

	
DevOps

Learn	One	of	the	Most	Powerful	Software
Development	Methodologies	FAST	AND

EASY!
	

	

By	Derek	Rangel

	

Copyright©2015	Derek	Rangel

All	Rights	Reserved
	

Copyright	©	2015	by	Derek	Rangel.

	

All	 rights	 reserved.	 No	 part	 of	 this	 publication	 may	 be	 reproduced,	 distributed,	 or
transmitted	 in	 any	 form	 or	 by	 any	 means,	 including	 photocopying,	 recording,	 or	 other
electronic	 or	 mechanical	 methods,	 without	 the	 prior	 written	 permission	 of	 the	 author,
except	 in	 the	 case	 of	 brief	 quotations	 embodied	 in	 critical	 reviews	 and	 certain	 other
noncommercial	uses	permitted	by	copyright	law.

	

	

	

	

	

	

	

	

	

	

	

Table	of	contents
Introduction

Chapter	1-	Definition

Chapter	2-	Installation	of	TomEE	from	Puppet

Chapter	3-	Puppet	and	Packer	Immutable	Servers

Chapter	4-	How	to	set	up	a	modern	web	stack	in	Ubuntu

Chapter	5-	Migration	of	MongoDB	to	DynamoDB

Chapter	6-	MongoDB	and	Tree	Structures

Chapter	7-	Configuration	of	Apache	for	Multiple	Domains

Chapter	8-	Reverse	Cache	Proxy	in	Nginx

Chapter	9-	Setting	Up	LAMP	on	Ubuntu	hosted	on	AWS

Chapter	10-	Using	Nginx	with	a	Web	Application

Conclusion

	

	

	

	

	

	

	

Disclaimer

	

While	all	attempts	have	been	made	to	verify	the	information	provided	in	this	book,
the	 author	 does	 assume	 any	 responsibility	 for	 errors,	 omissions,	 or	 contrary
interpretations	 of	 the	 subject	matter	 contained	within.	 The	 information	 provided	 in
this	book	is	for	educational	and	entertainment	purposes	only.	The	reader	is	responsible	for
his	or	her	own	actions	and	the	author	does	not	accept	any	responsibilities	for	any	liabilities
or	damages,	real	or	perceived,	resulting	from	the	use	of	this	information.

	

The	 trademarks	 that	 are	 used	 are	without	 any	 consent,	 and	 the	publication	 of	 the
trademark	 is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All
trademarks	and	brands	within	this	book	are	for	clarifying	purposes	only	and	are	the
owned	by	the	owners	themselves,	not	affiliated	with	this	document.

	

	

Introduction
	

	

DevOps	 is	 one	 of	 the	 modern	 software	 development	 methodologies	 which	 are	 in	 use

today.	The	increased	popularity	of	this	method	is	due	to	the	advantages	it	offers	in	terms

of	improved	software	quality	and	rapid	delivery	of	software	into	the	market.	This	explains

the	 need	 for	 software	 developers	 to	 learn	 how	 to	 use	 this	method	 in	 their	 activity.	This

book	will	guide	you	on	this.

	

	

	

	

	

	

	

	

	

Chapter	1-	Definition
	

	

DevOps	(Developer	Operations)	is	just	a	process		for	software	development	methodology

whose	emphasis	is	on	collaboration,	communication,	automation,	integration,	and	a	means

how	 the	 cooperation	 between	 the	 IT	 professional	 and	 the	 software	 developers	 can	 be

measured.	In	this	method	of	software	development,	there	is	interdependency	between	the

members	of	 the	 software	development	 team.	 It	 is	due	 to	 this	 that	 the	development	 team

finds	it	possible		to	develop	and	deliver	software	rapidly	and	improve	the	performance	of

the	various	operations.

	

The	 method	 is	 advantageous	 in	 that	 there	 will	 be	 an	 improved	 communication	 and

collaboration	between	the	software	development	team,	which	means	that	software	of	high

quality	 will	 be	 produced.	 The	 frequency	 of	 the	 software	 deployment	 process	 is	 also

improved,	and	this	will	mean	that	software		will	reach	the	market	faster.

	

	

The	methodology	was	developed	so	 that	 it	can	remedy	 	 the	existing	disconnect	between

the	 process	 of	 development	 and	 the	 operations	 activity.	 This	 disconnect	 has	 led	 to

inefficiency	and	conflicts	and	 thus,	 the	need	 for	 introduction	of	 the	DevOps	method	 for

software	development.

	

	

	

	

	

Chapter	2-	Installation	of	TomEE	from
Puppet
	

	

With	Puppet,	the	declarative	configuration	of	systems	can	easily	be	managed.	Our	task	is

just	to	declare	the	available	resources	of	the	system,	and	then	declare	their	state	too.	We

then	store	the	description	in	the	Puppet’s	core	files.	In	this	chapter,	we	will	guide	you	on

how	 to	 define	 TomEE	 as	 a	 resource	 of	 Puppet	 and	 this	 will	 mean	 that	 it	 will	 be

automatically	installed	in	all	computers	which	are	under	the	management	of	Puppet.	Note

that	the	TomEE	was	written	in	Java	programming	language,	which	means	that	JDK	must

be	installed	in	your	system	for	you	to	succeed	in	this	chapter.	To	easily	install	the	package

into	your	system,	just	use	the	package	manager.

	

	

We	need	to	begin	by	creating	a	manifest	file	named	“init.php”	and	then	create	an	exec	task

which	will	update	the	package	manager	with	the	list	of	the	available	packages.	This	should

have	the	following	code:

	

	

#	updating	the	(outdated)	package	list

exec	{	‘update-package-list’:

command	=>	‘usrbinsudo	usrbinapt-get	update’,

}

	

	

A	class	should	next	be	defined,	and	then	tasked	with	the	installation	of	the	OpenJDK.	In

Puppet,	a	class	means	several	resources	put	together,	and	then	Puppet	will	view	them	as	a

single	unit.	This	is	shown	below:

	

	

class	java	{

	

package	{	“openjdk-6-jdk”:

ensure	=>	installed,

require	=>	Exec[“update-package-list”],

}

}

	

	

The	next	step	should	involve	installation	of	the	TomEE.	Right	now,	it	 is	not	available	in

your	 distribution	 package	 repository	 in	 a	 software	 format.	 This	 means	 that	 a	 different

approach	is	needed	to	the	one	which	is	followed	in	OpenJDK.	We	want	to	visit	the	TomEE

site,	 and	 then	 download	 the	 “tar.gz”	 file	 which	 we	 will	 extract	 into	 our	 installation

directory.	The	code	for	doing	this	is	given	below:

	

	

class	tom	{

file	{“/opt/tomee-1.5.1”:

ensure	=>	directory,

recurse	=>	true,

}	->

exec	{	“download-tomee”	:

command	 =>	 “/usr/bin/wget	 http://apache.rediris.es/openejb/openejb-4.5.1/apache-

tomee-1.5.1-webprofile.tar.gz	-O

/tmp/tomee-1.5.1.tar.gz”,

creates	=>	“/tmp/tomee-1.5.1.tar.gz”,

}	->

exec	{	“unpack-tomee”	:

command	 =>	 “/bin/tar	 -xzf	 /tmp/tomee-1.5.1.tar.gz	 -C	 /opt/tomee-1.5.1	 —strip-

components=1”,

creates	=>	“/opt/tomee-1.5.1/bin”,

}

}

	

	

We	have	created	a	class	named	“tom”	and	then	the	directory	in	which	the	TomEE	will	be

installed.	The	TomEE	has	been	downloaded	 from	 the	Apache	 site	by	use	of	 the	“wget”

command,	 and	 the	 file	 is	 downloaded	 in	 a	 compressed	 format.	 We	 have	 then

uncompressed	the	file	in	the	directory	which	we	have	just	created.

