs and save your file, use Control-X Control-C. If you haven’t saved your
file since it was last modified, you’ll be asked whether you want to save it.

emacs Modes

emacs supports several different modes for entering text, including Fundamental,
Lisp Interaction, and C. Each mode supports special features that are customized for
the particular kind of text that you’re editing. emacs starts in Fundamental mode by
default; I’ll use that mode during my description of emacs. For more information about
modes, consult the emacs tutorial.

72 Chapter 2 UNIX Utilities for Nonprogrammers

Entering Text

To enter text, simply start typing. For example, Figure 2.70 shows a short four-line
poem.

The next section describes the editing features of emacs that allowed me to
change this poem to something a little better.

Common Editing Features

The most common emacs editing features can be grouped into the following categories:

• moving the cursor
• deleting, pasting, and undoing text
• searching through text
• searching and replacing text
• saving and loading files
• miscellaneous

These categories are described and illustrated in the subsections that follow, using the
sample poem that I entered at the start of this section.

Moving the Cursor

Figure 2.71 shows the common cursor movement commands. For example, to insert the
words “worry or” before the word “fear” on the first line, I moved the cursor to the first
line of the file by typing Esc < and then moved forward several words by using the Esc
f sequence. I then typed in the words, which were automatically inserted at the current
cursor position.

Deleting, Pasting, and Undoing

Figure 2.72 shows the common deletion commands. Whenever an item is deleted,
emacs “remembers” it in an individual “kill buffer.” A list of kill buffers is maintained

There is no need for fear in the night,

You know that your Mommy is there,

To watch over her babies and hold them tight,

When you are in her arms you can feel her sigh all night.

—Emacs: *scratch* (Fundamental) --- All ---------

FIGURE 2.70

Entering text in emacs.

Editing a File: vi 73

so that deleted items may be retrieved long after they have been removed from the dis-
play. To retrieve the last killed item, use Control-Y. After you have typed Control-Y,
you may type Esc y to replace the retrieved item with the previously deleted item.
Every time you type Esc y, the retrieved item moves one step back through the kill
buffer list.

You may append the next deleted item onto the end of the last kill buffer, rather
than create a new buffer, by typing Esc Control-W immediately prior to the delete
command.This tack is useful if you wish to cut different bits and pieces out of a file and
then paste them all together back into one place.

Movement Key sequence
Up one line Control-P (previous)

Down one line Control-N (next)

Right one character Control-F (forward, wraps around)

Left one character Control-B (backward, wraps around)

To start of line Control-A (a is first letter)

To end of line Control-E (end)

Back one word Esc b (back)

Forward one word Esc f (forward)

Down one screen Control-V

Up one screen Esc v

Start of file Esc <

End of file Esc >

FIGURE 2.71

Moving the cursor in emacs.

Item to delete Key sequence

Character before cursor <delete> key

Character after cursor Control-D

Word before cursor Esc <delete>

Word after cursor Esc d

To end of current line Control-K

Sentence Esc k

FIGURE 2.72

Deleting, pasting, and undoing in emacs.

74 Chapter 2 UNIX Utilities for Nonprogrammers

You may undo editing actions one at a time by typing Control-X u for each action that
you wish to undo.

Figure 2.73 shows a summary of the kill buffer and undo commands.

Searching

emacs allows you to perform something called an incremental search. To search for-
ward from your current cursor position for a particular sequence of letters, type
Control-S. The prompt “I-search:” is displayed on the bottom line of the screen, indi-
cating that emacs wants you to enter the string that you wish to search for. As you
enter the character sequence, emacs searches to find the string nearest to your initial
cursor position that matches what you’ve entered so far; in other words, partial sub-
strings are found as you enter the full string. To terminate the search and leave your
cursor at its current position, press Esc. If you delete characters in the full string be-
fore pressing the Esc key, emacs moves back to the first match of the remaining sub-
string. To repeat a search, don’t press Esc, but instead press Control-S to search
forward or Control-R to search backward. Figure 2.74 shows a summary of the search-
ing commands.

Action Key sequence

Search foward for str. Control-S str

Search backward for str. Control-R str

Repeat last search forward. Control-S

Repeat last search backward. Control-R

Leave search mode. Esc

FIGURE 2.74

Searching in emacs.

Action Key sequence

Insert last kill buffer. Control-Y

Retrieve previous kill. Esc y

Append next kill. Esc Control-W

Undo. Control-X u

FIGURE 2.73

The kill buffer in emacs.

Electronic Mail: mail/mailx 75

Search and Replace

To perform a global search and replace, type Esc x, followed by the string “repl s”, fol-
lowed by Enter. emacs will prompt you for the string to replace. Enter the string and
press Enter. emacs will prompt you for the replacement string. Enter the string and
press Enter. emacs then performs the global text substitution.

Saving and Loading Files

To save your current work to a file, type Control-X Control-S. If your work hasn’t been
associated with a filename yet, you are prompted for one. Your work is then saved into
its associated file.

To edit another file, type Control-X Control-F.You are prompted for the new file-
name. If the file already exists, its contents are loaded into emacs; otherwise, the file is
created.

To save your file and then quit emacs, type Control-X Control-C.
Figure 2.75 shows a summary of the save and load commands.

Miscellaneous

To redraw the screen, type Control-L. To place emacs into autowrap mode, which
automatically inserts line breaks when words flow past the end of a line, type Esc x
auto-fill-mode and press Enter. To leave this mode, repeat the command.

For More Information

For more information about emacs, I recommend Roberts (1991).

ELECTRONIC MAIL: mail/mailx

This last section of the current chapter contains information about how to use the
UNIX electronic mail system. It’s handy to be able to use mail from the very begin-
ning, as it’s a convenient way to ask the system administrator and other seasoned users
questions about UNIX. The name is mail on some versions of UNIX and mailx on oth-
ers. For the purposes of this section, I shall refer to both of them as mail.

Action Key sequence

Save current work. Control-X Control-S

Edit another file. Control-X Control-F

Save work and then quit. Control-X Control-C

FIGURE 2.75

Saving and loading files in emacs.

76 Chapter 2 UNIX Utilities for Nonprogrammers

mail has a large number of features, so in accordance with the initial aim of this
book, I shall describe only what I consider to be the most useful ones; consult man for
more information. Figure 2.76 provides a description of mail.

Figure 2.77 lists the most useful mail commands that are available from command
mode.

Utility: mail -H [-f fileName] { userId]*

mail allows you to send and read mail. If a list of usernames is supplied, mail reads
standard input, mails it to the specified users, and then terminates. Usernames can
be a combination of the following forms:

• a local user name (i.e., login name)
• an Internet address of the form name@hostname.domain
• a filename
• a mail group

Internet addresses are described in Chapter 9, and mail groups are described shortly.
If no usernames are specified, mail assumes that you wish to read mail from

a folder. The folder “/var/mail/<username>”, where <username> is your own
username, is read by default, although this action may be overridden by using
the -f option. mail prompts you with an & and then awaits commands. The -H op-
tion lists the headers from your mail folder, but does not enter the command
mode. A list of the most useful command mode options is contained in the next
few pages.

When mail is invoked, it begins by reading the contents of the mail start-up
file, which may contain statements that customize the mail utility. By default, mail
reads the file “.mailrc” in your home directory, although the name of this file may be
overridden by setting the environment variable MAILRC. Environment variables
are discussed in Chapter 4.

There are a large number of customizable options. The most important one is
the ability to define mail groups (also sometimes called aliases), which are variables
that denote a group of users. To specify a mail group, place a line of the form

group name {userId}+

into the mail start-up file. You may then use name as an alias for the specified list of
users, either on the command line or in command mode.

FIGURE 2.76

Description of the mail command.

Electronic Mail: mail/mailx 77

In Figure 2.77, mesgList describes a collection of one or more mail messages, using the
syntax shown in Figure 2.78.

Command Meaning

? Display help.

copy [mesgList] [fileName] Copy messages into fileName without marking
them as “saved.”

delete [mesgList] Delete specified messages from the system
mailbox.

file [fileName] Read mail from mailbox fileName. If no filename
is given, display the name of the current mailbox,
together with the number of bytes and messages
that the mailbox contains.

headers [message] Display a screen of message headers that include
message.

mail { userId }+ Send mail to specified users.

print [mesgList] Display specified messages, using more.

quit Exit mail.

reply [mesgList] Mail response to senders of message list.

save [mesgList] [fileName] Save specified messages to fileName. If no filename
is given, save them in a file called “mbox” in your
home directory by default.

FIGURE 2.77

mail commands.

Syntax Meaning

. current message

nn message number nn

^ first undeleted message

$ last message

* all messages

nn-mm messages numbered nn through mm, inclusive

user all messages from user

FIGURE 2.78

Message designators in mail.

78 Chapter 2 UNIX Utilities for Nonprogrammers

As you’ll see in the examples that follow, these mail commands may be invoked by
their first letter only (i.e., you can use “p” instead of “print.”)

Sending Mail

The easiest way to send mail is to enter the mail directly from the keyboard and termi-
nate the message by pressing Control-D on a line of its own:

$ mail tim ...send some mail to the local user tim.
Subject: Mail Test ...enter the subject of the mail
Hi Tim,
How is Amanda doing?
- with best regards from Graham
^D ...end of input; standard input is sent as mail.
$ _

I wanted to create a mail group called “music” that would allow me to send mail to all
of the people in my band. To do this, I created the following file called “.mailrc” in my
home directory:

group music jeff richard kelly bev

This allowed me to send mail as follows:

$ mail music ...send mail to each member of the group.
Subject: Music
Hi guys
How about a jam sometime?

- with best regards from Graham.
^D ...end of input.
$ _

For mail messages that are more than just a few lines long, it’s a good idea to compose
the message via a text editor, save it in a named file, and then redirect the input of mail
from the file:

$ mail music < jam.txt ...send jam.txt as mail.
$ _

To send mail to users on the Internet, use the standard Internet addressing scheme de-
scribed in Chapter 9.

$ mail glass@utdallas.edu < mesg.txt ...send it.
$ _

Reading Mail

When mail is sent to you, it is stored in a file called “/var/mail/<username>”, where
<username> is your login name. Files that hold mail are termed “mail folders.” For ex-
ample, my own incoming mail is held in the mail folder “/var/mail/glass.”To read a mail

Electronic Mail: mail/mailx 79

folder, type mail, followed by an optional folder specifier. You are notified if no mail is
currently present:

$ mail ...try reading my mail from the default folder.
No mail for glass
$ _

If mail is present, mail displays a list of the incoming mail headers and then prompts
you with an ampersand. Press Enter to read each message in order, and press q(uit) to
exit mail. The mail that you read is appended by default to the mail folder “mbox” in
your home directory, which may be read at a later time by typing the following in your
home directory:

$ mail -f mbox ...read mail saved in the mbox folder.

In the examples that follow, I’ve deleted some of mail’s verbose information so that the
output would fit into a reasonable amount of space. In the following example, I read
two pieces of mail from my friend Tim and then exited mail:

$ ls -l /var/mail/glass ...see if mail is present.
-rw––-- 1 glass 758 May 2 14:32 /var/mail/glass
$ mail ...read mail from default folder.
Mail version SMI 4.0 Thu Oct 11 12:59:09 PDT 1990
Type ? for help.
"/var/mail/glass": 2 messages 2 unread
>U 1 tim@utdallas.edu Sat May 2 14:32 11/382 Mail test
U 2 tim@utdallas.edu Sat May 2 14:32 11/376 Another
& <Enter> ...press enter to read message #1.
From tim@utdallas.edu Sat Mar 14 14:32:33 1998
To: glass@utdallas.edu
Subject: Mail test
hi there
& <Enter> ...press enter to read message #2.
From tim@utdallas.edu Sat Mar 14 14:32:33 1998
To: glass@utdallas.edu
Subject: Another
hi there again
& <Enter> ...press enter to read next message.
At EOF ...there are none!
& q ...quit mail.
Saved 2 messages in /home/glass/mbox
$ _

To see the headers of the messages in your mail folder without entering mail’s com-
mand mode, use the -H option:

$ mail -H ...peek at my mail folder.
>U 1 tim@utdallas.edu Sat May 2 14:32 11/382 Mail test
U 2 tim@utdallas.edu Sat May 2 14:32 11/376 Another
$ _

80 Chapter 2 UNIX Utilities for Nonprogrammers

To respond to a message after reading it, use the r(eply) option. To save a message to a
file, use the s(ave) option. If you don’t specify a message list, mail selects the current
message by default. Here’s an example:

& 15 ...read message #15.
From ssmith@utdallas.edu Tue Mar 17 23:27:11 1998
To: glass@utdallas.edu
Subject: Re: come to a party
The SIGGRAPH party begins Thursday NIGHT at 10:00 PM!!
Hope you don't have to teach Thursday night.
& r ...reply to ssmith.
To: ssmith@utdallas.edu
Subject: Re: come to a party
Thanks for the invitation.
- see you there
^D ...end of input.
& s ssmith.party ...save the message from ssmith.
"ssmith.party" [New file] 27/1097
& q ...quit from mail.
$ _

A word of caution is in order: In some mailers, the default “r” replies to the sender and
“R” replies to everyone who received the original message. Others are the other way
around, with “R” replying to the sender and “r” replying to everyone. Until you know
which way your mailer works, be careful with your replies so that you don’t annoy
everyone on a public distribution list (or worse, say something you didn’t intend for
public consumption!).

It’s quite possible that you’ll receive quite a bit of “junk mail”; to delete messages
that aren’t worth reading, use the d(elete) option:

& d1-15 ...delete messages 1 thru 15 inclusive.
& d* ...delete all remaining messages.

Contacting the System Administrator

The system administrator’s mailing address is usually “root” or, possibly, “sysadmin.”
Typically, the alias “postmaster” should direct mail to the person in charge of e-mail-re-
lated issues.

CHAPTER REVIEW

Checklist

In this chapter, I described

• how to obtain a UNIX account
• how to log in and out of a UNIX system
• the importance of changing your password
• the function of a shell

Chapter Review 81

• how to run a utility
• how to obtain on-line help
• the special terminal metacharacters
• the most common file-oriented utilities
• two UNIX editors
• how to set up your terminal correctly
• how to send electronic mail

Quiz

1. What is one way that hackers try to break UNIX security?
2. What’s the best kind of password?
3. What UNIX command do you use to change the name or location of a file?
4. Is UNIX case sensitive?
5. Name the four most common UNIX command shells.
6. Why are shells better suited than C programs to some tasks?
7. How do you terminate a process?
8. How do you indicate the end of input when entering text from the keyboard?
9. How do you terminate a shell?

10. What term is given to the current location of a process?
11. What attributes does every file have?
12. What is the purpose of groups?
13. How do permission flags relate to directories?
14. Who may change the ownership of a file?

Exercises

2.1 Obtain the Internet mailing address of an acquaintance in another country, and
send him or her e-mail. How long does it take to get there? Does the travel time
seem reasonable? [level: easy]

2.2 Why may a process have only one current group? [level: medium]
2.3 Design a file security mechanism that alleviates the need for the “set user ID”

feature. [level: hard]
2.4 Even seemingly trivial inventions such as a flashing cursor and a scrolling win-

dow have been granted patents. Many software designers construct programs,
only to find that they have unintentionally reinvented someone else’s patented
invention. Do you think that patents are fair, and if not, can you think of a better
mechanism to protect intellectual property? [level: hard]

Project

Send mail to the system administrator and set up two new groups for yourself.
Experiment with the group-related utilities and explore the permissions system.
[level: easy]

82

C H A P T E R 3

UNIX Utilities for Power
Users

MOTIVATION

In addition to the common file-oriented UNIX utilities, there are plenty of other
utilities that process text, schedule commands, archive files, and sort files. This chap-
ter contains descriptions and examples of the utilities that will be most useful in in-
creasing your productivity.

PREREQUISITES

In order to understand this chapter, you should already have read the first two chap-
ters of the text. It also helps if you have access to a UNIX system so that you can try
out the various utilities that I discuss.

OBJECTIVES

In this chapter, I’ll show you how to use about 30 useful utilities.

PRESENTATION

The information herein is presented in the form of several sample UNIX sessions.

UTILITIES

The chapter introduces the following utilities, listed in alphabetical order:

at crypt gzip tar
awk diff ln time
biff dump mount tr
cmp egrep od ul

Introduction 83

compress fgrep perl umount
cpio find sed uncompress
cron grep sort uniq
crontab gunzip su whoami

In addition to describing these standard UNIX utilities, this chapter will also provide a
brief introduction to Perl, because, while it does not come with many versions of
UNIX, it has become an integral part of many UNIX environments.

INTRODUCTION

The utilities we will be discussing may be logically grouped into sets as shown in
Figure 3.1.We will examine each group in turn, describing its members and illustrating
their operational worked-out examples. Note that, while most of these utilities exist in
all versions of UNIX, this is not true for every version.

Section Utilities

filtering files egrep, fgrep, grep, uniq

sorting files sort

comparing files cmp, diff

archiving files tar, cpio, dump

searching for files find

scheduling commands at, cron, crontab

programmable text processing awk, perl

hard and soft links ln

switching users su

checking for mail biff

transforming files compress, crypt, gunzip, gzip, sed, tr, ul,
uncompress

looking at raw file contents od

mounting file systems mount, umount

identifying shells whoami

document preparation nroff, spell, style, troff

timing execution of a command time

FIGURE 3.1

Advanced UNIX utilities.

Utility: grep -hilnvw pattern

fgrep -hilnvwx string

egrep -hilnvw pattern

grep (Global or Get Regular Expression and Print) is a utility that allows you to
search for a pattern in a list of files. If no files are specified, it searches standard
input instead. pattern may be a regular expression. All lines that match the pattern
are displayed as standard output. If more than one file is specified, each matching
line that is displayed is preceded by the name of the file in which it is found, unless
the -h option is specified. The -n option causes each such matching line to be pre-
ceded by its line number. The -i option causes the case of the patterns to be ignored.
The -l option displays a list of the files that contain the specified pattern. The -v op-
tion causes grep to display all of the lines that don’t match the pattern.The -w option
restricts matching to whole words only. fgrep (Fixed grep) is a fast version of grep
that can search only for fixed strings. egrep (Extended grep) supports matching with
regular expressions. fgrep also supports the -x option, which outputs only lines that
are exactly equal to string.

For more information about regular expressions, consult the Appendix.

5fileName6*

5fileName6*

5fileName6*

FIGURE 3.2

Description of the grep command.

84 Chapter 3 UNIX Utilities for Power Users

FILTERING FILES

There are many times when it’s handy to be able to filter the contents of a file, se-
lecting only those lines that match certain criteria. The utilities that do this include
the following:

• egrep, fgrep, and grep, which filter out all lines that do not contain a specified
pattern

• uniq, which filters out duplicate adjacent lines

Filtering Patterns: egrep/fgrep/grep

egrep, fgrep, and grep allow you to scan a file and filter out all of the lines that don’t
contain a specified pattern. These utilities are similar in nature, the main difference
being the kind of text patterns that each can filter. I’ll begin by describing the common
features of all three and then finish up by illustrating the differences. Figure 3.2 pro-
vides a brief synopsis of the three utilities.

To obtain a list of all the lines in a file that contain a string, follow grep by the string
and the name of the file to scan. Here’s an example:

Filtering Files 85

$ cat grepfile ...list the file to be filtered.
Well you know it’s your bedtime,
So turn off the light,
Say all your prayers and then,
Oh you sleepy young heads dream of wonderful things,
Beautiful mermaids will swim through the sea,
And you will be swimming there too.
$ grep the grepfile ...search for the word "the".
So turn off the light,
Say all your prayers and then,
Beautiful mermaids will swim through the sea,
And you will be swimming there too.
$ _

Notice that words that contain the string “the” also satisfy the matching condition.
Here’s an example of the use of the -w and -n options:

$ grep -wn the grepfile ...be more particular this time!
2:So turn off the light,
5:Beautiful mermaids will swim through the sea,
$ _

To display only those lines in a file that don’t match, use the -v option, as shown in the
following example:

$ grep -wnv the grepfile ...reverse the filter.
1:Well you know it's your bedtime,
3:Say all your prayers and then,
4:Oh you sleepy young heads dream of wonderful things,
6:And you will be swimming there too.
$ _

If you specify more than one file to search, each line that is selected is preceded by
the name of the file in which it appears. In the following example, I searched my C
source files for the string “x”. (See Chapter 4 for a description of the shell file wild-
card mechanism.)

$ grep -w x *.c ...search all files ending in ".c".
a.c:test (int x)
fact2.c:long factorial (x)
fact2.c:int x;
fact2.c: if ((x == 1) ,, (x == 0))
fact2.c: result = x * factorial (x-1);
$ grep -wl x *.c ...list names of matching files.
a.c
fact2.c
$ _

86 Chapter 3 UNIX Utilities for Power Users

Utility Kind of pattern that may be searched for

fgrep fixed string only

grep regular expression

egrep extended regular expression

FIGURE 3.3

The differences in the grep command family.

fgrep, grep, and egrep all support the options that I’ve described so far. However, they
differ from each other in that each allows a different kind of text pattern to be
matched, as shown in Figure 3.3. For information about regular expressions and ex-
tended regular expressions, consult the Appendix.

To illustrate the use of grep and egrep regular expressions, let’s examine a piece
of text followed by the lines of text that would match various regular expressions.
When egrep or grep is used, regular expressions should be placed inside single quotes
to prevent interference from the shell. In the examples shown in Figures 3.4 and 3.5,
the portion of each line of this sample text that satisfies the regular expression is
italicized:

Well you know it's your bedtime,
So turn off the light,
Say all your prayers and then,
Oh you sleepy young heads dream of wonderful things,
Beautiful mermaids will swim through the sea,
And you will be swimming there too.

Matching Patterns

grep Pattern Lines that match

.nd Say all your prayers and then,

Oh you sleepy young heads dream of wonderful things,

And you will be swimming there too.

And you will be swimming there too.¿.nd

FIGURE 3.4

Pattern matching in grep.

Filtering Files 87

And you will be swimming there too.

[A-D] Beautiful mermaids will swim through the sea,

And you will be swimming there too.

\. And you will be swimming there too.

a. Say all your prayers and then,

Oh you sleepy young heads dream of wonderful things,

Beautiful mermaids will swim through the sea,

a.$ Beautiful mermaids will swim through the sea,

[a-m]nd Say all your prayers and then,

Oh you sleepy young heads dream of wonderful things, And
you will be swimming there too.

[¿a-m]nd

sw.*ng

FIGURE 3.4 (Continued)

egrep
Pattern Lines that match

Oh you sleepy young heads dream of wonderful things,
Beautiful mermaids will swim through the sea, And you
will be swimming there too.

Oh you sleepy young heads dream of wonderful things,
Beautiful mermaids will swim through the sea,

So turn off the light, Beautiful mermaids will swim
through the sea, And you will be swimming there too.

And you will be swimming there too.

im?ing 6no matches7

im*ing

off ƒwill

s.+w

s.*w

FIGURE 3.5

Pattern matching in egrep.

Removing Duplicate Lines: uniq

The uniq utility displays a file with all of its identical adjacent lines replaced by a single
occurrence of the repeated line. uniq works as shown in Figure 3.6.

88 Chapter 3 UNIX Utilities for Power Users

Utility: uniq -c -number [inputfile [outputfile]]

uniq is a utility that displays its input file with all adjacent repeated lines collapsed to
a single occurrence of the repeated line. If an input file is not specified, standard input
is read. The -c option causes each line to be preceded by the number of occurrences
that were found. If number is specified, then number fields of each line are ignored.

FIGURE 3.6

Description of the uniq command.

Here’s an example:

$ cat animals ...look at the test file.
cat snake
monkey snake
dolphin elephant
dolphin elephant
goat elephant
pig pig
pig pig
monkey pig
$ uniq animals ...filter out duplicate adjacent lines.
cat snake
monkey snake
dolphin elephant
goat elephant
pig pig
monkey pig
$ uniq -c animals ...display a count with the lines.
1 cat snake
1 monkey snake
2 dolphin elephant
1 goat elephant
2 pig pig
1 monkey pig

$ uniq -1 animals ...ignore first field of each line.
cat snake
dolphin elephant
pig pig
$ _

SORTING FILES: sort

The sort utility sorts a file in ascending or descending order on the basis of one or more
sort fields. It works as shown in Figure 3.7. Individual fields are ordered lexicographically,

Sorting Files: sort 89

Utility: sort -tc -r { sortField-bfMn }* { fileName }*

sort is a utility that sorts lines in one or more files on the basis of specified sorting
criteria. By default, lines are sorted into ascending order. The -r option specifies de-
scending order instead. Input lines are split into fields separated by spaces or tabs.
To specify a different field separator, use the -t option. By default, all of a line’s fields
are considered when the sort is being performed. This convention may be overrid-
den by specifying one or more sort fields, whose format is described later in this sec-
tion. Individual sort fields may be customized by following them with one or more
options. The -f option causes sort to ignore the case of the field. The -M option sorts
the field in month order.The -n option sorts the field in numeric order.The -b option
ignores leading spaces.

FIGURE 3.7

Description of the sort command.

which means that corresponding characters are compared on the basis of their ASCII
value. (See ‘man ascii’ for a list of all characters and their corresponding values.) Two
consequences of this convention are that an uppercase letter is “less” than its lower-
case equivalent and a space is “less” than a letter. In the following example, I sorted a
text file in ascending order and descending order, using the default ordering rule:

$ cat sortfile ...list the file to be sorted.
jan Start chapter 3 10th
Jan Start chapter 1 30th
Jan Start chapter 5 23rd
Jan End chapter 3 23rd
Mar Start chapter 7 27
may End chapter 7 17th
Apr End Chapter 5 1
Feb End chapter 1 14
$ sort sortfile ...sort it.
Feb End chapter 1 14
Jan End chapter 3 23rd
Jan Start chapter 5 23rd
may End chapter 7 17th
Apr End Chapter 5 1
Jan Start chapter 1 30th
Mar Start chapter 7 27
jan Start chapter 3 10th
$ sort -r sortfile ...sort it in reverse order.
jan Start chapter 3 10th
Mar Start chapter 7 27
Jan Start chapter 1 30th
Apr End Chapter 5 1

90 Chapter 3 UNIX Utilities for Power Users

may End chapter 7 17th
Jan Start chapter 5 23rd
Jan End chapter 3 23rd
Feb End chapter 1 14
$ _

To sort on a particular field, you must specify the starting field number with the use of
followed by the noninclusive stop field number with a - prefix. Field num-

bers start at index 0. If you leave off the stop field number, all fields following the start
field are included in the sort. In the next example, I sorted the text file from the pre-
ceding example on the first field only, which is the number zero:

$ sort +0 -1 sortfile ...sort on first field only.
Feb End chapter 1 14
Jan End chapter 3 23rd
Jan Start chapter 5 23rd
may End chapter 7 17th
Apr End Chapter 5 1
Jan Start chapter 1 30th
Mar Start chapter 7 27
jan Start chapter 3 10th
$ _

Note that the leading spaces were counted as being part of the first field, which result-
ed in a strange sorting sequence. In addition, I would have preferred the months to be
sorted in correct order, with “Jan” before “Feb”, and so forth. The -b option ignores
leading blanks and the -M option sorts a field on the basis of month order. Here’s an
example that worked better:

$ sort +0 -1 -bM sortfile ...sort on first month.
Jan End chapter 3 23rd
Jan Start chapter 5 23rd
Jan Start chapter 1 30th
jan Start chapter 3 10th
Feb End chapter 1 14
Mar Start chapter 7 27
Apr End Chapter 5 1
may End chapter 7 17th
$ _

The sample text file was correctly sorted by month, but the dates were still out of order.
You may specify multiple sort fields on the command line to deal with this problem.
The sort utility first sorts all of the lines on the basis of the first sort specifier and then
uses the second sort specifier to order lines that the first specifier judged to be equal in
rank. Therefore, to sort the sample text file by month and date, it had to first be sorted
using the first field and then sorted again using the fifth field. In addition, the fifth field
had to be sorted numerically with the -n option.

a + prefix,

Comparing Files 91

$ sort +0 -1 -bM +4 –n sortfile
jan Start chapter 3 10th
Jan End chapter 3 23rd
Jan Start chapter 5 23th
Jan Start chapter 1 30th
Feb End chapter 1 14
Mar Start chapter 7 27
Apr End Chapter 5 1
may End chapter 7 17th
$ _

Characters other than spaces often delimit fields. For example, the “/etc/passwd” file
contains user information stored in fields separated by colons. You may use the -t op-
tion to specify an alternative field separator. In the following example, I sorted a file
based on fields separated by : characters.

$ cat sortfile2 ...look at the test file.
jan:Start chapter 3:10th
Jan:Start chapter 1:30th
Jan:Start chapter 5:23rd
Jan:End chapter 3:23rd
Mar:Start chapter 7:27
may:End chapter 7:17th
Apr:End Chapter 5:1
Feb:End chapter 1:14
$ sort -t: +0 -1 -bM +2 -n sortfile2 ...colon delimiters.
jan:Start chapter 3:10th
Jan:End chapter 3:23rd
Jan:Start chapter 5:23rd
Jan:Start chapter 1:30th
Feb:End chapter 1:14
Mar:Start chapter 7:27
Apr:End Chapter 5:1
may:End chapter 7:17th
$ _

sort contains several other options that are too detailed to describe here. I suggest that
you use the man utility to find out more about them.

COMPARING FILES

The following two utilities allow you to compare the contents of two files:

• cmp, which finds the first byte that differs between two files
• diff, which displays all the differences and similarities between two files

92 Chapter 3 UNIX Utilities for Power Users

Testing for Sameness: cmp

The cmp utility determines whether two files are the same. It works as shown in
Figure 3.8. In the following example, I compared the files “lady1,” “lady2,” and
“lady3”:

$ cat lady1 ...look at the first test file.
Lady of the night,
I hold you close to me,
And all those loving words you say are right.
$ cat lady2 ...look at the second test file.
Lady of the night,
I hold you close to me,
And everything you say to me is right.
$ cat lady3 ...look at the third test file.
Lady of the night,
I hold you close to me,
And everything you say to me is right.
It makes me feel,
I’m so in love with you.
Even in the dark I see your light.
$ cmp lady1 lady2 ...files differ.
lady1 lady2 differ: char 48, line 3
$ cmp lady2 lady3 ...file2 is a prefix of file3.
cmp: EOF on lady2
$ cmp lady3 lady3 ...files are exactly the same.
$ _

Utility: cmp -ls fileName1 fileName2 [offset1] [offset2]

cmp is a utility that tests two files for equality. If fileName1 and fileName2 are exact-
ly the same, then cmp returns the exit code 0 and displays nothing; otherwise, cmp
returns the exit code 1 and displays the offset and line number of the first mis-
matched byte. If one file is a prefix of the other, then the EOF message for the file
that is shorter is displayed. The -l option displays the offset and values of all mis-
matched bytes. The -s option causes all output to be inhibited. The optional values
offset1 and offset2 specify the starting offsets in fileName1 and fileName2, respec-
tively, and that the comparison should begin.

FIGURE 3.8

Description of the cmp command.

The -l option displays the byte offset and values of every byte that doesn’t match.
Here’s an example:

$ cmp -l lady1 lady2 ...display bytes that don't match.
48 141 145
49 154 166

Comparing Files 93

...
81 145 56
82 40 12

cmp: EOF on lady2 ...lady2 is smaller than lady1.
$ _

File Differences: diff

The diff utility compares two files and displays a list of editing changes that would con-
vert the first file into the second file. It works as shown in Figure 3.9. There are three
kinds of editing changes: adding lines (a), changing lines (c), and deleting lines (d).
Figure 3.10 shows the format that diff uses to describe each kind of edit. Note that

Utility: diff -i -dflag fileName1 fileName2

diff is a utility that compares two files and outputs a description of their differences.
(See the rest of this section for information on the format of this output.) The -i flag
makes diff ignore the case of the lines. The -D option causes diff to generate output
designed for the C preprocessor.

FIGURE 3.9

Description of the diff command.

Additions

firstStart a secondStart, secondStop

lines from the second file to add to the first file

Deletions

firstStart, firstStop d lineCount

lines from the first file to delete

Changes

firstStart, firstStop c secondStart, secondStop

lines in the first file to be replaced

--

lines in the second file to be used for the replacement7

6

6

7

FIGURE 3.10

The meaning of output produced by diff.

94 Chapter 3 UNIX Utilities for Power Users

firstStart and firstStop denote line numbers in the first file and secondStart and
secondStop denote line numbers in the second file.

In the following example, I compared several text files in order to observe their
differences:

$ cat lady1 ...look at the first test file.
Lady of the night,
I hold you close to me,
And all those loving words you say are right.
$ cat lady2 ...look at the second test file.
Lady of the night,
I hold you close to me,
And everything you say to me is right.
$ cat lady3 ...look at the third test file.
Lady of the night,
I hold you close to me,
And everything you say to me is right.
It makes me feel,
I'm so in love with you.
Even in the dark I see your light.
$ cat lady4 ...look at the fourth test file.
Lady of the night,
I'm so in love with you.
Even in the dark I see your light.
$ diff lady1 lady2 ...compare lady1 and lady2.
3c3
< And all those loving words you say are right.

> And everything you say to me is right.
$ diff lady2 lady3 ...compare lady2 and lady3.
3a4,6
> It makes me feel,
> I’m so in love with you.
> Even in the dark I see your light.
$ diff lady3 lady4 ...compare lady3 and lady4.
2,4d1
< I hold you close to me,
< And everything you say to me is right.
< It makes me feel,
$ _

The -D option of diff is useful for merging two files into a single file that contains C pre-
processor directives. Each version of the file can be re-created by using the cc compiler
with suitable options and macro definitions. The following commands are illustrative:

$ diff -Dflag lady3 lady4 ...look at the output.
Lady of the night,
#ifndef flag ...preprocessor directive.
I hold you close to me,
And everything you say to me is right.

Finding Files: find 95

It makes me feel,
#endif flag ...preprocessor directive.
I’m so in love with you.
Even in the dark I see your light.
$ diff -Dflag lady2 lady4 > lady.diff ...store output.
$ cc -P lady.diff ...invoke the preprocessor.
$ cat lady.i ...look at the output.
Lady of the night,
I hold you close to me,
And everything you say to me is right.
$ cc -Dflag -P lady.diff ...obtain the other version.
$ cat lady.i ...look at the output.
Lady of the night,
I’m so in love with you.
Even in the dark I see your light.
$ _

FINDING FILES: find

The find utility can do much more than simply locate a named file; it can perform ac-
tions on a set of files that satisfy specific conditions. For example, you can use find to
erase all of the files belonging to a user tim that haven’t been modified for three days.
Figure 3.11 provides a formal description of find, and Figure 3.12 describes the syntax
of expression.

Utility: find pathList expression

The find utility recursively descends through pathList and applies expression to
every file. The syntax of expression is described in Figure 3.12.

FIGURE 3.11

Description of the find command.

Expression Value/action

-name pattern True if the file’s name matches pattern, which may
include the shell metacharacters [], and ?.

-perm oct True if the octal description of the file’s permission flags
are exactly equal to oct.

-type ch True if the type of the file is ch (etc.).b = block, c = char,

*,

FIGURE 3.12

find expressions.

96 Chapter 3 UNIX Utilities for Power Users

Here are some examples of find in action:

$ find . -name '*.c' -print ...print c source files in the
...current directory or any of
...its subdirectories.

./proj/fall.89/play.c

./proj/fall.89/referee.c

./proj/fall.89/player.c

./rock/guess.c

./rock/play.c

./rock/player.c

./rock/referee.c
$ find . -mtime 14 -ls ...ls modified files

...during the last 14 days.

-user userId True if the owner of the file is userId.

-group groupId True if the group of the file is groupId.

-atime count True if the file has been accessed within count days.

-mtime count True if the contents of the file have been modified within
count days.

-ctime count True if the contents of the file have been modified within
count days or if any of the file’s attributes have been
altered.

-exec command True if the exit code from executing command is 0.
command must be terminated by an escaped semicolon (\;).
If you specify as a command line argument, it is replaced
by the name of the current file.

-print Prints out the name of the current file and returns true.

-ls Displays the current file’s attributes and returns true.

-cpio device Writes the current file in cpio format to device and returns
true. (cpio format is defined in a subsequent section.)

!expression Returns the logical negation of expression.

expr1 [-a] expr2 Short-circuits and. If expr1 is false, it returns false and
expr2 is not executed. If expr1 is true, it returns the value
of expr2.

expr1 -o expr2 Short-circuits or. If expr1 is true, it returns true. If expr 1 is
false, it returns the value of expr2.

56

FIGURE 3.12 (Continued)

Archives 97

-rw-r--r-- 1 glass cs 14151 May 1 16:58 ./stty.txt
-rw-r--r-- 1 glass cs 48 May 1 14:02 ./myFile.doc
-rw-r--r-- 1 glass cs 10 May 1 14:02 ./rain.doc
-rw-r--r-- 1 glass cs 14855 May 1 16:58 ./tset.txt
-rw-r--r-- 1 glass cs 47794 May 2 10:56 ./mail.txt
$ find . -name '*.bak' -ls -exec rm {} \;

...ls and then remove all files

...that end with ".bak".
-rw-r--r-- 1 glass cs 9 May 16 12:01 ./a.bak
-rw-r--r-- 1 glass cs 9 May 16 12:01 ./b.bak
-rw-r--r-- 1 glass cs 15630 Jan 26 00:14 ./s6/gosh.bak
-rw-r--r-- 1 glass cs 18481 Jan 26 12:59 ./s6/gosh2.bak
$ find . \(-name '*.c' -o -name '*.txt' \) -print

...print the names of all files that

...end in ".c" or ".txt".
./proj/fall.89/play.c
./proj/fall.89/referee.c
./proj/fall.89/player.c
./rock/guess.c
./rock/play.c
./rock/player.c
./rock/referee.c
./stty.txt
./tset.txt
./mail.txt
$ _

ARCHIVES

There are a number of reasons that you might want to save some files to a secondary
storage medium such as a disk or tape:

• for daily, weekly, or monthly backups
• for transport between nonnetworked UNIX sites
• for posterity

UNIX possesses a family of three utilities, each of which has its own strengths and
weaknesses, that allow you to archive files. In my opinion, it would be much better to
have a single, powerful, general-purpose archive utility, but no standard utility has
these qualities. Here is a list of the utilities, together with a brief description of them:

• cpio, which allows you to save directory structures to a single backup volume.
cpio is handy for saving small quantities of data, but the single-volume restriction
makes it useless for large backups.

• tar, which allows you to save directory structures to a single backup volume. tar is
especially designed to save files to tape, so it always archives files at the end of

98 Chapter 3 UNIX Utilities for Power Users

the storage medium. As with cpio, the single-volume restriction makes tar unus-
able for large backups.

• dump, which allows you to save a file system to multiple backup volumes. dump
is especially designed for doing total and incremental backups, but restoring indi-
vidual files with it is tricky. (Note: In many System V-based versions of UNIX, the
ufsdump program is equivalent to dump.)

Copying Files: cpio

The cpio utility allows you to create and access special cpio-format files. These special-
format files are useful for backing up small subdirectories, thereby avoiding the
heavy-duty dump utility. Unfortunately, the cpio utility is unable to write special-format
files to multiple volumes, so the entire backup file must be able to reside on a single
storage medium. If it cannot, use the dump utility instead. cpio works as shown in
Figure 3.13.

Utility: cpio -ov

cpio -idtu patterns

cpio -pl directory

cpio allows you to create and access special cpio-format files.
The -o option takes a list of filenames from standard input and creates a cpio-

format file that contains a backup of the files with those filenames. The -v option
causes the name of each file to be displayed as it’s copied.

The -i option reads a cpio-format file from standard input and re-creates all of
the files from the input channel whose names match a specified pattern. By default,
older files are not copied over younger files. The -u option causes unconditional
copying. The -d option causes directories to be created if they are needed during
the copy process. The -t option causes a table of contents to be displayed instead of
performing the copy.

The -p option takes a list of filenames from standard input and copies the con-
tents of the files to a named directory. This option is useful for copying a subdirec-
tory to another place, although most uses of -p can be performed more easily using
the cp utility with the -r (recursive) option.Whenever possible, the -l option creates
links instead of actually making physical copies.

FIGURE 3.13

Description of the cpio command.

Archives 99

To demonstrate the -o and -i options, I created a backup version of all the C source files
in my current directory, deleted the source files, and then restored them.The commands
for doing this are as follows:

$ ls -l *.c ...list the files to be saved.
-rw-r--r-- 1 glass 172 Jan 5 19:44 main1.c
-rw-r--r-- 1 glass 198 Jan 5 19:44 main2.c
-rw-r--r-- 1 glass 224 Jan 5 19:44 palindrome.c
-rw-r--r-- 1 glass 266 Jan 5 23:46 reverse.c
$ ls *.c | cpio -ov > backup ...save in "backup".
main1.c
main2.c
palindrome.c
reverse.c
3 blocks
$ ls -l backup ...examine "backup".
-rw-r--r-- 1 glass 1536 Jan 9 18:34 backup
$ rm *.c ...remove the original files.
$ cpio -it < backup ...restore the files.
main1.c
main2.c
palindrome.c
reverse.c
3 blocks
$ ls -l *.c ...confirm their restoration.
-rw-r--r-- 1 glass 172 Jan 5 19:44 main1.c
-rw-r--r-- 1 glass 198 Jan 5 19:44 main2.c
-rw-r--r-- 1 glass 224 Jan 5 19:44 palindrome.c
-rw-r--r-- 1 glass 266 Jan 5 23:46 reverse.c
$ _

To back up all of the files, including subdirectories, that match the pattern use the
output from the find utility as the input to cpio. The -depth option of find recursively
searches for matching patterns. In the following example, note that I escaped the

character in the argument to the -name option so that it was not expanded by the shell:

$ find . -name *.c -depth -print | cpio -ov > backup2
main1.c
main2.c
palindrome.c
reverse.c
tmp/b.c
tmp/a.c
3 blocks
$ rm -r *.c ...remove the original files.
$ rm tmp/*.c ...remove the lower-level files.
$ cpio -it < backup2 ...restore the files.
main1.c
main2.c

*

“*.c”,

100 Chapter 3 UNIX Utilities for Power Users

palindrome.c
reverse.c
tmp/b.c
tmp/a.c
3 blocks
$ _

To demonstrate the -p option, I used the find utility to obtain a list of all the files in my
current directory that were modified in the last two days and then copied those files
into the parent directory. Without using the -l option, the files were physically copied,
resulting in a total increase in disk usage of 153 blocks. Using the -l option, however,
linked the files, resulting in no disk usage at all.This is shown in the following example:

$ find . -mtime -2 -print | cpio -pcopy
153 blocks
$ ls -l ../reverse.c ...look at the copied file.
-rw-r--r-- 1 glass 266 Jan 9 18:42 ../reverse.c
$ find . -mtime -2 -print | cpio -pllink
0 blocks
$ ls -l ../reverse.c ...look at the linked file.
-rw-r--r-- 2 glass 266 Jan 7 15:26 ../reverse.c
$ _

Tape Archiving: tar

The tar utility was designed specifically for maintaining an archive of files on a mag-
netic tape. When you add a file to an archive file using tar, the file is always placed at
the end of the archive file, since you cannot modify the middle of a file that is stored on
tape. If you’re not archiving files to a tape, I suggest that you use the cpio utility in-
stead. Figure 3.14 shows how tar works.

Utility: tar -cfrtuvx [tarFileName] fileList

tar allows you to create and access special tar-format archive files. The -c option cre-
ates a tar-format file. The name of the tar-format file is “/dev/rmt0” by default. (This
may vary with different versions of UNIX.) However, the default may be overriden
by setting the $TAPE environment variable or by using the -f option followed by the
required filename. The -v option encourages verbose output. The -x option allows
you to extract named files, and the -t option generates a table of contents. The -r op-
tion unconditionally appends the listed files to the archived file. The -u option ap-
pends only files that are more recent than those already archived. If the file list
contains directory names, the contents of the directories are appended or extracted
recursively.

FIGURE 3.14

Description of the tar command.

Archives 101

In the following example, I saved all of the files in the current directory to the archive
file “tarfile”:

$ ls ...look at the current directory.
main1* main2 palindrome.c reverse.h
main1.c main2.c palindrome.h tarfile
main1.make main2.make reverse.c tmp/
$ ls tmp ...look in the "tmp" directory.
a.c b.c
$ tar -cvf tarfilearchive the current directory.
a ./main1.c 1 blocks
a ./main2.c 1 blocks
...
a ./main2 48 blocks
a ./tmp/b.c 1 blocks
a ./tmp/a.c 1 blocks
$ ls -l tarfile ...look at the archive file "tarfile".
-rw-r--r-- 1 glass 65536 Jan 10 12:44 tarfile
$ _

To obtain a table of contents of a tar archive, use the -t option, as shown in the follow-
ing example:

$ tar -tvf tarfile ...look at the table of contents.
rwxr-xr-x 496/62 0 Jan 10 12:44 1998 ./
rw-r--r-- 496/62 172 Jan 10 12:41 1998 ./main1.c
rw-r--r-- 496/62 198 Jan 9 18:36 1998 ./main2.c
...
rw-r--r-- 496/62 24576 Jan 7 15:26 1998 ./main2
rwxr-xr-x 496/62 0 Jan 10 12:42 1998 ./tmp/
rw-r--r-- 496/62 9 Jan 10 12:42 1998 ./tmp/b.c
rw-r--r-- 496/62 9 Jan 10 12:42 1998 ./tmp/a.c
$

To unconditionally append a file to the end of a tar archive, use the -r option followed
by a list of files or directories to append. Notice in the following example that the tar
archive ended up holding two copies of “reverse.c”:

$ tar -rvf tarfile reverse.c ...unconditionally append.
a reverse.c 1 blocks
$ tar -tvf tarfile ...look at the table of contents.
rwxr-xr-x 496/62 0 Jan 10 12:44 1998 ./
rw-r--r-- 496/62 172 Jan 10 12:41 1998 ./main1.c
...
rw-r--r-- 496/62 266 Jan 9 18:36 1998 ./reverse.c
...
rw-r--r-- 496/62 266 Jan 10 12:46 1998 reverse.c
$ _

102 Chapter 3 UNIX Utilities for Power Users

To append a file only if it isn’t in the archive or if it has been modified since it was last
archived, use the -u option instead of -r. In the following example, note that “reverse.c”
was not archived, because it hadn’t been modified:

$ tar -rvf tarfile reverse.c ...unconditionally append.
a reverse.c 1 blocks
$ tar -uvf tarfile reverse.c ...conditionally append.
$ _

To extract a file from an archive file, use the -x option followed by a list of files or di-
rectories. If a directory name is specified, it is recursively extracted, as shown in the fol-
lowing example:

$ rm tmp/* ...remove all files from "tmp".
$ tar -vxf tarfile ./tmp ...extract archived "tmp" files.
x ./tmp/b.c, 9 bytes, 1 tape blocks
x ./tmp/a.c, 9 bytes, 1 tape blocks
$ ls tmp ...confirm restoration.
a.c b.c
$ _

Unfortunately, tar doesn’t support pattern matching of the name list, so to extract files
that match a particular pattern, be crafty and use grep as part of the command se-
quence, like this:

$ tar -xvf tarfile `tar -tf tarfile | grep '.*\.c'`
x ./main1.c, 172 bytes, 1 tape blocks
x ./main2.c, 198 bytes, 1 tape blocks
x ./palindrome.c, 224 bytes, 1 tape blocks
x ./reverse.c, 266 bytes, 1 tape blocks
x ./tmp/b.c, 9 bytes, 1 tape blocks
x ./tmp/a.c, 9 bytes, 1 tape blocks
$ _

If you change into another directory and then extract files that were stored using rela-
tive pathnames, the names are interpreted as being relative to the current directory. In
the following example, I restored “reverse.c” from the previously created tar file to a
new directory “tmp2”:

$ mkdir tmp2 ...create a new directory.
$ cd tmp2 ...move there.
$ tar -vxf ../tarfile reverse.c ...restore single file.
x reverse.c, 266 bytes, 1 tape blocks
x reverse.c, 266 bytes, 1 tape blocks
$ ls -l ...confirm restoration.
total 1
-rw-r--r-- 1 glass 266 Jan 10 12:48 reverse.c
$ _

Archives 103

Note that each copy of “reverse.c” overwrote the previous one, so that the latest ver-
sion was the one that was left intact.

Incremental Backups: dump and restore

The dump and restore commands came from the Berkeley version of UNIX, but have
been added to most other versions. (In many System V-based versions of UNIX, they
are ufsdump and ufsrestore.) Here’s a system administrator’s typical backup strategy:

• Perform a weekly total-file system backup.
• Perform a daily incremental backup, storing only those files that were changed

since the last incremental backup.

This kind of backup strategy is supported nicely by the dump and restore utilities.
dump works as shown in Figure 3.15. Here’s an example that performs a level-0

dump of the file system on /dev/da0 to the tape drive /dev/rmt0 with verification:

$ dump 0 fv /dev/rmt0 /dev/da0

Utility: dump [level] [f dumpFile] [v] [w] fileSystem

dump [level] [f dumpFile] [v] [w] {fileName}+

The dump utility has two forms.The first form copies files from the specified file sys-
tem to dumpFile, which is “/dev/rmt0” by default. (This may vary in different ver-
sions of UNIX.) If the dump level is specified as n, then all of the files that have been
modified since the last dump at a lower level than n are copied. For example, a level-
0 dump will always dump all files, whereas a level-2 dump will dump all of the files
modified since the last level-0 or level-1 dump. If no dump level is specified, the
dump level is set to 9. The v option causes dump to verify each volume of the medi-
um after it is written.The w option causes dump to display a list of all the file systems
that need to be dumped, instead of performing a backup.

The second form of dump allows you to specify the names of files to be
dumped.

Both forms prompt the user to insert or remove the dump medium when nec-
essary. For example, a large system dump to a tape drive often requires an operator
to remove a full tape and replace it with an empty one.

When a dump is performed, information about the dump is recorded in the
“/etc/dumpdates” file for use by future invocations of dump.

FIGURE 3.15

Description of the dump command.

104 Chapter 3 UNIX Utilities for Power Users

The restore utility allows you to restore files from a dump backup, and it works as
shown in Figure 3.16. In the following example, I used restore to extract a couple of
previously saved files from the dump device “/dev/rmt0”:

$ restore -x f /dev/rmt0 wine.c hacking.c

Utility: restore -irtx [f dumpFile] {fileName}*

The restore utility allows you to restore a set of files from a previous dump file. If
dumpFile is not specified, “/dev/rtm0” is used by default. (Again, this could vary in
different versions of UNIX.) The -r option causes every file on dumpFile to be re-
stored into the current directory, so use this option with care. The -t option causes a
table of contents of dumpFile to be displayed, instead of restoring any files. The -x
option causes restore to restore only those files with specified filenames from
dumpFile. If a filename is the name of a directory, its contents are recursively
restored.

The -i option causes restore to read the table of contents of dumpFile and then
enter an interactive mode that allows you to choose the files that you wish to re-
store. For more information on this interactive mode, consult man restore.

FIGURE 3.16

Description of the restore command.

SCHEDULING COMMANDS

The following two utilities allow you to schedule commands to be executed at a later
point in time:

• crontab, which allows you to create a scheduling table that describes a series of
jobs to be executed on a periodic basis

• at, which allows you to schedule jobs to be executed on a one-time basis

Periodic Execution: cron/crontab

The crontab utility allows you to schedule a series of jobs to be executed on a periodic
basis. It works as shown in Figure 3.17. To use crontab, you must prepare an input file
that contains lines of the format

minute hour day month weekday command

Scheduling Commands 105

where the values of each field are as shown in Figure 3.18. Files of this nature are called
“crontab” files. Whenever the current time matches a line’s description, the associated
command is executed by the shell specified in the SHELL environment variable. A
Bourne shell is used if this variable is not set. If any of the first five fields contains an
asterisk (*) instead of a number, the field always matches. The standard output of the
command is automatically sent to the user via mail. Any characters following a % are
copied into a temporary file and used as the command’s standard input. Here is a sam-
ple crontab file that I created in my home directory and called “crontab.cron”:

$ cat crontab.cron ...list the crontab file.
0 8 * * 1 echo Happy Monday Morning
* * * * * echo One Minute Passed > /dev/tty1

Utility: crontab crontabName

crontab -ler [userName]

crontab is the user interface to the UNIX cron system. When used without any op-
tions, the crontab file (see text) called crontabName is registered, and its commands
are executed according to the specified timing rules. The -l option lists the contents
of a registered crontab file. The -e option edits and then registers a registered
crontab file. The -r option unregisters a registered crontab file. The -l, -e, and -r op-
tions may be used by a superuser to access another user’s crontab file by supplying
the user’s name as an optional argument. The anatomy of a crontab file is described
in the text.

FIGURE 3.17

Description of the crontab command.

Field Valid value

minute 0–59

hour 0–23

day 1–31

month 1–12

weekday 1–7

command any UNIX command

(1 = Mon, 2 = Tue, 3 = Wed, 4 = Thu, 5 = Fri, 6 = Sat, 7 = Sun)

FIGURE 3.18

crontab field meanings and values.

106 Chapter 3 UNIX Utilities for Power Users

30 14 1 * 1 mail users % Jan Meeting At 3pm
$ _

The first line mails me “Happy Monday Morning” at 8:00 A.M. every Monday. The next
line echoes “One Minute Passed” every minute to the device “/dev/tty1”, which hap-
pens to be my terminal. The last line sends mail to all users on January 1 at 2:30 P.M. to
remind them of an impending meeting.

A single process called “cron” is responsible for executing the commands in reg-
istered crontab files in a timely fashion. The process is started when the UNIX system
is booted and does not stop until the UNIX system is shut down. Copies of all regis-
tered crontab files are stored in the directory “/var/spool/cron/crontabs”.

To register a crontab file, use the crontab utility with the name of the crontab file
as the single argument:

$ crontab crontab.cron ...register the crontab file.
$ _

If you already have a registered crontab file, the new one is registered in place of the
old one. To list the contents of your registered crontab, use the -l option. To list some-
one else’s registered crontab file, add his or her, name as an argument. Only a supe-
ruser can use this option. In the following example, note that one of my previously
registered crontab file entries triggered coincidentally after I used the crontab utility:

$ crontab -l ...list contents of current crontab file.
0 8 * * 1 echo Happy Monday Morning
* * * * * echo One Minute Passed > /dev/tty1
30 14 1 * 1 mail users % Jan Meeting At 3pm
$ One Minute Passed ...output from one crontab command.
$ _

To edit your crontab file and then resave it, use the -e option. To unregister a crontab
file, use the -r option:

$ crontab -r ...un-register my crontab file.
$ _

A superuser may create files called “cron.allow” and “cron.deny” in the
“/var/spool/cron” directory in order, respectively, to enable and inhibit individual users
from using the crontab facility. Each file consists of a list of user names on separate
lines. If neither of the files exists, only a superuser may use crontab. If “cron.deny” is
empty and “cron.allow” doesn’t exist, all users may use crontab.

One-Time Execution: at

The at utility allows you to schedule one-time commands or scripts. It works as shown
in Figure 3.19. In the following example, I scheduled an at script to send a message to

Scheduling Commands 107

Utility: at -csm time [date [, year]] [script]

at -r

at -l

at allows you to schedule one-time commands or scripts. It supports a flexible for-
mat for time specification. The -c and -s options allow you to specify that commands
are run by a C shell and Bourne shell, respectively.The -m option instructs at to send
you mail when the job is completed. If no script name is specified, at takes a list of
commands from standard input.The -r option removes the specified jobs from the at
queue, and the -l option lists the pending jobs. A job is removed from the at queue
after it has executed.

time is in the format HH or HHMM, followed by an optional am/pm specifier,
and date is spelled out using the first three letters of the day or month. The keyword
“now” may be used in place of the time sequence. The keywords “today” and “to-
morrow” may be used in place of date. If no date is supplied, then at uses the follow-
ing rules:

• If time is after the current time, then date is assumed to be “today”.
• If time is before the current time, then date is assumed to be “tomorrow”.

The stated time may be augmented by an increment, which is a number, followed by
“minutes”, “hours”, “days”, “weeks”, “months”, or “years”.

A script is executed by the shell specified by the SHELL environment vari-
able, or a Bourne shell if this variable is not set.All standard output from an at script
is mailed to the user.

5jobId6*

5jobId6+

[+ increment]

FIGURE 3.19

Description of the at command.

my terminal “/dev/tty1”:

$ cat at.csh ...look at the script to be scheduled.
#! /bin/csh
echo at done > /dev/tty1 ...echo output to terminal.
$ date ...look at current time.
Sat Jan 10 17:27:42 CST 1998
$ at now + 2 minutes at.csh ...schedule script to

... execute in 2 minutes
job 2519 at Sat Jan 10 17:30:00 1998
$ at -l ...look at the at schedule.

108 Chapter 3 UNIX Utilities for Power Users

2519 a Sat Jan 10 17:30:00 1998
$ _
at done ...output from scheduled script.
$ at 17:35 at.csh ...schedule the script again.
job 2520 at Sat Jan 10 17:35:00 1998
$ at -r 2520 ...deschedule.
$ at -l ...look at the at schedule.
$ _

Here are some more examples of valid at time formats:

0934am Sep 18 at.csh
9:34 Sep 18 , 1994 at.csh
11:00pm tomorrow at.csh
now + 1 day at.csh
9pm Jan 13 at.csh
10pm Wed at.csh

If you omit the command name, at displays a prompt and then waits for a list of com-
mands to be entered from standard input. To terminate the command list, press
Control-D. Here’s an example:

$ at 8pm ...enter commands to be scheduled from keyboard.
at> echo at done > /dev/ttyp1
at> ^D ...end-of-input.
job 2530 at Sat Jan 10 17:35:00 1998
$ _

You may program a script to reschedule itself by calling at within the script:

$ cat at.csh ...a script that reschedules itself.
#! /bin/csh
date > /dev/tty1
Reschedule script
at now + 2 minutes at.csh
$ _

A superuser may create files called “at.allow” and “at.deny” in the “/var/spool/cron”
directory in order, respectively, to enable and to inhibit individual users from using the
at facility. Each file should consist of a list of user names on separate lines. If neither
file exists, only a superuser may use at. If “at.deny” is empty and “at.allow” doesn’t
exist, all users may use at.

PROGRAMMABLE TEXT PROCESSING: awk

The awk utility scans one or more files and performs an action on all of the lines that
match a particular condition. The actions and conditions are described by an awk pro-
gram and range from the very simple to the complex.

Programmable Text Processing: awk 109

awk got its name from the combined first letters of its authors’ surnames:
Aho, Weinberger, and Kernighan. It borrows its control structures and expression
syntax from the C language. If you already know C, then learning awk is quite
straightforward.

awk is a comprehensive utility—so comprehensive, in fact, that there’s a book
on it! Because of this, I’ve attempted to describe only the main features and options
of awk; however, I think that the material I describe in this section will allow you to
write a good number of useful awk applications. Figure 3.20 provides a synopsis of
awk.

Utility: awk -Fc [-f fileName] program

awk is a programmable text-processing utility that scans the lines of its input and
performs actions on every line that matches a particular criterion. An awk program
may be included on the command line, in which case it should be surrounded by sin-
gle quotes; alternatively, it may be stored in a file and specified using the -f option.
The initial values of variables may be specified on the command line. The default
field separators are tabs and spaces. To override this default, use the -F option fol-
lowed by the new field separator. If no filenames are specified, awk reads from stan-
dard input.

5variable=value6*5fileName6*

FIGURE 3.20

Description of the awk command.

awk Programs

An awk program may be supplied on the command line, but it’s much more common
to place it in a text file and specify the file using the -f option. If you decide to place an
awk program on the command line, surround it by single quotes.

When awk reads a line, it breaks it into fields that are separated by tabs or spaces.
The field separator may be overridden by using the -F option, as you’ll see later in the
section. An awk program is a list of one or more commands of the form

[condition] [\{ action \}]

where condition is either

• the special token BEGIN or END

or

• an expression involving any combination of logical operators, relational opera-
tors, and regular expressions

110 Chapter 3 UNIX Utilities for Power Users

and action is a list of one or more of the following kinds of C-like statements, terminat-
ed by semicolons:

• if (conditional) statement [else statement]
• while (conditional) statement
• for (expression; conditional; expression) statement
• break
• continue
•
• print [list of expressions] [expression]
• printf format [, list of expressions] [expression]
• next (skips the remaining patterns on the current line of input)
• exit (skips the rest of the current line)
• { list of statements }

action is performed on every line that matches condition. If condition is missing, action
is performed on every line. If action is missing, then all matching lines are simply sent
to standard output. The statements in an awk program may be indented and formatted
using spaces, tabs, and newlines.

Accessing Individual Fields

The first field of the current line may be accessed by $1, the second by $2, and so forth.
$0 stands for the entire line. The built-in variable NF is equal to the number of fields in
the current line. In the following example, I ran a simple awk program on the text file
“float” to insert the number of fields into each line:

$ cat float ...look at the original file.
Wish I was floating in blue across the sky,
My imagination is strong,
And I often visit the days
When everything seemed so clear.
Now I wonder what I'm doing here at all...
$ awk '{ print NF, $0 }' float ...execute the command.
9 Wish I was floating in blue across the sky,
4 My imagination is strong,
6 And I often visit the days
5 When everything seemed so clear.
9 Now I wonder what I'm doing here at all...
$ _

Begin and End

The special condition BEGIN is triggered before the first line is read, and the special
condition END is triggered after the last line has been read. When expressions are list-
ed in a print statement, no space is placed between them, and a newline is printed by

7
7

variable=expression

Programmable Text Processing: awk 111

default. The built-in variable FILENAME is equal to the name of the input file. In the
following example, I ran a program that displayed the first, third, and last fields of
every line:

$ cat awk2 ...look at the awk script.
BEGIN { print "Start of file:", FILENAME }
{ print $1 $3 $NF } ...print 1st, 3rd, and last field.
END { print "End of file" }
$ awk -f awk2 float ...execute the script.
Start of file: float
Wishwassky,
Myisstrong,
Andoftendays
Whenseemedclear.
Nowwonderall...
End of file
$ _

Operators

When commas are placed between the expressions in a print statement, a space is
printed.All of the usual C operators are available in awk.The built-in variable NR con-
tains the line number of the current line. In the next example, I ran a program that dis-
played the first, third, and last fields of lines 2..3 of “float”:

$ cat awk3 ...look at the awk script.
NR > 1 && NR < 4 { print NR, $1, $3, $NF }
$ awk -f awk3 float ...execute the script.
2 My is strong,
3 And often days
$ _

Variables

awk supports user-defined variables. There is no need to declare a variable. A vari-
able’s initial value is a null string or zero, depending on how you use the variable. In the
next example, the program counted the number of lines and words in a file as it echoed
the lines to standard output:

$ cat awk4 ...look at the awk script.
BEGIN { print "Scanning file" }
{
printf "line %d: %s\n", NR, $0;
lineCount++;
wordCount += NF;
}
END { printf "lines = %d, words = %d\n", lineCount, wordCount }
$ awk -f awk4 float ...execute the script.
Scanning file

112 Chapter 3 UNIX Utilities for Power Users

line 1: Wish I was floating in blue across the sky,
line 2: My imagination is strong,
line 3: And I often visit the days
line 4: When everything seemed so clear.
line 5: Now I wonder what I'm doing here at all...
lines = 5, words = 33
$ _

Control Structures

awk supports most of the standard C control structures. In the following example, I
printed the fields in each line backward:

$ cat awk5 ...look at the awk script.
{
for (i = NF; i >= 1; i--)
printf "%s ", $i;
printf "\n";

}
$ awk -f awk5 float ...execute the script.
sky, the across blue in floating was I Wish
strong, is imagination My
days the visit often I And
clear. so seemed everything When
all... at here doing I'm what wonder I Now
$ _

Extended Regular Expressions

The condition for matching lines can be an extended regular expression, which is de-
fined in the appendix of this book. Regular expressions must be placed between slash-
es (/). In the next example, I displayed all of the lines that contained a “t” followed by
an “e,” with any number of characters in between (for the sake of clarity, I’ve italicized
the character sequences of the output lines that satisfied the condition):

$ cat awk6 ...look at the script.
/t.*e/ { print $0 }
$ awk -f awk6 float ...execute the script.
Wish I was floating in blue across the sky,
And I often visit the days
When everything seemed so clear.
Now I wonder what I'm doing here at all...
$ _

Condition Ranges

A condition may be two expressions separated by a comma. In this case, awk performs
action on every line from the first line that matches the first condition to the next line
that satisfies the second condition, as shown in the following example:

Programmable Text Processing: awk 113

$ cat awk7 ...look at the awk script.
/strong/ , /clear/ { print $0 }
$ awk -f awk7 float ...execute the script.
My imagination is strong,
And I often visit the days
When everything seemed so clear.
$ _

Field Separators

If the field separators are not spaces, use the -F option to specify the separator charac-
ter. In the next example, I processed a file whose fields were separated by colons:

$ cat awk3 ...look at the awk script.
NR > 1 && NR < 4 { print $1, $3, $NF }
$ cat float2 ...look at the input file.
Wish:I:was:floating:in:blue:across:the:sky,
My:imagination:is:strong,
And:I:often:visit:the:days
When:everything:seemed:so:clear.
Now:I:wonder:what:I'm:doing:here:at:all...
$ awk -F: -f awk3 float2 ...execute the script.
My is strong,
And often days
$ _

Built-In Functions

awk supports several built-in functions, including exp (), log (), sqrt (), int (), and substr ().
The first four functions work just like their standard C counterparts. The substr (str, x,
y) function returns the substring of str from the xth character and extending y charac-
ters. Here’s an example of the operation of, and output from, these functions:

$ cat test ...look at the input file.
1.1 a
2.2 at
3.3 eat
4.4 beat
$ cat awk8 ...look at the awk script.
{
printf "$1 = %g ", $1;
printf "exp = %.2g ", exp ($1);
printf "log = %.2g ", log ($1);
printf "sqrt = %.2g ", sqrt ($1);
printf "int = %d ", int ($1);
printf "substr (%s, 1, 2) = %s\n", $2, substr($2, 1, 2);
}
$ awk -f awk8 test ...execute the script.
$1 = 1.1 exp = 3 log = 0.095 sqrt = 1 int = 1 substr (a, 1, 2) = a

114 Chapter 3 UNIX Utilities for Power Users

$1 = 2.2 exp = 9 log = 0.79 sqrt = 1.5 int = 2 substr (at, 1, 2) = at
$1 = 3.3 exp = 27 log = 1.2 sqrt = 1.8 int = 3 substr (eat, 1, 2) = ea
$1 = 4.4 exp = 81 log = 1.5 sqrt = 2.1 int = 4 substr (beat, 1, 2) = be
$ _

HARD AND SOFT LINKS: ln

The ln utility allows you to create both hard links and symbolic (soft) links between
files. It works as shown in Figure 3.21. In the following example, I added a new label,

Utility: ln -sf original [newLink]

ln -sf

ln is a utility that allows you to create hard links or symbolic (soft) links to existing
files.

To create a hard link between two regular files, specify the existing file label as
the original filename and the new file label as newLink. Both labels will then refer to
the same physical file, and this arrangement will be reflected in the hard link count
shown by the ls utility. The file can then be accessed via either label and is removed
from the file system only when all of its associated labels are deleted. If newLink is
omitted, the last component of original is assumed. If the last argument is the name
of a directory, then hard links are made from that directory to all of the specified
original filenames. Hard links may not span file systems.

The -s option causes ln to create symbolic links, resulting in a new file that con-
tains a pointer (by name) to another file. A symbolic link may span file systems,
since there is no explicit connection to the destination file other than the name. Note
that if the file pointed to by a symbolic link is removed, the symbolic link file still ex-
ists, but will result in an error if accessed.

The -f option allows a superuser to create a hard link to a directory.
For further information about how hard links are represented in the file sys-

tem, see the discussion of UNIX file systems in Chapter 14.

5original6 + directory

FIGURE 3.21

Description of the ln command.

“hold”, to the file referenced by the existing label, “hold.3” (note that the hard link
count field was incremented from one to two when the hard link was added and then
back to one again when the hard link was deleted):

Hard and Soft Links: ln 115

$ ls -l ...look at the current directory contents.
total 3
-rw-r--r-- 1 glass 124 Jan 12 17:32 hold.1
-rw-r--r-- 1 glass 89 Jan 12 17:34 hold.2
-rw-r--r-- 1 glass 91 Jan 12 17:34 hold.3
$ ln hold.3 hold ...create a new hard link.
$ ls -l ...look at the new directory contents.
total 4
-rw-r--r-- 2 glass 91 Jan 12 17:34 hold
-rw-r--r-- 1 glass 124 Jan 12 17:32 hold.1
-rw-r--r-- 1 glass 89 Jan 12 17:34 hold.2
-rw-r--r-- 2 glass 91 Jan 12 17:34 hold.3
$ rm hold ...remove one of the links.
$ ls -l ...look at the updated directory contents.
total 3
-rw-r--r-- 1 glass 124 Jan 12 17:32 hold.1
-rw-r--r-- 1 glass 89 Jan 12 17:34 hold.2
-rw-r--r-- 1 glass 91 Jan 12 17:34 hold.3
$ _

A series of hard links may be added to an existing directory if the directory’s name is
specified as the second argument of ln. In the following example, I created links in the
“tmp” directory to all of the files matched by the pattern

$ mkdir tmp ...create a new directory.
$ ln hold.* tmp ...create a series of links in "tmp".
$ ls -l tmp ...look at the contents of "tmp".
total 3
-rw-r--r-- 2 glass 124 Jan 12 17:32 hold.1
-rw-r--r-- 2 glass 89 Jan 12 17:34 hold.2
-rw-r--r-- 2 glass 91 Jan 12 17:34 hold.3
$ _

A hard link may not be created from a file on one file system to a file on a different file
system. To get around this problem, create a symbolic link instead. A symbolic link may
span file systems.To create a symbolic link, use the -s option of ln. In the following exam-
ple, I tried to create a hard link from my home directory to the file “/usr/include/stdio.h”.
Unfortunately, that file was on a different file system, so ln failed. However, ln with the
-s option succeeded. When ls is used with the -F option, symbolic links are preceded by
the character @. By default, ls displays the contents of the symbolic link; to obtain infor-
mation about the file that the link refers to, use the -L option.

$ ln /usr/include/stdio.h stdio.h ...hard link.
ln: stdio.h: Cross-device link
$ ln -s /usr/include/stdio.h stdio.h ...symbolic link.
$ ls -l stdio.h ...examine the file.
lrwxrwxrwx 1 glass 20 Jan 12 17:58 stdio.h -> /usr/include/stdio.h
$ ls -F ...@ indicates a sym. link.
stdio.h@

“hold.*”:

116 Chapter 3 UNIX Utilities for Power Users

$ ls -lL stdio.h ...look at the link itself.
-r--r--r-- 1 root 1732 Oct 13 1998 stdio.h
$ cat stdio.h ...look at the file.
ifndef FILE
#define BUFSIZ 1024
#define SBFSIZ 8
extern struct iobuf {
...
$ _

IDENTIFYING SHELLS: whoami

Let’s say that you come across a vacated terminal and there’s a shell prompt on the
screen. Obviously, someone was working on the UNIX system and forgot to log off.
You wonder curiously who that person was. To solve the mystery, you can use the
whoami utility, shown in Figure 3.22, which displays the name of the owner of a shell.
For example, when I executed whoami at my terminal, I saw this:

$ whoami
glass
$ _

SUBSTITUTING A USER: su

A lot of people think that su abbreviates “superuser,” but it doesn’t. Instead, it abbre-
viates “substitute user” and allows you to create a subshell owned by another user. It
works as shown in Figure 3.23. Here’s an example of the use of su:

$ whoami ...find out my current user ID.
glass
$ su ...substitute user.
Password: <enter super-user password here>
$ whoami ...confirm my current user ID has changed.
root
$... perform super-user tasks here
$ ^D ...terminate the child shell.
$ whoami ...confirm current user ID is restored.
glass
$ _

Utility: whoami

Displays the name of the owner of a shell.

FIGURE 3.22

Description of the whoami command.

Checking for Mail: biff 117

Utility: su [-] [userName] [args]

su creates a temporary shell with userName’s real and effective user and group IDs.
If userName is not specified,“root” is assumed, and the new shell’s prompt is set to a
pound sign (#) as a reminder.While you’re in the subshell, you are effectively logged
on as that user; when you terminate the shell with a Control-D, you are returned to
your original shell. Of course, you must know the other user’s password to use this
utility. The SHELL and HOME environment variables are set from userName’s
entry in the password file. If userName is not “root”, the USER environment vari-
able is also set.The new shell does not go through its login sequence unless the - option
is supplied. All other arguments are passed as command-line arguments to the new
shell.

FIGURE 3.23

Description of the su command.

CHECKING FOR MAIL: biff

The UNIX shells check for incoming mail periodically.This means that several minutes
may pass between the receipt of mail at your mailbox and the shell’s notification to
your terminal.To avoid this delay, you may enable instant mail notification by using the
biff utility, which works as shown in Figure 3.24. Here’s an example of biff:

$ biff ...display current biff setting.
biff is n
$ biff y ...enable instant mail notification.
$ biff ...confirm new biff setting.
biff is y
$ _

Utility: biff [y |n]

The biff utility allows you to enable and disable instant mail notification.To see your
current biff setting, use biff with no parameters. Use y to enable instant notification
and n to disable it. Why is this utility called biff? The woman at the University of
California at Berkeley who wrote the utility for BSD UNIX named it after her dog
Biff, who always barked when the mailman brought the mail.

FIGURE 3.24

Description of the biff command.

118 Chapter 3 UNIX Utilities for Power Users

TRANSFORMING FILES

The following utilities, among others, perform a transformation on the contents of a file:

• compress/uncompress and gzip/gunzip, which convert a file into a space-efficient
intermediate format and then back again.These utilities are useful for saving disk
space.

• crypt, which encodes a file so that other users can’t understand it.
• sed, a general-purpose programmable stream editor that edits a file according to

a previously prepared set of instructions.
• tr, which maps characters from one set to another. This utility is useful for per-

forming simple mappings, such as converting a file from uppercase to lowercase.
• ul, which converts embedded underline sequences in a file to a form suitable for

a particular terminal.

Compressing Files: compress/uncompress and gzip/gunzip

The compress utility encodes a file into a more compact format, to be decoded later
with the use of the uncompress utility. The two utilities work as shown in Figure 3.25.

Utility: compress -cv

uncompress -cv

compress replaces a file with its compressed version, appending a “.Z” suffix. The -c
option sends the compressed version to standard output rather than overwriting the
original file. The -v option displays the amount of compression that takes place.

uncompress reverses the effect of compress, re-creating the original file from
its compressed version.

5fileName6+

5fileName6+

FIGURE 3.25

Description of the compress and uncompress commands.

compress is useful for reducing your disk space and packing more files into an archived
file. Here’s an example:

$ ls -l palindrome.c reverse.c ...examine the originals.
-rw-r--r-- 1 glass 224 Jan 10 13:05 palindrome.c
-rw-r--r-- 1 glass 266 Jan 10 13:05 reverse.c
$ compress -v palindrome.c reverse.c ...compress them.
palindrome.c: Compression: 20.08% -- replaced with palindrome.c.Z
reverse.c: Compression: 22.93% -- replaced with reverse.c.Z
$ ls -l palindrome.c.Z reverse.c.Z
-rw-r--r-- 1 glass 179 Jan 10 13:05 palindrome.c.Z
-rw-r--r-- 1 glass 205 Jan 10 13:05 reverse.c.Z
$ uncompress -v *.Z ...restore the originals.
palindrome.c.Z: -- replaced with palindrome.c

Transforming Files 119

reverse.c.Z: -- replaced with reverse.c
$ ls -l palindrome.c reverse.c ...confirm.
-rw-r--r-- 1 glass 224 Jan 10 13:05 palindrome.c
-rw-r--r-- 1 glass 266 Jan 10 13:05 reverse.c
$ _

The compress and uncompress utilities incorporate an algorithm that was already
patented at the time the utilities were written (although many were unaware of the
fact). When the owner began to defend the patent, either a royalty fee had to be paid
for the use of the two utilities or they had to be removed from systems. Many UNIX
vendors chose to adopt the GNU utility known as gzip, which works in much the same
way as compress, but uses a different, unrestricted algorithm. gzip and gunzip are de-
scribed in Figure 3.26. The following example of their use is virtually identical to that
shown earlier for compress and uncompress:

$ ls -l palindrome.c reverse.c
-rw-r--r-- 1 ables 224 Jul 1 14:14 palindrome.c
-rw-r--r-- 1 ables 266 Jul 1 14:14 reverse.c
$ gzip -v palindrome.c reverse.c
palindrome.c: 34.3% -- replaced with palindrome.c.gz
reverse.c: 39.4% -- replaced with reverse.c.gz
$ ls -l palindrome.c.gz reverse.c.gz
-rw-r--r-- 1 ables 178 Jul 1 14:14 palindrome.c.gz
-rw-r--r-- 1 ables 189 Jul 1 14:14 reverse.c.gz
$ gunzip -v *.gz
palindrome.c.gz: 34.3% -- replaced with palindrome.c
reverse.c.gz: 39.4% -- replaced with reverse.c
$ ls -l palindrome.c reverse.c
-rw-r--r-- 1 ables 224 Jul 1 14:14 palindrome.c
-rw-r--r-- 1 ables 266 Jul 1 14:14 reverse.c
$ _

Utility: gzip -cv

gunzip -cv

gzip replaces a file with its compressed version, appending a “.gz” suffix. The -c op-
tion sends the compressed version to standard output rather than overwriting the
original file. The -v option displays the amount of compression that takes place.
gunzip can uncompress a file created by either gzip or compress.

Gzip and gunzip are available from the GNU Web site

http://www.gnu.org/software/gzip/gzip.html

You may download them if they don’t already exist on your system.

5fileName6+

5fileName6+

FIGURE 3.26

Description of the gzip and gunzip commands.

http://www.gnu.org/software/gzip/gzip.html

120 Chapter 3 UNIX Utilities for Power Users

File Encryption: crypt

The crypt utility creates a key-encoded version of a text file. The only way to retrieve
the original text from the encoded file is by executing crypt with the same key that was
used to encode the file. Figure 3.27 shows how it works. Here’s an example of the use of
crypt:

$ cat sample.txt ...list original.
Here's a file that will be encrypted.
$ crypt agatha < sample.txt > sample.crypt

...agatha is the key.
$ rm sample.txt ...remove original.
$ crypt agatha < sample.crypt > sample.txt ...decode.
$ cat sample.txt ...list original.
Here's a file that will be encrypted.
$ _

Stream Editing: sed

The stream editor utility sed scans one or more files and performs an editing action on
all of the lines that match a particular condition. The actions and conditions may be
stored in a sed script. sed is useful for performing simple, repetitive editing tasks.

sed is a fairly comprehensive utility. Because of this, I’ve attempted to describe
only its main features and options; however, I think that the material I describe in this
section will allow you to write a good number of useful sed scripts.

Utility: crypt [key]

crypt performs one of following two duties:

• If the standard input is regular text, an encoded version of the text is sent to
standard output, using key as the encoding key.

• If the standard input is encoded text, a decoded version of the text is sent to
standard output, using key as the decoding key.

If key is not specified, crypt prompts you for a key that you must enter from your
terminal. The key that you enter is not echoed. If you supply key on the command
line, beware: A ps listing will show the value of key.

crypt uses a coding algorithm similar to the one that was used in the German
“Enigma” machine.

FIGURE 3.27

Description of the crypt command.

Transforming Files 121

Figure 3.28 provides a synopsis of sed.

sed Commands

A sed script is a list of one or more of the commands shown in Figure 3.29, separated
by newlines. The following rules apply to the use of sed commands:

1. address must be either a line number or a regular expression. A regular expres-
sion selects all of the lines that match the expression. You may use $ to select the
last line.

Utility: sed [-e script] [-f scriptfile]

sed is a utility that edits an input stream according to a script that contains editing
commands. Each editing command is separated by a newline and describes an action
and a line or range of lines to perform the action upon.A sed script may be stored in
a file and executed by using the -f option. If a script is placed directly on the com-
mand line, it should be surrounded by single quotes. If no files are specified, sed
reads from standard input.

5fileName6*

FIGURE 3.28

Description of the sed command.

Command syntax Meaning

address a\ Append text after the line specified by address.
text

addressRange c\ Replace the text specified by addressRange with text.
text

addressRange d Delete the text specified by addressRange.

address i\ Insert text after the line specified by address.
text

address r name Append the contents of the file name after the line
specified by address.

addressRange s/expr/str/ Substitute the first occurrence of the regular expression
expr by the string str.

addressRange a/expr/str/g Substitute every occurrence of the regular expression
expr by the string str.

FIGURE 3.29

Editing commands in sed.

122 Chapter 3 UNIX Utilities for Power Users

2. addressRange can be a single address or a couple of addresses separated by com-
mas. If two addresses are specified, then all of the lines between the first line that
matches the first address and the first line that matches the second address are
selected.

3. If no address is specified, then the command is applied to all of the lines.

Substituting Text

In the next example, I supplied the sed script on the command line. The script inserted
a couple of spaces at the start of every line. The command are as follows:

$ cat arms ...look at the original file.
People just like me,
Are all around the world,
Waiting for the loved ones that they need.
And with my heart,
I make a simple wish,
Plain enough for anyone to see.
$ sed 's/^/ /' arms > arms.indent ...indent the file.
$ cat arms.indent ...look at the result.
People just like me,
Are all around the world,
Waiting for the loved ones that they need.
And with my heart,
I make a simple wish,
Plain enough for anyone to see.
$ _

To remove all of the leading spaces from a file, use the substitute operator in the re-
verse fashion, as shown in the following example:

$ sed 's/^ *//' arms.indent ...remove leading spaces.
People just like me,
Are all around the world,
Waiting for the loved ones that they need.
And with my heart,
I make a simple wish,
Plain enough for anyone to see.
$ _

Deleting Text

The following example illustrates a script that deleted all of the lines that contained the
regular expression ‘a’:

$ sed '/a/d' arms ...remove all lines containing an 'a'.
People just like me,
$ _

Transforming Files 123

To delete only those lines that contain the word ‘a’, I surrounded the regular expres-
sion by escaped angled brackets

$ sed '/\<a\>/d' arms
People just like me,
Are all around the world,
Waiting for the loved ones that they need.
And with my heart,
Plain enough for anyone to see.
$ _

Inserting Text

In the next example, I inserted a copyright notice at the top of the file by using the in-
sert command. Notice that I stored the sed script in a file and executed it by using the -f
option:

$ cat sed5 ...look at the sed script.
1i\
Copyright 1992, 1998, & 2002 by Graham Glass\
All rights reserved\
$ sed -f sed5 arms ...insert a copyright notice.
Copyright 1992, 1998, & 2002 by Graham Glass
All rights reserved
People just like me,
Are all around the world,
Waiting for the loved ones that they need.
And with my heart,
I make a simple wish,
Plain enough for anyone to see.
$ _

Replacing Text

To replace lines, use the change function. In the following example, I replaced the
group of lines 1..3 with a censored message:

$ cat sed6 ...list the sed script.
1,3c\
Lines 1-3 are censored.
$ sed -f sed6 arms ...execute the script.
Lines 1-3 are censored.
And with my heart,
I make a simple wish,
Plain enough for anyone to see.
$ _

To replace individual lines with a message rather than an entire group, supply a sepa-
rate command for each line:

(O 6 and O 7):

124 Chapter 3 UNIX Utilities for Power Users

$ cat sed7 ...list the sed script.
1c\
Line 1 is censored.
2c\
Line 2 is censored.
3c\
Line 3 is censored.
$ sed -f sed7 arms ...execute the script.
Line 1 is censored.
Line 2 is censored.
Line 3 is censored.
And with my heart,
I make a simple wish,
Plain enough for anyone to see.
$ _

Inserting Files

In the following example, I inserted a message after the last line of the file:

$ cat insert ...list the file to be inserted.
The End
$ sed '$r insert' arms ...execute the script.
People just like me,
Are all around the world,
Waiting for the loved ones that they need.
And with my heart,
I make a simple wish,
Plain enough for anyone to see.
The End
$ _

Multiple Sed Commands

This example illustrates the use of multiple sed commands. I inserted a sequence
at the start of each line and appended a sequence to the end of each line:

$ sed -e 's/^/<< /' -e 's/$/ >>/' arms
<< People just like me, >>
<< Are all around the world, >>
<< Waiting for the loved ones that they need. >>
<< And with my heart, >>
<< I make a simple wish, >>
<< Plain enough for anyone to see. >>
$ _

Translating Characters: tr

The tr utility maps the characters in a file from one character set to another. It works as
shown in Figure 3.30. Here are some examples of tr in action:

‘W ’
‘V ’

Transforming Files 125

$ cat go.cart ...list the sample input file.
go cart
racing
$ tr a-z A-Z < go.cart ...translate lower to uppercase.
GO CART
RACING
$ tr a-c D-E < go.cart ...replace abc by DEE.
go EDrt
rDEing
$ tr -c a X < go.cart ...replace every non-a with X.
XXXXaXXXXXaXXXXX$...even last newline is replaced.
$ tr -c a-z '\012' < go.cart ...replace non-alphas with
go ...ASCII 12 (newline).
cart
racing
$ tr -cs a-z '\012' < go.cart ...repeat, but condense
go ...repeated newlines.
cart
racing

Utility: tr -cds string1 string2

tr maps all of the characters in its standard input from the character set string1 to the
character set string2. If the length of string2 is less than the length of string1, string2 is
padded by repeating its last character; in other words, the command ‘tr abc de’ is
equivalent to ‘tr abc dee’.

A character set may be specified using the [] notation of shell filename substitution:

• To specify the character set a, d, and f, simply write them as a single string: adf.

• To specify the character set a through z, separate the start and end characters by
a dash: a–z.

By default, tr replaces every character of standard input in string1 with its corre-
sponding character in string2.

The -c option causes string1 to be complemented before the mapping is per-
formed. Complementing a string means that it is replaced by a string that contains
every ASCII character except those in the original string. The net effect of this action
is that every character of standard input that does not occur in string1 is replaced.

The -d option causes every character in string1 to be deleted from standard
input.

The -s option causes every repeated output character to be condensed into a single
instance.

FIGURE 3.30

Description of the tr command.

126 Chapter 3 UNIX Utilities for Power Users

$ tr -d a-c < go.cart ...delete all a-c characters.
go rt
ring
$ _

Converting Underline Sequences: ul

The ul utility transforms a file that contains underlining characters so that it appears
correctly on a particular type of terminal. This is useful with commands like man that
generate underlined text. ul works as shown in Figure 3.31.

Utility: ul -tterminal

ul is a utility that transforms underline characters in its input so that they will be dis-
played correctly on the specified terminal. If no terminal is specified, the one de-
fined by the TERM environment variable is assumed. The “/etc/termcap” file (or
terminfo database) is used by ul to determine the correct underline sequence.

5filename6*

FIGURE 3.31

Description of the ul command.

As an example of the use of ul with man, let’s say that you want to use the man
utility to produce a document that you wish to print on a simple ASCII-only printer.
The man utility generates underline characters for your current terminal, so to filter
the output to make it suitable for a dumb printer, pipe the output of man through ul
with the “dumb” terminal setting. Here’s an example:

$ man who | ul -tdumb > man.txt
$ head man.txt ...look at the first 10 lines.
WHO(1) USER COMMANDS WHO(1)
NAME

who - who is logged in on the system
SYNOPSIS

who [who-file] [am i]
$ _

Looking at Raw File Contents: od

The octal dump utility, od, allows you to see the contents of a nontext file in a variety of
formats. It works as shown in Figure 3.32. In the following example, I displayed the
contents of the “/bin/od” executable as octal numbers and then as characters starting
from location 1000 (octal):

Transforming Files 127

$ od /bin/od ...dump the "/bin/od" file in octal.
0000000 100002 000410 000000 017250 000000 003630 000000 006320
0000020 000000 000000 000000 020000 000000 000000 000000 000000
0000040 046770 000000 022027 043757 000004 021002 162601 044763
0000060 014004 021714 000002 000410 045271 000000 020746 063400
0000100 000006 060400 000052 044124 044123 027402 047271 000000
0000120 021170 047271 000000 021200 157374 000014 027400 047271
0000140 000002 000150 054217 027400 047271 000002 000160 047126
...
$ od -c /bin/od 1000 ...dump "/bin/od" as characters.
0001000 H x \0 001 N @ \0 002 \0 \0 / u s r / l
0001020 i b / l d . s o \0 / d e v / z e
0001040 r o \0 \0 \0 \0 \0 030 c r t 0 : n o

Utility: od -acbcdfhilox fileName [offset[.][b]]

od displays the contents of fileName in a form specified by one of the following
options:

OPTION MEANING

-a Interpret bytes as characters, and print as ASCII names (i.e.,
).

-b Interpret bytes as unsigned octal.
-c Interpret bytes as characters, and print in C notation (i.e.,

).
-d Interpret two-byte pairs as unsigned decimal.
-f Interpret four-byte pairs as floating point.
-h Interpret two-byte pairs as unsigned hexadecimal.
-i Interpret two-byte pairs as signed decimal.
-l Interpret four-byte pairs as signed decimal.
-o Interpret two-byte pairs as unsigned octal.
-s[n] Look for strings of minimum length n (default 3), terminated

by null characters.
-x Interpret two-byte pairs as hexadecimal.

By default, the contents are displayed as a series of octal numbers. offset specifies
where the listing should begin. If offset ends in b, then it is interpreted as a number
of blocks; otherwise, it is interpreted as an octal number. To specify a hex number,
precede it by x; to specify a decimal number, end it with a period.

0 = \0

0 = nul

FIGURE 3.32

Description of the od command.

128 Chapter 3 UNIX Utilities for Power Users

0001060 / u s r / l i b / l d . s o \n
0001100 \0 \0 \0 % c r t 0 : / u s r / l
0001120 i b / l d . s o m a p p i n g
0001140 f a i l u r e \n \0 \0 \0 \0 023 c r
0001160 t 0 : n o / d e v / z e r o
0001200 \n \0 200 \0 \0 002 200 \0 \0 022 \0 \0 \0 007 \0 \0
...
$ _

You may search for strings of a minimum length by using the -s option. Any series of
characters followed by an ASCII null is considered to be a string. Here’s an example:

$ od -s7 /bin/od ...search for strings 7 chars or more.
0000665 \fN^Nu o
0001012 /usr/lib/ld.so
0001031 /dev/zero
0001050 crt0: no /usr/lib/ld.so\n
0001103 %crt0: /usr/lib/ld.so mapping failure\n
...
$ _

Mounting File Systems: mount/umount

A superuser may extend the file system by using the mount utility, which works as
shown in Figure 3.33. In the next example, I spliced the file system contained on the

Utility: mount -ooptions [deviceName directory]

umount deviceName

mount is a utility that allows you to “splice” a device’s file system into the root hier-
archy. When used without any arguments, mount displays a list of the currently
mounted devices. To specify special options, follow -o by a list of valid codes, among
which are rw, which mounts a file system for read/write, and ro, which mounts a file
system for read only.The umount utility unmounts a previously mounted file system.

FIGURE 3.33

Description of the mount and unmount commands.

“/dev/dsk2” device onto the “/usr” directory. Notice that before I performed the
mount, the “/usr” directory was empty; after the mount, the files stored on the
“/dev/dsk2” device appeared inside this directory. The commands are as follows:

Transforming Files 129

$ mount ...list the currently mounted devices.
/dev/dsk1 on / (rw)
$ ls /usr .../usr is currently empty.
$ mount /dev/dsk2 /usr ...mount the /dev/dsk2 device.
$ mount ...list the currently mounted devices.
/dev/dsk1 on / (rw)
/dev/dsk2 on /usr (rw)
$ ls /usr ...list the contents of the mounted device.
bin/ etc/ include/ lost+found/ src/ ucb/
demo/ games/ lib/ pub/ sys/ ucblib/
dict/ hosts/ local/ spool/ tmp/
$ _

To unmount a device, use the umount utility. In the following example, I unmounted
the “/dev/dsk2” device and then listed the “/usr” directory:

$ umount /dev/dsk2 ...unmount the device.
$ mount ...list the currently mounted devices.
/dev/dsk1 on / (rw)
$ ls /usr ...note that /usr is empty again.
$ _

The files were no longer accessible.

Identifying Terminals: tty

The tty utility identifies the name of your terminal. It works as shown in Figure 3.34. In
the following example, my login terminal was the special file “/dev/ttyp0”:

$ tty ...display the pathname of my terminal.
/dev/ttyp0
$ _

Utility: tty

tty displays the pathname of your terminal. It returns zero if its standard input is a
terminal; otherwise, it returns 1.

FIGURE 3.34

Description of the tty command.

Text Formatting: nroff/troff/style/spell

One of the first uses of UNIX was to support the text-processing facilities at Bell Labo-
ratories. Several utilities, including nroff, troff, style, and spell, were created expressly for

130 Chapter 3 UNIX Utilities for Power Users

text formatting. Although these utilities were reasonable in their time, they have been
made virtually obsolete by far more sophisticated tools whereby what you see is what
you get (WYSIWYG). For example, nroff requires you to manually place special com-
mands such as “.pa” inside a text document in order for it to format correctly, whereas
modern tools allow you to do this graphically.

For more information about these old-style text-processing utilities, see Sobell
(1994).

Timing Execution: time

It is sometimes useful to know how long it takes to run a specific command or program
(or, more to the point, to know how long it takes relative to how long something else
takes). The time utility can be used to report the execution time of any specified UNIX
command. It works as shown in Figure 3.35. Here is an example:

$ time sort allnames.txt >sortednames.txt

real 0m 4.18s
user 0m 1.85s
sys 0m 0.14s
$ _

Utility: time command-line

The time command can be used to report the execution time of any UNIX command
specified by command-line. Time is reported in both elapsed time and CPU time.
(CPU time is expressed as two values: user time and system time.)

FIGURE 3.35

Description of the time command.

This command tells us that it took nearly 4.2 seconds of “wall clock” time to sort our
file, whereas the total CPU time used was 1.99 seconds.

The time command is particularly useful in testing programs or scripts on small
amounts of data whereby you can’t “feel” the difference in the time required because
they run so fast, but you know that when you run the scripts on your large amount of
“real data,” you’ll want your program to be as efficient as possible.

ROLLING YOUR OWN PROGRAMS: Perl

We’ve seen that when what you needed to do required combining two or more of the
UNIX utilities, you had to write a shell script in one of the shell languages we examined
in earlier chapters. Shell scripts are slower than C programs, since they are interpreted
instead of compiled, but they are also much easier to write and debug. C programs allow

Rolling Your Own Programs: Perl 131

you to take advantage of many more UNIX features, but generally require more time
both to write and to modify.

In 1986, Larry Wall found that shell scripts weren’t enough and that C programs
were overkill for many purposes. He set out to write a scripting language that would be
the best of both worlds. The result was the Practical Extraction Report Language
(Perl). The language addressed many of the problems Larry had generating reports
and other text-oriented functions, although it also provided easy access to many other
UNIX facilities to which shell scripts do not provide access.

The Perl language syntax will look familiar to shell and C programmers, since
much of the syntax was taken from elements of both. I can only hope to give you a
high-level view of Perl here. Like awk, entire books have been written on Perl that de-
scribe it in detail. (See, e.g., Medinets, 1996 and Wall, 1996.) That level of detail is be-
yond the scope of this book, but by after having your appetite what with an
introduction, I’m sure you’ll want to find out more about Perl.

Getting Perl

Although Perl is used in most UNIX environments, it often does not come with your
native UNIX distribution, as it is not strictly part of UNIX. If your UNIX software ven-
dor does not bundle Perl, you’ll have to download it and install it yourself.

The best source for all things Perl is

http://www.perl.com

This site contains distributions of Perl for various platforms in the “downloads” sec-
tion, as well as documentation and links to many other useful resources.

One huge advantage of implementing tools in Perl is the language’s availability on
most major platforms, including most versions of UNIX, Windows, and MacOS. You do
have to watch out for inconsistencies in system calls and system locations of data files,
but your code will require very few changes to run properly on different platforms.

The biggest advantage of Perl is that it is free. Perl is licensed by a variation of the
GNU Public License known as the Artistic License. This does not affect any code you
write in Perl. You are free to use and distribute your own code in any way you see fit,
and you generally don’t need to worry about redistributing Perl for someone else to be
able to run your code, since Perl is so freely available.

Printing Text

Without the ability to print output, most programs wouldn’t accomplish much. So in
the UNIX tradition, I’ll start our Perl script examples with one that prints a single line:

print "hello world.\n";

Just from this simple example, you can infer that each line in Perl must end with a semi-
colon (;).Also, note that “\n” is used (as it is in the C programming language) to print a
newline character at the end of the line.

http://www.perl.com

132 Chapter 3 UNIX Utilities for Power Users

Variables, Strings, and Integers

To write useful programs, of course, requires the ability to assign and modify values
such as strings and integers. Perl provides variables much as the shells do. These vari-
ables can be assigned any type of value; Perl keeps track of the type for you.The major
difference between Perl variables and shell variables is that, in Perl, the dollar sign is
not simply used to expand the value of a variable, but is always used to denote the vari-
able. Even when assigning a value to a variable, as in the code

$i = 3;

you put the $ on the variable. This is probably the most difficult adjustment for sea-
soned shell programmers to make.

In addition to all of the “typical” mathematical operators (addition, subtraction,
and so forth), integers also support a range operator,“..”, which is used to specify a range
of integers.This is useful in building a loop around a range of values, as we will see later.

As in most languages, strings in Perl are specified by text in quotation marks.
Strings also support a concatenation operator, “.”, which puts strings together. Here’s
an example:

print 1, 2, 3..15, "\n"; # range operator
print "A", "B", "C", "\n"; # strings
$i = "A" . "B" ; # concatenation operator
print "$i", "\n" ;

These lines generate the following output:

123456789101112131415
ABC
AB

You can see that each value, and only each value, is printed, giving you control over all
spacing.

Arrays

Most programming languages provide arrays, which are lists of data values. Arrays in
Perl are quite simple to use, as they are dynamically allocated. (You don’t have to de-
fine how large they will be, and if you use more than the space currently allocated, Perl
will allocate more space and enlarge the array.) The syntax is probably new, however.
Rather than using a dollar sign, as you do with Perl variables, an array is denoted by an
at sign (@), as follows:

@arr = (1,2,3,4,5);

This line defines the array “arr” and puts five values into it. You could also define the
same array with the line

@arr = (1..5);

which uses the range operator with integers.

Rolling Your Own Programs: Perl 133

You can access a single element with a subscript in brackets, as in the line

print @arr[0],"\n";

As with most array implementations, the first element is numbered zero. Using
the previous definition, this line would print “1”, since that’s the first value.

If you print an array without subscripts, all defined values are printed. If you use
the array name without a subscript in a place where a scalar value is expected, the
number of elements in the array is used, as shown in the following example:

@a1 = (1); # array of 1 element
@a2 = (1,2,3,4,5); # array of 5 elements
@a3 = (1..10); # array of 10 elements

print @a1, " ", @a2, " ", @a3, "\n";

print @a1[0], " ", @a2[1], " ", @a3[2], "\n";

using as scalar will yield number of items
print @a2 + @a3, "\n";

When executed, this code will result in the following output:

1 12345 12345678910
1 2 3
15

A special type of array provided in Perl is the associative array. Whereas you
specify an index or a position of a normal array with an integer between zero and the
maximum size of the array, an associative array can have indices in any order and of
any value. Consider, for example, an array of month names. You can define an array
called $month with the 12 values “January”, “February”, and so on. (Since arrays begin
with index 0, you either remember to subtract one from your index or you define an
array of 13 values and ignore $month[0], starting instead with).

But what if you are reading month names from the input and want to look up the
numeric value.You could use a for loop to search through the array until you found the
value that matched the name you read, but that requires extra code.Wouldn’t it be nice
if you could just index into the array with the name? With an associative array you can,
in the following way:

@month{'January'} = 1;
@month{'February'} = 2;

.

.

.

.

Then you can read in the month name and access its numeric value via the code

$monthnum = $month{$monthname};

$month[1] = “January”

134 Chapter 3 UNIX Utilities for Power Users

without having to loop through the array and search for the name. Rather than setting
up the array one element at a time, as we did in the precedings example, you can define
it at the beginning of your Perl program like this:

%month = ("January", 1, "February", 2, "March", 3,
"April", 4, "May", 5, "June", 6,
"July", 7, "August", 8, "September", 9,

"October", 10, "November", 11, "December", 12);

The set of values that can be used in an associative array (also called the keys to the
array) is returned as a regular array by a call to the Perl function keys():

@monthnames = keys(%month);

If you attempt to use an invalid value as a key, a null or zero (depending on how you
use the value) will be returned.

Mathematical and Logical Operators

Once you have your variables assigned, the next thing you usually want to do with
them is change their values. Most operations on values are familiar from C program-
ming. The typical operators of addition, subtraction, multiplication, and division are

and /, respectively, for both integers and real numbers. Integers also support
the C constructs to increment and decrement before and after a value is used, and they
support logical ANDs and ORs as well. In the following example, note that I have to
backslash the $ used as text in a print statement, since want, not the value of the vari-
able in those places, but the name with the $ appended to it as a prefix:

$n = 2;
print ("\$n=", $n, "\n");

$n = 2 ; print ("increment after \$n=", $n++, "\n");
$n = 2 ; print ("increment before \$n=", ++$n, "\n");
$n = 2 ; print ("decrement after \$n=", $n--, "\n");
$n = 2 ; print ("decrement before \$n=", --$n, "\n");

$n = 2; # reset
print ("\$n+2=", $n + 2, "\n");
print ("\$n-2=", $n - 2, "\n");
print ("\$n*2=", $n * 2, "\n");
print ("\$n/2=", $n / 2, "\n");

$r = 3.14; # real number
print ("\$r=", $r, "\n");

print ("\$r*2=", $r * 2, "\n"); # double
print ("\$r/2=", $r / 2, "\n"); # cut in half
print ("1 && 1 -> ", 1 && 1, "\n");
print ("1 && 0 -> ", 1 && 0, "\n");
print ("1 || 1 -> ", 1 || 1, "\n");
print ("1 || 0 -> ", 1 || 0, "\n");

+ , - , *,

Rolling Your Own Programs: Perl 135

This script generates the following output:

$n=2
increment after $n=2
increment before $n=3
decrement after $n=2
decrement before $n=1
$n+2=4
$n-2=0
$n*2=4
$n/2=1
$r=3.14
$r*2=6.28
$r/2=1.57
1 && 1 -> 1
1 && 0 -> 0
1 || 1 -> 1
1 || 0 -> 1

String Operators

Operations on string types are more complex than the integers just discussed and
usually require the use of string functions (discussed later). The only simple opera-
tion that makes sense for a string (since you can’t add it to or subtract it from any-
thing else) is concatenation. Strings are concatenated with the “.” operator. Here’s
an example:

$firstname = "Graham";
$lastname = "Glass";
$fullname = $firstname . " " . $lastname;
print "$fullname\n";

This code results in the output

Graham Glass

However, several simple matching operations are available for strings:

if ($value =~ /abc/) { print "contains 'abc'\n"};
$value =~ s/abc/def/; # change 'abc' to 'def'
$value =~ tr/a-z/A-Z/; # translate to upper case

The experienced UNIX user will recognize the substitution syntax from vi and sed, as
well as the translation syntax based on the UNIX tr command.

Comparison Operators

You’ll also want operators to compare values with one another. Comparison operators,
as shown in Figure 3.36, are the usual suspects. In the case of greater than or less than

136 Chapter 3 UNIX Utilities for Power Users

comparisons with strings, these operations compare the strings’ sorting order. In most
cases, you’re concerned with comparing strings for equivalence (or the lack thereof).

If, While, For, and Foreach Loop Constructs

An essential part of any programming language is the ability to execute different state-
ments, depending on the value of a variable, and create loops for repetitive tasks or in-
dexing through array values. “If” statements and “while” loops in Perl are similar to
those in the C language.

In an “if” statement, a comparison operator is used to compare two values, and
different sets of statements are executed, depending on the result of the comparison
(true or false):

$i = 0;
if ($i == 0) {

print "it's true\n";
} else {

print "it's false\n";
}

This script results in “it’s true” being printed. As with C, other comparison operators
can be (is not equal to), (is less than), and (is greater than), among others.

You could also loop with a “while” statement and print the text until the compar-
ison is no longer true:

while ($i == 0) {
print "it's true\n";
$i++;

}

76!=

Operation Numeric String
Values Values

Equal to == eq

Not equal to != ne

Greater than > gt

Greater than or >= ge
equal to

Less than < lt

Less than or <= le
equal to

FIGURE 3.36

Perl comparison operators.

Rolling Your Own Programs: Perl 137

Of course, the comparison will be true the next time through the loop, since $i was
incremented.

Perl also handles both “for” loops from C and “foreach” loops from the C shell.
Here’s an example:

for ($i = 0 ; $i < 10 ; $i++) {
print $i, " ";

}
print "\n";

This script counts from 0 to 9, prints the value (without a newline until the end), and
generates the following output:

0 1 2 3 4 5 6 7 8 9

A “foreach” loop looks like this:

foreach $n (1..15) {
print $n, " ";

}
print "\n";

This script generates about what you would expect:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

File I/O

One big improvement in Perl over shell scripts is the ability to route input and output
to specific files rather than just the standard input, output, or error channels. You still
can access standard input and output as follows:

while (@line=<stdin>) {
foreach $i (@line) {

print "->", $i; # also reads in EOL
}

}

This script will read each line from the standard input and print it. However, perhaps
you have a specific data file you wish to read from. Here’s how you do it:

$FILE="info.dat";
open (FILE); # name of var, not eval
@array = <FILE>;
close (FILE);
foreach $line (@array) {

print "$line";
}

138 Chapter 3 UNIX Utilities for Power Users

This Perl script opens “info.dat” and reads all its lines into the array called “array”
(clever name, wouldn’t you say?). It then does the same as the previous script and
prints out each line.

Functions

To be able to separate various tasks a program performs, especially if the same task is
needed in several places, a language needs to provide a subroutine or function capabil-
ity. The Korn shell provides a weak type of function implemented through the com-
mand interface, and it is the only major shell that provides functions at all. Of course,
the C language provides functions, but script writers had a harder time of it before Perl
came along.

Perl functions are simple to use, although the syntax can get complicated.The fol-
lowing simple example of a Perl function will give you the idea:

sub pounds2dollars {
$EXCHANGE_RATE = 1.54; # modify when necessary
$pounds = $_[0];
return ($EXCHANGE_RATE * $pounds);

}

This function changes a value specified in pounds sterling (British money) into U. S.
dollars (given an exchange rate of $1.54 to the pound, which can be modified as neces-
sary). The special variable $_[0] references the first argument of the function. To call
the function, our Perl script would look like this:

$book = 3.0; # price in British pounds
$value = pounds2dollars($book);
print "Value in dollars = $value\n";

When we run this script (which includes the Perl function at the end), we get

Value in dollars = 4.62

In the next section, we’ll see an example of a function that returns more than one
value.

Library Functions

One capability that is conspicuously absent from shell scripting is that of making
UNIX system calls. By contrast, Perl provides an interface to many UNIX system calls.
The interface is via Perl library functions, not directly through the system call library;
therefore, its use is dependent on the implementation and version of Perl, and you
should consult the documentation for your version for specific information. When an
interface is available, it is usually very much like it’s C library counterpart.

Rolling Your Own Programs: Perl 139

Without even realizing it, we’ve already looked at a few Perl functions in previ-
ous sections when we saw the use of open(), close(), and print(). Another simple ex-
ample of a useful system-level function is

exit(1);

used to exit a Perl program and pass the specified return code to the shell. Perl also
provides a special exit function to print a message to stdout and exit with the current
error code:

open(FILE) or die("Cannot open file.");

Thus, if the call to open() fails, the die() function will be executed, causing the error
message to be written to stdout and the Perl program to exit with the error code re-
turned by the failure from open().

Some string functions to assist in manipulating string values are length(), index(),
and split(). The command

$len = length($fullname);

sets the $len variable to the length of the text stored in the string variable $fullname.To
locate one string inside another, use

$i = index($fullname, "Glass");

The value of $i will be zero if the string begins with the text you specify as the search
string (the second argument). To divide up a line of text on the basis of a delimiting
character (e.g., if you want to separate the tokens from the UNIX password file into its
various parts), use

($username, $password, $uid, $gid, $name, $home, $shell)
= split(/:/, $line)

In this case, the split() function returns an array of values found in the string denoted
by $line and separated by a colon. We have specified separate variables in which to
store each item in this array so that we can use the values more easily than indexing
into an array.

The following common function provides your Perl program with the time and
date:

($s,$m,$h,$dy,$mo,$yr,$wd,$yd,$dst) = gmtime();
$mo++; # month begins counting at zero
$yr+= 1900; # Perl returns years since 1900
print "The date is $mo/$dy/$yr.\n";
print "The time is $h:$m:$s.\n";

140 Chapter 3 UNIX Utilities for Power Users

The preceding code produces the following result:

The date is 4/25/2002.
The time is 13:40:27.

Note that gmtime() returns nine values. The Perl syntax is to specify these values in
parentheses (as you would if you were assigning multiple values to an array).

Command-Line Arguments

Another useful capability is to be able to pass command-line arguments to a Perl
script. Shell scripts provide a very simple interface to command-line arguments, while
C programs provide a slightly more complex (but more flexible) interface. The Perl in-
terface is somewhere in between, as shown in the following example:

$n = $#ARGV+1; # number of arguments (beginning at zero)
print $n, " args: \n";
for ($i = 0 ; $i < $n ; $i++) {

print " @ARGV[$i]\n";
}

This Perl script prints the number of arguments that were supplied in the perl com-
mand (after the name of the Perl script itself) and then prints out each argument on a
separate line.

We can modify our pounds-to-dollars script from before to allow a value in
British pounds to be specified on the command line as follows:

if ($#ARGV < 0) { # if no argument given
print "Specify value in to convert to dollars\n";
exit

}
$poundvalue = @ARGV[0]; # get value from command line

$dollarvalue = pounds2dollars($poundvalue);
print "Value in dollars = $dollarvalue\n";

sub pounds2dollars {
$EXCHANGE_RATE = 1.54; # modify when necessary

$pounds = $_[0];
return ($EXCHANGE_RATE * $pounds);

}

A Real-World Example

All of the foregoing brief examples should have given you the flavor of how Perl
works, but so far we haven’t done anything that’s really very useful. So let’s take what

Rolling Your Own Programs: Perl 141

The Perl script loan.pl is available on-line (see the preface for more information)
and looks like this:

show loan interest

$i=0;
while ($i < $#ARGV) { # process args

if (@ARGV[$i] eq "-r") {
$RATE=@ARGV[++$i]; # interest rate

} else {
if (@ARGV[$i] eq "-a") {

$AMOUNT=@ARGV[++$i]; # loan amount
} else {

if (@ARGV[$i] eq "-p") {
$PAYMENT=@ARGV[++$i]; # payment amount

} else {
print "Unknown argument (@ARGV[$i])\n";
exit

}
}

}
$i++;

}

if ($AMOUNT == 0 || $RATE == 0 || $PAYMENT == 0) {
print "Specify -r rate -a amount -p payment\n";
exit

}

print "Original balance: \$$AMOUNT\n";
print "Interest rate: ${RATE}%\n";
print "Monthly payment: \$$PAYMENT\n";
print "\n";
print "Month\tPayment\tInterest\tPrincipal\tBalance\n\n";

Utility: loan -a amount -p payment -r rate

loan prints a table, given a loan amount, an interest rate, and a payment to be made
each month. The table shows how many months will be required to pay off the loan,
as well as how much interest and principal will be paid each month. All arguments
are required.

FIGURE 3.37

Description of the loan command written in Perl.

we’ve seen and write a Perl script to print out a table of information about a loan. We
define a command with the syntax shown in Figure 3.37.

142 Chapter 3 UNIX Utilities for Power Users

$month=1;
$rate=$RATE/12/100; # get actual monthly percentage rate
$balance=$AMOUNT;
$payment=$PAYMENT;

while ($balance > 0) {
round up interest amount

$interest=roundUpAmount($rate * $balance);
$principal=roundUpAmount($payment - $interest);
if ($balance < $principal) { # last payment

$principal=$balance; # don’t pay too much!
$payment=$principal + $interest;

}
$balance = roundUpAmount($balance - $principal);
print

"$month\t\$$payment\t\$$interest\t\t\$$principal\t\t\$$balance\n";
$month++;

}
sub roundUpAmount {
#
in: floating point monetary value
out: value rounded (and truncated) to the nearest cent
#

$value=$_[0];

$newvalue = (int (($value * 100) +.5)) / 100;

return ($newvalue);
}

If I want to pay $30 a month on my $300 credit card balance and the interest rate
is 12.9% APR, my payment schedule looks like this:

Original balance: $300
Interest rate: 12.5%
Monthly payment: $30

Month Payment Interest Principal Balance

1 $30 $3.13 $26.87 $273.13
2 $30 $2.85 $27.15 $245.98
3 $30 $2.56 $27.44 $218.54
4 $30 $2.28 $27.72 $190.82
5 $30 $1.99 $28.01 $162.81
6 $30 $1.7 $28.3 $134.51
7 $30 $1.4 $28.6 $105.91
8 $30 $1.1 $28.9 $77.01
9 $30 $0.8 $29.2 $47.81
10 $30 $0.5 $29.5 $18.31
11 $18.5 $0.19 $18.31 $0

Chapter Review 143

So I find that it will take 11 months to pay off the balance at $30 per month, but the last
payment will be only $18.31. If I want to pay the card off faster than that, I know I need
to raise my monthly payment!

CHAPTER REVIEW

Checklist

In this chapter, I described utilities that

• filter files
• sort files
• compare files
• archive files
• find files
• schedule commands
• support programmable text processing
• create hard and soft links
• substitute users
• check for mail
• transform files
• look at raw file contents
• mount file systems
• prepare documents

I also described writing Perl scripts.

Quiz

1. Under what circumstances would you archive files using tar?
2. How would you convert the contents of a file to uppercase?
3. What is the difference between cmp and diff?
4. Describe what it means to “mount” a file system.
5. Which process serves the crontab system?
6. What additional functionality does an extended regular expression have?
7. What are the main differences between sed and awk?
8. How did awk get its name?
9. Under what circumstances would you use a symbolic link instead of a hard link?

10. What are the drawbacks of using a symbolic link?
11. What is meant by an incremental backup, and how would you perform one?
12. What are some ways that Perl makes script programming easier to write than

conventional shell scripts?

144 Chapter 3 UNIX Utilities for Power Users

Exercises

3.1 Perform some timing tests on grep and fgrep to determine the advantage of using
fgrep’s speed. [level: easy]

3.2 Ask the system administrator to demonstrate the use of tar to produce a backup
tape of your files. [level: easy]

3.3 Use crontab to schedule a script that removes your old core files at the start of
each day. [level: medium]

Projects

1. Write a command pipeline that compresses the contents of a file and then encrypts
it, using a known key, and writes the result to a new file.What is the corresponding
command pipeline to take this encrypted file and decrypt and uncompress it to
produce the original file? [level: easy]

2. Write a command pipeline to find files in a directory hierarchy (e.g. your home
directory) that have not been accessed for 30 days and compress them. [level:
medium]

3. Modify the loan Perl script so that you can pass a list of payments to it rather than
using the same payment amount every month. [level: medium]

C H A P T E R 4

The UNIX Shells

MOTIVATION

A shell is a program that sits between you and the raw UNIX operating system. There
are four shells that are commonly supported by UNIX vendors: the Bourne shell (sh),
the Korn shell (ksh), the C shell (csh), and the Bourne Again shell (bash). All of these
shells share a common core set of operations that make life in the UNIX system a little
easier. For example, all of the shells allow the output of a process to be stored in a file
or “piped” to another process. They also allow the use of wildcards in filenames, so it’s
easy to say things like “list all of the files whose names end with the suffix ‘.c’.” This
chapter describes all of the common core shell facilities; Chapters 5 through 8 describe
the special features of each individual shell.

PREREQUISITES

In order to understand this chapter, you should have already read Chapter 1 and
Chapter 2. Some of the utilities that I mention are described fully in Chapter 3. It also
helps if you have access to a UNIX system so that you can try out the various features
that I discuss.

OBJECTIVES

In this chapter, I’ll explain and demonstrate the common shell features, including I/O
redirection, piping, command substitution, and simple job control.

PRESENTATION

The information is presented in the form of several sample UNIX sessions. If you don’t
have access to a UNIX account, march through the sessions anyway, and perhaps you’ll
be able to try them out later.

145

146 Chapter 4 The UNIX Shells

UTILITIES

The chapter introduces the following utilities, listed in alphabetical order:

chsh kill ps
echo nohup sleep

SHELL COMMANDS

Also introduced are the following shell commands, listed in alphabetical order:

echo kill umask
eval login wait
exec shift
exit tee

INTRODUCTION

A shell is a program that is an interface between a user and the raw operating system.
It makes basic facilities such as multitasking and piping easy to use, as well as adding
useful file-specific features, like wildcards and I/O redirection. There are four common
shells in use:

• the Bourne shell (sh)
• the Korn shell (ksh)
• the C shell (csh)
• the Bourne Again shell (bash)

The shell that you use is a matter of taste, power, compatibility, and availability. For ex-
ample, the C shell is better than the Bourne shell for interactive work, but slightly
worse in some respects for script programming. The Korn shell was designed to be up-
ward compatible with the Bourne shell, and it incorporates the best features of the
Bourne and C shells, plus some more of its own. Bash also takes a “best of all worlds”
approach, including features from all the other major shells. The Bourne shell comes
with absolutely every version of UNIX.The others come with most versions these days,
but you might not always find your favorite. Bash probably ships with the fewest ver-
sions of UNIX, but is available for the most. (Chapter 8 has information on download-
ing Bash if it doesn’t come with your particular version of UNIX.)

SHELL FUNCTIONALITY

This chapter describes the common core of functionality that all four shells provide.
Figure 4.1 illustrates the relationships among the shells.A hierarchy diagram is a useful
way to illustrate the features shared by the four shells—so nice, in fact, that I use the
same kind of hierarchy chart (Figure 4.2) throughout the rest of the book. The remain-
der of this chapter describes each component of the hierarchy in detail.

Selecting a Shell 147

RedirectionBuilt-in
commands

VariablesScripts Wildcards Pipes Sequences Subshells Background
processing

Command
substitution

Shell functions

Local Environment Conditional Unconditional

FIGURE 4.2

Core shell functionality.

SELECTING A SHELL

When you are provided a UNIX account, the system administrator chooses a shell for
you.To find out which shell was chosen for you, look at your prompt. If you have a “%”
prompt, you’re probably in a C shell. The other shells use “$” as the default prompt.
When I wrote this chapter, I used a Bourne shell, but it really doesn’t matter, since the
facilities that I’m about to describe are common to all four shells. However, when
studying the later chapters, you will want to select the particular shell described in
each.

To change your default login shell, use the chsh utility, which works as shown in
Figure 4.3. In order to use chsh, you must know the full pathnames of the four shells.
The names are shown in Figure 4.4. In the following example, I changed my default
login shell from a Bourne shell to a Korn shell:

% chsh ...change the login shell from sh to ksh.
Changing login shell for glass
Old shell: /bin/sh ...pathname of old shell is displayed.

Korn shell

Bourne shell C shell

Common
core

Common
core

FIGURE 4.1

The relationship of shell functionality.

148 Chapter 4 The UNIX Shells

New shell: /bin/ksh ...enter full pathname of new shell.
% ^D ...terminate login shell.

login: glass ...log back in again.
Password: ...secret.
$ _ ...this time I'm in a Korn shell.

Another way to find out the full pathname of your login shell is to type the following:

$ echo $SHELL ...display the name of my login shell.
/bin/ksh ...full pathname of the Korn shell.
$ _

This example illustrated the echo shell command and a shell variable called SHELL.
Both of these new facilities—echoing and variables—are discussed later in the chapter.

SHELL OPERATIONS

When a shell is invoked, either automatically during a login or manually from a key-
board or script, it follows a preset sequence:

1. It reads a special start-up file, typically located in the user’s home directory, that
contains some initialization information. Each shell’s start-up sequence is differ-
ent, so I’ll leave the specific details to later chapters.