	

	

At	this	point,	the	Apache	TomEE	has	already	been	installed	into	the	computer,	but	to	start

and	stop	it,	this	is	not	done	automatically.	To	make	the	TomEE	available,	we	must	execute

the	command	“/opt/tomee-1.5.1/bin/startup.sh.”		We	can	change	this	by	use	of	the	service

resource.	What	 it	 does	 is	 that	 an	 installed	 service	 is	 registered	 as	 a	 service.	 The	 next

service	resource	should	be	defined	in	the	TomEE	class	as	follows:

	

	

service	{	“tomee”	:

provider	=>	“init”,

ensure	=>	running,

start	=>	“/opt/tomee-1.5.1/bin/startup.sh”,

stop	=>	“/opt/tomee-1.5.1/bin/shutdown.sh”,

status	=>	””,

restart	=>	””,

hasstatus	=>	false,

hasrestart	=>	false,

require	=>	[Exec[“unpack-tomee”],	Package[“openjdk-6-jdk”]],

}

	

	

When	 it	 comes	 to	 a	 service	 resource,	 one	 must	 have	 the	 TomEE	 unpacked	 and	 the

OpnJDK	installed,	and	this	is	why	we	have	two	declarations	in	the	required	attribute.	The

Puppet	will	create	attributes	in	the	“exec”	 task,	and	this	will	determine	if	a	 task	is	 to	be

executed	or	not.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Chapter	3-	Puppet	and	Packer	Immutable
Servers
	

	

It	is	recommended	that	server	upgrades	or	changes	on	servers	should	never	be	done	while

the	 servers	 are	 live.	What	 you	 should	 is	 that	 you	 should	 create	 new	 servers	 having	 the

upgrades,	 and	 then	 stop	 using	 the	 old	 servers.	 The	 benefit	 is	 that	 you	 will	 enjoy

immutability	as	you	program	at	the	infrastructure	level,	and	you	will	not	be	affected	by	the

configuration	drift.

	

	

Nodes
	

	

Our	infrastructure	project	will	be	made	up	of	nodes.yalm	which	will	be	used	for	definition

of	the	node	names	and	the	AWS	security	groups	which	they	belong	to.	This	is	simple,	as	it

is	used	in	multiple	other	tools	such	as	the	vagrant.	The	code	should	be	as	shown	below:

	

	

elasticsearch:

group:	logging

zookeeper:

group:	zookeeper

redis:

group:	redis

size:	m2.2xlarge

Rakefile
	

	

We	will	use	the	file	“nodes.yaml”	 together	with	rake	for	production	of	packer	 templates

for	 building	 out	 new	 AMIs.	 Note	 that	 most	 packer	 templates	 usually	 have	 similar	 or

related	features,	so	you	can	manage	them	as	a	unit,	and	this	feature	will	ensure	this.	The

code	for	this	is	given	below:

	

	

require	‘erb’

require	‘yaml’

namespace	:packer	do

task	:generate	do

current_dir	=	File.dirname(__FILE__)

nodes	=	YAML.load_file(“#{current_dir}/nodes.yml”)

nodes.each_key	do	|node_name|

include	ERB::Util

template	=	File.read(“#{current_dir}/packs/template.json.erb”)

erb	=	ERB.new(template)

File.open(“#{current_dir}/packs/#{node_name}.json”,	“w”)	do	|f|

f.write(erb.result(binding))

end

end

end

end

	

	

What	we	have	done	is	that	we	have	used	it	together	with	a	simple	erb	template	which	will

inject	the	nodename	into	it.	This	is	shown	below:

	

	

{

“builders”:	[{

“type”:	“amazon-ebs”,

“region”:	“us-east-1”,

“source_ami”:	“ami-10314d79”,

“instance_type”:	“t1.micro”,

“ssh_username”:	“ubuntu”,

“ami_name”:	“<%=	node_name	%>	{{.CreateTime}}”,

“security_group_id”:	“packer”

}],

“provisioners”:	[{

“type”:	“shell”,

“script”:	“packs/install_puppet.sh”

},	{

“type”:	“shell”,

“inline”:	[

“sudo	apt-get	upgrade	-y”,

“sudo	 sed	 -i	 /etc/puppet/puppet.conf	 -e	 \“s/nodename/<%=	 node_name	 %>-

$(hostname)/\””,

“sudo	puppet	agent	—test	||	true”

]

}]

	

	

With	 the	 above	 code,	 a	 packer	 template	will	 be	 generated	 for	 each	 node,	 and	 this	will

perform	the	following	tasks:

	

	

Install	puppet.

	

An	AMI	will	be	created	in	us-east-1

	

	

Execute	Puppet	once	for	configuration	of	the	system.

	

The	security	group	will	be	adjusted	to	EC2.

	

	

The	Puppet	agent	 should	not	be	enabled,	 so	 that	we	can	avoid	polling	of	updates.	Once

Puppet	has	completed,	we	can	then	remove	it	from	the	server	to	avoid	it	being	baked	in	by

AMI.

The	Script
	

	

With	packer,	the	user	can	specify	the	shell	files	and	the	shell	commands	which	are	to	be

run.	When	it	comes	to	bootstrapping,	this	feature	is	the	best,	but	it	is	good	for	the	kind	of

configuration	management	needed	in	Puppet.	Our	packer	templates	will	work	by	calling	a

shell	script,	and	this	will	ensure	that	we	do	not	use	the	old	version	of	ruby	Linux	distros.

The	 server	 name	 of	 the	 Puppet	master	will	 also	 be	 specified	 as	 part	 of	 the	 installation

process.	The	code	is	given	below:

	

	

sleep	20,

wget	http://apt.puppetlabs.com/puppetlabs-release-raring.deb

sudo	dpkg	-i	puppetlabs-release-precise.deb

sudo	apt-get	update

sudo	apt-get	remove	ruby1.8	-y

sudo	apt-get	install	ruby1.9.3	puppet	-y

sudo	su	-c	‘echo	”””[main]

logdir=/var/log/puppet

vardir=/var/lib/puppet

ssldir=/var/lib/puppet/ssl

rundir=/var/run/puppet

factpath=$vardir/lib/facter

templatedir=$confdir/templates

[agent]

server	=	ip-10-xxx-xx-xx.ec2.internal

report	=	true

certname=nodename”””	>>	/etc/puppet/puppet.conf’

	

	

The	next	step	 in	our	process	should	be	 to	build	a	new	AMI	for	 the	redis	by	running	the

following	command:

	

	

	

	

Once	you	execute	the	above	command,	the	server	will	be	created,	configured,	imaged,	and

finally	 terminated.	Note	 that	for	each	AMI	that	you	create,	 	a	cost	will	be	 incurred.	The

cost	for	a	single	AMI	might	be	small,	but	when	you	have	multiple	of	these,	then	this	will

be	very	costly.	This	 is	why	 the	old	 images	have	 to	be	cleaned	up.	This	 is	a	very	simple

task	which	can	be	done	as	shown	below:

	

	

import	os

import	boto

from	fabric.api	import	task

class	Images(object):

def	__init__(sf,	**kw):

sf.con	=	boto.connect_ec2(**kw)

def	get_ami_for_name(sf,	name):

(keys,	AMIs)	=	sf.get_amis_sorted_by_date(name)

return	AMIs[0]

def	get_amis_sorted_by_date(sf,	name):

amis	=	sf.conn.get_all_images(filters={‘name’:	‘{}*’.format(name)})

AMIs	=	{}

for	ami	in	amis:

(name,	creation_date)	=	ami.name.split(‘	‘)

AMIs[creation_date]	=	ami

#	removing	the	old	images!

keys	=	AMIs.keys()

keys.sort()

keys.reverse()

return	(keys,	AMIs)

def	remove_old_images(sf,	name):

(keys,	AMIs)	=	sf.get_amis_sorted_by_date(name)

while	len(keys)	>	1:

key	=	keys.pop()

print(“deregistering	{}”.format(key))

AMIs[key].deregister(delete_snapshot=True)

@task

def	cleanup_old_amis(name):

”’

Usage:	cleanup_old_amis:name={{ami-name}}

”’

images	=	Images(

aws_access_key_id=os.environ[‘AWS_ACCESS_KEY_ID’],

aws_secret_access_key=os.environ[‘AWS_SECRET_ACCESS_KEY’]

)

images.remove_old_images(name)

	

	

You	can	set	up	the	above.	It	will	make	sure	that	the	AMI	that	you	have	in	your	system	is

the	latest	one.	If	you	need	to	make	sure	that	your	five	last	AMIs	are	kept	for	the	purpose

of	archiving,	you	can	tweak	this.	If	we	had	data	stores,	then	this	would	have	been	made	a

bit	 trickier,	 since	we	would	 have	 to	 boot	 each	 of	 the	 replicas	 of	 the	 primary	 instances,

replicas	promoted	to	primaries,	and	then	old	primaries	would	be	retired.

	

	

	

	

Chapter	4-	How	to	set	up	a	modern	web
stack	in	Ubuntu
	

	

In	this	chapter,	we	will	discuss	the	LERP	(Linux,	€nginx,	Redis,	and	PHP)	stack.	With	it,

all	your	web	needs	will	be	provided	for.	This	chapter	will	guide	you	on	how	to	set	up	the

stack,	and	then	create	an	empty	playground	having	all	of	the	necessary	assets	needed	for

experimentation,	learning,	and	building.	The	set	up	will	be	ready	for	use	in	a	production

environment.