Utility: chsh

chsh allows you to change your default login shell. It prompts you for the full path-
name of the new shell, which is then used as your shell for subsequent logins.

FIGURE 4.3

Description of the chsh command.

Shell Full pathname

Bourne /bin/sh

Korn /bin/ksh

C /bin/csh

Bash /bin/bash

FIGURE 4.4

Common shell locations.

Executable Files Versus Built-In Commands 149

2. It displays a prompt and waits for a user command.
3. If the user enters a Control-D character on a line of its own, this is interpreted by

the shell as meaning “end of input” and causes the shell to terminate; otherwise,
the shell executes the user’s command and returns to step 2.

Commands range from simple utility invocations, such as

$ ls

to complex-looking pipeline sequences, such as

$ ps -ef | sort | ul -tdumb | lp

If you ever need to enter a command that is longer than a line on your terminal, you
may terminate a portion of the command with a backslash (\) character, and the shell
then allows you to continue the command on the next line:

$ echo this is a very long shell command and needs to \
be extended with the line continuation character. Note \
that a single command may be extended for several lines.
this is a very long shell command and needs to be extended with the line
continuation character. Note that a single command may be extended for
several lines.
$ _

EXECUTABLE FILES VERSUS BUILT-IN COMMANDS

Most UNIX commands invoke utility programs that are stored in the directory hier-
archy. Utilities are stored in files that have execute permission. For example, when
you type

$ ls

the shell locates the executable program called “ls,” which is typically found in the
“/bin” directory, and executes it. (The way that the shell finds a utility is described later
in the chapter.) In addition to its ability to locate and execute utilities, the shell con-
tains several built-in commands, which it recognizes and executes internally. I’ll de-
scribe two of the most useful ones, echo and cd, now.

Displaying Information: echo

The built-in echo command displays its arguments to standard output. It works as
shown in Figure 4.5. All of the shells we will see contain this built-in function, but you
may also invoke the utility called echo (usually found in /bin) instead. This is some-
times useful, since some arguments and subtle behavior may vary among the different

150 Chapter 4 The UNIX Shells

built-ins and it can be confusing if you write scripts in more than one of these shells.
(We’ll look at writing shell scripts shortly.)

Changing Directories: cd

The built-in cd command changes the current working directory of the shell to a new
location and was described fully in Chapter 2.

METACHARACTERS

Some characters receive special processing by the shell and are known as metacharacters.
All four shells share a core set of common metacharacters, whose meanings are shown
in Figure 4.6. When you enter a command, the shell scans it for metacharacters and

Shell Command: echo

echo is a built-in shell command that displays all of its arguments to standard output.
By default, it appends a newline to the output.

5arg6*

FIGURE 4.5

Description of the echo shell command.

Symbol Meaning

Output redirection; writes standard output to a file.

Output redirection; appends standard output to a file.

Input redirection; reads standard input from a file.

* File substitution wildcard; matches zero or more characters.

? File substitution wildcard; matches any single character.

File substitution wildcard; matches any character between brackets.

`command` Command substitution; replaced by the output from command.

| Pipe symbol; sends the output of one process to the input of another.

; Used to sequence commands.

Conditional execution; executes a command if the previous one failed.

&& Conditional execution; executes a command if the previous one
succeeded.

ƒ

[Á]

6

W

7

FIGURE 4.6

Shell metacharacters.

Redirection 151

processes them specially. When all metacharacters have been processed, the command
is finally executed. To turn off the special meaning of a metacharacter, precede it with
a \ character. Here’s an example:

$ echo hi > file ...store output of echo in "file".
$ cat file ...look at the contents of "file".
hi
$ echo hi \> file ...inhibit > metacharacter.
hi > file ...> is treated like other characters.
$ _ ...and output comes to terminal instead

This chapter describes the meaning of each metacharacter in the order in which it was
listed in Figure 4.6.

REDIRECTION

The shell redirection facility allows you to do the following:

• store the output of a process to a file (output redirection)
• use the contents of a file as input to a process (input redirection)

Let’s have a look at each facility, in turn.

Output Redirection

Output redirection is handy because it allows you to save a process’ output into a file
so it can be listed, printed, edited, or used as input to a future process. To redirect out-
put, use either the or metacharacter. The sequence

$ command > fileName

W7

Groups commands.

& Runs a command in the background.

All characters that follow, up to a newline, are ignored by the shell
and programs (i.e., signifies a comment).

$ Expands the value of a variable.

\ Prevents special interpretation of the next character.

Input redirection; reads standard input from script, up to tok.V tok

(Á)

FIGURE 4.6 (Continued)

152 Chapter 4 The UNIX Shells

sends the standard output of command to the file with name fileName. The shell cre-
ates the file with name fileName if it doesn’t already exist or overwrites its previous
contents if it already exists. If the file already exists and doesn’t have write permission,
an error occurs. In the next example, I created a file called “alice.txt” by redirecting the
output of the cat utility. Without parameters, cat simply copies its standard input—
which in this case is the keyboard—to its standard output:

$ cat > alice.txt ...create a text file.
In my dreams that fill the night,
I see your eyes,
^D ...end-of-input.
$ cat alice.txt ...look at its contents.
In my dreams that fill the night,
I see your eyes,
$ _

The sequence

$ command >> fileName

appends the standard output of command to the file with name fileName. The shell
creates the file with name fileName if it doesn’t already exist. In the following example,
I appended some text to the existing “alice.txt” file:

$ cat > alice.txt ...append to the file.
And I fall into them,
Like Alice fell into Wonderland.
^D ...end-of-input.
$ cat alice.txt ...look at the new contents.
In my dreams that fill the night,
I see your eyes,
And I fall into them,
Like Alice fell into Wonderland.
$ _

By default, both forms of output redirection leave the standard error channel connect-
ed to the terminal. However, both shells have variations of output redirection that
allow them to redirect the standard error channel. The C, Korn, and Bash shells also
provide protection against accidental overwriting of a file due to output redirection.
(These facilities are described in later chapters.)

Input Redirection

Input redirection is useful because it allows you to prepare a process’ input and store it
in a file for later use. To redirect input, use either the or metacharacter. The
sequence

$ command < fileName

V6

Filename Substitution (Wildcards) 153

executes command, using the contents of the file fileName as its standard input. If the
file doesn’t exist or doesn’t have read permission, an error occurs. In the following ex-
ample, I sent myself the contents of “alice.txt” via the mail utility:

$ mail glass < alice.txt ...send myself mail.
$ mail ...look at my mail.
Mail version SMI 4.0 Sat Oct 13 20:32:29 PDT 1990 Type ? for help.
>N 1 glass@utdallas.edu Mon Feb 2 13:29 17/550
& 1 ...read message #1.
From: Graham Glass <glass@utdallas.edu>
To: glass@utdallas.edu
In my dreams that fill the night,
I see your eyes,
And I fall into them,
Like Alice fell into Wonderland
& q ...quit mail.
$ _

When the shell encounters a sequence of the form

$ command << word

it copies its standard input up to, but not including, the line starting with word into a
buffer and then executes command, using the contents of the buffer as its standard
input. This facility, which is utilized almost exclusively to allow shell programs (scripts)
to supply the standard input to other commands as in-line text, is revisited in more de-
tail later on in the chapter.

FILENAME SUBSTITUTION (WILDCARDS)

All shells support a wildcard facility that allows you to select files from the file system
that satisfy a particular name pattern. Any word on the command line that contains at
least one of the wildcard metacharacters is treated as a pattern and is replaced by an
alphabetically sorted list of all the matching filenames. This act of pattern replacement
is called globbing. The wildcards and their meanings are as shown in Figure 4.7.

Wildcard Meaning

* Matches any string, including the empty string.

? Matches any single character.

[..] Matches any one of the characters between the brackets. A range of
characters may be specified by separating a pair of characters by a dash.

FIGURE 4.7

Shell wildcards.

154 Chapter 4 The UNIX Shells

You may prevent the shell from processing the wildcards in a string by surrounding the
string with single quotes (apostrophes) or double quotes. (See “Quoting” later in the
chapter for more details.) A / character in a filename must be matched explicitly. Here
are some examples of wildcards in action:

$ ls -FR ...recursively list my current directory.
a.c b.c cc.c dir1/ dir2/

dir1:
d.c e.e

dir2:
f.d g.c
$ ls *.c ...any text followed by ".c".
a.c b.c cc.c
$ ls ?.c ...one character followed by ".c".
a.c b.c
$ ls [ac]* ...any string beginning with "a" or "c".
a.c cc.c
$ ls [A-Za-z]* ...any string beginning with a letter.
a.c b.c cc.c
$ ls dir*/*.c ...all ".c" files in "dir*" directories.
dir1/d.c dir2/g.c
$ ls */*.c ...all ".c" files in any subdirectory.
dir1/d.c dir2/g.c
$ ls *2/?.? ?.?
a.c b.c dir2/f.d dir2/g.c
$ _

The result of a pattern that has no matches is shell specific. Some shells have a mecha-
nism for turning off wildcard replacement.

PIPES

The shell allows you to use the standard output of one process as the standard input of
another process by connecting the processes together via the pipe (|) metacharacter.
The sequence

$ command1 | command2

causes the standard output of command1 to “flow through” to the standard input of
command2. Any number of commands may be connected by pipes.A sequence of com-
mands chained together in this way is called a pipeline. Pipelines support one of the
basic UNIX philosophies, which is that large problems can often be solved by a chain of
smaller processes, each performed by a relatively small, reusable utility. The standard

Pipes 155

error channel is not piped through a standard pipeline, although some shells support
this capability.

In the following example, I piped the output of the ls utility to the input of the wc
utility to count the number of files in the current directory (see Chapter 2 for a de-
scription of wc):

$ ls ...list the current directory.
a.c b.c cc.c dir1 dir2
$ ls | wc -w ...count the entries.

5
$ _

Figure 4.8 is an illustration of a pipeline.

In the next example, I piped the contents of the “/etc/passwd” file into the awk utility to
extract the first field of each line. The output of awk was then piped to the sort utility,
which sorted the lines alphabetically. The result was a sorted list of every user on the
system. The commands are as follows (the awk utility is described fully in Chapter 3):

$ head -4 /etc/passwd ...look at the password file.
root:eJ2S10rVe8mCg:0:1:Operator:/:/bin/csh
nobody:*:65534:65534::/:
daemon:*:1:1::/:
sys:*:2:2::/:/bin/csh
$ cat /etc/passwd | awk -F: '{ print $1 }' | sort
audit
bin
daemon
glass
ingres
news
nobody
root
sync
sys
tim
uucp
$ _

Pipe
ls wc Terminal

FIGURE 4.8

A simple pipeline.

156 Chapter 4 The UNIX Shells

Figure 4.9 is an illustration of a pipeline that sorts.

There’s a very handy utility called tee that allows you to copy the output of a pipe to a
file while still allow sing that output to flow down the pipeline. As you might have
guessed, the name of this utility comes from the “T” connections that plumbers use.
Figure 4.10 shows how tee works. In the following example, I copied the output of who
to a file called “who.capture” and also let the output pass through to sort:

$ who | tee who.capture | sort
ables ttyp6 May 3 17:54 (gw.waterloo.com)
glass ttyp0 May 3 18:49 (bridge05.utdalla)
posey ttyp2 Apr 23 17:44 (blackfoot.utdall)
posey ttyp4 Apr 23 17:44 (blackfoot.utdall)
$ cat who.capture ...look at the captured data.
glass ttyp0 May 3 18:49 (bridge05.utdalla)
posey ttyp2 Apr 23 17:44 (blackfoot.utdall)
posey ttyp4 Apr 23 17:44 (blackfoot.utdall)
ables ttyp6 May 3 17:54 (gw.waterloo.com)
$

Notice that the output is captured directly from the who utility before the list is sorted.

COMMAND SUBSTITUTION

A command surrounded by grave accents (`) is executed, and its standard output is in-
serted in the command in its place. Any newlines in the output are replaced with

Pipe Pipe
cat awk sort Terminal

FIGURE 4.9

A pipeline that sorts.

Utility: tee -ia

The tee utility copies its standard input to the specified files and to its standard out-
put. The -a option causes the input to be appended to the files, rather than overwrit-
ing them. The -i option causes interrupts to be ignored.

5fileName6+

FIGURE 4.10

Description of the tee command.

Sequences 157

spaces, as in the following examples:

$ echo the date today is `date`
the date today is Mon Feb 2 00:41:55 CST 1998
$ _

It’s possible to do some crafty things by combining pipes and command substitution.
For example, the who utility (described in Chapter 9) produces a list of all the users on
the system, and the wc utility (described in Chapter 2) counts the number of words or
lines in its input. By piping the output of who to the wc utility, it’s possible to count the
number of users on the system:

$ who ...look at the output of who.
posey ttyp0 Jan 22 15:31 (blackfoot:0.0)
glass ttyp3 Feb 3 00:41 (bridge05.utdalla)
huynh ttyp5 Jan 10 10:39 (atlas.utdallas.e)
$ echo there are `who | wc -l` users on the system
there are 3 users on the system
$ _

The output of command substitution may be used as part of another command. For
example, the vi utility allows you to specify, on the command line, a list of files to be
edited.These files are then visited by the editor one after the other.The grep utility, de-
scribed in Chapter 3, has a -l option which returns a list of all the files on the command
line that contain a specified pattern. By combining these two features via command
substitution and using the following single command, it’s possible to specify that vi be
invoked for all files ending in “.c” that contain the pattern “debug”:

$ vi `grep -l debug *.c`

SEQUENCES

If you enter a series of simple commands or pipelines separated by semicolons, the
shell will execute them in sequence, from left to right. This facility is useful for type-
ahead (and think-ahead) addicts who like to specify an entire sequence of actions at
once. Here’s an example:

$ date; pwd; ls ...execute three commands in sequence.
Mon Feb 2 00:11:10 CST 1998
/home/glass/wild
a.c b.c cc.c dir1 dir2
$ _

Each command in a sequence may be individually I/O redirected, as shown in the fol-
lowing example:

$ date > date.txt; ls; pwd > pwd.txt
a.c b.c cc.c date.txt dir1 dir2

158 Chapter 4 The UNIX Shells

$ cat date.txt ...look at output of date.
Mon Feb 2 00:12:16 CST 1998
$ cat pwd.txt ...look at output of pwd.
/home/glass
$ _

Conditional Sequences

Every UNIX process terminates with an exit value. By convention, an exit value of 0
means that the process completed successfully, and a nonzero exit value indicates fail-
ure. All built-in shell commands return 1 if they fail. You may construct sequences that
make use of this exit value as follows:

• If you specify a series of commands separated by && tokens, the next command
is executed only if the previous command returns an exit code of 0.

• If you specify a series of commands separated by tokens, the next command is
executed only if the previous command returns a nonzero exit code.

The && and metacharacters therefore mirror the operation of their counterpart C
operators.

For example, if the C compiler cc compiles a program without fatal errors, it cre-
ates an executable program called “a.out” and returns an exit code of 0; otherwise, it
returns a nonzero exit code. The following conditional sequence compiles a program
called “myprog.c” and executes the “a.out” file only if the compilation succeeds:

$ cc myprog.c && a.out

The following example compiles a program called “myprog.c” and displays an error
message if the compilation fails:

$ cc myprog.c || echo compilation failed.

Exit codes are discussed in more detail toward the end of the chapter.

GROUPING COMMANDS

Commands may be grouped by placing them between parentheses, which causes them
to be executed by a child shell (subshell). The commands in a given group share the
same standard input, standard output, and standard error channels, and the group may
be redirected and piped as if it were a simple command. Here are some examples:

$ date; ls; pwd > out.txt ...execute a sequence
Mon Feb 2 00:33:12 CST 1998 ...output from date.
a.c b.c ...output from ls.
$ cat out.txt ...only pwd was redirected.
/home/glass
$ (date; ls; pwd) > out.txt ...group and then redirect.

||

||

Background Processing 159

$ cat out.txt ...all output was redirected.
Mon Feb 2 00:33:28 CST 1998
a.c
b.c
/home/glass
$ _

BACKGROUND PROCESSING

If you follow a simple command, pipeline, sequence of pipelines, or group of com-
mands with the & metacharacter, a subshell is created to execute the commands as a
background process that runs concurrently with the parent shell and does not take
control of the keyboard. Background processing is therefore very useful for perform-
ing several tasks simultaneously, as long as the background tasks do not require key-
board input. In windowed environments, it’s more common to run each command
within its own window than to run many commands in one window using the back-
ground facility. When a background process is created, the shell displays some infor-
mation that may be employed to control the process at a later stage. The exact format
of this information is shell specific.

In the next example, I executed a find command in the foreground to locate the
file called “a.c”. This command took quite a while to execute, so I decided to run the
next find command in the background. The shell displayed the background process’
unique process ID number and then immediately gave me another prompt, allowing
me to continue my work. Note that the output of the background process continued to
be displayed at my terminal, which was inconvenient. In the next few sections, I’ll show
you how you can use the process ID number to control the background process and
how to prevent background processes from messing up your terminal. The following
are the commands to locate the file “a.c”:

$ find . -name a.c -print ...search for "a.c".
./wild/a.c
./reverse/tmp/a.c
$ find . -name b.c -print & ...search in the background.
27174 ...process ID number
$ date ...run "date" in the foreground.
./wild/b.c ...output from background "find".
Mon Feb 2 18:10:42 CST 1998 ...output from date.
$./reverse/tmp/b.c ...more from background "find"

...came after we got the shell prompt so we don't

...get another one.

You may specify several background commands on a single line by separating each
command with an ampersand, as shown in the following example:

$ date & pwd & ...create two background processes.
27310 ...process ID of "date".
27311 ...process ID of "pwd".

160 Chapter 4 The UNIX Shells

/home/glass ...output from "date".
$ Mon Feb 2 18:37:22 CST 1998 ...output from "pwd".
$ _

REDIRECTING BACKGROUND PROCESSES

Redirecting Output

To prevent the output of a background process from arriving at your terminal, redirect
its output to a file. In the next example, I redirected the standard output of the find
command to a file called “find.txt”. As the command was executing, I watched it grow
via the ls command:

$ find . -name a.c -print > find.txt &
27188 ...process ID of "find".
$ ls -l find.txt ...look at "find.txt".
-rw-r--r-- 1 glass 0 Feb 3 18:11 find.txt
$ ls -l find.txt ...watch it grow.
-rw-r--r-- 1 glass 29 Feb 3 18:11 find.txt
$ cat find.txt ...list "find.txt".
./wild/a.c
./reverse/tmp/a.c
$ _

Another alternative is to mail the output to yourself, as shown in the following example:

$ find . -name a.c -print | mail glass &
27193
$ cc program.c ...do other useful work.
$ mail ...read my mail.
Mail version SMI 4.0 Sat Oct 13 20:32:29 PDT 1990 Type ? for help.
>N 1 glass@utdallas.edu Mon Feb 3 18:12 10/346
& 1
From: Graham Glass <glass@utdallas.edu>
To: glass@utdallas.edu
./wild/a.c ...the output from "find".
./reverse/tmp/a.c
& q
$ _

Some utilities also produce output on the standard error channel, which must be redi-
rected in addition to standard output. The next chapter describes in detail how this is
done, but here is an example of how it is done in the Bourne and Korn shells just in
case you’re interested:

$ man ps > ps.txt & ...save documentation in background.
27203
$ Reformatting page. Wait ...shell prompt comes here.

Shell Programs: Scripts 161

done ...standard error messages.
man ps > ps.txt 2>&1 & ...redirect error channel too.
27212
$ _ ...all output is redirected.

Redirecting Input

When a background process attempts to read from a terminal, the terminal automati-
cally sends it an error signal, which causes it to terminate. In the next example, I ran the
chsh utility in the background. It immediately issued the “Login shell unchanged” mes-
sage and terminated, never bothering to wait for any input. I then ran the mail utility in
the background, which similarly issued the message “No message !?!”. The commands
are as follows:

$ chsh & ...run "chsh" in background.
27201
$ Changing NIS login shell for glass on csservr1.
Old shell: /bin/sh
New shell: Login shell unchanged. ...didn't wait.

mail glass & ...run "mail" in background.
27202
$ No message !?! ...don't wait for keyboard input.

SHELL PROGRAMS: SCRIPTS

Any series of shell commands may be stored inside a regular text file for later execu-
tion. A file that contains shell commands is called a script. Before you can run a script,
you must give it execute permission by using the chmod utility. Then, to run the script,
you only need to type its name. Scripts are useful for storing commonly used sequences
of commands and range in complexity from simple one-liners to full-blown programs.
The control structures supported by the languages built into the shells are sufficiently
powerful to enable scripts to perform a wide variety of tasks. System administrators
find scripts particularly useful for automating repetitive administrative tasks, such as
warning users when their disk usage goes beyond a certain limit.

When a script is run, the system determines which shell the script was written for
and then executes the shell, using the script as its standard input. The system decides
which shell the script is written for by examining the first line of the script. Here are the
rules that it uses:

• If the first line is just a #, then the script is interpreted by the shell from which it
was executed as a command.

• If the first line is of the form #! pathName, then the executable program
pathName is used to interpret the script.

• If neither of the first two rules applies, then the script is interpreted by a Bourne
shell.

162 Chapter 4 The UNIX Shells

If a # appears on any line other than the first, all characters up to the end of that line
are treated as a comment. Scripts should be liberally commented in the interests of
maintainability.

When you write your own scripts, I recommend that you use the #! form to spec-
ify which shell the script is designed for, as that form is unambiguous and doesn’t re-
quire the reader to be aware of the default rules.

Here is an example that illustrates the construction and execution of two scripts,
one for the C shell and the other for the Korn shell:

$ cat > script.csh ...create the C shell script.
#!/bin/csh
This is a sample C shell script.
echo -n the date today is # in csh, -n omits newline
date # output today's date.
^D ...end-of-input.
$ cat > script.ksh ...create the Korn shell script.
#!/bin/ksh
This is a sample Korn shell script.
echo "the date today is \c" # in ksh, \c omits the nl
date # output today's date.
^D ...end-of-input.
$ chmod +x script.csh script.ksh ...make them executable.
$ ls -lF script.csh script.ksh ...look at attributes.
-rwxr-xr-x 1 glass 138 Feb 1 19:46 script.csh*
-rwxr-xr-x 1 glass 142 Feb 1 19:47 script.ksh*
$ script.csh ...execute the C shell script.
the date today is Sun Feb 1 19:50:00 CST 1998
$ script.ksh ...execute the Korn shell script.
the date today is Sun Feb 1 19:50:05 CST 1998
$ _

The “.csh” and “.ksh” extensions of my scripts are used only for clarity; scripts can be
called anything at all and don’t even need an extension.

Note the usage of “\c” and “-n” in the preceding examples of the echo com-
mand. Different versions of “/bin/echo” use one or the other to omit the newline. It
may also depend on the shell being used: If the shell has a built-in echo function, then
the specifics of “/bin/echo” won’t matter. You’ll want to experiment with your partic-
ular shell and echo combination; it isn’t quite as simple as I implied in the preceding
comments.

SUBSHELLS

When you log into a UNIX system, you execute an initial login shell. This shell exe-
cutes any simple commands that you enter. However, there are several circumstances
under which your current (parent) shell creates a new (child) shell to perform some
tasks:

Variables 163

• When a grouped command such as (ls; pwd; date) is executed, the parent shell
creates a child shell to execute the grouped commands. If the command is not ex-
ecuted in the background, the parent shell sleeps until the child shell terminates.

• When a script is executed, the parent shell creates a child shell to execute the
commands in the script. If the script is not executed in the background, the parent
shell sleeps until the child shell terminates.

• When a background job is executed, the parent shell creates a child shell to exe-
cute the background commands. The parent shell continues to run concurrently
with the child shell.

A child shell is called a subshell. Just like any other UNIX process, a subshell has its
own current working directory, so cd commands executed in a subshell do not affect
the working directory of the parent shell:

$ pwd ...display my login shell's current dir.
/home/glass
$ (cd /; pwd) ...the subshell moves and executes pwd.
/ ...output comes from the subshell.
$ pwd ...my login shell never moved.
/home/glass
$ _

Every shell contains two data areas: an environment space and a local variable space.A
child shell inherits a copy of its parent’s environment space and a clean local variable
space, as shown in Figure 4.11.

VARIABLES

A shell supports two kinds of variables: local and environment variables. Both hold
data in a string format. The main difference between them is that when a shell invokes
a subshell, the child shell gets a copy of its parent shell’s environment variables, but not
its local variables. Environment variables are therefore used for transmitting useful in-
formation between parent shells and their children.

Parent shell

Environment

EnvironmentLocal

Local

Child shell

Copied from parent

Clean, initialized

FIGURE 4.11

Child shell data spaces.

164 Chapter 4 The UNIX Shells

Every shell has a set of predefined environment variables that are usually initial-
ized by the start-up files described in later chapters. Similarly, every shell has a set of
predefined local variables that have special meanings to the shell. Other environment
and local variables may be created as needed and are particularly useful in writing
scripts. Figure 4.12 shows a list of the predefined environment variables that are com-
mon to all shells.

The syntax for assigning variables differs among shells, but the way that you ac-
cess the variables is the same: If you append the prefix $ to the name of a variable, this
token sequence is replaced by the shell with the value of the named variable.

To create a variable, simply assign it a value; a variable does not have to be de-
clared. The details of how variables are assigned are left to the chapters on specific
shells, but for now it’s enough to know that the syntax for assigning a variable in the
Bourne, Korn, and Bash shells is as follows:

variableName=value ...place no spaces around the =.

In the following example, I displayed the values of some common shell environment
variables:

$ echo HOME = $HOME, PATH = $PATH ...list two variables.
HOME = /home/glass, PATH = /bin:/usr/bin:/usr/sbin
$ echo MAIL = $MAIL ...list another.
MAIL = /var/mail/glass

Name Meaning

$HOME the full pathname of your home directory

$PATH a list of directories to search for commands

$MAIL the full pathname of your mailbox

$USER your username

$SHELL the full pathname of your login shell

$TERM the type of your terminal

FIGURE 4.12

Predefined shell variables.

Variables 165

$ echo USER = $USER, SHELL = $SHELL, TERM=$TERM
USER = glass, SHELL = /bin/sh, TERM=vt100
$ _

The next example illustrates the difference between local and environment variables. I
assigned values to two local variables and then made one of them an environment vari-
able by using the Bourne shell export command (described fully in Chapter 5). I then
created a child Bourne shell and displayed the values of the variables that I had as-
signed in the parent shell. Note that the value of the environment variable was copied
into the child shell, but the value of the local variable was not. Finally, I typed a
Control-D to terminate the child shell and restart the parent shell, and then I displayed
the original variables. The commands are as follows:

$ firstname=Graham ...set a local variable.
$ lastname=Glass ...set another local variable.
$ echo $firstname $lastname ...display their values.
Graham Glass
$ export lastname ...make "lastname" an environment var.
$ sh ...start a child shell; the parent sleeps.
$ echo $firstname $lastname ...display values again.
Glass ...note that firstname wasn't copied.
$ ^D ...terminate child; the parent awakens.
$ echo $firstname $lastname ...they remain unchanged.
Graham Glass
$ _

Figure 4.13 shows several common built-in variables that have a special meaning. The
first special variable is especially useful for creating temporary filenames, and the rest
are handy for accessing command-line arguments in shell scripts. Here’s an example
that illustrates all of the common special variables:

$ cat script.sh ...list the script.
echo the name of this script is $0
echo the first argument is $1
echo a list of all the arguments is $*
echo this script places the date into a temporary file
echo called $1.$$
date > $1.$$ # redirect the output of date.
ls $1.$$ # list the file.
rm $1.$$ # remove the file.
$ script.sh paul ringo george john ...execute it.
the name of this script is script.sh
the first argument is paul
a list of all the arguments is paul ringo george john
this script places the date into a temporary file
called paul.24321
paul.24321
$ _

166 Chapter 4 The UNIX Shells

QUOTING

Oftentimes, you want to inhibit the shell’s wildcard replacement, variable substitution,
or command substitution mechanisms. The shell’s quoting system allows you to do just
that. Here’s the way it works:

• Single quotes (') inhibit wildcard replacement, variable substitution, and com-
mand substitution.

• Double quotes (") inhibit wildcard replacement only.
• When quotes are nested, only the outer quotes have any effect.

The following example illustrates the difference between the two kinds of quotes:

$ echo 3 * 4 = 12 ...remember, * is a wildcard.
3 a.c b.c c.c 4 = 12
$ echo "3 * 4 = 12" ...double quotes inhibit wildcards.
3 * 4 = 12
$ echo '3 * 4 = 12' ...single quotes inhibit wildcards.
3 * 4 = 12
$ name=Graham

By using single quotes (apostrophes) around the text, we inhibit all wildcard replace-
ment, variable substitution, and command substitution:

$ echo 'my name is $name - date is `date`'
my name is $name and the date is `date`

By using double quotes around the text, we inhibit wildcard replacement, but allow
variable and command substitution:

$ echo "my name is $name - date is `date`"
my name is Graham - date is Mon Feb 2 23:14:56 CST 1998
$ _

Name Meaning

$$ The process ID of the shell.

$0 The name of the shell script (if applicable).

$1..$9 $n refers to the nth command line argument (if applicable).

$* A list of all the command-line arguments.

FIGURE 4.13

Special built-in shell variables.

Job Control 167

HERE DOCUMENTS

Earlier in the chapter, I briefly mentioned the metacharacter. I delayed its full de-
scription until now, as it’s really used only in conjunction with scripts and variables.
When the shell encounters a sequence of the form

$ command << word

it copies its own standard input up to, but not including, the line starting with word into
a shell buffer and then executes command, using the contents of the buffer as its stan-
dard input. Obviously, you should choose a sensible value for word that is unusual
enough not to occur naturally in the text that follows. If no line containing just word is
encountered, the Bourne and Korn shells stop copying input when they reach the end
of the script, whereas the C shell issues an error message. All references to shell vari-
ables in the copied text are replaced by their values. The most common use of the
metacharacter is to allow scripts to supply the standard input of other commands as in-
line text, rather than having to use auxiliary files. Scripts that use are sometimes
called here documents. Here’s an example of a here document:

$ cat here.sh ...look at an example of a "here" doc.
mail $1 << ENDOFTEXT
Dear $1,
Please see me regarding some exciting news!
- $USER
ENDOFTEXT
echo mail sent to $1
$ here.sh glass ...send mail to myself using the script.
mail sent to glass
$ mail ...look at my mail.
Mail version SMI 4.0 Sat Oct 13 20:32:29 PDT 1990 Type ? for help.
>N 1 glass@utdallas.edu Mon Feb 2 13:34 12/384
& 1 ...read message #1.
From: Graham Glass <glass@utdallas.edu>
To: glass@utdallas.edu

Dear glass,
Please see me regarding some exciting news!

- glass
& q ...quit out of mail.
$ _

JOB CONTROL

Convenient multitasking is one of UNIX’s best features, so it’s important to be able to
obtain a listing of your current processes and control their behavior. The following two
utilities and one built-in command allow you to do this:

• ps, which generates a list of processes and their attributes, including their names,
process ID numbers, controlling terminals, and owners

V

V

V

168 Chapter 4 The UNIX Shells

• kill, which allows you to terminate a process on the basis of its ID number
• wait, which allows a shell to wait for one of its child processes to terminate

Process Status: ps

The ps utility allows you to monitor the status of processes. It works as shown in
Figure 4.14. In the next example, I made use of the sleep utility to delay a simple echo
statement and placed the command in the background. I then executed the ps utility to
obtain a list of my shell’s associated processes. Each “sh” process was a Bourne shell
process; one of them was my login shell, and the other one was the subshell created to
execute the command group. The commands are as follows:

$ (sleep 10; echo done) & ...delayed echo in background.
27387 ...the process ID number.
$ ps ...obtain a process status list.
PID TTY TIME CMD

27355 pts/3 0:00 -sh ...the login shell.
27387 pts/3 0:00 -sh ...the subshell.
27388 pts/3 0:00 sleep 10 ...the sleep.
27389 pts/3 0:00 ps ...the ps command itself!
$ done ...the output from the background process.

For the record, Figure 4.15 provides a description of the sleep utility.

The meanings of the common column headings of ps output are shown in Figure 4.16.
The S field encodes the process’ state, as shown in Figure 4.17. The meanings of

Utility: ps -efl

ps generates a listing of process status information. By default, the output is limited
to processes created by your current shell. The -e option instructs ps to include all
processes that are currently running. The –f option causes ps to generate a full list-
ing. The –l option generates a long listing. The meaning of each ps column is de-
scribed in the text.

FIGURE 4.14

Description of the ps command.

Utility: sleep seconds

The sleep utility sleeps for the specified number of seconds and then terminates.

FIGURE 4.15

Description of the sleep command.

Job Control 169

most of these terms are described later in the book; only the R and S fields will make
sense right now. Here’s an example of some user-oriented output from ps:

$ (sleep 10; echo done) &
27462
$ ps -f ...request user-oriented output.

UID PID PPID C STIME TTY TIME CMD
glass 731 728 0 21:48:46 pts/5 0:01 -ksh
glass 831 830 1 22:27:06 pts/5 0:00 sleep 10
glass 830 731 0 22:27:06 pts/5 0:00 -ksh

$ done ...output from previous command

Column Meaning

S the process state

UID the effective user ID of the process

PID the process ID

PPID the parent process ID

C the percentage of CPU time that the process used in the last minute

PRI the priority of the process

SZ the size of the process’ data and stack in kilobytes

STIME the time the process was created, or the date if it was created before today

TTY the controlling terminal

TIME the amount of CPU time used so far (MM:SS)

CMD the name of the command

FIGURE 4.16

ps output column meanings.

Letter Meaning

O running on a processor

R runnable

S sleeping

T suspended

Z zombie process

FIGURE 4.17

Process state codes reported by ps.

170 Chapter 4 The UNIX Shells

If you’re interested in tracking the movements of other users on your system, try the -e
and -f options of ps:

$ ps -ef ...list all user's processes.
UID PID PPID C STIME TTY TIME CMD
root 0 0 0 18:58:16 ? 0:01 sched
root 1 0 0 18:58:19 ? 0:01 /etc/init -
root 2 0 0 18:58:19 ? 0:00 pageout
root 3 0 1 18:58:19 ? 0:53 fsflush
root 198 1 0 18:59:38 ? 0:00 /usr/sbin/nscd
root 178 1 0 18:59:35 ? 0:00 /usr/sbin/syslogd
root 302 1 0 18:59:58 ? 0:00 /usr/lib/saf/sac
root 125 1 0 18:59:14 ? 0:00 /usr/sbin/rpcbind
root 152 1 0 18:59:29 ? 0:01 /usr/sbin/inetd -s
root 115 1 0 18:59:13 ? 0:00 /usr/sbin/in.routed -q
root 127 1 0 18:59:15 ? 0:00 /usr/sbin/keyserv
root 174 1 0 18:59:34 ? 0:00 /etc/automountd
glass 731 728 0 21:48:46 p5 0:01 -ksh
$ _

In Chapter 6, I describe a utility called “track” that makes use of these options to mon-
itor other users. The Bourne and Korn shells automatically terminate background
processes when you log out, whereas the C and Bash shells allow them to continue. If
you’re using a Bourne or Korn shell and you want to make a background process im-
mune from this effect, use the nohup utility to protect it. nohup works as shown in
Figure 4.18.

If you execute a command using nohup, log out, and then log back in again, you
won’t see the command on the output of a regular ps.This is because a process loses its
control terminal when you log out and continues to execute without it. To include a list

Utility: nohup command

The nohup utility executes command and makes it immune to the hangup (HUP)
and terminate (TERM) signals.The standard output and error channels of command
are automatically redirected to a file called “nohup.out,” and the process’ priority
value is increased by 5, thereby reducing its priority. This utility is ideal for ensuring
that background processes are not terminated when your login shell is exited.

FIGURE 4.18

Description of the nohup command.

Job Control 171

of all the processes without control terminals in a ps output, use the -x option. Here’s
an example of this effect:

$ nohup sleep 10000 & ...nohup a background process.
27406
Sending output to 'nohup.out' ...message from "nohup".
$ ps ...look at processes.
PID TT STAT TIME COMMAND
27399 p3 S 0:00 -sh (sh)
27406 p3 S N 0:00 sleep 10000
27407 p3 R 0:00 ps
$ ^D ...log out.

UNIX(r) System V Release 4.0
login: glass ...log back in.
Password: ...secret.
$ ps ...the background process is not seen.
PID TT STAT TIME COMMAND
27409 p3 S 0:00 -sh (sh)
27411 p3 R 0:00 ps
$ ps -x ...the background process may be seen.
PID TT STAT TIME COMMAND
27406 ? IN 0:00 sleep 10000
27409 p3 S 0:00 -sh (sh)
27412 p3 R 0:00 ps -x
$ _

For more information about control terminals, see Chapter 13.

Signaling Processes: kill

If you wish to terminate a process before it is completed, use the kill command. The
Korn and C shells contain a built-in command called kill, whereas the Bourne shell in-
vokes the standard utility instead. Both versions of kill support the functionality de-
scribed in Figure 4.19. In the following example, I created a background process and then
killed it.To confirm the termination, I obtained a ps listing.The commands are as follows:

$ (sleep 10; echo done) && ...create background process.
27390 ...process ID number.
$ kill 27390 ...kill the process.
$ ps ...it's gone!
PID TT STAT TIME COMMAND
27355 p3 S 0:00 -sh (sh)
27394 p3 R 0:00 ps
$ _

172 Chapter 4 The UNIX Shells

The next example illustrates the use of the -l option and a named signal. The signal
names are listed in numeric order, starting with signal 1:

$ kill -l ...list the signal names.
HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE ALRM TERM URG
STOP TSTP CONT CHLD TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH LOST USR1
USR2
$ (sleep 10; echo done) &
27490 ...process ID number.
$ kill -KILL 27490 ...kill the process with signal #9.
$ _

Finally, here’s an example of the kill utility’s ability to kill all of the processes associat-
ed with the current shell:

$ sleep 30 & sleep 30 & sleep 30 & ...create three.
27429
27430
27431
$ kill 0 ...kill them all.
27431 Terminated
27430 Terminated
27429 Terminated
$ _

Utility/Shell Command: kill [-signalId]

kill –l

kill sends the signal with code signalId to the list of numbered processes. signalId
may be the number or name of a signal. By default, kill sends a TERM signal (num-
ber 15), which causes the receiving processes to terminate. To obtain a list of the
valid signal names, use the -l option. To send a signal to a process, you must either
own it or be a superuser. (For more information about signals, see Chapter 13.)

Processes may protect themselves from all signals except the KILL signal
(number 9). Therefore, to ensure a kill, send signal number 9. (Note that sending a
KILL will not allow a process to clean up and terminate normally, as many programs
do when they receive a TERM signal.)

The kill utility (as opposed to the Korn and C shell built-ins) allows you to
specify 0 as the pid, which causes all of the processes associated with the shell to be
terminated. Chapter 6 contains information on the advanced features of the built-
in kill command.

5pid6+

FIGURE 4.19

Description of the kill command.

Finding a Command: $PATH 173

Waiting for Child Processes: wait

A shell may wait for one or more of its child processes to terminate by executing the
built-in wait command, which works as shown in Figure 4.20. In the following example,
the shell waited until both background child processes terminated before continuing:

$ (sleep 30; echo done 1) & ...create a child process.
24193
$ (sleep 30; echo done 2) & ...create a child process.
24195
$ echo done 3; wait; echo done 4 ...wait for children.
done 3
done 1 ...output from first child.
done 2 ...output from second child.
done 4
$ _

This facility is generally useful only in advanced shell scripts.

FINDING A COMMAND: $PATH

When a shell processes a command, it first checks to see whether the command is a
built-in; if it is, the shell executes it directly. echo is an example of a built-in shell
command:

$ echo some commands are executed directly by the shell
some commands are executed directly by the shell
$ _

If the command in question isn’t a built-in command, the shell checks whether it begins
with a / character. If it does, the shell assumes that the first token is the absolute path-
name of a command and tries to execute the file with the stated name. If the file does-
n’t exist or isn’t an executable file, an error occurs:

$ /bin/ls ...full pathname of the ls utility.
script.csh script.ksh

Shell Command: wait [pid]

wait causes the shell to suspend operation until the child process with the specified
process ID number terminates. If no arguments are supplied, the shell waits for all of
its child processes to terminate.

FIGURE 4.20

Description of the wait shell command.

174 Chapter 4 The UNIX Shells

$ /bin/nsx ...a non-existent filename.
/bin/nsx: not found
$ /etc/passwd ...the name of the password file.
/etc/passwd: Permission denied ...it's not executable.
$ _

If the command in question isn’t a built-in command or a full pathname, the shell
searches the directories whose names are stored in the PATH environment variable.
Each directory in the PATH variable is searched (from left to right) for an executable
file matching the command name. If a match is found, the file is executed. If a match
isn’t found in any of the directories, or if the file that matches is not executable, an
error occurs. If PATH is not set or is equal to the empty string, then only the current di-
rectory is searched. The contents of the PATH variable may be changed using the
methods described in later chapters, thereby allowing you to tailor the search path to
your needs. The original search path is usually initialized by the shell’s start-up file and
typically includes all of the standard UNIX directories that contain executable utilities.
Here are some examples:

$ echo $PATH
/bin:/usr/bin:/usr/sbin ...directories searched.
$ ls ...located in "/bin".
script.csh script.ksh
$ nsx ...not located anywhere.
nsx: not found
$ _

OVERLOADING STANDARD UTILITIES

Users often create a “bin” subdirectory in their home directory and place this subdi-
rectory before the traditional “bin” directories in their PATH setting. Doing so allows
them to overload default UNIX utilities with their own “home-brewed” versions, since
those versions will be located by the search process before their standard counterparts
are. If you choose to do this, you should take great care, as scripts that are run from a
shell are programmed to use standard utilities, and they might be “confused” by the
nonstandard utilities that actually get executed. In the following example, I inserted my
own “bin” directory into the search path sequence and then overrode the standard “ls”
utility with my own version:

$ mkdir bin ...make my own personal "bin" directory.
$ cd bin ...move into the new directory.
$ cat > ls ...create a script called "ls".
echo my ls
^D ...end-of-input.
$ chmod +x ls ...make it executable.
$ echo $PATH ...look at the current PATH setting.

Termination and Exit Codes 175

/bin:/usr/bin:/usr/sbin
$ echo $HOME ...get pathname of my home directory.
/home/glass
$ PATH=/home/glass/bin:$PATH ...update.
$ ls ...call "ls".
my ls ...my own version overrides "/bin/ls".
$ _

Note that only this shell and its child shells would be affected by the change to PATH;
all other shells would be unaffected.

TERMINATION AND EXIT CODES

Every UNIX process terminates with an exit value. By convention, an exit value of 0
means that the process completed successfully, and a nonzero exit value indicates fail-
ure. All built-in commands return 1 if they fail. In the Bourne, Korn, and Bash shells,
the special shell variable $? always contains the value of the previous command’s exit
code. In the C shell, the $status variable holds the exit code. In the following example,
the date utility succeeded, whereas the cc and awk utilities failed:

$ date ...date succeeds.
Sat Feb 2 22:13:38 CST 2002
$ echo $? ...display its exit value.
0 ...indicates success.
$ cc prog.c ...compile a non-existent program.
cpp: Unable to open source file 'prog.c'.
$ echo $? ...display its exit value.
1 ...indicates failure.
$ awk ...use awk illegally.
awk: Usage: awk [-Fc] [-f source | 'cmds'] [files]
$ echo $? ...display its exit value.
2 ...indicates failure.
$ _

Any script that you write should always explicitly return an exit code. To terminate a
script, use the built-in exit command, which works as shown in Figure 4.21. If a shell
doesn’t include an explicit exit statement, the exit value of the last command is re-
turned by default. The script in the following example returned an exit value of 3:

$ cat script.sh ...look at the script.
echo this script returns an exit code of 3
exit 3
$ script.sh ...execute the script.
this script returns an exit code of 3
$ echo $? ...look at the exit value.
3
$ _

176 Chapter 4 The UNIX Shells

The next chapter contains some examples of scripts that make use of a command’s exit
value.

COMMON CORE BUILT-INS

A large number of built-in commands are supported by the four shells, but only a
few are common to all. This section describes the most useful common core built-in
commands.

eval

The eval command works as shown in Figure 4.22. In the following example, I executed
the result of the echo command, which caused the variable x to be set:

$ echo x=5 ...first execute an echo directly.
x=5
$ eval `echo x=5` ...execute the result of the echo.
$ echo $x ...confirm that x was set to 5.
5
$ _

For a more complex example, see the description of tset in Chapter 2.

exec

The exec command works as shown in Figure 4.23. In the following example, I “ex-
ec’ed” the date command from my login shell, which caused the date utility to run and
then my login process to terminate:

Shell Command: exit number

exit terminates the shell and returns the exit value number to its parent process. If
number is omitted, the exit value of the previous command is used.

FIGURE 4.21

Description of the exit shell command.

Shell Command: eval command

The eval shell command executes the output of command as a regular shell com-
mand. It is useful in processing the output of utilities that generate shell commands
(e.g., tset).

FIGURE 4.22

Description of the eval shell command.

Common Core Built-Ins 177

$ exec date ...replace shell process by date process.
Sun Feb 1 18:55:01 CDT 1998 ...output from date.
login: _ ...login shell is terminated.

shift

The shift command works as shown in Figure 4.24. In the following example, I wrote a
C shell script to display its arguments before and after a shift.

$ cat shift.csh ...list the script.
#!/bin/csh
echo first argument is $1, all args are $*
shift
echo first argument is $1, all args are $*
$ shift.csh a b c d ...run with four arguments.
first argument is a, all args are a b c d
first argument is b, all args are b c d
$ shift.csh a ...run with one argument.
first argument is a, all args are a
first argument is , all args are
$ shift.csh ...run with no arguments.
first argument is , all args are
shift: No more words ...error message.
$ _

Shell Command: exec command

The exec shell command causes the shell’s image to be replaced with command in
the process’ memory space. If command is successfully executed, the shell that per-
formed the exec ceases to exist. If that shell was a login shell, then the login session is
terminated when command terminates.

FIGURE 4.23

Description of the exec shell command.

Shell Command: shift

The shift shell command causes all of the positional parameters $2..$n to be re-
named $1..$(n-1) and $1 to be lost. It is particularly handy in shell scripts when they
are cycling through a series of command line parameters. If there are no positional
arguments left to shift, an error message is displayed.

FIGURE 4.24

Description of the shift shell command.

178 Chapter 4 The UNIX Shells

umask

When a C program creates a file, it supplies the file’s original permission settings as an
octal parameter to the system call open(). For example, to create a file with read and
write permission for the owner, group, and others, the program would execute a system
call such as this one:

fd = open ("myFile", OCREAT | ORDWR, 0666);

For information on the encoding of permissions as octal numbers, see Chapter 2. For in-
formation on the open() system call, see Chapter 13.When the shell performs redirection
(using the character), it employs a system call sequence similar to the one shown in
the preceding example to construct a file with octal permission 666. However, if you try
creating a file by using redirection with the character, you’ll probably end up with a
file that has a permission setting of 644 octal, as shown in the following example:

$ date > date.txt
$ ls -l date.txt
-rw-r--r-- 1 glass 29 May 3 18:56 date.txt
$ _

The reason for this difference in permission is that every UNIX process contains a spe-
cial quantity called a umask value, which is used to restrict the permission settings that
it requests when a file is created.The default umask value of a shell is 022 octal.The set
bits of a umask value mask out the set bits of a requested permission setting. In the pre-
ceding example, the requested permission 666 was masked with 022 to produce the
final permission, 644, as shown in Figure 4.25.

“7”

“7”

If a file already exists before something is redirected to it, the original file’s per-
mission values are retained and the umask value is ignored.

Figure 4.26 shows how the umask command may be used to manipulate the
umask value. In the following example, I changed the umask value to 0 and then creat-
ed a new file to illustrate its effect:

$ umask ...display current umask value.
22 ...mask write permission of group/others.

r w x r w x r w x

original 1 1 0 1 1 0 1 1 0

mask 0 0 0 0 1 0 0 1 0

final 1 1 0 1 0 0 1 0 0

FIGURE 4.25

Bit-by-bit example of the effect of the umask setting.

Chapter Review 179

$ umask 0 ...set umask value to 0.
$ date > date2.txt ...create a new file.
$ ls -l date2.txt
-rw-rw-rw- 1 glass 29 May 3 18:56 date2.txt
$ _

CHAPTER REVIEW

Checklist

In this chapter, I described

• the common functionality of the four major shells
• the common shell metacharacters
• output and input redirection
• filename substitution
• pipes
• command substitution
• command sequences
• grouped commands
• the construction of scripts
• the difference between local and environment variables
• the two different kinds of quotes
• basic job control
• the mechanism that the shell uses to find commands
• several core built-in commands

Quiz

1. Can you change your default shell?
2. What UNIX command is used to change your current directory?
3. How can you enter commands that are longer than one line?
4. What is the difference between a built-in command and a utility?

Shell Command: umask [octalValue]

The umask shell command sets the shell’s umask value to the specified octal num-
ber, or displays the current umask value if the argument is omitted. A shell’s umask
value is retained until changed. Child processes inherit their umask value from their
parents.

FIGURE 4.26

Description of the umask shell command.

180 Chapter 4 The UNIX Shells

5. How can you make a script executable?
6. What is the strange term that is sometimes given to filename substitution?
7. Describe a common use for command substitution.
8. Describe the meaning of the terms parent shell, child shell, and subshell.
9. How do you think the kill command got its name?

10. Describe a way to override a standard utility.
11. What is a good umask value, and why?

Exercises

4.1 Write a script that prints the current date, your user name, and the name of your
login shell. [level: easy]

4.2 Experiment with the exec command by writing a series of three shell scripts
called “a.sh,” “b.sh,” and “c.sh”, each of which displays its name, executes ps, and
then exec’s the next script in the sequence. Observe what happens when you start
the first script by executing exec a.sh. [level: medium]

4.3 Why is the file that is created in the following session unaffected by the umask
value? [level: medium]

$ ls -l date.txt
-rw-rw-rw- 1 glass 29 Aug 20 21:04 date.txt
$ umask 0077
$ date > date.txt
$ ls -l date.txt
-rw-rw-rw- 1 glass 29 Aug 20 21:04 date.txt
$ _

4.4 Write a script that creates three background processes, waits for them all to com-
plete, and then displays a simple message. [level: medium]

Project

Compare and contrast the UNIX shell features with the graphical shells available
on Windows. Which do you think is better? [level: medium]

C H A P T E R 5

The Bourne Shell

MOTIVATION

The Bourne shell, written by Stephen Bourne, was the first popular UNIX shell and is
available on all UNIX systems. It supports a fairly versatile programming language and
is a subset of the more powerful Korn shell that is described in Chapter 6. Knowledge
of the Bourne shell will therefore allow you to understand the operation of many
scripts that have already been written for UNIX, as well as preparing you for the more
advanced Korn shell.

PREREQUISITES

You should have already read Chapter 4 and experimented with some of the core shell
facilities.

OBJECTIVES

In this chapter, I’ll explain and demonstrate the Bourne-specific facilities, including the
use of environment and local variables, the built-in programming language, and ad-
vanced I/O redirection.

PRESENTATION

The information is presented in the form of several sample UNIX sessions.

UTILITIES

The chapter introduces the following utilities, listed in alphabetical order:

expr test

181

182 Chapter 5 The Bourne Shell

SHELL COMMANDS

The following shell commands, listed in alphabetical order, are introduced:

break for..in..do..done set
case..in..esac if..then..elif..fi trap
continue read while..do..done
export readonly

INTRODUCTION

The Bourne shell supports all of the core shell facilities described in Chapter 4, plus the
following other facilities:

• several ways to set and access variables
• a built-in programming language that supports conditional branching, looping,

and interrupt handling
• extensions to the existing redirection and command sequence operations
• several new built-in commands

These facilities are diagram shown in Figure 5.1.

START-UP

The Bourne shell is a regular C program whose executable file is stored as “/bin/sh”. If
your chosen shell is “/bin/sh,” an interactive Bourne shell is invoked automatically
when you log into UNIX. You may also invoke a Bourne shell manually from a script
or from a terminal by using the command sh (which has several command-line options,
described at the end of the chapter).

When an interactive Bourne shell is started, it searches for a file called “.profile”
in the user’s home directory. If it finds the file, it executes all of the shell commands
that the file contains. Then, regardless of whether “.profile” was found, an interactive

RedirectionBuilt-in
commands

Sequences Variables

Bourne shell
functions

Startup

trap set read !& "& for case while if {…} export readonly .profile

Programming
language

FIGURE 5.1

Bourne shell functionality.

Variables 183

Bourne shell displays its prompt and awaits user commands.The standard Bourne shell
prompt is $, although it may be changed by setting the local variable PS1, described
later in the chapter. (Note that noninteractive Bourne shells do not read any start-up
files.)

One common use of “.profile” is to initialize environment variables such as
TERM, which contains the type of your terminal, and PATH, which tells the shell
where to search for executable files. Here’s an example of a Bourne shell “.profile”
startup file:

TERM=vt100 # Set terminal type.
export TERM # Copy to environment.
Set path and metacharacters
stty erase "^?" kill "^U" intr "^C" eof "^D"
PATH='.:$HOME/bin:/bin:/usr/sbin:/usr/bin:/usr/local/bin'

VARIABLES

The Bourne shell can perform the following variable-related operations:

• simple assignment and access
• testing of a variable for existence
• reading a variable from standard input
• making a variable read only
• exporting a local variable to the environment

The Bourne shell also defines several local and environment variables in addition to
those mentioned in Chapter 4.

Creating/Assigning a Variable

The Bourne shell syntax for assigning a value to a variable is

{name=value}+

If a variable doesn’t exist, it is implicitly created; otherwise, its previous value is over-
written. A newly created variable is always local, although it may be turned into an en-
vironment variable by means of a method I’ll describe shortly. To assign a value that
contains spaces, surround the value by quotes. Here’s an example:

$ firstName=Graham lastName=Glass age=29 ...assign vars.
$ echo $firstName $lastName is $age
Graham Glass is 29 ...simple access.
$ name=Graham Glass ...syntax error.
Glass: not found
$ name="Graham Glass" ...use quotes to built strings.
$ echo $name ...now it works.
Graham Glass
$ _

184 Chapter 5 The Bourne Shell

Accessing a Variable

The Bourne shell supports the access methods shown in Figure 5.2. If a variable is ac-
cessed before it is assigned a value, it returns a null string.

I personally find these techniques for accessing variables to be “hack” methods of deal-
ing with certain conditions, so I hardly ever use them. However, it’s good to be able to
understand code that uses them.The following examples illustrate each access method.
In the first example, I used braces to append a string to the value of a variable:

$ verb=sing ...assign a variable.
$ echo I like $verbing ...there's no variable "verbing".
I like
$ echo I like ${verb}ing ...now it works.
I like singing
$ _

Here’s an example that uses command substitution to set the variable startDate to the
current date if it’s not already set to that:

$ startDate=${startDate-`date`} ...if not set, run date.
$ echo $startDate ...look at its value.
Tue Wed 4 06:56:51 CST 1998
$ _

Syntax Action

$name Replaced by the value of name.

Replaced by the value of name. This form is useful if the
expression is immediately followed by an alphanumeric
character that would otherwise be interpreted as part of the
variable name.

Replaced by the value of name if set and word otherwise.

Replaced by word if name is set and nothing otherwise.

Assigns word to the variable name if name is not already set
and then is replaced by the value of name.

Replaced by name if name is set. If name is not set, word is
displayed to the standard error channel and the shell is
exited. If word is omitted, then a standard error message is
displayed instead.

$5name?word6

$5name=word6

$5name+word6

$5name-word6

$5name6

FIGURE 5.2

Bourne shell special variables.

Variables 185

In the next example, I set the variable x to a default value and printed its value, all at
the same time:

$ echo x = ${x=10} ...assign a default value.
x = 10
$ echo $x ...confirm the variable was set.
10
$ _

In the following example, I displayed messages on the basis of whether certain vari-
ables were set:

$ flag=1 ...assign a variable.
$ echo ${flag+'flag is set'} ...conditional message #1.
flag is set
$ echo ${flag2+'flag2 is set'} ...conditional message #2.

...result is null
$ _

In the next example, I tried to access an undefined variable called grandTotal and re-
ceived an error message instead:

$ total=10 ...assign a variable.
$ value=${total?'total not set'} ...accessed OK.
$ echo $value ...look at its value.
10
$ value=${grandTotal?'grand total not set'} ...not set.
grandTotal: grand total not set
$ _

In the final example, I ran a script that used the same access method as the previous ex-
ample. Note that the script terminated when the access error occurred:

$ cat script.sh ...look at the script.
value=${grandTotal?'grand total is not set'}
echo done # this line is never executed.
$ script.sh ...run the script.
script.sh: grandTotal: grand total is not set
$ _

Reading a Variable from Standard Input

The read command allows you to read variables from standard input. It works as
shown in Figure 5.3. If you specify just one variable, the entire line is stored in the vari-
able. Here’s a sample script that prompts a user for his or her full name:

$ cat script.sh ...list the script.
echo "Please enter your name: \c"
read name # read just one variable.

186 Chapter 5 The Bourne Shell

echo your name is $name # display the variable.
$ script.sh ...run the script.
Please enter your name: Graham Walker Glass
your name is Graham Walker Glass ...whole line was read.
$ _

Here’s an example that illustrates what happens when you specify more than one
variable:

$ cat script.sh ...list the script.
echo "Please enter your name: \c"
read firstName lastName # read two variables.
echo your first name is $firstName
echo your last name is $lastName
$ script.sh ...run the script.
Please enter your name: Graham Walker Glass
your first name is Graham ...first word.
your last name is Walker Glass ...the rest.
$ script.sh ...run it again.
Please enter your name: Graham
your first name is Graham ...first word.
your last name is ...only one.
$ _

Exporting Variables

The export command allows you to mark local variables for export to the environment. It
works as shown in Figure 5.4. Although it’s not necessary, I tend to use uppercase letters

Shell Command: read

read reads one line from standard input and then assigns successive words from the
line to the specified variables. Any words that are left over are assigned to the last
named variable.

5variable6+

FIGURE 5.3

Description of the read shell command.

Shell Command: export

export marks the specified variables for export to the environment. If no variables
are specified, a list of all the variables marked for export during the shell session is
displayed.

5variable6+

FIGURE 5.4

Description of the export shell command.

Variables 187

Utility: env [command]

env assigns values to specified environment variables and then executes an optional
command using the new environment. If no variables or command is specified, a list
of the current environment is displayed.

5variable = value6*

FIGURE 5.5

Description of the env command.

to name environment variables. The env utility, described in Figure 5.5, allows you to
modify and list such variables. In the following example, I created a local variable called
DATABASE, which I then marked for export. When I created a subshell, a copy of the
environment variable was inherited:

$ export ...list my current exports.
export TERM ...set in my ".profile" startup file.
$ DATABASE=/dbase/db ...create a local variable.
$ export DATABASE ...mark it for export.
$ export ...note that it's been added.
export DATABASE
export TERM
$ env ...list the environment.
DATABASE=/dbase/db
HOME=/home/glass
LOGNAME=glass
PATH=:/usr/ucb:/bin:/usr/bin
SHELL=/bin/sh
TERM=vt100
USER=glass
$ sh ...create a subshell.
$ echo $DATABASE ...a copy was inherited.
/dbase/db
$ ^D ...terminate subshell.
$ _

Read-only Variables

The readonly command allows you to protect variables against modification. It works
as shown in Figure 5.6. In the following example, I protected a local variable from mod-
ification, exported the variable, and then showed that its copy did not inherit the read-
only status:

$ password=Shazam ...assign a local variable.
$ echo $password ...display its value.
Shazam
$ readonly password ...protect it.
$ readonly ...list all readonly variables.

188 Chapter 5 The Bourne Shell

readonly password
$ password=Phoombah ...try to modify it.
password: is read only
$ export password ...export the variable.
$ password=Phoombah ...try to modify it.
password: is read only
$ sh ...create a subshell.
$ readonly ...the exported password is not readonly.
$ echo $password ...its value was copied correctly.
Shazam
$ password=Alacazar ...but its value may be changed.
$ echo $password ...echo its value.
Alacazar
$ ^D ...terminate the subshell.
$ echo $password ...echo original value.
Shazam
$ _

Predefined Local Variables

In addition to the core predefined local variables, the Bourne shell defines the local
variables shown in Figure 5.7. Here’s a small shell script that illustrates the first three
variables. In this example, the C compiler (cc) was invoked on a file that didn’t exist,
and therefore the system returned a failure exit code.

$ cat script.sh ...list the script.
echo there are $# command line arguments: $@
cc $1 # compile the first argument.
echo the last exit value was $? # display exit code.
$ script.sh nofile tmpfile ...execute the script.
there are 2 command line arguments: nofile tmpfile
cc: Warning: File with unknown suffix (nofile) passed to ld
ld: nofile: No such file or directory
the last exit value was 4 ...cc errored.
$ _

Shell Command: readonly

readonly makes the specified variables read only, protecting them against future
modification. If no variables are specified, a list of the current read-only variables is
displayed. Copies of exported variables do not inherit their read-only status.

5variable6*

FIGURE 5.6

Description of the readonly shell command.

Variables 189

The next example illustrates how $! may be used to kill the last background process:

$ sleep 1000 & ...create a background process.
29455 ...process ID of background process.
$ kill $! ...kill it!
29455 Terminated
$ echo $! ...the process ID is still remembered.
29455
$ _

Predefined Environment Variables

In addition to the core predefined environment variables (listed in Chapter 2), the
Bourne shell defines the environment variables shown in Figure 5.8. Here’s a small ex-
ample that illustrates the first three predefined environment variables. I set my prompt
to something different by assigning a new value to PS1 and changed the delimiter char-
acter to a colon, saving the previous value in a local variable. Finally, I set PS2 to a new
value and illustrated a situation in which the secondary prompt is displayed.

$ PS1="sh? " ...set a new primary prompt.
sh? oldIFS=$IFS ...remember the old value of IFS.
sh? IFS=":" ...change the word delimiter to a colon.
sh? ls:*.c ...this executes OK!
badguy.c number.c open.c trunc.c writer.c
fact2.c number2.c reader.c who.c
sh? IFS=$oldIFS ...restore the old value of IFS.
sh? string="a long\ ...assign a string over 2 lines
> string" ...">" is the secondary prompt.
sh? echo $string ...look at the value of "string".
a long string

Name Value

$@ an individually quoted list of all the positional parameters

$# the number of positional parameters

$? the exit value of the last command

$! the process ID of the last background command

$- the current shell options assigned from the command line or by the
built-in set command (see later)

$$ the process ID of the shell in use

FIGURE 5.7

Bourne predefined local variables.

190 Chapter 5 The Bourne Shell

sh? PS2="??? " ...change the secondary prompt.
sh? string="a long\ ...assign a long string.
??? string" ..."???" is new secondary prompt.
sh? echo $string ...look at the value of "string".
a long string
sh? _

ARITHMETIC

Although the Bourne shell itself doesn’t support arithmetic directly, the expr utility
does and is used as described in Figure 5.9. The following example illustrates some of
the functions of expr and makes plentiful use of command substitution:

$ x=1 ...initial value of x.
$ x=`expr $x + 1` ...increment x.
$ echo $x
2
$ x=`expr 2 + 3 * 5` ...* before +.
$ echo $x
17
$ echo `expr \(2 + 3 \) * 5` ...regroup.
25
$ echo `expr length "cat"` ...find length of "cat".
3
$ echo `expr substr "donkey" 4 3` ...extract a substring.
key

Name Value

$IFS When the shell tokens a command line prior to its execution, it uses the
characters in this variable as delimiters. IFS usually contains a space, a
tab, and a newline character.

$PS1 This variable contains the value of the command-line prompt, $ by
default. To change the prompt, simply set PS1 to a new value.

$PS2 This variable contains the value of the secondary command-line prompt
(by default) that is displayed when more input is required by the
shell. To change the prompt, set PS2 to a new value.

$SHENV If this variable is not set, the shell searches the user’s home directory
for the “.profile” start-up file when a new shell is created. If the
variable is set, then the shell searches the directory specified by
SHENV.

7

FIGURE 5.8

Bourne shell predefined environment variables.

Arithmetic 191

$ echo `expr index "donkey" "ke"` ...locate a substring.
4
$ echo `expr match "smalltalk" '.*lk'`...attempt a match.
9
$ echo `expr match "transputer" '*.lk'` ...attempt match.
0
$ echo `expr "transputer" : '*.lk'` ...attempt a match.
0
$ echo `expr \(4 \> 5 \)` ...is 4 > 5 ?
0
$ echo `expr \(4 \> 5 \) \| \(6 \< 7 \)` ...4>5 or 6<7?
1
$ _

Utility: expr expression

expr evaluates expression and sends the result to standard output. All of the compo-
nents of expression must be separated by blanks, and all of the shell metacharacters
must be escaped by a \. expression may yield a numeric or string result, depending on
the operators that it contains. The result of expression may be assigned to a shell
variable by the appropriate use of command substitution.

expression may be constructed by applying the following binary operators to
integer operands, grouped in decreasing order of precedence:

OPERATOR MEANING

* / % multiplication, division, remainder

addition, subtraction

comparison operators

& logical and

| logical or

Parentheses may be used to explicitly control the order of evaluation. (They also
must be escaped.) expr supports the following string operators as well:

OPERATOR MEANING

string : regularExpression Both forms return the length of string if
match string regularExpression both sides match, and each returns zero

otherwise.

= 7 7 = 6 6 = !=
+ -

FIGURE 5.9

Description of the expr command.

192 Chapter 5 The Bourne Shell

substr string start length Returns the substring of string, starting
from index start and consisting of length
characters.

index string charList Returns the index of the first character
in string that appears in charList.

length string Returns the length of string.

The format of regularExpression is defined in the appendix.

FIGURE 5.9 (Continued)

CONDITIONAL EXPRESSIONS

The control structures described in the next section often branch, depending on the
value of a logical expression—that is, an expression that evaluates to true or false. The
test utility supports a substantial set of UNIX-oriented expressions that are suitable
for most occasions. It works as shown in Figure 5.10. A test expression may take the
forms shown in Figure 5.11 test is very picky about the syntax of expressions; the
spaces shown in this table are not optional. For examples of test, see the next section,
which uses them in a natural context.

Utility: test expression

[expression] (equivalent form on some UNIX systems)

test returns a zero exit code if expression evaluates to true; otherwise, it returns a
nonzero exit status. The exit status is typically used by shell control structures for
branching purposes.

Some Bourne shells support test as a built-in command, in which case they
support the second form of evaluation as well.The brackets of the second form must
be surrounded by spaces in order to work.

(See the text for a description of the syntax of expression.)

FIGURE 5.10

Description of the test command.

Conditional Expressions 193

Form Meaning

-b filename True if filename exists as a block special file.

-c filename True if filename exists as a character special file.

-d filename True if filename exists as a directory.

-f filename True if filename exists as a nondirectory.

-g filename True if filename exists as a “set group ID” file.

-h filename True if filename exists as a symbolic link.

-k filename True if filename exists and has its “sticky bit” set.

-l string The length of string.

-n string True if string contains at least one character.

-p filename True if filename exists as a named pipe.

-r filename True if filename exists as a readable file.

-s filename True if filename contains at least one character.

-t fd True if file descriptor fd is associated with a terminal.

-u filename True if filename exists as a “set user ID” file.

-w filename True if filename exists as a writable file.

-x filename True if filename exists as an executable file.

-z string True if string contains no characters.

True if str1 is equal to str2.

True if str1 is not equal to str2.

string True if string is not null.

int1 -eq int2 True if integer int1 is equal to integer int2.

int1 -ne int2 True if integer int1 is not equal to integer int2.

int1 -gt int2 True if integer int1 is greater than integer int2.

int1 -ge int2 True if integer int1 is greater than or equal to integer int2.

int1 -lt int2 True if integer int1 is less than integer int2.

int1 -le int2 True if integer int1 is less than or equal to integer int2.

! expr True if expr is false.

expr1 -a expr2 True if expr1 and expr2 are both true.

expr1 -o expr2 True if expr1 or expr2 are true.

\(expr \) Escaped parentheses are used for grouping expressions.

str1! = str2
str1 = str2

FIGURE 5.11

test command expressions.

194 Chapter 5 The Bourne Shell

CONTROL STRUCTURES

The Bourne shell supports a wide range of control structures that make the shell
suitable as a high-level programming tool. Shell programs are usually stored in
scripts and are commonly used to automate maintenance and installation tasks. The
next few subsections describe the control structures in alphabetical order; they as-
sume that you are already familiar with at least one high-level programming
language.

case .. in .. esac

The case command supports multiway branching based on the value of a single string,
It has the syntax described in Figure 5.12. Here’s an example of a script called
“menu.sh” that makes use of a case control structure (this script is also available on-
line; see the preface for information):

#! /bin/sh
echo menu test program
stop=0 # reset loop termination flag.
while test $stop -eq 0 # loop until done.
do
cat << ENDOFMENU # display menu.
1 : print the date.
2, 3: print the current working directory.
4 : exit
ENDOFMENU
echo
echo 'your choice? \c' # prompt.
read reply # read response.
echo
case $reply in # process response.
"1")
date # display date.
;;

"2"|"3")
pwd # display working directory.
;;

"4")
stop=1 # set loop termination flag.
;;

*) # default.
echo illegal choice # error.
;;

esac
done

Control Structures 195

Here’s the output from the “menu.sh” script:

$ menu.sh
menu test program
1 : print the date.
2, 3: print the current working directory.
4 : exit

your choice? 1
Thu Feb 5 07:09:13 CST 1998
1 : print the date.
2, 3: print the current working directory.
4 : exit

your choice? 2
/home/glass
1 : print the date.
2, 3: print the current working directory.
4 : exit

your choice? 5
illegal choice
1 : print the date.
2, 3: print the current working directory.
4 : exit

your choice? 4
$ _

case expression in
pattern
list
;;
esac

expression is an expression that evaluates to a string, pattern may include wild-
cards, and list is a list of one or more shell commands. You may include as many
pattern–list associations as you wish. The shell evaluates expression and then com-
pares it with each pattern in turn, from top to bottom.When the first matching pat-
tern is found, its associated list of commands is executed, and then the shell skips
to the matching esac. A series of patterns separated by “or” symbols (|) is all as-
sociated with the same list. If no match is found, then the shell skips to the match-
ing esac.

5 ƒpattern6*)

FIGURE 5.12

Description of the case shell command.

196 Chapter 5 The Bourne Shell

for .. do .. done

The for command allows a list of commands to be executed several times, using a dif-
ferent value of the loop variable during each iteration. Its syntax is shown in Figure 5.13.
Here’s an example of a script that uses a for control structure:

$ cat for.sh ...list the script.
for color in red yellow green blue
do
echo one color is $color
done
$ for.sh ...execute the script.
one color is red
one color is yellow
one color is green
one color is blue
$ _

if .. then .. fi

The if command supports nested conditional branches. It has the syntax shown in
Figure 5.14. Here’s an example of a script that uses an if control structure:

$ cat if.sh ...list the script.
echo 'enter a number: \c'
read number
if [$number -lt 0]

for name [in]
do

list
done

The for command loops the value of the variable name through each word in the
word list, evaluating the commands in list after each iteration. If no word list is sup-
plied, $@ ($1..) is used instead. A break command causes the loop to end immedi-
ately, and a continue command causes the loop to jump immediately to the next
iteration.

5word6*

FIGURE 5.13

Description of the for shell command.

Control Structures 197

then
echo negative
elif [$number -eq 0]
then
echo zero
else
echo positive
fi
$ if.sh ...run the script.
enter a number: 1
positive
$ if.sh ...run the script again.
enter a number: -1
negative
$ _

trap

The trap command allows you to specify a command that should be executed when the
shell receives a signal of a particular value. Its syntax is shown in Figure 5.15. Here’s an

if list1
then

list2
elif list3 elif part may be repeated several times.
then

list4
else else part may occur zero or one times.

list5
fi

The commands in list1 are executed. If the last command in list1 succeeds, the
commands in list2 are executed. If the last command in list1 fails and there are
one or more elif components, then a successful command list following an elif
causes the commands following the associated then to be executed. If no success-
ful lists are found and there is an else component, the commands following the else
are executed.

Á optional,

Á optional,

FIGURE 5.14

Description of the if shell command.

198 Chapter 5 The Bourne Shell

example of a script that uses the trap control structure:

$ cat trap.sh ...list the script.
trap 'echo Control-C; exit 1' 2 # trap Ctl-C (signal #2)
while 1
do
echo infinite loop
sleep 2 # sleep for two seconds.
done
$ trap.sh ...execute the script.
infinite loop
infinite loop
^C ...I typed a Control-C here.
Control-C ...displayed by the echo command.
$ _

Note that when Control-C was typed, the shell executed the echo command followed
by the exit command.

until .. do .. done

The until command executes one series of commands as long as another series of com-
mands fails. It has the syntax shown in Figure 5.16. Here’s an example of a script that
uses an until control structure:

$ cat until.sh ...list the script.
x=1
until [$x -gt 3]
do
echo x = $x

Shell command: trap. [[command]]

The trap command instructs the shell to execute command whenever any of the
numbered signals signal is received. If several signals are received, they are trapped
in numeric order. If a signal value of 0 is specified, then command is executed when
the shell terminates. If command is omitted, then the traps of the numbered signals
are reset to their original values. If command is an empty string, then the numbered
signals are ignored. If trap is executed with no arguments, a list of all the signals and
their trap settings are displayed. (For more information on signals and their default
actions, see Chapter 13.)

5signal6 +

FIGURE 5.15

Description of the trap shell command.

Control Structures 199

x=`expr $x + 1`
done
$ until.sh ...execute the script.
x = 1
x = 2
x = 3
$ _

while .. done

The while command executes one series of commands as long as another series of com-
mands succeeds. Its syntax is shown in Figure 5.17. Here’s an example of a script that
uses a while control structure to generate a small multiplication table:

$ cat multi.sh ...list the script.
if ["$1" -eq ""]; then

echo "Usage: multi number"
exit

fi
x=1 # set outer loop value
while [$x -le $1] # outer loop
do
y=1 # set inner loop value
while [$y -le $1]
do # generate one table entry
echo `expr $x * $y` " \c"
y=`expr $y + 1` # update inner loop count

until list1
do
list2

done

The until command executes the commands in list1 and ends if the last command in
list1 succeeds; otherwise, the commands in list2 are executed and the process is re-
peated. If list2 is empty, the do keyword should be omitted. A break command caus-
es the loop to end immediately, and a continue command causes the loop to jump
immediately to the next iteration.

FIGURE 5.16

Description of the until shell command.

200 Chapter 5 The Bourne Shell

done
echo # blank line
x=`expr $x + 1` # update outer loop count

done
$ multi.sh 7 ...execute the script.
1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49
$ _

SAMPLE PROJECT: track

To illustrate a good percentage of the capabilities of the Bourne shell, I’ll present a
small project that I call “track.” This script tracks a user’s log-ins and log-outs, generat-
ing a simple report of the user’s sessions. The script utilizes the following utilities:

• who, which displays a listing of the current users of the system
• grep, which filters text for lines that match a specified pattern
• diff, which displays the differences between two files
• sort, which sorts a text file
• sed, which performs preprogrammed edits on a file
• expr, which evaluates an expression
• cat, which lists a file

while list1
do
list2

done

The while command executes the commands in list1 and ends if the last command in
list1 fails; otherwise, the commands in list2 are executed and the process is repeated.
If list2 is empty, the do keyword should be omitted. A break command causes the
loop to end immediately, and a continue command causes the loop to jump immedi-
ately to the next iteration.

FIGURE 5.17

Description of the while shell command.

Sample Project: track 201

• date, which displays the current time
• rm, which removes a file
• mv, which moves a file
• sleep, which pauses for a specified number of seconds

grep, diff, sort, and sed are described in Chapter 3; who is described in Chapter 9. The
usage of track is as shown in Figure 5.18. Here’s an example of track at work:

$ track -n3 ivor -t200 ...track ivor's sessions.
track report for ivor: ...initial output.
login ivor ttyp3 Feb 5 06:53
track report for ivor: ...ivor logged out.
logout ivor ttyp3 Feb 5 06:55
^C ...terminate program using Control-C.
stop tracking ...termination message.
$ _

The implementation of track consists of three files:

• “track,” the main Bourne shell script
• “track.sed,” a sed script for editing the output of the diff utility
• “track.cleanup,” a small script that cleans up temporary files at the end

The operation of track may be divided into three pieces:

• It parses the command line and sets the values of three local variables: user,
pause, and loopCount. If any errors occur, a usage message is displayed and the
script terminates.

• It then sets two traps: one to trap the script’s termination and the other to trap
an INT (Control-C) or a QUIT (Control-\) signal. The latter trap invokes the
former trap by executing an explicit exit, so the cleanup script always gets called,

Script: track [-ncount] [-tpause] userId

track monitors the specified user’s login and logout sessions. Every pause number of
seconds, track scans the system and makes a note of who is currently logged in. If the
specified user has logged in or logged out since the last scan, this information is dis-
played to standard output. track operates until count scans have been completed. By
default, pause is 20 seconds and count is 10,000 scans. track is usually executed in the
background, with its standard output redirected.

FIGURE 5.18

Description of the track shell script.

202 Chapter 5 The Bourne Shell

regardless of how the script terminates. The cleanup script takes the process ID
of the main script as its single argument and removes the temporary files that
track uses for its operation.

• The script then loops the specified number of times, storing a filtered list of the
current users in a temporary file called “.track.new.$$,” where $$ is the process
ID of the script itself. This file is then compared against the last version of the
same output, stored in “.track.old.$$.” If a line is in the new file, but not in the
oldone, the user must have logged in; if a line is in the old file, but not in the
newone, the user must have logged out. If the output file from diff is of nonzero
length, it is massaged into a suitable form by sed and displayed. The script then
pauses for the specified number of seconds and continues to loop.

The output from two “diff’ed” who outputs is illustrated by the following session:

$ cat track.new.1112 ...the new output from who.
glass ttyp0 Feb 4 23:04
glass ttyp2 Feb 4 23:04
$ cat track.old.1112 ...the old output from who.
glass ttyp0 Feb 4 23:04
glass ttyp1 Feb 4 23:06
$ diff track.new.1112 track.old.1112 ...the changes.
2c2
< glass ttyp2 Feb 4 23:04

> glass ttyp1 Feb 4 23:06
$ _

The sed script “track.sed” removes all lines that start with a digit or “---” and then sub-
stitutes for a login and for a logout. Here is a listing of the three source files
(which are also available on-line; see the preface for more information):

track.sed

/^[0-9].*/d
/^---/d
s/^</login/
s/^>/logout/

track.cleanup

echo stop tracking
rm -f .track.old.$1 .track.new.$1 .track.report.$1

track

pause=20 # default pause between scans
loopCount=10000 # default scan count
error=0 # error flag
for arg in $* # parse command line arguments
do

“7”“6”

Miscellaneous Built-Ins 203

case $arg in
-t*) # time
pause=`expr substr $arg 3 10` # extract number
;;

-n*) # scan count
loopCount=`expr substr $arg 3 10` # extract number
;;

*)
user=$arg # user name
;;

esac
done
if [! "$user"] # check a user ID was found
then
error=1
fi
if [$error -eq 1] # display error if error(s) found
then
cat << ENDOFERROR # display usage message
usage: track [-n#] [-t#] userId
ENDOFERROR
exit 1 # terminate shell
fi
trap 'track.cleanup $$; exit $exitCode' 0 # trap on exit
trap 'exitCode=1; exit' 2 3 # trap on INT/QUIT
> .track.old.$$ # zero the old track file.
count=0 # number of scans so far
while [$count -lt $loopCount]
do
who | grep $user | sort > .track.new.$$ # scan system
diff .track.new.$$.track.old.$$ | \

sed -f track.sed > .track.report.$$
if [-s .track.report.$$] # only report changes
then # display report
echo track report for ${user}:
cat .track.report.$$

fi
mv .track.new.$$.track.old.$$ # remember current state
sleep $pause # wait a while
count=`expr $count + 1` # update scan count
done
exitCode=0 # set exit code

MISCELLANEOUS BUILT-INS

The Bourne shell supports several specialized built-in commands. I have already de-
scribed several of them, such as those related to control structures and job control, in
other sections of the chapter. This section contains an alphabetical list of the rest, to-
gether with a brief description.

204 Chapter 5 The Bourne Shell

Read Command: .

To execute the contents of a text file from within a shell’s environment (i.e., not by
starting a subshell, as you do when executing a shell script), use a period followed by
the name of the file. The file does not have to have execute permission. This command
is handy if you make modifications to your “.profile” file and wish to reexecute it. The
following command sequence illustrative:

$ cat .profile ...assume ".profile" was just edited.
TERM=vt100
export TERM
$. .profile ...re-execute it.
$ _

Note that, since a subshell is not created to execute the contents of the file, any local
variables that the file sets are those of the current shell.

null Command

The null command is usually used in conjunction with the control structures listed ear-
lier in the chapter and performs no operation, as shown in Figure 5.19. It is often used
in case structures to denote an empty set of statements associated with a particular
switch.

Shell Command: null

The null command performs no operation.

FIGURE 5.19

Description of the null shell command.

Setting Shell Options: set

The set command allows you to control several shell options. Its syntax is shown in
Figure 5.20. Figure 5.21 shows a list of the set options. The next example shows a brief
script that makes use of these options. The -x and -v options are useful in debugging
a shell script, as they cause the shell to display lines both before and after the vari-
able, wildcard, and command substitution metacharacters are processed. I recom-
mend that you always use these options when testing scripts. Here is the relevant
code:

$ cat script.sh ...look at the script.
set -vx a.c # set debug trace and overwrite $1.
ls $1 # access first positional parameter.

Miscellaneous Built-Ins 205

set - # turn off trace.
echo goodbye $USER
echo $notset
set -u # unset variables will generate an error now.
echo $notset # generate an error.
$ script.sh b.c ...execute the script.
ls $1 ...output by -v option.
+ ls a.c ...output by -x option.
a.c ...regular output.
set - ...output by -v option.
+ set - ...output by -x option.
goodbye glass ...regular output.
script.sh: notset: parameter not set ...access unset variable.
$ _

Shell Command: set -ekntuvx

set allows you to choose the shell options that are displayed in Figure 5.21. Any re-
maining arguments are assigned to the positional parameters $1, $2, and so forth,
overwriting their current values.

5arg6*

FIGURE 5.20

Description of the set shell command.

Option Meaning

e If the shell is not executing commands from a terminal or a start-up
file, and a command fails, then execute an ERR trap and exit.

n Accept but do not execute commands. This flag does not affect interac-
tive shells.

t Execute the next command and then exit.

u Generate an error when an unset variable is encountered.

v Echo shell commands as they are read.

x Echo shell commands as they are executed.

- Turns off the x and v flags and treat further - characters as arguments.

FIGURE 5.21

set shell command options.

206 Chapter 5 The Bourne Shell

ENHANCEMENTS

In addition to possessing the new facilities that have already been described, the
Bourne shell enhances the following areas of the common core:

• redirection
• sequenced commands

Redirection

Besides employing the common core redirection facilities, the Bourne shell allows you
to duplicate, close, and redirect arbitrary I/O channels. You may associate the standard
input file descriptor (0) with file descriptor n by using the following syntax:

$ command <& n ...associate standard input.

Similarly, you may associate the standard output file descriptor (1) with file descriptor
n by using the following syntax:

$ command >& n ... associate standard output.

To close the standard input and standard output channels, use this syntax:

$ command <&- ...close stdin and execute command.
$ command >&- ...close stdout and execute command.

You may precede any redirection metacharacters, including the Bourne-specific ones
just described, by a digit to indicate the file descriptor that should be used instead of 0
(for input redirection) or 1 (for output redirection). It’s fairly common to redirect file
descriptor 2, which corresponds to the standard error channel.

The next example illustrates the use of the foregoing redirection facilities. The
man utility always writes a couple of lines to the standard error channel: “Reformat-
ting page. Wait” when it begins and “done” when it ends. If you redirect only stan-
dard output, these messages are seen on the terminal. To redirect the standard
error channel to a separate file, use the redirection sequence; to send it to the
same place as standard output, use the sequence, as shown in the following
commands:

$ man ls > ls.txt ...send standard output to "ls.txt".
Reformatting page. Wait... done ...from standard error.
$ man ls > ls.txt 2> err.txt ...send error to "err.txt".
$ cat err.txt ...look at the file.
Reformatting page. Wait... done
$ man ls > ls.txt 2>&1 ...associate stderr with stdout.
$ head -1 ls.txt ...look at first line of "ls.txt".
Reformatting page.
$ _

“27&1”
“27”

Command Line Options 207

Sequenced Commands

When a group of commands is placed between parentheses, the commands are execut-
ed by a subshell. The Bourne shell also lets you group commands by placing them be-
tween braces, in which case they are still redirectable and “pipeable” as a group, but are
executed directly by the parent shell. A space must be left after the opening brace, and
a semicolon must precede the closing brace.

In the following example, the first cd command didn’t affect the current working
directory of my login shell, since it executed inside a subshell, but the second cd com-
mand did:

$ pwd ...display current working directory.
/home/glass
$ (cd /; pwd; ls | wc -l) ...count files with subshell.
/

22
$ pwd ...my shell didn't move.
/home/glass
$ { cd /; pwd; ls | wc -l; } ...count files with shell.
/

22
$ pwd ...my shell moved.
/
$ _

COMMAND LINE OPTIONS

The Bourne shell supports the command-line options shown in Figure 5.22.

Option Meaning

-c string Create a shell to execute the command string.

-s Create a shell that reads commands from standard input and sends
shell messages to the standard error channel.

-i Create an interactive shell; like the -s option, except that the
SIGTERM, SIGINT, and SIGQUIT signals are all ignored. (For
information about signals, consult Chapter 13.)

FIGURE 5.22

Bourne shell command-line options.

208 Chapter 5 The Bourne Shell

CHAPTER REVIEW

Checklist

In this chapter, I described

• the creation of a Bourne shell start-up file
• the creation and access of shell variables
• arithmetic
• conditional expressions
• six control structures
• a sample project for tracking user login sessions
• some miscellaneous built-in commands
• several enhancements to the core facilities

Quiz

1. Who wrote the Bourne shell?
2. Describe a common use of the built-in variable $$.
3. What is the easiest way to reexecute your “.profile” file?
4. What is the method used to have a shell variable defined in a subshell (i.e., to pass

the value to the subshell)?
5. What debugging features does the Bourne shell provide?

Exercises

5.1 Write a shhelp utility that works as follows:

Here’s an example of shhelp in action:

$ shhelp null ...ask for help about null.
The null command performs no operation.
$ _

Make sure that your utility displays a suitable error message if command is not a
valid command. I suggest that the text of each command’s help message be kept in

Utility: shhelp [-k]

shhelp lists help about the specified Bourne shell command.The -k option lists every
command that shhelp knows about.

5command6*

Chapter Review 209

a separate file, rather than being stored inside the shhelp script. If you do decide to
place it all inside a script, try using the “here” document facility. [level: easy]

5.2 Write a utility called junk that satisfies the following specification:

Here’s an example of junk at work:

$ ls -l reader.c ...list existing file.
-rw-r--r-- 1 glass 2580 May 4 19:17 reader.c
$ junk reader.c ...junk it!
$ ls -l reader.c ...confirm that it was moved.
reader.c not found
$ junk badguy.c ...junk another file.
$ junk -l ...list contents of "junk" directory.
-rw-r--r-- 1 glass 57 May 4 19:17 badguy.c
-rw-r--r-- 1 glass 2580 May 4 19:17 reader.c
$ junk -p ...purge junk.
$ junk -l ...list junk.
$ _

Remember to comment your script liberally. [level: medium]
5.3 Modify the junk script so that it is menu driven. [level: easy]

Projects

1. Write a crafty script called ghoul that is difficult to kill; when it receives a SIG-
INT (from a Control-C), it should create a copy of itself before dying.Thus, every
time an unwary user tries to kill a ghoul, another ghoul is created to take its
place! Of course, ghoul can still be killed by a SIGKILL (-9) signal. [level:
medium]

2. Build a phone book utility that allows you to access and modify an alphabetical
list of names, addresses, and telephone numbers. Use the utilities described in
Chapter 3, such as awk and sed, to maintain and edit the file of phone-book in-
formation. [level: hard]

3. Build a process management utility that allows you to kill processes on the basis
of their CPU usage, user ID, total elapsed time, and so forth. This kind of utility
would be especially useful to system administrators. (See Chapter 15.) [level:
hard]

Utility: junk [-l] [-p]

junk is a replacement for the rm utility. Rather than removing files, it moves them
into the subdirectory “.junk” in your home directory. If “.junk” doesn’t exist, it is au-
tomatically created. The -l option lists the current contents of the “.junk” directory,
and the -p option purges “.junk”.

5fileName6*

210

C H A P T E R 6

The Korn Shell

MOTIVATION

The Korn shell, written by David Korn, is a powerful superset of the Bourne shell and
offers improvements in job control, command line editing, and programming features.
It’s rapidly becoming the industry favorite and looks likely to be the UNIX shell of
choice for many years to come.

PREREQUISITES

You should already have read Chapter 5 and experimented with the Bourne shell.

OBJECTIVES

In this chapter, I explain and demonstrate the Korn-specific facilities.

PRESENTATION

The information is presented in the form of several sample UNIX sessions.

SHELL COMMANDS

The following shell commands, listed in alphabetical order, are introduced:

alias jobs select
bg kill typeset
fc let unalias
fg print
function return

Start-Up 211

INTRODUCTION

The Korn shell supports all of the Bourne shell facilities described in Chapter 5 plus
the following new features:

• command customization, using aliases
• access to previous commands via a history mechanism (through vi-like and

emacs-like command line editing features)
• functions
• advanced job control
• several new built-in commands and several enhancements to existing commands

The new facilities are shown in Figure 6.1.

START-UP

The Korn shell is a regular C program whose executable file is stored as “/bin/ksh.” If
your chosen shell is “/bin/ksh”, an interactive Korn shell is invoked automatically when
you log into UNIX. You may also invoke a Korn shell manually from a script or from a
terminal by using the command ksh, which has several command line options that are
described at the end of the chapter.

When a Korn shell is invoked, the start-up sequence is different for interactive
shells and non-interactive shells, as shown in Figure 6.2. The value $ENV is usually set
to $HOME/.kshrc in the $HOME/.profile script. After reading the start-up files, an in-
teractive Korn shell displays its prompt and awaits user commands. The standard Korn
shell prompt is $, although it may be changed by setting the local variable PS1 de-
scribed in the previous chapter. Here’s an example of a Korn shell “.profile” script,
which is executed exactly once at the start of every login session:

TERM=vt100; export TERM # my terminal type.
ENV=~/.kshrc; export ENV # environment filename.

FIGURE 6.1

Korn shell functionality.

AliasingBuilt-in
commands

EditorHistory Programming
language

Job control Variables Startup

print let jobs typeset

Korn shell
functions

fc select Functions bg fg ^Z .profile

212 Chapter 6 The Korn Shell

HISTSIZE=100; export HISTSIZE # remember 100 commands.
MAILCHECK=60; export MAILCHECK # seconds between checks.
set -o ignoreeof # don't let Control-D log me out.
set -o trackall # speed up file searches.
stty erase '^H' # set backspace character.
tset # set terminal.

Some of these commands won’t mean much to you right now, but their meaning will
become clear as the chapter progresses.

Here’s an example of a Korn shell “.kshrc” script, which typically contains useful
Korn-shell-specific information required by all shells, including those created purely to
execute scripts:

PATH='.:~/bin:/bin:/usr/bin:/usr/local/bin:/gnuemacs'
PS1='! $ ';export PS1 # put command number in prompt.
alias h="fc -l" # set up useful aliases.
alias ll="ls -l"
alias rm="rm -i"
alias cd="cdx"
alias up="cdx .."
alias dir="/bin/ls"
alias ls="ls -aF"
alias env="printenv|sort"

function to display path and directory when moving
function cdx
{
if 'cd' "$@"
then
echo $PWD
ls -aF

fi
}

Every Korn shell, including all subshells, executes this script when it begins.

Step Shell type Action

1 interactive only Execute commands in “/etc/profile” if it exists.

2 interactive only Execute commands in $HOME/.profile if it
exists.

3 both Execute commands in $ENV if it exists.

FIGURE 6.2

Korn shell start-up sequence.

Aliases 213

ALIASES

The Korn shell allows you to create and customize your own commands by using the
alias command, which works as shown in Figure 6.3. Here’s an example of alias in
action:

$ alias dir='ls -aF' ...register an alias.
$ dir ...same as typing "ls -aF".
./ main2.c p.reverse.c reverse.h
../ main2.o palindrome.c reverse.old
$ dir *.c ...same as typing "ls -aF *.c".
main2.c p.reverse.c palindrome.c
$ alias dir ...definition of "dir".
dir=ls -aF
$ _

In the following example, I defined a command in terms of itself:

$ alias ls='ls -aF' ...no problem.
$ ls *.c ...same as typing "ls -aF *.c".
main2.c p.reverse.c palindrome.c
$ alias dir='ls' ...define "dir" in terms of "ls".
$ dir ...same as typing "ls -aF".
./ main2.c p.reverse.c reverse.h
../ main2.o palindrome.c reverse.old
$ _

Aliasing Built-In Commands

All built-in commands may be aliased, except for case, do, done, elif, else, esac, fi, for,
function, if, select, then, time, until, while, {, and }.

Shell Command: alias [-tx] [word []]

alias supports a simple form of command line customization. If you alias word to be
equal to string and then later enter a command beginning with word, the first occur-
rence of word is replaced by string, and then the command is reprocessed. If you
don’t supply word or string, a list of all the current shell aliases is displayed. If you
supply only word, then the string currently associated with the alias word is dis-
played. If you supply word and string, the shell adds the specified alias to its collec-
tion of aliases. If an alias already exists for word, it is replaced. If the replacement
string begins with word, it is not reprocessed for aliases, in order to prevent infinite
loops. If the replacement string ends with a space, then the first word that follows is
processed for aliases.

= string

FIGURE 6.3

Description of the alias shell command.

214 Chapter 6 The Korn Shell

Removing an Alias

To remove an alias, use the unalias command, which works as shown in Figure 6.4.
Here’s an example of the use of unalias:

$ alias dir ...look at an existing alias.
dir=ls
$ unalias dir ...remove the alias.
$ alias dir ...try looking at the alias again.
dir alias not found
$ _

Predefined Aliases

For convenience, the shell predefines the aliases shown in Figure 6.5. The uses of these
aliases will become more apparent as the chapter progresses. For example, the “r” alias
is particularly useful, allowing you to recall previous commands without having to use
the tedious sequence “fc -e -”.

Shell Command: unalias

unalias removes all the specified aliases.

5word6+

FIGURE 6.4

Description of the unalias shell command.

Alias Value

false let 0

functions typeset -f

history fc -l

integer typeset -i

nohup nohup

r fc -e -

true :

type whence -v

hash alias -t

FIGURE 6.5

Korn shell predefined aliases.

Aliases 215

Some Useful Aliases

Figure 6.6 presents a grab bag of useful aliases that I’ve gathered from various sources.
For some other interesting aliases, see “Aliases” in Chapter 7.

Tracked Aliases

One common use of aliases is as a shorthand for full pathnames, to avoid the lookup
penalty of the standard search mechanism as it scans the directories specified by
$PATH.You may arrange for the full pathname replacement to occur automatically by
making use of the tracked alias facility. All aliases listed with the -t option are flagged
as tracked aliases, and the standard search mechanism is used to set their initial value.
From then on, a tracked alias is replaced by its value, thereby avoiding the search time.
If no aliases follow the -t option, a list of all the currently tracked aliases is displayed.
Here’s an example:

$ alias -t page ...define a tracked alias for page.
$ alias -t ...look at all tracked aliases.
page=/usr/ucb/page ...its full pathname is stored.
$ _

The “-o trackall” option of set (described later in the chapter) tells the shell to track all
commands automatically, as shown in the following example:

$ set -o trackall ...all commands are now tracked.
$ date ...execute date.

Alias Value

rm rm -i

This causes rm to prompt for confirmation.

mv mv -i

This causes mv to prompt for confirmation.

ls ls -aF

This causes ls to display more information.

env printenv | sort

This displays a sorted list of the environment variables.

ll ls -l

This allows you to obtain a long directory listing more conveniently.

FIGURE 6.6

Some useful aliases.

216 Chapter 6 The Korn Shell

Fri Feb 6 00:54:44 CST 1998
$ alias -t ...look at all tracked aliases.
date=/bin/date ...date is now tracked.
page=/usr/ucb/page
$ _

Since the value of a tracked alias is dependent on the value of $PATH, the values of all
tracked aliases are reevaluated every time the PATH variable is changed. If PATH is
unset, the values of all tracked aliases are set to null, but remain tracked.

Sharing Aliases

To make an alias available to a child shell, you must mark the alias as an export alias by
using the -x option of alias.All aliases listed with the -x option are flagged as export alias-
es. If no aliases follow the -x option, a list of all currently exported aliases is displayed.
Note that if the value of an alias is changed in a child shell, it does not affect the value of
the original alias in the parent shell. Here’s an example of the use of the export alias:

$ alias -x mroe='more' ...add an export alias.
$ alias -x ...list exported aliases.
autoload=typeset -fu ...a standard alias.
... ...other aliases are listed here.
ls=ls -F
mroe=more ...the alias I just added.
... ...other aliases are listed here.
type=whence -v
vi=/usr/ucb/vi
$ cat test.ksh ...a script using the new alias.
mroe main2.c
$ test.ksh ...run the script. mroe works!
/* MAIN2.C */

#include #stdio.h,
#include "palindrome.h"

main ()
{
printf ("palindrome (\"cat\") = %d\n",

palindrome ("cat"));
printf ("palindrome (\"noon\") = %d\n",

palindrome ("noon"));
}
$ _

HISTORY

The Korn shell keeps a record of commands entered from the keyboard so that they may
be edited and re-executed at a later stage. This facility is known as a history mechanism.
The built-in command fc (fix command) gives you access to history.There are two forms
of fc. The first, simpler form allows you to re-execute a specified set of previous com-
mands, and the second, more complex form allows you edit them before reexecution.

History 217

Numbered Commands

When you’re using history, it’s very handy to arrange for your prompt to contain the
number of the command that you’re about to enter. To do this, set the primary prompt
variable (PS1) to contain a ! character:

$ PS1='! $ ' ...set PS1 to contain a !.
103 $ _ ...prompt for command #103.

Storage of Commands

The Korn shell records the last $HISTSIZE commands in the file $HISTFILE. If the
environment variable HISTSIZE is not set, a default value of 128 is used. If HISTFILE
is not set or the named file is not writable, then the file $HOME/.sh_history is used by
default. All the Korn shells that specify the same history file will share it. Therefore, as
long as you don’t change the value of $HISTFILE during a login session, the com-
mands entered during that session are available as history at the next session. In the
following example, I examined the history file where commands are stored:

$ echo $HISTSIZE ...set in ".profile".
100
$ echo $HISTFILE ...not set previously.
$ tail -3 $HOME/.sh_history ...display last 3 lines.
echo $HISTSIZE
echo $HISTFILE
tail -3 $HOME/.sh_history
$ _

Command Reexecution

The fc command allows you to reexecute previous commands. The first, simpler form
of fc works as shown in Figure 6.7. Here’s an example of fc in action:

360 $ fc -e - ech ...last command starting with "ech".
echo $HISTFILE
361 $ fc -e - FILE=SIZE ech ...replace "FILE" by "SIZE".
echo $HISTSIZE
100
362 $ fc -e - 360 ...execute command # 360.
echo $HISTFILE
363 $ _

The token “r” is a predefined alias for “fc -e -”, which allows for the following more
convenient way to reexecute commands:

364 $ alias r ...look at "r"'s alias.
r=fc -e 365

218 Chapter 6 The Korn Shell

365 $ r 364 ...execute command # 364.
alias r
r=fc -e -
366 $ _

Editing Commands

The Korn shell allows you to preedit commands before they are reexecuted by using a
more advanced form of the fc command, which works as shown in Figure 6.8. The fol-
lowing example illustrates the method of editing and reexecution:

371 $ whence vi ...find the location of "vi".
/usr/ucb/vi
372 $ FCEDIT=/usr/ucb/vi ...set FCEDIT to full path.
373 $ fc 371 ...edit command # 371.
...enter vi, edit the command to say "whence ls", save, quit vi
whence ls ...display edited commands.
/bin/ls ...output from edited command.
374 $ fc 371 373 ...edit commands # 371..373.
...enter vi and edit a list of the last three commands.
...assume that I deleted the first line, changed the remaining
...lines to read "echo -n hi" and "echo there", and then quit.
echo -n "hi " ...display edited commands.
echo there
hi there ...output from edited commands.
375 $ _

Shell Command: fc -e - [old=new] prefix

This form of the fc command reexecutes the previous command beginning with
prefix after optionally replacing the first occurrence of the string old by the string
new. prefix may be a number, in which case the numbered event is reexecuted.

FIGURE 6.7

Description of the fc shell command used for reexecuting a command.

Shell Command: fc [-e editor] [-nlr] [start] [end]

This form of fc invokes the editor called editor upon the specified range of com-
mands. When the editor is exited, the edited range of commands is executed. If
editor is not specified, then the editor whose pathname is stored in the environment

FIGURE 6.8

Description of the fc shell command used for command editing.

Editing Commands 219

Here’s an example of the use of the -l option:

376 $ fc -l 371 373 ...list commands with numbers.
371 $ whence vi
372 $ FCEDIT=/usr/ucb/vi
373 $ fc 371
377 $ fc -6 ...edit command # 371.
...edit command to say "whence ls" and then quit.
whence ls ...display edited command.
/bin/ls ...output by command.
378 $ _

EDITING COMMANDS

The Korn shell contains simplified built-in versions of the vi, gmacs, and emacs edi-
tors that may be used to edit the current command or previous commands. To select
one of these built-in editors, set either the VISUAL or the EDITOR variable to a
string that ends in the name of one of the editors. In the following example, I select-
ed the vi editor:

380 $ VISUAL=vi ...select the built-in "vi" editor.
381 $ _

variable FCEDIT is used. The value $FCEDIT is “/bin/ed” by default, and I don’t
recommend that you use this default. I personally prefer “/usr/ucb/vi” (the full
pathname of the vi editor on my system), since I’m most familiar with the UNIX vi
editor. If no other options are specified, the editor is invoked upon the previous
command.

When you enter the editor, you may edit the command(s) as you wish and then
save the text. When you exit the editor, the Korn shell automatically echoes and ex-
ecutes the saved version of the command(s).

To specify a particular command either by its index or by its prefix, supply the
number or the prefix as the value of start, but don’t supply a value for end. To speci-
fy a range of commands, set the value of start to select the first command in the se-
ries, and set the value of end to select the last command in the series. If a negative
number is supplied, it’s interpreted as an offset to the current command.

The -l option causes the selected commands to be displayed, but not executed.
In this case, if no command series is specified, the last 16 commands are listed. The
-r option reverses the order of the selected commands, and the -n option inhibits the
generation of command numbers when they are listed.

FIGURE 6.8 (Continued)

220 Chapter 6 The Korn Shell

The Built-In vi Editor

The description that follows assumes that you are familiar with the vi editor. If you’re
not, consult the description of the vi editor in Chapter 2.

To edit the current line, press the Esc key to enter the built-in vi editor’s control
mode, and then make the required changes. To enter append or insert mode from con-
trol mode, press the a key or the i key, respectively.To go back to control mode from ei-
ther of these modes, press the Esc key. To reexecute the command, press the Enter key.
Be warned that if you type a Control-D inside the editor, it terminates the shell, not
just the editor.

In control mode, key sequences fall into one of the following categories:

• standard vi key sequences (described in Chapter 2.)
• additional movement
• additional searching
• filename completion
• alias replacement

Additional Movement

The cursor up (k or) and cursor down (j or) keys select the previous and next
commands, respectively, in the history list. This allows you to easily access history from
within the built-in editor. To load a command with a particular number, enter com-
mand mode and then enter the number of the command, followed by the G key. Here’s
an example:

125 $ echo line 1
line 1
126 $ echo line 2
line 2
127 $...at this point, I pressed the Esc key followed by

...k twice (up, up). This loaded command #125 onto

...the command line, which I then executed by

...pressing the Enter key.
line 1
128 $...at this point, I pressed Esc followed by 125G.

...This loaded command #125 onto the command line,

...which I then executed by pressing the Enter key.
line 1
129 $ _

Additional Searching

The standard search mechanisms /string and ?string search backward and forward, re-
spectively, through history. Here’s an example:

127 $ echo line 1
line 1

+-

Editing Commands 221

138 $ echo line 2
line 2
139 $...at this point, I pressed the Esc key followed

...by /ech, which loaded the last command

...containing "ech" onto the command line.

...Then I pressed n to continue the search to

...the next command that matched. Finally, I

...pressed the Enter key to execute the command.
line 1
$ _

Filename Completion

If you type an asterisk (*) in control mode, it is appended to the word that the cursor is
over and is then processed as if it were a wildcard by the filename substitution mecha-
nism. If no match occurs, a beep is sounded; otherwise, the word is replaced by an al-
phabetical list of all the matching filenames, and the editor enters input mode
automatically. Here’s an example:

114 $ ls m*
m m3 main.c mbox
m1 madness.c main.o mon.out
m2 main makefile myFile
115 $ ls ma ...at this point I pressed the Esc key

...the * key, and then the Enter key.
115 $ ls madness.c main main.c main.o makefile
madness.c main.c makefile
main main.o
116 $ _

If you type an equals sign in control mode, the editor displays a numbered list of all
the files that have the current word as a prefix and then redraws the command line:

116 $ ls ma ...at this point I pressed the Esc key
...and then the = key.

1) madness.c
2) main
3) main.c
4) main.o
5) makefile
116 $ ls ma_ ...back to the original command line.

If you type a \ in control mode, the editor attempts to complete the current filename in
an unambiguous way. If a completed pathname matches a directory, a / is appended;
otherwise, a space is appended. Here’s an example:

116 $ ls ma ...at this point I pressed the Esc key
...and then the \ key.

(=)

222 Chapter 6 The Korn Shell

...No completion was performed, since "ma"

...is a prefix of more than one file.
116 $ ls mak ...at this point I pressed the Esc key

...and then the \ key. The editor

...completed the name to be "makefile".
116 $ ls makefile _

Alias Replacement

If you find yourself typing the same pattern again and again from the editor, you can
make good use of the alias replacement mechanism. If you give _letter an alias of word,
the sequence @letter is replaced by word when you’re in command mode. In the fol-
lowing example, the letter i at the start of the alias causes the built-in editor to go into
insert mode, and the literal Esc at the end of the string causes it to leave vi mode:

123 $ alias _c='icommon text^[' ...^[was Control-V
...followed by Esc

124 $ echo ...at this point I pressed Esc followed by @c.
124 $ echo common text_

The Built-In emacs/gmacs Editor

This description assumes that you are familiar with the emacs editor. If you’re not, con-
sult the description of the emacs editor in Chapter 2.

Most of the emacs key sequences are supported. You may move the cursor and
manipulate text by using the standard emacs key sequences. To reexecute the com-
mand, press the Enter key.

The main difference between the built-in editor and standard emacs is that the
cursor-up, cursor-down, search forward, and search backward key sequences operate
on the history list. For example, the cursor-up key sequence, Control-P, displays the
previous command on the command line. Similarly, the search backward key sequence,
Control-R string, displays the most recent command that contains string.

ARITHMETIC

The let command allows you to perform arithmetic. It works as shown in Figure 6.9.
Here are some examples:

$ let x = 2 + 2 ...expression contains spaces.
ksh: =: syntax error ...no spaces or tabs allowed!
$ let x=2+2 ...OK.
$ echo $x
4
$ let y=x*4 ...don't place $ before variables.
$ echo $y
16
$ let x=2#100+2#100 ...add two numbers in base 2.

Arithmetic 223

$ echo $x
4 ...number is displayed in base 10.
$ _

Preventing Metacharacter Interpretation

Unfortunately, the shell interprets several of the standard operators, such as and
*, as metacharacters, so they must be quoted or preceded by a backslash (\) to inhibit
their special meaning. To avoid this inconvenience, there is an equivalent form of let
that automatically treats all of the tokens as if they were surrounded by double quotes
and allows you to use spaces around tokens. The token sequence

((list))

is equivalent to

let " list "

6 , 7 ,

Shell Command: let expression

The let command performs double-precision integer arithmetic and supports all of
the basic math operators using the standard precedence rules. Here they are,
grouped in descending order of precedence:

OPERATOR MEANING

unary minus
! logical negation
* / % multiplication, division, remainder

addition, subtraction
relational operators
equality, inequality
assignment

All of the operators associate from left to right, except for the assignment operator.
Expressions may be placed between parentheses to modify the order of evaluation.
The shell doesn’t check for overflow, so beware! Operands may be integer constants
or variables.When a variable is encountered, it is replaced by its value, which in turn
may contain other variables. You may explicitly override the default base (10) of a
constant by using the format base#number where base is a number between 2 and
36. You must not put spaces or tabs between the operands or operators. You must
not place a $ in front of variables that are part of an expression.

=
= = !=
6 = 7 = 6 7
+ -

-

FIGURE 6.9

Description of the let shell command.

224 Chapter 6 The Korn Shell

Note that double quotes do not prevent the expansion of variables. I personally always
use the (()) syntax instead of let. Here’s an example:

$ ((x = 4)) ...spaces are OK.
$ ((y = x * 4))
$ echo $y
16
$ _

Return Values

If an expression evaluates to zero, its return code is one; otherwise it is zero.The return
code may be used by decision-making control structures, such as an if statement, as in
this example:

$ ((x = 4)) ...assign x to 4.
$ if ((x > 0)) ...OK to use in a control structure.
> then
> echo x is positive
> fi
x is positive ...output from control structure.
$ _

For simple arithmetic tests, I recommend using ((..)) instead of test expressions.

TILDE SUBSTITUTION

Any token of the form ~name is subject to tilde substitution. The shell checks the pass-
word file to see whether name is a valid user name and, if it is, replaces the ~name se-
quence with the full pathname of the user’s home directory. If name isn’t a valid user
name, the ~name sequence is left unchanged. Tilde substitution occurs after aliases are
processed. Figure 6.10 shows a list of the tilde substitutions, including the special cases

and ' - .' +

Tilde sequence Replaced by

~ $HOME

~user home directory of user

~/pathname $HOME/pathname

$PWD (current working directory)

$OLDPWD (previous working directory)' -

' +

FIGURE 6.10

Tilde substitutions in the Korn shell.

Menus: select 225

The predefined local variables PWD and OLDPWD are described later in the
chapter. Here are some examples of tilde substitution:

$ pwd
/home/glass ...current working directory.
$ echo ~
/home/glass ...my home directory.
$ cd / ...change to root directory.
$ echo ~+
/ ...current working directory.
$ echo ~-
/home/glass ...previous working directory.
$ echo ~dcox
/home/dcox ...another user's home directory.
$ _

MENUS: select

The select command allows you to create simple menus and has the syntax shown in
Figure 6.11. The select command displays a numbered list of the words specified by the
in clause to the standard error channel, displays the prompt stored in the special vari-
able PS3, and then waits for a line of user input.When the user enters a line, it is stored
in the predefined variable REPLY, and then one of the following three things occurs:

• If the user entered one of the listed numbers, name is set to that number, the com-
mands in list are executed, and the user is prompted for another choice.

• If the user entered a blank line, the selection is displayed again.
• If the user entered an invalid choice, name is set to null, the commands in list are

executed, and then the user is prompted for another choice.

The next example is a recoding of the menu selection example from Chapter 5. It re-
places the while loop and termination logic with a simpler select command. The com-
mands are as follows:

$ cat menu.ksh ...list the script.
echo menu test program

select name [in]
do
list
done

5word6+

FIGURE 6.11

Description of the select shell command.

226 Chapter 6 The Korn Shell

select reply in "date" "pwd" "pwd" "exit"
do
case $reply in
"date")
date
;;

"pwd")
pwd
;;

"exit")
break
;;

*)
echo illegal choice
;;

esac
done
$ menu.ksh ...execute the script.
menu test program
1) date
2) pwd
3) pwd
4) exit
#? 1
Fri Feb 6 21:49:33 CST 1998
#? 5
illegal choice
#? 4
$ _

FUNCTIONS

The Korn shell allows you to define functions that may be invoked as shell commands.
Parameters passed to functions are accessible via the standard positional parameter
mechanism. Functions must be defined before they are used.There are two ways to de-
fine a function, as shown in Figure 6.12. I personally favor the second form, because it
looks more like the C language. To invoke a function, supply its name followed by the
appropriate parameters. For obvious reasons, the shell does not check the number or
type of the parameters. Here’s an example of a script that defines and uses a function
that takes no parameters:

$ cat func1.ksh ...list the script.
message () # no-parameter function.
{
echo hi
echo there
}
i=1

Functions 227

while ((i <= 3))
do
message # call the function.
let i=i+1 # increment loop count.
done
$ func1.ksh ...execute the script.
hi
there
hi
there
hi
there
$ _

Using Parameters

As I mentioned previously, parameters are accessible via the standard positional mech-
anism. Here’s an example of a script that passes parameters to a function:

$ cat func2.ksh ...list the script.
f ()
{
echo parameter 1 = $1 # display first parameter.
echo parameter list = $* # display entire list.
}
main program.
f 1 # call with 1 parameter.
f cat dog goat # call with 3 parameters.

function name

list of commands

or the keyword function may be omitted:

name ()

list of commands.
6

5

6

5

FIGURE 6.12

The Korn shell function declaration.

228 Chapter 6 The Korn Shell

$ func2.ksh ...execute the script.
parameter 1 = 1
parameter list = 1
parameter 1 = cat
parameter list = cat dog goat
$ _

Returning from a Function

The return command returns the flow of control back to the caller. It has the syntax
shown in Figure 6.13. When return is used without an argument, the function call re-
turns immediately with the exit code of the last command that was executed in the
function; otherwise, it returns with its exit code set to value. If a return command is ex-
ecuted from the main script, it’s equivalent to an exit command. The exit code is acces-
sible from the caller via the $? variable. Here’s an function that multiplies its
arguments and returns the result:

$ cat func3.ksh ...list the script.
f () # two-parameter function.
{
((returnValue = $1 * $2))
return $returnValue
}
main program.
f 3 4 # call function.
result=$? # save exit code.
echo return value from function was $result
$ func3.ksh ...execute the script.
return value from function was 12
$ _

Context

A function executes in the same context as the process that calls it. This means that the
function and the process share the same variables, current working directory, and traps.
The only exception is the “trap on exit”: A function’s “trap on exit” executes when the
function returns.

Local Variables

The typeset command (described in more detail later in the chapter) has some special
function-oriented facilities. Specifically, a variable created using the typeset function is

return [value]

FIGURE 6.13

Korn shell function return statement.

Functions 229

limited in scope to the function in which it is created and all of the functions that the
defining function calls. If a variable of the same name already exists, its value is over-
written and replaced when the function returns. This property is similar (but not iden-
tical) to the scoping rules in most traditional high-level languages. Here’s an example
of a function that uses typeset to declare a local variable:

$ cat func4.ksh ...list the script.
f () # two-parameter function.
{
typeset x # declare local variable.
((x = $1 * $2)) # set local variable.
echo local x = $x
return $x

}
main program.
x=1 # set global variable.
echo global x = $x # display value before function call.
f 3 4 # call function.
result=$? # save exit code.
echo return value from function was $result
echo global x = $x # value of global after function.
$ func4.ksh ...execute the script.
global x = 1
local x = 12
return value from function was 12
global x = 1
$ _

Recursion

With careful thought, it’s perfectly possible to write recursive functions. Following are
two sample scripts that implement a recursive version of factorial (). The first uses the
exit code to return the result, and the second uses standard output to echo the result.
Note that these scripts are available on-line. (See the preface for more information.)

Recursive Factorial, Using Exit Code

factorial () # one-parameter function
{
if (($1 <= 1))
then
return 1 # return result in exit code.

else
typeset tmp # declare two local variables.
typeset result
((tmp = $1 - 1))
factorial $tmp # call recursively.
((result = $? * $1))

230 Chapter 6 The Korn Shell

return $result # return result in exit code.
fi
}
main program.
factorial 5 # call function
echo factorial 5 = $? # display exit code.

Recursive Factorial, Using Standard Output

factorial () # one-parameter function
{
if (($1 <= 1))
then
echo 1 # echo result to standard output.

else
typeset tmp # declare two local variables.
typeset result
((tmp = $1 - 1))
((result = `factorial $tmp` * $1))
echo $result # echo result to standard output.

fi
}
#
echo factorial 5 = `factorial 5` # display result.

Sharing Functions

To share the source code of a function among several scripts, place the code in a sepa-
rate file and then read it, using the “.” built-in command at the start of the scripts that
use the function. In the following example, assume that the source code of one of the
previous factorial scripts was saved in a file called “fact.ksh”:

$ cat.ksh ...list the script.
. fact.ksh # read function source code.
echo factorial 5 = `factorial 5` # call the function.
$ func6.ksh ...execute the script.
factorial 5 = 120
$ _

ENHANCED JOB CONTROL

In addition to the Bourne shell job control facilities, the Korn shell supports the com-
mands shown in Figure 6.14. These facilities are available only on UNIX systems that
support job control. The next few sections contain a description of each job control fa-
cility and examples of their use. The job control features of the Korn shell that are
about to be described are identical to those of the C shell.

Enhanced Job Control 231

Jobs

The jobs shell command displays a list of all the shell’s jobs. It works as shown in
Figure 6.15. Here’s an example of jobs in action:

$ jobs ...no jobs right now.
$ sleep 1000 & ...start a background job.
[1] 27128
$ man ls | ul -tdumb > ls.txt & ...another bg job.
[2] 27129
$ jobs -l ...list current jobs.
[2] + 27129 Running man ls | ul -tdumb > ls.txt &
[1] - 27128 Running sleep 1000 &
$ _

Command Function

jobs lists your jobs

bg places a specified job into the background

fg places a specified job into the foreground

kill sends an arbitrary signal to a process or job

FIGURE 6.14

Korn shell job control commands.

Shell Command: jobs [-l]

jobs displays a listing of all the shell’s jobs.When used with the -l option, process IDs
are added to the listing. The syntax of each line of output is

job# PID Status Command

where a means that the job was the last job to be placed into the background and
a means that the job was the second-to-last job to be placed into the background.
Status may be one of the following:

• Running
• Stopped (suspended)

-
+

[+ |-]

FIGURE 6.15

Description of the jobs shell command.

232 Chapter 6 The Korn Shell

Specifying a Job

The bg, fg, and kill commands allow you to specify a job, using one of the forms shown
in Figure 6.16.

• Terminated (killed by a signal)
• Done (zero exit code)
• Exit (nonzero exit code)

The only real significance of the and is that they may be used when specifying
the job in a later command. (See “Specifying a Job,” next.)

-+

FIGURE 6.15 (Continued)

Form Specifies

%integer the job number integer

%prefix the job whose name starts with prefix

%+ the job that was last referenced

%% same as %+

%- the job that was referenced second to last

FIGURE 6.16

Job specifications in the Korn shell.

bg

The bg shell command resumes the specified job as a background process. It works as
shown in Figure 6.17. In the next example, I started a foreground job and then decided
that it would be better to run it in the background. I suspended the job using Control-Z
and then resumed it in the background. The command I used is as follows:

$ man ksh | ul -tdumb > ksh.txt ...start in foreground.
^Z ...suspend it.
[1] + Stopped man ksh | ul -tdumb > ksh.txt
$ bg %1 ...resume it in background.
[1] man ksh | ul -tdumb > ksh.txt&
$ jobs ...list current jobs.
[1] + Running man ksh | ul -tdumb > ksh.txt
$ _

Enhanced Job Control 233

fg

The fg shall command resumes the specified job as the foreground process. It works as
shown in Figure 6.18. In the following example, I brought a background job into the
foreground, using fg:

$ sleep 1000 & ...start a background job.
[1] 27143
$ man ksh | ul -tdumb > ksh.txt & ...start another.
[2] 27144
$ jobs ...list the current jobs.
[2] + Running man ksh | ul -tdumb > ksh.txt &
[1] - Running sleep 1000 &
$ fg %ma ...bring job to foreground.
man ksh | ul -tdumb > ksh.txt ...command is redisplayed.
$ _

Shell Command: bg [%job]

bg resumes the specified job as a background process. If no job is specified, the last
referenced job is resumed.

FIGURE 6.17

Description of the bg shell command.

Shell Command: fg [%job]

fg resumes the specified job as the foreground process. If no job is specified, the last
referenced job is resumed.

FIGURE 6.18

Description of the fg shell command.

kill

The kill shell command sends the specified signal to the specified job or processes. It
works as shown in Figure 6.19. The following example contains a couple of kills:

$ kill -l ...list all kill signals.
1) HUP 12) SYS 23) STOP
2) INT 13) PIPE 24) TSTP
3) QUIT 14) ALRM 25) CONT
4) ILL 15) TERM 26) TTIN
5) TRAP 16) USR1 27) TTOU

234 Chapter 6 The Korn Shell

6) ABRT 17) USR2 28) VTALRM
7) EMT 18) CHLD 29) PROF
8) FPE 19) PWR 30) XCPU
9) KILL 20) WINCH 31) XFSZ
10) BUS 21) URG
11) SEGV 22) POLL
$ man ksh | ul -tdumb > ksh.txt & ...start a bg job.
[1] 27160
$ kill -9 %1 ...kill it via a job specifier.
[1] + Killed man ksh | ul -tdumb > ksh.txt &
$ man ksh | ul -tdumb > ksh.txt & ...start another.
[1] 27164
$ kill -KILL 27164 ...kill it via a process ID.
[1] + Killed man ksh | ul -tdumb > ksh.txt &
$ _

ENHANCEMENTS

In addition to the new facilities that have already been described, the Korn shell offers
some enhancements to the Bourne shell in the following areas:

• redirection
• pipes
• command substitution
• variable access
• extra built-in commands

Redirection

The Korn shell supplies a minor extra redirection facility: the ability to strip leading
tabs off of “here” documents. Figure 6.20 shows the augmented syntax. If word is pre-
ceded by a -, then leading tabs are removed from the lines of input that follow. Here’s
an example:

Shell Command: kill [-l] [-signal] { process | %job }

kill sends the specified signal to the specified job or processes. A process is specified
by its PID number.A signal may be specified either by its number or symbolically, by
removing the “SIG” prefix from its symbolic constant in “/usr/include/sys/signal.h.”
To obtain a list of signals, use the -l option. If no signal is specified, the TERM signal
is sent. If the TERM or HUP signal is sent to a suspended process, it is sent the
CONT signal, which causes the process to resume.

+

FIGURE 6.19

Description of the kill shell command.

Enhancements 235

$ cat <<- ENDOFTEXT
> this input contains
> some leading tabs
> ^D
this input contains
some leading tabs
$ _

This command example allows “here” text in a script to be indented to match the near-
by shell commands, without affecting how the text is used.

Pipes

The |& operator supports a simple form of concurrent processing. When a command is
followed by |&, it runs as a background process whose standard input and output chan-
nels are connected to the original parent shell via a two-way pipe. When the original
shell generates output using a print -p command (discussed later in the chapter), the
output is sent to the child shell’s standard input channel. When the original shell reads
input using a read -p command (also discussed later in the chapter), the input is taken
from the child shell’s standard output channel. Here’s an example:

$ date |& ...start child process.
[1] 8311
$ read -p theDate ...read from standard output of child.
[1] + Done date |& ...child process terminates.
$ echo $theDate ...display the result.
Sun May 10 21:36:57 CDT 1998
$ _

Command Substitution

In addition to the older method of command substitution—surrounding the command
with grave accents—the Korn shell allows you to perform command substitution via
the syntax shown in Figure 6.21. Note that the $ that immediately precedes the open
parentheses is part of the syntax and is not a prompt. Here’s an example:

$ echo there are $(who | wc -l) users on the system
there are 6 users on the system
$ _

command wordV [-]

FIGURE 6.20

Redirection with a “here” document in the Korn shell.

236 Chapter 6 The Korn Shell

To substitute the contents of a file into a shell command, you may use as a
faster form of $(cat file).

Variables

The Korn shell supports the following additional variable facilities:

• more flexible access methods
• more predefined local variables
• more predefined environment variables
• simple arrays
• a typeset command for formatting the output of variables

Flexible Access Methods

In addition to the variable-access methods supported by the Bourne shell, the Korn
shell supports some more complex access methods, as shown in Figure 6.22. Here are
some examples:

$ fish='smoked salmon' ...set a variable.
$ echo ${#fish} ...display the length of the value.
13
$ cd dir1 ...move to directory.
$ echo $PWD ...display the current working directory.
/home/glass/dir1
$ echo $HOME
/home/glass
$ echo ${PWD#$HOME/} ...remove leading $HOME/
dir1
$ fileName=menu.ksh ...set a variable.
$ echo ${fileName%.ksh}.bak ...remove trailing ".ksh"
menu.bak ...and add ".bak".
$ _

$(<file)

$(command)

FIGURE 6.21

Command substitution in the Korn shell.

Syntax Action

${#name} Replaced by the length of the value of name.

${#name[*] } Replaced by the number of elements in the array name.

FIGURE 6.22

Korn shell variable access methods.

Enhancements 237

Predefined Local Variables

In addition to supporting the common predefined local variables, the Korn shell sup-
ports the variables shown in Figure 6.23. Here are some examples of these other pre-
defined variables:

$ echo hi there ...display a message to demonstrate $_.
hi there
$ echo $_ ...display last arg of last command.
there
$ echo $PWD ...display the current working dir.
/home/glass
$ echo $PPID ...display the shell's parent pid .
27709
$ cd / ...move to the root directory.
$ echo $OLDPWD ...display last working directory.
/home/glass
$ echo $PWD ...display current working directory.
/
$ echo $RANDOM $RANDOM ...display two random numbers.
32561 8323
$ echo $SECONDS ...display seconds since shell began.
918

${name word} Work like their counterparts that do not contain a :,
${name word} except that name must be set and nonnull, instead
${name:?word} of just set.
${name word}

${name#pattern} Removes a leading pattern from name. The expression is
${name##pattern} replaced by the value of name if name doesn’t begin with

pattern, and with the remaining suffix if it does begin
with pattern. The first form removes the smallest
matching pattern, and the second form removes the
largest matching pattern.

${name%pattern} Removes a trailing pattern from name. The expression is
${name%%pattern} replaced by the value of name if name doesn’t end with

pattern, and with the remaining suffix if it does end with
pattern. The first form removes the smallest matching
pattern, and the second form removes the largest
matching pattern.

:+

:=
:+

FIGURE 6.22 (Continued)

238 Chapter 6 The Korn Shell

$ echo $TMOUT ...display the timeout value
0 ...no timeout selected.
$ _

Name Value

$_ The last parameter of the previous command.

$PPID The process ID number of the shell’s parent.

$PWD The current working directory of the shell.

$OLDPWD The previous working directory of the shell.

$RANDOM A random integer.

$REPLY Set by a select command.

$SECONDS The number of seconds since the shell was invoked.

$CDPATH Used by the cd command.

$COLUMNS Sets the width of the edit window for the built-in editors.

$EDITOR Selects the type of built-in editor.

$ENV Selects the name of the Korn shell start-up file.

$FCEDIT Defines the editor that is invoked by the fc command.

$HISTFILE The name of the history file.

$HISTSIZE The number of history lines to remember.

$LINES Used by select to determine how to display the selections.

$MAILCHECK Tells the shell how many seconds to wait before checking
mail again. The default value is 600.

$MAILPATH This should be set to a list of filenames, separated by
colons. The shell checks these files for modification every
$MAILCHECK seconds.

$PS3 The prompt used by the select command, #? by default.

$TMOUT If set to a number greater than zero, and if more
than $TMOUT seconds elapse between commands, the
shell terminates.

$VISUAL Selects the type of built-in editor.

FIGURE 6.23

Korn shell predefined local variables.

Enhancements 239

To set the value of an array element, use

To access the value of an array element, use

${name[subscript]}

name[subscript]=value

FIGURE 6.24

Korn shell array definition and use.

Shell Command: typeset { - HLRZfilrtux [value] [name]}*

typeset allows the creation and manipulation of variables. It allows variables
to be formatted, converted to an internal integer representation for speedier

[=word]

FIGURE 6.25

Description of the typeset shell command.

One-dimensional Arrays

The Korn shell supports simple one-dimensional arrays. To create an array, simply as-
sign a value to a variable name, using a subscript between 0 and 511 in brackets. Array
elements are created as needed. The syntax is shown in Figure 6.24. If you omit
subscript, the value 0 is the default. Here’s an example that uses a script to display the
squares of the numbers between 0 and 9:

$ cat squares.ksh ...list the script.
i=0
while ((i < 10))
do
((squares[$i] = i * i)) ...assign individual element.
((i = i + 1)) ...increment loop counter.
done
echo 5 squared is ${squares[5]} ...display one element.
echo list of all squares is ${squares[*]} ...display all.
$ squares.ksh ...execute the script.
5 squared is 25
list of all squares is 0 1 4 9 16 25 36 49 64 81
$ _

typeset

The typeset shell command allows the creation and manipulation of variables. It works
as shown in Figure 6.25. Figure 6.26 lists the options used with typeset, and the sections
that follow illustrate their usage. I’ve split the descriptions up into related sections to
make things a little easier.

240 Chapter 6 The Korn Shell

Formatting

In all of the formatting options, the field width of name is set to value if present; other-
wise, it is set to the width of word.

Case

With the case options, the value can be converted to upper- or lowercase as shown in
Figure 6.27. Here’s an example that left justifies all the elements in an array and then
displays them in uppercase:

$ cat justify.ksh ...list the script.
wordList[0]='jeff' # set three elements.
wordList[1]='john'
wordList[2]='ellen'
typeset -uL7 wordList # typeset all elements in array.
echo ${wordList[*]} # beware! shell removes non-quoted spaces
echo "${wordList[*]}" # works OK.
$ justify.ksh ...execute the script.

arithmetic, made read only, made exportable, and switched between lowercase
and uppercase.

Every variable has an associated set of flags that determine its properties. For
example, if a variable has its “uppercase” flag set, it will always map its contents to
uppercase, even when they are changed.The options to typeset operate by setting and
resetting the various flags associated with named variables. When an option is pre-
ceded by -, it causes the appropriate flag to be turned on. To turn a flag off and re-
verse the sense of the option, precede the option by a instead of a -.+

FIGURE 6.25 (Continued)

Option Meaning

L Turn the L flag on and turn the R flag off. Left justify word and
remove leading spaces. If the width of word is less than name’s field
width, then pad word with trailing spaces. If the width of word is
greater than name’s field width, then truncate word’s end to fit. If
the Z flag is set, leading zeroes are also removed.

R Turn the R flag on and turn the L flag off. Right justify word and
remove trailing spaces. If the width of word is less than name’s field
width, then pad word with leading spaces. If the width of word is
greater than name’s field width, then truncate word’s end to fit.

Z Right justify word and pad with zeroes if the first nonspace
character is a digit and the L flag is off.

FIGURE 6.26

Formatting with the typeset shell command.

Enhancements 241

JEFF JOHN ELLEN
JEFF JOHN ELLEN
$ _

Type

The type of value stored can be set using the type options shown in Figure 6.28. In the
next example, I modified a previous example by declaring the squares array to be an
array of integers. This made the script run faster. The code is as follows:

$ cat squares.ksh ...list the script.
typeset -i squares # declare array integers (for speed).
i=0
while ((i < 10))
do
((squares[$i] = i * i))
((i = i + 1))
done
echo 5 squared is ${squares[5]}
echo list of all squares is ${squares[*]}
$ squares.ksh ...execute the script.
5 squared is 25
list of all squares is 0 1 4 9 16 25 36 49 64 81
$ _

Option Meaning

l Turn the l flag on and turn the u flag off. Convert word to lowercase.

u Turn the u flag on and turn the l flag off. Convert word to uppercase.

FIGURE 6.27

Changing the case of characters with the typeset shell command.

Option Meaning

i Store name internally as an integer for arithmetic speed. Set the output
base to value if specified; otherwise, use the base of word.

r Flag the named variables as read only.

x Flag the named variables as exportable.

FIGURE 6.28

Setting the type of values with the typeset shell command.

Miscellaneous

Two additional miscellaneous typeset shell command options are shown in Figure 6.29.
In the following example, I selected the function factorial () to be traced using the -ft
option, and then I ran the script:

242 Chapter 6 The Korn Shell

$ cat func5.ksh ...list the script.
factorial () # one-parameter function
{
if (($1 <= 1))
then
return 1

else
typeset tmp
typeset result
((tmp = $1 - 1))
factorial $tmp
((result = $? * $1))
return $result

fi
}
#
typeset -ft factorial ...select a function trace.
factorial 3
echo factorial 3 = $?
$ func5.ksh ...execute the script.
+ let 3 <= 1 ...debugging information.
+ typeset tmp
+ typeset result
+ let tmp = 3 - 1
+ factorial 2
+ let 2 <= 1
+ typeset tmp
+ typeset result
+ let tmp = 2 - 1
+ factorial 1
+ let 1 <= 1
+ return 1
+ let result = 1 * 2
+ return 2
+ let result = 2 * 3
+ return 6
factorial 3 = 6
$ _

Option Meaning

f The only flags allowed in conjunction with this option are t, which sets
the trace option for the named functions, and x, which displays all func-
tions with the x attribute set.

t Tags name with the token word.

FIGURE 6.29

Miscellaneous typeset shell command options.

Enhancements 243

typeset with No Named Variables

If no variables are named, then the names of all the parameters that have the specified
flags set are listed. If no flags are specified, then a list of all the parameters and their
flag settings are listed. Here’s an example:

$ typeset ...display a list of all typeset variables.
export NODEID
export PATH
...
leftjust 7 t
export integer MAILCHECK
$ typeset -i ...display list of integer typeset vars.
LINENO=1
MAILCHECK=60
...
$ _

Built-Ins

The Korn shell enhances the following built-in commands:

• cd
• set
• print (an enhancement of the Bourne shell echo command)
• read
• test
• trap

cd

The Korn shell’s version of cd supports several new features. It works as shown in
Figure 6.30. Here’s an example of cd in action:

$ CDPATH=.:/usr ...set my CDPATH.
$ cd dir1 ...move to "dir1", located under ".".
$ pwd
/home/glass/dir1
$ cd include ...move to "include", located in "/usr".
$ pwd ...display the current working dir.
/usr/include
$ cd - ...move to my previous directory.
$ pwd ...display the current working dir.
/home/glass/dir1
$ _

244 Chapter 6 The Korn Shell

set

The set command allows you to set and unset flags that control shellwide character-
istics Figure 6.31 shows how it works. Figure 6.32 shows a list of the options used
with set.

Shell Command: cd { name }
cd oldName newName

The first form of the cd command is processed as follows:

• If name is omitted, the shell moves to the home directory specified by
$HOME.

• If name is equal to the shell moves to the previous working directory that is
kept in $OLDPWD.

• If name begins with a /, the shell moves to the directory whose full name is
name.

• If name begins with anything else, the shell searches through the directory se-
quence specified by $CDPATH for a match and then moves the shell to the
matching directory. The default value of $CDPATH is null, which causes cd to
search only the current directory.

If the second form of cd is used, the shell replaces the first occurrence of the token
oldName with the token newName in the current directory’s full pathname.Then the
shell attempts to change to the new pathname. The shell always stores the full path-
name of the current directory in the variable PWD.The current value of $PWD may
be displayed by using the built-in command pwd.

- ,

FIGURE 6.30

Description of the cd shell command.

Shell Command: set *

The Korn shell version of set supports all of the Bourne set features, plus a few more.
The various features of set do not fall naturally into categories, so I’ll just list each
one together with a brief description.An option preceded by a instead of a re-
verses the sense of the description.

-+

[+-aefhkmnostuvx] [+-o option] 5arg6

FIGURE 6.31

Description of the set shell command.

Enhancements 245

The o Option

The o option of set takes an argument. The argument frequently has the same effect as
one of the other flags used with set. If no argument is supplied, the current settings are
displayed. Figure 6.33 shows a list of the valid arguments and their meanings. Note that
I can set the ignoreeof option in my “.profile” script to protect myself against acciden-
tal Control-D logouts:

set -o ignoreeof

Option Meaning

a All variables that are created are automatically flagged for export.

f Disable filename substitution.

h All non-built-in commands are automatically flagged as tracked aliases.

m Place all background jobs in their own unique process group and display
a notification of completion. This flag is automatically set for interactive
shells.

n Accept, but do not execute, commands. This flag has no effect on interac-
tive shells.

o This option is described separately in the text.

p Set $PATH to its default value, causing the start-up sequence to ignore
the $HOME/.profile file and read “/etc/suid_profile” instead of the
$ENV file. This flag is set automatically whenever a shell is executed by a
process in “set user ID” or “set group ID” mode. For more information
on “set user ID” processes, see Chapter 13.

s Sort the positional parameters.

-- Do not change any flags. If no arguments follow, all of the positional pa-
rameters are unset.

FIGURE 6.32

set shell command options.

Option Meaning

allexport Equivalent to the a flag.

errexit Equivalent to the e flag.

bgnice Background processes are executed at a lower priority.

FIGURE 6.33

set -o arguments.

246 Chapter 6 The Korn Shell

print

The print command is a more sophisticated version of echo and allows you to send out-
put to an arbitrary file descriptor. It works as shown in Figure 6.34. Here’s an example:

121 $ print -u2 hi there ...send output to stderr.
hi there
122 $ print -s echo hi there ...append to history.
124 $ r 123 ...recall command #123.
echo hi there
hi there
125 $ print -R -s hi there ...treat "-s" as an arg.
-s hi there
126 $ _

emacs Invokes the built-in emacs editor.

gmacs Invokes the built-in gmacs editor.

ignoreeof Don’t exit on Control-D. exit must be used instead.

keyword Equivalent to the k flag.

markdirs Append trailing / to directories generated by filename substitution.

monitor Equivalent to the m flag.

noclobber Prevents redirection from truncating existing files.

noexec Equivalent to the n flag.

noglob Equivalent to the f flag.

nolog Do not save function definitions in history file.

nounset Equivalent to the u flag.

privileged Same as -p.

verbose Equivalent to the v flag.

trackall Equivalent to the h flag.

vi Invokes the built-in vi editor.

viraw Characters are processed as they are typed in vi mode.

xtrace Equivalent to the x flag.

FIGURE 6.33 (Continued)

Enhancements 247

read

The Korn shell’s read command is a superset of the Bourne shell’s read command. It
works as shown in Figure 6.35. Here’s an example:

$ read 'name?enter your name '
enter your name Graham
$ echo $name
Graham
$ _

test

The Korn shell version of test accepts several new operators, as shown in Figure 6.36.
The Korn shell also supports a more convenient syntax for test, as shown in Figure 6.37.
I prefer the more modern form of test that uses the double brackets, as it allows me to

Shell Command: print -npsuR [n] { arg } *

By default, print displays its arguments to standard output, followed by a newline.
The -n option inhibits the newline, and the -u option allows you to specify a single-
digit file descriptor n for the output channel. The -s option causes the output to be
appended to the history file instead of to an output channel.The -p option causes the
output to be sent to the shell’s two-way pipe channel. The -R option causes all fur-
ther words to be interpreted as arguments.

FIGURE 6.34

Description of the print shell command.

Shell Command: read -prsu [n] [name?prompt] { name } *

The Korn shell read works just like the Bourne shell read, except for the following
new features:

• The -p option causes the input line to be read from the shell’s two-way pipe.
• The -u option causes the file descriptor n to be used for input.
• If the first argument contains a ?, the remainder of the argument is used as a

prompt.

FIGURE 6.35

Description of the read shell command.

248 Chapter 6 The Korn Shell

write more readable programs. Here’s an example of this newer form of test in action:

$ cat test.ksh ...list the script.
i=1
while [[i -le 4]]
do
echo $i
((i = i + 1))
done
$ test.ksh ...execute the script.
1
2
3
4
$ _

trap

The Korn shell’s trap command is a superset of the Bourne shell’s trap command. It
works as shown in Figure 6.38. In the following example, I set the EXIT trap inside a
function to demonstrate local function traps:

$ cat trap.ksh ...list the script.
f ()
{
echo 'enter f ()'
trap 'echo leaving f...' EXIT # set a local trap
echo 'exit f ()'
}

Operator Meaning
-L fileName Return true if fileName is a symbolic link.
file1 -nt file2 Return true if file1 is newer than file2.
file1 -ot file2 Return true if file1 is older than file2.
file1 -ef file2 Return true if file1 is the same file as file2.

FIGURE 6.36

Test operators unique to the Korn shell test shell command.

[[testExpression]]

which is equivalent to

test textExpression

FIGURE 6.37

Two forms of test in the Korn shell.

Sample Project: Junk 249

main program.
trap 'echo exit shell' EXIT # set a global trap.
f # invoke the function f ().
$ trap.ksh ...execute the script.
enter f ()
exit f ()
leaving f... ...local EXIT is trapped.
exit shell ...global EXIT is trapped.
$ _

Shell Command: trap [command] [signal]

The Korn shell trap works just like the Bourne shell trap, except for the following
features:

• If arg is -, then all of the specified signals are reset to their initial values.
• If an EXIT or 0 signal is given to a trap inside a function, then command is ex-

ecuted when the function is exited.

FIGURE 6.38

Description of the trap shell command.

SAMPLE PROJECT: JUNK

To illustrate some of the Korn shell capabilities, I present a Korn shell version of the
“junk” script project that was suggested at the end of chapter 5. The junk utility is de-
fined in Figure 6.39. The Korn shell script that follows uses a function to process error
messages and uses an array to store filenames. The rest of the functionality should be
pretty easy to follow from the embedded comments. (The shell script is available on-
line. See the preface for more information.)

Utility: junk -lp { fileName }*

junk is a replacement for the rm utility. Rather than removing files, it moves them
into the subdirectory “.junk” in your home directory. If “.junk” doesn’t exist, it is au-
tomatically created. The -l option lists the current contents of the “.junk” directory,
and the -p option purges “.junk”.

FIGURE 6.39

Description of the junk shell script.

junk

#! /bin/ksh
junk script
Korn shell version

250 Chapter 6 The Korn Shell

author: Graham Glass
9/25/91
#
Initialize variables
#
fileCount=0 # the number of files specified.
listFlag=0 # 1 if list option (-)used.
purgeFlag=0 # 1 if purge (-p) option used.
fileFlag=0 # 1 if at least one file is specified.
junk=~/.junk # the name of the junk directory.
#
error ()
{
#
Display error message and quit
#
cat << ENDOFTEXT
Dear $USER, the usage of junk is as follows:
junk -p means "purge all files"
junk -l means "list junked files"
junk <list of files, to junk them
ENDOFTEXT
exit 1
}
#
Parse command line
#
for arg in $*
do
case $arg in
"-p")
purgeFlag=1
;;
"-l")
listFlag=1
;;
-*)
echo $arg is an illegal option
;;
*)
fileFlag=1
fileList[$fileCount]=$arg # append to list
let fileCount=fileCount+1
;;

esac
done
#
Check for too many options
#
let total=$listFlag+$purgeFlag+$fileFlag
if ((total != 1))
then
error

Sample Project: Junk 251

fi
#
If junk directory doesn't exist, create it
#
if [[! (-d $junk)]]
then
'mkdir' $junk # quoted just in case it's aliased.
fi
#
Process options
#
if ((listFlag == 1))
then
'ls' -lgF $junk # list junk directory.
exit 0
fi
#
if ((purgeFlag == 1))
then
'rm' $junk/* # remove files in junk directory.
exit 0
fi
#
if ((fileFlag == 1))
then
'mv' ${fileList[*]} $junk # move files to junk dir.
exit 0
fi
#
exit 0

Here’s some sample output from junk:

$ ls *.ksh ...list some files to junk.
fact.ksh* func5.ksh* test.ksh* trap.ksh*
func4.ksh* squares.ksh* track.ksh*
$ junk func5.ksh func4.ksh ...junk a couple of files.
$ junk -l ...list my junk.
total 2
-rwxr-xr-x 1 gglass apollocl 205 Feb 6 22:44 func4.ksh*
-rwxr-xr-x 1 gglass apollocl 274 Feb 7 21:02 func5.ksh*
$ junk -p ...purge my junk.
$ junk -z ...try a silly option.
-z is an illegal option
Dear glass, the usage of junk is as follows:
junk -p means "purge all files"
junk -l means "list junked files"
junk <list of files> to junk them
$ _

252 Chapter 6 The Korn Shell

THE RESTRICTED SHELL

There is a variation of the Korn shell called the restricted Korn shell that provides
every Korn shell feature, except that

• You may not change directory.
• You may not redirect output using
• You may not set the SHELL, ENV, or PATH environment variables.
• You may not use absolute pathnames.

These restrictions become active only after the shell’s “.profile” and $ENV files have
been executed. Any scripts executed by the restricted Korn shell are interpreted by
their associated shell and are not restricted in any way.

The restricted Korn shell is a regular C program whose executable file is stored as
“/bin/rksh”. If your chosen shell is “/bin/rksh”, an interactive restricted Korn shell is in-
voked automatically when you log into UNIX. You may also invoke a restricted Korn
shell manually from a script or from a terminal by using the command rksh.

System administrators use the restricted shell to provide users with a limited ac-
cess to UNIX features as follows:

• They write a series of regular Korn shell scripts that enable users to access the
features that they (the users) wish to use.

• They place these scripts into a read-only directory, typically called something like
“/usr/local/rbin”.

• They set up the restricted user’s “.profile” file so that $PATH contains only
“/usr/local/rbin” and a few other select directories.

• They change the user’s entry in the password file (discussed in Chapter 15), so
that the user’s login shell is “/bin/rksh”.

COMMAND LINE OPTIONS

If the first command line argument is a -, the Korn shell is started as a login shell. In
addition to this, the Korn shell supports the Bourne shell command line options, the
flags of the built-in set command (including -x and -v), and the options listed in
Figure 6.40.

7 or W .

Option Meaning

-r Make the Korn shell a restricted Korn shell.

fileName Execute the shell commands in fileName if the -s option is not used.
fileName is $0 within the fileName script.

FIGURE 6.40

Korn shell command line options.

Chapter Review 253

CHAPTER REVIEW

Checklist

In this chapter, I described

• the creation of a Korn shell start-up file
• aliases and the history mechanism
• the built-in vi and emacs line editors
• arithmetic
• functions
• advanced job control
• several enhancements to inherited Bourne shell commands

Quiz

1. Who wrote the Korn shell?
2. Why is the alias mechanism useful?
3. How can you reedit and reexecute previous commands?
4. Does the Korn shell support recursive functions?
5. Describe the modern syntax of the test command.

Exercises

6.1 Rewrite the junk script of this chapter so that it is menu driven. Use the select
command. [level: easy]

6.2 Write a function called dateToDays that takes three parameters—a month string
such as Sep, a day number such as 18, and a year number such as 1962—and re-
turns the number of days from January 1, 1900, to the date. [level: medium]

6.3 Write a set of functions that emulate the directory stack facilities of the C shell
(described in the next chapter). Use environment variables to hold the stack and
its size. [level: medium]

6.4 Build a script called pulse that takes two parameters: the name of a script and an
integer. pulse should execute the specified script for the specified number of sec-
onds, suspend the script for the same number of seconds, and continue this cycle
until the script is finished. [level: hard]

Projects

1. Write a skeleton script that allows system administration tasks to be performed
automatically from a menu-driven interface. Useful tasks to automate include the
following:

• automatic deletion of core files
• automatic warnings to those who use a lot of CPU time or disk space
• automatic archiving

254 Chapter 6 The Korn Shell

Don’t worry about making the tasks do anything just yet; we’ll fill that in at the
end of Chapter 15. For now, concentrate on making the menu and task selection
work properly, and just use the echo or print commands to print out what would
happen for each selection. [level: easy]

2. Write an alias manager script that allows you to choose DOS emulation, VMS
emulation, or no emulation. [level: medium]

255

C H A P T E R 7

The C Shell

MOTIVATION

The C shell was written after the Bourne shell and adheres more closely to the C
language syntax and control structures.The first shell to support advanced job control
the C shell became a favorite of early UNIX developers. Many C shell users are changing
over to the Korn and Bash shells because of their additional features and availability, but
the C shell still remains popular.

PREREQUISITES

You should already have read Chapter 4 and experimented with some of the core shell
facilities.

OBJECTIVES

In this chapter, I explain and demonstrate the C-shell-specific facilities.

PRESENTATION

The information is presented in the form of several sample UNIX sessions and a small
project.

SHELL COMMANDS

The chapter introduces the following shell commands, listed in alphabetical order:

alias nice source
chdir nohup stop
dirs notify suspend
foreach..end onintr switch..case..endsw
glob popd unalias
goto pushd unhash

256 Chapter 7 The C Shell

hashstat rehash unset
history repeat unsetenv
if..then..else..endif set while..end
logout setenv

INTRODUCTION

The C shell supports all of the core shell facilities described in Chapter 4, plus the fol-
lowing new features:

• several ways to set and access variables
• a built-in programming language that supports conditional branching, looping,

and interrupt handling
• command customization using aliases
• access to previous commands via a history mechanism
• advanced job control
• several new built-in commands and several enhancements to existing commands

These new facilities are illustrated in the hierarchy diagram shown in Figure 7.1.

START-UP

The C shell is a regular C program whose executable file is stored as “/bin/csh”. If your
chosen shell is “/bin/csh”, an interactive C shell is invoked automatically when you log
into UNIX.You may also invoke a C shell manually from a script or from a terminal by
using the command csh, which has several command line options that are described at
the end of the chapter.

When a C shell is started as a login shell, a global login initialization file, which
applies to all users, may also be executed if it is present. This file is useful for setting up
environment variables (such as PATH) so that they contain information about the
local environment. The name of the file varies from one version of UNIX to another,
but it is generally something like “/.login” or “/etc/login.”

FIGURE 7.1

C shell functionality.

Aliasing Built-in
commands

History Programming
language

Job control Variables Startup

alias unalias jobs

C shell
functions

bg fg

.cshrc
unset

setenv

unsetenv

setgoto

repeat

switch while if for stop

notify nohup

suspend

Start-Up 257

When a C shell is invoked, the start-up sequence is different for login shells and
nonlogin shells, as shown in Figure 7.2. Note that the “.cshrc” file is run before either
type of login initialization file. This may seem counterintuitive, and it has been the
cause of much unexpected behavior when users are crafting their initialization files.
The way to keep things straight is to remember that the C shell always runs its own ini-
tialization file immediately upon starting and then determines whether the shell is a
login shell, which would require running the other initialization files.

Once an interactive shell starts and finishes running all the appropriate initializa-
tion files, it displays its prompt and awaits user commands. The standard C shell
prompt is %, although it may be changed by setting the local variable $prompt, de-
scribed shortly.

The “.login” file typically contains commands that set environment variables such
as TERM, which contains the type of your terminal, and PATH, which tells the shell
where to search for executable files. Put things in your “.login” file that need to be set
only once (environment variables whose values are inherited by other shells) or that
make sense only for an interactive session (such as specifying terminal settings). Here’s
an example of a “.login” file:

echo -n "Enter your terminal type (default is vt100): "
set termtype = $<
set term = vt100
if ("$termtype" != "") set term = "$termtype"
unset termtype
set path=(. /bin /usr/bin /usr/local/bin)
stty erase "^?" kill "^U" intr "^C" eof "^D" crt crterase
set cdpath = (~)
set history = 40
set notify
set prompt = "! % "
set savehist = 32

The “.cshrc” file generally contains commands that set common aliases (discussed
later) or anything else that applies only to the current shell. The “rc” suffix stands for
“run commands.” Here’s an example of a “.cshrc” file:

alias emacs /usr/local/emacs
alias h history
alias ll ls -l
alias print prf -pr pb1-2236-lp3

Step Shell type Action

1 both Execute commands in $HOME/.cshrc if it exists.

2 login only Execute commands in global login initialization file if it exists.

3 login only Execute commands in $HOME/.login if it exists.

FIGURE 7.2

C shell start-up sequence.

258 Chapter 7 The C Shell

alias ls ls -F
alias rm rm -i
alias m more

VARIABLES

The C shell supports local and environment variables. A local variable may hold either
one value, in which case it’s called a simple variable, or more than one value, in which
case it’s termed a list. This section describes the C shell facilities that support variables.

Creating and Assigning Simple Variables

To assign a value to a simple variable, use the built-in set command described in
Figure 7.3. Here are some examples:

% set flag ...set "flag" to a null string.
% echo $flag ...nothing is printed, as it's null.

% set color = red ...set "color" to the string "red".
% echo $color
red
% set name = Graham Glass ...beware! Must use quotes.
% echo $name ...only the first string was assigned.
Graham
% set name = “Graham Glass” ...now it works as expected.
% echo $name
Graham Glass
% set ...display a list of all local variables.
argv ()
cdpath /home/glass
color red
cwd /home/glass
flag
...
name Graham Glass
term vt100
user glass
% _

set {name [=word]}*

If no arguments are supplied, a list of all the local variables is displayed. If word is
not supplied, name is set to a null string. If the variable name doesn’t exist, it is im-
plicitly created.

FIGURE 7.3

Description of the set shell command.

Variables 259

Accessing a Simple Variable

In addition to the simple variable access syntax ($name), the C shell supports the complex
access methods shown in Figure 7.4. Some examples follow that illustrate these access
methods. In the first example, I used braces to append a string to the value of a variable:

% set verb = sing
% echo I like $verbing
verbing: Undefined variable.
% echo I like ${verb}ing
I like singing
% _

Syntax Action

${name} Replaced by the value of name. This form is useful if the expression
is immediately followed by an alphanumeric character that would
otherwise be interpreted as part of the variable’s name.

${?name} Replaced by 1 if name is set and 0 otherwise.

FIGURE 7.4

Accessing C shell variables.

In the following example, I used a variable as a simple flag in a conditional expression:

% cat flag.csh ...list the script.
#
set flag ...set "flag" to a null string.
if (${?flag}) then ...branch if "flag" is set.
echo flag is set
endif
% flag.csh ...execute the script.
flag is set
% _

Creating and Assigning List Variables

To assign a list of values to a variable, use the built-in set command with the syntax
shown in Figure 7.5. Here’s an example:

% set colors = (red yellow green) ...set to a list.
% echo $colors ...display entire list.
red yellow green
% _

Accessing a List Variable

The C shell supports a couple of ways to access a list variable. Both of these methods
have two forms, the second of which is surrounded by braces.The second form is useful

260 Chapter 7 The C Shell

Syntax Action

$name[selector] Both forms are replaced by the element of name whose index
${name[selector]} is specified by the value of selector, which may either be a

single number, a range of numbers in the format start-end, or
an asterisk*. If start is omitted, 1 is assumed. If end is omitted,
the index of the last element is assumed. If a * is supplied,
then all of the elements are selected. The first element of a
list has index 1.

$#name Both forms are replaced by the number of elements in name.

${#name}

FIGURE 7.6

Accessing C shell list variables.

set {name = ({ word}*) }*

If the named variable doesn’t exist, it is created implicitly. The named variable is as-
signed to a copy of the specified list of words.

FIGURE 7.5

Description of the set shell command setting a list variable.

if the expression is immediately followed by an alphanumeric character that would
otherwise be interpreted as part of the variable’s name. Figure 7.6 provides a descrip-
tion of the two access methods. Here are some examples:

% set colors = (red yellow green) ...set to a list.
% echo $colors[1] ...display first element.
red
% echo $colors[2-3] ...display 2nd and 3rd.
yellow green
% echo $colors[4] ...illegal access.
Subscript out of range.
% echo $#colors ...display size of list.
3
% _

Building Lists

To add an element to the end of a list, set the original list equal to itself plus the new el-
ement, surrounded by parentheses; if you try to assign the new element directly, you’ll
get an error message. The following example illustrates some list manipulations:

Variables 261

% set colors = (red yellow green) ...set to a list.
% set colors[4] = pink ...try to set the 4th.
Subscript out of range.
% set colors = ($colors blue) ...add to the list.
% echo $colors ...it works!
red yellow green blue
% set colors[4] = pink ...OK, since 4th exists.
% echo $colors
red yellow green pink
% set colors = $colors black ...don't forget to use ().
% echo $colors ...only the first was set.
red
$ set girls = (sally georgia) ...build one list.
$ set boys = (harry blair) ...build another.
$ set both = ($girls $boys) ...add the lists.
$ echo $both ...display the result.
sally georgia harry blair
% _

Predefined Local Variables

In addition to the common predefined local variables, the C shell defines the variables
shown in Figure 7.7. Here’s a small shell script that uses the variable to obtain a
user response:

% cat var5.csh ...list the script.
#
echo -n "please enter your name: "
set name = $< # take a line of input.
echo hi $name, your current directory is $cwd
% var5.csh ...execute the script.
please enter your name: Graham
hi Graham, your current directory is /home/glass
% _

$6

Name Value

$?0 1 if the shell is executing commands from a named file; 0
otherwise.

$< The next line of standard input, fully quoted.

$argv A list that contains all of the positional parameters: $argv[1] is
equal to $1.

$cdpath The list of alternative directories that chdir uses for searching
purposes.

FIGURE 7.7

C shell predefined local variables.

262 Chapter 7 The C Shell

$cwd The current working directory.

$echo Set if the -x command line option is active.

$histchars May be used to override the default history metacharacters. The
first character is used in place of ! for history substitutions, and
the second is used in place of ^ for quick command reexecution.

$history The size of the history list.

$home The shell’s home directory.

$ignoreeof Prevents the shell from terminating when it gets a Control-D.

$mail A list of the files to check for mail. By default, the shell checks
for mail every 600 seconds (10 minutes). If the first word of $mail
is a number, the shell uses this value instead.

$noclobber Prevents existing files from being overridden by > and
nonexistent files from being appended to by >>.

$noglob Prevents wildcard expansion.

$nonomatch Prevents an error from occurring if no files match a
wildcard filename.

$notify By default, the shell notifies you of changes in job status just
before a new prompt is displayed. If $notify is set, the change in
status is displayed immediately when it occurs.

$path Used by the shell for locating executable files.

$prompt The shell prompt.

$savehist The number of commands to save in the history file.

$shell The full pathname of the log-in shell.

$status The exit code of the last command.

$time If this is set, any process that takes more than the specified
number of seconds will cause a message to be displayed that
indicates process statistics.

$verbose Set if the -v command line option is used.

FIGURE 7.7 (Continued)

Expressions 263

Creating and Assigning Environment Variables

To assign a value to an environment variable, use the built-in command setenv de-
scribed in Figure 7.8. Here’s an example of setenv:

% setenv TERM vt52 ...set my terminal type.
% echo $TERM ...confirm.
vt52
% _

setenv name word

If the named variable doesn’t exist, it is created implicitly; otherwise, it is overwrit-
ten. Note that environment variables always hold exactly one value; there is no such
thing as an environment list.

FIGURE 7.8

Description of the setenv shell command.

Predefined Environment Variables

In addition to the common predefined environment variables, the C shell supports the
variable shown in Figure 7.9.

Name Value

$LOGNAME the shell owner’s user ID

FIGURE 7.9

C shell predefined environment variables.

EXPRESSIONS

The C shell supports string, arithmetic, and file-oriented expressions.

String Expressions

The C shell supports the string operators shown in Figure 7.10. If either operand is a
list, then the first element of the list is used for the comparison. The script in the fol-
lowing example employed the string-matching technique to infer a user’s response:

% cat expr1.csh ...list the script.
#
echo -n "do you like the C shell? " #prompt.
set reply = $< # get a line of input.
if ($reply == "yes") then #check for exact match.

264 Chapter 7 The C Shell

Arithmetic Expressions

The C shell supports the arithmetic operators shown in Figure 7.11 in descending order
of precedence. These operators work just like their standard C counterparts, except
that they can operate only on integers. Expressions may be enclosed in parentheses to
control the order of evaluation. When an arithmetic expression is evaluated, a null

Operator Meaning

= = Return true if the string operands are exactly equal.

!= Return true if the string operands are unequal.

=~ Like = =, except that the right operand may contain wildcards.

!~ Like !=, except that the right operand may contain wildcards.

FIGURE 7.10

C shell string operators.

Operator(s) Meaning

- unary minus

! logical negation

* / % multiplication, division, remainder

+ - addition, subtraction

<< >> bitwise left shift, bitwise right shift

<= >= <> relational operators

= = != equality, inequality

& ^ | bitwise and, bitwise xor, bitwise or

|| && logical or, logical and

FIGURE 7.11

C shell arithmetic operators.

echo you entered yes
else if ($reply =~ y*) then #check for inexact match.
echo I assume you mean yes
endif
% expr1.csh ...execute the script.
do you like the C shell? yeah
I assume you mean yes
% _

Expressions 265

string is equivalent to zero. Any expression that uses the &, &&, ||, |, <, >, <<, or >> op-
erator must be enclosed in parentheses to prevent the shell from interpreting these
characters in a special manner. Here’s a sample script that uses a couple of operators:

% cat expr3.csh ...list the script.
#
set a = 3
set b = 5
if ($a > 2 && $b > 4) then
echo expression evaluation seems to work
endif
% expr3.csh ...execute the script.
expression evaluation seems to work
% _

You may not use the set command to assign the result of an expression to a variable. In-
stead, use the built-in @ command, which has the forms shown in Figure 7.12. Here are
some examples:

% set a = 2 * 2 ...you can't use set for assignment.
set: Syntax error.
% @ a = 2 * 2 ...use @ instead.
% echo $a
4
% @ a = $a + $a ...add two variables.
% echo $a
8
% set flag = 1
% @ b = ($a && $flag) ...need ()s because of &&.
% echo $b
1
% @ b = ($a && $flag)
% echo $b
0
% _

USE MEANING

@ list all of the shell variables

@variable op expression set variable to expression

@variable[index]op expression set indexth element of variable to expression

where op is =, +=, -=, *=, or /=.

FIGURE 7.12

Forms of the C shell command “@”.

266 Chapter 7 The C Shell

You may also increment or decrement a variable by using ++ or --, as in the following
commands:

% set value = 1
% @ value ++
% echo $value
2
% _

File-Oriented Expressions

To make file-oriented decisions a little easier to program, the C shell supports several
file-specific expressions of the form shown in Figure 7.13. A description of each option

is shown in Figure 7.14. Here’s an sample script that uses the -w option to determine
whether a file is writable:

% cat expr4.csh ...list the script.
#
echo -n "enter the name of the file you wish to erase: "
set filename = $< # get a line of input.
if (! (-w "$filename")) then # check I have access.
echo you do not have permission to erase that file.
else
rm $filename
echo file erased
endif
% expr4.csh ...execute the script.
enter the name of the file you wish to erase: /
you do not have permission to erase that file.
% _

-option fileName

where 1 (true) is returned if the selected option is true and 0 (false) is returned oth-
erwise. If fileName does not exist or is inaccessible, all options return 0.

FIGURE 7.13

Description of C shell file-oriented expression.

Aliases 267

FILENAME COMPLETION

Like the Korn shell, the C shell provides a way to avoid typing a long filename on a
command line. (This feature was introduced during the evolution of the C shell, so
older versions may not provide such functionality.)

To turn on the file completion function, you need to set the filec variable:

% set filec

Now, whenever you type part of a filename, you can type the Escape key, and if the
part of the filename you have typed so far uniquely identifies a file, the rest of the
name will be added automatically. If the text does not uniquely identify a file, no text
will be modified and you may hear a beep or tone. You can also type a * to see a list
of the filenames that currently match the part of the name you have typed. Here’s an
example:

% ls -al .log* ...typed Escape, nothing so typed *
.login .logout
% ls -al .login ...shell retyped, I added "i" and

...Escape and the "n" was added.

ALIASES

The C shell allows you to create and customize your own commands by using the built-
in command alias, which works as shown in Figure 7.15. Here’s an example of alias in
action:

Option Meaning

r Shell has read permission for fileName.

w Shell has write permission for fileName.

x Shell has execute permission for fileName.

e fileName exists.

o fileName is owned by the same user as the shell process.

z fileName exists and is zero bytes in size.

f fileName is a regular file (not a directory or special file).

d fileName is a directory file (not a regular or special file).

FIGURE 7.14

Options used in file-oriented expressions.

268 Chapter 7 The C Shell

$ alias dir 'ls -aF' ...register an alias.
$ dir ...same as typing "ls -aF".
./ main2.c p.reverse.c reverse.h
../ main2.o palindrome.c reverse.old
$ dir *.c ...same as typing "ls -aF *.c".
main2.c p.reverse.c palindrome.c
$ alias dir ...look at the value associated with "dir".
ls -aF
$ _

In the following example, I aliased a word in terms of itself:

% alias ls 'ls -aF' ...define "ls" in terms of itself.
% ls *.c ...same as typing "ls -aF *.c".
main2.c p.reverse.c palindrome.c
% alias dir 'ls' ...define "dir" in terms of "ls".
% dir ...same as typing "ls -aF".
./ main2.c p.reverse.c reverse.h
../ main2.o palindrome.c reverse.old
% alias who 'date; who' ...infinite loop problem.
% who
Alias loop.
% alias who 'date; /bin/who' ...full path avoids error
% who ...works fine now.
Fri Feb 13 23:33:37 CST 1998
glass ttyp0 Feb 13 23:30 (xyplex2)
% _

Shell Command: alias [word [string]]

alias supports a simple form of command line customization. If you alias word to be
equal to string and then enter a command beginning with word, the first occurrence
of word is replaced by string and the command is reprocessed.

If you don’t supply word or string, a list of all the current shell aliases is dis-
played. If you supply just word, then the string currently associated with the alias
word is displayed. If you supply word and string, the shell adds the specified alias to
its collection of aliases. If an alias already exists for word, word is replaced.

If the replacement string begins with word, it is not reprocessed for aliases, in
order to prevent infinite loops. If the replacement string contains word elsewhere, an
error message is displayed when the alias is executed.

FIGURE 7.15

Description of the alias shell command.

Aliases 269

Removing an Alias

To remove an alias, use the built-in command unalias, which works as shown in
Figure 7.16.

Shell Command: unalias pattern

unalias removes all of the aliases that match pattern. If pattern is *, then all aliases
are removed.

FIGURE 7.16

Description of the unalias shell command.

Alias Value

cd cd \!*; set prompt = “$cwd \!>”; ls

This changes your prompt so that it contains both the current working
directory and the latest command number. (See “history” later in the
list for more details.)

ls ls -F

This causes ls to include extra file information.

rm rm -i

This causes rm to ask for confirmation.

rm mv \!* ~/tomb

This causes rm to move a file into a special “tomb” directory instead of
removing the file.

h history

This shows you a list of previously used commands by typing just
one letter.

FIGURE 7.17

Useful C shell aliases.

Useful Aliases

Figure 7.17 provides a list of useful aliases, together with a brief description of each one.
I keep these aliases in my “.cshrc” file.

Sharing Aliases

To make an alias available to a subshell, place its definition in the shell’s “.cshrc” file.

270 Chapter 7 The C Shell

Parameterized Aliases

An alias may refer to arguments in the original, “prealiased” command by using the
history mechanism described in the next section. The original command is treated as if
it were the previous command.The useful alias for cd that I mentioned makes good use
of this facility; the \!* part of the alias is replaced by all of the arguments in the original
command. The ! is preceded by a \ to inhibit its special meaning during the assignment
of the alias:

alias cd 'cd \!*; set prompt = "$cwd \! > "; ls'

HISTORY

The C shell keeps a record of the commands you enter from the keyboard so that they
may be edited and reexecuted at a later stage. This facility is sometimes known as a
history mechanism. The ! metacharacter gives you access to history.

Numbered Commands

When you’re using history, it’s very handy to arrange for your prompt to contain the
number of the command you’re about to enter. To do this, insert the \! character se-
quence into your prompt:

% set prompt = '\! % ' ...include event num in prompt.
1 % echo Genesis ...this command is event #1.
Genesis
2 % _ ...the next command will be event #2.

vi (mesg n; /bin/vi \!*; mesg y)

This stops people from sending you messages while you’re in the
vi editor.

mroe more

This corrects a common spelling error when using the more command.

ls-l ls -l

This corrects a common spelling error when using the ls command.

ll ls -l

This allows you to obtain a long directory listing more conveniently.

FIGURE 7.17 (Continued)

History 271

Storage of Commands

A C shell records the last $history commands during a particular session. If $history is
not set, a default value of 1 is used. If you want the next session to be able to access
these commands set the $savehist variable. If you do this, the last $savehist commands
are maintained in the file specified by the HISTFILE variable (which usually defaults
to $HOME/.history, but may vary with versions of UNIX). A history file is shared by
all of the interactive C shells created by the same user, unless HISTFILE is purposely
set to a unique value in each different shell. In the following example, I instructed my
shell to remember the last 40 commands in my history list and to store the last 32 com-
mands between sessions:

2 % set history = 40 ...remember the last 40 commands.
40
3 % set savehist = 32 ...save 32 across sessions.
32
4 % _

Reading History

To obtain a listing of a shell’s history, use the built-in command history, which works as
shown in Figure 7.18. Here’s an example:

4 % alias h history ...make a useful alias.
5 % h ...list current history.
1 set prompt = '\! % '
2 set history = 40
3 set savehist = 32
4 alias h history
5 h

6 % h -r 3 ...list last 3 commands in reverse order.
6 h 3
5 h
4 alias h history

7 % _

Shell Command: history [-rh] [number]

history allows you to access a shell’s history list. If no parameters are supplied, this
command lists the last $history commands. The -r option causes the history list to be
listed in reverse order, and the -h option inhibits the display of event numbers. “his-
tory” is usually aliased to “h” for speed.

FIGURE 7.18

Description of the history shell command.

272 Chapter 7 The C Shell

Command Reexecution

To reexecute a previous command, use the ! metacharacter in one of the forms shown
in Figure 7.19. These sequences may appear anywhere in a command line, although

Form Action

!! Replaced with the text of the most recent command.

!number Replaced with the text of the command with the specified
event number.

!prefix Replaced with the text of the most recent command that
started with prefix.

!?substring? Replaced with the text of the most recent command that
contained substring.

FIGURE 7.19

Command reexecution in the C shell.

they’re usually used in isolation. The recalled command is echoed to the terminal be-
fore it is executed. The value of prefix or substring may not contain a space. The special
meaning of ! is not inhibited by any kind of quote, but may be inhibited by preceding it
with a space, tab, =, (, or \. Here are some examples:

41 % echo event 41 ...a simple echo.
event 41
42 % echo event 42 ...another simple echo.
event 42
43 % !! ...re-execute last command.
echo event 42 ...echo command before re-execution.
event 42
44 % !41 ...re-execute command #41.
echo event 41 ...echo command before re-execution.
event 41
45 % !ec ...re-execute command starting with "ec".
echo event 41 ...echo command before re-execution.
event 41
46 % _

Accessing Pieces of History

You may access a portion of a previous command by using history modifiers, which are
a collection of options that may immediately follow an event specifier. Each modifier
returns a single token or range of tokens from the specified event. Figure 7.20 provides
a list of the modifiers. The colon before the $, and * options is optional. To use one of¿,

History 273

these modifiers on the most recent command, you may precede the modifier by “!!” or
just “!”. Here are some examples:

48 % echo I like horseback riding ...original line.
I like horseback riding
49 % !!:0 !!:1 !!:2 !!:4 ...access specified arguments.
echo I like riding
I like riding
50 % echo !48:1-$...access range of arguments.
echo I like horseback riding
I like horseback riding
51 % _

Accessing Portions of Filenames

If a history modifier refers to a filename, it may be further modified in order to ac-
cess a particular portion of the name. The existing modifiers may be followed imme-
diately by the filename modifiers shown in Figure 7.21. In the following example, I

Modifier Token(s) returned

:0 first

:number (number+1)th

:start-end (start+1)th through to (end+1)th

:^ first

:$ last

:* second through last

FIGURE 7.20

C shell history modifiers.

Modifier Part of file Portion of the specified fileName that is returned

:h head the filename minus the trailing pathname

:r root the filename minus the trailing .* suffix

:e extension the trailing .* suffix

:t tail the filename minus the leading directory path

FIGURE 7.21

C shell filename modifiers.

274 Chapter 7 The C Shell

accessed various portions of the original filename by using the aforesaid filename
access facility:

53 % ls /usr/include/stdio.h ...the original.
/usr/include/stdio.h
54 % echo !53:1:h ...access head.
echo /usr/include
/usr/include
55 % echo !53:1:r ...access root.
echo /usr/include/stdio
/usr/include/stdio
56 % echo !53:1:e ...access extension.
echo h
h
57 % echo !53:1:t ...access tail.
echo stdio.h
stdio.h
% _

History Substitution

The substitution modifier is replaced by the specified portion of a previous event
after a textual substitution is performed. The syntax is shown in Figure 7.22. Here’s
an example:

58 % ls /usr/include/stdio.h ...the original.
/usr/include/stdio.h
58 % echo !58:1:s/stdio/signal/ ...perform substitution.
echo /usr/include/signal.h
/usr/include/signal.h
59 % _

!event:s/pat1/pat2/

This sequence is replaced by the specified event after replacing the first occurrence
of pat1 by pat2.

FIGURE 7.22

Description of C shell history substitution.

CONTROL STRUCTURES

The C shell supports a wide range of control structures that make the language suitable
as a high-level programming tool. Shell programs are usually stored in scripts and are
commonly used to automate maintenance and installation tasks.

Control Structures 275

Several of the control structures require several lines to be entered. If such a con-
trol structure is entered from the keyboard, the shell prompts you with a ? for each ad-
ditional line until the control structure is ended, at which point it executes.

Following is a description of each control structure, in alphabetical order. I made
the C shell examples correspond closely to the Bourne shell examples so that you can
compare and contrast the two shells.

foreach .. end

The foreach command allows a list of commands to be executed repeatedly, each time
using a different value for a named variable. The syntax is shown in Figure 7.23. Here’s
an example of a script that uses a foreach control structure:

% cat foreach.csh ...list the script.
#
foreach color (red yellow green blue) # four colors
echo one color is $color
end
% foreach.csh ...execute the script.
one color is red
one color is yellow
one color is green
one color is blue
% _

goto

The goto command allows you to jump unconditionally to a named label. To declare
a label, simply start a line with the name of the label, followed immediately by a
colon. Figure 7.24 shows the syntax of a goto command. Use gotos sparingly, to

foreach name (wordList)

commandList

end

The foreach command iterates the value of name through each variable in wordList,
executing the list of commands commandList after each assignment. A break com-
mand causes the loop to end immediately, and a continue command causes the loop
to jump immediately to the next iteration.

FIGURE 7.23

Description of the foreach shell command.

276 Chapter 7 The C Shell

avoid nasty “spaghettilike” code (even if you like spaghetti). Here’s an example of a
simple goto:

% cat goto.csh ...list the script.
#
echo gotta jump
goto endOfScript # jump
echo I will never echo this
endOfScript: # label
echo the end
% goto.csh ...execute the script.
gotta jump
the end
% _

if .. then .. else .. endif

There are two forms of the if command. The first form supports a simple one-way
branch and has the syntax shown in Figure 7.25. Here is an example of this form of if :

% if (5 > 3) echo five is greater than 3
five is greater than three
% _

goto name

where a label of the form exists later on in the script.

name:

When a goto statement is encountered, control is transferred to the line following
the location pointed to by the label. Note that the label may precede or follow the
goto statement, even if the command is entered from the keyboard.

FIGURE 7.24

Description of the goto shell command.

if (expr) command

This form of the if command evaluates expr and, if expr is true (nonzero), executes
command.

FIGURE 7.25

Description of the if shell command in its simple form.

Control Structures 277

The second form of the if command supports alternative branching. Its general syntax
is shown in Figure 7.26. Here’s an example of the second form of if :

% cat if.csh ...list the script.
#
echo -n 'enter a number: ' # prompt user.
set number = $< # read a line of input.
if ($number < 0) then
echo negative
else if ($number == 0) then
echo zero
else
echo positive
endif
% if.csh ...execute the script.
enter a number: -1
negative
% _

onintr

The onintr command allows you to specify a label that should be jumped to when the
shell receives a SIGINT signal. This signal is typically generated by a Control-C from

if (expr1) then
list1

else if (expr2) then
list2

else
list3

endif

The else and else if portions of this command are optional, but the terminating
endif is not. expr1 is executed. If expr1 is true, the commands in list1 are executed
and the if command is done. If expr1 is false and there are one or more else if com-
ponents, then a true expression following an else if causes the commands following
the associated then to be executed and the if command to finish. If no true expres-
sions are found and there is an else component, the commands following the else
are executed.

FIGURE 7.26

Description of the if shell command with else clauses.

278 Chapter 7 The C Shell

the keyboard and is described in more detail in Chapter 13. The syntax of onintr is
shown in Figure 7.27. Here’s an example:

% cat onintr.csh ...list the script.
#
onintr controlC # set Control-C trap.
while (1)
echo infinite loop
sleep 2
end
controlC:
echo control C detected
% onintr.csh ...execute the script.
infinite loop
infinite loop
^C ...press Control-C.
control C detected
% _

repeat

The repeat command allows you to execute a single command a specified number of
times. Its syntax is shown in Figure 7.28. Here is an example of the use of repeat :

% repeat 2 echo hi there ...display two lines.
hi there
hi there
% _

onintr [- | label]

The onintr command instructs the shell to jump to label when SIGINT is received. If
the - option is used, SIGINTs are ignored. If no options are supplied, the shell’s orig-
inal SIGINT handler is restored.

FIGURE 7.27

Description of the onintr shell command.

repeat expr command

The repeat command evaluates expr and then executes command the resultant num-
ber of times.

FIGURE 7.28

Description of the repeat shell command.

Control Structures 279

switch .. case .. endsw

The switch command supports multiway branching based on the value of a single ex-
pression. Figure 7.29 shows the general form of a switch construct. Here’s an example
of a script called “menu.csh” that makes use of a switch control structure:

#
echo menu test program
set stop = 0 # reset loop termination flag
while ($stop == 0) # loop until done
cat << ENDOFMENU # display menu
1 : print the date.
2, 3: print the current working directory
4 : exit
ENDOFMENU
echo

switch (expr)
case pattern1:
list
breaksw
case pattern2:
case pattern3:
list2
breaksw

default:
defaultList

endsw

expr is an expression that evaluates to a string, pattern1/pattern2/pattern3 may in-
clude wildcards, and list1/list2/defaultList are lists of one or more shell commands.
The shell evaluates expr and then compares it with each pattern in turn, from top to
bottom. When the first matching pattern is found, its associated list of commands is
executed, and then the shell skips to the matching endsw. If no match is found and a
default condition is supplied, then defaultList is executed. If no match is found and
no default condition exists, then execution continues from the command following
the matching endsw.

FIGURE 7.29

Description of the switch shell command.

280 Chapter 7 The C Shell

echo -n 'your choice? ' # prompt
set reply = $< # read response
echo ""
switch ($reply) # process response
case "1":
date # display date
breaksw

case "2":
case "3":
pwd # display working directory
breaksw

case "4":
set stop = 1 # set loop termination flag
breaksw

default: # default
echo illegal choice # error
breaksw

endsw
end

Here’s the output from the “menu.csh” script:

% menu.csh
menu test program
1 : print the date.
2, 3: print the current working directory
4 : exit
your choice? 1
Sat Feb 14 00:50:26 CST 1998
1 : print the date.
2, 3: print the current working directory
4 : exit
your choice? 2
/home/glass
1 : print the date.
2, 3: print the current working directory
4 : exit
your choice? 5
illegal choice
1 : print the date.
2, 3: print the current working directory
4 : exit
your choice? 4

% _

while .. end

The built-in while command allows a list of commands to be executed repeatedly, as
long as a specified expression evaluates to true (nonzero). The syntax is shown in

Sample Project: Junk 281

Figure 7.30. Here’s an example of a script that uses a while control structure to gener-
ate a small multiplication table:

% cat multi.csh ...list the script.
#
set x = 1 # set outer loop value
while ($x <= $1) # outer loop
set y = 1 # set inner loop value
while ($y <= $1) # inner loop
@ v = $x * $y # calculate entry
echo -n $v " " # display entry
@ y ++ # update inner loop counter

end
echo "" # newline
@ x ++ # update outer loop counter
end
% multi.csh 7 ...execute the script.
1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49
% _

SAMPLE PROJECT: JUNK

To illustrate some of the C shell capabilities we have discussed, I present a C shell ver-
sion of the “junk” script project that was suggested at the end of Chapter 5. Figure 7.31
gives a definition of the junk utility about to be described.

while (expr)
commandlist

end

The while command evalutes the expression expr and, if it is true, proceeds to exe-
cute every command in commandlist and then repeats the process. If expr is false,
the while loop terminates, and the script continues to execute from the command
following the end. A break command causes the loop to end immediately, and a
continue command causes the loop to jump immediately to the next iteration.

FIGURE 7.30

Description of the while shell command.

282 Chapter 7 The C Shell

The C shell script that follows uses a list variable to store filenames. The rest of
the functionality is evident from the embedded comments. The shell script is available
on-line. (See the preface for more information.) Here is the code:

Junk

#! /bin/csh
junk script
author: Graham Glass
9/25/91
#
Initialize variables
#
set fileList = () # a list of all specified files.
set listFlag = 0 # set to 1 if -l option is specified.
set purgeFlag = 0 # 1 if -p option is specified.
set fileFlag = 0 # 1 if at least one file is specified.
set junk = ~/.junk # the junk directory.
#
Parse command line
#
foreach arg ($*)
switch ($arg)
case "-p":
set purgeFlag = 1
breaksw
case "-l":
set listFlag = 1
breaksw
case -*:
echo $arg is an illegal option
goto error
breaksw
default:
set fileFlag = 1
set fileList = ($fileList $arg) # append to list
breaksw

endsw

Utility: junk -lp { fileName }*

junk is a replacement for the rm utility. Rather than removing files, junk moves
them into the subdirectory “.junk” in your home directory. If “.junk” doesn’t exist, it
is automatically created. The -l option lists the current contents of the “.junk” direc-
tory, and the -p option purges “.junk”.

FIGURE 7.31

Description of the junk shell script.

Enhancements 283

end
#
Check for too many options
#
@ total = $listFlag + $purgeFlag + $fileFlag
if ($total != 1) goto error
#
If junk directory doesn't exist, create it
#
if (!(-e $junk)) then
'mkdir' $junk
endif
#
Process options
#
if ($listFlag) then
'ls' -lgF $junk # list junk directory.
exit 0
endif
#
if ($purgeFlag) then
'rm' $junk/* # remove contents of junk directory.
exit 0
endif
#
if ($fileFlag) then
'mv' $fileList $junk # move files to junk directory.
exit 0
endif
#
exit 0
#
Display error message and quit
#
error:
cat << ENDOFTEXT
Dear $USER, the usage of junk is as follows:
junk -p means "purge all files"
junk -l means "list junked files"
junk <list of files> to junk them
ENDOFTEXT
exit 1

ENHANCEMENTS

In addition to the new facilities that have already been described, the C shell enhances
the common core shell facilities in the following areas:

• a shortcut for command reexecution
• the metacharacters56

284 Chapter 7 The C Shell

• filename substitution
• redirection
• piping
• job control

Command Reexecution: A Shortcut

It’s quite common to want to reexecute the previous command with a slight modifica-
tion. For example, say you misspelled the name of a file. Instead of “fil.txt”, you meant
to type “file.txt”. There’s a convenient shorthand way to correct such a mistake. If you
type the command

^pat1^pat2

then the previous command is reexecuted after the first occurrence of pat1 is re-
placed by pat2. This shortcut procedure applies only to the previous command.
Here’s an example:

% ls –l fil.txt ...whoops!
ls: File or directory "fil.txt" is not found.
% ^fil^file ...quick correction.
ls –l file.txt ...OK.
-rw-r-xr-x 1 ables 410 Jun 6 23:58 file.txt
% _

Metacharacters:

You may use braces around filenames to save typing common prefixes and suffixes.
The notation

a{b,c}d

is replaced with

abd acd

In the following example, I copied the C header files “/usr/include/stdio.h” and “/usr/in-
clude/signal.h” (which have a common prefix and suffix) into my home directory:

% cp /usr/include/{stdio,signal}.hcopy two files.
% _

Filename Substitution

In addition to the common filename substitution facilities, the C shell supports two
new features: the ability to disable filename substitution and the ability to specify what
action should be taken if a pattern has no matches.

56

Enhancements 285

Disabling Filename Substitution

To disable filename substitution, set the $noglob variable. If this is done, wildcards lose
their special meaning. The $noglob variable is not set by default. Here’s an example:

% echo a* p* ...one wildcard pair matches: p*
prog1.c prog2.c prog3.c prog4.c
% set noglob ...inhibit wildcard processing.
% echo a* p*
a* p*
% _

No Match Situations

If several patterns are present in a command and at least one of them has a match, then no
error occurs. However, if none of the patterns has a match, the shell issues an error mes-
sage by default. If the $nonomatch variable is set and no matches occur, then the original
patterns are used as is.The $nonomatch variable is not set by default. Here’s an example:

% echo a* p* ...one wildcard pair matches: p*.
prog1.c prog2.c prog3.c prog4.c
% echo a* b* ...no wildcards match.
echo: No match. ...error occurs by default.
% set nonomatch ...set special nonomatch variable.
% echo a* b* ...wildcards lose their special meaning.
a* b* ...no error occurs.
% _

Redirection

In addition to the common redirection facilities, the C shell supports a couple of en-
hancements: the ability to redirect the standard error channel and the ability to protect
files against accidental overwrites.

Redirecting the Standard Error Channel

To redirect the standard error channel in addition to the standard output channel, sim-
ply append an ampersand (&) to the or redirection operator, as shown in the fol-
lowing example:

% ls –l a.txt b.txt >list.out ...ls sends errors to stderr
ls: File or directory "b.txt" is not found.
% ls –l a.txt b.txt >& list.out ...also redirect stderr
% _

Although there’s no easy way to redirect just the error channel, it can be done by using
the following “trick”:

(process1 > file1) >& file2

W7

286 Chapter 7 The C Shell

This trick works by redirecting the standard output from process1 to file1 (which can
be “/dev/null” if you don’t want to save the output), allowing only the standard errors
to leave the command group. The command group’s output and error channels are
then redirected to file2.

Protecting Files Against Accidental Overwrites

You may protect existing files from accidental overwrites, and nonexistent files from
being accidentally appended to, by setting the $noclobber variable. If a shell com-
mand tries to perform either action, it fails and issues an error message. Note that reg-
ular system calls such as write () are unaffected. $noclobber is not set by default.
Here’s an example:

% ls -l errors ...look at existing file.
-rw-r-xr-x 1 glass 225 Feb 14 10:59 errors
% set noclobber ...protect files.
% ls a.txt >& errors ...cannot overwrite.
errors: File exists.
% _

To temporarily override the effect of $noclobber, append a ! character to the redirec-
tion operator:

% ls a.txt >&! errors ...existing file is overwritten.
% _

Piping

In addition to supporting the common piping facilities, the C shell allows you to pipe
the standard output and standard error channel from process1 to process2, using the
syntax shown in Figure 7.32. In the following example, I piped the standard output and
error channels from the ls utility to more:

% ls –l a.txt b.txt |& more ...pipe stdout and stderr.
ls: File or directory "b.txt" is not found.
-rw-r-xr-x 1 ables 988 Dec 7 06:27 a.txt
% _

Although there’s no direct way to pipe just the error channel, it can be done by using a
“trick” similar to the one used previously to pipe only the error channel to a file:

(process1 > file) |& process2

process1 |& process2

FIGURE 7.32

Example of piping both stdout and stderr.

Enhancements 287

This trick works by redirecting the standard output from process1 to file (which can be
“/dev/null” if you don’t want to save the output), allowing only the standard errors to
leave the command group. The command group’s output and error channels are then
piped to process2, but because the standard output is now empty, the result is only the
standard error output.

Job Control

The job control facilities of the C shell are the same as the Korn shell’s, with the fol-
lowing additional built-in commands:

• stop
• suspend
• nice
• nohup
• notify

stop

To suspend a specified job, use the stop command described in Figure 7.33.

suspend

The suspend command is described in Figure 7.34.

Shell Command: stop { %job }*

stop suspends the jobs that are specified, using the same standard job specifier for-
mat described in Chapter 6. If no arguments are supplied, the most recently refer-
enced job is suspended.

FIGURE 7.33

Description of the stop shell command.

Shell Command: suspend

suspend suspends the shell that invokes it. It makes sense to do this only when the
shell is a subshell of the log-in shell, and it is most commonly done to suspend a shell
invoked by the su or script utilities.

FIGURE 7.34

Description of the suspend shell command.

288 Chapter 7 The C Shell

nice

To set the priority level of the shell or a command, use the nice command described in
Figure 7.35. For more information about process priorities, see Chapter 13.

nohup

To protect a command from a hang-up, use the built-in nohup command as described
in Figure 7.36.

Shell Command: nice [+|- number] [command]

nice runs command with priority level number. In general, the higher the priority, the
slower the process will run. Only a superuser can specify a negative priority level. If
the priority level is omitted, 4 is assumed. If no arguments are specified, the shell’s
priority level is set.

FIGURE 7.35

Description of the nice shell command.

Shell Command: nohup [command]

nohup executes command and protects it from a hang-up. If no arguments are sup-
plied, then all further commands executed from the shell are protected. Note that all
background commands are automatically “nohup’ed” in the C shell.

FIGURE 7.36

Description of the nohup shell command.

notify

Normally, the shell notifies you of a change in a job’s state just before displaying a new
prompt. If you want immediate (asynchronous) notification of job state changes, use
the built-in notify command described in Figure 7.37.

Shell Command: notify { %job }*

notify instructs the shell to inform you immediately when the specified jobs change
state. Jobs must be specified in accordance with the standard job specifier format de-
scribed in Chapter 6. If no job is specified, the most recently referenced job is used.
To enable immediate notification of all jobs, set the $notify variable.

FIGURE 7.37

Description of the notify shell command.

Built-Ins 289

Terminating a Login Shell

The logout command terminates a login shell. Unlike exit, logout cannot be used to ter-
minate an interactive subshell. You may therefore terminate a login C shell in one of
the following three ways:

• Type a Control-D on a line by itself (as long as $ignoreeof is not set).
• Use the built-in exit command.
• Use the built-in logout command.

Here’s an example:

% set ignoreeof ...set to prevent ^D exit.
% ^D ...won't work now.
Use "logout" to logout.
% logout ...a better way to log out.
login: _

When a login C shell is terminated, it searches for “finish-up” files. The commands in
each such file, if found, are executed in sequence. The user’s finish-up file is
$HOME/.logout, and it is executed if found. Then, any global finish-up file is executed.
The name of this file might be “/etc/logout” or “/.logout”, depending on your version of
UNIX.

A finish-up file typically contains commands for cleaning up temporary directo-
ries, performing other such cleanup operations, and issuing a goodbye message.

If a nonlogin C shell is terminated by using exit or Control-D, no finish-up files
are executed.

BUILT-INS

The C shell provides the following extra built-ins:

• chdir
• glob
• source

chdir

The chdir shell command is described in Figure 7.38.

glob

The glob shell command is described in Figure 7.39.

source

When a script is executed, it is interpreted by a subshell. Any aliases or local-variable
assignments performed by the script therefore have no effect on the original shell. If

290 Chapter 7 The C Shell

you want a script to be interpreted by the current shell and thus affect that shell, use
the built-in source command described in Figure 7.40. In the following example, I used
source to reexecute an edited “.login” file:

% vi .login ...edit my .login file.
...
% source .login ...re-execute it.
Enter your terminal type (default is vt100): vt52
% _

Shell Command: chdir [path]

chdir works in the same way as cd, changing your current working directory to the
specified directory.

FIGURE 7.38

Description of the chdir shell command.

Shell Command: glob { arg }

glob works in the same way as echo, printing a list of args after they have been
processed by the shell metacharacter mechanisms. The difference is that the args in
the list are delimited by nulls (ASCII 0) instead of spaces in the final output. This
makes the output ideally suited for use by C programs that accept strings terminat-
ed by null characters.

FIGURE 7.39

Description of the glob shell command.

Shell Command: source [-h] fileName

source causes a shell to execute every command in the script called fileName without
invoking a subshell. The commands in the script are placed in the history list only if
the -h option is used. It is perfectly valid for fileName to contain further source com-
mands. If an error occurs during the execution of fileName, control is returned to the
original shell.

FIGURE 7.40

Description of the source shell command.

The Directory Stack 291

The only other way to reexecute the file would have been to log out and then log back
in again.

THE DIRECTORY STACK

The C shell allows you to create and manipulate a directory stack, which makes life a
little easier when you’re flipping back and forth between a small working set of direc-
tories. To push a directory onto the directory stack, use the pushd command described
in Figure 7.41. To pop a directory from the directory stack, use the popd command,
which works as described in Figure 7.42. The dirs command, described in Figure 7.43,
lets you see the contents of the directory stack. Here are some examples of directory
stack manipulation:

% pwd ...I'm in my home directory.
/home/glass
% pushd / ...go to root directory, push home dir.
/ ~ ...displays directory stack automatically.
% pushd /usr/include ...push another directory.
/usr/include / ~
% pushd ...swap two stack elements, go back to root.
/ /usr/include ~
% pushd ...swap them again, go back to "/usr/include".
/usr/include / ~
% popd ...pop a directory, go back to root.
/ ~
% popd ...pop a directory, go back to home.
~
% _

Shell Command: pushd [+number | name]

pushd pushes the specified directory onto the directory stack and works like this:

• When name is supplied, the current working directory is pushed onto the
stack and the shell moves to the named directory.

• When no arguments are supplied, the top two elements of the directory stack
are swapped.

• When number is supplied, the numberth element of the directory stack is
rotated to the top of the stack and becomes the current working directory.
The elements of the stack are numbered in ascending order, with the top as
number 0.

FIGURE 7.41

Description of the pushd shell command.

292 Chapter 7 The C Shell

The Hash Table

As described in Chapter 4, the PATH variable is used when one is searching for an ex-
ecutable file. To speed up this process, the C shell stores an internal data structure,
called a hash table, that allows the directory hierarchy to be searched more quickly.The
hash table is constructed automatically whenever the “.cshrc” file is read. In order for
the hash table to work correctly, however, it must be reconstructed whenever $PATH is
changed or whenever a new executable file is added to any directory in the $PATH se-
quence. The C shell takes care of the first case automatically, but you must take care of
the second.

If you add or rename an executable file in any of the directories in the $PATH se-
quence, except for your current directory, you should use the rehash command to in-
struct the C shell to reconstruct the hash table. If you wish, you may use the unhash
command to disable the hash table facility, thereby slowing down the search process.

The hashstat command may be used to examine the effectiveness of the hashing
system. However, the output of this command doesn’t mean anything unless you’re fa-
miliar with hashing algorithms.

In the next example, I added a new executable file into the directory
which was in my search path.The shell couldn’t find the file until I performed a rehash.
Here are the commands:

% pwd ...I'm in my home directory.
/home/glass
% echo $PATH ...list my PATH variable.
.:/home/glass/bin:/usr/bin:/usr/local/bin:/bin:

“' /bin”,

Shell Command: popd [+number]

popd pops a directory from the directory stack and works like this:

• When no argument is supplied, the shell moves to the directory that’s on the
top of the directory stack and then pops it.

• When a number is supplied, the shell moves to the numberth directory on the
stack and discards it.

FIGURE 7.42

Description of the popd shell command.

Shell Command: dirs

dirs lists the current directory stack.

FIGURE 7.43

Description of the dirs shell command.

Command Line Options 293

% cat > bin/script.csh ...create a new script.
#
echo found the script
^D ...end-of-input.
% chmod +x bin/script.csh ...make executable.
% script.csh ...try to run it.
script.csh: Command not found.
% rehash ...make the shell rehash.
% script.csh ...try to run it again.
found the script ...success!
% hashstat ...display hash statistics.
5 hits, 6 misses, 45%
% _

COMMAND LINE OPTIONS

If the first command line argument is a -, the C shell is started as a login shell. In ad-
dition to this feature, the C shell supports the command line options shown in
Figure 7.44.

Option Meaning

-c string Creates a shell to execute the command string.

-e Terminates shell if any command returns a nonzero exit code.

-f Starts shell, but doesn’t search for or read commands from “.cshrc”.

-i Creates an interactive shell; like the -s option, except that the
SIGTERM, SIGINT, and SIGQUIT messages are all ignored.

-n Parses commands, but does not execute them; for debugging only.

-s Creates a shell that reads commands from standard input and
sends shell messages to the standard error channel.

-t Reads and executes a single line from standard input.

-v Causes $verbose to be set (described earlier).

-V Like -v, except that $verbose is set before “.cshrc” is executed.

-x Causes the $echo variable to be set (described earlier).

-X Like -x, except that $echo is set before “.cshrc” is read.

fileName Executes the shell commands in fileName if none of the -c, -i, -s,
or -t options is used. fileName is $0 within the fileName script.

FIGURE 7.44

C shell command line options.

294 Chapter 7 The C Shell

CHAPTER REVIEW

Checklist

In this chapter, I described

• the creation of a C shell start-up file
• simple variables and lists
• expressions, including integer arithmetic
• aliases and the history mechanism
• several control structures
• enhanced job control
• several new built-in commands

Quiz

1. Why do you think integer expressions must be preceded by an @ sign?
2. What’s a good way to correct a simple typing mistake on the previous command?
3. What’s the function of the metacharacters?
4. Describe the differences between the set and setenv built-in commands.
5. How do you protect files from accidental overwrites?
6. How do you protect scripts from Control-C interrupts?

Exercises

7.1 Write a C shell version of the track script that was described in Chapter No, 5.
[level: easy]

7.2 Write a utility called hunt that acts as a front end to find; hunt takes the name of
a file as its single parameter and displays the full pathname of every matching
filename, searching downwards from the current directory. [level: medium]

Project

Study the current trends in object-oriented programming, and then design an
object-oriented shell (a shell?). [level: hard]C+ +

56

C H A P T E R 8

The Bourne Again Shell

MOTIVATION

Bash, a.k.a. the Bourne Again Shell, originally written by Brian Fox of the Free Software
Foundation, is the newest, and is quickly becoming the most popular, UNIX shell. Bash
is an attempt to create a “best of all shells” that not only provides backward compati-
bility with the Bourne Shell, but also includes the most useful features of both the C
Shell and the Korn Shell. Another advantage is that Bash, as an Open Software
product, is freely available, can be found in all Linux distributions, and can be down-
loaded and installed on just about any version of UNIX if it isn’t already present
there. (See Chapter 16 for more information on Open Software.)

PREREQUISITES

You should have already read Chapter 4 and experimented with some of UNIX’s core
shell facilities. I recommend that you also read Chapter 5, since all of the information
there is also applicable to Bash.

OBJECTIVES

In this chapter, I’ll explain and demonstrate the facilities of Bash that are unique or
different from previously discussed shells. Everything covered in Chapter 5 works in
Bash, and much of the material in Chapters 6 and 7 is also applicable to Bash.

PRESENTATION

The information in the chapter is presented in the form of several sample UNIX
sessions.

295

296 Chapter 8 The Bourne Again Shell

1To install any or all components of the Cygwin tools, click on the “install” icon, which downloads and runs
setup.exe.This takes you through the process whereby you can select Bash, as well as any other parts of Cyg-
win you wish to install.

SHELL COMMANDS

The following shell commands, listed in alphabetical order, are described:

alias if..then..elif..then..else..fi set
builtin jobs source
case..in..esac kill unalias
declare local unset
dirs popd until..do..done
export pushd while..do..done
for..do..done readonly
history select

INTRODUCTION

Bash is the shell of choice on Linux systems. (See Chapter 16 for more information on
Linux.) Bash implements all the core facilities described in Chapter 4 and is compati-
ble with the Bourne Shell (so Bourne Shell scripts run under Bash) described in
Chapter 5. Bash conforms to the POSIX standard for command shells (IEEE 1003.2).
Although Bash attempts to conform to both sh and csh functionality and syntax, when
there is a conflict, expect sh syntax to prevail. The following features of Bash are new
or a bit different from what has been discussed in previous chapters:

• variable manipulation
• command-line processing, aliases, and history
• arithmetic, conditional expressions, control structures
• directory stack
• job control
• shell functions

Getting Bash

Bash is available for nearly every version of UNIX and is even available for Windows
platforms. The GNU Bash web site is

http://www.gnu.org/software/bash/bash.html

You can find Bash source code at

ftp://ftp.gnu.org/pub/gnu/bash

Bash for Windows can be found at1

http://www.cygwin.com

http://www.gnu.org/software/bash/bash.html
http://www.cygwin.com

Variables 297

The Bash Reference Manual is also available on-line, at

http://www.gnu.org/manual/bash

If your UNIX system doesn’t already have Bash, you should download the proper
package for your particular UNIX platform, build it, and install it in /bin. Note that
you must have superuser privileges in order to install a program in a system directory.
However, you can install one in your own directory and run it manually. (If you do this,
there may be security issues that prevent you from making the program your login
shell, however.)

START-UP

Like other shells, Bash is a UNIX program. When a new Bash shell starts, it executes
commands in the file “.bashrc” in the home directory of the user running the shell. The
one exception to this is when Bash is started as a login shell, in which case it runs the
commands in the file “.bash_profile” in the user’s home directory instead. So if you
want your “.bashrc” file to be executed in your login shell as well, you have to add the
following code to your “.bash_profile” file:

if [-f ~/.bashrc]; then
. ~/.bashrc

fi

We’ll see how and why this code works later in the chapter. The code is often found by
default in “.bash_profile” files on a system.

In addition to using the “.bashrc” and “.bash-profile” files, the system administra-
tor can put initialization commands appropriate for all users in the file “/etc/profile”,
which Bash will also read and execute. Note that Bash will read the “/etc/profile” file
first, before running any initialization files belonging to the user.

VARIABLES

As with most shells, Bash allows the creation and use of shell variables for the follow-
ing purposes:

• Value assignment and access
• Defining and using lists of values
• Testing a value or testing for the existence of a variable
• Reading or writing a variable’s value

Creating and Assigning a Simple Variable

The Bash syntax for assigning a value to a simple variable is similar to that of other
shells. It is shown in Figure 8.1. Here are some examples:

http://www.gnu.org/manual/bash

298 Chapter 8 The Bourne Again Shell

The set built-in command can be used to set and display shell settings and to display the
value of shell variables. The set built-in has many arguments and uses; we’ll discuss
them as necessary. Its simplest use is to display shell variables and their values, as
shown in Figure 8.2. Here’s an example:

$ set
gameslost=3
gameswon=12
teamname="Denver Broncos"
$ _

Other output that set would produce has been omitted for clarity. Later, we’ll see other
ways that set can be used to define shell behavior.

Accessing Simple Variables

Accessing the value of simple variables is also the same as in other shells, as shown in
Figure 8.3. With the variables set in the previous section, one might use the following
command to summarize a team’s season record:

{name=value}+

FIGURE 8.1

Example of assigning a simple variable.

Shell command: set

The set built-in displays all variables set in the shell.

FIGURE 8.2

Example of the set built-in to display shell variables and values.

$name Value of the variable name is used.

${name} Value of the variable name is used next to other characters where
the name of the variable might be misinterpreted.

FIGURE 8.3

Accessing the value of a simple variable.

$ teamname="Denver Broncos"
$ gameswon=12
$ gameslost=3

Variables 299

$ echo "The $teamname went ${gameswon}-${gameslost} last year."
The Denver Broncos went 12-3 last year.

Creating and Assigning a List Variable

List variables, or arrays, are similar to those in the C Shell. Bash, however, provides a
more explicit method for defining an array, with the declare built-in command, de-
scribed in Figure 8.4, although using a variable in the form of an array will also work.
Here is an example of how you might create a list of teams:

$ declare –a teamnames
$ teamnames[0]="Dallas Cowboys"
$ teamnames[1]="Washington Redskins"
$ teamnames[2]="New York Giants"

In practice, if you omit the declare command, the other lines will still work as expected.

Accessing List Variables

Once you build a list of values, you will want to use them for something. When ac-
cessing array values, you can always put braces around the variable name to distin-
guish it explicitly from other text that might be around it (to prevent the shell from
trying to use other text as part of the variable name). This convention is shown in
Figure 8.5. The braces are required when one uses arrays to distinguish between

Shell command: declare [–ax] [listname]

If the named variable does not already exist, it is created. If an array name is omitted
when –a is used, declare will display all currently defined arrays and their values. If
the –x option is used, the variable is exported to subshells. declare writes its output in
a format that can be used again as input commands. This is useful when you want to
create a script that sets variables as they are set in your current environment.

FIGURE 8.4

Example of the declare shell command.

${name[index]} Access the indexth element of the array $name

${name[*]} or ${name[@]} Access all elements of the array $name

${#name[*]} or ${#name[@]} Access the number of elements in the array $name

FIGURE 8.5

Accessing the value(s) of a list variable.

300 Chapter 8 The Bourne Again Shell

other shell operators. Suppose, for example, we have our list of 32 NFL teams stored
as $teamname[0] .. $teamname[31]. One might use this information this way:

$ echo "There are ${#teamnames[*]} teams in the NFL"
There are 32 teams in the NFL

$ echo "They are: ${teamnames[*]}"

Building Lists

You can build an array or list variable in one of two ways. If you know how many ele-
ments you will need, you can use the declare built-in command to define the space and
assign the values to specific locations in the list. If you don’t know, or don’t care, how
many elements will be in the list, you can simply list them, and they will be added in the
order you specify. For example, to define our list of NFL teams, of which we know (at
least today) there are 32, you might define it as follows:

$ declare –a teamnames
$ teamnames[0]="Dallas Cowboys"
$ teamnames[1]="Washington Redskins"
$ teamnames[2]="New York Giants"
...

$ teamnames[31]="Houston Texans"

This can also be done in the following single (though long) command:

$ declare –a teamnames
$ teamnames=([0]="Dallas Cowboys" \

[1]="Washington Redskins" \
...

[31]="Houston Texans")

The backslash is used to tell the shell that the command is continued on the next line.
Even though we know the number of teams ahead of time, it isn’t really necessary

to know this to define the array. We could instead have done it this way:

$ teamnames = ("Dallas Cowboys" "Washington Redskins" \
"New York Giants" "New York Jets" \

...
"Houston Texans")

Note that if you have populated the array sparsely (i.e., if you have not assigned values
in consecutive locations, but have skipped around), then when you ask for the number
of values in the array, the number value will be the actual number of populated ele-
ments, not the largest index defined. The following example is illustrative:

Variables 301

$ mylist[0]=27
$ mylist[5]=30
$ echo ${#mylist[*]} ...number of elements in mylist[]
2
$ declare -a
declare -a mylist='([0]="27" [5]="30")'
$ _

Destroying Lists

List variables can be deallocated, or destroyed, using the unset built-in described in
Figure 8.6. If you have finished using an array, you can deallocate the space used by the
array by destroying it completely. It is more likely, however, that you will want to re-
move a specific element in the array, as follows:

$ unset teamnames[17]

Now our array contains 31 names instead of 32.

Shell command: unset name

unset name[index]

Deallocates the specified variable or element in the list variable.

FIGURE 8.6

Description of the unset shell command.

Shell command: set –o allexport

Tell the shell to export all variables to subshells.

FIGURE 8.7

Example of the set built-in to export all variables.

Exporting Variables

In all shells, variables are local to the specific shell and, unless otherwise specified, are
not passed to subshells. You must export a shell variable in the relevant Bourne or
Korn shells for its value to still be set in a subshell. The export built-in is supported in
Bash as it is in the Bourne Shell, or the –x option to the declare built-in, as we saw ear-
lier, will also export a variable to a subshell. In the C shell, a variable must be created
as an “environment” variable in order to be accessible in a subshell.

Bash provides a shell option that allows you to specify that, by default, all shell
variables are to be exported to any subshells created. Shell options are defined with the
set built-in, described in Figure 8.7.

302 Chapter 8 The Bourne Again Shell

Predefined Variables

Like most shells, Bash defines some variables when it starts. In addition to common
predefined variables, Bash defines the variables shown in Figure 8.8.

COMMAND SHORTCUTS

Bash provides a few ways to shorten commands and arguments you type at the
keyboard.

Name Value

BASH The full path name of the Bash executable file

BASH_ENV Location of Bash’s start-up file (default is ~/.bashrc)

BASH_VERSION Version string

BASH_VERSINFO A read-only array of version information

DIRSTACK Array defining the directory stack (discussed later)

EUID Read-only value of effective user ID of user
running Bash (UNIX only)

HISTFILE Location of file containing shell history (default
~/.bash_history)

HISTSIZE Maximum number of commands in history (default
is 500)

HISTFILESIZE Maximum number of lines allowed in history file
(default is 500)

HOSTNAME Hostname of machine on which Bash is running

HOSTTYPE Type of host on which Bash is running

MAILCHECK How often (seconds) to check for new mail

OSTYPE Operating system of machine on which Bash is running

PPID Read-only process ID of the parent process of Bash

SHLVL Level of shell (incremented once each time a Bash
process is started; shows how deeply the shell is nested)

UID Read-only value of user ID of user running Bash
(UNIX only)

FIGURE 8.8

Bash predefined variables.

Command Shortcuts 303

Aliases

As with the C Shell and Korn Shell, Bash allows you to define your own commands
with the alias built-in command, described in Figure 8.9. Bash aliases work very much
like Korn Shell aliases, as shown in the following example:

$ alias dir="ls –aF"
$ dir
./ main2.c p.reverse.c reverse.h
../ main2.o palindrome.c reverse.old
$ dir *.c
main2.c p.reverse.c palindrome.c
$

To cause an alias to no longer have a special definition, use the unalias built-in de-
scribed in Figure 8.10. You might wish to undefine an alias when you want to return to
the normal behavior of a command that you usually alias to a different behavior. (For
instance, in the foregoing example, you might no longer want dir to use the ls command
because there is another dir command in the system.)

Shell Command: alias [-p] [word[=string]]

If you alias a new command word equal to string, then when you type the command
word, the string will be used in its place (and any succeeding arguments will be ap-
pended to string), and the command will be evaluated. In the usage “alias word”, any
alias defined for word will be printed. Its simplest usage,“alias”, will print all defined
aliases. If the –p argument is used, the aliases are printed in a format suitable for
input to the shell. (So if you’ve manually set up aliases you like, you can write them
to a file to include in your .bashrc file.)

FIGURE 8.9

Description of the alias shell command.

Shell Command: unalias [-a] {word}+

Remove the specified alias(es). If “-a” is used, remove all aliases.

FIGURE 8.10

Description of the unalias shell command.

304 Chapter 8 The Bourne Again Shell

Command History

Like the C Shell and the Korn Shell, Bash maintains a historical record of the com-
mands you type. With the commands maintained in this history, you can selectively re-
execute commands or cause them to be modified and then executed with the changes
in them.

Storage of Commands

Commands you have typed to the shell are stored in a history file defined by the
$HISTFILE shell variable. By default, the value specifies the file “.bash_history” in
the user’s home directory. This file can hold a maximum of $HISTFILESIZE entries;
the default value is 500.

Reading Command History

To see your shell history, use the built-in history command described in Figure 8.11.

Command Reexecution

Bash honors the “!” metacharacter to reexecute commands from the history list in the
same way the C Shell does, so C Shell users will be quite comfortable with the symbol.
The Bash reexecution meta characters are shown in Figure 8.12.

Shell Command: history [-c] [n]

Print out the shell’s current command history. If a numeric value n is specified, show
only the last n entries in the history list. If “-c” is used, clear the history list.

FIGURE 8.11

Description of the history shell command.

Form Action

!! Replaced with the text of the most recent command.

!number Replaced with command number number in the history list.

!-number Replaced with the text of the command number commands back
from the end of the list (!-1 is equivalent to !!).

!prefix Replaced with the text of the most recent command that started
with prefix.

!?substring? Replaced with the text of the most recent command that
contained substring.

FIGURE 8.12

Command reexecution metacharacters in Bash.

Command Shortcuts 305

History Substitution

Sometimes you want to do more than simply reexecute a command that you have pre-
viously used. For example, you may want to modify the command slightly (change a
filename or a single argument to a long command). The simplest form of history sub-
stitution is the same as in the C Shell and is shown in Figure 8.13. This form is useful

when you make a minor mistake in a command and don’t want to have to retype the
entire command. The following commands are illustrative:

$ lp financial_report_july_2001.txt
lp: File not found.
$ ^2001^2002^
lp financial_report_july_2002.txt
request id is lwcs-37 (1 file)
$ _

Or perhaps you wish to substitute something in an earlier command (because you have
issued other commands to find out what was wrong, so now the command you want to
repeat isn’t the most recent command in the history list). Figure 8.14 shows how to do
this. Here’s an example:

$ lp financial_report_july_2001.txt
lp: file not found.
$ ls
financial_report_july_2002.txt financial_report_may_2002.txt
financial_report_june_2002.txt
$!lp:s/2002/2001/
request id is lwcs-37 (1 file)
$ _

^string1^string2^

Substitute string2 for string1 in the previous command and execute it.

FIGURE 8.13

Description of simple history substitution in Bash.

!command:s/string1/string2/

string2 is substituted for string1 in the most recent command that begins with the
text specified by command.

FIGURE 8.14

Example of more complex history substitution in Bash.

306 Chapter 8 The Bourne Again Shell

Command Editing

Bash provides a fairly sophisticated command-editing capability, much like that of the
Korn Shell. Both emacs and vi styles of editing are supported; emacs is the default.
Since, in emacs, you are always in text input mode, you can type emacs movement char-
acters anytime you are typing a command. So, for example, if you’ve left out a word,
you can back up with Control-B and insert it. To access your history list of previous
commands, you can use Control-P to move “up” as if your history list were a file. Most
other emacs movement commands are supported in Bash. (See the section “Editing A
File: Emacs” in Chapter 2 for more information.)

Bash also allows vi users the same luxury, but it must be set by using the set built-
in described in Figure 8.15. Because vi has two modes, “command mode” and “text

input mode,” while you are typing a normal command, Bash treats you as if you are in
text input mode. Therefore, to access the vi command-editing features, you have to hit
the ESCAPE key, just as you would in vi to get back into command mode. Once you do
that, you can move around the same way you would in vi (using “h” to back up in the
command and “k” to back up to previous commands in the history list). (See the sec-
tion “Editing A File: Vi” in Chapter 2 for more information).

Autocompletion

Bash can complete a filename, command name, username, or shell variable name that
you’ve begun typing if you’ve typed enough to uniquely identify it. To have Bash at-
tempt to complete the current argument of your command, type the TAB character. If
matching filenames are available, but the text you’ve typed does not identify one com-
pletely, text that the possible names have in common will be filled in to the point where
they no longer have characters in common. This gives you the option of having the
shell fill in long filenames where only a few characters at the end are different (like a
sequence number or a date). Then you can type only the part that is unique to the file
you wish to access.

ARITHMETIC

Arithmetic operations are easier in Bash than in the Bourne shell.What you have to use
the expr utility to accomplish, you can do with built-in commands in Bash. Not only does
this require less typing, but it also executes faster in Bash shell scripts.

Shell command: set –o vi

Tell the shell to use vi-style command editing. If you ever want to return to the de-
fault emacs-style, substitute “emacs” for “vi” in the command..

FIGURE 8.15

Example of the set built-in to set the command line edit style.

Conditional Expressions 307

Shell command: declare –i name

This form of declare defines the variable name as an integer.

FIGURE 8.18

Using the declare built-in to define a variable as an integer.

To perform an arithmetic operation in Bash, you simply put the operation inside
a set of double parentheses, as shown in Figure 8.16. Common numeric operations in-
clude those listed in Figure 8.17.

Integer arithmetic is faster than floating-point arithmetic. If you know that your vari-
able will always be an integer (such as a counter or an array index), you can use the
declare built-in, described in Figure 8.18, to declare it to be an integer.

After we look at some simple conditional expressions, we’ll combine them into a sim-
ple math script.

CONDITIONAL EXPRESSIONS

You can compare values (usually stored in shell variables) with each other and branch
to different commands, depending on the outcome of the comparison. (In the next sec-
tion, on control structures, we’ll see how you control what you do after the comparison.)

((operation))

FIGURE 8.16

Syntax of an arithmetic operation.

+, - Addition, subtraction

++, -- Increment, decrement

*, /, % Multiplication, division, remainder

** Exponentiation

FIGURE 8.17

Arithmetic operators.

308 Chapter 8 The Bourne Again Shell

Like arithmetic operations, arithmetic tests are enclosed in double parentheses. The
types of comparisons you can make are shown in Figure 8.19.

Arithmetic Tests

These comparisons make it simple to do a bit of math in a Bash script. We’ll count up
to 20 and test to see what numbers divide into 20 evenly (don’t worry too much about
the while construct just yet; we’ll see it a bit later):

$ cat divisors.bash
#!/bin/bash
#
declare –i testval=20
declare –i count=2 # start at 2, 1 always works

while (($count <= $testval)); do
((result = $testval % $count))
if (($result == 0)); then # evenly divisible
echo " $testval is evenly divisible by $count"

fi
((count++))

done
$ bash divisors.bash
20 is evenly divisible by 2
20 is evenly divisible by 4
20 is evenly divisible by 5
20 is evenly divisible by 10
20 is evenly divisible by 20
$ _

String Comparisons

The Bash string conditional operators are shown in Figure 8.20.

<=, >=, <, > Less than or equal to, greater than or equal to, less than, greater
than comparisons

==, != Equal to, not equal to

! Logical NOT

&& Logical AND

|| Logical OR

FIGURE 8.19

Arithmetic conditional operators.

Conditional Expressions 309

File-Oriented Expressions

Figure 8.21 lists the Bash file-oriented conditional operators.A simple example of a file
operation might be the following:

$ cat owner.bash
#!/bin/bash
#

if [-O /etc/passwd]; then
echo "you are the owner of /etc/passwd."

else
echo "you are NOT the owner of /etc/passwd."

fi
$ bash owner.bash
you are NOT the owner of /etc/passwd.
$_

-n string True if length of string is nonzero

-z string True if length of string is zero

string1 == string2 True if strings are equal

string1 != string2 True if strings are not equal

FIGURE 8.20

String conditional operators.

-a file True if the file exists

-b file True if the file exists and is a block special file

-c file True if the file exists and is a character special file

-d file True if the file exists and is a directory

-e file True if the file exists

-f file True if the file exists and is a regular file

-g file True if the file exists and its set-group-id bit is set

-k file True if the file exists and its “sticky” bit is set

FIGURE 8.21

File-oriented conditional operators.

310 Chapter 8 The Bourne Again Shell

CONTROL STRUCTURES

To take advantage of the preceding comparisons, you can use various commands that
control what command is executed next. These control structures are similar to ones
found in the Bourne, Korn, and C Shells. Although they can be used in the interactive
Bash shell, they are most often used in writing Bash shell scripts.

case .. in .. esac

The case statement lets you specify multiple actions to be taken when the value of a
variable matches one or more values. The statement is described in Figure 8.22. A sec-
tion of Bash shell script that uses the case statement to print out the home location of
the NFL teams listed in our earlier example might look like this:

case ${teamname[$index]} in
"Dallas Cowboys") echo "Dallas, TX" ;;
"Denver Broncos") echo "Denver, CO" ;;

-p file True if the file exists and is a named pipe

-r file True if the file exists and is readable

-s file True if the file exists and has a size greater than zero

-t fd True if the file descriptor is open and refers to the terminal

-u file True if the file exists and its set-user-id bit is set

-w file True if the file is writable

-x file True if the file exists and is executable

-O file True if the file exists and is owned by the effective user id of the
user

-G file True if the file exists and is owned by the effective group id of
the user

-L file True if the file exists and is a symbolic link

-N file True if the file exists and has been modified since it was last read

-S file True if the file exists and is a socket

file1 –nt file2 True if file1 is newer than file2

file1 –ot file2 True if file1 is older than file2

file1 –ef file2 True if file1 and file2 have the same device and inode numbers

FIGURE 8.21 (Continued)

Control Structures 311

"New York Giants"|"New York Jets") echo "New York, NY";;
. . .
*) echo "Unknown location" ;;

esac

Note the special use of the pattern “*’’ as the last pattern. If the script goes through
all the patterns without finding a match, the pattern “*’’ will catch this situation. It is
permissible to not match any patterns, in which case none of the commands will be
executed.

if .. then .. elif .. then .. else .. fi

The if statement, described in Figure 8.23, will look familiar to Bourne and Korn Shell
users. This construct lets you compare two or more values and branch to a block of

Shell command: case word in pattern {| pattern }*) commands ; ; esac

Execute the commands specified by commands when the value of word matches the
pattern specified by pattern.The “)” indicates the end of the list of patterns to match.
The “;;” is required to indicate the end of the commands to be executed.

FIGURE 8.22

Description of the case shell command.

Shell command: if

if test1; then
commands1;

[elif test2; then
commands2;]

[else commands3;]
fi

test1 is a conditional expression (previously discussed) that, if true, causes the com-
mands specified by commands1 to be executed. If test1 tests false, then if an “elif”
structure is present, the next test, test2, is evaluated (“else if”). If test2 evaluates to
true, then the commands in commands2 are executed. The “else” construct is used
when you want to run commands after a test has evaluated to false.

FIGURE 8.23

Description of the if shell command.

312 Chapter 8 The Bourne Again Shell

commands, depending on how the values relate to each other. As an example, let’s as-
sume a special case for a couple of our NFL teams when we print information about
them. We might determine which file of information to print like this:

$index has been set to some arbitrary team in the list
#
if ["${teamname[$index]}" == "Minnesota Vikings"]; then

cat "vikings.txt" # print "special" info
elif ["${teamname[$index]}" == "Chicago Bears"]; then

cat "bears.txt" # ditto
else

cat "nfl.txt" # for everyone else, print the standard
fi

for .. do .. done

The for construct, described in Figure 8.24, is best used when you have a known set of
items over which you wish to iterate (e.g., a list of hostnames, filenames, or something

of that sort).You might use a comparison to jump out of such a loop, or you might sim-
ply wish to process each item in the list sequentially. The simplest example might be to
print all text files in the current directory:

$ for file in *.txt
do
lp $file

done
request id is lwcs-37 (1 file)
request id is lwcs-37 (1 file)
request id is lwcs-37 (1 file)
$ _

while/until .. do .. done

The while and until constructs, shown in Figure 8.25, work in a similar fashion, per-
forming a loop while or until a test condition is met (“while” in case the condition is

Shell command: for name in word { word }* ; do commands ; done

Perform commands for each word in a list, with $name containing the value of the
current word.

FIGURE 8.24

Description of the for shell command.

Directory Stack 313

initially true and you want to loop until it becomes false,“until” in case the condition is
initially false and you want to loop until it becomes true). These constructs are useful
when you don’t know exactly when the status of the test condition will be changed.

DIRECTORY STACK

Bash provides a directory stack similar to that offered by the C Shell, with a few im-
provements. One improvement is that the entire stack is stored in the string array
$DIRSTACK, allowing easy access to any item in the stack from a Bash shell script.

To push the current directory onto the directory stack and change to a new direc-
tory, use the pushd built-in command described in Figure 8.26. When it’s time to return
to a previous directory, use the popd built-in, described in Figure 8.27, to retrieve pre-
vious locations, and change directories there. In addition to contents of the stack being
available in the $DIRSTACK shell variable, the dirs built-in command, described in
Figure 8.28, will print (or empty) the contents of the directory stack.

Shell command: while test ; do commands ; done

until test ; do commands ; done

In a while statement, perform commands as long as the expression test evaluates to
true. In an until statement, perform commands as long as the expression test evalu-
ates to false (i.e., until test is true).

FIGURE 8.25

Description of the while and until shell commands.

Shell command: pushd [-n] [dir]

pushd saves the current directory as the most recent addition to (i.e., on top of) the
directory stack. A subsequent popd will retrieve this directory. Then pushd changes
directories to the one that is specified. If no new directory is specified, the current di-
rectory and the top directory on the stack are swapped (i.e., you pop the current top
of the stack and change directories there, and then you push the directory you were
in onto the stack). If the –n argument is present, do not change to the new directory,
but simply push the current directory onto the stack.

FIGURE 8.26

Description of the pushd shell command.

314 Chapter 8 The Bourne Again Shell

Form Specifies

%name Refers to a process whose name begins with name.

%?name Refers to a process where name appears anywhere in the
command line

FIGURE 8.29

Additional job specifiers in Bash.

JOB CONTROL

Bash adds a few capabilities for job control beyond those described in Chapter 6. If
you skipped over the Korn Shell, I suggest you go back and read the section on “En-
hanced Job Control” to supplement this section.

Job control allows you to suspend and resume the execution of a process begun
from the Bash command line. As with the Korn Shell and C Shell, typing Control-Z
while a process is running will suspend it. You can then use the fg or bg shell command
to resume the process in the background or foreground, respectively. The specification
of the job is the same as in the Korn Shell, with the two additional options shown in
Figure 8.29. The specifier must uniquely identify a job. If more than one job matches

Shell command: popd [-n]

popd retrieves the last directory that was pushed onto the stack and changes direc-
tory to that location. The entry is removed from the stack. If the –n argument is pre-
sent, do not change to the new directory, but simply remove it from the top of the
stack.

FIGURE 8.27

Description of the popd shell command.

Shell command: dirs [-cp]

If no arguments are given, dirs simply prints out the contents of the directory stack.
The –p option causes the directories to be printed one per line. The –c option causes
the directory stack to be cleared.

FIGURE 8.28

Description of the dirs shell command.

Functions 315

Shell command: jobs [-lrs]

jobs displays a list of all the shell’s jobs.When jobs is used with the –l option, process
IDs are included in the listing. If the –r option is used, list only currently running
jobs. If the –s option is used, list only currently stopped jobs.

FIGURE 8.30

Description of the jobs shell command.

Shell command: kill [-s signame] [-n signum] jobspec or pid

kill sends the specified signal to the specified process. Either jobspec (e.g., “%1”) or
a process ID is required. If the –s option is used, signame is a valid signal name (e.g.,
SIGINT). If the –n option is used, signum is the signal number. If neither –s nor –n is
used, a SIGTERM signal is sent to the process.

FIGURE 8.31

Description of the kill shell command.

the specifier, Bash reports an error. Otherwise, the fg, bg, and wait commands work the
same as they do in the Korn shell. The jobs and kill shell built-ins work a bit differently
in Bash, as shown in Figures 8.30 and 8.31.

FUNCTIONS

Bash functions are syntactically the same as functions in the Korn Shell. If you skipped
over the Korn Shell, go back and read the “Functions” section of Chapter 6. Bash
makes a couple of valuable additions to the use of functions that we’ll see here.

Functions can be exported to subshells in Bash with the use of the export built-in,
described in Figure 8.32. Bash also provides a built-in command called local which re-
stricts a variable so that it is local only to the current function (i.e., its value cannot be
passed to a subshell). The command local is described in Figure 8.33.

Shell command: export –f functionname

The export built-in command used with the –f option exports a function to a subshell
in the same way that exported shell variable values are exported to subshells.

FIGURE 8.32

Description of the export shell command used to export a function.

316 Chapter 8 The Bourne Again Shell

Shell command: local name[=value]

The local built-in command defines a variable so that it is local only to the current
function. A variable name can be listed, or a value can be assigned in the same
statement.

FIGURE 8.33

Description of the local shell command.

Shell command: builtin [command [args]]

The builtin shell built-in runs the named shell built-in command and passes it args if
present. This command is useful when you are writing a shell function that has the
same name as an existing built-in, but within the function you still want to run the
built-in rather than recursively call the function.

FIGURE 8.34

Description of the builtin shell command.

Shell command: readonly

readonly is used to prevent the value of a shell variable from being changed. In
Bash, this can also be accomplished with declare –r. The use of readonly is the same
as it is in both the Bourne and Korn shells and is described in Chapter 5.

FIGURE 8.35

Description of the readonly shell command.

A useful command for writing functions is the builtin built-in command, shown in
Figure 8.34.

MISCELLANEOUS BUILT-IN COMMANDS

Bash includes many other built-in commands, some that it borrows from other shells
for compatibility. A few of the more useful ones are described in Figures 8.35, 8.36,
and 8.37.

The set built-in also has several other options we have not previously discussed.
Figure 8.38 lists the most useful options of set, both ones that we have seen previously
and ones we have not seen previously:

Miscellaneous Built-In Commands 317

Shell command: select

select is used to generate menu prompts. The select built-in works the same way as
the select built-in in the Korn shell and is described in Chapter 6.

FIGURE 8.36

Description of the select shell command.

Shell command: source file

. file

source and “.” can be used to run a shell script in the current shell. This is useful for
rerunning a .profile or .bashrc file after making a modification to it.The source built-
in is the same as the source built-in in the C shell. The “.” usage is the same as it is in
the Bourne and Korn shells.

FIGURE 8.37

Description of the source and “.” shell commands.

-o allexport | -a Export all created or modified variables and functions.

-o emacs Set command edit style to behave like emacs.

-o ignoreeof Interactive shell will not exit on EOF (e.g., if you
typed Control-D by accident).

-o noclobber | -C Prevent output redirection from overwriting existing files.

-o noglob | -f Disable filename substitution (a.k.a. “globbing”).

-o posix Cause Bash behavior to adhere to the POSIX 1003.2
Shell standard.

-o verbose | -v Print shell input lines as they are read (useful for debugging
scripts).

-o vi Set command edit style to behave like vi.

FIGURE 8.38

Some of the set built-in options.

318 Chapter 8 The Bourne Again Shell

COMMAND LINE OPTIONS

Bash supports many command line options. Some of the most useful ones are shown in
Figure 8.39.

CHAPTER REVIEW

Checklist

In this chapter, I described

• Bash start-up files
• using shell variables
• using aliases, the history mechanism, and command line editing
• Bash arithmetic, conditionals, and control structures
• using the directory stack
• Bash’s implementation of job control
• Bash shell functions

Quiz

1. Why does the fact that Bash provides arithmetic capability natively improve the
run time of shell scripts so dramatically?

2. Why are braces required around list variables?
3. Do all Bourne Shell scripts work in Bash?
4. Do all Bash scripts work in the Korn Shell?
5. What shell variable contains the directory stack?

(56)

-c string Run string as a shell command

-s Read commands from standard input

--login Make Bash your login shell. This is useful if you can’t set Bash to
be your login shell with chsh.

--noprofile Ignore Bash profile files (systemwide and user versions).

--norc Ignore Bash rc files (~/.bashrc).

--posix Run in Posix mode (same as set –o posix)

--verbose | -v Print shell input lines as they are read (same as set –o verbose).

FIGURE 8.39

Some Bash command line options.

Chapter Review 319

Exercise

The track script presented in Chapter 5 runs as is under Bash. However, it makes
use of the expr UNIX command to do its arithmetic calculations. Modify track to
use Bash arithmetic, and compare its speed of execution with that of the original
version. You may wish to use the UNIX time command (described in Chapter 3)
to measure the differences if nothing “feels” significantly different. [level: easy]

Project

Write a Bash script called mv (which replaces the UNIX command mv) that tries
to rename the specified file (using the UNIX command mv), but if the destina-
tion file exists, instead creates an index number—a sort of version number—to
append to the destination file. So if I type

$ mv a.txt b.txt

but b.txt already exists, mv will move the file to b.txt.1. Note that if b.txt.1 already
exists, you must rename the file to b.txt.2, and so on, until you can successfully re-
name the file with a name that does not already exist. [level: medium]

C H A P T E R 9

Networking

MOTIVATION

One of the most significant advantages of UNIX over other competing operating sys-
tems during its origin was that it was one of the first operating systems to provide ac-
cess to widely distributed local networks, as well as to the large Internet network that
spans the globe. Today, millions of users and programs share information on these net-
works for a myriad of reasons, from distributing large computational tasks to exchang-
ing a good recipe for lasagna. To make the best use of these network resources, you
should understand the utilities that manage the exchange of information. This chapter
describes the most useful network utilities. While these utilities are applicable to both
local networks and the Internet, I will defer most specific Internet-related topics until
Chapter 10.

PREREQUISITES

In order to understand this chapter, you should already have read Chapters 1 and 2. It
also helps if you have access to a UNIX system so that you can try out the various util-
ities that I discuss.

OBJECTIVES

In this chapter, I’ll show you how to find out what’s on the network, how to talk to
other users, how to copy files across a network, and how to execute processes on other
computers on the network.

PRESENTATION

The chapter begins with an overview of network concepts and terminology and then
describes the UNIX network utilities.

320

Building a Network 321

Serial
connection

FIGURE 9.1

The simplest LAN.

COMMANDS

The following utilities, listed in alphabetical order, are introduced:

finger rsh w
ftp rusers wall
hostname rwho who
mesg talk whois
rcp telnet write
rlogin users

INTRODUCTION

A network is an interconnected system of cooperating computers. Through a network,
you can share resources with other users via an ever-increasing number of network ap-
plications, such as Web browsers and electronic mail messaging systems.

There has been a huge explosion of UNIX network use in the 1990s. For example,
the client–server paradigm described in Chapter 1 has been adopted by many of the
major computer corporations and relies heavily on the operating system’s network ca-
pabilities to distribute the workload between the server and its clients.

In order to prepare yourself for the advent of widespread networking, it’s impor-
tant to know the following subjects:

• common network terminology
• how networks are built
• how to talk to other people on the network
• how to use other computers on the network

This chapter covers all of these issues and more.

BUILDING A NETWORK

One of the best ways to understand how modern networks work is to look at how they
evolved. Imagine that two people in an office want to hook their computers together so
that they can share data. The easiest way to do this is to connect a cable between their
serial ports. This is the simplest form of local area network (LAN), and it requires vir-
tually no special software or hardware. When one computer wants to send information
to the other, it simply sends the information out of its serial port: This arrangement is
shown in Figure 9.1.

322 Chapter 9 Networking

Ethernets

To make things a little more interesting, let’s assume that another person wants to tie
into the other two guys’ existing network. With three computers in the network, we
need an addressing scheme so that the computers can be differentiated. We would also
like to keep the number of connections down to a minimum. The most common imple-
mentation of this kind of LAN is called an Ethernet®. Ethernet is a hardware standard
defining cabling, signaling, and behavior that allow data to pass across a length of wire.
The data format is defined by network protocols that we’ll look at a bit later. The Eth-
ernet standard was originally developed by Xerox Corporation and works like this:

• Each computer contains an Ethernet card, which is a special piece of hardware
that has a unique Ethernet address.

• Every computer’s Ethernet card is connected to the same single piece of wire.
• When a computer wishes to send a message to another computer with a particu-

lar Ethernet address, it broadcasts the message onto the Ethernet, together with
Ethernet header and trailer information that contains the Ethernet destination
address. Only the Ethernet card whose address matches the destination address
accepts the message.

• Two computers trying to broadcast to the Ethernet at the same time results in
what is known as a collision. When a collision occurs, both computers wait a ran-
dom period of time and then try again. Figure 9.2 shows a diagram of an Ether-
net. Ethernet networks can transmit data on the order of tens or hundreds of
megabytes per second.

Bridges

Let’s assume that the Ethernet in the office works so well that the people in the office
next door build themselves an Ethernet, too. How does one computer on one Ethernet
talk to another computer on another Ethernet? One solution might be to connect a
special bit of hardware called a bridge between the networks. A bridge (see Figure 9.3)
passes an Ethernet message between the different segments (wires) of the network as if
both segments were a single Ethernet network cable. A bridge is used when you need

Ethernet cable

Ethernet card

FIGURE 9.2

An Ethernet.

Ethernet cableEthernet cable

Router

FIGURE 9.4

A router.

Building a Network 323

to extend a network past the allowed length of a single section of wire. (The length is
limited by degradation of the signal over a distance.)

Routers

The use of bridges facilitates the construction of small serially linked sections of Eth-
ernet, but it’s a pretty inefficient way to link together large numbers of networks. For
example, suppose that a corporation has four LANs that it wishes to interconnect in an
efficient way. Stringing them all together with bridges would cause data to pass across
the “middle” sections to get to the ends when hosts on those middle sections have no
interest in the data. To pass data directly from the originating network to the destina-
tion network, a router can be used. A router (see Figure 9.4) is a device that hooks to-
gether two or more networks and automatically routes incoming messages to the
correct network.

Ethernet cable Ethernet cable

Bridge

FIGURE 9.3

A bridge.

324 Chapter 9 Networking

Gateways

The final stage in network evolution occurs when many corporations wish to connect
their local area networks together into a single, large wide area network (WAN).To do
this, several high-capacity routers called gateways are placed throughout the country,
and each corporation ties its LAN into the nearest gateway. The arrangement is shown
in Figure 9.5.

INTERNETWORKING

In order for a collection of LANs and WANs to be able to route information among
themselves, they must agree upon a networkwide addressing and routing scheme. This
large-scale interconnection of different networks is known as internetworking. Any
group of two or more networks connected together may properly be called an internet.
However, the largest and best known such network has become known as the Internet.

Universities, large corporations, government offices, and military sites all have
computers that are part of the Internet. The computers are generally linked together
by high-speed data links. The largest of these computer systems are joined together to
form what is known as the backbone of the Internet. Other, smaller establishments link
their LANs to the backbone via gateways.

Packet Switching

Today’s digital computer networks are packet switched networks. When one node on
the network sends a message to another node, the message is split up into small pack-
ets, each of which can be routed independently (i.e., switched) through the network.

Packets contain special information that allows them to be recombined at the
destination. They also contain information for routing purposes, including the address

Gateway

Gateway

Corporate
LAN

Corporate
LAN

Corporate
LAN

Corporate
LAN

FIGURE 9.5

Gateways.

Internetworking 325

of the source and destination nodes. The combined set of protocols is called the Trans-
mission Control Protocol and Internet Protocol (TCP/IP) protocol suite. UNIX inter-
process communication (IPC) uses TCP/IP to allow UNIX processes on different
machines to “talk” to each other.

Internet Addresses

Hosts on the Internet, as well as many private internets, also use TCP/IP to send data.
While it is most popularly implemented on Ethernet networks, TCP/IP can also be
used on other types of networks. This makes it useful for connecting different types of
networks, because not all computers are connected by Ethernet. For example, some
LANs may use the IBM Token Ring system. The IP addressing system therefore uses a
hardware-independent labeling scheme: The bridges, routers and gateways transmit
messages based purely on their destination IP address, which is mapped to a physical
hardware address only when the message reaches the destination host’s LAN.Thus, the
computer sending the message does not need to understand hardware-specific infor-
mation about the computer to which the message is to be sent.

The IP addressing mechanism works the same, regardless of whether you actual-
ly connect your computers to the Internet.When an organization sets up a LAN that is
to be part of the Internet, it must get a unique address range assigned to its computers,
a process we will learn about in Chapter 10. For now, let’s assume we’re using a local IP
network.

An IP address is a 32-bit value that is written as four dot-separated numbers, each
number representing 8 of the 32 bits of the address. Because each part represents an
8-bit value, the maximum value it may have is 255.

Due to the explosive growth of the Internet, the seemingly endless supply of 32-bit
addresses is quickly being used up. The current IP protocol standard (IP version 4) is
being modified to allow larger addresses. IPv6 will define 128-bit IP addresses so that
many more addresses can be assigned. (See Chapter 16 for more information on IPv6.)

Naming

Numeric IP addresses are not very convenient for humans to use to access remote
computers. Humans are much more used to naming things (e.g., people, pets, and cars).
So we have taken to naming our computers as well.

When a host name is assigned to a particular computer, a correlation can be es-
tablished between the name and the computer’s numeric IP address. That way, a user
can type the name to reference the computer, and the software can translate the name
to an IP address automatically.

The mapping of IP addresses to local host names is kept by the LAN’s system ad-
ministrator in a file called “/etc/hosts”. To show you what this looks like, here’s a small
section of the file from UT Dallas:

129.110.41.1 manmax03
129.110.42.1 csservr2
129.110.43.2 ncube01

326 Chapter 9 Networking

1A daemon is a fancy term for a constantly running background process that is normally started when the
system is booted.

129.110.43.128 vanguard
129.110.43.129 jupiter
129.110.66.8 neocortex
129.110.102.10 corvette

Routing

The Internet Protocol performs two kinds of routing: static and dynamic. Static routing
information is kept in the file “/etc/route” and is of the form “You may get to the desti-
nation DEST via the gateway GATE with X hops.” When a router has to forward a
message, it can use the information in this file to determine the best route. Dynamic
routing information is shared between hosts via the “/etc/routed” or “/etc/gated” dae-
mons.1 These programs constantly update their local routing tables on the basis of in-
formation gleaned from network traffic, and they periodically share their information
with other neighboring daemons.