	

	

My	assumption	is	that	you	currently	have	Ubuntu	installed	on	your	system.	If	this	is	not

the	case,	then	download	its	ISO,	and	then	prepare	a	bootable	media	which	you	will	use	for

installation	of	the	OS.	Once	the	installation	process	completes,	just	execute	the	following

command:

	

	

	

	

The	above	command	will	 serve	 to	update	your	 system.	The	 latest	version	of	 the	LTS	 is

highly	recommended,	due	to	its	strong	support	and	increased	stability.

Nginx	(the	server)
	

	

Nginx	can	be	found	from	the	launch	pad

	

	

You	can	now	use	the	following	command	so	as	to	create	a	repository,	and	then	refresh	the

software	resources	used	on	your	system:

	

	

	

	

The	install	command	can	be	issued	as	follows:

	

	

	

	

With	the	above	command,	the	nginx	stable	will	be	installed	on	your	system.	If	you	need	to

do	a	verification	of	 this,	you	can	open	your	browser,	and	 then	 type	 in	 the	 IP	address	of

your	server.	The	output	should	be	the	welcome	file	for	nginx.	If	the	server	is	being	used

simply	for	local	development,	then	you	can	use	the	IP	address	“127.0.0.1”.

PostgreSQL	(The	Server)
	

	

With	Ubuntu,	this	kind	of	database	comes	installed	in	the	system.	To	verify	whether	this	is

the	case	in	your	system,	just	run	the	following	command	on	your	terminal:

	

	

	

	

To	get	 the	 latest	 version	of	 this,	 one	 can	 add	 the	 latest	 version	of	 the	postgreSQL	APT

repository	as	shown	below:

	

	

	

	

This	should	be	followed	by	these	commands:

	

	

	

	

Finally,	you	can	then	install	the	PostreSQL	version	9.4	as	shown	in	the	figure	given	below:

	

	

	

	

It	will	be	good	 if	 all	of	 the	users	 install	 the	 latest	version	of	 the	above	 for	 stability	and

strong	 support.	Since	here	we	are	working	with	 IT	experts,	 the	command	 line	will	be	a

good	tool.	This	is	why	we	are	not	going	to	discuss	how	to	install	the	“pgAdmin”	which	is

a	graphical	utility	for	this	kind	of	database.

Configuration	of	PostgreSQL
	

	

By	 default,	 a	 user-group	 named	 “postgres”	 will	 be	 created	 in	 the	 Ubuntu	 system.

However,	you	need	to	note	that	the	user	in	this	case	will	be	a	superuser,	and	this	is	why	it

is	not	recommended	to	use	this.	This	is	because	they	are	capable	of	carrying	out	any	task

on	the	database.	Our	aim	is	to	create	a	new	user	and	a	database.	The	user	should	also	be	in

a	position	to	login,	posses	a	password,	and	then	possess	privileges	which	should	allow	him

or	her	to	access	the	newly	created	database	only.

	

	

The	 concept	 of	 roles	 is	 supported	 in	 PostgreSQL	 rather	 the	 concept	 of	 users	 and	 user

groups.	We	should	begin	by	a	login	to	the	default	account,	that	is,	postgres,	and	then	create

a	new	database	and	a	new	role	from	the	account.	The	login	can	be	done	as	follows:

	

	

	

	

The	above	command	will	 log	you	into	the	default	account.	Change	the	password	for	 the

account	by	use	of	the	following	command:

	

	

	

	

After	executing	the	above	command,	a	prompt	will	be	prompted	asking	you	to	provide	the

new	password.	You	will	also	be	prompted	to	confirm	it.	The	creation	of	the	new	database

can	now	be	done,	and	the	normal	SQL	commands	can	be	used	as	shown	below:

	

	

	

	

We	can	now	create	a	role	on	the	database,	and	this	will	have	some	limited	privileges	and

this	will	allow	us	to	perform	our	operations	on	the	database.

	

	

	

	

With	the	above	command,	a	new	role	will	be	created	for	the	username	which	you	specify.

In	 the	 case	 of	 the	 password,	 it	 must	 be	 written	 inside	 the	 single	 quotes.	 Note	 that	 the

username	 in	 the	above	case	 should	be	similar	 to	 the	one	of	your	computer.	This	 is	how

users	are	managed	in	postgreSQL.	The	last	step	should	be	to	provide	the	user	with	some

privileges,	so	that	they	can	be	able	to	operate	on	the	newly	created	database.	This	can	be

done	by	use	of	the	command	given	below:

	

	

	

	

After	 the	above	 step,	your	PostgreSQL	will	be	 ready	 for	use,	 since	you	will	be	 through

with	the	configuration.

Redis	(The	cache)
	

	

It	is	easy	for	us	to	install	Redis.	With	the	Ubuntu	Trusty	repositories,	the	latest	version	of

this	is	already	available.	Just	run	the	command	given	below:

	

	

	

	

It	 is	 after	 execution	 of	 the	 above	 command	 that	 you	 can	begin	 to	 play	 around	with	 the

Redis.	Begin	by	 launching	 the	“redis-cli”	program	from	your	computer’s	 terminal.	This

can	be	done	by	executing	the	following	command	on	the	terminal:

	

	

	

	

Learning		Redis	is	very	easy,	and	very	powerful.	If	you	do	not	know	how	to	use	it,	you	can

consult	the		tutorials	which	are	available	online.

PHP	(The	Language)
	

	

The	 purpose	 of	 the	 nginx	 server	 is	 to	 receive	 all	 of	 the	 requests	 which	 are	 incoming.

However,	it	is	unable	to	process	the	PHP	scripts	which	are	stored	in	the	server.	However,

“Common	Gateway	Interface”	 is	used	 in	 this	case.	The	gateway	works	by	routing	all	of

the	requests	from	the	nginx	to	the	PHP	engine	which	is	responsible	for	processing	of	the

script.

	

We	 should	 begin	 by	 installing	 the	 “PHP-fpm”	 package	 by	 running	 the	 command	 given

below:

	

	

	

	

The	installation	of	the	php5-common	package	will	be	installed	automatically,	and	this	will

be	 responsible	 for	 allowing	 the	 PHP	 scripts	 to	 be	 parsed.	 Before	 continuing	 to	 begin

routing	of	 the	 requests,	 there	are	 two	additional	packages	which	you	 should	 install,	 and

they	 will	 help	 you	 in	 the	 process	 of	 development.	 These	 are	 “php5-cli”	 and	 “php5-

xdebug.”		These	can	be	installed	by	running	the	following	command:

	

	

	

	

Once	you	execute	the	above	command,	you	will	be	done.	You	can	now	test	the	command

line	of	the	PHP	interactively	by	executing	the	following	command:

	

	

	

	

You	will	 be	 notified	 that	 the	 interactive	mode	 has	 been	 enabled.	 You	 can	 then	 run	 the

“Hello	world”	example	to	see	if	it	will	run.	This	is	shown	in	the	figure	given	below:

	

	

	

	

That	shows	that	our	set	up	was	successful.

Stitching	together	the	pieces
	

	

Now	that	all	of	the	subcomponents	of	our	web	stack	have	been	installed,	we	need	to	make

them	work	together.	We	should	begin	by	installation	of	the	PostgreSQL	drivers	for	PHP,

and	 these	will	 facilitate	 the	 connection	 between	 the	PHP	 and	 the	PostgreSQL	database.

Just	run	the	following	command,	so	as	to	perform	the	installation	of	these	drivers:

	

	

	

	

The	presence	of	the	PostgreSQL	PDO	Driver	in	the	system	can	now	be	tested	by	writing

the	following	code:

	

	

php	-r	‘var_dump(PDO::getAvailableDrivers());’

array(1)	{

[0]	=>

string(5)	“pgsql”

}

	

	

We	can	now	set	up	the	nginx	so	that	it	can	begin	to	route	the	requests	via	the	FastCGI	to

PHP-FPM.	Note	that	the	configuration	of	the	nginx	has	been	divided	into	two	parts,	one	of

which	is	the	global	configuration,	and	the	other	one	is	a	default	configuration.	The	config

files	of	your	system	have	to	be	stored	in	the	directory	“sites-enabled”	only.	However,	the

default	 setting	 is	 for	 all	 of	 the	 files	 to	 be	 stored	 in	 this	 directory	 and	 each	 of	 the

configuration	 file	 in	 this	directory	will	 contain	 the	 config	of	 a	 single	website.	A	 simple

config	file	looks	as	follows:

	

	

server	{

listen	80	default_server;

root	/usr/share/nginx/html;

index	index.php	index.html	index.htm;

server_name	localhost;

location	/	{

try_files	$uri	$uri/	=404;

}

location	~	.php$	{

try_files	$uri	=404;

fastcgi_pass	unix:/var/run/php5-fpm.sock;

fastcgi_index	index.php;

fastcgi_param	SCRIPT_FILENAME	$document_root$fastcgi_script_name;

include	fastcgi_params;

}

}

	

	

The	keyword	“listen”	has	been	used	to	enable	the	system	to	listen	to	the	port	number	80,

which	is	the	default	server.	The	“root”	keyword	has	been	used	to	define	where	the	scripts

for	 the	website	will	 be	placed.	This	 indicates	 that	 all	 of	 the	 files	 stored	 in	 the	directory

“/usr/share/nginx/html”	will	be	accessible	from	the	outside.