Security

Several UNIX networking utilities allow a user with accounts on more than one ma-
chine to execute a command on one of these machines from another. For example, I
have an account on both the “csservr2” and “vanguard” machines at UT Dallas. To ex-
ecute the date command on the “vanguard” machine from the “csservr2” machine, I
can use the rsh utility (discussed later in the chapter) as follows:

$ rsh vanguard date ...execute date on vanguard.

The interesting thing about rsh and a few other utilities is that they are able to obtain a
shell on the remote host without requiring a password. They can do this because of a
UNIX facility called machine equivalence. If, in your home directory, you create a file
called “.rhosts” that contains a list of host names, then any user with the same user ID
as your own may log into your account from these hosts without supplying a password.
Both my “csservr2” and “vanguard” home directories contain a file “.rhosts” that con-
tains the following lines:

csservr2.utdallas.edu
vanguard.utdallas.edu

We must use the “official” hostname, which includes the Internet domain, in the
“.rhosts” file. (I discuss Internet domains in Chapter 10.)

This capability of obtaining a shell without having to use a password allows me to
execute remote commands from either computer without any hassle. UNIX also allows
a system administrator to list globally equivalent machines in the file “/etc/hosts.equiv”.
Global equivalence means that any user on the listed machines can log into the local

Users 327

host without a password. For example, if the “vanguard” “/etc/hosts.equiv” file con-
tained the lines

csservr2.utdallas.edu
vanguard.utdallas.edu

then any user on “csservr2” could log into the “vanguard” or execute a remote com-
mand on it without citing a password. Global equivalence should be used with great
care (if ever).

Ports and Common Services

When one network host talks to another, it does so via a set of numbered ports. Every
host supports some standard ports for common uses and allows application programs
to create other ports for transient communication. The file “/etc/services” contains a
list of the standard ports. Here’s a snippet from the UT Dallas file:

echo 7/tcp
discard 9/tcp sink null
systat 11/tcp users
daytime 13/tcp
ftp-data 20/tcp
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timeserver
rlp 39/udp resource
whois 43/tcp
finger 79/tcp
sunrpc 111/tcp
exec 512/tcp
login 513/tcp

The description of the telnet utility later in this chapter contains some examples in
which I connected to some of these standard ports.

Network Programming

The UNIX interprocess communication allows you to communicate with other programs
at a known IP address and port. The facility is described near the end of Chapter 13, to-
gether with the full source code for an “Internet shell” that can pipe and redirect data to
other Internet shells on different hosts.

USERS

UNIX networking is all about moving around the network and talking to other people.
Therefore, one of the most basic things to learn is how to find out who’s on a particular
host. There are several utilities that do this, each with its own strengths:

• users, which lists all of the users on your local host
• rusers, which lists all of the users on your local network

328 Chapter 9 Networking

• who, which is like users, except that it gives you more information
• rwho, which is like rusers, except that it gives you more information
• w, which is like who, except that it gives you even more information
• whois, which allows you to obtain information about major Internet sites
• hostname, which displays your local host’s name.

Listing Users: users/rusers

The users and rusers utilities simply list the current users of your local host and local
network, respectively, as described in Figures 9.6 and 9.7.

Here’s an example of users and rusers in action:

$ users ...display users on the local host.
glass posey
$ rusers -al ...display users on the local network.
csservr4.utd posey
vanguard.utd huynh posey datta venky
csservr2.utd posey glass
$ _

Utility: users

users displays a simple, terse list of the users on your local host.

FIGURE 9.6

Description of the users command.

Utility: rusers -a { host }*

rusers displays a list of the users on your local network. By default, all of the ma-
chines on the network are interrogated, although you may override this default by
supplying a list of host names. rusers works by broadcasting a request for informa-
tion to all of the hosts and then displaying the responses as they arrive. In order for
a host to respond, it must be running the rusersd daemon. (See Chapter 15 for more
information about daemons.)

FIGURE 9.7

Description of the rusers command.

Users 329

More User Listings: who/rwho/w

The who and rwho utilities, described in Figures 9.8 and 9.9, respectively, supply a little
more information than the users and rusers utilities do. Here’s an example of who:

$ who ... list all users currently on local host.
posey ttyp0 May 15 16:31 (blackfoot.utdall)
glass ttyp2 May 17 17:00 (bridge05.utdalla)
$ who am i ...list myself.
csservr2!glass ttyp2 May 17 17:00 (bridge05.utdalla)
$ who /var/adm/wtmp ...examine the who file.
lcui ttyp2 May 17 12:48 (bridge05.utdalla)
juang ttyp3 May 17 12:49 (annex.utdallas.e)

ttyp3 May 17 12:52
ttyp2 May 17 12:57

weidman ttyp2 May 17 16:25 (annex.utdallas.e)
ttyp2 May 17 16:33

glass ttyp2 May 17 17:00 (bridge05.utdalla)
$ _

Utility: who [whoFile] [am i]

By default, who displays a list of every user on your local host. If you supply the ar-
guments “am i”, who describes only yourself.

Whenever a user logs in or out, the file “/var/adm/wtmp” is updated with infor-
mation about the user’s login session. You may give the name of this file (or a file in
the same format) as the whoFile argument, in which case who decodes the informa-
tion in the file and presents it in the typical who format.

FIGURE 9.8

Description of the who command.

Utility: rwho

rwho is just like who, except that it displays a list of the users logged onto all of the
remote hosts on your local network.

FIGURE 9.9

Description of the rwho command.

330 Chapter 9 Networking

The w utility is just as easy to use as the who utility and is described in Figure 9.10.
Here’s an example:

$ w ...obtain more detailed information than who.
5:27pm up 11 days, 11 mins, 3 users, load average: 0.08, 0.03, 0.01
User tty login@ idle JCPU PCPU what
posey ttyp0 Fri 4pm 2days 1 -csh
glass ttyp2 5:00pm 1 13 1 w
$ w glass ...examine just myself.
5:27pm up 11 days, 11 mins, 3 users, load average: 0.08, 0.03, 0.01
User tty login@ idle JCPU PCPU what
glass ttyp2 5:00pm 13 1 w glass
$ _

Your Own Host Name: hostname

To find out the name of your local host, use hostname, described in Figure 9.11. Here’s
an example:

$ hostname ...display my host's name.
csservr2
$ _

Utility: w { UserId }*

w displays a list that describes what each specified user is doing. In other words, w is
almost the same as who.

FIGURE 9.10

Description of the w command.

Utility: hostname [hostName]

When used with no parameters, hostname displays the name of your local host.A su-
peruser may change this name by supplying the new host name as an argument,
which is usually done automatically in the “/etc/rc.local” file. (For more information
about this file, see Chapter 15.)

FIGURE 9.11

Description of the hostname command.

Users 331

Personal Data: finger

Once you’ve obtained a list of the people on your system, it’s handy to be able to learn
a little bit more about them. The finger utility, described in Figure 9.12, allows you to
do this. I recommend that you create your own “.plan” and “.project” files in your
home directory so that people can “finger” you back. Have fun!

In the following example, I fingered everyone on the system and then fingered
myself:

$ finger ...finger everyone on the system.
Login Name TTY Idle When Where
posey John Posey p0 2d Fri 16:31 blackfoot.utdall
glass Graham Glass p2 Sun 17:00 bridge05.utdalla
$ finger glass ...finger myself.
Login name: glass In real life: Graham Glass
Directory: /home/glass Shell: /bin/ksh
On since May 17 17:00:47 on ttyp2 from bridge05.utdalla
No unread mail
Project: To earn an enjoyable, honest living.
Plan: To work hard and have fun and not notice the difference.
$ _

Utility: finger { UserId }*

finger displays information about a list of users that is gleaned from the following
sources:

• The user’s home directory, start-up shell, and full name are read from the pass-
word file “/etc/passwd”.

• If the user supplies a file called “.plan” in his/her home directory, the contents
of the file are displayed as the user’s “plan”.

• If the user supplies a file called “.project” in his/her home directory, the con-
tents of the file are displayed as the user’s “project”.

If no user IDs are listed, finger displays information about every user that is cur-
rently logged on. You may finger a user on a remote host by using the “@” protocol,
in which case the remote host’s finger daemon is used to reply to the local finger’s
request.

FIGURE 9.12

Description of the finger command.

332 Chapter 9 Networking

In the next example, I listed the three sources of finger’s information about me:

$ cat .plan ...list the ".plan" file.
To work hard and have fun and not notice any difference.
$ cat .project ...list the ".project" file.
To earn an enjoyable, honest living.
$ grep glass /etc/passwd ...look at the password file.
glass:##glass:496:62:Graham Glass:/home/glass:/bin/ksh
$ _

In this final example, I used rusers to get a listing of the remote users and then per-
formed a remote finger to learn all about Susan:

$ rusers ...look at remote users.
csservr4.utd posey
vanguard.utd huynh posey datta venky
centaur.utda susan
csservr2.utd posey posey lcui glass
$ finger susan@centaur ...do a remote finger.
[centaur.utdallas.edu]
Login name: susan In real life: Susan Marsh
Directory: /home/susan Shell: /bin/csh
On since May 11 11:00:55 on console 1 day Idle Time
New mail received Fri May 15 19:24:01 1998;
unread since Fri May 15 16:40:28 1998
No Plan.
$ _

COMMUNICATING WITH USERS

The following utilities allow you to communicate with a user:

• write, which allows you to send individual lines to a user, one at a time
• talk, which allows you to have an interactive split-screen two-way conversation
• wall, which allows you to send a message to everyone on the local host
• mail, which allows you to send mail messages

The mail utility was described in Chapter 2; it supports the full standard Internet ad-
dressing scheme. The rest of these utilities are described in this section, together with
a simple utility called mesg that allows you to shield yourself from other people’s
messages.

Shielding Yourself from Communication: mesg

The write, talk, and wall utilities communicate with other users by writing directly to
their terminals. You may disable the ability of other users to write to your terminal by

Communicating with Users 333

using the mesg utility, described in Figure 9.13. In the following example, mesg pre-
vented me from receiving a write message:

$ mesg n ...protect terminal.
$ write glass ...try to write to myself.
write: You have write permission turned off
$ _

Sending a Line at a Time: write

The write command, described in Figure 9.14, is a simple utility that allows you to send
one line at a time to a named user. In the following example, I received a write message
from my friend Tim and then initiated my own write command to respond to him. We
used the -o- (over) and -oo- (over and out) conventions for synchronization:

Utility: mesg [n | y]

mesg allows you to prevent other users from writing to your terminal. It works by
modifying the write permission of your tty device. The n and y arguments respec-
tively disable and enable writes. If no arguments are supplied, your current status is
displayed.

FIGURE 9.13

Description of the mesg command.

Utility: write userId [tty]

write copies its standard input, one line at a time, to the terminal associated with
userId. If the user is logged onto more than one terminal, you may specify the par-
ticular tty as an optional argument.

The first line of input that you send to a user via write is preceded by the message

Message from yourHost!yourId on yourTty

so that the receiver may initiate a write command to talk back to you. To exit write,
type Control-D on a line of its own.You may disable writes to your terminal by using
mesg.

FIGURE 9.14

Description of the write command.

334 Chapter 9 Networking

$
Message from tim@csservr2 on ttyp2 at 18:04
hi Graham -o- ...from tim.
$ write tim ...initiate a reply.
hi Tim -o- ...from me.
don't forget the movie later -oo- ...from tim.
OK -oo- ...from me.
^D ...end of my input.
$ _

Although you can have a two-way conversation using write, it’s awfully clumsy. A bet-
ter way is to use the talk utility.

Interactive Conversations: talk

The talk utility, described in Figure 9.15, allows you to have a two-way conversation
across a network. This is a fun utility that is worth exploring with a friend.

Utility: talk userId [tty]

The talk command allows you to talk to another user on the network via a split-
screen interface. If the user is logged onto more than one terminal, you may choose
a particular terminal by supplying a specific tty name.

To talk to someone, type the following at your terminal:

$ talk theirUserId@theirHost

This causes the following message to appear on the recipient’s screen:

Message from TalkDaemon@theirHost...
talk: connection requested by yourUserId@yourHost
talk: respond with: talk yourUserId@yourHost

If the recipient agrees to your invitation, he or she will type the following at
the shell prompt:

$ talk yourUserIdKyourHost

At this point, your screen divides into two portions, one containing your key-
board input and the other containing the other guy’s. Everything that you type is
echoed at the other guy’s terminal, and vice versa.To redraw the screen if it ever gets
messed up, type Control-L. To quit talk, press Control-C.

To prevent other people from talking to you, use the mesg utility.

FIGURE 9.15

Description of the talk command.

Distributing Data 335

Messages to Everyone: wall

If you ever have something important to say to the world (or at least to everyone on
your local host), wall is the way to say it. wall stands for “write all,” and allows you to
broadcast a message as described in Figure 9.16. In the following example, I sent a one-
liner to everyone on the local host (including myself):

$ wall ...write to everyone.
this is a test of the broadcast system
^D ...end of input.
Broadcast Message from glass@csservr2 (ttyp2) at 18:04 ...
this is a test of the broadcast system
$ _

The wall command is most often used by system administrators to send users impor-
tant, timely information (such as “System going down in five minutes!”).

DISTRIBUTING DATA

A very basic kind of remote operation is the transmission of files, and once again
UNIX has several utilities which do that:

• rcp (remote copy) allows you to copy files between your local UNIX host and an-
other remote UNIX host.

• ftp (file transfer protocol or program) allows you to copy files between your local
UNIX host and any other host (including a non-UNIX host) that supports the
File Transfer Protocol. ftp is thus more powerful than rcp.

• uucp (unix-to-unix copy) is similar to rcp, and allows you to copy files between
any two UNIX hosts.

Utility: wall [fileName]

wall copies its standard input (or the contents of fileName if supplied) to the termi-
nals of every user on the local host, preceding it with the message “Broadcast Mes-
sage...’ If a user has disabled communication with terminals by using mesg, the
message will not be received unless the user of wall is a superuser.

FIGURE 9.16

Description of the wall command.

336 Chapter 9 Networking

Copying Files between Two UNIX Hosts: rcp

rcp, described in Figure 9.17, allows you to copy files between UNIX hosts. In the fol-
lowing example, I copied the file “original.txt” from the remote “vanguard” host to a
file called “new.txt” on my local “csservr2” host and then copied the file “original2.txt”
from my local host to the file “new2.txt” on the remote host:

$ rcp vanguard:original.txt new.txt ...remote to local.
$ rcp original2.txt vanguard:new2.txt ...local to remote.
$ _

Copying Files between Non-UNIX Hosts: ftp

The File Transfer Protocol is a generic protocol for the transmission of files and is sup-
ported by many machines.You can therefore use it to transfer files from your local UNIX
host to any other kind of remote host, as long as you know the Internet address of the re-
mote host’s ftp server. Users of non-UNIX computers often use ftp for transferring files
between UNIX and their own system. Figure 9.18 provides a brief description of ftp, and
Figure 9.19 lists the most useful ftp commands that are available from its command
mode. In the following example, I copied “writer.c” from the remote host “vanguard” to
my local host and then copied “who.c” from my local host to the remote host:

$ ftp vanguard ...open ftp connection to "vanguard".
Connected to vanguard.utdallas.edu.
vanguard FTP server (SunOS 5.4) ready.
Name (vanguard:glass): glass ...login

Utility: rcp -p originalFile newFile

rcp -pr {fileName}+directory

rcp allows you to copy files between UNIX hosts. Both your local host and the re-
mote host must be registered as equivalent machines. (See the discussion of security
earlier in this chapter for more information.) To specify a remote file on host, use the
syntax

host:pathName

If pathName is relative, it’s interpreted as being relative to your home directory on
the remote host.The -p option tries to preserve the last modification time, last access
time, and permission flags during the copy. The -r option causes any file that is a di-
rectory to be recursively copied.

FIGURE 9.17

Description of the rcp command.

Distributing Data 337

Password required for glass.
Password: ...secret!
User glass logged in.
ftp> ls ...obtain directory of remote host.
PORT command successful.
ASCII data connection for /bin/ls (129.110.42.1,4919) (0 bytes).
... ...lots of files were listed here.
uniq
upgrade
who.c
writer.c
ASCII Transfer complete.
1469 bytes received in 0.53 seconds (2.7 Kbytes/s)
ftp> get writer.c ...copy from remote host.
PORT command successful.
ASCII data connection for writer.c (129.110.42.1,4920) (1276 bytes).
ASCII Transfer complete.
local: writer.c remote: writer.c
1300 bytes received in 0.012 seconds (1e+02 Kbytes/s)
ftp> !ls ...obtain directory of local host.
reader.c who.c writer.c
ftp> put who.c ...copy file to remote host.
PORT command successful.
ASCII data connection for who.c (129.110.42.1,4922).
ASCII Transfer complete.
ftp> quit ...disconnect.
Goodbye.
$ _

Utility: ftp -n [hostName]

ftp allows you to manipulate files and directories on both your local host and a re-
mote host. If you supply a remote host name, ftp searches the “.netrc” file to see if
the remote host has an anonymous ftp account (i.e., one without a password). If it
does, it uses that account to log you into the remote host. If it doesn’t have an anony-
mous account, it assumes that you have an account on the remote host and prompts
you for its user ID and password. If the login is successful, ftp enters its command
mode and displays the prompt “ftp>”. If you don’t supply a remote host name, ftp
enters its command mode immediately, and you must use the open command to
connect to a remote host.

The -n option prevents ftp from attempting the initial automatic login sequence.
ftp’s command mode supports many commands for file manipulation. The

most common of these commands are described in the text. You may abort file
transfers without quitting ftp by pressing Control-C.

FIGURE 9.18

Description of the ftp command.

338 Chapter 9 Networking

Command Meaning

!command Executes command on local host.

append localFile remoteFile Appends the local file localFile to the remote
file remoteFile.

bell Causes a beep to be sounded after every file
transfer.

bye Shuts down the current remote host connection
and then quits ftp.

cd remoteDirectory Changes your current remote working directory
to remoteDirectory.

close Shuts down the current remote host connection.

delete remoteFile Deletes remoteFile from the remote host.

get remoteFile [localFile] Copies the remote file remoteFile to the local
file localFile. If localFile is omitted, it is given
the same name as the remote file.

help [command] Displays help about command. If command is
omitted, a list of all ftp commands is displayed.

lcd localDirectory Changes your current local working directory to
localDirectory.

ls remoteDirectory Lists the contents of your current remote
working directory.

mkdir remoteDirectory Creates remoteDirectory on the remote host.

open hostName [port] Attempts a connection to the host with name
hostName. If you specify an optional port
number, ftp assumes that this port is an ftp server.

put localFile [remoteFile] Copies the local file localFile to the remote file
remoteFile. If remoteFile is omitted, it is given
the same name as the local file.

pwd Displays your current remote working directory.

quit Same as bye.

rename remoteFrom remoteTo Renames a remote file from remoteFrom to
remoteTo.

rmdir remoteDirectory Deletes the remote directory remoteDirectory.

FIGURE 9.19

Commands within the ftp program.

Distributing Processing 339

DISTRIBUTING PROCESSING

The power of distributed systems becomes striking when you start moving around a
network and logging into different hosts. Some hosts supply limited passwordless ac-
counts with user IDs like “guest” so those explorers can roam the network without
causing any harm, although this practice is fading away as more people abuse the priv-
ilege. These days, you almost always have to have an account on a remote computer in
order to log into a network. Three utilities for distributed access are

• rlogin, which allows you to log in to a remote UNIX host,
• rsh, which allows you to execute a command on a remote UNIX host, and
• telnet, which allows you to execute commands on any remote host that has a tel-

net server.

Of these, telnet is the most flexible, since there are other systems in addition to UNIX
that support telnet servers.

Remote Logins: rlogin

To log into a remote host, use rlogin, described in Figure 9.20. In the following exam-
ple, I logged into the remote host “vanguard” from my local host “csservr2”, executed

Utility: rlogin -ec [-l userId] hostName

rlogin attempts to log you into the remote host hostName. If you don’t supply a user
ID by using the -l option, your local user ID is used during the login process.

If the remote host isn’t set as an equivalent of your local host in your
“$HOME/.rhost” file, you are asked for your password on the remote host.

Once you are connected, your local shell goes to sleep and the remote shell
starts to execute. When you’re finished with the remote log-in shell, terminate it in
the normal fashion (usually with Control-D), and your local shell will then awaken.

There are a few special “escape commands” you may type that have a special
meaning; each is preceded by the escape character, which is a tilde (~) by default.
You may change this escape character by following the -e option with the preferred
escape character. Here is a list of the escape commands:

SEQUENCE MEANING

~. Disconnect immediately from remote host.
~susp Suspend remote login session. Restart remote login using

fg.
~dsusp Suspend input half of remote login session, but still echo

output from login session to your local terminal. Restart re-
mote login using fg.

FIGURE 9.20

Description of the rlogin command.

340 Chapter 9 Networking

the date utility, and then disconnected:

$ rlogin vanguard ...remote login.
Last login: Tue May 19 17:23:51 from csservr2.utdallas
vanguard% date ...execute a command on vanguard.
Wed May 20 18:50:47 CDT 1998
vanguard% ^D ...terminate the remote login shell.
Connection closed.
$ _ ...back home again at csservr2!

Executing Remote Commands: rsh

If you want to execute just a single command on a remote host, rsh is much handier
than rlogin. Figure 9.21 shows how it works. In the following example, I executed the
hostname utility on both my local “csservr2” host and the remote “vanguard” host:

$ hostname ...execute on my local host.
csservr2
$ rsh vanguard hostname ...execute on the remote host.
vanguard
$ _

Utility: rsh [-l userId] hostName [command]

rsh attempts to create a remote shell on the host hostName to execute command. rsh
copies its standard input to command and copies the standard output and errors
from command to its own standard output and error channels. Interrupt, quit, and
terminate signals are forwarded to command, so you may use Control-C on a remote
command. rsh terminates immediately after command terminates.

If you do not supply a user ID by using the -l option, your local user ID is used
during the connection. If no command is specified, rsh gives you a remote shell by
invoking rlogin.

Quoted metacharacters are processed by the remote host; all others are
processed by the local shell.

FIGURE 9.21

Description of the rsh command.

Remote Connections: telnet

telnet allows you to communicate with any remote host on the Internet that has a
telnet server. Figure 9.22 shows how it works. In the following example, I used telnet to

Distributing Processing 341

emulate the rlogin functionality by omitting an explicit port number with the open
command:

$ telnet ...start telnet.
telnet> ? ...get help.
Commands may be abbreviated. Commands are:
close close current connection
display display operating parameters
mode try to enter line-by-line or character-at-a-time mode
open connect to a site
quit exit telnet
send transmit special characters ('send ?' for more)
set set operating parameters ('set ?' for more)
status print status information
toggle toggle operating parameters ('toggle ?' for more)
z suspend telnet

Utility: telnet [host [port]]

telnet establishes a two-way connection with a remote port. If you supply a host
name, but not a port specifier, you are automatically connected to a telnet server on
the specified host, which typically allows you to log into the remote machine. If you
don’t even supply a host name, telnet goes directly into command mode (in the same
fashion as ftp).

What happens after the connection is complete depends on the functionality
of the port you’re connected to. For example, port 13 of any Internet machine will
send you the time of day and then disconnect, whereas port 7 will echo (“ping”)
back to you anything that you enter from the keyboard.

To enter command mode after you’ve established a connection, press the se-
quence Control-], which is the telnet escape sequence. This causes the command
mode prompt to be displayed.The following commands, among others, are accepted:

COMMAND MEANING

close Close current connection.
open host [port] Connect to host with optional port specifier.
quit Exit telnet.
z Suspend telnet.
? Print summary of telnet commands.

Therefore, to terminate a telnet connection, press Control-], followed by the
command quit.

FIGURE 9.22

Description of the telnet command.

342 Chapter 9 Networking

? print help information
telnet> open vanguard ...get a login shell from vanguard.
Trying 129.110.43.128 ...
Connected to vanguard.utdallas.edu.
Escape character is '^]'.
SunOS 5.4 (vanguard)
login: glass ...enter my user ID.
Password: ...secret!
Last login: Tue May 19 17:22:45 from csservr2.utdalla
*** For assistance, send mail to UNIXINFO.
Tue May 19 17:23:21 CDT 1998
Erase is Backspace
vanguard% date ...execute a command.
Tue May 19 17:23:24 CDT 1998
vanguard% ^D ...disconnect from remote host.
Connection closed by foreign host.
$ _ ...telnet terminates.

You may specify the host name directly on the command line if you like, as follows:

$ telnet vanguard ...specify host name on command line.
Trying 129.110.43.128 ...
Connected to vanguard.utdallas.edu.
Escape character is '^]'.

SunOS 5.4 (vanguard)
login: glass ...enter user ID, etc...

You may use telnet to try out some of the standard port services that I described earli-
er in the chapter. For example, port 13 prints the day and time on the remote host and
then immediately disconnects:

$ telnet vanguard 13 ...what's the remote time & day?
Trying 129.110.43.128 ...
Connected to vanguard.utdallas.edu.
Escape character is '^]'.
Tue May 19 17:26:32 1998
Connection closed by foreign host ...telnet terminates.
$ _

Similarly, port 79 allows you to enter the name of a remote user and obtain finger
information:

$ telnet vanguard 79 ...manually perform a remote finger.
Trying 129.110.43.128 ...
Connected to vanguard.utdallas.edu.
Escape character is '^]'.
glass ...enter the user ID.
Login name: glass In real life: Graham Glass
Directory: /home/glass Shell: /bin/csh

Network File System: NFS 343

Last login Tue May 19 17:23 on from csservr2.utdalla
No unread mail
No Plan.
Connection closed by foreign host. ...telnet terminates.
$ _

When system administrators are testing a network, they often use port 7 to check host
connections. Port 7 echoes everything that you type back to your terminal and is some-
times known as a “ping-port.” Here’s an example:

$ telnet vanguard 7 ...try a ping.
Trying 129.110.43.128 ...
Connected to vanguard.utdallas.edu.
Escape character is '^]'.
hi ...my line.
hi ...the echo.
there
there
^] ...escape to command mode.
telnet> quit ...terminate connection.
Connection closed.
$ _

telnet accepts numeric Internet addresses as well as symbolic names, as shown in the
following example:

$ telnet 129.110.43.128 7 ... vanguard's numeric addr.
Trying 129.110.43.128 ...
Connected to 129.110.43.128.
Escape character is '^]'.
hi ...my line.
hi ...the echo.
^] ...escape to command mode.
telnet> quit ...disconnect.
Connection closed.
$ _

NETWORK FILE SYSTEM: NFS

In order to make good use of UNIX network capabilities, Sun Microsystems intro-
duced a public-domain specification for a network file system (NFS). NFS supports the
following useful features:

• It allows several local file systems to be mounted into a single network file hier-
archy that may be transparently accessed from any host. To support this capabili-
ty, NFS includes a remote mounting facility.

344 Chapter 9 Networking

• A remote procedure call (RPC) is used by NFS to allow one machine to make a
procedure call to another machine, thereby encouraging distributed computation.

• NFS supports a host-neutral external data representation (XDR) scheme which
allows programmers to create data structures that may be shared by hosts with
different byte-ordering and word lengths.

NFS is very popular and is used on most machines that run UNIX. (See Nemeth, 2000,
for more details on NFS.)

FOR MORE INFORMATION…

If you’ve enjoyed this overview of UNIX networking and you wish to find out more,
Stevens (1998), Anderson (1995), and the network section of Nemeth (2000) are excel-
lent sources.

CHAPTER REVIEW

Checklist

In this chapter, I described

• the main UNIX network concepts and terminology
• utilities for listing users and communicating with them
• utilities for manipulating remote files
• utilities for obtaining remote login shells and executing remote commands

Quiz

1. What’s the difference between a bridge, a router, and a gateway?
2. What’s a good way for a system administrator to tell people about important

events?
3. Why is ftp more powerful than rcp?
4. Describe some uses of common ports.
5. What does machine equivalence mean and how can you make use of it?

Exercises

9.1 Try out rcp and rsh as follows:

• Copy a single file from your local host to a remote host by using rcp.
• Using rsh, obtain a shell on the remote host, and edit the file that you just

copied.

Chapter Review 345

• Exit the remote shell, using exit.
• Using rcp, copy the file from the remote host back to the local host.

[level: easy]
9.2 Use telnet to obtain the time of day at several remote host sites.Are the times ac-

curate relative to each other? [level: medium]

Project

Write a shell script that operates in the background on two machines and which
ensures that the contents of a named directory on one machine is always a mirror
image of another named directory on the other machine. [level: hard]

C H A P T E R 1 0

The Internet

MOTIVATION

The Internet is probably the most visible aspect of computing in the history of the in-
dustry. What started out as a network tool to connect university and government users
has grown into a huge entity used by millions of people worldwide. Even the most com-
puter-illiterate person in the United States has at least heard of the Internet. Much of
the appeal of having a home computer nowadays is to be able to access information on
the Internet. This chapter will provide you with a solid understanding of what the In-
ternet is and what you can do with it.

PREREQUISITES

While you don’t really have to understand the nuts and bolts of the Internet Protocol
(discussed in Chapter 9) to benefit from the current chapter, the more familiar you are
with generic UNIX networking issues, the more of the chapter you will find helpful.

OBJECTIVES

After reading this chapter, you will have a solid understanding of what the Internet is,
how it came about, how it works, and what you can use it for.

PRESENTATION

To really understand any topic, an understanding of its history is critical. I will first de-
scribe how the Internet came to be what it is today, given its inauspicious start. After a
survey of the tools that you use to access information on the Internet, I will also discuss
where the future may take Internet users.

346

The Evolution of the Internet 347

THE EVOLUTION OF THE INTERNET

As the local networks we looked at in Chapter 9 began to grow larger and to be con-
nected together, an evolution began. First, some companies linked their own LANs via
private connections. Others transferred data across a network implemented on the
public telephone network. Ultimately, network research funded by the U. S. govern-
ment brought it all together.

It may sound hard to believe, but what we know today as “the Internet” was al-
most inevitable.Although the prototype of the Internet began in a computer lab, and at
the time most thought only high-powered computer scientists would ever use it, the
way we stored and utilized information almost dictated that we find a better way to
move the information from one place to another.

Now when I watch television and see web page addresses at the end of com-
mercials for mainstream products, I know that the Internet has truly reached com-
mon usage. Not only do high-tech companies maintain web pages, but even cereal
companies have web sites. One may argue about the usefulness of some of these sites,
but the fact that they exist tells us a great deal about how society has embraced the
new technology.

It makes you wonder how we got here and where we might go with it all.

In the Beginning: The 1960s

In the 1960s, human beings were about to reach the moon, society was going through
upheavals on several fronts, and technology was changing more rapidly than ever be-
fore.The Advanced Research Projects Agency (ARPA) of the Department of Defense
was attempting to develop a computer network to connect government computers
(and some government contractors’ computers) together.As with so many advances in
our society, some of the motivation (and funding) came from a government that hoped
to leverage an advance for military or defensive capability. High-speed data communi-
cation might be required to help win a war at some point. Our interstate highway sys-
tem (another kind of network) has its roots in much the same type of motivation.

In the 1960s, mainframe computers still dominated computing, and they would for
some time to come. Removable disk packs, small cartridge tapes, and compact disc tech-
nology were still in the future. Moving data from one of these mainframe computers to
another usually required writing the data on a bulky tape device or some large disk,
physically carrying that medium to the other mainframe computer, and loading the data
onto that computer. Although this was, of course, done, it was extremely inconvenient.

A Network Connection During the time computer networking was still in its in-
fancy, local networks existed also and were the inspiration for what would ultimately
become the Internet. During 1968 and 1969,ARPA experimented with connections be-
tween a few government computers. The basic architecture was a 50-kb dedicated tele-
phone circuit connected to a machine at each site called an Interface Message
Processor (IMP). Conceptually, this is not unlike your personal Internet connection
today if you consider that your modem does the job of the IMP. (Of course, the IMP
was a much more complex device than a modem.) At each site, the IMP then connect-
ed to the computer or computers that needed to access the network.

348 Chapter 10 The Internet

The ARPANET The ARPANET was born in September 1969, when the first
four IMPs were installed at the University of Southern California, Stanford Research
Institute, the University of California at Santa Barbara, and the University of Utah.All
of these sites had significant numbers of ARPA contractors. The success of the initial
experiments among the four sites generated a great deal of interest on the part of
ARPA, as well as in the academic community. Computing would never be the same.

Standardizing the Internet: The 1970s

The problem with the first connections to the ARPANET was that each IMP was, to
some degree, custom designed for each site, depending on the operating systems and
network configurations of its other computer. Much time and effort had been expend-
ed to get the network up to four sites. Hundreds of sites would require hundreds of
times that much custom work if it were done in the same fashion.

It became clear that if all the computers connected to the network in the same
way and used the same software protocols, they could all connect to each other more
efficiently and with much less effort at each site. But at the time, different computer
vendors supplied their own operating systems with their own hardware, and there was
very little in the way of standardization to help them interact or cooperate. What was
required was a set of standards that could be implemented in software on different sys-
tems, so that they could share data in a form that the different computers could still
“understand.”

Although the genesis of standard networking protocols began in the 1970s, it
would be 1983 before all members of the ARPANET used them exclusively.

The Internet Protocol Family In the early 1970s, researchers began to design
the Internet Protocol. The word “internet” was used, since it was more generic (at the
time) than ARPANET, which referred to a specific network. The word “internet” re-
ferred to the generic internetworking of computers to allow them to communicate.

The Internet Protocol is the fundamental software mechanism that moves data
from one place to another across a network. Data to be sent is divided into packets,
which are the basic data units used on a digital computer network. IP does not guaran-
tee that any single packet will arrive at the other end or in what order the packets will
arrive, but it does guarantee that if the packet arrives, it will arrive unchanged from the
original packet at the source. This property may not seem very useful at first, but stay
with me for a moment.

TCP/IP Once you can transmit a packet to another computer and know that if
it arrives at all, it will be correct, other protocols can be added “on top” of the basic IP
to provide more functionality. The Transmission Control Protocol (TCP) is the proto-
col most often used with IP. (Together, the two are referred to as TCP/IP.) As the
name implies,TCP controls the actual transmission of the stream of data packets.TCP
adds sequencing and acknowledgement information to each packet, and each end of a
TCP “conversation” cooperates to make sure that the data stream which is received is
reconstructed in the same order as the original. When a single packet fails to arrive at
the other end due to some failure in the network, the receiving TCP software figures

The Evolution of the Internet 349

this out, because the packet’s sequence number is missing. The software can contact
the sender and have it send the packet again. Alternatively, the sender, having likely
not received an acknowledgment of the receipt of the packet in question, will eventu-
ally retransmit the packet on its own, assuming that it was not received. If the packet
was received and only the acknowledgment was lost, the TCP software, upon receiv-
ing a second copy, will drop it, since it has already received the first one. The receiver
will still send the acknowledgment the sending TCP software was waiting for.

TCP is a connection-oriented protocol. An application program opens a TCP
connection to another program on another computer, and the two machines send data
back and forth to each other. When they have completed their work, they close down
the connection. If one end (or a network break) closes the connection unexpectedly,
this is considered an error by the other end.

UDP/IP Another useful protocol that cooperates with IP is the User Datagram
Protocol (UDP) (sometimes semi-affectionately called the Unreliable Datagram Pro-
tocol). UDP provides a low-overhead method for delivering short messages over IP,
but does not guarantee their arrival. On some occasions, an application needs to send
status information to another application (such as a management agent sending status
information to a network or systems management application), but the information is
not of critical importance. If it does not arrive, either it will be sent again later or it may
not be necessary, in each and every instance, for the data to be received by the applica-
tion. Of course, this assumes that any failure is due to some transient condition and
that “next time” the method will work. If it fails all the time, that would imply that a
network problem exists that might not become apparent.

In a case like this, the overhead required to open and maintain a TCP connection
is more work than is really necessary.You just want to send a short status message.You
don’t really care whether the other end gets it (since, if it doesn’t, it probably will get
the next one), and you certainly don’t want to wait around for receipt of the message to
be acknowledged. So an unreliable protocol fits the bill nicely.

Internet Addressing When an organization is setting up a LAN that it wishes
to be part of the Internet, it requests a unique Internet IP address from the Network
Information Center (NIC). The number that is allocated depends on the size of the
organization:

• A huge organization, such as a country or very large corporation, is allocated a
Class A address—a number that is the first 8 bits of a 32-bit IP address. The orga-
nization is then free to use the remaining 24 bits to label its local hosts. The NIC
rarely allocates these Class A addresses, since each one uses up a lot of the total
32-bit number space.

• A medium-sized organization, such as a midsize corporation, is allocated a
Class B address. A Class B address is a number that is the first 16 bits of a 32-
bit IP address. The organization can then use the remaining 16 bits to label its
local hosts.

• A small organization is allocated a Class C address, which is the first 24 bits of a
32-bit IP address.

350 Chapter 10 The Internet

1129 * 256 + 110 = 33134.

For example, the University of Texas at Dallas is classified as a medium-sized organiza-
tion, and its LAN was allocated the 16-bit number 33134. IP addresses are written as a
series of four 8-bit numbers, with the most significant byte written first. All computers
on the UT Dallas LAN therefore have an IP address of the form 129.110.XXX.YYY,1

where XXX and YYY are numbers between 0 and 255.

Internet Applications Once a family of protocols existed that allowed easy
transmission of data to a remote network host, the next step was to provide application
programs that took advantage of these protocols. The first applications to be used with
TCP/IP were two programs that were in wide use even before TCP/IP was used on the
ARPANET: telnet and ftp. (See Chapter 9.)

The telnet program was (and still is) used to connect to another computer on a
network in order to login and use that computer from your local computer or terminal.
This feature was quite useful in those days of high-priced computing resources. Then,
your organization might not have its own supercomputer, but you might have access to
one at another site. Telnet allows you to login remotely without having to travel to the
other site.

The ftp program was used to transfer files back and forth. While ftp is still avail-
able today, most people use web browsers or network file systems to move data files
from one computer to another.

Rearchitecting and Renaming the Internet: The 1980s

As more universities and government agencies began using the ARPANET, word of its
usefulness spread. Soon corporations were getting connected. At first, because of the
funding involved, a corporation had to have some kind of government contract in
order to qualify. Over time, this requirement was enforced less and less.

With growth came headaches. As with a local network, the smaller any network
is, the fewer nodes that are connected, and the easier it is to administer.As the network
grows, the complexity of managing the whole thing grows as well. It became clear that
the growth rate the ARPANET was experiencing would soon outpace the Defense De-
partment’s ability to manage the network.

The rate of addition of new hosts now required modifications to the network
host table on a daily basis. Also, each ARPANET site had to download new host ta-
bles every day if it wished to have up-to-date tables. In addition, the number of avail-
able host names was dwindling, since each name had to be unique across the entire
network.

Domain Name Service Enter the Domain Name Service (DNS). Together with
the Berkeley Internet Name Daemon (BIND), DNS proposed a hierarchy of domain
naming of network hosts and the method for providing address information to anyone
on the network as requested.

In the new system, top-level domain names were established under which each net-
work site could establish a subdomain. The DOD would manage the top-level domains

The Evolution of the Internet 351

2Two options are available in the protocols. The first is that the requesting machine may be redirected to a
“more knowledgeable” host and may then make follow-up requests until it obtains the information it needs.
The other possibility is that the original machine may make a single request, and each subsequent machine
that doesn’t have the address can make a follow-up request of the more knowledgeable host on behalf of the
original host.This is a configuration option in the domain resolution software and has no effect on how many
requests are made or on the efficiency of the requests.

and delegate management of each subdomain to the entity or organization that regis-
tered the domain.The DNS/BIND software provided the method for any network site to
do a lookup of network address information for a particular host.

Let’s look at a real-world example of how a host name is resolved to an address.
One of the most popular top-level domains is com, so we’ll use that in our example, as
most people will be familiar with it. The DOD maintained the server for the com do-
main.All subdomains registered in the com domain were “known” to the DOD server.
When another network host needed an address for a host name under the com do-
main, it queried the com name server.

If you attempted to make a connection to snoopy.hp.com, your machine would
not know the IP address, because there was no information in your local host table for
snoopy.hp.com. Your machine would contact the domain name server for the com do-
main to ask it for the address. That server, however “knows” only the address for the
hp.com name server; it does not need to know everything under that domain. But since
hp.com is registered with the com name server, it can query the hp.com name server
for the address2. Once a name server that has authority for the hp.com domain is con-
tacted, an address for snoopy.hp.com (or a message that the host does not exist) is re-
turned to the requestor.

Up to this point, every host name on the ARPANET was just a name, like utexas
for the ARPANET host at the University of Texas. Under the new system, that ma-
chine would be renamed to be a member of the utexas.edu domain. However, this
change could not be made everywhere overnight. So for a time, a default domain .arpa
was established. By default, all hosts began to be known under that domain (hence,
utexas changed its name to utexas.arpa). Once a site had taken that single step, it was
easier for it to become a member of its “real” domain, since most of the pain involved
implementing software that “understood” the domain name system.

Once the ARPANET community adopted this system, all kinds of problems were
solved. Suddenly, a host name had to be unique only within a subdomain. Accordingly,
just because HP had a machine called snoopy didn’t mean that someone at the Univer-
sity of Texas couldn’t also use that name, since snoopy.hp.com and snoopy.utexas.edu
were different names. This had not been such a big problem when only mainframe
computers were connected to the network, but the era of exploding growth of work-
stations was quickly approaching, and the problem would only have gotten bigger. The
other big advantage was that a single networkwide host table no longer had to be
maintained and updated on a daily basis. Each site kept its own local host tables up to
date and would simply query the name server when an address for a host at another
site was needed. By querying other name servers, you were guaranteed to receive the
most up-to-date information.

352 Chapter 10 The Internet

Name Category

biz business

com commercial

edu educational

gov governmental

mil military

net network service provider

org nonprofit organization

XX two-letter country code

FIGURE 10.1

Common top-level domain names.

The top-level domains encountered most often are shown in Figure 10.1.
For example, the LAN at University of Texas at Dallas was allocated the name

“utdallas.edu”. Once an organization has obtained its unique IP address and domain
name, it may use the rest of the IP number to assign addresses to the other hosts on the
LAN.

You can see what addresses your local DNS server returns for specific host
names with the nslookup command, available on most UNIX systems and described
in Figure 10.2. nslookup is most useful for obtaining addresses of machines in your
own network. Machines at other sites around the Internet are often behind firewalls,
so the address you get back may not be directly usable. However, nslookup is good for
finding out whether domain names or Web servers (machines that would need to be
outside the firewall for the public to access) within domains are valid. You might see

Utility: nslookup [hostname or address]

nslookup contacts the local Name Service and requests the IP address for a given
host name. Some versions also allow you to do a reverse lookup in which, by speci-
fying an IP address, you receive the host name for that address. If nslookup is run
with no arguments, you enter an interactive session in which you can submit multi-
ple commands. (Use ^D to exit.)

FIGURE 10.2

Description of the nslookup command.

The Evolution of the Internet 353

the following type of output from nslookup:

$ nslookup www.hp.com
Server: localhost
Address: 127.0.0.1

Non-authoritative answer:
Name: www.hp.com
Addresses: 192.151.52.217, 192.151.52.187, 192.151.53.86,

192.6.118.97, 192.6.118.128, 192.6.234.8

$ nslookup www.linux.org
Server: localhost
Address: 127.0.0.1

Non-authoritative answer:
Name: www.linux.org
Address: 198.182.196.56
$ _

The first thing reported by nslookup is the name and IP address of the DNS server
being used for the query. In this case, the machine on which we are running nslookup is
also running bind. After that, we are provided the current IP address(es) for the host
name we requested.When a host name doesn’t exist or the DNS server can’t (or won’t)
provide the address, we see something like this:

$ nslookup
Server: localhost
Address: 127.0.0.1

> xyzzy
Server: localhost
Address: 127.0.0.1

*** localhost can't find xyzzy: Non-existent host/domain
> ^D
$ _

DOD Lets Go Like a parent whose child has grown up and needs its indepen-
dence, the Department of Defense was coming to a point where its child, the
ARPANET, needed to move out of the house and be on its own. The DOD originally
started the network as a research project—a proof of concept. The network became
valuable, so the DOD continued to run it and manage it. But as membership grew,
managing the network took more and more resources and provided the DOD fewer
and fewer payoffs as more entities not related to the DOD got connected. It was time
for the Department of Defense to get out of the network management business.

354 Chapter 10 The Internet

In the late 1980s, the National Science Foundation (NSF) began to build NSFNET.
Taking an approach to large-scale networking that was unique at the time in that it was
constructed as a “backbone” network to which other regional networks would connect,
NSFNET was originally intended to link supercomputer centers.

Using the same types of equipment and protocols as those making up the
ARPANET, NSFNET provided an alternative medium with much freer and easier ac-
cess than the government-run ARPANET. To most people, except the programmers
and managers involved, the ARPANET appears to have mutated into the Internet of
today. In reality, connections to NSFNET (and its regional networks) were created and
ARPANET connections were severed, but because of the sharing of naming conven-
tions and appearances, the change was much less obvious to the casual user.

The end result was a network that worked (from the user’s point of view) the
same as the ARPANET had, but that was made up of many more corporations and
nongovernment agencies. More importantly, this new network was not funded by gov-
ernment money, but rather was surviving on private funding from those using it.

The Web: The 1990s

The 1990s saw the Internet come into popular use. Although it had grown consistently
since its inception, it was still predominately a world belonging to computer users and
programmers. Two things happened to spring the Internet on an unsuspecting public:
the continued proliferation of personal computers in the home and one amazingly
good idea.

The “Killer App” Again, timing played a role in the history of the Internet.The
network itself was growing and being used by millions of people, but was still not con-
sidered mainstream. The more sophisticated home users were getting connected to the
Internet via a connection to their employer’s network or by subscribing to a company
that provided access to the Internet. These companies came to be known as Internet
Service Providers (ISPs). In the early 1990s, only a handful of these providers existed,
as only a few people recognized that there was a business in providing Internet access
to anyone who wanted it.

Then came Mosaic. Mosaic was the first “browser” and was conceived by soft-
ware designers at the National Center for Supercomputing Applications (NCSA) at
the University of Illinois at Urbana–Champaign. With Mosaic, a computer user could
access information from other sites on the Internet without having to use the compli-
cated and nonintuitive tools that were popular at the time (e.g., telnet, ftp).

Mosaic was (and browsers in general are) an application that displays a page of
information both textually and graphically. It displays information described by a page
description language called HyperText Markup Language (HTML). The most revolu-
tionary aspect of HTML was that of a hyperlink—a way to link information in one
place in a document to other information in another part of the document (or, more
generically, in another document).

By designing a page with HTML, you could display information and include links
to other parts of the page or to other pages at other sites that contained related infor-
mation. This approach created a document that could be “navigated” to allow users to

The Evolution of the Internet 355

obtain the specific information in which they were interested, rather than having to
read or search the document in a sequential fashion, as was typical at the time.

Almost overnight, servers sprang up across the Internet and provided informa-
tion that could be viewed by Mosaic. Now, rather than maintaining an anonymous FTP
site, a site could maintain its publicly accessible information in a much more pre-
sentable format. Anonymous FTP sites usually required that users accessing them
know what they were trying to find or, at best, that they get the README file which
would help them find what they wanted. With a server that provided HTML, users
could simply point and click with a mouse and be taken to the page containing the in-
formation they sought.

Of course, not all this magic happened automatically: Each site that main-
tained any information for external users had to set up a server and format the in-
formation. But this was not significantly more work than providing the information
via anonymous FTP. Early on, as people switched from providing information via
FTP-based tools to using web-based tools, the two alternatives were comparable in
terms of the amount of effort required to make data available. As sites have become
more sophisticated, the work required has increased, but the payoff in presentation
has also increased.

Some of the people involved in the early releases of Mosaic later formed
Netscape Communications, Inc., where they applied the lessons they had learned from
early browser development and produced Netscape, the next generation in browsers.
Since then, browsers, led by Netscape and Microsoft Internet Explorer, have become
sophisticated applications that introduce significant advances to both browsing and
publishing every year.

The Web vs. the Internet The word “web” means many different things to dif-
ferent people in different contexts and causes as much confusion as it conveys infor-
mation. Before Mosaic and other browsers, there was just the Internet, which, we have
already seen, is simply a worldwide network of computers. This in itself can be dia-
grammed as a web of network connections. But that is not what the word “web” means
here.

When Mosaic, using HTML, provided the capability of jumping around from one
place to another on the Internet, yet another conceptual “web” emerged. Not only is
my computer connected to several others forming a web, but now my HTML docu-
ment is also connected to several others (by hyperlinks), creating a virtual spider web
of information. This is the “web” that gave rise to the terms “web pages” and “web
browsing.”

When someone talks about “the Web” today, they usually mean the Internet it-
self. Alternatively (especially when the term is lowercased), they may mean the web of
information available on the Internet. Although not originally intended that way, the
nomenclature “the Web” and “the Internet” are often used interchangeably nowadays.
However, in its original, lowercase usage, “the web” refers to the information that is
available from the infrastructure of the Internet.

Accessibility A few ISPs had sprung up even as “the Web” was coming into
existence. Once the concept of “the Web” gained visibility, it seemed that suddenly

356 Chapter 10 The Internet

everyone wanted to get on the Internet. While electronic mail was always usable and
remains one of the most talked-about services provided by access to the Internet,
web browsing had the visibility and the public relations appeal to win over the general
public.

All of a sudden, the average person saw useful (or at least fun) things he or she
could get from being connected to the Internet; it was no longer solely the domain of
computer geeks. For better or worse, the Internet would change rapidly. More people,
more information, and more demand caused the Internet to burgeon in usage and
availability. Of course, with more people come more inexperienced people and more
congestion; popularity is always a double-edged sword.

Another factor allowing the general public to have access to the Internet has
been the geometric increase in modem speeds. While large companies have direct con-
nections to the Internet, most private connections are dial-up connections over home
phone lines requiring modems. When the top modem speed was 2400 bytes per second
(bps), which wasn’t all that long ago, downloading a web page would have been intol-
erably slow. As modem speeds have increased to 100 kbps and high-speed digital lines
have become economical for home use, it has become much more reasonable to have
more than just a terminal using a dial-up connection.

Most private connections can be had for between $10 and $60 per month, de-
pending on their speed and usage. A bill for Internet service that is comparable to a
cable TV bill or a phone bill is tolerable; the general public probably would not have
accepted a bill that was an order of magnitude higher than other utility bills.

Changes in the Internet As the public has played a larger and larger part in the
evolution of the Internet, some of the original spirit of the Internet has changed. The
Internet was first developed “just to prove that it could be done,” not as a profit-mak-
ing enterprise. The original spirit of the Internet, especially in its ARPANET days, was
that information and software should be free to others with similar interests and objec-
tives. Much of the early code that ran the Internet (the IP protocol suite and tools such
as ftp and telnet) was given away by its authors and was modified by others who con-
tributed their changes back to the authors for “the greater good.” This was probably
what allowed the Internet to grow and thrive in its youth. However, today business is
conducted over the Internet, and much of the information is accessible for a fee.This is
not to say that everybody is out to do nothing but make money or even that making
money is bad. But it represents a significant change in the culture of the Internet.

The Internet needed the “free spirit” origins that it had, but now that mainstream
society is using it, it is only natural that it change so that economics plays an increasing
role. Advertising on web sites is common, and some sites require each user to pay a
subscription fee in order to be able to login to gain access to information. Commerce
over the Internet (such as on-line ordering of goods and services, including on-line in-
formation) is expected to continue to grow long into the future.

Security Entire books exist concerning Internet security (e.g., Cheswick (1994)).
In the future, as more commercial activity takes place across the Internet, the need for
security and concerns about the security of the operations that take place on the Inter-
net will only increase.

The Evolution of the Internet 357

In general, a single transfer of data is responsible for its own security. In other
words, if you are making a purchase, the vendor will probably use secure protocols to
acquire pertinent information from you (such as a credit card number).

Four major risks confront an Internet Web server or surfer: information copy-
ing, information modification, impersonation, and denial of service. Encryption ser-
vices can prevent copying or modifying information. User education can help
minimize impersonation.

The most feared (and, ironically, the least frequently occurring) risk is the copy-
ing of information that travels across the network. The Internet is a public network,
and therefore, information that is sent “in the clear” (not encrypted) can, in theory, be
copied by someone between the sender and the recipient. In reality, since information
is divided into packets that may or may not travel the same route to their destination,
it is often impractical to try to eavesdrop in order to obtain useful information.

Modification of information that is in transit has the same problem as eavesdrop-
ping, with the additional problem of actually making the modification. While not im-
possible, it is a very difficult problem and usually not worth the effort.

Impersonation of a user, either through a login interface or an e-mail message, is
probably the most common type of security breach. Users often do not safeguard their
passwords. Once another person knows someone’s username and password, that per-
son can login and have all the same rights and privileges as the legitimate user. Unfor-
tunately, it is trivial to send an e-mail message with forged headers to make it appear
that the message came from another user. Close examination can usually authenticate
the header, but this can still lead to confusion, especially if an inexperienced user re-
ceives the message. One might also impersonate another network host by claiming to
use the same network address. This is known as spoofing: it is not a trivial exercise, but
an experienced network programmer or administrator can pull it off.

A denial-of-service attack occurs when an outside source sends a huge amount of
information to a server with the aim of overloading it and compromising its capability
to do its job. The server gets so bogged down that it either becomes unusable or com-
pletely crashes so that no one can use it.

Copyright One of the biggest challenges in the development of information ex-
change on the Internet is that of copyright. In traditional print media, time is required
to reproduce information, and proof of that reproduction will exist. In other words, if I
reprint someone else’s text without his or her permission, the copy I create would
prove the action. On the Internet, information can be reproduced literally at the speed
of light. In the amount of time it takes to copy a file, a copyright can be violated with
very little evidence of the action left behind.

Censorship In any environment where information can be distributed, there
will be those who want to be able to limit who can gain access to what information. If
the information is mine and I want to limit your access to it, this is called my right to
privacy. If the information is someone else’s and I want to limit your access to it, it is
called censorship.

This is not to say that censorship is bad. As with so much in our society, the idea
alone is not the problem; rather, the interpretation of the idea is. Censorship on the

358 Chapter 10 The Internet

3I say “perceived” here because it is actually possible to find most people if you’re willing to do enough work.
Even people who have filtered threatening e-mail through “anonymous e-mail” services have been found by
law enforcement. ISPs will cooperate with the authorities when arrest warrants are involved!
4Text in all caps is typically interpreted as the written equivalent to speaking the words in a loud voice. This
does not include those few users who still use computers or terminals that can only generate uppercase
characters.

Internet is, to put it mildly, a complex issue. Governments and organizations may try
to limit certain kinds of access to certain kinds of materials (often with the best of in-
tentions). The problem is that, since the Internet is a worldwide resource, local laws
have very little jurisdiction over it. How can a law in Nashville be applied to a web
server in Sydney? Moreover, even if the web server is doing something illegal, who
will prosecute the case?

Misinformation As much of a problem as copyrighted or offensive material
may be, much more trouble is caused by information that is simply incorrect. Since no
one has the authority to approve or validate information put on the net, anyone can
publish anything. This is great for free speech, but humans tend to believe information
they see in print. I can’t tell you how many stories I’ve heard about people acting on in-
formation they found on the Web that turned out to be misleading or wrong. How
much credence would you give to a rumor you were told by someone you didn’t know?
That’s how much you should give to information you pick up from the Web, at least
when you aren’t sure of the source.

“Acceptable Use” Many ISPs have an acceptable-use policy you must adhere
to in order to use their services. Over time, this may well solve many of the problems
the Internet has had since its formative years. Most acceptable-use policies request that
users behave themselves and not do anything illegal or abusive to other users. This in-
cludes sending harassing e-mail, copying files that don’t belong to you, and so on.

There is a perceived anonymity3 of users of the Internet. If you send me an e-mail
message that I disagree with, it may be difficult for me to walk over to you and yell at
you personally. I might have to settle for YELLING AT YOU IN E-MAIL.4 Because
of this, people tend to behave in ways they would not in person. As the Internet and its
users grow up, this problem should lessen.

USING TODAY’S INTERNET

In the past, using the Internet meant keeping track of a collection of commands and ftp
sites. You had to keep track of the resources, as well as the method of accessing them.

Today, almost everything you access on the Internet is web based—that is, acces-
sible via a web browser. Many web browsers have been written, but by far the most
common browser for UNIX computers is Netscape, written by Netscape Communica-
tions. Much like any other window-based program, a web browser is a program with
menu buttons, a control area, and a display area. You type in or select a web address,
and the browser sends the request to the specified computer on the network (either the

Using Today’s Internet 359

local network or the Internet) and displays the information that is returned in the win-
dow. I won’t go into detail about how to use Netscape or any other browser, since try-
ing it yourself is the best way to learn about web browsing. In general, all browsers
have a place to type in a web address, a way to view your browser’s history, web ad-
dresses you’ve previously visited, and buttons to help you move backward or forward
in this list. Most browsers allow you to save or print information and store web ad-
dresses in a list of “bookmarks” so that you can return to a site in the future without
having to remember and retype its address.

URLs

A web page is what is displayed in a browser window when you type in a particular web
address. The address is called a Uniform Resource Locator (URL). For example, the
URL for the Prentice Hall web site is

http://www.prenhall.com

The components of a URL are the protocol to use to obtain the web page, the Internet
address or hostname of the computer on which the page resides, an optional port num-
ber, and an optional filename. In the case of the Prentice Hall URL, the port number
and filename were omitted, and the browser assumed port 80 and requested the “root”
(/) file within the web server document tree (not the same as the root of the UNIX file
system).

The most common protocol is HyperText Transport Protocol (http), which is the
protocol for accessing HTML information. An encrypted channel, Secure HTTP, spec-
ified with https, is used for pages or transactions involving confidential information
(e.g., credit card numbers). Most web browsers also support the ftp protocol, which
gives you a GUI-based way of accessing anonymous ftp sites through your browser.
(See Chapter 11 for a discussion of the Graphical User Interface, or GUI.) If no proto-
col is specified, most browsers will assume that “http://” goes on the front of the URL,
so you can usually leave that off when manually typing in a URL.

Typically, when you load a particular web page into your browser, you are pre-
sented with a nicely formatted page containing information and other highlighted text
or icons (hyperlinks) that you can click on to be taken to other related web pages, pos-
sibly part of the current web site or possibly managed by a completely different orga-
nization. The hyperlink is the fundamental concept at the heart of the World Wide
Web. It results in a web of information, each page containing links to many other
pages. Since many web pages containing related information have links to each other,
the result is a “web” of links all over the Internet.

Web Searches

So now that you have a browser window and can access web sites, how do you find the
information you want? I could list some of the thousands of sites I know that contain
interesting information, but by the time this book is published, many of the sites I list-
ed might not be available anymore. Rather than just giving you a fish, I’d rather show
you how to fish so that you can find anything you might need on your own.

http://www.prenhall.com

360 Chapter 10 The Internet

There are more than a few web “search engines” on the Internet. These are sites
that build and continuously update their database of web pages and keyword indices
relating to those pages. Normally, their services are free; the pages that show you re-
sults of a search usually have advertising on them that sponsors pay for to support the
cost of running the site.

Some common search engines, in alphabetical order, are as follows:

• www.altavista.com

• www.excite.com

• www.google.com

• www.infoseek.com

• www.lycos.com

• www.webcrawler.com

• www.yahoo.com

I have my own preferences and so will you. Your favorite may depend on the speed
of the response, the layout of the information, the quality of what the engine finds,
the ease with which you can build a query, or some of the other services the site may
offer.

Today, there are so many sites on the Internet that the biggest problem with using
a search engine is building a specific enough query so that you don’t get thousands of
links, most of which aren’t what you really want.

If you are trying to find a “regular company,” you can often get lucky by guessing.
A URL of the form

http://www.companyname.com

probably works more often than it doesn’t.

Finding Users and Domains

The NIC provides web-page access to the database of registered Internet users and In-
ternet domains. The user database does not contain a listing of every Internet user;
rather, it lists only users who have registered with the NIC.This usually includes system
and network administrators who manage domain information for a site.

The NIC’s web site is

http://www.internic.net

and its web page can point you to the resources you can use to perform all sorts of
searches for domain and Internet information.

http://www.companyname.com
http://www.internic.net

Chapter Review 361

Factors Affecting Future Use

Will the Internet continue to grow as it has so far? The only factor limiting its use be-
fore was accessibility. This problem has been solved by ISPs and high-speed dial-up
and broadband connections. Today, millions of people access the Internet every day.
Some use it to send and receive e-mail and read bulletin boards. Some use it to look up
information of all kinds on corporate and educational institution web servers. Many
use the Internet to order products. As convenience becomes a priority in people’s busy
lives, Internet access may prove to be the most efficient way of finding information,
even at the local level.

With millions of people using the Internet now, and with more expected, adver-
tisers are eager to get their message to this new market. As web servers and applica-
tions become more sophisticated, advertisers will be able to target their message to
only those users who are interested. This is an advantage to both the merchant and the
customer, since it helps reduce the information overload we are already suffering from
these days.

CHAPTER REVIEW

Checklist

In this chapter, I described

• the history of the Internet
• protocols used on the Internet
• applications that access the Internet
• the Domain Name Service used on the Internet
• the World Wide Web, web browsing, and web searching

Quiz

1. Why does the NIC allocate very few Class A addresses?
2. What is the difference between the http and https protocols?
3. If you were looking for Sun Microsystems’ web page, what address would you try

first?
4. What are the two most significant differences between the TCP and UDP proto-

cols?

Exercises

10.1 Pick some companies you know, and try to access their web pages with URLs you
make up in the form of www.company.com. [level: easy]

www.company.com

362 Chapter 10 The Internet

10.2 Connect to the “www.internic.net” web site and explore it to find out what
kinds of services the NIC provides. Look up information about your domain
name (or your ISP’s domain name). [level: medium]

Project

Pretend you want to buy the latest CD of your favorite group, but you don’t
know of an Internet site that sells them. (There are several.) Do a web search
with several keywords (e.g., music, CD, purchase, and the name of the group). See
if you can find a way to buy the CD and explore some of the other sites that come
up to find out why they satisfied your search so that you know how to make a bet-
ter search next time. [level: medium]

www.internic.net

C H A P T E R 1 1

Windowing Systems

MOTIVATION

Virtually all UNIX computers now employ some form of windowing system. The vast
majority of these systems are based on MIT’s X Window System. A familiarity with the
X Window System should allow you to function on virtually any UNIX-based window
system in use today.

PREREQUISITES

Since the X Window System takes advantage of several UNIX networking facilities,
you should have read or should be familiar with the issues discussed in Chapter 9 prior
to reading this chapter.

OBJECTIVES

In the current chapter, I will provide you with a general overview of the X Window
System and how to use some of its most common features. I will show you how the sys-
tem can improve your productivity. Many other books (e.g., Quercia, 1993; OSF, 1992;
and Fountain, 2000) go into much greater detail about this complicated subject. The
goal here is to give you enough information to get you started using the X Window Sys-
tem and to give you an understanding upon which to build.

PRESENTATION

First, I will present a brief history of window systems in general. Then we will examine
the X Window System, what it looks like, how it works, and the UNIX commands in-
volved in using it.

363

364 Chapter 11 Windowing Systems

UTILITIES

This chapter includes a discussion of the following utilities, listed in alphabetical order:

xbiff xhost xterm
xclock xrdb

INTRODUCTION

In the early days of UNIX systems, a character terminal was the only interface to the
system. You logged in and did all your work in a single, character-based session. If you
were lucky, you had a terminal with “smart” cursor capabilities permitting full-screen
manipulations (which allowed screen-oriented text editing or debugging). Usually, you
simply had a line-oriented terminal on which you typed in a line of text (a command)
and got back one or more lines of text in response. And you were happy to have it in-
stead of the punch cards you used before that!

Graphical User Interfaces

As computer systems became more sophisticated, bit-mapped displays (whereby each
bit on the screen can be turned on or off, rather than simply displaying a character in a
certain space) allowed user interfaces to become more sophisticated. The Graphical
User Interface (GUI, often pronounced “gooey”) was born. The first computer with a
semi-well-known GUI was the Xerox STAR. This computer was purely a text-process-
ing system and was the first to use the icon representing a document that looked like a
page with one corner folded over. The Xerox STAR had icons for folders, documents,
and printers on a desktop (the screen) rather than a command-line-driven interface, as
had been the norm to that time.

The ability to click on a picture of a document to edit it and the ability to to drag
it onto the top of a printer icon to print it, rather than having to remember what the
commands were to perform these functions, was, at that time, revolutionary. Some of
the engineers from Xerox moved on to Apple Computer and worked on the Apple
Lisa, which led to development of the Macintosh.

UNIX also got into the GUI act. Sun Microsystems introduced Suntools early in
the history of SunOS (the predecessor to Solaris, Sun’s current version of UNIX). Sun-
tools allowed multiple terminal windows on the same screen with a cut-and-paste abil-
ity between them. At first, there were only a few applications that provided real GUI
functionality. A performance meter could graphically display system performance sta-
tistics rather than show them as numbers on a chart.The mailtool program allowed you
to read e-mail with something other than the traditional /bin/mail program.

But under conventional windowing systems, an application could display infor-
mation only on the screen of the computer on which the application was running. The
next step in the evolution was still to come.

MIT

In 1984, the Massachusetts Institute of Technology released the X Window System.
Recognizing the usefulness of windowing systems, but being unimpressed with what

X Servers 365

UNIX vendors had provided, students at MIT, in a move comparable to the BSD
movement at Berkeley, set out to write a windowing system of their own. Initially, Dig-
ital Equipment Corporation helped fund Project Athena, where X had its origins.

The revolutionary idea behind the X Window System, which has yet to be rivaled
in any modern computer system, is the distinction between the functions of client and
server in the process of drawing an image on a computer screen. Unlike most window-
ing systems, X is defined by a network protocol, replacing the traditional procedure
call interface. Thus, rather than simply having an application draw its image directly to
the screen, as previous window systems had done, the X Window System split the two
functions apart. The X server takes care of drawing on, and managing the contents of,
the computer’s bit-mapped display and communicating with all clients who wish to
draw on the screen. An X client doesn’t draw directly to a screen, but communicates
with an X server running on the computer where the screen on which it wishes to draw
is located. By allowing this communication to take place between two processes on the
same machine, or via a network connection between two processes on different ma-
chines, suddenly you have the capability of drawing graphics on a different screen.This
opens the door to all sorts of new possibilities (as well as security problems).

The X Window System is often referred to simply as “X” or “X11,” referring to its
most recent major version. At the time of this writing, X11 is in its sixth release; hence,
the complete reference is X11R6. For the latest information about the X Window Sys-
tem, see the Open Group’s X.Org Consortium web site at

http://www.x.org

X SERVERS

An X server starts up and “takes over” the bit-mapped display on a computer system.
This may happen automatically when a user logs in, or it may happen when the user ex-
ecutes a command to do so, depending on the implementation.

Usually, at the time the X server starts, one or two X clients are also started. X
Clients are programs that will communicate with one or more X servers in order to
communicate with a user. Some other program must be started that will allow the user
access to the system. (A screen being driven by an X server, but not running any appli-
cation, would not allow you to do anything on it.) A terminal window and a window
manager are generally the types of programs you start here, as we will see later.

On systems that don’t start an X server for you at login time, there is usually a
command such as xinit or xstart that you can either type manually or add to your login
or profile script so that it will be started automatically when you log in.

Screen Geometry

The layout of the screen is called geometry. A bit-mapped display has a certain size
measured in pixels—the dots on a display that can be set to “on” or “off” (white or black)
or to some color value. A small screen might be (a typical low-resolution PC
monitor). A larger screen might be pixels, or even larger for very high
resolution graphics screens.

1280 * 1000
600 * 480

http://www.x.org

366 Chapter 11 Windowing Systems

Screen geometry is specified either by referencing a specific position on the
screen (e.g.,) or by referencing positions relative to a corner of the screen.
Position is the upper left corner of the screen and is the lower right corner
(is the upper right, the lower left). Therefore, would be 500
pixels away from the upper left corner of the screen in both the X and Y directions.We
will see examples of this when we discuss X clients.

Security and Authorization

As you may have guessed by now, the ability to scribble on any computer screen in
your network could lead to security problems, not so much because the act of writing
on someone else’s screen is anything more than annoying if the recipient does not want
it, but because I/O to an X server is just that—input and output. Write access to an X
server also gives you the ability to query that system for a current copy of the display
or even keyboard input.

Because of this, the X Window System has a certain amount of security built into
the X server. It isn’t highly rated security, but it is enough to keep the casual snoop
from gaining unauthorized access. By default, the X server running on any computer
system allows only X clients on that same system to talk to it.The X server does not ac-
cept connections from “foreign” X clients without knowing who they are. This causes
the default configuration of an X server to be very much like a conventional window
system, where only applications running on that computer can write to its display. In
order to take advantage of the network capabilities of the X Window System, you have
to allow outside access.

The xhost command (an X client) is used to allow X clients on other systems to
display to your system. It works as shown in Figure 11.1. For example,

xhost +bluenote

will allow X clients running on the computer called “bluenote” to write to the display
on the system on which the xhost utility was run. Later, when whatever you needed to
run is finished, you can prohibit access with the command

xhost -bluenote

+500+500+0-0-0+0
-0-0+0+0

500 * 200

Utility: xhost [+|-][hostname]

The xhost command allows or denies access to the X server on a system. With no ar-
guments, xhost prints its current settings and which hosts (if any) have access. By
specifying only +, you can give access to all hosts; by specifying only -, you can deny
access to all hosts. When a host name is specified after a + or -, access is granted or
denied, respectively, to that host.

FIGURE 11.1

Description of the xhost command.

X Window Managers 367

In a secure environment where you aren’t afraid of other systems writing to your display,
you can allow any X client on the network to write to your display with the command

xhost +

You can also take away access from all X clients with

xhost -

X WINDOW MANAGERS

All this ability to write to a display isn’t really very useful if you just sit there and watch
windows pop up and go away, but you can’t do anything with them. This is where win-
dow managers come in. A window manager is a program (an X client) that communi-
cates with the X server and with the keyboard and mouse on the system. It provides
the interface for the user to give instructions to the X server about what to do with the
windows.

Although window managers are usually run on the same computer as the dis-
play they manage, this is not a requirement. If you have a special X window manager
that runs only on one specific type of computer, it is possible to set it up to manage
your workstation from a remote computer. Of course, there are inherent problems in-
volved in doing this. For example, what if the remote machine running the window
manager or the entire network went down? Your X server would no longer be man-
aged, because it could not communicate with the window manager, and your key-
board and mouse probably would not respond (at least properly) to your input. But
the fact that the system could still operate is a testament to the flexibility of the X
Window System architecture.

One of the important features provided by a window manager is the “look and
feel” of the desktop. The look and feel of the interior of a window depends on the ap-
plication creating the window. While all window managers provide similar basic func-
tionality, the appearance of each can vary widely.

Focus

The most important job of a window manager is to maintain window focus, the term
used to describe which window is currently selected or active. If you type on the key-
board, the window with focus is where the data will be sent. Focus is what allows you to
move from one window to another and to do multiple things in different windows.
Generally, a window with focus has a different border than the other windows, al-
though it may be configured not to be different in that regard.

Window focus can be configured so that it is set when a window border or title
bar is selected or simply when the mouse pointer is moved onto the window, depending
on your preference.

Program Start-Up

Most window managers provide a pull-down menu capability that can be customized to
allow you to start different, often-used applications. For example, if your pointer is on

368 Chapter 11 Windowing Systems

the root window (the desktop itself, not an application window) and you click and hold
down a mouse button, most window managers will bring up a menu of things that you
can select to perform a function. This list usually includes functions like starting a new
terminal window or exiting the window manager. The specific functions vary from one
window manager to another and can be heavily customized. Different mouse buttons
can be customized to bring up different lists of functions. Figure 11.2 shows an example
of a window.

Open and Closed Windows

The window manager also takes care of displaying active windows and positioning
icons which represent windows that are not open. If you start a new terminal window
and are finished with it, but don’t want to terminate it because you may need it later,
you can close the terminal window. The window manager will create an icon on the
desktop that represents the terminal window program, but it won’t take up much
space. You will still be able to see it and you can click (or perhaps double-click, de-
pending on the window manager you use) on the icon later to have the window re-
stored (reopened). The program itself is still running while its window is represented
by an icon, but the window is conveniently out of your way. The X server itself knows
nothing of this function, as you will see if you ever kill your window manager. (If you
do, all of your icons will pop their windows open all over your screen!). Figure 11.3
shows a desktop with an open window and icons.

FIGURE 11.2

A window and a root window pull-down menu.

X Window Managers 369

Choices of Window Managers

Many different window managers are available for X servers. Most are based on the
Motif standard, developed by the Open Software Foundation. Several window man-
agers have a common lineage from the original Motif window manager. Many imple-
ment a virtual desktop, which provides an area of desktop that is larger than the area
the on-screen real estate supports. The window manager then helps you manage which
section of the larger virtual desktop is displayed on the screen.

The most common window managers (in alphabetical order) include the
following:

• dtwm: The Desktop Window Manager, part of the Common Desktop Environ-
ment (CDE), similar to vuewm, but supporting a virtual desktop

• fvwm: A free, virtual window manager, written by Robert Nation, that became
very popular in the Linux community

• kwm: The K Window Manager, used with the K Desktop Environment (KDE)
• mwm: The Motif Window Manager, the original window manager
• olwm/olvwm: Sun Microsystems’ OpenLook Window Manager and OpenLook

Virtual Window Manager
• twm/tvtwm: Tom’s Window Manager and Tom’s Virtual Window Manager, writ-

ten by Tom LaStrange to correct some of the things he didn’t like about Motif
• vuewm: Hewlett-Packard’s VUE Window Manager

For the sake of simplicity, I will use the Motif Window Manager as the generic
window manager, since the aspects of windows that are of interest are common to all of
these window managers. The Motif Window Manager provides additional components

FIGURE 11.3

A desktop with an open window and icons.

370 Chapter 11 Windowing Systems

of a window that the application (X client) does not have to worry about. For example,
Motif draws a border around a window that can be selected with the mouse to change
focus onto the window, move (drag) the window, or change its size. The window border
contains a title and buttons allowing it to be moved, resized, minimized (replaced with
an icon), made to fill the entire screen, or terminated.

Widgets

Widget is the term used to describe each individual component of an X window. But-
tons, borders, and scrolling boxes are all widgets. Each X tool kit can define its own set
of widgets. Since we are focusing on Motif environments, we will concern ourselves
with only the Motif widget set, which is provided to the application program via the
Motif Application Programming Interface (API).

Menus

Menu buttons provide GUI access to functions afforded by the application. Often,
these functions are not directly related to the contents of any particular window.
(Rather, they do things like opening files, setting options, and exiting a program.)
Menu buttons are found along the top of a window, as shown in Figure 11.4.

Push Buttons

Push buttons can be laid out in any fashion required by an application.A typical example
is the OK/Cancel dialog box (an additional window that pops up with new information or
one that queries the user for more information). Figure 11.5 shows a sample dialog box.

FIGURE 11.4

A pull-down menu.

X Window Managers 371

Check Boxes and Radio Buttons

Check boxes and radio buttons are input-gathering widgets. Check boxes are a yes-or-
no type of button. If checked, they indicate “true,” “yes,” or “present,” depending on
the context of the statement. Radio buttons are a collection of mutually exclusive se-
lections: When one is selected, any others that were selected are deselected (like the
buttons on a car radio). Check boxes and radio buttons are shown in Figure 11.6.

FIGURE 11.5

A dialog box with push buttons.

FIGURE 11.6

Check boxes and radio buttons.

372 Chapter 11 Windowing Systems

Scroll Bars

Scroll bars allow you to scroll back and forth in a window or a part of a window.
Scrolling is useful when a lot of text is involved, but a short display area is available, so
that not all the text fits. Scroll bars may be either horizontal or vertical. Vertical scroll
bars are generally on the right side of a window (as in Figure 11.7). Horizontal scroll
bars are usually along the bottom of a window.

MOTIF WINDOW MANAGER FUNCTIONS

Functions performed on windows and icons on the desktop under the Motif Window
Manager are similar to functions and icons belonging to other X Window System win-
dow managers, although some details might vary slightly.

Bringing Up the Root Menu

The root menu contains the basic functions needed to control your X session. The
default list includes starting a terminal window, moving the focus to another win-
dow, and exiting the window manager. The root menu is customizable and is often
heavily customized to add frequently used X applications so that they are easy to

FIGURE 11.7

A terminal window with a scroll bar.

Client Applications 373

start. It is possible to have a different menu brought up for each of the different
mouse buttons.

Opening a Window

Open (or “maximize”) a window by double-clicking on the icon representing the
closed window.

Closing a Window

Close (or “minimize”) a window by clicking on the close tab in the window border.You
can also pull down a menu with a “Close” selection by selecting the window border. In
addition, most window managers provide a way to define a keyboard shortcut that can
be used when the focus is on the window.

Moving a Window

Move a window by selecting the window border and dragging the window to the new
location by holding down the middle mouse button.A window border pull-down menu
also usually has a “Move” selection.

Resizing a Window

Resize a window by selecting the resize border area of any corner or border of the win-
dow with the left mouse button and dragging the window to the new size. By dragging
a corner, both the X and Y sizes are modified. When selecting a top, bottom, or side
border and dragging it, the window size is modified in only one direction.

Raising or Lowering a Window

A window can be raised to the top (over other windows) simply by selecting its border.
This action also sets the focus on that window.

Bringing Up a Window Menu

The window manager can supply a menu for each window. The menus generally list
one or more of the functions just discussed, but can also be customized. To bring up
the window menu, you can either click on the menu button in the upper left corner of
the window or hold down the right mouse button anywhere in the window border or
title bar.

CLIENT APPLICATIONS

Every program that writes to the screen of an X server is known as an X client. Many
useful X clients are included with the X Window System.

374 Chapter 11 Windowing Systems

We next examine a few of the simplest X clients—the ones beginners tend to use
first when they are learning the X Window System. You should consult the man page
for each program to find out about optional arguments that can be used to customize
the client program.

xclock

The xclock X client is described in Figure 11.8. The xclock command can be started by
hand or in your initialization file. Figure 11.9 shows an xclock client.

xbiff

The xbiff X client, described in Figure 11.10, is basically an X Window System version of
the Berkeley UNIX biff program that tells you when you have new mail. As mentioned

Utility: xclock [-digital]

The xclock command provides a simple clock on your desktop.The default is an ana-
log clock (with sweeping hands). If the -digital argument is specified, a digital clock
is displayed instead.

FIGURE 11.8

Description of the xclock X client.

FIGURE 11.9

An xclock client.

Client Applications 375

earlier, one of the developers at the University of California at Berkeley was said to
have had a dog named Biff that always barked when the postman came by. Many other
such X client commands have been written to do more sophisticated types of notifica-
tions, but xbiff is the original. Figure 11.11 shows the use of xbiff.

xterm

The xterm X client is probably the most commonly used X client among UNIX
users. It provides a terminal interface window to the system. Early windowing sys-
tem users used their X terminals mostly to provide multiple terminal interfaces into
the system to consolidate monitors on their desktop. As X clients become more so-
phisticated, xterm was used less and less, but it is still quite useful if you use the

Utility: xbiff

The xbiff command displays a mailbox icon on the desktop. If the user running xbiff
has no new mail, the flag is down (like a real roadside mailbox). When mail is deliv-
ered, the flag goes up and the icon may change color.

FIGURE 11.10

Description of the xbiff X client.

FIGURE 11.11

Two views of the xbiff client.

376 Chapter 11 Windowing Systems

UNIX shell interface. We saw an example of the use of xterm earlier in the chapter.
xterm has a myriad of arguments allowing the window’s size, color, and font to be
defined at the command line. (See the man page for xterm for details.) The xterm X
client is described in Figure 11.12.

STANDARD X CLIENT ARGUMENTS

Most X clients accept standard arguments that allow the X client’s size and position to
be customized when started.

Geometry

X client geometry is specified by the –geometry argument.You can specify not only the
size of the client, but the offset position where it will appear on the screen. The general

FIGURE 11.11 (Continued)

Utility: xterm [-C]

The xterm command starts a terminal window on the desktop. If the -C argument is
included, the terminal window will receive console messages. This feature is useful
for preventing console messages from being written across the screen on a system in
which the bit-mapped display is also the console device.

FIGURE 11.12

Description of the xterm X client.

Advanced Topics 377

format is “XxY” for the position, followed by for the offset position. For ex-
ample, to start an xclock positioned 10 pixels in each direction from the upper right-
hand corner of the screen and 100 pixels in both width and height, you would use the
command

$ xclock -geometry 100x100-10+10

Note that the value of the -geometry argument is a single shell token. (There are no
spaces embedded in it.)

Foreground and Background

Foreground and background colors can be set with the –foreground and –background
arguments. The following xterm command will create a terminal window with cyan (a
light shade of blue) letters on a black background:

$ xterm –foreground cyan –background black

I find this combination of colors very easy to work with, but everyone has his or her
own favorites.

Title

The –title argument sets the title in the title bar of a window. This feature is often use-
ful for labeling one of many terminal windows used during a remote log-in session to
another machine to help keep the windows straight.The command for doing this would
be something like

$ xterm –title “Remote access to mail server”

Iconic

The –iconic argument is used to start an X client, but to have the window closed (min-
imized) so that only the icon representing it shows up on the desktop. This is useful for
an application that you will be using, but don’t necessarily want to use the moment it
starts up (like a mail reader or web browser).

ADVANCED TOPICS

Some of the topics we will examine here fall into one or more of the previous sections,
but you need a good foundation before we discuss these more complex capabilities of
the X Window System.

Copy and Paste

The copy-and-paste function is one of the more useful features of the X Window Sys-
tem. The ability to select text in one window and copy it to another window without

“+X+Y”

378 Chapter 11 Windowing Systems

having to retype it is a great time-saver. I am discussing the topic outside the scope of
the window manager because, even though it “feels” like the window manager pro-
vides the capability, it is actually provided by the X server itself. You can prove this by
using copy and paste even when no window manager is running.

To copy text into the copy-and-paste text buffer, you simply click and, while hold-
ing down the left mouse button with the pointer set at one end of the text you wish to
select, drag it to the other end. (You can do this either forward or backward.) When
you release the mouse button, the highlighted text has been copied to the buffer (un-
like a PC, which requires you to tell it to copy the highlighted text to the buffer). You
then go to the window where you wish to paste the text, click the middle mouse button
(or both mouse buttons at once on a system that only has two buttons), and the text
will be inserted. Some applications insert the text at the current cursor position while
others insert it at the point where you click the middle mouse button.The feature is ap-
plication specific.

In the example shown in Figure 11.13, I executed a who command to find out
who was logged into the system.To copy-and-paste the line showing Graham’s log-in, I
moved the mouse pointer to the beginning of the line and dragged the mouse to the
end of the line before letting go. This highlighted the text and put it in the copy-and-
paste buffer. Then, when I sent an e-mail message to Graham, I clicked on the middle
mouse button (or both left and right buttons at the same time on a two-button mouse)
to paste the text into the mail message at the current point.

FIGURE 11.13

A copy-and-paste example.

Advanced Topics 379

Networking Capabilities

I mentioned earlier that the X Window System is a networked windowing system and
that it is possible to display information from an X client running on one computer to
an X server running on another. This capability is fundamental to the X design and is
quite simple to use from any X client by specifying the -display argument. The argu-
ment tells the X client which X server to contact to display its widgets. By default, the
display is the local machine on which the client is running.To start an xterm on the host
“savoy,” use an xterm command such as

$ xterm -display savoy:0.0

The specification of “:0.0” is a method of uniquely identifying a display and an X
server running on the computer.While it is possible to run multiple X servers, as well as
having multiple monitors connected to a single computer, in general usage, each com-
puter will have only one monitor and will be running only one X server, so the value
“:0.0” will almost always denote this configuration. The default display name for the
local system would be “unix:0.0” or perhaps “:0.0” without a host name. The “unix”
name has the special meaning of “the local computer” and therefore will not work re-
motely if you actually have a local host called “unix.”

If I type the command

$ xterm –display bluenote.utexas.edu:0.0

and if the user on bluenote has used the xhost command to allow access to the machine
on which I typed this command, then the X terminal window that is created will be dis-
played on bluenote.utexas.edu.

Application Resources

Application resources are both a Pandora’s box of detail and one of the most revolu-
tionary aspects of the X Window System. X Resources allow users to customize the
look and feel of their desktops and the applications they run to a degree that no other
window system provides. Here we will take a quick look at the most basic parts of using
X resources. I strongly urge you to read the chapter titled “Setting Resources” in Quer-
cia (1993) for exhaustive details.

How Resources Work

Every application, including the window manager itself, can take advantage of X Re-
sources. An X resource is a text string, like a variable name, and a value, which is set as
part of the X server. The value of a resource is tied to a specific widget. When the X
server draws a particular widget, it looks up the value(s) associated with the widget in
its list of resources and sets the described attribute appropriately.

For example, consider the hypothetical application called xask.This application is
simply a dialog box containing a text message (a question) and two buttons: “yes” and

380 Chapter 11 Windowing Systems

“no.” It might be defined with (at least) the following resources:

xask.Button.yes.text
xask.Button.no.text

The application may have default values in case these resources are not set. With
no resources set, when you run xask, you might see a window like the one shown in
Figure 11.14.

FIGURE 11.14

The mythical xask application.

But what if you would rather have something more interesting than “yes” and
“no” for choices? Maybe you need to change the language used by the application, but
you do not wish to have a separate version for each language. The answer is to cus-
tomize the values with X resources. In our example, we’ll set the following resources
for xask:

xask.Button.yes.text: Sure
xask.Button.no.text: No way

Of course, this is a trivial example, but you see the power of X resources. By set-
ting the foregoing values to those resources in the X server, the next time you run xask,
you see the window shown in Figure 11.15. If I set these X resources on my X server
and run xask, and you do not set any resources on your X server and run the exact
same copy of xask, we will each see a different window!

X resources are used to set things like sizes, colors, fonts, and values of text
strings. While these are typical, there is really no limit to what you could allow to be
customized in an application. Every X application uses some number of X resources,

Advanced Topics 381

and they should be defined in the documentation for the application. The larger (more
complex) the application, the more resources it will use. For instance, the Motif win-
dow manager has what seems like an endless number of resources that allow you to
customize nearly everything about it.

Defining Resources

Once you know what resources you want to set, how do you do it? X resources are re-
sources of the X server; therefore, they are set on the machine on which the X server
runs. There are many ways to load resources into an X server. The most manual
method of accessing the X resource database in the X server is with the xrdb com-
mand, described in Figure 11.16.

FIGURE 11.15

The xask application with customized X resources.

Utility: xrdb [-query|-load|-merge|-remove] [filename]

The xrdb command provides access to the X Resource database for the X server.
Used with the -query argument, xrdb prints the resources defined in the X server.
The -load argument causes new resource information to be loaded into the resource
database, replacing the previous information. If a filename is specified, the resource
information is loaded from that file, otherwise the Standard Input channel is read to
find the resource information. The -merge argument loads new resource informa-
tion, similarly to the -load argument’s operation, except that existing information is
not removed. (Information about duplicate resources is overwritten.) Finally, the
-remove argument clears out the X server’s resource database.

FIGURE 11.16

Description of the xrdb command.

382 Chapter 11 Windowing Systems

You can add or remove individual or groups of resources anytime you wish.
However, manually adding and removing X resources gets tedious very quickly.
What we really want is a way to specify a resource that will apply every time we run
a given application. We do this by setting up a default resource file called .Xdefaults.
This file is an initialization file recognized by the X server program when run by the
user. Upon start-up, the X server loads all resources listed in the file. For example, if
we always wanted our xask program to use the more casual text in the response but-
tons, as in our earlier example, we could enter those resources into our .Xdefaults
file, and the next time we start the X server, these resources will be set. Note that we
could also run xrdb on our .Xdefaults file itself to load or reload the aforesaid re-
sources at any time.

If you customize a great number of resources in many applications, putting all of
these customized resource lines in your .Xdefaults file, over time you will find that the
file gets extremely large. While this isn’t a real problem, it makes the contents of the
file harder to manage.Also, some applications come with a default set of resources that
specify the default attributes of widgets used by the application, rather than setting
these default values in the code itself. In this case, we need a way to load those re-
sources into the X server when we run the application.

Specifying a directory where X resources are kept allows the X server to load
multiple resource files. Lists of resources for an application are stored in a file named
so that the application will find it. (This is usually the same name as the application, but
it is defined by the application itself.) In this way, resources can be managed more eas-
ily, since each file will contain only the resources for one application.You may find tens
or even hundreds of files in this directory, but each file will be of a manageable size.

In our previous xask example, we might put our resources in a file called Xask
that we know is used by the application. Then, all we need is a way to tell the applica-
tion where to look for this file. We do that by defining a shell variable called XAP-
PLRESDIR (X application resource directory). In the C-shell, this should be an
environment variable so that child shells inherit the value. In Bourne-based shells, this
variable should be exported when it is set.

Configuration and Start-Up

It may seem strange that I left this section until now, but trying to run the X Window
System without any idea about how it works sometimes proves to be quite an impedi-
ment. Knowing the relationship between the X server and the client and knowing
where the window manager fits into the picture should make the section seem simple.
The details of starting X also vary from platform to platform and implementation to
implementation.

xinit and .xinitrc

When running the “generic” X Window System distribution from MIT, you log into the
UNIX computer the way you normally do. You can then type the xinit command to
start the X server, or you might have this command in your shell initialization file.

The xinit command starts the X server and runs commands found in a shell script
file called .xinitrc. In this file, you can specify any application that you wish to be started

Advanced Topics 383

when the X server starts.Typical commands found in the .xinitrc file are xterms and mail
programs or perhaps your favorite Web browser. You will also start up your window
manager of choice here.

The real trick to setting up a proper .xinitrc is to understand that your X server
runs the commands in this file like a shell script, and when the script finishes (i.e., all
the commands have completed), the X server terminates. This is a key point. Often,
people put commands in their .xinitrc file and use the “&”to fork off the processes (run
them in the background). But they also do this with the last command in the list. In this
case, the .xinitrc script exits and the X server terminates. The appearance is that the X
server starts, starts up applications, and then abruptly exits. The reason is that the last
application started in the .xinitrc file should not be started in the background with the
“&” on the end of the command! Then, when this particular application exits, the X
server itself exits.

Some people choose to make this “last application” the window manager (mwm).
Advanced users sometimes make this last command the special “console” terminal
window, because they want to be able to stop and start their window manager without
the X server terminating. In that case, to cause the X server to exit, you would simply
terminate (type “exit” or Control-D in) your console window. In the following sample
.xinitrc file, mwm is started last and is not put into the background, so the execution of
the script stops there as long as mwm is running.When you exit your window manager,
execution of your .xinitrc script continues to the end, and when the script terminates,
then your X server also exits, as the following commands indicate:

$ cat .xinitrc
xbiff &
mailtool &
xterm -C &
mwm
$ _

This whole discussion may sound simple, but this simple idea has caused more
than its share of grief for the novice X Window System user!

mwm and .mwmrc

Just as .xinitrc is the start-up file for xinit, .mwmrc is the initialization file for mwm.
When starting the Motif Window Manager, the window manager must be instructed
how to map mouse buttons, what to do when you click on various widgets, and, in gen-
eral, how to behave. Usually, your account will be provided with a default copy of the
.mwmrc file, which you may edit to customize.

Within the .mwmrc file, all the pull-down menus that will be available to you
are defined. This is the one way you can do anything useful when the X server is run-
ning without starting other applications (in your .xinitrc). Over time, you may find
certain applications so useful that you add a command to start them to your pull-
down menus defined here so that you can start them with a mouse click. (You should
consult OSF, 1992, for all the details you need to know regarding customizing your
.mwmrc file.)

384 Chapter 11 Windowing Systems

A (LIMITED) SURVEY OF OTHER X-COMPATIBLE DESKTOPS

Three major UNIX desktops are in use today: CDE, KDE, and Gnome. Older desktops
such as VUE and OpenWindows figure into the history of the UNIX desktop, so we
mention them, but they are no longer used in many UNIX environments.

CDE

With companies developing their own implementations of X servers and adding their
own bells and whistles to them, it became clear that X environments were getting very
complicated and diverse. Hewlett-Packard, IBM, SunSoft, and Novell got together to
define a new X implementation that could be shared and used by all UNIX platforms.
The Common Desktop Environment (CDE) was the result.

CDE’s outward appearance is very much like that of VUE, although there are
also OpenWindows influences apparent throughout. CDE is also Motif based, like
VUE, and has a login and session manager. CDE does not provide any great techno-
logical leap over OpenWindows, VUE, or even X itself. What it provides is, as its name
implies, a common environment, shared by major UNIX vendors and available to
UNIX users on different UNIX platforms. CDE was the first UNIX desktop to be
adopted by several UNIX vendors.

Gnome

The GNU Network Object Model Environment (Gnome) is the GNU Project’s contri-
bution to the UNIX desktop. As with other GNU software, it is freely available and
runs on most UNIX hardware platforms. While it now comes with many commercial
distributions of UNIX and Linux, it can also be found at

http://www.gnome.org

Gnome’s goal is to provide an easy-to-use desktop for beginning users without tying
the hands of experienced users.

KDE

Much like Gnome, KDE, the K Desktop Environment, is an Open Source, freely avail-
able UNIX desktop developed by a loose group of programmers around the world.
KDE is also available for just about every version of UNIX and Linux and can be
found at

http://www.kde.org

KDE attempts to provide an interface similar to those of MacOS and Windows desk-
tops to encourage the adoption of UNIX or Linux in home and office desktop envi-
ronments (where MacOS and Windows have traditionally dominated).

http://www.gnome.org
http://www.kde.org

Chapter Review 385

OpenWindows

Acknowledging that its original windowing system, Suntools, was not the right answer,
Sun abandoned it and developed its own X-based window system called OpenWin-
dows. While based on X and capable of running X clients, OpenWindows provided a
new “look and feel” and a new widget set (and, of course, a new set of applications).
The new style was called OpenLook. While Sun users and the Open Software Founda-
tion embraced the Open Look style and OpenWindows, it never really took off in the
rest of the X community.

VUE

Hewlett-Packard also wanted to improve on the original X concept while staying com-
patible with generic X clients. The HP Visual User Environment (VUE) implemented
an X server, a new desktop design, and a new start-up paradigm.

VUE provided a login screen so that the user never saw a generic UNIX login or
shell prompt on the terminal. VUE ran when the computer started, and it turned con-
trol over to the user’s initialization files when he or she logged in.VUE also provided a
useful set of default files so that the environment worked well initially, but it could still
be customized by the experienced X user. Where, with generic X, the user had to edit
initialization files to modify the behavior of the window system, VUE provided many
methods for modifying behavior via the GUI, which was easier for the average user to
work with.

CHAPTER REVIEW

Checklist

In this chapter, I described

• what a Graphical User Interface does
• MIT’s X Window System
• X servers, X clients, and X widgets
• the Motif window manager
• X application resources

Quiz

1. Which command is used to change access permissions on an X server?
2. Which Motif widget would you use in a window wherein you want to give users a

choice among several options, but they can choose only one?
3. What is the X application argument used to cause the application’s window to

show up on a different computer’s screen?

386 Chapter 11 Windowing Systems

4. What attribute about an X server allows you to change the appearance of an X
application without having to modify the program?

Exercises

11.1 Explain why a window manager is an X client. [level: easy]
11.2 Suppose that your window manager has exited and you cannot get focus in a win-

dow to type a command to bring up a new window manager. (Suppose also that
you have no root menu button that starts a new window manager.) Explain how
you might still be able to use copy-and-paste with your existing windows to exe-
cute a command. [level: hard]

Project

Use the xrdb command to print the resource database of a running X server.
Study the output to learn what types of applications use which types of resources.
[level: medium]

C H A P T E R 1 2

C Programming Tools

MOTIVATION

The most commonly used programming languages on UNIX systems are C and C++.
This isn’t surprising, since UNIX was written in C and many versions come with a
standard C compiler. Most UNIX utilities and many commercial products are written
in C or C++. It’s therefore likely that you will find knowledge about writing, compiling,
and running C programs very useful. Of course, UNIX supports many other popular
programming languages, but this chapter applies primarily to the C language and its
supporting tools, because these are so fundamental to UNIX environments.

PREREQUISITES

The chapter assumes that you already know C and have compiled programs on at least
one platform. For example, many readers may have used the Borland or Microsoft C
compiler.

OBJECTIVES

In this chapter, I describe the tools that support the various different stages of program
development: compilation, debugging, maintaining libraries, profiling, and source code
control.

PRESENTATION

The C programming environment is introduced in a natural fashion, with plenty of
examples and small programs.

387

388 Chapter 12 C Programming Tools

UTILITIES

This section introduces the following utilities, listed in alphabetical order:

admin ld sact
ar lint strip
cc lorder touch
comb make tsort
dbx prof unget
get prs
help ranlib

THE C LANGUAGE

The C language can be found in two main forms: K&R C and ANSI C. K&R, named
for Brian Kernighan and Dennis Ritchie, the authors of the first popular C program-
ming text, defines C as it was in the early days of UNIX. Some now refer to this as
“Classic C.” The American National Standards Institute defined a C standard of its
own, adding some useful features and defining exact syntax for existing, but not well-
defined, features. Most compilers support both standards.

Before we get into any source code, I’d like to make an important point: The
source code in this book does not conform to the ANSI C standard. This is unfortunate,
because ANSI C contains several nice syntactic and type-checking facilities that en-
courage maintainable and readable programs. The reason that I did not use these
features is that several major corporations and universities that I know of firsthand
support only K&R C. In order to make my source code as portable and useful as possi-
ble, I tailored the code to the most reasonable lowest common denominator. I didn’t
enjoy doing this, as I’m a professional software developer as well as an author, and it
really goes against my grain. In fact, I’d rather have written all of the code in C++, but
that’s another story.

C COMPILERS

Until recently, a C compiler was a standard component in UNIX, especially UNIX
versions that came with source code. (How else would you modify the code and create
a new kernel?) Unfortunately, some vendors have chosen to “unroll” the C compilers
from their UNIX distributions and sell them separately. Depending on your needs, you
should check on this in any version of UNIX you are considering using. However, even
if your version of UNIX no longer ships a C compiler, you have an alternative, thanks
to the GNU Project: GNU C (gcc) and GNU C++ (g++) are freely available C and
C++ compilers, respectively, on most UNIX platforms at the GNU Compiler Collection
web site,

http://www.gnu.org/software/gcc/gcc.html

http://www.gnu.org/software/gcc/gcc.html

Single-Module Programs 389

1Most of the examples used in this chapter are available on-line. (See the preface for more information.)

SINGLE-MODULE PROGRAMS

Let’s examine a C program1 that performs a simple task: reversing a string. To begin
with, I’ll show you how to write, compile, link, and execute a program that solves the
problem using a single source file. Then I’ll explain why it’s better to split the program
up into several independent modules, and I’ll show you how to do that. Here’s a source
code listing of the first version of the reverse program:

1 /* REVERSE.C */
2
3 #include <stdio.h>
4
5 /* Function Prototype */
6 reverse ();
7
8 /**/
9
10 main ()
11
12 {
13 char str [100]; /* Buffer to hold reversed string */
14
15 reverse ("cat", str); /* Reverse the string "cat" */
16 printf ("reverse ("cat") = %s\n", str); /* Display result */
17 reverse ("noon", str); /* Reverse the string "noon" */
18 printf ("reverse ("noon") = %s\n", str); /* Display Result */
19 }
20
21 /**/
22
23 reverse (before, after)
24
25 char *before; /* A pointer to the source string */
26 char *after; /* A pointer to the reversed string */
27
28 {
29 int i;
30 int j;
31 int len;
32
33 len = strlen (before);
34
35 for (j = len - 1; i = 0; j >= 0; j--; i++) /* Reverse loop */
36 after[I] = before[j];

390 Chapter 12 C Programming Tools

37
38 after[len] = NULL; /* NULL terminate reversed string */
39 }

Compiling a C Program

To write and run the reverse program, I first created a subdirectory called “reverse”
inside my home directory and then created the file “reverse.c”, using the UNIX emacs
editor. I then compiled the C program with the cc utility.

To prepare an executable version of a single, self-contained program, follow cc
with the name of the source code file, which must end in a “.c” suffix. cc doesn’t pro-
duce any output when the compilation is successful. By default, cc creates an executable
file called “a.out” in the current directory.To run the program, type “a.out”.Any errors
that are encountered are sent to the standard error channel, which is connected by
default to your terminal’s screen.

Here’s what happened when I compiled my program:

$ mkdir reverse ...create subdirectory for source code.
$ cd reverse
$... I created the file reverse.c using emacs.
$ cc reverse.c ...compile source.
"reverse.c", line 16: syntax error at or near variable name "cat"
"reverse.c", line 18: syntax error at or near variable name "noon"
"reverse.c", line 35: syntax error at or near symbol ;
"reverse.c", line 35: syntax error at or near symbol)
$ _

As you can see, cc found a number of compile-time errors, listed together with their
causes as follows:

• The errors on lines 16 and 18 were due to an inappropriate use of double quotes
within double quotes.

• The errors on line 35 were due to an invalid use of a semicolon (;).

Since these errors were easy to correct, I copied the error-laden “reverse.c” file to a
file called “reverse.old1.c” and then removed the compile-time errors via emacs. I left
the original file in the directory so that I could see the evolution of my programming
attempts.

A Listing of the Corrected Reverse Program

Here is the second, corrected version of the reverse program, with the lines containing
the errors that I corrected in italics:

1 /* REVERSE.C */
2
3 #include <stdio.h>
4

Single-Module Programs 391

5 /* Function Prototype */
6 reverse ();
7
8 /**/
9
10 main ()
11
12 {
13 char str [100]; /* Buffer to hold reversed string */
14
15 reverse ("cat", str); /* Reverse the string "cat" */
16 printf ("reverse (\"cat\") = %s\n", str); /* Display */
17 reverse ("noon", str); /* Reverse the string "noon" */
18 printf ("reverse (\"noon\") = %s\n", str); /* Display */
19 }
20
21 /**/
22
23 reverse (before, after)
24
25 char *before; /* A pointer to the source string */
26 char *after; /* A pointer to the reversed string */
27
28 {
29 int i;
30 int j;
31 int len;
32
33 len = strlen (before);
34
35 for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */
36 after[i] = before[j];
37
38 after[len] = NULL; /* NULL terminate reversed string */
39 }

Running a C Program

After compiling the second version of “reverse.c”, I ran it by typing the name of the
executable file, “a.out”. As you can see, the answers were correct:

$ cc reverse.c ...compile source.
$ ls -l reverse.c a.out ...list file information.
-rwxr-xr-x 1 glass 24576 Jan5 16:16 a.out*
-rw-r--r-- 1 glass 439 Jan5 16:15 reverse.c
$ a.out ...run program.
reverse ("cat") = tac
reverse ("noon") = noon
$ _

392 Chapter 12 C Programming Tools

Overriding the Default Executable Name

The name of the default executable file, “a.out”, is rather cryptic, and an “a.out” file
produced by a subsequent compilation would overwrite the one that I just produced.
To avoid both problems, it’s best to use the -o option with cc, which allows you to specify
the name of the executable file that you wish to create:

$ cc reverse.c -o reverse ...call the executable "reverse".
$ ls -l reverse
-rwxr-xr-x 1 glass 24576 Jan 5 16:19 reverse*
$ reverse ...run the executable "reverse".
reverse ("cat") = tac
reverse ("noon") = noon
$ _

MULTIMODULE PROGRAMS

The trouble with the way that I built the reverse program is that the reverse function
cannot easily be used in other programs. For example, let’s say that I wanted to write a
function that returns 1 if a string is a palindrome and 0 otherwise. (A palindrome is a
string that reads the same forward and backward; for example,“noon” is a palindrome,
but “nono” is not.) I could use the reverse function to implement my palindrome func-
tion. One way to do this is to cut and paste reverse () into the palindrome program, but
this is a poor technique for at least three reasons:

• Performing a cut-and-paste operation is slow.
• If we came up with a better piece of code for performing a reverse operation,

we’d have to replace every copy of the old version with the new version, which is
a maintenance nightmare.

• Each copy of reverse () soaks up disk space.

As I’m sure you realize, there’s a better way to share functions.

Reusable Functions

A better strategy for sharing reverse () is to remove it from the reverse program,
compile it separately, and then link the resultant object module into whichever pro-
grams you wish to use it with. This technique avoids all three of the problems listed in
the previous section and allows the function to be used in many different programs.
Functions with this property are termed reusable.

Preparing a Reusable Function

To prepare a reusable function, create a module that contains the source code of the
function, together with a header file that contains the function’s prototype. Then
compile the source code module into an object module by using the -c option of cc.
An object module contains machine code, together with information, in the form of a

Multimodule Programs 393

symbol table, that allows the module to be combined with other object modules when
an executable file is being created. Here are the listings of the new “reverse.c” and
“reverse.h” files:

reverse.h

1 /* REVERSE.H */
2
3 reverse (); /* Declare but do not define this function */

reverse.c
1 /* REVERSE.C */
2
3 #include <stdio.h>
4 #include "reverse.h"
5
6 /**/
7
8 reverse (before, after)
9
10 char *before; /* A pointer to the original string */
11 char *after; /* A pointer to the reversed string */
12
13 {
14 int i;
15 int j;
16 int len;
17
18 len = strlen (before);
19
20 for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */
21 after[i] = before[j];
22
23 after[len] = NULL; /* NULL terminate reversed string */
24 }

Here’s a listing of a main program that uses reverse ():

main1.c

1 /* MAIN1.C */
2
3 #include <stdio.h>
4 #include "reverse.h" /* Contains the prototype of reverse () */
5
6 /**/
7
8 main ()
9

394 Chapter 12 C Programming Tools

10 {
11 char str [100];
12
13 reverse ("cat", str); /* Invoke external function */
14 printf ("reverse (\"cat\") = %s\n", str);
15 reverse ("noon", str); /* Invoke external function */
16 printf ("reverse (\"noon\") = %s\n", str);
17 }

Compiling and Linking Modules Separately

To compile each source code file separately, use the -c option of cc.This creates a separate
object module for each source code file, each with a “.o” suffix. The following com-
mands are illustrative:

$ cc -c reverse.c ...compile reverse.c to reverse.o.
$ cc -c main1.c ...compile main1.c to main1.o.
$ ls -l reverse.o main1.o
-rw-r--r-- 1 glass 311 Jan 5 18:24 main1.o
-rw-r--r-- 1 glass 181 Jan 5 18:08 reverse.o
$ _

Alternatively, you can list all of the source code files on one line:

$ cc -c reverse.c main1.c ...compile each .c file to .o file.
$ _

To link them all together into an executable called “main1”, list the names of all the
object modules after the cc command:

$ cc reverse.o main1.o -o main1 ...link object modules.
$ ls -l main1 ...examine the executable.
-rwxr-xr-x 1 glass 24576 Jan 5 18:25 main1*
$ main1 ...run the executable.
reverse ("cat") = tac
reverse ("noon") = noon
$ _

The Stand-Alone Loader: ld

When cc is used to link several object modules, it transparently invokes the UNIX
stand-alone loader, ld, to do the job.The loader is better known as the linker.Although
most C programmers never need to invoke ld directly, it’s wise to know a little bit
about it. Figure 12.1 describes the ld utility.

Multimodule Programs 395

If you link a C program manually, it’s important to specify the C run-time object
module, “/lib/crt0.o”, as the first object module, and to specify the standard C library,
“/lib/libc.a”, as a library module. Here’s an example:

$ ld -n /lib/crt0.o main1.o reverse.o -lc -o main1 ...manual link.
$ main1 ...run program.
reverse ("cat") = tac
reverse ("noon") = noon
$ _

Reusing the Reverse Function

Now that you’ve seen how the original reverse program may be built out of a couple of
modules, let’s use the reverse module again to build the palindrome program. Here are
the header and source code listing of the palindrome function:

palindrome.h

1 /* PALINDROME.H */
2
3 int palindrome (); /* Declare but do not define */

palindrome.c

1 /* PALINDROME.C */
2
3 #include "palindrome.h"
4 #include "reverse.h"

Utility: ld -n { -Lpath }* { objModule }* { library }* {-lx}* [-o outputFile]

ld links together the specified object and library modules to produce an executable
file. You may override the default name of the executable file, “a.out”, by using the
-o option. If you wish to create a stand-alone executable file (as opposed to a dy-
namic link module, which is beyond the scope of this book), then you should specify
the -n option.

When ld encounters an option of the form -lx, it searches the standard directo-
ries “/lib”,“/usr/lib”, and “/usr/local/lib” for a library with the name “libx.a”.To insert
the directory path into this search path, use the -Lpath option.

The ld command (even more than most other UNIX commands) varies wildly
from version to version. I strongly suggest that you consult the documentation for
your version of UNIX when using ld.

FIGURE 12.1

Description of the ld command.

396 Chapter 12 C Programming Tools

5 #include <string.h>
6
7 /**/
8
9 int palindrome (str)
10
11 char *str;
12
13 {
14 char reversedStr [100];
15 reverse (str, reversedStr); /* Reverse original */
16 return (strcmp (str, reversedStr) == 0); /* Compare the two */
17 }

Here’s the source code of the program “main2.c” that tests the palindrome function ():

1 /* MAIN2.C */
2
3 #include <stdio.h>
4 #include "palindrome.h"
5
6 /**/
7
8 main ()
9
10 {
11 printf ("palindrome (\"cat\") = %d\n", palindrome ("cat"));
12 printf ("palindrome (\"noon\") = %d\n", palindrome ("noon"));
13 }

The way to combine the “reverse”, “palindrome”, and “main2” modules is as we did
before; compile the object modules and then link them. We don’t have to recompile
“reverse.c”, as it hasn’t changed since the “reverse.o” object file was created.

$ cc -c palindrome.c ...compile palindrome.c to palindrome.o.
$ cc -c main2.c ...compile main2.c to main2.o.
$ cc reverse.o palindrome.o main2.o -o main2 ...link them all.
$ ls -l reverse.o palindrome.o main2.o main2
-rwxr-xr-x 1 glass 24576 Jan 5 19:09 main2*
-rw-r--r-- 1 glass 306 Jan 5 19:00 main2.o
-rw-r--r-- 1 glass 189 Jan 5 18:59 palindrome.o
-rw-r--r-- 1 glass 181 Jan 5 18:08 reverse.o
$ main2 ...run the program.
palindrome ("cat") = 0
palindrome ("noon") = 1
$ _

The UNIX File Dependency System: make 397

Maintaining Multimodule Programs

Several different issues must be considered in maintaining multimodule systems:

1. What ensures that object modules and executable files are kept up to date?
2. What stores the object modules?
3. What tracks each version of source and header files?

Fortunately, there are UNIX utilities that address each problem. Here is an answer to
each question:

A1. make, the UNIX file dependency system
A2. ar, the UNIX archive system

A3. sccs, the UNIX source code control system

THE UNIX FILE DEPENDENCY SYSTEM: make

You’ve now seen how several independent object modules may be linked into a single
executable file. You’ve also seen that the same object module may be linked to several
different executable files. Although multi-module programs are efficient in terms of
reusability and disk space, they must be carefully maintained. For example, let’s as-
sume that we change the source code of “reverse.c” so that it uses pointers instead of
array subscripts. This would result in a faster reverse function. In order to update the
two main program executable files, “main1” and “main2”, manually, we’d have to
perform the following steps, in order:

1. Recompile “reverse.c”.
2. Link “reverse.o” and “main1.o” to produce a new version of “main1”.
3. Link “reverse.o” and “main2.o” to produce a new version of “main2”.

Similarly, imagine a situation where a #define statement in a header file is changed.All
of the source code files that directly or indirectly include the file must be recompiled,
and then all of the executable modules that refer to the changed object modules must
be relinked.

Although this might not seem like a big deal, imagine a system with a thousand
object modules and 50 executable programs. Remembering all of the relationships
among the headers, source code files, object modules, and executable files would be a
nightmare. One way to avoid this problem is to use the UNIX make utility, which al-
lows you to create a makefile that contains a list of all interdependencies for each exe-
cutable file. Once such a file is created, re-creating the executable file is easy: You just
use the make command

$ make -f makefile

398 Chapter 12 C Programming Tools

Figure 12.2 provides synopsis of make.

Make Files

To use the make utility to maintain an executable file, you must first create a make file.
This file contains a list of all the interdependencies that exist between the files that are
used to create the executable file. A make file may have any name; I recommend that
you name it by taking the name of the executable file and adding the suffix “.make”.
Thus, the name of the make file for “main1” would be called “main1.make”. In its sim-
plest form, a make file contains rules of the form shown in Figure 12.3, where targetList
is a list of target files and dependencyList is a list of files that the files in targetList de-
pend on. commandList is a list of zero or more commands, separated by newlines, that
reconstruct the target files from the dependency files. Each line in commandList must
start with a tab character. Rules must be separated by at least one blank line.

For example, let’s think about the file interdependencies related to the executable
file “main1”. This file is built out of two object modules: “main1.o” and “reverse.o”. If
either file is changed, then “main1” may be reconstructed by linking the files, using the
cc utility. Therefore, one rule in “main1.make” would be

main1: main1.o reverse.o
cc main1.o reverse.o -o main1

This line of reasoning must now be carried forward to the two object files. The file
“main1.o” is built from two files: “main1.c” and “reverse.h”. (Remember that any file
which is either directly or indirectly #included in a source file is effectively part of that
file.) If either file is changed, then “main1.o” may be reconstructed by compiling
“main1.c”. Here, therefore, are the remaining rules in “main1.make”:

Utility: make [-f makefile]

make is a utility that updates a file on the basis of a series of dependency rules stored
in a special format, “make file”. The -f option allows you to specify your own make
filename; if none is specified, the name “makefile” is assumed.

FIGURE 12.2

Description of the make command.

targetList:dependencyList

commandList

FIGURE 12.3

make dependency specification.

The UNIX File Dependency System: make 399

main1.o: main1.c reverse.h
cc -c main1.c

reverse.o: reverse.c reverse.h
cc -c reverse.c

The Order of Make Rules

The order of make rules is important. The make utility creates a “tree” of interdepen-
dencies by initially examining the first rule. Each target file in the first rule is a root
node of a dependency tree, and each file in its dependency list is added as a leaf of each
root node. In our example, the initial tree would look like Figure 12.4.

The make utility then visits each rule associated with each file in the dependency
list and performs the same actions. In our example, the final tree would, therefore, look
like Figure 12.5.

Finally, the make utility works up the tree from the bottom leaf nodes to the root
node, looking to see if the last modification time of each child node is more recent than
the last modification time of its immediate parent node. For every case where this is so,
the associated parent’s rule is executed. If a file is not present, its rule is executed re-
gardless of the last modification times of its children. To illustrate the order in which
the nodes would be examined, I’ve numbered the diagram shown in Figure 12.6.

main1

main1.o reverse.o

FIGURE 12.4

Initial make dependency tree.

main1

main1.o reverse.o

main1.c reverse.h reverse.c reverse.h

FIGURE 12.5

Final make dependency tree.

main17

main1.o5 reverse.o6

main1.c1 reverse.h2 reverse.c3 reverse.h4

FIGURE 12.6

make ordering.

400 Chapter 12 C Programming Tools

Executing a Make

Once a make file has been created, you’re ready to run make to re-create the executable
file whose dependency information is specified by the make file. To show you how this
works, I deleted all of the object modules and the executable file to force every com-
mand list to execute. When I then performed the make, here’s what I saw:

$ make -f main1.make ...make executable up-to-date.
cc -c main1.c
cc -c reverse.c
cc main1.o reverse.o -o main1
$ _

Notice that every make rule was executed, in the exact order shown in Figure 12.6.
Since I created a second executable file when I made the palindrome program, I also
fashioned a second make file, called “main2.make”. Here it is:

main2: main2.o reverse.o palindrome.o
cc main2.o reverse.o palindrome.o -o main2

main2.o: main2.c palindrome.h
cc -c main2.c

reverse.o: reverse.c reverse.h
cc -c reverse.c

palindrome.o: palindrome.c palindrome.h reverse.h
cc -c palindrome.c

When I performed a make using this file, I saw the following output:

$ make -f main2.make ...make executable up-to-date.
cc -c main2.c
cc -c palindrome.c
cc main2.o reverse.o palindrome.o -o main2
$ _

Notice that “reverse.c” was not recompiled.This is because the previous make had al-
ready created an up-to-date object module, and make recompiles files only when
necessary.

Make Rules

The make files that I’ve shown you so far are larger than they need to be. This is be-
cause some of the make rules that I supplied are already known by the make utility in
a more general way. For example, note that several of the rules are of the form

xxx.o: reverse.c reverse.h
cc -c xxx.c

The UNIX File Dependency System: make 401

where xxx varies among rules. The make utility contains a predefined rule similar to

.c.o:
/bin/cc -c -O $<

This cryptic-looking rule tells the make utility how to create an object module from a C
source code file. The existence of this general rule allows me to leave off the C recom-
pilation rule. Here, therefore, is a sleeker version of “main2.make”:

main2: main2.o reverse.o palindrome.o
cc main2.o reverse.o palindrome.o -o main2

main2.o: main2.c palindrome.h
reverse.o: reverse.c reverse.h
palindrome.o: palindrome.c palindrome.h reverse.h

The make utility also includes other inference rules. For example, make “knows” that
the name of an object module and its corresponding source code file are usually relat-
ed. It uses this information to infer standard dependencies. For example, it deduces
that “main2.o” is dependent on “main2.c”, and thus you may leave this information off
the dependency list. Here is an even sleeker version of “main2.make”:

main2: main2.o reverse.o palindrome.o
cc main2.o reverse.o palindrome.o -o main2

main2.o: palindrome.h
reverse.o: reverse.h
palindrome.o: palindrome.h reverse.h

Writing Your Own Rules

Unfortunately, the method for writing your own rules, or even understanding the
ones that already exist, is beyond the scope of this book. For more information, con-
sult one of the sources listed under the heading “Other Make Facilities” later in the
chapter.

Touch

To confirm that the new version of the make file worked, I requested a make and
obtained the following output:

$ make -f main2.make
'main2' is up to date.
$ _

Obviously, since I’d already performed a successful make, another one wasn’t going to
trigger any rules! To force a make for testing purposes, I used a handy utility called
touch, which makes the last modification time of all the named files equal to the cur-
rent system time. Figure 12.7 gives a brief synopsis of touch.

402 Chapter 12 C Programming Tools

I touched the file “reverse.h”, which subsequently caused the recompilation of
several source files:

$ touch reverse.h ...fool make.
$ make -f main2.make
/bin/cc -c -O reverse.c
/bin/cc -c -O palindrome.c
cc main2.o reverse.o palindrome.o -o main2
$ _

Macros

The make utility supports primitive macros. If you specify a line of the form shown in
Figure 12.8 at the top of a make file, every occurrence of $(token) in the make file is re-
placed with replacementText. In addition to containing rules, the standard rules file
contains default definitions of macros such as CFLAGS, which are used by some of the
built-in rules. For example, the rule that tells the make utility how to update an object
file from a C source file looks like this:

.c.o:
/bin/cc -c $(CFLAGS) $<

The standard rules file contains a line of the form

CFLAGS = -O

If you wanted to recompile a suite of programs by using the -p option of cc, you would
override the default value of CFLAGS at the top of the make file and use the -p option
in the final call to cc in the “main2” rule, like this:

CFLAGS = -p
main2: main2.o reverse.o palindrome.o

Utility: touch -c { fileName }+

touch updates the last modification and access times of the named files to equal the
current time. By default, if a specified file doesn’t exist, it is created with zero size.To
prevent this, use the -c option.

FIGURE 12.7

Description of the touch command.

token = replacementText

FIGURE 12.8

A macro in make.

The UNIX Archive System: ar 403

cc -p main2.o reverse.o palindrome.o -o main2
main2.o: palindrome.h
reverse.o: reverse.h
palindrome.o: palindrome.h reverse.h

To recompile the suite of programs, I used the touch utility to force recompilation of all
the source files:

$ touch *.c ...force make to recompile everything.
$ make -f main2.make
/bin/cc -c -p main2.c
/bin/cc -c -p palindrome.c
/bin/cc -c -p reverse.c
cc -p main2.o reverse.o palindrome.o -o main2
$ _

Other Make Facilities

make is a rather complicated utility and includes provisions for handling libraries and
inference rules. Information on all but the library facilities is included in this book, and
many other books contain less information about make than this one, so I suggest that
you consult the UNIX man pages for more details.

THE UNIX ARCHIVE SYSTEM: ar

A medium-sized C project typically uses several hundred object modules. Specifying
that many object modules in a make file rule can get rather tedious, so I recommend
that you learn how to use the UNIX archive utility, ar, to organize and group your ob-
ject modules.An archive utility, sometimes known as a librarian, allows you to perform
the following tasks:

• creating a special archive format file ending in a “.a” suffix
• adding, removing, replacing, and appending any kind of file to an archive
• obtaining an archive’s table of contents

Figure 12.9 gives synopsis of ar.

Utility: ar key archiveName { fileName }*

ar allows you to create and manipulate archives. archiveName is the name of the
archive file that you wish to access, and it should end with a “.a” suffix. key may be
one of the following:

d deletes a file from an archive
q appends a file onto the end of an archive, even if it’s already present

FIGURE 12.9

Description of the ar command.

404 Chapter 12 C Programming Tools

When a set of object modules is stored in an archive file, it may be accessed from
the cc compiler and the ld loader simply by supplying the name of the archive file as an
argument. Any object modules that are needed from the archive file are automatically
linked as necessary. This greatly reduces the number of parameters these utilities re-
quire when linking large numbers of object modules.

The rest of this section gives examples of each ar option.

Creating an Archive

An archive is automatically created when the first file is added. Therefore, to see how
an archive is created, read the next section, “Adding a File.”

Adding a File

To add a file to (or replace a file in) a named archive, use the ar utility with the r option,
as shown in Figure 12.10. This option adds all of the specified files to the archive file
archiveName, replacing files if they already exist. If the archive file doesn’t exist, it is
automatically created. The name of the archive should have a “.a” suffix.

Appending a File

To append a file to a named archive, use the ar utility with the q option, as shown in
Figure 12.11.This option appends all of the specified files to the archive file archiveName,
regardless of whether they do or do not already exist. If the archive file doesn’t exist, it is
automatically created. The q option is handy if you know that the file isn’t already pre-
sent, as it enables ar to avoid searching through the archive.

r adds a file to an archive if it isn’t already there, or replaces the current ver-
sion if it is

t displays an archive’s table of contents to standard output
x copies a list of files from an archive into the current directory
v generates verbose output

FIGURE 12.9 (Continued)

ar r archiveName { fileName }+

FIGURE 12.10

Adding or replacing a file in an archive.

ar q archiveName { fileName }+

FIGURE 12.11

Appending a file to an archive.

The UNIX Archive System: ar 405

Obtaining a Table of Contents

To obtain a table of contents of an archive, use the ar utility with the t option, as shown
in Figure 12.12.

Deleting a File

To delete a list of files from an archive, use the ar utility with the d option, as shown in
Figure 12.13.

Extracting a File

To copy a list of files from an archive to the current directory, use the ar utility with the
x option, as shown in Figure 12.14. If you don’t specify a list of files, then all of the files
in the archive are copied.

Maintaining an Archive from the Command Line

The next example illustrates how an archive may be built and manipulated from the
command line, using the object modules built earlier in the chapter. Later, I’ll show
how a library can be maintained automatically from a make file.

First, I built an archive file called “string.a” to hold all of my string-related object
modules. Next, I added each module in turn, using the r option. Finally, I demonstrated
the various ar options. The commands are as follows:

$ cc -c reverse.c palindrome.c main2.c ...create object files.
$ ls *.o ...confirm.
main2.o palindrome.o reverse.o
$ ar r string.a reverse.o palindrome.o ...add to an archive.
ar: creating string.a
$ ar t string.a ...obtain a table of contents.

ar t archiveName

FIGURE 12.12

Listing the table of contents of an archive.

ar d archiveName { fileName }+

FIGURE 12.13

Deleting files from an archive.

ar x archiveName { fileName }+

FIGURE 12.14

Extracting a file from an archive.

406 Chapter 12 C Programming Tools

reverse.o
palindrome.o
$ cc main2.o string.a -o main2 ...link the object modules.
$ main2 ...execute the program.
palindrome ("cat") = 0
palindrome ("noon") = 1
$ ar d string.a reverse.o ...delete a module.
$ ar t string.a ...confirm deletion.
palindrome.o
$ ar r string.a reverse.o ...put it back again.
$ ar t string.a ...confirm addition.
palindrome.o
reverse.o
$ rm palindrome.o reverse.o ...delete originals.
$ ls *.o ...confirm.
main2.o
$ ar x string.a reverse.o ...copy them back again.
$ ls *.o ...confirm.
main2.oreverse.o
$ _

Maintaining an Archive by Using Make

Although an archive can be built and maintained from the command line, it’s much
better to use make. To refer to an object file inside an archive, place the name of the
object file inside parentheses, preceded by the name of the archive. The make utility
has built-in rules that take care of the archive operations automatically. Here is the up-
dated “main2.make” file that uses archives instead of plain object files:

main2: main2.o string.a(reverse.o) string.a(palindrome.o)
cc main2.o string.a -o main2

main2.o: palindrome.h
string.a(reverse.o): reverse.h
string.a(palindrome.o): palindrome.h reverse.h

Here is the output from a make performed with the use of the foregoing file:

$ rm *.o ...remove all object modules.
$ make -f main2.make ...perform a make.
cc -c main2.c
cc -c reverse.c
ar rv string.a reverse.o ...object module is saved.
a - reverse.o
ar: creating string.a
rm -f reverse.o ...original is removed.
cc -c palindrome.c
ar rv string.a palindrome.o
a - palindrome.o
rm -f palindrome.o
cc main2.o string.a -o main2 ...access archived object modules.
$ _

The UNIX Archive System: ar 407

Notice that the built-in make rules automatically removed the original object file once
it had been copied into the archive.

Ordering Archives

The built-in make rules do not maintain any particular order in an archive file. On most
systems, this is fine, since the cc and ld utilities are able to extract object modules and
resolve external references regardless of order. However, on some older systems, this is
unfortunately not the case. Instead, if an object module A contains a function that calls
a function in an object module B, then B must come before A in the link sequence. If A
and B are in the same library, then B must appear before A in the library. If your sys-
tem is one of these older types, then you’ll probably get the following error at the end
of the make shown in the previous example:

ld: Undefined symbol
_reverse

*** Error code 2
make: Fatal error: Command failed for target 'main2'

This cryptic error occurs because “reverse.o” contains a call to palindrome () in “palin-
drome.o”, which means that “reverse.o” should be after “palindrome.o” in the archive,
but it isn’t. To resolve the error, you must either reorder the modules in the archive,
using the lorder and tsort utilities, or use ranlib as described in the next section. In the
following example, I created a new ordered version of the old archive and then re-
named it to replace the original:

$ ar cr string2.a elorder string.a | tsort' ...order archive.
$ ar t string.a ...old order.
reverse.o
palindrome.o
$ ar t string2.a ...new order.
palindrome.o
reverse.o
$ mv string2.a string.a ...replace old archive.
$ make -f main2d.make ...try make again.
cc main2.o string.a -o main2
$ _

The make file then worked correctly.
For more information on lorder and tsort, use the man facility.

Creating a Table of Contents: ranlib

On older systems in which this ordering is a problem, you can help the linker to resolve
out-of-order object modules by adding a table of contents to each archive, using the
ranlib utility described in Figure 12.15. (If ranlib does not exist on your system, then
you don’t need to worry about ordering.)

408 Chapter 12 C Programming Tools

In the next example, the unresolved reference error was due to an out-of-order
sequence of object modules in the “string.a” archive. cc reminded me that I should
add a table of contents, so I followed its recommendation.As you can see, the link was
successful:

$ ar r string.a reverse.o palindrome.o ...this order causesproblems.
ar: creating string.a
$ cc main2.o string.a -o main2 ...compile fails.
ld: string.a: warning: archive has no table of contents; add one using
ranlib(1)
ld: Undefined symbol
_reverse

$ ranlib string.a ...add table of contents.
$ cc main2.o string.a -o main2 ...no problem.
$ main2 ...program runs fine.
palindrome ("cat") = 0
palindrome ("noon") = 1
$ _

Shared Libraries

Static libraries work just fine for many applications. However, as the speed of processors
has increased and the price of memory has come down, code has become more complex.
Thus, programs linked with large archive libraries now produce very large executable
files. (A small program that creates a single X window can be a megabyte when linked
with the required X libraries.)

To reduce the size of the object code you generated, you can link your program
with a shared library instead. A shared (or dynamic) library is associated with a com-
piled program, but its functions are loaded in dynamically as they are needed rather
than all at once at load time. The resulting object code is smaller because it does not
include the text of the library, as it does when linked with a static library.

The one disadvantage of using a shared library is that your object code will have
been written for a specific version of the library. If the code is changed, but no inter-
faces are modified, then your program will benefit from the newer library that works
better. However, if changes are made to library interfaces, then when your program
links with the newer version of the library at run time, problems may (and probably

Utility: ranlib { archive }+

ranlib adds a table of contents to each specified archive. (It does this by inserting an
entry called _.SYMDEF into the archive.)

FIGURE 12.15

Description of the ranlib command.

The UNIX Source Code Control System: SCCS 409

will) result. It is therefore important to be aware of changes in supporting libraries
when writing an application.

The ld command includes arguments that allow you to instruct it to build a
shared library (on systems that support such libraries), rather than a static library,
when it runs. These arguments vary in different versions of UNIX, and you should
check your documentation. The most common form is -shared. You can also instruct
ld to link with either static or dynamic libraries by using the -B argument (-Bstatic or
-Bdynamic). Depending on your C compiler, the cc command may have one of these
(or different) arguments to allow you to create a shared library at compile time.

THE UNIX SOURCE CODE CONTROL SYSTEM: SCCS

To maintain a large project properly, it’s important to be able to store, access, and
protect all of the versions of source code files. For example, if I decided to change re-
verse () to use pointers for efficiency reasons, it would be nice if I could easily go
back and see how the source file looked before the changes were made. Similarly, it’s
important to be able to “lock out” other users from altering a file while you’re ac-
tively modifying it. Here is an outline of how the UNIX source code control system
SCCS works:

• When you create the original version of a function, you convert it into an
“SCCS” format file using the admin utility. An SCCS format file is stored in a
special way and may not be edited or compiled in the usual manner.The file con-
tains information about the time and the user creating it. Future modifications
will contain information about the changes that have been made from the previ-
ous version.

• Whenever you wish to edit an SCCS format file, you must first “check out” the
latest version of the file, using the get utility. This creates a standard-format text
file that you may edit and compile. The get utility also allows you to obtain a pre-
vious version of a file.

• When the new version of the file is complete, you must return it to the SCCS file
by means of the delta utility. This command optimizes the storage of the sccs file
by saving only the differences between the old version and the new version. The
get utility does not allow anyone else to check out the file until you return it.

• The sact utility allows you to see the current editing activity on a particular SCCS
file.

SCCS also contains the utilities help, prs, comb, what, and unget. Before we investigate
the more advanced SCCS options, let’s look at a sample session. In so doing, however,
be warned that some systems vary in the way that SCCS works; I suggest that you con-
sult man to see if the SCCS examples in this text tally with your own system’s version
of SCCS. Note that I discuss SCCS because it comes with most versions of UNIX.
Other source code control software that may better suit your needs is available, both
free from the Internet [e.g., GNU’s Revision Control System (RCS)] and commercially
for a price.

410 Chapter 12 C Programming Tools

Creating an SCCS File

To create an SCCS file, use the admin utility, which works as shown in Figure 12.16. In
the following example, I created an SCCS version of the “reverse.c” source file:

$ ls -l reverse.c ...look at the original.
-rw-r--r-- 1 gglass 266 Jan 7 16:37 reverse.c
$ admin -ireverse.c s.reverse.c ...create an SCCS file.
No id keywords (cm7)
$ help cm7 ...get help on "cm7".
cm7: "No id keywords"
No SCCS identification keywords were substituted for. You may not have
any keywords in the file, in which case you can ignore this warning. If
this message came from delta then you just made a delta without any
keywords. If this message came from get then the last time you made a
delta you changed the lines on which they appeared. It's a little late
to be telling you that you messed up the last time you made a delta, but
this is the best we can do for now, and it's better than nothing.
This isn't an error, only a warning.
$ ls -l s.reverse.c ...look at the SCCS file.
-r--r--r-- 1 gglass 411 Jan 7 17:39 s.reverse.c
$ rm reverse.c ...remove the original.
$ _

Figure 12.17 gives a synopsis of the help utility.

Utility: admin -iname -fllist -dllist -ename -aname sccsfile

admin is an SCCS utility that allows you to create and manipulate an SCCS format
file. The -i option creates a file called sccsfile from the file name. sccsfile should have
a “.s” prefix.The -fl and -dl options respectively allow you to lock and unlock a set of
listed releases. The -a and -e options respectively allow you to add and subtract
named users from the list of users that are able to obtain an editable version of the
SCCS file. Once the SCCS file has been created, you may delete the original. If you
get an error from any SCCS-related utility, invoke the SCCS help utility, with the
code of the message as its argument.

FIGURE 12.16
Description of the SCCS admin command.

Utility: help { message }+

help is an SCCS utility that displays an explanation of the named key messages. Key
messages are generated by other SCCS utilities in cases of warnings or fatal errors.

FIGURE 12.17
Description of the SCCS help command.

The UNIX Source Code Control System: SCCS 411

Checking Out a File

To make a read-only copy of an SCCS file, use the get utility described in Figure 12.18.
In the following example, I checked out a read-only copy of the latest version of the
“reverse.c” file:

$ get s.reverse.c ...check out a read-only copy.
1.1 ...version number.
29 lines ...number of lines in file.
No id keywords (cm7)
$ ls -l reverse.c ...look at the copy.
-r--r--r-- 1 gglass 266 Jan 7 18:04 reverse.c
$ _

The get command displays the version number of the file that is being checked out; in
this case, it’s the default, version 1.1.A version number is of the form release.delta. Note
that Every time a change is saved to an SCCS file, the delta number is incremented au-
tomatically. The release number is changed only explicitly, with the use of the get utili-
ty. I’ll show you how to create a new release a little later.

When you obtain a read-only version of an SCCS file, it may not be edited, and
nothing is done to prevent anyone else from accessing the file.To check out an editable
version of an SCCS file, use the -e option.This creates a writable file and prevents mul-
tiple “gets”. The following commands illustrate the use of -e:

$ get -e s.reverse.c ...check out a writeable version.
1.1
new delta 1.2 ...editable version is 1.2.
29 lines
$ ls -l reverse.c ...look at it.
-rw-r-xr-x 1 gglass 266 Jan 7 18:05 reverse.c
$ get -e s.reverse.c ...version is locked.
ERROR [s.reverse.c]: writable ereverse.c' exists (ge4)
$ _

Utility: get -e -p -rrevision sccsfile

get is an SCCS utility that checks out a revision of a file from its SCCS counterpart.
If no version number is supplied, the latest version is checked out. If the -e option is
used, the file is modifiable and should be returned to the SCCS file by using delta;
otherwise, it is read only and should not be returned. The -p option causes a read-
only copy of the file to be displayed to standard output; no file is created.

FIGURE 12.18

Description of the SCCS get command.

412 Chapter 12 C Programming Tools

Monitoring SCCS Activity

The sact utility displays a list of the current activity related to a named file. It works as
shown in Figure 12.19. Here’s the output of sact from the previous example:

$ sact s.reverse.c ...monitor activity on "reverse.c".
1.1 1.2 gglass 98/01/07 18:05:11
$ _

Undoing a Checkout and Returning a File

If you perform a get and then wish that you hadn’t, you may undo the get by using the
unget utility, which works as described in Figure 12.20. In the following example, as-
sume that I had just performed a get on “reverse.c” and then changed my mind:

$ ls -l reverse.c ...look at checked out file.
-rw-r-xr-x 1 gglass 266 Jan 7 18:05 reverse.c
$ unget s.reverse.c ...return it.
1.2 ...version of returned file.
$ ls -l reverse.c ...original is gone.
reverse.c not found
$ sacts.reverse.c ...original activity is gone.
No outstanding deltas for: s.reverse.c
$ _

Utility: sact { sccsfile }+

sact is an SCCS utility that displays the current editing activity on the named
SCCS files. The output contains the version of the existing delta, the version of the
new delta, the identity of the user that checked out the file with get -e, and the
date and time that the get -e was executed.

FIGURE 12.19

Description of the SCCS sact command.

Utility: unget -rrevision -n { sccsfile }+

unget is an SCCS utility that reverses the effect of a previous get. unget restores the
SCCS file to its former state, deletes the non-SCCS version of the file, and unlocks
the file for other people to use. If several revisions are currently being edited, use the
-r option to specify which revision you wish to unget. By default, unget moves the
file back into the SCCS file.The -n option causes unget to copy the file instead, leav-
ing the checked-out version in place.

FIGURE 12.20

Description of the SCCS unget command.

The UNIX Source Code Control System: SCCS 413

Creating a New Delta

Let’s say that you check out an editable version of “reverse.c” and change it so that it
uses pointers instead of array subscripts. Here is a listing of the new version:

1 /* REVERSE.C */
2
3 #include <stdio.h>
4 #include "reverse.h"
5
6
7 reverse (before, after)
8
9 char *before;
10 char *after;
11
12 {
13 char* p;
14
15 p = before + strlen (before);
16
17 while (p-- != before)
18 *after++ = *p;
19
20 *after = NULL;
21 }

When the new version of the file is saved, you must return it to the SCCS file by using
the delta command, which works as shown in Figure 12.21. Here’s an example:

$ delta s.reverse.c ...return the modified checked out version.
comments? converted the function to use pointers ...comment.
No id keywords (cm7)
1.2 ...new version number.
5 inserted ...description of modifications.
7 deleted
16 unchanged
$ ls -l reverse.c ...the original was removed.
reverse.c not found
$ _

Utility: delta -rrevision -n { sccsfile }+

delta is an SCCS utility that returns a checked-out file back to the specified SCCS
file. The new version’s delta number is equal to the old delta number plus one. As a

FIGURE 12.21

Description of the SCCS delta command.

414 Chapter 12 C Programming Tools

Obtaining a File’s History

To get a listing of an SCCS file’s modification history, use the prs utility, which works as
shown in Figure 12.22. Here’s an example:

$ prs s.reverse.c ...display the history.
s.reverse.c:
D 1.2 98/01/07 18:45:47 gglass 2 1 00005/00007/00016
MRs:
COMMENTS:
converted the function to use pointers
D 1.1 98/01/07 18:28:53 gglass 1 0 00023/00000/00000
MRs:
COMMENTS:
date and time created 98/01/07 18:28:53 by gglass
$ _

bonus, delta describes the changes that you made to the file. delta prompts you for a
comment before returning the file. If the same user has two outstanding versions and
wishes to return one of them, the -r option must be used to specify the revision num-
ber. By default, a file is removed after it is returned. The -n option prevents this.

FIGURE 12.21 (Continued)

Utility: prs -rrevision { sccsfile }+

prs is an SCCS utility that displays the history associated with the named SCCS
files. By default, all of a file’s history is displayed.You may limit the output to a par-
ticular version by using the -r option. The numbers in the right-hand column of the
output refer to the number of lines inserted, deleted, and remaining unchanged,
respectively.

FIGURE 12.22

Description of the SCCS prs command.

SCCS Identification Keywords

Several special character sequences can be placed in a source file and processed by get
when read-only copies of a version are obtained. Figure 12.23 shows a few of the most
common sequences. It’s handy to place these sequences in a comment at the top of a
source file. The comment won’t affect your source code program and will be visible
when the file is read. The next section contains an example of how the special charac-
ter sequences are used.

The UNIX Source Code Control System: SCCS 415

Creating a New Release

To create a new release of an SCCS file, specify the new release number via the -r op-
tion of get.The new release number is based on the most recent version of the previous
release. In the following example, I created release 2 of the “reverse.c” file and insert-
ed the SCCS identification keywords described in the previous section:

$ get -e -r2 s.reverse.c ...check out version 2.
1.2 ...previous version number.
new delta 2.1 ...new version number.
21 lines
$ vi reverse.c ...edit the writeable copy.
... I added the following lines at the top of the program:
/*
Module: %M%
SCCS Id: %I%

Time: %D% %T%
*/
... and then saved the file.
$ delta s.reverse.c ...return the new version.
comments? added SCCS identification keywords
2.1
6 inserted
0 deleted
21 unchanged
$ get -p s.reverse.c ...display the file to standard output.
2.1
/* REVERSE.H */
/*
Module: reverse.c
SCCS Id: 2.1

Time: 98/01/07 22:32:38
*/
... rest of file
$ _

Sequence Replaced with

%M% the name of the source code file

%I% the release.delta.branch.sequence number

%D% the current date

%H% the current hour

%T% the current time

FIGURE 12.23

SCCS identification keyword sequences.

416 Chapter 12 C Programming Tools

Note that the keywords were replaced when I obtained a read-only copy of version 2
later in the example.

Checking Out Read-Only Copies of Previous Versions

To check out a version other than the latest, use the -r option of get to specify the ver-
sion number. For example, let’s say that I wanted to obtain a read-only copy of version
1.1 of “reverse.c”. Here’s how it’s done:

$ get -r1.1 s.reverse.c ...check out version 1.1.
1.1
23 lines
$ _

Checking Out Editable Copies of Previous Versions

If you want to obtain an editable copy of a previous version, use the -e or -r option of
get. Let’s say that I wanted to obtain an editable copy of version 1.1 of “reverse.c”. The
version of the editable copy cannot be 1.2, since that version already exists. Instead, get
creates a new “branch” off the 1.1 version numbered 1.1.1.1, as shown in Figure 12.24.
Deltas added to this branch are numbered 1.1.1.2, 1.1.1.3, etc. Here’s an example:

$ get -e -r1.1 s.reverse.c ...get a branch off version 1.1.
1.1
new delta 1.1.1.1
23 lines
$ _

Editing Multiple Versions

You may simultaneously edit multiple revisions of a file; you must, however, specify the
revision number of the file that you’re returning when you perform the delta.You must
also rename the copy when you obtain another copy, since all copies are given the same
name. In the following example, I obtained a copy of version 1.1 and version 2.1 for
editing and then saved them both:

$ get -e -r1.1 s.reverse.c ...edit a new version based on 1.1.
1.1
new delta 1.1.1.1
23 lines
$ mv reverse.c reverse2.c ...rename version 1.1.1.1.

1.1 1.2

1.1.1.1 1.1.1.2

Branch

FIGURE 12.24

Delta branching.

The UNIX Source Code Control System: SCCS 417

$ get -e -r2.1 s.reverse.c ...edit a new version based on 2.1.
2.1
new delta 2.2
27 lines
$ sact s.reverse.c ...view sccs activity.
1.1 1.1.1.1 gglass 98/01/07 22:42:26
2.1 2.2 gglass 98/01/07 22:42:49
$ delta s.reverse.c ...ambiguous return.
comments? try it
ERROR [s.reverse.c]: missing -r argument (de1)
$ delta -r2.1 s.reverse.c ...return modified version 2.1.
comments? try again
2.2
0 inserted
0 deleted
27 unchanged
$ mv reverse2.c reverse.c ...rename other version.
$ delta s.reverse.c ...unambiguous return.
comments? save it
No id keywords (cm7)
1.1.1.1
0 inserted
0 deleted
23 unchanged
$ sact s.reverse.c
No outstanding deltas for: s.reverse.c
$ _

Deleting Versions

You may remove a delta from an SCCS file, as long as it’s a leaf node on the SCCS ver-
sion tree. To do this, use the rmdel utility, which works as shown in Figure 12.25. In the
example shown in Figure 12.26, I wasn’t allowed to delete version 1.1, as it’s not a leaf
node, but I was allowed to delete version 1.1.1.1. The accompanying commands are as
follows:

$ rmdel -r1.1 s.reverse.c ...try removing non-leaf node 1.1.
ERROR [s.reverse.c]: not a 'leaf' delta (rc5)
$ rmdel -r1.1.1.1 s.reverse.c ...remove leaf node 1.1.1.1.
$ _

Utility: rmdel -rrevision sccsfile

rmdel removes the specified version from an SCCS file, as long as it’s a leaf node.

FIGURE 12.25

Description of the SCCS rmdel command.

418 Chapter 12 C Programming Tools

Compressing SCCS Files

You may compress an SCCS file and remove any unnecessary deltas by using the comb
utility, which works as shown in Figure 12.27. In the next example, assume that “s.re-
verse.c” contained several different versions. I compressed it into a smaller file con-
taining just the latest version:

$ comb s.reverse.c > comb.out ...generate script.
$ cat comb.out ...look at the script.
trap "rm -f COMB$$ comb$$ s.COMB$$; exit 2" 1 2 3 15
get -s -k -r2.3 -p s.reverse.c > COMB$$
...other lines go here.
rm comb$$
rm -f s.reverse.c
mv s.COMB$$ s.reverse.c
admin -dv s.reverse.c
$ chmod +x comb.out ...make the script executable.
$ comb.out ...execute the script.
$ prs s.reverse.c ...look at the history.
s.reverse.c:
D 2.3 98/01/08 15:35:53 gglass 1 0 00028/00000/00000
MRs:
COMMENTS:
This was COMBined
$ _

Utility: comb { sccsfile }+

comb compresses an SCCS file so that it contains only the latest version of the
source. Only the latest delta and the deltas that have branches remain. comb works
by generating a Bourne shell script that must subsequently be run to perform the ac-
tual compression. The script is sent to standard output, so it must be saved and then
executed.

FIGURE 12.27

Description of the SCCS comb command.

1.1 1.2

1.1.1.1

Branch

May not be deleted

FIGURE 12.26

Only leaf nodes may be deleted.

The UNIX Source Code Control System: SCCS 419

Restricting Access to SCCS Files

By default, a file may be checked out of an SCCS file by anyone. However, you may re-
strict access to one or more users (including groups of users) by using the -a and -e op-
tions to admin. The -a option may be followed by

• a user name, in which case the user is added to the list of users that may check out
the file, and

• a group number, in which case any user in the group may check out the file

If the value is preceded by !, then the specified user is denied check-out rights. If you’re
using the C shell, be sure to escape the ! to prevent accidental reference to the history
list. To remove a user from the list, use the -e option instead. Multiple -a and -e options
may occur on a single command line. In the following example, I denied my own access
rights and then restored them:

$ admin -a\!glass s.reverse.c ...remove rights of user "glass".
$ get -e s.reverse.c ...try to access.
2.3
ERROR [s.reverse.c]: not authorized to make deltas (co14)
$ admin -aglass s.reverse.c ...restore access.
$ get -e s.reverse.c ...no problem.
2.3
new delta 2.4
28 lines
$ unget s.reverse.c ...return file.
2.4
$ admin -atim s.reverse.c ...add tim to user list.
$ admin -eglass s.reverse.c ...deny "glass" access rights.
$ get -e s.reverse.c ...try to access.
2.3
ERROR [s.reverse.c]: not authorized to make deltas (co14)
$ admin -aglass s.reverse.c ...restore rights to "glass".
$ admin -a182 s.reverse.c ...give access to group 182.
$ _

Locking Releases

You may prevent either a single release or all releases from being edited by using
admin with the -fl and -dl options. To lock a particular release, follow -fl with the num-
ber of the release. To lock all releases, follow -fl with the letter “a”. To release a lock,
use the same rules, but with the -dl option. Here’s an example:

$ admin -fla s.reverse.c ...lock all releases.
$ get -e -r2.1 s.reverse.c ...try to access.
2.1
ERROR [s.reverse.c]: SCCS file locked against editing (co23)
$ admin -dla s.reverse.c ...release all locks.
$ get -e -r1.1 s.reverse.c ...no problem.

420 Chapter 12 C Programming Tools

1.1
new delta 1.1.1.1
21 lines
$ _

THE UNIX PROFILER: prof

It’s often handy to be able to see where a program is spending its time. For example, if
a greater-than-expected amount of time is being spent in a particular function, it might
be worth optimizing the function by hand for better performance. The prof utility al-
lows you to obtain a program’s profile. It works as shown in Figure 12.28. Here’s an
example of prof in action:

$ main2 ...execute the program.
palindrome ("cat") = 0 ...program output.
palindrome ("noon") = 1
$ ls -l mon.out ...list the monitor output.
-rw-r-xr-x 1 gglass 1472 Jan 8 17:19 mon.out
$ prof main2 mon.out ...profile the program.
%Time Seconds Cumsecs #Calls msec/call Name
42.9 0.05 0.05 rdpcs
42.9 0.05 0.10 2002 0.025 reverse
14.3 0.02 0.12 2002 0.008 palindrome
0.0 0.00 0.12 1 0. main

$ prof -l main2 ...order by name
%Time Seconds Cumsecs #Calls msec/call Name
0.0 0.00 0.05 1 0. main
14.3 0.02 0.07 2002 0.008 palindrome
42.9 0.05 0.05 rdpcs
42.9 0.05 0.12 2002 0.025 reverse
$ _

After a profile has been viewed, you may decide to do some hand tuning and then
obtain another profile.

Utility: prof -ln [executableFile [profileFile]]

prof is the standard UNIX profiler. It generates a table indicating the time spent
processing each function and the number of calls to the function in the executable
file executableFile, based on the performance trace stored in the file profileFile.
If profileFile is omitted, “mon.out” is assumed. If executableFile is omitted, “a.out”
is assumed. The executable file must have been compiled using the -p option of
cc, which instructs the compiler to generate special code that writes a “mon.out”
file when the program runs. The prof utility then looks at this output file after the

FIGURE 12.28

Description of the prof command.

Double-Checking Programs: lint 421

DOUBLE-CHECKING PROGRAMS: lint

C has a handy utility called lint, described in Figure 12.29, that checks your program
more thoroughly than cc does. If you’re building a program out of several source mod-
ules, it’s a good idea to specify them all on the same command line so that lint can
check interactions among modules. Here’s an example that demonstrates the differ-
ence between checking a single module and checking a number of modules:

$ lint reverse.c ...check "reverse.c".
reverse defined(reverse.c(12)), but never used
$ lint palindrome.c ...check "palindrome.c".
palindrome defined(palindrome.c(12)), but never used
reverse used(palindrome.c(14)), but not defined
$ lint main2.c
...check "main2.c".
main2.c(11): warning: main() returns random value to invocation
environment
printf returns value which is always ignored
palindrome used(main2.c(9)), but not defined
$ lint main2.c reverse.c palindrome.c
...check all modules together.
main2.c:
main2.c(11): warning: main() returns random value to invocation
environment
reverse.c:
palindrome.c:
Lint pass2:
printf returns value which is always ignored
$ _

program has terminated and displays the information contained therein. For infor-
mation on how to make a file using the -p option, refer to the “make” section of this
chapter. By default, the profile information is listed in descending order of time.The
-l option orders the information by name, and the -n option orders the information
by cumulative time.

FIGURE 12.28 (Continued)

Utility: lint { fileName }*

lint scans the specified source files and displays any potential errors that it finds.

FIGURE 12.29

Description of the lint command.

422 Chapter 12 C Programming Tools

THE UNIX DEBUGGER: dbx

The UNIX debugger, dbx, allows you to debug a program symbolically. Although it’s
not as good as most professional debuggers on the market, dbx comes as a handy stan-
dard utility in most versions of UNIX. It includes the following facilities:

• single stepping
• breakpoints
• editing from within the debugger
• accessing and modifying variables
• searching for functions
• tracing

Figure 12.30 gives a synopsis of dbx. To demonstrate dbx, let’s debug the following re-
cursive version of palindrome ():

1 /* PALINDROME.C */
2
3 #include "palindrome.h"
4 #include <string.h>
5
6
7 enum { FALSE, TRUE };
8
9
10 int palindrome (str)
11
12 char *str;
13
14 {
15 return (palinAux (str, 1, strlen (str)));
16 }
17
18 /**/
19
20 int palinAux (str, start, stop)

Utility: dbx executableFilename

dbx is a standard UNIX debugger. The named executable file is loaded into the de-
bugger and a user prompt is displayed. To obtain information on the various dbx
commands, enter help at the prompt.

FIGURE 12.30

Description of the dbx command.

The Unix Debugger: dbx 423

21
22 char *str;
23 int start;
24 int stop;
25
26 }
27 if (start >= stop)
28 return (TRUE);
29 else if (str[start] != str[stop])
30 return (FALSE);
31 else
32 return (palinAux (str, start + 1, stop - 1));
33 }

Preparing a Program for Debugging

To debug a program, it must have been compiled using the -g option to cc, which places
debugging information into the object module.

Entering the Debugger

Once a program has been compiled correctly, you may invoke dbx, with the name of
the executable file as the first argument. dbx presents you with a prompt. I recommend
that you enter help at the prompt to see a list of all the dbx commands:

$ dbx main2 ...enter the debugger.
dbx version sr10.3(4) of 7/6/90 17:52
reading symbolic information ...
Type 'help' for help.
(dbx) help ...obtain help.
run [args] - begin execution of the program
stop at <line> - suspend execution at the line
stop in <func> - suspend execution when <func> is called
stop if <cond> - suspend execution when <cond> is true
trace <line#> - trace execution of the line
trace <func> - trace calls to the function
trace <var> - trace changes to the variable
trace <exp> at <line#> - print <exp> when <line> is reached
status - print numbered list of traces and stops in

effect
delete <#> [<#> ...] - cancel trace or stop of each number given
cont - continue execution from where it stopped
step - execute one source line, stepping into functions
next - execute one source line, skipping over calls
return - continue until the current function returns
call <func>(<params>) - execute the given function call
print <exp> [, <exp> ...] - print the values of the expressions
where - print currently active procedures
whatis <name> - print the declaration of the name
assign <var> = <exp> - assign the program variable the value of <exp>

424 Chapter 12 C Programming Tools

dump <func> - print all variables in the active function
list [<line#>], <line#>> - list source lines
use <directory-list> - set the search path for source files
sh <command-line> - pass the command line to the shell
quit - exit dbx
(dbx) _

Running a Program

To run your program, enter the run command, which runs the program to completion:

(dbx) run ...run the program.
palindrome ("cat") = 0
palindrome ("noon") = 0
program exited
(dbx) _

Oops! The string “noon” is a palindrome, but my function thinks that it isn’t. Time to
delve into dbx.

Tracing a Program

To obtain a line-by-line trace, use the trace command. When any kind of trace is re-
quested, dbx returns an index number that can be used by the delete command to turn
off the trace. In continuing this example, I restarted the program from the beginning by
using the rerun command:

(dbx) trace ...request a trace.
[1] trace ...request is #1.
(dbx) rerun ...run the program from the start.
trace: 9 printf ("palindrome (\"cat\") = %d\n", palindrome
("cat"));
trace: 10 int palindrome (str)
trace: 15 return (palinAux (str, 1, strlen (str)));
trace: 20 int palinAux (str, start, stop)
trace: 27 if (start >= stop)
trace: 29 else if (str[start] != str[stop])
trace: 30 return (FALSE);
trace: 33 }
trace: 33 }
trace: 16 }
palindrome ("cat") = 0
trace: 10 printf ("palindrome (\"noon\") = %d\n", palindrome
("noon"));
trace: 10 int palindrome (str)
trace: 15 return (palinAux (str, 1, strlen (str)));
trace: 20 int palinAux (str, start, stop)
trace: 27 if (start >= stop)
trace: 29 else if (str[start] != str[stop])
trace: 30 return (FALSE);

The Unix Debugger: dbx 425

trace: 33 }
trace: 33 }
trace: 16 }
palindrome ("noon") = 0
trace: 11 }
trace: 11 }
program exited
(dbx) _

Tracing Variables and Function Calls

A trace may be placed on a variable’s value or a call to a particular function by adding
parameters to the trace command.The syntax for trace is shown in Figure 12.31. Here’s
the output from dbx after three new traces were added and then the program was
restarted:

(dbx) trace start in palinAux ...trace the variable called "start".
[2] trace start in palinAux
(dbx) trace stop in palinAux ...trace the variable called "stop".
[3] trace stop in palinAux
(dbx) trace palinAux ...trace the function "palinAux".
[4] trace palinAux
(dbx) rerun ...run the program from the start.
trace: 9 printf ("palindrome (\"cat\") = %d\n", palindrome
("cat"));
trace: 10 int palindrome (str)
trace: 15 return (palinAux (str, 1, strlen (str)));
trace: 20 int palinAux (str, start, stop)
calling palinAux(str = "cat", start = 1, stop = 3) from function
palindrome.palindrome
trace: 27 if (start >= stop)
initially (at line 27 in "/home/glass/reverse/palindrome.c"): start = 1
initially (at line 27 in "/home/glass/reverse/palindrome.c"): stop = 3
trace: 29 else if (str[start] != str[stop])
trace: 30 return (FALSE);
trace: 33 }
trace: 33 }
trace: 16 }
palindrome ("cat") = 0
trace: 10 printf ("palindrome (\"noon\") = %d\n", palindrome
("noon"));
trace: 10 int palindrome (str)
trace: 15 return (palinAux (str, 1, strlen (str)));
trace: 20 int palinAux (str, start, stop)
after line 20 in "/home/glass/reverse/palindrome.c": stop = 4
calling palinAux(str = "noon", start = 1, stop = 4) from function
palindrome.palindrome
trace: 27 if (start ,= stop)
trace: 29 else if (str[start] != str[stop])
trace: 30 return (FALSE);

426 Chapter 12 C Programming Tools

trace: 33 }
trace: 33 }
trace: 16 }
palindrome ("noon") = 0
trace: 11 }
trace: 11 }
program exited
(dbx) _

The Bug

By now, the nature of the bug is fairly clear: The values of start and stop are incorrect,
each being one greater than it should be. It’s a very common error to forget that C
array indices begin at zero rather than one. You may call up the editor specified by the
$EDITOR environment variable by using the edit command.This is handy for correct-
ing errors on the fly, although you must remember to recompile the program before
debugging it again. Here is the correct version of the palindrome () function:

int palindrome (str)
char *str;
{
return (palinAux (str, 0, strlen (str) - 1));
}

I’ll end this section with a brief discussion of some useful miscellaneous dbx commands
for setting breakpoints, single stepping, accessing variables, and listing portions of a
program.

Breakpoints

To make dbx stop when it encounters a particular function, use the stop command.This
allows you to run a program at full speed until the function that you wish to examine
more closely is executed. The following dbx commands are illustrative:

(dbx) stop in palinAux ...set breakpoint.
[7] stop in palinAux
(dbx) rerun ...run the program from the start.
trace: 9 printf ("palindrome (\"cat\") = %d\n", palindrome
("cat"));

trace variable in function

and to trace a call to a named function, use the syntax:

trace function

FIGURE 12.31

The trace command in dbx.

The Unix Debugger: dbx 427

trace: 10 int palindrome (str)
trace: 15 return (palinAux (str, 1, strlen (str)));
trace: 20 int palinAux (str, start, stop)
calling palinAux(str = "cat", start = 1, stop = 3) from function
palindrome.palindrome
[7] stopped in palinAux at line 27 in file
"/home/glass/reverse/palindrome.c"
27 if (start >= stop)

(dbx) _

Single Stepping

To step through a program one line at a time, use the step command. This command
causes dbx to redisplay its prompt immediately after each line of the program has been
executed.The command is useful for high-resolution interrogation of a function. In the
following example, I entered step after my program stopped at line 27:

(dbx) step ...execute line after #27 and then stop.
trace: 29 else if (str[start] != str[stop])
initially (at line 29 in "/home/glass/reverse/palindrome.c"):
start = 1
initially (at line 29 in "/home/glass/reverse/palindrome.c"):
stop = 3
stopped in palinAux at line 29 in file
"/home/glass/reverse/palindrome.c"
29 else if (str[start] != str[stop])

(dbx) _

Accessing Variables

To print the value of a particular variable at any time, use the print command. The
whatis command displays a variable’s declaration, and the which command tells you
where the variable is declared. The where command displays a complete stack trace,
and the whereis command tells you where a particular function is located. All of these
commands appear in the following example:

(dbx) print start ...display current value of start.
1
(dbx) whatis start ...get type information.
int start;
(dbx) which start ...find its location.
palindrome.palinAux.start
(dbx) where ...obtain stack trace.
palinAux(str = "cat", start = 1, stop = 3), line 29 in
"/home/glass/reverse/palindrome.c"
palindrome.palindrome(str = "cat"), line 15 in
"/home/glass/reverse/palindrome.c"
main(), line 9 in "/home/glass/reverse/main2.c"
unix_$main() at 0x3b4e7a14
_start(), line 137 in "//garcon/unix_src/lang/sgs/src/crt0/crt0.c"

428 Chapter 12 C Programming Tools

(dbx) whereis palinAux ...locate a function.
palindrome.palinAux
(dbx) whereis start ...locate a variable.
palindrome.palinAux.start
(dbx) _

Listing a Program

The list command allows you to list the first few lines of a function, and the / and ? com-
mands allow you to search forwards and backwards through text, respectively, as
shown in the following example:

(dbx) list palindrome ...list ten lines.
5
6
7 enum { FALSE, TRUE };
8
9
10 int palindrome (str)
11
12 char* str;
13
14 {
15 return (palinAux (str, 1, strlen (str)));

(dbx) list 10,20 ...list lines 10 thru 20.
10 int palindrome (str)
11
12 char* str;
13
14 }
15 return (palinAux (str, 1, strlen (str)));
16 {
17
18 /**/
19
20 int palinAux (str, start, stop)
21

(dbx) ?palinAux ...search backward for string "palinAux".
20 int palinAux (str, start, stop)

(dbx) /palinAux ...search forward for string "palinAux".
32 return (palinAux (str, start + 1, stop - 1));

(dbx) _

Leaving the Debugger

To quit dbx, use the quit command:

(dbx) quit ...leave the debugger.
$ _

You will now be back in your shell.

Chapter Review 429

Summary

In this section, I’ve presented a smattering of the commonly used dbx commands. Uti-
lized wisely, they can provide useful hints about the errors in your program. In my
own opinion, dbx is actually a pretty poor debugger compared with some of the pop-
ular PC debuggers, such as Borland’s Turbo Debugger, and advanced UNIX system
debuggers, such as ObjectWorks\C++. On the positive side, at least dbx is available on
most UNIX machines, which makes a rudimentary understanding of its operation
handy.

WHEN YOU’RE DONE: strip

The debugger and profile utilities both require you to compile a program using special
options, each of which adds code to the executable file. To remove this extra code after
debugging and profiling are finished, use the strip utility, which works as shown in
Figure 12.32. Here’s an example of how much space you can save:

$ ls -l main2 ...look at original file.
-rwxr-xr-x 1 gglass 5904 Jan 8 22:18 main2*
$ strip main2 ...strip out spurious information.
$ ls -l main2 ...look at stripped version.
-rwxr-xr-x 1 gglass 3373 Jan 8 23:17 main2*
$ _

CHAPTER REVIEW

Checklist

In this chapter, I described utilities that

• compile C programs
• manage the compilation of programs with many modules
• maintain archives
• maintain multiple versions of source code
• profile executable files
• debug executable files

Synopsis: strip { fileName }+

strip removes all of the symbol table, relocation, debugging, and profiling informa-
tion from the named files.

FIGURE 12.32

Description of the strip command.

430 Chapter 12 C Programming Tools

Quiz

1. Why is it helpful to have a history of your source code?
2. What’s the definition of a leaf node on an SCCS delta tree?
3. What’s the benefit of the -q option of ar?
4. Can the make utility use object modules stored in an archive file?
5. What does the term “reusable function” mean?
6. Why would you profile an executable file?
7. Describe briefly what the strip utility does.

Exercises

12.1 Create a shared library with a simple function that returns an integer value. Then
write a program to call the function and print its return value. After compiling
and running the program, make a change to the library function, rebuild the li-
brary, and run the program again (without recompiling the main program). What
happens if you rename the function in the shared library? [level: easy]

12.2 Compile “reverse.c” and “palindrome.c” and place them into an archive called
“string.a”. Write a main program in “prompt.c” that prompts the user for a string
and then outputs 1 if the string is a palindrome and 0 otherwise. Create a make
file that links “prompt.o” with the reverse () and palindrome () functions stored
in “string.a”. Use dbx to debug your code if necessary. [level: medium]

12.3 Try a modern debugger such as the Borland C++ source-level debugger. How
does it compare with dbx? [level: medium].

Projects

1. Write a paper that describes how you would use the utilities presented in this sec-
tion to help manage a 10-person computing team. [level: medium]

2. Replace the original version of palindrome () stored in “palindrome” with a
pointer-based version. Use SCCS to manage the source code changes and ar to
replace the old version in “string.a”. [level: medium].

431

C H A P T E R 1 3

Systems Programming

MOTIVATION

If you’re a C programmer and you wish to take advantage of the UNIX multitasking
and interprocess communication facilities, it’s essential that you have a good knowl-
edge of the UNIX system calls.

PREREQUISITES

In order to understand this chapter, you should have a good working knowledge of C.
For the Internet section of the chapter, it helps if you have read Chapters 9 and 10.

OBJECTIVES

In this chapter, I’ll explain and demonstrate a majority of the UNIX system calls, includ-
ing those which support I/O, process management, and interprocess communication.

PRESENTATION

The information is presented in the form of several sample programs, including a shell
designed for the Internet. Most sample code is available on-line. (See the preface for
more information.)

SYSTEM CALLS AND LIBRARY ROUTINES

The following system calls and library routines, listed in alphabetical order, are presented:

accept fchown inet_addr perror
alarm fcntl inet_ntoa pipe
bind fork ioctl read
bzero fstat kill setegid

432 Chapter 13 Systems Programming

chdir ftruncate lchown seteuid
chmod getdents link setgid
chown getegid listen setpgid
close geteuid lseek setuid
connect getgid lstat signal
dup gethostbyname memset socket
dup2 gethostname mknod stat
execl getpgid nice sync
execlp getpid ntohl truncate
execv getppid ntohs unlink
execvp getuid open wait
exit htonl pause write
fchmod htons

INTRODUCTION

In order to make use of services such as file creation, process duplication, and inter-
process communication, application programs must “talk” to the operating system.
They can do this via a collection of routines called system calls, which are the program-
mer’s functional interface to the UNIX kernel. System calls are just like library rou-
tines, except that they perform a subroutine call directly into the heart of UNIX.

UNIX system calls can be loosely grouped into the following three main categories:

• file management
• process management
• error handling

Interprocess communication (IPC) is, in fact, a subset of file management, since UNIX
treats IPC mechanisms as special files. Figure 13.1 shows a diagram that illustrates the

Files

open close read write lseek unlink chown dup2 Special

Sockets getdents

Internet sockets

Directory

fcntl fstat ftruncate truncate

mknod

stat sync dup link

ioctl pipe

connect

htonshtonlgethostnamegethostbyname inet_addr inet_ntoa

bindaccept listen socke

FIGURE 13.1

File management system call hierarchy.

Introduction 433

file management system call hierarchy. The process management system call hierarchy
includes routines for duplicating, differentiating, and terminating processes, as shown in
Figure 13.2. The only system call that supports error handling is perror (), which I’ll
put in a hierarchy just to be consistent. This hierarchy is shown in Figure 13.3. In what

follows, we cover the system calls shown in these hierarchy diagrams in the following
order:

• Error handling. I start the chapter with a description of perror ().
• Regular file management. This includes information on how to create, open,

close, read, and write regular files. We’ll also see a short overview of STREAMS.
• Process management. Relevant here are how to duplicate, differentiate, suspend,

and terminate processes. Multithreaded processes are discussed briefly.
• Signals. Although the signal facility could be considered a subtopic of either

process management or interprocess communication, it’s a significant enough
topic to warrant a section of its own.

• IPC. Interprocess communication takes place via pipes (both unnamed and
named) and sockets (including information about Internet sockets). Brief
overviews of two newer IPC mechanisms found in some versions of UNIX—
shared memory and semaphores—are presented.

The chapter ends with a source code listing and a discussion of a complete Internet shell,
which is a shell that supports piping and redirection to other Internet shells on remote
hosts.The Internet shell program uses most of the facilities described in this chapter.

Process management

getgid getrgid getuid getruid

setgid getpid getppid setuid

Signalsnice chdir wait exitexecfork

alarm signal kill pause

FIGURE 13.2

Process management system call hierarchy.

Error handling

perror

FIGURE 13.3

Error handling hierarchy.

434 Chapter 13 Systems Programming

ERROR HANDLING: perror ()

Most system calls are capable of failing in some way. For example, the open () system
call will fail if you try to open a nonexistent file for reading. By convention, all system
calls return if an error occurs. However, this doesn’t tell you much about why the
error occurred; the open () system call can fail for one of several different reasons. If
you want to deal with system call errors in a systematic way, you must know about the
following two things:

• errno, a global variable that holds the numeric code of the last system call error
• perror (), a subroutine that describes system call errors

Every process contains a global variable called errno, which is originally set to zero
when the process is created. When a system call error occurs, errno is set to the numer-
ic code associated with the cause of the error. For example, if you try to open a file that
doesn’t exist for reading, errno is set to 2. The file “/usr/include/sys/errno.h” contains a
list of the predefined error codes. Here’s a snippet of this file:

#define EPERM 1 /* Not owner */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */

A successful system call never affects the current value of errno, and an unsuccessful
system call always overwrites the current value of errno. To access errno from your
program, include <errno.h>. The perror () subroutine converts the current value of
errno into an English description and works as shown in Figure 13.4. Your program

-1

should check system calls for a return value of and then deal with the situation im-
mediately. One of the first things to do, especially during debugging, is to call perror ()
for a description of the error.

In the following example, I forced a couple of system call errors to demonstrate
perror () and then demonstrated that errno retained the last system call error code
even after a successful call was made: The only way to reset errno is to manually assign
it to zero.

$ cat showErrno.c
#include <stdio.h>

-1

Library Routine: void perror (char* str)

perror () displays the string str, followed by a colon, followed by a description of the
last system call error. If there is no error to report, perror () displays the string
“Error 0.” Actually, perror () isn’t a system call—it’s a standard C library routine.

FIGURE 13.4

Description of the perror () library routine.

Regular File Management 435

#include <sys/file.h>
#include <errno.h>
main ()
{
int fd;
/* Open a non-existent file to cause an error */
fd = open ("nonexist.txt", O_RDONLY);
if (fd == -1) /* fd == -1 =, an error occurred */
{
printf ("errno = %d\n", errno);
perror ("main");
}

fd = open ("/", O_WRONLY); /* Force a different error */
if (fd == -1)
{
printf ("errno = %d\n", errno);
perror ("main");
}

/* Execute a successful system call */
fd = open ("nonexist.txt", O_RDONLY | O_CREAT, 0644);
printf ("errno = %d\n", errno); /* Display after successful call */
perror ("main");
errno = 0; /* Manually reset error variable */
perror ("main");
}

Don’t worry about how open () works; I’ll describe it later in the chapter. Here’s the
output from the program:

$ showErrno ...run the program.
errno = 2
main: No such file or directory
errno = 21 ...even after a successful call
main: Is a directory
errno = 21
main: Is a directory
main: Error 0
$ _

REGULAR FILE MANAGEMENT

My description of file management system calls is split up into four main subsections:

• A primer that describes the main concepts behind UNIX files and file descriptors.
• A description of the basic file management system calls, using a sample program

called “reverse” that reverses the lines of a file.
• An explanation of a few advanced system calls, using a sample program called

“monitor,” which periodically scans directories and displays the names of files
within them that have changed since the last scan.

436 Chapter 13 Systems Programming

• A description of the remaining file management system calls, using some miscel-
laneous snippets of source code.

A File Management Primer

The file management system calls allow you to manipulate the full collection of regu-
lar, directory, and special files, including the following:

• disk-based files
• terminals
• printers
• interprocess communication facilities, such as pipes and sockets

In most cases, open () is used to initially access or create a file. If open () succeeds, it re-
turns a small integer called a file descriptor that is used in subsequent I/O operations
on that file. If open () fails, it returns Here’s a snippet of code that illustrates a typ-
ical sequence of events:

int fd; /* File descriptor */
...
fd = open (fileName, ...); /* Open file, return file descriptor */
if (fd == -1) { /* deal with error condition */ }
...
fcntl (fd, ...); /* Set some I/O flags if necessary */
...
read (fd, ...); /* Read from file */
...
write (fd, ...); /* Write to file */
...
lseek (fd, ...); /* Seek within file*/
...
close (fd); /* Close the file, freeing file descriptor */

When a process no longer needs to access an open file, it should close it, using the
close () system call. All of a process’ open files are automatically closed when the
process terminates. Although this means that you may often omit an explicit call to
close (), it’s better programming practice to close your files.

File descriptors are numbered sequentially, starting from zero. By convention, the
first three file descriptor values have a special meaning, as shown in Figure 13.5. For

-1.

Value Meaning

0 standard input (stdin)

1 standard output (stdout)

2 standard error (stderr)

FIGURE 13.5

File descriptor values for standard I/O channels.

Regular File Management 437

example, the printf () library function always sends its output by means of file descrip-
tor 1, and scanf () always reads its input via file descriptor 0. When a reference to a file
is closed, the file descriptor is freed and may be reassigned by a subsequent open ().
Most I/O system calls require a file descriptor as their first argument so that they know
which file to operate on.

A single file may be opened several times and may thus have several file descrip-
tors associated with it, as shown in Figure 13.6. Each file descriptor has its own private

set of properties, such as the following, that have nothing to do with the file with which
the descriptor is associated:

• A file pointer that records the offset in the file it is reading or writing.When a file
descriptor is created, its file pointer is positioned at offset 0 in the file (the first
character) by default. As the process reads or writes, the file pointer is updated
accordingly. For example, if a process opened a file and then read 10 bytes from
the file, the file pointer would end up positioned at offset 10. If the process then
wrote 20 bytes, the bytes at offset 10..29 in the file would be overwritten, and the
file pointer would end up positioned at offset 30.

• A flag that indicates whether the descriptor should automatically be closed if the
process execs. [exec () is described later in the chapter.]

• A flag that indicates whether all of the output to the file should be appended to
the end of the file.

In addition to these properties, the following ones are meaningful only if the file is a
special file such as a pipe or a socket:

• A flag that indicates whether a process should block on input from the file if the
file doesn’t currently contain any input.

• A number that indicates a process ID or process group that should be sent a
SIGIO signal if input becomes available on the file. (Signals and process groups
are discussed later in the chapter.)

The system calls open () and fcntl () allow you to manipulate these flags and are de-
scribed later.

File

fd1

fd2

fd3

FIGURE 13.6

Many file descriptors, one file.

438 Chapter 13 Systems Programming

First Example: reverse

As a first example, I’ll describe the most basic I/O system calls. Figure 13.7 shows a list
of them, together with brief descriptions of their functions.To illustrate the use of these
system calls, I’ll use a small utility program called “reverse.c”. As well as being a good
vehicle for my presentation, it doubles as a nice example of how to write a UNIX utili-
ty. Figure 13.8 provides a description of reverse, an example of which is the following
commands:

$ cc reverse.c -o reverse ...compile the program.
$ cat test ...list the test file.
Christmas is coming,
The days that grow shorter,
Remind me of seasons I knew in the past.
$ reverse test ...reverse the file.
Remind me of seasons I knew in the past.
The days that grow shorter,
Christmas is coming,
$ reverse -c test ...reverse the lines too.
.tsap eht ni wenk I snosaes fo em dnimeR
,retrohs worg taht syad ehT

Name Function

open opens/creates a file

read reads bytes from a file into a buffer

write writes bytes from a buffer to a file

lseek moves to a particular offset in a file

close closes a file

unlink removes a file

FIGURE 13.7

UNIX system calls for basic I/O operations.

Utility: reverse -c [fileName]

reverse reverses the lines of its input and displays them to standard output. If no file
name is specified, reverse reverses its standard input. When the -c option is used,
reverse also reverses the characters in each line.

FIGURE 13.8

Description of the reverse program.

Regular File Management 439

,gnimoc si samtsirhC
$ cat test | reverse ...pipe output to "reverse".
Remind me of seasons I knew in the past.
The days that grow shorter,
Christmas is coming,
$ _

How reverse Works

The reverse utility works by performing two passes over its input. During the first pass,
it notes the starting offset of each line in the file and stores this information in an array.
During the second pass, it jumps to the start of each line in reverse order, copying it
from the original input file to its standard output.

If no file name is specified on the command line, reverse reads from its standard
input during the first pass and copies it into a temporary file for the second pass. When
the program is finished, the temporary file is removed.

Figure 13.9 shows an overview of the program flow, together with a list of the
functions that are associated with each action and a list of the system calls used by each
step. What follows is a complete listing of “reverse.c,” the source code of reverse. Skim
through the code and then read the description of the system calls that follow.The code
is also available on-line. (See the preface for more information.)

Step Action Functions System calls

1 Parse command line. parseCommandLine, open
processOptions

2 If reading from standard input, pass1 open
create temporary file to store input;
otherwise open input file for reading.

3 Read from file in chunks, storing the pass1, trackLines read, write
starting offset of each line in an array.
If reading from standard input, copy
each chunk to the temporary file.

4 Read the input file again, this time pass2, processLine, lseek
backwards, copying each line to reverseLine
standard output. Reverse the line if
the -c option was chosen.

5 Close the file. Delete it if it is a pass2 close
temporary file.

FIGURE 13.9

Description of algorithm used in reverse.c.

440 Chapter 13 Systems Programming

reverse.c: Listing

1 #include <fcntl.h> /* For file mode definitions */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5
6 /* Enumerator */
7 enum { FALSE, TRUE }; /* Standard false and true values */
8 enum { STDIN, STDOUT, STDERR }; /* Standard I/O channel indices */
9
10
11 /* #define Statements */
12 #define BUFFER_SIZE 4096 /* Copy buffer size */
13 #define NAME_SIZE 12
14 #define MAX_LINES 100000 /* Max lines in file */
15
16
17 /* Globals */
18 char *fileName = NULL; /* Points to file name */
19 char tmpName [NAME_SIZE];
20 int charOption = FALSE; /* Set to true if -c option is used */
21 int standardInput = FALSE; /* Set to true if reading stdin */
22 int lineCount = 0; /* Total number of lines in input */
23 int lineStart [MAX_LINES]; /* Store offsets of each line */
24 int fileOffset = 0; /* Current position in input */
25 int fd; /* File descriptor of input */
26
27 /**/
28
29 main (argc, argv)
30
31 int argc;
32 char* argv [];
33
34 {
35 parseCommandLine (argc,argv); /* Parse command line */
36 pass1 (); /* Perform first pass through input */
37 pass2 (); /* Perform second pass through input */
38 return (/* EXITSUCCESS */ 0); /* Done */
39 }
40
41 /**/
42
43 parseCommandLine (argc, argv)
44
45 int argc;
46 char* argv [];
47
48 /* Parse command line arguments */
49

Regular File Management 441

50 {
51 int i;
52
53 for (i= 1; i < argc; i++)
54 {
55 if(argv[i][0] == '-')
56 processOptions (argv[i]);
57 else if (fileName == NULL)
58 fileName= argv[i];
59 else
60 usageError (); /* An error occurred */
61 }
62
63 standardInput = (fileName == NULL);
64 }
65
66 /**/
67
68 processOptions (str)
69
70 char* str;
71
72 /* Parse options */
73
74 {
75 int j;
76
77 for (j= 1; str[j] != NULL; j++)
78 {
79 switch(str[j]) /* Switch on command line flag */
80 {
81 case'c':
82 charOption = TRUE;
83 break;
84
85 default:
86 usageError ();
87 break;
88 }
89 }
90 }
91
92 /**/
93
94 usageError ()
95
96 {
97 fprintf (stderr, "Usage: reverse -c [filename]\n");
98 exit (/* EXITFAILURE */ 1);
99 }
100

442 Chapter 13 Systems Programming

101 /**/
102
103 pass1 ()
104
105 /* Perform first scan through file */
106
107 {
108 int tmpfd, charsRead, charsWritten;
109 char buffer [BUFFER_SIZE];
110
111 if (standardInput) /* Read from standard input */
112 {
113 fd = STDIN;
114 sprintf (tmpName, ".rev.%d",getpid ()); /* Random name */
115 /* Create temporary file to store copy of input */
116 tmpfd = open (tmpName, O_CREAT | O_RDWR, 0600);
117 if (tmpfd == -1) fatalError ();
118 }
119 else /* Open named file for reading */
120 {
121 fd = open (fileName, O_RDONLY);
122 if (fd == -1) fatalError ();
123 }
124
125 lineStart[0] = 0; /* Offset of first line */
126
127 while (TRUE) /* Read all input */
128 {
129 /* Fill buffer */
130 charsRead = read (fd, buffer, BUFFER_SIZE);
131 if (charsRead == 0) break; /* EOF */
132 if (charsRead == -1) fatalError (); /* Error */
133 trackLines (buffer, charsRead); /* Process line */
134 /* Copy line to temporary file if reading from stdin */
135 if (standardInput)
136 {
137 charsWritten = write (tmpfd, buffer, charsRead);
138 if(charsWritten != charsRead) fatalError ();
139 }
140 }
141
142 /* Store offset of trailing line, if present */
143 lineStart[lineCount + 1] = fileOffset;
144
145 /* If reading from standard input, prepare fd for pass2 */
146 if (standardInput) fd = tmpfd;
147 }
148
149 /**/
150

Regular File Management 443

151 trackLines (buffer, charsRead)
152
153 char* buffer;
154 int charsRead;
155
156 /* Store offsets of each line start in buffer */
157
158 {
159 int i;
160
161 for (i = 0; i < charsRead; i++)
162 {
163 ++fileOffset; /* Update current file position */
164 if (buffer[i] == '\n') lineStart[++lineCount] = fileOffset;
165 }
166 }
167
168 /**/
169
170 int pass2 ()
171
172 /* Scan input file again, displaying lines in reverse order */
173
174 {
175 int i;
176
177 for (i = lineCount - 1; i >= 0; i--)
178 processLine (i);
179
180 close (fd); /* Close input file */
181 if (standardInput) unlink (tmpName); /* Remove temp file */
182 }
183
184 /**/
185
186 processLine (i)
187
188 int i;
189
190 /* Read a line and display it */
191
192 {
193 int charsRead;
194 char buffer [BUFFER_SIZE];
195
196 lseek (fd, lineStart[i], SEEK_SET); /* Find the line and read it
*/
197 charsRead = read (fd, buffer, lineStart[i+1] - lineStart[i]);
198 /* Reverse line if -c option was selected */
199 if (charOption) reverseLine (buffer, charsRead);

444 Chapter 13 Systems Programming

200 write (1, buffer, charsRead); /* Write it to standard output */
201 }
202
203 /**/
204
205 reverseLine (buffer, size)
206
207 char* buffer;
208 int size;
209
210 /* Reverse all the characters in the buffer */
211
212 {
213 int start = 0, end = size - 1;
214 char tmp;
215
216 if (buffer[end] == '\n') --end; /* Leave trailing newline */
217
218 /* Swap characters in a pairwise fashion */
219 while (start < end)
220 {
221 tmp = buffer[start];
222 buffer[start] = buffer[end];
223 buffer[end] = tmp;
224 ++start; /* Increment start index */
225 --end; /* Decrement end index */
226 }
227 }
228
229 /**/
230
231 fatalError ()
232
233 {
234 perror ("reverse: "); /* Describe error */
235 exit (1);
236 }

Opening a File: open ()

The reverse utility begins by executing parseCommandLine () [line 43], which sets var-
ious flags, depending on which options are chosen. If a filename is specified, the vari-
able fileName is set to point to the name and standardInput is set to FALSE;
otherwise, fileName is set to NULL and standardInput is set to TRUE. Next, pass1 ()
[line 103] is executed. Pass1 () performs one of the following actions:

• If reverse is reading from standard input, a temporary file is created with read
and write permissions for the owner and no permissions for anyone else (octal
mode 600). The file is opened in read/write mode and is used to store a copy of
the standard input for use during pass 2. During pass 1, the input is taken from
standard input, so the file descriptor fd is set to STDIN, defined to be 0 at the top
of the program. Recall that standard input is always file descriptor zero.

Regular File Management 445

• If reverse is reading from a named file, the file is opened in read-only mode so
that its contents may be read during pass 1, using the file descriptor fd.

Each action uses the open () system call; the first action uses it to create a file, the sec-
ond to access an existing file. The open () system call is described in Figure 13.10.

System Call: int open (char* fileName, int mode [, int permissions])

open () allows you to open or create a file for reading or writing. fileName is an ab-
solute or relative pathname and mode is a bitwise OR of a read/write flag, with or
without some miscellaneous flags. permissions is a number that encodes the value of
the file’s permission flags and should be supplied only when a file is being created. It
is usually written using the octal encoding scheme described in Chapter 2. The
permissions value is affected by the process’ umask value, described in Chapter 4.
The values of the predefined read/write and miscellaneous flags are defined in
“/usr/include/fcntl.h”. The read/write flags are as follows:

FLAG MEANING

O_RDONLY Open for read only.

O_WRONLY Open for write only.

O_RDWR Open for read and write.

The miscellaneous flags are as follows:

FLAG MEANING

O_APPEND Position the file pointer at the end of the file
before each write ().

O_CREAT If the file doesn’t exist, create it and set the
owner ID to the process’ effective UID. The
umask value is used when determining the
initial permission flag settings.

O_EXCL If O_CREAT is set and the file exists, then
open () fails.

O_NONBLOCK This setting works only for named pipes. If set,
(Called O_NDELAY an open for read only will return immediately,
on some systems) regardless of whether the write end is open,

and an open for write only will fail if the read
end isn’t open. If clear, an open for read only
or write only will block until the other end is
also open.

O_TRUNC If the file exists, it is truncated to length zero.

open () returns a nonnegative file descriptor if successful; otherwise, it returns –1.

FIGURE 13.10

Description of the open () system call.

446 Chapter 13 Systems Programming

Creating a File

To create a file, use the O_CREAT flag as part of the mode flags, and supply the initial
file permission flag settings as an octal value. For example, lines 114–117 create a tem-
porary file with read and write permission for the owner and then open the file for
reading and writing:

114 sprintf (tmpName, ".rev.%d", getpid ()); /* Random name */
115 /* Create temporary file to store copy of input */
116 tmpfd = open (tmpName, O_CREAT | O_RDWR, 0600);
117 if (tmpfd == -1) fatalError ();

The getpid () function is a system call that returns the process’ ID (PID) number,
which is guaranteed to be unique. This is a handy way to generate unique temporary
file names. [For more details on getpid (), see the “Process Management” section of the
chapter.] Note that I chose the name of the temporary file to begin with a period so
that it doesn’t show up in an ls listing. Files that begin with a period are sometimes
known as hidden files.

Opening an Existing File

To open an existing file, specify the mode flags only. Lines 121–122 open a named file
for read only:

121 fd = open (fileName, O_RDONLY);
122 if (fd == -1) fatalError ();

Other Open Flags

The other more complicated flag settings for open (), such as O_NONBLOCK, are
intended for use with the pipes, sockets, and STREAMS, all described later in the
chapter. Right now, the O_CREAT flag is probably the only miscellaneous flag that
you’ll need.

Reading From a File: read ()

Once reverse has initialized the file descriptor fd for input, it reads chunks of input and
processes them until the end of the file is reached. To read bytes from a file, reverse
uses the read () system call, which works as shown in Figure 13.11. The read () system
call performs low-level input and has none of the formatting capabilities of scanf ().
The benefit of read () is that it bypasses the additional layer of buffering supplied by
the C library functions and is therefore very fast.Although I could have read one char-
acter of input at a time, that would have resulted in a large number of system calls, thus
slowing down the execution of my program considerably. Instead, I used read () to read
up to BUFFER_SIZE characters at a time. BUFFER_SIZE was chosen to be a multi-
ple of the disk block size, for efficient copying. Lines 130–132 perform the read and test
the return result:

Regular File Management 447

130 charsRead = read (fd, buffer, BUFFER_SIZE);
131 if (charsRead == 0) break; /* EOF */
132 if (charsRead == -1) fatalError (); /* Error */

System Call: ssize_t read (int fd, void* buf, size_t count)

Note: this synopsis describes how read () operates when reading a regular file. For in-
formation on reading from special files, see later sections of the chapter.

read () copies count bytes from the file referenced by the file descriptor fd into
the buffer buf. The bytes are read starting at the current file position, which is then
updated accordingly.

read () copies as many bytes from the file as it can, up to the number specified
by count, and returns the number of bytes actually copied. If a read () is attempted
after the last byte has already been read, it returns 0, which indicates end of file.

If successful, read () returns the number of bytes that it read; otherwise, it
returns –1.

FIGURE 13.11

Description of the read () system call.

As each chunk of input is read, it is passed to the trackLines () function. This function
scans the input buffer for newlines and stores the offset of the first character in each
line in the lineStart array. The variable fileOffset is used to maintain the current file
offset. The contents of lineStart are used during the second pass.

Writing to a File: write ()

When reverse is reading from standard input, it creates a copy of the input for use dur-
ing pass 2. To do this, it sets the file descriptor tmpfd to refer to a temporary file and
then writes each chunk of input to the file during the read loop.To write bytes to a file,
it uses the write () system call, which works as shown in Figure 13.12. The write () sys-
tem call performs low-level output and has none of the formatting capabilities of
printf (). The benefit of write () is that it bypasses the additional layer of buffering
supplied by the C library functions and is therefore very fast. Lines 134–139 perform
the write operation:

134 /* Copy line to temporary file if reading standard input */
135 if (standardInput)
136 {
137 charsWritten = write (tmpfd, buffer, charsRead);
138 if (charsWritten != charsRead) fatalError ();
139 }

448 Chapter 13 Systems Programming

Moving in a File: lseek ()

Once the first pass is completed, the array lineStart contains the offsets of the first
character of each line of the input file. During pass 2, the lines are read in reverse order
and displayed to standard output. In order to read the lines out of sequence, the pro-
gram makes use of lseek (), which is a system call that allows a descriptor’s file pointer
to be changed. Figure 13.13 describes lseek ().

System Call: ssize_t write (int fd, void* buf, size_t count)

Note: this synopsis describes how write () operates when writing to a regular file. For
information on writing to special files, see later sections of this chapter.

write () copies count bytes from a buffer buf to the file referenced by the file
descriptor fd. The bytes are written starting at the current file position, which is then
updated accordingly. If the O_APPEND flag was set for fd, the file position is set to
the end of the file before each write.

write () copies as many bytes from the buffer as it can, up to the number spec-
ified by count, and returns the number of bytes actually copied. Your process should
always check the return value. If the return value isn’t count, then the disk probably
filled up and no space was left.

If successful, write () returns the number of bytes that were written; otherwise,
it returns –1.

FIGURE 13.12

Description of the write () system call.

System Call: off_t lseek (int fd, off_t offset, int mode)

lseek () allows you to change a descriptor’s current file position. fd is the file de-
scriptor, offset is a long integer, and mode describes how offset should be interpret-
ed. The three possible values of mode are defined in “/usr/include/stdio.h” and have
the following meanings:

VALUE MEANING

SEEK_SET offset is relative to the start of the file.

SEEK_CUR offset is relative to the current file position.

SEEK_END offset is relative to the end of the file.

lseek () fails if you try to move before the start of the file.

If successful, lseek () returns the current file position; otherwise, it returns –1.

On some systems, the modes are defined in “/usr/include/unistd.h.”

FIGURE 13.13

Description of the lseek () system call.

Regular File Management 449

Lines 196–197 seek until the start of a line and then read in all of the characters
in the line. Note that the number of characters to read is calculated by subtracting the
start offset of the next line from the start offset of the current line:

196 lseek (fd, lineStart[i], SEEK_SET); /* Find line and read it */
197 charsRead = read (fd, buffer, lineStart[i+1] - lineStart[i]);

If you want to find out your current location without moving, use an offset value of
zero relative to the current position:

currentOffset = lseek (fd, 0, SEEK_CUR);

If you move past the end of the file and then perform a write (), the kernel automati-
cally extends the size of the file and treats the intermediate file area as if it were filled
with NULL (ASCII 0) characters. Interestingly enough, it doesn’t allocate disk space
for the intermediate area, which is confirmed by the following example:

$ cat sparse.c ...list the test file.
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
/**/
main ()
{
int i, fd;
/* Create a sparse file */
fd = open ("sparse.txt", O_CREAT | O_RDWR, 0600);
write (fd, "sparse", 6);
lseek (fd, 60006, SEEK_SET);
write (fd, "file", 4);
close (fd);
/* Create a normal file */
fd = open ("normal.txt", O_CREAT | O_RDWR, 0600);
write (fd, "normal", 6);
for (i = 1; i <= 60000; i++)
write (fd, "/0", 1);

write (fd, "file", 4);
close (fd);
}
$ sparse ...execute the file.
$ ls -l *.txt ...look at the files.
-rw-r--r-- 1 glass 60010 Feb 14 15:06 normal.txt
-rw-r--r-- 1 glass 60010 Feb 14 15:06 sparse.txt
$ ls -s *.txt ...list their block usage.
60 normal.txt* ...uses a full 60 blocks.
8 sparse.txt* ...only uses 8 blocks.

$ _

450 Chapter 13 Systems Programming

Files that contain “gaps” like this are termed “sparse” files; for details on how they are
actually stored, see Chapter 14.

Closing a File: close ()

When pass 2 is over, reverse uses the close () system call to free the input file descrip-
tor. Figure 13.14 provides a description of close (). Line 180 contains the call to close ():

180 close (fd); /* Close input file */

Just because a file is closed does not guarantee that the file’s buffers are immediately
flushed to disk; for more information on file buffering, see Chapter 14.

Deleting a File: unlink ()

If reverse reads from standard input, it stores a copy of the input in a temporary file.At
the end of pass 2, it removes this file, using the unlink () system call, which works as
shown in Figure 13.15. Line 181 contains the call to unlink ():

181 if (standardInput) unlink (tmpName); /* Remove temp file */

For more information about hard links, see Chapter 14.

System Call: int close (int fd)

close () frees the file descriptor fd. If fd is the last file descriptor associated with a
particular open file, the kernel resources associated with the file are deallocated.
When a process terminates, all of its file descriptors are automatically closed, but it’s
better programming practice to close a file when you’re done with it. If you close a
file descriptor that’s already closed, an error occurs.

If successful, close () returns zero; otherwise, it returns –1.

FIGURE 13.14

Description of the close () system call.

System Call: int unlink (const char* fileName)

unlink () removes the hard link from the name fileName to its file. If fileName is the
last link to the file, the file’s resources are deallocated. In this case, if any process’ file
descriptors are currently associated with the file, the directory entry is removed im-
mediately, but the file is deallocated only after all of the file descriptors are closed.
This means that an executable file can unlink itself during execution and still contin-
ue to completion.

If successful, unlink () returns zero; otherwise, it returns –1.

FIGURE 13.15

Description of the unlink () system call.

Regular File Management 451

Name Function

stat obtains status information about a file

fstat works just like stat

getdents obtains directory entries

FIGURE 13.16

Advanced UNIX I/O system calls.

In the following example, I monitored an individual file and a directory, storing the
output of monitor into a temporary file:

% ls ...look at home directory.
monitor.c monitor tmp/
% ls tmp ...look at "tmp" directory.
b

Second Example: monitor

This section contains a description of some more advanced system calls, listed in
Figure 13.16. The use of these calls is demonstrated in the context of a program called
monitor, which allows a user to monitor a series of named files and to obtain informa-
tion whenever any of them are modified. Figure 13.17 gives a description of monitor.

Utility: monitor [-t delay] [-l count] { fileName }+

monitor scans all of the specified files every delay seconds and displays information
about any of the specified files that were modified since the last scan. If fileName is
a directory, all of the files inside that directory are scanned. File modification is indi-
cated in one of three ways:

LABEL MEANING

ADDED Indicates that the file was created since the last scan. Every
file in the file list is given this label during the first scan.

CHANGED Indicates that the file was modified since the last scan.

DELETED Indicates that the file was deleted since the last scan.

By default, monitor will scan forever, although you can specify the total number of
scans by using the -l option. The default delay time is 10 seconds between scans, al-
though this may be overridden by using the -t option.

FIGURE 13.17

Description of the monitor program.

452 Chapter 13 Systems Programming

% monitor tmp myFile.txt >& monitor.out & ...start.
[1] 12841
% cat > tmp/a ...create a file in "~/tmp".
hi there
^D
% cat > myFile.txt ...create "myFile.txt".
hi there
^D
% cat > myFile.txt ...change "myFile.txt".
hi again
^D
% rm tmp/a ...delete "tmp/a".
% jobs ...look at jobs.
[1] + Running monitor tmp myFile.txt ,& monitor.out
% kill %1 ...kill monitor job.
[1] Terminated monitor tmp myFile.txt ,& monitor.out
% cat monitor.out ...look at output.
ADDED tmp/b size 9 bytes, mod. time = Sun Jan 18 00:38:55 1998
ADDED tmp/a size 9 bytes, mod. time = Fri Feb 13 18:51:09 1998
ADDED myFile.txt size 9 bytes, mod. time = Fri Feb 13 18:51:21 1998
CHANGED myFile.txt size 18 bytes, mod. time = Fri Feb 13 18:51:49 1998
DELETED tmp/a
% _

Notice how the contents of the “monitor.out” file reflected the additions, modifica-
tions, and deletions of the monitored file and directory.

How monitor Works

The monitor utility continually scans the specified files and directories for modifica-
tions. It uses the stat () system call to obtain status information about named files, in-
cluding their type and most recent modification time, and uses the getdents () system
call to scan directories. Monitor maintains a status table called stats, which holds the
following information about each file that it finds:

• the name of the file
• the status information obtained by stat ()
• a record of whether the file was present during the current scan and the previ-

ous scan

During a scan, monitor processes each file as follows:

• If the file isn’t currently in the scan table, it’s added and the message “ADDED”
is displayed.

• If the file is already in the scan table and has been modified since the last scan,
the message “CHANGED” is displayed.

At the end of a scan, all entries that were present during the previous scan, but not
during the current scan, are removed from the table and the message “DELETED” is
displayed.

Regular File Management 453

Following is a complete listing of “monitor.c”, the source code of monitor. Skim
through it and then read the description of the system calls that follow.

monitor.c: Listing

1 #include <stdio.h> /* For printf, fprintf */
2 #include <string.h> /* For strcmp */
3 #include <ctype.h> /* For isdigit */
4 #include <fcntl.h> /* For O_RDONLY */
5 #include <sys/dirent.h> /* For getdents */
6 #include <sys/stat.h> /* For IS macros */
7 #include <sys/types.h> /* For modet */
8 #include <time.h> /* For localtime, asctime */
9
10
11 /* #define Statements */
12 #define MAX_FILES 100
13 #define MAX_FILENAME 50
14 #define NOT_FOUND -1
15 #define FOREVER -1
16 #define DEFAULT_DELAY_TIME 10
17 #define DEFAULT_LOOP_COUNT FOREVER
18
19
20 /* Booleans */
21 enum { FALSE, TRUE };
22
23
24 /* Status structure, one per file. */
25 struct statStruct
26 {
27 char fileName [MAX_FILENAME]; /* File name */
28 int lastCycle, thisCycle; /* To detect changes */
29 struct stat status; /* Information from stat () */
30 };
31
32
33 /* Globals */
34 char* fileNames [MAX_FILES]; /* One per file on command line */
35 int fileCount; /* Count of files on command line */
36 struct statStruct stats [MAX_FILES]; /* One per matching file */
37 int loopCount = DEFAULT_LOOP_COUNT; /* Number of times to loop */
38 int delayTime = DEFAULT_DELAY_TIME; /* Seconds between loops */
39
40 /**/
41
42 main (argc, argv)
43
44 int argc;
45 char* argv [];

454 Chapter 13 Systems Programming

46
47 {
48 parseCommandLine (argc, argv); /* Parse command line */
49 monitorLoop (); /* Execute main monitor loop */
50 return (/* EXIT_SUCCESS */ 0);
51 }
52
53 /**/
54
55 parseCommandLine (argc, argv)
56
57 int argc;
58 char* argv [];
59
60 /* Parse command line arguments */
61
62 {
63 int i;
64
65 for (i = 1; ((i < argc) && (i < MAX_FILES)); i++)
66 {
67 if (argv[i][0] == '-')
68 processOptions (argv[i]);
69 else
70 fileNames[fileCount++] = argv[i];
71 }
72
73 if (fileCount == 0) usageError ();
74 }
75
76 /**/
77
78 processOptions (str)
79
80 char* str;
81
82 /* Parse options */
83
84 {
85 int j;
86
87 for (j = 1; str[j] != NULL; j++)
88 {
89 switch(str[j]) /* Switch on option letter */
90 {
91 case 't':
92 delayTime = getNumber (str, &j);
93 break;
94

Regular File Management 455

95 case 'l':
96 loopCount = getNumber (str, &j);
97 break;
98 }
99 }
100 }
101
102 /**/
103
104 getNumber (str, i)
105
106 char* str;
107 int* i;
108
109 /* Convert a numeric ASCII option to a number */
110
111 {
112 int number = 0;
113 int digits = 0; /* Count the digits in the number */
114
115 while (isdigit (str[(*i) + 1])) /* Convert chars to ints */
116 {
117 number = number * 10 + str[++(*i)] - '0';
118 ++digits;
119 }
120
121 if (digits == 0) usageError (); /* There must be a number */
122 return (number);
123 }
124
125 /**/
126
127 usageError ()
128
129 {
130 fprintf (stderr, "Usage: monitor -t<seconds> -l<loops>
{filename}+\n");
131 exit (/* EXIT_FAILURE */ 1);
132 }
133
134 /**/
135
136 monitorLoop ()
137
138 /* The main monitor loop */
139
140 {
141 do
142 {

456 Chapter 13 Systems Programming

143 monitorFiles (); /* Scan all files */
144 fflush (stdout); /* Flush standard output */
145 fflush (stderr); /* Flush standard error */
146 sleep (delayTime); /* Wait until next loop */
147 }
148 while (loopCount == FOREVER || --loopCount > 0);
149 }
150
151 /**/
152
153 monitorFiles ()
154
155 /* Process all files */
156
157 {
158 int i;
159
160 for (i = 0; i < fileCount; i++)
161 monitorFile (fileNames[i]);
162
163 for (i = 0; i< MAX_FILES; i++) /* Update stat array */
164 {
165 if (stats[i].lastCycle && !stats[i].thisCycle)
166 printf ("DELETED %s\n", stats[i].fileName);
167
168 stats[i].lastCycle = stats[i].thisCycle;
169 stats[i].thisCycle = FALSE;
170 }
171 }
172
173 /**/
174
175 monitorFile (fileName)
176
177 char* fileName;
178
179 /* Process a single file/directory*/
180
181 {
182 struct stat statBuf;
183 mode_t mode;
184 int result;
185
186 result = stat (fileName, &statBuf); /* Obtain file status */
187
188 if (result == -1) /* Status was not available */
189 {
190 fprintf (stderr, "Cannot stat %s\n", fileName);
191 return;
192 }

Regular File Management 457

193
194 mode = statBuf.st_mode; /* Mode of file */
195
196 if(S_ISDIR (mode)) /* Directory */
197 processDirectory (fileName);
198 else if (S_ISREG (mode) || S_ISCHR (mode) || S_ISBLK (mode))
199 updateStat (fileName, &statBuf); /* Regular file */
200 }
201
202 /**/
203
204 processDirectory (dirName)
205
206 char* dirName;
207
208 /* Process all files in the named directory */
209
210 {
211 int fd, charsRead;
212 struct dirent dirEntry;
213 char fileName [MAX_FILENAME];
214
215 fd = open (dirName, O_RDONLY); /* Open for reading */
216 if (fd == -1) fatalError ();
217
218 while (TRUE) /* Read all directory entries */
219 {
220 charsRead = getdents(fd, &dirEntry, sizeof (struct dirent));
221 if (charsRead == -1) fatalError ();
222 if (charsRead == 0) break; /* EOF */
223 if (strcmp (dirEntry.d_name, ".") != 0&&
224 strcmp (dirEntry.d_name, "..") != 0) /* Skip . and .. */
225 {
226 sprintf (fileName, "%s/%s", dirName, dirEntry.d_name);
227 monitorFile (fileName); /* Call recursively */
228 }
229
230 lseek (fd, dirEntry.d_off, SEEK_SET); /* Find next entry */
231 }
232
233 close (fd); /* Close directory */
234 }
235
236 /**/
237
238 updateStat (fileName, statBuf)
239
240 char* fileName;
241 struct stat* statBuf;
242

458 Chapter 13 Systems Programming

243 /* Add a status entry if necessary */
244
245 {
246 int entryIndex;
247
248 entryIndex = findEntry (fileName); /* Find existing entry */
249
250 if (entryIndex == NOT_FOUND)
251 entryIndex = addEntry (fileName, statBuf); /* Add new entry */
252 else
253 updateEntry (entryIndex, statBuf); /* Update existing entry */
254
255 if (entryIndex != NOT_FOUND)
256 stats[entryIndex].thisCycle = TRUE; /* Update status array */
257 }
258
259 /**/
260
261 findEntry (fileName)
262
263 char* fileName;
264
265 /* Locate the index of a named filein the status array */
266
267 {
268 int i;
269
270 for (i = 0; i < MAX_FILES; i++)
271 if (stats[i].lastCycle &&
272 strcmp (stats[i].fileName, fileName) == 0) return (i);
273
274 return (NOT_FOUND);
275 }
276
277 /**/
278
279 addEntry (fileName, statBuf)
280
281 char* fileName;
282 struct stat* statBuf;
283
284 /* Add a new entry into the status array */
285
286 {
287 int index;
288
289 index = nextFree (); /* Find the next free entry */
290 if (index == NOT_FOUND) return (NOT_FOUND); /* None left */
291 strcpy (stats[index].fileName, fileName); /* Add filename */
292 stats[index].status = *statBuf; /* Add status information */

Regular File Management 459

293 printf ("ADDED "); /* Notify standard output */
294 printEntry (index); /* Display status information */
295 return (index);
296 }
297
298 /**/
299
300 nextFree ()
301
302 /* Return the nextfree index in the status array */
303
304 {
305 int i;
306
307 for (i = 0; i < MAX_FILES; i++)
308 if (!stats[i].lastCycle && !stats[i].thisCycle) return (i);
309
310 return (NOT_FOUND);
311 }
312
313 /**/
314
315 updateEntry (index, statBuf)
316
317 int index;
318 struct stat* statBuf;
319
320 /*Display information if the file has been modified */
321
322 {
323 if (stats[index].status.st_mtime != statBuf->st_mtime)
324 {
325 stats[index].status = *statBuf; /* Store stat information */
326 printf ("CHANGED "); /* Notify standard output */
327 printEntry (index);
328 }
329 }
330
331 /**/
332
333 printEntry (index)
334
335 int index;
336
337 /* Display an entry of the status array */
338
339 {
340 printf ("%s ", stats[index].fileName);
341 printStat (&stats[index].status);
342 }

460 Chapter 13 Systems Programming

343
344 /**/
345
346 printStat (statBuf)
347
348 struct stat* statBuf;
349
350 /* Display a status buffer */
351
352 {
353 printf ("size %lu bytes, mod. time = %s", statBuf->st_size,
354 asctime (localtime (&statBuf->st_mtime)));
355 }
356
357 /**/
358
359 fatalError ()
360
361 {
362 perror ("monitor: ");
363 exit (/* EXIT_FAILURE */ 1);
364 }

Obtaining File Information: stat ()

monitor obtains its file information by calling stat (),which works as shown in Figure 13.18.
The monitor utility invokes stat () from monitorFile () [line 175] on line 186:

186 result = stat (fileName, &statBuf); /* Obtain file status */

System Call: int stat (const char* name, struct stat* buf)

int lstat (const char* name, struct stat* buf)

int fstat (int fd, struct stat* buf)

stat () fills the buffer buf with information about the file name. The stat structure is
defined in “/usr/include/sys/stat.h”. lstat() returns information about a symbolic link
itself, rather than the file it references. fstat () performs the same function as stat (),
except that it takes the file descriptor of the file to be “stat’ed” as its first parameter.

FIGURE 13.18

Description of the stat () system call.

Regular File Management 461

The stat structure contains the following members:

NAME MEANING

st_dev the device number

st_ino the inode number

st_mode the permission flags

st_nlink the hard-link count

st_uid the user ID

st_gid the group ID

st_size the file size

st_atime the last access time

st_mtime the last modification time

st_ctime the last status change time

There are some predefined macros defined in “/usr/include/sys/stat.h” that take
st_mode as their argument and return true (1) for the following file types:

MACRO RETURNS TRUE FOR FILE TYPE

S_IFDIR directory

S_IFCHR character special device

S_IFBLK block special device

S_IFREG regular file

S_IFFIFO pipe

The time fields may be decoded with the standard C library asctime () and localtime ()
subroutines.

stat () and fstat () return 0 if successful and -1 otherwise.

FIGURE 13.18 (Continued)

monitor examines the mode of the file using the S_ISDIR, S_ISREG, S_ISCHR, and
S_ISBLK macros, processing directory files, and other files as follows:

• If the file is a directory file, it calls processDirectory () [line 204], which applies
monitorFile () recursively to each of its directory entries.

462 Chapter 13 Systems Programming

• If the file is a regular file, a character special file, or a block special file, monitor
calls updateStat () [line 238], which either adds or updates the file’s status entry.
If the status changes in any way, updateEntry () [line 315] is called to display the
file’s new status. The decoding of the time fields is performed by the localtime ()
and asctime () routines in printStat () [line 346].

Reading Directory Information: getdents ()

processDirectory () [line 204] opens a directory file for reading and then uses getdents ()
to obtain every entry in the directory, as shown in Figure 13.19. processDirectory () is
careful not to trace into the “.” and “..” directories and uses lseek () to jump from one di-
rectory entry to the next.When the directory has been completely searched, it is closed.

System Call: int getdents (int fd, struct dirent* buf, int structSize)

getdents () reads the directory file with descriptor fd from its current position and
fills the structure pointed to by buf with the next entry. The structure dirent is de-
fined in “/usr/include/sys/dirent.h” and contains the following fields:

NAME MEANING

d_ino the inode number

d_off the offset of the next directory entry

d_reclen the length of the directory entry structure

d_nam the length of the filename

getdents () returns the length of the directory entry when successful, 0 when the last
directory entry has already been read, and in the case of an error.-1

FIGURE 13.19

Description of the getdents () system call.

Some older systems use the getdirentries () system call instead of getdents ().The
usage of getdirentries () differs somewhat from getdents (); see your system’s man
page for details.

Miscellaneous File Management System Calls

Figure 13.20 gives a brief description of some miscellaneous UNIX file management
system calls.

Changing a File’s Owner or Group: chown () and fchown ()

chown () and fchown () change the owner or group of a file. They work as shown in
Figure 13.21. In the following example, I changed the group of the file “test.txt” from
“music” to “cs,” which has group ID number 62 (for more information about group IDs
and how to locate them, see Chapter 15):

Regular File Management 463

Name Function

chown changes a file’s owner or group

chmod changes a file’s permission settings

dup duplicates a file descriptor

dup2 similar to dup

fchown works just like chown

fchmod works just like chmod

fcntl gives access to miscellaneous file characteristics

ftruncate works just like truncate

ioctl controls a device

link creates a hard link

mknod creates a special file

sync schedules all file buffers to be flushed to disk

truncate truncates a file

FIGURE 13.20

UNIX file management system calls.

System Call: int chown (const char* fileName, uid_t ownerId, gid_t groupId)

int lchown (const char* fileName, uid_t ownerId, gid_t groupId)

int fchown (int fd, uid_t ownerId, gid_t groupId)

chown () causes the owner and group IDs of fileName to be changed to ownerId and
groupId, respectively. A value of in a particular field means that its associated
value should remain unchanged. lchown() changes the ownership of a symbolic link
itself, rather than the file the link references.

Only a superuser can change the ownership of a file, and a user may change the
group only to another group of which he or she is a member. If fileName is a sym-
bolic link, the owner and group of the link are changed instead of the file that the
link is referencing.

fchown () is just like chown (), except that it takes an open descriptor as an ar-
gument instead of a filename.

Both functions return if unsuccessful and 0 otherwise.-1

-1

FIGURE 13.21

Description of the chown (), lchown (), and fchown () system calls.

464 Chapter 13 Systems Programming

$ cat mychown.c ...list the file.
main ()
{
int flag;
flag = chown ("test.txt", -1, 62); /* Leave user ID unchanged */
if (flag == -1) perror("mychown.c");
}
$ ls -lg test.txt ...examine file before.
-rw-r--r-- 1 glass music 3 May 25 11:42 test.txt
$ mychown ...run program.
$ ls -lg test.txt ...examine file after.
-rw-r--r-- 1 glass cs 3 May 25 11:42 test.txt
$ _

Changing a File’s Permissions: chmod () and fchmod ()

chmod () and fchmod () change a file’s permission flags. They work as shown in
Figure 13.22. In the following example, I changed the permission flags of the file
“test.txt” to 600 octal, which corresponds to read and write permission for the owner only:

$ cat mychmod.c ...list the file.
main ()
{
int flag;
flag = chmod ("test.txt", 0600); /* Use an octal encoding */
if (flag == -1) perror ("mychmod.c");
}
$ ls -l test.txt ...examine file before.
-rw-r--r-- 1 glass 3 May 25 11:42 test.txt
$ mychmod ...run the program.
$ ls -l test.txt ...examine file after.
-rw------- 1 glass 3 May 25 11:42 test.txt
$ _

System Call: int chmod (const char* fileName, int mode)

int fchmod (int fd, mode_t mode);

chmod () changes the mode of fileName to mode, usually an octal number as de-
scribed in Chapter 2. The “set user ID” and “set group ID” flags have the octal val-
ues 4000 and 2000, respectively.To change a file’s mode, you must either own it or be
a superuser.

fchmod () works just like chmod (), except that it takes an open file descriptor
as an argument instead of a filename.

Both functions return –1 if unsuccessful and 0 otherwise.

FIGURE 13.22

Description of the chmod () system call.

Regular File Management 465

Duplicating a File Descriptor: dup () and dup2 ()

dup () and dup2 () allow you to duplicate file descriptors. They work as shown in
Figure 13.23. Shells use dup2 () to perform redirection and piping. (For examples that
show how this is done, see “Process Management” in this chapter, and study the Internet

System Call: int dup (int oldFd)

int dup2 (int oldFd, int newFd)

dup () finds the smallest free file descriptor entry and points it to the same file as
oldFd. dup2 () closes newFd if it’s currently active and then points it to the same file
as oldFd. In both cases, the original and copied file descriptors share the same file
pointer and access mode.

Both functions return the index of the new file descriptor if successful and –1
otherwise.

FIGURE 13.23

Description of the dup () and dup2 () system calls.

shell at the end of the chapter. In the following example, I created a file called
“test.txt” and wrote to it via four different file descriptors:

• The first file descriptor was the original descriptor.
• The second descriptor was a copy of the first, allocated in slot 4.
• The third descriptor was a copy of the first, allocated in slot 0, which was freed by

the close (0) statement (the standard input channel).
• The fourth descriptor was a copy of descriptor 3, copied over the existing de-

scriptor in slot 2 (the standard error channel).

$ cat mydup.c ...list the file.
#include <stdio.h>
#include <fcntl.h>
main ()
{
int fd1, fd2, fd3;
fd1 = open ("test.txt", O_RDWR | O_TRUNC);
printf ("fd1 = %d\n", fd1);
write (fd1, "what's", 6);
fd2 = dup (fd1); /* Make a copy of fd1 */
printf ("fd2 = %d\n", fd2);
write (fd2, " up", 3);
close (0); /* Close standard input */
fd3 = dup (fd1); /* Make another copy of fd1 */
printf ("fd3 = %d\n", fd3);
write (0, " doc", 4);

466 Chapter 13 Systems Programming

dup2 (3, 2); /* Duplicate channel 3 to channel 2 */
write (2, "?\n", 2);
}
$ mydup ...run the program.
fd1 = 3
fd2 = 4
fd3 = 0
$ cat test.txt ...list the output file.
what's up doc?
$ _

File Descriptor Operations: fcntl ()

fcntl () directly controls the settings of the flags associated with a file descriptor. It
works as shown in Figure 13.24. In the next example, I opened an existing file for writ-
ing and overwrote the initial few letters with the phrase “hi there.” I then used fcntl ()
to set the file descriptor’s APPEND flag, which instructed it to append all further

System Call: int fcntl (int fd, int cmd, int arg)

fcntl () performs the operation encoded by cmd on the file associated with the file
descriptor fd. arg is an optional argument for cmd. Here are the most common val-
ues of cmd:

VALUE OPERATION

F_SETFD Set the close-on-exec flag to the lowest bit of arg (0 or 1).

F_GETFD Return a number whose lowest bit is 1 if the close-on-exec
flag is set and 0 otherwise.

F_GETFL Return a number corresponding to the current file status
flags and access modes.

F_SETFL Set the current file status flags to arg.

F_GETOWN Return the process ID or process group that is currently
set to receive SIGIO/SIGURG signals. If the value
returned is positive, it refers to a process ID. If it’s
negative, its absolute value refers to a process group.

F_SETOWN Set the process ID or process group that should receive
SIGIO/SIGURG signals to arg. The encoding scheme is
as described for F_GETOWN.

fcntl () returns if unsuccessful.-1

FIGURE 13.24

Description of the fcntl () system call.

Regular File Management 467

writes. This caused “guys” to be placed at the end of the file, even though I moved the
file position pointer back to the start with lseek (). The code is as follows:

$ cat myfcntl.c ...list the program.
#include <stdio.h>
#include <fcntl.h>
main ()
{
int fd;
fd = open ("test.txt", O_WRONLY); /* Open file for writing */
write (fd, "hi there\n", 9);
lseek (fd, 0, SEEK_SET); /* Seek to beginning of file */
fcntl (fd, F_SETFL, O_WRONLY | O_APPEND); /* Set APPEND flag */
write (fd, " guys\n", 6);
close (fd);
}
$ cat test.txt ...list the original file.
here are the contents of
the original file.
$ myfcntl ...run the program.
$ cat test.txt ...list the new contents.
hi there
the contents of
the original file.
guys ...note that "guys" is at the end.
$ _

Controlling Devices: ioctl ()

Figure 13.25 describes the operation of ioctl ().

System Call: int ioctl (int fd, int cmd, int arg)

ioctl () performs the operation encoded by cmd on the file associated with the file
descriptor fd. arg is an optional argument for cmd. The valid values of cmd depend
on the device that fd refers to and are typically documented in the manufacturer’s
operating instructions. I therefore supply no examples for this system call.

ioctl () returns if unsuccessful.-1

FIGURE 13.25

Description of the ioctl () system call.

Creating Hard Links: link ()

link () creates a hard link to an existing file. It works as shown in Figure 13.26. In the
next example, I created the filename “another.txt” and linked it to the file referenced

468 Chapter 13 Systems Programming

by the existing name, “original.txt”. I then demonstrated that both labels were linked
to the same file. The code is as follows:

$ cat mylink.c ...list the program.
main ()
{
link ("original.txt", "another.txt");
}
$ cat original.txt ...list original file.
this is a file.
$ ls -l original.txt another.txt ...examine files before.
another.txt not found
-rw-r--r-- 1 glass 16 May 25 12:18 original.txt
$ mylink ...run the program.
$ ls -l original.txt another.txt ...examine files after.
-rw-r--r-- 2 glass 16 May 25 12:18 another.txt
-rw-r--r-- 2 glass 16 May 25 12:18 original.txt
$ cat >> another.txt ...alter "another.txt".
hi
^D
$ ls -l original.txt another.txt ...both labels reflect change.
-rw-r--r-- 2 glass 20 May 25 12:19 another.txt
-rw-r--r-- 2 glass 20 May 25 12:19 original.txt
$ rm original.txt ...remove original label.
$ ls -l original.txt another.txt ...examine labels.
original.txt not found
-rw-r--r-- 1 glass 20 May 25 12:19 another.txt
$ cat another.txt ...list contents via other label.
this is a file.
hi
$ _

Creating Special Files: mknod ()

mknod () allows you to create a special file. It works as shown in Figure 13.27. For an
example of mknod (), consult the section on named pipes later in the chapter.

System Call: int link (const char* oldPath, const char* newPath)

link () creates a new label, newPath, and links it to the same file as the label oldPath.
The hard link count of the associated file is incremented by one. If oldPath and
newPath reside on different physical devices, a hard link cannot be made and link ()
fails. For more information about hard links, see the description of ln in Chapter 3.

link () returns if unsuccessful and 0 otherwise.-1

FIGURE 13.26

Description of the link () system call.

Regular File Management 469

Flushing the File System Buffers: sync ()

sync () flushes the file system buffers. It works as shown in Figure 13.28.

System Call: int mknod (const char* fileName, mode_t type, dev_t device)

mknod () creates a new regular, directory, or special file called fileName whose type
can be one of the following:

VALUE MEANING

S_IFDIR directory

S_IFCHR character-oriented file

S_IFBLK block-oriented file

S_IFREG regular file

S_IFIFO named pipe

If the file is a character- or block-oriented file, then the low-order byte of device
should specify the minor device number, and the high-order byte should specify the
major device number. (This can vary in different UNIX versions.) In other cases, the
value of device is ignored. (For more information on special files, see Chapter 14.)

Only a superuser can use mknod () to create directories, character-oriented
files, or block-oriented special files. It is typical now to use the mkdir () system call to
create directories.

mknod () returns if unsuccessful and 0 otherwise.-1

FIGURE 13.27

Description of the mknod () system call.

System Call: void sync ()

sync () schedules all of the file system buffers to be written to disk. (For more infor-
mation on the buffer system, consult Chapter 14.) sync () should be performed by
any programs that bypass the file system buffers and examine the raw file system.

sync () always succeeds.

FIGURE 13.28

Description of the sync () system call.

470 Chapter 13 Systems Programming

Truncating a File: truncate () and ftruncate ()

truncate () and ftruncate () set the length of a file. They work as shown in Figure 13.29.
In the next example, I set the length of two files to 10 bytes; one of the files was origi-
nally shorter than that, and the other was longer. Here is the code:

$ cat truncate.c ...list the program.
main ()
{
truncate ("file1.txt", 10);
truncate ("file2.txt", 10);
}
$ cat file1.txt ...list "file1.txt".
short
$ cat file2.txt ...list "file2.txt".
long file with lots of letters
$ ls -l file*.txt ...examine both files.
-rw-r--r-- 1 glass 6 May 25 12:16 file1.txt
-rw-r--r-- 1 glass 32 May 25 12:17 file2.txt
$ truncate ...run the program.
$ ls -l file*.txt ...examine both files again.
-rw-r--r-- 1 glass 10 May 25 12:16 file1.txt
-rw-r--r-- 1 glass 10 May 25 12:17 file2.txt
$ cat file1.txt ..."file1.txt" is longer.
short
$ cat file2.txt ..."file2.txt" is shorter.
long file $ _

System Call: int truncate (const char* fileName, off_t length)

int ftruncate (int fd, off_t length)

truncate () sets the length of the file fileName to length bytes. If the file is longer than
length, it is truncated. If it is shorter than length, it is padded with ASCII nulls.

ftruncate () works just like truncate (), except that it takes an open file de-
scriptor as an argument instead of a filename.

Both functions return if unsuccessful and 0 otherwise.-1

FIGURE 13.29

Description of the truncate () and ftruncate () system calls.

STREAMS

STREAMS is a newer and more generalized I/O facility that was introduced in System
V UNIX. STREAMS are most often used to add device drivers to the kernel and pro-
vide an interface to the network drivers, among others.

Originally developed by Dennis Ritchie, one of the designers of UNIX,
STREAMS provides a full-duplex (two-way) path between kernel space and user

Regular File Management 471

process space. The implementation of STREAMS is more generalized than previous
I/O mechanisms, making it easier to implement new device drivers. One of the original
motivations for STREAMS was to clean up and improve traditional UNIX character
I/O sent to terminal devices.

System V-based versions of UNIX also include the Transport Layer Interface
(TLI) networking interface to STREAMS drivers, a socketlike interface enabling the
STREAMS-based network drivers to communicate with other socket-based programs.

Improvements over traditional UNIX I/O

Traditional UNIX character-based I/O evolved from the early days of UNIX. As with
any complex software subsystem, over time, unplanned and poorly architected changes
added yet more complexity. Some of the advantage of STREAMS comes simply from
the fact that it is newer and can take advantage of lessons learned over the years. This
yields a cleaner interface than was available before.

STREAMS also makes adding network protocols easier than having to write the
whole driver and all its required parts from scratch.The device-dependent code has been
separated into modules so that only the relevant part must be rewritten for each new de-
vice. Common I/O housekeeping code (e.g., buffer allocation and management) has been
standardized so that each module can leverage services provided by the stream.

STREAMS processing involves sending and receiving streams messages, rather
than just doing raw, character-by-character I/O. STREAMS also added flow control
and priority processing.

Anatomy of a STREAM

Each STREAM has three parts:

• the stream head, an access point for a user application, for functions, and for data
structures representing the STREAM

• modules—code to process data being read or written
• the stream driver, the back-end code that communicates with the specific device

All three run in kernel space, although modules can be added from user space.
The stream head provides the system call interface for a user application. A

stream head is created by using the open () system call. The kernel manages any mem-
ory allocation required, the upstream and downstream flow of data, queue scheduling,
flow control, and error logging.

Data written to the stream head from an application program are in the form of a
message that is passed to the first module for processing. This module processes the mes-
sage and passes the result to the second module. Processing and passing continue until the
last module passes the message to the stream driver, which writes the data to the appro-
priate device. Data coming from the device take the same path in the reverse direction.

STREAM system calls

In addition to the I/O system calls we’ve already seen—ioctl (), open (), close (), read (),
and write ()—the following system calls are useful with a stream:

• getmsg ()—get a message from a stream

472 Chapter 13 Systems Programming

• putmsg ()—put a message on a stream
• poll ()—poll one or more streams for activity
• isastream ()—find out whether a given file descriptor is a stream

PROCESS MANAGEMENT

A UNIX process is a unique instance of a running or runnable program. Every process
in a UNIX system has the following attributes:

• some code (a. k. a. text)
• some data
• a stack
• a unique process ID (PID) number

When UNIX is first started, there’s only one visible process in the system. This process
is called “init,” and is PID 1. The only way to create a new process in UNIX is to dupli-
cate an existing process, so “init” is the ancestor of all subsequent processes. When a
process duplicates, the parent and child processes are virtually identical (except for
things like PIDs, PPIDs, and run times); the child’s code, data, and stack are a copy of
the parent’s, and it even continues to execute the same code.A child process may, how-
ever, replace its code with that of another executable file, thereby differentiating itself
from its parent. For example, when “init” starts executing, it quickly duplicates several
times. Each of the duplicate child processes then replaces its code from the executable
file called “getty,” which is responsible for handling user logins. The process hierarchy
therefore looks like that shown in Figure 13.30.

Parent
init (PID 1)

Child
getty (PID 4)

handle a
login

Child
getty (PID 5)

handle a
login

Child
getty (PID 6)

handle a
login

Duplicate: fork (), then
differentiate: exec ()

FIGURE 13.30

The initial process hierarchy.

When a child process terminates, its death is communicated to its parent so that
the parent may take some appropriate action. It’s common for a parent process to sus-
pend until one of its children terminates. For example, when a shell executes a utility in
the foreground, it duplicates into two shell processes; the child shell process replaces its
code with that of the utility, whereas the parent shell waits for the child process to ter-
minate. When the child terminates, the original parent process “awakens” and presents
the user with the next shell prompt.

Process Management 473

Figure 13.31 provides an illustration of the way that a shell executes a utility; I’ve
indicated the system calls that are responsible for each phase of the execution. The In-
ternet shell that I present later in the chapter has the basic process management facili-
ties of classic UNIX shells and is a good place to look for some in-depth coding
examples that utilize process-oriented system calls. In the meantime, let’s look at some
simple programs that introduce these system calls one by one.The next few subsections
describe the system calls shown in Figure 13.32.

Parent process PID 34
running shell

Parent process PID 34
running shell,

waiting for child

Parent process PID 34
running shell,

awakens

Child process PID 35
running shell

Child process PID 35
running utility

Child process PID 35
terminates

Duplicate: fork ()

Wait for child: wait ()

Differentiate: exec ()

Terminate: exit ()

Signal

FIGURE 13.31

How a shell runs a utility.

Name Function

fork duplicates a process

getpid obtains a process’ ID number

getppid obtains a parent process’ ID number

exit terminates a process

wait waits for a child process

exec replaces the code, data, and stack of a process

FIGURE 13.32

UNIX process-oriented system calls.

474 Chapter 13 Systems Programming

Creating a New Process: fork ()

A process may duplicate itself by using fork (), which works as shown in Figure 13.33.
fork () is a strange system call, because one process (the original) calls it, but two
processes (the original and its child) return from it. Both processes continue to run the
same code concurrently, but have completely separate stack and data spaces.

Now, that reminds me of a great sci-fi story I read once, about a man who comes
across a fascinating booth at a circus. The vendor at the booth tells the man that the
booth is a matter replicator: Anyone who walks through the booth is duplicated. But
that’s not all: The original person walks out of the booth unharmed, but the duplicate
person walks out onto the surface of Mars as a slave of the Martian construction crews.
The vendor then tells the man that he’ll be given a million dollars if he allows himself
to be replicated, and the man agrees. He happily walks through the machine, looking
forward to collecting the million dollars and walks out onto the surface of Mars.
Meanwhile, back on Earth, his duplicate is walking off with a stash of cash. The ques-
tion is this: If you came across the booth, what would you do?

A process may obtain its own process ID and parent process ID numbers by
using the getpid () and getppid () system calls, respectively. Figure 13.34 gives a synopsis

Á

System Call: pid_t fork (void)

fork () causes a process to duplicate.The child process is an almost exact duplicate of
the original parent process; it inherits a copy of its parent’s code, data, stack, open
file descriptors, and signal table. However, the parent and child have different
process ID numbers and parent process ID numbers.

If fork () succeeds, it returns the PID of the child to the parent process and re-
turns 0 to the child process. If fork () fails, it returns to the parent process, and no
child is created.

-1

FIGURE 13.33

Description of the fork () system call.

System Call: pid_t getpid (void)

pid_t getppid (void)

getpid () and getppid () return a process’ ID and parent process’ ID numbers, re-
spectively. They always succeed. The parent process ID number of PID 1 is 1.

FIGURE 13.34

Description of the getpid () and getppid () system calls.

Process Management 475

of these calls.To illustrate the operation of fork (), here’s a small program that duplicates
and then branches, based on the return value of fork ():

$ cat myfork.c ...list the program.
#include <stdio.h>
main ()
{
int pid;
printf ("I'm the original process with PID %d and PPID %d.\n",

getpid (), getppid ());
pid = fork (); /* Duplicate. Child and parent continue from here */
if (pid != 0) /* pid is non-zero, so I must be the parent */
{
printf ("I'm the parent process with PID %d and PPID %d.\n",

getpid (), getppid ());
printf ("My child's PID is %d\n", pid);

}
else /* pid is zero, so I must be the child */
{
printf ("I'm the child process with PID %d and PPID %d.\n",

getpid (), getppid ());
}

printf ("PID %d terminates.\n", getpid ()); /* Both processes execute
this */
}
$ myfork ...run the program.
I'm the original process with PID 13292 and PPID 13273.
I'm the parent process with PID 13292 and PPID 13273.
My child's PID is 13293.
I'm the child process with PID 13293 and PPID 13292.
PID 13293 terminates. ...child terminates.
PID 13292 terminates. ...parent terminates.
$ _

The PPID of the parent refers to the PID of the shell that executed the “myfork”
program.

Here is a warning: As you will soon see, it is dangerous for a parent to terminate
without waiting for the death of its child. The only reason that the parent doesn’t wait for
its child to die in this example is because I haven’t yet described the wait () system call!

Orphan Processes

If a parent dies before its child, the child is automatically adopted by the original “init”
process, PID 1.To illustrate this feature, I modified the previous program by inserting a
sleep statement into the child’s code. This ensured that the parent process terminated
before the child did. Here’s the program and the resultant output:

$ cat orphan.c ...list the program.
#include <stdio.h>
main ()

476 Chapter 13 Systems Programming

{
int pid;
printf ("I'm the original process with PID %d and PPID %d.\n",

getpid (), getppid ());
pid = fork (); /* Duplicate. Child and parent continue from here */
if (pid != 0) /* Branch based on return value from fork () */
{
/* pid is non-zero, so I must be the parent */
printf ("I'm the parent process with PID %d and PPID %d.\n",

getpid (), getppid ());
printf ("My child's PID is %d\n", pid);

}
else
{
/* pid is zero, so I must be the child */
sleep (5); /* Make sure that the parent terminates first */
printf ("I'm the child process with PID %d and PPID %d.\n",

getpid (), getppid ());
}
printf ("PID %d terminates.\n", getpid ()); /* Both processes execute

this */
}
$ orphan ...run the program.
I'm the original process with PID 13364 and PPID 13346.
I'm the parent process with PID 13364 and PPID 13346.
PID 13364 terminates.
I'm the child process with PID 13365 and PPID 1....orphaned!
PID 13365 terminates.
$ _

Figure 13.35 shows an illustration of the orphaning effect.

Terminating a Process: exit ()

A process may terminate at any time by executing exit (), which works as shown in
Figure 13.36. The termination code of a child process may be used for a variety of

Adopt child

init

Child
survives

the parent

Parent
dies
first

FIGURE 13.35

Process adoption.

Process Management 477

purposes by the parent process. Shells may access the termination code of their last
child process via one of their special variables. For example, in the following code,
the C shell stores the termination code of the last command in the variable $status:

% cat myexit.c ...list the program.
#include <stdio.h>
main ()
{
printf ("I'm going to exit with return code 42\n");
exit (42);
}
% myexit ...run the program.
I'm going to exit with return code 42
% echo $status ...display the termination code.
42
% _

In all other shells, the return value is returned in the special shell variable $?.

Zombie Processes

A process that terminates cannot leave the system until its parent accepts its return
code. If its parent process is already dead, it’ll already have been adopted by the “init”
process, which always accepts its children’s return codes. However, if a process’ parent
is alive, but never executes a wait (), the child process’ return code will never be ac-
cepted and the process will remain a zombie. A zombie process doesn’t have any code,
data, or stack, so it doesn’t use up many system resources, but it does continue to in-
habit the system’s fixed-size process table. Too many zombie processes can require the
system administrator to intervene. (See Chapter 15 for more details.)

System Call: void exit (int status)

exit () closes all of a process’ file descriptors, deallocates its code, data, and stack,
and then terminates the process. When a child process terminates, it sends its parent
a SIGCHLD signal and waits for its termination code status to be accepted. Only the
lower eight bits of status are used, so values are limited to 0–255. A process that is
waiting for its parent to accept its return code is called a zombie process. A parent
accepts a child’s termination code by executing wait (), which is described shortly.

The kernel ensures that all of a terminating process’ children are orphaned
and adopted by “init” by setting their PPIDs to 1. The “init” process always accepts
its children’s termination codes.

exit () never returns.

FIGURE 13.36

Description of the exit () system call.

478 Chapter 13 Systems Programming

The next program created a zombie process, which was indicated in the output
from the ps utility.When I killed the parent process, the child was adopted by “init” and
allowed to rest in peace. Here is the code:

$ cat zombie.c ...list the program.
#include <stdio.h>
main ()
{
int pid;
pid = fork (); /* Duplicate */
if (pid != 0) /* Branch based on return value from fork () */
{
while (1) /* Never terminate, and never execute a wait () */
sleep (1000);

}
else
{
exit (42); /* Exit with a silly number */

}
}
$ zombie & ...execute the program in the background.
[1] 13545
$ ps ...obtain process status.
PID TT STAT TIME COMMAND
13535 p2 S 0:00 -ksh (ksh) ...the shell.
13545 p2 S 0:00 zombie ...the parent process.
13546 p2 Z 0:00 <defunct> ...the zombie child.
13547 p2 R 0:00 ps
$ kill 13545 ...kill the parent process.
[1] Terminated zombie
$ ps ...notice the zombie is gone now.
PID TT STAT TIME COMMAND
13535 p2 S 0:00 -ksh (ksh)
13548 p2 R 0:00 ps
$ _

Waiting for a Child: wait ()

A parent process may wait for one of its children to terminate and then accept its
child’s termination code by executing wait (), described in Figure 13.37. In the next ex-
ample, the child process terminated before the end of the program by executing an
exit () with return code 42. Meanwhile, the parent process executed a wait () and sus-
pended until it received its child’s termination code. At that point, the parent dis-
played information about its child’s demise and executed the rest of the program. The
code is as follows:

$ cat mywait.c ...list the program.
#include <stdio.h>
main ()

Process Management 479

{
int pid, status, childPid;
printf ("I'm the parent process and my PID is %d\n", getpid ());
pid = fork (); /* Duplicate */
if (pid != 0) /* Branch based on return value from fork () */
{
printf ("I'm the parent process with PID %d and PPID %d\n",

getpid (), getppid ());
childPid = wait (&status); /* Wait for a child to terminate. */
printf ("A child with PID %d terminated with exit code %d\n",

childPid, status >> 8);
}

else
{
printf ("I'm the child process with PID %d and PPID %d\n",

getpid (), getppid ());
exit (42); /* Exit with a silly number */

}
printf ("PID %d terminates\n", getpid ());

}
$ mywait ...run the program.
I'm the parent process and my PID is 13464
I'm the child process with PID 13465 and PPID 13464
I'm the parent process with PID 13464 and PPID 13409
A child with PID 13465 terminated with exit code 42
PID 13465 terminates
$ _

System Call: pid_t wait (int* status)

wait () causes a process to suspend until one of its children terminates. A successful
call to wait () returns the PID of the child that terminated and places a status code
into status that is encoded as follows:

• If the rightmost byte of status is zero, the leftmost byte contains the low eight
bits of the value returned by the child’s exit () or return ().

• If the rightmost byte is nonzero, the rightmost seven bits are equal to the num-
ber of the signal that caused the child to terminate, and the remaining bit of the
rightmost byte is set to 1 if the child produced a core dump.

If a process executes a wait () and has no children, wait () returns immediately with
If a process executes a wait () and one or more of its children are already zom-

bies, wait () returns immediately with the status of one of the zombies.
-1.

FIGURE 13.37

Description of the wait () system call.

480 Chapter 13 Systems Programming

Differentiating a Process: exec ()

A process may replace its current code, data, and stack with those of another executable
file by using one of the exec () family of system calls.When a process executes an exec (),
its PID and PPID numbers stay the same—only the code that the process is executing
changes. The exec () family works as shown in Figure 13.38. The members of the exec ()
family listed in the figure aren’t really system calls: rather, they’re C library functions that
invoke the execve () system call. execve () is hardly ever used directly, as it contains some
rarely used options.

Library Routine: int execl (const char* path, const char* arg0, const char* arg1, …,
const char* argn, NULL)

int execv (const char* path, const char* argv[])

int execlp (const char* path, const char* arg0, const char* arg1,…, const
char* argn, NULL)

int execvp (const char* path, const char* argv[])

The exec () family of library routines replaces the calling process’ code, data, and
stack from the executable file whose pathname is stored in path.

execl () is identical to execlp (), and execv () is identical to execvp (), except
that execl () and execv () require the absolute or relative pathname of the exe-
cutable file to be supplied, whereas execlp () and execvp () use the $PATH environ-
ment variable to find path.

If the executable file is not found, the system call returns –1; otherwise, the
calling process replaces its code, data, and stack from the executable file and starts
to execute the new code. A successful exec () never returns.

execl () and execlp () invoke the executable file with the string arguments
pointed to by arg1..argn. arg0 must be the name of the executable file itself, and the
list of arguments must be terminated with a null.

execv () and execvp () invoke the executable file with the string arguments
pointed to by argv[1]..argv[n], where argv[n+1] is NULL. argv[0] must be the name
of the executable file itself.

FIGURE 13.38

Description of the execl (), execv (), execlp (), and execvp () library routines.