	

	

The	keyword	“index”	will	be	used	for	defining	the	entry	point	for	the	website.	This	means

that	it	will	form	the	first	file	in	the	directory	of	the	website.	If	this	file	is	not	found,	then

the	next	file	will	be	matched.	The	keyword	“localhost”	has	been	used	for	the	purpose	of

the	local	development.	If	the	development	is	not	done	locally,	then	the	URL	of	the	server

should	be	added	here	rather	than	the	“localhost.”

	

	

You	can	then	save	the	file	in	the	directory	“/etc/nginx/sites-enabled”	and	then	give	it	the

name	 “server.conf.”	 	 Once	 you	 are	 done,	 restart	 the	 nginx	 server	 by	 executing	 the

following	command:

	

	

sudo	service	nginx	restart

	

	

You	 can	 next	 navigate	 to	 the	 directory	 “/usr/share/nginx/html”	 and	 then	 create	 a	 file

named	“index.php.”		The	following	code	should	be	added	to	the	file:

	

	

<?php

phpinfo();

	

	

The	file	can	then	be	saved,	and	a	navigation	to	the	url	http://localhost		done.	This	should

give	you	the	PHP	info	page.

At	 this	point,	only	one	 thing	will	be	 remaining,	which	 is	using	 the	Redis	with	PHP.	For

this	to	be	done,	a	Redis	Client	library	together	with	PHP	has	to	be	used.	The	installation	of

this	will	depend,	and	it	will	be	determined	by	the	client	that	you	choose.

http://localhost

Chapter	5-	Migration	of	MongoDB	to
DynamoDB
	

	

	

DynamoDB	is	one	of	the	non-Structured	Query	Language	(NoSQL)	databases	which	are

currently	in	use	today.	Scaling	of	this	database	is	very	easy,	and	it	offers	no	overhead	in

terms	of	administration.	However,	 it	has	a	 limitation	when	it	comes	 to	 the	design	of	 the

schema.	 Once	 you	 have	 migrated	 your	 data	 from	 MongoDB	 to	 DynamoDB,	 you	 will

notice	that	the	task	of	administering	the	data	will	be	reduced,	and	that	it	will	be	possible

for	you	 to	archive	 the	old	data.	The	archiving	here	can	mean	 that	 the	data	which	 is	not

queried	more	often	by	the	database	can	be	moved	and	stored	in	a	slow	storage.	Each	of	the

components	 can	 have	 a	 single	 table.	 After	 setting	 up	 the	 tables,	 the	 read	 and	 write

operations	 can	 be	 specified	 for	 each	 of	 the	 tables,	 and	 this	will	 be	 determined	 by	 how

often	the	table	is	being	accessed.

	

	

The	database	reserves	up	to	300	seconds	of	unused	read	and	write	capacity.

However,	the	index	is	one	of	the	limitations	that	DynamoDB	has.	You	are	allowed	to	use

either	a	hash	key,	or	a	combination	of	the	hash	key	and	the	range	key.	This	means	that	a

multiple-key	index	is	not	supported.	The	following	is	an	example	of	the	search	result	entry

in	our	system:

	

	

{

		name	:	“john”,

		sex	:	“male”,

		country	:	“US”,

		results	:	“…”,

		added_on	:	2015-07-03T11:00:00Z

}

	

	

The	solution	to	the	limitation	is	to	combine	fields,	and	then	split	out	the	tables.	When	the

tables	are	split,	then	this	means	that	we	will	be	having	more	tables	in	our	system,		and	this

will	help	in	improving	our	control	over	capacity	planning	for	the	different	data	which	we

are	 handling.	 After	 combining	 the	 fields	 and	 splitting	 the	 tables,	 we	 ended	 up	 having

search	results	which	looks	as	follows:

	

	

{

		name	:	“john”,

		sex	:	“male”,

		results	:	“…”,

		created_on	:	2015-07-03T11:00:00Z

}

…

{

		name	:	“hellen”,

		sex	:	“female”,

		results	:	“…”,

		created_on	:	2015-08-04T12:00:00Z

}

	

	

However,	you	need	to	be	careful		when	dealing	with	this,	as	it	has	to	match	your	use	case

and	 even	 the	product.	This	means	 that	 it	might	 not	 be	 an	obvious	 solution	 to	 all	 of	 the

similar	 problems,	 but	 it	 has	 guided	 you	 on	 how	 you	 can	 think	 outside	 the	 box	 and	 get

things	done.

You	 also	 need	 to	 note	 that	 in	 DynamoDB,	 native	 Date	 or	 Date	 Time	 object	 is	 not

supported.	This	means	that	you	have	to	come	up	with	ways	on	how	to	handle	these.	The

solution	to	this	is	to	convert	this	into	the	Linux	timestamp,	and	then	store	the	number.	An

example	of	this	is	given	below:

	

	

{

name	:	“john”,

sex	:	“male”,

results	:	“…”,

added_on	:	1248764145

}

	

	

What	happens	is	that	the	conversion	of	the	date	into	timestamp	is	done	at	the	application

layer,	and	before	we	can	query	the	DynamoDB.	The	sorting	can	also	be	performed	at	this

point.

How	to	query	Dates
	

	

You	application	can	need	to	query	the	database	for	data,	include	the	field	for	the	date.	In

this	case,	you	will	have	to	Query	the	database	rather	than	using	the	“GetItem”	command.

An	example	of	this	is	given	below:

	

	

.find({

		“keyword”	:	“john”,

		“added_date”	:	new	Date(2015,	1,	2)

});

	

In	DynamoDB,		I	might	need	to	query	the	following	command:

	

“name”	:	{

“AttributeValueList”	:	[{	“S”	:	“john”	}],

“ComparisonOperator”	:	“EQ”

},

“added_date”	:	{

“AttributeValueList”	:	[

{	“N”	:	1520170510	},

{	“N”	:	1620256897	}

],

“ComparisonOperator”	:	“BETWEEN”

}

	

	

The	querying	can	be	done,	but	there	are	some	problems	associated	with	it.	First,	the	Query

command	is	slower	when	compared	to	the	“GetItem”	command,	which	is	straight	forward.

In	the	latter	case,	the	user	is	given	both	the	hash	key	and	the	range	key	for	matching.

	

	

DynamoDB	also	provides	us	with	the	“BatchGetItem”	which	can	be	used	to	get	the	search

results	for	multiple	keywords	which	are	frequently	used	in	applications.	Each	of	the	API

requests	 to	 the	DynamoDB	can	 lead	 to	an	overhead	which	can	add	up	whenever	we	are

handling	the	names	the	application	is	requesting.

Storing	Data	as	String
	

	

One	 can	 choose	 to	 store	 their	 data	which	 has	 been	 formatted	 as	 a	 string.	 Consider	 the

example	given	below:

	

	

{

name	:	“john”,

sex	:	“male”,

country	:	“US”,

results	:	“…”,

created_on	:	“2015-02-04”

}

	

	

We	can	then	use	the	“GetItem”	object	so	as	to	get	our	data	more	quickly.	This	is	shown	in

the	example	given	below:

	

	

“name”	:	{

“S”	:	“john”,

},

“added_date”	:	{

“S”	:	“2015-02-04”),

}

	

	

With	 the	above,	we	will	be	 in	a	position	 to	 fetch	 the	data	 in	batches.	When	you	use	 the

DynamoDB	web	 console,	 the	 data	will	 also	 become	human-readable,	which	means	 that

the	user	will	save	some	time.

	

	

Now	 that	you	using	DynamoDB,	you	will	 notice	how	 it	 offers	 an	effortless	 scaling	and

zero	maintenance.	Some	creativity	is	needed	when	designing	the	tables	and	breaking	out

of	the	old	paradigm.	Other	than	concentrating	on	configuring	your	MongoDB,	your	efforts

will	only	be	needed	in	development	of	the	product.

Chapter	6-	MongoDB	and	Tree	Structures
	

	

In	MongoDB,	we	can	store	tree	structures.	Most	projects	usually	deal	with	tree	structures,

and	 this	 is	 why	 you	 need	 to	 know	 how	 to	 store	 these	 in	 MongoDB.	 However,	 when

dealing	with	tree	structures	in	the	MongoDB,	we	should	be	able	to	perform	operations	in

the	tree	which	include	inserting,	updating,	and	removal	of	nodes,	calculate	the	path	which

leads	to	a	particular	node,	and	then	get	all	the	descendants	of	a	particular	node.

	

	

For	us	to	operate	with	the	tree,	some	calculations	will	be	needed	for	changing	the	position

of	a	particular	node	together	with	its	siblings.

Addition	of	a	New	Node
	

	

Consider	the	example	given	below:

	

	

var	excount	=	db.categoriesPCO.find({parent:‘Linux’}).count();

var	norder	=	(excount+1)*10;

db.categoriesPCO.insert({_id:‘LG’,	 parent:‘Linux’,	 someadditionalattr:‘test’,

order:norder})

//{	“_id”	:	“Ubuntu”,	“parent”	:	“Linux”,	“someadditionalattr”	:	“test”,	“order”	:	40

}

	

	

That	is	a	new	node	that	can	be	added.	Very	simple!

Updating	a	Node
	

	

Consider	the	example	given	below,	which	shows	how	the	updating	of	an	existing	node	can

be	done:

	

	

excount	=	db.categoriesPCO.find({parent:‘Linux_Distributions’}).count();

norder	=	(excount+1)*10;

db.categoriesPCO.update({_id:‘LG’},{$set:{parent:‘Linux_Distributions’,

order:norder}});

//{	 “_id”	 :	 “Ubuntu”,	 “order”	 :	 60,	 “parent”	 :	 “Linux_Distributions”,

“someadditionalattr”	:	“test”	}

	

If	you	need	to	remove	a	particular	node,	then	use	the	following	command:

	

db.categoriesPCO.remove({_id:‘Ubuntu’});

	

If	you	need	to	get	the	node	children	in	an	ordered	manner,	then	do	it	as	shown	below:

	

db.categoriesPCO.find({$query:{parent:‘Linux’},	$orderby:{order:1}})

//{	“_id”	:	“Ubuntu”,	“parent”	:	“Linux”,	“order”	:	10	}

//{	“_id”	:	“Our_Main_Products”,	“parent”	:	“Linux”,	“order”	:	20	}

//{	“_id”	:	“Linux_Distributions”,	“parent”	:	“Linux”,	“order”	:	30	}

	

	

That	is	how	it	can	be	done.	If	you	need	to	get	the	descendants	of	a	particular	node,	then	do

it	as	follows:

	

	

var	desc=[]

var	stack=[];

var	it	=	db.categoriesPCO.findOne({_id:“Linux_Distributions”});

stack.push(it);

while	(stack.length>0){

var	cnode	=	stack.pop();

var	child=	db.categoriesPCO.find({parent:cnode._id});

while(true	===	child.hasNext())	{

var	childn	=	child.next();

desc.push(childn._id);

stack.push(childn);

}

}

desc.join(“,”)

Path	to	a	particular	Node
	

	

Sometimes,	you	might	need	to	get	the	path	which	leads	to	a	particular	node.	The	operation

to	be	involved	in	this	case	will	be	a	recursive	one,	as	shown	below:

	

	

var	p	=[]

var	it	=	db.categoriesPCO.findOne({_id:“RedHat”})

while	(it.parent	!==	null)	{

it=db.categoriesPCO.findOne({_id:it.parent});

p.push(it._id);

}

p.reverse().join(‘	/	‘);

	

	

In	this	case,	indexes	can	be	used	as	follows:

	

	

db.categoriesPCO.ensureIndex({	parent:	1,	order:1	})

	

	

The	 above	 operations	 are	 for	 tree	 structures	which	 have	 a	 parent	 reference.	 In	 the	 next

section,	we	will	discuss	tree	structures	which	have	a	child	reference.

	

	

In	this	case,	an	“ID”	and	a	“ChildReference”	for	each	node	will	be	stored.	An	order	field

will	 not	 be	 necessary	 for	 this	 case,	 because	 the	 information	 is	 provided	 by	 the	 child

collection.	In	most	cases,	the	order	of	an	array	is	preferred,	but	if	this	is	not	supported	in

your	 case,	 then	 an	 additional	 code	will	 have	 to	 be	 written	 for	 your	maintaining	 of	 the

order,	meaning	that	much	complexity	will	be	involved.

Addition	of	a	New	Node
	

	

This	can	be	added	as	shown	below:

	

	

db.categoriesCRO.insert({_id:‘Ubuntu’,	childs:[]});

db.categoriesCRO.update({_id:‘Linux’},{		$addToSet:{childs:‘Ubuntu’}});

//{	 “_id”	 :	 “Linux”,	 “childs”	 :	 [“Linux_Distributions”,	 	 	 	 	 	 	 	 	 	 	 	 	 	

“Our_Top_Products”,															“Linux_Distrutions”,															“Ubuntu”]	}

Updating	a	New	Node
	

	

If	you	need	to	rearrange	the	order	under	the	same	parent,	then	do	it	as	follows:

	

	

db.categoriesCRO.update({_id:‘Linux’},{$set:{“childs.1”:‘Ubuntu’,“childs.3”:

‘Our_Top_Products’}});

//{	“_id”	:	“Linux”,	“childs”	:	[“Linux_Distributions”,															“Ubuntu”,

														“Linux_Distributions”,															”	Our_Top_Products	”]	}

	

	

If	you	need	to	move	a	particular	node,	then	do	it	as	follows:

	

	

db.categoriesCRO.update({_id:	 ‘Linux_Distributions’},{	 	 $addToSet:

{childs:‘Ubuntu’}});

db.categoriesCRO.update({_id:‘Linux’},{$pull:{childs:‘Ubuntu’}});

//{	“_id”	:	“Linux_Distributions”,	“childs”	:	[“RedHat”,	“Suse”,	“CentOS”,	“Mint”,

“Kali”,	“Fedora”]	}

	

	

If	you	need	to	remove	a	particular	node,	then	do	it	as	follows:

	

	

db.categoriesCRO.update({_id:‘Linux_Distributions’},{$pull:{childs:‘Ubuntu’}})

db.categoriesCRO.remove({_id:‘Ubuntu’});

	

	

The	above	code	will	remove	the	node	that	you	specify.

	

If	you	need	to	get	the	children	of	a	node	in	an	ordered	manner,	then	do	it	as	follows:

	

	

var	p	=	db.categoriesCRO.findOne({_id:‘Linux’})

db.categoriesCRO.find({_id:{$in:p.childs}})

	

	

However,	note	that	in		the	above,	an	additional	sorting	in	the	client	side	will	be	needed	in

the	parent	array	sequence.

	

To	get	all	of	the	descendants	of	a	particular	node,	then	do	it	as	follows:

	

var	desc=[]

var	stack=[];

var	it	=	db.categoriesCRO.findOne({_id:“Linux_Distributions”});

stack.push(it);

while	(stack.length>0){

var	cnode	=	stack.pop();

var	child	=	db.categoriesCRO.find({_id:{$in:cnode.childs}});

while(true	===	child.hasNext())	{

var	childn	=	child.next();

desc.push(childn._id);

if(childn.childs.length>0){

stack.push(childn);

}

}

}

desc.join(“,”)

Path	to	a	Node
	

	

If	you	need	to	obtain	a	path	which	leads	to	a	particular	node,	then	do	it	as	follows:

	

	

var	p=[]

var	it	=	db.categoriesCRO.findOne({_id:“Ubuntu”})

while	((it=db.categoriesCRO.findOne({childs:it._id})))	{

p.push(it._id);

}

p.reverse().join(‘	/	‘);

Indexes
	

	

It	is	recommended	that	indexes	should	be	used	on	children.	The	following	syntax	should

be	used:

	

db.categoriesCRO.ensureIndex({	childs:	1	})

	

	

Tree	Structure	having	an	Array	of	Ancestors
	

	

	