In the following example, the program displayed a small message and then replaced
its code with that of the “ls” executable file:

$ cat myexec.c ...list the program.
#include <stdio.h>
main ()
{
printf ("I'm process %d and I'm about to exec an ls -l\n", getpid ());

Process Management 481

execl ("/bin/ls", "ls", "-l", NULL); /* Execute ls */
printf ("This line should never be executed\n");
}
$ myexec ...run the program.
I'm process 13623 and I'm about to exec an ls -l
total 125
-rw-r--r-- 1 glass 277 Feb 15 00:47 myexec.c
-rwxr-xr-x 1 glass 24576 Feb 15 00:48 myexec
$ _

Note that the execl () was successful and therefore never returned.

Changing Directories: chdir ()

Every process has a current working directory that is used in processing a relative path-
name. A child process inherits its current working directory from its parent. For exam-
ple, when a utility is executed from a shell, its process inherits the shell’s current
working directory. To change a process’ current working directory, use chdir (), which
works as shown in Figure 13.39. In the following example, the process printed its current

System Call: int chdir (const char* pathname)

chdir () sets a process’ current working directory to the directory pathname. The
process must have execute permission from the directory to succeed.

chdir () returns 0 if successful; otherwise, it returns –1.

FIGURE 13.39

Description of the chdir () system call.

working directory before and after executing chdir () by executing pwd, using the system
() library routine:

$ cat mychdir.c ...list the source code.
#include <stdio.h>
main ()
{
system ("pwd"); /* Display current working directory */
chdir ("/"); /* Change working directory to root directory */
system ("pwd"); /* Display new working directory */
chdir ("/home/glass"); /* Change again */
system ("pwd"); /* Display again */
}
$ mychdir ...execute the program.
/home/glass
/
/home/glass
$ _

482 Chapter 13 Systems Programming

Changing Priorities: nice ()

Every process has a priority value between and that affects the amount of CPU
time that the process is allocated. In general, the smaller the priority value, the faster the
process will run. Only superuser and kernel processes (described in Chapter 14) can have
a negative priority value, and login shells start with priority 0.

+19-20

Library Routine: int nice (int delta)

nice () adds delta to a process’ current priority value. Only a superuser may specify a
delta that leads to a negative priority value.Valid priority values lie between –20 and
+19. If a delta is specified that takes a priority value beyond a limit, the value is trun-
cated to the limit.

If nice () succeeds, it returns the new nice value; otherwise it returns –1. Note
that this can cause problems, since a nice value of –1 is valid.

FIGURE 13.40

Description of the nice () library routine.

A child process inherits its priority value from its parent and may change it by
using nice (), described in Figure 13.40. In the following example, the process executed
ps commands before and after a couple of nice () calls:

$ cat mynice.c ...list the source code.
#include <stdio.h>
main ()
{
printf ("original priority\n");
system ("ps"); /* Execute a ps */
nice (0); /* Add 0 to my priority */
printf ("running at priority 0\n");
system ("ps"); /* Execute another ps */
nice (10); /* Add 10 to my priority */
printf ("running at priority 10\n");
system ("ps"); /* Execute the last ps */
}
$ mynice ...execute the program.
original priority
PID TT STAT TIME COMMAND
15099 p2 S 0:00 -sh (sh)
15206 p2 S 0:00 a.out
15207 p2 S 0:00 sh -c ps
15208 p2 R 0:00 ps
running at priority 0 ...adding 0 doesn't change it.
PID TT STAT TIME COMMAND
15099 p2 S 0:00 -sh (sh)
15206 p2 S 0:00 a.out
15209 p2 S 0:00 sh -c ps
15210 p2 R 0:00 ps
running at priority 10 ...adding 10 makes them run slower.

Process Management 483

PID TT STAT TIME COMMAND
15099 p2 S 0:00 -sh (sh)
15206 p2 S N 0:00 a.out
15211 p2 S N 0:00 sh -c ps
15212 p2 R N 0:00 ps
$ _

Note that when the process’ priority value became nonzero, it was flagged with an “N” by
ps, together with the sh and ps commands that it created due to the system () library call.

Accessing User and Group IDs

Figure 13.41 shows the system calls that allow you to read a process’ real and effec-
tive IDs. Figure 13.42 shows the system calls that allow you to set a process’ real and
effective IDs.

System Call: uid_t getuid ()

uid_t geteuid ()

gid_t getgid ()

gid_t getegid ()

getuid () and geteuid () return the calling process’ real and effective user ID, respec-
tively. getgid () and getegid () return the calling process’ real and effective group ID,
respectively. The ID numbers correspond to the user and group IDs listed in the
“/etc/passwd” and “/etc/group” files.

These calls always succeed.

FIGURE 13.41

Description of the getuid (), geteuid (), getgid (), and getegid () system calls.

Library Routine: int setuid (uid_t id)

int seteuid (uid_t id)

int setgid (gid_t id)

int setegid (gid_t id)

seteuid () and (setegid ()) set the calling process’ effective user (group) ID. setuid ()
and (setgid ()) set the calling process’ effective and real user (group) IDs to the
specified value.

These calls succeed only if executed by a superuser or if id is the real or effec-
tive user (group) ID of the calling process. They return 0 if successful; otherwise,
they return –1.

FIGURE 13.42

Description of the setuid (), seteuid (), setgid (), and setegid () library routines.

484 Chapter 13 Systems Programming

Sample Program: Background Processing

Next, we will examine a sample program that makes use of fork () and exec () to execute
a program in the background. The original process creates a child to exec the specified
executable file and then terminates. The orphaned child is automatically adopted by
“init.” Here is the code:

$ cat background.c ...list the program.
#include <stdio.h>
main (argc, argv)
int argc;
char* argv [];
{
if (fork () == 0) /* Child */
{
execvp (argv[1], &argv[1]); /* Execute other program */
fprintf (stderr, "Could not execute %s\n", argv[1]);

}
}
$ background cc mywait.c ...run the program.
$ ps ...confirm that "cc" is in background.
PID TT STAT TIME COMMAND
13664 p0 S 0:00 -csh (csh)
13716 p0 R 0:00 ps
13717 p0 D 0:00 cc mywait.c
$ _

Note how I craftily passed the argument list from main () to execvp () by passing
&argv[1] as the second argument to execvp (). Note also that I used execvp () instead
of execv () so that the program could use $PATH to find the executable file.

Sample Program: Disk Usage

The next programming example uses a novel technique for counting the number of
nondirectory files in a hierarchy. When the program is started, its first argument must
be the name of the directory to search.The program searches through each entry in the
directory, spawning off a new process for each. Each child process either exits with 1 if
its associated file is a nondirectory file or repeats the process, summing up the exit
codes of its children and exiting with the total count. This technique is interesting, but
silly: Not only does it create a large number of processes, which is not particularly effi-
cient, but since it uses the termination code to return the file count, it’s limited to an
eight-bit total count. The code is as follows:

$ cat count.c ...list the program.
#include <stdio.h>
#include <fcntl.h>
#include <sys/dirent.h>
#include <sys/stat.h>
long processFile ();

Process Management 485

long processDirectory ();
main (argc, argv)
int argc;
char* argv [];
{
long count;
count = processFile (argv[1]);
printf ("Total number of non-directory files is %ld\n", count);
return (/* EXIT_SUCCESS */ 0);
}
long processFile (name)
char* name;
{
struct stat statBuf; /* To hold the return data from stat () */
mode_t mode;
int result;
result = stat (name, &statBuf); /* Stat the specified file */
if (result == -1) return (0); /* Error */
mode = statBuf.st_mode; /* Look at the file's mode */
if (S_ISDIR (mode)) /* Directory */
return (processDirectory (name));

else
return (1); /* A non-directory file was processed */

}
long processDirectory (dirName)
char* dirName;
{
int fd, children, i, charsRead, childPid, status;
long count, totalCount;
char fileName [100];
struct dirent dirEntry;
fd = open (dirName, O_RDONLY); /* Open directory for reading */
children = 0; /* Initialize child process count */
while (1) /* Scan directory */
{
charsRead = getdents (fd, &dirEntry, sizeof (struct dirent));
if (charsRead == 0) break; /* End of directory */
if (strcmp (dirEntry.d_name, ".") != 0 &&

strcmp (dirEntry.d_name, "..") != 0)
{
if (fork () == 0) /* Create a child to process dir. entry */
{
sprintf (fileName, "%s/%s", dirName, dirEntry.d_name);
count = processFile (fileName);
exit (count);

}
else
++children; /* Increment count of child processes */

}

486 Chapter 13 Systems Programming

lseek (fd, dirEntry.d_off, SEEK_SET); /* Jump to next dir.entry */
}

close (fd); /* Close directory */
totalCount = 0; /* Initialize file count */
for (i = 1; i <= children; i++) /* Wait for children to terminate */
{
childPid = wait (&status); /* Accept child's termination code */
totalCount += (status >> 8); /* Update file count */

}
return (totalCount); /* Return number of files in directory */

}
$ ls -F ...list current directory.
a.out* disk.c fork tmp/ zombie*
background myexec.c myfork.c mywait.c
background.c myexit.c orphan.c mywait*
count* myexit* orphan* zombie.c
$ ls tmp ...list only subdirectory.
a.out* disk.c myexit.c orphan.c
background.c myexec.c myfork.c mywait.c
zombie.c
$ countcount regular files from ".".
Total number of non-directory files is 25
$ _

Threads

Multiple processes are expensive to create, either anew or by copying an existing
process with the fork () system call. Often, a completely new process space is not nec-
essary for a small, yet independent, task in a program. In fact, you may want separate
tasks to be able to share some resources in a process, such as memory space, or to share
an open device.

When multiprocessor systems became available, it was clear that UNIX needed a
better way to take advantage of multiple processors without requiring a new process to
be started in order to take advantage of the additional processor. A thread is an ab-
straction that allows multiple “threads of control” in a single process space. It can al-
most be thought of as a process within a process (almost). The thread model is similar
to the UNIX process model in many ways.

Terminology among some thread implementations can be confusing. You may
find the term “lightweight processes” used interchangeably with “thread,” or you may
find places where the two terms are used to distinguish subtle differences. In most
cases, the idea of lighter weight (i.e., less expensive costs) is what is intended. For the
purposes of our high-level examination, we will merely refer to threads.

Since the implementation of thread functionality varies widely in different ver-
sions of UNIX, to examine any one would unfairly ignore others, and a complete ex-
amination of all current implementations is beyond the scope of this introductory text.
We therefore will examine UNIX thread functionality at a high level that is common to
all implementations. I recommend that you consult the documentation for your version
of UNIX for information on specific system calls.

Process Management 487

Thread management

Four major functions make up the common thread management capabilities in most
implementations:

• create—create a thread
• join—suspend and wait for a created thread to terminate (similar to the wait()

system call between parent and child processes)
• detach—allow the thread to release its resources to the system when it finishes

and not require a join (in this case, an exit value is not available)
• terminate—return resources to process

Thread synchronization

In a multithreaded environment, one or more threads can be created to handle specif-
ic tasks. If the tasks are unrelated, the threads can be initiated and run to completion. If
any part of the task requires information from another task, processing among threads
must be synchronized. Synchronization can often be accomplished via standard UNIX
IPC mechanisms, but most threads libraries also provide synchronization primitives
specific to the use of threads.

A mutex object can be used to manage mutual exclusion among threads. Mutex
objects can be created, destroyed, locked, and unlocked. The attributes of a mutex ob-
ject are shared among threads and are used to let other threads know the state of the
thread the mutex object describes. Mutex objects can also be used in conjunction with
conditional variables, which maintain a value (such as a threshold) to allow more pre-
cise management of thread synchronization.

Thread Safety

So now you’ve synchronized the various threads of control in your own program, but
what about library functions they call? Does your code need to synchronize its use of a
graphics library (for example) to make sure that two separate threads don’t try to write
to the same part of the screen at the same time? What about two threads that are using a
math library to update shared data? You’ve synchronized your use of your variables, but
do the math functions use any shared variables? Is the function reentrant (i.e., can more
than one control point be used in the memory space of the function at the same time)?

By asking these questions, you are asking if the library is thread safe: Is it safe to
call the functions in these libraries from a multithreaded program? It probably isn’t
hard to imagine the kinds of unforeseen problems that can crop up under these cir-
cumstances. Unless the vendor or author of the library claims that it is thread safe, you
should assume that it is not and write your code accordingly (managing mutually ex-
clusive access to the library among the various threads in your program).

Other process-related system calls that we’ve already examined may be affected
by the implementation of threads. For example, each thread maintains its own stack,
signal mask, and local storage area.Therefore, it may not always be obvious when a sys-
tem call applies only to the thread or to the entire process running the thread. It will be
important for you to find out what effects your implementation of threads may have on
other UNIX system calls.

488 Chapter 13 Systems Programming

Redirection

When a process forks, the child inherits a copy of its parent’s file descriptors. When a
process execs, all file descriptors that do not close upon execution remain unaffected,
including the standard input, output, and error channels. The UNIX shells use these
two pieces of information to implement redirection. For example, say you type the
command

$ ls > ls.out

at a terminal. To perform the redirection, the shell performs the following series of
actions:

• The parent shell forks and then waits for the child shell to terminate.
• The child shell opens the file “ls.out,” creating or truncating it as necessary.
• The child shell then duplicates the file descriptor of “ls.out” to the standard out-

put file descriptor, number 1, and then closes the original descriptor of “ls.out”.
All standard output is therefore redirected to “ls.out”.

• The child shell then exec’s the ls utility. Since file descriptors are inherited during
an exec (), all of the standard output of ls goes to “ls.out”.

• When the child shell terminates, the parent resumes. The parent’s file descriptors
are unaffected by the child’s actions, as each process maintains its own private de-
scriptor table.

To redirect the standard error channel in addition to standard output, the shell would
simply have to duplicate the “ls.out” descriptor twice—once to descriptor 1 and once to
descriptor 2.

Following a small program that does approximately the same kind of redirection
as a UNIX shell. When invoked with the name of a file as the first parameter and a
command sequence as the remaining parameters, the program “redirect” redirects the
standard output of the command to the named file. Here’s the code:

$ cat redirect.c ...list the program.
#include <stdio.h>
#include <fcntl.h>
main (argc, argv)
int argc;
char* argv [];
{
int fd;
/* Open file for redirection */
fd = open (argv[1], O_CREAT | O_TRUNC | O_WRONLY, 0600);
dup2 (fd, 1); /* Duplicate descriptor to standard output */
close (fd); /* Close original descriptor to save descriptor space */
execvp (argv[2], &argv[2]); /* Invoke program; will inherit stdout */
perror ("main"); /* Should never execute */
}

Signals 489

$ redirect ls.out ls -l ...redirect "ls -l" to "ls.out".
$ cat ls.out ...list the output file.
total 5
-rw-r-xr-x 1 gglass 0 Feb 15 10:35 ls.out
-rw-r-xr-x 1 gglass 449 Feb 15 10:35 redirect.c
-rwxr-xr-x 1 gglass 3697 Feb 15 10:33 redirect
$ _

The Internet shell described at the end of this chapter has better redirection facilities
than the standard UNIX shells; it can even redirect output to another Internet shell on
a remote host.

SIGNALS

Programs must sometimes deal with unexpected or unpredictable events, such as any
of the following:

• a floating-point error
• a power failure
• an alarm clock “ring” (discussed soon)
• the death of a child process
• a termination request from a user (i.e., a Control-C)
• a suspend request from a user (i.e., a Control-Z)

These kinds of events are sometimes called interrupts, since they must interrupt the
regular flow of a program in order to be processed. When UNIX recognizes that such
an event has occurred, it sends the corresponding process a signal. There is a unique,
numbered signal for each possible event. For example, if a process causes a floating-
point error, the kernel sends the offending process signal number 8, as shown in
Figure 13.43. The kernel isn’t the only one that can send a signal; any process can send
any other process a signal, as long as it has permission. (The rules regarding permis-
sions are discussed shortly.)

ProcessSignal
#8

FIGURE 13.43

Floating-point error signal.

By means of a special piece of code called a signal handler, a programmer may
arrange for a particular signal to be ignored or to be processed. In the latter case, the
process that receives the signal suspends its current flow of control, executes the signal
handler, and then resumes the original flow of control when the signal handler finishes.

490 Chapter 13 Systems Programming

By learning about signals, you can “protect” your programs from Control-C’s,
arrange for an alarm clock signal to terminate your program if it takes too long to per-
form a task, and learn how UNIX uses signals during everyday operations.

The Defined Signals

Signals are defined in “/usr/include/sys/signal.h.” A programmer may choose for a par-
ticular signal to trigger a user-supplied signal handler, trigger the default kernel-sup-
plied handler, or be ignored.The default handler usually performs one of the following
actions:

• terminates the process and generates a core file (dump)
• terminates the process without generating a core image file (quit)
• ignores and discards the signal (ignore)
• suspends the process (suspend)
• resumes the process

A List of Signals

Figure 13.44 lists the System V predefined signals, along with their macro definitions,
numeric values, default actions, and a brief description of each.

Macro # Default Description

SIGHUP 1 quit hang-up

SIGINT 2 quit interrupt

SIGQUIT 3 dump quit

SIGILL 4 dump invalid instruction

SIGTRAP 5 dump trace trap (used by debuggers)

SIGABRT 6 dump abort

SIGEMT 7 dump emulator trap instruction

SIGFPE 8 dump arithmetic exception

SIGKILL 9 quit kill (cannot be caught, blocked, or
ignored)

SIGBUS 10 dump bus error (bad format address)

SIGSEGV 11 dump segmentation violation (out-of-
range address)

FIGURE 13.44

Signals.

Signals 491

SIGSYS 12 dump bad argument to system call

SIGPIPE 13 quit write on a pipe or other socket with
no one to read it

SIGALRM 14 quit alarm clock

SIGTERM 15 quit software termination signal (default
signal sent by kill)

SIGUSR1 16 quit user signal 1

SIGUSR2 17 quit user signal 2

SIGCHLD 18 ignore child status changed

SIGPWR 19 ignore power fail or restart

SIGWINCH 20 ignore window size change

SIGURG 21 ignore urgent socket condition

SIGPOLL 22 exit pollable event

SIGSTOP 23 quit stopped (signal)

SIGSTP 24 quit stopped (user)

SIGCONT 25 ignore continued

SIGTTIN 26 quit stopped (tty input)

SIGTTOU 27 quit stopped (tty output)

SIGVTALRM 28 quit virtual timer expired

SIGPROF 29 quit profiling timer expired

SIGXCPU 30 dump CPU time limit exceeded

SIGXFSZ 31 dump file size limit exceeded

FIGURE 13.44 (Continued)

Terminal Signals

The easiest way to send a signal to a foreground process is by pressing Control-C or
Control-Z from the keyboard. When the terminal driver (the piece of software that
supports the terminal) recognizes a Control-C, it sends a SIGINT signal to all of the
processes in the current foreground job. Similarly, Control-Z causes the driver to send
a SIGTSTP signal to all of the processes in the current foreground job. By default,
SIGINT terminates a process and SIGTSTP suspends a process. Later in this section,
I’ll show you how to perform similar actions from a C program.

492 Chapter 13 Systems Programming

Requesting an Alarm Signal: alarm ()

One of the simplest ways to see a signal in action is to arrange for a process to receive
an alarm clock signal, SIGALRM, by using alarm (). The default handler for this signal
displays the message “Alarm clock” and terminates the process. Figure 13.45 shows
how alarm () works. Here’s a small program that uses alarm (), together with its output:

$ cat alarm.c ...list the program.
#include <stdio.h>
main ()
{
alarm (3); /* Schedule an alarm signal in three seconds */
printf ("Looping forever...\n");
while (1);
printf ("This line should never be executed\n");
}
$ alarm ...run the program.
Looping forever...
Alarm clock ...occurs three seconds later.
$ _

The next section shows you how you override a default signal handler and make your
program respond specially to a particular signal.

Library Routine: unsigned int alarm (unsigned int count)

alarm () instructs the kernel to send the SIGALRM signal to the calling process
after count seconds. If an alarm had already been scheduled, it is overwritten. If
count is 0, any pending alarm requests are cancelled.

alarm () returns the number of seconds that remain until the alarm signal is
sent.

FIGURE 13.45

Description of the alarm () library routine.

Handling Signals: signal ()

The last sample program reacted to the alarm signal SIGALRM in the default manner.
The signal () system call may be used to override the default action. It works as shown
in Figure 13.46. I made the following changes to the previous program so that it caught
and processed the SIGALRM signal efficiently:

• I installed my own signal handler, alarmHandler (), by using signal ().
• I made the while loop less draining on the time-sharing system by making use of

a system call called pause ().The old version of the while loop had an empty code
body that caused it to loop very fast and soak up CPU resources.The new version
of the while loop suspends each time through the loop until a signal is received.

Signals 493

Library Routine: int pause (void)

pause () suspends the calling process and returns when the calling process receives a
signal. Pause () is most often used to wait efficiently for an alarm signal. It doesn’t
return anything useful.

FIGURE 13.47

Description of the pause () library routine.

Figure 13.47 provides a description of pause (). Here’s the updated version of the
program:

$ cat handler.c ...list the program.
#include <stdio.h>
#include <signal.h>
int alarmFlag = 0; /* Global alarm flag */

Library Routine: void (*signal (int sigCode, void (*func)(int))) (int)

signal () allows a process to specify the action that it will take when a particular sig-
nal is received. The parameter sigCode specifies the number of the signal that is to
be reprogrammed, and func may be one of several values:

• SIG_IGN, which indicates that the specified signal should be ignored and
discarded.

• SIG_DFL, which indicates that the kernel’s default handler should be used.
• an address of a user-defined function, which indicates that the function should

be executed when the specified signal arrives.

The valid signal numbers are stored in “/usr/include/signal.h”. The signals
SIGKILL and SIGSTP may not be reprogrammed. A child process inherits the sig-
nal settings from its parent during a fork ().When a process performs an exec (), pre-
viously ignored signals remain ignored, but installed handlers are set back to the
default handler.

With the exception of SIGCHLD, signals are not stacked. This means that if a
process is sleeping and three identical signals are sent to it, only one of the signals is
actually processed.

signal () returns the previous func value associated with sigCode if successful;
otherwise, it returns –1.

FIGURE 13.46

Description of the signal () library routine.

494 Chapter 13 Systems Programming

void alarmHandler (); /* Forward declaration of alarm handler */
/***/
main ()
{
signal (SIGALRM, alarmHandler); /* Install signal handler */
alarm (3); /* Schedule an alarm signal in three seconds */
printf ("Looping...\n");
while (!alarmFlag) /* Loop until flag set */
{
pause (); /* Wait for a signal */

}
printf ("Loop ends due to alarm signal\n");
}
/***/
void alarmHandler ()
{
printf ("An alarm clock signal was received\n");
alarmFlag = 1;
}
$ handler ...run the program.
Looping...
An alarm clock signal was received ...occurs three seconds later.
Loop ends due to alarm signal
$ _

Protecting Critical Code and Chaining Interrupt Handlers

The same techniques that I just described may be used to protect critical pieces of code
against Control-C attacks and other such signals. In these cases, it’s common to save the
previous value of the handler so that it can be restored after the critical code has exe-
cuted. Here’s the source code of a program that protects itself against SIGINT signals:

$ cat critical.c ...list the program.
#include <stdio.h>
#include <signal.h>
main ()
{
void (*oldHandler) (); /* To hold old handler value */
printf ("I can be Control-C'ed\n");
sleep (3);
oldHandler = signal (SIGINT, SIG_IGN); /* Ignore Control-C */
printf ("I'm protected from Control-C now\n");
sleep (3);
signal (SIGINT, oldHandler); /* Restore old handler */
printf ("I can be Control-C'ed again\n");
sleep (3);
printf ("Bye!\n");
}
$ critical ...run the program.

Signals 495

I can be Control-C'ed
^C ...Control-C works here.
$ critical ...run the program again.
I can be Control-C'ed
I'm protected from Control-C now
^C ...Control-C is ignored.
I can be Control-C'ed again
Bye!
$ _

Sending Signals: kill ()

A process may send a signal to another process by using the kill () system call. kill () is
a misnomer, since many of the signals that it can send do not terminate a process. It’s
called kill () because of historical reasons:The main use of signals when UNIX was first
designed was to terminate processes. kill () works as shown in Figure 13.48.

System Call: int kill (pid_t pid, int sigCode)

kill () sends the signal with value sigCode to the process with PID pid. kill () suc-
ceeds, and the signal is sent as long as at least one of the following conditions is
satisfied:

• The sending process and the receiving process have the same owner.

• The sending process is owned by a superuser.

There are a few variations on the way that kill () works:

• If pid is 0, the signal is sent to all of the processes in the sender’s process group.

• If pid is –1 and the sender is owned by a superuser, the signal is sent to all
processes, including the sender.

• If pid is –1 and the sender is not a superuser, the signal is sent to all of the
processes owned by the same owner as the sender, excluding the sending
process.

• If pid is negative and not –1, the signal is sent to all of the processes in the
process group. (Process groups are discussed later in the chapter.)

If kill () manages to send at least one signal successfully, it returns 0; otherwise, it re-
turns –1.

FIGURE 13.48

Description of the kill () system call.

496 Chapter 13 Systems Programming

Death of Children

When a parent’s child terminates, the child process sends its parent a SIGCHLD signal.
A parent process often installs a handler to deal with this signal, which typically exe-
cutes a wait () to accept the child’s termination code and let the child “de-zombify.”1

Alternatively, the parent can choose to ignore SIGCHLD signals, in which case
the child de-zombifies automatically. One of the socket programs that follows later in
the chapter makes use of this feature.

The next example illustrates a SIGCHLD handler and allows a user to limit the
amount of time that a command takes to execute. The first parameter of “limit” is the
maximum number of seconds that is allowed for execution, and the remaining parame-
ters are the command itself. The program works by performing the following steps:

1. The parent process installs a SIGCHLD handler that is executed when its child
process terminates.

2. The parent process forks a child process to execute the command.
3. The parent process sleeps for the specified number of seconds.When it wakes up,

it sends its child process a SIGINT signal to kill it.
4. If the child terminates before its parent finishes sleeping, the parent’s SIGCHLD

handler is executed, causing the parent to terminate immediately.

Here are the source code and sample output from the program:

$ cat limit.c ...list the program.
#include <stdio.h>
#include <signal.h>
int delay;
void childHandler ();
/**/
main (argc, argv)
int argc;
char* argv[];
{
int pid;
signal (SIGCHLD, childHandler); /* Install death-of-child handler */
pid = fork (); /* Duplicate */
if (pid == 0) /* Child */
{
execvp (argv[2], &argv[2]); /* Execute command */
perror ("limit"); /* Should never execute */

}
else /* Parent */
{
sscanf (argv[1], "%d", &delay); /* Read delay from command line */

lThis means that the child is completely laid to rest and is no longer a zombie.

Signals 497

sleep (delay); /* Sleep for the specified number of seconds */
printf ("Child %d exceeded limit and is being killed\n", pid);
kill (pid, SIGINT); /* Kill the child */

}
}
/**/
void childHandler () /* Executed if the child dies before the parent */
{
int childPid, childStatus;
childPid = wait (&childStatus); /* Accept child's termination code */
printf ("Child %d terminated within %d seconds\n", childPid, delay);
exit (/* EXITSUCCESS */ 0);
}
$ limit 5 ls ...run the program; command finishes OK.
a.out alarm critical handler limit
alarm.c critical.c handler.c limit.c
Child 4030 terminated within 5 seconds
$ limit 4 sleep 100 ...run it again; command takes too long.
Child 4032 exceeded limit and is being killed
$ _

Suspending and Resuming Processes

The SIGSTOP and SIGCONT signals suspend and resume a process, respectively.
They are used by the UNIX shells (most shells, except for the Bourne shell) that sup-
port job control to implement built-in commands such as stop, fg, and bg.

In the next example, the main program created two children that entered an infi-
nite loop and displayed a message every second. The main program waited for three
seconds and then suspended the first child. The second child continued to execute as
usual. After another three seconds, the parent restarted the first child, waited a little
while longer, and then terminated both children. Here is the code:

$ cat pulse.c ...list the program.
#include <signal.h>
#include <stdio.h>
main ()
{
int pid1;
int pid2;
pid1 = fork ();
if (pid1 == 0) /* First child */
{
while (1) /* Infinite loop */
{
printf ("pid1 is alive\n");
sleep (1);

}
}

pid2 = fork (); /* Second child */

498 Chapter 13 Systems Programming

if (pid2 == 0)
{
while (1) /* Infinite loop */
{
printf ("pid2 is alive\n");
sleep (1);

}
}

sleep (3);
kill (pid1, SIGSTOP); /* Suspend first child */
sleep (3);
kill (pid1, SIGCONT); /* Resume first child */
sleep (3);
kill (pid1, SIGINT); /* Kill first child */
kill (pid2, SIGINT); /* Kill second child */
}
$ pulse ...run the program.
pid1 is alive ...both run in first three seconds.
pid2 is alive
pid1 is alive
pid2 is alive
pid1 is alive
pid2 is alive
pid2 is alive ...just the second child runs now.
pid2 is alive
pid2 is alive
pid1 is alive ...the first child is resumed.
pid2 is alive
pid1 is alive
pid2 is alive
pid1 is alive
pid2 is alive
$ _

Process Groups and Control Terminals

When you’re in a shell and you execute a program that creates several children, a sin-
gle Control-C from the keyboard will normally terminate the program and its children
and then return you to the shell. In order to support this kind of behavior, UNIX in-
troduced a few new concepts:

• In addition to having a unique process ID number, every process is a member of
a process group. Several processes can be members of the same process group.
When a process forks, the child inherits its process group from its parent. A
process may change its process group to a new value by using setpgid (). When a
process execs, its process group remains the same.

• Every process can have an associated control terminal—typically, the terminal
where the process was started. When a process forks, the child inherits its control
terminal from its parent.When a process execs, its control terminal stays the same.

Signals 499

• Every terminal can be associated with a single control process. When a
metacharacter such as Control-C is detected, the terminal sends the appropriate
signal to all of the processes in the process group of its control process.

• If a process attempts to read from its control terminal and is not a member of the
same process group as the terminal’s control process, the process is sent a SIGT-
TIN signal, which normally suspends it.

Here’s how a shell uses these features:

• When an interactive shell begins, it is the control process of a terminal and has that
terminal as its control terminal. How this occurs is beyond the scope of the book.

• When a shell executes a foreground process, the child shell places itself in a dif-
ferent process group before exec’ing the command and takes control of the ter-
minal. Any signals generated from the terminal thus go to the foreground
command rather than the original parent shell. When the foreground command
terminates, the original parent shell takes back control of the terminal.

• When a shell executes a background process, the child shell places itself in a differ-
ent process group before exec’ing, but does not take control of the terminal. Any
signals generated from the terminal continue to go to the shell. If the background
process tries to read from its control terminal, it is suspended by a SIGTTIN signal.

The diagram in Figure 13.49 illustrates a typical setup. Assume that process 145 and
process 230 are the process leaders of background jobs, and that process 171 is the
process leader of the foreground job. setpgid () changes a process’ group and works as
shown in Figure 13.50. A process may find out its current process group ID by using
getpgid (), which works as shown in Figure 13.51.

148 150

145

Process group
145

174 176

171

Process group
171

231 233

230

Process group
230

Signals

Processes in groups 145, 171,
and 230 share the same controlling

terminal

The terminal’s control
process is 171

FIGURE 13.49

Control terminals and process groups.

500 Chapter 13 Systems Programming

The next example illustrates the fact that a terminal distributes signals to all of the
processes in its control process’ process group. Since the child inherited its process
group from its parent, both the parent and child catch the SIGINT signal. The code is
as follows:

$ cat pgrp1.c ...list program.
#include <signal.h>
#include<stdio.h>
void sigintHandler ();
main ()
{
signal (SIGINT, sigintHandler); /* Handle Control-C */
if (fork () == 0)
printf ("Child PID %d PGRP %d waits\n", getpid (),getpgid (0));

else
printf ("Parent PID %d PGRP %dwaits\n", getpid (), getpgid (0));

pause (); /* Wait for asignal */
}
void sigintHandler ()

System Call: pid_t setpgid (pid_t pid, pid_t pgrpId)

setpgid () sets the process group ID of the process with PID pid to pgrpId. If pid is
zero, the caller’s process group ID is set to pgrpId. In order for setpgid () to succeed
and set the process group ID, at least one of the following conditions must be met:

• The caller and the specified process must have the same owner.

• The caller must be owned by a superuser.

When a process wants to start its own unique process group, it typically passes its
own process ID number as the second parameter to setpgid ().

If setpgid () fails, it returns –1.

FIGURE 13.50

Description of the setpgid () system call.

System Call: pid_t getpgid (pid_t pid)

getpgid () returns the process group ID of the process with PID pid. If pid is zero,
the process group ID of the caller is returned.

FIGURE 13.51

Description of the getpgid () system call.

Signals 501

{
printf ("Process %d got a SIGINT\n",getpid ());
}
$ pgrp1 ...run the program.
Parent PID 24583 PGRP 24583 waits
Child PID 24584 PGRP 24583 waits
^C ...press Control-C.
Process 24584 got a SIGINT
Process 24583 got a SIGINT
$ _

If a process places itself into a different process group, it is no longer associated with
the terminal’s control process and does not receive signals from the terminal. In the
following example, the child process is not affected by a Control-C:

$ cat pgrp2.c ...list the program.
#include <signal.h>
#include <stdio.h>
void sigintHandler ();
main()
{
int i;
signal (SIGINT, sigintHandler); /* Install signal handler */
if (fork () == 0)
setpgid (0, getpid ()); /* Place child in its own process group */

printf ("Process PID %d PGRP %d waits\n", getpid (), getpgid (0));
for (i = 1; i <= 3; i++) /* Loop three times */
{
printf ("Process %d is alive\n", getpid ());
sleep(1);

}
}
void sigintHandler ()
{
printf ("Process %d got a SIGINT\n", getpid ());
exit (1);
}
$ pgrp2 ...run the program.
Process PID 24591 PGRP 24591 waits
Process PID 24592 PGRP 24592 waits
^C ...Control-C
Process 24591 got a SIGINT ...parent receives signal.
Process 24592 is alive ...child carries on.
Process 24592 is alive
Process 24592 is alive
$ _

If a process attempts to read from its control terminal after it disassociates itself from
the terminal’s control process, it is sent a SIGTTIN signal, which suspends the receiver

502 Chapter 13 Systems Programming

by default. In the following example, I trapped SIGTTIN with my own handler to
make the effect a little clearer:

$ cat pgrp3.c ...list the program.
#include <signal.h>
#include <stdio.h>
#include <sys/termio.h>
#include <fcntl.h>
void sigttinHandler ();
main ()
{
int status;
char str [100];
if (fork () == 0) /* Child */
{
signal (SIGTTIN, sigttinHandler); /* Install handler */
setpgid (0, getpid ()); /* Place myself in a new process group */
printf ("Enter a string: ");
scanf ("%s", str); /* Try to read from control terminal */
printf ("You entered %s\n", str);

}
else /* Parent */
{
wait (&status); /* Wait for child to terminate */

}
}
void sigttinHandler ()
{
printf ("Attempted inappropriate read from control terminal\n");
exit (1);
}
$ pgrp3 ...run the program.
Enter a string: Attempted inappropriate read from control terminal
$ _

IPC

Interprocess communication (IPC) is the generic term describing how two processes
may exchange information with each other. In general, the two processes may be run-
ning on the same machine or on different machines, although some IPC mechanisms
may support only local usage (e.g., signals and pipes). IPC may be an exchange of data
wherein two or more processes are cooperatively processing the data or other syn-
chronization information to help two independent, but related, processes schedule
work so that they do not destructively overlap.

Pipes

Pipes are an interprocess communication mechanism that allow two or more processes
to send information to each other.They are commonly used from within shells to connect

IPC 503

the standard output of one utility to the standard input of another. For example, here’s
a simple shell command that determines how many users are on a system:

$ who | wc -1

The who utility generates one line of output per user. This output is then “piped” into
the wc utility, which, when invoked with the -1 option, outputs the total number of lines
in its input. Thus, the pipelined command craftily calculates the total number of users
by counting the number of lines that who generates. Figure 13.52 shows a diagram of
the pipeline.

It’s important to realize that both the writer process and the reader process of a
pipeline execute concurrently; a pipe automatically buffers the output of the writer and
suspends the writer if the pipe gets too full. Similarly, if a pipe empties, the reader is
suspended until some more output becomes available.

All versions of UNIX support unnamed pipes, which are the kind of pipes that
shells use. System V also supports a more powerful kind of pipe called a named pipe. In
this section, I’ll show you how to construct each kind of pipe, starting with unnamed
pipes.

Unnamed pipes: pipe ()

An unnamed pipe is a unidirectional communication link that automatically buffers its
input (the maximum size varies with different versions of UNIX, but is approximately
5K) and may be created using the pipe () system call. Each end of a pipe has an associ-
ated file descriptor. The “write” end of the pipe may be written to using write (), and
the “read” end may be read from using read (). When a process has finished with a
pipe’s file descriptor, it should close it, using close (). Figure 13.53 shows how pipe ()
works.

If the code is executed, then the data structures shown in Figure 13.54 will be cre-
ated. Unnamed pipes are usually used for communication between a parent process
and its child, with one process writing and the other process reading. The typical se-
quence of events is as follows:

int fd [2];
pipe (fd);

who Pipe wc

Bytes from "who" flow
through the pipe to "wc"

FIGURE 13.52

A simple pipe.

504 Chapter 13 Systems Programming

System Call: int pipe (int fd [2])

pipe () creates an unnamed pipe and returns two file descriptors; the descriptor as-
sociated with the “read” end of the pipe is stored in fd [0], and the descriptor associ-
ated with the “write” end of the pipe is stored in fd [1].

The following rules apply to processes that read from a pipe:

• If a process reads from a pipe whose write end has been closed, the read () re-
turns a 0, indicating the end of input.

• If a process reads from an empty pipe whose write end is still open, it sleeps
until some input becomes available.

• If a process tries to read more bytes from a pipe than are present, all of the
pipe’s current contents are returned, and read () returns the number of bytes
actually read.

The following rules apply to processes that write to a pipe:

• If a process writes to a pipe whose read end has been closed, the write fails and
the writer is sent a SIGPIPE signal.The default action of this signal is to termi-
nate the receiver.

• If a process writes fewer bytes to a pipe than the pipe can hold, the write () is
guaranteed to be atomic; that is, the writer process will complete its system call
without being preempted by another process. If a process writes more bytes to
a pipe than the pipe can hold, no similar guarantees of atomicity apply.

Since access to an unnamed pipe is via the file descriptor mechanism, typically only
the process that creates a pipe and its descendants may use the pipe.2 lseek () has no
meaning when applied to a pipe.

If the kernel cannot allocate enough space for a new pipe, pipe () returns –1;
otherwise, it returns 0.

FIGURE 13.53

Description of the pipe () system call.

Write end

Pipe

Read end

fd [0]

fd [1]

FIGURE 13.54

An unnamed pipe.

2In advanced situations, it is actually possible to pass file descriptors to unrelated processes via a pipe.

IPC 505

1. The parent process creates an unnamed pipe, using pipe ().
2. The parent process forks.
3. The writer closes its read end of the pipe, and the designated reader closes its

write end of the pipe.
4. The processes communicate by using write () and read () calls.
5. Each process closes its active pipe descriptor when it’s finished with it.

Bidirectional communication is possible only by using two pipes. Here’s a small pro-
gram that uses a pipe to allow the parent to read a message from its child:

$ cat talk.c ...list the program.
#include <stdio.h>
#define READ 0 /* The index of the read end of the pipe */
#define WRITE 1 /* The index of the write end of the pipe */
char* phrase = "Stuff this in your pipe and smoke it";
main ()
{
int fd [2], bytesRead;
char message [100]; /* Parent process' message buffer */
pipe (fd); /*Create an unnamed pipe */
if (fork () == 0) /* Child, writer */
{
close(fd[READ]); /* Close unused end */
write (fd[WRITE],phrase, strlen (phrase) + 1); /* include NULL*/
close (fd[WRITE]); /* Close used end*/

}
else /* Parent, reader*/
{
close (fd[WRITE]); /* Close unusedend */
bytesRead = read (fd[READ], message, 100);
printf ("Read %d bytes: %s\n", bytesRead, message); /* Send */
close (fd[READ]); /* Close usedend */

}
}
$ talk ...run the program.
Read 37 bytes: Stuff this in your pipe and smoke it
$ _

Notice that the child included the phrase’s NULL terminator as part of the message so
that the parent could easily display it.When a writer process sends more than one vari-
able-length message into a pipe, it must use a protocol to indicate an end of message to
the reader. Methods for doing this include the following:

• sending the length of a message (in bytes) before sending the message itself
• ending a message with a special character, such as a newline or a NULL

UNIX shells use unnamed pipes to build pipelines. To do so, they use a trick similar to
the redirection mechanism described in an section to connect the standard output of
one process to the standard input of another. To illustrate this approach, consider a

506 Chapter 13 Systems Programming

program that executes two named programs, connecting the standard output of the
first to the standard input of the second. The program doing the connecting assumes
that neither program is invoked with options and that the names of the programs are
listed on the command line. Here’s the code:

$ cat connect.c ...list the program.
#include <stdio.h>
#define READ 0
#define WRITE 1
main (argc, argv)
int argc;
char* argv [];
{
int fd [2];
pipe (fd); /* Create an unamed pipe */
if (fork () != 0) /* Parent, writer */
{
close (fd[READ]); /* Close unused end */
dup2 (fd[WRITE], 1); /* Duplicate used end to stdout */
close (fd[WRITE]); /* Close original used end */
execlp (argv[1], argv[1], NULL); /* Execute writer program */
perror ("connect"); /* Should never execute */

}
else /* Child, reader */
{
close (fd[WRITE]); /* Close unused end */
dup2 (fd[READ], 0); /* Duplicate used end to stdin */
close (fd[READ]); /* Close original used end */
execlp (argv[2], argv[2], NULL); /* Execute reader program */
perror ("connect"); /* Should never execute */

}
}
$ who ...execute "who" by itself.
gglass ttyp0 Feb 15 18:45 (xyplex_3)
$ connect who wc ...pipe "who" through "wc".

1 6 57 ...1 line, 6 words, 57 chars.
$ _

Later in the chapter, we examine a more sophisticated example of unnamed pipes.
Also, the chapter review contains an interesting exercise that involves building a ring
of pipes.

Named pipes

Named pipes [often referred to as first-in, first-out queues (FIFOs)] are less restricted
than unnamed pipes, and offer the following advantages:

• They have a name that exists in the file system.
• They may be used by unrelated processes.
• They exist until they are explicitly deleted.

IPC 507

Unfortunately, named pipes are supported only by System V. All of the rules that I
mentioned in the previous section regarding unnamed pipes apply to named pipes, ex-
cept that named pipes have a larger buffer capacity—typically, about 40K.

Named pipes exist as special files in the file system and may be created in one of
two ways:

• by using the UNIX mknod utility
• by using the mknod () system call

To create a named pipe using mknod, use the p option. (For more information about
mknod, see Chapter 15.) The mode of the named pipe may be set using chmod, allow-
ing others to access the pipe that you create. Here’s an example of this procedure, exe-
cuted from a Korn shell:

$ mknod myPipe p ...create pipe.
$ chmod ug+rw myPipe ...update permissions.
$ ls -lg myPipe ...examine attributes.
prw-rw---- 1 glass cs 0 Feb 27 12:38 myPipe
$ _

Note that the type of the named pipe is “p” in the ls listing.
To create a named pipe using mknod (), specify S_IFIFO as the file mode. The

mode of the pipe can then be changed by using chmod (). Here’s a snippet of C code
that creates a named pipe with read and write permission for the owner and group:

mknod ("myPipe", SIFIFO, 0); /* Create a named pipe */
chmod ("myPipe", 0660); /* Modify its permission flags */

Regardless of how you go about creating a named pipe, the end result is the same: A
special file is added into the file system. Once a named pipe is opened using open (),
write () adds data at the start of the FIFO queue, and read () removes data from the
end of the FIFO queue.When a process has finished using a named pipe, it should close
it using close (), and when a named pipe is no longer needed, it should be removed
from the file system via unlink ().

Like an unnamed pipe, a named pipe is intended only for use as a unidirectional
link. Writer processes should open a named pipe for write only, and reader processes
should open one for read only. Although a process could open a named pipe for both
reading and writing, doing so doesn’t have much practical application. Before I show
you a sample program that uses named pipes, here are a couple of special rules con-
cerning their use:

• If a process tries to open a named pipe for read only and no process currently has
that file open for writing, the reader will wait until a process opens the file for
writing, unless O_NONBLOCK/O_NDELAY is set, in which case open () suc-
ceeds immediately.

• If a process tries to open a named pipe for write only and no process currently
has that file open for reading, the writer will wait until a process opens the file for

508 Chapter 13 Systems Programming

reading, unless O_NONBLOCK/O_NDELAY is set, in which case open () fails
immediately.

• Named pipes will not work across a network.

The next example uses two programs—“reader” and “writer”—and works like this:

• A single reader process is executed, creating a named pipe called “aPipe”. The
process then reads and displays NULL-terminated lines from the pipe until the
pipe is closed by all of the writing processes.

• One or more writer processes are executed, each of which opens the named pipe
called “aPipe” and sends three messages to it. If the pipe does not exist when a
writer tries to open it, the writer retries every second until it succeeds.When all of
a writer’s messages are sent, the writer closes the pipe and exits.

Following are the source code for each file and some sample output:

Reader program

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h> /* For SIFIFO */
#include <fcntl.h>
/***/
main ()
{
int fd;
char str[100];
unlink("aPipe"); /* Remove named pipe if it already exists */
mknod ("aPipe", S_IFIFO, 0); /* Create named pipe */
chmod ("aPipe", 0660); /* Change its permissions */
fd = open ("aPipe", O_RDONLY); /* Open it for reading */
while (readLine (fd, str)) /* Display received messages */
printf ("%s\n", str);
close (fd); /* Close pipe */

}
/***/
readLine (fd, str)
int fd;
char* str;
/* Read a single NULL-terminated line into str from fd */
/* Return 0 when the end-of-input is reached and 1 otherwise */
{
int n;
do /* Read characters until NULL or end-of-input */
{
n = read (fd, str, 1); /* Read one character */

}
while (n > 0 && *str++ != NULL);
return (n > 0); /* Return false if end-of-input */
}

IPC 509

Writer program

#include <stdio.h>
#include <fcntl.h>
/**/
main ()
{
int fd, messageLen, i;
char message [100];
/* Prepare message */
sprintf (message, "Hello from PID %d", getpid ());
messageLen = strlen (message) + 1;
do /* Keep trying to open the file until successful */
{
fd = open ("aPipe", O_WRONLY); /* Open named pipe for writing */
if (fd == -1) sleep (1); /* Try again in 1 second */

}
while (fd == -1);
for (i = 1; i <= 3; i++) /* Send three messages */
{
write (fd, message, messageLen); /* Write message down pipe */
sleep (3); /* Pause a while */

}
close (fd); /* Close pipe descriptor */

}

Sample output

$ reader & writer & writer & ...start 1 reader, 2 writers.
[1] 4698 ...reader process.
[2] 4699 ...first writer process.
[3] 4700 ...second writer process.
Hello from PID 4699
Hello from PID 4700
Hello from PID 4699
Hello from PID 4700
Hello from PID 4699
Hello from PID 4700
[2] Done writer ...first writer exits.
[3] Done writer ...second writer exits.
[1] Done reader ...reader exits.
$ _

Sockets

Sockets are the traditional UNIX interprocess communication mechanism that allows
processes to talk to each other, even if they’re on different machines. It is this across-
network capability that makes sockets so useful. For example, the rlogin utility, which
allows a user on one machine to log into a remote host, is implemented with sockets.

510 Chapter 13 Systems Programming

Other common uses of sockets include the following:

• printing a file on one machine from another machine
• transferring files from one machine to another machine

Process communication via sockets is based on the client–server model. One process,
known as a server process, creates a socket whose name is known by other client
processes. These client processes can talk to the server process via a connection to its
named socket. To do this, a client process first creates an unnamed socket and then re-
quests that it be connected to the server’s named socket. A successful connection re-
turns one file descriptor to the client and one to the server, both of which may be used
for reading and writing. Note that, unlike pipes, socket connections are bidirectional.
Figure 13.55 illustrates the process.

Server1. Server creates a named
 socket.

"Name"

Server
2. Client creates an unnamed
 socket and requests a
 connection.

3. Client makes a connection.
 Server retains original
 named socket.

Client"Name"

Server

"Name"

Client

Completed
connection

FIGURE 13.55

The socket connection.

Once a socket connection is made, it’s quite common for the server process to
fork a child process to converse with the client, while the original parent process con-
tinues to accept other client connections. A typical example of this is a remote print
server: The server process first accepts a client that wishes to send a file for printing
and then forks a child to perform the file transfer. The parent process meanwhile waits
for more client print requests.

In what follows, we’ll take a look at these topics:

• the different kinds of sockets
• how a server creates a named socket and waits for connections
• how a client creates an unnamed socket and requests a connection from a server

IPC 511

• how a server and client communicate after a socket connection is made
• how a socket connection is closed
• how a server can create a child process to converse with a client

The Different Kinds of Sockets

The various kinds of sockets may be classified according to three attributes:

• the domain
• the type
• the protocol

Domains

The domain of a socket indicates where the server and client sockets may reside; the
domains that are currently supported include the following:

• AF_UNIX (the clients and server must be in the same machine)
• AF_INET (the clients and server may be anywhere on the Internet)
• AF_NS (the clients and server may be on a XEROX network system)

“AF” stands for “Address Family.” There is a similar set of constants that begin with
“PF” (e.g., PF_UNIX and PF_INET), which stands for “Protocol Family.” Either set
may be used, since they are equivalent. This book contains information about
AF_UNIX and AF_INET sockets, but not AF_NS sockets.

Types

The type of socket determines the type of communication that can exist between the
client and server; the following are the two main types that are currently supported:

• SOCK_STREAM: sequenced, reliable, two-way-connection-based, variable-
length streams of bytes

• SOCK_DGRAM: like telegrams—connectionless, unreliable, fixed-length
messages

Other types that are either in the planning stages or implemented only in some do-
mains include the following:

• SOCK_SEQPACKET: sequenced, reliable, two-way-connection-based, fixed-
length packets of bytes

• SOCK_RAW: provides access to internal network protocols and interfaces

This book contains information only on how to use SOCK_STREAM sockets, which
are the most common. SOCK_STREAM sockets are both intuitive and easy to use.

512 Chapter 13 Systems Programming

Protocols

The protocol value specifies the low-level means by which the socket type is imple-
mented. System calls that expect a protocol parameter accept 0 as meaning “the cor-
rect protocol”; in other words, the protocol value is something that you generally won’t
have to worry about. Most systems support only protocols other than 0 as an optional
extra, so I’ll use the default protocol in all the examples.

Writing Socket Programs

Any program that uses sockets must include “/usr/include/sys/types.h” and “/usr/in-
clude/sys/socket.h”. Additional header files must be included on the basis of the sock-
et domain that you wish to use. The most commonly used domains are shown in
Figure 13.56. Other socket domains are defined in socket.h.

Domain Additional header files

AF_UNIX /usr/include/sys/un.h

AF_INET /usr/include/netinet/in.h
/usr/include/arpa/inet.h
/urs/include/netdb.h

FIGURE 13.56

Common socket domains and corresponding header files.

To illustrate clearly the way in which a program that uses sockets is written, I’ll
build my description of socket-oriented system calls around a small client–server ex-
ample that uses AF_UNIX sockets. Once I’ve done this, I’ll show you another exam-
ple that uses AF_INET sockets. The AF_UNIX example consists of the following two
programs:

• “chef,” the server, which creates a named socket called “recipe” and writes the
recipe to any clients which request it. The recipe is a collection of variable-length
NULL-terminated strings.

• “cook,” the client, which connects to the named socket called “recipe” and reads
the recipe from the server. “Cook” displays the recipe to standard output as it
reads it, and then it terminates.

The chef server process runs in the background. Any client cook processes that con-
nect to the server cause it fork a duplicate server to handle the recipe transfer, allowing
the original server to accept other incoming connections. Here’s some sample output
from the chef–cook example:

$ chef & ...run the server in the background.
[1] 5684
$ cook ...run a client-display the recipe.

IPC 513

spam, spam, spam, spam,
spam, and spam.
$ cook ...run another client-display the recipe.
spam, spam, spam, spam,
spam, and spam.
$ kill %1 ...kill the server.
[1] Terminated chef
$ _

Chef–Cook Listing

This section contains the complete listing of the chef and cook programs. I suggest that
you skim quickly through the code and then read the sections that follow for details on
how the two programs work. In the interests of space, I have purposely left out a great
deal of error checking.

Chef Server

1 #include <stdio.h>
2 #include <signal.h>
3 #include <sys/types.h>
4 #include <sys/socket.h>
5 #include <sys/un.h> /* For AFUNIX sockets */
6
7 #define DEFAULT_PROTOCOL 0
8
9 /**/
10
11 main ()
12
13 {
14 int serverFd, clientFd, serverLen, clientLen;
15 struct sockaddr_un serverUNIXAddress;/* Server address */
16 struct sockaddr_un clientUNIXAddress; /* Client address */
17 struct sockaddr* serverSockAddrPtr; /* Ptr to server address */
18 struct sockaddr* clientSockAddrPtr; /* Ptr to client address */
19
20 /* Ignore death-of-child signals to prevent zombies */
21 signal (SIGCHLD, SIG_IGN);
22
23 serverSockAddrPtr = (struct sockaddr*) &serverUNIXAddress;
24 serverLen = sizeof (serverUNIXAddress);
25
26 clientSockAddrPtr = (struct sockaddr*) &clientUNIXAddress;
27 clientLen = sizeof (clientUNIXAddress);
28
29 /* Create a UNIX socket, bidirectional, default protocol */
30 serverFd = socket (AF_UNIX, SOCK_STREAM, DEFAULT_PROTOCOL);
31 serverUNIXAddress.sun_family = AF_UNIX; /* Set domain type */

514 Chapter 13 Systems Programming

32 strcpy (serverUNIXAddress.sun_path, "recipe"); /* Set name */
33 unlink ("recipe"); /* Remove file if it already exists */
34 bind (serverFd, serverSockAddrPtr, serverLen); /* Create file */
35 listen (serverFd, 5); /* Maximum pending connection length */
36
37 while (1) /* Loop forever */
38 {
39 /* Accept a client connection */
40 clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);
41
42 if (fork () == 0) /* Create child to send receipe */
43 {
44 writeRecipe (clientFd); /* Send the recipe */
45 close (clientFd); /* Close the socket */
46 exit (/* EXIT_SUCCESS */ 0); /* Terminate */
47 }
48 else
49 close (clientFd); /* Close the client descriptor */
50 }
51 }
52
53 /**/
54
55 writeRecipe (fd)
56
57 int fd;
58
59 {
60 static char* line1 = "spam, spam, spam, spam,";
61 static char* line2 = "spam, and spam.";
62 write (fd, line1, strlen (line1) + 1); /* Write first line */
63 write (fd, line2, strlen (line2) + 1); /* Write second line */
64 }

Cook Client

1 #include <stdio.h>
2 #include <signal.h>
3 #include <sys/types.h>
4 #include <sys/socket.h>
5 #include <sys/un.h> /* For AFUNIX sockets */
6
7 #define DEFAULT_PROTOCOL 0
8
9 /**/
10
11 main ()
12
13 {
14 int clientFd, serverLen, result;
15 struct sockaddr_un serverUNIXAddress;

IPC 515

16 struct sockaddr* serverSockAddrPtr;
17
18 serverSockAddrPtr = (struct sockaddr*) &serverUNIXAddress;
19 serverLen = sizeof (serverUNIXAddress);
20
21 /* Create a UNIX socket, bidirectional, default protocol */
22 clientFd = socket (AF_UNIX, SOCK_STREAM, DEFAULT_PROTOCOL);
23 serverUNIXAddress.sun_family = AF_UNIX; /* Server domain */
24 strcpy (serverUNIXAddress.sun_path, "recipe"); /* Server name */
25
26 do /* Loop until a connection is made with the server */
27 {
28 result = connect (clientFd, serverSockAddrPtr, serverLen);
29 if (result == -1) sleep (1); /* Wait and then try again */
30 }
31 while (result == -1);
32
33 readRecipe (clientFd); /* Read the recipe */
34 close (clientFd); /* Close the socket */
35 exit (/* EXIT_SUCCESS */ 0); /* Done */
36 }
37
38 /**/
39
40 readRecipe (fd)
41
42 int fd;
43
44 {
45 char str[200];
46
47 while (readLine (fd, str)) /* Read lines until end-of-input */
48 printf ("%s\n", str); /* Echo line from socket */
49 }
50
51 /**/
52
53 readLine (fd, str)
54
55 int fd;
56 char* str;
57
58 /* Read a single NULL-terminated line */
59
60 {
61 int n;
62
63 do /* Read characters until NULL or end-of-input */
64 {
65 n = read (fd,str, 1); /* Read one character */
66 }

516 Chapter 13 Systems Programming

67 while (n > 0 && *str++ != NULL);
68 return (n > 0); /* Return false if end-of-input */
69 }

Analyzing the source code

Now that you’ve glanced at the program, it’s time to go back and analyze it. We begin
with the server.

The server

A server is the process that’s responsible for creating a named socket and accepting
connections to it. To accomplish this, the server must use the system calls listed in
Figure 13.57, in the order in which they are shown.

Name Meaning

socket creates an unnamed socket

bind gives the socket a name

listen specifies the maximum number of pending connections

accept accepts a socket connection from a client

FIGURE 13.57

System calls used by a typical UNIX daemon process.

System Call: int socket (int domain, int type, int protocol)

socket () creates an unnamed socket of the specified domain, type, and protocol.The
valid values of these parameters were described earlier.

If socket () is successful, it returns a file descriptor associated with the newly
created socket; otherwise, it returns –1.

FIGURE 13.58

Description of the socket () system call.

Creating a Socket: socket ()

A process may create a socket by using socket (), which works as shown in Figure 13.58.
The chef server creates its unnamed socket on line 30 of the program:

30 serverFd = socket (AF_UNIX, SOCK_STREAM, DEFAULT_PROTOCOL);

IPC 517

Naming a Socket: bind ()

Once the server has created an unnamed socket, it must bind it to a name by using bind
(), which works as shown in Figure 13.59. The chef server assigns the sockaddr_un
fields and performs a bind () on lines 31–34:

31 serverUNIXAddress.sun_family = AF_UNIX; /* Set domain type */
32 strcpy (serverUNIXAddress.sun_path, "recipe"); /* Set name */
33 unlink ("recipe"); /* Remove file if it already exists */
34 bind (serverFd, serverSockAddrPtr, serverLen); /* Create file */

System Call: int bind (int fd, const struct sockaddr* address, size_t addressLen)

bind () associates the unnamed socket represented by file descriptor fd with the
socket address stored in address. addressLen must contain the length of the address
structure.The type and value of the incoming address depend on the socket domain.

If the socket is in the AF_UNIX domain, a pointer to a sockaddr_un structure
must be cast to a (sockaddr*) and passed in as address. This structure has two fields
that should be set as follows:

FIELD ASSIGN THE VALUE

sun_family AF_UNIX

sun_path the full UNIX pathname of the socket (absolute or
relative), up to 108 characters long

If the named AF_UNIX socket already exists, an error occurs, so it’s a good
idea to unlink () a name before attempting to bind to it.

If the socket is in the AF_INET domain, a pointer to a sockaddr_in structure
must be cast to a (sockaddr*) and passed in as address. This structure has four fields,
which should be set as follows:

FIELD ASSIGN THE VALUE

sin_family AF_INET

sin_port the port number of the Internet socket

sin_addr a structure of type in_addr that holds the Internet address

sin_zero leave empty

(For more information about Internet ports and addresses, see the Internet-
specific part of this section.)

If bind () succeeds, it returns a 0; otherwise, it returns –1.

FIGURE 13.59

Description of the bind () system call.

518 Chapter 13 Systems Programming

Creating a Socket Queue: listen ()

When a server process is servicing a client connection, it’s always possible that anoth-
er client will also attempt a connection. The listen () system call allows a process to
specify the number of pending connections that may be queued. It works as shown in
Figure 13.60. The chef server listens to its named socket on line 35:

35 listen (serverFd, 5); /* Maximum pending connection length */

System Call: int listen (int fd, int queueLength)

listen () allows you to specify the maximum number of pending connections on a
socket. The maximum queue length is 5. If a client attempts to connect to a socket
whose queue is full, it is denied access.

FIGURE 13.60

Description of the listen () system call.

Accepting a Client: accept ()

Once a socket has been created and named, and its queue size has been specified, the
final step is to accept client connection requests.To do this, the server must use accept (),
which works as shown in Figure 13.61. The chef server accepts a connection on line 40:

40 clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);

System Call: int accept (int fd, struct sockaddr* address, int* addressLen)

accept () listens to the named server socket referenced by fd and waits until a client
connection request is received.When this occurs, accept () creates an unnamed sock-
et with the same attributes as the original named server socket, connects the un-
named socket to the client’s socket, and returns a new file descriptor that may be
used for communication with the client. The original named server socket may be
used to accept more connections.

The address structure is filled with the address of the client and is normally
used only in conjunction with Internet connections. The addressLen field should ini-
tially be set to point to an integer containing the size of the structure pointed to by
address. When a connection is made, the integer that it points to is set to the actual
size, in bytes, of the resulting address.

If accept () succeeds, it returns a new file descriptor that may be used to talk
with the client; otherwise, it returns –1.

FIGURE 13.61

Description of the accept () system call.

IPC 519

Serving a client

When a client connection succeeds, the most common sequence of events is this:

• The server process forks.
• The parent process closes the newly formed client file descriptor and loops back

to accept (), ready to service new requests for connection.
• Using read () and write (), the child process talks to the client. When the conver-

sation is complete, the child process closes the client file descriptor and exits.

The chef server process takes this series of actions on lines 37–50:

37 while (1) /* Loop forever */
38 {
39 /* Accept a client connection */
40 clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);
41
42 if (fork () == 0) /* Create child to send receipe */
43 {
44 writeRecipe (clientFd); /* Send the recipe */
45 close (clientFd); /* Close the socket */
46 exit (/*EXIT_SUCCESS */ 0); /* Terminate */
47 }
48 else
49 close (clientFd); /* Close the client descriptor */
50 }

Note that the server chose to ignore SIGCHLD signals on line 21 so that its children
could die immediately without requiring the parent to accept their return codes. If the
server had not done this, it would had to have installed a SIGCHLD handler, which
would have been more tedious.

The Client

Now that you’ve seen how a server program is written, let’s take a look at the con-
struction of a client program.A client is a process that’s responsible for creating an un-
named socket and then attaching it to a named server socket. To accomplish this, it
must use the system calls listed in Figure 13.62, in the order shown. The way in which a
client uses socket () to create an unnamed socket is the same as the way in which the

Name Meaning

socket creates an unnamed socket

connect attaches an unnamed client socket to a named server socket

FIGURE 13.62

System calls used by a typical UNIX client process.

520 Chapter 13 Systems Programming

server uses it.The domain, type, and protocol of the client socket must match those of the
targeted server socket.The cook client process creates its unnamed socket on line 22:

22 clientFd = socket (AF_UNIX, SOCK_STREAM, DEFAULT_PROTOCOL);

Making the Connection: connect ()

To connect to a server’s socket, a client process must fill a structure with the address of
the socket and then use connect (), which works as shown in Figure 13.63. In lines
26–31, the cook client process calls connect () until a successful connection is made:

26 do /* Loop until a connection is made with the server */
27 {
28 result = connect (clientFd, serverSockAddrPtr, serverLen);
29 if (result == -1) sleep (1); /* Wait and then try again */
30 }
31 while (result == -1);

System Call: int connect (int fd, struct sockaddr* address, int addressLen)

connect () attempts to connect to a server socket whose address is contained within
a structure pointed to by address. If successful, fd may be used to communicate with
the server’s socket.The type of structure that address points to must follow the same
rules as those stated in the description of bind ():

• If the socket is in the AF_UNIX domain, a pointer to a sockaddr_un structure
must be cast to a (sockaddr*) and passed in as address.

• If the socket is in the AF_INET domain, a pointer to a sockaddr_in structure
must be cast to a (sockaddr*) and passed in as address.

addressLen must be equal to the size of the address structure. (For examples of
Internet clients, see the connect () socket example and the Internet shell program at
the end of the chapter.)

If the connection is made, connect () returns 0. If the server socket doesn’t
exist or its pending queue is currently filled, connect () returns –1.

FIGURE 13.63

Description of the connect () system call.

Communicating via Sockets

Once the server socket and client socket have connected, their file descriptors may be
used by write () and read (). In the sample program, the server uses write () in lines 55–64:

55 writeRecipe (fd)
56
57 int fd;

IPC 521

58
59 {
60 static char* line1 = "spam, spam, spam, spam,";
61 static char* line2 = "spam, and spam.";
62 write (fd, line1, strlen (line1) + 1); /* Write first line */
63 write (fd, line2, strlen (line2) + 1); /* Write second line*/
64 }

The client uses read () in lines 53–69:

53 readLine (fd, str)
54
55 int fd;
56 char* str;
57
58 /* Read a single NULL-terminated line */
59
60 {
61 int n;
62
63 do /* Read characters until NULL or end-of-input */
64 {
65 n = read (fd, str, 1); /* Read one character */
66 }
67 while (n > 0 &&*str++ != NULL);
68 return (n > 0); /* Return false if end-of-input */
69 }

The server and the client should be careful to close their socket file descriptors when
they are no longer needed.

Internet Sockets

The AF_UNIX sockets that you’ve seen so far are fine for learning about sockets, but they
aren’t where the action is. Most of the useful stuff involves communicating among ma-
chines on the Internet, so the rest of this chapter is dedicated to AF_INET sockets. If you
haven’t already read about networking in Chapter 9, now would be a good time to do so.

An Internet socket is specified by two values: a 32-bit IP address, which specifies
a single unique Internet host, and a 16-bit port number, which specifies a particular
port on the host. This means that an Internet client must know not only the IP address
of the server, but also the server’s port number.

As I mentioned in Chapter 9, several standard port numbers are reserved for sys-
tem use. For example, port 13 is always served by a process that echoes the host’s time
of day to any client that’s interested. The first Internet socket example allows you to
connect to port 13 of any Internet host in the world and find out the “remote” time of
day. It allows three kinds of Internet address:

• If you enter “s”, it automatically means the local host.
• If you enter something that starts with a digit, it’s assumed to be an A.B.C.D-format

IP address and is converted into a 32-bit IP address by software.

522 Chapter 13 Systems Programming

• If you enter a string, it’s assumed to be a symbolic host name and is converted
into a 32-bit IP address by software.

Here’s some sample output from the “Internet time” program. The third address that I
entered is the IP address of “ddn.nic.mil,” the national Internet database server. Notice
the one-hour time difference between my local host’s time and the database server
host’s time.

Sample Output

$ inettime ...run the program.
Host name (q= quit, s = self): s ...what's my time?
Self host name is csservr2
Internet Address = 129.110.42.1
The time on the target port is Fri Mar 27 17:03:50 1998
Host name (q = quit, s= self): wotan ...what's the time on "wotan"?
Internet Address = 129.110.2.1
The time on the target port is Fri Mar 27 17:03:55 1998
Host name (q = quit, s = self): 192.112.36.5 ...try ddn.nic.mil.
The time on the target port is Fri Mar 27 18:02:02 1998
Host name (q = quit, s = self): q ...quit program.
$ _

Internet Time Listing

This section contains the complete listing of the Internet time client program. I suggest
that you skim through the code and then read the sections that follow for details on
how it works.

1 #include <stdio.h>
2 #include <signal.h>
3 #include <ctype.h>
4 #include <sys/types.h>
5 #include <sys/socket.h>
6 #include <netinet/in.h> /* For AFINET sockets */
7 #include <arpa/inet.h>
8 #include <netdb.h>
9
10 #define DAYTIME_PORT 13 /* Standard port o */
11 #define DEFAULT_PROTOCOL 0
12
13 unsigned long promptForINETAddress ();
14 unsigned long nameToAddr ();
15
16 /***/
17
18 main ()
19
20 {

IPC 523

21 int clientFd; /* Client socket file descriptor */
22 int serverLen; /* Length of server address structure */
23 int result; /* From connect () call */
24 struct sockaddr_in serverINETAddress; /* Server address */
25 struct sockaddr* serverSockAddrPtr; /* Pointer to address */
26 unsigned long inetAddress; /* 32-bit IP address */
27
28 /* Set the two server variables */
29 serverSockAddrPtr = (struct sockaddr*) &serverINETAddress;
30 serverLen = sizeof (serverINETAddress); /* Length of address */
31
32 while (1) /* Loop until break */
33 {
34 inetAddress = promptForINETAddress (); /* Get 32-bit IP */
35 if (inetAddress == 0) break; /* Done */
36 /* Start by zeroing out the entire address structure */
37 bzero ((char*)&serverINETAddress,sizeof(serverINETAddress));
38 serverINETAddress.sin_family = AF_INET; /* Use Internet */
39 serverINETAddress.sin_addr.s_addr = inetAddress; /* IP */
40 serverINETAddress.sin_port = htons (DAYTIME_PORT);
41 /* Now create the client socket */
42 clientFd = socket (AF_INET, SOCK_STREAM, DEFAULT_PROTOCOL);
43 do /* Loop until a connection is made with the server */
44 {
45 result = connect (clientFd,serverSockAddrPtr,serverLen);
46 if (result == -1) sleep (1); /* Try again in 1 second */
47 }
48 while (result == -1);
49
50 readTime (clientFd); /* Read the time from the server */
51 close (clientFd); /* Close the socket */
52 }
53
54 exit (/* EXIT_SUCCESS */ 0);
55 }
56
57 /**/
58
59 unsigned long promptForINETAddress ()
60
61 {
62 char hostName [100]; /* Name from user: numeric or symbolic */
63 unsigned long inetAddress; /* 32-bit IP format */
64
65 /* Loop until quit or a legal name is entered */
66 /* If quit, return 0 else return host's IP address */
67 do
68 {
69 printf ("Host name (q = quit, s = self): ");
70 scanf ("%s", hostName); /* Get name from keyboard */

524 Chapter 13 Systems Programming

71 if (strcmp (hostName, "q") == 0) return (0); /* Quit */
72 inetAddress = nameToAddr (hostName); /* Convert to IP */
73 if (inetAddress == 0) printf ("Host name not found\n");
74 }
75 while (inetAddress == 0);
76 return (inetAddress);
77 }
78 /**/
79
80 unsigned long nameToAddr (name)
81
82 char* name;
83
84 {
85 char hostName [100];
86 struct hostent* hostStruct;
87 struct in_addr* hostNode;
88
89 /* Convert name into a 32-bit IP address */
90
91 /* If name begins with a digit, assume it's a valid numeric */
92 /* Internet address of the form A.B.C.D and convert directly */
93 if (isdigit (name[0])) return (inet_addr (name));
94
95 if (strcmp (name, "s") == 0) /* Get host name from database */
96 {
97 gethostname (hostName,100);
98 printf ("Self host name is %s\n", hostName);
99 }
100 else /* Assume name is a valid symbolic host name */
101 strcpy (hostName, name);
102
103 /* Now obtain address information from database */
104 hostStruct = gethostbyname (hostName);
105 if (hostStruct == NULL) return (0); /* Not Found */
106 /* Extract the IP Address from the hostent structure */
107 hostNode = (struct in_addr*) hostStruct->h_addr;
108 /* Display a readable version for fun */
109 printf ("Internet Address = %s\n", inet_ntoa (*hostNode));
110 return (hostNode->s_addr); /* Return IP address */
111 }
112
113 /**/
114
115 readTime (fd)
116
117 int fd;
118
119 {
120 char str [200]; /* Line buffer */

IPC 525

121
122 printf ("The time on the target port is ");
123 while (readLine (fd, str)) /* Read lines until end-of-input */
124 printf ("%s\n", str); /* Echo line from server to user */
125 }
126
127 /**/
128
129 readLine (fd, str)
130
131 int fd;
132 char* str;
133
134 /* Read a single NEWLINE-terminated line */
135
136 {
137 int n;
138
139 do /* Read characters until NULL or end-of-input */
140 {
141 n = read (fd, str, 1); /* Read one character */
142 }
143 while (n > 0 && *str++ != '\n');
144 return (n > 0); /* Return false if end-of-input */
145 }

Analyzing the source code

Now that you’ve had a brief look through the Internet socket source code, it’s time to
examine the interesting sections. The program focuses mostly on the client side of an
Internet connection, so I’ll describe that portion first.

Internet clients

The procedure for creating an Internet client is the same as that for creating an
AF_UNIX client, except for the initialization of the socket address. Earlier, I men-
tioned that an Internet socket address structure is of type struct sockaddr_in and has
four fields:

• sin_family, the domain of the socket, which should be set to AF_INET
• sin_port, the port number, which in this case is 13
• sin_addr, the 32-bit IP number of the client–server
• sin_zero, which is padding and is not set

In creating the client socket, the only tricky part is determining the server’s 32-bit IP
address. promptForINETAddress () [line 59] gets the host’s name from the user and
then invokes nameToAddr () [line 80] to convert it into an IP address. If the user enters
a string starting with a digit, inet_addr () is invoked to perform the conversion. It works
as shown in Figure 13.64. Note that “network-byte” order is a host-neutral ordering of

526 Chapter 13 Systems Programming

bytes in the IP address. This ordering is necessary because regular byte ordering can
differ from machine to machine, which would make IP addresses nonportable.

If string doesn’t start with a digit, the next step is to see if the first character is “s,”
which means the local host. The name of the local host is obtained by gethostname ()
[line 97], which works as shown in Figure 13.65. Once the symbolic name of the host is
determined, the program can look it up in the network host file,“/etc/hosts.”This is per-
formed by gethostbyname () [104], which works as shown in Figure 13.66.

Library Routine: in_addr_t inet_addr (const char* string)

inet_addr () returns the 32-bit IP address that corresponds to the A.B.C.D-format
string. The IP address is in network-byte order.

FIGURE 13.64

Description of the inet_addr () library routine.

System Call: int gethostname (char* name, int nameLen)

gethostname () sets the character array pointed to by name of length nameLen to a
null-terminated string equal to the local host’s name.

FIGURE 13.65

Description of the gethostname () system call.

Library Routine: struct hostent* gethostbyname (const char* name)

gethostbyname () searches the “/etc/hosts” file and returns a pointer to a hostent
structure that describes the file entry associated with the string name.

If name is not found in the “/etc/hosts” file, NULL is returned.

FIGURE 13.66

Description of the gethostbyname () library routine.

The hostent structure has several fields, but the only one we’re interested in is a
field of type (struct in_addr*) called h_addr.This field contains the host’s associated IP
number in a subfield called s_addr. Before returning the IP number, the program dis-
plays a string description of the IP address by calling inet_ntoa () [line 109]. inet_ntoa
is described in Figure 13.67.

IPC 527

The final 32-bit address is then returned in line 110. Once the IP address
inetAddress has been determined, the client’s socket address fields are filled in lines
37–40:

37 bzero ((char*)&serverINETAddress,sizeof(serverINETAddress));
38 serverINETAddress.sin_family = AF_INET; /* Use Internet */
39 serverINETAddress.sin_addr.s_addr = inetAddress; /* IP */
40 serverINETAddress.sin_port = htons (DAYTIME_PORT);

bzero (), described in Figure 13.68, clears the socket address structure’s contents before
its fields are assigned.The bzero () call had its origins in the Berkeley version of UNIX.
The System V equivalent is memset (), described in Figure 13.69. Like the IP address,
the port number is converted to a network-byte ordering by htons (), which works as
shown in Figure 13.70.

Library Routine: char* inet_ntoa (struct in_addr address)

inet_ntoa () takes a structure of type in_addr as its argument and returns a pointer
to a string that describes the address in the format A.B.C.D.

FIGURE 13.67

Description of the inet_ntoa () library routine.

Library Routine: void bzero (void* buffer, size_t length)

bzero () fills the array buffer of size length with zeroes (ASCII NULL).

FIGURE 13.68

Description of the bzero () library routine.

Library Routine: void memset (void* buffer, int value, size_t length)

memset () fills the array buffer of size length with the value of value.

FIGURE 13.69

Description of the memset () library routine.

528 Chapter 13 Systems Programming

The final step is to create the client socket and attempt the connection. The code
for this is almost the same as for AF_UNIX sockets:

42 clientFd = socket (AF_INET, SOCK_STREAM, DEFAULT_PROTOCOL);
43 do /* Loop until a connection is made with the server */
44 {
45 result = connect (clientFd,serverSockAddrPtr,serverLen);
46 if (result == -1) sleep (1); /* Try again in 1 second */
47 }
48 while (result == -1);

The rest of the program contains nothing new. Now it’s time to look at how an Internet
server is built.

Internet Servers

Constructing an Internet server is actually pretty easy. The sin_family, sin_port, and
sin_zero fields of the socket address structure should be filled in as they were in the
client example. The only difference is that the s_addr field should be set to the net-
work-byte-ordered value of the constant INADDR_ANY, which means “accept any
incoming client requests.” The following example of the procedure used to create a
server socket address is a slightly modified version of some code taken from the Inter-
net shell program that ends this chapter:

int serverFd; /* Server socket
struct sockaddr_in serverINETAddress; /* Server Internet address */
struct sockaddr* serverSockAddrPtr; /* Pointer to server address */
struct sockaddr_in clientINETAddress; /* Client Internet address */
struct sockaddr* clientSockAddrPtr; /* Pointer to client address */

Library Routine: in_addr_t htonl (in_addr_t hostLong)

in_port_t htons (in_port_t hostShort)

in_addr_t ntohl (in_addr_t networkLong)

in_port_t ntohs (in_port_t networkShort)

Each of these functions performs a conversion between a host-format number and a
network-format number. For example, htonl () returns the network-format equiva-
lent of the host-format unsigned long hostLong, and ntohs () returns the host-format
equivalent of the network-format unsigned short networkShort.

FIGURE 13.70

Description of the htonl (), htons (), ntohl (), and ntohs () library routines.

IPC 529

int port = 13; /* Set to the port that you wish to serve */
int serverLen; /* Length of address structure */
serverFd = socket (AF_INET, SOCK_STREAM, DEFAULT_PROTOCOL); /* Create */
serverLen = sizeof (serverINETAddress); /* Length of structure */
bzero ((char*) &serverINETAddress, serverLen); /* Clear structure */
serverINETAddress.sin_family = AF_INET; /* Internet domain */
serverINETAddress.sin_addr.s_addr = htonl (INADDR_ANY); /* Accept all */
serverINETAddress.sin_port = htons (port); /* Server port number */

When the address is created, the socket is bound to the address, and its queue size is
specified in the usual way.

serverSockAddrPtr = (struct sockaddr*) &serverINETAddress;
bind (serverFd, serverSockAddrPtr, serverLen);
listen (serverFd, 5);

The final step is to accept client connections. When a successful connection is made,
the client socket address is filled with the client’s IP address and a new file descriptor
is returned.

clientLen = sizeof (clientINETAddress);
clientSockAddrPtr = (struct sockaddr*) clientINETAddress;
clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);

As you can see, an Internet server’s code is very similar to that of an AF_UNIX server.
The final example in this chapter is the Internet shell.

Shared Memory

Sharing a segment of memory is a straightforward and intuitive method of allowing
two processes on the same machine to share data.The process that allocates the shared
memory segment gets an ID back from the call, assuming that the creation of the
shared memory segment succeeds. Other processes can then use that ID to access the
shared memory segment.

Accessing a shared memory segment is the fastest form of IPC, since no data
have to be copied or sent anywhere else. However, because there is just one copy of the
data, if more than one process is updating the data, the processes must synchronize
their actions to prevent corrupting the data.

The following are some of the common system calls utilized to allocate and use
shared memory segments in System V-based versions of UNIX:

• shmget ()—allocates a shared memory segment and returns the segment ID
• shmat ()—attaches a shared memory segment to the virtual address space of the

calling process

530 Chapter 13 Systems Programming

• shmdt ()—detaches an attached segment from the address space
• shmctl ()—allows you to modify attributes (e.g., access permissions) associated

with the shared memory segment

After a successful call to shmget (), a shared memory segment exists and can be ac-
cessed by means of the ID returned in the call. Note that for any other process to use
the same segment, it must also know this ID. The ID can be made available to other
processes via another IPC mechanism, or a specific ID can be passed to shmget () to
force the use of a specific known ID (with the understanding that the call will fail if
that ID has already been used with another shared memory segment).

Once you have obtained a valid ID for a shared memory segment, a call to shmat
() will return a pointer to the address in the local process’ virtual memory space where
the shared memory segment has been attached. You can then use that pointer to index
into the block of memory just as you would any other block of memory. (Doing this
does presume that you know the format of the data contained in the shared memory
segment.) If and when you finish using the shared memory, you can release (detach) it
with a call to shmdt () (into which you pass the pointer, not the shared memory seg-
ment ID). When the last process to have the shared memory segment attached (which
is not necessarily the process that created it) detaches it, the space allocated to the seg-
ment is released.

Semaphores

A semaphore is not a communication mechanism of the type we’ve seen with pipes,
sockets, and shared memory. No actual data are sent with a semaphore. Rather, a sem-
aphore is a counter that describes the availability of a resource (which could be a
shared memory segment).

A semaphore is created and assigned a value that denotes how many concurrent
uses of a resource are allowed. Each time a process gets ready to use a certain resource,
it checks the semaphore to see whether the resource is available. If the value of the
semaphore is greater than zero, then the resource is available. The process allocates “a
unit of the resource,” and the semaphore is decremented by one. If the value of the
semaphore is zero, the process sleeps until the value is greater than zero (until another
process has finished its use of the resource).

Semaphores can be used to exclusively lock something by creating a semaphore
with a value of one (as soon as one process uses it, the semaphore value be zero). This
is known as a binary semaphore. Semaphores can also be used to set a maximum num-
ber of concurrent uses of a particular resource.

The System V semaphore is a bit more complex than what I’ve just described.
Semaphores are managed as a list or set of semaphores rather than individually. This
provides a method of defining multiple semaphores for a complex locking mechanism,
but requires unnecessary overhead when you only wanted one. Semaphore-related sys-
tem calls include the following:

• semget()—creates a set (an array) of semaphores
• semop ()—manipulates a set of semaphores
• semctl ()—modifies attributes of a set of semaphores

The Internet Shell 531

THE INTERNET SHELL

Have you ever wondered what the inside of a shell looks like? Well, here’s a great
opportunity to learn how they work and to obtain some source code that could help
you to create your own shell. I designed the Internet shell to be a lot like the stan-
dard UNIX shells, in the sense that it provides piping and background processing fa-
cilities, but I also added some Internet-specific capabilities that the other shells lack.

Restrictions

In order to pack the functionality of the Internet shell into a reasonable size, there are
a few restrictions:

• All tokens must be separated by white space (tabs or spaces). This means that in-
stead of writing ls; date you must write ls ; date. The upshot is that the lexical an-
alyzer is very simple.

• Filename substitution (globbing) is not supported. This means that the standard
*, ?, and [] metacharacters are not understood.

These features are nice to have in an everyday shell, but their implementation wouldn’t
have taught you anything significant about how shells work.

Command Syntax

The syntax of an Internet shell command is similar to that of the standard UNIX
shells. We describe it formally using BNF notation (note that the redirection sym-
bols < and > are escaped by a \ to prevent ambiguity; see the appendix for a discus-
sion of BNF):

<internetShellcommand> = <sequence> [&]
<sequence> = <pipeline> { ; <pipeline> }*
<pipeline> = <simple> { | <simple> }
<simple> = { <token> }* { <redirection>}*
<redirection> = <fileRedirection> | <socketRedirection>
<fileRedirection> = \> <file> | > <file> | \< <file>
<socketRedirection> = <clientRedirection> | <serverRedirection>
<clientRedirection> = @\>c <socket> | @\<c <socket>
<serverDirection> = @\>s <socket> | @\<s <socket>
<token> = a string of characters
<file> = a valid UNIX pathname
<socket> = either a UNIX pathname (UNIX domain socket) or

an Internet socket name of the form hostname.port#

Starting the Internet Shell

I named the Internet shell executable file ish. The Internet shell prompt is a question
mark.

532 Chapter 13 Systems Programming

When ish is started, it inherits the $PATH environment variable from the shell
that invokes it. The value of $PATH may be changed by using the setenv built-in com-
mand that is described shortly.

To exit the Internet shell, press Control-D on a line of its own.

Built-in Commands

The Internet shell executes most commands by creating a child shell that execs the spec-
ified utility while the parent shell waits for the child. However, some commands are
built into the shell and are executed directly. Figure 13.71 lists the built-ins. Built-in com-
mands may be redirected. Before I describe the construction and operation of the In-
ternet shell, let’s take a look at a few examples of both regular commands and
Internet-specific commands.

Built-in Function

echo {<token>}* echoes tokens to the terminal

cd path changes the shell’s working directory to path

getenv name displays the value of the environment variable name

setenv name value sets the value of the environment variable name to value

FIGURE 13.71

Internet shell built-in commands.

Some Regular Examples

Here are some examples that illustrate the sequencing, redirection, and piping capabilities
of the Internet shell:

$ ish ...start shell.
Internet Shell.
? ls ...simple command.
ish.c ish.cs ish.van who.socket who.sort
? ls | wc ...pipe.

5 5 41
? who | sort > who.sort & ...pipe + redirect + background.
[4356] ...PID of background process.
? cat who.sort ...show redirection worked.
glass ttyp2 May 28 18:33 (bridge05.utdalla)
posey ttyp0 May 22 10:19 (blackfoot.utdall)
posey ttyp1 May 22 10:19 (blackfoot.utdall)
? date ; whoami ...sequence of commands.
Thu Mar 26 18:36:24 CDT 1998
glass
? echo hi there ...execute a built-in.

The Internet Shell 533

hi there
? getenv PATH ...look at PATH env variable.
:.:/usr/local/bin:/usr/ucb:/usr/bin:/bin:/usr/etc
? mail glass < who.sort ...input redirection works too.
? ^D ...exit shell.
$ _

Some Internet Examples

The Internet shell becomes pretty interesting when you examine its socket features.
Here’s an example that uses a UNIX domain socket to communicate information:

$ ish ...start the Internet shell.
Internet Shell.
? who @>s who.sck & ...server sends output to socket "who.sck".
[2678]
? ls ...execute a command for fun.
ish.c ish.van who.sock who.sort
ish.cs who.sck who.socket
? sort @<c who.sck ...client reads input from socket "who.sck".
glass ttyp2 May 28 18:33 (bridge05.utdalla)
posey ttyp0 May 22 10:19 (blackfoot.utdall)
posey ttyp1 May 22 10:19 (blackfoot.utdall)
veerasam ttyp3 May 28 18:39 (129.110.70.139)
? ^D ...quit shell.
$ _

The really fun stuff happens when you introduce Internet sockets. The first shell in the
following example was run on a host called “csservr2,” and the second shell was run on
a host called “vanguard”:

$ ish ...run Internet shell on csservr2.
Internet Shell.
? who @>s 5000 & ...background server sends output to port 5000.
[7221]
? ^D ...quit shell.
$ rlogin vanguard ...login to vanguard host.
% ish ...run Internet shell on vanguard.
Internet Shell.
? sort @<c csservr2.5000 ...client reads input from csservr2.

...port 5000.
IP address = 129.110.42.1...echoed by Internet shell.
glass ttyp2 May 28 18:42 (bridge05.utdalla) ...output from
posey ttyp0 May 22 10:19 (blackfoot.utdall) ...who on
posey ttyp1 May 22 10:19 (blackfoot.utdall) ...csservr2!
veerasam ttyp3 May 28 18:39 (129.110.70.139)

534 Chapter 13 Systems Programming

? ^D ...quit shell.
% ^D ...logout from vanguard.
logout
$ _ ...back to csservr2

Figure 13.72 is an illustration of the socket connection.

vanguardcsservr2

who sort5000

FIGURE 13.72

Internet shell redirection.

The next example is even more interesting. The first shell uses one socket to talk
to the second shell, and the second shell uses another socket to talk to the third:

$ ish ...start shell on csservr2.
Internet Shell.
? who @>s 5001 & ...background server sends output to port 5001.
[2001]
? ^D ...quit shell.
$ rlogin vanguard ...login to vanguard.
% ish ...start shell onvanguard.
Internet Shell.
? sort @<c csservr2.5001 @>s 5002 & ...background process reads
[3756] ...input from port 5001 on

...csservr2 and sends it to

...local port 5002.
IP address = 129.110.42.1 ...echoed by shell.
? ^D ...quit shell.
% ^D ...logout of vanguard.
logout
$ ish ...start another shell on csservr2.
Internet Shell.
? cat @<c vanguard.5002 ...read input from port 5002 on vanguard.
IP address = 129.110.43.128 ...echoed by the shell.
glass ttyp2 May 28 18:42 (bridge05.utdalla)
posey ttyp0 May 22 10:19 (blackfoot.utdall)
posey ttyp1 May 22 10:19 (blackfoot.utdall)
veerasam ttyp3 May 28 18:39 (129.110.70.139)
? ^D ...quit shell.
$ _

Figure 13.73 is an illustration of the two socket connections.

The Internet Shell 535

How It Works

The operation of the Internet shell can be broken down into several main sections:

• the main command loop
• parsing
• executing built-in commands
• executing pipelines
• executing sequences
• background processing
• dealing with signals
• performing file redirection
• performing socket redirection

We next describe each operation, together with fragments of code and diagrams when
necessary. Before you continue, I suggest that you glance through the source code list-
ing at the end of the chapter to familiarize yourself with its overall layout.

The Main Command Loop

When the shell starts, it initializes a signal handler to catch keyboard interrupts and re-
sets an error flag. It then enters commandLoop () [line 167], which prompts the user
for a line of input, parses the input, and then executes the command. commandLoop ()
loops until the user enters Control-D, at which point the shell terminates.

Parsing

To check the command line for errors, the line is first broken down into separate tokens
by tokenize () [line 321], which is located in the lexical analyzer section of the source
code. tokenize () is called by commandLoop () and fills the global tokens array with
pointers to each individual token. For example, if the input line was “ls -l,” tokens[0]
would point to the string “ls,” and tokens[1] would point to the string “-l”. Once the line
is parsed, the global token pointer tIndex is set to zero [line 350] in preparation for
parsing.

who sort

cat

5001

5002

FIGURE 13.73

More Internet shell redirection.

536 Chapter 13 Systems Programming

Parsing is performed in a top-down fashion. The main parser, parseSequence ()
[line 194], is called from the commandLoop () function. parseSequence () parses each
pipeline in the sequence by invoking parsePipeline () and records the information that
parsePipeline () returns. Finally, it checks to see whether the sequence is to be execut-
ed in the background.

Similarly, parsePipeline () [line 222] parses each simple command in the pipeline
by calling parseSimple () and records the information that parseSimple () returns. pars-
eSimple () [line 242] records the tokens in the simple command and then processes any
trailing metacharacters, such as >, >>, and @>s.

The information that each of these parsing functions gathers is stored in structures
for later use by the execution routines.A struct sequence [line 75] can hold the details of
up to five (MAX_PIPES) pipelines, together with a flag indicating whether or not the
sequence is to be executed in the background. Each pipeline is recorded in a struct
pipeline [line 67], which can record the details of up to five (MAX_SIMPLE) simple
commands. Finally, a struct simple [line 52] can the hold up to 100 (MAX_TOKENS)
tokens, together with several fields that record information related to I/O redirection.

If a command is parsed with no errors, the local variable sequence [line 182] is
equal to a struct sequence, which holds the analyzed version of the command.

Note that although I could have used pointers to return structures more effi-
ciently, I chose to keep the program as simple as I could in order to focus on its UNIX-
specific aspects.

Executing a Command Sequence

The main command loop executes a successfully parsed command by invoking exe-
cuteSequence () [line 444]. This routine does one of two things:

• If the command is to be executed in the background, it creates a child process to
execute the pipelines in sequence; the original parent shell does not wait for the
child. Before executing the pipeline, the child restores its original interrupt han-
dler and places itself into a new process group to make it immune from hang-ups
and other signals.This ensures that a background process will continue to execute
even when the shell is terminated and the user logs out.

• If the command is to be executed in the foreground, the parent shell executes the
pipelines in sequence.

In both cases, executePipeline () [line 472] is used to execute each pipeline component
of the command sequence.

Executing Pipelines

executePipeline () performs one of two actions:

• If the pipeline is a simple built-in command, it executes the simple command di-
rectly, without creating a child process. This is very important. For example, the
built-in command cd executes chdir () to change the shell’s current working di-
rectory. If a child shell were created to execute this built-in command, the original
parent shell’s working directory would be unaffected, which would be incorrect.

The Internet Shell 537

• If the pipeline is more than a simple built-in command, execute Pipeline () creates
a child shell to execute the pipeline; the original parent shell waits for the child to
complete its processing. Notice that the parent waits for a specific PID by calling
waitForPid () [line 503]. This is because the parent shell might have created some
previous children to execute background processes, and it would be incorrect for
the parent to resume when one of these background processes terminated. If the
pipeline contains only one simple command, then no pipes need to be created, and
executeSimple () [line 569] is invoked. Otherwise, executePipes () [line 516] which
connects each command with its own pipe, is invoked.

executePipes () is a fairly complicated routine. If the pipeline contains n simple com-
mands, then executePipes () creates n child processes, one for each command, and n-1
pipes to connect the children. Each child reconnects its standard input or output chan-
nels to the appropriate pipe and then closes all of the original pipe file descriptors.
Each child then executes its associated simple command. Meanwhile, the original
process that invoked executePipes () waits for all of its children to terminate.

Executing a Simple Command

executeSimple redirects the standard input or output channels as necessary and then
executes either executeBuiltIn () [line 635] or executePrimitive () [line 596], depending
on the category of the command. builtIn () [line 624] returns true if a token is the name
of a built-in command. If the command is a built-in, it’s possible that it is being execut-
ed directly by the shell. To prevent the shell’s I/O channels from being altered by redi-
rection, the original standard input and output channels are recorded for later
restoration.

executePrimitive () [line 596] simply executes using execvp (). Fortunately (but
not coincidentally), p->token is already in the form required by execvp (). Built-in
functions are executed by executeBuiltIn (), using a simple switch statement.

Redirection

redirect () [line 761] performs all of the preprocessing necessary for both file and sock-
et redirection. The basic technique for redirecting the standard I/O channels is the
same as the one I described earlier in the chapter. If file redirection is required, dupFd
() [line 806] is invoked to create the file with the appropriate mode and to duplicate the
standard file descriptor. If socket redirection is required, either server () [line 950] or
client () [line 879] is invoked to create the appropriate type of socket connection.These
functions manipulate both UNIX-domain and Internet-domain sockets the same way
the earlier socket examples did.

Extensions

I think that it could be a lot of fun and fairly educational to add some new features to
the Internet shell. If you’re interested, see the “Projects” at the end of the chapter for
some suggestions.

538 Chapter 13 Systems Programming

Internet Shell Source Code Listing

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <signal.h>
5 #include <ctype.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <sys/ioctl.h>
9 #include <sys/socket.h>
10 #include <sys/un.h>
11 #include <netinet/in.h>
12 #include <arpa/inet.h>
13 #include <netdb.h>
14
15
16 /* Macros */
17 #define MAX_STRING_LENGTH 200
18 #define MAX_TOKENS 100
19 #define MAX_TOKEN_LENGTH 30
20 #define MAX_SIMPLE 5
21 #define MAX_PIPES 5
22 #define NOT_FOUND -1
23 #define REGULAR -1
24 #define DEFAULT_PERMISSION 0660
25 #define DEFAULT_PROTOCOL 0
26 #define DEFAULT_QUEUE_LENGTH 5
27 #define SOCKET_SLEEP 1
28
29
30 /* Enumerators */
31 enum { FALSE, TRUE };
32 enum metacharacterEnum
33 {
34 SEMICOLON, BACKGROUND, END_OF_LINE, REDIRECT_OUTPUT,
35 REDIRECT_INPUT, APPEND_OUTPUT, PIPE,
36 REDIRECT_OUTPUT_SERVER, REDIRECT_OUTPUT_CLIENT,
37 REDIRECT_INPUT_SERVER, REDIRECT_INPUT_CLIENT
38 };
39 enum builtInEnum { ECHO_BUILTIN, SETENV, GETENV, CD };
40 enum descriptorEnum { STDIN, STDOUT, STDERR };
41 enum pipeEnum { READ, WRITE };
42 enum IOEnum
43 {
44 NO_REDIRECT, FILE_REDIRECT,
45 SERVER_REDIRECT, CLIENT_REDIRECT
46 };
47 enum socketEnum { CLIENT, SERVER };

The Internet Shell 539

48 enum { INPUT_SOCKET, OUTPUT_SOCKET };
49
50
51 /* Every simple command has one of these associated with it */
52 struct simple
53 {
54 char* token [MAX_TOKENS]; /* The tokens of the command */
55 int count; /* The number of tokens */
56 int outputRedirect; /* Set to an IOEnum */
57 int inputRedirect; /* Set to an IOEnum */
58 int append; /* Set to true for append mode */
59 char *outputFile; /* Name of output file or NULL if none */
60 char *inputFile; /* Name of input file or NULL if none */
61 char *outputSocket; /* Output socket name or NULL if none */
62 char *inputSocket; /* Name of input socket or NULL if none */
63 };
64
65
66 /* Every pipeline has one of these associated with it */
67 struct pipeline
68 {
69 struct simple simple [MAX_SIMPLE]; /* Commands in pipe */
70 int count; /* The number of simple commands */
71 };
72
73
74 /* Every command sequence has one of these associated with it */
75 struct sequence
76 {
77 struct pipeline pipeline [MAX_PIPES]; /* Pipes in sequence */
78 int count; /* The number of pipes */
79 int background; /* True if this is a background sequence */
80 };
81
82
83 /* Prototypes */
84 struct sequence parseSequence ();
85 struct pipeline parsePipeline ();
86 struct simple parseSimple ();
87 char *nextToken ();
88 char *peekToken ();
89 char *lastToken ();
90 char* getToken ();
91
92
93 /* Globals */
94 char* metacharacters [] = { ";", "&", "\n", ">", "<", ">>",
95 "|", "@>s", "@>c", "@<s", "@<c", "" };
96 char* builtIns [] = { "echo", "setenv", "getenv", "cd", "" };
97 char line [MAX_STRING_LENGTH]; /* The current line */

540 Chapter 13 Systems Programming

98 char tokens [MAX_TOKENS][MAX_TOKEN_LENGTH]; /* Tokens in line */
99 int tokenCount; /* The number of tokens in the current line */
100 int tIndex; /* Index into line: used by lexical analyzer */
101 int errorFlag; /* Set to true when an error occurs */
102
103
104 /* Some forward declarations */
105 void (*originalQuitHandler) ();
106 void quitHandler ();
107
108
109 /* Externals */
110 char **environ; /* Pointer to the environment */
111
112 /**/
113
114 main (argc, argv)
115
116 int argc;
117 char* argv [];
118
119 {
120 initialize (); /* Initialize some globals */
121 commandLoop (); /* Accept and process commands */
122 return (/* EXIT_SUCCESS */ 0);
123 }
124
125 /**/
126
127 initialize ()
128
129 {
130 printf ("Internet Shell.\n"); /* Introduction */
131 /* Set the Control-C handler to catch keyboard interrupts */
132 originalQuitHandler = signal (SIGINT, quitHandler);
133 }
134
135 /**/
136
137 void quitHandler ()
138
139 {
140 /* Control-C handler */
141 printf ("\n");
142 displayPrompt ();
143 }
144
145 /**/
146
147 error (str)

The Internet Shell 541

148
149 char* str;
150
151 {
152 /* Display str as an error to the standard error channel */
153 fprintf (stderr, "%s", str);
154 errorFlag = TRUE; /* Set error flag */
155 }
156
157 /**/
158
159 displayPrompt ()
160
161 {
162 printf ("? ");
163 }
164
165 /**/
166
167 commandLoop ()
168
169 {
170 struct sequence sequence;
171
172 /* Accept and process commands until a Control-D occurs */
173 while (TRUE)
174 {
175 displayPrompt ();
176 if (gets (line) == NULL) break; /* Get a line of input */
177 tokenize (); /* Break the input line into tokens */
178 errorFlag = FALSE; /* Reset the error flag */
179
180 if (tokenCount > 1) /* Process any non-empty line */
181 {
182 sequence = parseSequence (); /* Parse the line */
183 /* If no errors occurred during the parsing, */
184 /* execute the command */
185 if (!errorFlag) executeSequence (&sequence);
186 }
187 }
188 }
189
190 /**/
191 /* PARSER ROUTINES */
192 /**/
193
194 struct sequence parseSequence ()
195
196 {

542 Chapter 13 Systems Programming

197 struct sequence q;
198
199 /* Parse a command sequence and return structure description */
200 q.count = 0; /* Number of pipes in the sequence */
201 q.background = FALSE; /* Default is not in background */
202
203 while (TRUE) /* Loop until no semicolon delimiter is found */
204 {
205 q.pipeline[q.count++] = parsePipeline (); /* Parse */
206 if (peekCode () != SEMICOLON) break;
207 nextToken (); /* Flush semicolon delimiter */
208 }
209
210 if (peekCode () == BACKGROUND) /* Sequence is in background */
211 {
212 q.background = TRUE;
213 nextToken (); /* Flush ampersand */
214 }
215
216 getToken (END_OF_LINE); /* Check end-of-line is reached */
217 return (q);
218 }
219
220 /**/
221
222 struct pipeline parsePipeline ()
223
224 {
225 struct pipeline p;
226
227 /* Parse a pipeline and return a structure description of it */
228 p.count = 0; /* The number of simple commands in the pipeline */
229
230 while (TRUE) /* Loop until no pipe delimiter is found */
231 {
232 p.simple[p.count++] = parseSimple (); /* Parse command */
233 if (peekCode () != PIPE) break;
234 nextToken (); /* Flush pipe delimiter */
235 }
236
237 return (p);
238 }
239
240 /**/
241
242 struct simple parseSimple ()
243
244 {
245 struct simple s;

The Internet Shell 543

246 int code;
247 int done;
248
249 /* Parse a simple command and return a structure description */
250 s.count = 0; /* The number of tokens in the simple command */
251 s.outputFile = s.inputFile = NULL;
252 s.inputSocket = s.outputSocket = NULL;
253 s.outputRedirect = s.inputRedirect = NO_REDIRECT; /* Defaults */
254 s.append = FALSE;
255
256 while (peekCode () == REGULAR) /* Store all regular tokens */
257 s.token[s.count++] = nextToken ();
258
259 s.token[s.count] = NULL; /* NULL-terminate token list */
260 done = FALSE;
261
262 /* Parse special metacharacters that follow, like > and > */
263 do
264 {
265 code = peekCode ();/* Peek at next token */
266
267 switch (code)
268 {
269 case REDIRECT_INPUT: /* < */
270 nextToken ();
271 s.inputFile = getToken (REGULAR);
272 s.inputRedirect = FILE_REDIRECT;
273 break;
274
275 case REDIRECT_OUTPUT: /* > */
276 case APPEND_OUTPUT: /* > */
277 nextToken ();
278 s.outputFile = getToken (REGULAR);
279 s.outputRedirect = FILE_REDIRECT;
280 s.append = (code == APPEND_OUTPUT);
281 break;
282
283 case REDIRECT_OUTPUT_SERVER: /* @>s */
284 nextToken ();
285 s.outputSocket = getToken (REGULAR);
286 s.outputRedirect = SERVER_REDIRECT;
287 break;
288
289 case REDIRECT_OUTPUT_CLIENT: /* @>c */
290 nextToken ();
291 s.outputSocket = getToken (REGULAR);
292 s.outputRedirect = CLIENT_REDIRECT;
293 break;
294

544 Chapter 13 Systems Programming

295 case REDIRECT_INPUT_SERVER: /* @<s */
296 nextToken ();
297 s.inputSocket = getToken (REGULAR);
298 s.inputRedirect = SERVER_REDIRECT;
299 break;
300
301 case REDIRECT_INPUT_CLIENT: /* @<c */
302 nextToken ();
303 s.inputSocket = getToken (REGULAR);
304 s.inputRedirect = CLIENT_REDIRECT;
305 break;
306
307 default:
308 done = TRUE;
309 break;
310 }
311 }
312 while (!done);
313
314 return (s);
315 }
316
317 /**/
318 /* LEXICAL ANALYZER ROUTINES */
319 /**/
320
321 tokenize ()
322
323 {
324 char* ptr = line; /* Point to the input buffer */
325 char token [MAX_TOKEN_LENGTH]; /* Holds the current token */
326 char* tptr; /* Pointer to current character */
327
328 tIndex = 0; /* Global: points to the current token */
329
330 /* Break the current line of input into tokens */
331 while (TRUE)
332 {
333 tptr = token;
334 while (*ptr == ' ') ++ptr; /* Skip leading spaces */
335 if (*ptr == NULL) break; /* End of line */
336
337 do
338 {
339 *tptr++ = *ptr++;
340 }
341 while (*ptr != ' ' && *ptr != NULL);
342
343 *tptr = NULL;

The Internet Shell 545

344 strcpy (tokens[tIndex++], token); /* Store the token */
345 }
346
347 /* Place an end-of-line token at the end of the token list */
348 strcpy (tokens[tIndex++], "\n");
349 tokenCount = tIndex; /* Remember total token count */
350 tIndex = 0; /* Reset token index to start of token list */
351 }
352
353 /**/
354
355 char* nextToken ()
356
357 {
358 return (tokens[tIndex++]); /* Return next token in list */
359 }
360
361 /**/
362
363 char *lastToken ()
364
365 {
366 return (tokens[tIndex - 1]); /* Return previous token in list */
367 }
368
369 /**/
370
371 peekCode ()
372
373 {
374 /* Return a peek at code of the next token in the list */
375 return (tokenCode (peekToken ()));
376 }
377
378 /**/
379
380 char* peekToken ()
381
382 {
383 /* Return a peek at the next token in the list */
384 return (tokens[tIndex]);
385 }
386
387 /**/
388
389 char *getToken (code)
390
391 int code;
392
393 {

546 Chapter 13 Systems Programming

394 char str [MAX_STRING_LENGTH];
395
396 /* Generate error if the code of the next token is not code */
397 /* Otherwise return the token */
398 if (peekCode () != code)
399 {
400 sprintf (str, "Expected %s\n", metacharacters[code]);
401 error (str);
402 return (NULL);
403 }
404 else
405 return (nextToken ());
406 }
407
408 /**/
409
410 tokenCode (token)
411
412 char* token;
413
414 {
415 /* Return the index of token in the metacharacter array */
416 return (findString (metacharacters, token));
417 }
418
419 /**/
420
421 findString (strs, str)
422
423 char* strs [];
424 char* str;
425
426 {
427 int i = 0;
428
429 /* Return the index of str in the string array strs */
430 /* or NOT_FOUND if it isn't there */
431 while (strcmp (strs[i], "") != 0)
432 if (strcmp (strs[i], str) == 0)
433 return (i);
434 else
435 ++i;
436
437 return (NOT_FOUND); /* Not found */
438 }
439
440 /**/
441 /* COMMAND EXECUTION ROUTINES */
442 /**/

The Internet Shell 547

443
444 executeSequence (p)
445
446 struct sequence* p;
447
448 {
449 int i, result;
450
451 /* Execute a sequence of statments (possibly just one) */
452 if (p->background) /* Execute in background */
453 {
454 if (fork () == 0)
455 {
456 printf ("[%d]\n", getpid ()); /* Display child PID */
457 /* Child process */
458 signal (SIGQUIT, originalQuitHandler); /* Oldhandler */
459 setpgid (0, getpid ()); /* Change process group */
460 for (i = 0; i < p->count; i++) /* Execute pipelines */
461 executePipeline (&p->pipeline[i]);
462 exit (/* EXIT_SUCCESS */ 0);
463 }
464 }
465 else /* Execute in foreground */
466 for (i = 0; i < p->count; i++) /* Execute each pipeline */
467 executePipeline (&p->pipeline[i]);
468 }
469
470 /**/
471
472 executePipeline (p)
473
474 struct pipeline *p;
475
476 {
477 int pid, processGroup, result;
478
479 /* Execute every simple command in pipeline (possibly one) */
480 if (p->count == 1 && builtIn (p->simple[0].token[0]))
481 executeSimple (&p->simple[0]); /* Execute it directly */
482 else
483 {
484 if ((pid = fork ()) == 0)
485 {
486 /* Child shell executes the simple commands */
487 if (p->count == 1)
488 executeSimple (&p->simple[0]); /* Execute command */
489 else
490 executePipes (p); /* Execute more than one command */
491 exit (/* EXIT_SUCCESS */ 0);
492 }

548 Chapter 13 Systems Programming

493 else
494 {
495 /* Parent shell waits for child to complete */
496 waitForPID (pid);
497 }
498 }
499 }
500
501 /**/
502
503 waitForPID (pid)
504
505 int pid;
506
507 {
508 int status;
509
510 /* Return when the child process with PID pid terminates */
511 while (wait (&status) != pid);
512 }
513
514 /**/
515
516 executePipes (p)
517
518 struct pipeline *p;
519
520 {
521 int pipes, status, i;
522 int pipefd [MAX_PIPES][2];
523
524 /* Execute two or more simple commands connected by pipes */
525 pipes = p->count - 1; /* Number of pipes to build */
526 for (i = 0; i < pipes; i++) /* Build the pipes */
527 pipe (pipefd[i]);
528 for (i = 0; i < p->count; i++) /* Build one process per pipe */
529 {
530 if (fork () != 0) continue;
531 /* Child shell */
532 /* First, connect stdin to pipe if not the first command */
533 if (i != 0) dup2 (pipefd[i-1][READ], STDIN);
534 /* Second, connect stdout to pipe if not the last command */
535 if (i != p->count - 1) dup2 (pipefd[i][WRITE], STDOUT);
536 /* Third, close all of the pipes' file descriptors */
537 closeAllPipes (pipefd, pipes);
538 /* Last, execute the simple command */
539 executeSimple (&p->simple[i]);
540 exit (/* EXIT_SUCCESS */0);
541 }
542
543 /* The parent shell comes here after forking the children */

The Internet Shell 549

544 closeAllPipes (pipefd, pipes);
545 for (i = 0; i < p->count; i++) /* Wait for children to finish */
546 wait (&status);
547 }
548
549 /**/
550
551 closeAllPipes (pipefd, pipes)
552
553 int pipefd [][2];
554 int pipes;
555
556 {
557 int i;
558
559 /* Close every pipe's file descriptors */
560 for (i = 0; i < pipes; i++)
561 {
562 close (pipefd[i][READ]);
563 close (pipefd[i][WRITE]);
564 }
565 }
566
567 /**/
568
569 executeSimple (p)
570
571 struct simple* p;
572
573 {
574 int copyStdin, copyStdout;
575
576 /* Execute a simple command */
577 if (builtIn (p->token[0])) /* Built-in */
578 {
579 /* The parent shell is executing this, so remember */
580 /* stdin and stdout in case of built-in redirection */
581 copyStdin = dup (STDIN);
582 copyStdout = dup (STDOUT);
583 if (redirect (p)) executeBuiltIn (p); /* Execute built-in */
584 /* Restore stdin and stdout */
585 dup2 (copyStdin, STDIN);
586 dup2 (copyStdout, STDOUT);
587 close (copyStdin);
588 close (copyStdout);
589 }
590 else if (redirect (p)) /* Redirect if necessary */
591 executePrimitive (p); /* Execute primitive command */
592 }
593
594 /**/

550 Chapter 13 Systems Programming

595
596 executePrimitive (p)
597
598 struct simple* p;
599
600 {
601 /* Execute a command by exec'ing */
602 if (execvp (p->token[0], p->token) == -1)
603 {
604 perror ("ish");
605 exit (/* EXIT_FAILURE */ 1);
606 }
607 }
608
609 /**/
610 /* BUILT-IN COMMANDS */
611 /**/
612
613 builtInCode (token)
614
615 char* token;
616
617 {
618 /* Return the index of token in the builtIns array */
619 return (findString (builtIns, token));
620 }
621
622 /**/
623
624 builtIn (token)
625
626 char* token;
627
628 {
629 /* Return true if token is a built-in */
630 return (builtInCode (token) != NOT_FOUND);
631 }
632
633 /**/
634
635 executeBuiltIn (p)
636
637 struct simple* p;
638
639 {
640 /* Execute a single built-in command */
641 switch (builtInCode (p->token[0]))
642 {
643 case CD:
644 executeCd (p);
645 break;

The Internet Shell 551

646
647 case ECHO_BUILTIN:
648 executeEcho (p);
649 break;
650
651 case GETENV:
652 executeGetenv (p);
653 break;
654
655 case SETENV:
656 executeSetenv (p);
657 break;
658 }
659 }
660
661 /**/
662
663 executeEcho (p)
664
665 struct simple* p;
666
667 {
668 int i;
669
670 /* Echo the tokens in this command */
671 for (i = 1; i < p->count; i++)
672 printf ("%s "> p->token[i]);
673
674 printf ("\n");
675 }
676
677 /**/
678
679 executeGetenv (p)
680
681 struct simple* p;
682
683 {
684 char* value;
685
686 /* Echo the value of an environment variable */
687 if (p->count != 2)
688 {
689 error ("Usage: getenv variable\n");
690 return;
691 }
692
693 value = getenv (p->token[1]);
694
695 if (value == NULL)
696 printf ("Environment variable is not currently set\n");

552 Chapter 13 Systems Programming

697 else
698 printf ("%s\n", value);
699 }
700
701 /**/
702
703 executeSetenv (p)
704
705 struct simple* p;
706
707 {
708 /* Set the value of an environment variable */
709 if (p->count != 3)
710 error ("Usage: setenv variable value\n");
711 else
712 setenv (p->token[1], p->token[2]);
713 }
714
715 /**/
716
717 setenv (envName, newValue)
718
719 char* envName;
720 char* newValue;
721
722 {
723 int i = 0;
724 char newStr [MAX_STRING_LENGTH];
725 int len;
726
727 /* Set the environment variable envName to newValue */
728 sprintf (newStr, "%s=%s", envName, newValue);
729 len = strlen (envName) + 1;
730
731 while (environ[i] != NULL)
732 {
733 if (strncmp (environ[i], newStr, len) == 0) break;
734 ++i;
735 }
736
737 if (environ[i] == NULL) environ[i+1] = NULL;
738
739 environ[i] = (char*) malloc (strlen (newStr) + 1);
740 strcpy (environ[i], newStr);
741 }
742
743 /**/
744
745 executeCd (p)
746
747 struct simple* p;

The Internet Shell 553

748
749 {
750 /* Change directory */
751 if (p->count != 2)
752 error ("Usage: cd path\n");
753 else if (chdir (p->token[1]) == -1)
754 perror ("ish");
755 }
756
757 /**/
758 /* REDIRECTION */
759 /**/
760
761 redirect (p)
762
763 struct simple *p;
764
765 {
766 int mask;
767
768 /* Perform input redirection */
769 switch (p->inputRedirect)
770 {
771 case FILE_REDIRECT: /* Redirect from a file */
772 if (!dupFd (p->inputFile, O_RDONLY, STDIN)) return(FALSE);
773 break;
774
775 case SERVER_REDIRECT: /* Redirect from a server socket */
776 if (!server (p->inputSocket, INPUT_SOCKET)) return(FALSE);
777 break;
778
779 case CLIENT_REDIRECT: /* Redirect from a client socket */
780 if (!client (p->inputSocket, INPUT_SOCKET)) return(FALSE);
781 break;
782 }
783
784 /* Perform output redirection */
785 switch (p->outputRedirect)
786 {
787 case FILE_REDIRECT: /* Redirect to a file */
788 mask = O_CREAT | O_WRONLY | (p->append?O_APPEND:O_TRUNC);
789 if (!dupFd (p->outputFile, mask, STDOUT)) return (FALSE);
790 break;
791
792 case SERVER_REDIRECT: /* Redirect to a server socket */
793 if (!server(p->outputSocket,OUTPUT_SOCKET)) return(FALSE);
794 break;
795
796 case CLIENT_REDIRECT: /* Redirect to a client socket */
797 if (!client(p->outputSocket,OUTPUT_SOCKET)) return(FALSE);
798 break;

554 Chapter 13 Systems Programming

799 }
800
801 return (TRUE); /* If I got here, then everything went OK */
802 }
803
804 /**/
805
806 dupFd (name, mask, stdFd)
807
808 char* name;
809 int mask, stdFd;
810
811 {
812 int fd;
813
814 /* Duplicate a new file descriptor over stdin/stdout */
815 fd = open (name, mask, DEFAULT_PERMISSION);
816
817 if (fd == -1)
818 {
819 error ("Cannot redirect\n");
820 return (FALSE);
821 }
822
823 dup2 (fd, stdFd); /* Copy over standard file descriptor */
824 close (fd); /* Close other one */
825 return (TRUE);
826 }
827
828 /**/
829 /* SOCKET MANAGEMENT */
830 /**/
831
832 internetAddress (name)
833
834 char* name;
835
836 {
837 /* If name contains a digit, assume it's an internet address */
838 return (strpbrk (name, "01234567890") != NULL);
839 }
840
841 /**/
842
843 socketRedirect (type)
844
845 int type;
846
847 {
848 return (type == SERVER_REDIRECT || type == CLIENT_REDIRECT);
849 }

The Internet Shell 555

850
851 /**/
852
853 getHostAndPort (str, name, port)
854
855 char *str, *name;
856 int* port;
857
858 {
859 char *tok1, *tok2;
860
861 /* Decode name and port number from input string of the form */
862 /* NAME.PORT */
863 tok1 = strtok (str, ".");
864 tok2 = strtok (NULL, ".");
865 if (tok2 == NULL) /* Name missing, so assume local host */
866 {
867 strcpy (name, "");
868 sscanf (tok1, "%d", port);
869 }
870 else
871 {
872 strcpy (name, tok1);
873 sscanf (tok2, "%d", port);
874 }
875 }
876
877 /**/
878
879 client (name, type)
880
881 char* name;
882 int type;
883
884 {
885 int clientFd, result, internet, domain, serverLen, port;
886 char hostName [100];
887 struct sockaddr_un serverUNIXAddress;
888 struct sockaddr_in serverINETAddress;
889 struct sockaddr* serverSockAddrPtr;
890 struct hostent* hostStruct;
891 struct in_addr* hostNode;
892
893 /* Open a client socket with specified name and type */
894 internet = internetAddress (name); /* Internet socket? */
895 domain = internet ? AF_INET : AF_UNIX; /* Pick domain */
896 /* Create client socket */
897 clientFd = socket (domain, SOCK_STREAM, DEFAULT_PROTOCOL);
898
899 if (clientFd == -1)
900 {

556 Chapter 13 Systems Programming

901 perror ("ish");
902 return (FALSE);
903 }
904
905 if (internet) /* Internet socket */
906 {
907 getHostAndPort (name, hostName, &port); /* Get name, port */
908 if (hostName[0] == NULL) gethostname (hostName, 100);
909 serverINETAddress.sin_family = AF_INET; /* Internet */
910 hostStruct = gethostbyname (hostName); /* Find host */
911
912 if (hostStruct == NULL)
913 {
914 perror ("ish");
915 return (FALSE);
916 }
917
918 hostNode = (struct in_addr*) hostStruct->h_addr;
919 printf ("IP address = %s\n", inet_ntoa (*hostNode));
920 serverINETAddress.sin_addr = *hostNode; /* Set IP address */
921 serverINETAddress.sin_port = port; /* Set port */
922 serverSockAddrPtr = (struct sockaddr*) &serverINETAddress;
923 serverLen = sizeof (serverINETAddress);
924 }
925 else /* UNIX domain socket */
926 {
927 serverUNIXAddress.sun_family = AF_UNIX; /* Domain */
928 strcpy (serverUNIXAddress.sun_path, name); /* File name */
929 serverSockAddrPtr = (struct sockaddr*) &serverUNIXAddress;
930 serverLen = sizeof (serverUNIXAddress);
931 }
932
933 do /* Connect to server */
934 {
935 result = connect (clientFd, serverSockAddrPtr, serverLen);
936 if (result == -1) sleep (SOCKET_SLEEP); /* Try again soon */
937 }
938 while (result == -1);
939
940 /* Perform redirection */
941 if (type == OUTPUT_SOCKET) dup2 (clientFd, STDOUT);
942 if (type == INPUT_SOCKET) dup2 (clientFd, STDIN);
943 close (clientFd); /* Close original client file descriptor */
944
945 return (TRUE);
946 }
947
948 /**/
949
950 server (name, type)

The Internet Shell 557

951
952 char* name;
953 int type;
954
955 {
956 int serverFd, clientFd, serverLen, clientLen;
957 int domain, internet, port;
958 struct sockaddr_un serverUNIXAddress;
959 struct sockaddr_un clientUNIXAddress;
960 struct sockaddr_in serverINETAddress;
961 struct sockaddr_in clientINETAddress;
962 struct sockaddr* serverSockAddrPtr;
963 struct sockaddr* clientSockAddrPtr;
964
965 /* Prepare a server socket */
966 internet = internetAddress (name); /* Internet? */
967 domain = internet ? AF_INET : AF_UNIX; /* Pick domain */
968 /* Create the server socket*/
969 serverFd = socket (domain, SOCK_STREAM, DEFAULT_PROTOCOL);
970
971 if (serverFd == -1)
972 {
973 perror ("ish");
974 return (FALSE);
975 }
976
977 if (internet) /* Internet socket */
978 {
979 sscanf (name, "%d", &port); /* Get port number */
980 /* Fill in server socket address fields */
981 serverLen = sizeof (serverINETAddress);
982 bzero ((char*) &serverINETAddress, serverLen);
983 serverINETAddress.sin_family = AF_INET; /* Domain */
984 serverINETAddress.sin_addr.s_addr = htonl (INADDR_ANY);
985 serverINETAddress.sin_port = htons (port); /* Port */
986 serverSockAddrPtr = (struct sockaddr*) &serverINETAddress;
987 }
988 else /* UNIX domain socket */
989 {
990 serverUNIXAddress.sun_family = AF_UNIX; /* Domain */
991 strcpy (serverUNIXAddress.sun_path,name); /* Filename */
992 serverSockAddrPtr = (struct sockaddr*) &serverUNIXAddress;
993 serverLen = sizeof (serverUNIXAddress);
994 unlink (name); /* Delete socket if it already exists */
995 }
996
997 /* Bind to socket address */
998 if (bind (serverFd, serverSockAddrPtr, serverLen) == -1)
999 {
1000 perror ("ish");

558 Chapter 13 Systems Programming

1001 return (FALSE);
1002 }
1003
1004 /* Set max pending connection queue length */
1005 if (listen (serverFd, DEFAULT_QUEUE_LENGTH) == -1)
1006 {
1007 perror ("ish");
1008 return (FALSE);
1009 }
1010
1011 if (internet) /* Internet socket */
1012 {
1013 clientLen = sizeof (clientINETAddress);
1014 clientSockAddrPtr = (struct sockaddr*) &clientINETAddress;
1015 }
1016 else /* UNIX domain socket */
1017 {
1018 clientLen = sizeof (clientUNIXAddress);
1019 clientSockAddrPtr = (struct sockaddr*) &clientUNIXAddress;
1020 }
1021
1022 /* Accept a connection */
1023 clientFd = accept (serverFd, clientSockAddrPtr, &clientLen);
1024
1025 close (serverFd); /* Close original server socket */
1026
1027 if (clientFd == -1)
1028 {
1029 perror ("ish");
1030 return (FALSE);
1031 }
1032
1033 /* Perform redirection */
1034 if (type == OUTPUT_SOCKET) dup2 (clientFd, STDOUT);
1035 if (type == INPUT_SOCKET) dup2 (clientFd, STDIN);
1036 close (clientFd); /* Close original client socket */
1037
1038 return (TRUE);
1039 }
1040

CHAPTER REVIEW

Checklist

In this chapter, I described

• all of the common file management system calls
• the system calls for duplicating, terminating, and differentiating processes

Chapter Review 559

• how a parent may wait for its children
• the terms orphan and zombie
• threaded processes
• how signals may be trapped and ignored
• the way to kill processes
• how processes may be suspended and resumed
• IPC mechanisms: unnamed pipes, named pipes, shared memory, and semaphores
• the client–server paradigm
• UNIX domain and Internet domain sockets
• the design and operation of an Internet shell

Quiz

1. How can you tell when you’ve reached the end of a file?
2. What is a file descriptor?
3. What’s the quickest way to move to the end of a file?
4. Describe the way that shells implement I/O redirection.
5. What is an orphaned process?
6. How is a task run in two processes different from a task run in two threads?
7. Under what circumstances do zombies accumulate?
8. How can a parent find out how its children died?
9. What’s the difference between execv () and execvp ()?