In	 this	case,	an	ID,	ParentReferenc	and	an	AncestorReference	will	be	stored	for	each	of

the	available	nodes.	The	rest	of	the	operations	are	discussed	below:

	

	

Addition	of	a	New	Node
	

	

The	new	node	can	be	added	as	follows	in	this	kind	of	a	tree	structure:

	

	

var	ancpath	=	db.categoriesAAO.findOne({_id:‘Linux’}).ancestors;

ancpath.push(‘Linux’)

db.categoriesAAO.insert({_id:‘Ubuntu’,	parent:‘Linux’,ancestors:ancpath});

//{	“_id”	:	“Ubuntu”,	“parent”	:	“Linux”,	“ancestors”	:	[“Linux”]	}

	

To	update	a	particular	node,	then	do	it	as	follows:

	

ancpath	=	db.categoriesAAO.findOne({_id:	‘Linux_Distributions’}).ancestors;

ancpath.push(‘Linux_Distributions’)

db.categoriesAAO.update({_id:‘Ubuntu’},{$set:{parent:‘Linux_Distributions’,

ancestors:ancpath}});

//{	 “_id”	 :	 “Ubuntu”,	 “ancestors”	 :	 [“Linux”,	 	 	 	 	 	 	 	 	 	 	 	 	 	

“Linux_Distributions”,“Linux_Distributions”],	“parent”	:	“Linux_Distributions”	}

	

If	you	need	to	remove	a	particular	node,	then	use	the	following	syntax:

	

db.categoriesAAO.remove({_id:‘Ubuntu’});

	

For	 you	 to	 get	 the	 children	 of	 a	 node	 in	 an	Unordered	manner,	 then	 use	 the	 following

syntax:

	

db.categoriesAAO.find({$query:{parent:‘Linux’}})

	

Note	that	if	you	need	to	get	the	ordered	children	of	a	particular	node,	then	an	order	field

must	be	introduced.	That	is	why	you	must	come	up	with	an	approach	which	will	help	you

to	make	the	children	ordered.

	

If	you	need	to	get	all	of	the	descendants	of	a	particular	node,	then	do	it	as	follows:

	

var	ancs	=	db.categoriesAAO.find({ancestors:“Linux_Distributions”},{_id:1});

while(true	===	ancs.hasNext())	{

var	element	=	ancs.next();

desc.push(element._id);

}

desc.join(“,”)

	

	

One	can	also	achieve	the	above	by	using	the	aggregations	framework	which	is	well	known

in	MongoDB.	This	is	shown	below:

	

var	agancestors	=	db.categoriesAAO.aggregate([

{$match:{ancestors:“Linux_Distributions”}},

{$project:{_id:1}},

{$group:{_id:{},ancestors:{$addToSet:”$_id”}}}

])

desce	=	agancestors.result[0].ancestors

desc.join(“,”)

	

Tree	Structures	with	a	Materialized	Path
	

	

In	this	case,	we	have	to	store	the	“ID”	and	the	“PathToNode.”

	

Addition	of	a	New	Node
	

	

This	can	be	done	as	follows:

	

	

var	ancpath	=	db.categoriesMP.findOne({_id:‘Linux’}).path;

ancpath	+=	‘Linux,’

db.categoriesMP.insert({_id:‘LG’,	path:ancpath});

//{	“_id”	:	“Ubuntu”,	“path”	:	“Linux,”	}

To	update	or	move	a	particular	node,	then	do	it	as	follows:

ancpath	=	db.categoriesMP.findOne({_id:	‘Linux_Distributions’}).path;

ancpath	+=’	Linux_Distributions,’

db.categoriesMP.update({_id:‘Ubuntu’},{$set:{path:ancpath}});

//{	“_id”	:	“Ubuntu”,	“path”	:	“Linux,	Linux_Distributions’,	Linux_Distributions’,”

}

	

	

To	remove	a	particular	node,	then	use	the	following	syntax:

	

	

db.categoriesMP.remove({_id:‘Ubuntu’});

	

	

	

	

	

	

	

Chapter	7-	Configuration	of	Apache	for
Multiple	Domains
	

	

Sometimes,	 you	 might	 need	 your	 Apache	 web	 server	 to	 handle	 multiple	 names	 for

domains,	and	 to	deliver	 the	correct	 site	 to	 the	visitors.	You	need	 to	know	how	 to	create

Apache	virtual	hosts,	test	the	names	of	domains	so	as	to	be	sure	that	the	web	server	they

are	pointing	to	is	the	correct	one,	and	then	perform	a	configuration	on	the	Apache	virtual

host	files	so	that	the	names	for	the	domains	can	be	pointing	to	a	specific	folder.

	

	

Configuration	of	the	Apache	vhost
	

	

When	 the	 domains	 are	 working	 effectively	 and	 as	 expected,	 we	 should	 configure	 the

Apache	so	 that	 it	can	route	 the	domain	names	 to	 the	site	directory.	This	can	be	done	by

following	the	steps	given	below:

	

1.	 Locate	and	navigate	to	the	directory	having	your	Apache	configuration.	For	Ubuntu

users,	then	can	be	found	at	“/etc/apache2.”	For	other	types	of	servers,	this	can	be

found	at	“/etc/http.”

	

2.	 You	can	then	locate	the	vhost	configuration.	For	Ubuntu	users,	 this	should	be	the

directory	“sites-available.”		For	the	users	of	other	types	of	servers,	then	they	might

have	to	edit	the	file	“httpd.conf.”

	

	

3.	 You	can	then	open	or	create	the	vhost	configuration.	For	Ubuntu	users,	just	create	a

new	file	in	the	directory	“sites-available.”		The	file	can	be	given	the	same	name	as

the	name	of	the	domain.	However,	you	can	choose	the	name	that	you	want	for	the

file,	provided	you	can	recall	it.

	

4.	 A	new	vhost	record	can	then	be	added.	The	Apache	directives	can	then	be	added	to

the	 file.	However,	one	has	 to	have	ServerAlias,	ServerName,	 and	DocumentRoot

directives	for	a	particular	host.	An	example	of	this	is	given	below:

	

	

#	The	vhost	record	can	now	be	started	on	the	default	HTTP	port	80

<VirtualHost	*:80>

#	The	vhost	name.

ServerName	udrupal.com

#	The	alternative	names	for	the	same	vhost.

#	 The	 other	 domains	 can	 be	 added	 here.	 These	 will	 be	 moved	 to	 the	 same

place.

ServerAlias	news.udrupal.com

ServerAlias	udrupalalumni.com

#	This	is	the	Directory	where	the	code	for	the	website	lives.

DocumentRoot	/home/udrupal/www

<Directory	/>

Options	FollowSymLinks

AllowOverride	All

</Directory>

</VirtualHost>

	

	

5.	 The	changes	made	to	the	file	can	now	be	saved.

	

6.	 The	 site	 can	 now	 be	 enabled.	 This	 is	 to	 make	 sure	 that	 the	 Apache	 web	 server

applies	the	newly	made	changes	to	the	configuration.

	

	

7.	 Just	open	the	command	prompt,	and	then	run	the	following	command:

	

sudo	a2ensite	udrupal

	

What	will	happen	is	that	you	will	be	notified	that	the	site	is	being	enabled,	and	then	the

reload	command	will	be	issued.

	

8.	 The	Apache	 can	 then	 be	 reloaded	 or	 restarted.	However,	 the	Apache	web	 server

will	 not	 immediately	 notice	 the	 changes.	 This	 is	 why	 you	 have	 to	 restart	 the

configuration	 files	 for	 Apache.	 The	 command	 for	 doing	 this	 will	 depend	 on	 the

type	of	system	that	you	are	using.	In	most	systems,	the	command	should	have	the

“sudo”	command	in	front	of	it	as	shown	below:

sudo	/etc/init.d/apache2	reload

	

The	system	should	now	be	set	up.	You	can	open	up	your	browser,	and	then	type	one	of	the

domain	names.	The	directory	of	the	site	should	be	observed	loading.

	

	

	

	

	

	

Chapter	8-	Reverse	Cache	Proxy	in	Nginx
	

	

	

After	reading	this	chapter,	you	will	understand	the	importance	and	know	how	to	set	up	in

Nginx.	With	 the	 reverse	 cache	 proxy	 in	 Nginx,	 the	 performance	 of	 the	 system	 can	 be

greatly	 improved,	 and	 it	makes	 it	 possible	 for	 the	 system	 to	 handle	multiple	 concurrent

users	on	the	landing	pages.