10. Why is the name of the system call kill () a misnomer?
11. How can you protect critical code?
12. What is the purpose of process groups?
13. What happens when a writer tries to overflow a pipe?
14. How can you create a named pipe?
15. Describe the client–server paradigm.
16. Describe the stages that a client and a server go through to establish a connection.

Exercises

13.1 Write a program that catches all signals sent to it and prints out which signal was
sent. Then issue a “kill command to the process. How is SIGKILL different
from the other signals? [level: easy]

13.2 Write a program that takes a single integer argument n from the command line
and creates a binary tree of processes of depth n. When the tree is created, each
process should display the phrase “I am process x” and then terminate.The nodes
of the process tree should be numbered according to a breadth-first traversal. For
example, if the user enters

$ tree 4 ...build a tree of depth 4.

-9”

560 Chapter 13 Systems Programming

then the process tree would look like this:

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

The output would be

I am process 1
I am process 2

.

.

.
I am process 15

Make sure that the original parent process does not terminate until all of its chil-
dren have died. This is so that you can terminate the parent and its children from
your terminal with Control-C. [level: medium]

13.3 Write a program that creates a ring of three processes connected by pipes. The
first process should prompt the user for a string and then send it to the second
process. The second process should reverse the string and send it to the third
process.The third process should convert the string to uppercase and send it back
to the first process. When the first process gets the processed string, it should dis-
play it to the terminal. When this is done, all three processes should terminate.
Here’s an illustration of the process ring:

Prompt/
display

Reverse

Upper-
case

Here’s an example of the program in action:
$ ring ...run the program.
Please enter a string: ole
Processed string is: ELO
$ _

[level: medium]

Chapter Review 561

13.4 Rewrite the “ghoul” exercise of Chapter 5, using the C language. [level: medium]
13.5 Write a program that uses setuid () to allow a user to access a file that he or she

would not normally be able to access. [level: medium]

Projects

1. Write a suite of programs that run in parallel and interact to play the “Paper,
Scissors, Rock” game. In this game, two players secretly choose either paper,
scissors, or rock. They then reveal their choice. A referee decides who wins as
follows:

• Paper beats rock (by covering it).
• Rock beats scissors (by blunting it).
• Scissors beats paper (by cutting it).
• Matching choices draw.

The winning player gets a point. In a draw, no points are awarded. Your program
should simulate such a game, allowing the user to choose how many iterations are
performed, observe the game, and see the final score. Here’s an example of a game:

$ play 3 ...play three iterations.
Paper, Scissors, Rock: 3 iterations
Player 1: ready
Player 2: ready
Go Players [1]
Player 1: Scissors
Player 2: Rock
Player 2 wins
Go Players [2]
Player 1: Paper
Player 2: Rock
Player 1 wins
Go Players [3]
Player 1: Paper
Player 2: Paper
Players draw.
Final score:
Player 1: 1
Player 2: 1
Players Draw
$ _

You should write three programs, which operate as follows:

a. One program is the main program, which forks and execs one referee process
and two player processes. It then waits until all three terminate.The main pro-
gram should check that the command-line parameter that specifies the num-
ber of turns is valid and should pass the number to the referee process as a
parameter to exec ().

562 Chapter 13 Systems Programming

b. One program is a referee program, which plays the role of the server. This
program should prepare a socket and then listen for both players to send the
string “READY”, which means that they’re ready to make a choice. The ref-
eree should then tell each player to make a choice by sending them both the
string “GO.” Their responses are read, and their scores calculated and updat-
ed. This process should be repeated until all of the turns have been taken, at
which point the referee should send both players the string “STOP,” which
causes them to terminate.

c. One program is a player program, which plays the role of the client. This pro-
gram is executed twice by the main program and should start by connecting to
the referee’s socket. It should then send the “READY” message. When it re-
ceives the “GO” message back from the referee, the player should make a
choice and send it as a string to the referee. When the player receives the
string “STOP”, it should kill itself.

The three programs will almost certainly share some functions. To do a good job,
create a makefile that compiles these common functions separately and links
them the executable files that use them. Don’t avoid sending strings by encoding
them as one-byte numbers—that’s part of the problem. [level: medium]

2. Rewrite Exercise 1, using unnamed pipes instead of sockets. Which program do
you think was easier to write? Which is easier to understand? [level: medium]

3. Rewrite Exercise 1 to allow the players to reside on different Internet machines.
Each component of the game should be able to start separately. [level: hard]

...execute this command on vanguard.
$ referee 5000 ...use local port 5000.
...execute this command on csservr2.
$ player vanguard.5000 ...player is on a remote port.
...execute this command on wotan.
$ player vanguard.5000 ...player is on a remote port.

4. The Internet shell is ripe for enhancements. Here is a list of features that would
be challenging to add:

a. The ability to supply an Internet address of the form A.B.C.D. This feature
would actually be easy to add, since my first Internet example already has that
capability. [level: easy]

b. Job control features like fg, bg, and jobs. [level: medium]
c. Filename substitution using *, ?, and []. [level: hard]
d. A two-way socket feature that connects the standard input and output chan-

nels of either the keyboard or a specified process to an Internet socket. This
feature would allow you to connect to standard services without the aid of
telnet. [level: hard]

e. A simple built-in programming language. [level: medium]
f. The ability to refer to any Internet address symbolically. For example, it would

be nice to be able to redirect to “vanguard.utdallas.edu.3000.” [level: medium]

563

C H A P T E R 1 4

UNIX Internals

MOTIVATION

The UNIX operating system was one of the best designed operating systems of its
time. Many of the basic underlying operating system concepts embedded in UNIX will
continue to be used in some form or fashion for a long time to come. For example, the
way that UNIX shares CPUs among competing processes is used in many other oper-
ating systems, such as Microsoft Windows. Knowledge of the way in which the system
works can aid in designing high-performance UNIX applications. For example, knowl-
edge of the internals of the virtual memory system can help you arrange data struc-
tures so that the amount of information transferred between main and secondary
memory is minimized. In sum, knowledge of UNIX internals is useful for two purpos-
es: as a source of reusable information that may help you in designing other similar
systems and to help you design high-performance UNIX applications.

PREREQUISITES

You should already have read Chapter 13. It also helps to have a good knowledge of
data structures, pointers, and linked lists.

OBJECTIVES

In this chapter, I describe the mechanisms that UNIX uses to support processes, mem-
ory management, input/output, and the file system. I also explain the main kernel data
structures and algorithms.

PRESENTATION

Various portions of the UNIX system are described in their turn.

564 Chapter 14 UNIX Internals

INTRODUCTION

The UNIX system is a fairly complex thing, and it’s getting more complex as time goes
by. In order to understand it well, it’s necessary to break the system down into man-
ageable portions and tackle each portion in a layered fashion. Accordingly, we discuss
the following topics:

• Kernel basics: system calls and interrupts.
• The file system: how the directory hierarchy, regular files, peripherals, and multi-

ple file systems are managed.
• Process management: how processes share the CPU and memory and how signals

are implemented.
• Input/output: how processes access files, with special attention given to terminal

I/O.
• Interprocess communication (IPC): the mechanisms that allow processes to com-

municate with each other, even if they’re on different machines.

There are some differences between the ways in which the BSD and System V design-
ers implemented portions of these subsystems. Any major differences in approach are
pointed out at the appropriate time.

KERNEL BASICS

The UNIX kernel is the part of the UNIX operating system that contains the code for

• sharing the CPU and RAM between competing processes
• processing all system calls
• handling peripherals

The kernel is a program that is loaded from disk into RAM when the computer is first
turned on. It always stays in RAM and runs until the system is turned off or crashes.
Although the kernel is written mostly in C, some parts are written in assembly lan-
guage for efficiency reasons. User programs make use of the kernel via the system call
interface.

Kernel Subsystems

The kernel facilities may be divided into the following subsystems:

• memory management
• process management
• interprocess communication (IPC)
• input/output
• file management

These subsystems interact in a fairly hierarchical way. Figure 14.1 illustrates the layering.

Kernel Basics 565

Processes and Files

The UNIX kernel supports the concepts of processes and files. Processes are the “life-
forms” that live in the computer and make decisions. Files are containers of informa-
tion that processes read and write. In addition, processes may talk to each other via
several different kinds of interprocess communication mechanisms, including signals,
pipes, and sockets. Figure 14.2 is an illustration of what I mean.

File management

Input/output

Peripherals

Interprocess
communication

Process management

Memory management

CPU # RAM

FIGURE 14.1

UNIX subsystems.

File

File

File

File

Process

Process

Process

Process

IPC

IPC

I/O

I/O

Pool of processes File system

FIGURE 14.2

UNIX supports processes and files.

566 Chapter 14 UNIX Internals

Talking to the Kernel

Processes access kernel facilities via the system call interface, and peripherals (special
files) communicate with the kernel via hardware interrupts. System calls and hard-
ware interrupts are the only ways in which the outside world can talk to the kernel, as
illustrated by the diagram in Figure 14.3.

Since systems calls and interrupts are obviously very important, I’ll begin the dis-
cussion of UNIX internals with a description of each mechanism.

System Calls

System calls are the programmer’s functional interface to the kernel. They are subrou-
tines that reside inside the UNIX kernel and support basic system functions such as
the ones listed in Figure 14.4. System calls may be loosely grouped into three main
categories, as illustrated in Figure 14.5.

User Mode and Kernel Mode

The kernel contains several data structures that are essential to the functioning of the
system, including the following:

• the process table, which contains one entry for every process in the system
• the open file table, which contains at least one entry for every open file in the system

These data structures reside in the kernel’s memory space, which is protected from
user processes by a memory management system that I’ll describe to you later. User
processes cannot therefore accidentally corrupt these important kernel data structures.
System call routines are different from regular functions because they can directly
manipulate kernel data structures, albeit in a carefully controlled manner.

Process Process Process

System calls

Hardware interrupts

Kernel

Peripheral Peripheral Peripheral

FIGURE 14.3

Talking to the kernel.

Kernel Basics 567

Function System call

open a file open

close a file close

perform I/O read/write

send a signal kill

create a pipe pipe

create a socket socket

duplicate a process fork

overlay a process exec

terminate a process exit

FIGURE 14.4

Common UNIX system calls.

When a user process is running, it operates in a special machine mode called user
mode. This mode prevents a process from executing certain privileged machine in-
structions, including those which would allow it to access the kernel data structures.
The other machine mode is called kernel mode. A kernel mode process may execute
any machine instruction.

The only way for a user process to enter kernel mode is to execute a system call.
Every system call is allocated a code number, starting from 1. For example, the open ()
system call might be allocated code number 1, and close () might be allocated code

Process Process Process

System calls

System-call interface

Input/
output

Interprocess
communication

Kernel

Process
management

FIGURE 14.5

Major system call subsystems.

568 Chapter 14 UNIX Internals

number 2. When a process invokes a system call, the C run-time library version of the
system call places the system call parameters and the system call code number into some
machine registers and then executes a trap machine instruction.The trap instruction flips
the machine into kernel mode and uses the system call code number as an index into a
system call vector table located in low kernel memory. The system call vector table is an
array of pointers to the kernel code for each system call. The code corresponding to the

….
result $ open ("/home/glass/file.txt", O_RDONLY);

open (char* name, int mode)

….

{
!Place parameters in registers"

!Execute trap instruction, switching to kernel code and kernel mode"

!Return result of system call"

}

User process

Kernel

Address of kernel close ()

Address of kernel open ()

Address of kernel write ()

kernel code for open ()

{
!Manipulate kernel data structures"

….
!Return to user code and user mode"

}

User
code

C runtime
library

System-call
vector table

Kernel
system-call

code

FIGURE 14.6

User mode and kernel mode.

Kernel Basics 569

indexed function executes in kernel mode, modifying kernel data structures as necessary,
and then performs a special return instruction that flips the machine back into user mode
and returns to the user process’ code.

When I was first learning about UNIX, I didn’t understand why this approach
was taken.Why not just use a client–server model with a kernel server process that ser-
vices system requests from client user processes? That would avoid the need for user
processes to execute kernel code directly. The reason is pure and simple: speed. In cur-
rent architectures, the overhead cost of swapping between processes is too great to
make the client–server approach practical. However, it’s interesting to note that some
of the modern microkernel systems are taking this approach.

From a programmer’s standpoint, using a system call is easy: You call the C func-
tion with the correct parameters, and the function returns when it finishes processing.
If an error occurs, the function returns and the global variable errno is set to indi-
cate the cause of the error. Figure 14.6 shows a diagram that illustrates the flow of
control during a system call.

Synchronous versus Asynchronous Processing

When a process performs a system call, it cannot usually be preempted. This means
that the scheduler will not assign the CPU to another process during the operation
of a system call. However, some system calls request I/O operations from a device,
and these operations can take a while to complete. To avoid leaving the CPU idle
during the wait for I/O to terminate, the kernel puts the waiting process to sleep and
wakes it up again only when a hardware interrupt signaling I/O completion is re-
ceived. The scheduler does not allocate any CPU time to a sleeping process, but
rather allocates the CPU to other processes while the hardware device is servicing
the I/O request.

An interesting consequence of the way that UNIX handles read () and write () is
that user processes experience synchronous execution of system calls, whereas the
kernel experiences asynchronous behavior. This disparity is illustrated in Figure 14.7.

Interrupts

Interrupts are the way that hardware devices notify the kernel that they must be at-
tended to. In the same way that processes compete for CPU time, hardware devices
compete for interrupt processing. Devices are allocated an interrupt priority based on
their relative importance, as shown in Figure 14.8. For example, interrupts from the
system clock have a higher priority than those from the keyboard.

When an interrupt occurs, the current process is suspended and the kernel deter-
mines the source of the interrupt. It then examines its interrupt vector table, located in
low kernel memory, to find the location of the code that processes the interrupt. This
“interrupt handler” code is then executed. When the interrupt handler is finished, the
current process is resumed. Interrupt processing is illustrated in Figure 14.9.

Interrupting Interrupts

Interrupt processing may itself be interrupted! If an interrupt of a higher priority than
the current interrupt arrives, a sequence of events similar to normal interrupt processing

-1,

570 Chapter 14 UNIX Internals

Disk

read ()

Process A

Process B

Kernel

Process B sleeps

Continue
after disk
services

I/O

Add I/O
requests
to disk
queue

Hardware interrupts

Time

Return
from
read ()

Return
from
read ()

Process A sleeps

read ()

FIGURE 14.7

Synchronous and asynchronous events.

Highest
priority

Lowest
priority

Interrupt vector table

Hardware errors

Clock

Disk I/O

Keyboard

Traps (software interrupts)

0

1

2

3

4

Pointers to kernel
interrupt handlers

FIGURE 14.8

Interrupts have priorities.

Kernel Basics 571

occurs, and the lower priority interrupt handler is suspended until the higher priority
interrupt is finished. This process is shown in Figure 14.10.

If an interrupt is being processed and another interrupt of an equal or lower pri-
ority occurs, the incoming interrupt is ignored and discarded, as shown in Figure 14.11.
Interrupt handlers are therefore designed to be very fast, since the quicker they
execute, the less likely it is that other interrupts will be lost.

Most machines have instructions that allow a program to ignore all interrupts
below a certain priority level. Critical sections of kernel code protect themselves from

Time
Suspend

Process interrupt

Completed

Resume

Keyboard
interrupt

Keyboard
interrupt
handler

Current process

FIGURE 14.9

Interrupt processing.

Time

Completed

Completed

Keyboard
interrupt

Keyboard
interrupt
handler

Clock
interrupt
handler

Suspend

Suspend Resume

Resume

Clock
interrupt

Current process

FIGURE 14.10

Interrupts may be interrupted.

572 Chapter 14 UNIX Internals

interrupts by temporarily invoking such instructions. Here’s some pseudocode that
does just that:

.

.

.
<disable all but highest priority interrupts>
<enter critical section of code>

.

.

.
<leave critical section of code>
<reenable all interrupts>

.

.

.

Later in the chapter, we describe the way that peripherals use the kernel interrupt
facilities to perform efficient I/O.

THE FILE SYSTEM

UNIX uses files for long-term storage and RAM for short-term storage. Programs, data,
and text are all stored in files, which in turn are usually stored on hard disks, but can also
be stored on other media, such as tape and floppy disks. UNIX files are organized by a

Clock interrupts are processed with a high priority

Time
IgnoredProcessed

Disk

Clock

Kernel

Disk interrupts are of lower priority than clock interrupts

FIGURE 14.11

Interrupts may be ignored.

The File System 573

hierarchy of labels, commonly known as a directory structure. The files referenced by
these labels may be of three kinds:

• Regular files, which contain a sequence of bytes that generally corresponds to
code or data. Regular files may be referenced via the standard I/O system calls.

• Directory files, which are stored on disk in a special format and which form the
backbone of the file system. Directory files may be referenced only via directory-
specific system calls.

• Special files, which correspond to peripherals, such as printers and disks, and in-
terprocess communication mechanisms, such as pipes and sockets. Special files
may be referenced via the standard I/O system calls.

Conceptually, a UNIX file is a linear sequence of bytes.The UNIX kernel does not sup-
port any higher order of file structure, such as records or fields. This is evident if you
consider the lseek () system call, which allows you to position the file pointer only in
terms of a byte offset. Older operating systems tended to support record structures, so
UNIX was fairly unusual in this regard.

Let’s begin our study of the UNIX file system by looking at the hardware archi-
tecture of the most common file medium: a disk.

Disk Architecture

Figure 14.12 shows a diagram of typical disk architecture. A disk is split up in two ways:
It’s sliced up like a pizza into areas called sectors, and it’s further subdivided into con-
centric rings called tracks. The individual areas bounded by the intersection of sectors
and tracks are called blocks; they form the basic unit of disk storage.A typical disk block
can hold 4K bytes. A single read/write head travels up and down a stationary arm, ac-
cessing information as the disk rotates and its surface passes underneath.A special chip
called a disk controller moves the read/write head in response to instructions from the
disk device driver, which is a special piece of software located in the UNIX kernel.

Read/write
head

Block

PlatterSector

Track Arm

FIGURE 14.12

Disk architecture.

574 Chapter 14 UNIX Internals

There are several variations of this simple disk architecture. Many disk drives
actually contain several platters, stacked one upon the other, as shown in Figure 14.13.
In these systems, the collection of tracks with the same index number is called a
cylinder. In most multiplatter systems, the disk arms are connected to each other so
that the read/write heads all move synchronously, rather like a comb moving through
hair. The read/write heads of such disk systems therefore move through cylinders of
media. Some sophisticated disk drives have separately controllable read/write heads.

Notice that the blocks on the outside track are larger than the blocks on the in-
side track, due to the way that a disk is partitioned. If a disk always rotates at the same
speed, then the density of data on the disk’s outer blocks is less than it could be, thus
wasting potential storage. Some of the latest disk drive designs attempt to keep the
data density constant throughout the surface of the disk by increasing the number of
blocks on the outer tracks and then either slowing down the disk’s rotation or increas-
ing the data transfer rate as the head moves toward the outside of the disk. Disk stor-
age techniques are shown in Figure 14.14.

One head
per platter

FIGURE 14.13

A multiplatter architecture.

Slow down disk
when accessing

outer tracks

Speed up disk
when accessing

inner tracks

Decrease data-
transfer rate

on inner tracks

Increase data-
transfer rate

on outer tracks

More blocks on
outer tracks

1 2

FIGURE 14.14

Disk storage techniques.

The File System 575

Interleaving

When a sequence of contiguously numbered blocks is read, there’s a delay between each
block due to the overhead of the communication between the disk controller and the de-
vice driver. Logically contiguous blocks are therefore spaced apart on the surface of the
disk so that by the time the delay is over, the head is positioned over the correct area.The
spacing between blocks due to this delay is called the interleave factor. Figure 14.15 shows
a couple of pictures that illustrate two different interleave factors.

7

8 1

210

916
15

14
6

13
5

12

4

11
3

3

6 1

412

914
11

16
8

13
5

10

2

15
7

1:1 Interleave 3:1 Interleave

FIGURE 14.15

Disk interleaving.

1Some file systems remedy this situation by having a disk block contain the last datum in a file. Thus, one disk block
can contain fragments from several files.

Storing a File

Assuming a 4K block size, a single 9K UNIX file requires three blocks of storage—one
to hold the first 4K, one to hold the next 4K, and the last to hold the remaining 1K.1

The loss of storage due to the underuse of the last 4K block is called fragmentation. A
file’s blocks are rarely contiguous and tend to be scattered all over a disk, as shown in
Figure 14.16.

Block I/O

I/O is always done in terms of blocks. If you issue a system call to read () the first byte
of data from a file, the device driver issues an I/O request to the disk controller to
read the first 4K block into a kernel buffer and then copies the first byte from the
buffer to your process. (More information about I/O buffering is presented later in
the chapter.)

Most disk controllers handle one block I/O request at a time. When a disk con-
troller completes the current block I/O request, it issues a hardware interrupt back to
the device driver to signal that it is finished. At this point, the device driver usually
makes the next block I/O request. Figure 14.17 is a diagram that illustrates the se-
quence of events that might occur during a 9K read ().

576 Chapter 14 UNIX Internals

User
process

Kernel

read (fd, buf, 9216) Suspend read () completed

First 4K
block

Second 4K
block

Third 4K
block

Device driver

Disk controller

Disk

Sequence of I/O requests
and completion interrupts

Time

Interrupts

I/O requests

FIGURE 14.17

Block I/O.

Inodes

UNIX uses a structure called an inode (index node) to store information about each file.
(See Figure 14.18.) The inode of a regular or directory file contains the locations of its
disk blocks, and the inode of a special file contains information that allows the periph-
eral to be identified. An inode also holds other information associated with a file, such
as its permission flags, owner, group, and last modification time. An inode has a fixed
size and contains pointers to disk blocks, as well as additional indirect pointers (for large
files). Every inode in a particular file system is allocated a unique inode number, and

7

8 1

210

916
15

14
6

13
5

12

4

11
3

Logical file (9K)

First 4K

Second 4K

Last 1K

First 4K is
on block 7

Second 4K is
on block 2

Last 1K is
on block 14

File
system

FIGURE 14.16

A file’s blocks are scattered.

The File System 577

every file has exactly one inode.All of the inodes associated with the files on a disk are
stored in a special area at the start of the disk called the inode list.

Inode Contents

The following file information is contained within each inode:

• the type of the file: regular, directory, block special, character special, etc.
• file permissions
• the owner and group IDs
• a hard link count (described later in the chapter)
• the last modification time and last access time
• the location of the blocks if the file is a regular or directory file
• the major and minor device numbers (described later in the chapter) if the file is

a special file
• the value of the symbolic link if the file is a symbolic link

In other words, an inode contains all of the information that you see when you perform
an “ls -l”, except for the filename.

7

8 1

210

916
15

14
6

13
5

12

4

11
3

File
system

70

1

2

3

4

5

6

7

8

9

2

14

Additional
information

Logical
block #

Physical
block #

Inode

Block map

FIGURE 14.18

Every file has an inode.

578 Chapter 14 UNIX Internals

For files greater than 4 megabytes a similar double-indirect scheme is used. A
user block is used to hold the locations of up to 1024 other indirect blocks, each of
which points to a maximum of 1024 user blocks, as shown in Figure 14.20. The inode
holds the location of the double-indirect user block.

Note that as the file gets larger, the amount of indirection required to access a
particular block increases. This overhead is minimized by buffering the contents of the
inode and commonly referenced indirect blocks in RAM. The buffering mechanism is
described later in the chapter.

File System Layout

The first logical block of a disk is termed the boot block and contains some executable
code that is used when UNIX is first activated. (See Chapter 15 for more information.)
The second logical block is known as the superblock and contains information concern-
ing the disk itself. Following this is a fixed-size set of blocks called the inode list that

Direct
block

pointers

Inode

To blocks
0 . . 9

Indirect
pointer

To the single
indirect block

To blocks
10 . . 1033

Disk blocks

FIGURE 14.19

The single indirect block.

The Block Map

Only the locations of the first 10 blocks of a file are stored directly in the inode. Most
UNIX files are less than 40K in size, so this is sufficient in a majority of cases.An indirect
access scheme is used for addressing larger files. In this scheme, a single user block is used
to hold the location of up to 1024 user blocks.When used in this manner, a block is called
an indirect block. (See Figure 14.19.) Its location is stored in the inode and is used to ad-
dress the next 1024 blocks.This approach allows files up to 4 megabytes to be addressed.

The File System 579

holds all of the inodes associated with the files on the disk. Each block in the inode list
can normally hold about 40 inodes (although this varies with different versions of
UNIX). The remaining blocks on the disk are available for storing file blocks and con-
tain both directories and user files.The disk block arrangement is shown in Figure 14.21.

The Superblock

The superblock contains information pertaining to the entire file system. It includes a
bitmap of free blocks, as shown in Figure 14.22. The bitmap is a linear sequence of bits,
one per disk block. A one indicates that the corresponding block is free, and a zero
means it’s being used.

To the single-indirect block

To the double-indirect block

To blocks
0 . . 9

Inode

Direct
block

pointers

Indirect
pointer

Double
indirect
pointer

Disk blocks

To blocks
10 . . 1033

Locates up to
1024 indirects

To blocks
1034. .2057

Locates up to
1024 blocks

FIGURE 14.20

The double-indirect block.

580 Chapter 14 UNIX Internals

The superblock includes the following information:

• the total number of blocks in the file system
• the number of inodes in the inode free list
• the size of a block in bytes
• the number of free blocks
• the number of used blocks

Bad Blocks

A disk always contains several blocks that, for one reason or another, are not fit for
use. The utility that creates a new file system, described in Chapter 15, also creates a

Boot block

Super block

Inodes 1..40

Inodes 41..80

Inodes 81..120

User block

User block

User block

User block

Logical disk layout

0

1

2

3

4

200

201

202

20000

Physical
disk layout

Blocks containing inodes
that describe files

User blocks

FIGURE 14.21

Usage of disk blocks.

1 1 1 10 0

Free
Free

Free

Free
Used

Used

Disk blocks

Bitmap

FIGURE 14.22

The free-block bitmap.

The File System 581

single “worst-nightmare” file composed of all the bad blocks in the disk and records
the locations of all these blocks in inode number 1.This prevents the blocks from being
allocated to other files.

Directories

Inode number 2 contains the location(s) of the block(s) possessing the root directory.
A UNIX directory contains a list of associations between filenames and inode num-
bers.When a directory is created, it is automatically allocated entries for “..” (its parent
directory) and “.” (itself). Since a pair effectively links a
name to a file, these associations are termed “hard links.” Because filenames are stored
in the directory blocks, they are not stored in a file’s inode. In fact, it wouldn’t make
any sense to store the name in the inode, as a file may have more than one name. Ac-
cordingly, it’s more accurate to think of the directory hierarchy as being a hierarchy of
file labels, rather than a hierarchy of files.

All UNIX systems allow a filename to be at least 14 characters, and most support
names up to 255 characters in length. Figure 14.23 is an illustration of the root inode
corresponding to a simple root directory. The inode numbers associated with each file-
name are shown as subscripts.

6filename, inode number7

Inode for root directory (#2)

Hard link

/2

Label Inode #
. 2
. . 2

3bin

4usr
bin3 usr4

ls5 cp7 test.c6

FIGURE 14.23

The root directory is associated with inode 2.

Translating Pathnames into Inode Numbers

System calls such as open () must obtain a file’s inode from its pathname.They perform
the translation as follows:

1. The inode from which to start the search for the pathname is located. If the path-
name is absolute, the search starts from inode 2. If the pathname is relative, the
search starts from the inode corresponding to the process’ current working direc-
tory. (See “Process Management” for more information.)

2. The components of the pathname are then processed from left to right. Every
component except the last should correspond to either a directory or a symbolic
link. Let’s call the inode from which the pathname search is started the current
inode.

582 Chapter 14 UNIX Internals

3. If the current inode corresponds to a directory, the current pathname component
is looked for in the directory corresponding to the current inode. If it’s not found,
an error occurs; otherwise, the value of the current inode number becomes the
inode number associated with the pathname component that has been located.

4. If the current inode corresponds to a symbolic link, the pathname up to and in-
cluding the current path component is replaced by the contents of the symbolic
link, and the pathname is reprocessed.

5. The inode corresponding to the final pathname component is the inode of the file
referenced by the entire pathname.

To illustrate this algorithm, I’ll list the steps required to translate the pathname
“/usr/test.c” into an inode number. Figure 14.24 contains the disk layout that I assume
during the translation process. It indicates the translation path via bold lines and the
final destination with a circle.

Sample Pathname-to-Inode Translation

Here’s the logic that the kernel uses to translate the pathname “/usr/test.c” into an
inode number:

1. The pathname is absolute, so the current inode number is 2.
2. The directory corresponding to inode 2 is searched for the pathname component

“usr.” The matching entry is found, and the current inode number is set to 4.
3. The directory corresponding to inode 4 is searched for the pathname component

“test.c”. The matching entry is found, and the current inode number is set to 6.
4. “test.c” is the final pathname component, so the algorithm returns the inode

number 6.

As you can see, the translation bounces between inodes and directory blocks until the
pathname is fully processed.

Mounting File Systems

When UNIX is started, the directory hierarchy corresponds to the file system located
on a single disk called the root device. UNIX allows you to create file systems on other
devices and attach them to the original directory hierarchy, using a mechanism termed
mounting. The mount utility allows a superuser to splice the root directory of a file sys-
tem into the existing directory hierarchy. Typically, the hierarchy of a large UNIX sys-
tem is spread over many devices, each containing a subtree of the total hierarchy. For
example, the “/usr” subtree is commonly stored on a device other than the root device.
Non-root-file systems are usually mounted automatically at boot time. (See Chapter 15
for more details.) For example, suppose that a file system is stored on a floppy disk in
the “/dev/flp” device. To attach it to the “/mnt” subdirectory of the main hierarchy,
you’d execute the command

$ mount /dev/flp /mnt

The File System 583

Figure 14.25 illustrates the effect of this command.
File systems may be detached from the main hierarchy by using the umount utility.

The command

$ umount /dev/flp

or

$ umount /mnt

would detach the file system stored in “/dev/flp”.

/2

bin3 usr4

ls5 cp7 test.c6

Hierarchy

1
2
3
4
5
6
7
8

200

201

202

203

204

205

206

2
2
3
4
3
2
5
7
4
2

·
. .

bin
usr

·
. .
ls

cp
·
. .

test.c 6

Block
numbers

Inode
number

Block number Permissions

200
201
202
203

205
204, 206

dr–xr–xr–x
dr–xr–xr–x
dr–xr–xr–x
–r–xr–xr–x
–rwxr–xr–x
–r–xr–xr–x

Located inode
number

Bad-block inode
Root inode

ls executable

test.c, first block

cp executable

test.c, second block

FIGURE 14.24

A sample directory layout.

584 Chapter 14 UNIX Internals

File System I/O

For details about the kernel implementation of file system I/O, see “Input/Output,”
later in the chapter.

PROCESS MANAGEMENT

In this section, I describe the way that the kernel shares the CPU and RAM among
competing processes. The area of the kernel that shares the CPU is called the
scheduler, and the area of the kernel that shares RAM is called the memory manager.
The section also contains information about process-oriented system calls, including
exec (), fork (), and exit (). For the sake of simplicity, we will not concern ourselves with
kernel threads (threads that run in kernel mode), since most applications programmers
will not have any occasion to use them. However, we should be aware that, just as a
user application can run multithreaded tasks, some kernel modules (like device dri-
vers) may also run multithreaded. This introduces most of the same complexities dis-
cussed in the previous chapter.

Executable Files

When the source code of a program is compiled, it is stored in a special format on disk.
The first few bytes of the file are known as the magic number and are used by the ker-
nel to identify the type of the executable file. For example, if the first two bytes of the
file are the characters “#!”, the kernel identifies the executable file as containing shell
text and invokes a shell to execute the text. Another sequence identifies the file as
being a regular load image containing machine code and data. This kind of file is divid-
ed into several sections containing code or data, with a separate header for each sec-
tion.The headers are used by the kernel in preparing the memory management system
described shortly. Figure 14.26 is an illustration of a typical executable file.

The First Processes

UNIX runs a program by creating a process and then associating it with a named exe-
cutable file. Surprisingly enough, there’s no system call that allows you to say “create a

/

tmp1 tmp2

tmp1 tmp2

/

bin usr mnt

/

bin usr mnt

Splice

Before mounting After mounting

FIGURE 14.25

Mounting directories.

Process Management 585

new process to run program X”; instead, you must duplicate an existing process and
then associate the newly created child process with the executable file “X.”

The first process, with process ID (PID) 0, is created by UNIX during boot time.
This process immediately fork()s and exec()s twice, creating two processes with PIDs
1 and 2. In System V UNIX, the names of these first few processes are as shown in
Figure 14.27. The purpose of these processes is described later in the chapter. All other
processes in the system are descendants of the init process. (For more information con-
cerning the boot sequence, see Chapter 15.)

Kernel Processes and User Processes

Most processes execute in user mode, except when they make a system call, at which
point they flip temporarily into kernel mode. However, the sched daemon (PID 0) and
pageout daemon (PID 2) processes execute permanently in kernel mode due to their
importance and are termed kernel processes. In contrast to user processes, their code is
linked directly into the kernel and does not reside in a separate executable file. In ad-
dition, kernel processes are never preempted.

Main header, including magic number

Header of section one

Header of section two

Section one

Section two

FIGURE 14.26

Layout of an executable file.

PID Name

0 sched

1 init

2 pageout

FIGURE 14.27

The first processes to start on a
UNIX system.

586 Chapter 14 UNIX Internals

The Process Hierarchy

When a process duplicates by using fork (), the original process is known as the parent of
the child process.The init process, PID 1, is the process from which all user processes are
descended. Parent and child processes are therefore related in a hierarchy, with the init
process as the root. Figure 14.28 illustrates a process hierarchy involving four processes.

Process 48 Process 12

Process 34

fork/exec

fork/exec

Process 1

fork/exec

FIGURE 14.28

Process hierarchy.

Process States

Every process in the system can be in one of six states:

• Running, which means that the process is currently using the CPU.
• Runnable, which means that the process can make use of the CPU as soon as it

becomes available.
• Sleeping, which means that the process is waiting for an event to occur. For ex-

ample, if a process executes a read () system call, it sleeps until the I/O request is
completed.

• Suspended, which means that the process has been “frozen” by a signal such as
SIGSTOP. It will resume only when sent a SIGCONT signal. For example, a
Control-Z from the keyboard suspends all of the processes in the foreground job.

• Idle, which means that the process is being created by a fork () system call and is
not yet runnable.

• “Zombified,” which means that the process has terminated, but has not yet re-
turned its exit code to its parent. A process remains a zombie until its parent ac-
cepts its return code via the wait () system call.

Figure 14.29 shows a diagram that illustrates the possible state changes that can occur
during the lifetime of a process.

Process Composition

Every process is composed of several different pieces:

• a code area, which contains the executable (text) portion of the process

Process Management 587

• a data area, which is used to contain static data
• a stack area, which is used to store temporary data
• a user area, which holds housekeeping information about the process
• page tables, which are used by the memory management system

The uses of the first three areas should be familiar to you, and I’m going to leave a dis-
cussion of page tables until later.The next subsection contains a description of the user
area. Process composition is shown in Figure 14.30.

The User Area

Every process in the system has some associated “housekeeping” information that is
used by the kernel to manage the process.This information is stored in a data structure
called a user area. Every process has its own user area, created in the kernel’s data re-
gion and accessible only by the kernel; user processes may not access their user areas.
Fields within a process’ user area include the following:

• a record of how the process should react to each kind of signal
• a record of the process’ open file descriptors
• a record of how much CPU time the process has used recently

The contents of a user area are described in more detail later in the chapter.

The Process Table

There is a single fixed-size kernel data structure called the process table that contains
one entry for every process in the system. The process table is created in the kernel’s

Idle Runnable

Event
occurs

Wait on
event

Initialize

Signal Signal

Allocated
CPU Exit

Sleeping

Running Zombified

Suspended

FIGURE 14.29

Process states.

588 Chapter 14 UNIX Internals

data region and is accessible only by the kernel. Each entry contains the following
information about each process:

• its process ID (PID) and parent process ID (PPID)
• its real and effective user ID (UID) and group ID (GID)
• its state (running, runnable, sleeping, suspended, idle, or zombified)
• the location of its code, data, stack, and user areas
• a list of all pending signals

Figure 14.31 shows the process table that would result from the small process hierarchy
that I illustrated earlier in the chapter. It assumes that the process with PID 48 is cur-
rently waiting for I/O completion.

The Scheduler

The kernel is responsible for sharing CPU time among competing processes. A sec-
tion of the kernel code called the scheduler performs this duty and maintains a spe-
cial data structure called a multilevel priority queue that allows it to schedule
processes efficiently. A priority queue is a linked list of the runnable processes that
have similar priorities. The way that the kernel calculates a process’ priority is dis-
cussed later in the chapter.

Code
area

Stack
area

User
area

Page
tables

Data
area

FIGURE 14.30

Process composition.

Process Management 589

Processes are allocated CPU time in proportion to their importance. CPU time is
allocated in fixed size units called time quanta. On most systems, each time quantum is
1/10 second. Figure 14.32 shows the queues in relation to the process table, based on
the small process hierarchy illustrated earlier.

Scheduling Rules

Here are the rules that describe the way the scheduler works:

• Every second, the scheduler calculates the priorities of all the runnable processes
in the system and organizes them into several priority queues. The queues are
stratified on the basis of the process’ priority values.

Process 34

Process 48

Process 12

CPU

Shared by
processes

34 12 R

R $ Running

12 1 R

48 1 S

1 % R

Free entry

Free entry

Free entry

Process table
PID PPID Stat

S $ Sleeping
Process 1

FIGURE 14.31

The process table.

Process table
PID PPID Stay Process 34

Process 48

Process 12

Process 1

CPU

Shared by
processes

R $ Running

Multilevel
priority
queues

0

N/A

Next

1

2

3

4

N/A

N/A N/A

N/A

N/A

34 12 R

12 1 R

48 1 S

1 % R

Free entry

Free entry

Free entry

S $ Sleeping

FIGURE 14.32

The process table and priority queues.

590 Chapter 14 UNIX Internals

• Every 1/10 second, the scheduler selects the highest-priority process in the priority
queues and allocates the CPU to it (unless the currently running process is in ker-
nel mode).

• If a process is still runnable at the end of its time quantum, it’s placed at the end
of its priority queue.

• If a process sleeps on an event during its time quantum, the scheduler immedi-
ately selects another process to run and allocates the CPU to it.

• If a process returns from a system call during its time quantum and a higher pri-
ority process is ready to run, the lower priority process is preempted by the high-
er priority process.

• At every hardware clock interrupt (which typically occurs 100 times a second),
the process’ clock tick count is incremented. Every fourth tick, the scheduler re-
calculates the process’ priority value. This tends to reduce a process’ priority dur-
ing its time quantum.

The formula for calculating a process’ priority may be stated roughly as follows:

where base priority is the threshold priority and nice setting is the value set by the
nice() system call. This formula ensures that a process’ priority diminishes if it uses a
lot of CPU time in a particular “window” of time. It also ensures that processes that
have a high nice setting will have a lower priority. A consequence of the formula is
that interactive processes will tend to have a good response time: As an interactive
process waits for a user to press a key, it uses no CPU time, and therefore its priority
level rises rapidly.

The act of switching from one process to another is termed a context switch. To
“freeze” a process, the kernel saves the program counter, stack pointer, and other im-
portant details about the process into the process’ user area. To “thaw” a process, the
kernel reinstates this information from the process’ user area.

As a result of these rules, every second the CPU is allocated in a round-robin
fashion to processes in the highest nonempty priority queue. At the end of each sec-
ond, the processes are repositioned in the queues, depending on their new priorities,
and the round-robin allocation repeats. Figures 14.33, 14.34, and 14.35 provide some il-
lustrations of the scheduling rules in action.

priority = (Recent CPU usage) / constant + (base priority) + (nice setting),

Recalculate all process priorities

Run every second

FIGURE 14.33

Every second.

Process Management 591

Memory Management

In addition to managing scheduling, the kernel is responsible for sharing RAM among
processes in a secure and efficient manner. The next few sections describe the UNIX
memory management system.2

Memory Pages

The UNIX memory management system allows processes that are bigger than the total
RAM capacity of the system to execute. In order to achieve this, it divides RAM, code,
data, and stack areas into fixed-size chunks of memory called pages, analogously to the

Run every 1/10 second

Select highest priority process on run queue

If the process is still runnable, place
it at the end of its run queue

Run it until one of the following is true:
1. End of time quantum
2. It sleeps
3. It returns from a system call and a higher
 priority process is ready to run

FIGURE 14.34

Every 1/10.

2Memory management implementations vary among versions of UNIX. The algorithm described here is BSD centric.

Run every clock-tick

Add one to current process's clock-tick count

Recalculate priority of current process
if four ticks have accumulated

FIGURE 14.35

Every clock tick.

592 Chapter 14 UNIX Internals

way that a disk is divided up into fixed-size blocks.The size of a memory page is typically
set to the size of a disk block. The reason for this relationship will soon become evident.
Only the pages of a process that are currently being accessed or were recently accessed
are stored in RAM pages; the rest are stored on disk.

Page Tables and Regions

The code, data, and stack areas of a process do not have to reside in logically contigu-
ous memory. For example, the compiler might generate a program whose code, data,
and stack occupy the logical areas of address space shown in Figure 14.36.

Each area of contiguous logical address space is termed a region; therefore, most
processes have three regions. The pages of a region do not have to be stored contigu-
ously in RAM; every region has an associated data structure called a page table that
records the locations of each of its pages. A process’ page tables are created in the ker-
nel’s data region and are accessible only by the kernel.The locations of a process’ page
tables are stored in the process’ user area. A page table in the memory management
system is analogous to an inode in the file system, as each tracks the location of indi-
vidual storage units.

Figure 14.37 illustrates the process table, user areas, and page tables.

The RAM Table

The memory manager allocates pages of RAM to a process only when it needs them.A
single fixed-size kernel data structure called the RAM table records information about
each page of RAM, such as whether the page is currently being used and whether it’s
“locked” into memory. Locked pages are never transferred to disk; for example, all of
the pages that contain the UNIX kernel are locked.

Loading an Executable File: exec ()

When a process performs an exec (), the kernel allocates page tables for the process’
code, data, and stack regions. At this point, all of the code and initialized data resides
on disk in the executable file, so the code and data page table entries are set to contain
the locations of their corresponding disk blocks.These locations are extracted from the

Section Logical address

code 0K..15K

data 64K..72K

stack 64K..72K

FIGURE 14.36

Sample memory layout.

Process Management 593

executable file’s inode and header. When the process accesses one of the pages for the
first time, its corresponding block is copied from disk into RAM, and the page table
entry is updated with the physical RAM page number.

The stack and uninitialized data regions do not have a corresponding disk loca-
tion. The kernel therefore marks their corresponding page table entries as zeroed.
When a zeroed page is accessed for the first time, the kernel allocates a page of RAM
and fills it with zeroes without loading anything from disk. It then updates the page
table entry with the physical RAM page number.

Assuming that the first eight pages of RAM were originally free, Figure 14.38
shows an illustration of a process’ memory layout immediately after an exec ().

Address Translation

All of the logical addresses that travel down the hardware address bus from a process
must be mapped to a physical address, using the information contained in the process’

Process
table

User area

To code page table

To data page table

To stack page table

Current directory,
umask value,

pending signals,
control terminal, etc.

Region table

Other process information

Data page table

Code page table

Stack page table

To pages
of code

in RAM/disk

To pages
of data

in RAM/disk

To pages
of stack

in RAM/disk

FIGURE 14.37

The user area, regions, and page tables.

594 Chapter 14 UNIX Internals

region and page tables. This translation process is aided by a special piece of hardware
called a memory management unit (MMU). Assuming that every page of RAM is 4K
and that all addresses are 32-bit values, the memory management unit works as follows:

• When a process is scheduled, several hardware-specific registers in the MMU are
set to point to the process’ region and page tables. The MMU uses these registers
to access those data structures during the address translation process.

• When an address appears on the hardware address bus, the MMU is activated
and starts the translation process. I’ll call the incoming address ADDR.

• The MMU then determines which region the incoming address ADDR lies
within—either the code, data, or stack region.

• The MMU then subtracts the starting virtual address (SVA) of the region from
the incoming address ADDR. This yields the offset of the incoming address from
the start of the region (OSR).

• OSR is then split into two pieces. The most significant 20 bits correspond to the
region page number (RPN) of the incoming address, and the least significant 12
bits are equal to the offset within this region page (ORP).

Region table

Code

Data

Stack

16K

64K

User area

Code page table

Disk block 1

Disk block 6

Disk block 7

Disk block 8

Zero'ed

Zero'ed

Zero'ed

Zero'ed

Disk block 4

Disk block 9

Data page table

Stack page table

0

1

2

3

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

0

1

2

3

0

1

Block
number

Page
number RAM RAM table

Disk

Free

Free

Free

Free

Free

Free

Free

Free

Free
list

Process
table

Offset
0K

FIGURE 14.38

Memory layout immediately after an exec ().

Process Management 595

• The MMU then consults the region’s page table to determine the current location
of the logical page RPN. If the page is currently in RAM, the incoming logical ad-
dress is translated into a physical address by replacing the logical page number by
the physical RAM number. If the page is not in RAM, the MMU gives up trying to
translate the logical address, generates a page validity interrupt, and then process-
es other incoming logical addresses.

• When UNIX receives a page validity interrupt, it issues an I/O request that loads
the page from disk into a free page of RAM.When the page is loaded, the appro-
priate page table entry is updated with the RAM page number, and the address
translation is restarted.

Illustration of MMU Algorithm

Figure 14.39 illustrates the MMU mapping algorithm.

The MMU and the Page Table

Each page table entry contains a number of fields that are used by various facets of the
memory management system. Some of these fields are set automatically by the MMU
under certain circumstances:

• The modified bit is set when a process writes to the page.
• The referenced bit is set when a process reads from or writes to the page.

Incoming logical address

Cleave into a logical page number and an offset

Consult the page table–is the logical page in RAM?

Generate a validity page fault

Process other addresses

Replace the logical page number with the
physical page number

Outgoing physical address

Load the page from
disk and update the

page-table and
RAM-table entries

Retry memory
access

Validity-fault handler

MMU

Yes No

FIGURE 14.39

Memory management algorithm (simplified).

596 Chapter 14 UNIX Internals

The following additional fields are automatically used by the MMU when translating
an incoming logical address:

• If the valid bit is set, the MMU replaces the logical page number of the incoming
address with the physical page number field.

• If the valid bit is not set, the MMU generates a page fault.
• If the copy-on-write bit is set and a process attempts to modify the page, the

MMU generates a page fault, regardless of the state of the valid bit.

The Memory Layout after the First Instruction

An exec () causes the first instruction of the executable file to be fetched from memo-
ry, which in turn causes the MMU to produce a fault in the first page. The address of
the first instruction is stored in the executable’s header and tends to be a low memory
address. In the diagram shown in Figure 14.40, I assumed that the first instruction was

Process
table

Code

Region table

User area

Offset
0K

16K

64K

Data

Stack

Hardware
bus

0 & 00000000
Hardware bus
0 & 00000000

Offset 0 & 000
Logical page 0 & 00000
Physical page 0 & 00000

Code page table

RAM page 00

Disk block 6

Disk block 4

Disk block 9

1

2

3

Data page table

Disk block 70

Disk block 8

Zero'ed

Zero'ed

1

Stack page table

Zero'ed0

Zero'ed1

2

3 In use
RAM tableRAM

Free

Free

Free

Free

Free

Free

Free

0

Page
number

1

2

3

4

5

6

7

0

Block
number

1

2

3

4

5

6

7

8

9

Free
list

Disk

MMU
accesses

region
information

MMU

FIGURE 14.40

Memory layout after the first instruction executes.

Process Management 597

located at logical address 0 and that page 0 of the code region was paged into physical
RAM page 0.

The Memory Layout after Many Instructions

When a process continues to execute after an exec (), it tends to generate faults in more
of its code, data, and stack pages. The diagram shown in Figure 14.41 illustrates a situa-
tion in which all of the physical pages of RAM have been filled by a single process. This
can never happen in a real UNIX system, since the kernel occupies low RAM address-
es and several other daemon processes will always occupy portions of high RAM, but it
does show how the page tables of a process gradually get filled in with RAM addresses.

The Page Daemon

The diagram in Figure 14.41 illustrates a situation in which all of the physical pages of
RAM are filled. If a process produces a fault in another one of its pages, the system

Process
table

Code

Region table

User area

Offset
0K

16K

64K

Data

Stack

Hardware
bus

0 & 00006064
Hardware bus
0 & 00005064

Offset 0 & 064
Logical page 0 & 00006
Physical page 0 & 00005

Code page table

RAM page 00

RAM page 2

Disk block 4

RAM page 1

1

2

3

Data page table

RAM page 30

Disk block 8

RAM page 5

RAM page 4

1

Stack page table

RAM page 70

RAM page 61

2

3 In use
RAM tableRAM

In use

In use

In use

In use

In use

In use

In use

0

Page
number

1

2

3

4

5

6

7

0

Block
number

1

2

3

4

5

6

7

8

9

Free
list

Disk

MMU
accesses

region
information

MMU

FIGURE 14.41

Memory layout after several instructions.

598 Chapter 14 UNIX Internals

could save one or more of the RAM pages to disk to make room for the incoming
page. In practice, things work out much better if the memory management system al-
ways keeps a certain number of RAM pages free for subsequent faults. The minimum
number of pages that it tries to keep free is called the low-water mark. When the num-
ber of free pages drops below this level, the memory management system wakes up a
process called the page daemon (sometimes called the page stealer) to free up some
RAM pages.The page daemon uses an algorithm that is described shortly to save pages
to a special area of disk called the swap space until the number of free pages rises
above a high-water mark. The page daemon then goes to sleep until it’s needed again.

Swap Space

Swap space is a special contiguous area of disk set aside for the efficient transfer of
pages to and from RAM. Although it can reside on the root device, swap space is often
allocated on a separate disk so that regular file access and paging can occur simultane-
ously. Swap space is supported by a special kernel data structure called the swap map
that is used to track the usage of its blocks. The swap map searches for free contiguous
chunks of blocks in the swap space and is updated whenever swap space is allocated or
deallocated. When two neighboring chunks of swap space become free, the swap map
automatically combines them into a single, larger chunk of free space.

The Page Daemon Algorithm

Every page table entry includes three fields called the modified bit, the referenced bit,
and the age. Whenever a process accesses a particular page, its referenced bit is set and
its age is set to zero.The page daemon uses these two fields in order to free the least re-
cently used pages.The page daemon cycles through every page table in the system, per-
forming the following operation:

• If the referenced bit of a page is set, it resets it and sets the age field to zero; oth-
erwise, it increments the age field.

The age fields of pages that are currently being accessed will hardly increase at all,
since they’re continually being reset to zero; however, the age fields of pages that are
inactive will continue to grow. When the age field reaches a certain system-dependent
value, the page daemon attempts to free the page, using the following rules:

• If the page has never been paged out to the swap device, the page is placed on a
list of pages to be paged out, and its RAM table entry is marked as “ready to page
out.”

• If the page has been paged out before and hasn’t been modified since, its valid bit
is reset and its RAM table entry is immediately marked as “free” and placed on
the free-page list.

• If the page has been paged out before and has been modified since, it’s placed on
the list of pages to be paged out, its RAM table entry is marked as “ready to page
out,” and its previous swap space area is deallocated.

When the list of pages to page out reaches a certain size, the kernel locates a suitable
chunk of swap space by consulting the swap map and then schedules the pages to be

Process Management 599

written to swap space. When a page is written, its valid bit is reset and its RAM table
entry is marked as “free” and placed on the free list.

As a result of this algorithm, the least recently used pages are gradually paged to
swap space until the number of free pages rises above the preset high-water mark.

The Memory Layout after Some Page Outs

The diagram shown in Figure 14.42 illustrates the state of the sample process’ memory
map after code page 1, data page 0, and stack page 1 were paged to swap space.

Accessing a Page That’s Stored in Swap Space

When the MMU attempts to access a page whose valid bit is not set, it generates a page
fault. Before requesting that the page be read from disk, the kernel checks to see
whether the page is still in RAM, having been freed by the page daemon, but not yet
overwritten by another page. It can do this quickly because it maintains a hash table

Code page table

RAM page 0

Swap block 0

Swap block 1

Disk block 8

RAM page 5

RAM page 4

RAM page 7

Swap block 2

Disk block 4

RAM page 1

Data page table

Stack page table

Blocks 0. .2 used

Blocks 3. .9 free

Swap map 0

1

2

3

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

0

1

2

3

0

1

Block
number

Page
number

RAM RAM table

Disk

0

1

2

3

4

5

6

7

8

9

Block
number Swap space

In use

Free

Free

Free

In use

In use

In use

In use
Free
list

FIGURE 14.42

Memory layout after some page-outs.

600 Chapter 14 UNIX Internals

that maps disk block addresses onto RAM page numbers. If the kernel finds that the
page is still cached in RAM, it simply updates the page table entry and sets the valid
bit. If the page is not found in RAM, one of two cases is possible:

• If the page has never been loaded into RAM, the kernel requests that the page be
loaded in from the executable file.

• If the page is stored in swap space, the kernel requests that the page be loaded in
from the swap device.

One consequence of this algorithm is that a page is loaded only once from the exe-
cutable file; from then on, it spends the rest of its lifetime traveling between RAM and
swap space. The diagram shown in Figure 14.43 illustrates this behavior.

Duplicating a Process: fork ()

When a process forks, the child process must be allocated a copy of its parent’s code,
data, and stack areas. Unfortunately, a process often immediately follows a fork () by
an exec (), thereby deallocating its previous memory areas. To avoid any unnecessary
and costly copying suggested by these two observations, the kernel processes a fork ()
in a crafty way:

• It sets the child’s code region entry to point to the parent’s code page table and
increments a reference count associated with the page table to indicate that it’s
being shared.

• It creates a data page table and a stack page table for the child that are duplicates
of the parent’s and sets the copy-on-write bit for every page table entry of both
processes’ data and stack tables. If the parent’s page table entry points into
RAM, the child’s page table entry is set to point to the same location, and a ref-
erence count associated with the RAM page is incremented to indicate that it’s
being shared. Similarly, if a parent’s page table entry points into swap space, the
child’s page table entry is set to point to the same location, and a reference count
associated with the swap space location is incremented to indicate that it’s being
shared.

The copy-on-write flag is used by UNIX to process shared RAM and swap pages in a
special way, described shortly. Figure 14.44 is an illustration of the parent and child

Page in

Page out

Executable RAM Swap space

FIGURE 14.43

Page life cycle.

Process Management 601

Code page table

RAM page 0

Swap block 0

Swap block 1

Disk block 8

RAM page 5

RAM block 4

RAM page 7

Swap block 2

Disk block 4

RAM page 1

Data page table

Stack page table

0

1

2

3

0

1

2

3

4

5

6

7

8

9

9

0

1

1

1

2

3

4

5

2

2

6

7 2

0

1

2

3

Swap block 1

Disk block 8

RAM page 5

RAM block 4

Data page table

0

1

2

3

0

1

RAM page 7

Swap block 2

Stack page table

0

1

Block
number

Block
number

Page
number RAM

Ref
count

2

1

1

1

1

Ref
count

Ref
count

RAM table

Disk

0

1

2

1

2

2

3

4

5

6

7

8

Swap
space

In use

In use

Free

Free

In use

In use

Free

In use
Free
list

Code

Data

Stack

Child

Code

Data

Stack

Parent

FIGURE 14.44

Layout after fork.

602 Chapter 14 UNIX Internals

memory maps immediately following a fork (). The small numbers next to the region
tables, RAM table, and swap table are reference counts maintained by the kernel.

Processing References to Shared RAM and Swap Pages

UNIX processes shared pages as follows:

• If a process reads a shared RAM page, nothing special happens at all.
• If the page daemon decides to page out a shared RAM page, the page’s reference

count is decremented and a copy of the page is transferred to swap space. The
process whose page was transferred has its page table entry updated to reflect the
transfer, but the other processes that share the same page still reference the
RAM page. If the RAM page reference count is still nonzero after it’s decre-
mented, the RAM page is not added to the free list.

• If a process accesses a shared swap page, it’s paged in from swap space, and the
process whose page was transferred has its page table entry updated to reflect the
page-in. The other processes that share the same swap page still reference the
swap space.

• If a process attempts to modify a page whose copy-on-write bit is set, the MMU
automatically generates a page fault. The page fault handler checks whether the
RAM page’s reference count is greater than one; if it is, that means that a
process is writing to a shared page. In this situation, the fault handler copies the
page into another page of RAM and updates the child’s page table entry to
point to the new copy. The child’s page table entry copy-on-write bit is reset.
The fault handler then decrements the original RAM page’s reference count
and resets its copy-on-write bit if the count dropped to one. If a process at-
tempts to modify a page whose copy-on-write bit is set, and its reference count
is equal to one, the fault handler allows the process to use the physical page and
resets the copy-on-write flag, but also disassociates the page from its current
swap copy. This is because another process related by a fork also may be shar-
ing the same swap copy.

Thrashing and Swapping

If a large number of processes are running at the same time, it’s possible that the rate
of page faulting causes most of the CPU time to be spent transferring pages to and
from swap space. This situation is called thrashing and results in poor system perfor-
mance.When the memory management system detects thrashing, it wakes up the sched
process, which chooses processes to deactivate and transfer to disk. sched selects
processes on the basis of their priority and memory usage, marks them as “swapped,”
and pages all of their RAM pages to swap space. sched continues to swap processes to
swap space until thrashing stops, at which point it goes back to sleep. Once a predeter-
mined period has elapsed, a swapped process is marked as “ready to run,” and its pages
are faulted back into RAM in the normal manner.

Process Management 603

Terminating a Process: exit ()

When a process terminates, the following events occur:

• Its exit code is placed in its process table entry.
• Its file descriptors are closed.
• The reference count of each of its regions is decremented.
• If the reference count of a region drops to zero, the reference counts of all of the

process’ RAM pages and swap pages (if appropriate) are decremented.
• Any RAM or swap pages that have a zero reference count are deallocated.

The process table entry is deallocated only when the process’ parent accepts its termi-
nation code via a wait ().

Signals

Signals inform processes of asynchronous events. The data structures that support sig-
nals are stored in the process table and the user areas. Every process has three pieces
of information associated with signal handling:

• an array of entries called the signal handler array in its user area that describes
what the process should do when it receives a particular type of signal

• an array of bits in its process table entry called the pending signal bitmap, one
per type of signal, that records whether a particular type of signal has arrived for
processing

• a process group ID, which is used in distributing signals

Figure 14.45 is a diagram of these signal-related kernel data structures. I’ll de-
scribe the implementation of signals by describing the implementation of the system
calls that are related to signals.

setpgrp ()

setpgrp () sets the calling process’ process group number to its own PID, thereby plac-
ing it in its own unique process group. A forked process inherits its parent’s process
group. setpgrp () works by changing the process group number entry in the systemwide
process table. The process group number is used by kill (), as you’ll see later.

signal ()

signal () sets the way that a process responds to a particular type of signal. There are
three options: Ignore the signal, perform the default kernel action, or execute a user-in-
stalled signal handler. The entries in the signal handler array are set as follows:

• If the signal is to be ignored, the entry is set to 1.
• If the signal is to cause the default action, the entry is set to 0.
• If the signal is to be processed using a user-installed handler, the entry is set to

the address of the handler.

604 Chapter 14 UNIX Internals

Pending signal
bitmap

Process table User area

To user-
defined
handlers

Signal-handler
array

FIGURE 14.45

Signal-related kernel structures.

When a signal is sent to a process, the kernel sets the appropriate bit in the receiving
process’ signal bitmap. If the receiving process is sleeping at an interruptible priority, it
is awakened so that it can process the signal.The kernel checks a process’ signal bitmap
for pending signals whenever the process returns from kernel mode to user mode (i.e.,
when it returns from a system call) or when the process enters or leaves a sleep state.
Note, therefore, that a signal is hardly ever processed immediately; instead, the receiv-
ing process deals with pending signals only when it’s scheduled to do so. This makes
signals a relatively poor mechanism for real-time applications. Note also that the pend-
ing signal bitmap does not keep a count of how many of a particular type of signal are
pending.This means that if three SIGINT signals arrive in close succession, it’s possible
that only one of them will be noticed.

Signals After a fork or an exec

A forked process inherits the contents of its parent’s signal handler array. When a
process executes, the signals that were originally ignored continue to be ignored, and
all others are set to their default setting. In other words, all entries equal to 1 are un-
changed, and all others are set to 0.

Processing a Signal

When the kernel detects that a process has a pending signal, it either ignores it, per-
forms the default action, or invokes a user-installed handler.To invoke the handler, the

Process Management 605

kernel appends a new stack frame to the process’ stack and modifies the process’
program counter to make the receiving process act as if it had called the signal han-
dler from its current program location. When the kernel returns the process to user
mode, the process executes the handler and then returns from the function back to
the previous program location. The “death of a child” signal (SIGCHLD) is
processed slightly differently, as you’ll see when I describe the wait () system call.

exit ()

When a process terminates, it leaves its exit code in a field in its process table entry and
is marked as a zombie process.The exit code is obtainable by the parent process via the
wait () system call. The kernel always informs a parent process that one of its children
has died by sending it a “death of child” (SIGCHLD) signal.

wait ()

wait () returns only under one of two conditions: Either the calling process has no chil-
dren, in which case it returns an error code, or one of the calling process’ children has
terminated, in which case it returns the child process’ PID and exit code. The way that
the kernel processes a wait () system call may be split up into a three-step algorithm:

1. If a process calls wait () and doesn’t have any children, wait () returns an error
code.

2. If a process calls wait () and one or more of its children is already a zombie, the
kernel picks a child at random, removes it from the process table, and returns its
PID and exit code.

3. If a process calls wait () and none of its children is a zombie, the wait call goes to
sleep. It is awakened by the kernel when any signals are received, at which point
it resumes from step 1.

Although this algorithm would work as it stands, there’s one small problem: If a
process chose to ignore SIGCHLD signals, all of its children would remain zombies,
and that could clog up the process table. To avoid this problem, the kernel treats igno-
rance of the SIGCHLD signal as a special case. If a SIGCHLD signal is received and
the signal is ignored, the kernel immediately removes all the parent’s zombie children
from the process table and then allows the wait () system call to proceed as normal.
When the wait () call resumes, it doesn’t find any zombie children, so it goes back to
sleep. Eventually, when the last child’s death signal is ignored, the wait () system call re-
turns with an error code to signify that the calling process has no child processes.

kill ()

kill () makes use of the real-user ID and process group ID fields in the process table.
For example, when this line of code

kill (0, SIGINT);

is executed, the kernel sets the bit in the pending signal bitmap corresponding to SIGINT
in every process table entry whose process group ID matches that of the calling

606 Chapter 14 UNIX Internals

process. UNIX uses this facility to distribute the signals triggered by Control-C and
Control-Z to all of the processes in the control terminal’s process group.

INPUT/OUTPUT

In this section, we examine the data structures and algorithms that the UNIX kernel
uses to support I/O-related system calls. Specifically, we’ll look at the UNIX imple-
mentation of these calls in relation to three main categories of files:

• regular files
• directory files
• special files (i.e., peripherals, pipes, and sockets)

I/O Objects

I like to think of files as being special kinds of objects that have I/O capabilities. UNIX
I/O objects may be arranged according to the hierarchy shown in Figure 14.46.

I/O Object

Regular
file

Directory
file

Special
file

Pipe Socket Peripheral

Named
pipe

Unnamed
pipe

Buffered Unbuffered

Tape Disk Terminal

FIGURE 14.46

The I/O object hierarchy.

I/O System Calls

As described in Chapter 13, UNIX I/O system calls may be applied in a uniform way to
all I/O objects, with a few exceptions; for example, you can’t use lseek () on a pipe or a
socket. Here’s a list of the system calls that are described in this section:

• sync
• open
• read
• write

Input/Output 607

• lseek
• close
• dup
• unlink
• ioctl
• mknod/mkdir
• link
• mount
• umount

I/O Buffering

The kernel avoids unnecessary device I/O by buffering most I/O in a fixed-size, sys-
temwide data structure call the buffer pool, a collection of buffers that are used for
caching file blocks in RAM. When a process reads from a block for the very first time,
the block is copied from the file into the buffer pool and then is copied from there into
the process’ data space. Subsequent reads from the same block are serviced directly
from RAM. Similarly, if a process writes to a block that isn’t in the buffer pool, the
block is copied from the file into the pool and then the buffered copy is modified. If the
block is already in the pool, the buffered version is modified without any need for
physical I/O. Several hash lists based on the block’s device and block number are main-
tained for the buffers in the pool so that the kernel can quickly locate a buffered block.

When a process accesses a buffer during an I/O system call, the buffer is allocat-
ed or locked to prevent other processes from using it. If another process attempts to
access an allocated buffer, it is put to sleep by the kernel until the buffer is freed.When
UNIX is booted, all buffers in the pool are marked as free and placed in the buffer
freelist.

When the kernel services a process’ I/O system call and needs to copy a block
from an I/O object into the buffer pool, several steps are required. First, the kernel se-
lects the first buffer in the buffer freelist and marks it as allocated. Then it removes the
buffer from the buffer freelist and issues an asynchronous read request to the appro-
priate device driver. Finally, the kernel puts the process to sleep.When the read request
has been serviced, the process is awakened and the kernel continues to execute the sys-
tem call. If the buffer freelist is empty, the process is put to sleep until a free buffer be-
comes available. If the block is already buffered, the kernel simply allocates the
existing buffer. When the system call is finished with the buffer, the buffer is freed and
placed on the end of the buffer freelist.This scheme ensures that the least recently used
buffer is selected each time a new buffer is required.

It’s tempting to think that the kernel copies all of a file’s modified buffered
blocks back to disk when the file is closed. It doesn’t; instead, the kernel sets a “de-
layed-write” flag in a buffer’s header whenever it is modified by a write (). The
buffered block is physically written to disk only when another process attempts to re-
move it from the buffer freelist due to the algorithm described in the previous para-
graph. This scheme delays physical I/O until the last possible moment.

Figure 14.47 is an illustration of buffering in action.

608 Chapter 14 UNIX Internals

217

Buffer
pool

217

Buffer
pool

217

Buffer
pool

217

Buffer
pool

Process

Process

Process

Process

Disk

217

Disk

217

Disk

217

Disk

217

Hash lists

Free
list

1. Process reads from
 block #217 for the first
 time

2. Process writes to
 block #217

3. Process closes
 file

4. Buffer is
 flushed

5. Buffers are
 threaded by several
 lists

Copy
back

Delayed-
write
flag
set

Copy
Copy

Copy

FIGURE 14.47

Buffering in action.

Input/Output 609

sync ()

sync () causes the kernel to flush all of the delayed-write buffers to disk. On systems in
which the System V daemon fsflush is not present, system administrators arrange for the
sync utility, which invokes sync (), to run regularly. This ensures that the contents of the
disk are kept up to date. If fsflush runs on the system, it handles the flushing function.

Regular File I/O

open ()

Let’s take a look at what happens when a process opens an existing regular file for
read-only access. Later, we’ll examine the way in which the kernel creates a new file.
Suppose that the process is the first one to open the file since the system was last re-
booted, and suppose also that it executes the following code:

fd = open ("/home/glass/sample.txt", O_RDONLY);

The kernel begins by translating the filename into an inode number, using the algo-
rithm described earlier in the chapter. If the inode of the file is not found, an error code
is returned. Otherwise, the kernel allocates an entry in a fixed-size, systemwide data
structure called the active inode table and copies the inode from disk into this entry.
The kernel also stores several other values, which are described later, in the entry. The
kernel caches active inodes and recently used inodes in the active inode table to avoid
unnecessary disk access.

Next, the kernel allocates an entry in another fixed-size, systemwide data struc-
ture called the open file table. It fills this entry with several useful values, including the
following:

• a pointer to the new entry in the active inode table
• the read/write permission flags specified in the open () system call
• the process’ current file position, set to 0 by default

Finally, the kernel allocates an entry in the per-process file descriptor array, points this
entry to the new entry in the open file table, and returns the index of this file descrip-
tor entry as the return value of open (). Figure 14.48 is an illustration of the process and
kernel data structures that result in this example.

If a process opens a nonexistent file and specifies the O_CREAT option, the ker-
nel creates the named file. To do this, it allocates a free inode from the file system’s
inode list, sets the fields within it to indicate that the file is empty, and then adds a hard
link to the appropriate directory file. Recall that a hard link is an entry consisting of a
filename and its associated inode number.

Now that you’ve seen the way in which the kernel handles an open () system call,
I’ll describe the read (), write (), lseek (), and close () system calls. For simplicity, as-
sume that the sample file is being accessed by just one process; I’ll describe the kernel
support for multiple users of the same file later in the chapter.

610 Chapter 14 UNIX Internals

read ()

Let’s see what happens when the sample process executes the following sequence of
read () system calls:

read (fd, buf1, 100); /* read 100 bytes into buffer buf1 */
read (fd, buf2, 200); /* read 200 bytes into buffer buf2 */
read (fd, buf3, 5000); /* read 5000 bytes into buffer buf3 */

Here’s the sequence of events that would occur during the execution of these calls:

• The data requested by the first read () resides in the first block of the file. The
kernel determines that the block is not in the buffer pool and therefore copies it
from disk into a free buffer. It then copies the first hundred bytes from the buffer
into buf1. Finally, the file position stored in the open file table is updated to its
new value of 100.

• The data requested by the second read () also resides in the first block of the file.
The kernel finds that the block is already in the buffer pool and therefore copies
the next 200 bytes from the buffer into buf2. It then updates the file position to 300.

• The data requested by the third read resides partly in the first block of the file
and partly in the second block. The kernel transfers the remainder of the first
block (3796 bytes) from the buffer pool into buf3. It then copies the second block
from disk into a free buffer in the pool and copies the remaining data (1204
bytes) from the buffer pool into buf3. Finally, it updates the file position to 5300.

Note that a single read may cause more than one block to be copied from disk into the
buffer pool. If a process reads from a block that does not have an allocated user block
(see Chapter 13 for a discussion of sparse files), then read () doesn’t buffer anything,
but instead treats the block as if it were filled with ASCII NULL characters.(¤)

0
1
2

(fd) 3

File-descriptor
array

(in user area)

Open
file

table

Offset 0
write/readRef

count $ 1

Ref
count $ 1

Active
inode
table

21
Copy
inode

Disk

Inode
list

User
blocksCopy of

inode #21
Point

to
blocks

FIGURE 14.48

Kernel file structures.

Input/Output 611

write ()

The sample process now executes the following series of write () system calls:

write (fd, buf4, 100); /* write 100 bytes from buffer buf4 */
write (fd, buf5, 4000); /* write 4000 bytes from buffer buf5 */

Recall that the current value of the file position is 5300, which is situated near the start
of the file’s second block. Recall also that this block is currently buffered, courtesy of
the last read (). Here’s the sequence of events that would occur during the execution of
our sample process:

• The data to be overwritten by the first write () resides entirely in the second
block.This block is already in the buffer pool, so 100 bytes of buf4 are copied into
the appropriate bytes of the buffered second block.

• The data to be overwritten by the second write () reside partly in the second
block and partly in the third block. The kernel copies the first 3792 bytes of buf5
into the remaining 3792 bytes of the buffered second block. Then it copies the
third block from the file into a free buffer. Finally, it copies the remaining 208
bytes of buf5 into the first 208 bytes of the buffered third block.

lseek ()

The implementation of lseek () is trivial:The kernel simply changes the value of the de-
scriptor’s associated file position, located in the open file table. Note that no physical
I/O is necessary. Figure 14.49 illustrates the result of the following code:

lseek (fd, 3000, SEEK_SET);

0
1
2

(fd) 3

User
area

Open
file

table

Offset 3000
write/readRef

count $ 1

Ref
count $ 1

Active
inode
table

21
Copy
inode

Disk

Inode
list

User
blocksCopy of

inode #21
Point

to
blocks

FIGURE 14.49

lseek changes the file offset.

612 Chapter 14 UNIX Internals

close ()

When a file descriptor is closed and it’s the only one associated with a particular file,
the kernel copies the file’s inode back to disk and then marks the corresponding open
file table and active inode table entries as free. When a process terminates, the kernel
automatically closes all of the process’ file descriptors.

As I mentioned earlier, the kernel has special mechanisms to support multiple
file descriptors associated with the same file. To implement these mechanisms, the ker-
nel keeps a reference count field for each open file table entry and each active inode
entry. When a file is opened for the first time, both counts are set to one. There are
three ways that a file can be shared by several file descriptors:

1. The file is explicitly opened more than once, either by the same process or by dif-
ferent processes.

2. The file descriptor is duplicated by dup (), dup2 (), or fcntl ().
3. A process forks, which causes all of its file descriptor entries to be duplicated.

When a file descriptor is created by the first method, the kernel creates a new open
file table entry that points to the same active inode. Then the kernel increments the
reference count field in the file’s active inode, as shown in Figure 14.50. When a file
descriptor is created by either of the latter two methods, the kernel sets the new file
descriptor to point to the same open file table entry as the original file descriptor and
increments the reference count field in the descriptor’s open file table entry, as shown
in Figure 14.51.

The algorithm for close () handles the reference count fields as follows: When a
file descriptor is closed, the kernel decrements the reference count field in its associat-
ed open file table. If the open file table reference count remains greater than zero,

0
1
2

(fd) 3
(fd2) 4

User
area

Open
file

table

Offset 3000
write/read

Offset 0
write/read

Ref
count $ 1

Ref
count $ 1

Ref
count $ 2

Active
inode
table

21
Copy
inode

Disk

Inode
list

User
blocksCopy of

inode #21
Point

to
blocks

FIGURE 14.50

Open creates a new open file table entry.

Input/Output 613

0
1
2

(fd) 3
(fd2) 4

User
area

Open
file

table

Offset 3000
write/readRef

count $ 2

Ref
count $ 1

Active
inode
table

21
Copy
inode

Disk

Inode
list

User
blocksCopy of

inode #21
Point

to
blocks

FIGURE 14.51

Duplicating a file descriptor.

nothing else occurs. If the reference count drops to zero, the open file table entry is
marked as free and the reference count field in the file’s active inode is decremented.
If the active inode reference count remains greater than zero, nothing else happens. If
the reference count drops to zero, the inode is copied back to disk and the active inode
entry is marked as free.

dup ()

The implementation of dup () is simple: It copies the specified file descriptor into the
next free file descriptor array entry and increments the corresponding open file table
reference count.

unlink ()

unlink () removes a hard link from a directory and decrements its associated inode’s
hard link count. If the hard link count drops to zero, the file’s inode and user blocks are
deallocated when the last process that is using the file exits. Notice that this means that
a process may unlink a file and continue to access it until the process exits. The unlink
process is shown in Figure 14.52.

Directory File I/O

Directory files are different from regular files in the following ways:

• They may be created only through the use of mknod () or mkdir ().
• They may be read only via getdents ().
• They may be modified only with the use of link ().

614 Chapter 14 UNIX Internals

These differences ensure the integrity of the directory hierarchy. Directory files may be
opened in the same manner as regular files. Let’s take a look at the implementation of
mknod () and link ().

mknod ()

mknod () creates a directory, a named pipe, or a special file. In every case, the system
call starts by allocating a new inode on disk, setting its type field accordingly, and
adding it into the directory hierarchy via a hard link. If a directory is being created,3 a
user block is associated with the inode and is filled with the default “.” and “..” entries.
If a special file is being created, the appropriate major and minor device numbers are
stored in the inode (more on this later).

link ()

link () adds a hard link into a directory. Here’s an example:

link ("/home/glass/file1.c", "/home/glass/file2.c");

In this example, the kernel would find the inode number of the source filename
“/home/glass/file1.c” and then associate it with the label “file2.c” in the destination di-
rectory, “/home/glass.” It would then increment the inode’s hard link count. Only a su-
peruser may link directories, to prevent unwary users from creating circular directory
structures.

Original
situation

Remove
one link

Remove last link:
user blocks and
inode are freed

Label 2

Label 1 Label 1

Inode #27
ref count 2

Inode #27
ref count 1

Inode #27
free

To user
blocks

To user
blocks User blocks

are freed

FIGURE 14.52

Unlinking.

3In many UNIX versions, mkdir () is preferred when one is creating a directory.

Input/Output 615

Mounting File Systems

The kernel maintains a single fixed-size systemwide data structure called the mount
table that allows multiple file systems to be accessed via a single directory hierarchy.
The mount () and umount () system calls modify this table and are executable only by
a superuser.

mount ()

When a file system is mounted using mount (), an entry containing the following fields
is added to the mount table:

• the number of the device that contains the newly mounted file system
• a pointer to the root inode of the newly mounted file system
• a pointer to the inode of the mount point
• a pointer to the mount data structure specific to the newly mounted file system

The directory associated with the mount point becomes synonymous with the root
node of the newly mounted file system, and its previous contents become inaccessible
to processes until the file system is later unmounted. To enable the correct translation
of pathnames that cross mount points, the active inode of the mount directory is
marked as a mount point and is set to point to the associated mount table entry. For ex-
ample, Figure 14.53 shows the effect of the following system call, which mounts the file
system contained on the “/dev/da0” device onto the “/mnt” directory:

mount ("/dev/da0", "/mnt", 0);

Translation of Filenames

The name translation algorithm uses the contents of the mount table when translating
pathnames that cross mount points. This can occur when moving up or down the direc-
tory hierarchy. For example, consider the following example:

$ cd /mnt/tmp1
$ cd ../../bin

/

tmp1 tmp2

tmp1 tmp2

/

bin usr mnt

/

bin usr mnt

Splice

Before mounting After mounting

FIGURE 14.53

Direct mounting.

616 Chapter 14 UNIX Internals

The first cd command crosses from the root device to the “/dev/da0” device, and the
second cd command crosses back across to the root device. Here’s how the algorithm
incorporates mounted file systems into the translation process:

• When an inode that is a mount point is encountered during the translation
process, a pointer to the root inode of the mounted file system is returned in-
stead. For example, when the “/mnt” portion of the “/mnt/dir1” is translated, a
pointer to the root node of the mounted file system is returned. This pointer is
used as the starting point for the rest of the pathname translation.

• When a “..” pathname component is encountered, the kernel checks to see
whether a mount point is about to be crossed. If the current inode pointer of the
translation process points to a root node and “..” also points to a root node, then
a crossing point has been reached. The kernel then replaces the current inode
pointer of the translation process with a pointer to the inode of the mount point
in the parent file system, which it finds by scanning the mount table for the entry
corresponding to the device number of the current inode.

A crossing point is shown in Figure 14.54.

/ dev/da0 device

bin usr mnt

/

tmp1 tmp2

Root device
Crossing point

FIGURE 14.54

Crossing point.

umount ()

When unmounting a file system, the kernel does several things:

• It checks that there are no open files in the file system that is about to be un-
mounted. It can do this by scanning the active inode table for entries that contain
the file system’s device number. If any active inodes are found, the system call
fails.

• It flushes the superblock, delayed-write blocks, and buffered inodes back to the
file system.

• It removes the mount table entry and removes the “mount point” mark from the
mount point directory.

Input/Output 617

Special File I/O

Most special files correspond to peripherals such as printers, terminals, and disk drives,
so for the rest of this section I’ll use the terms special file and peripheral synonymously.

Every peripheral in the system has an associated device driver, which is a custom-
crafted piece of software that contains all of the peripheral-specific code. For example,
a tape drive’s device driver contains the code for rewinding and retensioning the tape.
A single device driver may control all instances of a particular kind of peripheral; in
other words, three tape drives of the same type can share a single device driver.The de-
vice drivers for every peripheral in the system must be linked into the kernel when the
system administrator configures it. (For more information, see Chapter 15).

Device Interface

A peripheral’s device driver supplies the peripheral’s interface, which can come in the
following two flavors:

• block oriented, which means that I/O is buffered and that physical I/O is performed
on a block-by-block basis. Disk drives and tape drives have a block-oriented
interface.

• character oriented, which means that I/O is unbuffered and that physical I/O oc-
curs on a character-by-character basis. A character-oriented interface is some-
times known as a raw interface. All peripherals, including disk drives and tape
drives, usually have a raw interface.

A peripheral’s device driver sometimes contains both kinds of interface. The kind of
interface that you choose depends on how you’re going to access the device.When per-
forming random access and repeated access to a common set of blocks, it makes good
sense to access the peripheral via its block-oriented interface. However, if you’re going
to access the blocks in a single linear sequence, as you would when making a backup
tape, it makes more sense to access the peripheral via its character-oriented interface.
This avoids the overhead of the kernel’s internal buffering mechanism and sometimes
allows the kernel to use the hardware’s DMA capabilities.

It’s perfectly possible, although not advisable, to access a single device simulta-
neously via both interfaces. The trouble with this is that the character-oriented inter-
face bypasses the buffering system, possibly leading to confusing I/O results. Here’s an
example:

• Process A opens a floppy disk, using its block-oriented interface, “/dev/flp.” It
then writes 1000 bytes to the disk. This output is stored in the buffer pool and
marked for delayed writing.

• Process B then opens the same floppy disk, using its character-oriented interface,
“/dev/rflp.” When it reads 1000 bytes from the disk, the data that were written by
process A are ignored, since they’re still in the buffer pool.

The solution to this problem is easy: Don’t open a device via different interfaces
simultaneously!

618 Chapter 14 UNIX Internals

Major and Minor Numbers

The major and minor device numbers are used to locate the device driver associated
with a particular device. The major device number specifies which device driver that is
configured into the kernel will be used to access the device. The minor device number
specifies which one of the (possibly many) devices will be used. For example, suppose
you have three tape drives in a system and the device driver for a tape drive corre-
sponds to major number 15. If you use the ls command to list the block-oriented tape
devices, you might see the following output:

brw--w--w- 1 root 15, 0 Feb 13 14:27 /dev/mt0
brw--w--w- 1 root 15, 1 Feb 13 14:29 /dev/mt1
brw--w--w- 1 root 15, 2 Feb 13 14:27 /dev/mt2

From this, we see that all three tape drives are accessed by the same device driver (sig-
nified by the index 15), and each minor number uniquely identifies a specific tape
drive. The major and minor numbers are used to index into switch tables to locate the
appropriate device driver.

Switch Tables

All UNIX device drivers must follow a predefined format, which includes a set of stan-
dard entry points for functions that open, close, and access the peripheral. Block-ori-
ented device drivers also contain an entry point called strategy that is used by the
kernel for performing block-oriented I/O to the physical device. The entry points of
each block-oriented interface and each character-oriented interface are stored in sys-
temwide tables called the block device switch table and the character device switch table.

Character-device switch table

Major number

1 (terminal)

2 (hard disk)

open

topen

hopen

close

tclose

hclose

read

tread

hread

write

twrite

hwrite

ioctl

tioctl

hioctl

Device drivers
linked into kernel

Terminal device driver

Hard-disk device driver

tclose

topen

tread
twrite
tioctl

hclose

hopen

hread
hwrite
hioctl

FIGURE 14.55

A small sample switch table.

Input/Output 619

1
2
3
4

1
2
3
4

Switch tables

Block

Character
open

Device drivers

User
area

(fd)

Open-
file

table

Active-
inode
table

Major 1
Minor 2

char device

Inode of
/dev/tty2

FIGURE 14.56

Special file access.

These tables are stored as arrays of pointers to functions and are created automatically
when UNIX is configured. One dimension of the array is indexed by a peripheral’s major
number, the other by a function code. Figure 14.55 is an illustration of a small sample
switch table.

Figure 14.56 illustrates the kernel data structures that might be formed after the
following bit of code is executed:

fd = open ("/dev/tty2", O_RDWR);

lseek (), chmod (), and stat () work the same way for special files as they do for regular
files. open (), read (), write (), and close () work in a slightly different way and make use

620 Chapter 14 UNIX Internals

of the block and character switch tables. In each case, their operation may be split into
a peripheral-independent part and a peripheral-dependent part.

open ()

When a process opens a file, the kernel can tell that it’s a peripheral by examining the
type field of the file’s inode. If the field indicates a block-oriented or character-orient-
ed device, it reads the major and minor numbers to determine the class of the device
and the instance of the device that is being opened.

When processing open (), the kernel performs peripheral-independent actions
followed by peripheral-dependent actions. The peripheral-independent part of open ()
works just like a regular file open (); The file’s inode is cached in the active inode table
and an open file table entry is created. The peripheral-dependent part of open () in-
vokes the device driver’s open () routine. For example, a tape driver’s open () routine
usually retensions and rewinds the tape, whereas a terminal driver’s open () routine
sets the device’s baud rate and default terminal settings.

read ()

When reading from a character-oriented device, read () invokes the read function in
the device driver to perform the physical I/O. When reading from a block-oriented de-
vice, read () makes use of the standard I/O buffering mechanism. If a block needs to be
physically copied from the device to the buffer pool, the strategy function in the device
driver is invoked. This function combines both read and write capabilities.

write ()

When writing to a character-oriented device, write () executes the write function in the
device driver to perform the physical I/O. When writing to a block-oriented device,
write () uses the I/O buffering system.When a delayed write eventually takes place, the
device’s strategy function is used to perform the physical I/O.

close ()

The kernel closes a peripheral in the same way that it closes a regular file, except when
the process which performs the close () is the last process that was accessing the device.
In this special case, the device driver’s close () routine is executed, followed by the se-
ries of actions for closing a regular file.

The kernel cannot determine that a special file has been closed by its last user
simply by examining the active inode’s reference count, since a single device may be
accessed via more than one inode. Such a situation occurs if one process accesses a de-
vice via its block-oriented interface and another accesses the same file via its character-
oriented interface. In this case, the active inode list must be searched for other inodes
associated with the same physical device.

ioctl ()

ioctl () controls device-specific features via a file descriptor. It simply passes on its argu-
ments to the ioctl entry point of the device driver. Examples of device-specific operations

Input/Output 621

include setting a terminal’s baud rate, selecting a printer’s font, and rewinding a tape
drive.

Terminal I/O

Although terminals are a kind of peripheral, terminal device drivers are interesting
and different enough that they warrant a separate discussion of their own. The main
difference between terminal device drivers and other device drivers is that terminal
device drivers must support several different kinds of preprocessing and postprocess-
ing on their input and output, respectively. Each variety of processing is termed a line
discipline. A terminal’s line discipline can be set using ioctl (). Most terminal drivers
support the following three common line disciplines:

• raw mode, which performs no special processing at all. Characters entered at the
keyboard are made available to the reading process based on the ioctl () parame-
ters. Key sequences such as Control-C do not generate any kind of special action
and are passed as regular ASCII characters. For example, Control-C would be
read as the character with ASCII value 3. Raw mode is used by applications such
as editors, which prefer to do all of their own character processing.

• cbreak mode, which processes only some key sequences specially. For example,
flow control via Control-S and Control-Q remains active. Similarly, Control-C
generates an interrupt signal for every process in the foreground job.As with raw
mode, all other characters are available to the reading process, based on the ioctl ()
parameters.

• cooked mode (sometimes known as canonical mode), which performs full pre-
processing and postprocessing. In this mode, the delete and backspace keys take
on their special meanings, together with the less common word-erase and line-
erase characters. Input is made available to a reading process only when the
Enter key is pressed. Similarly, tabs have a special meaning when output, and they
are expanded by the line discipline to the correct number of spaces. A newline
character is expanded into a carriage return/newline pair.

Terminal Data Structures

The following are the main data structures that the kernel uses to implement line
disciplines:

• clists, which are linked lists of fixed-size character arrays. The kernel uses these
structures to buffer the preprocessed input, the postprocessed input, and the out-
put associated with each terminal.

• tty structures, which contain the state of a terminal, including pointers to its clists,
the currently selected line discipline, a list of the characters that are to be
processed specially, and the options set by ioctl (). There is one tty structure per
terminal.

622 Chapter 14 UNIX Internals

Figure 14.57 is an illustration of a tty structure and its associated clists.

Reading from a Terminal

When a key is pressed, the keyboard interrupt handler performs the following operations,
depending on the mode of the terminal:

• raw mode: The character is copied onto the end of the raw clist, and the process
waiting on the read is awakened so that it may read from the raw clist. When the
process awakens, all characters on the raw clist are moved into the process’ ad-
dress space.

• cbreak mode: If the character is a flow control or break character, it is processed
specially; otherwise, the character is copied onto the end of the raw clist, and the
process waiting on the read is awakened. When the process awakens, all charac-
ters on the raw clist are moved into the process’ address space.

• cooked mode: If the character is a flow control or break character, it is processed
specially; otherwise, the character is copied onto the end of the raw clist. If the
character is a carriage return, the contents of the raw clist are moved onto the
end of the cooked input clist, and the process waiting on the read is awakened.
When the process awakens, the special characters, such as backspace and delete,
in the cooked input clist are processed, and then the postprocessed contents are
copied into the process’ address space.

ioctl () allows you to specify conditions that must be satisfied before a reading
process is awakened. Among these conditions are the number of characters in the
raw clist and an elapsed time since the last read (). If two or more processes try to
read from the same terminal, it’s up to them to synchronize their operation; other-
wise, the input will be shared indiscriminately between the competing processes.
Signals generated by special characters in cbreak and cooked modes go to the
processes associated with the control terminal. (For more information about control
terminals, see Chapter 13.)

Tty structure

<Special
characters>

Mode is
cooked

Options

C-Lists

Cooked input

Raw input

Output

FIGURE 14.57

The tty structure and C-lists.

Interprocess Communication 623

Writing to a Terminal

When a process writes to a terminal, any special characters it uses are processed ac-
cording to the currently selected line discipline and are then placed onto the end of the
terminal’s output clist. The terminal driver invokes hardware interrupts to output the
contents of this list to the screen. If the output clist becomes full, the writing process is
put to sleep until some of the output drains to the screen.

Streams

When a stream is created with the open () system call, a stream head is created. The
stream head provides the system call interface to the user application and contains the
data structures that represent the stream. It handles subsequent calls to read (), write (),
getmsg (), or putmsg () by sending data to, or receiving data from, the first module in
the stream.

The stream head, all modules, and the stream driver run in kernel mode. Stream
drivers may be inserted into the stream from user mode. This is done by “pushing” the
drivers onto the stream. A new module pushed onto a stream goes on top of any exist-
ing modules (i.e., it is connected to the stream head).The module list is a LIFO (last in,
first out) stack. “Modules are pushed onto streams when a driver is installed into
the kernel. Like traditional device drivers, modules execute in kernel mode and are
linked to the kernel when the kernel is built.

Some newer terminal drivers are implemented with STREAMS rather than the
clist mechanism just described.

INTERPROCESS COMMUNICATION

The UNIX kernel uses a number of data structures and algorithms to support pipes
and sockets.

Pipes

The implementation of pipes differs significantly between System V and BSD, so I’ll
begin by describing System V pipes.

System V.3 Pipes

There are two kinds of pipes in System V: named pipes and unnamed pipes. Named
pipes are created by pipe (), and unnamed pipes are created by mknod (). Data written
to a pipe are stored in the file system, as shown in Figure 14.58.When either kind of pipe
is created, the kernel allocates an inode, two open file entries, and two file descriptors.

Á ”

624 Chapter 14 UNIX Internals

Originally, the inode describes an empty file. If the pipe is named, a hard link is made
from the specified directory to the pipe’s inode; otherwise, no hard link is created and
the pipe remains anonymous.

Pipe Data Structures

The kernel maintains the current write position and current read position of each pipe
in its inode, rather than in the open file table entry. This ensures that each byte in the
pipe is read by exactly one process. The kernel also keeps track of the number of
processes reading from the pipe and writing to the pipe. As you’ll soon see, it needs
both of these counts to process a close () properly.

Writing to a Pipe

When data are written to a pipe, the kernel allocates disk blocks and increments the
current write position as necessary, until the last direct block has been allocated. For
reasons of simplicity and efficiency, a pipe is never allocated indirect blocks; this prohi-
bition limits the size of a pipe to about 40K, depending on the file system’s block size. If
a write to a pipe would overflow its storage capacity, the writing process writes as much
as it can to the pipe and then sleeps until some of the data are drained by reader
processes. If a writer tries to write past the end of the last direct block, the write position
“wraps around” to the beginning of the file, starting at offset 0. Thus, the direct blocks
are treated like a circular buffer. Although it might seem that using the file system for

0

User
area

Open-
file

table

Read

Write

Active-
inode
table Disk

Inode
list

User
blocksPipe

inode Point
to

pipe
blocks

1
2

Read 3
Write 4

FIGURE 14.58

System V.3 pipes are stored in the file system.

Interprocess Communication 625

implementing pipes would be slow, remember that disk blocks are buffered in the
buffer pool, so most pipe I/O is buffered in RAM.

Reading from a Pipe

As data are read from a pipe, the current read position is updated accordingly.The ker-
nel ensures that the read position never overtakes the write position. If a process at-
tempts to read from an empty pipe, it is put to sleep until output becomes available.

Closing a Pipe

When a pipe’s file descriptor is closed, the kernel does the following special processing:

• It updates the count of the pipe’s reader and writer processes.
• If the writer count drops to zero and there are processes trying to read from the

pipe, they return from read () with an error condition.
• If the reader count drops to zero and there are processes trying to write to the

pipe, they are sent a signal.
• If the reader and writer counts drop to zero, all of the pipe’s blocks are deallocated

and the inode’s current write and read positions are reset. If the pipe is unnamed,
the inode is also deallocated.

System V.4 Pipes

Beginning with System V, Release 4, pipes in UNIX have been implemented using
STREAMS.

BSD Pipes

BSD pipes are implemented in terms of sockets.The write and read file descriptors are
each connected to an anonymous socket’s endpoint within the UNIX system domain.

Sockets

A complete description of the implementation of sockets would be rather lengthy, re-
quiring an explanation of the workings of Internet addressing, routing, and communi-
cation. For this reason, I present only a brief overview of the socket system in terms of
its memory management and interface to Internet protocols. For a more in-depth dis-
cussion of sockets, see Chapter 13 in this book and see also Stevens, (1998).

Memory Management

Data transferred between socket endpoints are buffered by means of a dynamic mem-
ory allocation system that uses fixed-size data packets called mbufs. Each mbuf is 128
bytes long, broken down as follows:

• a 112-byte buffer
• a field that records the size of the data in the buffer
• a field that records the offset of the data in the buffer

626 Chapter 14 UNIX Internals

Routines that read buffers can strip off protocol headers simply by adjusting the data
size and offset fields, rather than having to shift the valid data in memory. The mbuf
memory manager is relatively efficient, and several other kernel routines use it for
non-socket-related purposes.

Sockets and the Open File Table

When a socket is created with the use of socket (), the system in turn creates a socket
structure that records all of the information pertaining to the socket, including the fol-
lowing fields:

• the socket domain
• the socket protocol
• a pointer to the socket’s mbuf lists

In order to tie the file descriptor system to the socket system, the kernel keeps a point-
er from the socket’s open file table entry to its associated socket structure. This struc-
ture is accessed when socket I/O is performed. Figure 14.59 shows a diagram of this
arrangement.

0
1
2
3

User
area

Open-
file

table

Read/write

Active-
inode
table

Socket
inode

Socket
structure Protocol

FIGURE 14.59

Berkeley sockets.

Writing to a Socket

Data written to a socket via write () are placed onto the output mbuf list for transmis-
sion by the protocol module.

Chapter Review 627

Reading from a Socket

Data that arrive at the protocol module are placed onto the input mbuf list for con-
sumption by the process. When the process performs a read (), the data are transferred
from the input mbuf list into the process’ address space.

CHAPTER REVIEW

Checklist

In this chapter, I described

• the layering of kernel subsystems
• the difference between user mode and kernel mode.
• the implementation of system calls and interrupt handlers
• the physical and logical layouts of the file system
• inodes
• the algorithm that the kernel uses for translating pathnames into inode numbers
• the process hierarchy
• the six process states
• how the scheduler decides to allocate the CPU
• memory management and the MMU
• the I/O subsystem, including buffering
• interprocess communication via pipes and sockets

Quiz

1. Why does the kernel maintain multiple priority queues?
2. Why do system calls make use of kernel mode?
3. What happens when an interrupt interrupts another interrupt?
4. How do modern disk designs attempt to increase total storage capacity?
5. Where is the name of a file stored?
6. What information does the superblock contain?
7. How does UNIX avoid using bad blocks?
8. Why is inode 2 special?
9. What is the meaning of the term magic number?

10. What is the meaning of the term context switch?
11. What information is stored in a process’s user area?
12. If a signal is sent to a process that is suspended, where is the signal stored?
13. Describe an overview of the memory mapping that the MMU performs.
14. What does the page daemon do?
15. How does UNIX copy a parent’s data to its child?

628 Chapter 14 UNIX Internals

16. What is the meaning of the term “delayed write”?
17. What is the purpose of the open file table?
18. What is the use of the I/O switch tables?
19. Why does the UNIX terminal driver use clists?
20. What is the main implementation difference between BSD and System V pipes?

Exercises

14.1 Using ps, find the process on the system with the lowest process ID (PID). What
is the process and why does it have this PID? [level: easy]

14.2 The superblock contains a lot of important information. Suggest some ways to
minimize disruption to the file system in the case the superblock gets corrupted.
[level: medium]

14.3 When very small files are created, some disk space is lost due to the minimum al-
location unit size. This wasted space is called internal fragmentation. Suggest
some ways to minimize internal fragmentation. [level: medium]

14.4 Delayed writing normally causes a modified buffer to be flushed when its RAM
is needed, not when its file is closed. An alternative method is to flush modified
buffers when disk traffic is low, thereby making the best use of the idle time. Cri-
tique this strategy. [level: medium]

14.5 A low-priority interrupt may be lost if it occurs during the servicing of a higher
priority interrupt. How do you think the system’s software deals with lost inter-
rupts? [level: hard]

Projects

1. Investigate some other operating systems, such as Mach, Plan 9, and Windows
NT. How do they compare with UNIX? [level: medium]

2. If you know object-oriented techniques, design a basic object-oriented kernel
that provides system services by a collection of system objects. How does the de-
sign of your kernel differ from that of the UNIX kernel? [level: hard]

C H A P T E R 1 5

System Administration

MOTIVATION

Several administrative duties must be performed on a UNIX system to keep it running
smoothly. Without carrying these duties, files may be irrecoverably lost, utilities may
become out of date, and the system may run slower than its potential speed. Many
UNIX installations are large enough that they warrant a full-time system administrator.
Smaller UNIX installations, such as my home system, do not. Regardless of whether
you’re destined to perform administrative duties, this chapter contains valuable infor-
mation on how to oversee a UNIX installation.

PREREQUISITES

In order to understand this chapter, you should have read Chapters 1 and 2. It also
helps if you’ve read Chapters 4 and 9.

OBJECTIVES

In this chapter, I describe the main tasks that a system administrator must perform in
order to keep a UNIX system running smoothly.

PRESENTATION

The information presented is in the form of several small, self-contained subsections.

UTILITIES

The following utilities, listed in alphabetical order, are examined:

ac getty newfs
accton halt pac

629

630 Chapter 15 System Administration

config ifconfig reboot
cron last route
df mkfs shutdown
du mknod su
fsck netstat

INTRODUCTION

The tasks that a system administrator must perform in order to keep a UNIX system
running properly, include the following:

• starting and stopping the system
• maintaining and backing up the file system
• maintaining user accounts
• installing operating system and application software
• installing and configuring peripherals
• managing the interface to the network
• automating repetitive tasks
• performing system accounting
• configuring the kernel
• checking system security

Almost all of these tasks require the administrator to be in superuser mode, as they
access and modify privileged information. If you don’t have access to the superuser
password, you’ll just have to use your imagination. Even in this case, however, being
aware of these functions increases your overall understanding of how UNIX works.

To cover each of these topics in depth would require an entire book, so this
chapter simply presents an overview of system administration. (For more detailed
information, see Nemeth (2000).

BECOMING A SUPERUSER

The superuser has a special user ID (0) with permission to do practically anything on a
UNIX system. Because of this, you can see how important it is that not “just anyone”
have this access—especially anyone with any malicious intentions. Most administration
tasks require that you have superuser powers, and there are two ways to get them:

• Log in as “root,” the username of the superuser.
• Use the su utility, described in Chapter 3, to create a child shell owned by “root.”

Although the first method is direct, there are some dangers associated with it. If you
log in as “root,” every single command that you execute—even the ones with errors in
them—will have superuser privileges. Imagine typing “rm instead of “rm

while in the “/” directory! Because of this problem, I strongly recommend that
you always use the second method. Log into UNIX as a regular user, and become a
superuser only when you need to.

-r*.bak”
-r*.bak”

Starting UNIX 631

Another advantage of the second method is that the su command logs who uses
it and when. In an environment with more than one system administrator, it is some-
times hard to make sure that the superuser password is given only to those who really
need it. Having a log to examine helps you see who is using root privileges.

STARTING UNIX

Depending on the origin of your version of UNIX, there are two ways a UNIX system
can run. Berkeley UNIX-based systems usually run in one of two modes:

• Single-user mode, which means that a single user may log in from the system con-
sole and execute commands from a shell. In this mode, the system runs very few
system daemons and is generally used for system maintenance, backups, and kernel
reconfiguration only.

• Multiuser mode, which means that many users may log in from different termi-
nals. This mode has active system daemons and is the default operational mode
for most systems.

System V-based versions of UNIX run at various run levels. Run levels describe
what runs on the system (much like single-user and multiuser modes in BSD), but
provide more granularity in options. Typically, systems have eight run levels: 0–6 and
“s” for single-user mode. Each run level can have it’s own specific boot scripts and
can be configured to suit your local needs. For example, you might configure run
level 3 to be everything your system normally runs in operational mode, except your
company’s product database application. This would permit you to do database
maintenance on the database while allowing the rest of the system to be used by the
employees.

Some machines allow you to choose the mode by toggling a front panel switch;
other machines enter multiuser mode by default, unless the boot sequence is inter-
rupted by Control-C. The only way to tell what your own system does is to read the
manual.

When you turn on the computer, the following sequence of events occurs:

1. The hardware performs diagnostic self-tests.
2. The UNIX kernel is loaded from the root device.
3. The kernel starts running and initializes itself.
4. The kernel starts init, the first user-mode process.

init starts by checking the consistency of the file system, using fsck, which is described
later in the chapter. If single-user mode was chosen, init creates a Bourne shell associ-
ated with the system console. If multiuser mode was chosen, init performs the following
actions:

• It executes the system’s boot scripts, which perform initialization tasks such as
starting the mail daemon and clearing the “/tmp” directory.

632 Chapter 15 System Administration

• It creates a “getty” process for every terminal in the “/etc/ttytab” file. “/etc/ttytab”
contains one line of information for every terminal on the system, including its
baud rate and pathname.

The names of the boot scripts vary with different versions of UNIX. BSD-based sys-
tems typically run “/etc/rc” to start the standard UNIX daemons and “/etc/rc.local” to
start locally maintained services. System V divides the boot files into a more complex
set of files, grouping them by subsystem (such as networking, disk, etc.). These files are
stored in the “/etc/rc.d” directory. A “getty” process listens for activity on its associated
terminal and replaces itself with a “login” process if it detects that someone’s trying to
log in. The “login” program prompts for a username and a password, checks them
against the entries in the “/etc/passwd” file, and replaces itself with the user’s start-up
program if the password is correct. The start-up program is usually a shell.

When a user logs out, init receives a SIGCHLD signal from the dying shell.When
this happens, init removes the user from the “/etc/utmp” file (which contains a list of all
the current users) and then appends an entry to the “/var/adm/wtmp” file (which con-
tains a list of all the recent log-ins and log-outs). Finally, init creates a new “getty”
process for the freed terminal.

init’s behavior may be modified by sending it one of the following signals:

• SIGHUP causes init to rescan the “/etc/ttytab” file and create “getty” processes
for all the terminals in the file that need them. It also kills “getty” processes that
don’t have an associated terminal. SIGHUP thus allows you to add and remove
terminals without rebooting the system.

• SIGTERM causes init to take UNIX to single-user mode.
• SIGTSTP tells init not to create a new “getty” process when a user logs out. This

allows the system to gradually phase out terminals.

init is vital to the functioning of UNIX, as it’s responsible for creating and maintaining
log-in shells. If init dies for any reason, the system reboots automatically.

STOPPING THE SYSTEM

A modern computer fares well if it runs all the time; turning it on and off causes prob-
lems. However, there are some circumstances in which it’s a good idea to turn the
computer off. For example, if a storm is coming, you should disconnect your computer
from its power source to avoid high-voltage surges. UNIX should not be shut down
directly; instead, you should use one of the shutdown, halt, or reboot utilities.

shutdown, described in Figure 15.1, can be used to either halt UNIX, place it into
single-user mode, or place it into multi-user mode. It emits warning messages prior to
the shutdown so that users may log out before the system changes state. halt, described
in Figure 15.2, causes an immediate system shutdown with no warning messages.
reboot, described in Figure 15.3, may be used to force the system to reboot.

Stopping the System 633

Utility: shutdown -hkrn time [message]

shutdown shuts down the system in a graceful way. The shutdown time may be spec-
ified in one of three ways:

• now: the system is shut down immediately.
• +minutes: the system is shut down in the specified numbers of minutes.
• hours:minutes: the system is shut down at the specified time (24-hour format).

The specified warning message (or a default one if none is specified) is displayed pe-
riodically as the time of shutdown approaches. Logins are disabled five minutes
prior to shutdown.

When the shutdown time arrives, shutdown executes sync and then sends init a
SIGTERM signal; this causes init to take UNIX to single-user mode. The -h option
causes shutdown to execute halt instead of sending the signal. The -r option causes
shutdown to execute reboot instead of sending the signal. The -n option prevents
shutdown from performing its default sync. The -k option is funny: It causes
shutdown to behave as if were going to shut down the system, but when the shut-
down time arrives, it does nothing. (The “k” stands for “just kidding”!)

FIGURE 15.1

Description of the shutdown command.

Utility: halt

halt performs a sync and then halts the CPU. It appends a record of the shutdown to
the “/var/adm/wtmp” log file.

FIGURE 15.2

Description of the halt command.

Utility: reboot -q

reboot terminates all user processes, performs a sync, loads the UNIX kernel from
disk, initializes the system, and then takes UNIX to multiuser mode. A record of the
reboot is appended to the “/var/adm/wtmp” log file. To perform a quick reboot, use
the -q option. This option instructs reboot not to bother to kill the current processes
before rebooting.

FIGURE 15.3

Description of the reboot command.

634 Chapter 15 System Administration

MAINTAINING THE FILE SYSTEM

This section describes the file system–related administrative tasks:

• ensuring the integrity of the file system
• checking disk usage
• assigning quotas
• creating new file systems

File System Integrity

One of the first things that init does is to run a utility called fsck to check the integrity
of the file system. fsck works as shown in Figure 15.4. Fortunately, fsck is very good at
correcting errors. This means that you’ll probably never have the joy of patching disk
errors by hand, as was done in “the good old days.”

Utility: fsck -p [fileSystem]*

fsck (file system check) scans the specified file systems and checks them for consis-
tency. The kinds of consistency errors that can exist include the following:

• A block is marked as free in the bitmap, but is also referenced from an inode.
• A block is marked as used in the bitmap, but is never referenced from an inode.
• More than one inode refers to the same block.
• A block number is invalid.
• An inode’s link count is incorrect.
• A used inode is not referenced from any directory.

For information about inodes, see Chapter 14.
If the -p option is used, fsck automatically corrects any errors that it finds.

Without the -p option, it prompts the user for confirmation of any corrections that it
suggests. If fsck finds a block that is used, but is not associated with a named file, it
connects the block to a file whose name is equal to the block’s inode number in the
“/lost+found” directory.

If no file systems are specified, fsck checks the standard file systems listed in
“/etc/fstab.”

FIGURE 15.4

Description of the fsck command.

Disk Usage

As I just mentioned, disk errors are uncommon and are generally corrected automati-
cally. Disk usage problems, on the other hand, are common. Many users treat the file
system as if it’s infinitely large and create huge numbers of files without much thought.
When I taught UNIX at UT Dallas, the disks would invariably fill up on the last day of

Maintaining the File System 635

the semester, just as all of the students were trying to complete their projects. Students
would try to save their work from vi, and vi would respond with a “disk full” message.
When the students quit vi, they would find that their file had been deleted.

To avoid running out of disk space, it’s wise to run a shell script from cron that pe-
riodically runs the df utility to check the available disk space. df works as shown in
Figure 15.5. Here’s an example of df in action:

$ df ...list information about all file systems.
Filesystem kbytes used avail capacity Mounted on
/dev/sd3a 16415 10767 4006 73% /
/dev/sd3g 201631 125513 55954 69% /usr
/dev/sd3d 60015 34773 19240 64% /export
$ _

Utility: df [-k] [-P] [fileSystem]*

df displays a table of used and available disk space on the specified mounted file sys-
tems. If no file system is specified, all mounted file systems are described.

The output format of df differs slightly from one version of UNIX to another.
Traditional System V-based versions of df display the count of 512-byte blocks,
whereas BSD-based and later versions of df usually show block counts in terms of
1024-byte (1K) blocks. (The 1K block size makes it easier to compute megabytes:
Just divide by 1000.) The layout of the information varies between the versions as
well, but nearly all versions have arguments that allow you to select the format and
information you want. Use the –k option to report block counts in 1024-byte size.
Use the –P argument to display the output in “POSIX” format (closer to the BSD
format). On some systems, when –k is used, -P is assumed.

FIGURE 15.5

Description of the df command.

That same df command would produce a different output on a System V-based UNIX
system:

$ df
/ (/dev/sd3a): 21534 blocks 14922 files
/usr (/dev/sd3g): 251026 blocks 108277 files
/export (/dev/sd3d): 69546 blocks 20844 files
$ _

Note the absence of headers in the second format. This can be helpful when you are
piping the output into another command. (Otherwise you have to remove the header if
you intend to treat every line as file system information.) Note also that the number of
blocks used is different between the two versions because the block size being counted
is different. On this second system, using df –Pk would produce output similar to
that generated in the first example.

636 Chapter 15 System Administration

You can also get information about a specific file system by specifying its name or
mount point explicitly, as in the following commands:

$ df /dev/sd3a ...list a specific file system.
Filesystem kbytes used avail capacity Mounted on
/dev/sd3a 16415 10767 4006 73% /
$ df / ...mount point also works.
Filesystem kbytes used avail capacity Mounted on
/dev/sd3a 16415 10767 4006 73% /
$ _

You can find out how much disk space is left on the device on which your home direc-
tory resides just as easily:

$ df .
Filesystem kbytes used avail capacity Mounted on
/dev/sd3d 4194304 4194304 0 100% /home
$ _

If df reports that a disk is greater than 95% full, your script could detect this and send
you some warning mail. Even better, your script could then run the du utility to deter-
mine which users are taking up the most disk space and automatically send those users
mail suggesting that they remove some files. du works as shown in Figure 15.6. In the

Utility: du [-s] [-k] [fileName]*

du displays the number of kilobytes (BSD) or 512-byte blocks (System V) that are
allocated to each of the specified filenames. If a filename refers to a directory, its
files are described recursively. When used with the -s option, du displays only the
grand total for each file. When used with the –k option, space is always reported in
kilobytes. If no filenames are specified, the current directory is scanned.

FIGURE 15.6

Description of the du command.

following example, I used du to find out how many kilobytes my current directory and
all its files were using up, after which I obtained a file-by-file breakdown of the disk
usage:

$ du -sobtain grand total of current directory.
9291 .
$ duobtain file-by-file listing.
91 ./proj/fall.89
158 ./proj/summer.89/proj4
159 ./proj/summer.89
181 ./proj/spring.90/proj2
21 ./proj/spring.90/proj1
204 ./proj/spring.90

Maintaining the File System 637

455 ./proj
... ...other files were listed here.
38 ./sys5
859 ./sys6
9291 .
$ _

Assigning Quotas

Some systems allow a system administrator to set disk quotas for individual users. You
may specify the maximum number of files and the maximum number of blocks that a
particular user is allowed to create. It’s fairly complicated to add quotas, and doing so
may involve reconfiguring the kernel, updating the “/etc/rc” file, modifying the
“/etc/fstab” file, and creating a quota control file. Quotas are implemented differently
in different versions of UNIX, so I suggest you consult your system’s documentation to
find out more.

Creating New File Systems

If you buy a new disk drive, you must perform the following tasks before your file sys-
tem can use it:

1. Format the medium.
2. Create a new file system on the medium.
3. Mount the disk into the root hierarchy.

The manufacturer of the device may supply you with a formatting utility. If it does, use
the utility to perform step 1. If your version of UNIX has a format command, that may
also work. The particular means is system specific, so again, you should consult your
system documentation about formatting the medium.

Next, create a file system on the medium, using mkfs or newfs. Figure 15.7 pro-
vides a description of mkfs. Because it’s unlikely that you’ll know the correct value of
sectorCount without looking it up in the manufacturer’s handbook, the newfs utility
(available on most, but not all, versions of UNIX) was designed as a user-friendly front
end to mkfs. newfs is described in Figure 15.8. Note that newfs can work only if geo-
metric information about the medium is listed in the “/etc/disktab” file. Once the file
system is created, it may be connected to the root file system by using the mount utility
described in Chapter 3.

Utility: mkfs specialFile [sectorCount]

mkfs creates a new file system on the specified special file. A new file system con-
sists of a superblock, an inode list, a root directory, and a directory.
The file system is built to be sectorCount sectors in size. Only a superuser can use
this command.

“lost+found”

FIGURE 15.7

Description of the mkfs command.

638 Chapter 15 System Administration

Backing Up File Systems

Making a backup copy of file system information is the most important, and most fre-
quently overlooked, task a system administrator should do. It’s frustrating to spend
time doing it, since you believe you’ll never need the backup medium. But just like
buying insurance on your car, you should do it because if you ever do need it, it will be
a big problem if you don’t have it. The procedure and utilities for backing up the file
system are described in Chapter 3.

MAINTAINING USER ACCOUNTS

One of a system administrator’s most common tasks is to add a new user to the system.
To do this, you must do the following:

• Add a new entry to the password file.
• Add a new entry to the group file.
• Create a home directory for the user.
• Provide the user with some appropriate start-up files.

The Password File

Every user of the system has an entry in the password file (usually “/etc/passwd”), in
the format

username:password:userId:groupId:personal:homedir:startup

where each field has the meaning shown in Figure 15.9.
Since the password field is an encrypted value, putting any single character in

that field is equivalent to disallowing logins on the account in question. Since there is
no string you could type that would encrypt, for example, an asterisk into the text,
nothing that could be typed will match anything in such a password field after encryp-
tion. Here’s a snippet from a real-life password file:

$ head -5 /etc/passwd ...look at first five lines.
root:rcfsmtio:0:0:Operator:/:/bin/csh
daemon:*:1:1::/:
sync:*:1:1::/:/bin/sync

Utility: newfs specialFile deviceType

newfs invokes mkfs after looking up the deviceType’s sector count from the
“/etc/disktab” file, which contains information about standard device characteristics.

FIGURE 15.8

Description of the newfs command.

Maintaining User Accounts 639

sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:
$ _

I used grep to find my own entry:

$ grep glass /etc/passwd ...find my line.
glass:dorbnla:496:62:Graham Glass:/home/glass:/bin/ksh
$ _

Field Meaning

username the user’s login name

password the encrypted version of the user’s password

userId the unique integer allocated to the user

groupId the unique integer corresponding to the user’s group

personal the description of the user that is displayed by the finger utility

homedir the home directory of the user

startup the program that is run for the user at login

FIGURE 15.9

Fields in the UNIX password file.

The Group File

To add a new user, you must decide which group the user is in and then search the
group file to find the user’s associated group ID. As an example, I’ll show you how to
add a new user called Simon into the “cs4395” group.