	

	

However,	most	people	do	not	know	what	Nginx	 is.	 It	 is	 just	 an	Open	Source	Http	Web

server	 and	 a	 reverse	 web	 server.	 It	 is	 currently	 being	 used	 today	 for	 the	 powering	 of

websites,	ranging	from	simple	to	complex	ones.	This	web	server	helps	in	handling	users,

and	especially	multiple	concurrent	users.	When	it	comes	to	websites,	users	usually	issue

requests	to	the	system,	and	then	wait	for	the	feedback	from	it.

	

The	problem	comes	when	all	the	users	are	new	to	the	site,	and	they	all	issue	requests.	In

this	case,	servicing	the	requests	for	all	of	these	users	becomes	a	bit	tricky.	The	solution	to

this	problem	is	to	come	up	with	the	strategy	of	caching.	Consider	a	situation	whereby	all

of	the	concurrent	users	are	requesting	the	same	page.	In	this	case,	the	page	can	be	placed

in	 the	 cache,	 in	 which	 case	 once	 any	 user	 requests	 	 it,	 then	 it	 will	 be	 issued	 to	 them

directly.

Configuration	and	Setup
	

	

For	users	of	Ubuntu,	the	configuration	and	setup	can	be	done	as	follows:

Begin	by	opening	the	file	“/etc/nginx/nginx.conf”	in	the	text	editor	of	your	choice.	Under

the	definition	for	“http	{“,	add	the	following	lines:

	

	

proxy_cache_path	 	 /var/www/cache	 levels=1:2	 keys_zone=my-cache:8m

max_size=1000m	inactive=600m;

proxy_temp_path	/var/www/cache/tmp;

real_ip_header	X-Forwarded-For;

	

	

With	the	first	two	lines	in	the	above	code,	a	cache	directory	will	be	created	in	your	system.

	

The	 next	 step	 should	 be	 the	 creation	 of	 a	 virtual	 host	 under	 “/etc/nginx/sites-

available/website.”		This	is	shown	below:

	

server	{

listen	80;

server_name	_;

server_tokens	off;

location	/	{

proxy_pass														http://127.0.0.1:8080/;

proxy_set_header								Host																				$h;

proxy_set_header								X-Real-IP															$r_addr;

proxy_set_header								X-Forwarded-For									$p_add_x_forward_for;

proxy_cache		my-cache;

proxy_cache_valid	3s;

proxy_no_cache	$cookie_PHPSESSID;

proxy_cache_bypass	$cookie_PHPSESSID;

proxy_cache_key									“$scheme$host$request_uri”;

add_header	X-Cache	$upstream_cache_status;

}

}

	

server	{

listen			8080;

server_name	_;

root	/var/www/root_for_document/;

index	index.php	index.html	index.htm;

server_tokens	off;

location	~	.php$	{

try_files	$uri	/index.php;

fastcgi_pass	127.0.0.1:9000;

fastcgi_index	index.php;

fastcgi_param	SCRIPT_FILENAME	$document_root$fastcgi_script_name;

include	/etc/nginx/fastcgi_params;

}

location	~	/.ht	{

all	denied;

}

}

	

	

To	enable	the	above,	you	can	do	the	following:

	

cd

ln	-s	/etc/nginx/	available-sites/website	/etc/nginx/enabled-sites/website

/etc/init.d/nginx	restart

	

	

The	first	definition	of	the	server	is	for	the	reverse	cache	proxy	which	runs	at	port	number

80.	The	next	one	should	be	the	backend	one.	With	the	proxy	pass	http://127.0.0.1:8080/,

the	traffic	will	be	forwarded	to	port	8080.

When	 it	 comes	 to	 static	 content,	Nginx	 is	 very	 fast	 in	 serving	 this.	An	 example	 of	 this

content	is	the	single	page	which	is	described	earlier	on.	The	improved	performance	is	due

to	the	use	of	the	cache	which	makes	the	processing	easy.	The	benchmark	for	this	is	given

below:

	

	

	

With	 the	above	command,	1,000	requests,	which	are	100	concurrent,	will	be	sent	 to	our

reverse	cache	proxy	which	is	on	port	number	80.

Consider	the	command	given	below:

	

	

	

	

What	happens	with	the	above	command	is	that	1,000	requests,	having	100	concurrent	will

be	send	to	 the	backend	at	port	number	8080.	For	 the	case	of	 the	port	number	80,	 it	will

take	0.2	seconds	for	the	1,000	requests	to	be	run	while	for	the	port	number	8080,	it	will

http://127.0.0.1:8080/

take	2.5	seconds	for	the	same	number	of	requests	to	run.	This	translates	to	be	12.5	times

faster.

	

	

On	port	80,	4,300	requests	will	be	processed	in	a	second,	while	in	port	number	8080,	only

400	requests	will	be	processed	per	second.	This	translates	to	10.7	times	faster.

	

	

Although	 PHP	 accelerators	 can	 be	 very	 useful,	 it	 might	 not	 be	 effective	 in	 certain

scenarios	 when	 compared	 to	 the	 reverse	 cache	 proxy.	 The	 PHP	 accelerator	 works	 by

caching	 the	 content	 of	 PHP	 scripts	 which	 has	 been	 compiled	 so	 as	 to	 improve	 on

performance.	This	normally	happens	in	environments	where	shared	memory	is	being	used

so	as	to	avoid	the	concept	of	recompiling	the	source	code	for	each	request	which	is	made.

Whenever	the	source	code	of	the	PHP	script	is	changed,	then	the	OpCode	which	is	stored

is	changed	to	the	appropriate	one.

	

	

Varnish	 is	 also	 a	good	 tool	 to	use	 for	 a	 reverse	 cache	proxy.	You	need	 to	know	 that	 its

focus	is	mainly	on	HTTP.	Nginx	can	act	like	a	web	server,	a	mail	server,	a	Reverse	Cache

Proxy,	and	a	load	balancer.	However,	this	is	not	the	case	with	Varnish.	The	two	tools	are

good	in	reverse	cache	proxying.	The	good	thing	with	Varnish	is	that	it	can	be	configured

more	easily.	However,	it	takes	more	memory	and	CPU.	The	process	of	setting	up	Nginx	as

a	backend	or	as	a	reverse	cache	proxy	is	much	easier,	as	you	will	not	be	required	to	install

anything.	With	the	latter,	when	the	infrastructure	grows	in	size,	then	the	process	of	adding

or	 installing	new	 software	will	 not	 be	 easy.	This	 is	why	 the	use	of	Varnish	 is	 not	 very	

recommended	compared	to	Nginx.

	

	

It	can	be	concluded	that	once	Nginx	has	been	set	up	as	a	reverse	cache	proxy,	the	system

will	exercise	an	improved	performance	when	it	comes	to	certain	scenarios.	The	process	of

setting	this	up	is	very	easy.

	

	

	

	

	

Chapter	9-	Setting	Up	LAMP	on	Ubuntu
hosted	on	AWS
	

	

	

Begin	by	booting	up	an	instance	of	the	AWS	Ubuntu	server,	and	then	log	into	it	by	use	of

MobaXterm.	Use	the	username	“ubuntu”	to	log	into	the	system.	Once	you	are	logged	in,

execute	the	following	command:

	

	

	

	

The	next	step	should	be	execution	of	the	following	command:

	

	

	

	

The	LAMP	server	can	then	be	installed	by	use	of	the	following	command:

	

	

	

	

Note	that	the	password	for	root	in	MySQL	should	not	be	forgotten.

Our	web	 root	 directory	will	 be	“/var/www/html,”	 	 so	 there	 is	 a	 need	 to	 give	 ourselves

permissions	so	that	we	can	work	from	there.	The	following	sequence	of	commands	can	be

used	for	that	purpose:

	

	

	

	

You	 have	 to	 install	 curl,	 as	 it	 will	 be	 needed	 for	 the	 LAMP	 server	 to	 work.	 It	 can	 be

installed	as	follows:

	

	

	

	

Mcrypt	will	also	be	needed,	so	it	can	be	installed	as	follows:

	

	

	

	

Once	 you	 are	 through	with	 the	 installation,	 reboot	 the	Apache	 by	 use	 of	 the	 following

command:

	

	

	

	

The	next	step	should	involve	sorting	out	of	the	Mod-rewrite.	The	following	command	can

be	used	for	this	purpose:

	

	

	

	

The	 Apache	 can	 then	 be	 restarted	 so	 that	 the	 above	 change	 can	 take	 effect	 or	 can	 be

applied.	The	following	command	can	be	used	for	this	purpose:

	

	

	

	

You	can	then	navigate	to	the	web	root	by	use	of	the	command	given	below:

	

	

	

	

You	 will	 then	 be	 done,	 meaning	 that	 the	 LAMP	 server	 will	 be	 ready	 for	 use	 on	 your

system.