Every group in the system has an entry in the group file (usually “/etc/group”) in
the format

groupname:groupPassword:groupId:users

where each field is as defined in Figure 15.10. Here’s a snippet from a real-life
“/etc/group” file:

$ head -5 /etc/group ...look at start of group file.
cs4395:*:91:glass
cs5381:*:92:glass
wheel:*:0:posey,aicklen,shrid,dth,moore,lippke,rsd,garner
daemon:*:1:daemon
sys:*:3:
$ _

640 Chapter 15 System Administration

As you can see, the “cs4395” group has an associated group ID number of 91. To add
Simon as a new user, I allocated the unique user ID number 10 and a group ID of 91 to
him and left his password field empty. Here’s what his entry looked like:

simon::101:91:Simon Pritchard:/home/simon:/bin/ksh

Once the entry was added to the password file, I added Simon onto the end of the
“cs4395” list in the “/etc/group” file, created his home directory, and gave him some de-
fault start-up files, such as “.kshrc” and “.profile”. I copied these files from a directory
called “/usr/template” that I made to keep the default versions of user start-up files.
The relevant commands are as follows:

$ mkdir /home/simon ...create home directory.
$ cp /usr/template/.* /home/simon ...copy startup files.
$ chown simon /home/simon /home/simon/.* ... set owner.
$ chgrp cs4395 /home/simon /home/simon/.* ...set group.
$ _

Finally, I logged in as Simon and used passwd to change his password to a sensible
default value.

To delete a user, simply reverse these actions: delete the user’s password entry,
group file entry, and home directory.

INSTALLING SOFTWARE

Installing new software or updates to existing software is an important task of a system
administrator. However, the details can vary greatly from site to site. If you maintain a
large site with many Network File System (NFS) servers, you might install an applica-
tion on a server so that workstations can access it from a central location.A smaller site
or a more expensive piece of software might be installed only on the machines where it
is needed.

The longtime tradition in UNIX environments was to install local software in
the “/usr/local” directory. That made it obvious that the software did not come with
the UNIX distribution. Over time, vendors have modified the name of the “standard”

Field Meaning

groupname the name of the group

groupPassword the encrypted password for the group [not used, and often
filled with an asterisk (*)]

groupId the unique integer corresponding to the group.

users a list of the users in the group, separated by commas

FIGURE 15.10

Fields in the UNIX group file.

Peripheral Devices 641

directory they use for application software (e.g., Sun uses “/opt” for optional software,
and AIX uses “/usr/lpp” for licensed program products). You may use one or more of
these locations, but it is important to maintain some logic to the structure so that you
(and others) can find what you’re looking for.

Philosophically, there are two ways to install software. One is to create a directo-
ry for the software and put everything it needs (except, perhaps, system files) under
that directory. For example, if I create an application called pianoman, I might write in-
stallation tools for it which assume that it will be installed in “/opt/pianoman.” If the
user chooses to install it in “/usr/local/pianoman” instead, he or she should be able to
do so. The other philosophy is to put only software in such a central directory and to
put any configuration, header, or library files needed in a more centralized location for
those types of files. The example here might be that the software required to build the
application may live in “/usr/local/pianoman”, but when it is installed on the system,
the executable file is copied to “/usr/local/bin/pianoman” and the library it uses is
copied to “/usr/local/lib/pianolib.a.” This method has advantages and disadvantages.
The major advantage is that the user community does not have to add another directo-
ry to its $PATH definition, since the binary is in a “known” location (“/usr/local/bin”)
that is already in the path. The major disadvantage is that you have files spread out in
many other places besides “/usr/local/pianoman.”

How you choose to install software may depend on the default method the de-
veloper of the software has chosen. Any good installation tool (script or program)
should allow you to change its default location.While it is easier to go with the defaults
if they fit into your environment in a reasonable fashion, you are free to configure
them to better match your local environment. Any software that hard-codes the instal-
lation location is poorly designed.

The tar and cpio commands are two of the most popular methods of creating an
installation image for a UNIX system. The advantage here is that these commands
already exist on most versions of UNIX. A shell script that uses tar and other standard
UNIX commands to install software can be run on most types of UNIX systems with-
out requiring other software. Some UNIX vendors provide their own improved soft-
ware installation tools (e.g., HP-UX has swinstall and AIX has installp). While these
tools are generally better than generic UNIX commands, their disadvantage is that you
lock yourself into one architecture if you use them. Of course, you can write installa-
tion instructions for each tool, but that is more work than writing only one installation
method for all UNIX platforms your application supports. The best choice of instal-
lation method depends greatly on the target customers, their platforms, and their
comfort level with UNIX tools.

As the UNIX system administrator, you will encounter just about all possibilities
and will need to know how best to integrate the applications into your local environment.

PERIPHERAL DEVICES

Let’s assume that you’ve just bought a new device and you wish to connect it to your
system. How do you install it? In addition, if it’s a terminal, which terminal-specific
files must be updated? This section presents an overview of device installation and a
list of the terminal-related files.

642 Chapter 15 System Administration

Installing a Device

For a system to be able to “talk to” a new device, the hardware must be connected and
the software must be installed or activated. Some systems require that new device dri-
vers be loaded into the kernel and the kernel be rebuilt. Others may use dynamically
loadable device drivers where sin the driver will be loaded into the kernel when the
device is accessed. The basic steps of device installation are as follows:

1. Install the device driver if it isn’t currently in the kernel and if loadable device
drivers are not used.

2. Determine the device’s major and minor numbers.
3. Use mknod to associate a filename in “/dev” with the new device.

Once the device driver is installed and the major and minor numbers are known, you
must use mknod, described in Figure 15.11, to create the special file. In the following
example, I installed the 13th instance of a terminal whose major number was 1:

$ mknod /dev/tty12 c 1 12 ...note the 13th instance is index 12.
$ _

The “c” indicated that the terminal was a character-oriented device. In the next exam-
ple, I installed the first instance of a disk drive whose major number was 2:

$ mknod /dev/dk1 b 2 0 ...note the 1st instance is index 0.
$ _

The “b” indicated that the terminal was a block-oriented device.
Major and minor numbers are the fourth and fifth fields, respectively, in an “ls -l”

listing. In the following example, I obtained a long listing of the “/dev” directory:

$ ls -l /dev ...get a long listing of the device directory.
crw--w--w- 1 root 1, 0 Feb 13 14:21 /dev/tty0

Utility: mknod fileName [c] [b] majorNumber minorNumber

mknod fileName p

mknod creates the special file fileName in the file system. The first form of mknod
allows a superuser to create either a character- or block-oriented special file with the
specified major and minor numbers.The major number identifies the class of the de-
vice, and the minor number identifies the instance of the device. The second form of
mknod creates a named pipe and may be used by anyone.

FIGURE 15.11

Description of the mknod command.

The Network Interface 643

crw--w--w- 1 root 1, 1 Feb 13 14:27 /dev/tty1
brw--w--w- 1 root 2, 0 Feb 13 14:29 /dev/dk0
crw--w--w- 1 root 3, 0 Feb 13 14:27 /dev/rmt0
...
$ _

Terminal Files

Several files contain terminal-specific information. Figure 15.12 lists these files and
gives a brief description of their function:

Name Description

/etc/termcap An encoded list of every standard terminal’s capabilities and
or control codes. The UNIX editors use the value of the
/etc/terminfo environment variable $TERM to index into this file and fetch

your terminal’s characteristics.

/etc/ttys A list of every terminal on the system, together with the
program that should be associated with it when the system is
initialized (usually “getty”). If the terminal’s type is constant
and known, that information is also included.

/etc/gettytab A list of baud rate information that is used by “getty” in
determining how to listen to a login terminal.

FIGURE 15.12

UNIX system files containing information about terminals.

THE NETWORK INTERFACE

An important aspect of system administration is getting a UNIX machine connected to
the local network so that other machines and all users can communicate with it. Some
of the basic concepts and tools used to do that were discussed in Chapter 9. Because
the details vary so greatly with different versions of UNIX, we’ll hit just the high points
here. For a detailed view, I strongly recommend reading Nemeth (2000).

Unless you are experimenting with wireless networking, some kind of network
cable will have to be connected to your UNIX computer in order for it to talk to the
network. Your machine will have to have an IP address and a hostname assigned to it,
and the rest of the network will need to be made aware of this name and address (by
updating the local host table or DNS database).

Most systems use the ifconfig command to configure the network interface. The
typical way to activate a network interface is with the code

$ ifconfig il0 194.27.1.14 up

This causes the interface called “il0” (these are device names somewhere in the “/dev”
directory hierarchy) to be assigned the IP address 194.27.1.14 and configured to be
up. Other IP attributes can also be configured with ifconfig. While you can issue this

644 Chapter 15 System Administration

command by hand at a terminal, it is usually found in boot scripts that initialize all
network interfaces. When you add a network interface, you’ll have to add the appro-
priate configuration command to the appropriate boot file.

For your UNIX machine to communicate with any other computer that is not
directly connected to the same network cable (segment), routing information on your
machine will need to be specified. The route command is used to specify routers that
provide a path to other networks. Generally, you only have to make sure that a “default”
route is established. A packet will be sent to this router when the destination is not on
the local network. The packet is sent to the default router with the assumption that
upstream routers will know how to get to the destination.

You can look at your current route table with the netstat command using the -r
argument:

$ netstat -r
Routing tables
Destination Gateway Flags Refs Use If
194.27.1.0 194.27.1.1 U 1 16611 il1
default 194.21.1.1 UG 0 231142 il0
$ _

This machine “knows” about two routers, 194.21.1.1 being the default path.Any address
not on the local network and not on the 194.27.1 network will be sent to 194.21.1.1 for
routing to its destination.

AUTOMATING TASKS

A number of system tasks are fairly simple, but tedious, to perform:

• adding a user account
• deleting a user account
• checking for full disks
• generating reports of log-ins and log-outs
• performing incremental backups
• system accounting
• removing old “core” files
• killing zombie processes

One of the powers of UNIX is its facility to make it easy for the programmer to write
simple shell scripts or C programs to automate tasks that you perform by hand. I rec-
ommend that you automate as many of these chores as you can. Tasks that must be
executed on a periodic basis can be scheduled by the cron utility.This utility works in a
slightly different way on different versions of UNIX, but in general, it allows you to
schedule a program to run anywhere from once every minute to once every year. Any
messages generated by the program are sent via e-mail to the user who registered the
program to be run.

Configuring the Kernel 645

For example, a simple script to see if any of your file systems are at 95% capacity
or greater might be

#!/bin/sh
#
df | egrep "9[56789]%|100%"

If this script is registered by “root,” with cron to be run every hour until a file system is
at 95% capacity or greater, nothing (visible) happens. The script is run every hour, but
no output is generated.When a file system reaches 95%, the search pattern specified to
the egrep command will be satisfied by the line from df about the offending file system,
so the script will generate a line of output. This line will be e-mailed to “root”, so with-
in one hour of the file system hitting 95%, you’ll know about it.

ACCOUNTING

The UNIX accounting facilities allow you to track the activity of UNIX’s subsystems.
Each subsystem keeps a record of its own history in a special file, as follows:

• Process management: A record of the user ID, memory usage, and CPU usage of
every process is appended to the “/usr/adm/acct” file. The sa utility may be used
to report the information in this file. Process accounting is toggled by the accton
utility.

• Connections: A record of the login time, user ID, and logout time of every con-
nection is appended to the “/usr/adm/wtmp” file. The ac and last utilities may be
used to report the information in this file. Connection accounting is enabled by
the presence of the “/usr/adm/wtmp” file.

• Printer usage: Every printer records information about its jobs in the “/usr/adm”
directory. The pac utility can generate reports from this information. Printer ac-
counting is toggled by an entry in the “/etc/printcap” file.

• Other subsystems, such as uucp and quota, also produce log files.

Various subsystems generate files that are converted into reports by utilities and shell
scripts. The system administrator is responsible for maintaining accounting records for
the target subsystems and for purging and archiving the accounting files periodically.

CONFIGURING THE KERNEL

The UNIX kernel is a program written mostly in C, with a few assembly language sec-
tions. When you purchase a UNIX system, the manufacturer includes several pieces of
software related to the kernel:

• a generic executable kernel
• a library of object modules that correspond to the parts of the kernel that never

change

646 Chapter 15 System Administration

• a library of C modules that correspond to the parts of the kernel that may be
changed

• a configuration file that describes the current kernel setup
• a config utility that allows you to recompile the kernel when the configuration

file is changed

The kernel configuration files are kept in either the “/usr/conf” (BSD) or the “/usr/src/
uts/cf” (System V) directory. The facets of the kernel that may be changed include the
following:

• the device drivers
• the maximum number of open files, clists, quotas, and processes
• the size of the I/O buffer pool and system page tables
• some important networking information
• the physical addresses of devices
• the name of the machine
• the time zone of the machine

To recompile a new kernel, you must follow a multistep process:

1. Edit the configuration file and change the parameters to their new values.
2. Run the config utility, which creates some header files, some C source code, and a

makefile.
3. Run the make utility, passing it the name of the makefile created by config. make

recompiles the newly created source code and links it with the unchanging por-
tion of the kernel to produce a new executable.

4. Rename the old UNIX kernel.
5. Rename the new UNIX kernel to take the place of the old one.
6. Reboot the system.

SECURITY ISSUES

Security is another topic to which it would be possible to devote an entire book for a
thorough discussion. For more information, I heartily recommend Garfinkel (1996)
and Curry (1992), as well as the security chapter in Nemeth (2000).

As you are no doubt aware, UNIX systems are not 100% secure. No computer
connected to any network can be. With the explosion of Internet connectivity, the
problems have grown.

UNIX was not originally designed with security in mind. The original UNIX en-
vironments were places where everyone trusted each other and there was no need for
security. Most UNIX systems are quite secure these days, but this has happened only
after years of locating weaknesses and fixing them.

While there are many aspects to UNIX security, the ones with which every user
has experience are passwords and file permissions. These mechanisms are tough for a
regular user to break, but not so hard for experienced hackers. The best that a system

Chapter Review 647

administrator can do is to read about as many of the known security loopholes as pos-
sible and adopt strategies to stop them all.To give you an idea of what you’re up against,
here are a couple of common password-nabbing techniques:

• If you have a regular account and desire a superuser account, you begin by ob-
taining a copy of the one-way encryption algorithm that is used by the UNIX
passwd utility.You also buy an electronic dictionary. Next, you copy the “/etc/pass-
wd” file to your home PC and compare the encrypted versions of every word in
the dictionary against the encrypted root password. If one of the dictionary entries
matches, you’ve cracked the password! Other common passwords to test for in-
clude names and words spelled backward.This brute-force technique is very pow-
erful and may be defended against by asking everyone to pick non-English,
nonbackward, nontrivial passwords.

• A scheming individual can use the command overloading technique described
earlier to trick a superuser into executing the wrong version of su. To use this Tro-
jan horse technique, set $PATH so that the shell looks in your own “bin” directory
before the standard “bin” directories. Next, write a shell script called su that pre-
tends to offer a superuser login, but really stores the superuser password in a safe
place, displays “wrong password”, and then erases itself. When this script is pre-
pared, call a superuser and tell him or her that there’s a nasty problem with your
terminal that requires superuser powers to fix.When the administrator types su to
enter superuser mode, your su script executes instead of the standard su utility, and
the superuser password is captured.The superuser sees the “wrong password” mes-
sage and tries su again.This time, it succeeds, as your Trojan horse script has already
erased itself.The superuser password is now yours! The way to defeat this technique
is never to execute commands via a relative pathname when you’re at an unfamiliar
terminal. In other words, execute “/bin/su” instead of just “su”.

The best ways to improve your knowledge of cunning schemes is to network with other
system administrators and to read specialized system administrator books [Nemeth
(2000)].

CHAPTER REVIEW

Checklist

In this chapter, I described

• the main system administration tasks
• how to obtain superuser powers
• how to start and stop UNIX
• the difference between single- and multiuser modes
• some useful disk-utilization utilities
• installing software
• how to create a new file system
• how to add and delete user accounts
• an overview of how a device is installed

648 Chapter 15 System Administration

• configuring a network interface
• the process of creating a new kernel
• some common security problems

Quiz

1. Under what situations is it appropriate to shut down a UNIX system?
2. Why do most versions of UNIX now use a “shadow” password file in addition to

the normal /etc/passwd file?
3. What does a “getty” process do?
4. Why is it better to use su to become the superuser than to simply login as “root”?
5. How can you put UNIX into single-user mode?
6. When is the integrity of the file system checked?
7. Which files must be modified when you add a new user?
8. What does the ifconfig command do?
9. Which UNIX subsystems generate accounting records?

10. Which kernel parameters may be modified?
11. Describe the “Trojan horse” technique for capturing a superuser password.

Exercises

15.1 Try using cpio and tar to transfer some files to and from a floppy disk. Which of
these utilities do you prefer? Why? [level: easy]

15.2 Use du to examine your disk usage. Write a script that prints out the full path-
names of your files that are over a specified size. [level: medium]

15.3 Obtain a floppy disk, format it, create a file system on it, mount it, and copy some
files onto it. You’ll almost certainly need a system administrator to help you
through this process. [level: medium]

15.4 Fill in the functionality of the skeleton script you wrote in Project 1 of Chapter 6
so that it will perform the system administration tasks in your menu-driven inter-
face. Useful tasks to automate include the following:

• automatic deletion of core files
• automatic warnings to those who use a lot of CPU time or disk space
• automatic archiving

[level: medium]

Project

Ask your system administrator what he or she believes to be the strengths and
weaknesses of UNIX from a system administrator’s standpoint. Are these is-
sues being addressed by current UNIX releases or in other operating systems?
[level: medium]

C H A P T E R 1 6

The Future

MOTIVATION

Operating systems continue to develop and improve as software and hardware tech-
nology expands.Although old, stagnant systems will inevitably hang around for quite a
while, systems that incorporate the best concepts and philosophies will eventually re-
place them. UNIX is over 30 years old and is beginning to show its age in terms of its
internal architecture. Knowledge of operating system trends will help you to under-
stand the changes that are bound to occur in UNIX over the next few years, as well as
allow you to place the role of UNIX in perspective.

PREREQUISITES

This chapter has no prerequisites, although it may help to have read Chapter 14.

OBJECTIVES

The chapter describes the latest trends in operating system design that are influencing
the evolution of UNIX. A quick survey of the major versions in wide use today pre-
pares the reader for further work with UNIX.

PRESENTATION

The first part of the chapter examines topics that are changing the face of UNIX. The
second part gives some examples of these influences in the various versions of UNIX
and Linux available today.

649

650 Chapter 16 The Future

INTRODUCTION

To set the scene for this chapter, let’s look at some of the latest trends in software and
hardware:

• object-oriented programming
• Open Source
• distributed and parallel processing
• the move from 32-bit to 64-bit systems and network addressing
• high-bandwidth communication and fault-tolerant systems

These trends represent an exciting and interesting future for UNIX and computing in
general. In order to take advantage of them, the software that is UNIX, as well as the
hardware platforms upon which it runs, will have to adapt to changing circumstances.

CURRENT AND NEAR-FUTURE INFLUENCES ON UNIX

Many current topics in computer science and improvements in hardware will have a
profound effect on the future direction of UNIX systems. Some have already exerted
an influence and continue to do so. Others are only now coming into view.

Object-Oriented Programming

Objects have been responsible for much buzz in the computer industry for many years
now. The most popular object-oriented languages in use in UNIX environments today
are C++ and Java. On the one hand, in many situations, an objected-oriented paradigm
can greatly increase the development productivity and manageability of software pro-
jects. On the other hand, used simply because they are “cool,” objects can actually
cause trouble.

Let’s take a quick look at object-oriented programming. Obviously, what we have
to say will be an extreme oversimplification. Entire volumes have been written on ob-
jects and the philosophy behind their use; to hope to do any more than whet your ap-
petite in a few paragraphs would be foolhardy.

What is an object?

An object is an abstraction—a way to describe the purpose and use of data. In tradi-
tional procedural programming, you defined data structures and then performed oper-
ations on those data. Your program had to “know” what data were applicable to what
functions and what operations could be performed on the data.

An object is created in accordance with the definition of an object class. Think of
the class as the blueprint of a house—how you go about building it—and the object as
the house itself. From a single blueprint, you can build many houses. In your code, you
define the class, or the blueprint, of the object, and then, as you need to work with data,
you create, or instantiate, as few or as many objects of that class as you need.

The idea behind object-oriented programming is that, rather than simply per-
forming procedural operations on data, you conceptually enclose, or encapsulate, the
data in an object. Within this object, you define a set of functions, or methods, that can

Current and Near-Future Influences on UNIX 651

1Java does not provide for destructors, but releases memory used by an object during “garbage collection,”
when the object is no longer in use.

operate on the specific data maintained in the object. By invoking a method of the
object, you can request that the object execute one of its functions, but you cannot ac-
cess the data directly.This protects the data from any kind of random modification that
might occur because the modifying code thinks it “knows” the format of the data, but
there is a bug in the code or the data format has changed.

How objects are used

In addition to any specific methods one defines for any object, two other methods are
always defined. Each object must have a way to be created and deleted. In most object-
oriented languages, the constructs that perform these tasks are called constructors and
destructors, respectively.1

A constructor is the special method that is executed when a new instance of the
object is created. In C++ and Java, this occurs when the new function is called on the
object type. The constructor creates and initializes any data used by the object.

A destructor, as you might guess, does the opposite of a constructor.A destructor
is a special method that cleans up when the object is being deleted. Any required ter-
minal processing is performed, and all resources that have been allocated are freed. In
C++, this occurs when the delete function is called on the object.

So what good is all this?

As a simple example, consider a printer that can be on-line (printing) or off-line (not
accepting data to print).The printer might have a byte that defines whether it is on-line
or off-line (say, 1 for on-line, 0 for off-line). You might write a program that sets the
value to 2 in that byte. What would the printer do? It depends on the printer, but per-
haps a 2 means “explode!”

If you wrote a printer object in software that encapsulated the printer status byte
and defined printer-on () and printer-off () methods, then you couldn’t set a 2 in that
byte. You could only call printer-on () to set the byte to 1 or printer-off () to set it to 0.
How the state is represented in the object is irrelevant outside the object.

Objects, therefore, help you specifically describe what operations can be per-
formed and what data can be affected and prevent changing data in ways that don’t
make sense.

Inheritance

You can also create new objects based on existing objects. If I had a new printer that
had another status variable besides the on-line/off-line variable, I could create a new
object class, based on the printer object, that would inherit the attributes of the original
printer object. I could then add any new methods in my code. I would have an up-to-
date, more sophisticated printer object, and I would not have had to rewrite all the
same code that they have in common.

If my new printer object required a different mechanism to turn it off and on, I
could also overload the printer-on() and printer-off() methods and define my own
method that would be used in this object in place of the ones in the parent object. This

652 Chapter 16 The Future

2“GNU” is a recursive acronym standing for “GNU’s not UNIX” and pronounced “guh-NEW.”

way, the subclass can keep what is useful from the parent object class and implement
only the parts that are new and unique to the subclass. Another advantage is that if a
change is made to the base class (such as fixing a bug or implementing other improve-
ment), the subclass will benefit from the change.

In the art of programming, objects are revolutionary. Used properly, object-
oriented programming can decrease development time, foster the reuse of code, and
reduce errors.

Open Source Software

The UNIX community has a long tradition of software being available in source code
form, either free of charge or for a reasonably small fee, enabling people to learn from
the code or improve it to further the state of the art. UNIX itself started out this way,
and many components related to (and in most cases now a part of) UNIX share the
tradition. So it’s no surprise that in a world of otherwise proprietary, shrink-wrapped
software, where you buy what’s available and conform your requirements to it, those
who support the idea of freely available source code have banded together to keep
their philosophy alive.

Two major events had a huge impact on the evolution of the idea of Open Source
software: the creation of the Free Software Foundation and the appearance of Linux
on the UNIX landscape. Fink (2003) is an excellent examination of the phenomenon of
Open Source software—why it came about, where it works, and where it does not.

The Free Software Foundation

One of the first proponents of the idea of freely available software was Richard Stall-
man, founder of the Free Software Foundation (FSF) in the mid-1980s. Stallman be-
lieved that everyone should have the right to obtain, use, view, and modify software. He
started the GNU2 Project whose goal was to reproduce popular UNIX tools and, ulti-
mately, an entire UNIX-like operating system, in new code that could be freely distrib-
uted because it did not contain any licensed code. Early products included a version of
the popular text editor Emacs and the GNU C compiler.

The “free” in the idea of free software does not necessarily mean the software is
available at no cost, but rather that it comes with the freedom to use, view, and modify
it. In order to retain their ownership and rights to GNU software, but still provide for
its use by the widest possible audience, the FSF developed the GNU General Public
License, under which GNU software is licensed to the world. The GNU GPL provides
for the copying, use, modification, and redistribution of GNU software, provided that
the same freedom to use, modify, and distribute it is passed on to anyone who uses your
version of the software.Where a copyright is used to protect the rights of the owner, the
goal here was to protect the rights of the recipient of the software as well.Thus, the FSF
coined the term copyleft to describe this somewhat inverted meaning.

For more information on the Free Software Foundation, see the Web site

http://www.fsf.org

http://www.fsf.org

Current and Near-Future Influences on UNIX 653

For more information on the GNU Project or the GNU General Public License,
visit

http://www.gnu.org

Linux

The ultimate goal of the GNU Project was to provide a complete UNIX reimplemen-
tation, including the kernel. But while GNU applications were numerous and popular,
the kernel itself was more challenging. Work is continuing on GNU Hurd, a Mach-
based UNIX-like kernel. Meanwhile, in 1991, Linus Torvalds, a student at the Universi-
ty of Helsinki in Finland, wrote his own UNIX kernel to conform to the POSIX
standard. He started it as a hobby, but he felt that the world needed an unencumbered
version of UNIX which could be distributed freely without having to worry about li-
censing restrictions. His work wound up complementing the work of the GNU Project
almost perfectly.

While in the beginning, Linus and a few friends maintained and modified the
source code of Linux, today, developers around the world contribute new code and
fixes. The combination of Linux and GNU utilities allows one to create a complete
UNIX-like operating system, running on many different hardware platforms, and
available in source form so you can make your own bug fixes and enhancements to it.

Parallel, Distributed, and Multiprocessor Systems

Historically, a computer had a single CPU, sat on a desk (or in a computer room), and
processed data that were entered into it. As networks proliferate, computers are con-
nected together to share data and cooperate in their processing. As microprocessor
technology advances, more than one processor can be put into a single computer.

Parallel Processing

If a problem can be divided into separate and unrelated parts, those parts can be run
separately. That way, the problem is solved faster than if each part is run sequentially
on a single computer. This approach is known as parallel processing (doing more than
one task in parallel). Processing can be performed in parallel either by different com-
puters or by different processors inside the same computer, as we will see shortly.

True parallel processing is an extremely difficult goal to achieve. Many tasks
have some kind of relationship to one another and cannot easily be separated. Object-
oriented programming helps because the processing for a single object can be sepa-
rated out from that for the others and the object-oriented paradigm has encouraged
programmers to think in ways that increase this separation. Multiuser systems also
benefit from parallel processors. With 10 users logged on, if each user’s shell process
can be assigned to a different processor, this is an easy way to provide a lot of process-
ing power to multiple users. But to divide a single application program into semiunre-
lated pieces that can run independently is a challenging task. An even more
challenging task is to write a compiler that can automatically determine what parts of a
program are unrelated and break up the code during compilation so that the various
pieces can be assigned to different processors during execution of the program.

http://www.gnu.org

654 Chapter 16 The Future

Distributed Systems

One way to execute separated tasks in parallel is to execute them on different computers
at the same time. One centralized program can distribute parts to different computers
and collect their output as they finish. Some overhead is involved in managing the sep-
aration and communication, but if the tasks are reasonably complex, the parallel exe-
cution will cause the total elapsed time to be much shorter than it would be if each task
were run sequentially on the same computer.

This type of architecture is often referred to as a shared-nothing architecture, be-
cause each processor does not share any resources with the others. Each system has its
own memory, its own disk, and its own data path to the network.While it is possible for
processes on different computers to share blocks of memory (just as two processes
running on the same computer can), quite a bit of overhead is involved, since the shar-
ing happens over a network.

Multiprocessor Systems

Another way to run separate processes in parallel is to run them on the same comput-
er. If the machine has a single CPU, then it has to split its time across the various
processes, which results in no gain (in fact, it results in a loss, with the overhead of mul-
tiple processes) over traditional single-process programming. However, if the comput-
er has more than one processor, each separate process can be assigned to its own
processor.

Multiple processes running on the same computer do share disk resources.
They may also share segments of memory more easily via operating system methods
for shared memory access. Therefore, this type of architecture is often called shared-
memory or shared-resource architecture.

Sequent was one of the first UNIX vendors to provide a multiprocessor system
specifically designed to allow parallel programs to be written and executed on multiple
processors.Today, many UNIX platforms are available in multiprocessor architectures.
All the same complexities involved in parallel programming apply here, but the extra
complexity of distributing the processes to different computers is avoided.

As CPU speeds continue to increase, the advantage of multiprocessors isn’t as
obvious for the typical user. However, there will always be applications that need the
throughput speed that parallel programming offers.

The Year-2000 “Bug”

Even though December 31, 1999, came and went without much electronic fanfare, this
is still a problem worthy of discussion, if for no other reason than that it will likely re-
peat itself on December 31, 2099, if we didn’t learn our lesson this time. I put quotes
around the word “bug” because, although the problem was referred to as a bug, it is re-
ally poor program design rather than a mistake in coding. Recently, I saw a Volkswagen
Beetle with a license plate that read “Y2K BUG,” which made me realize that a 2000
model Bug was the only true Y2K bug!

What is it really?

The problem is that we—people—insist on specifying years in two digits. We believe
that the century will be obvious to anyone, either from context or simply because we’re

Current and Near-Future Influences on UNIX 655

talking about this year, in the current century. With a person who can reason, this usu-
ally works. However, a computer is different.

Before January 1, 2000, all computer programs were written in the 20th century.
Therefore, programmers who dealt with two-digit dates assumed that the other two
digits were “19.” We fell into a bad habit with this assumption, though, simply because
it had never failed us. Obviously, the assumption is not valid.

It would be “the computer’s fault” if the system itself could not represent the year
2000, but it can. The problem is the assumption made by the applications programmer.

Two-digit years

Consider the UNIX command cal, described in Figure 16.1. For example, to get a cal-
endar for June 1998, we do the following:

$ cal 6 1998

The result is

June 1998
Su Mo Tu We Th Fr Sa

1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
$ _

Notice, however, what happens if I assume that I can use a two-digit year:

$ cal 6 98
June 98

Su Mo Tu We Th Fr Sa
1 2

3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
$ _

Utility: cal [month year]

cal prints a calendar for the current month. If month and year are specified, cal prints
a calendar for the specified month.

FIGURE 16.1

Description of the cal command.

656 Chapter 16 The Future

3If you’re really thinking ahead, you might use five-digits, but I suppose it would be reasonable to assume
that your code won’t still be in use 8000 years from now.

This calendar doesn’t look right, does it? But it is.This is a calendar for June in the year
98 A. D.! Is it the fault of cal, or is it my fault? Of course, it’s my fault; cal did exactly
what I asked it to do.

Take another example. Let’s say you’re looking at an insurance form for a pa-
tient, but the patient isn’t there. The date of birth on the form reads 06/06/99. Is the pa-
tient a child or a senior citizen? Of course, if the patient is sitting in the room with you
at the time, you will have enough context to figure it out. But a computer will not be
able to apply other information with which to draw a conclusion. There is not enough
information available for a computer to do anything but assume that the date is con-
temporary, so it will assume that the patient is a child. This can be a real problem if the
computer’s purpose is to dispense a dose of medicine to the patient!

The solution is for software to store and display four-digit dates.3 Shortcuts that
allow two-digit date specifications are fine as long as the user is aware that he or she is
using a shortcut and is certain that there is little possibility of ambiguity. Sometimes,
though, that assumption made won’t work. In those instances, there must be a way to
specify the full date.

Years since 1900

The problem also appears with programs and functions that return a value of “years
since 1900.” For a date in the 20th century, this returns a two-digit value. But in the year
2002, a function that returns a value of years since 1900 will return 102. If your applica-
tion assumes that it can simply print “19” followed by the value returned, your program
will print “19102” for the year (and there are programs in the world doing just that
today).

Again, this is a misuse of the function, not really a fault of the system. This one is
even easier to fix, since you technically should be adding the return value to 1900 and
then printing the result. If you do that, things will work out just fine.

UNIX and the 21st Century

UNIX itself never had a problem with the year 2000. UNIX dates are stored as 32-bit
integer values representing the number of seconds past midnight on January 1, 1970
(otherwise known as “the epoch” in the UNIX community). Therefore, the value of
12:00:01 A. M. on January 1, 2000, is simply an integer that is two larger than the value
that represented 11:59:59 P. M. on December 31, 1999.

However, this is not to say that UNIX will never have a problem. Astute readers
will realize that even a 32-bit value has a limit. In the year 2038, the UNIX date value
will roll over to zero (all 32 bits of the value will be 1, and when that value is incre-
mented, all bits will be 0 again). At that point, all UNIX machines will register January
1, 1970, again.

Current and Near-Future Influences on UNIX 657

The good news is that we have plenty of time to prepare for the event. I feel con-
fident in saying that if what we’re using for an operating system in 2038 is even called
UNIX, this problem won’t be part of it.

Sixty-Four-Bit Systems

The first small computers were 8-bit systems. That is, the bus that connected the CPU
to the memory had an 8-bit data path. Memory words were 8 bits long. Most memory
addressing was 16 bits (since 8 bits can represent only 256 different values). But com-
bining two memory words to make an address reference was complicated to do in
hardware.

Later, 16-bit systems were introduced, allowing more data across the bus at one
time. A 16-bit value that is all ones (the maximum) is 65,536 or 64K. At the time, peo-
ple really thought 64K of memory would be enough for anything!

When 32-bit systems finally came about, 4 gigabytes of memory were address-
able. Again, more data could be sent across a 32-bit bus. Everyone thought that would
be the limit. After all, why wouldn’t 4 gigabytes of addressable disk or memory be
enough?

Sixty-four-bit processors and systems are common today.A wider bus path allows
more data to travel across the bus, so throughput is faster. Addressing is simplified be-
cause a 64-bit address can be stored in a single word of memory.This makes it easier to
increase the 32-bit limit of 4 gigabytes for memory and disk addresses. If I were now to
say that 64-bit architectures would surely be where we’ll stop, of course, I’ll be wrong
later, so I won’t say it!

Internet Addressing: IPv6

The current implementation of the Internet Protocol (IP), version 4, implements 32-bit
addresses. However, with the growth of the Internet, this is quickly becoming insuffi-
cient to support all of the machines that people are connecting to the Internet. Like
telephones, we are finding more uses for, and more devices requiring, IP addresses.
Many printers also have their own IP addresses, and some laptops have multiple IP ad-
dresses for use in different locations.

In the early 1990s, it became clear that a new generation of IP that allowed for
many more addresses would be necessary. Work began to define IPng (IP next genera-
tion) and a formal proposal for version 6 of IP was released in 1995.

IPv6 specifies addresses to be 128 bits long. Although the two protocols use ad-
dresses of different lengths, both protocols can be used on the same network. This is
necessary because the Internet is far too large to coordinate a “cut-over” to a new
protocol at any moment in time. A smooth transition to a new addressing scheme re-
quires the ability to evolve to it gradually, rather than to require that we all wake up
one day using the newer protocol.

IP packets (of both versions) specify a version in the first 4 bits of the packet.
Therefore, a computer that “speaks” IPv6 can still recognize and handle an IPv4 pack-
et (if it is configured for both protocols).This allows the two protocols to coexist on the
same network. The older machines can be upgraded to IPv6 as implementations be-
come available or as the system administrators have the opportunity to upgrade them
without requiring it all to happen simultaneously.

658 Chapter 16 The Future

As we discussed in Chapter 9, an IPv4 address is a 32-bit value expressed by four
octets, each a decimal number representing an 8-bit value, such as

192.127.63.141

In IPv6, the 128-bit address would be cumbersome to express the same way. Can you
imagine an address like this?

192.127.63.141.241.27.88.16.1.77.34.8.191.253.27.61

That would drive network administrators into another line of work!
In IPv6, the values are expressed in hexadecimal format, requiring two hex digits

for each 8 bits. Instead of being delimited every 8 bits, they are delimited every 16 bits.
Another change is that the colon, rather than the period, is used as the delimiter be-
tween parts of the address. Thus, the long address in the previous paragraph would be
expressed in IPv6 as

C07F:3F8D:F11B:5810:014D:2208:BFFD:1B3D

True, this isn’t drastically shorter, but that is the longest an IPv6 address could possibly
be (whereas the decimal example before that could actually have been several digits
longer!). In practice, many IP addresses have many 8-bit or even 16-bit values that are
zero, and IPv6 also allows for dropping leading zeros as well as eliminating contigous
16-bit values of zero. So you can actually wind up with much shorter addresses.

In addition to the addressing changes, IPv6 also provides for improvements in
routing and automatic configuration. While IPv6 is not currently in wide use, vendors
are implementing and testing the new protocol. Over the next few years, IPv6 will be
deployed across the Internet. If all goes well, users likely will not even notice. For more
information on IPv6, visit the web site at

http://www.ipv6.org

High-Bandwidth Networks

In the early days of the Ethernet standard, a transmission rate of 1 megabit per sec-
ond was fast. Today, 100 megabits per second is common in a local network. With fiber
optics and other digital media, more data can be pushed through a network than ever
before.

Because of the boom in Web browsing over the Internet, larger volumes of data
are being sent than ever before. E-mail messages were small compared with images,
video, and sound that make up today’s web pages. Fortunately, network bandwidth is
increasing as fast as disk capacity and CPU speed. As usual, as we find newer, faster,
bigger ways to do something, we also find things to do with it. Remember when no one
could imagine needing more than 64K of memory?

Fault-Tolerant Systems

As corporations rely more and more on computer systems, downtime becomes a bigger
and bigger problem. In certain situations (e.g., routers in the telephone network), al-
most any downtime is unacceptable.

http://www.ipv6.org

Survey of Current Popular Versions of UNIX 659

4“Best” being an objective term, of course.You certainly can find people who will argue the point to this day.
The intent was to merge the best of both versions.

Traditionally, the solution has been to have hot backup systems. These systems
run in parallel to the production system, updating the same data and shadowing activi-
ty. In the event that the production system crashes, the duplicate system can take over
its function almost immediately while engineers fix the first system.

Fault-tolerant systems try to accomplish this within a single system. A system
with duplicate CPUs, memory, and devices can use the backup resource if the primary
resource fails.

A few companies, of which Tandem (now part of Hewlett-Packard) is the best
known, have been active in researching and providing fault-tolerant UNIX systems.
Although hardware components are more reliable than they were a decade ago, some
applications will always require as close to 100% uptime as is possible to achieve.

SURVEY OF CURRENT POPULAR VERSIONS OF UNIX

Although UNIX had its start in a computer lab in Bell Laboratories, it has had a long
and sometimes convoluted evolution since then. An in-depth discussion of how UNIX
got to where it is today is beyond the scope of this book, but Salus (1994) gives an ex-
cellent view of the rich history of UNIX.

Part of the UNIX lore is the competition between Berkeley UNIX (BSD) and
System III (later, System V UNIX, as it began to be called at AT&T). For many years,
the UNIX world was divided into these two camps. Most implementations of UNIX
were based on one of the two. The differences revolved mainly around the kernel ar-
chitecture and low-level operating system algorithms (e.g., BSD and System V used
radically different memory management algorithms). On the surface, where most users
spent their time, the differences were subtle when they were noticeable at all.

When Sun Microsystems and AT&T joined forces to bring the BSD and System
V worlds together, System V, Release 4 (SVR4), and Solaris were born. SVR4 blended
the best of both worlds.4 With BSD lovers having most of their favorite capabilities in
SVR4-based versions of UNIX, the “UNIX wars” began to subside. Soon, the Open
Software Foundation (OSF) was formed by a few companies (most notably, HP and
DEC) in order to come up with their own version of UNIX.This was an attempt to pre-
vent AT&T and Sun from completely dominating the perceived ownership, and there-
fore the future direction, of UNIX. As SVR4-based systems proved to meet customer
needs and AT&T and Sun did not completely dominate UNIX as many had feared, this
UNIX war, too, subsided, and OSF took its place in history.

Today, while there are still some BSD-centric versions of UNIX, the major dif-
ferences are related to hardware platforms and performance. Other differences are
mainly cosmetic. The basic UNIX system and interfaces are largely the same from
one version to another (but just different enough to give you trouble from time to
time). Vendors that supply their own distribution of UNIX provide their own “value-
added” commands and capabilities that they feel their customers demand. Porting
software from one version to another, depending on the depth of operating system
function the application might use, is still not trivial, but it usually isn’t the huge task
that it once was.

660 Chapter 16 The Future

Today, many different versions of UNIX exist. Most are targeted to specific ap-
plications (such as real-time computing), specific low-volume hardware, or research
based on previous work with UNIX. When you examine the “mainstream” versions of
UNIX that are easily available on workstation or small-server hardware, you wind up
with a handful of versions of UNIX.The versions discussed in alphabetical order in the
subsections that follow do not constitute an exhaustive list, but they are most of the
versions you are likely to run into in a typical UNIX environment. All of these ver-
sions of UNIX provide facilities (in varying implementations) discussed in previous
chapters of this book (i.e., X Window System, TCP/IP networking, most “standard”
UNIX commands, etc.).

AIX

AIX (Advanced Interactive eXecutive) is IBM’s implementation of UNIX and runs
on its RISC System/6000 workstation and server platforms. It is based on System V
UNIX with SVR4 and BSD extensions. RS/6000 platforms offer multiprocessor sys-
tems as well as 64-bit systems.

If you have used other IBM systems in the past, parts of AIX will seem more fa-
miliar than other versions of UNIX. AIX has more verbose error messages than other
versions. Most of the messages are indexed with codes to direct you to more informa-
tion in a manual. While at first this seems cumbersome, especially compared with the
terse nature of the original versions of UNIX, it does prove helpful at times.

More information on AIX is available on the web at the following URL:

http://www.ibm.com/servers/aix

Caldera SCO/Unixware

For many years, the Santa Cruz Operation (SCO) was a leader of software-only UNIX
vendors. SCO UNIX ran on low-end hardware such as PCs and was popular with small
companies that could not afford higher-priced workstations. During its history, SCO
acquired the Unix Systems Laboratories, the UNIX arm of AT&T that produced
Unixware, true System V UNIX.

Now Caldera has acquired the UNIX arm of the Santa Cruz Operation, and the
company continues to use both names in its commercial UNIX offerings: SCO
OpenServer and UnixWare 7.

For more information on Caldera’s family of UNIX products, visit

http://www.caldera.com/products/unix

FreeBSD

FreeBSD, as you might guess, is a free implementation of the Berkeley Standard Dis-
tribution version of UNIX. It is one of several Open Source versions of UNIX avail-
able today. FreeBSD runs on PC-compatible hardware (386, 486, Pentium CPUs, and
most standard PC bus architectures).

Programmers all over the world contribute code to the FreeBSD Project to fix
and improve the existing code. The Free BSD web site provides information about the
contributors and how to participate.

http://www.ibm.com/servers/aix
http://www.caldera.com/products/unix

Survey of Current Popular Versions of UNIX 661

5The Intel Itanium processor was coinvented by Intel and HP.

FreeBSD can be downloaded from the net (but it’s big), or it can be obtained on
CD-ROM for a small fee. For more information about FreeBSD, visit

http://www.freebsd.org

HP-UX

The Hewlett-Packard Company’s contribution to UNIX is known as HP-UX, and it
runs on HP’s PA-RISC hardware platform as well as on the new Intel IA-64 Itanium ar-
chitecture.5 HP-UX is based on System V with SVR4 and BSD enhancements.

HP-UX is a 64-bit version of UNIX and conforms to all the popular UNIX stan-
dards. It is currently the number-one or number-two vendor-supplied version of UNIX,
depending on whose statistics you read. For a company that wasn’t involved at the be-
ginning of the evolution of UNIX, HP has done a nice job of adopting “the UNIX phi-
losophy” and staying true to it in the company’s development of HP-UX.

For more information on HP-UX, go to

http://www.hp.com/go/hpux

IRIX

Silicon Graphics, Inc., has traditionally set the standard in high-speed, high-resolution
graphics hardware. SGI’s version of UNIX, known as IRIX, was System V based in the
days when most vendors’ offerings were BSD based, so compatibility in mixed envi-
ronments was problematical. You bought an SGI UNIX platform because you wanted
an incredible graphics workstation. (When the little girl in Jurassic Park walks up to
the workstation in the computer room and says, “It’s a UNIX box!” it’s an SGI box.)

As the world standardized on SVR4, IRIX became more mainstream, having
made “the right” choice in the first place. IRIX includes most of the best features of
SVR4, as well as BSD UNIX, and is a 64-bit operating system.

For more information on IRIX, visit

http://www.sgi.com/developers/technology/irix.html

Linux

Linux is easily the most popular of the Open Source versions of UNIX for PC archi-
tectures. In addition, it has been ported to the Digital Equipment Corporation
(DEC)/Compaq/HP Alpha platform, Sun’s SPARC platforms, Intel’s Itanium proces-
sor, and Motorola’s Power PC platforms, to name but a few.

While Linux looks and feels like UNIX to even the most experienced users, it is
technically not UNIX, because it shares no common source code with any UNIX dis-
tribution. It is a reimplementation of UNIX with all the same interfaces and com-
mands. Because it contains no licensed source code belonging to AT&T, the University

http://www.freebsd.org
http://www.hp.com/go/hpux
http://www.sgi.com/developers/technology/irix.html

662 Chapter 16 The Future

of California at Berkeley, or anyone else, Linux can be distributed with the source
code. If you want to learn about its internal workings or modify it to suit your own spe-
cific purposes, the option is there.

Linux can be modified, redistributed, and even sold, so long as the source code
remains available. Several companies have made it their business to sell media, docu-
mentation, and support for their own distributions of Linux. The following are just a
few of the vendors providing a distribution of Linux (some at a nominal cost, some free
of charge):

• Caldera OpenLinux
• Corel Linux
• Debian GNU/Linux
• Mandrake Linux
• RedHat Linux
• Slackware Linux
• SuSE Linux

In addition to these separate Linux distributions, traditional UNIX vendors such as
HP, IBM, SGI, and Sun provide Linux on their own hardware platforms.

For more information on the base Linux operating system itself (including infor-
mation on all of the varied distribution providers), visit

http://www.linux.org

NetBSD

NetBSD is often confused with FreeBSD. However, they truly are two separate pro-
jects, but with similar goals: to provide a free implementation of BSD UNIX.

The NetBSD project is, as are other Open Source projects, a collaborative effort
among developers all over the world to maintain and improve the operating system.
NetBSD is also called a UNIX-like operating system, but is based on code from
4.4BSD Lite, a subset of the BSD code from Berkeley. Like Linux, NetBSD is distrib-
uted with source code.

NetBSD runs on many different platforms, including PCs, DEC Alphas and
Vaxes, HP 9000s, Macintoshes, Sun SPARC workstations, and even some handheld de-
vices. For more information about NetBSD, visit the web site at

http://www.netbsd.org

OpenBSD

OpenBSD is another project intended to provide a free implementation of BSD
UNIX, but it is more focused than other implementations on providing tighter security
mechanisms. Like other Open Source projects, FreeBSD is a collaborative effort

http://www.linux.org
http://www.netbsd.org

Survey of Current Popular Versions of UNIX 663

among developers all over the world to maintain and improve the operating system.
OpenBSD is based on 4.4 BSD UNIX.

OpenBSD boasts binary emulation for programs from many other UNIX plat-
forms, including FreeBSD, HP-UX, Linux, and SunOS/Solaris. For more information
about OpenBSD, visit their website at

http://www.openbsd.org

Tru64 UNIX

DEC has made several forays into the UNIX world. The company’s original UNIX of-
fering, BSD-based Ultrix, never had much more than a cult following. Ultrix ran on
DEC’s VAX hardware line, and at the time, if you had a VAX and wanted to run BSD
UNIX, you simply ran BSD UNIX straight from Berkeley. DEC later adopted a kernel
based on OSF/1 and produced Digital UNIX, a 64-bit operating system that runs on
the Alpha platform. Digital UNIX was rebranded Tru64 UNIX when Compaq ac-
quired DEC. For more information on Tru64 UNIX, visit

http://www.tru64unix.compaq.com

At the time of the second edition of this book, Compaq had just acquired DEC.At this
writing, HP has merged with Compaq, and the effect that this merger will have on
Tru64 UNIX remains to be seen.

Solaris

Sun Microsystems, Inc., is probably credited with starting the modern UNIX revolu-
tion. In the early 1980s, most distributions came directly from AT&T or the University
of California at Berkeley and ran on whatever hardware you had that those versions
supported. A handful of small companies were springing up that took various versions
of these basic distributions and tried to make a business out of selling and supporting
UNIX systems, most based on the Motorola 68000 CPU.

Early on, SunOS ran on the MC68010 and MC68020. Eventually, Sun decided that
it could better serve its customers if it also designed hardware specifically to run UNIX.
(Motorola had not designed the 68000 family specifically to run UNIX.) Sun emerged
from the pack as the early leader in developing and improving UNIX systems.

Solaris is the current point in the evolution of Sun’s UNIX. The original SunOS
was based on BSD UNIX, because several of the founders of Sun—most notably, Bill
Joy, author of the vi editor—came from Berkeley. Sun made a leap from SunOS to So-
laris when it entered into a partnership with AT&T to standardize around System V.
Solaris, of course, includes all the best BSD and SunOS features to which Sun’s cus-
tomers had become accustomed.

Solaris runs on Sun’s SPARC 32-bit and 64-bit platforms, as well as on Intel (PC)
platforms. For more information on Solaris, visit

http://www.sun.com/software/solaris

http://www.openbsd.org
http://www.tru64unix.compaq.com
http://www.sun.com/software/solaris

664 Chapter 16 The Future

CHAPTER REVIEW

Checklist

In this chapter, I described

• object-oriented programming
• Open Source
• parallel and distributed systems
• multiprocessing systems
• the year-2000 problem
• 64-bit architectures
• high-bandwidth networking
• fault-tolerant systems
• versions of UNIX that you can use

Quiz

1. Which versions of UNIX are free?
2. How can a company make money selling Open Source software when it’s avail-

able for free?
3. How is data associated with an object different from traditional data in a com-

puter program?
4. How many bits represent an IP address in IPv6?

Exercise

Download one of the free versions of UNIX from the Internet and install it.
[level: medium]

Project

Determine the last date and time in the year 2038 that UNIX will be able to rep-
resent. [level: medium]

665

Metacharacter Meaning

. Matches any single character.

[] Matches any of the single characters enclosed in brackets. A
hyphen may be used to represent a range of characters. If the
first character after the [is ^, then any character not enclosed in
brackets is matched. The *, ^, $, and \ metacharacters lose their
special meanings when used inside brackets.

* May follow any character and denotes zero or more occurrences
of the character that precedes it.

^ Matches the beginning of a line only.

$ Matches the end of a line only.

\ The meaning of any metacharacter may be inhibited by
preceding it with \.

FIGURE A.1

Regular-expression metacharacters.

Appendix

REGULAR EXPRESSIONS

Regular expressions are character sequences that describe a family of matching strings.
They are accepted as arguments to many UNIX utilities, such as grep, egrep, awk, sed,
and vi. Note that the filename substitution wildcards used by the shells are not exam-
ples of regular expressions, since they use different matching rules.

Regular expressions are formed out of sequences of normal characters and spe-
cial characters. Figure A.1 list some special characters, sometimes called metacharacters,

666 Appendix

together with their meanings. A regular expression matches the longest pattern that it
can. For example, when the pattern “y.*ba” is searched for in the string “yabad-
abadoo”, the match occurs against the substring “yabadaba” and not “yaba”.

To illustrate the use of metacharacters, consider the following piece of text:

Text

Well you know it’s your bedtime,
So turn off the light,
Say all your prayers and then,
Oh you sleepy young heads dream of wonderful things,
Beautiful mermaids will swim through the sea,
And you will be swimming there too.

Patterns

Figure A.2 shows the lines of text that would match various regular expressions. The
portion of each line that satisfies the regular expression is italicized.

Pattern Lines that match

the So turn off the light,

Say all your prayers and then,

Beautiful mermaids will swim through the sea,

And you will be swimming there too.

.nd Say all your prayers and then,

Oh you sleepy young heads dream of wonderful things,

And you will be swimming there too.

^.nd And you will be swimming there too.

sw.*ng And you will be swimming there too.

[A-D] Beautiful mermaids will swim through the sea,

And you will be swimming there too.

\. And you will be swimming there too. (the “.”)

a. Say all your prayers and then,

Oh you sleepy young heads dream of wonderful things,

Beautiful mermaids will swim through the sea,

FIGURE A.2

Lines matching regular-expression patterns.

Regular Expressions 667

a.$ Beautiful mermaids will swim through the sea,

[a-m]nd Say all your prayers and then,

[^a-m]nd Oh you sleepy young heads dream of wonderful things,

And you will be swimming there too.

FIGURE A.2 (Continued)

Extended Regular Expressions

Some utilities, such as egrep, support an extended set of metacharacters, described in
Figure A.3. Figure A.4 shows some examples of full regular expressions, using the pre-
vious text file.

FIGURE A.3

Extended regular-expression metacharacters.

Metacharacter Meaning

+ Matches one or more occurrences of the single preceding
character.

? Matches zero or one occurrence of the single preceding
character.

| (pipe symbol) If you place a pipe symbol between two regular expressions, a
string that matches either expression will be accepted. In other
words, | acts like an “or” operator.

() If you place a regular expression in parentheses, you may use
the *, +, or ? metacharacter to operate on the entire expression,
rather than on just a single character.

Pattern Lines that match

s.*w Oh you sleepy young heads dream of wonderful things,

Beautiful mermaids will swim through the sea,

And you will be swimming there too.

s.+w Oh you sleepy young heads dream of wonderful things,

Beautiful mermaids will swim through the sea,

FIGURE A.4

Lines matching extended regular-expression patterns.

668 Appendix

Sequence Meaning

[strings] Strings may appear zero or one time.

{ strings }* Strings may appear zero or more times.

{ strings }+ Strings may appear one or more times.

string1|string2 string1 or string2 may appear.

-optionlist Zero or more options may follow a dash.

FIGURE A.5

BNF notations used in this book.

[Utility: at -csm time [date [, year]][+increment][script]

at -r { jobId}+

at -l { jobId}*

FIGURE A.6

Example description of the at command.

off|will So turn off the light,

Beautiful mermaids will swim through the sea,

And you will be swimming there too.

im*ing And you will be swimming there too.

im?ing <no matches>

FIGURE A.4 (Continued)

MODIFIED-FOR-UNIX BACKUS—NAUR NOTATION

The syntax of the UNIX utilities and system calls in this book is presented in a modi-
fied version of a language known as Backus–Naur Form, or BNF for short. In a BNF
description, the sequences shown in Figure A.5 have a special meaning. The last se-
quence is the UNIX-oriented modification, which allows me to avoid placing large
numbers of brackets around command-line options. To indicate [, {, |, or - without its
special meaning, I precede it with \.

Some variations of commands depend on which option you choose. I indicate this
dependency by supplying a separate syntax description for each variation. For exam-
ple, take a look at the syntax description of the at utility, shown in Figure A.6. The first

System Calls: An Alphabetical Cross-Reference 669

version of the utility is selected by any combination of the command line options -c, -s,
and -m. These must then be followed by a time and an optional date specifier. The
optional date specifier may be followed by an optional year specifier. In addition, an
increment may be specified, with or without a script name.

The second version of at is selected by a -r option, and may be followed by one or
more job id numbers. The third version of at is selected by a -l option, and may be fol-
lowed by zero or more job id numbers.

SYSTEM CALLS: AN ALPHABETICAL CROSS-REFERENCE

Figure A.7 shows a list of references to each system call or library routine in chapter 13.
The page number of the call description is in boldface.

Name Synopsis Referenced on page(s)

accept accepts a connection request 514, 516, 518, 519, 529, 558
from a client socket

alarm sets a process “alarm clock” 492, 494

bind binds a socket to a name 514, 516, 517, 520, 529, 557

bzero fills an array with values of zero 523, 527, 529, 557

chdir changes a process’s current 481, 536, 553
working directory

chmod changes a file’s permission 464, 507, 508
settings

chown changes a file’s owner and/or group 462, 463, 464

close closes a file 436, 438, 439, 443, 449, 450, 457,
465, 467, 471, 486, 488, 503, 505,
506, 507, 508, 509, 514, 515, 519,
523, 549, 554, 556, 558

connect connects to a named server socket 515, 519, 520, 523, 528, 556

dup duplicates a file descriptor 463, 465, 549

dup2 similar to “dup” 463, 465, 466, 488, 506, 548, 549,
554, 556, 558

execl replaces the calling process’s code, 480, 481
data, and stack from an executable
file

FIGURE A.7

System call and library routine cross-reference.

670 Appendix

execlp similar to “execl” 480, 506

execv similar to “execl” 480

execvp similar to “execl” 480, 484, 488, 496, 537, 550

exit terminates a process 441, 444, 455, 460, 473, 476, 477,
478, 479, 485, 491, 497, 501, 502,
514, 515, 519, 523, 547, 548, 550

fchmod similar to “chmod” 463, 464

fchown similar to “chown” 462, 463

fcntl gives access to miscellaneous file 436, 437, 463, 466, 467
characteristics

fork duplicates a process 472, 473, 474, 475, 476, 478, 479,
484, 485, 486, 493, 496, 497, 500,
501, 502, 505, 506, 514, 519, 547,
548

fstat similar to “stat” 451, 460, 461

ftruncate similar to “truncate” 463, 470

getdents obtains directory entries 451, 452, 457, 462, 485

getegid returns a process’s effective 483
group ID number

geteuid returns a process’s effective user 483
ID number

getgid returns a process’s real group 483
ID number

gethostbyname returns a structure describing a 524, 526, 556
network host

gethostname returns the name of the host 524, 526, 556

getpgid returns a process’s process group 449, 500, 501
ID number

getpid returns a process’s ID number 442, 446, 473, 474, 475, 476, 479
480, 500, 501, 502, 509, 547

getppid returns a parent process’s ID number 473, 474, 475, 476, 479

getuid returns a process’s real user 483
ID number

FIGURE A.7 (Continued)

System Calls: An Alphabetical Cross-Reference 671

htonl converts a host-format number to a 528, 529, 557
network-format number

htons similar to “htonl” 523, 527, 528, 529, 557

inet_addr returns a 32-bit value IP address 524, 525, 526

inet_ntoa returns a string-format IP address 524, 526, 527, 556

ioctl controls a device 463, 467, 471

kill sends a signal to a specified process 495, 497, 498
or group of processes

lchown similar to “chown” 463

link creates a hard link 463, 467, 468

listen sets the maximum number of 514, 516, 518, 529, 558
pending socket connections

lseek moves to a particular offset in a file 436, 438, 439, 443, 448, 449, 457,
462, 467, 486, 504

lstat similar to “stat” 460

memset fills an array with a specific value 527

mknod creates a special file 436, 468, 469, 507, 508

nice changes a process’s priority 482

ntohl converts a network-format number to 528
a host-format number

ntohs similar to “ntohl” 528

open opens or creates a file 434, 435, 436, 437, 438, 439, 442,
444, 445, 446, 449, 457, 465, 467,
471, 485, 488, 507, 508, 509, 554

pause suspends the calling process and 492, 493, 494, 500
returns when a signal is received

perror displays message text from most 434, 435, 444, 460, 464, 488, 496,
recent system call error 506, 550, 553, 556, 557, 558

pipe creates an unnamed pipe 503, 504, 505, 506, 548

read reads bytes from a file into a buffer 436, 438, 439, 442, 443, 446, 447,
449, 471, 503, 504, 505, 507, 508,
515, 519, 520, 521, 525

FIGURE A.7 (Continued)

672 Appendix

setegid sets a process’s effective group 483
ID number

seteuid sets a process’s effective user 483
ID number

setgid sets a process’s real and effective 483
group ID number

setpgid sets a process’s process group 498, 499, 500, 501, 502, 547
ID number

setuid sets a process’s real and effective 483
user ID number

signal specifies the action that will be 492, 493, 494, 496, 500, 501, 502
taken when a particular signal 513, 540, 547
arrives

socket creates an unnamed socket 513, 515, 516, 519, 520, 523, 528,
529, 555, 557

stat returns status information 451, 452, 456, 460, 461, 485
about a file

sync schedules all file buffers to be 463, 469
flushed to disk

truncate truncates a file 463, 470

unlink removes a file 438, 443, 450, 507, 508, 514, 517,
557

wait waits for a child process 473, 475, 477, 478, 479, 486, 487,
496, 497, 502, 548, 549

write writes bytes from a buffer to a file 436, 438, 439, 442, 444, 445, 447,
448, 449, 465, 466, 467, 471, 503,
504, 505, 507, 509, 514, 519, 520,
521

FIGURE A.7 (Continued)

Bibliography

Anderson, Gail, and Paul Anderson. The UNIX C Shell Field Guide. Prentice Hall,
1986.

Anderson, Bart (ed.), Bryan Costales, and Harry Henderson. The Waite Group’s UNIX
Communications and the Internet. Sams, 1995.

Andleigh, Prabhat K. UNIX System Architecture. Prentice Hall, 1990.
Bach, Maurice J. The Design of the UNIX Operating System. Prentice Hall PTR, 1987.
Bolsky, Morris I., and David G. Korn. The New KornShell Command and Program-

ming Language, 2d ed. Prentice Hall PTR, 1995.
Cheswick,William R., and Steven M. Bellovin. Firewalls and Internet Security.Addison-

Wesley, 1994.
Christian, Kaare. The UNIX Operating System, 2d ed. Wiley, 1988.
Curry, David A. UNIX System Security: A Guide for Users and System Administrators.

Addison-Wesley, 1992.
Fink, Martin. The Business and Economics of Linux and Open Source. Prentice Hall,

2003.
Fountain, Anthony, Paula Ferguson, and Dan Heller. Motif Reference Manual, 2d ed.

O’Reilly & Associates, 2000.
Garfinkel, Simson, and Gene Spafford. Practical UNIX and Internet Security, 2d ed.

O’Reilly & Associates, 1996.
Horspool, R. Nigel. The Berkeley UNIX Environment, 2d ed. Prentice Hall, 1992.
Kernighan, Brian, and Rob Pike. The UNIX Programming Environment. Prentice Hall,

1992.
Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman.

The Design and Implementation of the 4.3 BSD UNIX Operating System. Addison-
Wesley, 1989.

McNulty Development. UNIX RefGuide. Prentice Hall, 1986.
Medinets, David. Perl 5 by Example. Que, 1996.
Nemeth, Evi, Garth Snyder, Scott Seebass, and Trent R. Hein. UNIX System Adminis-

tration Handbook, 3d ed. Prentice Hall PTR, 2000.
Open Software Foundation (OSF). OSF/Motif User’s Guide. Prentice Hall PTR, 1992.

673

674 Bibliography

Quercia, Valerie, and Tim O’Reilly. X Window System User’s Guide—OSF/Motif Edi-
tion, 2d ed. O’Reilly & Associates, 1993.

Roberts, Ralph, Mark Boyd, Stephen G. Kochan, and Patrick H. Wood. UNIX Desktop
Guide to EMACS. Sams, 1991.

Rochkind, Marc J. Advanced UNIX Programming. Prentice Hall PTR, 1986.
Sage, Russell G. Tricks of the UNIX Masters. Sams, 1986.
Salus, Peter H. A Quarter Century of UNIX. Addison-Wesley, 1994.
Seyer, Martin D., and William J. Mills. DOS/UNIX—Becoming a Super User. Prentice

Hall, 1986.
Sobell, Mark G. A Practical Guide to the UNIX System, 3d ed. Addison-Wesley, 1994.
Stevens, W. Richard. Advanced Programming in the UNIX Environment. Addison-

Wesley, 1992.
Stevens, W. Richard. UNIX Network Programming, 2d ed. Prentice Hall PTR, 1998.
Vahalia, Uresh. UNIX Internals: The New Frontiers. Prentice Hall, 1995.
Waite Group and Michael Waite (ed.). UNIX Papers. Sams, 1987.
Wall, Larry, Tom Christiansen, Randal L. Schwartz, and Stephen Potter. Programming

Perl, 2d ed. O’Reilly & Associates, 1996.
Young, Douglas A. The X Window System: Programming and Applications with XT—

OSF/Motif. Prentice Hall, 1994.

“.” , 26
“. .”, 26

151
150

. cshrc, 256

. history, 211, 214, 216–17, 220, 222, 238, 246–47,
253, 256, 259, 262, 269, 271–74, 290, 294, 296,
303, 304–6, 346

. kshrc, 211–12, 640

.login, 146, 256–57, 267, 290

. profile, 640

. rhosts, 326
/bin/csh, 148, 155, 256, 282, 332
/bin/ksh, 148, 211
/bin/sh, 182, 148
/dev, 642
/etc/fstab, 634, 637
/etc/gated, 326
/etc/gettytab, 643
/etc/group, 483, 639–40
/etc/hosts, 327–27, 526
/etc/hosts.equiv, 326
/etc/passwd, 22, 91, 155, 331, 483, 632, 638, 647
/etc/printcap, 645
/etc/rc, 632, 637, 630
/etc/rc.local, 330, 632
/etc/route, 326
/etc/routed, 326
/etc/services, 327

/etc/termcap, 643
/etc/ttys, 643
/etc/ttytab, 53, 54, 55, 632
/etc/utmp, 632
/lib, 129, 395
/lib/crt0.o, 395
/lib/libc.a, 395

129, 395, 634
/tmp, 631
/usr, 635, 128–29, 582
/usr/adm, 645
/usr/adm/acct, 645
/usr/adm/wtmp, 645
/usr/conf, 646
/usr/include/arpa/inet.h, 512
/usr/include/netdb.h, 512
/usr/include/netinet/in.h, 512
/usr/include/signal.h, 490, 493
/usr/include/sys/dir.h, 462
/usr/include/sys/errno.h, 434
/usr/include/sys/socket.h, 512
/usr/include/sys/stat.h, 460–61
/usr/include/sys/types.h, 512
/usr/include/sys/un.h, 512
/usr/lib, 128
/usr/local, 640
/usr/local/lib, 395
/usr/src/uts/cf, 646
/var/adm/wtmp, 329, 632, 633

/lost+found,

[Á],
1Á 2,

675

Index

676 Index

/var/spool/cron, 106, 108
/var/spool/cron/crontabs, 108
~/.mailrc, 76
~/.rhost, 339
a.out, 158, 390–92, 395, 420
at.allow, 108
at.deny, 108
crontab, 83, 104–106
mbox, 77, 79, 221
#, 151, 162
#!, 161, 162
$, 151
$$, 166, 189
$@, 189
$*, 166

189
261

$?, 175, 189
$? 0, 261
$@, 189
$ 0, 666
$!, 189
$argv, 261
$cdpath, 261
$cwd, 258, 261, 262
$echo, 252
$ENV, 211, 212, 215, 238, 245, 252
$histchars, 262
$HISTFILE, 217, 238, 302, 304
$history, 262
$HISTSIZE, 212, 217, 238, 302
$HOME, 164, 211, 212, 217, 224, 244, 257
$home, 262
$IFS, 189, 190
$ignoreeof, 262
$MAIL, 164, 215, 245, 252, 292, 484, 532, 641, 647
$mail, 262
$noclobber, 262
$noglob, 262
$nonomatch, 262
$notify, 262
$PATH, 164
$path, 262
$prompt, 262
$PS1, 183, 189, 190
$PS2, 190
$savehist, 262
$SHELL, 164
$shell, 202
$SHENV, 190

$status, 262
$TERM, 164–65, 643
$TERMCAP, 53
$time262
$USER, 164–65
$verbose, 262
&, 151, 191
& &, 150

150
&, 206

150
150
&, 206

A

absolute pathnames, 25, 26, 252
accept(), 431, 516, 518, 519, 669
account, 14, 15, 22, 80, 145, 147, 326. 337, 339, 383,

638, 644, 647
logging in, 15–16
obtaining, 15
shells, 16–17

accounting, 645
accton, 629, 645
address translation, 593–95
admin, 388, 409, 410, 419
AF_INET, 511, 512, 517, 520, 521, 525
AF_NS, 511
AF_UNIX, 511, 512, 517, 520–21, 525, 528, 529
AIX, 8, 11, 641, 660
alarm signal, 492–93
alarm(), 431, 433, 492, 669
alias, 210, 213–17, 21, 220, 222, 255–58, 267–70, 296,

303
aliases, 76, 211, 213, 214–16, 245, 256–57, 268, 269,

270, 280, 296, 303
built-in commands, 213
predefined, 215–16
removing, 213
replacement of, 222
sharing, 216

appending, 71, 404, 118
ar, 403–9

adding a file, 404
appending a file, 404
creating an archive, 404
deleting a file, 405
extracting a file, 405
maintaining archives from the command

line, 405–6

7
7 ,
6 6 ,
6
6 ,

$6 ,
$- ,

Index 677

ordering archives, 407
synopsis of, 403–4
table of contents, obtaining, 405

archiving, 97–104
copying files, 98–100
incremental backups, 103–4
tape archiving, 100–103

arithmetic expressions, 60
arithmetic, 60, 190, 222, 263, 296
ARPANET, 348, 350, 351, 353, 354, 356
arrays, 132–34
asynchronous, 569–70, 603, 607
automating tasks, 644–45
awk, 82, 83, 108, 109–13, 131, 155–56, 175, 665

B

background, 151, 159–63, 168–73, 180, 231–35, 245,
277, 383, 484, 486, 499, 512, 532–33, 536–37

background processes, 159–60
redirecting, 160–61

backup, 99, 306
bad blocks, 581
Bash (Bourne Again Shell), 145–46, 148, 295–319

arithmetic, 306–7
built-in commands, 316–18
command shortcuts, 302–6

aliases, 303
autocompletion, 306
command history, 304–306

conditional expressions, 307–10
arithmetic tests, 308
file-oriented expressions, 309–10
string comparisons, 308–9

control structures, 310–13
directory stack, 313–14
functions, 315–16
job control, 314–15
obtaining, 296–97
starting, 297
variables, 297–302

accessing, 298–99
accessing list variables, 299–300
building lists, 300–1
creating/assigning, 297–98
creating/assigning a list variable, 299
destroying lists, 301
exporting, 301
predefined, 302

bg, 210, 211, 231–34, 256, 314–15

biff, 82–83, 117, 374
bind(), 353, 431, 516–17, 520, 669
block, 573, 575–83, 592–94, 596–97, 599–601, 607,

610–611, 614, 617–18, 620, 624, 634–35, 642
block-oriented, 469, 617–18, 620, 642
blocks, 6, 42, 174, 573, 575–82, 592, 598, 607, 610–17,

624–25
BNF, 17, 531, 668
boot block, 578
Bourne shell, 16, 105, 145, 181–209, 210, 255, 418, 497

starting up, 182–83
variables, 183–90

accessing, 184–85
creating/assigning, 183
exporting, 186–87
predefined environment, 189–90
predefined local, 188–89
reading from standard input, 185–86
read-only, 187–88

bridge, 322–23, 344
BSD, 7–8, 11, 39, 57, 117, 365, 564, 591, 623, 625,

631–32, 635–36, 646, 659–63
buffer pool, 607, 610–11, 617, 620, 625, 646
buffer, 63–64, 67, 72–74, 153, 167, 378, 646
buffering, 446–47, 450, 575, 578, 607
builtin, 172, 267, 296, 306, 316
bzero(), 527, 669

C

C compilers, 388
C language, 388
C programming tools, 387–430

compiling a C program, 390
dbx debugger, 422–29
lint utility, 421
multimodule programs, 392–97
overriding the default executable name, 392
prof utility, 420–21
running a C program, 391
single-module programs, 389–90
strip utility, 429

C shell, 16, 53, 55, 107, 137, 145, 230, 255–94, 301,
317, 382, 477

aliases, 267–70
built-ins, 289–91
command-line options, 293
control structures, 274–81
directory stack, 291–93
enhancements, 283–89

678 Index

expressions, 263–67
filename completion, 267
history, 270–74
sample project, 281–83
starting up, 256–58
variables, 258–63

C++, 9, 88, 387–88, 429, 650, 669
Caldera, 660, 662
canonical mode, 621
cat, 15, 23, 26–27, 29, 200
Cbreak mode, 621–22
cc, 63, 94–95
cd, 149–50, 163, 269–70, 290, 532
CDE, 369, 384
character device, 618
character-oriented, 469, 617–18, 620, 642
chdir(), 255, 261, 289–90, 431, 433, 481, 536, 669
chdir, 255, 261, 289–90, 431, 433, 481, 669
chgrp, 15, 24, 48, 640
child process, 173, 235, 472–85, 489, 493, 496, 501, 510,

536, 585–86, 600, 605, 672
child shell, 116, 158, 162–65, 216, 472, 488, 499, 532,

536–37, 630
chmod(), 15, 19, 46, 464, 619
chmod, 15, 19, 21, 24, 46, 48–50, 161, 432, 463–64, 669
chown(), 462–64
chown, 15, 51–52, 432
chsh, 146–48, 161, 318
client/server model, 6, 510, 569
close(), 139, 338, 341, 436, 450, 471, 503, 507, 568,

609, 612, 620, 624
close-on-exec, 466
cmp, 82–83, 91–93
comb, 388, 409, 418, 574
command-line arguments, 140
command substitution, 145, 147, 150, 156–57, 166,

184, 190–91, 204, 234–36
commands:

finding, 173–74
grouping, 158–59

communication, 4, 6–7, 12–13, 325, 327, 347, 365,
431–33, 436, 502–5, 509–11, 518, 530, 565, 567,
623–26, 654

comparison operators, 135–36
compress, 83, 118–19, 418
compressing files, 118
computer systems, 2–4

communication, 6–7
hardware, 3–4
operating system, 4–5

programmer support, 7
sharing resources, 6
software, 5
standards, 7–8
utilities, 7

config, 630, 646
connect(), 4, 11, 520, 669
context switch, 590
control key, 20, 71
Control-], 341
Control-A, 73
Control-B, 62, 73, 306
Control-C, 20–21, 54, 56, 75, 334, 337, 339–40,

489–91, 494, 560, 606, 621, 631
Control-D, 21–22, 61, 73, 78, 108, 117, 149, 165, 220,

245, 246, 262, 289, 317, 333, 383, 532, 535
Control-E, 73
Control-F, 62, 73, 75
Control-G, 71
Control-H, 54
Control-K, 73
Control-L, 67, 75, 334
Control-N, 73
Control-P, 73, 222, 306
Control-Q, 21, 621
Control-R, 74, 222
Control-S, 21, 74, 75, 621
Control-U, 62
Control-V, 73, 222
Control-W, 74
Control-X, 71, 73, 74, 75
Control-Y, 73, 74
Control-Z, 232, 489, 491, 586, 606
converting underline sequences, 126
cooked mode, 621–22
copying a file, 33–34
copy-on-write, 596, 600, 602
cp, 33–34
cpio, 35, 83, 96–100, 641
critical code, 494
critical section, 572
cron, 83, 104–8, 630, 635, 645
crontab, 83, 104–6
crypt, 82, 83, 118, 120
csh, 145, 146, 162, 256, 296
current working directory, 23–24, 26–27, 32–33, 42,

194, 207, 224, 228, 238, 262, 269, 290–91
cwd, 258, 262, 269
cylinder, 574

Index 679

D

data area, 587–88
date, 15, 17–18, 41, 52, 107, 157–66, 169, 215–16,

326, 656
dbx, 388, 422–429

accessing variables, 427–28
breakpoints, 426–27
invoking, 423–24
and list command, 428
preparing a program for debugging, 423
quitting, 428
running a program, 424
single stepping, 427
synopsis of, 422
tracing a program, 424–25
tracing variables and function calls, 425–26

debug, 130–31, 157
Debugger, 422–29
delayed-write, 607, 609, 616, 620
delta, 409–20, 430, 482
device driver, 573–76, 607, 617–18, 620, 642
De-zombify, 496
df, 630, 635–36, 645
diff, 82, 83, 91, 93–95, 200–203
Digital UNIX, 663
directories, 25–35, 49, 51, 174, 313–14, 462, 469, 579,

614
directory stack, 291–92, 296, 302, 313–14
directory structure, 5, 34, 573
directory, 236, 642

deleting, 35
making, 31–32
moving to, 32–33

dirs, 255, 291–92, 296, 313–14
disk controller, 573, 575
distributed processing, 7
DMA, 617
DOS, 254
dtwm, 369
dump, 20, 56, 82–83, 98, 103–4, 479, 490–91
dup(), 432, 463, 465, 669
dup2(), 432, 463, 465–66, 612, 669

E

echo, 149–50, 262, 293
effective group ID
effective user ID, 45–46, 51–52, 483
egrep

electronic mail, 12, 40, 52, 60, 75, 321, 356–58, 361,
364, 378, 644

reading mail, 78–80
sending mail, 78
system administrator, contacting, 80

emacs, 15, 26, 34, 52, 53, 57, 69–75, 211, 222, 246,
306, 317, 390

commands, 70–71
deleting, 72–74
editing features, 72
entering text, 72
help, 71
leaving, 71
loading files, 75
modes, 71
moving the cursor, 72
pasting, 72–74
saving files, 75
searching, 74
searching and replacing, 75
starting, 69–70
undoing, 72–74

e-mail, see electronic mail
end-of-input, 21, 27, 38, 40, 149, 152, 162, 504
env, 187, 215
environment variable, 39, 40, 52, 53, 76, 100, 105,

107, 117, 126, 183, 187, 217, 263, 382, 426, 480, 532
environment variable, 39–40, 52–53, 76,100, 105,

107, 117, 165, 174, 183, 187, 301, 382, 480, 532
errno, 434–34, 569
error channels, 18
Ethernet, 2, 4, 7, 322–23, 325, 658
eval, 54–55, 137, 146, 176
executable files, 183, 257, 262, 397, 408, 429, 562
execvp(), 480, 670
exit(), 139, 476–79,
exit, 110, 198–99, 228, 289, 432–33, 473, 567, 584, 605
export, 182, 186–88, 204, 216, 296, 301, 315
expr, 181, 190–91, 193, 199, 276, 279, 281

F

F_GETFD, 466
F_GETFL, 466
F_GETOWN, 466
F_SETFD, 466
F_SETFL, 466
F_SETOWN, 466
fc, 210, 211–212, 214, 216–19, 238
fchmod(), 670

680 Index

fchown(), 432, 462–63, 670
fcntl(), 432, 437, 463, 466, 612, 670
fg, 210–11, 231–33, 256, 314–15, 339, 497
fgrep, 83–84, 86
FIFO, 507
file attributes, 24, 41, 47
file descriptor, 436
file I/O, 137–38
file management primer, 436–38
file permissions, 45–47, 577, 646
file system, 3, 14, 26, 29, 31, 153, 343, 359, 469, 506–7

exploring, 23–24
file transfer protocol, 335
filename substitution, 125, 221, 245–46, 284–85,

317, 665
filenames, 42

substitution, 153–54
files:

archiving, 97–104
attributes, 41–46
comparing, 91–95
copying, 33–34
counting the words in, 41
creating, 26–27
deleting, 36–37
editing, 34–35, 57–75
finding, 95–97
filtering, 84–88
group, 43
hidden, 27, 29, 446
listing, 29–30
loading, 66–67
modification time, 43
owner, 43

changing, 51
permissions, 44–46

changing, 48–50
printing, 37–41
renaming, 31
saving, 66–67
sorting, 88–91
storage, 42
transforming, 118–30
types, 43–44

file system, 572–84
bad blocks, 580–81
block I/O, 575–76
block map, 578
directories, 581
disk architecture, 573–74

disk controller, 573
I/O, 584
inodes, 576–77
interleaving, 575
layout, 578–79
mounting, 582–83
pathnames, translating into inode numbers,

581–82
storing a file, 575
superblock, 579–80

filtering, 83
find, 83, 99
finger, 321, 327, 331–32, 639
for, 136
foreach, 136, 137, 255, 275
fork(), 472–79, 486, 493, 584–86, 602, 670
fragmentation, 575
Free Software Foundation/FSF, 69, 652
FreeBSD, 660–63
fsck, 630, 631, 634
FTP, 335, 336, 355
ftruncate(), 432, 463, 470, 670
functions, 138

library, 138–40
fvwm, 369

G

gateway, 324
getdents(), 432, 451–52, 462, 613, 670
getegid(), 483, 670
geteuid(), 483, 670
getgid(), 483, 670
gethostbyname(), 431–32, 670
getpgrp(), 431, 433
getpid(), 432, 433, 446, 473–76, 670
getppid(), 433, 473–76, 479, 670
getty, 472, 629, 632, 643
getuid(), 433, 483, 670
glob, 255, 289–90
globbing, 153, 317, 531
Gnome, 384
GNU, 70, 119, 131, 296, 384, 388, 652–63, 662
grep, 83, 86, 102, 157, 200, 201, 639, 665
group ID, 43, 45–46, 49, 51–52, 193, 245, 461–62,

464, 483, 499–500, 588, 603, 639–40
groups, 47

changing, 48, 51–52
listing, 47

GUI, 359, 364, 370, 385

Index 681

gunzip, 83, 118–19
gzip, 82–83, 118–19

H

h_addr, 526
hard link, 42, 114–15, 143, 450, 463, 467–68, 577,

609, 613–14, 624, 671
hardware:

central processing unit (CPU)
CD-ROM drive, 3
disk, 3
Ethernet interface, 4
graphics card, 3
keyboard, 3
modem, 4
monitor, 3
mouse, 4
peripherals, 4
printer, 4
random-access memory (RAM), 3
read-only memory, 3
tape, 4

hash table, 292, 599–600
here documents, 167
hidden files, 27, 29, 446
history, 1, 216–17, 220, 222, 238, 246–47, 256, 262,

269–74, 290, 296, 302, 304–6, 318, 384, 645
home directory, 23–32, 35–37, 50, 69, 76, 105, 115,

224–25, 249, 262, 284, 326, 331, 336, 390, 636,
638–39

hostname, 76, 321, 326, 328, 330, 352, 359, 366
HP-UX, 8, 11, 641, 661, 663
HTML, 354, 355, 359
htonl(), 432, 528, 529, 671
htons(), 432, 671
http, 359
hyperlink, 354, 359

I

if, 136–37
INADDR_ANY, 528–29
indirect block, 578–79
inet_addr(), 432, 525–26, 671
inet_ntoa(), 432, 526, 671
init, 472, 475–78, 484, 585, 631–34
inode table, 609, 613, 616, 620
inode, 461, 462, 576–83, 592–93, 609–16, 620, 624
input/output, 606–23

directory file I/O, 613–14
I/O buffering, 607–9
I/O objects, 606
I/O system calls, 606–7
mounting file systems, 615
regular file I/O, 609–13
special file I/O, 617–21
streams, 623
terminal I/O, 621–23
translation of filenames, 615–16

interleave factor, 575
interleaving, 575
Internet, 346–62

acceptable use, 358
censorship, 375–76
copyright, 357
domains, finding, 360
evolution of, 347–58
future use of, factors affecting, 361
history of, 347–58
misinformation, 358
security, 356–57
URLs, 359–61
users, finding, 360
using, 358–59
web searches, 359–60

Internet address, 76, 336, 359, 517, 521
Internet shell, 327, 433, 473, 489, 520, 528–29, 531–58

built-in commands, 532
command sequence, executing, 536
command syntax, 531
extensions, 537–58
main command loop, 535
operation of, 535
parsing, 535–36
pipelines, 536–7
redirection, 537
restrictions, 531
single command, executing, 537
starting, 531–32

Internetworking, 324–27, 348
Internet addresses, 325
naming, 325–26
network programming, 327
packet switching, 324–25
ports and common services, 327
routing, 325
security, 326–27

Interprocess communication, 432, 433, 502, 564–65,
567

682 Index

pipes, 623–25
sockets, 625–27

interrupt, 20, 54, 56, 182, 256, 340
ioctl(), 432, 463, 467, 620–22, 671
IP address, 325, 327, 349–53, 671
IPC, 325, 432–33, 487, 502–30, 564, 565
IPv6, 325, 657–58, 664
IRIX, 8, 661

J

job control, 12, 167–73, 203, 210–11, 230–33, 253,
314–15, 497

enhanced, 230–34
jobs, 39–40, 210, 211, 231, 296, 315

K

KDE, 369, 384
kernel configuration, 646
kernel mode, 566–69
kernel, 564
kill(), 20, 56, 146, 168, 171–72, 210, 231–34, 296, 315,

432–33
Korn shell, 16, 24–25, 145, 146–48, 170, 181, 210–54,

315
aliases, 213–16
arithmetic, 222–24
command-line options, 252
command reexecution, 217–18
editing commands, 218, 219–22
enhanced job control, 230–34
enhancements, 234–49
functions, 226–30
history, 216–19
numbered commands, 217
restricted shell, 252
sample project, 249–51
starting up, 211–12
storage of commands, 217
tilde substitution, 224–26

kwm, 369

L

ld, 388, 394–95, 404
link(), 467–68, 614
lint, 388, 421
Linux, 11, 15, 39, 295–96, 369, 384, 649, 652, 653,

661–63
future of, 12

listen(), 432, 516, 518, 671
loader, 394, 404
local area network, 321
local variables, 163–65, 181, 183, 186–88, 193, 211,

225, 229, 236, 257, 258, 536, 261
logging in, 15, 16, 22–23, 45, 53, 262, 365, 339, 630
logging out, 23, 170–71, 289, 291, 632
login shell, 16, 22, 25, 45, 252
lorder, 388, 407
lp, 15, 37, 249, 282
lpq, 15, 39–40
lpr, 15, 24, 39–40
lprm, 15, 39–40
lpstat, 15, 37–38
ls, 15, 19, 23, 24, 27, 149, 160, 163, 215, 269, 270
lseek(), 432, 438, 439, 448–49, 462, 467, 573, 607,

609, 611, 619, 671

M

magic number, 584–85
mail, checking for, 117
major number, 618–19, 642
make, 397

executing, 400
macros, 402–3
order of rules, 399
rules, 400–401
and touch utility, 401–2
writing your own rules, 401

makefile, 398, 562
mbuf, 625–27
memory management, 11, 563–64, 566, 584, 587,

591, 592, 594–95, 598, 602, 659
mesg, 270, 321, 332–35
metacharacters, 20, 150–51, 153, 158, 179, 183, 191,

340, 531, 536
preventing interpretation of, 223–24

minor number, 618, 642
mkdir, 15, 23, 31–32, 35, 338
mkfs, 630, 637–38
mknod(), 468–69, 507, 607, 613–14, 623
mknod, 432, 463, 507, 607, 630, 642, 671
monitor, 451–60

stat() system call, 460–62
mount point, 615–16, 636
mount table, 615–16
mount, 82–83, 128, 615–16
MULTICS, 10
multi-user mode, 632

Index 683

mv, 15, 23, 31–32, 35, 201, 215, 269, 319
mwm, 369

N

named pipe, 193, 310, 469, 503, 507, 642
NetBSD, 662
Netscape, 355, 358, 359
networking, 320–45

bridges, 322–23
building a network, 321–24
data distribution, 335–38
distributing processing, 339–43
Ethernets, 322
gateways, 323
internetworking, 324–27

Internet addresses, 325
naming, 325–26
network programming, 327
packet switching, 324–25
ports and common services, 327
routing, 325
security, 326–27

network file system, 343–44
routers, 323
users, 327–32

communicating with, 332–35
newfs, 629, 637–38
newgrp, 15, 51–52
NFS, 343–44, 640
nice(), 432–33, 482
NIS, 161
nohupk, 146, 170–71, 214, 255–6, 287–88
nroff, 10, 83, 129–30
nslookup, 352–53
ntohl(), 528, 671
ntohs(), 528, 671
NULL, 449, 480–81, 505–6, 508, 512, 610

O

O_APPEND, 445, 448
O_CREAT, 445
O_EXCL, 445
O_NDELAY, 445
O_NONBLOCK, 445
O_RDONLY, 445
O_RDWR, 445
O_TRUNC, 445
O_WRONLY, 445

object-oriented
octal dump, 126
octal mode, 444
olvwm, 369
olwm, 369
onintr, 255, 277–78
online help, obtaining, 18–19
open file table, 566, 609–13, 620, 624, 626
Open Software Foundation (OSF), 8, 369, 659
Open Source, 69, 384, 650, 652, 660–62, 664
open()
OpenBSD, 662–63
OpenWindows, 384, 385
operating systems, 4–5
OSF, 8, 369, 659

P

packet, 348–49, 644, 657
page daemon, 598–99, 602
page table, 592–602
paging, 598
parallel processing, 7, 12, 650, 653
parent process, 169, 472–77, 503, 510, 519, 560, 588,

605
passwd, 15, 22, 91, 331–32, 483
password, setting, 22
password file, 22, 117, 139, 224, 252
pathnames, 25–26, 102, 147, 215, 252, 615
pause(), 431, 433, 492, 493, 671
Perl, 83, 130–141
perror(), 431, 433, 434–35, 671
PF_INET, 511
PF_UNIX, 511
PID, 169–71, 446, 472–74, 480, 495, 585–86, 603, 605
PID, see process ID
pipe(), 503–9, 623
pipeline, 154–55
pipes, 6, 9, 43–44, 126, 150, 154–56, 234–35, 286, 433,

436, 445–46, 468, 502–10, 530, 623–25
BSD pipes, 625
closing, 625
data structures, 624
definition, 502–3
named, 506–9
reading from, 625
System V.3 pipes, 623–24
System V.4 pipes, 625
unnamed, 503–6
writing to, 624–25

684 Index

popd, 255, 291–92, 296, 313–14
POSIX, 8, 296, 317, 653
printf(), 110, 437, 447
process ID, 159, 166–73, 189, 238, 437, 446, 466,

472–74, 498, 585, 588
process management, 472–89

accessing user and group IDs, 483
address translation, 593–95
changing directories, 481
changing priorities, 482–83
creating a new process, 474–76
differentiating a process, 480–81
duplicating a process, 600–602
executable files, 584
kernel processes/user processes, 585
loading an executable file, 592–93
memory layout after first instruction, 596–97
memory layout after page outs, 599
memory management, 591
memory pages, 591–92
MMU and page table, 595–96
orphan processes, 475–76
page daemon, 597–98
page daemon algorithm, 598–99
page tables and regions, 592
process composition, 586–87
process hierarchy, 586
process states, 586
process table, 587–88
processing references to shared RAM/swap

pages, 602
RAM table, 592
redirection, 488–89
sample programs, 484–85
scheduler, 588–89
scheduling rules, 589–91
signals, 603–606
swap space, 598

accessing a page stored in, 599–600
terminating a process, 476–77, 603
thrashing/swapping, 602
threads, 486–87
user area, 587
waiting for a child, 478–79
zombie processes, 477–78

process table, 477, 566, 587–88, 592, 603, 605
prof, 388, 420–21
profiler, 420
program counter, 590, 605
programmable text processing, 108–14

programmer support, 7
prs, 388, 409, 414
ps, 120, 146, 149, 161, 167–71, 180, 478, 482–84
pushd, 255, 291, 296, 313
pwd, 15, 23, 24, 33, 244, 338

Q

quota, 6, 35, 637, 645
quotas, 51, 634, 637, 646
quoting, 166

R

RAM, see random access memory
random access memory, 3, 5, 6, 564–65, 572, 578,

584, 591–603, 607, 625, 628
ranlib, 388, 407–8

synopsis of, 408
raw mode, 621–22
rcp, 321, 335–36
read(), 45, 446–49, 471, 503–5, 507, 519–21, 569–70,

576, 610–13, 618–23, 625, 627
read-only memory, 2, 3, 661
read-only, 128, 183, 188, 240–41, 252, 411, 413, 416,

445–46, 507, 613
readonly, 182, 187–88, 296, 316, 411
real group ID, 45
real user ID, 45, 605
redirection, 145–47, 150–52, 178, 181–82, 206,

234–35, 246, 433, 488–89
input, 152–53
output, 151–52

reference count, 600, 602–3, 612–13, 620
referenced bit, 595, 598
regular expressions, 84, 86, 109, 665–67
relative pathnames, 25–26, 102
return values, 224
reverse, 438–46
rlogin, 321, 339–41, 509
rm, 15, 23, 35–37, 201, 209, 215, 249, 251, 269, 282, 630
rmdel, 417–18
rmdir, 15, 23, 35–36, 338
ROM, 2, 3, 661
root device, 582, 598, 616, 631
routing, 324, 326, 625, 644, 658
RPC, 344
rsh, 321, 326, 339–40, 344
running process, 590
rusers, 321, 327–29, 332
rwho, 321, 328–39

Index 685

S

sact, 388, 409, 412, 417
savehist, 262
scanf(), 437, 446, 502
SCCS, 409–19

checking out editable copies of previous
versions, 416

checking out a file, 411
checking out read-only copies of a version,

416
comb utility, 418
compressing SCCS files, 418
creating a new delta, 413–14
creating a new release, 415–16
creating an SCCS file, 410
deleting versions, 417–18
delta utility, 413–14
editing multiple versions, 416–17
file history, obtaining, 414
help utility, 410
identification keywords, 414–15
locking releases, 419–20
monitoring SCCS activity, 412
prs utility, 414
restricting access to SCCS files, 419
rmdel utility, 417–18
undoing a checkout/returning a file, 412
unget utility, 412

scheduler, 569, 584, 588–90
scheduling commands, 104–8
SCO, 660
scripts, 161–62
security, 8, 10, 15, 22, 43, 297, 336, 356–57, 365–66,

630, 646–47, 662
segment, 529–30, 644
semaphores, 530
sequences, 157–58

conditional, 158
setegid(), 483, 672
seteuid(), 483, 672
setgid(), 483, 672
set-group-ID, 46, 49, 193, 245, 464
set-user-ID, 46, 49, 193, 245, 464
shared libraries, 408–9
shared memory, 529–30
sharing resources, 6
shell, 15

commands, 149–50
executable files vs. built-in, 149–50 function-

ality, 146–47

identifying, 116
metacharacters, 150–51
operations, 148–49
redirection, 151–53
selecting, 147–48

shell variables, 132, 297–98, 301
signals, 432, 433, 479, 489–502, 603–5, 625, 672

alarm signal, requesting, 492
critical code, protecting, 494–95
death of children, 496–97
defined signals, 490
handling, 492–94
interrupt handlers, chaining, 494–94
list of, 490–91
process groups and control terminals, 498–502
sending, 495
suspending/resuming processes, 497–98
terminal, 491

sin_addr, 517
sin_family, 517
sin_port, 517
sin_zero, 517
sleep, 146, 168–69, 201, 475–76, 569
sockets, 6, 28, 432, 437, 471, 510–37, 606, 625–27

chef-cook listing, 513–16
client, 519–20

accepting, 518
serving, 519

communicating via, 520–21
creating, 516
domains, 511
Internet servers, 528–29
Internet sockets, 521–22
Internet time listing, 522–25
making the connection, 520
memory management, 625–26
naming, 517
and open file table, 626
protocols, 512
queue, creating, 518
reading from, 627
types of, 511
writing socket programs, 512–13
writing to, 626

software, 5
Solaris, 8, 11, 364, 659, 663
special characters, 20–21
special file, 46, 53, 69, 193, 576–77, 614, 637, 642,

645, 671
stack area, 587

686 Index

stack pointer, 590
standard error, 152, 158, 160, 184, 206, 285–87
standard input, 27, 84, 88, 98, 152–56, 158, 161, 167,

183, 436
standard output, 27, 53, 84, 105, 107, 110–11,

118–20, 149, 152, 154, 156, 158, 160, 170, 206,
229, 230, 235, 286, 436, 438, 439

standards, 7–8
stat(), 452, 460–61, 619
stderr, 18, 206, 246, 286, 436
stdin, 18, 436
stdout, 18, 139, 206, 286, 436
stream, 3, 12, 348, 623
STREAMS, 470–72

anatomy of, 471
modules, 471
stream driver, 471
stream head, 471
system calls, 471–72

strip, 388, 429
stty, 15, 20, 53, 56–57
subshell, 158, 159, 162–63, 204, 207, 269, 301, 315
Suntools, 384, 385
superblock, 578–80, 616, 637
superuser, 10, 15, 17, 38, 46, 48, 51, 105, 172, 330,

630–31, 637, 642, 647
suspend, 173, 255, 256, 287, 314, 472, 479
swap space, 598–600, 602
swapping, 569
switch tables, 618, 620
symbolic links, 43, 114, 115
sync(), 469, 609
sync, 432, 463, 606, 633, 672
systems programming:

Internet shell, 531–558
IPC, 502–30
process management, 472–89
signals, 489–502
STREAMS, 470–72

system call, 19, 45, 178, 433–36, 445–52, 467, 564,
566–69, 573, 575, 584–86, 590, 604–5, 669

System V, 7, 8, 11, 585, 609, 623–25, 628, 635, 636,
646, 659, 660, 661, 663

T

TCP/IP, 325, 348, 350, 660
telnet, 321, 327, 339–345, 350, 354, 356, 562
temporary file, 9, 60, 105, 202, 439, 444, 446–47
terminal characteristics, 56

terminal, 15–16, 18–21, 44, 52–59, 81, 333–34,
364–65, 368, 375–77, 379, 383, 632

characteristics, changing, 56–57
type, determining, 52–55

terminfo, 53, 126, 643
text:

command mode, 59–60
deleting, 62
entry mode, 58–59
pasting, 63–64
replacing, 63
searching, 64–65
searching and replacing, 65–66

thrashing, 602
threads, 286–87, 584
tilde substitution, 224–25
time (Unix command), 82, 83, 130–31
touch, 401–2
trace, 424–26

synopsis, 426
troff, 10, 83, 129
Tru64, 663
truncate(), 432, 463, 470, 670, 672
tset, 15, 52–55, 176, 212
tsort, 388, 407
tty, 54, 129, 333–34, 491, 621–22
tvtwm, 369
twm, 369
typeset, 210, 211, 214, 216, 228, 236, 239, 240, 241

U

umask, 19, 46, 146, 178, 445, 593
umask, 46, 146, 178–79, 445, 593
umount(), 129, 583, 615–16
umount, 83, 128, 148, 607
unalias, 210, 214, 255–56, 269, 296, 303
uncompress 83, 118–19
unget, 388, 409, 412
uniq, 83, 84, 87–88
UNIX International, 8
Unix:

history of, 10–11
philosophies, 8–10
shells, 145–80
today, 11–12
utilities for nonprogrammers, 14–81

Unixware, 660
unlink(), 432, 438, 443, 450, 507, 607, 613, 672
unnamed pipe, 503–4, 507, 671

Index 687

URL, 359–60, 660
user ID, 43, 45–46, 49, 326, 337, 339–40, 630, 640,

645, 672
utilities, 7

overloading standard utilities, 174–75
for power users, 82–144
running, 17–18

uucp, 335, 645

V

variables, 163–66
vi editor, 34, 57, 219–20, 246, 270, 663
VUE, 369, 384, 385
vuewm, 369

W

wait(), 146, 168, 173, 473, 475, 477–79, 496, 603, 605,
672

WAN, 324
web search, 360, 362
while, 136–37
whoami, 83, 116
whois, 321, 327, 328
wide area network, 324
wildcard, 85, 204, 221, 150, 153–54, 166, 262
windowing systems, 363–86

application resources, 379–82
client applications, 373–76
configuration/startup, 382–83

copy and paste function, 377–78
graphical user interfaces (GUIs), 364
MIT (Massachusetts Institute of Technolo-

gy), 364–65
Motif Window manager functions, 372–73
networking capabilities, 379
Standard X client arguments, 376–77
X servers, 365–67
X Window manager, 367–72

write(), 45, 332, 445, 447–49, 503, 505, 507, 519–21,
561–62, 568–69, 607, 611, 619, 620, 623

X

X Window System, 6–7, 363–67, 372–74, 377, 379,
382–83, 385, 660

xbiff, 364, 374–75, 383
xclock, 364, 374, 377
XDR, 344
xhost, 364, 366–67, 379
XON/XOFF, 21
xrdb, 364, 381–82, 386
xterm, 364, 375–77, 379

Y

Y2K, 654–55
year 2000, 655

Z

zombie process, 169, 477, 478, 605

	Cover
	Title Page
	Copyright Page
	ABOUT THE AUTHORS
	ACKNOWLEDGMENTS
	Table of Contents
	CHAPTER 1 What is UNIX?
	Motivation
	Prerequisites
	Objectives
	Presentation
	Computer Systems
	The Hardware
	Central Processing Unit (CPU)
	Random-Access Memory (RAM)
	Read-Only Memory (ROM)
	Disk
	CD-ROM Drive
	Monitor
	Graphics Card
	Keyboard
	Mouse
	Printer
	Tape
	Modem
	Ethernet Interface
	Other Peripherals

	Operating Systems
	The Software
	Sharing Resources
	Communication
	Utilities
	Programmer Support
	Standards
	List of UNIX Features (A Recap)
	UNIX Philosophies
	UNIX Yesterday
	UNIX Today
	UNIX Tomorrow
	The Rest of this Book
	Chapter Review
	Checklist
	Quiz
	Exercise
	Project

	CHAPTER 2 UNIX Utilities for Nonprogrammers
	Motivation
	Prerequisites
	Objectives
	Presentation
	Utilities
	Shell Command
	Obtaining an account
	Logging In
	Shells
	Running a Utility
	Input, Output, and Error Channels
	Obtaining On-Line Help: man
	Special Characters
	Terminating a Process: Control-C
	Pausing Output: Control-S/Control-Q
	End of Input: Control-D

	Setting Your Password: passwd
	Logging Out
	Poetry in Motion: Exploring the File System
	Printing Your Shell’s Current Working Directory: pwd
	Absolute and Relative Pathnames
	Creating a File
	Listing the Contents of a Directory: ls
	Listing a File: cat/more/page/head/tail
	Renaming a File: mv
	Making a Directory: mkdir
	Moving to a Directory: cd
	Copying a File: cp
	Editing a File: vi
	Deleting a Directory: rmdir
	Deleting a File: rm
	Printing a File: lp/lpstat/cancel
	Printing a File: lpr/lpq/lprm
	Counting the Words in a File: wc
	File Attributes
	File Storage
	Filenames
	File Modification Time
	File Owner
	File Group
	File Types
	File Permissions
	Hard Link Count

	Groups
	Listing Your Groups: Groups
	Changing a File’s Group: chgrp
	Changing a File’s Permissions: chmod
	Changing a File’s Owner: chown
	Changing Groups: newgrp
	Poetry in Motion: Epilogue
	Determining Your Terminal’s Type: tset
	C shell
	Bourne/Korn/Bash shell
	C shell
	Bourne/Korn/Bash shell

	Changing a Terminal’s Characteristics: stty
	Editing a File: vi
	Starting vi
	Text Entry Mode
	Command Mode
	Memory Buffer and Temporary Files
	Common Editing Features
	Cursor Movement
	Deleting Text
	Replacing Text
	Pasting Text
	Searching
	Searching and Replacing
	Saving and Loading Files
	Miscellaneous
	Customizing vi
	Keeping Your Customizations
	For More Information
	Editing a File: emacs
	Starting emacs
	emacs Commands
	Getting Out of Trouble
	Getting Help
	Leaving emacs
	emacs Modes
	Entering Text
	Common Editing Features
	Moving the Cursor
	Deleting, Pasting, and Undoing
	Searching
	Search and Replace
	Saving and Loading Files
	Miscellaneous
	For More Information

	Electronic Mail: mail/mailx
	Sending Mail
	Reading Mail
	Contacting the System Administrator
	Chapter Review
	Checklist
	Quiz
	Exercises
	Project

	CHAPTER 3 UNIX Utilities for Power Users
	Motivation
	Prerequisites
	Objectives
	Presentation
	Utilities
	Introduction
	Filtering Files
	Filtering Patterns: egrep/fgrep/grep
	Removing Duplicate Lines: uniq

	Sorting Files: sort
	Comparing Files
	Testing for Sameness: cmp
	File Differences: diff

	Finding Files: find
	Archives
	Copying Files: cpio
	Tape Archiving: tar
	Incremental Backups: dump and restore

	Scheduling Commands
	Periodic Execution: cron/crontab
	One-Time Execution: at

	Programmable Text Processing: awk
	awk Programs
	Accessing Individual Fields
	Begin and End
	Operators
	Variables
	Control Structures
	Extended Regular Expressions
	Condition Ranges
	Field Separators
	Built-In Functions

	Hard and Soft Links: ln
	Identifying Shells: whoami
	Substituting a User: su
	Checking for Mail: biff
	Transforming Files
	Compressing Files: compress/uncompress and gzip/gunzip
	File Encryption: crypt
	Stream Editing: sed
	Translating Characters: tr
	Converting Underline Sequences: ul
	Looking at Raw File Contents: od
	Mounting File Systems: mount/umount
	Identifying Terminals: tty
	Text Formatting: nroff/troff/style/spell
	Timing Execution: time
	Rolling Your Own Programs: Perl
	Getting Perl
	Printing Text
	Variables, Strings, and Integers
	Arrays
	Mathematical and Logical Operators
	String Operators
	Comparison Operators
	If, While, For, and Foreach Loop Constructs
	File I/O
	Functions
	Library Functions
	Command-Line Arguments
	A Real-World Example

	Chapter Review
	Checklist
	Quiz
	Exercises
	Projects

	CHAPTER 4 The UNIX Shells
	Motivation
	Prerequisites
	Objectives
	Presentation
	Utilities
	Shell Commands
	Introduction
	Shell Functionality
	Selecting a Shell
	Shell Operations
	Executable Files Versus Built-In Commands
	Displaying Information: echo
	Changing Directories: cd

	Metacharacters
	Redirection
	Output Redirection
	Input Redirection
	Filename Substitution (Wildcards)
	Pipes
	Command Substitution
	Sequences
	Conditional Sequences

	Grouping Commands
	Background Processing
	Redirecting Background Processes
	Redirecting Output
	Redirecting Input

	Shell Programs: Scripts
	Subshells
	Variables
	Quoting
	Here Documents
	Job Control
	Process Status: ps
	Signaling Processes: kill
	Waiting for Child Processes: wait

	Finding a Command: $PATH
	Overloading Standard Utilities
	Termination and Exit Codes
	Common Core Built-Ins
	eval
	exec
	shift
	umask

	Chapter Review
	Checklist
	Quiz
	Exercises
	Project

	CHAPTER 5 The Bourne Shell
	Motivation
	Prerequisites
	Objectives
	Presentation
	Utilities
	Shell Commands
	Introduction
	Start-Up
	Variables
	Creating/Assigning a Variable
	Accessing a Variable
	Reading a Variable from Standard Input
	Exporting Variables
	Read-Only Variables
	Predefined Local Variables
	Predefined Environment Variables

	Arithmetic
	Conditional Expressions
	Control Structures
	case .. in .. esac
	for .. do .. done
	if .. then .. fi
	trap
	until .. do .. done
	while .. done

	Sample Project: track
	Miscellaneous Built-Ins
	Read Command:
	null Command
	Setting Shell Options: set

	Enhancements
	Sequenced Commands

	Command-Line Options
	Chapter Review
	Checklist
	Quiz
	Exercises
	Projects

	CHAPTER 6 The Korn Shell
	Motivation
	Prerequisites
	Objectives
	Presentation
	Shell Commands
	Introduction
	Start-Up
	Aliases
	Aliasing Built-In Commands
	Removing an Alias
	Predefined Aliases
	Some Useful Aliases
	Tracked Aliases
	Sharing Aliases

	History
	Numbered Commands
	Storage of Commands
	Command Reexecution
	Editing Commands

	Editing Commands
	The Built-In vi Editor
	The Built-In emacs/gmacs Editor

	Arithmetic
	Preventing Metacharacter Interpretation
	Return Values

	Tilde Substitution
	Menus: select
	Functions
	Using Parameters
	Returning from a Function
	Context
	Local Variables
	Recursion
	Sharing Functions

	Enhanced Job Control
	Jobs
	Specifying a Job
	bg
	fg
	kill

	Enhancements
	Redirection
	Pipes
	Command Substitution
	Variables
	Formatting
	Case
	Type
	Miscellaneous
	Built-Ins

	Sample Project: Junk
	The Restricted Shell
	Command-Line Options
	Chapter Review
	Checklist
	Quiz
	Exercises
	Projects

	CHAPTER 7 The C Shell
	Motivation
	Prerequisites
	Objectives
	Presentation
	Shell Commands
	Introduction
	Start-Up
	Variables
	Creating and Assigning Simple Variables
	Accessing a Simple Variable
	Creating and Assigning List Variables
	Accessing a List Variable
	Building Lists
	Predefined Local Variables
	Creating and Assigning Environment Variables
	Predefined Environment Variables

	Expressions
	String Expressions
	Arithmetic Expressions
	File-Oriented Expressions

	Filename Completion
	Aliases
	Removing an Alias
	Useful Aliases
	Sharing Aliases
	Parameterized Aliases

	History
	Numbered Commands
	Storage of Commands
	Reading History
	Command Reexecution
	Accessing Pieces of History
	Accessing Portions of Filenames
	History Substitution

	Control Structures
	foreach .. end
	goto
	if .. then .. else .. endif
	onintr
	repeat
	switch .. case .. endsw
	while .. end

	Sample Project: Junk
	Enhancements
	Command Reexecution: A Shortcut
	Metacharacters: {}
	Filename Substitution
	Piping
	Job Control
	Terminating a Login Shell

	Built-Ins
	chdir
	glob
	source

	The Directory Stack
	The Hash Table

	Command-Line Options
	Chapter Review
	Checklist
	Quiz
	Exercises
	Project

	CHAPTER 8 The Bourne Again Shell
	Motivation
	Prerequisites
	Objectives
	Presentation
	Shell Commands
	Introduction
	Getting Bash

	Start-Up
	Variables
	Creating and Assigning a Simple Variable
	Accessing Simple Variables
	Creating and Assigning a List Variable
	Accessing List Variables
	Building Lists
	Destroying Lists
	Exporting Variables
	Predefined Variables

	Command Shortcuts
	Aliases
	Command History
	Autocompletion

	Arithmetic
	Conditional Expressions
	Arithmetic Tests
	String Comparisons
	File-Oriented Expressions

	Control Structures
	case .. in .. esac
	if .. then .. elif .. then .. else .. fi
	for .. do .. done
	while/until .. do .. done

	Directory Stack
	Job Control
	Functions
	Miscellaneous Built-In Commands
	Command-Line Options
	Chapter Review
	Checklist
	Quiz
	Exercise
	Project

	CHAPTER 9 Networking
	Motivation
	Prerequisites
	Objectives
	Presentation
	Commands
	Introduction
	Building a Network
	Ethernets
	Bridges
	Routers
	Gateways

	Internetworking
	Packet Switching
	Internet Addresses
	Naming
	Routing
	Security
	Ports and Common Services
	Network Programming

	Users
	Listing Users: users/rusers
	More User Listings: who/rwho/w
	Your Own Host Name: hostname
	Personal Data: finger

	Communicating with Users
	Shielding Yourself from Communication: mesg
	Sending a Line at a Time: write
	Interactive Conversations: talk
	Messages to Everyone: wall

	Distributing Data
	Copying Files between Two UNIX Hosts: rcp
	Copying Files between Non-UNIX Hosts: ftp

	Distributing Processing
	Remote Logins: rlogin
	Executing Remote Commands: rsh
	Remote Connections: telnet

	Network File System: NFS
	For More Information…
	Chapter Review
	Checklist
	Quiz
	Exercises
	Project

	CHAPTER 10 The Internet
	Motivation
	Prerequisites
	Objectives
	Presentation
	The Evolution of the Internet
	In the Beginning: The 1960s
	Standardizing the Internet: The 1970s
	Rearchitecting and Renaming the Internet: The 1980s
	The Web: The 1990s

	Using Today’s Internet
	URLs

	Chapter Review
	Checklist
	Quiz
	Exercises
	Project

	CHAPTER 11 Windowing Systems
	Motivation
	Prerequisites
	Objectives
	Presentation
	Utilities
	Introduction
	Graphical User Interfaces
	Mit

	X Servers
	Screen Geometry
	Security and Authorization

	X Window Managers
	Focus
	Program Start-Up
	Open and Closed Windows
	Choices of Window Managers

	Widgets
	Menus
	Push Buttons
	Check Boxes and Radio Buttons
	Scroll Bars

	Motif Window Manager Functions
	Bringing Up the Root Menu
	Opening a Window
	Closing a Window
	Moving a Window
	Resizing a Window
	Raising or Lowering a Window
	Bringing Up a Window Menu

	Client Applications
	xclock
	xbiff
	xterm

	Standard X Client Arguments
	Geometry
	Foreground and Background
	Title
	Iconic

	Advanced Topics
	Copy and Paste
	Networking Capabilities
	Application Resources
	Configuration and Start-Up

	A (Limited) Survey of Other X-Compatible Desktops
	CDE
	Gnome
	KDE
	OpenWindows
	VUE

	Chapter Review
	Checklist
	Quiz
	Exercises
	Project

	CHAPTER 12 C Programming Tools
	Motivation
	Prerequisites
	Objectives
	Presentation
	Utilities
	The C Language
	C Compilers
	Single-Module Programs
	Compiling a C Program
	A Listing of the Corrected Reverse Program
	Running a C Program
	Overriding the Default Executable Name

	Multimodule Programs
	Reusable Functions
	Preparing a Reusable Function
	Compiling and Linking Modules Separately
	The Stand-Alone Loader: ld
	Reusing the Reverse Function
	Maintaining Multimodule Programs

	The UNIX File Dependency System: make
	Make Files
	The Order of Make Rules
	Executing a Make
	Make Rules
	Writing Your Own Rules
	Touch
	Macros
	Other Make Facilities

	The UNIX Archive System: ar
	Creating an Archive
	Adding a File
	Appending a File
	Obtaining a Table of Contents
	Deleting a File
	Extracting a File
	Maintaining an Archive from the Command Line
	Maintaining an Archive by Using Make
	Ordering Archives
	Creating a Table of Contents: ranlib
	Shared Libraries

	The UNIX Source Code Control System: SCCS
	Creating an SCCS File
	Checking Out a File
	Monitoring SCCS Activity
	Undoing a Checkout and Returning a File
	Creating a New Delta
	Obtaining a File’s History
	SCCS Identification Keywords
	Creating a New Release
	Checking Out Read-Only Copies of Previous Versions
	Checking Out Editable Copies of Previous Versions
	Editing Multiple Versions
	Deleting Versions
	Compressing SCCS Files
	Restricting Access to SCCS Files
	Locking Releases

	The UNIX Profiler: prof
	Double-Checking Programs: lint
	The UNIX Debugger: dbx
	Preparing a Program for Debugging
	Entering the Debugger
	Running a Program
	Tracing a Program
	Tracing Variables and Function Calls
	The Bug
	Breakpoints
	Single Stepping
	Accessing Variables
	Listing a Program
	Leaving the Debugger
	Summary

	When You’re Done: strip
	Chapter Review
	Checklist
	Quiz
	Exercises
	Projects

	CHAPTER 13 Systems Programming
	Motivation
	Prerequisites
	Objectives
	Presentation
	System Calls and Library Routines
	Introduction
	Error Handling: perror ()
	Regular File Management
	A File Management Primer
	First Example: reverse
	How reverse Works
	reverse.c: Listing
	Opening a File: open ()
	Reading from a File: read ()
	Writing to a File: write ()
	Moving in a File: lseek ()
	Closing a File: close ()
	Deleting a File: unlink ()
	Second Example: monitor
	How monitor Works
	monitor.c: Listing
	Obtaining File Information: stat ()
	Reading Directory Information: getdents ()
	Miscellaneous File Management System Calls
	Changing a File’s Owner or Group: chown () and fchown ()
	Changing a File’s Permissions: chmod () and fchmod ()
	Duplicating a File Descriptor: dup () and dup2 ()
	File Descriptor Operations: fcntl ()
	Controlling Devices: ioctl ()
	Creating Hard Links: link ()
	Creating Special Files: mknod ()
	Flushing the File System Buffers: sync ()
	Truncating a File: truncate () and ftruncate ()
	STREAMS

	Process Management
	Creating a New Process: fork ()
	Orphan Processes
	Terminating a Process: exit ()
	Zombie Processes
	Waiting for a Child: wait ()
	Differentiating a Process: exec ()
	Changing Directories: chdir ()
	Changing Priorities: nice ()
	Accessing User and Group IDs
	Sample Program: Background Processing
	Sample Program: Disk Usage
	Threads
	Redirection

	Signals
	The Defined Signals
	A List of Signals
	Terminal Signals
	Requesting an Alarm Signal: alarm ()
	Handling Signals: signal ()
	Protecting Critical Code and Chaining Interrupt Handlers
	Sending Signals: kill ()
	Death of Children
	Suspending and Resuming Processes
	Process Groups and Control Terminals

	IPC
	Pipes
	Sockets
	Shared Memory
	Semaphores

	The Internet Shell
	Restrictions
	Command Syntax
	Starting the Internet Shell
	Built-In Commands
	Some Regular Examples
	Some Internet Examples
	How It Works
	The Main Command Loop
	Parsing
	Executing a Command Sequence
	Executing Pipelines
	Executing a Simple Command
	Redirection
	Extensions

	Chapter Review
	Checklist
	Quiz
	Exercises
	Projects

	CHAPTER 14 UNIX Internals
	Motivation
	Prerequisites
	Objectives
	Presentation
	Introduction
	Kernel Basics
	Kernel Subsystems
	Processes and Files
	Talking to the Kernel
	System Calls
	User Mode and Kernel Mode
	Synchronous versus Asynchronous Processing
	Interrupting Interrupts

	The File System
	Disk Architecture
	Interleaving
	Storing a File
	Block I/O
	Inodes
	Inode Contents
	The Block Map
	File System Layout
	The Superblock
	Bad Blocks
	Directories
	Translating Pathnames into Inode Numbers
	Sample Pathname-to-Inode Translation
	Mounting File Systems
	File System I/O

	Process Management
	Executable Files
	The First Processes
	Kernel Processes and User Processes
	The Process Hierarchy
	Process States
	Process Composition
	The User Area
	The Process Table
	The Scheduler
	Scheduling Rules
	Memory Management
	Memory Pages
	Page Tables and Regions
	The RAM Table
	Loading an Executable File: exec ()
	Address Translation
	Illustration of MMU Algorithm
	The MMU and the Page Table
	The Memory Layout after the First Instruction
	The Page Daemon
	Swap Space
	The Page Daemon Algorithm
	The Memory Layout after Some Page Outs
	Accessing a Page That’s Stored in Swap Space
	Duplicating a Process: fork ()
	Processing References to Shared RAM and Swap Pages
	Thrashing and Swapping
	Terminating a Process: exit ()
	Signals

	Input/Output
	I/O Objects
	I/O System Calls
	I/O Buffering
	Regular File I/O
	Directory File I/O
	Mounting File Systems
	Translation of Filenames
	Special File I/O
	Terminal I/O
	Streams

	Interprocess Communication
	Pipes
	Sockets

	Chapter Review
	Checklist
	Quiz
	Exercises
	Projects

	CHAPTER 15 System Administration
	Motivation
	Prerequisites
	Objectives
	Presentation
	Utilities
	Introduction
	Becoming a Superuser
	Starting UNIX
	Stopping the System
	Maintaining the File System
	File System Integrity
	Disk Usage
	Assigning Quotas
	Creating New File Systems
	Backing Up File Systems

	Maintaining User Accounts
	The Password File
	The Group File

	Installing Software
	Peripheral Devices
	Installing a Device
	Terminal Files

	The Network Interface
	Automating Tasks
	Accounting
	Configuring the Kernel
	Security Issues
	Chapter Review
	Checklist
	Quiz
	Exercises
	Project

	CHAPTER 16 The Future
	Motivation
	Prerequisites
	Objectives
	Presentation
	Introduction
	Current and Near-Future Influences on UNIX
	Object-Oriented Programming
	Open Source Software
	Parallel, Distributed, and Multiprocessor Systems
	The Year-2000 “Bug”
	Sixty-Four-Bit Systems
	Internet Addressing: IPv6
	High-Bandwidth Networks
	Fault-Tolerant Systems

	Survey of Current Popular Versions of UNIX
	AIX
	Caldera SCO/Unixware
	FreeBSD
	HP-UX
	IRIX
	Linux
	NetBSD
	OpenBSD
	Tru64 UNIX
	Solaris

	Chapter Review
	Checklist
	Quiz
	Exercise
	Project

	Appendix
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