Chapter	10-	Using	Nginx	with	a	Web
Application
	

	

With	 Nginx,	 communication	 with	 web	 applications	 which	 have	 been	 developed

dynamically	is	made	possible	and	a	bit	easy.	It	can	also	be	used	for	distribution	of	traffic

among	 backend	 servers.	 Just	 like	 Varnish,	 it	 can	 also	 be	 used	 for	 the	 caching	 of	 web

content.

	

	

Configuration	of	Nginx	Server
	

Consider	the	code	given	below:

	

server	{

listen	80	default_site;

root	/var/www;

index	index.html	index.htm;	!

server_name	server_name.com	www.server_name.com;	!

location	/	{

try_files	$uri	$uri/	=404;

}

}

	

	

The	above	code	shows	a	basic	configuration	of		Nginx	so	as	to	serve	files	on	a	particular

website.	It	 listens	on	port	number	80,	which	is	just	a	regular	HTTP	port.	We	must	tell	 it

what	the	default	site	is.	This	is	the	site	where	Nginx	will	go	if	it	receives	a	request	which

has	no	website	which	has	been	specified.	The	root	of	the	web	also	has	to	be	set,	and	this	is

where	we	will	store	our	files	for	the	web	application.

	

	

	

	

For	the	purpose	of	server	configuration	setup,	it	is	recommended	that	you	use	H5BP.	Once

the	Nginx	has	been	installed	on	the	distributions	of	Linux	such	as	Debian,	Ubuntu,	Fedora,

and	 others,	 the	 sites	 will	 be	 enabled	 by	 default,	 and	 the	 structure	 of	 the	 sites	 will	 be

available.

	

	

With	 Nginx,	 requests	 can	 be	 sent	 to	 HTTP	 listeners,	 to	 WSGI	 listeners,	 to	 fastCGI

listeners,	and	communication	with	memcache	can	be	done	directly.	Some	fancy	caching

can	be	done	in	HTTP	as	shown	below:

	

location	/static	{

try_files	$uri	$uri/	=404;

}

location	/	{

proxy_pass	127.0.0.1:9000;

proxy_param	APPENV	production;

include	proxy_params;

}

	

	

The	above	code	shows	how	one	can	proxy	their	request	from	Nginx	to	another	application.

Whenever	you	have	an	application	which	is	using	Nginx,	then	the	Nginx	will	be	placed	at

the	front	of	the	application	so	as	to	receive	requests	from	users,	but	you	come	up	with	a

way	to	tell	or	guide	it	on	how	to	handle	static	files.	You	should	also	tell	it	the	time	that	it

should	send	out	a	request	from	the	application.

Consider	the	code	given	below:

	

location	~	.php$	{

fastcgi_split_path_info	^(.+.php)(/.+)$;

fastcgi_pass	127.0.0.1:9000;

#	Or:

#fastcgi_pass	unix:/var/run/php5-fpm.sock;

fastcgi_index	index.php;

fastcgi_param	APPENV	production;

include	fastcgi.conf;

}

	

	

Note	 that	with	PHP-FPM,	 listening	 to	ports	 is	done	by	use	of	 fastCGI	rather	 than	using

HTTP.	However,	 in	 our	 case	 above,	we	 are	 listening	 to	 the	 port	 number	 9000	which	 is

located	on	the	local	host.	An	HTTP	request	will	not	be	accepted	in	the	above	case.	Only

requests	which	are	made	in	fastCGI	will	be	accepted,	and	this	specifies	the	standard	way	

how	PHP	files	are	processed.

	

	

For	 the	 case	 of	 HTTP	 proxies,	 non-static	 URLs	 are	 matched	 and	 then	 passed	 into	 an

application.	In	PHP,	this	only	happens	with	files	having	a	“.php”	extension,	as	they	are	the

ones	which	are	matched	and	then	passed	into	the	application.

	

	

The	type	of	server	information	which	PHP	is	to	use	has	also	been	specified.

	

location	/static	{

try_files	$uri	$uri/	=404;

}

location	/	{

uwsgi_pass	127.0.0.1:9000;

uwsgi_param	APPENV	production;

include	uwsgi_params;

}

	

	

Lastly,	the	HTTP	request	is	taken	away	by	WSGI	Nginx,	in	which	it	is	converted	into	the

correct	protocol	that	the	gateway	uses,	and	then	it	is	sent	off	to	the	gateway.	The	gateway

will	 then	communicate	with	 the	application	where	 the	request	 is	processed,	and	then	the

response	is	sent	back.

Nginx	as	a	Load	Balancer
	

	

Nginx	makes	a	good	 load	balancer,	 just	 like	other	 software	 such	as	HAProxy.	 It	 can	be

configured	as	follows	for	the	purpose	of	load	balancing:

	

upstream	myapp	{

zone	backend	64k;

least_conn;

server	127.0.0.1:9000	max_fails=2	fail_timeout=30s;

server	127.0.0.1:9001	max_fails=2	fail_timeout=30s;

server	127.0.0.1:9002	max_fails=2	fail_timeout=30s;

}

server	{

location	/	{

health_check;

include	proxy_params;

proxy_pass	http://myapp/;

#	handling	of	the	web	socket	connections

proxy_http_version	1.1;

proxy_set_header	Upgrade	$hupgrade;

proxy_set_header	Connection	“upgrade”;

}

}

	

Upstream	are	the	load	balancers	to	be	load	balanced	within.	Note	that	we	have	only	three

servers,	and	all	are	listening	to	port	number	9000.	Consider	the	code	given	below:

	

server	{

location	/	{

health_check;

include	proxy_params;

proxy_pass	http://myapp/;

#	Handling	of	the	Web	Socket	connections

proxy_http_version	1.1;

proxy_set_header	Upgrade	$hupgrade;

proxy_set_header	Connection	“upgrade”;

}

	

	

Our	aim	 is	 to	stop	 the	Nginx	 from	sending	 its	 requests	 to	 the	servers	which	might	have

broken	down.	That	is	why	we	have	the	above	parameter.	The	Health	check	is	responsible

for	checking	this.

	

	

	

	

	

	

	

	

	

	

	

	

Conclusion
	

	

	

DevOps	 (Developer	 Operations)	 is	 a	 software	 development	 methodology	 which	 was

introduced	 so	 as	 to	 bring	 collaboration,	 communication,	 and	 cooperation	 between	 	 the

software	developers	and	other	professionals	in	an	organization.	With	DevOps,	the	degree

of	 cooperation	 among	 the	 software	 developers	 and	 other	 IT	 professionals	 in	 the

organization	is	improved.

	

This	will	translate	to	the	fact	that	software	will	be	rapidly	developed	and	released	into	the

market,	which	is	an	advantage	to	the	software	organization.	The	software	will	also	be	of

high	quality,	due	to	the	increased	degree	of	cooperation	between	the	software	developers.

With	 the	 earlier	 software	development	methodologies,	 a	 disconnect	 existed	between	 the

processes	of	development	and	operations	activity.

	

This	usually	led	to	conflicts	between	the	software	developers,	which	translated	to	software

of	poor	quality	being	developed	and	 released	 into	 the	market.	The	software	was	also	of

poor	quality.	This	is	why	DevOps	was	introduced,	and	it	effectively	solves	these	problems.

With	Puppet,	we	find	it	possible	for	us	to	configure	systems	declaratively.	Our	task	is	just

to	declare	 the	resources	which	we	need	or	 the	ones	 that	we	have,	and	 then	declare	 their

state.	We	will	then	be	done.	The	configuration	is	then	stored	in	system	files.	Note	that	we

are	not	encouraged	to	perform	a	configuration	when	our	servers	are	live.	What	we	should

do	is	to	create	new	servers	having	the	upgrades	and	the	updates,	and	then	start	using	them

rather	than	using	the	old	servers.

	

	

	

	Introduction
	Chapter 1- Definition
	Chapter 2- Installation of TomEE from Puppet
	Chapter 3- Puppet and Packer Immutable Servers
	Chapter 4- How to set up a modern web stack in Ubuntu
	Chapter 5- Migration of MongoDB to DynamoDB
	Chapter 6- MongoDB and Tree Structures
	Chapter 7- Configuration of Apache for Multiple Domains
	Chapter 8- Reverse Cache Proxy in Nginx
	Chapter 9- Setting Up LAMP on Ubuntu hosted on AWS
	Chapter 10- Using Nginx with a Web Application
	Conclusion

